Sample records for salmon snake river

  1. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  2. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  3. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...

  4. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone of...

  5. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring...

  6. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring...

  7. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...

  8. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...

  9. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring/summer chinook salmon Fall chinook salmon Hells Canyon 17060101 17060101 Imnaha 17060102 17060102 Lower...

  10. Snake River Fall Chinook Salmon life history investigations

    USGS Publications Warehouse

    Erhardt, John M.; Bickford, Brad; Hemingway, Rulon J.; Rhodes, Tobyn N.; Tiffan, Kenneth F.

    2017-01-01

    Predation by nonnative fishes is one factor that has been implicated in the decline of juvenile salmonids in the Pacific Northwest. Impoundment of much of the Snake and Columbia rivers has altered food webs and created habitat favorable for species such as Smallmouth Bass Micropterus dolomieu. Smallmouth Bass are common throughout the Columbia River basin and have become the most abundant predator in lower Snake River reservoirs (Zimmerman and Parker 1995). This is a concern for Snake River Fall Chinook Salmon Oncorhynchus tshawytscha (hereafter, subyearlings) that may be particularly vulnerable due to their relatively small size and because their main-stem rearing habitats often overlap or are in close proximity to habitats used by Smallmouth Bass (Curet 1993; Tabor et al. 1993). Concern over juvenile salmon predation spawned a number of large-scale studies to quantify its effect in the late 1980s, 1990s, and early 2000s (Poe et al. 1991; Rieman et al. 1991; Vigg et al. 1991; Fritts and Pearsons 2004; Naughton et al. 2004). Smallmouth Bass predation represented 9% of total salmon consumption by predatory fishes in John Day Reservoir, Columbia River, from 1983 through 1986 (Rieman et al. 1991). In transitional habitat between the Hanford Reach of the Columbia River and McNary Reservoir, juvenile salmon (presumably subyearlings) were found in 65% of Smallmouth Bass (>200 mm) stomachs and comprised 59% of the diet by weight (Tabor et al. 1993). Within Lower Granite Reservoir on the Snake River, Naughton et al. (2004) showed that monthly consumption (based on weight) ranged from 5% in the upper reaches of the reservoir to 11% in the forebay. However, studies in the Snake River were conducted soon after Endangered Species Act (ESA) listing of Snake River Fall Chinook Salmon (NMFS 1992). During this time, Fall Chinook Salmon abundance was at an historic low, which may explain why consumption rates were relatively low compared to those from studies conducted in the

  11. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, John G.; Bjomn

    1997-03-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearlingmore » chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2).« less

  12. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Griswold, Robert G.; Taki, Doug

    2009-07-31

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake Rivermore » sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish

  13. Genetic characterization of naturally spawned Snake River fall-run Chinook salmon

    USGS Publications Warehouse

    Marshall, A.R.; Blankenship, H.L.; Connor, W.P.

    1999-01-01

    We sampled juvenile Snake River chinook salmon Oncorhynchus tshawytscha to genetically characterize the endangered Snake River fall-run population. Juveniles from fall and spring–summer lineages coexisted in our sampling areas but were differentiated by large allozyme allele frequency differences. We sorted juveniles by multilocus genotypes into putative fall and spring lineage subsamples and determined lineage composition using maximum likelihood estimation methods. Paired sMEP-1* and PGK-2* genotypes—encoding malic enzyme (NADP+) and phosphoglycerate kinase, respectively—were very effective for sorting juveniles by lineage, and subsamples estimated to be 100% fall lineage were obtained in four annual samples. We examined genetic relationships of these fall lineage juveniles with adjacent populations from the Columbia River and from Lyons Ferry Hatchery, which was established to perpetuate the Snake River fall-run population. Our samples of naturally produced Snake River fall lineage juveniles were most closely aligned with Lyons Ferry Hatchery samples. Although fall-run strays of Columbia River hatchery origin found on spawning grounds threaten the genetic integrity of the Snake River population, juvenile samples (a) showed distinctive patterns of allelic diversity, (b) were differentiated from Columbia River populations, and (c) substantiate earlier conclusions that this population is an important genetic resource. This first characterization of naturally produced Snake River fall chinook salmon provides a baseline for monitoring and recovery planning.

  14. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River Reservoirs, 1996 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, John G.; Bjornn

    1998-05-01

    In 1996, the National Marine Fisheries Service, the Nez Perce Tribe, and the U.S. Fish and Wildlife Service completed the second year of cooperative research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin. In spring and early summer, we captured natural subyearling fall chinook salmon by beach seine, PIT tagged them, and released them in two reaches of the Snake River. Also, subyearling fall chinook salmon reared at Lyons Ferry Hatchery were PIT tagged at the hatchery, transported, and released weekly at Pittsburg Landing on the Snake River and Big Canyon Creek on themore » Clearwater River to collect data on survival detection probabilities, and travel time.« less

  15. Snake River Sockeye Salmon Captive Broodstock Program Hatchery Element : Project Progress Report 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Dan J.; Heindel, Jeff A.; Green, Daniel G.

    2008-12-17

    Numbers of Snake River sockeye salmon Oncorhynchus nerka have declined dramatically in recent years. In Idaho, only the lakes of the upper Salmon River (Sawtooth Valley) remain as potential sources of production (Figure 1). Historically, five Sawtooth Valley lakes (Redfish, Alturas, Pettit, Stanley, and Yellowbelly) supported sockeye salmon (Bjornn et al. 1968; Chapman et al. 1990). Currently, only Redfish Lake receives a remnant anadromous run. On April 2, 1990, the National Oceanic and Atmospheric Administration Fisheries Service (NOAA - formerly National Marine Fisheries Service) received a petition from the Shoshone-Bannock Tribes (SBT) to list Snake River sockeye salmon as endangeredmore » under the United States Endangered Species Act (ESA) of 1973. On November 20, 1991, NOAA declared Snake River sockeye salmon endangered. In 1991, the SBT, along with the Idaho Department of Fish & Game (IDFG), initiated the Snake River Sockeye Salmon Sawtooth Valley Project (Sawtooth Valley Project) with funding from the Bonneville Power Administration (BPA). The goal of this program is to conserve genetic resources and to rebuild Snake River sockeye salmon populations in Idaho. Coordination of this effort is carried out under the guidance of the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC), a team of biologists representing the agencies involved in the recovery and management of Snake River sockeye salmon. National Oceanic and Atmospheric Administration Fisheries Service ESA Permit Nos. 1120, 1124, and 1481 authorize IDFG to conduct scientific research on listed Snake River sockeye salmon. Initial steps to recover the species involved the establishment of captive broodstocks at the Eagle Fish Hatchery in Idaho and at NOAA facilities in Washington State (for a review, see Flagg 1993; Johnson 1993; Flagg and McAuley 1994; Kline 1994; Johnson and Pravecek 1995; Kline and Younk 1995; Flagg et al. 1996; Johnson and Pravecek 1996; Kline and Lamansky 1997

  16. Snake River Sockeye Salmon Habitat and Limnological Research; 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Taki, Doug; Griswold, Robert G.

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Shoshone-Bannock Tribal goal for this project ismore » two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2002 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake (3) conduct kokanee salmon (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation between stocked juvenile O. nerka

  17. Two alternative juvenile life history types for fall Chinook salmon in the Snake River basin

    USGS Publications Warehouse

    Connor, W.P.; Sneva, J.G.; Tiffan, K.F.; Steinhorst, R.K.; Ross, D.

    2005-01-01

    Fall Chinook salmon Oncorhynchus tshawytscha in the Snake River basin were listed under the Endangered Species Act in 1992. At the time of listing, it was assumed that fall Chinook salmon juveniles in the Snake River basin adhered strictly to an ocean-type life history characterized by saltwater entry at age 0 and first-year wintering in the ocean. Research showed, however, that some fall Chinook salmon juveniles in the Snake River basin spent their first winter in a reservoir and resumed seaward movement the following spring at age 1 (hereafter, reservoir-type juveniles). We collected wild and hatchery ocean-type fall Chinook salmon juveniles in 1997 and wild and hatchery reservoir-type juveniles in 1998 to assess the condition of the reservoir-type juveniles at the onset of seaward movement. The ocean-type juveniles averaged 112-139 mm fork length, and the reservoir-type juveniles averaged 222-224 mm fork length. The large size of the reservoir-type juveniles suggested a high potential for survival to salt water and subsequent return to freshwater. Scale pattern analyses of the fall Chinook salmon spawners we collected during 1998-2003 supported this point. Of the spawners sampled, an overall average of 41% of the wild fish and 51% of the hatchery fish had been reservoir-type juveniles. Males that had been reservoir-type juveniles often returned as small "minijacks" (wild, 16% of total; hatchery, 40% of total), but 84% of the wild males, 60% of the hatchery males, and 100% of the wild and hatchery females that had been reservoir-type juveniles returned at ages and fork lengths commonly observed in populations of Chinook salmon. We conclude that fall Chinook salmon in the Snake River basin exhibit two alternative juvenile life histories, namely ocean-type and reservoir-type. ?? Copyright by the American Fisheries Society 2005.

  18. Early life history and survival of natural subyearling fall chinook salmon in the Snake and Clearwater rivers in 1995

    USGS Publications Warehouse

    Connor, William P.; Bjornn, Theodore C.; Burge, Howard L.; Garcia, Aaron P.; Rondorf, Dennis W.

    1997-01-01

    The objectives of this segment of our study were to (1) describe the early life history characteristics of naturally produced subyearling fall chinook salmon in the Snake and Clearwater rivers, and (2) estimate survival for juvenile fall chinook salmon emigrating from the Snake and Clearwater rivers to the tail race of Lower Granite Dam.

  19. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, T.P.

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physicalmore » characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the Columbia River

  20. Snake River Sockeye Salmon Habitat and Limnological Research; 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Taki, Doug; Griswold, Robert G.

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon Oncorhynchus nerka as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (Council). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2001 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake, fertilization of Pettit and Alturas lakes was suspended for this year; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  1. Habitat quality of historic Snake River fall Chinook salmon spawning locations and implications for incubation survival: part 1, substrate quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.

    2005-07-01

    We evaluated substrate quality at two historic fall Chinook salmon (Oncorhynchus tshawytscha) spawning sites in the Snake River, Idaho, USA. The primary objective of this evaluation was to measure sediment permeability within these areas to determine the potential quality of the habitat in the event that anadromous salmonids are reintroduced to the upper Snake River. Riverbed sediments within the two sites in the upper Snake River were sampled using freeze cores and hydraulic slug tests. Sediment grain size distributions at both sites were typical of gravel-bed rivers with the surface layer coarser than the underlying substrate, suggesting the riverbed surfacemore » was armored. Despite the armored nature of the bed, the size of the largest material present on the riverbed surface was well within the size limit of material capable of being excavated by spawning fall Chinook salmon. The percentage of fines was low, suggesting good quality substrate for incubating salmon embryos. Geometric mean particle sizes found in this study compared to a 55% to 80% survival to emergence based on literature values. Hydraulic slug tests showed moderate to high hydraulic conductivity and were comparable to values from current fall Chinook salmon spawning areas in the Hells Canyon Reach of the Snake River and the Hanford Reach of the Columbia River. Predicted estimates of mean egg survival at both sites (48% and 74%) equaled or exceeded estimates from fall Chinook salmon spawning areas in the Hells Canyon Reach and the Hanford Reach.« less

  2. Snake River Sockeye Salmon Habitat and Limnological Research; 1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Robert G.; Taki, Doug; Lewis, Bert

    2001-01-15

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 1999 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  3. Snake River Sockeye Salmon Habitat and Limnological Research; 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andre E.; Griswold, Robert G.; Taki, Doug

    2002-12-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding formore » this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2000 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.« less

  4. Snake River fall Chinook salmon life history investigations, 1/1/2012 - 12/31/2012: Annual report 2002-032-00

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, Willam P.; Bellgraph, Brian J.; Chittaro, Paul M.

    2014-01-01

    Finally, we examined the role of different invasive invertebrates in lower Snake River reservoir food webs that are food, or competitors for food, for juvenile fall Chinook salmon. The Siberian prawn, a relatively new invader, is relatively abundant but its role on the food web is largely unexplored. Prawns are successfully reproducing and their diet is 81% Neomysis (an invasive opossum shrimp) which is heavily used at times by juvenile salmon for food. Neomysis has become very abundant in lower Snake River reservoirs in recent years and may be a profitable food item for many fish species.

  5. Cryopreservation of Adult Male Spring and Summer Chinook Salmon Gametes in the Snake River Basin, 1997 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faurot, Dave; Kucera, Paul A.; Armstrong, Robyn D.

    1998-06-01

    Chinook salmon populations in the Northwest are decreasing in number. The Nez Perce Tribe was funded in 1997 by the Bonneville Power Administration to coordinate and initiate gene banking of adult male gametes from Endangered Species Act (ESA) listed spring and summer chinook salmon in the Snake River basin.

  6. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V.

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snakemore » River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach

  7. Juvenile Chinook Salmon mortality in a Snake River Reservoir: Smallmouth Bass predation revisited

    USGS Publications Warehouse

    Erhardt, John M.; Tiffan, Kenneth F.; Connor, William P.

    2018-01-01

    Predation by nonnative fishes has been identified as a contributing factor in the decline of juvenile salmonids in the Columbia River basin. We examined the diet composition of Smallmouth Bass Micropterus dolomieu and estimated the consumption and predation loss of juvenile Chinook Salmon Oncorhynchus tshawytscha in Lower Granite Reservoir on the Snake River. We examined 4,852 Smallmouth Bass stomachs collected from shoreline habitats during April–September 2013–2015. Chinook Salmon were the second most commonly consumed fish by all size‐classes of Smallmouth Bass (≥150 mm TL) throughout the study. Over the 3 years studied, we estimated that a total of 300,373 Chinook Salmon were consumed by Smallmouth Bass in our 22‐km study area, of which 97% (291,884) were subyearlings (age 0) based on length frequency data. A majority of the loss (61%) occurred during June, which coincided with the timing of hatchery releases of subyearling fall Chinook Salmon. Compared to an earlier study, mean annual predation loss increased more than 15‐fold from 2,670 Chinook Salmon during 1996–1997 to 41,145 Chinook Salmon during 2013–2015 (in reaches that could be compared), despite lower contemporary Smallmouth Bass abundances. This increase can be explained in part by increases in Smallmouth Bass consumption rates, which paralleled increases in subyearling Chinook Salmon densities—an expected functional response by an opportunistic consumer. Smallmouth Bass are currently significant predators of subyearling Chinook Salmon in Lower Granite Reservoir and could potentially be a large source of unexplained mortality.

  8. Population viability of the Snake River chinook salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Emlen, John M.

    1995-01-01

    In the presence of historical data, population viability models of intermediate complexity can be parameterized and utilized to project the consequences of various management actions for endangered species. A general stochastic population dynamics model with density feedback, age structure, and autocorrelated environmental fluctuations was constructed and parameterized for best fit over 36 years of spring chinook salmon (Oncorhynchus tshawytscha) redd count data in five Idaho index streams. Simulations indicate that persistence of the Snake River spring chinook salmon population depends primarily on density-independent mortality. Improvement of rearing habitat, predator control, reduced fishing pressure, and improved dam passage all would alleviate density-independent mortality. The current value of the Ricker α should provide for a continuation of the status quo. A recovery of the population to 1957–1961 levels within 100 years would require an approximately 75% increase in survival and (or) fecundity. Manipulations of the Ricker β are likely to have little or no effect on persistence versus extinction, but considerable influence on population size.

  9. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willard, Catherine; Hebdon, J. Lance; Castillo, Jason

    2004-06-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999 when six jacksmore » and one jill were captured at IDFG's Sawtooth Fish Hatchery. In 2002, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in August and to Pettit and Redfish lakes in October, age-1 smolts were released to Redfish Lake Creek in May, eyed-eggs were planted in Pettit Lake in December, and hatchery-produced and anadromous adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2002. Age-0, age-1, and age-2 O. nerka were captured in Redfish Lake, and population abundance was estimated at 50,204 fish. Age-0, age-1, age-2, and age-3 kokanee were captured in Alturas Lake, and population abundance was estimated at 24,374 fish. Age-2 and age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 18,328 fish. The ultimate goal of the Idaho Department of Fish and Game (IDFG) captive broodstock development and evaluation efforts is to recover sockeye salmon runs in Idaho waters. Recovery is defined as reestablishing sockeye salmon runs and providing for utilization of sockeye salmon and kokanee resources by

  10. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at differentmore » areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.« less

  11. Hydraulic Characteristics of the Lower Snake River during Periods of Juvenile Fall Chinook Salmon Migration, 2002-2006 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, C.; Dibrani, B.; Richmond, M.

    2006-01-01

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences betweenmore » the Clearwater and Snake rivers of 10 C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir's epilimnion at the Clearwater/Snake River confluence is of key biological importance. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four reservoirs are also heavily influenced by wind forcing at the water's surface and during periods of low river discharge often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The thickness (depth) of this upper warm layer and its direction of travel may be of key biological importance to juvenile fall

  12. The economic impact on the forest sector of critical habitat delineation for salmon in the Columbia and Snake River basins.

    Treesearch

    R.W. Haynes; N.A. Bolon; D.T. Hormaechea

    1992-01-01

    Economic implications of critical habitat designation (CHD) for salmon in the Columbia River basin were estimated in advance of actual designation and recovery plan development. Economic impacts on Pacific, Northwest, Intermountain, and Northern Region National Forests' range, recreation, timber, and mineral programs in the Columbia and Snake River basins were...

  13. Salmonid Gamete Preservation in the Snake River Basin, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Robyn; Kucera, Paul

    2002-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. Along with reduced population and genetic variability, the loss of biodiversity means a diminished environmental adaptability. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming amore » metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2001 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2001, a total of 398 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 295 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Grande Ronde chinook salmon captive broodstock program stores 680 cryopreserved samples at the University of Idaho as a long-term archive, half of the total samples. A total of 3,206 cryopreserved samples from Snake River basin

  14. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and onemore » private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.« less

  15. Evaluation of Delisting Criteria and Rebuilding Schedules for Snake River Spring/Summer Chinook, Fall Chinook and Sockeye Salmon : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 10 of 11.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, Steven P.; Neeley, Doug

    1993-06-01

    We develop a framework for distinguishing healthy and threatened populations, and we analyze specific criteria by which these terms can be measured for threatened populations of salmon in the Snake River. We review reports and analyze existing data on listed populations of salmon in the Snake River to establish a framework for two stages of the recovery process: (1) defining de-listing criteria, and (2) estimating the percentage increase in survival that will be necessary for recovery of the population within specified time frames, given the de-listing criteria that must be achieved. We develop and apply a simplified population model tomore » estimate the percentage improvement in survival that will be necessary to achieve different rates of recovery. We considered five main concepts identifying de-listing criteria: (1) minimum population size, (2) rates of population change, (3) number of population subunits, (4) survival rates, and (5) driving variables. In considering minimum population size, we conclude that high variation in survival rates poses a substantially greater probability of causing extinction than does loss of genetic variation. Distinct population subunits exist and affect both the genetic variability of the population and the dynamics of population decline and growth. We distinguish between two types of population subunits, (1) genetic and (2) geographic, and we give examples of their effects on population recovery.« less

  16. Genetic Monitoring and Evaluation Program for Supplemented Populations of Salmon and Steelhead in the Snake River Basin, 1990-1991 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waples, Robin S.; Teel, David J.; Aebersold, Paul B.

    This is the first report of research for an ongoing study to evaluate the genetic effects of using hatchery-reared fish to supplement natural populations of chinook salmon and steelhead in the Snake River Basin.

  17. Cost-effective management alternatives for Snake River Chinook salmon: a biological-economic synthesis.

    PubMed

    Halsing, David L; Moore, Michael R

    2008-04-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can

  18. Cost-effective management alternatives for Snake river chinook salmon: A biological-economic synthesis

    USGS Publications Warehouse

    Halsing, D.L.; Moore, M.R.

    2008-01-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can

  19. Interim Columbia and Snake rivers flow improvement measures for salmon: Final Supplemental Environmental Impact Statement (SEIS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-01

    Public comments are sought on this final SEIS, which supplements the 1992 Columbia River Salmon Flow Measures Options Analysis (OA)/Environmental Impact Statement (EIS). The Corps of Engineers, in cooperation with the Bonneville Power Administration and the Bureau of Reclamation proposes five alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. These are: (1) Without Project (no action) Alternative, (2) the 1992 Operation, (3) the 1992 Operation with Libby/Hungry Horse Sensitivity, (4) a Modified 1992 Operation with Improvements to Salmonmore » Flows from Dworshak, and (5) a Modified 1992 Operation with Upper Snake Sensitivity. Alternative 4, Modified 1992 Operations, has been identified as the preferred alternative.« less

  20. Snake River Sockeye Salmon Captive Broodstock Program Research Elements : 2007 Annual Project Progess Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Mike; Plaster, Kurtis; Redfield, Laura

    2008-12-17

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returnsmore » from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2007, progeny from the captive broodstock program were released using four strategies: (1) eyed-eggs were planted in Pettit Lake in November; (2) age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October; (3) age-1 smolts were released into Redfish Lake Creek and the upper Salmon River in May; and (4) hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2007. Population abundances were estimated at 73,702 fish for Redfish Lake, 124,073 fish for Alturas Lake, and 14,746 fish for Pettit Lake. Angler surveys were conducted from May 26 through August 7, 2007 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 102 anglers and estimated that 56 kokanee were harvested. The calculated kokanee catch rate was 0.03 fish/hour for each kokanee kept. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 14 to June 13, 2007. We estimated that 5,280 natural origin and 14,256 hatchery origin sockeye salmon smolts out

  1. Impacts of the Columbia River hydroelectric system on main-stem habitats of fall chinook salmon

    USGS Publications Warehouse

    Dauble, D.D.; Hanrahan, T.P.; Geist, D.R.; Parsley, M.J.

    2003-01-01

    Salmonid habitats in main-stem reaches of the Columbia and Snake rivers have changed dramatically during the past 60 years because of hydroelectric development and operation. Only about 13% and 58% of riverine habitats in the Columbia and Snake rivers, respectively, remain. Most riverine habitat is found in the upper Snake River; however, it is upstream of Hells Canyon Dam and not accessible to anadromous salmonids. We determined that approximately 661 and 805 km of the Columbia and Snake rivers, respectively, were once used by fall chinook salmon Oncorhynchus tshawytscha for spawning. Fall chinook salmon currently use only about 85 km of the main-stem Columbia River and 163 km of the main-stem Snake River for spawning. We used a geomorphic model to identify three river reaches downstream of present migration barriers with high potential for restoration of riverine processes: the Columbia River upstream of John Day Dam, the Columbia-Snake-Yakima River confluence, and the lower Snake River upstream of Little Goose Dam. Our analysis substantiated the assertion that historic spawning areas for fall chinook salmon occurred primarily within wide alluvial floodplains, which were once common in the mainstem Columbia and Snake rivers. These areas possessed more unconsolidated sediment and more bars and islands and had lower water surface slopes than did less extensively used areas. Because flows in the main stem are now highly regulated, the predevelopment alluvial river ecosystem is not expected to be restored simply by operational modification of one or more dams. Establishing more normative flow regimes - specifically, sustained peak flows for scouring - is essential to restoring the functional characteristics of existing, altered habitats. Restoring production of fall chinook salmon to any of these reaches also requires that population genetics and viability of potential seed populations (i.e., from tributaries, tailrace spawning areas, and hatcheries) be considered.

  2. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, A.P.; Bradbury, S.; Arnsberg, B.D.

    2006-10-01

    Redd counts are routinely used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugertmore » et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2005; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U.S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2005 was funded by the Bonneville Power Administration and Idaho Power Company.« less

  3. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2014 - 12/31/2014

    USGS Publications Warehouse

    Connor, William P.; Mullins, Frank L.; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St John, Scott J.; Bickford, Brad; Rhodes, Tobyn N.

    2015-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  4. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, Annual Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Aaron P.; Bradbury, S.M.; Arnsberg, Billy D.

    2003-09-01

    Redd counts were used to document the spawning distribution of fall chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert etmore » al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2001; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992) and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2002 was funded by the Bonneville Power Administration (Projects 1998-01-003 and 1994-03-400) and the Idaho Power Company.« less

  5. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, A.P.; Bradbury, S.; Arnsberg, B.D.

    2008-11-25

    Redd counts are routinely used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugertmore » et al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2007; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches counted upstream of Lower Granite Dam into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2007 was funded by the Bonneville Power Administration and Idaho Power Company.« less

  6. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, Annual Report 2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, A.P.; Bradbury, S.M.; Arnsberg, B.D.

    2004-08-01

    Redd counts were used to document the spawning distribution of fall chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert etmore » al. 1989-1991; Mendel et al. 1992). The U. S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2003; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992) and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2003 was funded by the Bonneville Power Administration (Projects 199801003, 199801004, 199403400, 198335003), Idaho Power Company, and Bureau of Land Management.« less

  7. Fall Chinook Salmon Spawning Ground Surveys in the Snake River Basin Upriver of Lower Granite Dam, 2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, A.P.; Bradbury, S.; Arnsberg, B.D.

    2005-10-01

    Redd counts were used to document the spawning distribution of fall Chinook salmon (Oncorhynchus tshawytscha) in the Snake River basin upriver of Lower Granite Dam. The first reported redd counts were from aerial searches conducted intermittently between 1959 and 1978 (Irving and Bjornn 1981, Witty 1988; Groves and Chandler 1996)(Appendix 1). In 1986, the Washington Department of Fish and Wildlife began an annual monitoring program that, in addition to the Snake River, included aerial searches of the Grande Ronde River the first year (Seidel and Bugert 1987), and the Imnaha River in subsequent years (Seidel et al. 1988; Bugert etmore » al. 1989-1991; Mendel et al. 1992). The U.S. Fish and Wildlife Service and Idaho Power Company began contributing to this effort in 1991 by increasing the number of aerial searches conducted each year and adding underwater searches in areas of the Snake River that were too deep to be searched from the air (Connor et al. 1993; Garcia et al. 1994a, 1994b, 1996-2004; Groves 1993; Groves and Chandler 1996). The Nez Perce Tribe added aerial searches in the Clearwater River basin beginning in 1988 (Arnsberg et. al 1992), and the Salmon River beginning in 1992. Currently searches are conducted cooperatively by the Nez Perce Tribe, Idaho Power Company, and U. S. Fish and Wildlife Service. Our objective for this report was to consolidate the findings from annual redd searches into a single document, containing detailed information about the searches from the most recent spawning season, and summary information from previous years. The work conducted in 2004 was funded by the Bonneville Power Administration, Idaho Power Company, and Bureau of Land Management.« less

  8. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Dan J.; Heindel, Jeff A.; Redding, Jeremy

    2006-05-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound inmore » Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2004 and December 31, 2004 for the hatchery element of the program are presented in this report. In 2004, twenty-seven anadromous sockeye salmon returned to the Sawtooth Valley. Traps on Redfish Lake Creek and the upper Salmon River at the Sawtooth Fish Hatchery intercepted one and four adults, respectively. Additionally, one adult sockeye salmon was collected at the East Fork Salmon River weir, 18 were seined from below the Sawtooth Fish Hatchery weir, one adult sockeye salmon was observed below the Sawtooth Fish Hatchery weir but not captured, and two adult sockeye salmon were observed in Little Redfish Lake but not captured. Fish were captured/collected between July 24 and September 14, 2004. The captured/collected adult sockeye salmon (12 females and 12 males) originated from a variety of release strategies and were transferred

  9. Dance of denial. [The decline of Snake River chinook and sockeye

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, J.

    The numbers of Snake River chinook and sockeye successfully completing their spawning migration to their home waters have declined drastically. In the summer of 1992, exactly one sockeye returned to its ancestral home. Grazing, stream diversions, dams, filling of wetlands, and pollution have all played a part in the decline, but dams remain the main cause. The Northwest Power Planning Council in 1992 approved a two-part strategy to save the salmon population: fish transport and drawing down Snake River reservoirs. Fish transport is not restoring the original salmon runs and drawdowns have not been done. The salmon continue to gomore » extinct and the economy of fishing towns and industries is being ruined.« less

  10. Salmonid Gamete Preservation in the Snake River Basin : 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Robyn; Kucera, Paul A.

    2001-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is notmore » a recovery action for listed fish species. The Tribe was funded in 2000 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2000, a total of 349 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Rapid River Hatchery, Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 283 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Imnaha River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Tribe acquired 5 frozen steelhead samples from the Selway River collected in 1994 and 15 from Fish Creek sampled in 1993 from the U.S. Geological Survey, for addition into the germplasm repository. Also, 590 cryopreserved samples from the Grande Ronde chinook salmon captive broodstock program are being stored at the University of

  11. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, 1991 Annual Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondorf, Dennis W.; Miller, William H.

    1993-07-01

    This document is the 1991 annual progress report for selected studies of fall chinook salmon Oncorhynchus tshawytscha conducted by the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. In April 1992, Snake River fall chinook salmon were listed as ``threatened`` under the Endangered Species Act. Effective recovery efforts for fall chinook salmon can not be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawningmore » of fall chinook salmon in the free-flowing Snake River and their rearing and seaward migration through Columbia River basin reservoirs.« less

  12. Simulated growth and production of endangered Snake River Sockeye Salmon: Assessing management strategies for the nursery lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luecke, C.; Wurtsbaugh, W.A.; Budy, P.

    1996-06-01

    This document examines the potential of employing a series of lake management strategies to enhance production of endangered Snake River sockeye salmon (Oncorhynchus nerka) in its historical nursery lakes in central Idaho. A combination of limnological sampling, experimentation, and simulation modeling was used to assess effects of lake fertilization and kokanee reduction on growth and survival of juvenile sockeye salmon. Juvenile sockeye salmon from a broodstock of this endangered species are being introduced into the lakes from 1995 to 1998. Results of our analyses indicated that several lakes were suitable for receiving broodstock progeny. Field experimentation and simulation modeling indicatedmore » that lake fertilization, coupled with a program of kokanee reduction, provided the management option most likely to enhance the survival of stocked juvenile sockeye salmon. Simulation models that encompass physiological requirements, ecological interactions, and life-history consequences could be used as templates to help develop recovery plans for other endangered fishes. 4 figs., 2 tabs.« less

  13. Seasonal use of shallow water habitat in the Lower Snake River reservoirs by juvenile fall Chinook salmon

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.

    2012-01-01

    The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (< 6 m deep) in the lower Snake River reservoirs to help inform the long-term plan. Natural fry and parr were present within all four shallow water habitat complexes that we studied from early spring through early summer, and parr ( = 40,345 ± 18,800 [error bound]) were more abundant than fry ( = 24,615 ± 5,701). Water < 2 m deep was highly used for rearing by natural fall Chinook salmon subyearlings (fry and parr combined; hereafter natural subyearlings) based on duration of use and relative group abundances during spring and summer, whereas the 2–6 m depth interval was more highly used by migratory hatchery fall Chinook salmon subyearlings and spring, summer, and fall Chinook salmon yearlings. Overall mean spring-summer apparent density of natural subyearlings was 15.5 times higher within the < 2 m depth interval than within the 2–6 m depth interval. Density of natural subyearlings also decreased as the distance a given shallow water habitat complex was located from the riverine spawning areas increased. Reservoir-type juveniles (or fish likely destined to become reservoir-type juveniles) were present in the lower Snake River reservoirs from fall 2010 through winter 2011; however, use of shallow water habitat by reservoir-type juveniles was limited during our study. We only collected 38 reservoir-type juveniles in shallow water habitat sites in beach and lampara seines during the fall. Radiotelemetry data revealed that though many tagged fish passed shallow water

  14. Return to the river: strategies for salmon restoration in the Columbia River Basin.

    Treesearch

    Richard N. Williams; Jack A. Standford; James A. Lichatowich; William J. Liss; Charles C. Coutant; Willis E. McConnaha; Richard R. Whitney; Phillip R. Mundy; Peter A. Bisson; Madison S. Powell

    2006-01-01

    The Columbia River today is a great "organic machine" (White 1995) that dominates the economy of the Pacific Northwest. Even though natural attributes remain—for example, salmon production in Washington State's Hanford Reach, the only unimpounded reach of the mainstem Columbia River—the Columbia and Snake River mainstems are dominated...

  15. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faulkner, James R.; Smith, Steven G.; Muir, William D.

    2009-06-23

    In 2008, the National Marine Fisheries Service completed the sixteenth year of a study to estimate survival and travel time of juvenile salmonids Oncorhynchus spp. passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from detections of fish tagged with passive integrated transponder (PIT) tags. We PIT tagged and released a total of 18,565 hatchery steelhead O. mykiss, 15,991 wild steelhead, and 9,714 wild yearling Chinook salmon O. tshawytscha at Lower Granite Dam in the Snake River. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream from themore » hydropower system and at sites within the hydropower system in both the Snake and Columbia Rivers. These included 122,061 yearling Chinook salmon tagged at Lower Granite Dam for evaluation of latent mortality related to passage through Snake River dams. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, Ice Harbor, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using a statistical model for tag-recapture data from single release groups (the single-release model). Primary research objectives in 2008 were to: (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the migration period of yearling Chinook salmon and steelhead, (2) evaluate relationships between survival estimates and migration conditions, and (3) evaluate the survival estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2008 for PIT-tagged yearling Chinook salmon (hatchery and wild), hatchery sockeye salmon O. nerka, hatchery coho salmon O. kisutch, and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Additional details on the methodology and statistical models used are provided in previous reports cited here

  16. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willard, Catherine; Plaster, Kurtis; Castillo, Jason

    2005-01-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returnsmore » from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2003, progeny from the captive broodstock program were released using three strategies: eyed-eggs were planted in Pettit and Alturas lakes in November and December, age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October, and hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2003. Age-0 through age-4 O. nerka were captured in Redfish Lake, and population abundance was estimated at 81,727 fish. Age-0 through age-3 O. nerka were captured in Alturas Lake, and population abundance was estimated at 46,234 fish. Age-0 through age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 11,961 fish. Angler surveys were conducted from May 25 through August 7, 2003 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 179 anglers and estimated that 424 kokanee were harvested. The calculated kokanee catch rate was 0.09 fish/hour. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 15 to

  17. Plasma insulin-like growth factor-I concentrations in yearling chinook salmon (Oncorhynchus tshawytscha) migrating from the Snake River Basin, USA

    USGS Publications Warehouse

    Congleton, J.L.; Biga, P.R.; Peterson, B.C.

    2003-01-01

    During the parr-to-smolt transformation (smoltification) of juvenile salmonids, preadaptive changes in osmoregulatory and ionoregulatory ability are regulated in part by the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis. If food intake is sufficient, plasma IGF-I increases during smoltification. On the other hand, plasma IGF-I typically decreases in fasting fish and other vertebrate animals. Because food availability is limited for juvenile salmonids undertaking an extended 6- to 12-week spring migration to and through the Snake-Columbia River hydropower system (northwestern USA), IGF-I concentrations might be expected to decrease, potentially compromising seawater tolerance. To address this possibility, yearling chinook salmon Oncorhynchus tshawytscha reared in three Snake River Basin hatcheries were sampled before release and at two downstream dams. Dry masses of migrating fish either did not increase during the migration (in 2000, an average-flow year), or decreased significantly (in 2001, a low-flow year). In both years, plasma IGF-I levels were significantly higher (1.6-fold in 2000, 3.7-fold in 2001) for fish sampled at the last dam on the lower Columbia River than for fish sampled prior to release. Plasma IGF-I concentrations in migrating fish may, nonetheless, have been nutritionally down-regulated to some degree, because plasma IGF-I concentrations in juvenile chinook salmon captured at a Snake River dam and transported to the laboratory increased in fed groups, but decreased in unfed groups. The ability of migrating smolts to maintain relatively elevated IGF-I levels despite restricted food intake and loss of body mass is likely related to smoltification-associated changes in hormonal balance. ?? 2004 Kluwer Academic Publishers.

  18. Influence of multiple dam passage on survival of juvenile Chinook salmon in the Columbia River estuary and coastal ocean

    PubMed Central

    Rechisky, Erin L.; Welch, David W.; Porter, Aswea D.; Jacobs-Scott, Melinda C.; Winchell, Paul M.

    2013-01-01

    Multiple dam passage during seaward migration is thought to reduce the subsequent survival of Snake River Chinook salmon. This hypothesis developed because juvenile Chinook salmon from the Snake River, the Columbia River’s largest tributary, migrate >700 km through eight hydropower dams and have lower adult return rates than downstream populations that migrate through only 3 or 4 dams. Using a large-scale telemetry array, we tested whether survival of hatchery-reared juvenile Snake River spring Chinook salmon is reduced in the estuary and coastal ocean relative to a downstream, hatchery-reared population from the Yakima River. During the initial 750-km, 1-mo-long migration through the estuary and coastal ocean, we found no evidence of differential survival; therefore, poorer adult returns of Snake River Chinook may develop far from the Columbia River. Thus, hydrosystem mitigation efforts may be ineffective if differential mortality rates develop in the North Pacific Ocean for reasons unrelated to dam passage. PMID:23576733

  19. Salmonid Gamete Preservation in the Snake River Basin, Annual Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, William; Kucera, Paul

    2003-07-01

    In spite of an intensive management effort, chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) populations in the Northwest have not recovered and are currently listed as threatened species under the Endangered Species Act. In addition to the loss of diversity from stocks that have already gone extinct, decreased genetic diversity resulting from genetic drift and inbreeding is a major concern. Reduced population and genetic variability diminishes the environmental adaptability of individual species and entire ecological communities. The Nez Perce Tribe (NPT), in cooperation with Washington State University and the University of Idaho, established a germplasm repository in 1992 inmore » order to preserve the remaining salmonid diversity in the region. The germplasm repository provides long-term storage for cryopreserved gametes. Although only male gametes can be cryopreserved, conserving the male component of genetic diversity will maintain future management options for species recovery. NPT efforts have focused on preserving salmon and steelhead gametes from the major river subbasins in the Snake River basin. However, the repository is available for all management agencies to contribute gamete samples from other regions and species. In 2002 a total of 570 viable semen samples were added to the germplasm repository. This included the gametes of 287 chinook salmon from the Lostine River, Catherine Creek, upper Grande Ronde River, Imnaha River (Lookingglass Hatchery), Lake Creek, South Fork Salmon River, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi River (Pahsimeroi Hatchery), and upper Salmon River (Sawtooth Hatchery) and the gametes of 280 steelhead from the North Fork Clearwater River (Dworshak Hatchery), Fish Creek, Little Sheep Creek, Pahsimeroi River (Pahsimeroi Hatchery) and Snake River (Oxbow Hatchery). In addition, gametes from 60 Yakima River spring chinook and 34 Wenatchee River coho salmon were added to the

  20. Survival, development, and growth of Snake River fall Chinook salmon Embryos, Alevins, and Fry Exposed to Variable Thermal and Dissolved Oxygen Regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Abernethy, Cary S.; Hand, Kristine D.

    2006-11-01

    Fall Chinook salmon (Oncorhynchus tshawytscha) initiate spawning in the Hells Canyon reach of the Snake River, Idaho (rkm 240-397), at water temperatures above 16 C. This temperature exceeds the states of Idaho and Oregon water quality standards for salmonid spawning. These standards are consistent with results from studies of embryos exposed to a constant thermal regime, while salmon eggs in the natural environment are rarely exposed to a constant temperature regime. The objective of this study was to assess whether variable temperatures (i.e., declining after spawning) affected embryo survival, development, and growth of Snake River fall Chinook salmon alevins andmore » fry. In 2003, fall Chinook salmon eggs were exposed to initial incubation temperatures ranging from 11-19 C in 2 C increments, and in 2004 eggs were exposed to initial temperatures of 13 C, 15 C, 16 C, 16.5 C, and 17 C. In both years, temperatures were adjusted downward approximately 0.2 C/day to mimic the thermal regime of the Snake River where these fish spawn. At 37-40 days post-fertilization, embryos were moved to a common exposure regime that followed the thermal profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures >17 C in both years. A logistic regression model estimated that a 50% reduction in survival from fertilization to emergence would occur at an initial incubation temperature of {approx}16 C. The laboratory results clearly showed a significant reduction in survival between 15 C and 17 C, which supported the model estimate. Results from 2004 showed a rapid decline in survival occurred between 16.5 C and 17 C, with no significant differences in survival at initial incubation temperatures <16.5 C. There were no significant differences across the range of initial temperature exposures for alevin and fry size at hatch and emergence. Differences in egg mass among females (notably 2003) most likely

  1. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2012 – 12/31/2013: Annual report, 1991-029-00

    USGS Publications Warehouse

    Connor, William P.; Mullins, Frank; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St. John, Scott J.; Bickford, Brad; Rhodes, Tobyn N.

    2014-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  2. Oxbow Fish Hatchery Snake River Sockeye Salmon Smolt Program, 2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banks, Duane D.

    2009-11-14

    This contract proposal is in response to the Federal Columbia River Power System Biological Opinion Implementation Plan/Update Proposed Action (UPA) associated with increasing the number of Snake River sockeye smolts by 150,000. To accomplish this proposal the cooperation and efforts of three government entities has been planned (e.g., Idaho Department of Fish and Game (IDFG), Oregon Department of Fish and Wildlife (ODFW), and the National Marine Fisheries Service (NMFS)). Improvements at the IDFG Eagle Fish Hatchery and NMFS Burley Creek Hatchery will focus on increasing sockeye salmon captive broodstock and egg production. Improvements at the ODFW Oxbow Fish Hatchery willmore » be made to accommodate the incubation, hatching and rearing of 150,000 sockeye salmon smolts for release into Idaho's Sawtooth Valley, Upper Salmon River near IDFG's Sawtooth Fish Hatchery and/or Redfish Lake Creek 1.4 km downstream of Redfish Lake. Modifications to Oxbow Fish Hatchery (ODFW) will include retro-fit existing pond drains so pond cleaning effluent water can be routed to the pollution abatement pond, and modifications to the abatement pond. Also included in this project as an added phase, was the rerouting of the hatchery building effluent water to meet state DEQ guidelines for the use of formalin to treat salmonid eggs. Some additional funding for the described Oxbow Hatchery modifications will come from Mitchell Act Funding. All personnel costs associated with this project will come from Mitchell Act funding. Due to heavy work load issues, being under staffed, and two emergency projects in the spring and summer of 2006, ODFW engineers were not able to complete all plans and get them out for bid in 2006. As a result of these circumstances retro-fitting pond drains and modifications to the abatement pond was carried over into fiscal year 2007-2008. A no cost time extension to the contract was approved by BPA. The format for this report will follow the standard format for

  3. Identification of the Spawning, Rearing and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1992.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondorf, Dennis W.; Miller, William H.

    1994-03-01

    This document is the 1992 annual progress report for selected studies of fall chinook Salmon Oncorhynchus tshawytscha conducted by the National Biological Survey (NBS) and the US Fish and Wildlife Service. The decline in abundance of fall chinook salmon in the Snake River basin has become a growing concern. Effective recovery efforts for fall chinook salmon cannot be developed until we increase our knowledge of the factors that are limiting the various life history stages. This study attempts to identify those physical and biological factors which influence spawning of fall chinook salmon in the free-flowing Snake River and their rearingmore » and seaward migration through Columbia River basin reservoirs.« less

  4. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVI : Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, Rebecca A.; Skalski, John R.

    2007-12-07

    In 2005, the University of Washington developed a new statistical model to analyze the combined juvenile and adult detection histories of PIT-tagged salmon migrating through the Federal Columbia River Power System (FCRPS). This model, implemented by software Program ROSTER (River-Ocean Survival and Transportation Effects Routine), has been used to estimate survival and transportation effects on large temporal and spatial scales for PIT-tagged hatchery spring and summer Chinook salmon and steelhead released in the Snake River Basin from 1996 to 2003. Those results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite tomore » Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on both a systemwide basis, incorporating all transport dams analyzed, and a dam-specific basis. Transportation effects are estimated only for dams where at least 5,000 tagged smolts were transported from a given upstream release group. Because few tagged hatchery steelhead were transported in these years, no transportation effects are estimated for steelhead. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Annual estimates of SAR from Lower Granite back to Lower Granite averaged 0.71% with a standard error (SE) of 0.18% for spring Chinook salmon from the Snake River Basin for tagged groups released from 1996 through 2003, omitting age-1-ocean (jack) returns. For summer Chinook salmon from the Snake River Basin, the estimates of annual SAR averaged 1.15% (SE=0.31%). Only for the release years 1999 and 2000 did the Chinook SAR approach the target value of 2%, identified by the NPCC as the minimum SAR necessary for recovery. Annual estimates of SAR for hatchery steelhead from

  5. Identifying and Quantifying Sources of Fall Chinook Salmon Spawning Gravel to the Snake River in Hells Canyon

    NASA Astrophysics Data System (ADS)

    Welcker, C. W.; Burke, M.

    2015-12-01

    The Snake River in Hells Canyon supports a growing population of spawning Fall Chinook Salmon (Oncorhynchus tshawytscha) immediately downstream of the Hells Canyon Complex (HCC) of hydroelectric dams for the last 60 years. The long-term survival of this salmon run depends on the input of spawning gravel (25-150 mm) from local tributaries balancing the losses of spawning gravel through attrition and export out of the reach between the HCC and the Salmon River confluence. We are working to quantify the gravel input of these local tributaries at different time-scales and put this into the context of historical supply and transport. Long-term total sediment production rates of these tributaries estimated through various methods have varied by over 2 orders of magnitude, but we have recently completed 10Be work to constrain these estimates. We are measuring the change in storage of Fall Chinook spawning-size gravel through repeat multibeam echosounder surveys of the riverbed. The limited amount of repeat data collected to date has shown complex patterns of change in the riverbed. One possible driver of this complexity is the episodic and spatially variable nature of sediment inputs from these tributaries. We are attempting to quantify the frequency of the debris flows or floods capable of transporting spawning gravel through digitizing historic imagery of the last 60 years to determine the recurrence interval. We are measuring the magnitude of these events by surveying tributary fans pre and post-event to measure the sediment volume and particle size produced by specific events. These floods and debris flows are driven by extreme rainfall or snowmelt events, so we have also reconstructed historical meteorological conditions to identify the triggering conditions for transport, and identify the areas where snowmelt or rainfall is the more likely trigger. We are currently testing whether the unique bedrock geology of Hells Canyon can be used as a tracer to identify the

  6. Hydraulic Characteristics of the Lower Snake River During Periods of Juvenile Fall Chinook Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Chris B.; Dibrani, Berhon; Richmond, Marshall C.

    2006-01-30

    This report documents a four-year study to assess hydraulic conditions in the lower Snake River. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by the Pacific Northwest National Laboratory. Cold water released from the Dworshak Reservoir hypolimnion during mid- to late-summer months cools the Clearwater River far below equilibrium temperature. The volume of released cold water augments the Clearwater River, and the combined total discharge is on the order of the Snake River discharge when the two rivers meet at their confluence near the upstream edge of Lower Granite Reservoir. With typical temperature differences betweenmore » the Clearwater and Snake rivers of 10°C or more during July and August, the density difference between the two rivers during summer flow augmentation periods is sufficient to stratify Lower Granite Reservoir as well as the other three reservoirs downstream. Because cooling of the river is desirable for migrating juvenile fall Chinook salmon (Oncorhynchus tshawytscha) during this same time period, the amount of mixing and cold water entrained into Lower Granite Reservoir’s epilimnion at the Clearwater/Snake River confluence is of key biological importance to juvenile fall Chinook salmon. Data collected during this project indicates the three reservoirs downstream of Lower Granite also stratify as direct result of flow augmentation from Dworshak Reservoir. These four lower Snake reservoirs are also heavily influenced by wind forcing at the water’s surface, and during periods of low river discharge, often behave like a two-layer lake. During these periods of stratification, lower river discharge, and wind forcing, the water in the upper layer of the reservoir is held in place or moves slightly upstream. This upper layer is also exposed to surface heating and may warm up to temperatures close to equilibrium temperature. The depth of this upper warm layer and its direction of travel may also be

  7. Effects of summer flow augmentation on the migratory behavior and survival of juvenile Snake River fall Chinook salmon. Annual report 2005

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.

    2006-01-01

    This report summarizes results of research activities conducted in 2004 and years previous to aid in the management and recovery of fall Chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall Chinook salmon juveniles for the years 1992-2004. Publication is a high priority of our staff. Publication provides our results to a wide audience, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 1991-02900 that were written or published from 1998 to 2005.

  8. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, 1998-1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, Peter J.; Blenden, Michael L.; Kucera, Paul A.

    2002-08-01

    This report summarizes the results of the Lower Snake River Compensation Plan Hatchery Evaluation Studies (LSRCP) and the Imnaha Smolt Monitoring Program (SMP) for the 1999 smolt migration from the Imnaha River, Oregon. These studies were designed and closely coordinated to provide information about juvenile natural and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) biological characteristics, behavior and emigrant timing, survival, arrival timing and travel time to the Snake River dams and McNary Dam on the Columbia River. Data collected from these studies are shared with the Fish Passage Center (FPC). These data are essential to quantify smoltmore » survival rates under the current passage conditions and to evaluate the future recovery strategies that seek to optimize smolt survival through the hydroelectric system. Information shared with the FPC assists with in-season shaping of flow and spill management requests in the Snake River reservoirs. The Bonneville Power Administration and the United States Fish and Wildlife Service contracted the Nez Perce Tribe (NPT) to monitor emigration timing and tag 21,200 emigrating natural and hatchery chinook salmon and steelhead smolts from the Imnaha River during the spring emigration period (March 1-June 15) with passive integrated transponder (PIT) tags. The completion of trapping in the spring of 1999 marked the eighth year of emigration studies on the Imnaha River and the sixth year of participating in the FPC smolt monitoring program. Monitoring and evaluation objectives were to: (1) Determine spring emigration timing of chinook salmon and steelhead smolts collected at the Imnaha River trap. (2) Evaluate effects of flow, temperature and other environmental factors on emigration timing. (3) Monitor the daily catch and biological characteristics of juvenile chinook salmon and steelhead smolts collected at the Imnaha River screw trap. (4) Determine emigration timing, travel time

  9. Monitoring and Evaluation of Smolt Migration in the Columbia River Basin : Volume VI : Evaluation of the 2000 Predictions of the Run-Timing of Wild Migrant Chinook Salmon and Steelhead Trout, and Hatchery Sockeye Salmon in the Snake River Basin, and Combined Wild Hatchery Salminids Migrating to Rock Island and McNary Dams using Program RealTime.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Caitlin

    1998-07-01

    Program RealTime provided tracking and forecasting of the 2000 in season outmigration via the internet for stocks of wild PIT-tagged spring/summer chinook salmon. These stocks were ESUs from nineteen release sites above Lower Granite dam, including Bear Valley Creek, Big Creek, Camas Creek (new), Cape Horn Creek, Catherine Creek, Elk Creek, Herd Creek, Imnaha River, Johnson Creek (new), Lake Creek, Loon Creek, Lostine River, Marsh Creek, Minam River, East Fork Salmon River (new), South Fork Salmon River, Secesh River, Sulfur Creek and Valley Creek. Forecasts were also provided for two stocks of hatchery-reared PIT-tagged summer-run sockeye salmon, from Redfish Lakemore » and Alturas Lake (new); for a subpopulation of the PIT-tagged wild Snake River fall subyearling chinook salmon; for all wild Snake River PIT-tagged spring/summer yearling chinook salmon (new) and steelhead trout (new)detected at Lower Granite Dam during the 2000 outmigration. The 2000 RealTime project began making forecasts for combined wild- and hatchery-reared runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout migrating to Rock Island and McNary Dams on the mid-Columbia River and the mainstem Columbia River. Due to the new (in 1999-2000) Snake River basin hatchery protocol of releasing unmarked hatchery-reared fish, the RealTime forecasting project no longer makes run-timing forecasts for wild Snake River runs-at-large using FPC passage indices, as it has done for the previous three years (1997-1999). The season-wide measure of Program RealTime performance, the mean absolute difference (MAD) between in-season predictions and true (observed) passage percentiles, improved relative to previous years for nearly all stocks. The average season-wide MAD of all (nineteen) spring/summer yearling chinook salmon ESUs dropped from 5.7% in 1999 to 4.5% in 2000. The 2000 MAD for the hatchery-reared Redfish Lake sockeye salmon ESU was the lowest recorded, at 6

  10. The effects of summer flow augmentation on the migratory behavior and survival of juvenile Snake River fall Chinook salmon. Annual report 2003

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Haskell, Craig A.; Connor, William P.

    2005-01-01

    This report summarizes results of research activities conducted in 2002 and years previous to aid in the management and recovery of fall chinook salmon Oncorhynchus tshawytscha in the Columbia River basin. The report is divided into self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2002. Peer-review publication remains a high priority of this research project, and it insures that our work meets high scientific standards. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers coauthored by personnel of project 199102900 that were written or published from 1998 to 2003.

  11. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River Fall Chinook Salmon ESU, 1/1/2016 - 12/31/2016

    USGS Publications Warehouse

    Connor, William P.; Mullins, Frank L.; Tiffan, Kenneth F.; Plumb, John M.; Perry, Russell W.; Erhardt, John M.; Hemingway, Rulon J.; Bickford, Brad; Rhodes, Tobyn N.

    2017-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2016 in association with U.S. Endangered Species Act recovery efforts and other federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2016, we described estimated the consumption rate and loss of subyearlings by Smallmouth Bass before, during, and after four hatchery releases. Before releases, Smallmouth Bass consumption rates of subyearling was low (0–0.36 fish/bass/d), but the day after the releases consumption rates reached as high as 1.6 fish/bass/d. Bass consumption in the upper portion of Hells Canyon was high for about 1–2 d before returning to pre-release levels, but in the lower river consumption rates were reduced but took longer to return to pre-release levels. We estimated that most of the subyearlings consumed by bass were of hatchery origin. Smallmouth Bass predation on subyearlings is intense following a hatchery release, but the

  12. Upstream Passage, Spawning, and Stock Identification of Fall Chinook in the Snake River, 1992 and 1993 : Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankenship, H. Lee; Mendel, Glen W.

    This final report of the 3-year study summarizes activities and results for 1993. Study objectives were to: (1) determine the source of losses (or accounting errors) for adult chinook salmon between Ice Harbor Dam (IHR) and Lower Granite Dam (LGR), and upstream of LGR in the Snake River; (2) identify spawning locations upstream of LGR for calibration of aerial redd surveys, redd habitat mapping, carcass recovery for genetic stock profile analysis, and correction of estimated adult/redd ratios; and (3) estimate passage and migration times at Snake River. 200 fall chinook salmon were radio tagged and tracked with aerial, fixed-site, andmore » ground mobile tracking. Fish were released upstream of IHR at Charbonneau Park (CHAR). 190 of the fish were tracked or relocated away from CHAR. 59 fish descended to below IHR without crossing Lower Monumental Dam (LMO). Another 128 salmon passed upstream of LMO without falling back at IHR. Only 80 salmon passed Little Goose Dam (LGO) without falling back at a downstream dam; 66 of these fish passed LGR. Many fish that fell back reascended the dams. A total of 72 salmon released at CHAR passed upstream of LGR, including fish that had fallen back and reascended a dam. Over 80 percent of the salmon that entered Lyons Ferry Hatchery each year had reached LGO before descending to the hatchery. Extensive wandering was documented between LMO and upstream of LGR before salmon entered Lyons Ferry Hatchery or the Tucannon River. In 1993, 41 salmon were found to be of hatchery origin when recovered. These fish entered Lyons Ferry Hatchery with similar movements to unmarked salmon. Each year a few salmon have remained near the hatchery without entering, which suggests the hatchery may have inadequate attraction flows. Fall chinook passed lower Snake River dams in 2-5 days each on average. Median travel times through LMO and LGO were 1.0-1.3 days each, which was slower than for spring chinook or steelhead in 1993. 5 refs., 21 figs., 20

  13. Post-Release Performance of Natural and Hatchery Subyearling Fall Chinook Salmon in the Snake and Clearwater Rivers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Connor, William P.

    2008-04-01

    In 2006, we continued a multi-year study to compare smolt-to-adult return rate (SAR) ratios between two groups of Snake River Basin fall Chinook salmon Oncorhynchus tshawytscha that reached the sea through a combination of either (1) transportation and inriver migration or (2) bypass and inriver migration. We captured natural subyearlings rearing along the Snake and Clearwater rivers and implanted them with passive integrated transponder (PIT) tags, but knew in advance that sample sizes of natural fish would not be large enough for precise comparisons of SAR ratios. To increase sample sizes, we also cultured Lyons Ferry Hatchery subyearlings under amore » surrogate rearing strategy, implanted them with PIT tags, and released them into the Snake and Clearwater rivers to migrate seaward. The surrogate rearing strategy involved slowing growth at Dworshak National Fish Hatchery to match natural subyearlings in size at release as closely as possible, while insuring that all of the surrogate subyearlings were large enough for tagging (i.e., 60-mm fork length). Surrogate subyearlings were released from late May to early July 2006 to coincide with the historical period of peak beach seine catch of natural parr in the Snake and Clearwater rivers. We also PIT tagged a large representative sample of hatchery subyearlings reared under a production rearing strategy and released them into the Snake and Clearwater rivers in 2006 as part of new research on dam passage experiences (i.e., transported from a dam, dam passage via bypass, dam passage via turbine intakes or spillways). The production rearing strategy involved accelerating growth at Lyons Ferry Hatchery, sometimes followed by a few weeks of acclimation at sites along the Snake and Clearwater rivers before release from May to June. Releasing production subyearlings has been suggested as a possible alternative for making inferences on the natural population if surrogate fish were not available. Smoltto-adult return rates

  14. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1994.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1996-08-01

    Spawning ground surveys were conducted in 1994 as part of a five year study of Snake River chinook salmon Oncorhynchus tshawyacha begun in 1991. Observations of fall chinook salmon spawning in the Snake River were limited to infrequent aerial red counts in the years prior to 1987. From 1987-1990, red counts were made on a limited basis by an interagency team and reported by the Washington Department of Fisheries. Starting in 1991, the U.S. Fish and Wildlife Service (USFWS), and other cooperating agencies and organizations, expanded the scope of spawning ground surveys to include: (1) additional aerial surveys to improvemore » red counts and provide data on the timing of spawning; (2) the validation (ground truthing) of red counts from aerial surveys to improve count accuracy; (3) underwater searches to locate reds in water too deep to allow detection from the air; and (4) bathymetric mapping of spawning sites for characterizing spawning habitat. This document is the 1994 annual progress report for selected studies of fall chinook salmon. The studies were undertaken because of the growing concern about the declining salmon population in the Snake River basin.« less

  15. Survival of Seaward-Migrating PIT and Acoustic-Tagged Juvenile Chinook Salmon in the Snake and Columbia Rivers: An Evaluation of Length-Specific Tagging Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Oldenburg, Eric W.; Seaburg, Adam

    Studies examining the survival of juvenile salmon as they emigrate to the ocean provide important information regarding the management of regulated river systems. Acoustic telemetry is a widely used tool for evaluating the behavior and survival of juvenile salmonids in the Columbia River basin. Thus, it is important to understand how the surgical tagging process and the presence of a transmitter affect survival so any biases can be accounted for or eliminated. This study evaluated the effects of fish length and tag type on the survival of yearling and subyearling Chinook salmon during their seaward migrations through the Snake andmore » Columbia rivers during 2006, 2007, and 2008. Fish were collected at Lower Granite Dam on the Snake River (river kilometer 695) and implanted with either only a passive integrated transponder (PIT) tag (PIT fish) or both a PIT tag and an acoustic transmitter (AT fish). Survival was estimated from release at Lower Granite Dam to multiple downstream locations (dams) using the Cormack–Jolly–Seber single release model, and analysis of variance was used to test for differences among length-classes and between tag types. No length-specific tag effect was detected between PIT and AT fish (i.e., length affected the survival of PIT fish in a manner similar to which it affected the survival of AT fish). Survival among the smallest length class (i.e., 80–89 mm) of both PIT and AT subyearling Chinook salmon was markedly low (i.e., 4%). Fish length was positively correlated with the survival of both PIT and AT fish. Significant differences in survival were detected between tag types; the survival of PIT fish was generally greater than that of AT fish. However, confounding variables warrant caution in making strong inferences regarding this factor. Further, results suggest that tag effects may be due to the process of surgically implanting the transmitter rather than the presence of the transmitter.« less

  16. Historical and current perspectives on fish assemblages of the Snake River, Idaho and Wyoming

    USGS Publications Warehouse

    Maret, T.R.; Mebane, C.A.

    2005-01-01

    The Snake River is the tenth longest river in the United States, extending 1,667 km from its origin in Yellowstone National Park in western Wyoming to its union with the Columbia River at Pasco, Washington. Historically, the main-stem Snake River upstream from the Hells Canyon Complex supported at least 26 native fish species, including anadromous stocks of Chinook salmon Oncorhynchus tshawytscha, steelhead O. mykiss, Pacific lamprey Lampetra tridentata, and white sturgeon Acipenser transmontanus. Of these anadromous species, only the white sturgeon remains in the Snake River between the Hells Canyon Complex and Shoshone Falls. Today, much of the Snake River has been transformed into a river with numerous impoundments and flow diversions, increased pollutant loads, and elevated water temperatures. Current (1993-2002) fish assemblage collections from 15 sites along the Snake River and Henrys Fork contained 35 fish species, including 16 alien species. Many of these alien species such as catfish (Ictaluridae), carp (Cyprinidae), and sunfish (Centrarchidae) are adapted for warmwater impounded habitats. Currently, the Snake River supports 19 native species. An index of biotic integrity (IBI), developed to evaluate large rivers in the Northwest, was used to evaluate recent (1993-2002) fish collections from the Snake River and Henrys Fork in southern Idaho and western Wyoming. Index of biotic integrity site scores and component metrics revealed a decline in biotic integrity from upstream to downstream in both the Snake River and Henrys Fork. Two distinct groups of sites were evident that correspond to a range of IBI scores-an upper Snake River and Henrys Fork group with relatively high biotic integrity (mean IBI scores of 46-84) and a lower Snake River group with low biotic integrity (mean IBI scores of 10-29). Sites located in the lower Snake River exhibited fish assemblages that reflect poor-quality habitat where coldwater and sensitive species are rare or absent, and

  17. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, October 20, 1999 to June 15, 2000 : 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, Peter J.

    2002-12-01

    This report details the smolt performance of natural and hatchery chinook salmon and steelhead from the Imnaha River to the Snake River and Columbia River dams during migration year 2000. Flow conditions in the Imnaha River and Snake River were appreciably lower during May and June in 2000, compared to historic levels at gauging stations, but flow conditions in the Imnaha and Snake River were above average during April. Overall, water conditions for the entire Columbia River were characterized by the Fish Passage Center as below normal levels. Spill occurred continuously at Lower Granite Dam (LGR), Little Goose Dam (LGO),more » and Lower Monumental Dam (LMO) from April 5, April 10, and April 4, respectively, to June 20, and encompassed the periods of migration of Imnaha River juvenile chinook salmon and steelhead, with a few exceptions. Outflow in the tailraces of LGR, LGO, and LMO decreased in May and June while temperatures increased. Chinook salmon and steelhead were captured using rotary screw traps at river kilometer (rkm) 74 and 7 during the fall from October 20 to November 24, 1999, and during the spring period from February 26 to June 15, 2000, at rkm 7. Spring trapping information was reported weekly to the Fish Passage Center's Smolt Monitoring Program. A portion of these fish were tagged weekly with passive integrated transponder (PIT) tags and were detected migrating past interrogation sites at Snake River and Columbia River dams. Survival of PIT tagged fish was estimated with the Survival Using Proportional Hazards model (SURPH model). Estimated survival of fall tagged natural chinook (with {+-} 95% confidence intervals in parenthesis) from the upper Imnaha (rkm 74) to LGR was 29.6% ({+-} 2.8 ). Natural chinook salmon tagged in the fall in the lower Imnaha River at rkm 7, which over wintered in the Snake River, had an estimated survival of 36.8% ({+-} 2.9%) to LGR. Spring tagged natural chinook salmon from the lower site had an estimated survival of

  18. Columbia River Channel Improvement Project: Final Supplemental Integrated Feasibility Report and Environmental Impact Statement

    DTIC Science & Technology

    2003-01-01

    Sockeye salmon ( Oncorhynchus nerka ) Snake River Endangered Stream Yearling + 11/2/91 Steelhead trout ( Oncorhynchus mykiss) Snake River... Oncorhynchus tshawytscha) Snake River spring/summer Threatened Stream Yearling + 4/22/92 Snake River fall Threatened Ocean Subyearling 4...Willamette River Threatened Ocean Subyearling + 3/24/99 Chum salmon ( Oncorhynchus keta) Columbia River Threatened Ocean Subyearling 3/25/99

  19. Evaluation of seepage and discharge uncertainty in the middle Snake River, southwestern Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Williams, Marshall L.; Evetts, David M.; Vidmar, Peter J.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the State of Idaho, Idaho Power Company, and the Idaho Department of Water Resources, evaluated seasonal seepage gains and losses in selected reaches of the middle Snake River, Idaho, during November 2012 and July 2013, and uncertainty in measured and computed discharge at four Idaho Power Company streamgages. Results from this investigation will be used by resource managers in developing a protocol to calculate and report Adjusted Average Daily Flow at the Idaho Power Company streamgage on the Snake River below Swan Falls Dam, near Murphy, Idaho, which is the measurement point for distributing water to owners of hydropower and minimum flow water rights in the middle Snake River. The evaluated reaches of the Snake River were from King Hill to Murphy, Idaho, for the seepage studies and downstream of Lower Salmon Falls Dam to Murphy, Idaho, for evaluations of discharge uncertainty. Computed seepage was greater than cumulative measurement uncertainty for subreaches along the middle Snake River during November 2012, the non-irrigation season, but not during July 2013, the irrigation season. During the November 2012 seepage study, the subreach between King Hill and C J Strike Dam had a meaningful (greater than cumulative measurement uncertainty) seepage gain of 415 cubic feet per second (ft3/s), and the subreach between Loveridge Bridge and C J Strike Dam had a meaningful seepage gain of 217 ft3/s. The meaningful seepage gain measured in the November 2012 seepage study was expected on the basis of several small seeps and springs present along the subreach, regional groundwater table contour maps, and results of regional groundwater flow model simulations. Computed seepage along the subreach from C J Strike Dam to Murphy was less than cumulative measurement uncertainty during November 2012 and July 2013; therefore, seepage cannot be quantified with certainty along this subreach. For the uncertainty evaluation, average

  20. Snake River Sockeye Salmon (Oncorhynchus Nerka) Habitat/Limnologic Research : Annual Report 1992.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaulding, Scott

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring andmore » adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock.« less

  1. Identification of the Spawning, Rearing, and Migratory Requirements of Fall Chinook Salmon in the Columbia River Basin, Annual Report 1993.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rondorf, Dennis W.; Tiffan, Kenneth F.

    1994-12-01

    Recovery efforts for the endangered fall chinook salmon necessitates knowledge of the factors limiting the various life history stages. This study attempts to identify those physical and biological factors which affect spawning of the fish in the free-flowing Snake River and their rearing seward migration through Columbia River basin reservoirs. The spawning was generally a November event in 1993, with some activity in late Oct. and early Dec. Spawning habitat availability was assessed by applying hydraulic and habitat models to known fall chinook salmon spawning sites. Juveniles were seined and PIT tagged in the free-flowing Snake River, and in themore » Columbia River in he Hanford Reach and in McNary Reservoir. Subyearling fish were marked at McNary Dam to relate river flow and migration patterns of juveniles to adult returns. Hydroacoustic surveys were conducted on McNary and John Day reservoirs and in net pens.« less

  2. Water velocity, turbulence, and migration rate of subyearling fall Chinook salmon in the free-flowing and impounded Snake River

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Haskell, Craig A.; Connor, William P.; Steinhorst, R. Kirk

    2009-01-01

    We studied the migratory behavior of subyearling fall Chinook salmon Oncorhynchus tshawytscha in free-flowing and impounded reaches of the Snake River to evaluate the hypothesis that velocity and turbulence are the primary causal mechanisms of downstream migration. The hypothesis states that impoundment reduces velocity and turbulence and alters the migratory behavior of juvenile Chinook salmon as a result of their reduced perception of these cues. At a constant flow (m3 /s), both velocity (km/d) and turbulence (the SD of velocity) decreased from riverine to impounded habitat as cross-sectional areas increased. We found evidence for the hypothesis that subyearling Chinook salmon perceive velocity and turbulence cues and respond to these cues by varying their behavior. The percentage of the subyearlings that moved faster than the average current speed decreased as fish made the transition from riverine reaches with high velocities and turbulence to upper reservoir reaches with low velocities and turbulence but increased to riverine levels again as the fish moved further down in the reservoir, where velocity and turbulence remained low. The migration rate (km/d) decreased in accordance with longitudinal reductions in velocity and turbulence, as predicted by the hypothesis. The variation in migration rate was better explained by a repeatedmeasures regression model containing velocity (Akaike’s information criterion ¼ 1,769.0) than a model containing flow (2,232.6). We conclude that subyearling fall Chinook salmon respond to changes in water velocity and turbulence, which work together to affect the migration rate.

  3. Predation Susceptibility of Juvenile Fall Chinook Salmon Exposed to Sudden Temperature Changes and Slightly Supersaturated Dissolved Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellgraph, Brian J.; Carter, Kathleen M.; Chamness, Michele A.

    High mortality of hatchery-reared juvenile fall Chinook salmon emigrating from the Clearwater River was previously measured at the confluence of the Snake and Clearwater rivers; however, the causative mechanism of mortality is unknown. To elucidate potential mechanisms, the predation susceptibility of juvenile fall Chinook salmon was assessed during simulated passage from the Clearwater River and through the confluence of the Clearwater and Snake rivers, with and without cool water flow augmentation. Emigrant-sized juvenile salmon were acclimated to temperatures typical of the Clearwater River when cool water augmentation is discharged from Dworshak Dam (10°C to 17°C) and during temperatures that wouldmore » be present without augmentation (17°C to 24°C), and were then exposed to smallmouth bass within temperatures typical of the Snake River in summer (17°C to 24°C). Slightly supersaturated total dissolved gas concentrations of 105% were also simulated to more closely approximate gas conditions of both rivers in summer. Predation susceptibility of juvenile salmon acclimated at 10°C or 17°C and exposed to predators at 17°C did not differ. However, for salmon exposed to predators at 24°C, predation susceptibility was arguably higher for juvenile salmon acclimated at 10°C (a 14°C increase) than for salmon acclimated at 17°C or 24°C (7°C and 0°C increases, respectively). These results indicate that predation susceptibility may be higher when a relatively large temperature difference exists between the Clearwater and Snake rivers; that is, when cool water flow augmentation is occurs in summer. However, further research is needed to determine if high confluence mortality measured in previous studies is related to cool water augmentation and, ultimately, whether or not this mortality has a population-level effect on the dynamics of wild Snake River fall Chinook salmon.« less

  4. Comparison of migration rate and survival between radio-tagged and PIT-tagged migrant yearling chinook salmon in the Snake and Columbia rivers

    USGS Publications Warehouse

    Hockersmith, E.E.; Muir, W.D.; Smith, S.G.; Sandford, B.P.; Perry, R.W.; Adams, N.S.; Rondorf, D.W.

    2003-01-01

    A study was conducted to compare the travel times, detection probabilities, and survival of migrant hatchery-reared yearling chinook salmon Oncorhynchus tshawytscha tagged with either gastrically or surgically implanted sham radio tags (with an imbedded passive integrated transponder [PIT] tag) with those of their cohorts tagged only with PIT tags in the Snake and Columbia rivers. Juvenile chinook salmon with gastrically implanted radio tags migrated significantly faster than either surgically radio-tagged or PIT-tagged fish, while migration rates were similar among surgically radio-tagged and PIT-tagged fish. The probabilities of PIT tag detection at downstream dams varied by less than 5% and were not significantly different among the three groups. Survival was similar among treatments for median travel times of less than approximately 6 d (migration distance of 106 km). However, for both gastrically and surgically radio-tagged fish, survival was significantly less than for PIT-tagged fish, for which median travel times exceeded approximately 10 d (migration distance of 225 km). The results of this study support the use of radio tags to estimate the survival of juvenile chinook salmon having a median fork length of approximately 150 mm (range, 127-285 mm) and a median travel time of migration of less than approximately 6 d.

  5. 33 CFR 117.1058 - Snake River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake River. 117.1058 Section 117... OPERATION REGULATIONS Specific Requirements Washington § 117.1058 Snake River. (a) The draw of the Burlington Northern Santa Fe railroad bridge across the Snake River at mile 1.5 between Pasco and Burbank is...

  6. Microsatellite variation reveals weak genetic structure and retention of genetic variability in threatened Chinook salmon (Oncorhynchus tshawytscha) within a Snake River watershed

    USGS Publications Warehouse

    Neville, Helen; Issacs, Frank B.; Thurow, Russel; Dunham, J.B.; Rieman, B.

    2007-01-01

    Pacific salmon (Oncorhynchus spp.) have been central to the development of management concepts associated with evolutionarily significant units (ESUs), yet there are still relatively few studies of genetic diversity within threatened and endangered ESUs for salmon or other species. We analyzed genetic variation at 10 microsatellite loci to evaluate spatial population structure and genetic variability in indigenous Chinook salmon (Oncorhynchus tshawytscha) across a large wilderness basin within a Snake River ESU. Despite dramatic 20th century declines in abundance, these populations retained robust levels of genetic variability. No significant genetic bottlenecks were found, although the bottleneck metric (M ratio) was significantly correlated with average population size and variability. Weak but significant genetic structure existed among tributaries despite evidence of high levels of gene flow, with the strongest genetic differentiation mirroring the physical segregation of fish from two sub-basins. Despite the more recent colonization of one sub-basin and differences between sub-basins in the natural level of fragmentation, gene diversity and genetic differentiation were similar between sub-basins. Various factors, such as the (unknown) genetic contribution of precocial males, genetic compensation, lack of hatchery influence, and high levels of current gene flow may have contributed to the persistence of genetic variability in this system in spite of historical declines. This unique study of indigenous Chinook salmon underscores the importance of maintaining natural populations in interconnected and complex habitats to minimize losses of genetic diversity within ESUs.

  7. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... River Chinook salmon n/a 17060103 OR/WA/ID Lower Snake - Asotin Creek Chinook and coho salmon n/a... salmon n/a 17060106 OR/WA Lower Grande Ronde Chinook and coho salmon n/a 17060107 WA Lower Snake...

  8. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... River Chinook salmon n/a 17060103 OR/WA/ID Lower Snake - Asotin Creek Chinook and coho salmon n/a... salmon n/a 17060106 OR/WA Lower Grande Ronde Chinook and coho salmon n/a 17060107 WA Lower Snake...

  9. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... River Chinook salmon n/a 17060103 OR/WA/ID Lower Snake - Asotin Creek Chinook and coho salmon n/a... salmon n/a 17060106 OR/WA Lower Grande Ronde Chinook and coho salmon n/a 17060107 WA Lower Snake...

  10. 50 CFR Table 1 to Subpart H of... - Pacific Salmon EFH Identified by USGS Hydrologic Unit Code (HUC)

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Hydrologic Unit Code (HUC) 1 Table 1 to Subpart H of Part 660 Wildlife and Fisheries FISHERY CONSERVATION AND... River Chinook salmon n/a 17060103 OR/WA/ID Lower Snake - Asotin Creek Chinook and coho salmon n/a... salmon n/a 17060106 OR/WA Lower Grande Ronde Chinook and coho salmon n/a 17060107 WA Lower Snake...

  11. Salmon restoration in the Umatilla River: A study of straying and risk containment

    USGS Publications Warehouse

    Hayes, M.C.; Carmichael, R.W.

    2002-01-01

    The use of artificial propagation may produce unexpected results and the need for risk containment. Stray chinook salmon (Oncorhynchus tshawytscha) from Umatilla River releases put the threatened Snake River stock at risk, caused conflict between two plans, altered management, and greatly increased the costs for hatchery-based restoration. Stray Umatilla returns captured or observed in the Snake River averaged more than 200 fish annually and comprised up to 26% of the escapement. The risk to the threatened population stimulated a series of containment actions, including wire tagging 2-3 million fish annually, use of acclimation ponds, altering release locations, flow enhancement, and broodstock management changes. Actions for the use of artificial propagation where straying or unexpected results are a concern include marking or tagging most or all fish, limiting the number of fish initially released, recognizing environmental variables that influence straying, ensuring that funding for risk containment is available when undesirable results occur, and recognizing that unexpected results may not be manifested or identified immediately.

  12. Emigration of Natural and Hatchery Naco x (Chinook salmon; Oncorhynchus tshawytscha) and Heeyey (Steelhead; Oncorhynchus mykiss) Smolts from the Imnaha River, Oregon from 5 October 2006 to 21 June 2007, Annual Report 2007.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaels, Brian; Espinosa, Neal

    2009-02-18

    This report summarizes the Nez Perce Tribe (NPT) Department of Fisheries Resources Management (DFRM) results for the Lower Snake River Compensation Plan (LSRCP) Hatchery Evaluation studies and the Imnaha River Smolt Monitoring Program (SMP) for the 2007 smolt migration from the Imnaha River, Oregon. These studies are closely coordinated and provide information about juvenile natural and hatchery spring/summer Naco x (Chinook Salmon; Oncorhynchus tshawytscha) and Heeyey (steelhead; O. mykiss) biological characteristics, emigrant timing, survival, arrival timing and travel time to the Snake River dams and McNary Dam (MCD) on the Columbia River. These studies provide information on listed Naco xmore » (Chinook salmon) and Heeyey (steelhead) for the Federal Columbia River Power System (FCRPS) Biological Opinion (NMFS 2000). The Lower Snake River Compensation Plan program's goal is to maintain a hatchery production program of 490,000 Naco x (Chinook salmon) and 330,000 Heeyey (steelhead) for annual release in the Imnaha River (Carmichael et al. 1998, Whitesel et al. 1998). These hatchery releases occur to compensate for fish losses due to the construction and operation of the four lower Snake River hydroelectric facilities. One of the aspects of the LSRCP hatchery evaluation studies in the Imnaha River is to determine natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolt performance, emigration characteristics and survival (Kucera and Blenden 1998). A long term monitoring effort was established to document smolt emigrant timing and post release survival within the Imnaha River, estimate smolt survival downstream to McNary Dam, compare natural and hatchery smolt performance, and collect smolt-to-adult return information. This project collects information for, and is part of, a larger effort entitled Smolt Monitoring by Federal and Non-Federal Agencies (BPA Project No. 198712700). This larger project provides data on movement of smolts out of major

  13. Renibacterium salmoninarum in spring-summer chinook salmon smolts at dams on the Columbia and Snake Rivers

    USGS Publications Warehouse

    Elliott, D.G.; Pascho, R.J.; Jackson, L.M.; Matthews, G.M.; Harmon, J.R.

    1997-01-01

    We evaluated Renibacterium salmoninarum infection in smolts of hatchery and wild spring-summer chinook salmon Oncorhynchus tshawytscha sampled during most of the out-migration at Little Goose (1988) and Lower Granite dams (1988-1991) on the Snake River and at Priest Rapids and McNary dams on the Columbia River (1988-1990). We sampled 860-2,178 fish per dam each year. Homogenates of kidney-spleen tissue from all fish were tested for the presence of R. salmoninarum antigens by the enzyme-linked immunosorbent assay (ELISA), and homogenates from 10% of the fish were examined by the fluorescent antibody technique (FAT). Although only 1-11% of fish sampled at a given dam during any 1 year exhibited lesions characteristic of bacterial kidney disease, 86-100% of the fish tested positive for R. salmoninarum antigen by ELISA, whereas 4-17% of the fish tested positive by the FAT. During most years, a majority (68-87%) of fish testing positive by the ELISA had low R. salmoninarum antigen levels, but in 1989, 53% of positive fish from Lower Granite Dam and 52% from McNary Dam showed medium-to-high antigen levels. For most years, the highest mean antigen levels were measured in fish sampled after 75% of the total out-migrants had passed a given dam. When the largest numbers of fish were being collected for bypass or downriver transportation, mean antigen levels were relatively low.

  14. Migration depths of juvenile Chinook salmon and steelhead relative to total dissolved gas supersaturation in a Columbia River reservoir

    USGS Publications Warehouse

    Beeman, J.W.; Maule, A.G.

    2006-01-01

    The in situ depths of juvenile salmonids Oncorhynchus spp. were studied to determine whether hydrostatic compensation was sufficient to protect them from gas bubble disease (GBD) during exposure to total dissolved gas (TDG) supersaturation from a regional program of spill at dams meant to improve salmonid passage survival. Yearling Chinook salmon O. tshawytscha and juvenile steelhead O. mykiss implanted with pressure-sensing radio transmitters were monitored from boats while they were migrating between the tailrace of Ice Harbor Dam on the Snake River and the forebay of McNary Dam on the Columbia River during 1997-1999. The TDG generally decreased with distance from the tailrace of the dam and was within levels known to cause GBD signs and mortality in laboratory bioassays. Results of repeated-measures analysis of variance indicated that the mean depths of juvenile steelhead were similar throughout the study area, ranging from 2.0 m in the Snake River to 2.3 m near the McNary Dam forebay. The mean depths of yearling Chinook salmon generally increased with distance from Ice Harbor Dam, ranging from 1.5 m in the Snake River to 3.2 m near the forebay. Juvenile steelhead were deeper at night than during the day, and yearling Chinook salmon were deeper during the day than at night. The TDG level was a significant covariate in models of the migration depth and rates of each species, but no effect of fish size was detected. Hydrostatic compensation, along with short exposure times in the area of greatest TDG, reduced the effects of TDG exposure below those generally shown to elicit GBD signs or mortality. Based on these factors, our results indicate that the TDG limits of the regional spill program were safe for these juvenile salmonids.

  15. Downstream movement of fall Chinook salmon juveniles in the lower Snake River reservoirs during winter and early spring

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.; Mullins, Frank; Steinhorst, R. Kirk

    2012-01-01

    We conducted a 3-year radiotelemetry study in the lower Snake River to (1) determine whether juvenile fall Chinook salmon Oncorhynchus tshawytscha pass dams during winter, when bypass systems and structures designed to prevent mortality are not operated; (2) determine whether downstream movement rate varies annually, seasonally, and from reservoir to reservoir; and (3) identify some of the factors that contribute to annual, seasonal, and spatial variation in downstream movement rate. Fall Chinook salmon juveniles moved downstream up to 169 km and at a sufficiently fast rate (7.5 km/d) such that large percentages (up to 93%) of the fish passed one or more dams during the winter. Mean downstream movement rate varied annually (9.2–11.3 km/d), increased from winter (7.5 km/d) to spring (16.4 km/d), and increased (from 6.9 to 16.8 km/d) as fish moved downstream from reservoir to reservoir. Fish condition factor at tagging explained some of the annual variation in downstream movement rate, whereas water particle velocity and temperature explained portions of the seasonal variation. An increase in migrational disposition as fish moved downstream helped to explain the spatial variation. The potential cost of winter movement might be reduced survival due to turbine passage at a time when the bypass systems and spillway passage structures are not operated. Efforts to understand and increase passage survival of winter migrants in large impoundments might help to rehabilitate some imperiled anadromous salmonid populations.

  16. Use of Dual Frequency Identification Sonar to Determine Adult Chinook Salmon (Oncorhynchus tshawytscha) Escapement in the Secesh River, Idaho ; Annual Report, January 2008 – December 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucera, Paul A.

    2009-06-26

    Chinook salmon in the Snake River basin were listed as threatened under the Endangered Species Act in 1992 (NMFS 1992). The Secesh River represents the only stream in the Snake River basin where natural origin (wild) salmon escapement monitoring occurs at the population level, absent a supplementation program. As such the Secesh River has been identified as a long term salmon escapement and productivity monitoring site by the Nez Perce Tribe Department of Fisheries Resources Management. Salmon managers will use this data for effective population management and evaluation of the effect of conservation actions on a natural origin salmon population.more » The Secesh River also acts as a reference stream for supplementation program comparison. Dual frequency identification sonar (DIDSON) was used to determine adult spring and summer Chinook salmon escapement in the Secesh River in 2008. DIDSON technology was selected because it provided a non-invasive method for escapement monitoring that avoided listed species trapping and handling incidental mortality, and fish impedance related concerns. The DIDSON monitoring site was operated continuously from June 13 to September 14. The first salmon passage was observed on July 3. DIDSON site total estimated salmon escapement, natural and hatchery fish, was 888 fish {+-} 65 fish (95% confidence interval). Coefficient of variation associated with the escapement estimate was 3.7%. The DIDSON unit was operational 98.1% of the salmon migration period. Adult salmon migration timing in the Secesh River occurred over 74 days from July 3 to September 14, with 5,262 total fish passages observed. The spawning migration had 10%, median, and 90% passage dates of July 8, July 16, and August 12, respectively. The maximum number of net upstream migrating salmon was above the DIDSON monitoring site on August 27. Validation monitoring of DIDSON target counts with underwater optical cameras occurred for species identification. A total of 860

  17. Salmon habitat assessment for conservation planning in the lower White Salmon River, Washington

    USGS Publications Warehouse

    Hardiman, Jill M.; Allen, M. Brady

    2015-01-01

    In 2011, Condit Dam was removed from the White Salmon River, Washington. Since dam removal, there has been interest among scientists (State and Federal), Tribes, non-profit organizations, and the general public in assessing Pacific salmon habitat and use in the White Salmon River for conservation planning and potential fishery management actions. The study area extended from the lower 6 miles of the White Salmon River to the confluence with the Columbia River, including the former reservoir area. The Mid-Columbia Fisheries Enhancement Group received a grant to initiate efforts to plan for salmon habitat protection in the lower 6 river miles of the White Salmon River. As part of efforts by the Mid-Columbia Fisheries Enhancement Group to conduct conservation planning, the U.S. Geological Survey (USGS) used current and historical habitat information to assist in the planning process. The USGS compiled existing georeferenced habitat data into a Geographic Information System to identify areas of high quality habitat for salmon, potential areas for restoration/improvement, and areas that could be threatened. The primary sources of georeferenced data for this project include a lidar flight contracted by PacifiCorp, bathymetry from USGS, and fall Chinook salmon redd surveys from the U.S. Fish and Wildlife Service and Washington Department of Fish and Wildlife. Redd observations provided support that the study area is a migratory corridor for salmon and steelhead and that the lowest 2–3 miles had the highest concentration of documented fall Chinook salmon redds. The study area has potential for restoration/conservation areas to improve/conserve salmon habitat.

  18. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XVIII: Survival and Transportation Effects of Migrating Snake River Wild Chinook Salmon and Steelhead: Historical Estimates From 1996-2004 and Comparison to Hatchery Results. Draft.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan, Rebecca A.; Skalski, John R.; Broms, Kristin

    The combined juvenile and adult detection histories of PIT-tagged wild salmonids migrating through the Federal Columbia River Power System (FCRPS) were analyzed using the ROSTER (River-Ocean Survival and Transportation Effects Routine) statistical release-recapture model. This model, implemented by software Program ROSTER, was used to estimate survival on large temporal and spatial scales for PIT-tagged wild spring and summer Chinook salmon and steelhead released in the Snake River Basin upstream of Lower Granite Dam from 1996 to 2004. In addition, annual results from wild salmonids were compared with results from hatchery salmonids, which were presented in a previous report in thismore » series (Buchanan, R. A., Skalski, J. R., Lady, J. L., Westhagen, P., Griswold, J., and Smith, S. 2007, 'Survival and Transportation Effects for Migrating Snake River Hatchery Chinook Salmon and Steelhead: Historical Estimates from 1996-2003', Technical report, Bonneville Power Administration, Project 1991-051-00). These results are reported here. Annual estimates of the smolt-to-adult return ratio (SAR), juvenile inriver survival from Lower Granite to Bonneville, the ocean return probability from Bonneville to Bonneville, and adult upriver survival from Bonneville to Lower Granite are reported. Annual estimates of transport-inriver (T/I) ratios and differential post-Bonneville mortality (D) are reported on a dam-specific basis for release years with sufficient numbers of wild PIT-tagged smolts transported. Transportation effects are estimated only for dams where at least 1,000 tagged wild smolts were transported from a given upstream release group. Because few wild Chinook salmon and steelhead tagged upstream of Lower Granite Dam were transported before the 2003 release year, T/I and D were estimated only for the 2003 and 2004 release years. Performance measures include age-1-ocean adult returns for steelhead, but not for Chinook salmon. Spring and summer Chinook salmon release

  19. 4. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, PROPOSED SECTION OF DIVERSION DAM ACROSS SNAKE RIVER, SHEET 1 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  20. 3. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, PROFILE AND ALIGNMENT OF DAM ACROSS WEST CHANNEL OF SNAKE RIVER, SHEET 3 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  1. Juvenile salmon usage of the Skeena River estuary.

    PubMed

    Carr-Harris, Charmaine; Gottesfeld, Allen S; Moore, Jonathan W

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2-8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations that

  2. Evaluation of Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2006 Project Completion Summary.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faler, Michael P.; Mendel, Glen; Fulton, Carl

    2008-11-20

    River was small (n=6). In spite of this project's shortcomings, bull trout continue to be observed in low numbers at Snake River dam fish facilities. It is highly possible that bull trout observed at the Snake River dam fish facilities are originating from sources other than the Tucannon River. We suggest that these fish might come from upstream sources like the Clearwater or Salmon rivers in Idaho, and are simply following the outmigration of juvenile anadromous fish (a food supply) as they emigrate toward the Pacific Ocean. Based on our study results, we recommend abandoning radio telemetry as a tool to monitor bull trout movements in the mainstem Snake River. We do recommend continuing PIT tagging and tag interrogation activities to help determine the origin of bull trout using the Snake River hydropower facilities. As a complementary approach, we also suggest the use of genetic assignment tests to help determine the origin of these fish. Lastly, several recommendations are included in the report to help manage and recover bull trout in the Tucannon subbasin.« less

  3. Solute geochemistry of the Snake River plain regional aquifer system, Idaho and eastern Oregon

    USGS Publications Warehouse

    Wood, Warren W.; Low, Walton H.

    1988-01-01

    Geothermometry calculations of selected ground-water samples from known geothermal areas throughout the basin suggest that the geother- mal system is large in areal extent but has relatively low temperatures. Approximately half of the silica-quartz calculated water temperatures are greater than 90 °C. Radiocarbon dating of geothermal water in the Salmon Falls and Bruneau-Grand View areas in the south central part of the Snake River basin suggests that residence time of the geother- mal water is about 17,700 years.

  4. Increased mitochondrial DNA diversity in ancient Columbia River basin Chinook salmon Oncorhynchus tshawytscha

    PubMed Central

    Kemp, Brian M.; Thorgaard, Gary H.

    2018-01-01

    The Columbia River and its tributaries provide essential spawning and rearing habitat for many salmonid species, including Chinook salmon (Oncorhynchus tshawytscha). Chinook salmon were historically abundant throughout the basin and Native Americans in the region relied heavily on these fish for thousands of years. Following the arrival of Europeans in the 1800s, salmon in the basin experienced broad declines linked to overfishing, water diversion projects, habitat destruction, connectivity reduction, introgression with hatchery-origin fish, and hydropower development. Despite historical abundance, many native salmonids are now at risk of extinction. Research and management related to Chinook salmon is usually explored under what are termed “the four H’s”: habitat, harvest, hatcheries, and hydropower; here we explore a fifth H, history. Patterns of prehistoric and contemporary mitochondrial DNA variation from Chinook salmon were analyzed to characterize and compare population genetic diversity prior to recent alterations and, thus, elucidate a deeper history for this species. A total of 346 ancient and 366 contemporary samples were processed during this study. Species was determined for 130 of the ancient samples and control region haplotypes of 84 of these were sequenced. Diversity estimates from these 84 ancient Chinook salmon were compared to 379 contemporary samples. Our analysis provides the first direct measure of reduced genetic diversity for Chinook salmon from the ancient to the contemporary period, as measured both in direct loss of mitochondrial haplotypes and reductions in haplotype and nucleotide diversity. However, these losses do not appear equal across the basin, with higher losses of diversity in the mid-Columbia than in the Snake subbasin. The results are unexpected, as the two groups were predicted to share a common history as parts of the larger Columbia River Basin, and instead indicate that Chinook salmon in these subbasins may have

  5. Snake River fall Chinook salmon life history investigations, annual report 2008

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.; Bellgraph, Brian J.; Buchanan, Rebecca A.

    2010-01-01

    In 2009, we used radio and acoustic telemetry to evaluate the migratory behavior, survival, mortality, and delay of subyearling fall Chinook salmon in the Clearwater River and Lower Granite Reservoir. We released a total of 1,000 tagged hatchery subyearlings at Cherry Lane on the Clearwater River in mid August and we monitored them as they passed downstream through various river and reservoir reaches. Survival through the free-flowing river was high (>0.85) for both radio- and acoustic-tagged fish, but dropped substantially as fish delayed in the Transition Zone and Confluence areas. Estimates of the joint probability of migration and survival through the Transition Zone and Confluence reaches combined were similar for both radio- and acoustic-tagged fish, and ranged from about 0.30 to 0.35. Estimates of the joint probability of delaying and surviving in the combined Transition Zone and Confluence peaked at the beginning of the study, ranging from 0.323 ( SE =NA; radio-telemetry data) to 0.466 ( SE =0.024; acoustic-telemetry data), and then steadily declined throughout the remainder of the study. By the end of October, no live tagged juvenile salmon were detected in either the Transition Zone or the Confluence. As estimates of the probability of delay decreased throughout the study, estimates of the probability of mortality increased, as evidenced by the survival estimate of 0.650 ( SE =0.025) at the end of October (acoustic-telemetry data). Few fish were detected at Lower Granite Dam during our study and even fewer fish passed the dam before PIT-tag monitoring ended at the end of October. Five acoustic-tagged fish passed Lower Granite Dam in October and 12 passed the dam in November based on detections in the dam tailrace; however, too few detections were available to calculate the joint probabilities of migrating and surviving or delaying and surviving. Estimates of the joint probability of migrating and surviving through the reservoir was less than 0

  6. Juvenile Salmon Usage of the Skeena River Estuary

    PubMed Central

    Carr-Harris, Charmaine; Gottesfeld, Allen S.; Moore, Jonathan W.

    2015-01-01

    Migratory salmon transit estuary habitats on their way out to the ocean but this phase of their life cycle is more poorly understood than other phases. The estuaries of large river systems in particular may support many populations and several species of salmon that originate from throughout the upstream river. The Skeena River of British Columbia, Canada, is a large river system with high salmon population- and species-level diversity. The estuary of the Skeena River is under pressure from industrial development, with two gas liquefaction terminals and a potash loading facility in various stages of environmental review processes, providing motivation for understanding the usage of the estuary by juvenile salmon. We conducted a juvenile salmonid sampling program throughout the Skeena River estuary in 2007 and 2013 to investigate the spatial and temporal distribution of different species and populations of salmon. We captured six species of juvenile anadromous salmonids throughout the estuary in both years, and found that areas proposed for development support some of the highest abundances of some species of salmon. Specifically, the highest abundances of sockeye (both years), Chinook in 2007, and coho salmon in 2013 were captured in areas proposed for development. For example, juvenile sockeye salmon were 2–8 times more abundant in the proposed development areas. Genetic stock assignment demonstrated that the Chinook salmon and most of the sockeye salmon that were captured originated from throughout the Skeena watershed, while some sockeye salmon came from the Nass, Stikine, Southeast Alaska, and coastal systems on the northern and central coasts of British Columbia. These fish support extensive commercial, recreational, and First Nations fisheries throughout the Skeena River and beyond. Our results demonstrate that estuary habitats integrate species and population diversity of salmon, and that if proposed development negatively affects the salmon populations

  7. Migratory behavior and physiological development as potential determinants of life history diversity in fall Chinook Salmon in the Clearwater River

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.; Richmond, Marshall C.; Perkins, William A.

    2018-01-01

    We studied the influence of behavior, water velocity, and physiological development on the downstream movement of subyearling fall‐run Chinook Salmon Oncorhynchus tshawytscha in both free‐flowing and impounded reaches of the Clearwater and Snake rivers as potential mechanisms that might explain life history diversity in this stock. Movement rates and the percentage of radio‐tagged fish that moved faster than the average current velocity were higher in the free‐flowing Clearwater River than in impounded reaches. This supports the notion that water velocity is a primary determinant of downstream movement regardless of a fish's physiological development. In contrast, movement rates slowed and detections became fewer in impounded reaches, where water velocities were much lower. The percentage of fish that moved faster than the average current velocity continued to decline and reached zero in the lowermost reach of Lower Granite Reservoir, suggesting that the behavioral disposition to move downstream was low. These findings contrast with those of a similar, previous study of Snake River subyearlings despite similarity in hydrodynamic conditions between the two studies. Physiological differences between Snake and Clearwater River migrants shed light on this disparity. Subyearlings from the Clearwater River were parr‐like in their development and never showed the increase in gill Na+/K+‐ATPase activity displayed by smolts from the Snake River. Results from this study provide evidence that behavioral and life history differences between Snake and Clearwater River subyearlings may have a physiological basis that is modified by environmental conditions.

  8. Distinguishing between natural and hatchery Snake River fall Chinook salmon subyearlings in the field using body morphology

    USGS Publications Warehouse

    Tiffan, K.F.; Connor, W.P.

    2011-01-01

    We used body morphology to distinguish between natural- and hatchery-origin subyearling fall Chinook salmon Oncorhynchus tshawytscha in rearing areas of the Snake River and at a downstream dam during seaward migration. Using subjective eye and body shape characteristics, field personnel correctly classified 88.9–100% of natural subyearlings (N = 626) and 90.0–100% of hatchery subyearlings (N = 867) in rearing areas from 2001 to 2008. The morphological characteristics used by these personnel proved to have a quantitative basis, as was shown by digital photography and principal components analysis. Natural subyearlings had smaller eyes and pupils, smaller heads, deeper bodies, and shorter caudal peduncles than their hatchery counterparts during rearing and at the dam. A discriminant function fitted from this set of morphological characteristics classified the origin of fish during rearing and at the dam with over 97% accuracy. We hypothesize that these morphological differences were primarily due to environmental influences during incubation and rearing because it is highly probable that a large portion of the natural juveniles we studied were the offspring of hatchery × hatchery mating in the wild. The findings in this paper might provide guidance for others seeking to differentiate between natural and hatchery fish.

  9. Prevalence of Rentbacterium salmoninarum in juvenile spring chinook salmon at Columbia and Snake river hatcheries, 1993-1996

    USGS Publications Warehouse

    VanderKooi, S.P.; Maule, A.G.

    1999-01-01

    We monitored the prevalence and severity of Renibacterium salmoninarum (RS) infections in juvenile hatchery spring chinook salmon Oncorhynchus tshawytscha at eight Columbia and Snake river hatcheries from 1993 through 1996. This study followed a prior study that monitored RS in the same hatcheries from 1988 through 1992. In the current study, we found that the prevalence of RS-positive fish declined at two hatcheries relative to the preceding 5 years. Prevalence dropped from near 90% in 1992 to below 50% at both sites by 1993 and was less than 20% at three locations in 1995. In contrast, prevalence increased at four of seven sites in 1993 and six of seven sites in 1994. This indicated that previously reported declines in RS prevalence at these locations might have been temporary. Our results showed that in 1993 the majority of fish at all monitored hatcheries had low RS-antigen levels and remained that way at most locations through 1996. These results suggest that certain hatchery practices may limit the severity of RS infections. Although elevations at two sites in 1994 and 1995 indicate reductions in RS were temporary in the short term, long-term monitoring will undoubtedly be required given the many factors that influence disease processes.

  10. An Experimental Approach for Restoration of Salmon River Ecosystems

    NASA Astrophysics Data System (ADS)

    Stanford, J. A.

    2005-05-01

    River ecosystem theory predicts that dynamic, nonlinear physical and biological processes linking water, heat and materials (biota, sediment, plant-growth nutrients) flux and retention to fluvial landscape change in a habitat mosaic context drive salmon life histories and productivity in freshwater. Multidisciplinary studies and cross-site comparisons within a network of pristine salmon river observatories around the north Pacific Rim support these predictions. Billions of dollars have been spent on salmon-river restoration worldwide to little avail, mainly because salmon biology, rather than ecosystem process boundaries and bottlenecks, is driving restoration goals. I argue that entire river catchment restoration, in relation to these dynamic processes and bottlenecks and also coherent with the estuarine and marine implications of salmon life history parameters, is the only possibility for sustaining or restoring natural productivity and life history (genetic) diversity in salmon rivers. This can be done only in a few places owing to the continual press of human demands on river ecosystems, the morass of legal challenges to proactive salmon river restoration strategies and insufficient understanding of freshwater and marine linkages. The Elwha and Yakima Rivers in Washington, among a few others that I will name, offer real opportunities to restore entire watersheds for wild salmon. These restorations should be viewed as experimental manipulations in which outcomes may be evaluated against norms measured in the salmon river observatory network. Bias from hatcheries and harvest, among other anthropogenic interferences, must be eliminated for such experiments to be evaluated in light of contemporary river ecosystem theory. And, a much more synthetic understanding of freshwater and marine linkages must be forthcoming in concert with a much more robust general theory of river restoration.

  11. 2. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, PHOTOGRAPHIC COPY OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, PHOTOGRAPHIC COPY OF DRAWING, PLAN, SHEET 5 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID

  12. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde Riiver Basin : Fish Research Project Oregon : Annual Progress Report 1 September 1995 to 1 August 1996.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, Brian C.; Carmichael, Richard W.; Keefe, MaryLouise

    1997-09-01

    Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only sustainable stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde River basin also have been declining steadily and are substantially depressed from estimates of historic levels. In addition to a decline in population abundance, a reduction of spring chinook salmon spawning distribution is evident in the Grandemore » Ronde River basin. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. This study was designed to describe aspects of the life history strategies exhibited by spring chinook salmon in the Grande Ronde River basin. During the past year the focus was on rearing and migration patterns of juveniles in the upper Grande Ronde River and Catherine Creek. The study design included three objectives: (1) document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River and Catherine Creek, including the abundance of migrants, migration timing and duration; (2) estimate and compare smolt survival indices to mainstem Columbia and Snake river dams for fall and spring migrating spring chinook salmon; and (3) determine summer and winter habitat utilization and preference of juvenile spring chinook salmon in the upper Grande Ronde River and Catherine Creek.« less

  13. Predation on Chinook Salmon parr by hatchery salmonids and Fallfish in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.; Chalupnicki, Marc; Abbett, Ross; McKenna, James E.

    2016-01-01

    Naturally reproduced Chinook Salmon Oncorhynchus tshawytscha contribute substantially to the fishery in Lake Ontario. The Salmon River, a Lake Ontario tributary in New York, produces the largest numbers of naturally spawned Chinook Salmon, with parr abundance in the river often exceeding 10 million. In the spring of each year, large numbers of hatchery salmonid yearlings—potential predators of Chinook Salmon parr—are released into the Salmon River by the New York State Department of Environmental Conservation. We sought to examine predation on Chinook Salmon parr in the Salmon River during May and June prior to out-migration. Over the 4 years examined (2009–2012), annual consumption of Chinook Salmon parr by hatchery-released yearling steelhead O. mykiss and Coho Salmon O. kisutch ranged from 1.5 to 3.3 million and from 0.4 to 2.1 million, respectively. In 2009, Fallfish Semotilus corporalis were estimated to consume 2.9 million Chinook Salmon parr. Predation was higher in May, when the average TL of Chinook Salmon parr was 44.5 mm, than in June. Fallfish were also important predators of naturally reproduced steelhead subyearlings, consuming an estimated 800,000 steelhead in 2009. Hatchery-released yearling salmonids consumed 13.8–15.3% of the Chinook Salmon parr that were estimated to be present in the Salmon River during 2010–2012. Earlier releases of hatchery salmonid yearlings could reduce the riverine consumption of Chinook Salmon parr by facilitating the out-migration of yearlings prior to Chinook Salmon emergence.

  14. Predation by fallfish (Semotilus corporalis) on Pacific salmon eggs in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, J. H.; Nack, C.C.; Chalupnicki, M.A.

    2009-01-01

    Fallfish (Semotilus corporalis) are the largest native cyprinid in the northeastern United States and are the most abundant native species in the Salmon River, New York. The Salmon River is a high-quality spawning and nursery river for Pacific salmon (Oncorhynchus spp.) migrating from Lake Ontario. Because of the large number of Pacific salmon spawning in the river in the fall extensive redd superimposition occurs resulting in salmonid eggs being available on the substrate. We examined the fall diet of 647 fallfish in 2007 and 2008 to determine the extent of predation on Pacific salmon eggs. The contribution of eggs in the diet significantly increased once fallfish attained a size of 100 mm total length. The largest size category of fallfish examined (≥150 mm) had the highest proportion (86.1%) of salmon eggs in their diet. The contribution of Zooplankton and chironomids in the diet of fallfish decreased with fish size. Except for the two largest groups of fallfish examined (i.e., 100–149 mm and ≥150 mm) diet overlap among size groups was low. The high contribution in the diet during the fall and high caloric value of Pacific salmon eggs could increase growth and survival of this species in the Salmon River.

  15. Salmon Supplementation Studies in Idaho Rivers, 1999-2000 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Andy; Taki, Doug; Teton, Angelo

    2001-11-01

    As part of the Idaho Supplementation Studies, fisheries crews from the Shoshone-Bannock Tribes have been snorkeling tributaries of the Salmon River to estimate chinook salmon (Oncorhynchus tshawytscha) parr abundance; conducting surveys of spawning adult chinook salmon to determine the number of redds constructed and collect carcass information; operating a rotary screw trap on the East Fork Salmon River and West Fork Yankee Fork Salmon River to enumerate and PIT-tag emigrating juvenile chinook salmon; and collecting and PIT-tagging juvenile chinook salmon on tributaries of the Salmon River. The Tribes work in the following six tributaries of the Salmon River: Bear Valleymore » Creek, East Fork Salmon River, Herd Creek, South Fork Salmon River, Valley Creek, and West Fork Yankee Fork Salmon River. Snorkeling was used to obtain parr population estimates for ISS streams from 1992 to 1997. However, using the relatively vigorous methods described in the ISS experimental design to estimate summer chinook parr populations, results on a project-wide basis showed extraordinarily large confidence intervals and coefficients of variation. ISS cooperators modified their sampling design over a few years to reduce the variation around parr population estimates without success. Consequently, in 1998 snorkeling to obtain parr population estimates was discontinued and only General Parr Monitoring (GPM) sites are snorkeled. The number of redds observed in SBT-ISS streams has continued to decline as determined by five year cycles. Relatively weak strongholds continue to occur in the South Fork Salmon River and Bear Valley Creek. A rotary screw trap was operated on the West Fork Yankee Fork during the spring and fall of 1999 and the spring of 2000 to monitor juvenile chinook migration. A screw trap was also operated on the East Fork of the Salmon River during the spring and fall from 1993 to 1997 and 1999 (fall only) to 2000. Significant supplementation treatments have occurred in

  16. Migratory Behavior and Physiological Development as Potential Determinants of Life History Diversity in Fall Chinook Salmon in the Clearwater River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.

    We studied the influence of behavior, water velocity, and physiological development on the downstream movement of subyearling fall Chinook Salmon Oncorhynchus tshawytscha in free-flowing and impounded reaches of the Clearwater and Snake rivers as potential mechanisms that might explain life history diversity in this stock. Movement rates and the percentage of radio-tagged fish that moved faster than the average current velocity were highest in the free-flowing Clearwater River compared to impounded reaches. This provided support for our hypothesis that water velocity is a primary determinant of downstream movement regardless of a fish’s physiological development. In contrast, movement rates slowed andmore » detections became fewer in impounded reaches where velocities were much lower. The percentage of fish that moved faster than the average current velocity continued to decline and reached zero in the lower-most reach of Lower Granite Reservoir suggesting that behavioral disposition to move downstream was low. These findings contrast those of a similar, previous study of Snake River subyearlings in spite of hydrodynamic conditions being similar. Physiological differences between Snake and Clearwater river migrants shed light on this disparity. Subyearlings from the Clearwater River were parr-like in their development and never showed an increase in gill Na+/K+-ATPase activity as did smolts from the Snake River. The later emergence timing and cooler rearing temperatures in the Clearwater River may suppress normal physiological development that causes many fish to delay downstream movement and adopt a yearling life history strategy.« less

  17. Sediment transport in the lower Snake and Clearwater River Basins, Idaho and Washington, 2008–11

    USGS Publications Warehouse

    Clark, Gregory M.; Fosness, Ryan L.; Wood, Molly S.

    2013-01-01

    Sedimentation is an ongoing maintenance problem for reservoirs, limiting reservoir storage capacity and navigation. Because Lower Granite Reservoir in Washington is the most upstream of the four U.S. Army Corps of Engineers reservoirs on the lower Snake River, it receives and retains the largest amount of sediment. In 2008, in cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey began a study to quantify sediment transport to Lower Granite Reservoir. Samples of suspended sediment and bedload were collected from streamgaging stations on the Snake River near Anatone, Washington, and the Clearwater River at Spalding, Idaho. Both streamgages were equipped with an acoustic Doppler velocity meter to evaluate the efficacy of acoustic backscatter for estimating suspended-sediment concentrations and transport. In 2009, sediment sampling was extended to 10 additional locations in tributary watersheds to help identify the dominant source areas for sediment delivery to Lower Granite Reservoir. Suspended-sediment samples were collected 9–15 times per year at each location to encompass a range of streamflow conditions and to capture significant hydrologic events such as peak snowmelt runoff and rain-on-snow. Bedload samples were collected at a subset of stations where the stream conditions were conducive for sampling, and when streamflow was sufficiently high for bedload transport. At most sampling locations, the concentration of suspended sediment varied by 3–5 orders of magnitude with concentrations directly correlated to streamflow. The largest median concentrations of suspended sediment (100 and 94 mg/L) were in samples collected from stations on the Palouse River at Hooper, Washington, and the Salmon River at White Bird, Idaho, respectively. The smallest median concentrations were in samples collected from the Selway River near Lowell, Idaho (11 mg/L), the Lochsa River near Lowell, Idaho (11 mg/L), the Clearwater River at Orofino, Idaho (13 mg

  18. Significance of Selective Predation and Development of Prey Protection Measures for Juvenile Salmonids in the Columbia and Snake River Reservoirs: Annual Progress Report, February 1993-February 1994.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poe, Thomas P.

    1994-08-01

    This report addresses the problem of predator-prey interactions of juvenile salmonids in the Columbia and Snake River. Six papers are included on selective predation and prey protection. Attention is focused on monitoring the movements, the distribution, and the behavior of juvenile chinook salmon and northern squawfish.

  19. 75 FR 78929 - Fraser River Sockeye Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ...-XZ20 Fraser River Sockeye Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries Service...; inseason orders; request for comments. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate salmon fisheries in U.S. waters. The orders were issued by the Fraser River Panel (Panel) of the...

  20. Assessing juvenile salmon rearing habitat and associated predation risk in a lower Snake River reservoir

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Hatten, James R.; Trachtenbarg, David A

    2015-01-01

    Subyearling fall Chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin exhibit a transient rearing strategy and depend on connected shoreline habitats during freshwater rearing. Impoundment has greatly reduced the amount of shallow-water rearing habitat that is exacerbated by the steep topography of reservoirs. Periodic dredging creates opportunities to strategically place spoils to increase the amount of shallow-water habitat for subyearlings while at the same time reducing the amount of unsuitable area that is often preferred by predators. We assessed the amount and spatial arrangement of subyearling rearing habitat in Lower Granite Reservoir on the Snake River to guide future habitat improvement efforts. A spatially explicit habitat assessment was conducted using physical habitat data, two-dimensional hydrodynamic modelling and a statistical habitat model in a geographic information system framework. We used field collections of subyearlings and a common predator [smallmouth bass (Micropterus dolomieu)] to draw inferences about predation risk within specific habitat types. Most of the high-probability rearing habitat was located in the upper half of the reservoir where gently sloping landforms created low lateral bed slopes and shallow-water habitats. Only 29% of shorelines were predicted to be suitable (probability >0.5) for subyearlings, and the occurrence of these shorelines decreased in a downstream direction. The remaining, less suitable areas were composed of low-probability habitats in unmodified (25%) and riprapped shorelines (46%). As expected, most subyearlings were found in high-probability habitat, while most smallmouth bass were found in low-probability locations. However, some subyearlings were found in low-probability habitats, such as riprap, where predation risk could be high. Given their transient rearing strategy and dependence on shoreline habitats, subyearlings could benefit from habitat creation efforts in the lower

  1. Water Quality of the Snake River and Five Eastern Tributaries in the Upper Snake River Basin, Grand Teton National Park, Wyoming, 1998-2002

    USGS Publications Warehouse

    Clark, Melanie L.; Sadler, Wilfrid J.; O'Ney, Susan E.

    2004-01-01

    To address water-resource management objectives of the National Park Service in Grand Teton National Park, the U.S. Geological Survey in cooperation with the National Park Service has conducted water-quality sampling in the upper Snake River Basin. Routine sampling of the Snake River was conducted during water years 1998-2002 to monitor the water quality of the Snake River through time. A synoptic study during 2002 was conducted to supplement the routine Snake River sampling and establish baseline water-quality conditions of five of its eastern tributaries?Pilgrim Creek, Pacific Creek, Buffalo Fork, Spread Creek, and Ditch Creek. Samples from the Snake River and the five tributaries were collected at 12 sites and analyzed for field measurements, major ions and dissolved solids, nutrients, selected trace metals, pesticides, and suspended sediment. In addition, the eastern tributaries were sampled for fecal-indicator bacteria by the National Park Service during the synoptic study. Major-ion chemistry of the Snake River varies between an upstream site above Jackson Lake near the northern boundary of Grand Teton National Park and a downstream site near the southern boundary of the Park, in part owing to the inputs from the eastern tributaries. Water type of the Snake River changes from sodium bicarbonate at the upstream site to calcium bicarbonate at the downstream site. The water type of the five eastern tributaries is calcium bicarbonate. Dissolved solids in samples collected from the Snake River were significantly higher at the upstream site (p-value<0.001), where concentrations in 43 samples ranged from 62 to 240 milligrams per liter, compared to the downstream site where concentrations in 33 samples ranged from 77 to 141 milligrams per liter. Major-ion chemistry of Pilgrim Creek, Pacific Creek, Buffalo Fork, Spread Creek, and Ditch Creek generally did not change substantially between the upstream sites near the National Park Service boundary with the National

  2. Review of potential interactions between stocked rainbow trout and listed Snake River sockeye salmon in Pettit Lake Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teuscher, D.

    1996-05-01

    The objective of this study was to determine if hatchery rainbow trout compete with or prey on juvenile Snake River sockeye salmon Oncorhynchus nerka in Pettit Lake, Idaho. In 1995, a total of 8,570 age-0 sockeye and 4,000 hatchery rainbow trout were released in Pettit Lake. After releasing the fish, gillnets were set in the pelagic and littoral zones to collected diet and spatial distribution data. Interactions were assessed monthly from June 1995 through March 1996. Competition for food was discounted based on extremely low diet overlap results observed throughout the sample period. Conversely, predation interactions were more significant. Amore » total of 119 rainbow trout stomachs were analyzed, two contained O. nerka. The predation was limited to one sample period, but when extrapolated to the whole rainbow trout populations results in significant losses. Total consumption of O. nerka by rainbow trout ranged from an estimated 10 to 23% of initial stocking numbers. Predation results contradict earlier findings that stocked rainbow trout do not prey on wild kokanee or sockeye in the Sawtooth Lakes. The contradiction may be explained by a combination of poorly adapted hatchery sockeye and a littoral release site that forced spatial overlap that was not occurring in the wild populations. Releasing sockeye in the pelagic zone may have reduced or eliminated predation losses to rainbow trout.« less

  3. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program : Facility Operation and Maintenance Facilities, Annual Report 2003.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, Michael L.; Seeger, Ryan; Hewitt, Laurie

    2004-01-01

    Anadromous salmonid stocks have declined in both the Grande Ronde River Basin (Lower Snake River Compensation Plan (LSRCP) Status Review Symposium 1998) and in the entire Snake River Basin (Nehlsen et al. 1991), many to the point of extinction. The Grande Ronde River Basin historically supported large populations of fall and spring chinook (Oncorhynchus tshawytscha), sockeye (O. nerka), and coho (O. kisutch) salmon and steelhead trout (O. mykiss) (Nehlsen et al. 1991). The decline of chinook salmon and steelhead populations and extirpation of coho and sockeye salmon in the Grande Ronde River Basin was, in part, a result of constructionmore » and operation of hydroelectric facilities, over fishing, and loss and degradation of critical spawning and rearing habitat in the Columbia and Snake River basins (Nehlsen et al. 1991). Hatcheries were built in Oregon, Washington and Idaho under the Lower Snake River Compensation Plan (LSRCP) to compensate for losses of anadromous salmonids due to the construction and operation of the lower four Snake River dams. Lookingglass Hatchery (LGH) on Lookingglass Creek, a tributary of the Grande Ronde River, was completed under LSRCP in 1982 and has served as the main incubation and rearing site for chinook salmon programs for Grande Ronde and Imnaha rivers in Oregon. Despite these hatchery programs, natural spring chinook populations continued to decline resulting in the National Marine Fisheries Service (NMFS) listing Snake River spring/summer chinook salmon as ''threatened'' under the federal Endangered Species Act (1973) on 22 April 1992. Continuing poor escapement levels and declining population trends indicated that Grande Ronde River basin spring chinook salmon were in imminent danger of extinction. These continuing trends led fisheries co-managers in the basin to initiate the Grande Ronde Endemic Spring Chinook Salmon Supplementation Program (GRESCSSP) in order to prevent extinction and preserve options for use of endemic

  4. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Steven G.; Muir, William D.; Zabel, Richard W.

    2004-01-01

    For juvenile chinook salmon Oncorhynchus tshawytscha, sockeye salmon O. nerka, and steelhead O. mykiss that migrate through reservoirs, hydroelectric projects, and free-flowing sections of the Snake and Columbia Rivers, survival estimates are essential to develop effective strategies for recovering depressed stocks. Many management strategies were based on estimates of system survival (Raymond 1979; Sims and Ossiander 1981) derived in a river system considerably different from today's (Williams and Matthews 1995; Williams et al. 2001). Knowledge of the magnitude, locations, and causes of smolt mortality under present passage conditions, and under conditions projected for the future, are necessary to develop strategiesmore » that will optimize smolt survival during migration. From 1993 through 2002, the National Marine Fisheries Service (NMFS) and the University of Washington (UW) demonstrated the feasibility of using three statistical models to estimate survival of PIT-tagged (Prentice et al. 1990a) juvenile salmonids passing through Snake River dams and reservoirs (Iwamoto et al. 1994; Muir et al. 1995, 1996, 2001a, 2003; Smith et al. 1998, 2000a,b; Hockersmith et al. 1999; Zabel et al. 2001, 2002). Evaluation of assumptions for these models indicated that all were generally satisfied, and accurate and precise survival estimates were obtained. In 2003, NMFS and UW completed the eleventh year of the study. Flow levels during the early portion of the 2003 spring migration were similar to 2002, and only slightly higher than in the drought conditions during 2001. However, flow levels were much greater during the later part of the migration in 2003. Spill levels were similar to 2002, much higher than in 2001. Research objectives were to: (1) estimate reach survival and travel time in the Snake and Columbia Rivers throughout the yearling chinook salmon and steelhead migrations; (2) evaluate relationships between survival estimates and migration conditions; and (3

  5. Salmon Supplementation Studies in Idaho Rivers, 1996-1998 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reighn, Christopher A.; Lewis, Bert; Taki, Doug

    1999-06-01

    Information contained in this report summarizes the work that has been done by the Shoshone-Bannock Tribes Fisheries Department under BPA Project No. 89-098-3, Contract Number 92-BI-49450. Relevant data generated by the Shoshone-Bannock Tribe will be collated with other ISS cooperator data collected from the Salmon and Clearwater rivers and tributary streams. A summary of data presented in this report and an initial project-wide level supplementation evaluation will be available in the ISS 5 year report that is currently in progress. The Shoshone-Bannock Tribal Fisheries Department is responsible for monitoring a variety of chinook salmon (Oncorhynchus tshawytscha) production parameters as partmore » of the Idaho Supplementation Studies (BPA Project No. 89-098-3, Contract Number 92-BI-49450). Parameters include parr abundance in tributaries to the upper Salmon River; adult chinook salmon spawner abundance, redd counts, and carcass collection. A rotary screw trap is operated on the East Fork Salmon River and West Fork Yankee Fork Salmon River to enumerate and PIT-tag chinook smolts. These traps are also used to monitor parr movement, and collect individuals for the State and Tribal chinook salmon captive rearing program. The SBT monitors fisheries parameters in the following six tributaries of the Salmon River: Bear Valley Creek, East Fork Salmon River, Herd Creek, South Fork Salmon River, Valley Creek, and West Fork Yankee Fork. Chinook populations in all SBT-ISS monitored streams continue to decline. The South Fork Salmon River and Bear Valley Creek have the strongest remaining populations. Snorkel survey methodology was used to obtain parr population estimates for ISS streams from 1992 to 1997. Confidence intervals for the parr population estimates were large, especially when the populations were low. In 1998, based on ISS cooperator agreement, snorkeling to obtain parr population estimates was ceased due to the large confidence intervals. A rotary screw trap

  6. Salmon River Habitat Enhancement. 1990 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  7. 77 FR 60631 - Fraser River Sockeye Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ...-XC222 Fraser River Sockeye Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries Service...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  8. History of Snake River Canyon Indicated by Revised Stratigraphy of Snake River Group Near Hagerman and King Hill, Idaho: With a Section on Paleomagnetism

    USGS Publications Warehouse

    Malde, Harold E.; Cox, Allan

    1971-01-01

    A discovery that debris left by the Bonneville Flood (Melon Gravel) overlies McKinney Basalt about 200 feet above the Snake River near King Hill requires that the stratigraphy of the Snake River Group be revised. In former usage, the McKinney Basalt and its immediately older companion, the Wendell Grade Basalt, were considered on the basis of equivocal field relations to be younger than the Melon Gravel and were assigned to the Recent. These lava flows are here reclassified as Pleistocene. The Bancroft Springs Basalt, which consists of both subaerial lava and pillow lava in a former Snake River canyon, was previously separated from the McKinney but is now combined with the McKinney. Accordingly, the name Bancroft Springs Basalt is here abandoned. This revised stratigraphy is first described from geomorphic relations of the McKinney Basalt near King Hill and is then discussed in the light of drainage changes caused by local lava flows during entrenchment of the Snake River. Near King Hill, a former Snake River canyon was completely filled by McKinney Basalt at the place called Bancroft Springs, hut the depth of this lava in the next several miles of the canyon downstream (along a route that approximately coincides with the present canyon) steadily decreased. This ancestral geomorphology is inferred from the former canyon route and, also, from the continuity in gradient of the McKinney lava surface downstream from Bancroft Springs. The drainage history recorded by various lava flows and river deposits of the Snake River Group indicates that the McKinney and Wendell Grade Basalts erupted after the Snake River canyon had reached its present depth of about 500 feet. The Snake River of that time, as far downstream as Bliss, flowed approximately along its present route. The Wood River of that time, however, skirted the north flank of Gooding Butte and joined the ancestral Snake at a junction, now concealed by lava, north of the present canyon about 3 miles west of Bliss

  9. Snake River Plain FORGE Well Data for USGS-142

    DOE Data Explorer

    Robert Podgorney

    2015-11-23

    Well data for the USGS-142 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, and photos of rhyolite core samples. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  10. Predation of Karluk River sockeye salmon by coho salmon and char

    USGS Publications Warehouse

    McIntyre, J.D.; Reisenbichler, R.R.; Emlen, J.M.; Wilmot, R.L.; Finn, J.E.

    1988-01-01

    The number of sockeye salmon, Oncorhynchus nerka, in Alaska's Karluk River (Fig. 1) declined from millions to thousands during the early part of the present century. Rounsefell (1958) discussed alternative explanations for the decline including a general loss offertility ofthe system as the number of salmon carcasses declined, competition, overfishing, subtle changes in climate, and predation; he concluded that the combined effect of predation and fishing was the most probable explanation. Later, Van Cleave and Bevan (1973) suggested that the weir constructed in the river each year to facilitate counting the fish as they entered the system was the most probable cause ofthe decline. Itprevented free movement of both adults and juveniles in the river. All of these hypotheses remain as potential explanations for the decline

  11. Snake River Plain FORGE Well Data for WO-2

    DOE Data Explorer

    Robert Podgorney

    1991-07-29

    Well data for the WO-2 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, and rock strength parameters for the WO-2 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  12. Prevalence and levels of Renibacterium salmoninarum in spring-summer Chinook salmon (Oncorhynchus tshawytscha) smolts at dams on the Columbia and Snake Rivers.

    USGS Publications Warehouse

    Elliott, D.G.; Pascho, R.J.; Jackson, L.M.; Mathews, G.M.; Harmon, J.R.

    1997-01-01

    We evaluated Renibaeterium salmoninarum infection in smolts of hatchery and wild spring-summer Chinook salmon Oncorhynchus tshawytscha sampled during most of the outmigration at Little Goose (1988) and Lower Granite dams (1988–1991) on the Snake River and at Priest Rapids and McNary dams on the Columbia River (1988–1990). We sampled 860–2,178 fish per dam each year. Homogenates of kidney–spleen tissue from all fish were tested for the presence of R. salmoninarum antigens by the enzyme-linked immunosorbent assay (ELISA), and homogenates from 10% of the fish were examined by the fluorescent antibody technique (FAT). Although only 1–11% of fish sampled at a given dam during any l year exhibited lesions characteristic of bacterial kidney disease, 86–100% of the fish tested positive for R. salmoninarum antigen by ELISA, whereas 4–17% of the fish tested positive by the FAT. During most years, a majority (68–87%) of fish testing positive by the ELISA had low R. salmoninarum antigen levels, but in 1989, 53% of positive fish from Lower Granite Dam and 52% from McNary Dam showed medium-to-high antigen levels. For most years, the highest mean antigen levels were measured in fish sampled after 75% of the total out-migrants had passed a given dam. When the largest numbers of fish were being collected for bypass or downriver transportation, mean antigen levels were relatively low.

  13. Willingness to pay for non angler recreation at the lower Snake River reservoirs

    USGS Publications Warehouse

    McKean, J.R.; Johnson, D.; Taylor, R.G.; Johnson, Richard L.

    2005-01-01

    This study applied the travel cost method to estimate demand for non angler recreation at the impounded Snake River in eastern Washington. Net value per person per recreation trip is estimated for the full non angler sample and separately for camping, boating, water-skiing, and swimming/picnicking. Certain recreation activities would be reduced or eliminated and new activities would be added if the dams were breached to protect endangered salmon and steelhead. The effect of breaching on non angling benefits was found by subtracting our benefits estimate from the projected non angling benefits with breaching. Major issues in demand model specification and definition of the price variables are discussed. The estimation method selected was truncated negative binomial regression with adjustment for self selection bias.

  14. Snake River Plain FORGE Well Data for INEL-1

    DOE Data Explorer

    Robert Podgorney

    1979-03-01

    Well data for the INEL-1 well located in eastern Snake River Plain, Idaho. This data collection includes caliper logs, lithology reports, borehole logs, temperature at depth data, neutron density and gamma data, full color logs, fracture analysis, photos, and rock strength parameters for the INEL-1 well. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  15. Interactions between brown bears and chum salmon at McNeil River, Alaska

    USGS Publications Warehouse

    Peirce, Joshua M.; Otis, Edward O.; Wipfli, Mark S.; Follmann, Erich H.

    2013-01-01

    Predation on returning runs of adult salmon (Oncorhynchus spp.) can have a large influence on their spawning success. At McNeil River State Game Sanctuary (MRSGS), Alaska, brown bears (Ursus arctos) congregate in high numbers annually along the lower McNeil River to prey upon returning adult chum salmon (O. keta). Low chum salmon escapements into McNeil River since the late 1990s have been proposed as a potential factor contributing to concurrent declines in bear numbers. The objective of this study was to determine the extent of bear predation on chum salmon in McNeil River, especially on pre-spawning fish, and use those data to adjust the escapement goal for the river. In 2005 and 2006, 105 chum salmon were radiotagged at the river mouth and tracked to determine cause and location of death. Below the falls, predators consumed 99% of tagged fish, killing 59% of them before they spawned. Subsequently, the escapement goal was nearly doubled to account for this pre-spawning mortality and to ensure enough salmon to sustain both predators and prey. This approach to integrated fish and wildlife management at MRSGS can serve as a model for other systems where current salmon escapement goals may not account for pre-spawning mortality.

  16. Seasonal dynamics of zooplankton in Columbia–Snake River reservoirs,with special emphasis on the invasive copepod Pseudodiaptomus forbesi

    USGS Publications Warehouse

    Emerson, Joshua E.; Bollens, Stephen M.; Counihan, Timothy D.

    2015-01-01

    The Asian copepod Pseudodiaptomus forbesi has recently become established in the Columbia River. However, little is known about its ecology and effects on invaded ecosystems. We undertook a 2-year (July 2009 to June 2011) field study of the mesozooplankton in four reservoirs in the Columbia and Snake Rivers, with emphasis on the relation of the seasonal variation in distribution and abundance of P. forbesi to environmental variables. Pseudodiaptomus forbesi was abundant in three reservoirs; the zooplankton community of the fourth reservoir contained no known non-indigenous taxa. The composition and seasonal succession of zooplankton were similar in the three invaded reservoirs: a bloom of rotifers occurred in spring, native cyclopoid and cladoceran species peaked in abundance in summer, and P. forbesi was most abundant in late summer and autumn. In the uninvaded reservoir, total zooplankton abundance was very low year-round. Multivariate ordination indicated that temperature and dissolved oxygen were strongly associated with zooplankton community structure, with P. forbesi appearing to exhibit a single generation per year . The broad distribution and high abundance of P. forbesi in the Columbia–Snake River System could result in ecosystem level effects in areas intensively managed to improve conditions for salmon and other commercially and culturally important fish species. 

  17. Snake River fall Chinook salmon life history investigations, 1/1/2013 – 12/31/2013

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.

    2015-01-01

    Smallmouth bass predation on subyearling fall Chinook salmon was examined in the upper portion of Lower Granite Reservoir during 2013. During the time subyearlings were present in the reservoir, smallmouth bass were collected, their stomach contents removed for diet analysis, and their abundance estimated with mark-recapture techniques. In 2013, the greatest consumption of subyearlings by smallmouth bass occurred in late May and early June—as much as 50% of their diet by weight. Sand rollers were the most common non-salmonid fish consumed by smallmouth bass. In the section of the reservoir above the confluence with the Clearwater River, the abundance of bass was higher in non-riprap habitat than in riprap, but the opposite was true in the section below the confluence. We estimated that over 168,000 subyearlings were lost to smallmouth bass predation in 2013. Given the predominance of sand rollers in the diet of smallmouth bass, we believe this species reduces predation on subyearling fall Chinook salmon. A complete report of our findings is provided in the Appendix.

  18. 76 FR 70062 - Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ...-XA803 Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  19. 78 FR 69002 - Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ...-XC965 Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  20. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004

  1. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2007 Smolt Acclimation and Adult Return Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eleventh season (1997-2007) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the ninth season (1999-2007) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2007

  2. Spring Outmigration of Wild and Hatchery Chinook Salmonid Steelhead Trout Smolts from the Imnaha River, Oregon; 1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blenden, Michael L.; Kucera, Paul A.; Osborne, Randall S.

    1996-04-01

    For the second consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 6 to June 20, 1995. We PIT tagged and released 421 wild chinook salmon smolts, 747 hatchery chinook salmon smolts (445 HxW and 302 HxH), 227 wild steelhead trout smolts and 1,296 hatchery steelhead trout smolts. Cumulative interrogation rates at mainstem Snake and Columbia River dams were 78.4% for wildmore » chinook salmon, 58.9% for hatchery chinook salmon (HxW), 56.6% for hatchery chinook salmon (HxH), 76.2% for wild steelhead trout, and 69.2% for hatchery steelhead trout. Peak outmigration of NPT tagged wild Imnaha River chinook salmon smolts occurred from early to mid-May at Lower Granite, Little Goose, and Lower Monumental Dams. Median and 90% passage dates for wild chinook salmon smolts at Lower Granite Dam were May 1 and May 11, respectively. Continuous spill at Lower Granite Dam was initiated on May 3 and lasted for 51 days. The 90% passage date of wild chinook salmon smolts at Lower Granite Dam (May 11) preceded peak Snake River and Lower Granite (June 6) flows by 26 days. Although hatchery chinook salmon exhibited a shorter outmigration period through the Snake River than their wild counterparts, peak arrival for both groups occurred at approximately the same time. Median and 90% passage dates at Lower Granite Dam for other PIT tagged groups were: hatchery chinook salmon (NPT-HxW) - May 2 and May 13; hatchery chinook salmon (FPC-HxH) - May 8 and May 15; wild steelhead trout - May 2 and May 9; and hatchery steelhead trout (NPT and FPC) - May 31 and June 16. Hatchery steelhead trout displayed small peaks in arrival timing at Lower Granite and Little Goose Dams in mid-May to mid-June.« less

  3. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Monitoring and Evaluation, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Weldert, Rey F.; Crump, Carrie A.

    2003-03-01

    This is the fifth annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Conventional and captive broodstock supplementation techniques are being used to restore spring chinook salmon fisheries in these streams. Statement of Work Objectives for 2002: (1) Plan for, administer, coordinate and assist comanagers in GRESCP M&E activities. (2) Evaluate performance of supplemented juvenile spring chinook salmon. (3) Evaluate life history differences between wild andmore » hatchery-origin (F{sub 1}) adult spring chinook salmon. (4) Describe life history characteristics and genetics of adult summer steelhead collected at weirs.« less

  4. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    PubMed

    Malison, Rachel L; Kuzishchin, Kirill V; Stanford, Jack A

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3-12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99-1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  5. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation

  6. 33 CFR 117.385 - Snake River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OPERATION REGULATIONS Specific Requirements Idaho § 117.385 Snake River. The drawspan of the U.S. 12 bridge, mile 140.0, between Lewiston, Idaho, and Clarkston, Washington, operates as follows: (a) The draw need...

  7. 33 CFR 117.385 - Snake River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OPERATION REGULATIONS Specific Requirements Idaho § 117.385 Snake River. The drawspan of the U.S. 12 bridge, mile 140.0, between Lewiston, Idaho, and Clarkston, Washington, operates as follows: (a) The draw need...

  8. 33 CFR 117.385 - Snake River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OPERATION REGULATIONS Specific Requirements Idaho § 117.385 Snake River. The drawspan of the U.S. 12 bridge, mile 140.0, between Lewiston, Idaho, and Clarkston, Washington, operates as follows: (a) The draw need...

  9. 33 CFR 117.385 - Snake River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OPERATION REGULATIONS Specific Requirements Idaho § 117.385 Snake River. The drawspan of the U.S. 12 bridge, mile 140.0, between Lewiston, Idaho, and Clarkston, Washington, operates as follows: (a) The draw need...

  10. 33 CFR 117.385 - Snake River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... OPERATION REGULATIONS Specific Requirements Idaho § 117.385 Snake River. The drawspan of the U.S. 12 bridge, mile 140.0, between Lewiston, Idaho, and Clarkston, Washington, operates as follows: (a) The draw need...

  11. Do beaver dams reduce habitat connectivity and salmon productivity in expansive river floodplains?

    PubMed Central

    Kuzishchin, Kirill V.; Stanford, Jack A.

    2016-01-01

    Beaver have expanded in their native habitats throughout the northern hemisphere in recent decades following reductions in trapping and reintroduction efforts. Beaver have the potential to strongly influence salmon populations in the side channels of large alluvial rivers by building dams that create pond complexes. Pond habitat may improve salmon productivity or the presence of dams may reduce productivity if dams limit habitat connectivity and inhibit fish passage. Our intent in this paper is to contrast the habitat use and production of juvenile salmon on expansive floodplains of two geomorphically similar salmon rivers: the Kol River in Kamchatka, Russia (no beavers) and the Kwethluk River in Alaska (abundant beavers), and thereby provide a case study on how beavers may influence salmonids in large floodplain rivers. We examined important rearing habitats in each floodplain, including springbrooks, beaver ponds, beaver-influenced springbrooks, and shallow shorelines of the river channel. Juvenile coho salmon dominated fish assemblages in all habitats in both rivers but other species were present. Salmon density was similar in all habitat types in the Kol, but in the Kwethluk coho and Chinook densities were 3–12× lower in mid- and late-successional beaver ponds than in springbrook and main channel habitats. In the Kol, coho condition (length: weight ratios) was similar among habitats, but Chinook condition was highest in orthofluvial springbrooks. In the Kwethluk, Chinook condition was similar among habitats, but coho condition was lowest in main channel versus other habitats (0.89 vs. 0.99–1.10). Densities of juvenile salmon were extremely low in beaver ponds located behind numerous dams in the orthofluvial zone of the Kwethluk River floodplain, whereas juvenile salmon were abundant in habitats throughout the entire floodplain in the Kol River. If beavers were not present on the Kwethluk, floodplain habitats would be fully interconnected and theoretically

  12. Water resources of the Snake River watershed, east-central Minnesota

    USGS Publications Warehouse

    Lindholm, Gerald F.; Helgesen, J.O.; Broussard, W.L.; Ericson, D.W.

    1974-01-01

    The Snake River, which drains an area of about 1,030 square miles, originates in an extensive area of peat bogs in the northern part of the watershed. It flows southward across gently rolling glacial terrain in which the major relief is near the river. Near the southern boundary of the watershed, the Snake River turns eastward to its confluence with the St. Croix River. The northwest half of the watershed is heavily forested, whereas much of the southeast half has been cleared. The largest communities in the watershed, Mora and Pine City, had 1970 populations of 2,582 and 2,143, respectively.

  13. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2015-12-01

    Salmon are a valuable cultural and economic resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  14. Population structure of sea-type and lake-type sockeye salmon and kokanee in the Fraser River and Columbia River drainages

    PubMed Central

    Withler, Ruth E.

    2017-01-01

    Population structure of three ecotypes of Oncorhynchus nerka (sea-type Sockeye Salmon, lake-type Sockeye Salmon, and Kokanee) in the Fraser River and Columbia River drainages was examined with microsatellite variation, with the main focus as to whether Kokanee population structure within the Fraser River drainage suggested either a monophyletic or polyphyletic origin of the ecotype within the drainage. Variation at 14 microsatellite loci was surveyed for sea-type and lake-type Sockeye Salmon and Kokanee sampled from 121 populations in the two river drainages. An index of genetic differentiation, FST, over all populations and loci was 0.087, with individual locus values ranging from 0.031 to 0.172. Standardized to an ecotype sample size of 275 individuals, the least genetically diverse ecotype was sea-type Sockeye Salmon with 203 alleles, whereas Kokanee displayed the greatest number of alleles (260 alleles), with lake-type Sockeye Salmon intermediate (241 alleles). Kokanee populations from the Columbia River drainage (Okanagan Lake, Kootenay Lake), the South Thompson River (a major Fraser River tributary) drainage populations, and the mid-Fraser River populations all clustered together in a neighbor-joining analysis, indicative of a monophyletic origin of the Kokanee ecotype in these regions, likely reflecting the origin of salmon radiating from a refuge after the last glaciation period. However, upstream of the mid-Fraser River populations, there were closer relationships between the lake-type Sockeye Salmon ecotype and the Kokanee ecotype, indicative of the Kokanee ecotype evolving independently from the lake-type Sockeye Salmon ecotype in parallel radiation. Kokanee population structure within the entire Fraser River drainage suggested a polyphyletic origin of the ecotype within the drainage. Studies employing geographically restricted population sampling may not outline accurately the phylogenetic history of salmonid ecotypes. PMID:28886033

  15. The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation.

    PubMed

    Gill, Karen M; Goater, Lori A; Braatne, Jeffrey H; Rood, Stewart B

    2018-04-01

    River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this 'irrigation effect' we studied the facultative shrub, netleaf hackberry (Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow (Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.

  16. The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Gill, Karen M.; Goater, Lori A.; Braatne, Jeffrey H.; Rood, Stewart B.

    2018-04-01

    River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this `irrigation effect' we studied the facultative shrub, netleaf hackberry ( Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow ( Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.

  17. SALMON RIVER BREAKS PRIMITIVE AREA AND VICINITY, IDAHO.

    USGS Publications Warehouse

    Kiilsgaard, Thor H.; Tuchek, Ernest T.

    1984-01-01

    A mineral survey of the Salmon River Breaks Primitive Area and vicinity in Idaho confirmed a substantiated gold resource potential in placer deposits along the Salmon River but determined that large-scale mining of the deposits probably would not be feasible. Except for demonstrated fluorspar resources at the Big Squaw Creek deposit, no other mineral resources were found in the area. The geologic environment, geochemical findings, and geophysical data all suggest little likelihood for the occurrence of additional mineral resources in the area. No energy resources were identified in this study.

  18. The Influence of Salmon Recolonization on Riparian Communities in the Cedar River, Washington, USA

    NASA Astrophysics Data System (ADS)

    Moravek, J.; Clipp, H.; Kiffney, P.

    2016-02-01

    Salmon are a valuable resource throughout the Pacific Northwest, but increasing human activity is degrading coastal ecosystems and threatening local salmon populations. Salmon conservation efforts often focus on habitat restoration, including the re-colonization of salmon into historically obstructed areas such as the Cedar River in Washington, USA. However, to assess the long term implications of salmon re-colonization on a landscape scale, it is critical to consider not only the river ecosystem but also the surrounding riparian habitat. Although prior studies suggest that salmon alter riparian food web dynamics, the riparian community on the Cedar River has not yet been characterized. To investigate possible connections between salmon and the riparian habitat after 12 years of re-colonization, we surveyed riparian spider communities along a gradient of salmon inputs (g/m2). In 10-m transects along the banks of the river, we identified spiders and spider webs, collected prey from webs, and characterized nearby aquatic macroinvertebrate communities. We found that the density of aquatic macroinvertebrates, as well as the density of spider prey, both had significant positive relationships with salmon inputs, supporting the hypothesis that salmon provide energy and nutrients for both aquatic and riparian food webs. We also found that spider diversity significantly decreased with salmon inputs, potentially due to confounding factors such as stream gradient or vegetation structure. Although additional information is needed to fully understand this relationship, the significant connection between salmon inputs and spider diversity is compelling motivation for further studies regarding the link between aquatic and riparian systems on the Cedar River. Understanding the connections between salmon and the riparian community is critical to characterizing the long term, landscape-scale implications of sustainable salmon management in the Pacific Northwest.

  19. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2006 Smolt Acclimation and Adult Return Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the tenth season (1997-2006) of adult Chinook salmon broodstock collectionmore » in the Lostine River and the eighth season (1999-2006) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies In 2006

  20. Migratory salmonid redd habitat characteristics in the Salmon River, New York

    USGS Publications Warehouse

    Johnson, James H.; Nack, Christopher C.; McKenna, James E.

    2010-01-01

    Non-native migratory salmonids ascend tributaries to spawn in all the Great Lakes. In Lake Ontario, these species include Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), steelhead (O. mykiss), and brown trout (Salmo trutta). Although successful natural reproduction has been documented for many of these species, little research has been conducted on their spawning habitat. We examined the spawning habitat of these four species in the Salmon River, New York. Differences in fish size among the species were significantly correlated with spawning site selection. In the Salmon River, the larger species spawned in deeper areas with larger size substrate and made the largest redds. Discriminant function analysis correctly classified redds by species 64–100% of the time. The size of substrate materials below Lighthouse Hill Dam is within the preferred ranges for spawning for these four species indicating that river armoring has not negatively impacted salmonid production. Intra-specific and inter-specific competition for spawning sites may influence redd site selection for smaller salmonids and could be an impediment for Atlantic salmon (S. salar) restoration.

  1. Evaluation of a Prototype Surface Flow Bypass for Juvenile Salmon and Steelhead at the Powerhouse of Lower Granite Dam, Snake River, Washington, 1996-2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gary E.; Anglea, Steven M.; Adams, Noah S.

    2005-02-28

    A surface flow bypass provides a route in the upper water column for naturally, surface-oriented juvenile salmonids to safely migrate through a hydroelectric dam. Surface flow bypasses were recommended in several regional salmon recovery plans as a means to increase passage survival of juvenile salmonids at Columbia and Snake River dams. A prototype surface flow bypass, called the SBC, was retrofit on Lower Granite Dam and evaluated from 1996 to 2000 using biotelemetry and hydroacoustic techniques. In terms of passage efficiency, the best SBC configurations were a surface skimmer (99 m3/s [3,500 cfs], three entrances 5 m wide, 5 mmore » deep and one entrance 5 m wide, 15 m deep) and a single chute (99 m3/s, one entrance 5 m wide, 8.5 m deep). They each passed 62 ? 3% (95% confidence interval) of the total juvenile fish population that entered the section of the dam with the SBC entrances (Turbine Units 4-5). Smooth entrance shape and concentrated surface flow characteristics of these configurations are worth pursuing in designs for future surface flow bypasses. In addition, a guidance wall in the Lower Granite Dam forebay diverted the following percentages of juvenile salmonids away from Turbine Units 1-3 toward other passage routes, including the SBC: run-at-large 79 ? 18%; hatchery steelhead 86%; wild steelhead 65%; and yearling chinook salmon 66%. When used in combination with spill or turbine intake screens, a surface flow bypass with a guidance wall can produce a high level (> 90% of total project passage) of non-turbine passage and provide operational flexibility to fisheries managers and dam operators responsible for enhancing juvenile salmonid survival.« less

  2. Volcanism of the Eastern Snake River Plain, Idaho: A comparative planetary geology-guidebook

    NASA Technical Reports Server (NTRS)

    Greeley, R.; King, J. S.

    1977-01-01

    The Planetary Geology Field Conference on the central Snake River Plain was conceived and developed to accomplish several objectives. Primarily, field conferences are sponsored by the National Aeronautics and Space Administration to draw attention to aspects of terrestrial geology that appear to be important in interpreting the origin and evolution of extraterrestrial planetary surfaces. Another aspect is to present results of recent research in a region. A final objective of this conference is to bring together investigators of diverse backgrounds who share a common interest in the Snake River Plain. The Snake River Plain appears to be similar in surface morphology to many volcanic regions on the Moon, Mars, and possibly Mercury. Therefore, the Snake River Plain, in combination with the relatively good state of preservation, the lack of forests or other heavy vegetation, and the good network of jeep trails, is an area nearly ideal for analog studies.

  3. Ichthyophoniasis: An emerging disease of Chinook salmon in the Yukon River

    USGS Publications Warehouse

    Kocan, R.; Hershberger, P.; Winton, J.

    2004-01-01

    Before 1985, Ichthyophonus was unreported among Pacific salmon Oncorhynchus spp. from the Yukon River; now it infects more than 40% of returning adult Chinook salmon O. tshawytscha. Overall infection prevalence reached about 45% in the Yukon River and about 30% in the Tanana River between 1999 and 2003. Mean infection prevalence was greater in females than males in the main-stem Yukon River during each of the 5 years of the study, but the infection prevalence in males increased each year until the difference was no longer significant. Clinical signs of ichthyophoniasis (presence of visible punctate white lesions in internal organs) were least at the mouth of the Yukon River (∼10%) but increased to 29% when fish reached the middle Yukon River and was 22% at the upper Tanana River. However, clinical signs increased each year from 7% in 1999 to 27% in 2003 at the mouth of the river. As fish approached the upper reaches of the Yukon River (Canada) and the spawning areas of the Chena and Salcha rivers (Alaska), infection prevalence dropped significantly to less than 15% in females on the Yukon River and less than 10% for both sexes in the Chena and Salcha rivers, presumably because of mortality among infected prespawn fish. Age was not a factor in infection prevalence, nor was the position of fish within the run. The source of infection was not determined, but Ichthyophonus was not found in 400 Pacific herring Clupea pallasi from the Bering Sea or in 120 outmigrating juvenile Chinook salmon from two drainages in Alaska and Canada. Freshwater burbot Lota lota from the middle Yukon River were subclinically infected with Ichthyophonus, but the origin and relationship of this agent to the Chinook salmon isolate is unknown.

  4. Yakima River Radio-Telemetry Study: Spring Chinook Salmon, 1991-1992 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hockersmith, Eric

    1994-09-01

    As part of the presupplementation planning, baseline data on the productivity of spring chinook salmon (Oncorhynchus tshawytscha) in the Yakima River have been collected. However, for adult salmonids, data on habitat use, delays in passage at irrigation diversions, migration rates, and substock separation had not been previously collected. In 1991, the National Marine Fisheries Service began a 2-year radio-telemetry study of adult spring chinook salmon in the Yakima River Basin. Specific objectives addressed in this study were: to determine spawning populations` run timing, passage patterns at irrigation diversion dams, and morphometric characteristics to determine where and when substocks become separated;more » to evaluate fish passage at Yakima River Basin diversion dams including Prosser, Sunnyside, Wapato, Roza, Town Diversion, Easton, Cowiche, and Wapatox Dams; to determine spring chinook salmon migration rates between Yakima River Basin dams, prespawning behavior, temporal distribution, and habitat utilization; to identify spawning distribution and timing of spring chinook salmon; to determine the amount and cause of prespawning mortality of spring chinook salmon; and to evaluate adult fish-handling procedures for the right-bank, adult-trapping facility at Prosser Dam.« less

  5. Behavior patterns and fates of adult steelhead, Chinook salmon, and coho salmon released into the upper Cowlitz River Basin, 2005–09 and 2012, Washington

    USGS Publications Warehouse

    Kock, Tobias J.; Ekstrom, Brian K.; Liedtke, Theresa L.; Serl, John D.; Kohn, Mike

    2016-08-26

    A multiyear radiotelemetry evaluation was conducted to monitor adult steelhead (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) behavior and movement patterns in the upper Cowlitz River Basin. Volitional passage to this area was eliminated by dam construction in the mid-1960s, and a reintroduction program began in the mid-1990s. Fish are transported around the dams using a trap-and-haul program, and adult release sites are located in Lake Scanewa, the uppermost reservoir in the system, and in the Cowlitz and Cispus Rivers. Our goal was to estimate the proportion of tagged fish that fell back downstream of Cowlitz Falls Dam before the spawning period and to determine the proportion that were present in the Cowlitz and Cispus Rivers during the spawning period. Fallback is important because Cowlitz Falls Dam does not have upstream fish passage, so fish that pass the dam are unable to move back upstream and spawn. A total of 2,051 steelhead and salmon were tagged for the study, which was conducted during 2005–09 and 2012, and 173 (8.4 percent) of these regurgitated their transmitter prior to, or shortly after release. Once these fish were removed from the dataset, the final number of fish that was monitored totaled 1,878 fish, including 647 steelhead, 770 Chinook salmon, and 461 coho salmon.Hatchery-origin (HOR) and natural-origin (NOR) steelhead, Chinook salmon, and coho salmon behaved differently following release into Lake Scanewa. Detection records showed that the percentage of HOR fish that moved upstream and entered the Cowlitz River or Cispus River after release was relatively low (steelhead = 38 percent; Chinook salmon = 67 percent; coho salmon = 41 percent) compared to NOR fish (steelhead = 84 percent; Chinook salmon = 82 percent; coho salmon = 76 percent). The elapsed time from release to river entry was significantly lower for NOR fish than for HOR fish for all three species. Tagged fish entered the Cowlitz River in

  6. Effects of dam removal on Tule Fall Chinook salmon spawning habitat in the White Salmon River, Washington

    USGS Publications Warehouse

    Hatten, James R.; Batt, Thomas R.; Skalicky, Joseph J.; Engle, Rod; Barton, Gary J.; Fosness, Ryan L.; Warren, Joe

    2016-01-01

    Condit Dam is one of the largest hydroelectric dams ever removed in the USA. Breached in a single explosive event in October 2011, hundreds-of-thousands of cubic metres of sediment washed down the White Salmon River onto spawning grounds of a threatened species, Columbia River tule fall Chinook salmon Oncorhynchus tshawytscha. We investigated over a 3-year period (2010–2012) how dam breaching affected channel morphology, river hydraulics, sediment composition and tule fall Chinook salmon (hereafter ‘tule salmon’) spawning habitat in the lower 1.7 km of the White Salmon River (project area). As expected, dam breaching dramatically affected channel morphology and spawning habitat due to a large load of sediment released from Northwestern Lake. Forty-two per cent of the project area that was previously covered in water was converted into islands or new shoreline, while a large pool near the mouth filled with sediments and a delta formed at the mouth. A two-dimensional hydrodynamic model revealed that pool area decreased 68.7% in the project area, while glides and riffles increased 659% and 530%, respectively. A spatially explicit habitat model found the mean probability of spawning habitat increased 46.2% after dam breaching due to an increase in glides and riffles. Shifting channels and bank instability continue to negatively affect some spawning habitat as sediments continue to wash downstream from former Northwestern Lake, but 300 m of new spawning habitat (river kilometre 0.6 to 0.9) that formed immediately post-breach has persisted into 2015. Less than 10% of tule salmon have spawned upstream of the former dam site to date, but the run sizes appear healthy and stable. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  7. Regional implications of heat flow of the Snake River Plain, Northwestern United States

    NASA Astrophysics Data System (ADS)

    Blackwell, D. D.

    1989-08-01

    The Snake River Plain is a major topographic feature of the Northwestern United States. It marks the track of an upper mantle and crustal melting event that propagated across the area from southwest to northeast at a velocity of about 3.5 cm/yr. The melting event has the same energetics as a large oceanic hotspot or plume and so the area is the continental analog of an oceanic hotspot track such as the Hawaiian Island-Emperor Seamount chain. Thus, the unique features of the area reflect the response of a continental lithosphere to a very energetic hotspot. The crust is extensively modified by basalt magma emplacement into the crust and by the resulting massive rhyolite volcanism from melted crustal material, presently occurring at Yellowstone National Park. The volcanism is associated with little crustal extension. Heat flow values are high along the margins of the Eastern and Western Snake River Plains and there is abundant evidence for low-grade geothermal resources associated with regional groundwater systems. The regional heat flow pattern in the Western Snake River Plains reflects the influence of crustal-scale thermal refraction associated with the large sedimentary basin that has formed there. Heat flow values in shallow holes in the Eastern Snake River Plains are low due to the Snake River Plains aquifer, an extensive basalt aquifer where water flow rates approach 1 km/yr. Below the aquifer, conductive heat flow values are about 100 mW m -2. Deep holes in the region suggest a systematic eastward increase in heat flow in the Snake River Plains from about 75-90 mW m -2 to 90-110 mW m -2. Temperatures in the upper crust do not behave similarly because the thermal conductivity of the Plio-Pleistocene sedimentary rocks in the west is lower than that in the volcanic rocks characteristic of the Eastern Snake River Plains. Extremely high heat loss values (averaging 2500 mW m -2) and upper crustal temperatures are characteristic of the Yellowstone caldera.

  8. [Seasonal and interannual variations of sockeye salmon (Oncorhynchus nerka) microsatellite DNA in two Kamchatka lake-river systems].

    PubMed

    Khrustaleva, A M; Zelenina, D A

    2008-07-01

    Seasonal and interannual variations in the sockeye salmon populations from two lake-river systems of the East and West Kamchatka were studied. Stability of allele and genotypic frequencies of six microsatellite DNA loci in the adjacent generations and spawning populations of the sockeye salmon of the Bol'shaya River was confirmed experimentally. The pairwise intersample differentiation (F(st)) of the local sockeye salmon populations from the southwestern Kamchatka coast (Ozernaya and Bol'shaya Rivers)was almost 7 times higher than the corresponding values for the spawning populations of the Bol'shaya River sockeye salmon of the adjacent years; 15 times, for the adjacent Bol'shaya River sockeye salmon generations; and four times, for the seasonal races within the Kamchatka River.

  9. 77 FR 60101 - Boundary Establishment for White Salmon Wild and Scenic River “Lower Segment”, Gifford Pinchot...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... Establishment for White Salmon Wild and Scenic River ``Lower Segment'', Gifford Pinchot National Forest..., is transmitting the final amended boundary of the White Salmon Wild and Scenic River ``Lower Segment... Friday. SUPPLEMENTARY INFORMATION: The White Salmon Wild and Scenic River ``Lower Segment'' boundary is...

  10. Geologic map and profiles of the north wall of the Snake River Canyon, Thousand Springs and Niagara quadrangles, Idaho

    USGS Publications Warehouse

    Covington, H.R.; Weaver, Jean N.

    1991-01-01

    The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig. 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer north of the Snake River underlies most of the eastern plain. The aquifer is composed of basaltic rocks that are interbedded with fluvial and lacustrine sedimentary rocks. The top of the aquifer (water table) is typically less than 500 ft below the land surface but is deeper than 1,000 ft in a few areas. The Snake River has excavated a canyon into the nearly flat lying basaltic and sedimentary rocks of the eastern Snake River Plain aquifer, which discharges from the northern canyon wall as springs of variable size, spacing, and altitude. Geologic controls on springs are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along the describes the geologic occurrence of springs along the northern wall of the Snake River canyon. This report is one of several that describes the geologic occurrence of springs along the northern wall of the Snake River canyon from Milner Dam to King Hill. To understand the local geologic controls on springs, the Water Resources Division of the U.S. Geological Survey initiated a geologic mapping project as part of their Snake River Plain Regional Aquifer System-Analysis Program. Objectives of the project were (1) to prepare a geologic map of a strip of land immediately north of the Snake River canyon, (2) to map the geology of the north canyon wall in profile, (3) to locate spring occurrences along the north side of the Snake River between Milner Sam and King Hill, and (4) to estimate spring discharge from the north wall of the canyon.

  11. Geologic map and profiles of the north wall of the Snake River Canyon, Pasadena Valley and Ticeska quadrangles, Idaho

    USGS Publications Warehouse

    Covington, H.R.; Weaver, Jean N.

    1990-01-01

    The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig. 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer north of the Snaked River underlies the most of the eastern plain. The aquifer is composed of basaltic ricks that are interbedded with fluvial and lacustrine sedimentary rocks. The top of the aquifer (water table) is typically less than 500 ft below the land surface, but is deeper than 1,000 ft in few areas. The Snake River had excavated a canyon into the nearly flat-lying basaltic and sedimentary rocks of the eastern Snake River Plain between Milner Dam and King Hill (fig. 2), a distance of almost 90 mi. For much of its length the canyon intersects the Snake River Plain aquifer, which discharges from the north canyon wall as springs of variable size, spacing, and altitude. Geologic controls on springs are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along this reach of the canyon. This report is one of several that describes the geologic occurrence of springs along the northern wall of the Snake River canyon from Milner Dam to King Hill. To understand the local geologic controls on springs, the Water Resources Division of the U.S. Geological Survey initiated a geologic mapping project as part of their Snake River Plain Regional Aquifer System-Analysis Program. Objectives of the project were (1) to prepare a geologic map of a strip of land immediately north of the Snake River canyon, (2) to map the geology of the north canyon wall in profile, (3) to locate spring occurrences along the north side of the Snake River between Milner Dam and King Hill, and (4) to estimate spring discharge from the north wall of the canyon.

  12. Linkages between life history type and migration pathways in freshwater and marine environments for Chinook salmon, Oncorhynchus tshawytscha

    NASA Astrophysics Data System (ADS)

    Sharma, Rishi; Quinn, Thomas P.

    2012-05-01

    Chinook salmon, Oncorhynchus tshawytscha, are commonly categorized as ocean-type (migrating to the ocean in their first year of life) or stream-type (migrating after a full year in freshwater). These two forms have been hypothesized to display different ocean migration pathways; the former are hypothesized to migrate primarily on the continental shelf whereas the latter are hypothesized to migrate off the shelf to the open ocean. These differences in migration patterns have important implications for management, as fishing mortality rates are strongly influenced by ocean migration. Ocean-type Chinook salmon predominate in coastal rivers in the southern part of the species' range, whereas stream-type predominate in the interior and northerly rivers. This latitudinal gradient has confounded previous efforts to test the hypothesis regarding ocean migration pathways. To address this problem, we used a pair-wise design based on coded wire tagging data to compare the marine distributions of stream- and ocean-type Chinook salmon from a suite of rivers producing both forms. Both forms of Chinook salmon from the lower Columbia River, Oregon coast, lower Fraser River, and northern British Columbia rivers followed similar migration paths, contradicting the hypothesis. In contrast, recoveries of tagged Chinook salmon from the upper Columbia River, Snake River, and the upper Fraser River revealed migration patterns consistent with the hypothesis. These findings have important implications for our understanding of these life history types, and also for the conservation and management of declining, threatened, or endangered stream-type Chinook salmon populations in the US and Canada.

  13. Understanding the Complexities of Communicating Management Decisions on the Subsistence Use of Yukon River Salmon

    NASA Astrophysics Data System (ADS)

    Brooks, J. F.; Trainor, S.

    2017-12-01

    Over 20,000 residents in Alaska and Yukon Territory rely upon the Yukon River to provide them harvests of Pacific salmon each year. Salmon are a highly valued food resource and the practice of salmon fishing along the Yukon is deep rooted in local cultures and traditions. Potential future impacts of climate change on the health of Yukon River salmon stocks could be significant. Collaborative managerial processes which incorporate the viewpoints of subsistence stakeholders will be crucial in enabling communities and managerial institutions to adapt and manage these impacts. However, the massive extent of the Yukon River makes it difficult for communities rich with highly localized knowledge to situate themselves within a drainage-wide context of resource availability, and to fully understand the implications that management decisions may have for their harvest. Differences in salmon availability and abundance between the upper and lower Yukon, commercial vs. subsistence fishery interests, and enforcement of the international Pacific Salmon Treaty further complicate understanding and makes the topic of salmon as a subsistence resource a highly contentious issue. A map which synthesizes the presence and absence of Pacific salmon throughout the entire Yukon River drainage was requested by both subsistence fishers and natural resource managers in Alaska in order to help facilitate productive conversations about salmon management decisions. Interviews with Alaskan stakeholders with managerial, biological, and subsistence harvest backgrounds were carried out and a literature review was conducted in order to understand what such a map should and could accomplish. During the research process, numerous data gaps concerning the distribution of salmon along the Yukon River were discovered, and insights about the complexities involved in translating science when it is situated within a charged political, economic, and cultural context were revealed. Preliminary maps depicting

  14. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E.

    2009-07-09

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008more » are: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007

  15. Water-quality conditions near the confluence of the Snake and Boise Rivers, Canyon County, Idaho

    USGS Publications Warehouse

    Wood, Molly S.; Etheridge, Alexandra

    2011-01-01

    Total Maximum Daily Loads (TMDLs) have been established under authority of the Federal Clean Water Act for the Snake River-Hells Canyon reach, on the border of Idaho and Oregon, to improve water quality and preserve beneficial uses such as public consumption, recreation, and aquatic habitat. The TMDL sets targets for seasonal average and annual maximum concentrations of chlorophyll-a at 14 and 30 micrograms per liter, respectively. To attain these conditions, the maximum total phosphorus concentration at the mouth of the Boise River in Idaho, a tributary to the Snake River, has been set at 0.07 milligrams per liter. However, interactions among chlorophyll-a, nutrients, and other key water-quality parameters that may affect beneficial uses in the Snake and Boise Rivers are unknown. In addition, contributions of nutrients and chlorophyll-a loads from the Boise River to the Snake River have not been fully characterized. To evaluate seasonal trends and relations among nutrients and other water-quality parameters in the Boise and Snake Rivers, a comprehensive monitoring program was conducted near their confluence in water years (WY) 2009 and 2010. The study also provided information on the relative contribution of nutrient and sediment loads from the Boise River to the Snake River, which has an effect on water-quality conditions in downstream reservoirs. State and site-specific water-quality standards, in addition to those that relate to the Snake River-Hells Canyon TMDL, have been established to protect beneficial uses in both rivers. Measured water-quality conditions in WY2009 and WY2010 exceeded these targets at one or more sites for the following constituents: water temperature, total phosphorus concentrations, total phosphorus loads, dissolved oxygen concentration, pH, and chlorophyll-a concentrations (WY2009 only). All measured total phosphorus concentrations in the Boise River near Parma exceeded the seasonal target of 0.07 milligram per liter. Data collected

  16. Investigating passage of ESA-listed juvenile fall Chinook salmon at Lower Granite Dam during winter when the fish bypass system is not operated. 2006 Annual Report

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Kock, Tobias J.; Connor, William P.

    2007-01-01

    During the winter of 2005-06, we radio and PIT tagged and released 48 juvenile fall Chinook salmon to evaluate over-wintering behavior and dam passage in the lower Snake River, Washington. Fish were released at the upstream end of the Lower Granite Dam forebay in November and December 2005. Fixed radio telemetry detection sites located in forebay and tailrace areas of Lower Granite, Little Goose, Lower Monumental and Ice Harbor dams were used to monitor fish movements and dam passage through early-May 2006. Of the 48 fish released during our study, 39 (81 %) passed Lower Granite Dam and were detected at downstream detection sites, 29 (60%) passed Little Goose Dam, 25 (52%) passed Lower Monumental Dam, and 15 (31%) passed Ice Harbor Dam. Thirty-seven (95%), 23 (79%), 16 (64%), and 9 (60%) of the fish that passed Lower Granite, Little Goose, Lower Monumental, and Ice Harbor dams respectively, did so when the fish bypass system was not operated. Passage of tagged fish past lower Snake River dams generally declined during the winter, but increased again after bypass began in April. Fish residence times in reservoirs and forebays was lengthy during the winter (up to 118 d), and varied by reservoir and time of year. We observed no diel passage trends. Only 15 of the 48 fish were subsequently detected at a PIT-tag interrogation site the following spring. We believe that passage of overwintering juvenile fall Chinook salmon during winter is due more to chance than directed downstream movement. Since the primary route of passage during the winter is through powerhouse turbines, the potential exists for increased mortality for over-wintering juvenile fall Chinook salmon in the Snake River. Our findings also have implications for transportation studies of subyearling fall Chinook salmon in the Snake River. Specifically, the finding that some fish can pass undetected during the winter may bias smolt-to-adult return rate calculations that are typically used to measure the

  17. Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillson, Todd D.

    2009-06-12

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of thismore » species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205

  18. Salmon and steelhead in the White Salmon River after the removal of Condit Dam–Planning efforts and recolonization results

    USGS Publications Warehouse

    Allen, Brady; Engle, Rod O; Zendt, Joseph S; Shrier, Frank C; Wilson, Jeremy T; Connolly, Patrick J.

    2016-01-01

    Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and completely removed in 2012. This action opened habitat to migratory fish for the first time in 100 years. The White Salmon Working Group was formed to create plans for fish salvage in preparation for fish recolonization and to prescribe the actions necessary to restore anadromous salmonid populations in the White Salmon River after Condit Dam removal. Studies conducted by work group members and others served to inform management decisions. Management options for individual species were considered, including natural recolonization, introduction of a neighboring stock, hatchery supplementation, and monitoring natural recolonization for some time period to assess the need for hatchery supplementation. Monitoring to date indicates that multiple species and stocks of anadromous salmonids are finding and spawning in the now accessible and recovering habitat.

  19. Evaluate Status of Pacific Lamprey in the Clearwater River and Salmon River Drainages, Idaho, 2009 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochnauer, Tim; Claire, Christopher

    2009-05-07

    Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based onmore » potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.« less

  20. Comparative evaluation of molecular diagnostic tests for Nucleospora salmonis and prevalence in migrating juvenile salmonids from the Snake River, USA

    USGS Publications Warehouse

    Badil, Samantha; Elliott, Diane G.; Kurobe, Tomofumi; Hedrick, Ronald P.; Clemens, Kathy; Blair, Marilyn; Purcell, Maureen K.

    2011-01-01

    Nucleospora salmonis is an intranuclear microsporidian that primarily infects lymphoblast cells and contributes to chronic lymphoblastosis and a leukemia-like condition in a range of salmonid species. The primary goal of this study was to evaluate the prevalence of N. salmonis in out-migrating juvenile hatchery and wild Chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss from the Snake River in the U.S. Pacific Northwest. To achieve this goal, we first addressed the following concerns about current molecular diagnostic tests for N. salmonis: (1) nonspecific amplification patterns by the published nested polymerase chain reaction (nPCR) test, (2) incomplete validation of the published quantitative PCR (qPCR) test, and (3) whether N. salmonis can be detected reliably from nonlethal samples. Here, we present an optimized nPCR protocol that eliminates nonspecific amplification. During validation of the published qPCR test, our laboratory developed a second qPCR test that targeted a different gene sequence and used different probe chemistry for comparison purposes. We simultaneously evaluated the two different qPCR tests for N. salmonis and found that both assays were highly specific, sensitive, and repeatable. The nPCR and qPCR tests had good overall concordance when DNA samples derived from both apparently healthy and clinically diseased hatchery rainbow trout were tested. Finally, we demonstrated that gill snips were a suitable tissue for nonlethal detection of N. salmonis DNA in juvenile salmonids. Monitoring of juvenile salmonid fish in the Snake River over a 3-year period revealed low prevalence of N. salmonis in hatchery and wild Chinook salmon and wild steelhead but significantly higher prevalence in hatchery-derived steelhead. Routine monitoring of N. salmonis is not performed for all hatchery steelhead populations. At present, the possible contribution of this pathogen to delayed mortality of steelhead has not been determined.

  1. Radiotelemetry to estimate stream life of adult chum salmon in the McNeil River, Alaska

    USGS Publications Warehouse

    Peirce, Joshua M.; Otis, Edward O.; Wipfli, Mark S.; Follmann, Erich H.

    2011-01-01

    Estimating salmon escapement is one of the fundamental steps in managing salmon populations. The area-under-the-curve (AUC) method is commonly used to convert periodic aerial survey counts into annual salmon escapement indices. The AUC requires obtaining accurate estimates of stream life (SL) for target species. Traditional methods for estimating SL (e.g., mark–recapture) are not feasible for many populations. Our objective in this study was to determine the average SL of chum salmon Oncorhynchus keta in the McNeil River, Alaska, through radiotelemetry. During the 2005 and 2006 runs, 155 chum salmon were fitted with mortality-indicating radio tags as they entered the McNeil River and tracked until they died. A combination of remote data loggers, aerial surveys, and foot surveys were used to determine the location of fish and provide an estimate of time of death. Higher predation resulted in tagged fish below McNeil Falls having a significantly shorter SL (12.6 d) than those above (21.9 d). The streamwide average SL (13.8 d) for chum salmon at the McNeil River was lower than the regionwide value (17.5 d) previously used to generate AUC indices of chum salmon escapement for the McNeil River. We conclude that radiotelemetry is an effective tool for estimating SL in rivers not well suited to other methods.

  2. Geologic map and profiles of the north wall of the Snake River Canyon, Bliss, Hagerman, and Tuttle quadrangles, Idaho

    USGS Publications Warehouse

    Covington, H.R.; Weaver, Jean N.

    1990-01-01

    The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig. 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer north of the Snake River underlies most of the eastern plain. The aquifer is composed of basaltic rocks that are interbedded with fluvial and lacustrine sedimentary rocks. The top of the aquifer (water table) is typically less than 500 ft below the land surface, but is deeper than 1,000 ft in a few areas. The Snake River has excavated a canyon into the nearly flat-lying basaltic and sedimentary rocks of the eastern Snake River Plain between Milner Dam and King Hill (fig. 2), a distance of almost 90 mi. For much of its length the canyon wall as springs of variable size, spacing, and altitude. Geologic controls on springs are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along this reach of the canyon. This report is one of several that describes the geologic occurrence of springs along the northern wall of the Snake River canyon from Milner Dam to King Hill (fig. 1). To understand the local geologic controls on springs, the Water Resources Division of the U.S. Geological Survey initiated a geologic mapping project as part of their Snake River Plain Regional Aquifer System-Analysis Program. Objectives of the project were (1) to prepare a geologic map of a strip of land immediately north of the Snake River canyon, (2) to map the geology of the north canyon wall in profile, (3) to locate spring occurrences along the north side of the Snake River between Milner Dam and King Hill, and (4) to estimate spring discharge from the north wall of the canyon.

  3. Spring Emigration of Natural and Hatchery Chinook Salmon and Steelhead Trout Smolts from the Imnaha River, Oregon; 1997 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blenden, Michael L.; Veach, Eric R.; Kucera, Paul A.

    1998-10-01

    For the fourth consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A screw trap was used to collect emigrating natural and hatchery chinook salmon (Uncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 25 to June 27, 1997. A total of 270 natural chinook salmon, 10,616 hatchery chinook salmon, 864 natural steelhead trout (and 13 natural steelhead parr), and 7,345 hatchery steelhead trout smolts were captured during emigration studies on the Imnaha River. Mortality associated with trapping, handling and tagging was low: 0.37% formore » natural chinook, 0.11% for hatchery chinook, 0.11% for natural steelhead, and 0.39% for hatchery steelhead trout smolts. Natural chinook salmon smolts emigrated from the Imnaha River from February 25 to June 10 and had a mean length of 108 mm, average weight of 13 g, and mean condition factor of 1.02. The peak period of natural chinook smolt emigration, based on number of fish collected, occurred between March 25 and April 30. Hatchery reared chinook salmon smolts were collected from April 9 to May 9, with 99% of the smolts being caught within 10 days after release. Hatchery chinook smolts mean length, weight, and condition factor were 131 mm, 25.4 g, and 1.12, respectively. Emigration of natural steelhead smolts in the Imnaha River occurred between March 14 and June 25. Peak emigration occurred from May 1 to May 15. Natural steelhead smolts averaged 175 mm in fork length, 55.8 g in weight and had a mean condition factor of 1 .OO. Hatchery steelhead smolts emigrated from the Imnaha River between April 15 and June 27. Hatchery steelhead smolts averaged 210 mm in fork length, 88 g in weight and had a mean condition factor of 0.93. Spring runoff water conditions in 1997 provided above average flows for emigrating anadromous salmonid smolts. Imnaha River mean daily discharge during spring emigration ranged

  4. Characteristics of fall chum salmon spawning habitat on a mainstem river in Interior Alaska

    USGS Publications Warehouse

    Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.

    2010-01-01

    Chum salmon (Oncorhynchus keta) are the most abundant species of salmon spawning in the Yukon River drainage system, and they support important personal use, subsistence, and commercial fisheries. Chum salmon returning to the Tanana River in Interior Alaska are a significant contribution to the overall abundance of Yukon River chum salmon and an improved understanding of habitat use is needed to improve conservation of this important resource. We characterized spawning habitat of chum salmon using the mainstem Tanana River as part of a larger study to document spawning distributions and habitat use in this river. Areas of spawning activity were located using radiotelemetry and aerial helicopter surveys. At 11 spawning sites in the mainstem Tanana River, we recorded inter-gravel and surface-water temperatures and vertical hydraulic gradient (an indication of the direction of water flux) in substrate adjacent to salmon redds. At all locations, vertical hydraulic gradient adjacent to redds was positive, indicating that water was upwelling through the gravel. Inter-gravel temperatures adjacent to redds generally were warmer than surface water at most locations and were more stable than surface-water temperature. Inter-gravel water temperature adjacent to redds ranged from 2.6 to 5.8 degrees Celsius, whereas surface-water temperature ranged from greater than 0 to 5.5 degrees Celsius. Some sites were affected more by extremes in air temperature than others. At these sites, inter-gravel water temperature profiles were variable (with ranges similar to those observed in surface water), suggesting that even though upwelling habitats provide a stable thermal incubation environment, eggs and embryos still may be affected by extremes in air temperature. Fine sand and silt covered redds at multiple sites and were evidence of increased river flow during the winter months, which may be a potential source of increased mortality during egg-to-fry development. This study provides

  5. Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert K Podgorney; Thomas R. Wood; Travis L McLing

    2013-09-01

    The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associatedmore » with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).« less

  6. Factors affecting route selection and survival of steelhead kelts at Snake River dams in 2012 and 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harnish, Ryan A.; Colotelo, Alison H. A.; Li, Xinya

    2015-03-31

    In 2012 and 2013, Pacific Northwest National Laboratory (PNNL) conducted a study that summarized the passage route proportions and route-specific survival rates of steelhead kelts that passed through Federal Columbia River Power System (FCRPS) dams. To accomplish this, a total of 811 steelhead kelts were tagged with Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters. Acoustic receivers, both autonomous and cabled, were deployed throughout the FCRPS to monitor the downstream movements of tagged kelts. Kelts were also tagged with passive integrated transponder tags to monitor passage through juvenile bypass systems (JBS) and detect returning fish. The current study evaluated data collectedmore » in 2012 and 2013 to identify environmental, temporal, operational, individual, and behavioral variables that were related to forebay residence time, route of passage, and survival of steelhead kelts at FCRPS dams on the Snake River. Multiple approaches, including 3-D tracking, bivariate and multivariable regression modeling, and decision tree analyses were used to identify the environmental, temporal, operational, individual, and behavioral variables that had the greatest effect on forebay residence time, route of passage, and route-specific and overall dam passage survival probabilities for tagged kelts at Lower Granite (LGR), Little Goose (LGS), and Lower Monumental (LMN) dams. In general, kelt behavior and discharge appeared to work independently to affect forebay residence times. Kelt behavior, primarily approach location, migration depth, and “searching” activities in the forebay, was found to have the greatest influence on their route of passage. The condition of kelts was the single most important factor affecting their survival. The information gathered in this study may be used by dam operators and fisheries managers to identify potential management actions to improve in-river survival of kelts or collection methods for kelt reconditioning programs

  7. COLUMBIA RIVER BASIN SALMON AND STEELHEAD: Federal Agencies’ Recovery Responsibilities, Expenditures and Actions

    DTIC Science & Technology

    2002-07-01

    Monthly. Caspian Tern Working Group Developing a plan to reduce smolt predation by Caspian terns nesting in the Columbia River estuary. As needed...Environment and Public Works, U.S. SenateJuly 2002 COLUMBIA RIVER BASIN SALMON AND STEELHEAD Federal Agencies’ Recovery Responsibilities... COLUMBIA RIVER BASIN SALMON AND STEELHEAD: Federal Agencies Recovery Responsibilities, Expenditures and Actions Contract Number Grant Number Program

  8. Emigration of Natural and Hatchery Chinook Salmon and Steelhead Smolts from the Imnaha River, Oregon, Progress Report 2000-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleary, Peter; Kucera, Paul; Blenden, Michael

    This report summarizes the emigration studies of the Nez Perce Tribe in the Imnaha River subbasin during the 2001 and 2002 migration years. A migration year for the Imnaha River is defined here as beginning July 31 of the previous year and ending July 30 the following year. The conclusion of the studies at the end of migration year 2002 marked the 11th year of the Nez Perce Tribe's Lower Snake River Emigration Studies. The Nez Perce Tribe has participated in the Fish Passage Center's Smolt Monitoring Program for nine of the 11 years. These studies collect and tag juvenilemore » chinook salmon and steelhead at two locations in the fall, rkm 74 and rkm 7, and at rkm 7 during the spring. Data from captured and tagged fish provide an evaluation of hatchery production and releases strategies, post release survival of hatchery chinook salmon, abundance of natural chinook salmon, and downstream survival and arrival timing of natural and hatchery chinook salmon and steelhead. The hydrologic conditions that migrating fish encountered in 2001 were characterized as a drought and conditions in 2002 were characterized as below average. Hatchery chinook salmon had a mean fork length that was 34 mm greater in 2001 and 35 mm greater in 2002 than the mean fork length of natural chinook smolts. Hatchery steelhead smolt mean fork lengths were 39 mm greater than natural steelhead smolts in 2001 and 44 mm greater than natural steelhead smolt fork lengths in 2002. A significant difference (p < 0.05) between hatchery and natural chinook salmon and steelhead fork lengths has been documented by these emigration studies from 1997 to 2002. Hatchery chinook salmon were volitionally released in 2001 and 2002 and the 90% arrivals for 2001 and 2002 at the lower rkm 7 trap were within the range of past observations of 22 to 38 days observed in 1999 and 2000. We estimated that 93.9% of the 123,014 hatchery chinook salmon released in 2001 survived to the lower trap and 90.2% of the 303

  9. Preliminary examination of oxidative stress in juvenile spring Chinook salmon (Oncorhynchus tshawytscha) of wild origin sampled from transport barges

    USDA-ARS?s Scientific Manuscript database

    Migrating juvenile wild Chinook salmon (Oncorhynchus tshawytscha), collected and loaded onto transport barges at Lower Granite Dam on the Snake River, were sampled from barges at John Day Dam, 348 km downstream, at five-day intervals beginning late April and ending late May. An increase in lipid per...

  10. River Incision and Knickpoints on the Flank of the Yellowstone Hotspot — Alpine Canyon of the Snake River, Wyoming

    NASA Astrophysics Data System (ADS)

    Tuzlak, D.; Pederson, J. L.

    2015-12-01

    Understanding patterns of deformation and testing geophysical models in the dynamic region of the Yellowstone Hotspot requires Quaternary-scale records of incision and uplift, which are currently absent. This study examines fluvial terraces and longitudinal-profile metrics along Alpine Canyon of the Snake River, WY. Because the Snake is the only regional river crossing from the uplifting Yellowstone Plateau and flowing into the subsiding Eastern Snake River Plain, it provides an opportunity to investigate both ends of the phenomenon. Field observations through Alpine Canyon indicate that Pleistocene incision rates in this region are relatively high for the interior western U.S., that the river switches between bedrock and alluvial forms, and that incision/uplift is not uniform. Two endmembers of regional deformation may be tested: 1) the arch of high topography surrounding Yellowstone is uplifting and terraces converge downstream as incision rates decrease towards the Snake River Plain, or 2) baselevel fall originates at the subsiding Snake River Plain and terraces diverge as incision rates increase downstream. Datasets include surficial mapping, rock strength measurements, surveying of the longitudinal profile and terraces using RTK-GPS, optically stimulated luminescence dating of fluvial-terrace deposits, and investigation of drainages through ksn and χ analyses. Initial results indicate that there are four primary terrace deposits along the canyon, three of which are timed with glacial epochs. Considering the relative heights of terrace straths and preliminary ages, incision rates are indeed relatively high. There is a major knickzone covering the last 15 km of the canyon that is also reflected in tributary profiles and is consistent with a wave of incision propagating upstream, favoring the second endmember of active baselevel fall downstream.

  11. Listen to Our Salmon: Forests, Rivers and Oceans are Connected.

    ERIC Educational Resources Information Center

    Mueller, Andrea; Brown, Rod

    1998-01-01

    A university-based researcher and a grade seven teacher collaborated to plan a science curriculum that would help elementary school students discover the world of salmon and understand its life cycle. Describes key components of the salmon-enhancement program and river-health project. A student's record of hatching chum fry in the classroom is…

  12. Survival, development, and growth of fall Chinook salmon embryos, alevin, and fry exposed to variable thermal and dissolved oxygen regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Abernethy, Cary S.; Hand, Kristine D.

    2006-11-15

    Some fall Chinook salmon (Oncorhynchus tshawytscha) initiate spawning in the Snake River downstream of Hells Canyon Dam at temperatures that exceed 13?C and at intergravel dissolved oxygen concentrations that are less than 8 mg O2/L. Although water temperature declines and dissolved oxygen increases soon after spawning, these temperature and dissolved oxygen levels do not meet the water quality standards established by the states of Oregon and Idaho for salmonid spawning. Our objective was to determine if temperatures from 13 to 17 C and dissolved oxygen levels from 4 to greater than 8 mg O2/L during the first 40 days ofmore » incubation followed by declining temperature and rising dissolved oxygen affected survival, development, and growth of Snake River fall Chinook salmon embryos, alevins, and fry. During the first 40 days of incubation, temperatures were adjusted downward approximately 0.2 C/day and oxygen was increased in increments of 2 mg O2/L to mimic the thermal and oxygen regime of the Snake River where these fish spawn. At 40 days post-fertilization, embryos were moved to a common exposure regime that followed the thermal and dissolved oxygen profile of the Snake River through emergence. Mortality of fall Chinook salmon embryos increased markedly at initial incubation temperatures equal to or greater than 17?C, and a rapid decline in survival occurred between 16.5 C and 17 C, with no significant difference in survival at temperatures less than or equal to 16.5 C. Initial dissolved oxygen levels as low as 4 mg O2/L over a range of initial temperatures from 15 to 16.5 C did not affect embryo survival to emergence. There were no significant differences across the range of initial temperature exposures for alevin and fry size at hatch and emergence. The number of days from fertilization to eyed egg, hatch, and emergence was highly related to temperature and dissolved oxygen; it took from 6 to 10 days longer to reach hatch at 4 mg O2/L than at saturation

  13. Using remotely sensed imagery and GIS to monitor and research salmon spawning: A case study of the Hanford Reach fall chinook (Oncorhynchus Tshawytscha)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RH Visser

    2000-03-16

    The alteration of ecological systems has greatly reduced salmon populations in the Pacific Northwest. The Hanford Reach of the Columbia River, for example, is a component of the last ecosystem in eastern Washington State that supports a relatively healthy population of fall chinook salmon ([Oncorhynchus tshawytscha], Huntington et al. 1996). This population of fall chinook may function as a metapopulation for the Mid-Columbia region (ISG 1996). Metapopulations can seed or re-colonize unused habitat through the mechanism of straying (spawning in non-natal areas) and may be critical to the salmon recovery process if lost or degraded habitat is restored (i.e., themore » Snake, Upper Columbia, and Yakima rivers). For these reasons, the Hanford Reach fall chinook salmon population is extremely important for preservation of the species in the Columbia River Basin. Because this population is important to the region, non-intrusive techniques of analysis are essential for researching and monitoring population trends and spawning activities.« less

  14. Life history diversity of Snake River finespotted cutthroat trout: managing for persistence in a rapidly changing environment

    USGS Publications Warehouse

    Homel, Kristen M.; Gresswell, Robert E.; Kershner, Jeffrey L.

    2015-01-01

    Over the last century, native trout have experienced dramatic population declines, particularly in larger river systems where habitats associated with different spawning life history forms have been lost through habitat degradation and fragmentation. The resulting decrease in life history diversity has affected the capacity of populations to respond to environmental variability and disturbance. Unfortunately, because few large rivers are intact enough to permit full expression of life history diversity, it is unclear what patterns of diversity should be a conservation target. In this study, radiotelemetry was used to identify spawning and migration patterns of Snake River Finespotted Cutthroat Trout Oncorhynchus clarkii behnkei in the upper Snake River. Individuals were implanted with radio tags in October 2007 and 2008, and monitored through October 2009. Radio-tagged cutthroat trout in the upper Snake River exhibited variation in spawning habitat type and location, migration distance, spawn timing, postspawning behavior, and susceptibility to mortality sources. Between May and July, Cutthroat Trout spawned in runoff-dominated tributaries, groundwater-dominated spring creeks, and side channels of the Snake River. Individuals migrated up to 101 km from tagging locations in the upper Snake River to access spawning habitats, indicating that the upper Snake River provided seasonal habitat for spawners originating throughout the watershed. Postspawning behavior also varied; by August each year, 28% of spring-creek spawners remained in their spawning location, compared with 0% of side-channel spawners and 7% of tributary spawners. These spawning and migration patterns reflect the connectivity, habitat diversity, and dynamic template of the Snake River. Ultimately, promoting life history diversity through restoration of complex habitats may provide the most opportunities for cutthroat trout persistence in an environment likely to experience increased variability from

  15. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon: The Importance of Geomorphic Features in Large Rivers

    PubMed

    Geist; Dauble

    1998-09-01

    / Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. We present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of our conceptual model. We suggest that traditional habitat models and our conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost.KEY WORDS: Hyporheic zone; Geomorphology; Spawning habitat; Large rivers; Fall chinook salmon; Habitat management

  16. Mercury cycling in the Hells Canyon Complex of the Snake River, Idaho and Oregon

    USGS Publications Warehouse

    Clark, Gregory M.; Naymik, Jesse; Krabbenhoft, David P.; Eagles-Smith, Collin A.; Aiken, George R.; Marvin-DiPasquale, Mark C.; Harris, Reed C.; Myers, Ralph

    2016-07-11

    The Hells Canyon Complex (HCC) is a hydroelectric project built and operated by the Idaho Power Company (IPC) that consists of three dams on the Snake River along the Oregon and Idaho border (fig. 1). The dams have resulted in the creation of Brownlee, Oxbow, and Hells Canyon Reservoirs, which have a combined storage capacity of more than 1.5 million acre-feet and span about 90 miles of the Snake River. The Snake River upstream of and through the HCC historically has been impaired by water-quality issues related to excessive contributions of nutrients, algae, sediment, and other pollutants. In addition, historical data collected since the 1960s from the Snake River and tributaries near the HCC have documented high concentrations of mercury in fish tissue and sediment (Harris and Beals, 2013). Data collected from more recent investigations within the HCC continue to indicate elevated concentrations of mercury and methylmercury in the water column, bottom sediments, and biota (Clark and Maret, 1998; Essig, 2010; Fosness and others, 2013). As a result, Brownlee and Hells Canyon Reservoirs are listed as impaired for mercury by the State of Idaho, and the Snake River from the Oregon and Idaho border through the HCC downstream to the Oregon and Washington border is listed as impaired for mercury by the State of Oregon.

  17. Shrub-steppe vegetation trend, Middle Fork Salmon River, Idaho

    Treesearch

    James M. Peek

    2000-01-01

    The Middle Fork Salmon River drainage of the Frank Church River-Of-No-Return Wilderness has a history of livetock grazing from 1890 to 1950, and changes in grazing pressure from native ungulates. High mule deer (Odocoileus hemionus) populations occurred between 1940 and 1960, and high elk (Cervus elaphus) populations occurred in...

  18. Surface-water/ground-water interaction along reaches of the Snake River and Henrys Fork, Idaho

    USGS Publications Warehouse

    Hortness, Jon E.; Vidmar, Peter

    2005-01-01

    Declining water levels in the eastern Snake River Plain aquifer and decreases in spring discharges from the aquifer to the Snake River have spurred studies to improve understanding of the surface-water/ground-water interaction on the plain. This study was done to estimate streamflow gains and losses along specific reaches of the Snake River and Henrys Fork and to compare changes in gain and loss estimates to changes in ground-water levels over time. Data collected during this study will be used to enhance the conceptual model of the hydrologic system and to refine computer models of ground-water flow and surface-water/ground-water interactions. Estimates of streamflow gains and losses along specific subreaches of the Snake River and Henrys Fork, based on the results of five seepage studies completed during 2001?02, varied greatly across the study area, ranging from a loss estimate of 606 ft3/s in a subreach of the upper Snake River near Heise to a gain estimate of 3,450 ft3/s in a subreach of the Snake River that includes Thousand Springs. Some variations over time also were apparent in specific subreaches. Surface spring flow accounted for much of the inflow to subreaches having large gain estimates. Several subreaches alternately gained and lost streamflow during the study. Changes in estimates of streamflow gains and losses along some of the subreaches were compared with changes in water levels, measured at three different times during 2001?02, in adjacent wells. In some instances, a strong relation between changes in estimates of gains or losses and changes in ground-water levels was apparent.

  19. THE CHANNELS AND WATERS OF THE UPPER SALMON RIVER AREA, IDAHO. (HYDROLOGIC EVALUATION OF THE UPPER SALMON RIVER AREA)

    EPA Science Inventory

    The upper 1,800 square miles of the Salmon River drainage basin (17060201) in south-central Idaho is an area of great scenic beauty and little-disturbed natural environment. Proper development and use of this land and its natural resources are contingent on a multifaceted and de...

  20. Behavioral thermoregulation by juvenile spring and fall chinook salmon, Oncorhynchus tshawytscha, during smoltification

    USGS Publications Warehouse

    Sauter, S.T.; Crawshaw, L.I.; Maule, A.G.

    2001-01-01

    Fall chinook salmon evolved to emigrate during the summer months. The shift in the temperature preference we observed in smolting fall chinook but not spring chinook salmon may reflect a phylogenetic adaptation to summer emigration by (1) providing directional orientation as fall chinook salmon move into the marine environment, (2) maintaining optimal gill function during emigration and seawater entry, and/or (3) resetting thermoregulatory set-points to support physiological homeostasis once smolted fish enter the marine environment. Phylogenetically determined temperature adaptations and responses to thermal stress may not protect fall chinook salmon from the recent higher summer water temperatures, altered annual thermal regimes, and degraded cold water refugia that result from hydropower regulation of the Columbia and Snake rivers. The long-term survival of fall chinook salmon will likely require restoration of normal annual thermographs and rigorous changes in land use practices to protect critical thermal refugia and control maximum summer water temperatures in reservoirs.

  1. Geologic map and profile of the north wall of the Snake River Canyon, Eden, Murtaugh, Milner Butte, and Milner quadrangles, Idaho

    USGS Publications Warehouse

    Covington, H.R.; Weaver, Jean N.

    1990-01-01

    The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer (water table) is typically less than 500 ft below the land surface, but us deeper than 1,000 ft in a few areas. The Snake River has excavated a canyon into the nearly flat lying basaltic and sedimentary rocks of the  eastern Snake River Plain between Milner Dam and King Hill (fig. 2), a distance of almost 90 mi. For much of its length the canyon intersects the Snake River Plain aquifer, which discharges form the northern canyon wall as springs of variable size, spacing and altitude. Geologic controls on wprings are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along this reach of the canyon. This report is one of the several that describes the geologic occurrence of the springs along the northern wall of the Snake River canyone from Milner Dam to King Hill. 

  2. Modelling climate change effects on Atlantic salmon: Implications for mitigation in regulated rivers.

    PubMed

    Sundt-Hansen, L E; Hedger, R D; Ugedal, O; Diserud, O H; Finstad, A G; Sauterleute, J F; Tøfte, L; Alfredsen, K; Forseth, T

    2018-08-01

    Climate change is expected to alter future temperature and discharge regimes of rivers. These regimes have a strong influence on the life history of most aquatic river species, and are key variables controlling the growth and survival of Atlantic salmon. This study explores how the future abundance of Atlantic salmon may be influenced by climate-induced changes in water temperature and discharge in a regulated river, and investigates how negative impacts in the future can be mitigated by applying different regulated discharge regimes during critical periods for salmon survival. A spatially explicit individual-based model was used to predict juvenile Atlantic salmon population abundance in a regulated river under a range of future water temperature and discharge scenarios (derived from climate data predicted by the Hadley Centre's Global Climate Model (GCM) HadAm3H and the Max Plank Institute's GCM ECHAM4), which were then compared with populations predicted under control scenarios representing past conditions. Parr abundance decreased in all future scenarios compared to the control scenarios due to reduced wetted areas (with the effect depending on climate scenario, GCM, and GCM spatial domain). To examine the potential for mitigation of climate change-induced reductions in wetted area, simulations were run with specific minimum discharge regimes. An increase in abundance of both parr and smolt occurred with an increase in the limit of minimum permitted discharge for three of the four GCM/GCM spatial domains examined. This study shows that, in regulated rivers with upstream storage capacity, negative effects of climate change on Atlantic salmon populations can potentially be mitigated by release of water from reservoirs during critical periods for juvenile salmon. Copyright © 2018. Published by Elsevier B.V.

  3. The return on the blueback salmon to the Columbia River

    USGS Publications Warehouse

    Fisher, Frederick S.

    1948-01-01

    THE year 1941 was a crucial one for the blueback salmon of the Columbia River. During that year, one brood came closer to extinction than was realized by more than a few individuals. The immediate causes were not overfishing, hydroelectric power development, or irrigation—although these factors continued to exert their long-standing effects. The direct causes can be attributed to an “act of God” plus—in large measure--lack of knowledge concerning the basic principles of effective artificial propagation. With the security and assurance provided by subsequent developments, those concerned with the Columbia River blueback salmon may be interested in a brief recapitulation of events that transpired during the early 1940s. This particular piece of fishery history bears upon the problems of the immediate future on the Columbia River.

  4. Redfish Lake Sockeye Salmon Captive Broodstock Rearing and Research, Annual Report 2001-2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, Deborah; McAuley, W.; Maynard, Desmond

    2003-04-01

    The National Marine Fisheries Service (NMFS) Northwest Fisheries Science Center, in cooperation with the Idaho Department of Fish and Game and the Bonneville Power Administration, has established captive broodstock programs to aid recovery of Snake River sockeye salmon (Oncorhynchus nerka) listed as endangered under the U.S. Endangered Species Act (ESA). Captive broodstock and captive rearing programs are a form of artificial propagation that are emerging as an important component of restoration efforts for ESA-listed salmon populations that are at critically low numbers. Captive broodstocks, reared in captivity for the entire life cycle, couple the salmon's high fecundity with potentially highmore » survival in protective culture to produce large numbers of juveniles in a single generation for supplementation of natural populations. The captive broodstocks discussed in this report were intended to protect the last known remnants of sockeye salmon that return to Redfish Lake in the Sawtooth Basin of Idaho at the headwaters of the Salmon River. This report addresses NMFS activities from 1 September 2001 to 31 August 2002 on the Redfish Lake sockeye salmon captive broodstock and captive rearing program. NMFS currently has broodstocks in culture from year classes 1997, 1998, 1999, 2000, and 2001 in both the captive breeding and captive rearing programs. Offspring from these programs are being returned to Idaho to aid recovery efforts for the species.« less

  5. Geothermal solute flux monitoring and the source and fate of solutes in the Snake River, Yellowstone National Park, WY

    USGS Publications Warehouse

    McCleskey, R. Blaine; Lowenstern, Jacob B.; Schaper, Jonas; Nordstrom, D. Kirk; Heasler, Henry P.; Mahony, Dan

    2016-01-01

    The combined geothermal discharge from over 10,000 features in Yellowstone National Park (YNP) can be can be estimated from the Cl flux in the Madison, Yellowstone, Falls, and Snake Rivers. Over the last 30 years, the Cl flux in YNP Rivers has been calculated using discharge measurements and Cl concentrations determined in discrete water samples and it has been determined that approximately 12% of the Cl flux exiting YNP is from the Snake River. The relationship between electrical conductivity and concentrations of Cl and other geothermal solutes was quantified at a monitoring site located downstream from the thermal inputs in the Snake River. Beginning in 2012, continuous (15 min) electrical conductivity measurements have been made at the monitoring site. Combining continuous electrical conductivity and discharge data, the Cl and other geothermal solute fluxes were determined. The 2013–2015 Cl fluxes (5.3–5.8 kt/yr) determined using electrical conductivity are comparable to historical data. In addition, synoptic water samples and discharge data were obtained from sites along the Snake River under low-flow conditions of September 2014. The synoptic water study extended 17 km upstream from the monitoring site. Surface inflows were sampled to identify sources and to quantify solute loading. The Lewis River was the primary source of Cl, Na, K, Cl, SiO2, Rb, and As loads (50–80%) in the Snake River. The largest source of SO4 was from the upper Snake River (50%). Most of the Ca and Mg (50–55%) originate from the Snake Hot Springs. Chloride, Ca, Mg, Na, K, SiO2, F, HCO3, SO4, B, Li, Rb, and As behave conservatively in the Snake River, and therefore correlate well with conductivity (R2 ≥ 0.97).

  6. Hydraulic geometry and sediment data for the South Fork Salmon River, Idaho, 1985-86

    USGS Publications Warehouse

    Williams, Rhea P.; O'Dell, Ivalou; Megahan, Walter F.

    1989-01-01

    Hydraulic geometry, suspended-sediment, and bedload samples were collected at three sites in the upper reach of the South Fork Salmon River drainage basin from April 1985 to June 1986. Sites selected were South Fork Salmon River near Krassel Ranger Station, Buckhorn Creek, and North Fork Lick Creek. Results of the data collection are presented in this report.

  7. Geothermal alteration of basaltic core from the Snake River Plain, Idaho

    NASA Astrophysics Data System (ADS)

    Sant, Christopher J.

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquifer resources on the axial volcanic zone of the Snake River Plain. Thirty samples from 1,912 m of core were sampled and analyzed for clay content and composition using X-ray diffraction. Observations from core samples and geophysical logs are also used to establish alteration zones. Mineralogical data, geophysical log data and physical characteristics of the core suggest that the base of the Snake River Plain aquifer at the axial zone is located 960 m below the surface, much deeper than previously suspected. Swelling smectite clay clogs pore spaces and reduces porosity and permeability to create a natural base to the aquifer. Increased temperatures favor the formation of smectite clay and other secondary minerals to the bottom of the hole. Below 960 m the core shows signs of alteration including color change, formation of clay, and filling of other secondary minerals in vesicles and fractured zones of the core. The smectite clay observed is Fe-rich clay that is authigenic in some places. Geothermal power generation may be feasible using a low temperature hot water geothermal system if thermal fluids can be attained near the bottom of the Kimama well.

  8. Historical record of Yersinia ruckeri and Aeromonas salmonicida among sea-run Atlantic salmon (Salmo salar) in the Penobscot River

    USGS Publications Warehouse

    Cipriano, R.C.; Coll, J.

    2005-01-01

    Despite restoration efforts, only about 2,000 Atlantic salmon (Salmo salar) salmon have annually returned to New England Rivers and more than 71% of these fish migrate to the Penobscot River alone. This report provides a historical compilation on the prevalence's of both Yersinia ruckeri, cause of enteric redmouth disease, and Aeromonas salmonicida, cause of furunculosis, among mature sea-run Atlantic salmon that returned to the Penobscot River from 1976 to 2003. Aeromonas salmonicida was detected in 28.6% and Yersinia ruckeri was detected among 50% of the yearly returns. Consequently, Atlantic salmon that return to the river are potential reservoirs of infection.

  9. Evaluation of the Contribution of Fall Chinook Salmon Reared at Columbia River Hatcheries to the Pacific Salmon Fisheries, 1989 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vreeland, Robert R.

    1989-10-01

    In 1979 this study was initiated to determine the distribution, contribution, and value of artificially propagated fall chinook salmon from the Columbia River. Coded wire tagging (CWT) of hatchery fall chinook salmon began in 1979 with the 1978 brood and was completed in 1982 with the 1981 brood of fish at rearing facilities on the Columbia River system. From 18 to 20 rearing facilities were involved in the study each brood year. Nearly 14 million tagged fish, about 4% of the production, were released as part of this study over the four years, 1979 through 1982. Sampling for recoveries ofmore » these tagged fish occurred from 1980 through 1986 in the sport and commercial marine fisheries from Alaska through California, Columbia River fisheries, and returns to hatcheries and adjacent streams. The National Marine Fisheries Service coordinated this study among three fishery agencies: US Fish and Wildfire Service, Oregon Department of Fish and Wildlife, and Washington Department of Fisheries. The objectives of this study were to determine the distribution, fishery contribution, survival, and value of the production of fall chinook salmon from each rearing facility on the Columbia River system to Pacific coast salmon fisheries. To achieve these objectives fish from each hatchery were given a distinctive CWT. 81 refs., 20 figs., 68 tabs.« less

  10. A Preliminary Appraisal of Offstream Reservoir Sites for Meeting Water Storage Requirements in the Upper Snake River Basin.

    DTIC Science & Technology

    1981-02-01

    510 20.0 78 Bitch Creek Teton R., Bitch Cr. 475 11.0 180 U~pper Badger Creek Teton R., Badger Cr. 440 6.0 84 Ashton Dam Enlargement Henrys Fork Snake R...Lake Offstream Reservoir Site ( Teton River Drainage). Twin Falls Canal power release back into the Snake River downstream from Milner Dam . 3. The...Release at Milner Dam on the Snake River for Possible Power Development . . . 24 9. Nomograph Used in Estimating Conveyance Components of Cost . 32 10

  11. Snake River Plain FORGE Site Characterization Data

    DOE Data Explorer

    Moos, Danial; Barton, Colleen A.

    2016-04-18

    The site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. This collection includes data on seismic events, groundwater, geomechanical models, gravity surveys, magnetics, resistivity, magnetotellurics (MT), rock physics, stress, the geologic setting, and supporting documentation, including several papers. Also included are 3D models (Petrel and Jewelsuite) of the proposed site. Data for wells INEL-1, WO-2, and USGS-142 have been included as links to separate data collections. These data have been assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL). Other contributors include the National Renewable Energy Laboratory (NREL), Lawrence Livermore National Laboratory (LLNL), the Center for Advanced Energy Studies (CEAS), the University of Idaho, Idaho State University, Boise State University, University of Wyoming, University of Oklahoma, Energy and Geoscience Institute-University of Utah, US Geothermal, Baker Hughes Campbell Scientific Inc., Chena Power, US Geological Survey (USGS), Idaho Department of Water Resources, Idaho Geological Survey, and Mink GeoHydro.

  12. Instream flow characterization of upper Salmon River basin streams, central Idaho, 2004

    USGS Publications Warehouse

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2005-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing streamflow. In 2004, instream flow characterization studies were completed on Salmon River and Beaver, Pole, Champion, Iron, Thompson, and Squaw Creeks. Continuous streamflow data were recorded upstream of all diversions on Salmon River and Pole, Iron, Thompson, and Squaw Creeks. In addition, natural summer streamflows were

  13. Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 1995-2002 Summary Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffnagle, Timothy; Carmichael, Richard; Noll, William

    2003-12-01

    The Grande Ronde Basin once supported large runs of chinook salmon Oncorhynchus tshawytscha and estimated peak escapements in excess of 10,000 occurred as recently as the late 1950's (U.S. Army Corps of Engineers 1975). Natural escapement declines in the Grande Ronde Basin have been severe and parallel those of other Snake River populations. Reduced productivity has primarily been attributed to increased mortality associated with downstream and upstream migration past eight dams and reservoirs in the Snake and Columbia rivers. Reduced spawner numbers, combined with human manipulation of previously important spawning and rearing habitat in the Grande Ronde Basin, have resultedmore » in decreased spawning distribution and population fragmentation of chinook salmon in the Grande Ronde Basin (Figure 1; Table 1). Escapement of spring/summer chinook salmon in the Snake River basin included 1,799 adults in 1995, less than half of the previous record low of 3,913 adults in 1994. Catherine Creek, Grande Ronde River and Lostine River were historically three of the most productive populations in the Grande Ronde Basin (Carmichael and Boyce 1986). However, productivity of these populations has been poor for recent brood years. Escapement (based on total redd counts) in Catherine Creek and Grande Ronde and Lostine rivers dropped to alarmingly low levels in 1994 and 1995. A total of 11, 3 and 16 redds were observed in 1994 in Catherine Creek, upper Grande Ronde River and Lostine River, respectively, and 14, 6 and 11 redds were observed in those same streams in 1995. In contrast, the maximum number of redds observed in the past was 505 in Catherine Creek (1971), 304 in the Grande Ronde River (1968) and 261 in 1956 in the Lostine River (Tranquilli et al 2003). Redd counts for index count areas (a standardized portion of the total stream) have also decreased dramatically for most Grande Ronde Basin streams from 1964-2002, dropping to as low as 37 redds in the 119.5 km in the

  14. Biodiveristy and Stability of Aboriginal Salmon Fisheries in the Fraser River Watershed

    NASA Astrophysics Data System (ADS)

    Nesbitt, H. K.; Moore, J.

    2015-12-01

    Natural watersheds are hierarchical networks that may confer stability to ecosystem functions through integration of upstream biodiversity, whereby upstream asset diversification stabilizes the aggregate downstream through the portfolio effect. Here we show that riverine structure and its associated diversity confer stability of salmon catch and lengthened fishing seasons for Aboriginal fisheries on the Fraser River (1370km) in BC, Canada, the second longest dam-free salmon migration route in North America. In Canada, Aboriginal people have rights to fish for food, social, and ceremonial (FSC) purposes. FSC fisheries are located throughout the Fraser watershed and have access to varying levels of salmon diversity based on their location. For instance, fisheries at the mouth of the river have access to all of the salmon that spawn throughout the entire watershed, thus integrating across the complete diversity profile of the entire river. In contrast, fisheries in the headwaters have access to fewer salmon species and populations and thus fish from a much less diverse portfolio. These spatial gradients of diversity within watersheds provide a natural contrast for quantifying the effects of different types of diversity on interannual resource stability and seasonal availability. We acquired weekly and yearly catch totals from 1983 to 2012 (30 years) for Chinook, chum, coho, pink, and sockeye salmon for 21 FSC fishing sites throughout the Fraser River watershed from Fisheries and Oceans Canada. We examined how both population- and species-level diversity affects catch stability and season length at each site by quantifying year-to-year variability and within-year season length respectively. Salmon species diversity made fisheries up to 28% more stable in their catch than predicted with 3.7 more weeks to fish on average. Fisheries with access to high population diversity had up to 3.8 times more stable catch and 3 times longer seasons than less diverse fisheries. We

  15. Survival of Juvenile Chinook Salmon during Barge Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMichael, Geoffrey A.; Skalski, J. R.; Deters, Katherine A.

    2011-12-01

    To mitigate for fish losses related to passage through the Federal Columbia River Power System, an extensive fish transportation program using barges and trucks to move fish around and downstream of dams and reservoirs was implemented in 1981. Population modeling and other analyses to support Pacific salmon recovery efforts have assumed that the survival of juvenile salmonids during the transportation experience was 98%. To estimate survival during barge transport from Lower Granite Dam on the Snake River to a release area downstream of Bonneville Dam, a distance of 470 km, we used a novel adaptation of a release-recapture model withmore » acoustic-tagged yearling Chinook salmon (Oncorhynchus tshawytscha) smolts. A total of 1,494 yearling Chinook salmon were surgically implanted with Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic transmitters and passive integrated transponders (PIT) and divided into three groups. The three tagged groups consisted of; (1) a group which was released into the raceway with the population of fish which were later loaded into transportation barges (R{sub B}), (2) a group which was held in a net-pen suspended within the general barge population until 5-6 h prior to barge evacuation, at which time they were confirmed to be alive and then released into the general barge population (R{sub A}), and (3) to validate a model assumption, a group which was euthanized and released into the barge population 2-8 h prior to barge evacuation (R{sub D}). Six replicates of these groups were loaded onto fish transport barges that departed Lower Granite Dam on the Snake River between 29 April and 13 May, 2010. Acoustic receiver arrays between 70 and 220 km downstream of the barge evacuation site were used to detect tagged fish and served as the basis for estimation of survival within the barge. Tag-life-corrected estimates of reach survival were calculated for barged and control fish in each of the six replicate trials. The ratio of survival

  16. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume XV : Evaluation of the 2007 Predictions of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead Smolts to Rock Island, Lower Granite, McNary, John Day, and Bonneville Dams using Program RealTime.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Jim; Townsend, Richard L.; Skalski, John R.

    Program RealTime provided monitoring and forecasting of the 2007 inseason outmigrations via the internet for 26 PIT-tagged stocks of wild ESU Chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, one PIT-tagged wild stock of sockeye salmon to McNary Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville dams. Nineteen stocks are of wild yearling Chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2007 and have at least one year's historical migration data previous tomore » the 2007 migration. These stocks originate in 19 tributaries of the Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through tag identification and monitored at Lower Granite Dam. Seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling Chinook salmon and the steelhead runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling Chinook, coho, and sockeye salmon, and steelhead forecasted to Rock Island, McNary, John Day, and Bonneville dams.« less

  17. Salmon escapement estimates into the Togiak River using sonar, Togiak National Wildlife Refuge, Alaska, 1987, 1988, and 1990

    USGS Publications Warehouse

    Irving, David B.; Finn, James E.; Larson, James P.

    1995-01-01

    We began a three year study in 1987 to test the feasibility of using sonar in the Togiak River to estimate salmon escapements. Current methods rely on periodic aerial surveys and a counting tower at river kilometer 97. Escapement estimates are not available until 10 to 14 days after the salmon enter the river. Water depth and turbidity preclude relocating the tower to the lower river and affect the reliability of aerial surveys. To determine whether an alternative method could be developed to improve the timeliness and accuracy of current escapement monitoring, Bendix sonar units were operated during 1987, 1988, and 1990. Two sonar stations were set up opposite each other at river kilometer 30 and were operated 24 hours per day, seven days per week. Catches from gill nets with 12, 14, and 20 cm stretch mesh, a beach seine, and visual observations were used to estimate species composition. Length and sex data were collected from salmon caught in the nets to assess sampling bias.In 1987, sonar was used to select optimal sites and enumerate coho salmon. In 1988 and 1990, the sites identified in 1987 were used to estimate the escapement of five salmon species. Sockeye salmon escapement was estimated at 512,581 and 589,321, chinook at 7,698 and 15,098, chum at 246,144 and 134,958, coho at 78,588 and 28,290, and pink at 96,167 and 131,484. Sonar estimates of sockeye salmon were two to three times the Alaska Department of Fish and Game's escapement estimate based on aerial surveys and tower counts. The source of error was probably a combination of over-estimating the total number of targets counted by the sonar and by incorrectly estimating species composition.Total salmon escapement estimates using sonar may be feasible but several more years of development are needed. Because of the overlapped salmon run timing, estimating species composition appears the most difficult aspect of using sonar for management. Possible improvements include using a larger beach seine or

  18. Monitoring and mapping selected riparian habitat along the lower Snake River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Downs, J. L; Tiller, B. L; Witter, M.

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture,more » and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.« less

  19. Patterns of genomic variation in Coho salmon following reintroduction to the interior Columbia River.

    PubMed

    Campbell, Nathan R; Kamphaus, Cory; Murdoch, Keely; Narum, Shawn R

    2017-12-01

    Coho salmon were extirpated in the mid-20th century from the interior reaches of the Columbia River but were reintroduced with relatively abundant source stocks from the lower Columbia River near the Pacific coast. Reintroduction of Coho salmon to the interior Columbia River (Wenatchee River) using lower river stocks placed selective pressures on the new colonizers due to substantial differences with their original habitat such as migration distance and navigation of six additional hydropower dams. We used restriction site-associated DNA sequencing (RAD-seq) to genotype 5,392 SNPs in reintroduced Coho salmon in the Wenatchee River over four generations to test for signals of temporal structure and adaptive variation. Temporal genetic structure among the three broodlines of reintroduced fish was evident among the initial return years (2000, 2001, and 2002) and their descendants, which indicated levels of reproductive isolation among broodlines. Signals of adaptive variation were detected from multiple outlier tests and identified candidate genes for further study. This study illustrated that genetic variation and structure of reintroduced populations are likely to reflect source stocks for multiple generations but may shift over time once established in nature.

  20. Physiological development and vulnerability to Ceratomyxa shasta of fall-run Chinook Salmon in the Upper Klamath River Watershed

    USGS Publications Warehouse

    Maule, Alec G.; Vanderkooi, Scott P.; Hamilton, John B; Stocking , Richard; Bartholomew, Jerri

    2009-01-01

    We evaluated a stock for restoring runs of fall Chinook salmon Oncorhynchus tshawytscha in the Upper Klamath River basin by monitoring its development in Iron Gate Hatchery and in net-pens in the Williamson River and Upper Klamath Lake in Oregon. We transferred age-1 hatchery fall Chinook salmon to net-pens in October 2005 and age-0 fall Chinook salmon in May 2006. Indices of smolt development were assessed in the hatchery and after 3 and 14 d in net-pens. Based on gill Na+, K+-ATPase activity and plasma thyroxine (T4) concentration, age-1 Chinook salmon were not developing smolt characteristics in the hatchery during October. Fish transferred to the river or lake had increased plasma cortisol in response to stress and increased T4 accompanying the change in water, but they did not have altered development. Variables in the age-0 Chinook salmon indicated that the fish in the hatchery were smolting. The fish in the river net-pens lost mass and had gill ATPase activity similar to that of the fish in the hatchery, whereas the fish transferred to the lake gained mass and length, had reduced condition factor, and had higher gill ATPase than the fish in the river. These results, along with environmental variables, suggest that the conditions in the lake were more conducive to smoltification than those in the river and thus accelerated the development of Chinook salmon. No Chinook salmon in the hatchery or either net-pen became infected with the myxosporean parasite Ceratomyxa shasta (the presence of which in the river and lake was confirmed) during either trial or when held for 90 d after a 10-d exposure in net-pens (2006 group). We concluded that that there is little evidence of physiological impairment or significant upriver vulnerability to C. shasta among this stock of fall Chinook salmon that would preclude them from being reintroduced into the Upper Klamath River basin.

  1. Insights into the Quaternary tectonics of the Yellowstone hotspot from a terrace record along the Hoback and Snake rivers.

    NASA Astrophysics Data System (ADS)

    Bufe, A.; Pederson, J. L.; Tuzlak, D.

    2016-12-01

    One of Earth's largest active supervolcanos and one of the most dynamically deforming areas in North America is located above the Yellowstone mantle plume. A pulse of dynamically supported uplift and extension of the upper crust has been moving northeastward as the North American plate migrated across the hotspot. This pules of uplift is complicated by subsidence of the Snake River Plain in the wake of the plume, due to a combination of crustal loading by intrusive and extrusive magmas, and by densification of igneous and volcanic rocks. Understanding the geodynamics as well as the seismic hazard of this region relies on studying the distribution and timing of active uplift, subsidence, and faulting across timescales. Here, we present preliminary results from a study of river terraces along the Hoback and upper Snake rivers that flow from the flanks of the Yellowstone plateau into the subsiding Snake River Plain. Combining terrace surveys with optically stimulated luminescence ages, we calculate incision rates of 0.1 - 0.3 mm/y along the deeply incised canyons of the Hoback and Snake rivers upstream of Alpine, WY. Rather than steadily decreasing away from the Yellowstone plume-head, the pattern of incision rates seems to be mostly affected by the distribution of normal faults - including the Alpine section of the Grand Valley Fault that has been reported to be inactive throughout the Quaternary. Downstream of Alpine and approaching the Snake River Plain, late Quaternary fill-terraces show much slower incision rates which might be consistent with a broad flexure of the region toward the subsiding Snake River Plain. Future studies of the Snake and Hoback rivers and additional streams around the Yellowstone hotspot will further illuminate the pattern of late Quaternary uplift in the region.

  2. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, G.F.

    1993-01-01

    The 15,600 sq mi Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. Quaternary basalt of the Snake River Group underlies most of the 10,800 square mile eastern plain and constitutes the most productive aquifers. Transmissivity of the upper 200 feet of the basalt aquifer commonly ranges from 100,000 to 1,000,000 square feet per day. Vertical hydraulic conductivity is several orders of magnitude lower than horizontal hydraulic conductivity and is related to the degree of jointing. Alluvial sand and gravel in the Boise River valley constitutes the most productive aquifers in the 4,800 square mile western plain. Along much of its length, the Snake River gains groundwater. Between Milner and King Hill, the river gained 4.7 million acre-ft in 1980, most as spring flow from the north side. The chemical composition of groundwater in the plain is essentially the same as that in streams and ground- water from tributary drainage basins. The use of surface water for irrigation for 100 years has caused major changes in the hydrologic system on the plain. During that time, recharge on the main part of the eastern plain increased about 70 percent, discharge about 80 percent. In 1980, about 8.9 million acre-ft of Snake River water was diverted and 2.3 million acre-ft of groundwater was pumped from 5,300 wells for irrigation.

  3. Fine-scale population structure in Atlantic salmon from Maine's Penobscot River drainage

    USGS Publications Warehouse

    Spidle, A.P.; Bane, Schill W.; Lubinski, B.A.; King, T.L.

    2001-01-01

    We report a survey of micro satellite DNA variation in Atlantic salmon from the unimpounded lower reaches of Maine's Penobscot River. Our analysis indicates that Atlantic salmon in the Penobscot River are distinct from other populations that have little or no history of human-mediated repopulation, including two of its tributaries, Cove Brook and Kenduskeag Stream, another Maine river, the Ducktrap, and Canada's Miramichi and Gander rivers. Significant heterogeneity was detected in allele frequency among all three subpopulations sampled in the Penobscot drainage. The high resolution of the 12-locus suite was quantified using maximum likelihood assignment tests, which correctly identified the source of 90.4-96.1% of individuals from within the Penobscot drainage. Current populations are clearly isolated from each other, however we are unable to determine from the present data whether the populations in Cove Brook and Kenduskeag Stream are recently diverged from populations stocked into the Penobscot River over the last century, or are aboriginal in origin. The degree of population structure identified in the Penobscot drainage is noteworthy in light of its lengthy history of systematic restocking, the geographic proximity of the subpopulations, and the extent of the differentiation. Similar population structure on this extremely limited geographic scale could exist among Atlantic salmon runs elsewhere in Maine and throughout the species' range and should be taken into account for future management decisions.

  4. Parvicapsula minibicornis in anadromous sockeye (Oncorhynchus nerka) and coho (Oncorhynchus kisutch) salmon from tributaries of the Columbia River.

    PubMed

    Jones, Simon; Prosperi-Porta, Gina; Dawe, Sheila; Taylor, Kimberley; Goh, Benjamin

    2004-08-01

    The myxosporean parasite Parvicapsula minibicornis is described from adult sockeye and coho salmon during spawning migrations in tributaries of the Columbia River in Canada and the United States. These observations extend the known distribution of this parasite from the Fraser River drainage basin. The parasite was identified in Columbia River salmonids using polymerase chain reaction (PCR) and by in situ hybridization, but unlike in Fraser River salmon, it was not observed in conventional histological preparations of the kidney. Prevalence of the parasite determined by PCR was higher in spawning sockeye from the Fraser River than in those from the Okanagan River. Our ability to explain the relatively low prevalence and absence of clinical P. minibicornis infections in Columbia River salmon is hampered by our poor understanding of the life cycle of this parasite.

  5. Potential Effects of Dams on Migratory Fish in the Mekong River: Lessons from Salmon in the Fraser and Columbia Rivers

    NASA Astrophysics Data System (ADS)

    Ferguson, John W.; Healey, Michael; Dugan, Patrick; Barlow, Chris

    2011-01-01

    We compared the effects of water resource development on migratory fish in two North American rivers using a descriptive approach based on four high-level indicators: (1) trends in abundance of Pacific salmon, (2) reliance on artificial production to maintain fisheries, (3) proportion of adult salmon that are wild- versus hatchery-origin, and (4) number of salmon populations needing federal protection to avoid extinction. The two rivers had similar biological and physical features but radically different levels of water resource development: the Fraser River has few dams and all are located in tributaries, whereas the Columbia River has more than 130 large mainstem and tributary dams. Not surprisingly, we found substantial effects of development on salmon in the Columbia River. We related the results to potential effects on migratory fish in the Mekong River where nearly 200 mainstem and tributary dams are installed, under construction, or planned and could have profound effects on its 135 migratory fish species. Impacts will vary with dam location due to differential fish production within the basin, with overall effects likely being greatest from 11 proposed mainstem dams. Minimizing impacts will require decades to design specialized fish passage facilities, dam operations, and artificial production, and is complicated by the Mekong's high diversity and productivity. Prompt action is needed by governments and fisheries managers to plan Mekong water resource development wisely to prevent impacts to the world's most productive inland fisheries, and food security and employment opportunities for millions of people in the region.

  6. Water and sediment study of the Snake River watershed, Colorado, Oct. 9-12, 2001

    USGS Publications Warehouse

    Fey, D.L.; Church, S.E.; Unruh, D.M.; Bove, D.J.

    2002-01-01

    The Snake River watershed, located upstream from Dillon Reservoir in the central mountains of Colorado, has been affected by historical base-metal mining. Trout stocked in the Snake River for recreational purposes do not survive through the winter. Sediment cores analyzed by previous investigators from the reservoir revealed elevated concentrations of base metals and mercury. We collected 36 surface water samples (filtered and unfiltered) and 38 streambed-sediment samples from streams in the Snake River watershed. Analyses of the sediment and water samples show that concentrations of several metals exceed aquatic life standards in one or both media. Ribbon maps showing dissolved concentrations of zinc, cadmium, copper, and manganese in water (0.45-micron filtered and corrected for the ameliorating effect of hardness), and copper, cadmium, and zinc in sediment indicate reaches where toxic effects on trout would be expected and stream reaches where toxicity standards for rainbow, brown, and brook trout are exceeded. Instantaneous loads for sulfate, strontium, iron, cadmium, copper, and zinc were calculated from 0.45-micron-filtered water concentrations and discharge measurements were made at each site. Sulfate and strontium behave conservatively, whereas copper, cadmium, and zinc are reactive. The dissolved copper load entering the reservoir is less than 20 percent of the value calculated from some upper reaches; copper is transferred to suspended and or streambed sediment by sorption to iron oxyhydroxides. Higher percentages of zinc and cadmium reach the reservoir in dissolved form; however, load calculations indicate that some of these metals are also precipitated out of solution. The most effective remediation activities should be concentrated on reducing the dissolved loads of zinc, cadmium, and copper in two reaches of lower Peru Creek between the confluence with the Snake River and Cinnamon Gulch. We analyzed all streambed sediment for mercury and selected

  7. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Subbasin, Annual Report 2008 : Project Period 1 February 2008 to 31 January 2009.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanke, Jeffrey A.; Alfonse, Brian M.; Bratcher, Kyle W.

    2009-07-31

    This study was designed to document and describe the status and life history strategies of spring Chinook salmon and summer steelhead in the Grande Ronde River Subbasin. We determined migration timing, abundance, and life-stage survival rates for juvenile spring Chinook salmon Oncorhynchus tshawytscha and summer steelhead O. mykiss in four streams during migratory year 2008 from 1 July 2007 through 30 June 2008. As observed in previous years of this study, spring Chinook salmon and steelhead exhibited fall and spring movements out of natal rearing areas, but did not begin their smolt migration through the Snake and lower Columbia Rivermore » hydrosystem until spring. In this report we provide estimates of migrant abundance and migration timing for each study stream, and their survival and timing to Lower Granite Dam. We also document aquatic habitat conditions using water temperature and stream flow in four study streams in the subbasin.« less

  8. Monitoring and Evaluation of Smolt Migration in the Columbia Basin, Volume XIV; Evaluation of 2006 Prediction of the Run-Timing of Wild and Hatchery-Reared Salmon and Steelhead at Rock Island, Lower Granite, McNary, John Day and Bonneville Dams using Program Real Time, Technical Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griswold, Jim

    Program RealTime provided monitoring and forecasting of the 2006 inseason outmigrations via the internet for 32 PIT-tagged stocks of wild ESU chinook salmon and steelhead to Lower Granite and/or McNary dams, one PIT-tagged hatchery-reared ESU of sockeye salmon to Lower Granite Dam, and 20 passage-indexed runs-at-large, five each to Rock Island, McNary, John Day, and Bonneville Dams. Twenty-four stocks are of wild yearling chinook salmon which were captured, PIT-tagged, and released at sites above Lower Granite Dam in 2006, and have at least one year's historical migration data previous to the 2006 migration. These stocks originate in drainages of themore » Salmon, Grande Ronde and Clearwater Rivers, all tributaries to the Snake River, and are subsequently detected through the tag identification and monitored at Lower Granite Dam. In addition, seven wild PIT-tagged runs-at-large of Snake or Upper Columbia River ESU salmon and steelhead were monitored at McNary Dam. Three wild PIT-tagged runs-at-large were monitored at Lower Granite Dam, consisting of the yearling and subyearling chinook salmon and the steelhead trout runs. The hatchery-reared PIT-tagged sockeye salmon stock from Redfish Lake was monitored outmigrating through Lower Granite Dam. Passage-indexed stocks (stocks monitored by FPC passage indices) included combined wild and hatchery runs-at-large of subyearling and yearling chinook, coho, and sockeye salmon, and steelhead trout forecasted to Rock Island, McNary, John Day, and Bonneville Dams.« less

  9. Behavior and movement of formerly landlocked juvenile coho salmon after release into the free-flowing Cowlitz River, Washington

    USGS Publications Warehouse

    Kock, Tobias J.; Henning, Julie A.; Liedtke, Theresa L.; Royer, Ida M.; Ekstrom, Brian K.; Rondorf, Dennis W.

    2011-01-01

    Formerly landlocked Coho Salmon (Oncorhynchus kisutch) juveniles (age 2) were monitored following release into the free-flowing Cowlitz River to determine if they remained in the river or resumed seaward migration. Juvenile Coho Salmon were tagged with a radio transmitter (30 fish) or Floy tag (1050 fish) and their behavior was monitored in the lower Cowlitz River. We found that 97% of the radio-tagged fish remained in the Cowlitz River beyond the juvenile outmigration period, and the number of fish dispersing downstream decreased with increasing distance from the release site. None of the tagged fish returned as spawning adults in the 2 y following release. We suspect that fish in our study failed to migrate because they exceeded a threshold in size, age, or physiological status. Tagged fish in our study primarily remained in the Cowlitz River, thus it is possible that these fish presented challenges to juvenile salmon migrating through the system either directly by predation or indirectly by competition for food or habitat. Given these findings, returning formerly landlocked Coho Salmon juveniles to the free-flowing river apparently provided no benefit to the anadromous population. These findings have management implications in locations where landlocked salmon have the potential to interact with anadromous species of concern.

  10. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Lofy, Peter T.

    2003-03-01

    This is the third annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2000: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCP). (2) Plan for recovery of endemic summer steelhead populations in Catherinemore » Creek and the upper Grande Ronde River. (3) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (4) Collect summer steelhead. (5) Collect adult endemic spring chinook salmon broodstock. (6) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (7) Document accomplishments and needs to permitters, comanagers, and funding agency. (8) Communicate project results to the scientific community. (9) Plan detailed GRESCP Monitoring and Evaluation for future years. (10) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations and incidentally-caught summer steelhead and bull trout. (11) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (12) Monitor water quality at facilities. (13) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program.« less

  11. Snakes of the Savannah River Plant with Information About Snakebite Prevention and Treatment.

    ERIC Educational Resources Information Center

    Gibbons, Whit

    This booklet is intended to provide information on the snakes of South Carolina, to point out the necessary steps to avoid a snakebite, and to indicate the current medical treatment for poisonous snakebite. It includes a checklist of South Carolina reptiles and a taxonomic key for the identification of snakes in the Savannah River Plant. Three…

  12. Lower Columbia River Salmon Business Plan for Terminal Fisheries : Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmon For All

    1996-07-01

    Salmon fishing in the Northwest requires a public-private partnership. The public through its decision-makers, agencies, and laws states it will do all that is necessary to protect and preserve the valuable salmon resource. Yet, the public side of the partnership is broken. The Columbia River salmon fishing industry, with over 140 years of documented history, is at a crossroads. This report explores a variety of issues, concerns, and ideas related to terminal fishery development. In some cases recommendations are made. In addition, options are explored with an understanding that those designated as decision-makers must make decisions following considerable discussion andmore » reflection.« less

  13. Plan of study for the regional aquifer-system analysis of the Snake River plain, Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, Gerald F.

    1981-01-01

    The 15,600-square-mile Snake River Plain is largely in southern Idaho and includes one of the Nation 's major regional aquifers. A comprehensive investigation of the area 's ground-water resources will be made as part of the U.S. Geological Survey 's Regional Aquifer-System Analysis (RASA) program. Basaltic and sedimentary rocks in the Snake River Plain yield large quantities of water that are vital to the area 's agricultural economy. Basaltic rocks predominate in the eastern Snake River Plain and have especially high water-yielding capabilities. Surface water, largely from the Snake River, is extensively used for irrigation and is a major source of recharge to the ground-water system. Springs issuing from basaltic rocks that form the Snake River Canyon wall near Twin Falls are the major points of ground-water discharge. Increased use of ground water for irrigation is causing concern as to the effect of large-scale withdrawals on spring flow. Ground-water flow models will be used to improve understanding of the hydrologic system, and, if feasible, to aid in evaluating management alternatives. Ground-water quality will be defined and geochemical techniques used to determine the effects of water-rock reactions on water quality. Several reports are planned on different phases of the project, concluding with a summary report. (USGS)

  14. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008 Report of Research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E.

    2009-05-26

    This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008more » are listed below: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big

  15. Multiyear Downstream Response to Dam Removal on the White Salmon River, WA

    NASA Astrophysics Data System (ADS)

    Wilcox, A. C.; O'Connor, J. E.; Major, J. J.

    2017-12-01

    The 2011 removal of the 38 m tall Condit Dam on the White Salmon River, Washington was one of the largest dam removals to date, in terms of both dam height and sediment release. We examined the multiyear geomorphic response to this event, through 2015, including in a bedrock-confined canyon and in a less-confined, backwater-influenced pool reach near the river's mouth, to the large, rapid influx of fine reservoir sediment produced by the breach and to subsequent sediment transfer in the free-flowing White Salmon River. In the canyon reach, aggraded sediments were rapidly eroded from riffles, returning them toward pre-breach bed elevations within weeks, but pool aggradation persisted for longer. The downstream, less-confined reach transformed from a deep pool to a narrower pool-riffle channel with alternate bars; multiyear observations showed persistence of bars and of this new and distinct morphology. This downstream reach marks a rare case in post-dam removal channel response; in most dam removals, channels have rapidly reverted toward pre-removal morphology, as in the canyon reach here. Comparison of the multiyear geomorphic evolution of the White Salmon River to other recent large dam removals in the U.S. allows evaluation of the relative influences of antecedent channel morphology, post-breach hydrology, and dam removal style, as well as providing a basis for predicting responses to future dam removals.

  16. 9000 years of salmon fishing on the Columbia River, North America

    USGS Publications Warehouse

    Butler, V.L.; O'Connor, J. E.

    2004-01-01

    A large assemblage of salmon bones excavated 50 yr ago from an ???10,000-yr-old archaeological site near The Dalles, Oregon, USA, has been the primary evidence that early native people along the Columbia River subsisted on salmon. Recent debate about the human role in creating the deposit prompted excavation of additional deposits and analysis of archaeologic, geologic, and hydrologic conditions at the site. Results indicate an anthropogenic source for most of the salmonid remains, which have associated radiocarbon dates indicating that the site was occupied as long ago as 9300 cal yr B.P. The abundance of salmon bone indicates that salmon was a major food item and suggests that migratory salmonids had well-established spawning populations in some parts of the Columbia Basin by 9300-8200 yr ago. ?? 2004 University of Washington. All rights reserved.

  17. Survival of juvenile chinook salmon and coho salmon in the Roza Dam fish bypass and in downstream reaches of the Yakima River, Washington, 2016

    USGS Publications Warehouse

    Kock, Tobias J.; Perry, Russell W.; Hansen, Amy C.

    2016-12-22

    Estimates of juvenile salmon survival are important data for fishery managers in the Yakima River Basin. Radiotelemetry studies during 2012–14 showed that tagged juvenile Chinook salmon (Oncorhynchus tshawytscha) that passed through the fish bypass at Roza Dam had lower survival than fish that passed through other routes at the dam. That study also identified flow-survival relationships in the reaches between the Roza Dam tailrace and Sunnyside Dam. During 2012–14, survival also was estimated through reaches downstream of Sunnyside Dam, but generally, sample sizes were low and the estimates were imprecise. In 2016, we conducted an evaluation using acoustic cameras and acoustic telemetry to build on information collected during the previous study. The goal of the 2016 research was to identify areas where mortality occurs in the fish bypass at Roza Dam, and to estimate reach-specific survival in reaches downstream of the dam. The 2016 study included juvenile Chinook salmon and coho salmon (O. kisutch).Three acoustic cameras were used to observe fish behavior (1) near the entrances to the fish bypass, (2) at a midway point in the fish bypass (convergence vault), and (3) at the bypass outfall. In total, 504 hours of acoustic camera footage was collected at these locations. We determined that smolt-sized fish (95–170 millimeters [mm]) were present in the highest proportions at each location, but predator-sized fish (greater than 250 mm) also were present at each site. Fish presence generally peaked during nighttime hours and crepuscular periods, and was low during daytime hours. In the convergence vault, smolt-sized fish exhibited holding behavior patterns, which may explain why some fish delayed while passing through the bypass.Some of the acoustic-tagged fish were delayed in the fish bypass following release, but there was no evidence to suggest that they experienced higher mortality than fish that were released at the bypass outfall or downstream of the dam

  18. Tritium concentrations in flow from selected springs that discharge to the Snake River, Twin Falls-Hagerman area, Idaho

    USGS Publications Warehouse

    Mann, L.J.

    1989-01-01

    Concern has been expressed that some of the approximately 30,900 curies of tritium disposed to the Snake River Plain aquifer from 1952 to 1988 at the INEL (Idaho National Engineering Laboratory) have migrated to springs discharging to the Snake River in the Twin Falls-Hagerman area. To document tritium concentrations in springflow, 17 springs were sampled in November 1988 and 19 springs were sampled in March 1989. Tritium concentrations were less than the minimum detectable concentration of 0.5 pCi/mL (picocuries/mL) in November 1988 and less than the minimum detectable concentration of 0.2 pCi/mL in March 1989; the minimum detectable concentration was smaller in March 1989 owing to a longer counting time in the liquid scintillation system. The maximum contaminant level of tritium in drinking water as established by the U.S. Environmental Protection Agency is 20 pCi/mL. U.S. Environmental Protection Agency sample analyses indicate that the tritium concentration has decreased in the Snake River near Buhl since the 1970's. In 1974-79, tritium concentrations were less than 0.3 +/-0.2 pCi/mL in 3 of 20 samples; in 1983-88, 17 of 23 samples contained less than 0.3 +/-0.2 pCi/mL of tritium; the minimum detectable concentration is 0.2 pCi/mL. On the basis of decreasing tritium concentrations in the Snake River, their correlation to cessation of atmospheric weapons tests tritium concentrations in springflow less than the minimum detectable concentration, and the distribution of tritium in groundwater at the INEL, aqueous disposal of tritium at the INEL has had no measurable effect on tritium concentrations in springflow from the Snake River Plain aquifer and in the Snake River near Buhl. (USGS)

  19. Investigations into the Early Life History of Naturally Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1997 to 31 August 1998.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keefe, MaryLouise; Tranquilli, J. Vincent

    1998-01-01

    overwinter survival in the downstream areas. Fish from Catherine Creek showed no difference in detection rates between the fall and winter tag groups, indicating similar overwinter survival in the upper and lower rearing areas. Chinook salmon parr were generally associated with low velocity habitat types during winter in Catherine Creek, and both winter and summer in the Lostine River. In summer 1997, we PIT-tagged parr on Catherine Creek and the Minam and Imnaha rivers in order to monitor their subsequent migration as smolts through the Snake and Columbia River hydrosystem. We found significant differences among populations in smolt migration timing at Lower Granite Dam in 1998. Fish from Catherine Creek and the Minam and Imnaha rivers were detected in the hydrosystem at rates of 16.4, 20.5, and 28.1%, respectively. In 1998, we estimated parr abundance and the number of parr produced per redd in Catherine Creek and the Lostine River. We estimated that 429 mature, age 1+ male parr and 13,222 immature, age 0+ parr were present in Catherine Creek in August. An average of 29 mature, age 1+ male parr and 287 immature, age 0+ parr were produced from each redd constructed in 1996 and 1997, respectively. We estimated that 75 mature, age 1+ male parr and 40,748 immature, age 0+ parr were present in the Lostine River in August. An average of 3 mature, age 1+ male parr and 832 immature, age 0+ parr were produced from each redd constructed in 1996 and 1997, respectively. For every anadromous female spawner in Catherine Creek and the Lostine River in 1998, there were an estimated 13 and 3 mature male parr, respectively.« less

  20. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Ogburn, Parker N.

    2003-03-01

    This is the second annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2001: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring chinook Supplementation Program (GRESCP). (2) Plan detailed GRESCP Monitoring and Evaluation for future years. (3)more » Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2001. (4) Plan for data collection needs for bull trout. (5) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2001. (6) Collect summer steelhead. (7) Monitor adult endemic spring chinook salmon populations and collect broodstock. (8) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (9) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations. (10) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (11) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program. (12) Monitor water quality at facilities. (13) Document accomplishments and needs to permitters, comanagers, and funding agencies. (14) Communicate Project results to the scientific community.« less

  1. Assessing the Relative Importance of Local and Regional Processes on the Survival of a Threatened Salmon Population

    PubMed Central

    Miller, Jessica A.; Teel, David J.; Peterson, William T.; Baptista, Antonio M.

    2014-01-01

    Research on regulatory mechanisms in biological populations often focuses on environmental covariates. An integrated approach that combines environmental indices with organismal-level information can provide additional insight on regulatory mechanisms. Survival of spring/summer Snake River Chinook salmon (Oncorhynchus tshawytscha) is consistently low whereas some adjacent populations with similar life histories experience greater survival. It is not known if populations with differential survival respond similarly during early marine residence, a critical period in the life history. Ocean collections, genetic stock identification, and otolith analyses were combined to evaluate the growth-mortality and match-mismatch hypotheses during early marine residence of spring/summer Snake River Chinook salmon. Interannual variation in juvenile attributes, including size at marine entry and marine growth rate, was compared with estimates of survival and physical and biological metrics. Multiple linear regression and multi-model inference were used to evaluate the relative importance of biological and physical metrics in explaining interannual variation in survival. There was relatively weak support for the match-mismatch hypothesis and stronger evidence for the growth-mortality hypothesis. Marine growth and size at capture were strongly, positively related to survival, a finding similar to spring Chinook salmon from the Mid-Upper Columbia River. In hindcast models, basin-scale indices (Pacific Decadal Oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO)) and biological indices (juvenile salmon catch-per-unit-effort (CPUE) and a copepod community index (CCI)) accounted for substantial and similar portions of variation in survival for juvenile emigration years 1998–2008 (R2>0.70). However, in forecast models for emigration years 2009–2011, there was an increasing discrepancy between predictions based on the PDO (50–448% of observed value) compared with those

  2. Assessing the relative importance of local and regional processes on the survival of a threatened salmon population.

    PubMed

    Miller, Jessica A; Teel, David J; Peterson, William T; Baptista, Antonio M

    2014-01-01

    Research on regulatory mechanisms in biological populations often focuses on environmental covariates. An integrated approach that combines environmental indices with organismal-level information can provide additional insight on regulatory mechanisms. Survival of spring/summer Snake River Chinook salmon (Oncorhynchus tshawytscha) is consistently low whereas some adjacent populations with similar life histories experience greater survival. It is not known if populations with differential survival respond similarly during early marine residence, a critical period in the life history. Ocean collections, genetic stock identification, and otolith analyses were combined to evaluate the growth-mortality and match-mismatch hypotheses during early marine residence of spring/summer Snake River Chinook salmon. Interannual variation in juvenile attributes, including size at marine entry and marine growth rate, was compared with estimates of survival and physical and biological metrics. Multiple linear regression and multi-model inference were used to evaluate the relative importance of biological and physical metrics in explaining interannual variation in survival. There was relatively weak support for the match-mismatch hypothesis and stronger evidence for the growth-mortality hypothesis. Marine growth and size at capture were strongly, positively related to survival, a finding similar to spring Chinook salmon from the Mid-Upper Columbia River. In hindcast models, basin-scale indices (Pacific Decadal Oscillation (PDO) and the North Pacific Gyre Oscillation (NPGO)) and biological indices (juvenile salmon catch-per-unit-effort (CPUE) and a copepod community index (CCI)) accounted for substantial and similar portions of variation in survival for juvenile emigration years 1998-2008 (R2>0.70). However, in forecast models for emigration years 2009-2011, there was an increasing discrepancy between predictions based on the PDO (50-448% of observed value) compared with those based on

  3. Modeling Investigation of Spring Chinook Salmon Habitat in San Joaquin River Restoration Program

    NASA Astrophysics Data System (ADS)

    Liu, L.; Ramires, J.

    2013-12-01

    As the second longest river in California, the San Joaquin River (SJR) is a vital natural resource to numerous residents and industries and provides an array of activities within Central Valley, home to some of California's most productive agricultural areas. Originating in the high Sierra Nevada, mainly from snowmelt and runoff, and passing through the middle sections including Fresno and Madera counties, eventually the SJR conjoins with the Sacramento River, constructing the largest river delta on the west coast of North America. Along with human necessities, the river used to be crucial for the propagation and survivability of Chinook salmon and other aquatic and wildlife. However, the SJR has experienced hydraulic disconnection throughout certain reaches due to extensive water diversion. Indigenous salmon populations have been degraded over the years due to insufficient flows and anthropogenic activities. In 2006, to maintain salmon and other fish populations to a point of self-sustainment, the San Joaquin River Restoration Project (SJRRP) was established to restore flows along the SJR from Friant Dam to the confluence of the Merced River by routing the original SJR in different pathways. One of the major tasks of the SJRRP, so called 'Reach 4B Project', was to modify and improve channel capacity of reach 4B, east side bypass and Mariposa bypass of the SJR. Multiple scenarios for the alteration and modification of the SJR water pathway were designed to ensure fish passage by retrofitting existing channels and to provide adequate flow throughout the study area. The goal of the SJRRP project 4B was to provide an efficient passage for adult Chinook salmon to spawning beds further upstream and a safe route for yearling to the delta. The objective of this research project is to characterize the stream properties (current velocities, depth, etc.) of each proposed alternative in Project 4B2 under the same upstream conditions using a modeling method. A depth

  4. Behavior and movements of adult spring Chinook salmon (Oncorhynchus tshawytscha) in the Chehalis River Basin, southwestern Washington, 2015

    USGS Publications Warehouse

    Liedtke, Theresa L.; Zimmerman, Mara S.; Tomka, Ryan G.; Holt, Curt; Jennings, Lyle

    2016-09-14

    Recent interest in flood control and restoration strategies in the Chehalis River Basin has increased the need to understand the current status and ecology of spring Chinook salmon. Based on the extended period between freshwater entry and spawn timing, spring Chinook salmon have the longest exposure of all adult Chinook salmon life histories to the low-flow and high water temperature conditions that typically occur during summer. About 100 adult spring Chinook salmon were found dead in the Chehalis River in July and August 2009. Adult Chinook salmon are known to hold in cool-water refugia during warm summer months, but the extent to which spring Chinook salmon might use thermal refugia in the Chehalis River is unknown. The movements and temperature exposures of adult spring Chinook salmon following their return to the Chehalis River were investigated using radiotelemetry and transmitters equipped with temperature sensors, combined with water temperature monitoring throughout the basin. A total of 23 spring Chinook salmon were radio-tagged between April and early July 2015; 11 were captured and released in the main-stem Chehalis River, and 12 were captured and released in the South Fork Newaukum River. Tagged fish were monitored with a combination of fixed-site monitoring locations and regular mobile tracking, from freshwater entry through the spawning period.Water temperature and flow conditions in the main-stem Chehalis River during 2015 were atypical compared to historical averages. Mean monthly water temperatures between March and July 2015 were higher than any decade since 1960 and mean daily flows were 30–70 percent of the flows in previous years. Overall, 96 percent of the tagged fish were detected, with a mean of 62 d in the detection history of tagged fish. Of the 11 fish released in the main-stem Chehalis River, six fish (55 percent) moved upstream, either shortly after release (2–7 d, 50 percent), or following a short delay (12–18 d, 50 percent

  5. The influence of fall-spawning coho salmon (Oncorhynchus kisutch) on growth and production of juvenile coho salmon rearing in beaver ponds on the Copper River Delta, Alaska.

    Treesearch

    Dirk W. Lang; Gordon H. Reeves; James D. Hall; Mark S. Wipfli

    2006-01-01

    This study examined the influence of fall-spawning coho salmon (Oncorhynchrcs kisutch) on the density, growth rate, body condition, and survival to outmigration of juvenile coho salmon on the Copper River Delta, Alaska, USA. During the fall of 1999 and 2000, fish rearing in beaver ponds that received spawning salmon were compared with fish from...

  6. Instream flow characterization of upper Salmon River Basin streams, Central Idaho, 2003

    USGS Publications Warehouse

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2004-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream from the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the federally listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications, as a result of irrigation practices, have directly affected the quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include the collection of habitat and streamflow information for the Physical Habitat Simulation (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model results can be used by resource managers to guide habitat restoration efforts in the evaluation of potential fish habitat and passage improvements by increasing streamflow. Instream flow characterization studies were completed on Pole, Fourth of July, Elk, and Valley Creeks during 2003. Continuous streamflow data were collected upstream from all diversions on each stream. In addition, natural summer streamflows were estimated for each study site using regression

  7. Resource management planning efforts on the Bureau of Land Management's Snake River birds of prey national conservation area

    Treesearch

    John Sullivan

    2005-01-01

    In 1993, Congress passed Public Law 103-64, which established the Snake River Birds of Prey National Conservation Area (NCA) for the purpose of conserving, protecting, and enhancing raptor populations and habitats. The NCA encompasses over 485,000 acres of public land along 130 km of the Snake River in southwest Idaho, and is located within a 30-minute drive of Boise...

  8. Effects of Jackson Lake Dam on the Snake River and its floodplain, Grand Teton National Park, Wyoming, USA

    NASA Astrophysics Data System (ADS)

    Marston, Richard A.; Mills, John D.; Wrazien, David R.; Bassett, Beau; Splinter, Dale K.

    2005-10-01

    In 1906, the Bureau of Reclamation created Jackson Lake Dam on the Snake River in what later became Grand Teton National Park. The geomorphic, hydrologic and vegetation adjustments downstream of the dam have yet to be documented. After a larger reservoir was completed further downstream in 1957, the reservoir release schedule from Jackson Lake Dam was changed in a manner that lowered the magnitude and frequency of floods. The stability of the Snake River exhibited a complex response to the change in flow regime. Close to major tributaries, the Snake River increased in total sinuosity and rates of lateral channel migration. Away from the influence of tributaries, the river experienced fewer avulsions and a decrease in sinuosity. Vegetation maps were constructed from 1945 and 1989 aerial photography and field surveys. Using these data, we determined how vegetation is directly related to the number of years since each portion of the floodplain was last occupied by the channel. The vegetation has changed from a flood-pulse dominated mosaic to a more terrestrial-like pattern of succession. Changes in the Snake River and its floodplain have direct implications on bald eagle habitat, moose habitat, fish habitat, safety of rafting and canoeing, and biodiversity at the community and species levels.

  9. Developing New Modelling Tools for Environmental Flow Assessment in Regulated Salmon Rivers

    NASA Astrophysics Data System (ADS)

    Geris, Josie; Soulsby, Chris; Tetzlaff, Doerthe

    2013-04-01

    There is a strong political drive in Scotland to meet all electricity demands from renewable sources by 2020. In Scotland, hydropower generation has a long history and is a key component of this strategy. However, many rivers sustain freshwater communities that have both high conservation status and support economically important Atlantic salmon fisheries. Both new and existing hydropower schemes must be managed in accordance with the European Union's Water Framework Directive (WFD), which requires that all surface water bodies achieve good ecological status or maintain good ecological potential. Unfortunately, long-term river flow monitoring is sparse in the Scottish Highlands and there are limited data for defining environmental flows. The River Tay is the most heavily regulated catchment in the UK. To support hydropower generation, it has an extensive network of inter- and intra- catchment transfers, in addition to a large number of regulating reservoirs for which abstraction legislation often only requires minimum compensation flows. The Tay is also considered as one of Scotland's most important rivers for Atlantic salmon (Salmo salar), and there is considerable uncertainty as to how best change reservoir operations to improve the ecological potential of the river system. It is now usually considered that environmental flows require more than a minimum compensation flow, and instead should cover a range of hydrological flow aspects that represent ecologically relevant streamflow attributes, including magnitude, timing, duration, frequency and rate of change. For salmon, these hydrological indices are of particular interest, with requirements varying at different stages of their life cycle. To meet the WFD requirements, rationally alter current abstraction licences and provide an evidence base for regulating new hydropower schemes, advanced definitions for abstraction limits and ecologically appropriate flow releases are desirable. However, a good understanding

  10. Summary of Survival Data from Juvenile Coho Salmon in the Klamath River, Northern California, 2006

    USGS Publications Warehouse

    Beeman, John W.

    2007-01-01

    Little is known about the survival of ESA-listed juvenile coho salmon during their seaward migration in the lower Klamath River. In 2006, the Bureau of Reclamation funded a study to estimate the survival of radio-tagged juvenile coho salmon in the Klamath River downstream of Iron Gate Dam. A series of models were evaluated to determine if survival varied between hatchery and wild fish and among several river reaches between the dam river kilometer 33, a total distance of 276 kilometers. The results from 2006, the first year of study, indicated little support for differences in survival between hatchery and wild fish and lower survival in the most upstream reach than in those farther downstream. This document is a brief summary of survival results to date.

  11. Spawning Habitat Studies of Hanford Reach Fall Chinook Salmon (Oncorhynchus tshawytscha), Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, David R.; Arntzen, Evan V.; Chien, Yi-Ju

    2009-03-02

    The Pacific Northwest National Laboratory conducted this study for the Bonneville Power Administration (BPA) with funding provided through the Northwest Power and Conservation Council(a) and the BPA Fish and Wildlife Program. The study was conducted in the Hanford Reach of the Columbia River. The goal of study was to determine the physical habitat factors necessary to define the redd capacity of fall Chinook salmon that spawn in large mainstem rivers like the Hanford Reach and Snake River. The study was originally commissioned in FY 1994 and then recommissioned in FY 2000 through the Fish and Wildlife Program rolling review ofmore » the Columbia River Basin projects. The work described in this report covers the period from 1994 through 2004; however, the majority of the information comes from the last four years of the study (2000 through 2004). Results from the work conducted from 1994 to 2000 were covered in an earlier report. More than any other stock of Pacific salmon, fall Chinook salmon (Oncorhynchus tshawytscha) have suffered severe impacts from the hydroelectric development in the Columbia River Basin. Fall Chinook salmon rely heavily on mainstem habitats for all phases of their life cycle, and mainstem hydroelectric dams have inundated or blocked areas that were historically used for spawning and rearing. The natural flow pattern that existed in the historic period has been altered by the dams, which in turn have affected the physical and biological template upon which fall Chinook salmon depend upon for successful reproduction. Operation of the dams to produce power to meet short-term needs in electricity (termed power peaking) produces unnatural fluctuations in flow over a 24-hour cycle. These flow fluctuations alter the physical habitat and disrupt the cues that salmon use to select spawning sites, as well as strand fish in near-shore habitat that becomes dewatered. The quality of spawning gravels has been affected by dam construction, flood

  12. Feeding ecology of non-native Siberian prawns, Palaemon modestus (Heller, 1862) (Decapoda, Palaemonidae), in the lower Snake River, Washington, U.S.A.

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Hurst, William

    2016-01-01

    We used both stomach content and stable isotope analyses to describe the feeding ecology of Siberian prawns Palaemon modestus (Heller, 1862), a non-native caridean shrimp that is a relatively recent invader of the lower Snake River. Based on identifiable prey in stomachs, the opossum shrimp Neomysis mercedis Holmes, 1896 comprised up to 34-55% (by weight) of diets of juvenile to adult P. modestus, which showed little seasonal variation. Other predominant items/taxa consumed included detritus, amphipods, dipteran larvae, and oligochaetes. Stable isotope analysis supported diet results and also suggested that much of the food consumed by P. modestus that was not identifiable came from benthic sources — predominantly invertebrates of lower trophic levels and detritus. Palaemon modestus consumption of N. mercedis may pose a competitive threat to juvenile salmon and resident fishes which also rely heavily on that prey.

  13. Evaluation of a prototype surface flow bypass for juvenile salmon and steelhead at the powerhouse of Lower Granite Dam, Snake River, Washington, 1996-2000

    USGS Publications Warehouse

    Johnson, G.E.; Anglea, S.M.; Adams, N.S.; Wik, T.O.

    2005-01-01

    A surface flow bypass takes advantage of the natural surface orientation of most juvenile salmon Oncorhynchus spp. and steelhead O. mykiss by providing a route in the upper water column that downstream migrant fishes can use to pass a hydroelectric dam safely. A prototype structure, called the surface bypass and collector (SBC), was retrofitted on the powerhouse of Lower Granite Dam and was evaluated annually with biotelemetry and hydroacoustic techniques during the 5-year life span of the structure (1996-2000) to determine the entrance configuration that maximized passage efficiency and minimized forebay residence time. The best tested entrance configuration had maximum inflow (99 m 3/s) concentrated in a single surface entrance (5 m wide, 8.5 m deep). We identified five important considerations for future surface flow bypass development in the lower Snake River and elsewhere: (1) an extensive flow net should be formed in the forebay by use of relatively high surface flow bypass discharge (>7% of total project discharge); (2) a gradual increase in water velocity with increasing proximity to the surface flow bypass (ideally, acceleration 3 m/s) to entrain the subject juvenile fishes; (4) the shape and orientation of the surface entrance(s) should be adapted to fit site-specific features; and (5) construction of a forebay wall to increase fish availability to the surface flow bypass should be considered. The efficiency of the SBC was not high enough (maximum of 62% relative to passage at turbine units 4-5) for the SBC to operate as a stand-alone bypass. Anywhere that surface-oriented anadromous fish must negotiate hydroelectric dams, surface flow bypass systems can provide cost-effective use of typically limited water supplies to increase the nonturbine passage, and presumably survival, of downstream migrants. ??Copyright by the American Fisheries Society 2005.

  14. Modelling the Influence of Long-Term Hydraulic Conditions on Juvenile Salmon Habitats in AN Upland Scotish River

    NASA Astrophysics Data System (ADS)

    Fabris, L.; Malcolm, I.; Millidine, K. J.; Buddendorf, B.; Tetzlaff, D.; Soulsby, C.

    2015-12-01

    Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have very specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Previous research has shown that stream hydrodynamics and channel morphology have a strong influence on the distribution and density of juvenile salmon. Here, we utilise a unique 20 year data set of spatially distributed juvenile salmon densities derived from annual electro-fishing surveys in an upland Scottish river. We examine to what extent the spatial and temporal variability of in-stream hydraulics regulates the spatial and temporal variability in the performance and density of juvenile salmon. A 2-D hydraulic model (River2D) is used to simulate water velocity and water depth under different flow conditions for seven different electro-fishing sites. The selected sites represent different hydromorphological environments including plane-bed, step-pool and pool riffle reaches. The bathymetry of each site was characterised using a total station providing an accurate DTM of the bed, and hydraulic simulations were driven by 20 year stream flow records. Habitat suitability curves, based on direct observations during electro-fishing surveys, were produced for a range of hydraulic indices for juvenile salmon. The hydraulic simulations showed marked spatial differences in juvenile habitat quality both within and between reaches. They also showed marked differences both within and between years. This is most evident in extreme years with wet summers when salmon feeding opportunities may be constrained. Integration of hydraulic habitat models, with fish preference curves and the long term hydrological data allows us to assess whether long-term changes in hydroclimate may be affecting juvenile salmonid populations in the study stream

  15. Investigating passage of ESA-listed juvenile fall Chinook salmon at Lower Granite Dam during winter when the fish bypass system is not operated

    USGS Publications Warehouse

    Kock, Tobias J.; Tiffan, Kenneth F.; Connor, William P.

    2007-01-01

    During the winter of 2006-07, we radio and passive integrated transponder (PIT) tagged, and released 99 juvenile fall Chinook salmon to evaluate over-wintering behavior and dam passage in the lower Snake River, Washington. All fish were released 10 km upstream of Lower Granite Dam at Granite Point in early November, 2006. Fixed radio telemetry detection sites located in the forebay and tailrace areas of Lower Granite, Little Goose, Lower Monumental, Ice Harbor, Bonneville dams, and at Lyle, Washington were used to monitor fish movements and dam passage through early-May 2007. Of the 99 fish released during our study, 80 passed Lower Granite Dam and were detected at downstream detection sites, 37 passed Little Goose Dam, 41 passed Lower Monumental Dam, 31 passed Ice Harbor Dam, 18 passed Lyle, WA, and 13 passed Bonneville Dam. Of the fish that passed Lower Granite Dam in the fall, 63 fish did so during the extended bypass period from November 1 through December 16. Of these fish, 53 were also detected by the PIT-tag interrogation system. Fifteen of the fish that passed Lower Granite Dam in the fall continued to pass lower Snake River dams and exit the system by the end of January. The remaining fish either died, their tags failed, or they resided in Little Goose Reservoir until spring when relatively few continued their seaward migration. Passage of tagged fish past lower Snake River dams generally declined during the winter as temperatures decreased, but increased again in the spring as temperatures and flows increased. Fish residence times in reservoirs and forebays was lengthy during the winter (up to 160 d), and varied by reservoir and time of year. We observed no diel trends in fish passage. Very few fish were detected at PIT-tag interrogation sites in the spring compared to detection by radio telemetry detection sites indicating that fish may have passed via spill. We believe that passage of overwintering juvenile fall Chinook salmon during winter is due more

  16. Idaho Natural Production Monitoring and Evaluation : Annual Progress Report February 1, 2007 - January 31, 2008.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copeland, Timothy; Johnson, June; Putnam, Scott

    2008-12-01

    Populations of anadromous salmonids in the Snake River basin declined precipitously following the construction of hydroelectric dams in the Snake and Columbia rivers. Raymond (1988) documented a decrease in survival of emigrating steelhead trout Oncorhynchus mykiss and Chinook salmon O. tshawytscha from the Snake River following the construction of dams on the lower Snake River during the late 1960s and early 1970s. Although Raymond documented some improvements in survival through the early 1980s, anadromous populations remained depressed and declined even further during the 1990s (Petrosky et al. 2001; Good et al. 2005). The effect was disastrous for all anadromous salmonidmore » species in the Snake River basin. Coho salmon O. kisutch were extirpated from the Snake River by 1986. Sockeye salmon O. nerka almost disappeared from the system and were declared under extreme risk of extinction by authority of the Endangered Species Act (ESA) in 1991. Chinook salmon were classified as threatened with extinction in 1992. Steelhead trout were also classified as threatened in 1997. Federal management agencies in the basin are required to mitigate for hydroelectric impacts and provide for recovery of all ESA-listed populations. In addition, the Idaho Department of Fish and Game (IDFG) has the long-term goal of preserving naturally reproducing salmon and steelhead populations and recovering them to levels that will provide a sustainable harvest (IDFG 2007). Management to achieve these goals requires an understanding of how salmonid populations function (McElhany et al. 2000) as well as regular status assessments. Key demographic parameters, such as population density, age composition, recruits per spawner, and survival rates must be estimated annually to make such assessments. These data will guide efforts to meet mitigation and recovery goals. The Idaho Natural Production Monitoring and Evaluation Project (INPMEP) was developed to provide this information to managers. The

  17. Irrigated acreage and other land uses on the Snake River Plain, Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, Gerald F.; Goodell, S.A.

    1986-01-01

    Prompted by the need for a current, accurate, and repeatable delineation of irrigated acreage on the Snake River Plain, the U.S. Geological Survey entered into a cooperative agreement with the Idaho Department of Water Resources Image Analysis Facility and the U.S. Bureau of Reclamation to delineate 1980 land use form Landsat data. Irrigated acreage data were needed as input to groundwater flow models developed by the U.S. Geological Survey in a study of the regional aquifer system underlying the Snake River Plain. Single-date digital multispectral scanner data analyzed to delineate land-use classes. Source of irrigation water (surface water, ground water, and combined) was determined from county maps of 1975 water-related land use, data from previous investigations, and field checking. Surface-water diversions for irrigation on the Snake River Plain began in the 1840's. With the stimulus of Federal aid authorized by the Desert Land Act, Carey Act, and Reclamation Act, irrigated area increased rapidly in the early 1900's. By 1929, 2.2 million acres were irrigated. Ground water became and important source of irrigation water after World War II. In 1980, about 3.1 million acres of the Snake River Plain were irrigate: 2.0 million acres with surface water, 1.0 million with ground water, and 0.1 million with combined surface and ground water. About 5.2 million acres (half of the plain) are undeveloped rangeland, 1.0 million acres (one-tenth) are classified as barren. The remaining land is a mixture of dryland agriculture, water bodies, wetland, forests, and urban areas.

  18. [Genetic Differentiation of Sockeye Salmon Oncorhynchus nerka from Kamchatka River Basin and the Lake-River Systems of the West Coast of the Bering Sea as Inferred from Data on Single Nucleotide Polymorphism].

    PubMed

    Khrustaleva, A M; Klovach, N V; Vedischeva, E V; Seeb, J E

    2015-10-01

    The variability of 45 single nucleotide polymorphism loci (SNP) was studied in sockeye salmon from the Kamchatka River basin and four lake-river systems of the west coast of the Bering Sea. Based on the genetic differentiation estimates for the largest sockeye salmon populations of Eastern Kamchatka and Chukotka, the examined samples were combined into two regional groups represented by the population of the Kamchatka River drainage, which included numerous local subpopulations and seasonal races, and the northern population grouping from the rivers of Olutorsko-Navarinsky raion, wherein the sockeye salmon from Maynypilginskaya Lake-River system was relatively isolated. Considerable divergence was observed between the island (Sarannoe Lake, Bering Island) and continental populations. Genetic heterogeneity was revealed and groups of early- and late-maturing individuals were isolated in the sample of late-run sockeye salmon from Kamchatka River. In Apuka River, subdivision of the spawning run into two genetically distinct spatial and temporal groupings was also observed. The results suggest that the differentiation of sockeye salmon samples by single nucleotide substitution frequencies was largely due to differences in the direction and strength of local selection at some loci in the population complexes and intrapopulation groupings from the examined river basins of Eastern Kamchatka, Chukotka, and Commander Islands.

  19. Monitoring and Evaluation of Smolt Migration in the Columbia Basin : Volume IX : Evaluation of the 2001 Predictions of the Run-Timing of Wild and Hatchery-Reared Migrant Salmon and Steelhead Trout Migrating to Lower Granite, Rock Island, McNary, and John Day Dams using Program RealTime.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Caitlin; Skalski, John R.

    2001-12-01

    shortest on record for seven of these ten stocks. The nine stocks recording unusually short middle 80% periods also recorded higher-than-average recovery percentages. However the opposite trend was observed for the PIT-tagged wild subyearling chinook salmon and hatchery sockeye salmon stocks whose middle 80% period of passage to Lower Granite Dam was average to above average. Recovery percentages for these two stocks were average, compared to historical recoveries. The performance results of Program RealTime to make accurate predictions of percentiles of fish passage at an index site were mixed this year. The release-recovery stocks of wild PIT-tagged spring/summer chinook salmon tracked to Lower Granite Dam were predicted less accurately than usual, on average, with two exceptions. One of these exceptions was a stock that had its best prediction (first-half, last-half, and season-wide) ever to occur. On average, however, performance was down for predicting these stocks. The RealTime Select composite season-wide MAD was 4.3%, larger than the historical average of 2.1%. Passage percentiles for PIT-tagged runs-at-large of wild Snake River yearling and subyearling chinook salmon and of wild steelhead outmigrating to Lower Granite Dam were predicted very well this year, their second year of inclusion in the project, with season-wide MADs of 3.6%, 4.7%, and 1.8% respectively. These results, too, were mixed with respect to comparison with last year's performance. The yearling chinook stock was predicted somewhat better last year (up from 1.7% last year to 3.6% this year) but the subyearling chinook salmon and steelhead stocks were predicted better this year than last, season-wide. The steelhead stock, in particular, was predicted much better this year than last year, down to 1.8% this year from 4.8% last year. The PIT-tagged runs-at-large of wild salmon and steelhead tracked to McNary Dam in 2001 for the first time, were also well-predicted. In particular, the Snake River stocks

  20. Post-release behavior and movement patterns of Chinook salmon (Oncorhynchus tshawytscha) and coho salmon (Oncorhynchus kisutch) after capture using alternative commercial fish gear, lower Columbia River, Washington and Oregon, 2013

    USGS Publications Warehouse

    Liedtke, Theresa L.; Kock, Tobias J.; Evans, Scott D.; Hansen, Gabriel S.; Rondorf, Dennis W.

    2014-01-01

    In 2011 and 2012, WDFW conducted post-release mortality studies of steelhead (Oncorhynchus mykiss), Chinook salmon (Oncorhynchus tshawytscha), and coho salmon (Oncorhynchus kisutch) that were captured using beach or purse seines. These studies were comprised of two groups of fish tagged with passive integrated transponder tags (PIT tags): (1) treatment fish that were captured by one of the gear types 9–25 river kilometers (rkm) downstream of Bonneville Dam (rkm 234); and (2) control fish that were captured at the Adult Fish Facility near the Washington shore fish ladder at Bonneville Dam, and then transported and released 8 rkm downstream of the Bonneville Dam. Fish were confirmed to have survived if they moved upstream and were detected on PIT-tag antennas at or upstream of Bonneville Dam, were recovered at hatcheries or at the dam, or were captured by commercial or sport fishers. Post-release survival estimates were higher for steelhead (89–98 percent) than for Chinook salmon and coho salmon (50–90 percent; Washington Department of Fish and Wildlife, unpub. data, 2014). However, some Chinook salmon and coho salmon return to hatcheries, or spawn in the mainstem Columbia River and in tributaries downstream of Bonneville Dam. The proportion of Chinook salmon and coho salmon in the treatment group that were destined for areas downstream of Bonneville Dam likely was higher than in the control group because the control fish were collected as they were attempting to pass the dam. If this assertion was true, mortality would have been overestimated in these studies, so WDFW developed a study plan to determine the post-release movements and intended location of Chinook salmon and coho salmon collected with beach and purse seines in the lower Columbia River.

  1. Antibody against infectious salmon anaemia virus among feral Atlantic salmon (Salmo salar)

    USGS Publications Warehouse

    Cipriano, R.C.

    2009-01-01

    Archived sera from Atlantic salmon (Salmo salar) that returned to the Penobscot River (Maine), Merrimack River (Massachusetts), and Connecticut River (in Massachusetts) from 1995 to 2002 were analysed for antibodies against infectious salmon anaemia virus (ISAV) using an enzyme-linked immunosorbent assay (ELISA). Up to 60 samples were archived per river system per year. In a given year, the number of fish sampled by ELISA for ISAV antibodies in the Penobscot River ranged from 2.9 to 11.2, and the range of salmon sampled in the Merrimack River and the Connecticut River was 31.3-100 and 20.0-67.5, respectively. Archived sera were not available for the 1995 and 2002 year classes from the Connecticut River. In all, 1141 samples were processed; 14 serum samples tested positive for antibodies to ISAV. In the Penobscot River, serum from one fish tested positive in each of the 1995 and 1999 year-class returns, and sera from two fish tested positive in the 1998 returns. In the Merrimack River, sera from four fish tested positive in each of the 1996 and 1997 returns, and sera from two fish were positive in the 2002 return. None of the archived sera from Atlantic salmon that returned to the Connecticut River tested positive. ?? 2009 United States Government, Department of the Interior.

  2. SNAKE AND CLEARWATER RIVERS, PRESENT AND POST-IMPOUNDMENT WATER QUALITY CONDITIONS, 1964

    EPA Science Inventory

    This report presents information on present water quality conditions in the Snake and Clearwater Rivers (17060107, 17060103, 17060306) in the vicinity of Lewiston, Idaho and Clarkston, Washington. It discusses how changes in the streams characteristics resulting from the constru...

  3. Instream flow characterization of Upper Salmon River basin streams, central Idaho, 2005

    USGS Publications Warehouse

    Maret, Terry R.; Hortness, Jon E.; Ott, Douglas S.

    2006-01-01

    Anadromous fish populations in the Columbia River Basin have plummeted in the last 100 years. This severe decline led to Federal listing of Chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) stocks as endangered or threatened under the Endangered Species Act (ESA) in the 1990s. Historically, the upper Salmon River Basin (upstream of the confluence with the Pahsimeroi River) in Idaho provided migration corridors and significant habitat for these ESA-listed species, in addition to the ESA-listed bull trout (Salvelinus confluentus). Human development has modified the original streamflow conditions in many streams in the upper Salmon River Basin. Summer streamflow modifications resulting from irrigation practices, have directly affected quantity and quality of fish habitat and also have affected migration and (or) access to suitable spawning and rearing habitat for these fish. As a result of these ESA listings and Action 149 of the Federal Columbia River Power System Biological Opinion of 2000, the Bureau of Reclamation was tasked to conduct streamflow characterization studies in the upper Salmon River Basin to clearly define habitat requirements for effective species management and habitat restoration. These studies include collection of habitat and streamflow information for the Physical Habitat Simulation System (PHABSIM) model, a widely applied method to determine relations between habitat and discharge requirements for various fish species and life stages. Model simulation results can be used by resource managers to guide habitat restoration efforts by evaluating potential fish habitat and passage improvements by increasing or decreasing streamflow. In 2005, instream flow characterization studies were completed on Big Boulder, Challis, Bear, Mill, and Morgan Creeks. Continuous streamflow data were recorded upstream of all diversions on Big Boulder. Instantaneous measurements of discharge were also made at selected sites. In

  4. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buettner, Edwin W.; Putnam, Scott A.

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2005 spring out-migration at migrant traps on the Snake River and Salmon River. In 2005 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, the age-1 and older fish were distinguishable from wild fish by the occurrence of fin erosion. Age-0 Chinook salmon are more difficult to distinguish between wild and non-adclipped hatchery fish and therefore classifiedmore » as unknown rearing. The total annual hatchery spring/summer Chinook salmon catch at the Snake River trap was 0.34 times greater in 2005 than in 2004. The wild spring/summer Chinook catch was 0.34 times less than the previous year. Hatchery steelhead trout catch was 0.67 times less than in 2004. Wild steelhead trout catch was 0.72 times less than the previous year. The Snake River trap collected 1,152 age-0 Chinook salmon of unknown rearing. During 2005, the Snake River trap captured 219 hatchery and 44 wild/natural sockeye salmon and 110 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 6 and were terminated on June 3. The trap was out of operation for a total of one day due to heavy debris. FPC requested that the trap be restarted on June 15 through June 22 to collect and PIT tag age-0 Chinook salmon. Hatchery Chinook salmon catch at the Salmon River trap was 1.06 times greater and wild Chinook salmon catch was 1.26 times greater than in 2004. The hatchery steelhead trout collection in 2005 was 1.41 times greater and wild steelhead trout collection was 1.27 times greater than the previous year. Trap

  5. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buettner, Edwin W.; Putnam, Scott A.

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2004 spring out-migration at migrant traps on the Snake River and Salmon River. In 2004 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 1.1 times greater in 2004 than in 2003.more » The wild Chinook catch was 1.1 times greater than the previous year. Hatchery steelhead trout catch was 1.2 times greater than in 2003. Wild steelhead trout catch was 1.6 times greater than the previous year. The Snake River trap collected 978 age-0 Chinook salmon of unknown rearing. During 2004, the Snake River trap captured 23 hatchery and 18 wild/natural sockeye salmon and 60 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. Trap operations began on March 7 and were terminated on June 4. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 10.8% less and wild Chinook salmon catch was 19.0% less than in 2003. The hatchery steelhead trout collection in 2004 was 20.0% less and wild steelhead trout collection was 22.3% less than the previous year. Trap operations began on March 7 and were terminated on May 28 due to high flows. There were two days when the trap was taken out of service because wild Chinook catch was very low, hatchery Chinook catch was very high, and the weekly quota of PIT tagged hatchery Chinook had been met. Travel time (d) and migration rate (km

  6. Seasonal variation exceeds effects of salmon carcass additions on benthic food webs in the Elwha River

    USGS Publications Warehouse

    Morley, S.A.; Coe, H.J.; Duda, J.J.; Dunphy, L.S.; McHenry, M.L.; Beckman, B.R.; Elofson, M.; Sampson, E. M.; Ward, L.

    2016-01-01

    Dam removal and other fish barrier removal projects in western North America are assumed to boost freshwater productivity via the transport of marine-derived nutrients from recolonizing Pacific salmon (Oncorhynchus spp.). In anticipation of the removal of two hydroelectric dams on the Elwha River in Washington State, we tested this hypothesis with a salmon carcass addition experiment. Our study was designed to examine how background nutrient dynamics and benthic food webs vary seasonally, and how these features respond to salmon subsidies. We conducted our experiment in six side channels of the Elwha River, each with a spatially paired reference and treatment reach. Each reach was sampled on multiple occasions from October 2007 to August 2008, before and after carcass placement. We evaluated nutrient limitation status; measured water chemistry, periphyton, benthic invertebrates, and juvenile rainbow trout (O. mykiss) response; and traced salmon-derived nutrient uptake using stable isotopes. Outside of winter, algal accrual was limited by both nitrogen and phosphorous and remained so even in the presence of salmon carcasses. One month after salmon addition, dissolved inorganic nitrogen levels doubled in treatment reaches. Two months after addition, benthic algal accrual was significantly elevated. We detected no changes in invertebrate or fish metrics, with the exception of 15N enrichment. Natural seasonal variability was greater than salmon effects for the majority of our response metrics. Yet seasonality and synchronicity of nutrient supply and demand are often overlooked in nutrient enhancement studies. Timing and magnitude of salmon-derived nitrogen utilization suggest that uptake of dissolved nutrients was favored over direct consumption of carcasses. The highest proportion of salmon-derived nitrogen was incorporated by herbivores (18–30%) and peaked 1–2 months after carcass addition. Peak nitrogen enrichment in predators (11–16%) occurred 2–3

  7. An Evaluation of the Effectiveness of Flow Augmentation in the Snake River, 1991-1995 : Phase I: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giorgi, Albert E.; Schlecte, J.Warren

    1997-07-01

    The purpose of this evaluation was to estimate the volume and shape of flow augmentation water delivered in the Snake Basin during the years 1991 through 1995, and to assess the biological consequences to ESA-listed salmon stocks in that drainage. HDR Engineering, Inc. calculated flow augmentation estimates and compared their values to those reported by agencies in the Northwest. BioAnalysts, Inc. conducted the biological evaluation.

  8. Biotic and abiotic influences on abundance and distribution of nonnative Chinook salmon and native ESA-listed steelhead in the Wind River, Washington

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.

    2015-01-01

    Biotic and abiotic factors influence fish populations and distributions. Concerns have been raised about the influence of hatchery fish on wild populations. Carson National Fish Hatchery produces spring Chinook salmon Oncorhynchus tshawytscha in the Wind River, Washington, and some spawn in the river. Managers were concerned that Chinook salmon could negatively affect wild steelhead O. mykiss and that a self-sustaining population of Chinook salmon may develop. Our objectives were to assess: 1) the distribution and populations of juvenile spring Chinook salmon and juvenile steelhead in the upper Wind River; 2) the influence of stream flow and of each population on the other; and 3) if Chinook salmon populations were self-sustaining. We snorkeled to determine distribution and abundance. Flow in the fall influenced upstream distribution and abundance of juvenile Chinook salmon. Juvenile Chinook salmon densities were consistently low (range 0.0 to 5.7 fish 100 m-2) and not influenced by number of spawners, winter flow magnitude, or steelhead abundance. Juvenile steelhead were distributed through the study section each year. Age-0 and age-1 steelhead densities (age-0 range: 0.04 to 37.0 fish 100 m-2; age-1 range: 0.02 to 6.21 fish 100 m-2) were consistently higher than for juvenile Chinook salmon. Steelhead spawner abundance positively influenced juvenile steelhead abundance. During this study, Chinook salmon in the Wind River appear to have had little effect on steelhead. Low juvenile Chinook salmon abundance and a lack of a spawner-to-juvenile relationship suggest Chinook salmon are not self-sustaining and potential for such a population is low under current conditions.

  9. Water-quality assessment of the upper Snake River basin, Idaho and western Wyoming; environmental setting, 1980-92

    USGS Publications Warehouse

    Maupin, Molly A.

    1995-01-01

    Idaho leads the Nation in trout production for commercial sale. Combined mean annual discharges from 12 aquacultural facilities in the basin (1985-90) were about 787,000 acre-feet. These facilities are clustered in a reach of the Snake River between Milner Dam and King Hill where ground-water discharge is from many seeps and springs that provide sufficient quantities of good-quality water. Other facilities that release effluent to the Snake River include 13 municipal wastewater treatment plants and 3 industrial facilities.

  10. Characteristics of fish assemblages and related environmental variables for streams of the upper Snake River basin, Idaho and western Wyoming, 1993-95

    USGS Publications Warehouse

    Maret, Terry R.

    1997-01-01

    limited designation for the middle reach of the Snake River between Milner Dam and King Hill and provide a framework for developing indices of biotic integrity by using fish assemblages to evaluate water quality of streams in the upper Snake River Basin.

  11. Population dynamics of the Concho water snake in rivers and reservoirs

    USGS Publications Warehouse

    Whiting, M.J.; Dixon, J.R.; Greene, B.D.; Mueller, J.M.; Thornton, O.W.; Hatfield, J.S.; Nichols, J.D.; Hines, J.E.

    2008-01-01

    The Concho Water Snake (Nerodia harteri paucimaculata) is confined to the Concho–Colorado River valley of central Texas, thereby occupying one of the smallest geographic ranges of any North American snake. In 1986, N. h. paucimaculata was designated as a federally threatened species, in large part because of reservoir projects that were perceived to adversely affect the amount of habitat available to the snake. During a ten-year period (1987–1996), we conducted capture–recapture field studies to assess dynamics of five subpopulations of snakes in both natural (river) and man-made (reservoir) habitats. Because of differential sampling of subpopulations, we present separate results for all five subpopulations combined (including large reservoirs) and three of the five subpopulations (excluding large reservoirs). We used multistate capture–recapture models to deal with stochastic transitions between pre-reproductive and reproductive size classes and to allow for the possibility of different survival and capture probabilities for the two classes. We also estimated both the finite rate of increase (λ) for a deterministic, stage-based, female-only matrix model using the average litter size, and the average rate of adult population change, λ ˆ, which describes changes in numbers of adult snakes, using a direct capture–recapture approach to estimation. Average annual adult survival was about 0.23 and similar for males and females. Average annual survival for subadults was about 0.14. The parameter estimates from the stage-based projection matrix analysis all yielded asymptotic values of λ < 1, suggesting populations that are not viable. However, the direct estimates of average adult λ for the three subpopulations excluding major reservoirs were λ ˆ  =  1.26, SE ˆ(λ ˆ)  =  0.18 and λ ˆ  =  0.99, SE ˆ(λ ˆ)  =  0.79, based on two different models. Thus, the direct estimation approach did not provide strong evidence of population

  12. Preliminary evaluation of the behavior and movements of adult spring Chinook salmon in the Chehalis River, southwestern Washington, 2014

    USGS Publications Warehouse

    Liedtke, Theresa L.; Hurst, William R.; Tomka, Ryan G.; Kock, Tobias J.; Zimmerman, Mara S.

    2017-01-30

    Recent interest in flood control and restoration strategies in the Chehalis River Basin has increased the need to understand the current status and ecology of spring Chinook salmon (Oncorhynchus tshawytscha). Spring Chinook salmon have the longest exposure of all adult Chinook salmon life histories to the low-flow and high water temperature conditions that typically occur during summer. About 100 adult spring Chinook salmon were found dead in the Chehalis River in July and August 2009. Adult Chinook salmon are known to hold in cool-water refugia during warm summer months, but the extent to which spring Chinook salmon might use thermal refugia in the Chehalis River is unknown. A preliminary evaluation of the movements and temperature exposures of adult spring Chinook salmon following their return to the Chehalis River was conducted using radiotelemetry and transmitters equipped with temperature sensors. A total of 12 spring Chinook salmon were captured, radio-tagged, and released in the main-stem Chehalis River between May and late June 2014. Tagged fish were monitored from freshwater entry through the spawning period using a combination of fixedsite monitoring locations and mobile tracking.Water temperature and flow conditions in the main-stem Chehalis River during 2014 were atypical compared to historical averages. Mean monthly water temperatures between March and August 2014 were higher than any decade since 1960 and mean monthly discharge was 90–206 percent of the discharge in previous years. Overall, 92 percent of the tagged fish were detected, with a mean of 102 d in the detection history of tagged fish. Seven tagged fish (58 percent) moved upstream, either shortly after release (5–8 d, 57 percent), or within about a month (34–35 d, 29 percent). One fish (14 percent) remained near the release location for 98 d before moving upstream. The final fates for the seven fish that moved upstream following release included six fish that were assigned a fate of

  13. Composition and relative abundance of fish species in the lower White Salmon River, Washington, prior to the removal of Condit Dam

    USGS Publications Warehouse

    Allen, M. Brady; Connolly, Patrick J.

    2011-01-01

    Information about the composition and relative abundance of fish species was collected by a rotary screw trap and backpack electrofishing in the lower White Salmon River, Washington. The information was collected downstream of Condit Dam, which is at river kilometer (rkm) 5.2, and is proposed for removal in October 2011. A rotary screw trap was installed in the White Salmon River at rkm 1.5 and operated from March through June during 2006–09. All captured fish were identified to species and enumerated. Daily subsets of fish were weighed, measured, and fin clipped for a genetic analysis by the U.S. Fish and Wildlife Service.Fall Chinook salmon (Oncorhynchus tshawytscha) were captured in the highest numbers (n=18, 640), and were composed of two stocks: tule and upriver bright. Almost all captured fall Chinook salmon were age-0, with only 16 (0.09 percent) being age-1 or older.Tule fall Chinook salmon, the native stock, generally out-migrated from mid-March through early April. The tule stock was the more abundant fall Chinook salmon subspecies, comprising 85 percent of those captured in the trap.Upriver bright fall Chinook salmon comprised 15 percent of the Chinook salmon catch and generally out-migrated from late May to early June.Coho salmon ( kisutch) and steelhead trout (O. mykiss) were captured by the rotary screw trap in all years. Coho salmon were caught in low numbers (n=661) and 69 percent were age-0 fish. Steelhead were slightly more abundant (n=679) than coho salmon and 84 percent were age-1 or older fish.Trap efficiency estimates varied widely (range, 0-10 percent) by species, fish size, and time of year. However, if we use only the estimates from efficiency tests where more than 300 wild age-0 Chinook salmon were released, there was a mean trapping efficiency of 1.4 percent (n=4, median, 1.3 percent, range, 0.3–2.4 percent) during the tule out-migration period, and a mean trapping efficiency of 0.8 percent (n=2, range, 0.3–1.2 percent) during the

  14. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Lofy, Peter T.

    2002-11-01

    This is the second annual report of a multi-year, multi-agency project to restore spring chinook salmon populations in the Grande Ronde River Basin (Grande Ronde Endemic Chinook Salmon Program--GRESCP). The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) operates adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to increase natural production and restore fisheries in these two streams. Statement of Work Objectives formore » 1999: (1) Participate in development and continued implementation of the comprehensive multi year operations plan for the Grande Ronde Endemic Supplementation Program. (2) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (3) Monitor adult endemic spring chinook salmon populations and collect broodstock. (4) Plan detailed Monitoring and Evaluation for future years. (5) Monitor population abundance and characteristics and local environmental factors that may influence abundance and run timing of Grande Ronde River spring chinook populations. (6) Participate in Monitoring and Evaluation of the captive brood component of the Program to assure this component is contributing to the Program. (7) Participate in data collection for incidentally-caught bull trout and summer steelhead and planning for recovery of summer steelhead populations. (8) Document accomplishments and needs to permitters, comanagers, and funding agencies. (9) Communicate project results to the scientific community.« less

  15. Migration behavior and dispersal of adult spring Chinook salmon released into Lake Scanewa on the upper Cowlitz River during 2005

    USGS Publications Warehouse

    Perry, R.W.; Kock, Tobias J.; Kritter , M.A; Rondorf, Dennis W.

    2007-01-01

    During 2005, we conducted a radio-telemetry study to answer a number of basic questions about the migration behavior of adult Spring Chinook salmon (Oncorhynchus tshawytscha) released into the upper Cowlitz River watershed. We also conducted a pilot study of adult Coho salmon (Oncorhynchus kisutch) using radio-tags recovered from adult spring Chinook salmon. This data is included as an Appendix. Our study was designed to evaluate the dispersal of adult spring Chinook salmon to determine the proportion of the run 1) spawning in the Cispus River, 2) spawning in the Cowlitz River, 3) passing downstream through Cowlitz Falls Dam into Riffe Lake, and 4) remaining in Lake Scanewa. We also examined spatial patterns of movement in the study area and temporal patterns of fish movements. Last, we examined differences in migration behavior between hatchery and wild fish and male and female fish.

  16. Copper, cadmium, and zinc concentrations in juvenile Chinook salmon and selected fish-forage organisms (aquatic insects) in the upper Sacramento River, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; Thompson, Larry D.; Walsh, Daniel

    2001-01-01

    This study assessed the downstream extent andseverity of copper (Cu), cadmium (Cd), and zinc (Zn)contamination from acid mine drainage on juvenile chinook salmon(Oncorhynchus tshawytscha) and aquatic insects over aroughly 270-km reach of the Sacramento River below KeswickReservoir. During April–May 1998, salmon were collected fromfour sites in the river and from a fish hatchery that receiveswater from Battle Creek. Salmon from river sites were examinedfor gut contents to document their consumption of variousinvertebrate taxa, whereas salmon from river sites and thehatchery were used for metal determinations. Midge(Chironomidae) and caddisfly (Trichoptera) larvae and mayfly(Ephemeroptera) nymphs were collected for metal determinationsduring April–June from river sites and from Battle and Buttecreeks. The fish hatchery and Battle and Butte creeks served asreference sites because they had no history of receiving minedrainage. Salmon consumed mostly midge larvae and pupae (44.0%,damp-dry biomass), caddisfly larvae (18.9%), Cladocera (5.8%),and mayfly nymphs (5.7%). These results demonstrated thatinsects selected for metal determinations were important as fishforage. Dry-weight concentrations of Cu, Cd, and Zn weregenerally far higher in salmon and insects from the river thanfrom reference sites. Within the river, high metalconcentrations persisted as far downstream as South Meridian (thelowermost sampling site). Maximum concentrations of Cd (30.7 μg g-1) and Zn (1230 μg g-1),but not Cu (87.4 μg g-1), in insects exceeded amounts that other investigators reported as toxic when fed for prolonged periods to juvenile salmonids.

  17. The Tempe volcanic province of Mars and comparisons with the Snake River Plains of Idaho

    NASA Technical Reports Server (NTRS)

    Plescia, J. B.

    1981-01-01

    The Tempe volcanic region of Mars, a relatively low plain of probable basaltic flood lava affinity, is shown to be comparable in many respects to features of the Snake River Plains of Idaho, including both scale and type of features observed. Superimposed upon the Tempe plain are a variety of features that appear structurally controlled, along an orientation of N60 deg E; comprising low shields, irregular hills that may be silicic domes, and possible composite cones. The Tempe/Snake River match is held to be the first in which direct comparison can be made between Martian and terrestrial geologic-geomorphic features without encountering problems of scale.

  18. Modeling chinook salmon with SALMOD on the Sacramento River, California

    USGS Publications Warehouse

    Bartholow, J.M.

    2004-01-01

    Four races of Pacific salmon crowd the Sacramento River below a large reservoir that prevents access to historical spawning grounds. Each race is keyed to spawn at specific times through the year. A salmon population model was used to estimate: (1) the effects that unique run timing, interacting with seasonal river flows and water temperatures, have on each race; and (2) which habitats appeared to be the most limiting for each race. The model appeared to perform well without substantive calibration. Late fall, winter, and spring run Chinook do not appear to have the same production potential as fall run Chinook even though fall run production is more variable than that for the other three races. Spring fish have the lowest production on average, and production appears to be declining through time, perhaps making that race harder to recover should the population become more depressed. Rearing habitat appears to be the factor most limiting production for all races, but water temperature is responsible for most year-to-year production variation.

  19. Spatial and temporal genetic structure of a river-resident Atlantic salmon (Salmo salar) after millennia of isolation

    PubMed Central

    Sandlund, Odd Terje; Karlsson, Sten; Thorstad, Eva B; Berg, Ole Kristian; Kent, Matthew P; Norum, Ine C J; Hindar, Kjetil

    2014-01-01

    The river-resident Salmo salar (“småblank”) has been isolated from other Atlantic salmon populations for 9,500 years in upper River Namsen, Norway. This is the only European Atlantic salmon population accomplishing its entire life cycle in a river. Hydropower development during the last six decades has introduced movement barriers and changed more than 50% of the river habitat to lentic conditions. Based on microsatellites and SNPs, genetic variation within småblank was only about 50% of that in the anadromous Atlantic salmon within the same river. The genetic differentiation (FST) between småblank and the anadromous population was 0.24. This is similar to the differentiation between anadromous Atlantic salmon in Europe and North America. Microsatellite analyses identified three genetic subpopulations within småblank, each with an effective population size Ne of a few hundred individuals. There was no evidence of reduced heterozygosity and allelic richness in contemporary samples (2005–2008) compared with historical samples (1955–56 and 1978–79). However, there was a reduction in genetic differentiation between sampling localities over time. SNP data supported the differentiation of småblank into subpopulations and revealed downstream asymmetric gene flow between subpopulations. In spite of this, genetic variation was not higher in the lower than in the upper areas. The meta-population structure of småblank probably maintains genetic variation better than one panmictic population would do, as long as gene flow among subpopulations is maintained. Småblank is a unique endemic island population of Atlantic salmon. It is in a precarious situation due to a variety of anthropogenic impacts on its restricted habitat area. Thus, maintaining population size and avoiding further habitat fragmentation are important. PMID:24967074

  20. Restitution and genetic differentiation of salmon populations in the southern Baltic genotyped with the Atlantic salmon 7K SNP array.

    PubMed

    Poćwierz-Kotus, Anita; Bernaś, Rafał; Kent, Matthew P; Lien, Sigbjørn; Leliűna, Egidijus; Dębowski, Piotr; Wenne, Roman

    2015-05-06

    Native populations of Atlantic salmon in Poland, from the southern Baltic region, became extinct in the 1980s. Attempts to restitute salmon populations in Poland have been based on a Latvian salmon population from the Daugava river. Releases of hatchery reared smolts started in 1986, but to date, only one population with confirmed natural reproduction has been observed in the Slupia river. Our aim was to investigate the genetic differentiation of salmon populations in the southern Baltic using a 7K SNP (single nucleotide polymorphism) array in order to assess the impact of salmon restitution in Poland. One hundred and forty salmon samples were collected from: the Polish Slupia river including wild salmon and individuals from two hatcheries, the Swedish Morrum river and the Lithuanian Neman river. All samples were genotyped using an Atlantic salmon 7K SNP array. A set of 3218 diagnostic SNPs was used for genetic analyses. Genetic structure analyses indicated that the individuals from the investigated populations were clustered into three groups i.e. one clade that included individuals from both hatcheries and the wild population from the Polish Slupia river, which was clearly separated from the other clades. An assignment test showed that there were no stray fish from the Morrum or Neman rivers in the sample analyzed from the Slupia river. Global FST over polymorphic loci was high (0.177). A strong genetic differentiation was observed between the Lithuanian and Swedish populations (FST = 0.28). Wild juvenile salmon specimens that were sampled from the Slupia river were the progeny of fish released from hatcheries and, most likely, were not progeny of stray fish from Sweden or Lithuania. Strong genetic differences were observed between the salmon populations from the three studied locations. Our recommendation is that future stocking activities that aim at restituting salmon populations in Poland include stocking material from the Lithuanian Neman river because of

  1. Streambed scour of salmon spawning habitat in a regulated river influenced by management of peak discharge

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Burton, Karl D.; Magirl, Christopher S.; Konrad, Christopher P.

    2017-01-01

    In the Pacific Northwest of the United States, salmon eggs incubating within streambed gravels are susceptible to scour during floods. The threat to egg-to-fry survival by streambed scour is mitigated, in part, by the adaptation of salmon to bury their eggs below the typical depth of scour. In regulated rivers globally, we suggest that water managers consider the effect of dam operations on scour and its impacts on species dependent on benthic habitats.We instrumented salmon-spawning habitat with accelerometer scour monitors (ASMs) at 73 locations in 11 reaches of the Cedar River in western Washington State of the United States from Autumn 2013 through the Spring of 2014. The timing of scour was related to the discharge measured at a nearby gage and compared to previously published ASM data at 26 locations in two reaches of the Cedar River collected between Autumn 2010 and Spring 2011.Thirteen percent of the recovered ASMs recorded scour during a peak-discharge event in March 2014 (2-to 3-year recurrence interval) compared to 71% of the recovered ASMs during a higher peak-discharge event in January 2011 (10-year recurrence interval). Of the 23 locations where ASMs recorded scour during the 2011 and 2014 deployments, 35% had scour when the discharge was ≤87.3 m3/s (3,082 ft3/s) (2-year recurrence interval discharge) with 13% recording scour at or below the 62.3 m3/s (2,200 ft3/s) operational threshold for peak-discharge management during the incubation of salmon eggs.Scour to the depth of salmon egg pockets was limited during peak discharges with frequent (1.25-year or less) recurrence intervals, which managers can regulate through dam operations on the Cedar River. Pairing novel measurements of the timing of streambed scour with discharge data allows the development of peak-discharge management strategies that protect salmon eggs incubating within streambed gravels during floods.

  2. Role of lake regulation on glacier fed rivers in enhancing salmon productivity: The Cook Inlet watershed south central Alaska, USA

    USGS Publications Warehouse

    Hupp, C.R.

    2000-01-01

    Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation. Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat. Copyright ?? 2000 John Wiley & Sons, Ltd.Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet

  3. Suspended- and bedload-sediment transport in the Snake and Clearwater rivers in the vicinity of Lewiston, Idaho, August 1976 through July 1978

    USGS Publications Warehouse

    Jones, Michael L.; Seitz, Harold R.

    1979-01-01

    correct for sampler efficiency. An analysis of the middle Snake River streamflow record was made during 1977. The streamflow rating for the Snake River near Anatone, Washington, gage was found to be in error at high stages. The streamflow record for water years 1974 and 1975 was revised and published with 1976 water-year data (Water Resources Data for Idaho, Water Year 1976). The revised Snake River near Anatone streamflow rating was used to recompute the sediment-discharge rating curve (fig. 3). This study program is funded by the USACE through a cooperative agreement with the USGS. All field work, laboratory analysis, and compilation of data are being conducted by the USGS. Data collection is scheduled to terminate at the end of the 1979 runoff season. A reanalysis of all data collected since the start of the program will correct all provisional records since 1972, including the 1974, 1975, and 1976 years for the Snake River near Anatone station.

  4. Distribution, persistence, and hydrologic characteristics of salmon spawning habitats in clearwater side channels of the Matanuska River, southcentral Alaska

    USGS Publications Warehouse

    Curran, Janet H.; McTeague, Monica L.; Burril, Sean E.; Zimmerman, Christian E.

    2011-01-01

    Turbid, glacially influenced rivers are often considered to be poor salmon spawning and rearing habitats and, consequently, little is known about salmon habitats that do occur within rivers of this type. To better understand salmon spawning habitats in the Matanuska River of southcentral Alaska, the distribution and characteristics of clearwater side-channel spawning habitats were determined and compared to spawning habitats in tributaries. More than 100 kilometers of clearwater side channels within the braided mainstem of the Matanuska River were mapped for 2006 from aerial images and ground-based surveys. In reaches selected for historical analysis, side channel locations shifted appreciably between 1949 and 2006, but the relative abundance of clearwater side channels was fairly stable during the same period. Geospatial analysis of side channel distribution shows side channels typically positioned along abandoned bars at the braid plain margin rather than on bars between mainstem channels, and shows a strong correlation of channel abundance with braid plain width. Physical and geomorphic characteristics of the channel and chemical character of the water measured at 19 side channel sites, 6 tributary sites, 4 spring sites, and 5 mainstem channel sites showed conditions suitable for salmon spawning in side channels and tributaries, and a correlation of side channel characteristics with the respective tributary or groundwater source water. Autumn-through-spring monitoring of intergravel water temperatures adjacent to salmon redds (nests) in three side channels and two tributaries indicate adequate accumulated thermal units for incubation and emergence of salmon in side channels and relatively low accumulated thermal units in tributaries.

  5. Low productivity of Chinook salmon strongly correlates with high summer stream discharge in two Alaskan rivers in the Yukon drainage

    USGS Publications Warehouse

    Neuswanger, Jason R.; Wipfli, Mark S.; Evenson, Matthew J.; Hughes, Nicholas F.; Rosenberger, Amanda E.

    2015-01-01

    Yukon River Chinook salmon (Oncorhynchus tshawytscha) populations are declining for unknown reasons, creating hardship for thousands of stakeholders in subsistence and commercial fisheries. An informed response to this crisis requires understanding the major sources of variation in Chinook salmon productivity. However, simple stock–recruitment models leave much of the variation in this system’s productivity unexplained. We tested adding environmental predictors to stock–recruitment models for two Yukon drainage spawning streams in interior Alaska — the Chena and Salcha rivers. Low productivity was strongly associated with high stream discharge during the summer of freshwater residency for young-of-the-year Chinook salmon. This association was more consistent with the hypothesis that sustained high discharge negatively affects foraging conditions than with acute mortality during floods. Productivity may have also been reduced in years when incubating eggs experienced major floods or cold summers and falls. These freshwater effects — especially density dependence and high discharge — helped explain population declines in both rivers. They are plausible as contributors to the decline of Chinook salmon throughout the Yukon River drainage.

  6. Movements of adult chinook salmon during spawning migration in a metals-contaminated system, Coeur d'Alene River, Idaho

    USGS Publications Warehouse

    Goldstein, J.N.; Woodward, D.F.; Farag, A.M.

    1999-01-01

    Spawning migration of adult male chinook salmon Oncorhynchus tshawytscha was monitored by radio telemetry to determine their response to the presence of metals contamination in the South Fork of the Coeur d'Alene River, Idaho. The North Fork of the Coeur d'Alene River is relatively free of metals contamination and was used as a control. In all, 45 chinook salmon were transported from their natal stream, Wolf Lodge Creek, tagged with radio transmitters, and released in the Coeur d'Alene River 2 km downstream of the confluence of the South Fork and the North Fork of the Coeur d'Alene River. Fixed telemetry receivers were used to monitor the upstream movement of the tagged chinook salmon through the confluence area for 3 weeks after release. During this period, general water quality and metals concentrations were monitored in the study area. Of the 23 chinook salmon observed to move upstream from the release site and through the confluence area, the majority (16 fish, 70%) moved up the North Fork, and only 7 fish (30%) moved up the South Fork, where greater metals concentrations were observed. Our results agree with laboratory findings and suggest that natural fish populations will avoid tributaries with high metals contamination.

  7. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buettner, Edwin W.; Putnam, Scott A.

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon O. nerka smolts during the 2003 spring out-migration at migrant traps on the Snake River and Salmon River. In 2003 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 2.1 times less in 2003 than in 2002.more » The wild Chinook catch was 1.1 times less than the previous year. Hatchery steelhead trout catch was 1.7 times less than in 2002. Wild steelhead trout catch was 2.1 times less than the previous year. The Snake River trap collected 579 age-0 Chinook salmon of unknown rearing. During 2003, the Snake River trap captured five hatchery and 13 wild/natural sockeye salmon and 36 coho salmon O. kisutch of unknown rearing. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant differences in catch between 2003 and the previous year were due mainly to low flows during much of the trapping season and then very high flows at the end of the season, which terminated the trapping season 12 days earlier than in 2002. Trap operations began on March 9 and were terminated on May 27. The trap was out of operation for a total of zero days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 16.8% less and wild Chinook salmon catch was 1.7 times greater than in 2002. The hatchery steelhead trout collection in 2003 was 5.6% less than in 2002. Wild steelhead trout collection was 19.2% less than the previous year. Trap operations began on March 9 and were terminated on May 24 due

  8. The angler specialization concept applied: New York’s Salmon River anglers

    Treesearch

    Chad P. Dawson; Tommy L. Brown; Nancy Connelly

    1992-01-01

    The concept of angler specialization was applied to a study of Salmon River anglers to test this concept when using a variety of angling techniques and two species groups within the same environmental setting. A revision of the concept is suggested to account for angler expectancy and cognitive processes.

  9. Variation in the population structure of Yukon River chum and coho salmon: Evaluating the potential impact of localized habitat degradation

    USGS Publications Warehouse

    Olsen, J.B.; Spearman, William J.; Sage, G.K.; Miller, S.J.; Flannery, B.G.; Wenburg, J.K.

    2004-01-01

    We used microsatellite and mitochondrial DNA-restriction fragment length polymorphism (mtDNA-RFLP) analyses to test the hypothesis that chum salmon Oncorhynchus keta and coho salmon O. kisutch in the Yukon River, Alaska, exhibit population structure at differing spatial scales. If the hypothesis is true, then the risk of losing genetic diversity because of habitat degradation from a gold mine near a Yukon River tributary could differ between the two species. For each species, collections were made from two tributaries in both the Innoko and Tanana rivers, which are tributaries to the lower and middle Yukon River. The results revealed a large difference in the degree and spatial distribution of population structure between the two species. For chum salmon, the microsatellite loci (F-statistic [FST] = 0.021) and mtDNA (F ST = -0.008) revealed a low degree of interpopulation genetic diversity on a relatively large geographic scale. This large-scale population structure should minimize, although not eliminate, the risk of genetic diversity loss due to localized habitat degradation. For coho salmon, the microsatellites (FST = 0.091) and mtDNA (FST = 0.586) revealed a high degree of interpopulation genetic diversity on a relatively small geographic scale. This small-scale population structure suggests that coho salmon are at a relatively high risk of losing genetic diversity due to lo-calized habitat degradation. Our study underscores the importance of a multispecies approach for evaluating the potential impact of land-use activities on the genetic diversity of Pacific salmon.

  10. Diel spawning behavior of chum salmon in the Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Skalicky, J.J.

    2005-01-01

    We conducted a study during 2003 in a side channel of the Columbia River downstream of Bonneville Dam to describe the diel spawning behavior of wild chum salmon Oncorhynchus keta. We collected observational data on 14 pairs of chum salmon using a dual-frequency identification sonar. Spawners of both genders were observed chasing intruders during nighttime and daytime as nests were constructed. Regardless of diel period, females were engaged in digging to both construct nests and cover eggs, and courting males exhibited the prespawning behavior of tail-crossing. We observed a total of 13 spawning events, of which 9 occurred at night and 4 occurred during the day. Once chum salmon begin nest construction, visual cues are apparently not required for courtship, nest defense, and spawning. To enhance successful spawning, flows from Bonneville Dam during the spawning season were reduced during the day but were sometimes increased at night to pass water and meet power demand (i.e., reverse loading), the assumption being that chum salmon are inactive at night. Our findings show that this assumption was violated. Therefore, reverse loading may disrupt the complex prespawning behavior that occurs both during the day and at night, as well as attract spawners to areas that were dewatered during the day.

  11. Fish assemblages and environmental correlates in least-disturbed streams of the upper Snake River basin

    USGS Publications Warehouse

    Maret, T.R.; Robinson, C.T.; Minshall, G.W.

    1997-01-01

    Fish assemblages and environmental variables were evaluated from 37 least-disturbed, 1st- through 6th-order streams and springs in the upper Snake River basin, western USA. Data were collected as part of the efforts by the U.S. Geological Survey National Water Quality Assessment Program and the Idaho State University Stream Ecology Center to characterize aquatic biota and associated habitats in least-disturbed coldwater streams. Geographically, the basin comprises four ecoregions. Environmental variables constituting various spatial scales, from watershed characteristics to in stream habitat measures, were used to examine distribution patterns in fish assemblages. Nineteen fish species in the families Salmonidae, Cottidae, Cyprinidae, and Catostemidae were collected. Multivariate analyses showed high overlap in stream fish assemblages among the ecoregions. Major environmental factors determining species distributions in the basin were stream gradient, watershed size, conductivity, and percentage of the watershed covered by forest. Lowland streams (below 1,600 m in elevation), located mostly in the Snake River Basin/High Desert ecoregion, displayed different fish assemblages than upland streams (above 2,000 m elevation) in the Northern Rockies, Middle Rockies, and Northern Basin and Range ecoregions. For example, cotrids were not found in streams above 2,000 m in elevation. In addition, distinct fish assemblages were found in tributaries upstream and downstream from the large waterfall, Shoshone Falls, on the Snake River. Fish metrics explaining most of the variation among sites included the total number of species, number of native species, number of salmonid species, percent introduced species, percent cottids, and percent salmonids. Springs also exhibited different habitat conditions and fish assemblages than streams. The data suggest that the evolutionary consequences of geographic features and fish species introductions transcend the importance of ecoregion

  12. Abundance, Timing of Migration, and Egg-to-Smolt Survival of Juvenile Chum Salmon, Kwethluk River, Alaska, 2007 and 2008

    USGS Publications Warehouse

    Burril, Sean E.; Zimmerman, Christian E.; Finn, James E.; ,; Gillikin, Daniel; ,

    2010-01-01

    To better understand and partition mortality among life stages of chum salmon (Oncorhynchus keta), we used inclined-plane traps to monitor the migration of juveniles in the Kwethluk River, Alaska in 2007 and 2008. The migration of juvenile chum salmon peaked in mid-May and catch rates were greatest when water levels were rising. Movement of chum salmon was diurnal with highest catch rates occurring during the hours of low light (that is, 22:00 to 10:00). Trap efficiency ranged from 0.37 to 4.04 percent (overall efficiency = 1.94 percent). Total abundance of juvenile chum salmon was estimated to be 2.0 million fish in 2007 and 2.9 million fish in 2008. On the basis of the estimate of chum salmon females passing the Kwethluk River weir and age-specific fecundity, we estimated the potential egg deposition (PED) upstream of the weir and trapping site. Egg-to-smolt survival, calculated by dividing the estimate of juvenile chum salmon emigrating past the weir site by the estimate of PED, was 4.6 percent in 2007 and 5.2 percent in 2008. In addition to chum salmon, Chinook salmon O. tshawytscha), coho salmon (O. kisutch), sockeye salmon (O. nerka), and pink salmon (O. gorbuscha), as well as ten other fish species, were captured in the traps. As with chum salmon, catch of these species increased during periods of increasing discharge and peaked during hours of low light. This study successfully determined the characteristics of juvenile salmon migrations and estimated egg-to-smolt survival for chum salmon. This is the first estimate of survival for any juvenile salmon in the Arctic-Yukon-Kuskokwim region of Alaska and demonstrates an approach that can help to partition mortality between freshwater and marine life stages, information critical to understanding the dynamics of salmon in this region.

  13. Appendix A The influence of junction hydrodynamics on entrainment of juvenile salmon into the interior Sacramento-San Joaquin River Delta

    NASA Astrophysics Data System (ADS)

    Ramón Casañas, Cintia; Burau, Jon; Blake, Aaron; Acosta, Mario; Rueda, Francisco

    2017-04-01

    River junctions where water may follow two or more alternative pathways (diffluences) could be critical points in river networks where aquatic migratory species select different migration routes. Federally listed Sacramento River Chinook salmon juveniles must survive passage through the tidal Sacramento - San Joaquin River Delta in order to successfully out-migrate to the ocean. Two of the four main migration routes identified for salmon in the Sacramento River direct them to the interior of the delta, where salmon survival is known to decrease dramatically. Migration route selection is thought to be advection-dominated, but the combination of physical and biological processes that control route selection is still poorly understood. The reach in the Sacramento-River where the entrances of the two lower-survival migration routes are located is strongly influenced by the tides, with flows reversing twice daily, and the two diffluences are located in the outside of the same Sacramento River bend where secondary circulation occurs. Three dimensional simulations are conducted, both in the Eularian and Lagrangian frame, to understand tidal and secondary-circulation effects on the migration route selection of juveniles within this reach of the Sacramento River. Although salmon behavior is reduced to the simplest (passively-driven neutrally-buoyant particles), the preliminary results here presented are consistent with previous studies that show that during the flood tide almost all the flow, and thus, all the salmon, are directed to the interior delta through these two migration routes. Simulated fish entrainment rates into the interior of the delta tend to be larger than those expected from flow entrainment calculations alone, particularly during ebb tides. Several factors account for these tendencies. First, the fraction of the flow diverted to the side channel in the shallowest layers tend to be higher than in the deeper layers, as a result of the secondary circulation

  14. Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillson, Todd D.

    2002-10-01

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River chum as threatened under the auspices of the Endangered Species Act (ESA) in March of 1999 (64 FR 14508, March 25, 1999). The listing was in response to reduction in abundance from historical levels of more than half a million returning adults to fewer than 10,000 spawners present day (Johnson et al. 1997). Harvest, loss of habitat, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for the decline in this species in the Columbia River. The timing of seasonal changes in river flow and watermore » temperatures is perhaps the most critical factor in structuring the freshwater life history of chum salmon (Johnson et al. 1997). This is especially true of the population located directly below Bonneville Dam where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. The recovery strategy for Lower Columbia River chum as outlined in the Hatchery Genetic Management Plan (HGMP) for the Grays River project has four main tasks. First, determine if remnant populations of Lower Columbia River chum salmon exist in Lower Columbia River tributaries. Second, if such populations exist, develop stock-specific recovery plans that would involve habitat restoration including the creation of spawning refugias, supplementation if necessary and a habitat and fish monitoring and evaluation plan. If chum have been extirpated from previously utilized streams, develop re-introduction plans that utilize appropriate genetic donor stock(s) of Lower Columbia River chum salmon and integrate habitat improvement and fry-to-adult survival evaluations. Third, reduce the extinction risk to Grays River chum salmon population by randomly capturing adults in the basin for use in a supplementation program and reintroduction of Lower Columbia River chum salmon into the Chinook River

  15. Salmon as drivers of physical and biological disturbance in river channels

    NASA Astrophysics Data System (ADS)

    Albers, S. J.; Petticrew, E. L.

    2012-04-01

    Large migrations across landscapes and ecosystem boundaries combined with disturbances of riverine spawning habitats through nest construction indicate the huge potential that Pacific salmon (Onchorhynchus sp.) have to disturb and alter regional energy flow. Nutrients derived from ocean-reared dead and decaying salmon are released into surrounding aquatic ecosystems fertilizing the water column, recently disturbed by increased suspended sediments due to nest construction. These opposing forces of disturbance and fertilization on spawning habitat have been demonstrated to impact local geomorphic and ecological cycles within salmon streams. An often cited, yet not fully tested, hypothesis is that this pulse of nutrients provided by decaying salmon can shift freshwater habitats to higher production levels. This hypothesis, however, remains contested and uncertain. Fine sediments are increasingly being recognized as important delivery and storage vectors for marine-derived nutrients (MDNs) in spawning streams. The temporal and spatial significance of these sediment vectors on gravelbed storage of MDN have not been quantified thereby restricting our ability to estimate the impact of gravelbed storage of MDNs on the riverine habitats. The objectives of this study were to i) quantify the magnitude of sediment deposition and retention in an active spawning area and ii) determine the contribution of MDN associated with the fine sediment storage. The Horsefly River spawning channel (HFC), an artificial salmon stock enhancement stream, was used to examine the biogeomorphic impacts of salmon spawning. We organized the HFC in an upstream-downstream paired treatment approach where the upstream enclosure was kept free of salmon and the downstream enclosure was loaded with actively spawning salmon. We used the difference in suspended sediment concentration between the salmon enclosure and the control enclosure to determine the contribution of salmon nest construction to suspended

  16. Snake River fall Chinook salmon life history investigations: Annual report 2011 (April 2011 - March 2012)

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Connor, William P.; Bellgraph, Brian J.; Kock, Tobias J.; Mullins, Frank; Steinhorst, R. Kirk; Christiansen, Helena E.; McCormick, Stephen D.; Ortega, Lori A.; Carter, Kathleen M.; Arntzen, Evan V.; Klett, Katherine J.C.; Deng, Z. Daniel; Abel, Tylor K.; Linley, Timothy J.; Cullinan, Valerie I.; St John, Scott J.; Erhardt, John M.; Bickford, Brad; Schmidt, Amanda; Rhodes, Tobyn N.

    2013-01-01

    Chapter Four – We conducted monthly beam trawling in Lower Granite and Little Goose reservoirs to describe the seasonal abundance of benthic epifauna that are potentially important as prey to juvenile fall Chinook salmon. The predominant taxa collected were Siberian prawns, the opossum shrimp Neomysis mercedis, and the amphipod Corophium sp. Prawns were relatively abundant at shallow sites in both reservoirs in June, but were more abundant at deep sites in lower and middle reservoir reaches in autumn. Prawn densities were commonly <0.2/m2. Prawn length-frequency data indicated that there were at least two size classes. Juvenile prawns present in shallow water more often than adult prawns, which were generally only found in deep water by autumn. Ovigerous prawns had an average of 171 eggs, which represented about 11.5% of their body weight. Limited diet analyses suggested that prawns consumed Corophium, Neomysis, and aquatic insects. Neomysis dominated all catches both in terms of abundance and biomass, and they were more abundant in Lower Granite compared to Little Goose reservoir. Neomysis were more abundant at shallow sites than at deep sites. Corophium were present in our collections but were never abundant, probably because our trawl was not effective at capturing them. The caloric content of prawns (4,782 Kcal), Neomysis (4,962 Kcal), and Corophium (4,926 Kcal) indicates that these prey would be energetically profitable for juvenile salmon. Subyearling fall Chinook salmon prey heavily on Neomysis and Corophium at times, but the importance of prawns as prey is uncertain.

  17. A review of crust and upper mantle structure studies of the Snake River Plain-Yellowstone volcanic system: A major lithospheric anomaly in the western U.S.A.

    USGS Publications Warehouse

    Iyer, H.M.

    1984-01-01

    The Snake River Plain-Yellowstone volcanic system is one of the largest, basaltic, volcanic field in the world. Here, there is clear evidence for northeasterly progression of rhyolitic volcanism with its present position in Yellowstone. Many theories have been advanced for the origin of the Snake River Plain-Yellowstone system. Yellowstone and Eastern Snake River Plain have been studied intensively using various geophysical techniques. Some sparse geophysical data are available for the Western Snake River Plain as well. Teleseismic data show the presence of a large anomalous body with low P- and S-wave velocities in the crust and upper mantle under the Yellowstone caldera. A similar body in which compressional wave velocity is lower than in the surrounding rock is present under the Eastern Snake River Plain. No data on upper mantle anomalies are available for the Western Snake River Plain. Detailed seismic refraction data for the Eastern Snake River Plain show strong lateral heterogeneities and suggest thinning of the granitic crust from below by mafic intrusion. Available data for the Western Snake River Plain also show similar thinning of the upper crust and its replacement by mafic material. The seismic refraction results in Yellowstone show no evidence of the low-velocity anomalies in the lower crust suggested by teleseismic P-delay data and interpreted as due to extensive partial melting. However, the seismic refraction models indicate lower-than-normal velocities and strong lateral inhomogeneities in the upper crust. Particularly obvious in the refraction data are two regions of very low seismic velocities near the Mallard Eake and Sour Creek resurgent domes in the Yellowstone caldera. The low-velocity body near the Sour Creek resurgent dome is intepreted as partially molten rock. Together with other geophysical and thermal data, the seismic results indicate that a sub-lithospheric thermal anomaly is responsible for the time-progressive volcanism along the

  18. Maximum Neutral Buoyancy Depth of Juvenile Chinook Salmon: Implications for Survival during Hydroturbine Passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pflugrath, Brett D.; Brown, Richard S.; Carlson, Thomas J.

    This study investigated the maximum depth at which juvenile Chinook salmon Oncorhynchus tshawytscha can acclimate by attaining neutral buoyancy. Depth of neutral buoyancy is dependent upon the volume of gas within the swim bladder, which greatly influences the occurrence of injuries to fish passing through hydroturbines. We used two methods to obtain maximum swim bladder volumes that were transformed into depth estimations - the increased excess mass test (IEMT) and the swim bladder rupture test (SBRT). In the IEMT, weights were surgically added to the fishes exterior, requiring the fish to increase swim bladder volume in order to remain neutrallymore » buoyant. SBRT entailed removing and artificially increasing swim bladder volume through decompression. From these tests, we estimate the maximum acclimation depth for juvenile Chinook salmon is a median of 6.7m (range = 4.6-11.6 m). These findings have important implications to survival estimates, studies using tags, hydropower operations, and survival of juvenile salmon that pass through large Kaplan turbines typical of those found within the Columbia and Snake River hydropower system.« less

  19. Organochlorine compounds and trace elements in fish tissue and bed sediments in the lower Snake River basin, Idaho and Oregon

    USGS Publications Warehouse

    Clark, Gregory M.; Maret, Terry R.

    1998-01-01

    Fish-tissue and bed-sediment samples were collected to determine the occurrence and distribution of organochlorine compounds and trace elements in the lower Snake River Basin. Whole-body composite samples of suckers and carp from seven sites were analyzed for organochlorine compounds; liver samples were analyzed for trace elements. Fillets from selected sportfish were analyzed for organochlorine compounds and trace elements. Bed-sediment samples from three sites were analyzed for organochlorine compounds and trace elements. Twelve different organochlorine compounds were detected in 14 fish-tissue samples. All fish-tissue samples contained DDT or its metabolites. Concentrations of total DDT ranged from 11 micrograms per kilogram wet weight in fillets of yellow perch from C.J. Strike Reservoir to 3,633 micrograms per kilogram wet weight in a whole-body sample of carp from Brownlee Reservoir at Burnt River. Total DDT concentrations in whole-body samples of sucker and carp from the Snake River at C.J. Strike Reservoir, Snake River at Swan Falls, Snake River at Nyssa, and Brownlee Reservoir at Burnt River exceeded criteria established for the protection of fish-eating wildlife. Total PCB concentrations in a whole-body sample of carp from Brownlee Reservoir at Burnt River also exceeded fish-eating wildlife criteria. Concentrations of organochlorine compounds in whole-body samples, in general, were larger than concentrations in sportfish fillets. However, concentrations of dieldrin and total DDT in fillets of channel catfish from the Snake River at Nyssa and Brownlee Reservoir at Burnt River, and concentrations of total DDT in fillets of smallmouth bass and white crappie from Brownlee Reservoir at Burnt River exceeded a cancer risk screening value of 10-6 established by the U.S. Environmental Protection Agency. Concentrations of organochlorine compounds in bed sediment were smaller than concentrations in fish tissue. Concentrations of p,p'DDE, the only compound detected

  20. Sediment-Basalt Architecture, Pliocene and Pleistocene Eastern and Central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Helm-Clark, C. M.; Link, P. K.

    2006-12-01

    This presentation is a synthesis of known stratigraphic studies of the Pliocene, Pleistocene and Holocene basalts and interbedded sedimentary beds on the Eastern Snake River Plain (ESRP). This information is important for understanding the post-caldera tectonic evolution of the ESRP, especially for tracking patterns of volcanic eruption and changes in topography. Geophysical surveys and existing well logs indicate the depth of the basalt sequence is usually 2 km or less, even near the axis of the Plain. An alteration horizon, the product of high heat-flow in the wake of the Yellowstone hot spot, moderated by cold-water recharge in the thick and highly-transmissive Snake River Aquifer, has variable depth. The surface and near-surface of the lava fields are mainly basalts less than a half a million years old, from Island Park to Twin Falls/Shoshone. Near the junction of the Eastern and Western Snake River Plains, these youngest late Pleistocene basalts, many less than 100,000 years old, overlie early Pleistocene basalts more than a million and a half years old. Most basalt flows have been erupted from NW-trending volcanic rift zones like the Great Rift of Idaho or from the Axial Volcanic High (AVH). The AVH is a constructional axial ridge formed by multiple volcanic vents, small shield volcanoes and rhyolitic domes which run the length of the ESRP. A combination of previous and new stratigraphic and geochronology studies, including U-Pb detrital-zircon geochronology on sediments, reveals several lake sequences, formed by the damming of rivers. These tend to be thickest in upstream, valley-mouth, and Plain-marginal locations where the rivers were trapped. The lake beds generally pinch out toward the AVH. The most notable of these are the Mid-Pleistocene Raft Formation, the Late Pleistocene American Falls Lake Beds, at least two mid-Pleistocene sequences of ponded sediment from the Big Lost River at its egress onto the ESRP, and a 2.5 to 1.6 Ma sequence in the Big Lost

  1. Major sources of nitrogen input and loss in the upper Snake River basin, Idaho and western Wyoming, 1990

    USGS Publications Warehouse

    Rupert, Michael

    1996-01-01

    A mass balance of total nitrogen input and loss in Gooding, Jerome, Lincoln, and Twin Falls Counties suggests that more than 6,000,000 kg (6,600 tons) of total nitrogen is input in this four-county area than is discharged by the Snake River. This excess nitrogen probably is utilized by aquatic vegetation in the Snake River (causing eutrophication), stored as nitrogen in soil, stored as nitrate in the ground water and eventually discharged through the springs, utilized by noncrop vegetation, and lost through denitrification.

  2. White sturgeon spawning areas in the lower Snake River

    USGS Publications Warehouse

    Parsley, M.J.; Kappenman, K.M.

    2000-01-01

    We documented 17 white sturgeon Acipenser transmontanus spawning locations in the Snake River from the mouth to Lower Granite Dam (river km 0 to 173). Spawning locations were determined by the collection of fertilized eggs on artificial substrates or in plankton nets. We collected 245 eggs at seven locations in McNary Reservoir, 22 eggs at three locations in Ice Harbor Reservoir, 30 eggs from two locations in Lower Monumental Reservoir, and 464 eggs at five locations in Little Goose Reservoir. All 17 locations were in high water velocity areas and between 1.0 and 7.0 km downstream from a hydroelectric dam. The documentation of spawning areas is important because this habitat is necessary to maintain natural and viable populations.

  3. Evaluation of the 2008 Predictions of Run-Timing and Survival of Wild Migrant Yearling Chinook and Steelhead on the Columbia and Snake Rivers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, W. Nicholas; Iltis, Susannah; Anderson, James J.

    2009-01-01

    Columbia Basin Research uses the COMPASS model on a daily basis during the outmigration of Snake River Chinook and steelhead smolts to predict downstream passage and survival. Fish arrival predictions and observations from program RealTime along with predicted and observed environmental conditions are used to make in-season predictions of arrival and survival to various dams in the Columbia and Snake Rivers. For 2008, calibrations of travel and survival parameters for two stocks of fish-Snake River yearling PIT-tagged wild chinook salmon (chin1pit) and Snake River PIT-tagged steelhead (lgrStlhd)-were used to model travel and survival of steelhead and chinook stocks from Lowermore » Granite Dam (LWG) or McNary Dam (MCN) to Bonneville Dam (BON). This report summarizes the success of the COMPASS/RealTime process to model these migrations as they occur. We compared model results on timing and survival to data from two sources: stock specific counts at dams and end-of-season control survival estimates (Jim Faulkner, NOAA, pers. comm. Dec. 16, 2008). The difference between the predicted and observed day of median passage and the Mean Absolute Deviation (MAD) between predicted and observed arrival cumulative distributions are measures of timing accuracy. MAD is essentially the average percentage error over the season. The difference between the predicted and observed survivals is a measure of survival accuracy. Model results and timing data were in good agreement from LWG to John Day Dam (JDA). Predictions of median passage days for the chin1pit and lgrStlhd stocks were 0 and 2 days (respectively) later than observed. MAD for chin1pit and lgrStlhd stocks at JDA were 2.3% and 5.9% (respectively). Between JDA and BON modeling and timing data were not as well matched. At BON, median passage predictions were 6 and 10 days later than observed and MAD values were 7.8% and 16.0% respectively. Model results and survival data were in good agreement from LWG to MCN. COMPASS

  4. Analyzing the Impacts of Dams on Riparian Ecosystems: A Review of Research Strategies and Their Relevance to the Snake River Through Hells Canyon

    PubMed Central

    Braatne, Jeffrey H.; Goater, Lori A.; Blair, Charles L.

    2007-01-01

    River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies. PMID:18043964

  5. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam; Smolt Monitoring by Federal and Non-Federal Entities, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buettner, Edwin W.; Putnam, Scott A.

    This project monitored the daily passage of chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2001 spring out-migration at migrant traps on the Snake River and Salmon River. In 2001 fish management agencies released significant numbers of hatchery chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery chinook salmon catch at the Snake River trap was 11% of the 2000 numbers. The wild chinookmore » catch was 3% of the previous year's catch. Hatchery steelhead trout catch was 49% of 2000 numbers. Wild steelhead trout catch was 69% of 2000 numbers. The Snake River trap collected 28 age-0 chinook salmon. During 2001 the Snake River trap captured zero hatchery and zero wild/natural sockeye salmon and six hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant reduction in catch during 2001 was due to a reduction in hatchery chinook production (60% of 2000 release) and due to extreme low flows. Trap operations began on March 11 and were terminated on June 29. The trap was out of operation for a total of two days due to mechanical failure or debris. Hatchery chinook salmon catch at the Salmon River trap was 47% and wild chinook salmon catch was 67% of 2000 numbers. The hatchery steelhead trout collection in 2001 was 178% of the 2000 numbers. Wild steelhead trout collection in 2001 was 145% of the previous year's catch. Trap operations began on March 11 and were terminated on June 8 due to the end of the smolt monitoring season. There were no days where the trap was out of operation due to high flow or debris. The decrease in hatchery chinook catch in 2001 was

  6. Use of surrogate technologies to estimate suspended sediment in the Clearwater River, Idaho, and Snake River, Washington, 2008-10

    USGS Publications Warehouse

    Wood, Molly S.; Teasdale, Gregg N.

    2013-01-01

    Elevated levels of fluvial sediment can reduce the biological productivity of aquatic systems, impair freshwater quality, decrease reservoir storage capacity, and decrease the capacity of hydraulic structures. The need to measure fluvial sediment has led to the development of sediment surrogate technologies, particularly in locations where streamflow alone is not a good estimator of sediment load because of regulated flow, load hysteresis, episodic sediment sources, and non-equilibrium sediment transport. An effective surrogate technology is low maintenance and sturdy over a range of hydrologic conditions, and measured variables can be modeled to estimate suspended-sediment concentration (SSC), load, and duration of elevated levels on a real-time basis. Among the most promising techniques is the measurement of acoustic backscatter strength using acoustic Doppler velocity meters (ADVMs) deployed in rivers. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Walla Walla District, evaluated the use of acoustic backscatter, turbidity, laser diffraction, and streamflow as surrogates for estimating real-time SSC and loads in the Clearwater and Snake Rivers, which adjoin in Lewiston, Idaho, and flow into Lower Granite Reservoir. The study was conducted from May 2008 to September 2010 and is part of the U.S. Army Corps of Engineers Lower Snake River Programmatic Sediment Management Plan to identify and manage sediment sources in basins draining into lower Snake River reservoirs. Commercially available acoustic instruments have shown great promise in sediment surrogate studies because they require little maintenance and measure profiles of the surrogate parameter across a sampling volume rather than at a single point. The strength of acoustic backscatter theoretically increases as more particles are suspended in the water to reflect the acoustic pulse emitted by the ADVM. ADVMs of different frequencies (0.5, 1.5, and 3 Megahertz) were tested to

  7. Role of lake regulation on glacier-fed rivers in enhancing salmon productivity: the Cook Inlet watershed, south-central Alaska, USA

    NASA Astrophysics Data System (ADS)

    Dorava, Joseph M.; Milner, Alexander M.

    2000-10-01

    Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation.Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat.

  8. Potential disease interaction reinforced: double-virus-infected escaped farmed Atlantic salmon, Salmo salar L., recaptured in a nearby river.

    PubMed

    Madhun, A S; Karlsbakk, E; Isachsen, C H; Omdal, L M; Eide Sørvik, A G; Skaala, Ø; Barlaup, B T; Glover, K A

    2015-02-01

    The role of escaped farmed salmon in spreading infectious agents from aquaculture to wild salmonid populations is largely unknown. This is a case study of potential disease interaction between escaped farmed and wild fish populations. In summer 2012, significant numbers of farmed Atlantic salmon were captured in the Hardangerfjord and in a local river. Genetic analyses of 59 of the escaped salmon and samples collected from six local salmon farms pointed out the most likely source farm, but two other farms had an overlapping genetic profile. The escapees were also analysed for three viruses that are prevalent in fish farming in Norway. Almost all the escaped salmon were infected with salmon alphavirus (SAV) and piscine reovirus (PRV). To use the infection profile to assist genetic methods in identifying the likely farm of origin, samples from the farms were also tested for these viruses. However, in the current case, all the three farms had an infection profile that was similar to that of the escapees. We have shown that double-virus-infected escaped salmon ascend a river close to the likely source farms, reinforcing the potential for spread of viruses to wild salmonids. © 2014 The Authors. Journal of Fish Diseases published by John Wiley & Sons Ltd.

  9. Performance of Yellowstone and Snake River Cutthroat Trout Fry Fed Seven Different Diets.

    USDA-ARS?s Scientific Manuscript database

    Five commercial diets and two formulated feeds were fed to initial-feeding Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri fry and Snake River cutthroat trout O. clarkii spp. (currently being petitioned for classification as O. clarkii behnkei) fry for 18 weeks to evaluate fish performance...

  10. Bypass system modification at Bonneville Dam on the Columbia River improved the survival of juvenile salmon

    USGS Publications Warehouse

    Ferguson, J.W.; Sandford, B.P.; Reagan, R.E.; Gilbreath, L.G.; Meyer, E.B.; Ledgerwood, R.D.; Adams, N.S.

    2007-01-01

    From 1987 to 1992, we evaluated a fish bypass system at Bonneville Dam Powerhouse 2 on the Columbia River. The survival of subyearling Chinook salmon Oncorhynchus tshawytscha released into the system ranged from 0.774 to 0.911 and was significantly lower than the survival of test fish released into turbines and the area immediately below the powerhouse where bypass system flow reentered the river. Yearling and subyearling Chinook salmon and yearling coho salmon O. kisutch released into the bypass system were injured or descaled. Also, levels of blood plasma cortisol and lactate were significantly higher in yearling and subyearling Chinook salmon that passed through the bypass system than in fish released directly into a net located over the bypass exit. This original system was then extensively modified using updated design criteria, and the site where juvenile fish reentered the river was relocated 2.8 km further downstream to reduce predation on bypassed fish by northern pikeminnow Ptychocheilus oregonensis. Based on studies conducted from 1999 to 2001, the new bypass system resulted in high fish survival, virtually no injuries to fish, fish passage times that were generally similar to water travel times, and mild stress responses from which fish recovered quickly. The mean estimated survival of subyearling Chinook salmon passing through the new bypass system was 0.946 in 2001, which was an usually low-flow year. Survival, physical condition, passage timing, and blood physiological indicators of stress were all useful metrics for assessing the performance of both bypass systems and are discussed. The engineering and hydraulic criteria used to design the new bypass system that resulted in improved fish passage conditions are described.

  11. Development of a Systemwide Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries and Evaluation Plan in the Columbia River Basin, Volume 1, 1992 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, David L.

    1994-06-01

    Results of the second year are reported of a basinwide program to harvest northern squawfish in an effort to reduce mortality due to squawfish predation on juvenile salmonids during their migration from natal streams to the ocean. Six papers are included in this report. They are entitled: feasibility investigation of a commercial longline fishery for northern squawfish in the Columbia River downstream from Bonneville dam; evaluation of the northern squawfish sport-reward fishery in the Columbia and Snake Rivers; controlled angling for northern squawfish at selected dams on the Columbia and Snake Rivers in 1992; evaluation of harvest technology for squawfishmore » control in Columbia River reservoirs; effectiveness of predator-removal for protecting juvenile fall chinook salmon released from Bonneville Hatchery; and Northern squawfish sport-reward payments.« less

  12. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1989 through 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartholomay, R.C.; Orr, B.R.; Liszewski, M.J.

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains a continuous monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1989-91. Water in the eastern Snake River Plain aquifer moves principally through fractures and interflowmore » zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from irrigation water, infiltration of streamflow, and ground-water inflow from adjoining mountain drainage basins. Water levels in wells throughout the INEL generally declined during 1989-91 due to drought. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INEL decreased or remained constant during 1989-91. Decreased concentrations are attributed to reduced rates of radioactive-waste disposal, sorption processes, radioactive decay, and changes in waste-disposal practices. Detectable concentrations of chemical constituents in water from the Snake River Plain aquifer at the INEL were variable during 1989-91. Sodium and chloride concentrations in the southern part of the INEL increased slightly during 1989-91 because of increased waste-disposal rates and a lack of recharge from the Big Lost River. Plumes of 1,1,1-trichloroethane have developed near the Idaho Chemical Processing Plant and the Radioactive Waste Management Complex as a result of waste disposal practices.« less

  13. Deformation Rates in the Snake River Plain and Adjacent Basin and Range Regions Based on GPS Measurements

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.; Kattenhorn, S. A.

    2012-12-01

    We estimate horizontal velocities for 405 sites using Global Positioning System (GPS) phase data collected from 1994 to 2010 within the Northern Basin and Range Province, U.S.A. The velocities reveal a slowly-deforming region within the Snake River Plain in Idaho and Owyhee-Oregon Plateau in Oregon separated from the actively extending adjacent Basin and Range regions by shear. Our results show a NE-oriented extensional strain rate of 5.6 ± 0.7 nanostrain/yr in the Centennial Tectonic Belt and an ~E-oriented extensional strain rate of 3.5 ± 0.2 nanostrain/yr in the Great Basin. These extensional rates contrast with the very low strain rate within the 125 km x 650 km region of the Snake River Plain and Owyhee-Oregon Plateau which is not distinguishable from zero (-0.1 ± 0.4 x nanostrain/yr). Inversions of Snake River Plain velocities with dike-opening models indicate that rapid extension by dike intrusion in volcanic rift zones, as previously hypothesized, is not currently occurring. GPS data also disclose that rapid extension in the surrounding regions adjacent to the slowly-deforming region of the Snake River Plain drives shear between them. We estimate right-lateral shear with slip rates of 0.3-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic Belt and left-lateral oblique extension with slip rates of 0.5-1.5 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic Belt. The fastest lateral shearing evident in the GPS occurs near the Yellowstone Plateau where earthquakes with right-lateral strike-slip focal mechanisms are within a NE-trending zone of seismicity. The regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is not locally driven by Yellowstone hotspot volcanism, but instead by extension to the south across the Wasatch fault possibly due to gravitational

  14. Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillson, Todd D.

    2003-10-15

    The National Marine Fisheries Service (NMFS) listed Lower Columbia River chum as threatened under the auspices of the Endangered Species Act (ESA) in March of 1999 (64 FR 14508, March 25, 1999). The listing was in response to reduction in abundance from historical levels of more than half a million returning adults to fewer than 10,000 present day spawners. Harvest, loss of habitat, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for the decline of Columbia River chum salmon. The timing of seasonal changes in river flow and water temperatures is perhaps the most criticalmore » factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Currently, only two main populations are recognized as genetically distinct in the Columbia River, although spawning has been documented in most lower Columbia River tributaries. The first is located in the Grays River (RKm 34) (Grays population), a tributary of the Columbia, and the second is a group of spawners that utilize the Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks (Lower Gorge population). A possible third population of mainstem spawners, found in the fall of 1999, were located spawning above the I-205 bridge (approximately RKm 182), this aggregation is referred to as the Woods Landing/Rivershore population or the I-205 group. The recovery strategy for Lower Columbia River (LCR) chum as outlined in Hatchery Genetic Management Plans (HGMP) has three main tasks. First, determine if remnant populations of LCR chum salmon exist in LCR tributaries. Second, if such populations exist, develop stock-specific recovery plans involving habitat restoration including the

  15. Inter- and intraspecific variation in mercury bioaccumulation by snakes inhabiting a contaminated river floodplain.

    PubMed

    Drewett, David V V; Willson, John D; Cristol, Daniel A; Chin, Stephanie Y; Hopkins, William A

    2013-04-01

    Although mercury (Hg) is a well-studied contaminant, knowledge about Hg accumulation in snakes is limited. The authors evaluated Hg bioaccumulation within and among four snake species (northern watersnakes, Nerodia sipedon; queen snakes, Regina septemvittata; common garter snakes, Thamnophis sirtalis; and rat snakes, Elaphe obsoleta [Pantherophis alleghaniensis]) from a contaminated site on the South River (Waynesboro, VA, USA) and two nearby reference sites. Total Hg (THg) concentrations in northern watersnake tail tissue at the contaminated site ranged from 2.25 to 13.84 mg/kg dry weight (mean: 4.85 ± 0.29), or 11 to 19 times higher than reference sites. Blood THg concentrations (0.03-7.04 mg/kg wet wt; mean: 2.24 ± 0.42) were strongly correlated with tail concentrations and were the highest yet reported in a snake species. Within watersnakes, nitrogen stable isotope values indicated ontogenetic trophic shifts that correlated with THg bioaccumulation, suggesting that diet plays a substantial role in Hg exposure. Female watersnakes had higher mean THg concentrations (5.67 ± 0.46 mg/kg) than males (4.93 ± 0.49 mg/kg), but no significant differences between sexes were observed after correcting for body size. Interspecific comparisons identified differences in THg concentrations among snake species, with more aquatic species (watersnakes and queen snakes) accumulating higher mean concentrations (5.60 ± 0.40 and 4.59 ± 0.38 mg/kg in tail tissue, respectively) than the more terrestrial species, garter snakes and rat snakes (1.28 ± 0.32 and 0.26 ± 0.09 mg/kg, respectively). The results of the present study warrant further investigation of potential adverse effects and will aid in prioritizing conservation efforts. Copyright © 2013 SETAC.

  16. Self-sustaining populations, population sinks or aggregates of strays: chum (Oncorhynchus keta) and Chinook salmon (Oncorhynchus tshawytscha) in the Wood River system, Alaska.

    PubMed

    Lin, Jocelyn E; Hilborn, Ray; Quinn, Thomas P; Hauser, Lorenz

    2011-12-01

    Small populations can provide insights into ecological and evolutionary aspects of species distributions over space and time. In the Wood River system in Alaska, USA, small aggregates of Chinook (Oncorhynchus tshawytscha) and chum salmon (O. keta) spawn in an area dominated by sockeye salmon (O. nerka). Our objective was to determine whether these Chinook and chum salmon are reproductively isolated, self-sustaining populations, population sinks that produce returning adults but receive immigration, or strays from other systems that do not produce returning adults. DNA samples collected from adult chum salmon from 16 streams and Chinook salmon from four streams in the Wood River system over 3 years were compared to samples from large populations in the nearby Nushagak River system, a likely source of strays. For both species, microsatellite markers indicated no significant genetic differentiation between the two systems. Simulations of microsatellite data in a large source and a smaller sink population suggested that considerable immigration would be required to counteract the diverging effects of genetic drift and produce genetic distances as small as those observed, considering the small census sizes of the two species in the Wood River system. Thus, the Wood River system likely receives substantial immigration from neighbouring watersheds, such as the Nushagak River system, which supports highly productive runs. Although no data on population productivity in the Wood River system exist, our results suggest source-sink dynamics for the two species, a finding relevant to other systems where salmonid population sizes are limited by habitat factors. © 2011 Blackwell Publishing Ltd.

  17. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faler, Michael P.; Mendel, Glen W.; Fulton, Carl

    2005-11-01

    We sampled and released 313 bull trout (Salvelinus confluentus) from the Tucannon River in 2004. Passive Integrated Transponder (PIT) tags were inserted in 231 of these individuals, and we detected existing PIT tags in an additional 44 bull trout. Twenty-five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout the year. Ten bull trout that were radio-tagged in 2003 were known to survive and carry their tags through the spring of 2004. One of these fish outmigrated into the Snake River in the fall, and remained undetected until February, when it's tagmore » was located near the confluence of Alkali Flat Creek and the Snake River. The remaining 9 fish spent the winter between Tucannon River miles 2.1 (Powers Road) and 36.0 (Tucannon Fish Hatchery). Seven of these fish retained their tags through the summer, and migrated to known spawning habitat prior to September 2004. During June and July, radio-tagged bull trout again exhibited a general upstream movement into the upper reaches of the Tucannon subbasin. As in past years, we observed some downstream movements of radio-tagged bull trout in mid to late September and throughout October, suggesting post spawning outmigrations. By late November and early December, radio tagged bull trout were relatively stationary, and were distributed from river mile 42 at Camp Wooten downstream to river mile 17, near the Highway 12 bridge. As in previous years, we did not collect data associated with objectives 2, 3, or 4 of this study, because we were unable to monitor migratory movement of radio-tagged bull trout into the vicinity of the hydropower dams on the main stem Snake River. Transmission tests of submerged Lotek model NTC-6-2 nano-tags in Lower Granite Pool showed that audible detection and individual tag identification was possible at depths of 20, 30, and 40 ft. We were able to maintain tag detection and code separation at all depths from both a boat and 200 ft

  18. Steelhead Supplementation in Idaho Rivers : 2001 Project Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Alan

    In 2001, Idaho Department of Fish and Game (IDFG) continued an assessment of the Sawtooth Hatchery steelhead Oncorhynchus mykiss stock to reestablish natural populations in Beaver and Frenchman creeks in the upper Salmon River. Crews stocked both streams with 20 pair of hatchery adults, and I estimated the potential smolt production from the 2000 adult outplants. n the Red River drainage, IDFG stocked Dworshak hatchery stock fingerlings and smolts from 1993 to 1999 to assess which life stage produces more progeny when the adults return to spawn. In 2001, IDFG operated the Red River weir to trap adults that returnedmore » from these stockings, but none were caught from either group. Wild steelhead populations in the Lochsa and Selway river drainages were assessed and the chinook salmon Oncorhynchus tshawytscha escapement was enumerated in Fish Creek. I estimated that 75 wild adult steelhead and 122 adult chinook salmon returned to Fish Creek in 2001. I estimated that slightly more than 30,000 juvenile steelhead migrated out of Fish Creek. This is the largest number of steelhead to migrate out of Fish Creek in a single year since I began estimating the yearly migration in 1994. Juvenile steelhead densities in Lochsa and Selway tributaries were somewhat higher in 2001 than those observed in 2000. Crews from IDFG collected over 4,800 fin samples from wild steelhead in 74 streams of the Clearwater, Snake, and Salmon river drainages and from five hatchery stocks during the summer of 2000 for a DNA analysis to assess Idaho's steelhead stock structure. The DNA analysis was subcontracted to Dr. Jennifer Nielsen, Alaska Biological Science Center, Anchorage. Her lab developed protocols to use for the analysis in 2001 and is continuing to analyze the samples. Dr. Nielsen plans to have the complete set of wild and hatchery stocks analyzed in 2002.« less

  19. Spatial and temporal patterns in channel change on the Snake River downstream from Jackson Lake dam, Wyoming

    NASA Astrophysics Data System (ADS)

    Nelson, Nicholas C.; Erwin, Susannah O.; Schmidt, John C.

    2013-10-01

    Operations of Jackson Lake dam (JLD) have altered the hydrology and sediment transport capacity of the Snake River in Grand Teton National Park. Prior research has provided conflicting assessments of whether the downstream river was perturbed into sediment surplus or sediment deficit. In this paper, we present the results of an aerial photo analysis designed to evaluate whether the history of channel change indicates either significant deficit or surplus of sediment that could be expressed as narrowing or expansion of the channel over time. We analyze changes in braid index, channel width, channel activity, and net channel change of the Snake River based on four series of aerial photographs. Between 1945 and 1969, a period of relatively small main-stem floods, widespread deposition, and up to 31% reduction in channel width occurred throughout the Snake River. Between 1969 and 2002, a period of large main-stem floods, the style of channel change reversed with a decrease in braid index and an increase in channel width of up to 31%. These substantial changes in the channel downstream from the dam primarily occurred in multithread reaches, regardless of proximity to tributaries, and no temporal progression of channel narrowing or widening was observed. We demonstrate that channel change downstream from JLD is more temporally and longitudinally complex than previously described.

  20. Geochemistry of Central Snake River Plain Basalts From Camas Prairie to Glenns Ferry, Southern Idaho

    NASA Astrophysics Data System (ADS)

    Vetter, S. K.; Johnston, S. A.; Shervais, J.; Hanan, B.

    2006-12-01

    The Snake River Plain (SRP) of southern Idaho represents the track of a hot-spot (mantle plume) which links voluminous flood basalts of the Miocene Columbia River province to Quaternary volcanic centers at Island Park and Yellowstone. However, much of the volcanism associated with this province either lies off the main volcanic trend or differs in age from the postulated plume passage. The Camas Prairie and the Mount Bennett Hills lie north of the Snake River-Yellowstone plume track, near the intersection of the eastern and western Snake River Plain trends. Young basalt flows cap highlands overlooking the Snake River near King Hill, but farther north in the Mount Bennett Hills and Camas Prairie these young lava flows are juxtaposed against older basalts along a series of WNW trending normal faults. These older basalt flows rest directly on rhyolite of the Mount Bennett Hills, making them the oldest basalts known in outcrop in this area. The older basalts in the Mount Bennett Hills include at least six major flows with a total thickness of 110 m. Although they have been strongly dissected by erosion, they still cover an outcrop area of 300 km2 . Eighty samples were collected as part of our petrologic survey of basaltic volcanism in the central Snake River Plain. These samples were studied petrographically and analyzed for their major elements, trace elements, and REE. The basalts consist of plagioclase and olivine microphenocrysts set in a groundmass of olivine, plagioclase, clinopyroxene, oxides and interstitial glass. The majority of samples have Mg# ranging from 50- 59. However there are samples that are more evolved as indicated by Mg# ranging from less than 50 to 29. The high Mg# samples have the following chemical ranges: TiO2 0.87 - 2.6 wt.%; FeO 9.95 - 13.7 wt.%; Nb 8 to 23 ppm; Zr 111 to 243 ppm; Ni 81 to 151 ppm; La 10.9 to 26.9 ppm. The more evolved samples have TiO2 1.4 3.93 wt.%; FeO 9.7 16.8 wt%; Nb 11 to 40 ppm; Zr 110 to 500 ppm; Ni 4 to 85 ppm; La

  1. The persistence and characteristics of Chinook salmon migrations to the Upper Klamath River prior to exclusion by dams

    USGS Publications Warehouse

    Hamilton, John B; Rondorf, Dennis W.; Tinniswood, William; Leary, Ryan J; Mayer, Tim; Gavette, Charleen; Casal, Lynne A.

    2016-01-01

    In this research article, John Hamilton and his co-authors present extensive new research and information gathered since a 2005 publication on the historical evidence of anadromomous fish distribution in the Upper Klamath River watershed. Using historical accounts from early explorers and ethnographers to early-twentieth-century photographs, newspaper accounts, and government reports, the authors provide a more complete record of past salmon migrations. The updated record “substantiate[s] the historical persistence of salmon, their migration characteristics, and the broad population baseline that will be key to future commercial, recreational, and Tribal fisheries in the Klamath River and beyond.” During a time when salmon restoration plans are being considered in the region, the historical record can serve as guidance to once again establish diverse and thriving populations.

  2. Aqueous geochemistry and diagenesis in the eastern Snake River Plain aquifer system, Idaho

    USGS Publications Warehouse

    Wood, Warren W.; Low, Walton H.

    1986-01-01

    Water budget and isotopic analyses of water in the eastern Snake River Plain aquifer system confirm that most, if not all, of the water is local meteoric in origin. Solute mass-balance arguments suggest that ∼5 × 109 moles of calcite and 2.6 × 109 moles of silica are precipitated annually in the aquifer. Isotopic evaluations of calcite and petrographic observation of silica support the low-temperature origin of these deposits. Approximately 2.8 × 109 moles of chloride, 4.5 × 109 moles of sodium, 1.4 × 109 moles of sulfate, and 2 × 109 moles of magnesium are removed annually from the aquifer framework by solution. Proposed weathering reactions are shown to be consistent with mass balance, carbon isotopes, observed mineralogy, and chemical thermodynamics. Large quantities of sodium, chloride, and sulfate are being removed from the system relative to their abundances in the rock. Sedimentary interbeds, which are estimated to compose <10% of the aquifer volume, may yield as much as 20% of the solutes generated within the aquifer. Weathering rate of the aquifer framework of the eastern Snake River Plain is 14 (Mg/km2)/yr or less than half the average of the North American continent. This contrasts with the rate for the eastern Snake River basin, 34 (Mg/km2)/yr, which is almost identical to the average for the North American continent. Identification and quantification of reactions controlling solute concentrations in ground water in the eastern plain indicate that the aquifer is not an “inert bathtub” that simply stores and transmits water and solutes but is undergoing active diagenesis and is both a source and sink for solutes.

  3. Columbia River Basin Fish and Wildlife Program Annual Implementation Work Plan for Fiscal Year 1994.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    United States. Bonneville Power Administration; Northwest Power Planning Council; Columbia Basin Fish and Wildlife Authority

    1994-02-01

    This document is part of Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The Fiscal Year 1994 (FY 1994) Annual Implementation Work Plan (AIWP) presents Bonneville Power Administration`s (BPA`s) plan for implementation of the Columbia River Basin Fish and Wildlife Program (Program). The purpose of the Program is to guide BPA and other federal agencies in carrying out their responsibilities to protect, mitigate, and enhance fish and wildlife in the Columbia River Basin. Phase I began the work of salmonmore » recovery with certain fast-track measures completed in August 1991. Phase II dealt with Snake and Columbia river flow and salmon harvest and was completed in December 1991. Phase III dealt with system-wide habitat and salmon production issues and was completed in September 1992. Phase IV planning, focusing on resident fish and wildlife, began in August 1993, and was finished and adopted in November 1993. This report provides summaries of the ongoing and new projects for FY 1994 within the areas of juvenile migration, adult migration, salmon harvest, production and habitat, coordinated implementation, monitoring and evaluation, resident fish, and wildlife.« less

  4. Passage survival of juvenile steelhead, coho salmon, and Chinook salmon in Lake Scanewa and at Cowlitz Falls Dam, Cowlitz River, Washington, 2010–16

    USGS Publications Warehouse

    Liedtke, Theresa L.; Kock, Tobias J.; Hurst, William

    2018-04-03

    A multi-year evaluation was conducted during 2010–16 to evaluate passage survival of juvenile steelhead (Oncorhynchus mykiss), Chinook salmon (O. tshawytscha), and coho salmon (O. kisutch) in Lake Scanewa, and at Cowlitz Falls Dam in the upper Cowlitz River Basin, Washington. Reservoir passage survival was evaluated in 2010, 2011, and 2016, and included the tagging and release of 1,127 juvenile salmonids. Tagged fish were released directly into the Cowlitz and Cispus Rivers, 22.3 and 8.9 km, respectively, upstream of the reservoir, and were monitored as they moved downstream into, and through the reservoir. A single release-recapture survival model was used to analyze detection records and estimate reservoir passage survival, which was defined as successful passage from reservoir entry to arrival at Cowlitz Falls Dam. Tagged fish generally moved quickly downstream of the release sites and, on average, arrived in the dam forebay within 2 d of release. Median travel time from release to first detection at the dam ranged from 0.23 to 0.96 d for juvenile steelhead, from 0.15 to 1.11 d for juvenile coho salmon, and from 0.18 to 1.89 d for juvenile Chinook salmon. Minimum reservoir passage survival probabilities were 0.960 for steelhead, 0.855 for coho salmon and 0.900 for Chinook salmon.Dam passage survival was evaluated at the pilot-study level during 2013–16 and included the tagging and release of 2,512 juvenile salmonids. Juvenile Chinook salmon were evaluated during 2013–14, and juvenile steelhead and coho salmon were evaluated during 2015–16. A paired-release study design was used that included release sites located upstream and downstream of Cowlitz Falls Dam. The downstream release site was positioned at the downstream margin of the dam’s tailrace, which allowed dam passage survival to be measured in a manner that included mortality that occurred in the passage route and in the dam tailrace. More than one-half of the tagged Chinook salmon (52 percent

  5. Asymmetric hybridization and introgression between pink salmon and chinook salmon in the Laurentian Great Lakes

    USGS Publications Warehouse

    Rosenfield, Jonathan A.; Todd, Thomas; Greil, Roger

    2000-01-01

    Among Pacific salmon collected in the St. Marys River, five natural hybrids of pink salmon Oncorhynchus gorbuscha and chinook salmon Oncorhynchus tshawytscha and one suspected backcross have been detected using morphologic, meristic, and color evidence. One allozyme (LDH, l-lactate dehydrogenase from muscle) and one nuclear DNA locus (growth hormone) for which species-specific fixed differences exist were analyzed to detect additional hybrids and to determine if introgression had occurred. Restriction fragment length polymorphism of mitochondrial DNA (mtDNA) was used to identify the maternal parent of each hybrid. Evidence of introgression was found among the five previously identified hybrids. All hybrid specimens had chinook salmon mtDNA, indicating that hybridization between chinook salmon and pink salmon in the St. Marys River is asymmetric and perhaps unidirectional. Ecological, physiological, and sexual selection forces may contribute to this asymmetric hybridization. Introgression between these highly differentiated species has implications for management, systematics, and conservation of Pacific salmon.

  6. Sea Louse Infection of Juvenile Sockeye Salmon in Relation to Marine Salmon Farms on Canada's West Coast

    PubMed Central

    Price, Michael H. H.; Proboszcz, Stan L.; Routledge, Rick D.; Gottesfeld, Allen S.; Orr, Craig; Reynolds, John D.

    2011-01-01

    Background Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka). Methodology/Principal Findings We used genetic analyses to determine the origin of sockeye from Canada's two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance. Conclusions/Significance This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of

  7. Sea louse infection of juvenile sockeye salmon in relation to marine salmon farms on Canada's west coast.

    PubMed

    Price, Michael H H; Proboszcz, Stan L; Routledge, Rick D; Gottesfeld, Allen S; Orr, Craig; Reynolds, John D

    2011-02-09

    Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka). We used genetic analyses to determine the origin of sockeye from Canada's two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance. This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of populations that are the subject of conservation concern.

  8. Synchronous cycling of Ichthyophoniasis with Chinook salmon density revealed during the annual Yukon River spawning migration

    USGS Publications Warehouse

    Zuray, Stanley; Kocan, Richard; Hershberger, Paul

    2012-01-01

    Populations of Chinook salmon Oncorhynchus tshawytscha in the Yukon River declined by more than 57% between 2003 and 2010, probably the result of a combination of anthropogenic and environmental factors. One possible contributor to this decline is Ichthyophonus, a mesomycetozoan parasite that has previously been implicated in significant losses of fish, including Chinook salmon. A multiyear epidemiological study of ichthyophoniasis in the Yukon River revealed that disease prevalence and Chinook salmon population abundance increased and decreased simultaneously (i.e., were concordant) from 1999 to 2010. The two values rose and fell synchronously 91% of the time for female Chinook salmon and 82% of the time for males; however, there was no significant correlation between Ichthyophonus prevalence and population abundance. This synchronicity might be explained by a single factor, such as a prey item that is critical to Chinook salmon survival as well as a source of Ichthyophonus infection. The host–parasite relationship between Ichthyophonus and migrating Chinook salmon from 2004 to 2010 was similar to that reported for the previous 5 years. During 2004–2010, overall disease prevalence was significantly higher among females (21%) than among males (8%), increased linearly with fish length for both males and females, and increased in both sexes as the fish progressed upriver. These regularly occurring features of host–parasite dynamics confirm a stable base of transmission for Ichthyophonus. However, from 2003 to 2010, disease prevalence decreased from 30% to just 8% in males and from 45% to 9% in females, paralleling a similar decline in Chinook salmon abundance during the same period. These findings may help clarify questions regarding the complex host–parasite dynamics that occur in marine species such as herrings Clupea spp., which have less well-defined population structures.

  9. High salmon density and low discharge create periodic hypoxia in coastal rivers

    Treesearch

    Christopher J. Sergeant; J. Ryan Bellmore; Casey McConnell; Jonathan W. Moore

    2017-01-01

    Dissolved oxygen (DO) is essential to the survival of almost all aquatic organisms. Here, we examine the possibility that abundant Pacific salmon (Oncorhynchus spp.) and low streamflow combine to create hypoxic events in coastal rivers. Using high-frequency DO time series from two similar watersheds in southeastern Alaska, we summarize DO regimes...

  10. Using a genetic mixture model to study phenotypic traits: Differential fecundity among Yukon river Chinook Salmon

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.; Evenson, D.F.; McLain, T.H.; Flannery, B.G.

    2011-01-01

    Fecundity is a vital population characteristic that is directly linked to the productivity of fish populations. Historic data from Yukon River (Alaska) Chinook salmon Oncorhynchus tshawytscha suggest that length‐adjusted fecundity differs among populations within the drainage and either is temporally variable or has declined. Yukon River Chinook salmon have been harvested in large‐mesh gill‐net fisheries for decades, and a decline in fecundity was considered a potential evolutionary response to size‐selective exploitation. The implications for fishery conservation and management led us to further investigate the fecundity of Yukon River Chinook salmon populations. Matched observations of fecundity, length, and genotype were collected from a sample of adult females captured from the multipopulation spawning migration near the mouth of the Yukon River in 2008. These data were modeled by using a new mixture model, which was developed by extending the conditional maximum likelihood mixture model that is commonly used to estimate the composition of multipopulation mixtures based on genetic data. The new model facilitates maximum likelihood estimation of stock‐specific fecundity parameters without first using individual assignment to a putative population of origin, thus avoiding potential biases caused by assignment error. The hypothesis that fecundity of Chinook salmon has declined was not supported; this result implies that fecundity exhibits high interannual variability. However, length‐adjusted fecundity estimates decreased as migratory distance increased, and fecundity was more strongly dependent on fish size for populations spawning in the middle and upper portions of the drainage. These findings provide insights into potential constraints on reproductive investment imposed by long migrations and warrant consideration in fisheries management and conservation. The new mixture model extends the utility of genetic markers to new applications and can be

  11. How coarse is too coarse for salmon spawning substrates?

    NASA Astrophysics Data System (ADS)

    Wooster, J. K.; Riebe, C. S.; Ligon, F. K.; Overstreet, B. T.

    2009-12-01

    Populations of Pacific salmon species have declined sharply in many rivers of the western US. Reversing these declines is a top priority and expense of many river restoration projects. To help restore salmon populations, managers often inject gravel into rivers, to supplement spawning habitat that has been depleted by gravel mining and the effects of dams—which block sediment and thus impair habitat downstream by coarsening the bed where salmon historically spawned. However, there is little quantitative understanding nor a methodology for determining when a river bed has become too coarse for salmon spawning. Hence there is little scientific basis for selecting sites that would optimize the restoration benefits of gravel injection (e.g., sites where flow velocities are suitable but bed materials are too coarse for spawning). To develop a quantitative understanding of what makes river beds too coarse for salmon spawning, we studied redds and spawning use in a series of California and Washington rivers where salmon spawning ability appears to be affected by coarse bed material. Our working hypothesis is that for a given flow condition, there is a maximum “threshold” particle size that a salmon of a given size is able to excavate and/or move as she builds her redd. A second, related hypothesis is that spawning use should decrease and eventually become impossible with increasing percent coverage by immovable particles. To test these hypotheses, we quantified the sizes and spatial distributions of immovably coarse particles in a series of salmon redds in each river during the peak of spawning. We also quantified spawning use and how it relates to percent coverage by immovable particles. Results from our studies of fall-run chinook salmon (Oncorhynchus tshawytsha) in the Feather River suggest that immovable particle size varies as a function of flow velocity over the redd, implying that faster water helps fish move bigger particles. Our Feather River study also

  12. Summary of Migration and Survival Data from Radio-Tagged Juvenile Coho Salmon in the Trinity River, Northern California, 2008

    USGS Publications Warehouse

    Beeman, John W.; Hansel, Hal; Juhnke, Steve; Stutzer, Greg

    2009-01-01

    The survival of hatchery-origin juvenile coho salmon from the Trinity River Hatchery was estimated as they migrated seaward through the Trinity and Klamath Rivers. The purpose of the study was to collect data for comparison to a similar study in the Klamath River and provide data to the Trinity River Restoration Program. A total of 200 fish fitted with radio transmitters were released into the Trinity River near the hatchery (river kilometer 252 from the mouth of the Klamath River) biweekly from March 19 to May 28, 2008. Fish from the earliest release groups took longer to pass the first detection site 10 kilometers downstream of the hatchery than fish from the later release groups, but travel times between subsequent sites were often similar among the release groups. The travel times of individuals through the 239 kilometer study area ranged from 15.5 to 84.6 days with a median of 43.3 days. The data and models did not support differences in survival among release groups, but did support differences among river reaches. The probability of survival in the first 53 kilometers was lower than in the reaches farther downstream, which is similar to trends in juvenile coho salmon in the Klamath River. The lowest estimated survival in this study was in the first 10 kilometers from release in the Trinity River (0.676 SE 0.036) and the highest estimated survival was in the final 20 kilometer reach in the Klamath River (0.987 SE 0.013). Estimated survivals of radio-tagged juvenile coho salmon from release to Klamath River kilometer 33 were 0.639 per 100 kilometers for Trinity River fish and 0.721 per 100 kilometers for Klamath River fish.

  13. Managed Metapopulations: Do Salmon Hatchery ‘Sources’ Lead to In-River ‘Sinks’ in Conservation?

    DOE PAGES

    Johnson, Rachel C.; Weber, Peter K.; Wikert, John D.; ...

    2012-02-08

    Maintaining viable populations of salmon in the wild is a primary goal for many conservation and recovery programs. The frequency and extent of connectivity among natal sources defines the demographic and genetic boundaries of a population. Yet, the role that immigration of hatchery-produced adults may play in altering population dynamics and fitness of natural populations remains largely unquantified. Quantifying, whether natural populations are self-sustaining, functions as sources (population growth rate in the absence of dispersal, λ>1), or as sinks (λ<1) can be obscured by an inability to identify immigrants. In this study we use a new isotopic approach to demonstratemore » that a natural spawning population of Chinook salmon, (Oncorhynchus tshawytscha) considered relatively healthy, represents a sink population when the contribution of hatchery immigrants is taken into consideration. We retrieved sulfur isotopes ( 34S/ 32S, referred to as δ 34S) in adult Chinook salmon otoliths (ear bones) that were deposited during their early life history as juveniles to determine whether individuals were produced in hatcheries or naturally in rivers. Our results show that only 10.3% (CI=5.5 to 18.1%) of adults spawning in the river had otolith δ 34S values less than 8.5‰, which is characteristic of naturally produced salmon. When considering the total return to the watershed (total fish in river and hatchery), we estimate that 90.7 to 99.3% (CI) of returning adults were produced in a hatchery (best estimate=95.9%). When population growth rate of the natural population was modeled to account for the contribution of previously unidentified hatchery immigrants, we found that hatchery-produced fish caused the false appearance of positive population growth. In conclusion, these findings highlight the potential dangers in ignoring source-sink dynamics in recovering natural populations, and question the extent to which declines in natural salmon populations are undetected

  14. Managed Metapopulations: Do Salmon Hatchery ‘Sources’ Lead to In-River ‘Sinks’ in Conservation?

    PubMed Central

    Johnson, Rachel C.; Weber, Peter K.; Wikert, John D.; Workman, Michelle L.; MacFarlane, R. Bruce; Grove, Marty J.; Schmitt, Axel K.

    2012-01-01

    Maintaining viable populations of salmon in the wild is a primary goal for many conservation and recovery programs. The frequency and extent of connectivity among natal sources defines the demographic and genetic boundaries of a population. Yet, the role that immigration of hatchery-produced adults may play in altering population dynamics and fitness of natural populations remains largely unquantified. Quantifying, whether natural populations are self-sustaining, functions as sources (population growth rate in the absence of dispersal, λ>1), or as sinks (λ<1) can be obscured by an inability to identify immigrants. In this study we use a new isotopic approach to demonstrate that a natural spawning population of Chinook salmon, (Oncorhynchus tshawytscha) considered relatively healthy, represents a sink population when the contribution of hatchery immigrants is taken into consideration. We retrieved sulfur isotopes (34S/32S, referred to as δ34S) in adult Chinook salmon otoliths (ear bones) that were deposited during their early life history as juveniles to determine whether individuals were produced in hatcheries or naturally in rivers. Our results show that only 10.3% (CI = 5.5 to 18.1%) of adults spawning in the river had otolith δ34S values less than 8.5‰, which is characteristic of naturally produced salmon. When considering the total return to the watershed (total fish in river and hatchery), we estimate that 90.7 to 99.3% (CI) of returning adults were produced in a hatchery (best estimate = 95.9%). When population growth rate of the natural population was modeled to account for the contribution of previously unidentified hatchery immigrants, we found that hatchery-produced fish caused the false appearance of positive population growth. These findings highlight the potential dangers in ignoring source-sink dynamics in recovering natural populations, and question the extent to which declines in natural salmon populations are undetected by monitoring

  15. Constraints on mantle melt geometries from body wave attenuation in the Salton Trough and Snake River Plain

    NASA Astrophysics Data System (ADS)

    Byrnes, J. S.; Bezada, M.

    2017-12-01

    Melt can be retained in the mantle at triple junctions between grain boundaries, be spread in thin films along two-grain boundaries, or be organized by shear into elongate melt-rich bands. Which of these geometries is most prevalent is unknown. This ambiguity makes the interpretation of anomalous seismic velocities and quality factors difficult, since different geometries would result in different mechanical effects. Here, we compare observations of seismic attenuation beneath the Salton Trough and the Snake River Plain; two regions where the presence of melt has been inferred. The results suggest that seismic attenuation is diagnostic of melt geometry. We measure the relative attenuation of P waves from deep focus earthquakes using a time-domain method. Even though the two regions are underlain by comparably strong low-velocity anomalies, their attenuation signature is very different. The upper mantle beneath the Salton Trough is sufficiently attenuating that the presence of melt must lower Qp, while attenuation beneath the Snake River Plain is not anomalous with respect to surrounding regions. These seemingly contradictory results can be reconciled if different melt geometries characterize each region. SKS splitting from the Salton Trough suggests that melt is organized into melt-rich bands, while this is not the case for the Snake River Plain. We infer that beneath the Snake River Plain melt is retained at triple junctions between grain boundaries, a geometry that is not predicted to cause seismic attenuation. More elongate geometries beneath the Salton Trough may cause seismic attenuation via the melt-squirt mechanism. In light of these results, we conclude that prior observations of low seismic velocities with somewhat high quality factors beneath the East Pacific Rise and Southern California suggest that melt does not organize into elongate bands across much of the asthenosphere.

  16. Spatial consistency of chinook salmon redd distribution within and among years in the Cowlitz River, Washington

    USGS Publications Warehouse

    Klett, Katherine J.C.; Torgersen, Christian E.; Henning, Julie A.; Murray, Christopher J.

    2013-01-01

    We investigated the spawning patterns of Chinook Salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington, using a unique set of fine- and coarse-scale temporal and spatial data collected during biweekly aerial surveys conducted in 1991–2009 (500 m to 28 km resolution) and 2008–2009 (100–500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held GPS synchronized with in-flight audio recordings. We examined spatial patterns of Chinook Salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook Salmon spawned in the same sections each year with little variation among years. On a coarse scale, 5 years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years. Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations. On a finer temporal scale, we observed that Chinook Salmon spawned in the same sections during the first and last week. Redds were clustered in both 2008 and 2009. Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook Salmon spawning surveys.

  17. Smolt Monitoring at the Head of Lower Granite Reservoir and Lower Granite Dam, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buettner, Edwin W.; Putnam, Scott A.

    This project monitored the daily passage of Chinook salmon Oncorhynchus tshawytscha, steelhead trout O. mykiss, and sockeye salmon smolts O. nerka during the 2002 spring out-migration at migrant traps on the Snake River and Salmon River. In 2002 fish management agencies released significant numbers of hatchery Chinook salmon and steelhead trout above Lower Granite Dam that were not marked with a fin clip or coded-wire tag. Generally, these fish were distinguishable from wild fish by the occurrence of fin erosion. Total annual hatchery Chinook salmon catch at the Snake River trap was 11.4 times greater in 2002 than in 2001.more » The wild Chinook catch was 15.5 times greater than the previous year. Hatchery steelhead trout catch was 2.9 times greater than in 2001. Wild steelhead trout catch was 2.8 times greater than the previous year. The Snake River trap collected 3,996 age-0 Chinook salmon of unknown rearing. During 2002, the Snake River trap captured 69 hatchery and 235 wild/natural sockeye salmon and 114 hatchery coho salmon O. kisutch. Differences in trap catch between years are due to fluctuations not only in smolt production, but also differences in trap efficiency and duration of trap operation associated with flow. The significant increase in catch in 2002 was due to a 3.1 fold increase in hatchery Chinook production and a more normal spring runoff. Trap operations began on March 10 and were terminated on June 7. The trap was out of operation for a total of four days due to mechanical failure or debris. Hatchery Chinook salmon catch at the Salmon River trap was 4.2 times greater and wild Chinook salmon catch was 2.4 times greater than in 2001. The hatchery steelhead trout collection in 2002 was 81% of the 2001 numbers. Wild steelhead trout collection in 2002 was 81% of the previous year's catch. Trap operations began on March 10 and were terminated on May 29 due to high flows. The trap was out of operation for four days due to high flow or debris. The

  18. Evolutionary responses by native species to major anthropogenic changes to their ecosystems: Pacific salmon in the Columbia River hydropower system.

    PubMed

    Waples, Robin S; Zabel, Richard W; Scheuerell, Mark D; Sanderson, Beth L

    2008-01-01

    The human footprint is now large in all the Earth's ecosystems, and construction of large dams in major river basins is among the anthropogenic changes that have had the most profound ecological consequences, particularly for migratory fishes. In the Columbia River basin of the western USA, considerable effort has been directed toward evaluating demographic effects of dams, yet little attention has been paid to evolutionary responses of migratory salmon to altered selective regimes. Here we make a first attempt to address this information gap. Transformation of the free-flowing Columbia River into a series of slack-water reservoirs has relaxed selection for adults capable of migrating long distances upstream against strong flows; conditions now favour fish capable of migrating through lakes and finding and navigating fish ladders. Juveniles must now be capable of surviving passage through multiple dams or collection and transportation around the dams. River flow patterns deliver some groups of juvenile salmon to the estuary later than is optimal for ocean survival, but countervailing selective pressures might constrain an evolutionary response toward earlier migration timing. Dams have increased the cost of migration, which reduces energy available for sexual selection and favours a nonmigratory life history. Reservoirs are a benign environment for many non-native species that are competitors with or predators on salmon, and evolutionary responses are likely (but undocumented). More research is needed to tease apart the relative importance of evolutionary vs. plastic responses of salmon to these environmental changes; this research is logistically challenging for species with life histories like Pacific salmon, but results should substantially improve our understanding of key processes. If the Columbia River is ever returned to a quasinatural, free-flowing state, remaining populations might face a Darwinian debt (and temporarily reduced fitness) as they struggle to

  19. Crustal deformation of the Yellowstone-Snake River Plain volcano-tectonic system-Campaign and continuous GPS observations, 1987-2004

    USGS Publications Warehouse

    Puskas, C.M.; Smith, R.B.; Meertens, Charles M.; Chang, W. L.

    2007-01-01

    The Yellowstone-Snake River Plain tectonomagmatic province resulted from Late Tertiary volcanism in western North America, producing three large, caldera-forming eruptions at the Yellowstone Plateau in the last 2 Myr. To understand the kinematics and geodynamics of this volcanic system, the University of Utah conducted seven GPS campaigns at 140 sites between 1987 and 2003 and installed a network of 15 permanent stations. GPS deployments focused on the Yellowstone caldera, the Hebgen Lake and Teton faults, and the eastern Snake River Plain. The GPS data revealed periods of uplift and subsidence of the Yellowstone caldera at rates up to 15 mm/yr. From 1987 to 1995, the caldera subsided and contracted, implying volume loss. From 1995 to 2000, deformation shifted to inflation and extension northwest of the caldera. From 2000 to 2003, uplift continued to the northwest while caldera subsidence was renewed. The GPS observations also revealed extension across the Hebgen Lake fault and fault-normal contraction across the Teton fault. Deformation rates of the Yellowstone caldera and Hebgen Lake fault were converted to equivalent total moment rates, which exceeded historic seismic moment release and late Quaternary fault slip-derived moment release by an order of magnitude. The Yellowstone caldera deformation trends were superimposed on regional southwest extension of the Yellowstone Plateau at up to 4.3 ± 0.2 mm/yr, while the eastern Snake River Plain moved southwest as a slower rate at 2.1 ± 0.2 mm/yr. This southwest extension of the Yellowstone-Snake River Plain system merged into east-west extension of the Basin-Range province. Copyright 2007 by the American Geophysical Union.

  20. Fraser River sockeye salmon productivity and climate: A re-analysis that avoids an undesirable property of Ricker’s curve

    NASA Astrophysics Data System (ADS)

    McKinnell, Skip

    2008-05-01

    In descending order of importance, artificial spawning channels, density-dependent mortality, carryover mortality, and climate have significant influences on the average productivity of Fraser River sockeye salmon ( Oncorhynchus nerka). When factors that are known or have been hypothesized to affect Fraser River sockeye salmon productivity are included in a single analytical framework, no significant change in average productivity occurred in 1976/1977, however, beginning in 1989 average productivity was significantly lower. In the one lake (Chilko) in the Fraser River basin where pre-smolt survival can be distinguished from post-smolt survival, this decline arose from freshwater causes. After accounting for other factors that have a greater influence, Fraser River sockeye salmon productivity tends to be slightly lower in years when the intensity of the Aleutian low pressure region is stormier in winter, although the effect is not strongly expressed in any particular population. A footnote to the study was the realization that estimates of Ricker’s density-dependent mortality parameter, β, are influenced by both the numerical properties of the equation and by population biology; density-dependent and density-independent influences on the estimates of the parameter are confounded.

  1. Climate Change Impacts on Stream Temperatures in the Columbia River System

    NASA Astrophysics Data System (ADS)

    Yearsley, J. R.; Crozier, L.

    2014-12-01

    The Columbia River system, a drainage basin of 668,000 sq. km that includes the Columbia and Snake River rivers, supports a large population of anadromous, cold-water fishes. 13 species of these fishes are listed under the Endangered Species Act and are vulnerable to impacts of climate change. Bioenergetics models for these species have been developed by the federal agencies that operate the Federal Columbia River Power System. These models simulate the impacts on anadromous fishes as they move through the power system both upstream as adults and downstream as juveniles. Water temperature simulations required for input to the bioenergetics models were made for two different segments of the Columbia River system; one being the portions from the Canadian border to Bonneville Dam and the Snake River from Brownlee Dam in Idaho to its confluence and the other, the Salmon River basin in Idaho. Simulations were performed for the period 1928-1998 with the semi-Lagrangian stream temperature model, RBM, for existing conditions and for a two 2040 climate scenarios, a cool, dry condition (ECHO_g model) and a warm, wet condition (MIROC_3.2 model). Natural flows were simulated with the variable infiltration capacity model, VIC, and modified for Columbia River project operations using HYDSIM, a hydro system regulation model that simulates month-to-month operation of the Pacific Northwest hydropower system.

  2. Juvenile salmonid monitoring in the White Salmon River, Washington, post-Condit Dam removal, 2016

    USGS Publications Warehouse

    Jezorek, Ian G.; Hardiman, Jill M.

    2017-06-23

    Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and removed completely in 2012, allowing anadromous salmonids access to habitat that had been blocked for nearly 100 years. A multi-agency workgroup concluded that the preferred salmonid restoration alternative was natural recolonization with monitoring to assess efficacy, followed by a management evaluation 5 years after dam removal. Limited monitoring of salmon and steelhead spawning has occurred since 2011, but no monitoring of juveniles occurred until 2016. During 2016, we operated a rotary screw trap at river kilometer 2.3 (3 kilometers downstream of the former dam site) from late March through May and used backpack electrofishing during summer to assess juvenile salmonid distribution and abundance. The screw trap captured primarily steelhead (Oncorhynchus mykiss; smolts, parr, and fry) and coho salmon (O. kisutch; smolts and fry). We estimated the number of steelhead smolts at 3,851 (standard error = 1,454) and coho smolts at 1,093 (standard error = 412). In this document, we refer to O. mykiss caught at the screw trap as steelhead because they were actively migrating, but because we did not know migratory status of O. mykiss caught in electrofishing surveys, we simply refer to them as O. mykiss or steelhead/rainbow trout. Steelhead and coho smolts tagged with passive integrated transponder tags were subsequently detected downstream at Bonneville Dam on the Columbia River. Few Chinook salmon (O. tshawytscha) fry were captured, possibly as a result of trap location or effects of a December 2015 flood. Sampling in Mill, Buck, and Rattlesnake Creeks (all upstream of the former dam site) showed that juvenile coho were present in Mill and Buck Creeks, suggesting spawning had occurred there. We compared O. mykiss abundance data in sites on Buck and Rattlesnake Creeks to pre-dam removal data. During 2016, age-0 O. mykiss were more abundant in Buck Creek than in 2009 or

  3. Upstream movements of Atlantic Salmon in the Lower Penobscot River, Maine following two dam removals and fish passage modifications

    USGS Publications Warehouse

    Izzo, Lisa K.; Maynard, George A.; Zydlewski, Joseph D.

    2016-01-01

    The Penobscot River Restoration Project (PRRP), to be completed in 2016, involved an extensive plan of dam removal, increases in hydroelectric capacity, and fish passage modifications to increase habitat access for diadromous species. As part of the PRRP, Great Works and Veazie dams were removed, making Milford Dam the first impediment to federally endangered Atlantic Salmon Salmo salar. Upstream habitat access for Atlantic Salmon is dependent upon successful and timely passage at Milford Dam because nearly all suitable spawning habitat is located upstream. In 2014 and 2015, a total of 73 adult salmon were radio-tagged to track their upstream movements through the Penobscot River to assess potential delays at (1) the dam remnants, (2) the confluence of the Stillwater Branch and the main stem of the Penobscot River below the impassable Orono Dam, and (3) the Milford Dam fish lift (installed in 2014). Movement rates through the dam remnants and the Stillwater confluence were comparable to open river reaches. Passage efficiency of the fish lift was high in both years (95% and 100%). However, fish experienced long delays at Milford Dam, with approximately one-third of fish taking more than a week to pass in each year, well below the Federal Energy Regulatory Commission passage standard of 95% within 48 h. Telemetry indicates most fish locate the fishway entrance within 5 h of arrival and were observed at the entrance at all hours of the day. These data indicate that overall transit times through the lower river were comparable to reported movement rates prior to changes to the Penobscot River due to the substantial delays seen at Milford Dam. The results of this study show that while adult Atlantic Salmon locate the new fish lift entrance quickly, passage of these fish was significantly delayed under 2014–2015 operations.

  4. From Rivers to Oceans and Back: Linking Models to Encompass the Full Salmon Life Cycle

    NASA Astrophysics Data System (ADS)

    Danner, E.; Hendrix, N.; Martin, B.; Lindley, S. T.

    2016-02-01

    Pacific salmon are a promising study subject for investigating the linkages between freshwater and coastal ocean ecosystems. Salmon use a wide range of habitats throughout their life cycle as they move with water from mountain streams, mainstem rivers, estuaries, bays, and coastal oceans, with adult fish swimming back through the same migration route they took as juveniles. Conditions in one habitat can have growth and survival consequences that manifest in the following habitat, so is key that full life cycle models are used to further our understanding salmon population dynamics. Given the wide range of habitats and potential stressors, this approach requires the coordination of a multidisciplinary suite of physical and biological models, including climate, hydrologic, hydraulic, food web, circulation, bioenergetic, and ecosystem models. Here we present current approaches to linking physical and biological models that capture the foundational drivers for salmon in complex and dynamic systems.

  5. Status and distribution of chinook salmon and steelhead in the interior Columbia River basin and portions of the Klamath River basin [Chapter 12

    Treesearch

    Russell F. Thurow; Danny C. Lee; Bruce E. Rieman

    2000-01-01

    This chapter summarizes information on presence, absence, current status, and probable historical distribution of steelhead Oncorhynchus mykiss and stream-type (age-1 migrant) and ocean type (age-0 migrant) chinook salmon O. tshawytscha in the interior Columbia River basin and portions of the Klamath River basin. Data were compiled from existing sources and via surveys...

  6. Methods to estimate annual mean spring discharge to the Snake River between Milner Dam and King Hill, Idaho

    USGS Publications Warehouse

    Kjelstrom, L.C.

    1995-01-01

    Many individual springs and groups of springs discharge water from volcanic rocks that form the north canyon wall of the Snake River between Milner Dam and King Hill. Previous estimates of annual mean discharge from these springs have been used to understand the hydrology of the eastern part of the Snake River Plain. Four methods that were used in previous studies or developed to estimate annual mean discharge since 1902 were (1) water-budget analysis of the Snake River; (2) correlation of water-budget estimates with discharge from 10 index springs; (3) determination of the combined discharge from individual springs or groups of springs by using annual discharge measurements of 8 springs, gaging-station records of 4 springs and 3 sites on the Malad River, and regression equations developed from 5 of the measured springs; and (4) a single regression equation that correlates gaging-station records of 2 springs with historical water-budget estimates. Comparisons made among the four methods of estimating annual mean spring discharges from 1951 to 1959 and 1963 to 1980 indicated that differences were about equivalent to a measurement error of 2 to 3 percent. The method that best demonstrates the response of annual mean spring discharge to changes in ground-water recharge and discharge is method 3, which combines the measurements and regression estimates of discharge from individual springs.

  7. Environmental contaminants and biomarker responses in fish from the Columbia River and its tributaries: spatial and temporal trends

    USGS Publications Warehouse

    Hinck, J.E.; Schmitt, C.J.; Blazer, V.S.; Denslow, N.D.; Bartish, T.M.; Anderson, P.J.; Coyle, J.J.; Dethloff, G.M.; Tillitt, D.E.

    2006-01-01

    Fish were collected from 16 sites on rivers in the Columbia River Basin (CRB) from September 1997 to April 1998 to document temporal and spatial trends in the concentrations of accumulative contaminants and to assess contaminant effects on the fish. Sites were located on the mainstem of the Columbia River and on the Snake, Willamette, Yakima, Salmon, and Flathead Rivers. Common carp (Cyprinus carpio), black bass (Micropterus sp.), and largescale sucker (Catostomus macrocheilus) were the targeted species. Fish were field-examined for external and internal lesions, selected organs were weighed to compute somatic indices, and tissue and fluid samples were preserved for fish health and reproductive biomarker analyses. Composite samples of whole fish, grouped by species and gender, from each site were analyzed for organochlorine and elemental contaminants using instrumental methods and for 2,3,7,8-tetrachloro dibenzo-p-dioxin-like activity (TCDD-EQ) using the H4IIE rat hepatoma cell bioassay. Overall, pesticide concentrations were greatest in fish from lower CRB sites and elemental concentrations were greatest in fish from upper CRB sites. These patterns reflected land uses. Lead (Pb) concentrations in fish from the Columbia River at Northport and Grand Coulee, Washington (WA) exceeded fish and wildlife toxicity thresholds (> 0.4 ??g/g). Selenium (Se) concentrations in fish from the Salmon River at Riggins, Idaho (ID), the Columbia River at Vernita Bridge, WA, and the Yakima River at Granger, WA exceeded toxicity thresholds for piscivorous wildlife (> 0.6 ??g/g). Mercury (Hg) concentrations in fish were elevated throughout the basin but were greatest (> 0.4 ??g/g) in predatory fish from the Salmon River at Riggins, ID, the Yakima River at Granger, WA, and the Columbia River at Warrendale, Oregon (OR). Residues of p,p???-DDE were greatest (> 0.8 ??g/g) in fish from agricultural areas of the Snake, Yakima, and Columbia River basins but were not detected in upper CRB fish

  8. Environmental contaminants and biomarker responses in fish from the Columbia River and its tributaries: spatial and temporal trends.

    PubMed

    Hinck, Jo Ellen; Schmitt, Christopher J; Blazer, Vicki S; Denslow, Nancy D; Bartish, Timothy M; Anderson, Patrick J; Coyle, James J; Dethloff, Gail M; Tillitt, Donald E

    2006-08-01

    Fish were collected from 16 sites on rivers in the Columbia River Basin (CRB) from September 1997 to April 1998 to document temporal and spatial trends in the concentrations of accumulative contaminants and to assess contaminant effects on the fish. Sites were located on the mainstem of the Columbia River and on the Snake, Willamette, Yakima, Salmon, and Flathead Rivers. Common carp (Cyprinus carpio), black bass (Micropterus sp.), and largescale sucker (Catostomus macrocheilus) were the targeted species. Fish were field-examined for external and internal lesions, selected organs were weighed to compute somatic indices, and tissue and fluid samples were preserved for fish health and reproductive biomarker analyses. Composite samples of whole fish, grouped by species and gender, from each site were analyzed for organochlorine and elemental contaminants using instrumental methods and for 2,3,7,8-tetrachloro dibenzo-p-dioxin-like activity (TCDD-EQ) using the H4IIE rat hepatoma cell bioassay. Overall, pesticide concentrations were greatest in fish from lower CRB sites and elemental concentrations were greatest in fish from upper CRB sites. These patterns reflected land uses. Lead (Pb) concentrations in fish from the Columbia River at Northport and Grand Coulee, Washington (WA) exceeded fish and wildlife toxicity thresholds (>0.4 microg/g). Selenium (Se) concentrations in fish from the Salmon River at Riggins, Idaho (ID), the Columbia River at Vernita Bridge, WA, and the Yakima River at Granger, WA exceeded toxicity thresholds for piscivorous wildlife (>0.6 microg/g). Mercury (Hg) concentrations in fish were elevated throughout the basin but were greatest (>0.4 microg/g) in predatory fish from the Salmon River at Riggins, ID, the Yakima River at Granger, WA, and the Columbia River at Warrendale, Oregon (OR). Residues of p,p'-DDE were greatest (>0.8 microg/g) in fish from agricultural areas of the Snake, Yakima, and Columbia River basins but were not detected in upper CRB

  9. Growth and smolting in lower-mode Atlantic Salmon stocked into the Penobscot River, Maine

    USGS Publications Warehouse

    Zydlewski, Joseph D.; O'Malley, Andrew; Cox, Oliver; Ruksznis, Peter; Trial, Joan G.

    2014-01-01

    Restoration of Atlantic Salmon Salmo salar in Maine has relied on hatchery-produced fry and smolts for critical stocking strategies. Stocking fry minimizes domestication selection, but these fish have poor survival. Conversely, stocked smolts have little freshwater experience but provide higher adult returns. Lower-mode (LM) fish, those not growing fast enough to ensure smolting by the time of stocking, are a by-product of the smolt program and are an intermediate hatchery product. From 2002 to 2009, between 70,000 and 170,000 marked LM Atlantic Salmon were stocked into the Pleasant River (a tributary in the Penobscot River drainage, Maine) in late September to early October. These fish were recaptured as actively migrating smolts (screw trapping), as nonmigrants (electrofishing), and as returning adults to the Penobscot River (Veazie Dam trap). Fork length (FL) was measured and a scale sample was taken to retrospectively estimate FL at winter annulus one (FW1) using the intercept-corrected direct proportion model. The LM fish were observed to migrate as age-1, age-2, and infrequently as age-3 smolts. Those migrating as age-1 smolts had a distinctly larger estimated FL at FW1 (>112 mm) than those that remained in the river for at least one additional year. At the time of migration, age-2 and age-3 smolts were substantially larger than age-1 smolts. Returning adult Atlantic Salmon of LM origin had estimated FLs at FW1 that corresponded to smolt age (greater FL for age 1 than age 2). The LM product produces both age-1 and age-2 smolts that have greater freshwater experience than hatchery smolts and may have growth and fitness advantages. The data from this study will allow managers to better assess the probability of smolting age and manipulate hatchery growth rates to produce a targeted-size LM product.

  10. Estimating freshwater productivity, overwinter survival, and migration patterns of Klamath River Coho Salmon

    USGS Publications Warehouse

    Manhard, Christopher V.; Som, Nicholas A.; Perry, Russell W.; Faukner, Jimmy; Soto, Toz

    2018-01-01

    An area of great importance to resource management and conservation biology in the Klamath Basin is balancing water usage against the life history requirements of threatened Coho Salmon. One tool for addressing this topic is a freshwater dynamics model to forecast Coho Salmon productivity based on environmental inputs. Constructing such a forecasting tool requires local data to quantify the unique life history processes of Coho Salmon inhabiting this region. Here, we describe analytical methods for estimating a series of sub-models, each capturing a different life history process, which will eventually be synchronized as part of a freshwater dynamics model for Klamath River Coho Salmon. Specifically, we draw upon extensive population monitoring data collected in the basin to estimate models of freshwater productivity, overwinter survival, and migration patterns. Our models of freshwater productivity indicated that high summer temperatures and high winter flows can both adversely affect smolt production and that such relationships are more likely in tributaries with naturally regulated flows due to substantial intraannual environmental variation. Our models of overwinter survival demonstrated extensive variability in survival among years, but not among rearing locations, and demonstrated that a substantial proportion (~ 20%) of age-0+ fish emigrate from some rearing sites in the winter. Our models of migration patterns indicated that many age-0+ fish redistribute in the basin during the summer and winter. Further, we observed that these redistributions can entail long migrations in the mainstem where environmental stressors likely play a role in cueing refuge entry. Finally, our models of migration patterns indicated that changes in discharge are important in cueing the seaward migration of smolts, but that the nature of this behavioral response can differ dramatically between tributaries with naturally and artificially regulated flows. Collectively, these analyses

  11. Changes in Salmon Spawning Habitat Distributions Following Rapid and Gradual Channel Adjustments in the Cedar River, Washington

    NASA Astrophysics Data System (ADS)

    Timm, R. K.; Wissmar, R. C.; Berge, H.; Foley, S.

    2005-05-01

    Anthropogenic controls on rivers such as dams, hardened banks, and land uses limit the interactions between main river channel and floodplain ecosystems and contribute to decreased habitat diversity. These system controls dampen the frequency and magnitude of natural disturbances that contibute to physical habitat structure and variability. Under natural and altered disturbance regimes river systems are expected to exhibit resiliency. However, in some cases, disturbances cause fluctuations in the trajectory of the mean system state that can have implications for river recovery in the short- and long-term by changing the spatial and temporal dimensions of available habitat relative to specific biological requirements. Historic and contemporary salmon spawning data are analyzed in the context of changing disturbance regimes in the Cedar River, Washington. Historic data are presented for active channel conditions and spawning fish distributions. Contemporary data are presented for an intensively studied reach that received a landslide that deposited approximately 50,000 m3 of sediment in the main channel, temporarily damming the river. Biologically, the spatio-temporal spawning distributions of Chinook (Oncorhynchus tshawytcha) and sockeye (O. nerka) salmon responded to modifications of physical habitat.

  12. Ecology of nonnative Siberian prawn (Palaemon modestus) in the lower Snake River, Washington, USA

    USGS Publications Warehouse

    Erhardt, John M.; Tiffan, Kenneth F.

    2016-01-01

    We assessed the abundance, distribution, and ecology of the nonnative Siberian prawn Palaemon modestus in the lower Snake River, Washington, USA. Analysis of prawn passage abundance at three Snake River dams showed that populations are growing at exponential rates, especially at Little Goose Dam where over 464,000 prawns were collected in 2015. Monthly beam trawling during 2011–2013 provided information on prawn abundance and distribution in Lower Granite and Little Goose Reservoirs. Zero-inflated regression predicted that the probability of prawn presence increased with decreasing water velocity and increasing depth. Negative binomial models predicted higher catch rates of prawns in deeper water and in closer proximity to dams. Temporally, prawn densities decreased slightly in the summer, likely due to the mortality of older individuals, and then increased in autumn and winter with the emergence and recruitment of young of the year. Seasonal length frequencies showed that distinct juvenile and adult size classes exist throughout the year, suggesting prawns live from 1 to 2 years and may be able to reproduce multiple times during their life. Most juvenile prawns become reproductive adults in 1 year, and peak reproduction occurs from late July through October. Mean fecundity (189 eggs) and reproductive output (11.9 %) are similar to that in their native range. The current use of deep habitats by prawns likely makes them unavailable to most predators in the reservoirs. The distribution and role of Siberian prawns in the lower Snake River food web will probably continue to change as the population grows and warrants continued monitoring and investigation.

  13. Assessment of juvenile coho salmon movement and behavior in relation to rehabilitation efforts in the Trinity River, California, using PIT tags and radiotelemetry

    USGS Publications Warehouse

    Chase, Robert; Hemphill, Nina; Beeman, John; Juhnke, Steve; Hannon, John; Jenkins, Amy M.

    2013-01-01

    Coho salmon (Oncorhynchus kisutch) of the Southern Oregon/Northern California Coast (SONCC) Evolutionarily Significant Unit (ESU) is federally listed as a threatened species. The Trinity River Restoration Program (TRRP) is rehabilitating the Trinity River to restore coho salmon (coho) and other salmonid populations. In order to evaluate the program’s actions, several studies of movements and behavior of coho in the Trinity River were conducted from 2006 to 2009, including snorkel surveys and mark-recapture techniques based on Passive Integrated Transponder (PIT) tags, elastomer tags, and radio transmitters. Catch, recapture, and condition of natural sub-yearlings, along with site fidelity and emigration of hatchery-reared yearlings in rehabilitated and reference habitats, were studied. Location was important because coho were absent from the lower controlled and rehabilitated sites most of the time. However, rehabilitation did not have a significant effect on natural coho salmon at the site level. Apparent survival of radio-tagged, hatchery-reared yearling coho released downstream from Lewiston Dam was much lower in the first 10 km downstream from the release site than in other areas between Lewiston Dam and the Klamath River estuary. Estimated survival of yearling hatchery coho salmon per 100 km down to Blake’s Riffle was estimated at 64 % over the distance of the 239 km study area. Migration primarily occurred at night in the upper Trinity River; however, as yearlings moved through the lower Trinity River towards the Klamath River, estuary nocturnal migration became less. Apparent survival was generally lowest in areas upstream from the North Fork of the Trinity River.

  14. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.J. Payne; R. McCaffrey; R.W. King

    2012-04-01

    We evaluate horizontal Global Positioning System (GPS) velocities together with geologic, volcanic, and seismic data to interpret extension, shear, and contraction within the Snake River Plain and the Northern Basin and Range Province, U.S.A. We estimate horizontal surface velocities using GPS data collected at 385 sites from 1994 to 2009 and present an updated velocity field within the Stable North American Reference Frame (SNARF). Our results show an ENE-oriented extensional strain rate of 5.9 {+-} 0.7 x 10{sup -9} yr{sup -1} in the Centennial Tectonic belt and an E-oriented extensional strain rate of 6.2 {+-} 0.3 x 10{sup -9} yr{supmore » -1} in the Intermountain Seismic belt combined with the northern Great Basin. These extensional strain rates contrast with the regional north-south contraction of -2.6 {+-} 1.1 x 10{sup -9} yr{sup -1} calculated in the Snake River Plain and Owyhee-Oregon Plateau over a 125 x 650 km region. Tests that include dike-opening reveal that rapid extension by dike intrusion in volcanic rift zones does not occur in the Snake River Plain at present. This slow internal deformation in the Snake River Plain is in contrast to the rapidly-extending adjacent Basin and Range provinces and implies shear along boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.5-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic belt and left-lateral oblique extension with slip rates of <0.5 to 1.7 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic belt. The fastest lateral shearing occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional GPS velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic belt, Idaho batholith, Snake River Plain, Owyhee-Oregon Plateau, and central Oregon, indicating that clockwise rotation is driven by extension to

  15. Juvenile Chinook Salmon abundance in the northern Bering Sea: Implications for future returns and fisheries in the Yukon River

    NASA Astrophysics Data System (ADS)

    Murphy, James M.; Howard, Kathrine G.; Gann, Jeanette C.; Cieciel, Kristin C.; Templin, William D.; Guthrie, Charles M.

    2017-01-01

    Juvenile Chinook Salmon (Oncorhynchus tshawytscha) abundance in the northern Bering Sea is used to provide insight into future returns and fisheries in the Yukon River. The status of Yukon River Chinook Salmon is of concern due to recent production declines and subsequent closures of commercial, sport, and personal use fisheries, and severe restrictions on subsistence fisheries in the Yukon River. Surface trawl catch data, mixed layer depth adjustments, and genetic stock mixtures are used to estimate juvenile abundance for the Canadian-origin stock group from the Yukon River. Abundance ranged from a low of 0.62 million in 2012 to a high of 2.58 million in 2013 with an overall average of 1.5 million from 2003 to 2015. Although abundance estimates indicate that average survival is relatively low (average of 5.2%), juvenile abundance was significantly correlated (r=0.87, p=0.005) with adult returns, indicating that much of the variability in survival occurs during early life-history stages (freshwater and initial marine). Juvenile abundance in the northern Bering Sea has increased since 2013 due to an increase in early life-history survival (average juveniles-per-spawner increased from 29 to 59). The increase in juvenile abundance is projected to produce larger runs and increased subsistence fishing opportunities for Chinook Salmon in the Yukon River as early as 2016.

  16. Lower Snake River, Fish and Wildlife Compensation. Status of the Warmwater Fishery and the Potential of Improving Warmwater Fish Habitat in the Lower Snake Reservoirs.

    DTIC Science & Technology

    1983-01-01

    fisheries for salaonids such as kokanee ( Oncorhynchus nerka ) and catchable rainbow trout. Goodnight (1972) report- ed catch rates of 1.42 fish/angler... Oncorhynchus tshawytscha) and steelhead trout (Salmo gairdneri) migrated to Shoshone Falls on the Snake River (PNRBC 1971). Construction of Swan Falls

  17. Population Estimates for Chum Salmon Spawning in the Mainstem Columbia River, 2002 Technical Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawding, Dan; Hillson, Todd D.

    2003-11-15

    Accurate and precise population estimates of chum salmon (Oncorhynchus keta) spawning in the mainstem Columbia River are needed to provide a basis for informed water allocation decisions, to determine the status of chum salmon listed under the Endangered Species Act, and to evaluate the contribution of the Duncan Creek re-introduction program to mainstem spawners. Currently, mark-recapture experiments using the Jolly-Seber model provide the only framework for this type of estimation. In 2002, a study was initiated to estimate mainstem Columbia River chum salmon populations using seining data collected while capturing broodstock as part of the Duncan Creek re-introduction. The fivemore » assumptions of the Jolly-Seber model were examined using hypothesis testing within a statistical framework, including goodness of fit tests and secondary experiments. We used POPAN 6, an integrated computer system for the analysis of capture-recapture data, to obtain maximum likelihood estimates of standard model parameters, derived estimates, and their precision. A more parsimonious final model was selected using Akaike Information Criteria. Final chum salmon escapement estimates and (standard error) from seining data for the Ives Island, Multnomah, and I-205 sites are 3,179 (150), 1,269 (216), and 3,468 (180), respectively. The Ives Island estimate is likely lower than the total escapement because only the largest two of four spawning sites were sampled. The accuracy and precision of these estimates would improve if seining was conducted twice per week instead of weekly, and by incorporating carcass recoveries into the analysis. Population estimates derived from seining mark-recapture data were compared to those obtained using the current mainstem Columbia River salmon escapement methodologies. The Jolly-Seber population estimate from carcass tagging in the Ives Island area was 4,232 adults with a standard error of 79. This population estimate appears reasonable and precise but

  18. 75 FR 57266 - Idaho Power Company; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ...) is located on the Snake River in Gooding, Twin Falls and Elmore Counties, Idaho. The Lower Salmon Falls Project (P-2061) is located on the Snake River in Gooding and Twin Falls Counties, Idaho. Both.... Locations of the Application: A copy of the application is available for inspection and reproduction at the...

  19. Fish vs. power: Remaking salmon, science and society on the Fraser River, 1900--1960

    NASA Astrophysics Data System (ADS)

    Evenden, Matthew Dominic

    Overlapping resource demands made the Fraser River a contested site of development politics in twentieth century British Columbia. Since the turn of the century, power interests surveyed the river's flow, sited dams and promoted development schemes. Fisheries interests, on the other hand, sought to maintain the river as salmon spawning habitat. They questioned the necessity of dams, supported fisheries research and rehabilitation and organized anti-development coalitions. Before the mid-1950s a number of dam projects proceeded on Fraser tributaries and major landslides at Hells Gate modeled the dangers of main stem development. Because of the concerted political lobbying of fisheries groups, the skeptical appraisal of fisheries scientists to development proposals and the legal and political authority of the federal Department of Fisheries and the International Pacific Salmon Fisheries Commission, major dam projects were defeated on the Fraser in the late 1950s. Delayed development on the Fraser helped to spur hydroelectric projects on other rivers in the province; the fish-power problem on the Fraser altered the province's spatial economy of power. Once development began on the Columbia and Peace Rivers, the Fraser was protected by implication. The study combines approaches from environmental history, the history of science and political economy to demonstrate the intersections and interactions between nature, knowledge and society. Research was conducted at eleven archives in Canada and the United States in the papers of organizations, corporations, government departments, politicians, scientists and individuals.

  20. California salmon and steelhead: Beyond the crossroads

    USGS Publications Warehouse

    Mills, Terry J.; McEwan, Dennis R.; Jennings, Mark R.; Stouder, Deanna J.; Bisson, Peter A.; Naiman, Robert J.

    1997-01-01

    Virtually all California salmon (Oncorhynchus spp.) and steelhead (O. mykiss) stocks have declined to record or near-record low levels during 1980-95. Escapement of naturally spawning Klamath and Sacramento basin fall-run chinook salmon (O. tshawytscha) stocks has fallen consistently below the goals of 35,000 adults (Klamath) and 120,000 adults (Sacramento) established by the Pacific Fishery Management Council. These two stocks constitute the primary management units for ocean harvest regulations in California and southern Oregon. This decline triggered a mandatory review of ocean harvest and inland production conditions in each basin. The Sacramento winter-run chinook salmon, once numbering >100,000 adult spawners, was listed as threatened in 1990 and endangered in 1994 under the Endangered Species Act. The listing occurred as a result of a precipitous decline in abundance (to <200 adult spawners) and significant threats to this stock’s continued existence.Spring-run chinook salmon, historically an abundant component of California’s inland fish fauna with >500,000 adult spawners, has been extirpated from the San Joaquin River basin. However, remnant populations of this naturally spawning stock remain within the Klamath, Smith, and Sacramento river basins. Unfortunately, annual counts of 3,000-25,000 spawners in the Sacramento River basin during the past 25 years are largely of hatchery origin. Recent steelhead data from the same region indicate that many stocks are close to extinction, and nearly all steel-head in the Sacramento River are also of hatchery origin. Both spring-run chinook salmon and summer steelhead are considered to be species of special concern by the California Department of Fish and Game because of their limited distributions and sensitivities to degraded habitat conditions. The southern race of winter steelhead south of Point Conception is nearly extinct and remnant populations have been recently recorded in only 9 streams.Coastal cutthroat

  1. Spring Outmigration of Wild and Hatchery Chinook Salmon and Steelhead Trout Smolts from the Imnaha River, Oregon; 1996 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blenden, Michael L.; Rocklage, Stephen J.; Kucera, Paul A.

    1997-04-01

    For the third consecutive year, the Nez Perce Tribe, in conjunction with the Fish Passage Center, participated in the smolt monitoring program in the Imnaha River. A rotary screw trap was used to collect emigrating wild and hatchery chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss) smolts from February 23 to June 24, 1996. A total of 1,797 wild chinook salmon, 11,896 hatchery chinook salmon, 3,786 wild steelhead trout, and 31,094 hatchery steelhead trout smolts were captured during outmigration studies on the Imnaha River in 1996. Mortality associated with trapping, handling and tagging was low, being 1.4% for wildmore » chinook, 0.18% for hatchery chinook, 0.21% for wild steelhead and 0.28% for hatchery steelhead trout smolts.« less

  2. An annotated bibliography of the hydrology and fishery studies of the South Fork Salmon River

    Treesearch

    Kathleen A. Seyedbagheri; Michael L. McHenry; William S. Platts

    1987-01-01

    A brief summary of the land management history of the South Fork Salmon River (Idaho) watershed includes citations and annotations of published and unpublished reports of fishery and hydrology studies conducted in the South Fork drainage for 1960 to 1986.

  3. Captive Rearing Program for Salmon River Chinook Salmon, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venditti, David; Willard, Catherine; James, Chris

    2003-11-01

    During 2002, the Idaho Department of Fish and Game continued to develop techniques to rear Chinook salmon Oncorhynchus tshawytscha to sexual maturity in captivity and to monitor their reproductive performance under natural conditions. Eyed-eggs were hydraulically collected from redds in the East Fork Salmon River (EFSR; N = 328) and the West Fork Yankee Fork Salmon River (WFYF; N = 308) to establish brood year 2002 culture cohorts. The eyed-eggs were incubated and reared at the Eagle Fish Hatchery, Eagle, Idaho (Eagle). Juveniles collected in 2000 were PIT and elastomer tagged and vaccinated against vibrio Vibrio spp. and bacterial kidneymore » disease prior to being transferred to the NOAA Fisheries, Manchester Marine Experimental Station, Manchester, Washington (Manchester) for saltwater rearing through maturity. Smolt transfers included 203 individuals from the WFYF and 379 from the EFSR. Maturing fish transfers from Manchester to Eagle included 107 individuals from the LEM, 167 from the WFYF, and 82 from the EFSR. This was the second year maturing adults were held on chilled water at Eagle to test if water temperature manipulations could advance spawn timing. Adults from the LEM and WFYF were divided into chilled ({approx} 9 C) and ambient ({approx} 13.5 C) temperature groups while at Eagle. Forty-seven mature females from the LEM (19 chilled, 16 ambient, and 12 ambient not included in the temperature study) were spawned at Eagle with 42 males in 2002. Water temperature group was not shown to affect the spawn timing of these females, but males did mature earlier. Egg survival to the eyed stage averaged 66.5% and did not differ significantly between the temperature groups. Personnel from the Shoshone-Bannock Tribe placed a total of 47,977 eyed-eggs from these crosses in in-stream incubators. Mature adults (N = 215 including 56 precocial males) were released into the WFYF to evaluate their reproductive performance. After release, fish distributed themselves

  4. Salmon redd identification using environmental DNA (eDNA)

    USGS Publications Warehouse

    Pilliod, David S.; Laramie, Matthew B.

    2016-06-10

    IntroductionThe purpose of this project was to develop a technique to use environmental DNA (eDNA) to distinguish between redds made by Chinook salmon (Oncorhynchus tshawytscha) and redds made by Coho salmon (O. kisutch) and to distinguish utilized redds from test/abandoned redds or scours that have the appearance of redds. The project had two phases:Phase 1. Develop, test, and optimize a molecular assay for detecting and identifying Coho salmon DNA and differentiating it from Chinook salmon DNA.Phase 2. Demonstrate the efficacy of the technique.Collect and preserve water samples from the interstitial spaces of 10 known redds (as identified by expert observers) of each species and 10 gravel patches that do not include a redd of either species.Collect control samples from the water column adjacent to each redd to establish background eDNA levels.Analyze the samples using the developed molecular assays for Coho salmon (phase I) and Chinook salmon (Laramie and others, 2015).Evaluate whether samples collected from Chinook and Coho redds have significantly higher levels of eDNA of the respective species than background levels (that is, from gravel, water column).Evaluate whether samples collected from the interstitial spaces of gravel patches that are not redds are similar to background eDNA levels.The Sandy River is a large tributary of the Columbia River. The Sandy River meets the Columbia River approximately 23 km upstream of Portland, Oregon. The Sandy River Basin provides overlapping spawning habitat for both Chinook and Coho salmon.Samples provided by Portland Water Bureau for analysis were collected from the Bull Run River, Sixes Creek, Still Creek, Arrah Wanna Side Channel, and Side Channel 18.

  5. Time to Evolve? Potential Evolutionary Responses of Fraser River Sockeye Salmon to Climate Change and Effects on Persistence

    PubMed Central

    Reed, Thomas E.; Schindler, Daniel E.; Hague, Merran J.; Patterson, David A.; Meir, Eli; Waples, Robin S.; Hinch, Scott G.

    2011-01-01

    Evolutionary adaptation affects demographic resilience to climate change but few studies have attempted to project changes in selective pressures or quantify impacts of trait responses on population dynamics and extinction risk. We used a novel individual-based model to explore potential evolutionary changes in migration timing and the consequences for population persistence in sockeye salmon Oncorhynchus nerka in the Fraser River, Canada, under scenarios of future climate warming. Adult sockeye salmon are highly sensitive to increases in water temperature during their arduous upriver migration, raising concerns about the fate of these ecologically, culturally, and commercially important fish in a warmer future. Our results suggest that evolution of upriver migration timing could allow these salmon to avoid increasingly frequent stressful temperatures, with the odds of population persistence increasing in proportion to the trait heritability and phenotypic variance. With a simulated 2°C increase in average summer river temperatures by 2100, adult migration timing from the ocean to the river advanced by ∼10 days when the heritability was 0.5, while the risk of quasi-extinction was only 17% of that faced by populations with zero evolutionary potential (i.e., heritability fixed at zero). The rates of evolution required to maintain persistence under simulated scenarios of moderate to rapid warming are plausible based on estimated heritabilities and rates of microevolution of timing traits in salmon and related species, although further empirical work is required to assess potential genetic and ecophysiological constraints on phenological adaptation. These results highlight the benefits to salmon management of maintaining evolutionary potential within populations, in addition to conserving key habitats and minimizing additional stressors where possible, as a means to build resilience to ongoing climate change. More generally, they demonstrate the importance and

  6. Salmon Supplementation Studies in Idaho Rivers; Idaho Supplementation Studies, 2000-2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beasley, Chris; Tabor, R.A.; Kinzer, Ryan

    2003-04-01

    This report summarizes brood year 1999 juvenile production and emigration data and adult return information for 2000 for streams studied by the Nez Perce Tribe for the cooperative Idaho Salmon Supplementation Studies in Idaho Rivers (ISS) project. In order to provide inclusive juvenile data for brood year 1999, we include data on parr, presmolt, smolt and yearling captures. Therefore, our reporting period includes juvenile data collected from April 2000 through June 2001 for parr, presmolts, and smolts and through June 2002 for brood year 1999 yearling emigrants. Data presented in this report include; fish outplant data for treatment streams, snorkelmore » and screw trap estimates of juvenile fish abundance, juvenile emigration profiles, juvenile survival estimates to Lower Granite Dam (LGJ), redd counts, and carcass data. There were no brood year 1999 treatments in Legendary Bear or Fishing Creek. As in previous years, snorkeling methods provided highly variable population estimates. Alternatively, rotary screw traps operated in Lake Creek and the Secesh River provided more precise estimates of juvenile abundance by life history type. Juvenile fish emigration in Lake Creek and the Secesh River peaked during July and August. Juveniles produced in this watershed emigrated primarily at age zero, and apparently reared in downstream habitats before detection as age one or older fish at the Snake and Columbia River dams. Over the course of the ISS study, PIT tag data suggest that smolts typically exhibit the highest relative survival to Lower Granite Dam (LGJ) compared to presmolts and parr, although we observed the opposite trend for brood year 1999 juvenile emigrants from the Secesh River. SURPH2 survival estimates for brood year 1999 Lake Creek parr, presmolt, and smolt PIT tag groups to (LGJ) were 27%, 39%, and 49% respectively, and 14%, 12%, and 5% for the Secesh River. In 2000, we counted 41 redds in Legendary Bear Creek, 4 in Fishing Creek, 5 in Slate Creek

  7. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawtscha) Near Ives and Pierce Island of the Columbia River, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Robert

    2003-09-01

    Pacific Northwest National Laboratory conducted video-based boat surveys to identify fall chinook salmon (Oncorhynchus tshawytscha) spawning areas located in deep water (>1 m) downstream of Bonneville Dam in the fall of 2002. This report documents the number and extent of chinook salmon spawning near Ives and Pierce Islands of the Columbia River, and is the fourth in a series of reports prepared since 1999. The main objective of this study was to find deepwater spawning locations of fall chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates ofmore » adult spawners in the surveyed area. The secondary objective was to document the occurrence of any chum salmon (O. keta) redds located in the deeper sections near below Hamilton Creek. There was a significant increase in the number of fall chinook salmon redds found in the locations surveyed during the 2002 surveys when compared to previous surveys by Pacific Northwest National Laboratory. A total of 192 redds were found in two general locations adjacent to Pierce Island (river km 228.5) encompassing an area of approximately 9.31 ha. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 15, 2002. An estimated 1,768 fall chinook salmon redds at water depths exceeding {approx}1.m ({approx} 125 kcfs) were documented in 2002. This estimate is the expanded number based on the number of redds found within the pre-defined survey area. Fall chinook salmon redds were found at water depths from 0.9 to 8.5 m and were constructed in gravel to large cobble ranging in size from 4.83 to 13.4 cm in diameter. No chum salmon redds were found in areas surveyed during 2002, although several carcasses were found at the mouth of Woodward Creek and in the deeper sections below Hamilton Creek.« less

  8. Foraging and growth potential of juvenile Chinook Salmon after tidal restoration of a large river delta

    USGS Publications Warehouse

    David, Aaron T.; Ellings, Christopher; Woo, Isa; Simenstad, Charles A.; Takekawa, John Y.; Turner, Kelley L.; Smith, Ashley L.; Takekawa, Jean E.

    2014-01-01

    We evaluated whether restoring tidal flow to previously diked estuarine wetlands also restores foraging and growth opportunities for juvenile Chinook Salmon Oncorhynchus tshawytscha. Several studies have assessed the value of restored tidal wetlands for juvenile Pacific salmon Oncorhynchus spp., but few have used integrative measures of salmon performance, such as habitat-specific growth potential, to evaluate restoration. Our study took place in the Nisqually River delta, Washington, where recent dike removals restored tidal flow to 364 ha of marsh—the largest tidal marsh restoration project in the northwestern contiguous United States. We sampled fish assemblages, water temperatures, and juvenile Chinook Salmon diet composition and consumption rates in two restored and two reference tidal channels during a 3-year period after restoration; these data were used as inputs to a bioenergetics model to compare Chinook Salmon foraging performance and growth potential between the restored and reference channels. We found that foraging performance and growth potential of juvenile Chinook Salmon were similar between restored and reference tidal channels. However, Chinook Salmon densities were significantly lower in the restored channels than in the reference channels, and growth potential was more variable in the restored channels due to their more variable and warmer (2°C) water temperatures. These results indicate that some—but not all—ecosystem attributes that are important for juvenile Pacific salmon can recover rapidly after large-scale tidal marsh restoration.

  9. Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Richard S.; Carlson, Thomas J.; Gingerich, Andrew J.

    A proportion of juvenile Chinook salmon and other salmonids travel through one or more turbines during seaward migration in the Columbia and Snake River every year. Despite this understanding, limited information exists on how these fish respond to hydraulic pressures found during turbine passage events. In this study we exposed juvenile Chinook salmon to varied acclimation pressures and subsequent exposure pressures (nadir) to mimic the hydraulic pressures of large Kaplan turbines (ratio of pressure change). Additionally, we varied abiotic (total dissolved gas, rate of pressure change) and biotic (condition factor, fish length, fish weight) factors that may contribute to themore » incidence of mortal injury associated with fish passing through hydro-turbines. We determined that the main factor associated with mortal injury of juvenile Chinook salmon during simulated turbine passage was the ratio between acclimation and nadir pressures. Condition factor, total dissolved gas, and the rate of pressure change were found to only slightly increase the predictive power of equations relating probability of mortal injury to conditions of exposure or characteristics of test fish during simulated turbine passage. This research will assist engineers and fisheries managers in operating and improving hydroelectric facility efficiency while minimizing mortality and injury of turbine-passed juvenile Chinook salmon. The results are discussed in the context of turbine development and the necessity of understanding how different species of fish will respond to the hydraulic pressures of turbine passage.« less

  10. One Northwest community - People, salmon, rivers, and the sea: Towards sustainable salmon fisheries

    USGS Publications Warehouse

    MacDonald, Donald D.; Steward, Cleveland R.; Knudsen, E. Eric; Knudsen, E. Eric; Steward, Cleveland R.; MacDonald, Donald; Williams, Jack E.; Reiser, Dudley W.

    1999-01-01

    Pacific salmon management is in crisis. Throughout their range, salmon and steelhead populations are being adversely affected by human activities. Without coordinated, effective, and timely action, the future of the Pacific salmon resource is most certainly in doubt. To address the challenges that are currently facing salmon management, concerned citizens representing a diverse array of government agencies and non-governmental organizations have agreed to cooperate in the development of a Sustainable Fisheries Strategy for west coast salmon and steelhead populations. The Strategy builds on the contents of this book, resulting from the Sustainable Fisheries Conference and subsequent community- and watershed-based citizen forums. This chapter presents the key elements of the Strategy including a common vision for the future, a series of guiding principles, and specific strategies for supporting sustainable fisheries. As such, the Strategy embraces an ecosystem-based approach to managing human activities, rather than the traditional egocentric approach to managing salmonid populations and associated habitats. A system of community-based, watershed-oriented councils, including all stakeholders and agency representatives, is proposed for effective transition to ecosystem-based salmon and steelhead management. It is our hope that everyone involved in Pacific salmon management will embrace both the spirit and the specific elements of the Sustainable Fisheries Strategy as we face the difficult challenges ahead.

  11. From salmon to shad: Shifting sources of marine-derived nutrients in the Columbia River Basin

    USGS Publications Warehouse

    Haskell, Craig A.

    2018-01-01

    Like Pacific salmon (Oncorhynchus spp.), nonnative American shad (Alosa sapidissima) have the potential to convey large quantities of nutrients between the Pacific Ocean and freshwater spawning areas in the Columbia River Basin (CRB). American shad are now the most numerous anadromous fish in the CRB, yet the magnitude of the resulting nutrient flux owing to the shift from salmon to shad is unknown. Nutrient flux models revealed that American shad conveyed over 15,000 kg of nitrogen (N) and 3,000 kg of phosphorus (P) annually to John Day Reservoir, the largest mainstem reservoir in the lower Columbia River. Shad were net importers of N, with juveniles and postspawners exporting just 31% of the N imported by adults. Shad were usually net importers of P, with juveniles and postspawners exporting 46% of the P imported by adults on average. American shad contributed <0.2% of the total annual P load into John Day Reservoir, but during June when most adult shad are migrating into John Day Reservoir, they contributed as much as 2.0% of the P load. Nutrient inputs by American shad were similar to current but far less than historical inputs of Pacific salmon owing to their smaller size. Given the relatively high background P levels and low retention times in lower Columbia River reservoirs, it is unlikely that shad marine-derived nutrients affect nutrient balances or food web productivity through autotrophic pathways. However, a better understanding of shad spawning aggregations in the CRB is needed.

  12. Bromus tectorum expansion and biodiversity loss on the Snake River Plain, southern Idaho, USA

    Treesearch

    N. L. Shaw; V. A. Saab; S. B. Monsen; T. D. Rich

    1999-01-01

    The Snake River Plain forms a 6 million ha arc-shaped depression across southern Idaho. Basalt flows, fresh water sediments, loess and volcanic deposits cover its surface. Elevation increases eastward from 650 to 2,150 m altitude. Climate is semi-arid with annual precipitation ranging from 150 to 400 mm, arriving primarily in winter and spring. Native shrub steppe...

  13. Snakes! Snakes! Snakes!

    ERIC Educational Resources Information Center

    Nature Naturally, 1983

    1983-01-01

    Designed for students in grades 4-6, the teaching unit presents illustrations and facts about snakes. Topics include common snakes found in the United States, how snakes eat, how snakes shed their skin, poisonous snakes, the Eastern Indigo snake, and the anatomy of a snake. A student page includes a crossword puzzle and surprising snake facts. A…

  14. Probability of detecting atrazine/desethyl-atrazine and elevated concentrations of nitrate plus nitrate as nitrogen in ground water in the Idaho part of the western Snake River Plain

    USGS Publications Warehouse

    Donato, Mary M.

    2000-01-01

    As ground water continues to provide an ever-growing proportion of Idaho?s drinking water, concerns about the quality of that resource are increasing. Pesticides (most commonly, atrazine/desethyl-atrazine, hereafter referred to as atrazine) and nitrite plus nitrate as nitrogen (hereafter referred to as nitrate) have been detected in many aquifers in the State. To provide a sound hydrogeologic basis for atrazine and nitrate management in southern Idaho—the largest region of land and water use in the State—the U.S. Geological Survey produced maps showing the probability of detecting these contaminants in ground water in the upper Snake River Basin (published in a 1998 report) and the western Snake River Plain (published in this report). The atrazine probability map for the western Snake River Plain was constructed by overlaying ground-water quality data with hydrogeologic and anthropogenic data in a geographic information system (GIS). A data set was produced in which each well had corresponding information on land use, geology, precipitation, soil characteristics, regional depth to ground water, well depth, water level, and atrazine use. These data were analyzed by logistic regression using a statistical software package. Several preliminary multivariate models were developed and those that best predicted the detection of atrazine were selected. The multivariate models then were entered into a GIS and the probability maps were produced. Land use, precipitation, soil hydrologic group, and well depth were significantly correlated with atrazine detections in the western Snake River Plain. These variables also were important in the 1998 probability study of the upper Snake River Basin. The effectiveness of the probability models for atrazine might be improved if more detailed data were available for atrazine application. A preliminary atrazine probability map for the entire Snake River Plain in Idaho, based on a data set representing that region, also was produced

  15. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawtscha) Near Ives and Pierce Island of the Columbia River, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Robert

    2004-10-01

    Pacific Northwest National Laboratory conducted video-based boat surveys in fall 2003 to identify spawning areas for fall Chinook salmon (Oncorhynchus tshawytscha) in deep water (>1 m) downstream of Bonneville Dam. This report documents the number and extent of Chinook salmon spawning near Ives and Pierce islands of the Columbia River, and is the fifth in a series of reports prepared since 1999. The primary objective of this study was to find deepwater spawning locations of fall Chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates of adult spawnersmore » in the surveyed area. The secondary objective was to document the occurrence of any chum salmon (O. keta) redds in the deeper sections near below Hamilton Creek. Results from the 2003 study show a continuing trend upward in the number of fall Chinook salmon redds found within the survey zones. The number of fall Chinook redds found in the Ives Pierce Island complex (river km 228.5) has increased by a factor of five since the surveys began in 1999. The total number of redds found during 2003 was 336, which compares to 192 in 2002, 43 in 2001, 76 in 2000, and 64 in 1999. The redds encompassed an area of 13.7 ha occurring adjacent to the lower part of Ives Island and Pierce Island. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 24, 2003. An expanded redd count based on percentage of video coverage in the primary and secondary search zones was 3,218 fall Chinook salmon redds in water exceeding 1 m deep and flowing at about 125 kcfs. Fall Chinook salmon redds were found at water depths from 1.07 to 7.6 m and were constructed predominantly of medium cobbles ranging from 7.6 to 15.2 cm in diameter. Two chum salmon redds were found in a small location downstream from Hamilton Creek in water depths of approximately 1 m. No salmon redds were found in other areas searched

  16. Variables influencing the presence of subyearling fall Chinook salmon in shoreline habitats of the Hanford Reach, Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Clark, L.O.; Garland, R.D.; Rondorf, D.W.

    2006-01-01

    Little information currently exists on habitat use by subyearling fall Chinook salmon Oncorhynchus tshawytscha rearing in large, main-stem habitats. We collected habitat use information on subyearlings in the Hanford Reach of the Columbia River during May 1994 and April-May 1995 using point abundance electrofishing. We analyzed measures of physical habitat using logistic regression to predict fish presence and absence in shoreline habitats. The difference between water temperature at the point of sampling and in the main river channel was the most important variable for predicting the presence and absence of subyearlings. Mean water velocities of 45 cm/s or less and habitats with low lateral bank slopes were also associated with a greater likelihood of subyearling presence. Intermediate-sized gravel and cobble substrates were significant predictors of fish presence, but small (<32-mm) and boulder-sized (>256-mm) substrates were not. Our rearing model was accurate at predicting fish presence and absence using jackknifing (80% correct) and classification of observations from an independent data set (76% correct). The habitat requirements of fall Chinook salmon in the Hanford Reach are similar to those reported for juvenile Chinook salmon in smaller systems but are met in functionally different ways in a large river.

  17. Experiment of Burst Speed of Fingerling Masu salmon, Oncorhynchus, with Stamina Tunnel in The River

    NASA Astrophysics Data System (ADS)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    A swimming experiment of cultured fingerling masu salmon (Oncorhynchus masou masou) (measuring 3cm to 6cm in length) was conducted in a round stamina tunnel (cylindrical pipe) installed in a fishway of a local river with a water flow velocity of 64cm·s-1 to 218cm·s-1 in order to study the burst speed of the masu salmon.The results show that: (1) the faster the swimming speed,the swimming time of the fingerling masu salmon shortened, and the ground speed also decreased as the flow velocity increased; (2)the faster the flow velocity,the shorter the swimming distance became; (3) the burst speed was calculated for the fingerling masu salmon with the considerably excellent swimming ability(measuring 4.6cm to 6.2cm in mean length) in conditions of a high velocity(218cm·s-1), and the result was: mean burst speed:229cm·s-1(S.D.8cm·s-1) to 232cm·s-1(S.D.:8cm·s-1).

  18. Two Dimensional Movement Patterns of Juvenile Winter Run and Late Fall Run Chinook Salmon at the Fremont Weir, Sacramento River, CA

    DTIC Science & Technology

    2017-07-01

    ER D C/ EL T R- 17 -1 0 Two-Dimensional Movement Patterns of Juvenile Winter- Run and Late-Fall- Run Chinook Salmon at the Fremont Weir...default. ERDC/EL TR-17-10 July 2017 Two-Dimensional Movement Patterns of Juvenile Winter- Run and Late-Fall- Run Chinook Salmon at the Fremont Weir...Sacramento River, smaller winter- run Chinook and larger late-fall- run Chinook salmon were tagged and released into a 2D telemetry array dur- ing the

  19. Trophic interactions and consumption rates of subyearling Chinook Salmon and nonnative juvenile American Shad in Columbia River reservoirs

    USGS Publications Warehouse

    Haskell, Craig A.; Beauchamp, David A.; Bollins, Stephen M

    2017-01-01

    We used a large lampara seine coupled with nonlethal gastric lavage to examine the diets and estimate consumption rates of subyearling Chinook Salmon Oncorhynchus tshawytscha during July and August 2013. During August we also examined the diet and consumption rates of juvenile American Shad Alosa sapidissima, a potential competitor of subyearling Chinook Salmon. Subyearling Chinook Salmon consumed Daphnia in July but switched to feeding on smaller juvenile American Shad in August. We captured no juvenile American Shad in July, but in August juvenile American Shad consumed cyclopoid and calanoid copepods. Stomach evacuation rates for subyearling Chinook Salmon were high during both sample periods (0.58 h−1 in July, 0.51 h−1 in August), and daily ration estimates were slightly higher than values reported in the literature for other subyearlings. By switching from planktivory to piscivory, subyearling Chinook Salmon gained greater growth opportunity. While past studies have shown that juvenile American Shad reduce zooplankton availability for Chinook Salmon subyearlings, our work indicates that they also become important prey after Daphnia abundance declines. The diet and consumption data here can be used in future bioenergetics modeling to estimate the growth of subyearling Chinook Salmon in lower Columbia River reservoirs.

  20. Quantifying the Ocean, Freshwater and Human Effects on Year-to-Year Variability of One-Sea-Winter Atlantic Salmon Angled in Multiple Norwegian Rivers

    PubMed Central

    Otero, Jaime; Jensen, Arne J.; L'Abée-Lund, Jan Henning; Stenseth, Nils Chr.; Storvik, Geir O.; Vøllestad, Leif Asbjørn

    2011-01-01

    Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse) from Norwegian rivers over 29 years (1979–2007). Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching for solutions

  1. Quantifying the ocean, freshwater and human effects on year-to-year variability of one-sea-winter Atlantic salmon angled in multiple Norwegian rivers.

    PubMed

    Otero, Jaime; Jensen, Arne J; L'Abée-Lund, Jan Henning; Stenseth, Nils Chr; Storvik, Geir O; Vøllestad, Leif Asbjørn

    2011-01-01

    Many Atlantic salmon, Salmo salar, populations are decreasing throughout the species' distributional range probably due to several factors acting in concert. A number of studies have documented the influence of freshwater and ocean conditions, climate variability and human impacts resulting from impoundment and aquaculture. However, most previous research has focused on analyzing single or only a few populations, and quantified isolated effects rather than handling multiple factors in conjunction. By using a multi-river mixed-effects model we estimated the effects of oceanic and river conditions, as well as human impacts, on year-to-year and between-river variability across 60 time series of recreational catch of one-sea-winter salmon (grilse) from Norwegian rivers over 29 years (1979-2007). Warm coastal temperatures at the time of smolt entrance into the sea and increased water discharge during upstream migration of mature fish were associated with higher rod catches of grilse. When hydropower stations were present in the course of the river systems the strength of the relationship with runoff was reduced. Catches of grilse in the river increased significantly following the reduction of the harvesting of this life-stage at sea. However, an average decreasing temporal trend was still detected and appeared to be stronger in the presence of salmon farms on the migration route of smolts in coastal/fjord areas. These results suggest that both ocean and freshwater conditions in conjunction with various human impacts contribute to shape interannual fluctuations and between-river variability of wild Atlantic salmon in Norwegian rivers. Current global change altering coastal temperature and water flow patterns might have implications for future grilse catches, moreover, positioning of aquaculture facilities as well as the implementation of hydropower schemes or other encroachments should be made with care when implementing management actions and searching for solutions to

  2. Microsatellite variation reveals weak genetic structure and retention of genetic variability in threatened Chinook salmon (Oncorhynchus tshawytcha) within a Snake River watershed

    Treesearch

    Helen Neville; Daniel Isaak; Russell Thurow; Jason Dunham; Bruce Rieman

    2007-01-01

    Pacific salmon (Oncorhynchus spp.) have been central to the development of management concepts associated with evolutionarily significant units (ESUs), yet there are still relatively few studies of genetic diversity within threatened and endangered ESUs for salmon or other species. We analyzed genetic variation at 10 microsatellite loci to evaluate...

  3. South Fork Salmon River Watershed Restoration, 2008-2009 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaney, Mark D.

    2009-04-15

    The watershed restoration work elements within the project area, the South Fork Salmon River Watershed, follow the watershed restoration approach adopted by the Nez Perce Tribe Department of Fisheries Resource Management (DFRM) - Watershed Division. The vision of the Nez Perce Tribe DFRM-Watershed Division focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects and strategies that rely on natural fishmore » production and healthy river ecosystems. The Nez Perce Tribe DFRM-Watershed Division strives towards maximizing historic ecosystem productivity and health for the restoration of anadromous and resident fish populations and the habitat on which all depend on for future generations Originally, this project was funded to create a step/pool stream channel that was appropriate to restore fish passage where the 'Glory Hole Cascade' is currently located at the Stibnite Mine. Due to unforeseen circumstances at the time, the project is unable to move forward as planned and a request for a change in scope of the project and an expansion of the geographic area in which to complete project work was submitted. No additional funds were being requested. The ultimate goal of this project is to work with the holistic, ridge top to ridge top approach to protect and restore the ecological and biological functions of the South Fork Salmon River Watershed to assist in the recovery of threatened and endangered anadromous and resident fish species. FY 2008 Work Elements included two aquatic organism passage (AOP) projects to restore habitat connectivity to two fish-bearing tributaries to the East Fork South Fork Salmon River, Salt and Profile Creeks. The Work Elements also included road survey and assessment

  4. Summary of Temperature Data Collected to Improve Emergence Timing Estimates for Chum and Fall Chinook Salmon in the Lower Columbia River, 1998-2004 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arntzen, E.; Geist, D.; Hanrahan, T.

    2005-10-01

    From 1999 through 2004, Pacific Northwest National Laboratory collected temperature data from within chum and fall Chinook salmon spawning gravels and the overlying river at 21 locations in the Ives Island area approximately 5 km downstream from Bonneville Dam. Sample locations included areas where riverbed temperatures were elevated, potentially influencing alevin development and emergence timing. The study objectives were to (1) collect riverbed and river temperature data each year from the onset of spawning (October) to the end of emergence (June) and (2) provide those data in-season to fisheries management agencies to assist with fall Chinook and chum salmon emergencemore » timing estimates. Three systems were used over the life of the study. The first consisted of temperature sensors deployed inside piezometers that were screened to the riverbed or the river within chum and fall Chinook salmon spawning areas. These sensors required direct access by staff to download data and were difficult to recover during high river discharge. The second system consisted of a similar arrangement but with a wire connecting the thermistor to a data logger attached to a buoy at the water surface. This system allowed for data retrieval at high river discharge but proved relatively unreliable. The third system consisted of temperature sensors installed in piezometers such that real-time data could be downloaded remotely via radio telemetry. After being downloaded, data were posted hourly on the Internet. Several times during the emergence season of each year, temperature data were downloaded manually and provided to management agencies. During 2003 and 2004, the real-time data were made available on the Internet to assist with emergence timing estimates. Examination of temperature data reveals several important patterns. Piezometer sites differ in the direction of vertical flow between surface and subsurface water. Bed temperatures in upwelling areas are more stable during

  5. The Contribution of Tidal Fluvial Habitats in the Columbia River Estuary to the Recovery of Diverse Salmon ESUs

    DTIC Science & Technology

    2013-05-01

    Chinook salmon (presumably subyearling) was the most prevalent life-history type detected at the Russian Island and Woody Island sites. The number of...Extend and refine the computational grid We extended the Virtual Columbia River to include regions upstream of Beaver Army, which previously served as...the Columbia River above Beaver Army and particularly above the confluence of the Willamette River. That process of calibration is highly iterative

  6. Physiological development and migratory behavior of subyearling fall chinook salmon in the Columbia River

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Wagner, P.G.

    2000-01-01

    We describe the migratory behavior and physiological development of subyearling fall chinook salmon Oncorhynchus tshawytscha migrating through John Day Reservoir on the Columbia River, Washington and Oregon. Fish were freeze-branded and coded-wire-tagged at McNary Dam, Oregon, from 1991 to 1994, to determine travel time to John Day Dam and subsequent adult contribution. Stepwise multiple regression showed that 47% of the variation in subyearling fall chinook salmon travel time was explained by the reciprocal of minimum flow and fish size. Smoltification, as measured by gill Na+-K+ adenosine triphosphatase (ATPase) activity, was not important in explaining variability in travel time of subyearling chinook salmon. Fish marked early in the out-migration generally traveled faster than middle and late migrants. Seawater challenges were used to describe physiological development and showed that osmoregulatory competence of premigrants in the Hanford Reach of the Columbia River increased with fish size and gill ATPase activity. Once active migrants began passing McNary Dam, fish generally had survival exceeding 90% and were able to regulate their blood plasma Na+ in seawater. Gill ATPase activity increased as premigrants, reared in nearshore areas of the Hanford Reach, reached a peak among active migrants in late June and early July then decreased through the remainder of the out-migration. Salinity preference also peaked in subyearling fall chinook salmon during late June to mid July in 1995. Return of adults from marked groups showed no consistent patterns that would suggest a survival advantage for any portion of the juvenile out-migration. Presumed wild migrants from the middle and late portions of the out-migration were primary contributors to all fisheries, except the Priest Rapids Hatchery. As such, fishery managers should take action to ensure the survival of these fish, especially because they migrate under more unfavorable environmental conditions than early

  7. Stream channel responses to streamflow diversion on small streams of the Snake River drainage, Idaho

    Treesearch

    Carolyn C. Bohn; John G. King

    2000-01-01

    The effects on channels of small, low-head seasonal water diversions in the Snake River drainage were investigated. Channels below small diversions were compared to the channels immediately above the same diversions to determine if differences in flow conveyance, substrate sediment size distribution, or streamside vegetation density were present. Estimates of flow...

  8. Spatial consistency of Chinook salmon redd distribution within and among years in the Cowlitz River, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, Katherine J.; Torgersen, Christian; Henning, Julie

    2013-04-28

    We investigated the spawning patterns of Chinook salmon Oncorhynchus tshawytscha on the lower Cowlitz River, Washington (USA) using a unique set of fine- and coarse-scale 35 temporal and spatial data collected during bi-weekly aerial surveys conducted in 1991-2009 (500 m to 28 km resolution) and 2008-2009 (100-500 m resolution). Redd locations were mapped from a helicopter during 2008 and 2009 with a hand-held global positioning system (GPS) synchronized with in-flight audio recordings. We examined spatial patterns of Chinook salmon redd reoccupation among and within years in relation to segment-scale geomorphic features. Chinook salmon spawned in the same sections each yearmore » with little variation among years. On a coarse scale, five years (1993, 1998, 2000, 2002, and 2009) were compared for reoccupation. Redd locations were highly correlated among years resulting in a minimum correlation coefficient of 0.90 (adjusted P = 0.002). Comparisons on a fine scale (500 m) between 2008 and 2009 also revealed a high degree of consistency among redd locations (P < 0.001). On a finer temporal scale, we observed that salmon spawned in the same sections during the first and last week (2008: P < 0.02; and 2009: P < 0.001). Redds were clustered in both 2008 and 2009 (P < 0.001). Regression analysis with a generalized linear model at the 500-m scale indicated that river kilometer and channel bifurcation were positively associated with redd density, whereas sinuosity was negatively associated with redd density. Collecting data on specific redd locations with a GPS during aerial surveys was logistically feasible and cost effective and greatly enhanced the spatial precision of Chinook salmon spawning surveys.« less

  9. Wild Steelhead and introduced spring Chinook Salmon in the Wind River, Washington: Overlapping populations and interactions

    USGS Publications Warehouse

    Jezorek, I.G.; Connolly, P.J.

    2010-01-01

    We investigated interactions of introduced juvenile spring Chinook salmon Oncorhynchus tshawytscha with wild juvenile steelhead O. mykiss in the upper Wind River watershed (rkm 24.6 to rkm 43.8), Washington. Our objective was to determine if the presence of introduced spring Chinook salmon influenced populations of wild juvenile steelhead and if other biotic or abiotic factors influenced distribution and populations of these species. We snorkeled to assess distribution and abundance in one to six stream reaches per year during 2001 through 2007. Juvenile steelhead were found in each sampled reach each year, but juvenile Chinook salmon were not. The upstream extent of distribution of juvenile Chinook salmon varied from rkm 29.7 to 42.5. Our analyses suggest that juvenile Chinook salmon distribution was much influenced by flow during the spawning season. Low flow appeared to limit access of escaped adult Chinook salmon to upper stream reaches. Abundance of juvenile Chinook salmon was also influenced by base flow during the previous year, with base flow occurring post spawn in late August or early September. There were no relationships between juvenile Chinook salmon abundance and number of Chinook salmon spawners, magnitude of winter flow that might scour redds, or abundance of juvenile steelhead. Abundance of age-0 steelhead was influenced primarily by the number of steelhead spawners the previous year, and abundance of age-1 steelhead was influenced primarily by abundance of age-0 steelhead the previous year. Juvenile steelhead abundance did not show a relationship with base or peak flows, nor with number of escaped Chinook salmon adults during the previous year. We did not detect a negative influence of the relatively low abundance of progeny of escaped Chinook salmon on juvenile steelhead abundance. This low abundance of juvenile Chinook salmon was persistent throughout our study and is likely a result of hatchery management and habitat conditions. Should one or

  10. Acute exposure to gas-supersaturated water does not affect reproductive success of female adult chinook salmon late in maturation

    USGS Publications Warehouse

    Gale, William L.; Maule, A.G.; Postera, A.; Peters, M.H.

    2004-01-01

    At times, total dissolved gas concentrations in the Columbia and Snake rivers have been elevated due to involuntary spill from high spring runoff and voluntary spill used as a method to pass juvenile salmonids over dams. The goal of this project was to determine if acute exposure to total dissolved gas supersaturation (TDGS) affects the reproductive performance of female chinook salmon late in their maturation. During this study, adult female spring chinook salmon were exposed to mean TDGS levels of 114.1 % to 125.5%. We ended exposures at first mortality, or at the appearance of impending death. Based on this criterion, exposures lasted from 10 to 68 h and were inversely related to TDGS. There was no effect of TDGS on pre-spawning mortality or fecundity when comparing treatment fish to experimental controls or the general hatchery population four to six weeks after exposures. Egg quality, based on egg weight and egg diameter, did not differ between treatment and control fish. Fertilization rate and survival to eyed-stage was high (>94%) for all groups. With the exception of Renibacterium salmoninarum (the causative agent of bacterial kidney disease; BKD), no viral or bacterial fish pathogens were isolated from experimental fish. The prevalence (about 45%) and severity of R. salmoninarum did not differ among the groups or the general hatchery population. We conclude that these acute exposures to moderate levels of gas-supersaturated water-perhaps similar to that experienced by immigrating adult salmon as they approach and pass a hydropower dam on the Columbia River-did not affect reproductive success of female chinook salmon late in their maturation. These results are most applicable to summer and fall chinook salmon, which migrate in the summer/fall and spawn shortly after reaching their natal streams. Published in 2004 by John Wiley and Sons, Ltd.

  11. The Snake River Plain Volcanic Province: Insights from Project Hotspot

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.; Potter, K. E.; Hanan, B. B.; Jean, M. M.; Duncan, R. A.; Champion, D. E.; Vetter, S.; Glen, J. M. G.; Christiansen, E. H.; Miggins, D. P.; Nielson, D. L.

    2017-12-01

    The Snake River Plain (SRP) Volcanic Province is the best modern example of a time-transgressive hotspot track beneath continental crust. The SRP began 17 Ma with massive eruptions of Columbia River basalt and rhyolite. After 12 Ma volcanism progressed towards Yellowstone, with early rhyolite overlain by basalts that may exceed 2 km thick. The early rhyolites are anorogenic with dry phenocryst assemblages and eruption temperatures up to 950C. Tholeiitic basalts have major and trace element compositions similar to ocean island basalts (OIB). Project Hotspot cored three deep holes in the central and western Snake River Plain: Kimama (mostly basalt), Kimberly (mostly rhyolite), and Mountain Home (lake sediments and basaslt). The Kimberly core documents rhyolite ash flows up to 700 m thick, possibly filling a caldera or sag. Chemical stratigraphy in Kimama and other basalt cores document fractional crystallization in relatively shallow magma chambers with episodic magma recharge. Age-depth relations in the Kimama core suggest accumulation rates of roughly 305 m/Ma. Surface and subsurface basalt flows show systematic variations in Sr-Nd-Pb isotopes with distance from Yellowstone interpreted to reflect changes in the proportion of plume source and the underlying heterogeneous cratonic lithosphere, which varies in age, composition, and thickness from west to east. Sr-Nd-Pb isotopes suggest <5% lithospheric input into a system dominated by OIB-like plume-derived basalts. A major flare-up of basaltic volcanism occurred 75-780 ka throughout the entire SRP, from Yellowstone in the east to Boise in the west. The youngest western SRP basalts are transitional alkali basalts that range in age from circa 900 ka to 2 ka, with trace element and isotopic compositions similar to the plume component of Hawaiian basalts. These observations suggest that ancient SCLM was replaced by plume mantle after the North America passed over the hotspot in the western SRP, which triggered renewed

  12. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., Wallowa, Wasco; the following counties in Washington: Asotin, Benton, Clark, Columbia, Cowlitz, Franklin..., Union, Wallowa, Wasco; the following counties in Washington: Asotin, Benton, Clark, Columbia, Cowlitz... in Washington: Adams, Asotin, Benton, Clark, Columbia, Cowlitz, Franklin, Garfield, Klickitat...

  13. Snake River Sockeye Salmon Habitat and Limnological Research; 1995 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teuscher, David; Taki, Doug

    1996-05-01

    This report contains studies which are part of the Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. Attention is focused on population monitoring studies in the Sawtooth Valley Lakes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  14. Power resources of Snake River between Huntington, Oregon and Lewiston, Idaho: Chapter C in Contributions to the hydrology of the United States, 1923-1924

    USGS Publications Warehouse

    Hoyt, William Glenn

    1925-01-01

    Thousands of people are familiar with that part of Snake River where it flows for more than 300 miles in a general westward course across the plains of southern Idaho, but few have traversed the river where it flows northward and for 200 miles forms the boundary between Idaho and Oregon and for 30 miles the boundary between Idaho and Washington. Below the mining town of Homestead, Oreg., which is the end of a branch line of the Oregon Short Line Railroad, Snake River finds its way through the mountain ranges that seem to block its way to Columbia River in a canyon which, though not so well known, so majestic, nor so kaleidoscopic in color, is in some respects worthy of comparison with the Grand Canyon of the Colorado, for at some places it is deeper and narrower than the Grand Canyon at El Tovar. The Snake, unlike the Colorado, can be reached at many points through the valleys of tributary streams, and the early prospectors no doubt thoroughly explored all parts of the canyon. To traverse the river between Homestead, Oreg., and Lewiston, Idaho, is, however, a difficult undertaking and there are only a few records of boat journeys through the entire stretch. It has long been known that this portion of Snake River contains large potential water powers, but until recently no detailed surveys or examinations covering the entire stretch of the river had been made to determine their location or extent. A railroad has been proposed between Homestead and Lewiston which would provide a direct connection between the railroad systems of northern and southern Idaho. One function of the Geological Survey is to determine the possible interface between transportation routes on land and potential water-power development, and the information set forth in this paper has a bearing on that problem.

  15. The precipitation of aluminum, iron and manganese at the junction of Deer Creek with the Snake River in Summit County, Colorado

    USGS Publications Warehouse

    Theobald, P.K.; Lakin, H.W.; Hawkins, D.B.

    1963-01-01

    The oxidation of disseminated pyrite in relatively acid schists and gneisses of the Snake River drainage basin provides abundant iron sulfate and sulfuric acid to ground and surface water. This acid water dissolves large quantities of many elements, particularly aluminum and surprisingly large quantities of elements, such as magnesium and zinc, not expected to be abundant in the drainage basin. The adjoining drainage to the west, Deer Creek, is underlain by basic rocks, from which the water inherits a high pH. Despite the presence of base- and precious- metal veins in the drainage basin of Deer Creek, it carries less metal than the Snake River. The principal precipitate on the bed of the Snake River is hydrated iron oxide with small quantities of the other metals. In Deer Creek manganese oxide is precipitated with iron oxide and large quantities of other metals are carried down with this precipitate. Below the junction of these streams the pH stabilizes at a near-neutral value. Iron is removed from the Snake River water at the junction, and aluminum is precipitated for some distance downstream. The aluminum precipitate carries down other metals in concentrations slightly less than that in the manganese precipitate on Deer Creek. The natural processes observed in this junction if carried to a larger scale could provide the mechanism described by Ansheles (1927) for the formation of bauxite. In the environment described, geochemical exploration by either water or stream sediment techniques is difficult because of (1) the extreme pH differential between the streams above their junction and (2) the difference in the precipitates formed on the streambeds. ?? 1963.

  16. Age of irrigation water in ground water from the Eastern Snake River Plain Aquifer, south-central Idaho

    USGS Publications Warehouse

    Plummer, Niel; Rupert, M.G.; Busenberg, E.; Schlosser, P.

    2000-01-01

    Stable isotope data (2H and 18O) were used in conjunction with chlorofluorocarbon (CFC) and tritium/helium-3 (3H/3He) data to determine the fraction and age of irrigation water in ground water mixtures from farmed parts of the Eastern Snake River Plain (ESRP) Aquifer in south-central Idaho. Two groups of waters were recognized: (1) regional background water, unaffected by irrigation and fertilizer application, and (2) mixtures of irrigation water from the Snake River with regional background water. New data are presented comparing CFC and 3H/3He dating of water recharged through deep fractured basalt, and dating of young fractions in ground water mixtures. The 3H/3He ages of irrigation water in most mixtures ranged from about zero to eight years. The CFC ages of irrigation water in mixtures ranged from values near those based on 3H/3He dating to values biased older than the 3H/3He ages by as much as eight to 10 years. Unsaturated zone air had CFC-12 and CFC-113 concentrations that were 60% to 95%, and 50% to 90%, respectively, of modern air concentrations and were consistently contaminated with CFC-11. Irrigation water diverted from the Snake River was contaminated with CFC-11 but near solubility equilibrium with CFC-12 and CFC-113. The dating indicates ground water velocities of 5 to 8 m/d for water along the top of the ESRP Aquifer near the southwestern boundary of the Idaho National Engineering and Environmental Laboratory (INEEL). Many of the regional background waters contain excess terrigenic helium with a 3He/4He isotope ratio of 7 x 10-6 to 11 x 10-6 (R/Ra = 5 to 8) and could not be dated. Ratios of CFC data indicate that some rangeland water may contain as much as 5% to 30% young water (ages of less than or equal to two to 11.5 years) mixed with old regional background water. The relatively low residence times of ground water in irrigated parts of the ESRP Aquifer and the dilution with low-NO3 irrigation water from the Snake River lower the potential for

  17. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, David L.; Kern, J. Chris; Hughes, Michele L.

    2004-02-01

    We report on our progress from April 2002 through March 2003 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

  18. Effect of Ichthyophonus on blood plasma chemistry of spawning Chinook salmon and their resulting offspring in a Yukon River tributary.

    PubMed

    Floyd-Rump, T P; Horstmann-Dehn, L A; Atkinson, S; Skaugstad, C

    2017-01-24

    Ichthyophonus is a protozoan parasite of Alaska Chinook salmon Oncorhynchus tshawytscha. In this study, we determined whether spawning Chinook salmon in the Yukon River drainage exhibited a measurable stress response (i.e. elevated plasma cortisol concentrations) and detectable changes in selected blood plasma chemistry parameters when infected with Ichthyophonus. The resulting alevin were also analyzed for any differences in blood plasma chemistry caused by parental infection with Ichthyophonus. In 2010, 2011, and 2012, spawning adult Chinook salmon were collected from the Salcha River, Alaska, USA, and the prevalence of Ichthyophonus in these fish was 7.8, 6.3, and 8.3%, respectively. Fish with no clinical signs of Ichthyophonus and Ichthyophonus-positive parents were cross-fertilized to investigate potential second-generation effects as a result of Ichthyophonus infection. We found no significant difference in cortisol concentrations in blood plasma between Ichthyophonus-positive and -negative adults or between alevin from Ichthyophonus-positive and -negative parents. There were no significant differences in blood plasma parameters (e.g. alanine aminotransferase, creatine kinase, glucose) of Ichthyophonus-negative and -positive adults, with the exception of aspartate aminotransferase, which was significantly higher in plasma of Ichthyophonus-negative adults. All clinical chemistry parameters for alevin resulting from both Ichthyophonus-negative and -positive parents were not significantly different. Based on this study, which has a limited sample size and low prevalence of Ichthyophonus, offspring of Chinook salmon appear to suffer no disadvantage as a result of Ichthyophonus infection in their parents on the Salcha River.

  19. Re-estimating temperature-dependent consumption parameters in bioenergetics models for juvenile Chinook salmon

    USGS Publications Warehouse

    Plumb, John M.; Moffitt, Christine M.

    2015-01-01

    Researchers have cautioned against the borrowing of consumption and growth parameters from other species and life stages in bioenergetics growth models. In particular, the function that dictates temperature dependence in maximum consumption (Cmax) within the Wisconsin bioenergetics model for Chinook Salmon Oncorhynchus tshawytscha produces estimates that are lower than those measured in published laboratory feeding trials. We used published and unpublished data from laboratory feeding trials with subyearling Chinook Salmon from three stocks (Snake, Nechako, and Big Qualicum rivers) to estimate and adjust the model parameters for temperature dependence in Cmax. The data included growth measures in fish ranging from 1.5 to 7.2 g that were held at temperatures from 14°C to 26°C. Parameters for temperature dependence in Cmax were estimated based on relative differences in food consumption, and bootstrapping techniques were then used to estimate the error about the parameters. We found that at temperatures between 17°C and 25°C, the current parameter values did not match the observed data, indicating that Cmax should be shifted by about 4°C relative to the current implementation under the bioenergetics model. We conclude that the adjusted parameters for Cmax should produce more accurate predictions from the bioenergetics model for subyearling Chinook Salmon.

  20. Use of glacier river-fed estuary channels by juvenile coho salmon: transitional or rearing habitats?

    USGS Publications Warehouse

    Hoem Neher, Tammy D.; Rosenberger, Amanda E.; Zimmerman, Christian E.; Walker, Coowe M.; Baird, Steven J.

    2014-01-01

    Estuaries are among the most productive ecosystems in the world and provide important rearing environments for a variety of fish species. Though generally considered important transitional habitats for smolting salmon, little is known about the role that estuaries serve for rearing and the environmental conditions important for salmon. We illustrate how juvenile coho salmonOncorhynchus kisutch use a glacial river-fed estuary based on examination of spatial and seasonal variability in patterns of abundance, fish size, age structure, condition, and local habitat use. Fish abundance was greater in deeper channels with cooler and less variable temperatures, and these habitats were consistently occupied throughout the season. Variability in channel depth and water temperature was negatively associated with fish abundance. Fish size was negatively related to site distance from the upper extent of the tidal influence, while fish condition did not relate to channel location within the estuary ecotone. Our work demonstrates the potential this glacially-fed estuary serves as both transitional and rearing habitat for juvenile coho salmon during smolt emigration to the ocean, and patterns of fish distribution within the estuary correspond to environmental conditions.

  1. Magnitude and frequency of floods in the United States. Part 13. Snake River basin

    USGS Publications Warehouse

    Thomas, C.A.; Broom, H.C.; Cummans, J.E.

    1963-01-01

    The magnitude of a flood of any selected frequency up to 50 years for any site on any stream in the Snake River basin can be determined by methods outlined in this report, with some limitations. The methods are not applicable for regulated streams, for drainage basins smaller than 10 or larger than 5,000 square miles, for streams fed by large springs, or for streams that have flow characteristics materially different from the regional pattern. The magnitude of a flood for a selected frequency at a given site is determined by using the appropriate composite frequency curve and the mean annual flood for the given site. The mean annual flood is computed from either a formula or a nomograph in which drainage area, mean annual precipitation, and a geographic factor are used as independent variables. The standard error of estimate for the computation of mean annual floods is plus 17 percent and minus 15 percent.Nine flood-frequency regions (A-I) are defined. In all except regions B and I, frequency relations vary with the mean altitude of the basin as well as with the geographic location; therefore, families of curves are required for 7 of the 9 flood-frequency regions.The report includes a brief description of the physiography and climate of the Snake River basin to explain the reason for the large variation in mean annual floods, which range from zero to about 27 cubic feet per second per square mile.Composite frequency curves and formulas for computing mean annual floods are based on all suitable flood data collected in the Snake River basin. Tables show the data used to derive the formula. Following the analysis of data are station descriptions and lists of peak stages and discharges for 295 gaging stations at which 5 or more years of annual flood records were collected pr'or to Sept. 30, 1957. Many flood peak data are not usable in defining the frequency curves and deriving the formula because of large diversions and regulation upstream from the gaging stations.

  2. Conservation genetics of the eastern yellow-bellied racer (Coluber constrictor flaviventris) and bullsnake (Pituophis catenifer sayi): River valleys are critical features for snakes at northern range limits

    PubMed Central

    Graham, Carly F.; Martino, Jessica A.; Frasier, Timothy R.; Lance, Stacey L.; Gardiner, Laura E.; Poulin, Ray G.

    2017-01-01

    On the North American Great Plains, several snake species reach their northern range limit where they rely on sparsely distributed hibernacula located in major river valleys. Independent colonization histories for the river valleys and barriers to gene flow caused by the lack of suitable habitat between them may have produced genetically differentiated snake populations. To test this hypothesis, we used 10 microsatellite loci to examine the population structure of two species of conservation concern in Canada: the eastern yellow-bellied racer (Coluber constrictor flaviventris) and bullsnake (Pituophis catenifer sayi) in 3 major river valleys in southern Saskatchewan. Fixation indices (FST) showed that populations in river valleys were significantly differentiated for both species (racers, FST = 0.096, P = 0.001; bullsnakes FST = 0.045–0.157, P = 0.001). Bayesian assignment (STRUCTURE) and ordination (DAPC) strongly supported genetically differentiated groups in the geographically distinct river valleys. Finer-scale subdivision of populations within river valleys was not apparent based on our data, but is a topic that should be investigated further. Our findings highlight the importance of major river valleys for snakes at the northern extent of their ranges, and raise the possibility that populations in each river valley may warrant separate management strategies. PMID:29095863

  3. Conservation genetics of the eastern yellow-bellied racer (Coluber constrictor flaviventris) and bullsnake (Pituophis catenifer sayi): River valleys are critical features for snakes at northern range limits.

    PubMed

    Somers, Christopher M; Graham, Carly F; Martino, Jessica A; Frasier, Timothy R; Lance, Stacey L; Gardiner, Laura E; Poulin, Ray G

    2017-01-01

    On the North American Great Plains, several snake species reach their northern range limit where they rely on sparsely distributed hibernacula located in major river valleys. Independent colonization histories for the river valleys and barriers to gene flow caused by the lack of suitable habitat between them may have produced genetically differentiated snake populations. To test this hypothesis, we used 10 microsatellite loci to examine the population structure of two species of conservation concern in Canada: the eastern yellow-bellied racer (Coluber constrictor flaviventris) and bullsnake (Pituophis catenifer sayi) in 3 major river valleys in southern Saskatchewan. Fixation indices (FST) showed that populations in river valleys were significantly differentiated for both species (racers, FST = 0.096, P = 0.001; bullsnakes FST = 0.045-0.157, P = 0.001). Bayesian assignment (STRUCTURE) and ordination (DAPC) strongly supported genetically differentiated groups in the geographically distinct river valleys. Finer-scale subdivision of populations within river valleys was not apparent based on our data, but is a topic that should be investigated further. Our findings highlight the importance of major river valleys for snakes at the northern extent of their ranges, and raise the possibility that populations in each river valley may warrant separate management strategies.

  4. Gene expression profiling and environmental contaminant assessment of migrating Pacific salmon in the Fraser River watershed of British Columbia.

    PubMed

    Veldhoen, Nik; Ikonomou, Michael G; Dubetz, Cory; Macpherson, Nancy; Sampson, Tracy; Kelly, Barry C; Helbing, Caren C

    2010-05-05

    The health and physiological condition of anadromous salmon is of concern as their upriver migration requires navigation of human-impacted waterways and metabolism of stored energy reserves containing anthropogenic contaminants. Such factors may affect reproductive success of fish stocks. This study investigates chemical contaminant burdens and select gene expression profiles in Pacific Sockeye (Oncorhynchus nerka) and Chinook (Oncorhynchus tshawytscha) salmon which traverse the Fraser River watershed during their spawning migration. Chemical analyses of muscle tissue and eggs of salmon collected from the lower Fraser River (pre-migration) and from upstream spawning grounds (post-migration) during the 2007 migration revealed the presence of numerous chemical contaminants, including PCBs, dioxins/furans, pesticides, and heavy metals. However, muscle tissue residue concentrations were well below human health consumption guidelines and 2,3,7,8 TCDD toxic equivalents (SigmaTEQs) in salmon eggs, calculated using WHO toxic equivalency factors (WHO-TEFs) for fish health, did not exceed the 0.3pgg(-1) wet weight toxicological threshold level previously associated with 30% egg mortality in salmon populations. Quantitative real-time PCR probes were generated and used to assess differences in abundance of key mRNA transcripts encoding nine gene products associated with reproduction, stress, metal toxicity, and exposure to environmental contaminants. Gene expression profiles were characterized in liver and muscle tissue of pre- and post-migration Sockeye and Chinook salmon. The results of stock-matched animals indicate that dynamic changes in mRNA levels occur for a number of genes in both species during migration and suggest that Sockeye salmon exhibit a greater level of biological stress compared to the Chinook salmon population. Using a male-specific genotypic marker, we found that out of the 154 animals examined, one Sockeye was genotypically male but phenotypically female

  5. Temperature Regulation in Critical Salmon Habitat of the Middle Fork of the John Day River, Oregon.

    NASA Astrophysics Data System (ADS)

    Buskirk, B. A.; Selker, J. S.

    2016-12-01

    Flow and temperature within the Middle Fork of the John Day River, an arid Eastern Oregon river, is dominated primarily by contributions from groundwater fed tributaries. The hydrology of arid streams is an important metric for understanding the critical environment in which salmon spawn and salmonids reside. The regulation of temperature within these streams is considered the primary metric for survival rates of these fish. Since 2007 Oregon State University has conducted stream monitoring efforts on the Middle Fork of the John Day River at the Oxbow and Forrest Conservation Areas. These sites were chosen through collaborative effort with the Confederated Tribes of the Warm Springs Reservation of Oregon, who have been restoring remnant mining canals back to their natural sinuous river pattern. The John Day River is also one of the few undammed reaches in which salmon runs occur. Efforts have focused on fiber optic distributed temperature sensing (DTS), groundwater gradient, stream discharge, bed permeability, GPS location and stream bathymetry across the conservation sites. During the peak of summer, stream temperature exhibits a strong diurnal cycle ranging from 9° C to 23° C depending on the daily maximum observed within the reach. Salmon have been found to be sensitive to stream temperatures above 15° C and are unable to survive temperatures above 24° C (Bell et al, 1991). The synthesis of temperature and stream flow data we collected show that very little groundwater is contributing to flow and temperature in the main channel of our study site while tributaries provide a constant, typically 0.5 to 2° C cooler, input of water to the main river channel and significant source of flow (0.01 - 0.1 m3/s). Due to the minimal rain fall in this arid environment, snow melt infiltration is likely the primary annual source of recharge into the head waters of the tributaries while also providing temperature regulation through input of near 0° C water. This cold water

  6. The potential for chromium to affect the fertilization process of Chinook salmon (Oncorhynchus tshawytscha) in the Hanford reach of the Columbia River, Washington, USA.

    PubMed

    Farag, A M; Harper, D D; Cleveland, L; Brumbaugh, W G; Little, E E

    2006-05-01

    The Hanford Nuclear Reservation in south central Washington was claimed by the federal government as a site for the production of plutonium. During the course of production and operation of the facilities at Hanford, radionuclides and chromium were discharged directly into the river and also contaminated the groundwater. This study was designed to assess the effects of chromium (Cr) on Chinook salmon (Oncorhynchus tshawytscha) fertilization under exposure conditions similar to those of the Hanford Reach of the Columbia River. Chinook salmon gametes were exposed to aqueous Cr concentrations ranging from 0 to 266 microg Cr l(-1). The current ambient water-quality criteria (AWQC) established for the protection of aquatic life (United States Environmental Protection Agency [USEPA] 1986) is 11 microg Cr l(-1). Cr has been measured in pore water from bottom sediments of the Columbia River at concentrations >600 microg Cr l(-1). Under exposure conditions designed to closely mimic events that occur in the river, the fertilization of Chinook salmon eggs was not affected by concentrations of Cr ranging from 11 to 266 microg Cr l(-1). Data suggest that the instantaneous nature of fertilization likely limits the potential effects of Cr on fertilization success. As a result, the current AWQC of 11 mug Cr l(-1) is most likely protective of Chinook salmon fertilization.

  7. The potential for chromium to affect the fertilization process of Chinook salmon (Oncorhynchus tshawytscha) in the Hanford Reach of the Columbia River, Washington, USA

    USGS Publications Warehouse

    Farag, A.M.; Harper, D.D.; Cleveland, L.; Brumbaugh, W.G.; Little, E.E.

    2006-01-01

    The Hanford Nuclear Reservation in south central Washington was claimed by the federal government as a site for the production of plutonium. During the course of production and operation of the facilities at Hanford, radionuclides and chromium were discharged directly into the river and also contaminated the groundwater. This study was designed to assess the effects of chromium (Cr) on Chinook salmon (Oncorhynchus tshawytscha) fertilization under exposure conditions similar to those of the Hanford Reach of the Columbia River. Chinook salmon gametes were exposed to aqueous Cr concentrations ranging from 0 to 266 μg Cr l−1. The current ambient water-quality criteria (AWQC) established for the protection of aquatic life (United States Environmental Protection Agency [USEPA] 1986) is 11 μg Cr l−1. Cr has been measured in pore water from bottom sediments of the Columbia River at concentrations >600 μg Cr l−1. Under exposure conditions designed to closely mimic events that occur in the river, the fertilization of Chinook salmon eggs was not affected by concentrations of Cr ranging from 11 to 266 μg Cr l−1. Data suggest that the instantaneous nature of fertilization likely limits the potential effects of Cr on fertilization success. As a result, the current AWQC of 11 μg Cr l−1 is most likely protective of Chinook salmon fertilization.

  8. Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhards, John S.; Hill, Robert; Daniel, Mitch

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinookmore » captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging

  9. Effects of multiple stresses hydropower, acid deposition and climate change on water chemistry and salmon populations in the River Otra, Norway.

    PubMed

    Wright, Richard F; Couture, Raoul-Marie; Christiansen, Anne B; Guerrero, José-Luis; Kaste, Øyvind; Barlaup, Bjørn T

    2017-01-01

    Many surface waters in Europe suffer from the adverse effects of multiple stresses. The Otra River, southernmost Norway, is impacted by acid deposition, hydropower development and increasingly by climate change. The river holds a unique population of land-locked salmon and anadromous salmon in the lower reaches. Both populations have been severely affected by acidification. The decrease in acid deposition since the 1980s has led to partial recovery of both populations. Climate change with higher temperatures and altered precipitation can potentially further impact fish populations. We used a linked set of process-oriented models to simulate future climate, discharge, and water chemistry at five sub-catchments in the Otra river basin. Projections to year 2100 indicate that future climate change will give a small but measureable improvement in water quality, but that additional reductions in acid deposition are needed to promote full restoration of the fish communities. These results can help guide management decisions to sustain key salmon habitats and carry out effective long-term mitigation strategies such as liming. The Otra River is typical of many rivers in Europe in that it fails to achieve the good ecological status target of the EU Water Framework Directive. The programme of measures needed in the river basin management plan necessarily must consider the multiple stressors of acid deposition, hydropower, and climate change. This is difficult, however, as the synergistic and antagonistic effects are complex and challenging to address with modelling tools currently available. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Use of Aerial Photography to Monitor Fall Chinook Salmon Spawning in the Columbia River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, Richard H.; Dauble, Dennis D.; Geist, David R.

    2002-11-01

    This paper compares two methods for enumerating salmon redds and their application to monitoring spawning activity. Aerial photographs of fall chinook salmon spawning areas in the Hanford Reach of the Columbia River were digitized and mapped using Geographic Information Systems (GIS) techniques in 1994 and 1995 as part of an annual assessment of the population. The number of visible redds from these photographs were compared to counts obtained from visual surveys with fixed wing aircraft. The proportion of the total redds within each of five general survey areas was similar for the two monitoring techniques. However, the total number ofmore » redds based on aerial photographs was 2.2 and 3.0 times higher than those observed during visual surveys for 1994 and 1995, respectively. The divergence in redd counts was most evident near peak spawning activity when the number of redds within individual spawning clusters exceeded 500. Aerial photography improved our ability to monitor numbers of visible salmon redds and to quantify habitat use.« less

  11. Gravity survey in part of the Snake River Plain, Idaho - a preliminary report

    USGS Publications Warehouse

    Baldwin, Harry L.; Hill, David P.

    1960-01-01

    During the early summer of 1959, a total of 1,187 gravity stations were occupied on the western part of the Snake River plain in Idaho. An area of 2,000 square miles extending from Glenns Ferry, Idaho, to Caldwell, Idaho, was covered with a station density of one station per two square miles. An additional 1,200 square miles of surrounding area, mainly from Caldwell, Idaho, to the Oregon-Idaho state line, was covered with a density of one station per seven square miles. The mean reproducibility of the observed gravities of these stations was 0.05 milligal, with a maximum discrepancy of 0.2 milligal. Gravity data were reduced to simple Bouguer values using a combined free-air and Bouguer correction of 0.06 milligal per foot. The only anomalies found with closure in excess of 10 milligals are two elongated highs, orientated northwest-southeast, with the northwestern high offset to the northeast by 10 miles. The smaller of these highs extends from Meridian, Idaho, to Nyssa, Oregon, and the larger extends from Swan Falls, Idaho, to Glenns Ferry, Idaho. The maximum value recorded is a simple Bouguer value of -66.5 milligals with respect to the International Ellipsoid. Gradients on the sides of these highs are largest on the northeast sides, reaching six milligals per mile in places. Graticule interpretations of a profile across the southeastern high using a density contrast of 0.3 gm per cubic centimeter indicate an accumulation of lava reaching a thickness of at least 28,000 feet. The Snake River investigation was made for the purpose of searching out, defining, and interpreting gravity anomalies present on the western part of the Snake River lava plain in Idaho. In particular, it was desired to further define gradients associated with the gravity high shown by the regional work of Bonini and Lavin (1957). It was not planned to cover any specific area, but rather to let the observed anomalies determine the course of the field work. The study was undertaken as part of a

  12. Determining Columbia and Snake River Project Tailrace and Forebay Zones of Hydraulic Influence using MASS2 Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.

    2010-12-01

    Although fisheries biology studies are frequently performed at US Army Corps of Engineers (USACE) projects along the Columbia and Snake Rivers, there is currently no consistent definition of the ``forebay'' and ``tailrace'' regions for these studies. At this time, each study may use somewhat arbitrary lines (e.g., the Boat Restriction Zone) to define the upstream and downstream limits of the study, which may be significantly different at each project. Fisheries researchers are interested in establishing a consistent definition of project forebay and tailrace regions for the hydroelectric projects on the lower Columbia and Snake rivers. The Hydraulic Extent of amore » project was defined by USACE (Brad Eppard, USACE-CENWP) as follows: The river reach directly upstream (forebay) and downstream (tailrace) of a project that is influenced by the normal range of dam operations. Outside this reach, for a particular river discharge, changes in dam operations cannot be detected by hydraulic measurement. The purpose of this study was to, in consultation with USACE and regional representatives, develop and apply a consistent set of criteria for determining the hydraulic extent of each of the projects in the lower Columbia and Snake rivers. A 2D depth-averaged river model, MASS2, was applied to the Snake and Columbia Rivers. New computational meshes were developed most reaches and the underlying bathymetric data updated to the most current survey data. The computational meshes resolved each spillway bay and turbine unit at each project and extended from project to project. MASS2 was run for a range of total river flows and each flow for a range of project operations at each project. The modeled flow was analyzed to determine the range of velocity magnitude differences and the range of flow direction differences at each location in the computational mesh for each total river flow. Maps of the differences in flow direction and velocity magnitude were created. USACE fishery

  13. Establishing spatial trends in water chemistry and stable isotopes (δ15N and δ13C) in the Elwha River prior to dam removal and salmon recolonization

    USGS Publications Warehouse

    Duda, J.J.; Coe, H.J.; Morley, S.A.; Kloehn, K.K.

    2011-01-01

    Two high-head dams on the Elwha River in Washington State (USA) have changed the migratory patterns of resident and anadromous fish, limiting Pacific salmon to the lower 7.9 km of a river that historically supported large Pacific salmon runs. To document the effects of the dams prior to their removal, we measured carbon and nitrogen stable isotope ratios of primary producers, benthic macroinvertebrates, and fish, and water chemistry above, between and below the dams. We found that δ15N was significantly higher in fish, stoneflies, black flies, periphyton and macroalgae where salmon still have access. Fish and chloroperlid stoneflies were enriched in δ13C, but the values were more variable than in δ15N. For some taxa, there were also differences between the two river sections that lack salmon, suggesting that factors other than marine-derived nutrients are structuring longitudinal isotopic profiles. Consistent with trophic theory, macroalgae had the lowest δ15N, followed by periphyton, macroinvertebrates and fish, with a range of 6.9, 6.2 and 7.7‰ below, between, and above the dams, respectively. Water chemistry analyses confirmed earlier reports that the river is oligotrophic. Phosphorous levels in the Elwha were lower than those found in other regional rivers, with significant differences among regulated, unregulated and reference sections. The removal of these dams, among the largest of such projects ever attempted, is expected to facilitate the return of salmon and their marine-derived nutrients (MDN) throughout the watershed, possibly altering the food web structure, nutrient levels and stable isotope values that we documented.

  14. Stock-specific migration timing of adult spring-summer Chinook salmon in the Columbia River basin

    USGS Publications Warehouse

    Keefer, M.L.; Peery, C.A.; Jepson, M.A.; Tolotti, K.R.; Bjornn, T.C.; Stuehrenberg, L.C.

    2004-01-01

    An understanding of the migration timing patterns of Pacific salmon Oncorhynchus spp. and steelhead O. mykiss is important for managing complex mixed-stock fisheries and preserving genetic and life history diversity. We examined adult return timing for 3,317 radio-tagged fish from 38 stocks of Columbia River basin spring-summer Chinook salmon O. tshawytscha over 5 years. Stock composition varied widely within and between years depending on the strength of influential populations. Most individual stocks migrated at similar times each year relative to overall runs, supporting the hypotheses that run timing is predictable, is at least partially due to genetic adaptation, and can be used to differentiate between some conspecific populations. Arrival timing of both aggregated radio-tagged stocks and annual runs was strongly correlated with river discharge; stocks arrived earlier at Bonneville Dam and at upstream dams in years with low discharge. Migration timing analyses identified many between-stock and between-year differences in anadromous salmonid return behavior and should and managers interested in protection and recovery of evolutionary significant populations.

  15. Tucannon River Spring Chinook Salmon Captive Broodstock Program, Annual Report 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallinat, Michael P.; Bumgarner, Joseph D.

    2002-05-01

    This report summarizes the objectives, tasks, and accomplishments of the Tucannon River spring chinook captive brood during 2001. The WDFW initiated a captive broodstock program in 1997. The overall goal of the Tucannon River captive broodstock program is for the short-term, and eventually long-term, rebuilding of the Tucannon River spring chinook salmon run, with the hope that natural production will sustain itself. The project goal is to rear captive salmon selected from the supplementation program to adults, spawn them, rear their progeny, and release approximately 150,000 smolts annually into the Tucannon River between 2003-2007. These smolt releases, in combination withmore » the current hatchery supplementation program (132,000 smolts) and wild production, are expected to produce 600-700 returning adult spring chinook to the Tucannon River each year from 2005-2010. The captive broodstock program will collect fish from five (1997-2001) brood years (BY). The captive broodstock program was initiated with 1997 BY juveniles, and the 2001 BY fish have been selected. As of Jan 1, 2002, WDFW has 17 BY 1997, 159 BY 1998, 316 BY 1999, 448 BY 2000, and approximately 1,200 BY 2001 fish on hand at LFH. The 2001 eggtake from the 1997 brood year (Age 4) was 233,894 eggs from 125 ripe females. Egg survival was 69%. Mean fecundity based on the 105 fully spawned females was 1,990 eggs/female. The 2001 eggtake from the 1998 brood year (Age 3) was 47,409 eggs from 41 ripe females. Egg survival was 81%. Mean fecundity based on the 39 fully spawned females was 1,160 eggs/female. The total 2001 eggtake from the captive brood program was 281,303 eggs. As of May 1, 2002 we have 171,495 BY 2001 captive brood progeny on hand. A total of 20,592 excess fish were marked as parr (AD/CWT) and will be released during early May, 2002 into the Tucannon River (rkm 40-45). This will allow us to stay within our maximum allowed number (150,000) of smolts released. During April 2002, WDFW

  16. The genetic relationship between extirpated and contemporary Atlantic salmon Salmo salar L. lines from the southern Baltic Sea.

    PubMed

    Bernaś, Rafał; Poćwierz-Kotus, Anita; Dębowski, Piotr; Wenne, Roman

    2016-04-01

    The genetic relationship between original Atlantic salmon populations that are now extinct in the southern Baltic Sea and the present-day populations has long been controversial. To investigate and clarify this issue, we successfully genotyped individuals of the historical populations from the Oder and Vistula Rivers using DNA extracted from dried scales with the Atlantic salmon single nucleotide polymorphism array. Our results showed a global F ST of 0.2515 for all pairs of loci, which indicates a high level of genetic differentiation among the groups analyzed in this study. Pairwise F ST values were significant for all comparisons and the highest values were found between present-day reintroduced Slupia River salmon and extinct Vistula River Atlantic salmon. Bayesian analysis of genetic structure revealed the existence of substructures in the extirpated Polish populations and three main clades among studied stocks. The historical salmon population from the Oder River was genetically closer to present-day salmon from the Neman River than to the historical salmon from the Vistula River. Vistula salmon clearly separated from all other analyzed salmon stocks. It is likely that the origins of the Atlantic salmon population from the Morrum River and the Polish historical native populations are different.

  17. Landscape-level model to predict spawning habitat for Lower Columbia River fall Chinook salmon (Oncorhynchus tshawytscha)

    Treesearch

    D. Shallin Busch; Mindi Sheer; Kelly Burnett; Paul McElhany; Tom Cooney

    2013-01-01

    We developed an intrinsic potential (IP) model to estimate the potential of streams to provide habitat for spawning fall Chinook salmon (Oncorhynchus tshawytscha) in the Lower Columbia River evolutionarily significant unit. This evolutionarily significant unit is a threatened species, and both fish abundance and distribution are reduced from...

  18. Kinematics of the Snake River Plain and Centennial Shear Zone, Idaho, from GPS and earthquatte data

    NASA Astrophysics Data System (ADS)

    Payne, Suzette J.

    occurring in the Snake River Plain. Alternatively, the preferred model reveals a low deforming region (-0.1 +/- 0.4 x 10-9 yr -1, which is not discernable from zero) covering 125 km x 650 km within the Snake River Plain and Owyhee-Oregon Plateau that is separated from the actively extending adjacent Basin and Range regions by narrow belts of localized shear. Velocities reveal rapid extension occurs to the north of the Snake River Plain in the Centennial Tectonic Belt (5.6 +/- 0.7 x 10 -9 yr-1) and to the south in the Intermountain Seismic Belt and Great Basin (3.5 +/- 0.2 x 10-9 yr-1). The "Centennial Shear Zone" is a NE-trending zone of up to 1.5 mm yr -1 of right-lateral shear and is the result of rapid extension in the Centennial Tectonic Belt adjacent to the low deforming region of the Snake River Plain. Variations of the preferred model that test the hypothesis of bookshelf faulting demonstrate shear does not drive Basin and Range extension in the Centennial Tectonic Belt. Instead, the velocity gradient across the Centennial Shear Zone indicates that shear is distributed and deformation is due to strike-slip faulting, distributed simple shear, regional-scale rotation, or any combination of these. Near the fastest rates of right-lateral slip, focal mechanisms are observed with strike-slip components of motion consistent with right-lateral shear. Here also, the segment boundary between two E-trending Basin and Range faults, which are oriented subparallel to the NE-trending shear zone, provides supporting Holocene to mid-Pleistocene geologic evidence for accommodation of right-lateral shear in the Centennial Shear Zone. The southernmost ends of NW-trending Basin and Range faults in the Centennial Tectonic Belt at their juncture with the eastern Snake River Plain could accommodate right-lateral shear through components of left-lateral oblique slip. Right-lateral shear may be accommodated by components of strike-slip motion on multiple NE-trending faults since geologic

  19. Imaging fall Chinook salmon redds in the Columbia River with a dual-frequency identification sonar

    USGS Publications Warehouse

    Tiffan, K.F.; Rondorf, D.W.; Skalicky, J.J.

    2004-01-01

    We tested the efficacy of a dual-frequency identification sonar (DIDSON) for imaging and enumeration of fall Chinook salmon Oncorhynchus tshawytscha redds in a spawning area below Bonneville Dam on the Columbia River. The DIDSON uses sound to form near-video-quality images and has the advantages of imaging in zero-visibility water and possessing a greater detection range and field of view than underwater video cameras. We suspected that the large size and distinct morphology of a fall Chinook salmon redd would facilitate acoustic imaging if the DIDSON was towed near the river bottom so as to cast an acoustic shadow from the tailspill over the redd pocket. We tested this idea by observing 22 different redds with an underwater video camera, spatially referencing their locations, and then navigating to them while imaging them with the DIDSON. All 22 redds were successfully imaged with the DIDSON. We subsequently conducted redd searches along transects to compare the number of redds imaged by the DIDSON with the number observed using an underwater video camera. We counted 117 redds with the DIDSON and 81 redds with the underwater video camera. Only one of the redds observed with the underwater video camera was not also documented by the DIDSON. In spite of the DIDSON's high cost, it may serve as a useful tool for enumerating fall Chinook salmon redds in conditions that are not conducive to underwater videography.

  20. Guidelines for monitoring and adaptively managing restoration of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) on the Elwha River

    USGS Publications Warehouse

    Peters, R.J.; Duda, J.J.; Pess, G.R.; Zimmerman, M.; Crain, P.; Hughes, Z.; Wilson, A.; Liermann, M.C.; Morley, S.A.; McMillan, J.; Denton, K.; Warheit, K.

    2014-01-01

    The restoration of the migration route to spawning and rearing habitats upstream of the former Glines Canyon Dam represents a great opportunity for salmon on the Olympic Peninsula. By removing two aging structures, it will be possible for all 5 species of salmon and steelhead to return to wild stretches of the Elwha River and major floodplain habitat characterized by multiple channels, as well as significant portions of numerous tributaries. Measuring the progress of restoration, from the perspective of both salmon populations and the ecosystem upon which they depend, is a great test for a collaborative team of scientists. The normally challenging conditions of working in a steep gradient, high velocity wilderness river are exacerbated by the release of millions of cubic yards of sediment that had accumulated in the reservoirs. After the first two years of the dam decommissioning process, this release has changed the ecology of the river, estuary, and nearshore habitats downstream of the dams. Our goal in developing the guidelines described is to provide a roadmap for tracking what hopefully will become a successful outcome. If successfully implemented, this information should prove useful as others begin planning for the removal, alteration, or reconstruction of dams throughout North America and elsewhere, an inevitable outcome of an aging dam infrastructure.

  1. 36 CFR 292.45 - Use of motorized and non-motorized rivercraft.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... use and enjoyment of the rivers: Provided, that where wild and scenic rivers are concerned, the... except on the Snake River and that portion of the Salmon River in the HCNRA administered by the Forest... for the safe use and enjoyment of the rivers: Provided, that where wild and scenic rivers are involved...

  2. 36 CFR 292.45 - Use of motorized and non-motorized rivercraft.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... use and enjoyment of the rivers: Provided, that where wild and scenic rivers are concerned, the... except on the Snake River and that portion of the Salmon River in the HCNRA administered by the Forest... for the safe use and enjoyment of the rivers: Provided, that where wild and scenic rivers are involved...

  3. 36 CFR 292.45 - Use of motorized and non-motorized rivercraft.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... use and enjoyment of the rivers: Provided, that where wild and scenic rivers are concerned, the... except on the Snake River and that portion of the Salmon River in the HCNRA administered by the Forest... for the safe use and enjoyment of the rivers: Provided, that where wild and scenic rivers are involved...

  4. 36 CFR 292.45 - Use of motorized and non-motorized rivercraft.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... use and enjoyment of the rivers: Provided, that where wild and scenic rivers are concerned, the... except on the Snake River and that portion of the Salmon River in the HCNRA administered by the Forest... for the safe use and enjoyment of the rivers: Provided, that where wild and scenic rivers are involved...

  5. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, G.F.

    1996-01-01

    Regional aquifers underlying the 15,600-square-mile Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. The largest and most productive aquifers in the Snake River Plain are composed of Quaternary basalt of the Snake River Group, which underlies most of the 10,8000-square-mile eastern plain. Aquifer tests and simulation indicate that transmissivity of the upper 200 feet of the basalt aquifer in the eastern plain commonly ranges from about 100,000 to 1,000,000 feet squared per day. However, transmissivity of the total aquifer thickness may be as much as 10 million feet squared per day. Specific yield of the upper 200 feet of the aquifer ranges from about 0.01 to 0.20. Average horizontal hydraulic conductivity of the upper 200 feet of the basalt aquifer ranges from less than 100 to 9,000 feet per day. Values may be one to several orders of magnitude higher in parts in individual flows, such as flow tops. Vertical hydraulic conductivity is probably several orders of magnitude lower than horizontal hydraulic conductivity and is generally related to the number of joints. Pillow lava in ancestral Snake River channels has the highest hydraulic conductivity of all rock types. Hydraulic conductivity of the basalt decreases with depth because of secondary filling of voids with calcite and silica. An estimated 80 to 120 million acre-feet of water is believed to be stored in the upper 200 feet of the basalt aquifer in the eastern plain. The most productive aquifers in the 4,800-square-mile western plain are alluvial sand and gravel in the Boise River valley. Although aquifer tests indicate that transmissivity of alluvium in the Boise River valley ranges from 5,000 to 160,000 feet squared per day, simulation suggests that average transmissivity of the upper 500 feet is generally less than 20,000 feet squared per day. Vertically averaged horizontal hydraulic conductivity of the upper

  6. Reevalution of background iodine-129 concentrations in water from the Snake River Plain Aquifer, Idaho, 2003

    USGS Publications Warehouse

    Cecil, L. DeWayne; Hall, L. Flint; Green, Jaromy R.

    2003-01-01

    Background concentrations of iodine-129 (129I, half-life = 15.7 million years) resulting from natural production in the earth?s atmosphere, in situ production in the earth by spontaneous fission of uranium-238(238U), and fallout from nuclear weapons tests conducted in the 1950s and 1960s were reevaluated on the basis of 52 analyses of ground- and surface-water samples collected from the eastern Snake River Plain in southeastern Idaho. The background concentration estimated using the results of a subset of 30 ground-water samples analyzed in this reevaluation is 5.4 attocuries per liter (aCi/L; 1 aCi = 10-18 curies) and the 95-percent nonparametric confidence interval is 5.2 to 10.0 aCi/L. In a previous study, a background 129I concentration was estimated on the basis of analyses of water samples from 16 sites on or tributary to the eastern Snake River Plain. At the 99-percent confidence level, background concentrations of 129I in that study were less than or equal to 8.2 aCi/L. During 1993?94, 34 water samples from 32 additional sites were analyzed for 129I to better establish the background concentrations in surface and ground water from the eastern Snake River Plain that is presumed to be unaffected by wastedisposal practices at the Idaho National Engineering and Environmental Laboratory (INEEL). Surface water contained larger 129I concentrations than water from springs and wells contained. Because surface water is more likely to be affected by anthropogenic fallout and evapotranspiration, background 129I concentrations were estimated in the current research using the laboratory results of ground-water samples that were assumed to be unaffected by INEEL disposal practices.

  7. Summary of survival data from juvenile coho salmon in the Klamath River, northern California, 2009

    USGS Publications Warehouse

    Beeman, John W.; Juhnke, Steven D.

    2009-01-01

    A study of the effects of the discharge from Iron Gate Dam on the Klamath River on juvenile coho salmon during their seaward migration began in 2005. Estimates of fish survival through various reaches of the river downstream of the dam were completed in 2006, 2007, 2008, and 2009. This report describes the estimates of survival during 2009, and is a complement to similar reports for 2006, 2007, and 2008. For each year, a series of numerical models were evaluated to determine apparent survival and recapture probabilities of radio-tagged fish in several river reaches between Iron Gate Hatchery at river kilometer 309 and a site at river kilometer 33. The evaluations indicate that the primary differences among years are in the survivals through reaches upstream of the confluence of the Scott River with the Klamath River. Data from 2009, one of two years when fish from both hatchery and wild origins were available for analysis, indicate that survival of wild and hatchery fish are similar.

  8. Using remote sensing data to assess salmon habitat status in rivers and floodplains of Puget Sound, USA

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.; Pess, G. R.; Hall, J.; Timpane-Padgham, B.; Stefankiv, O.; Liermann, M. C.; Fresh, K.; Rowse, M.

    2015-12-01

    Natural processes create dynamic habitat features in large rivers and floodplains, and past land uses that restrict fluvial processes have altered habitat conditions in those environments in Puget Sound, USA. As a result, Chinook salmon and steelhead are listed as threatened species under the US Endangered Species Act (ESA). To help restore these salmon populations, restoration actions often focus on removing constraints on natural processes to restore fluvial dynamics and ultimately restore critical salmon habitats on floodplains. An important aspect of this restoration effort is monitoring whether habitat conditions are improving as anticipated, yet there are currently few protocols available for monitoring trends in large river and floodplain habitats. We identified several remote-sensing metrics that are indicators of salmon habitat condition, and developed repeatable protocols for measuring those metrics. We then tested their sensitivity to land use change by comparing habitat conditions among land cover classes (developed, agriculture, forested, and mixed). As expected, metrics of habitat complexity or condition such as side-channel length, node density, wood jam area, or riparian buffer widths were highest in forested sites and lowest in agriculture and urban sites. By contrast, percent disconnected floodplain and percent armored banks were highest in developed sites and lowest in forested sites. Our results indicate that remote sensing metrics are sensitive enough to detect differences in habitat status among land cover classes, and therefore help us understand the impact of various land uses on habitat conditions. However, detecting trends in habitat condition through time may be difficult because magnitudes of change through time are very small.

  9. Rainbow trout movement behavior and habitat occupancy are influenced by sex and Pacific salmon presence in an Alaska river system

    USGS Publications Warehouse

    Fraley, Kevin M.; Falke, Jeffrey A.; McPhee, Megan V.; Prakash, Anupma

    2018-01-01

    We used spatially continuous field-measured and remotely-sensed aquatic habitat characteristics paired with weekly ground-based telemetry tracking and snorkel surveys to describe movements and habitat occupancy of adult rainbow trout (N = 82) in a runoff-fed, salmon-influenced southcentral Alaska river system. We found that during the ice-free feeding season (June through September) rainbow trout occurrence was associated more with fine-scale (channel unit) characteristics relative to coarse-scale (stream reach) variables. The presence of Pacific salmon (which provide an important seasonal food subsidy), and habitat size were particularly useful predictors. Weekly movement distance differed between pre- and post- spawning salmon arrival, but did not vary by sex. Habitat quality, season, and the arrival of spawning salmon influenced the likelihood of rainbow trout movement, and fish moved farther to seek out higher quality habitats. Because rainbow trout respond to habitat factors at multiple scales and seek out salmon-derived subsidies, it will be important to take a multiscale approach in protecting trout and salmon populations and managing the associated fisheries.

  10. Geological Studies of the Salmon River Suture Zone and Adjoining Areas, West-Central Idaho and Eastern Oregon

    USGS Publications Warehouse

    Kuntz, Mel A.; Snee, Lawrence W.

    2007-01-01

    The papers in this volume describe petrologic, structural, and geochemical studies related to geographic areas adjacent to and including the Salmon River suture zone. We therefore start this volume by defining and giving a general description of that suture zone. The western margin of the North American continent was the setting for complex terrane accretion and large-scale terrane translation during Late Cretaceous and Eocene time. In western Idaho, the boundary that separates the Paleozoic-Mesozoic accreted oceanic, island-arc rocks on the west from Precambrian continental metamorphic and sedimentary rocks on the east is called the Salmon River suture zone (SRSZ). Readers will note that the term 'Salmon River suture zone' is used in the title of this volume and in the text of several of the papers and the term 'western Idaho suture zone' is used in several other papers in this volume. Both terms refer to the same geologic feature and reflect historical usage and custom; thus no attempt has been made by the editors to impose or demand a single term by the various authors of this volume. The suture zone is marked by strong lithologic and chemical differences. Rocks adjacent to the suture zone are characterized by high-grade metamorphism and much structural deformation. In addition, the zone was the locus of emplacement of plutons ranging in composition from tonalite to monzogranite during and after the final stages of accretion of the oceanic terrane to the North American continent. The contents of this paper consists of seven chapters.

  11. Archaeological Investigations on the East Fork of the Salmon River, Custer County, Idaho.

    DTIC Science & Technology

    1984-01-01

    coniferous environment in addition to pine marten (Martes americana), red squirrel (Tamiasciurus hudsonicus), porcupine (Erithizon dorsatum), mountain vole...can be seen in small herds throughout the East Fork valley from the Salmon River to Big Boulder Creek. Two bands of Rocky Mountain bighorn sheep...utilize the Challis Planning Unit, one on the East Fork and the other in the Birch Creek area. The East Fork herd is comprised of approximately 50-70

  12. Biological control of yellow starthistle (Centaurea solstitialis) in the Salmon River Canyon of Idaho

    Treesearch

    Jennifer L. Birdsall; George P. Markin

    2010-01-01

    Yellow starthistle is an invasive, annual, spiny forb that, for the past 30 yr has been steadily advancing up the Salmon River Canyon in west central Idaho. In 1994, a decision was made to attempt to manage yellow starthistle by establishing a complex of biological control agents in a containment zone where the weed was most dense. Between 1995 and 1997, six species of...

  13. Ecology of the Sand Roller (Percopsis transmontana) in a lower Snake River Reservoir, Washington

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Erhardt, John M.; Rhodes, Tobyn N.; Hemingway, Rulon J.

    2017-01-01

    The Sand Roller (Percopsis transmontana), has not been abundant in the Snake River since it was first found in the system in the 1950s, but its population has apparently increased in recent years. As a result, we initiated a study to better understand its ecology in habitats of Lower Granite Reservoir. From November 2014 to October 2015, Sand Rollers were present along shorelines, with peak abundance being observed during spring months. Logistic regression analyses showed that Sand Rollers were more likely to be present in shoreline habitats at temperatures ≤18.4°C. Fish were found over a range of substrates, with the lowest odds of fish presence being associated with riprap, which is common in hydropower reservoirs. From length-frequency analysis, we suggest that Sand Roller spawning occurs primarily in May and early June. Assessment of Sand Roller diets found dipteran (chironomid) larvae and pupae were the most important prey consumed by all sizes of Sand Rollers, but Opossum Shrimp (Neomysis mercedis) were also prominent in diets of larger fish in shoreline and offshore habitats. At a time when the populations of so many native species are in decline, the increase of the Sand Roller population in the lower Snake River represents a positive, yet curious occurrence.

  14. Deepwater Spawning of Fall Chinook Salmon (Oncorhynchus tshawytscha) near Ives and Pierce Island of the Columbia River, 2004-2005 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Robert

    2005-10-01

    Pacific Northwest National Laboratory conducted video-based boat surveys to identify fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas located in deep water (greater than 1 m) downstream of Bonneville Dam in fall 2004. This report documents the number and extent of Chinook salmon spawning near Ives and Pierce Islands of the Columbia River and is the sixth in a series of reports prepared since 1999. The main objectives of this study were to find deepwater spawning locations of fall Chinook salmon in the main Columbia River channel, collect additional data on physical habitat parameters at spawning sites, and provide estimates ofmore » adult spawners in the surveyed area. The primary search area was adjacent to the upper portion of Pierce Island, and the secondary search zone was downstream of this area near the lower portion of Pierce Island. A secondary objective was to document the occurrence of any chum salmon (O. keta) redds in the deeper sections downstream of Hamilton Creek (slough zone search area). Fall Chinook salmon redd numbers were down slightly from the record number found during 2003. The number of fall Chinook redds found in the Ives-Pierce Island complex (river km 228.5) during 2004 was 293, which does not include the number of shallow water redds found by visual observation by boat by the Oregon Department of Fish and Wildlife. The redds encompassed an area of 14.6 ha occurring adjacent to the lower part of Ives Island and Pierce Island. Peak spawning activity, based on redd counts and live fish seen near redds, was on or near November 16, 2004. An expanded redd count based on percentage video coverage in the primary and secondary search zones was 3,198 fall Chinook salmon redds at water depths exceeding approximately 1.0 m (approximately 125 kcfs) with an estimated spawning population of 10,800. Fall Chinook salmon redds were found at water depths from 1.07 to 7.6 m and were constructed predominantly of medium cobbles ranging in size

  15. Spring Chinook Salmon Production for Confederated Tribes of the Umatilla Indian Reservation, Little White Salmon National Fish Hatchery, Annual Report 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doulas, Speros

    2007-01-01

    This annual report covers the period from January 1, 2006 through December 31, 2006. Work completed supports the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) effort to restore a locally-adapted stock of spring Chinook to the Umatilla River Basin. During the year, staff at the Little White Salmon/Willard National Fish Hatchery Complex have completed the rearing of 218,764 Brood Year 2004 spring Chinook salmon for release into the Umatilla River during spring 2006 and initiated production of approximately 220,000 Brood Year 2005 spring Chinook for transfer and release into the Umatilla River during spring 2007. All work under thismore » contract is performed at the Little White Salmon and Willard National Fish Hatcheries (NFH), Cook, WA.« less

  16. Oxygen and strontium isotopic studies of basaltic lavas from the Snake River plain, Idaho

    USGS Publications Warehouse

    Leeman, William P.; Whelan, Joseph F.

    1983-01-01

    The Snake Creek-Williams Canyon pluton of the southern Snake Range crops out over an area of about 30 km2, about 60 km southeast of Ely, Nev. This Jurassic intrusion displays large and systematic chemical and mineralogical zonation over a horizontal distance of 5 km. Major-element variations compare closely with Dalyls average andesite-dacite-rhyolite over an SiO2 range of 63 to 76 percent. For various reasons it was originally thought that assimilation played a dominant role in development of the Snake Creek-Williams Canyon pluton. However, based on modeling of more recently obtained trace element and isotopic data, we have concluded that the zonation is the result of in-situ fractional crystallization, with little assimilation at the level of crystallization. This report summarizes data available for each of the mineral species present in the zoned intrusion. Special attention has been paid to trends We present oxygen and strontium isotopic data for olivine tholeiites, evolved (that is, differentiated and (or) contaminated) lavas, rhyolites, and crustal- derived xenoliths from the Snake River Plain. These data show that the olivine tholeiites are fairly uniform in d80 (5.1 to 6.2) and 87Sr/86Sr (0.7056 to 0.7076) and reveal no correlation between these ratios. The tholeiites are considered representative of mantle-derived magmas that have not interacted significantly with crustal material or meteoric water. The evolved lavas display a wider range in d 80 (5.6 to 7.6) and 87Sr/86Sr (0.708 to 0.717) with positive correlations between these ratios in some suites but not in others. Crustal xenoliths have high and variable 8?Sr/86Sr (0.715 to 0.830) and d80 values that vary widely (6.7 to 9.2) and are a few permil greater than d80 values of the Snake River basalts. Thus, isotopic data for the evolved lavas are permissive of small degrees of contamination by crustal rocks similar to the most d80-depleted xenoliths. The d80 enrichments in some evolved lavas also are

  17. Design of Deflectors for Little Goose Spillway, Snake River, Oregon: A Physical Model Study

    DTIC Science & Technology

    2017-06-01

    model of the spillway. Four different deflector designs were compared relative to flow conditions in the stilling basin and tailrace area of the...performance in a 1:40-scale section model of the spillway. Four different deflector designs were compared relative to flow conditions in the stilling basin and...ER D C/ CH L TR -1 7- 10 Dissolved Gas Abatement Studies Design of Deflectors for Little Goose Spillway, Snake River, Oregon A

  18. User's guide to fish habitat: Descriptions that represent natural conditions in the Salmon River Basin, Idaho

    Treesearch

    C. Kerry Overton; John D. McIntyre; Robyn Armstrong; Shari L. Whitwell; Kelly A. Duncan

    1995-01-01

    This user's guide and reference document describes the physical features of the Salmon River Basin, Idaho, stream channels that represent "natural conditions" for fish habitat-that is, streams that have not been influenced by major human disturbances. The data base was created to assist biologists and resource managers. It describes resource conditions...

  19. Quantifying the behavioral response of spawning chum salmon to elevated discharges from Bonneville Dam, Columbia River, USA

    USGS Publications Warehouse

    Tiffan, K.F.; Haskell, C.A.; Kock, T.J.

    2010-01-01

    Chum salmon Oncorhynchus keta that spawn in main-stem habitats below Bonneville Dam on the Columbia River, USA, are periodically subjected to elevated discharges that may alter spawning behaviour. We investigated behavioural responses of spawning chum salmon to increased water velocities associated with experimental increases in tailwater elevation using acoustic telemetry and a dual-frequency identification sonar. Chum salmon primarily remained near their redds at base tailwater elevations (3.5 m above mean sea level), but displayed different movement and behavioural responses as elevations were increased to either 4.1 or 4.7m for 8-h periods. When velocities remained suitable (<0.8m s-1) during elevated-tailwater tests, female chum salmon remained near their redds but exhibited reduced digging activity as water velocities increased. However, when velocities exceeded 0.8m s-1, the females that remained on their redds exhibited increased swimming activity and digging virtually ceased. Female and male chum salmon that left their redds when velocities became unsuitable moved mean distances ranging from 32 to 58 m to occupy suitable velocities, but returned to their redds after tailwaters returned to base levels. Spawning events (i.e. egg deposition) were observed for five of nine pairs of chum salmon following tests indicating any disruptions to normal behaviour caused by elevated tailwaters were likely temporary. We believe a chum salmon's decision to either remain on, or leave, its redd during periods of unsuitably high water velocities reflects time invested in the redd and the associated energetic costs it is willing to incur. ?? 2009 John Wiley & Sons, Ltd.

  20. Variation in mitochondrial DNA and allozymes discriminates early and late forms of Chinook salmon Oncorhynchus tshawytscha in the Kenai and Kasilof Rivers, AK

    USGS Publications Warehouse

    Adams, Noah S.; Spearman, William J.; Burger, Carl V.; Currens, Kenneth P.; Schreck, Carl B.; Li, Hiram W.

    1994-01-01

    Genetic differences between early and late forms of Alaskan chinook salmon (Oncorhynchus tshawytscha) were identified using two genetic approaches: mitochondrial DNA (mtDNA) analysis, and protein electrophoresis. Study populations consisted of early and late runs in each of the Kenai and Kasilof rivers in Alaska, and a population from the Minam River, Oregon. Two segments of mtDNA were amplified using the polymerase chain reaction (PCR) and digested with 14–16 restriction enzymes. Results showed that early runs were genetically similar to each other but different from the late runs. The late runs were different from each other based on the frequency of the common haplotypes. Frequency differences in shared haplotypes together with the presence of a unique haplotype separated the Minam River stock from those in Alaska. In the protein analysis, each population was examined at 30 allozyme loci. Based on 14 polymorphic loci, Minam River salmon were genetically distinct from the Alaskan populations. Within the Alaskan populations, early runs were most similar to each other but different from the late runs; the late runs were also genetically most similar to each other. Both mtDNA and allozyme analysis suggest that chinook salmon may segregate into genetically different early and late forms within a drainage.

  1. Status after 5 Years of Survival Compliance Testing in the Federal Columbia River Power System (FCRPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skalski, John R.; Weiland, Mark A.; Ham, Kenneth D.

    Survival studies of juvenile salmonids implanted with acoustic tags have been conducted at hydroelectric dams within the Federal Columbia River Power System (FCRPS) in the Columbia and Snake rivers between 2010 and 2014 to assess compliance with dam passage survival standards stipulated in the 2008 Biological Opinion (BiOp). For juvenile salmonids migrating downstream in the spring, dam passage survival defined as survival from the upstream dam face to the tailrace mixing zone must be ≥96% and for summer migrants, ≥93%, and estimated with a standard error ≤1.5% (i.e., 95% confidence interval of ±3%). A total of 29 compliance tests havemore » been conducted at 6 of 8 FCRPS main-stem dams, using over 109,000 acoustic-tagged salmonid smolts. Of these 29 compliance studies, 23 met the survival standards and 26 met the precision requirements. Of the 6 dams evaluated to date, individual survival estimates range from 0.9597 to 0.9868 for yearling Chinook Salmon, 0.9534 to 0.9952 for steelhead, and 0.9076 to 0.9789 for subyearling Chinook Salmon. These investigations suggest the large capital investment over the last 20 years to improve juvenile salmon passage through the FCRPS dams has been beneficial.« less

  2. Reliability and longitudinal change of detrital-zircon age spectra in the Snake River system, Idaho and Wyoming: An example of reproducing the bumpy barcode

    NASA Astrophysics Data System (ADS)

    Link, Paul Karl; Fanning, C. Mark; Beranek, Luke P.

    2005-12-01

    Detrital-zircon age-spectra effectively define provenance in Holocene and Neogene fluvial sands from the Snake River system of the northern Rockies, U.S.A. SHRIMP U-Pb dates have been measured for forty-six samples (about 2700 zircon grains) of fluvial and aeolian sediment. The detrital-zircon age distributions are repeatable and demonstrate predictable longitudinal variation. By lumping multiple samples to attain populations of several hundred grains, we recognize distinctive, provenance-defining zircon-age distributions or "barcodes," for fluvial sedimentary systems of several scales, within the upper and middle Snake River system. Our detrital-zircon studies effectively define the geochronology of the northern Rocky Mountains. The composite detrital-zircon grain distribution of the middle Snake River consists of major populations of Neogene, Eocene, and Cretaceous magmatic grains plus intermediate and small grain populations of multiply recycled Grenville (˜950 to 1300 Ma) grains and Yavapai-Mazatzal province grains (˜1600 to 1800 Ma) recycled through the upper Belt Supergroup and Cretaceous sandstones. A wide range of older Paleoproterozoic and Archean grains are also present. The best-case scenario for using detrital-zircon populations to isolate provenance is when there is a point-source pluton with known age, that is only found in one location or drainage. We find three such zircon age-populations in fluvial sediments downstream from the point-source plutons: Ordovician in the southern Beaverhead Mountains, Jurassic in northern Nevada, and Oligocene in the Albion Mountains core complex of southern Idaho. Large detrital-zircon age-populations derived from regionally well-defined, magmatic or recycled sedimentary, sources also serve to delimit the provenance of Neogene fluvial systems. In the Snake River system, defining populations include those derived from Cretaceous Atlanta lobe of the Idaho batholith (80 to 100 Ma), Eocene Challis Volcanic Group and

  3. Diet composition and feeding periodicity of wild and hatchery subyearling Chinook salmon in Lake Ontario

    USGS Publications Warehouse

    Johnson, J. H.

    2008-01-01

    Diel feeding periodicity, daily ration, and diet composition of wild and hatchery subyearling Chinook salmon Oncorhynchus tshawytscha were examined in Lake Ontario and the Salmon River, New York. The diet of wild riverine salmon was composed mainly of aquatic invertebrates (63.4%), mostly ephemeropterans (25.8%), chiromomids (15.8%), and trichopterans (8.3%). The diet of riverine Chinook was more closely associated with the composition of drift samples rather than bottom samples, suggesting mid-water feeding. In Lake Ontario terrestrial invertebrates were more important in the diet of hatchery Chinook (49.0%) than wild salmon (30.5%) and diet overlap between hatchery and wild salmon was low (0.46%). The diet of both hatchery and wild Chinook salmon was more closely associated with the composition of mid-water invertebrate samples rather than benthic core samples, indicating mid-water and surface feeding. Hatchery Chinook salmon consumed significantly less food (P < 0.05) than wild Chinook salmon in the lake and in the river, and wild salmon from Lake Ontario consumed more food than wild salmon in the Salmon River. Peak feeding of wild Chinook salmon occurred between 1200-1600 hours in Lake Ontario and between 1600-2000 hours in the Salmon River; there was no discernable feeding peak for the hatchery Chinook in Lake Ontario. Hatchery Chinook salmon also had the least diverse diet over the 24-hour sample period. These results suggest that at 7 days post-stocking hatchery Chinook salmon had not yet fully adapted to their new environment.

  4. Mantle-lithosphere interaction beneath the Yellowstone-Snake River province

    NASA Astrophysics Data System (ADS)

    van Keken, P. E.; Lin, S.

    2006-12-01

    The Yellowstone-Snake River province (YSRP) is one the few currently active continental hotspot locations and the only one with a clear age progression from 16-17 Ma eruptions at the Oregon-Nevada border to the present day activity at in Western Wyoming. The province has a number of characteristics that are quite similar to oceanic hotspot regions, which include a topographic bulge and geoid anomaly. The initial silicic magmatism is contemporaneous with the Columbia River Basalts, but this would require significant northward transport of basalt from the hotspot track, which is potentially accommodated by lateral transport in the crust or by a sideways transport from more competent lithosphere to a weaker spot. We will present 3D models of plumes and plume heads interacting with the lithosphere for the YSRP following the approach of Lin et al. (2005). We are particularly interested in the role of the variable properties of the lithosphere and surface tectonics influence the magmatic emplacement. We investigate the type conditions under which we can generate the Columbia River Basalts as a part of a single Yellowstone plume rising below the western US. This provides important estimates of the original size of the plume head, the current buoyancy flux and the lateral transport of mantle below the lithosphere. S.C. Lin, B.Y. Kuo, L.Y. Chiao, P.E. van Keken, Thermal plume models and melt generation in East Africa: A dynamical modeling approach, Earth Planet. Sci. Lett., 237, 175-192, 2005.

  5. Climate and Salmon Restoration in the Columbia River Basin: The Role and Usability of Seasonal Forecasts.

    NASA Astrophysics Data System (ADS)

    Pulwarty, Roger S.; Redmond, Kelly T.

    1997-03-01

    The Pacific Northwest is dependent on the vast and complex Columbia River system for power production, irrigation, navigation, flood control, recreation, municipal and industrial water supplies, and fish and wildlife habitat. In recent years Pacific salmon populations in this region, a highly valued cultural and economic resource, have declined precipitously. Since 1980, regional entities have embarked on the largest effort at ecosystem management undertaken to date in the United States, primarily aimed at balancing hydropower demands with salmon restoration activities. It has become increasingly clear that climatically driven fluctuations in the freshwater and marine environments occupied by these fish are an important influence on population variability. It is also clear that there are significant prospects of climate predictability that may prove advantageous in managing the water resources shared by the long cast of regional interests. The main thrusts of this study are 1) to describe the climate and management environments of the Columbia River basin, 2) to assess the present degree of use and benefits of available climate information, 3) to identify new roles and applications made possible by recent advances in climate forecasting, and 4) to understand, from the point of view of present and potential users in specific contexts of salmon management, what information might be needed, for what uses, and when, where, and how it should be provided. Interviews were carried out with 32 individuals in 19 organizations involved in salmon management decisions. Primary needs were in forecasting runoff volume and timing, river transit times, and stream temperatures, as much as a year or more in advance. Most respondents desired an accuracy of 75% for a seasonal forecast. Despite the significant influence of precipitation and its subsequent hydrologic impacts on the regional economy, no specific use of the present climate forecasts was uncovered. Understanding the

  6. Ground water for irrigation in the Snake River Basin in Idaho

    USGS Publications Warehouse

    Mundorff, Maurice John; Crosthwaite, E.G.; Kilburn, Chabot

    1964-01-01

    The Snake River basin, in southern Idaho, upstream from the mouth of the Powder River in Oregon, includes more than 50 percent of the land area and 65 percent of the total population of the State. More than 2.5 million acres of land is irrigated ; irrigation agriculture and industry allied with agriculture are the basis of the economy of the basin. Most of the easily developed sources of surface water are fully utilized, and few storage sites remain where water could be made available to irrigate lands under present economic conditions. Because surface-water supplies have be come more difficult to obtain, use of ground water has increased greatly. At the present time (1959), about 600,000 acres of land is irrigated with ground water. Ground-water development has been concentrated in areas where large amounts of water are available beneath or adjacent to tracts of arable land and where the depth to water is not excessive under the current economy. Under these criteria, many of the most favorable areas already have been developed; however, tremendous volumes of water are still available for development. In some places, water occurs at depths considered near or beyond the limit for economic recovery, whereas in some other places, water is reasonably close to the surface but no arable land is available in the vicinity. In other parts of the basin large tracts of arable land are without available water supply. Thus the chief tasks in development of the ground-water resources include not only locating and evaluating ground-water supplies but also the planning necessary to bring the water to the land. Irrigation began in the 1860's ; at the present time more than 10 million acre feet of surface water, some of which is recirculated water, is diverted annually for irrigation of more than 2.5 million acres. Diversion of this large quantity of water has had a marked effect on the ground-water regimen. In some areas, the water table has risen more than 100 feet and the

  7. Investigations into the Early Life-history of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin, Annual Report 2001.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reischauer, Alyssa; Monzyk, Frederick; Van Dyke, Erick

    2003-06-01

    We determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout Oncorhynchus mykiss using rotary screw traps on four streams in the Grande Ronde River basin during the 2001 migratory year (MY 2001) from 1 July 2000 through 30 June 2001. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O. mykiss could be distinguished. An 'early' migrant group left upper rearing areas from 1 July 2000 through 29 January 2001 with a peak in the fall. A 'late' migrant group descended from upper rearing areas from 30more » January 2001 through 30 June 2001 with a peak in the spring. The migrant population of juvenile spring chinook salmon in the upper Grande Ronde River in MY 2001 was very low in comparison to previous migratory years. We estimated 51 juvenile spring chinook migrated out of upper rearing areas with approximately 12% of the migrant population leaving as early migrants to overwinter downstream. In the same migratory year, we estimated 16,067 O. mykiss migrants left upper rearing areas with approximately 4% of these fish descending the upper Grande Ronde River as early migrants. At the Catherine Creek trap, we estimated 21,937 juvenile spring chinook migrants in MY 2001. Of these migrants, 87% left upper rearing areas early to overwinter downstream. We also estimated 20,586 O. mykiss migrants in Catherine Creek with 44% leaving upper rearing areas early to overwinter downstream. At the Lostine River trap, we estimated 13,610 juvenile spring chinook migrated out of upper rearing areas with approximately 77% migrating early. We estimated 16,690 O. mykiss migrated out of the Lostine River with approximately 46% descending the river as early migrants. At the Minam River trap, we estimated 28,209 juvenile spring chinook migrated out of the river with 36% migrating early. During the same period, we estimated 28,113 O. mykiss with

  8. Anthropogenic Impacts of Recreational Use on Sandbars in Hells Canyon on the Snake River, Idaho

    NASA Astrophysics Data System (ADS)

    Morehead, M. D.

    2014-12-01

    Sandbars along large rivers are important cultural, recreational, and natural resources. In modern, historic and prehistoric times the sandbars have been used for camping, hunting, fishing and recreational activities. Sandbars are a dynamic geomorphic unit of the river system that stores and exchanges sand with the main river channel. Both natural and anthropogenic changes to river systems affect the size, shape and dynamics of sandbars. During high spring flows, the Snake River can resupply and build the sand bars. During the lower flows of the summer and fall the sand is redistributed to lower levels by natural and anthropogenic forces, where it can be remobilized by the river and exported from the bar. During the summer and fall high use season many people camp and recreate on the bars and redistribute the sand. This study utilizes change detection from repeat high resolution terrestrial LiDAR scanning surveys to study the impacts humans have on the sandbars in Hells Canyon. Nearly a decade of annual LiDAR and Bathymetric surveys were used to place these recreational impacts into the context of overall sandbar dynamics.

  9. Trophic pathways supporting juvenile Chinook and Coho salmon in the glacial Susitna River, Alaska: patterns of freshwater, marine, and terrestrial resource use across a seasonally dynamic habitat mosaic

    USGS Publications Warehouse

    Rine, Kristin M.; Wipfli, Mark S.; Schoen, Erik R.; Nightengale, Timothy L.; Stricker, Craig A.

    2016-01-01

    Contributions of terrestrial-, freshwater-, and marine-derived prey resources to stream fishes vary over time and space, altering the energy pathways that regulate production. In this study, we determined large-scale use of these resources by juvenile Chinook and coho salmon (Oncorhynchus tshawytscha and Oncorhynchus kisutch, respectively) in the glacial Susitna River, Alaska. We resolved spatial and temporal trophic patterns among multiple macrohabitat types along a 97 km segment of the river corridor via stable isotope and stomach content analyses. Juvenile salmon were supported primarily by freshwater-derived resources and secondarily by marine and terrestrial sources. The relative contribution of marine-derived prey to rearing salmon was greatest in the fall within off-channel macrohabitats, whereas the contributions of terrestrial invertebrate prey were generally greatest during midsummer, across all macrohabitats. No longitudinal (upstream–downstream) diet pattern was discernable. These results highlight large-scale spatial and seasonal patterns of energy flow and the dynamic interplay of pulsed marine and terrestrial prey subsidies to juvenile Chinook and coho salmon in a large, complex, and relatively pristine glacial river.

  10. A statistical model for estimating stream temperatures in the Salmon and Clearwater River basins, central Idaho

    USGS Publications Warehouse

    Donato, Mary M.

    2002-01-01

    A water-quality standard for temperature is critical for the protection of threatened and endangered salmonids, which need cold, clean water to sustain life. The Idaho Department of Environmental Quality has established temperature standards to protect salmonids, yet little is known about the normal range of temperatures of most Idaho streams. A single temperature standard for all streams does not take into account the natural temperature variation of streams or the existence of naturally warm waters. To address these issues and to help the Idaho Department of Environmental Quality revise the existing State temperature standards for aquatic life, temperature data from more than 200 streams and rivers in the salmon and Clearwater River Basins were collected. From these data, a statistical model was developed for estimating stream temperatures on the basis of subbasin and site characteristics and climatic factors. Stream temperatures were monitored hourly for approximately 58 days during July, August, and September 2000 at relatively undisturbed sites in subbasins in the Salmon and Clearwater River Basins in central Idaho. The monitored subbasins vary widely in size, elevation, drainage area, vegetation cover, and other characteristics. The resulting data were analyzed for statistical correlations with subbasin and site characteristics to establish the most important factors affecting stream temperature. Maximum daily average stream temperatures were strongly correlated with elevation and total upstream drainage area; weaker correlations were noted with stream depth and width and aver-age subbasin slope. Stream temperatures also were correlated with certain types of vegetation cover, but these variables were not significant in the final model. The model takes into account seasonal temperature fluctuations, site elevation, total drainage area, average subbasin slope, and the deviation of daily average air temperature from a 30-year normal daily average air temperature

  11. Modelling the effects of stranding on the Atlantic salmon population in the Dale River, Norway.

    PubMed

    Sauterleute, Julian F; Hedger, Richard D; Hauer, Christoph; Pulg, Ulrich; Skoglund, Helge; Sundt-Hansen, Line E; Bakken, Tor Haakon; Ugedal, Ola

    2016-12-15

    Rapid dewatering in rivers as a consequence of hydropower operations may cause stranding of juvenile fish and have a negative impact on fish populations. We implemented stranding into an Atlantic salmon population model in order to evaluate long-term effects on the population in the Dale River, Western Norway. Furthermore, we assessed the sensitivity of the stranding model to dewatered area in comparison to biological parameters, and compared different methods for calculating wetted area, the main abiotic input parameter to the population model. Five scenarios were simulated dependent on fish life-stage, season and light level. Our simulation results showed largest negative effect on the population abundance for hydropeaking during winter daylight. Salmon smolt production had highest sensitivity to the stranding mortality of older juvenile fish, suggesting that stranding of fish at these life-stages is likely to have greater population impacts than that of earlier life-stages. Downstream retention effects on the ramping velocity were found to be negligible in the stranding model, but are suggested to be important in the context of mitigation measure design. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Signals of large scale climate drivers, hatchery enhancement, and marine factors in Yukon River Chinook salmon survival revealed with a Bayesian life history model.

    PubMed

    Cunningham, Curry J; Westley, Peter A H; Adkison, Milo D

    2018-05-18

    Understanding how species might respond to climate change involves disentangling the influence of co-occurring environmental factors on population dynamics, and is especially problematic for migratory species like Pacific salmon that move between ecosystems. To date, debate surrounding the causes of recent declines in Yukon River Chinook salmon (Oncorhynchus tshawytscha) abundance has centered on whether factors in freshwater or marine environments control variation in survival, and how these populations at the northern extremity of the species range will respond to climate change. To estimate the effect of factors in marine and freshwater environments on Chinook salmon survival, we constructed a stage-structured assessment model that incorporates the best available data, estimates incidental marine bycatch mortality in trawl fisheries, and uses Bayesian model selection methods to quantify support for alternative hypotheses. Models fitted to two index populations of Yukon River Chinook salmon indicate that processes in the nearshore and marine environments are the most important determinants of survival. Specifically, survival declines when ice leaves the Yukon River later in the spring, increases with wintertime temperature in the Bering Sea, and declines with the abundance of globally enhanced salmon species consistent with competition at sea. In addition, we found support for density-dependent survival limitations in freshwater but not marine portions of the life cycle, increasing average survival with ocean age, and age-specific selectivity of bycatch mortality in the Bering Sea. This study underscores the utility of flexible estimation models capable of fitting multiple data types and evaluating mortality from both natural and anthropogenic sources in multiple habitats. Overall, these analyses suggest that mortality at sea is the primary driver of population dynamics, yet under a warming climate Chinook salmon populations at the northern extent of the species

  13. Differences in Ichthyophonus prevalence and infection severity between upper Yukon River and Tanana River chinook salmon, Oncorhynchus tshawytscha (Walbaum), stocks

    USGS Publications Warehouse

    Kocan, R.; Hershberger, P.

    2006-01-01

    Two genetically distinct populations of chinook salmon, Oncorhynchus tshawytscha (Walbaum), were simultaneously sampled at the confluence of the Yukon and Tanana rivers in 2003. Upper Yukon-Canadian fish had significantly higher infection prevalence as well as more severe infections (higher parasite density in heart tissue) than the lower Yukon-Tanana River fish. Both populations had migrated the same distance from the mouth of the Yukon River at the time of sampling but had significantly different distances remaining to swim before reaching their respective spawning grounds. Multiple working hypotheses are proposed to explain the differences between the two stocks: (1) the two genetically distinct populations have different inherent resistance to infection, (2) genetically influenced differences in feeding behaviour resulted in temporal and/or spatial differences in exposure, (3) physiological differences resulting from different degrees of sexual maturity influenced the course of disease, and (4) the most severely infected Tanana River fish either died en route or fatigued and were unable to complete their migration to the Tanana River, thus leaving a population of apparently healthier fish. ?? 2006 Blackwell Publishing Ltd.

  14. Monitoring and Evaluation of Supplemented Spring Chinook Salmon and Life Histories of Wild Summer Steelhead in the Grande Ronde Basin, 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boe, Stephen J.; Crump, Carrie A.; Weldert, Rey L.

    2009-04-10

    This is the ninth annual report for a multi-year project designed to monitor and evaluate supplementation of endemic spring Chinook salmon in Catherine Creek and the upper Grande Ronde River. These two streams historically supported anadromous fish populations that provided significant tribal and non-tribal fisheries, but in recent years, have experienced severe declines in abundance. Conventional and captive broodstock supplementation methods are being used to restore these spring Chinook salmon populations. Spring Chinook salmon populations in Catherine Creek and the upper Grande Ronde River, and other streams in the Snake River Basin have experienced severe declines in abundance over themore » past two decades (Nehlsen et al. 1991). A supplementation program was initiated in Catherine Creek and the upper Grande Ronde River, incorporating the use of both captive and conventional broodstock methods, in order to prevent extinction in the short term and eventually rebuild populations. The captive broodstock component of the program (BPA Project 199801001) uses natural-origin parr collected by seining and reared to maturity at facilities near Seattle, Washington (Manchester Marine Laboratory) and Hood River, Oregon (Bonneville Hatchery). Spawning occurs at Bonneville Hatchery, and resulting progeny are reared in hatcheries. Shortly before outmigration in the spring, juveniles are transferred to acclimation facilities. After an acclimation period of about 2-4 weeks, volitional release begins. Any juveniles remaining after the volitional release period are forced out. The conventional broodstock component uses returning adults collected at traps near the spawning areas, transported to Lookingglass Hatchery near Elgin, Oregon, held, and later spawned. The resulting progeny are reared, acclimated, and released similar to the captive broodstock component. All progeny released receive one or more marks including a fin (adipose) clip, codedwire tag, PIT tag, or visual

  15. Feeding response by northern squawfish to a hatchery release of juvenile salmonids in the Clearwater River, Idaho

    USGS Publications Warehouse

    Shively, R.S.; Poe, T.P.; Sauter, S.T.

    1996-01-01

    We collected gut contents from northern squawfish Ptychocheilus oregonensis captured in the Clearwater River, Idaho, 0–6 km from its confluence with the Snake River, following the release of 1.1 million yearling chinook salmon Oncorhynchus tshawytscha from the Dworshak National Fish Hatchery. Before the hatchery release, northern squawfish gut contents (by weight) in the study area were 38% crayfish Pacifastacus spp., 26% insects, 19% nonsalmonid fish, and 16% wheat kernels Triticum spp. Juvenile salmonids constituted 54% of gut contents about 24 h after the hatchery release, 78% after 5 d, and 86% after 7 d. The mean number of salmonids per gut (1.2) after release was higher than typically seen in guts from northern squawfish collected in mid-reservoir areas away from hydroelectric dams on the Snake and Columbia rivers. Length-frequency distributions of juvenile salmonids eaten and those captured in a scoop trap 4 km upstream of the study area indicated that northern squawfish were selectively feeding on the smaller individuals. We attribute the high rates of predation in the study area to the artificially high density of juvenile salmonids resulting from the hatchery release and to the physical characteristics of the study area in which the river changed from free flowing to impounded. Our results suggest that northern squawfish can quickly exploit hatchery releases of juvenile salmonids away from release sites in the Columbia River basin.

  16. Prey availability, consumption, and quality contribute to variation in growth of subyearling Chinook Salmon rearing in riverine and reservoir habitats

    USGS Publications Warehouse

    Tiffan, Kenneth F.; Erhardt, John M.; St. John, Scott J.

    2014-01-01

    We examined prey availability, prey consumed, and diet energy content as sources of variation in growth of natural fall Chinook Salmon Oncorhynchus tshawytscha subyearlings rearing in riverine and reservoir habitats in the Snake River. Subyearlings in riverine habitat primarily consumed aquatic insects (e.g., Diptera, Ephemeroptera, Trichoptera), of which a high proportion was represented by adult, terrestrial forms. In the reservoir, subyearlings also consumed aquatic insects but also preyed heavily at times on nonnative lentic amphipods Corophium spp. and the mysid Neomysis mercedis, which were absent in riverine habitats. The availability of prey was typically much higher in the reservoir due to N. mercedis often composing over 90% of the biomass, but when this taxon was removed from consideration, biomass estimates were more often higher in the riverine habitat. Subyearling diets during 2009–2011 were generally 17–40% higher in energy in the riverine habitat than in the reservoir. Observed growth in both length and weight were significantly higher in the riverine habitat than in the reservoir. Little is known about how temporal and spatial changes in the food web in large river landscapes influence populations of native anadromous fishes. Our results provide a glimpse of how the spread and establishment of nonnative prey species can reduce juvenile salmon growth in a large river impoundment, which in turn can affect migration timing and survival.

  17. An Evidence-Based Evaluation of the Cumulative Effects of Tidal Freshwater and Estuarine Ecosystem Restoration on Endangered Juvenile Salmon in the Columbia River: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diefenderfer, Heida L.; Johnson, Gary E.; Thom, Ronald M.

    The listing of 13 salmon and steelhead stocks in the Columbia River basin (hereafter collectively referred to as “salmon”) under the Endangered Species Act of 1973, as amended, has stimulated tidal wetland restoration in the lower 235 kilometers of the Columbia River and estuary for juvenile salmon habitat functions. The purpose of the research reported herein was to evaluate the effect on listed salmon of the restoration effort currently being conducted under the auspices of the federal Columbia Estuary Ecosystem Restoration Program (CEERP). Linking changes in the quality and landscape pattern of tidal wetlands in the lower Columbia River andmore » estuary (LCRE) to salmon recovery is a complex problem because of the characteristics of the ecosystem, the salmon, the restoration actions, and available sampling technologies. Therefore, we designed an evidence-based approach to develop, synthesize, and evaluate information to determine early-stage (~10 years) outcomes of the CEERP. We developed an ecosystem conceptual model and from that, a primary hypothesis that habitat restoration activities in the LCRE have a cumulative beneficial effect on juvenile salmon. There are two necessary conditions of the hypothesis: • habitat-based indicators of ecosystem controlling factors, processes, and structures show positive effects from restoration actions, and • fish-based indicators of ecosystem processes and functions show positive effects from restoration actions and habitats undergoing restoration. Our evidence-based approach to evaluate the primary hypothesis incorporated seven lines of evidence, most of which are drawn from the LCRE. The lines of evidence are spatial and temporal synergies, cumulative net ecosystem improvement, estuary-wide meta-analysis, offsite benefits to juvenile salmon, landscape condition evaluation, and evidence-based scoring of global literature. The general methods we used to develop information for the lines of evidence included field

  18. Spawning sockeye salmon fossils in Pleistocene lake beds of Skokomish Valley, Washington

    NASA Astrophysics Data System (ADS)

    Smith, Gerald R.; Montgomery, David R.; Peterson, N. Phil; Crowley, Bruce

    2007-09-01

    An assemblage of fossil sockeye salmon was discovered in Pleistocene lake sediments along the South Fork Skokomish River, Olympic Peninsula, Washington. The fossils were abundant near the head of a former glacial lake at 115 m elevation. Large adult salmon are concentrated in a sequence of death assemblages that include individuals with enlarged breeding teeth and worn caudal fins indicating migration, nest digging, and spawning prior to death. The specimens were 4 yr old and 45-70 cm in total length, similar in size to modern sockeye salmon, not landlocked kokanee. The fossils possess most of the characteristics of sockeye salmon, Oncorhynchus nerka, but with several minor traits suggestive of pink salmon, O. gorbuscha. This suggests the degree of divergence of these species at about 1 million yr ago, when geological evidence indicates the salmon were deposited at the head of a proglacial lake impounded by the Salmon Springs advance of the Puget lobe ice sheet. Surficial geology and topography record a complicated history of glacial damming and river diversion that implies incision of the modern gorge of the South Fork Skokomish River after deposition of the fossil-bearing sediments.

  19. Mercury and water-quality data from Rink Creek, Salmon River, and Good River, Glacier Bay National Park and Preserve, Alaska, November 2009-October 2011

    USGS Publications Warehouse

    Nagorski, Sonia A.; Neal, Edward G.; Brabets, Timothy P.

    2013-01-01

    Glacier Bay National Park and Preserve (GBNPP), Alaska, like many pristine high latitude areas, is exposed to atmospherically deposited contaminants such as mercury (Hg). Although the harmful effects of Hg are well established, information on this contaminant in southeast Alaska is scarce. Here, we assess the level of this contaminant in several aquatic components (water, sediments, and biological tissue) in three adjacent, small streams in GBNPP that drain contrasting landscapes but receive similar atmospheric inputs: Rink Creek, Salmon River, and Good River. Twenty water samples were collected from 2009 to 2011 and processed and analyzed for total mercury and methylmercury (filtered and particulate), and dissolved organic carbon quantity and quality. Ancillary stream water parameters (discharge, pH, dissolved oxygen, specific conductance, and temperature) were measured at the time of sampling. Major cations, anions, and nutrients were measured four times. In addition, total mercury was analyzed in streambed sediment in 2010 and in juvenile coho salmon and several taxa of benthic macroinvertebrates in the early summer of 2010 and 2011.

  20. Spatio-Temporal Migration Patterns of Pacific Salmon Smolts in Rivers and Coastal Marine Waters

    PubMed Central

    Melnychuk, Michael C.; Welch, David W.; Walters, Carl J.

    2010-01-01

    Background Migrations allow animals to find food resources, rearing habitats, or mates, but often impose considerable predation risk. Several behavioural strategies may reduce this risk, including faster travel speed and taking routes with shorter total distance. Descriptions of the natural range of variation in migration strategies among individuals and populations is necessary before the ecological consequences of such variation can be established. Methodology/Principal Findings Movements of tagged juvenile coho, steelhead, sockeye, and Chinook salmon were quantified using a large-scale acoustic tracking array in southern British Columbia, Canada. Smolts from 13 watersheds (49 watershed/species/year combinations) were tagged between 2004–2008 and combined into a mixed-effects model analysis of travel speed. During the downstream migration, steelhead were slower on average than other species, possibly related to freshwater residualization. During the migration through the Strait of Georgia, coho were slower than steelhead and sockeye, likely related to some degree of inshore summer residency. Hatchery-reared smolts were slower than wild smolts during the downstream migration, but after ocean entry, average speeds were similar. In small rivers, downstream travel speed increased with body length, but in the larger Fraser River and during the coastal migration, average speed was independent of body length. Smolts leaving rivers located towards the northern end of the Strait of Georgia ecosystem migrated strictly northwards after ocean entry, but those from rivers towards the southern end displayed split-route migration patterns within populations, with some moving southward. Conclusions/Significance Our results reveal a tremendous diversity of behavioural migration strategies used by juvenile salmon, across species, rearing histories, and habitats, as well as within individual populations. During the downstream migration, factors that had strong effects on travel

  1. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1998 to 31 August 1999.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonasson, Brian C.

    2000-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 13,180 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 18% in fall and 82% in spring. We estimated 15,949 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 57% in fall, 2% in winter, and 41% in spring. We estimated 14,537 juvenile chinook salmon leftmore » the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1998 to June 1999; approximately 99% of the migrants left in spring. We estimated 31,113 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1998 to June 1999; approximately 4% of the migrants left in summer, 57% in fall, 3% in winter, and 36% in spring. We estimated 42,705 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from August 1998 to June 1999; approximately 46% of the migrants left in fall, 6% in winter, and 47% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 31 March to 20 June 1999, with a median passage date of 5 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 19 April to 9 July 1999, with a median passage date of 24 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 8 July 1999, with a median passage date of 4 May. Juveniles tagged as they left the upper rearing areas of the Grande Ronde River in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the

  2. Migratory Patterns of Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-flowing River Basin

    USGS Publications Warehouse

    Eiler, John H.; Evans, Allison N.; Schreck, Carl B.

    2015-01-01

    Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002–2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28–40 km d-1) compared to upper basin stocks (52–62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between “hares” (faster fish becoming slower) and “tortoises” (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation

  3. The influence of hydrology and waterway distance on population structure of Chinook salmon Oncorhynchus tshawytscha in a large river.

    PubMed

    Olsen, J B; Beacham, T D; Wetklo, M; Seeb, L W; Smith, C T; Flannery, B G; Wenburg, J K

    2010-04-01

    Adult Chinook salmon Oncorhynchus tshawytscha navigate in river systems using olfactory cues that may be influenced by hydrologic factors such as flow and the number, size and spatial distribution of tributaries. Thus, river hydrology may influence both homing success and the level of straying (gene flow), which in turn influences population structure. In this study, two methods of multivariate analysis were used to examine the extent to which four indicators of hydrology and waterway distance explained population structure of O. tshawytscha in the Yukon River. A partial Mantel test showed that the indicators of hydrology were positively associated with broad-scale (Yukon basin) population structure, when controlling for the influence of waterway distance. Multivariate multiple regression showed that waterway distance, supplemented with the number and flow of major drainage basins, explained more variation in broad-scale population structure than any single indicator. At an intermediate spatial scale, indicators of hydrology did not appear to influence population structure after accounting for waterway distance. These results suggest that habitat changes in the Yukon River, which alter hydrology, may influence the basin-wide pattern of population structure in O. tshawytscha. Further research is warranted on the role of hydrology in concert with waterway distance in influencing population structure in Pacific salmon.

  4. Juvenile salmon and steelhead occupancy of stream pools treated and not treated with restoration structures, Entiat River, Washington

    Treesearch

    Karl M. Polivka; E. Ashley Steel; Jenni L. Novak; Bror Jonsson

    2015-01-01

    We observed habitat occupancy by juvenile Chinook salmon (Oncorhynchus tschawytscha) and steelhead trout (Oncorhynchus mykiss) at in-stream habitat restoration structures constructed in the Entiat River, Washington, USA. In 2009–2013, fish abundance measurements during rearing (July–October) showed high temporal variability in...

  5. The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics

    USGS Publications Warehouse

    Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.

    2012-01-01

    Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.

  6. Two-dimensional hydrodynamic modeling to quantify effects of peak-flow management on channel morphology and salmon-spawning habitat in the Cedar River, Washington

    USGS Publications Warehouse

    Czuba, Christiana; Czuba, Jonathan A.; Gendaszek, Andrew S.; Magirl, Christopher S.

    2010-01-01

    The Cedar River in Washington State originates on the western slope of the Cascade Range and provides the City of Seattle with most of its drinking water, while also supporting a productive salmon habitat. Water-resource managers require detailed information on how best to manage high-flow releases from Chester Morse Lake, a large reservoir on the Cedar River, during periods of heavy precipitation to minimize flooding, while mitigating negative effects on fish populations. Instream flow-management practices include provisions for adaptive management to promote and maintain healthy aquatic habitat in the river system. The current study is designed to understand the linkages between peak flow characteristics, geomorphic processes, riverine habitat, and biological responses. Specifically, two-dimensional hydrodynamic modeling is used to simulate and quantify the effects of the peak-flow magnitude, duration, and frequency on the channel morphology and salmon-spawning habitat. Two study reaches, representative of the typical geomorphic and ecologic characteristics of the Cedar River, were selected for the modeling. Detailed bathymetric data, collected with a real-time kinematic global positioning system and an acoustic Doppler current profiler, were combined with a LiDAR-derived digital elevation model in the overbank area to develop a computational mesh. The model is used to simulate water velocity, benthic shear stress, flood inundation, and morphologic changes in the gravel-bedded river under the current and alternative flood-release strategies. Simulations of morphologic change and salmon-redd scour by floods of differing magnitude and duration enable water-resource managers to incorporate model simulation results into adaptive management of peak flows in the Cedar River. PDF version of a presentation on hydrodynamic modelling in the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  7. IMPACTS OF GEOTHERMAL WATERS ON SELECTED STREAMS IN SOUTHERN IDAHO, 1984-1985

    EPA Science Inventory

    Four drainage areas were studies in Southern Idaho (17040212, 17040213) to determine the impact of geothermal discharges on area streams. Areas studied included Big Wood River near Ketchum, Mud Creek near Buhl, Salmon Falls Creek near Castleford, and the Snake River from Twin Fa...

  8. A simulation study of factors controlling white sturgeon recruitment in the Snake River

    USGS Publications Warehouse

    Jager, H.I.; Van Winkle, W.; Chandler, James Angus; Lepla, K.B.; Bates, P.; Counihan, T.D.

    2002-01-01

    Five of the nine populations of white sturgeon Acipenser transmontanus, located between dams on the Middle Snake River, have declined from historical levels and are now at risk of extinction. One step towards more effectively protecting and managing these nine populations is ranking factors that influence recruitment in each of these river segments. We developed a model to suggest which of seven mechanistic factors contribute most to lost recruitment in each river segment: (1) temperature-related mortality during incubation, (2) flow-related mortality during incubation, (3) downstream export of larvae, (4) limitation of juvenile and adult habitat, (5) mortality of all ages during summer episodes of poor water quality in reservoirs, (6) entrainment mortality of juveniles and adults, and (7) angling mortality. We simulated recruitment with, and without, each of the seven factors, over a typical series of hydrologic years. We found a hierarchical pattern of limitation. In the first tier, river segments with severe water quality problems grouped together. Poor water quality during summer had a strong negative effect on recruitment in the river segments between Swan Falls Dam and Hell's Canyon Dam. In the second tier, river segments with better water quality divided into short river segments and longer river segments. Populations in short river segments were limited by larval export. Populations in longer river segments tended to be less strongly limited by any one factor. We also found that downstream effects could be important, suggesting that linked populations cannot be viewed in isolation. In two cases, the effects of a factor on an upstream population had a significant influence on its downstream neighbors. ?? 2002 by the American Fisheries Society.

  9. Assessment of nutrients, suspended sediment, and pesticides in surface water of the upper Snake River basin, Idaho and western Wyoming, water years 1991-95

    USGS Publications Warehouse

    Clark, Gregory M.

    1997-01-01

    Quality Assessment Program. As part of the investigation, intensive monitoring was conducted during water years 1993 through 1995 to assess surface-water quality in the basin. Sampling and analysis focused on nutrients, suspended sediments, and pesticides because of nationwide interest in these constituents. Concentrations of nutrients and suspended sediment in water samples from 19 sites in the upper Snake River Basin, including nine on the main stem, were assessed. In general, concentrations of nutrients and suspended sediment were smaller in water from the 11 sites upstream from American Falls Reservoir than in water from the 8 sites downstream from the reservoir where effects from land-use activities are most pronounced. Median concentrations of dissolved nitrite plus nitrate as nitrogen at the 19 sites ranged from less than 0.05 to 1.60 milligrams per liter; total phosphorus as phosphorus, less than 0.01 to 0.11 milligrams per liter; and suspended sediment, 4 to 72 milligrams per liter. Concentrations of nutrients and suspended sediment in the main stem of the Snake River, in general, increased downstream. The largest concentrations in the main stem were in the middle reach of the Snake River between Milner Dam and the outlet of the upper Snake River Basin at King Hill. Significant differences (p Nutrient and suspended sediment inputs to the middle Snake reach were from a variety of sources. During water year 1995, springs were the primary source of water and total nitrogen to the river and accounted for 66 and 60 percent of the total input, respectively. Isotope and water-table information indicated that the springs derived most of their nitrogen from agricultural activities along the margins of the Snake River. Aquacultural effluent was a major source of ammonia (82 percent), organic nitrogen (30 percent), and total phosphorus (35 percent). Tributary streams were a major source of organic nitrogen (28 percent) and suspended sediment (58 percent). In

  10. Grain-size distribution and selected major and trace element concentrations in bed-sediment cores from the Lower Granite Reservoir and Snake and Clearwater Rivers, eastern Washington and northern Idaho, 2010

    USGS Publications Warehouse

    Braun, Christopher L.; Wilson, Jennifer T.; Van Metre, Peter C.; Weakland, Rhonda J.; Fosness, Ryan L.; Williams, Marshall L.

    2012-01-01

    Fifty subsamples from 15 cores were analyzed for major and trace elements. Concentrations of trace elements were low, with respect to sediment quality guidelines, in most cores. Typically, major and trace element concentrations were lower in the subsamples collected from the Snake River compared to those collected from the Clearwater River, the confluence of the Snake and Clearwater Rivers, and Lower Granite Reservoir. Generally, lower concentrations of major and trace elements were associated with coarser sediments (larger than 0.0625 millimeter) and higher concentrations of major and trace elements were associated with finer sediments (smaller than 0.0625 millimeter).

  11. The Lummi Indians and the Canadian/American Pacific Salmon Treaty.

    ERIC Educational Resources Information Center

    Boxberger, Daniel L.

    1988-01-01

    Explores the probable impact of the 1985 international Pacific Salmon Treaty on the Lummi tribe's catch of Fraser River salmon and economic well-being. Discusses the 1974 Boldt Decision, which allocated half of Washington State's salmon catch to treaty tribes, and contradictions in the federal government's conception of international treaties. (SV)

  12. Features in the Lipid Status of Two Generations of Fingerlings (0+) of Atlantic Salmon (Salmo salar L.) Inhabiting the Arenga River (Kola Peninsula).

    PubMed

    Nemova, Nina N; Murzina, Svetlana A; Nefedova, Zinaida A; Veselov, Alexey E

    2015-07-30

    The present research focused on determining the lipid status of salmon fingerlings (0+) in early development after dispersal form groups of spawning nests in biotopes of different hydrological conditions. The revealed qualitative and quantitative differences in the levels of phospholipids and fatty acids among two generations of Atlantic salmon fingerlings (0+) living in different biotopes of the Arenga River (a tributary of the Varzuga River) may be associated with the peculiarities of their genetically determined processes of the biosynthesis and modification of individual lipid classes and trophoecological factors (food spectrum, quality and availability of food objects, and hydrological regime). The research was organized to observe the dynamics of these developmental changes from ages 0+ to 2+.

  13. Evidence for geomagnetic imprinting as a homing mechanism in Pacific salmon.

    PubMed

    Putman, Nathan F; Lohmann, Kenneth J; Putman, Emily M; Quinn, Thomas P; Klimley, A Peter; Noakes, David L G

    2013-02-18

    In the final phase of their spawning migration, Pacific salmon use chemical cues to identify their home river, but how they navigate from the open ocean to the correct coastal area has remained enigmatic. To test the hypothesis that salmon imprint on the magnetic field that exists where they first enter the sea and later seek the same field upon return, we analyzed a 56-year fisheries data set on Fraser River sockeye salmon, which must detour around Vancouver Island to approach the river through either a northern or southern passageway. We found that the proportion of salmon using each route was predicted by geomagnetic field drift: the more the field at a passage entrance diverged from the field at the river mouth, the fewer fish used the passage. We also found that more fish used the northern passage in years with warmer sea surface temperature (presumably because fish were constrained to more northern latitudes). Field drift accounted for 16% of the variation in migratory route used, temperature 22%, and the interaction between these variables 28%. These results provide the first empirical evidence of geomagnetic imprinting in any species and imply that forecasting salmon movements is possible using geomagnetic models. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Crims Island-Restoration and monitoring of juvenile salmon rearing habitat in the Columbia River Estuary, Oregon, 2004-10

    USGS Publications Warehouse

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    Under the 2004 Biological Opinion for operation of the Federal Columbia River Power System released by the National Marine Fisheries Service, the U.S. Army Corps of Engineers (USACE), the Bonneville Power Administration (BPA), and the Bureau of Reclamation (Reclamation) were directed to restore more than 4,047 hectares (10,000 acres) of tidal marsh in the Columbia River estuary by 2010. Restoration of Crims Island near Longview, Washington, restored 38.1 hectares of marsh and swamp in the tidal freshwater portion of the lower Columbia River. The goal of the restoration was to improve habitat for juveniles of Endangered Species Act (ESA)-listed salmon stocks and ESA-listed Columbian white-tailed deer. The U.S. Geological Survey (USGS) monitored and evaluated the fisheries and aquatic resources at Crims Island in 2004 prior to restoration (pre-restoration), which began in August 2004, and then post-restoration from 2006 to 2009. This report summarizes pre- and post-restoration monitoring data used by the USGS to evaluate project success. We evaluated project success by examining the interaction between juvenile salmon and a suite of broader ecological measures including sediments, plants, and invertebrates and their response to large-scale habitat alteration. The restoration action at Crims Island from August 2004 to September 2005 was to excavate a 0.6-meter layer of soil and dig channels in the interior of the island to remove reed canary grass and increase habitat area and tidal exchange. The excavation created 34.4 hectares of tidal emergent marsh where none previously existed and 3.7 hectares of intertidal and subtidal channels. Cattle that had grazed the island for more than 50 years were relocated. Soil excavated from the site was deposited in upland areas next to the tidal marsh to establish an upland forest. Excavation deepened and widened an existing T-shaped channel to increase tidal flow to the interior of the island. The western arm of the existing 'T

  15. Skagit River coho salmon life history model—Users’ guide

    USGS Publications Warehouse

    Woodward, Andrea; Kirby, Grant; Morris, Scott

    2017-09-29

    Natural resource management is conducted in the context of multiple anthropogenic stressors and is further challenged owing to changing climate. Experiments to determine the effects of climate change on complex ecological systems are nearly impossible. However, using a simulation model to synthesize current understanding of key ecological processes through the life cycle of a fish population can provide a platform for exploring potential effects of and management responses to changing conditions. Potential climate-change scenarios can be imposed, responses can be observed, and the effectiveness of potential actions can be evaluated. This approach is limited owing to future conditions likely deviating in range and timing from conditions used to create the model so that the model is expected to become obsolete. In the meantime, however, the modeling process explicitly states assumptions, clarifies information gaps, and provides a means to better understand which relationships are robust and which are vulnerable to changing climate by observing whether and why model output diverges from actual observations through time. The purpose of the model described herein is to provide such a decision-support tool regarding coho (Oncorhynchus kisutch) salmon for the Sauk-Suiattle Indian Tribe of Washington State.The Skagit coho salmon model is implemented in a system dynamics format and has three primary stocks—(1) predicted smolts, (2) realized smolts, and (3) escapement. “Predicted smolts” are the number of smolts expected based on the number of spawners in any year and the Ricker production curve. Pink salmon (Oncorhynchus gorbuscha) return to the Skagit River in odd years, and when they overlap with juvenile rearing coho salmon, coho smolt production is substantially higher than in non-pink years. Therefore, the model uses alternative Ricker equations to predict smolts depending on whether their juvenile year was a pink or non-pink year. The stock “realized smolts

  16. Mapping the response of riparian vegetation to possible flow reductions in the Snake River, Idaho

    USGS Publications Warehouse

    Johnson, W. Carter; Dixon, Mark D.; Simons, Robert W.; Jenson, Susan; Larson, Kevin

    1995-01-01

    This study was initiated to determine the general effects of potential flow reductions in the middle Snake River (Swan Falls Dam downstream to the Idaho-Oregon border) on its riparian vegetation. Considerable water from the river is currently used to irrigate the adjacent Snake River Plain, and increased demand for water in the future is likely. The problem was subdivided into several research components including: field investigation of the existing riparian vegetation and river environment, hydrological modeling to calculate the effects of one flow scenario on hydrological regime, and integration of vegetation and hydrological modeling results with a Geographic Information System (GIs) to map the riverbed, island, and bank conditions under the scenario flow. Field work was conducted in summer 1990. Riparian vegetation along 40 U.S. Geological Survey cross-sections was sampled at approximately 1.25 mile intervals within the 50 mile long study area. Cross-section and flow data were provided by the U.S. Geological. Survey. GIs mapping of land/water cover using ARC/INFO was based on 1987 aerial photographs. Riverbed contour maps were produced by linking cross-section data, topographic contouring software (anudem), and GIs. The maps were used to spatially display shallow areas in the channel likely to become vegetated under reduced flow conditions. The scenario would reduce flow by approximately 20% (160 MAF) and lower the river an average of 0.5 ft. The scenario flow could cause a drop in the elevation of the riparian zone comparable to the drop in mean river level and expansion of the lower riparian zone into shallow areas of the channel. The GIs maps showed that the shallow areas of the channel more likely to become vegetated under the scenario flow are located in wide reaches near islands. Some possible ecological consequences of the scenario flow include a greater area of riparian habitat, reduced flow velocity and sedimentation in shallow channels leading to

  17. Contemporary Deformation within the Snake River Plain and Northern Basin and Range Province, USA

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.

    2007-05-01

    GPS velocities, earthquakes, faults, and volcanic features are used to evaluate contemporary deformation within the Snake River Plain (SRP) and surrounding northern Basin and Range Province. The SRP is a prominent low- relief physiographic feature that extends from eastern Oregon through southern Idaho and into northwestern Wyoming, USA. The Eastern Snake River Plain (ESRP) is a 400-km long, NE-trending volcanic province that is characterized by bimodal volcanism, which represents the track of the Yellowstone Hotspot currently located in Wyoming. The Western Snake River Plain (WSRP) is a 300-km long, NW-trending graben that extends into eastern Oregon. The WSRP is an extensional basin that formed adjacent to an earlier position of the Yellowstone Hotspot in southern Idaho. Previous geodetic investigations suggest the ESRP and, perhaps the WSRP, have GPS velocities indicative of rigid block motion of the SRP along its physiographic boundaries. GPS data compiled for this study are used to test this hypothesis. Several institutions including the National Geodetic Survey, Idaho National Laboratory, Rensselaer Polytechnic Institute, and University of Utah observed GPS stations from 1994 to 2006 within the SRP and surrounding region. Horizontal velocities show generally consistent N110°W orientations with an average rate of 1.5 ± 0.3 mm/yr (for 11 stations) along most of the ESRP and adjacent northwest Basin and Range, although some Basin and Range velocities are less and may be influenced by post viscoelastic relaxation following the 1983 Mw 6.9 normal-faulting Borah Peak, Idaho earthquake. GPS velocities with an average rate of 1.9 ± 0.3 mm/yr (for 5 stations) change orientation to N95°W at a distance of 190 km from the Yellowstone Hotspot within the southern region of the ESRP and adjacent Basin and Range. Within the WSRP, GPS velocities have an average rate of 2.0 ± 0.5 mm/yr (for 7 stations) and change orientation to N40°W. These GPS velocities are more

  18. An analytical method for assessing the spatial and temporal variation of juvenile Atlantic salmon habitat in an upland Scottish river.

    NASA Astrophysics Data System (ADS)

    Buddendorf, B.; Fabris, L.; Malcolm, I.; Lazzaro, G.; Tetzlaff, D.; Botter, G.; Soulsby, C.

    2016-12-01

    Wild Atlantic salmon populations in Scottish rivers constitute an important economic and recreational resource, as well as being a key component of biodiversity. Salmon have specific habitat requirements at different life stages and their distribution is therefore strongly influenced by a complex suite of biological and physical controls. Stream hydrodynamics have a strong influence on habitat quality and affect the distribution and density of juvenile salmon. As stream hydrodynamics directly relate to stream flow variability and channel morphology, the effects of hydroclimatic drivers on the spatial and temporal variability of habitat suitability can be assessed. Critical Displacement Velocity (CDV), which describes the velocity at which fish can no longer hold station, is one potential approach for characterising habitat suitability. CDV is obtained using an empirical formula that depends on fish size and stream temperature. By characterising the proportion of a reach below CDV it is possible to assess the suitable area. We demonstrate that a generic analytical approach based on field survey and hydraulic modelling can provide insights on the interactions between flow regime and average suitable area (SA) for juvenile salmon that could be extended to other aquatic species. Analytical functions are used to model the pdf of stream flow p(q) and the relationship between flow and suitable area SA(q). Theoretically these functions can assume any form. Here we used a gamma distribution to model p(q) and a gamma function to model SA(q). Integrating the product of these functions we obtain an analytical expression of SA. Since parameters of p(q) can be estimated from meteorological and flow measurements, they can be used directly to predict the effect of flow regime on SA. We show the utility of the approach with reference to 6 electrofishing sites in a single river system where long term (50 years) data on spatially distributed juvenile salmon densities are available.

  19. Modelling the Future Hydroclimatology of the Lower Fraser River and its Impacts on the Spawning Migration Survival of Sockeye Salmon

    NASA Technical Reports Server (NTRS)

    Hague, M. J.; Ferrari, M. R.; Miller, J. R.; Patterson, D. A.; Russell, G. L.; Farrell, A.P.; Hinch, S. G.

    2010-01-01

    Short episodic high temperature events can be lethal for migrating adult Pacific salmon (Oncorhynchus spp.). We downscaled temperatures for the Fraser River, British Columbia to evaluate the impact of climate warming on the frequency of exceeding thermal thresholds associated with salmon migratory success. Alarmingly, a modest 1.0 C increase in average summer water temperature over 100 years (1981-2000 to 2081-2100) tripled the number of days per year exceeding critical salmonid thermal thresholds (i.e. 19.0 C). Refined thresholds for two populations (Gates Creek and Weaver Creek) of sockeye salmon (Oncorhynchus nerka) were defined using physiological constraint models based on aerobic scope. While extreme temperatures leading to complete aerobic collapse remained unlikely under our warming scenario, both populations were increasingly forced to migrate upriver at reduced levels of aerobic performance (e.g. in 80% of future simulations, => 90% of salmon encountered temperatures exceeding population specific thermal optima for maximum aerobic scope; T(sub opt)) = 16.3 C for Gates Creek and T(sub sopt)=14.5 C for Weaver Creek). Assuming recent changes to river entry timing persist, we also predicted dramatic increases in the probability of freshwater mortality for Weaver Creek salmon due to reductions in aerobic, and general physiological, performance (e.g. in 42% of future simulations =>50% of Weaver Creek fish exceeded temperature thresholds associated with 0 - 60% of maximum aerobic scope). Potential for adaptation via directional selection on run-timing was more evident for the Weaver Creek population. Early entry Weaver Creek fish experienced 25% (range: 15 - 31%) more suboptimal temperatures than late entrants, compared with an 8% difference (range: 0 - 17%) between early and late Gates Creek fish. Our results emphasize the need to consider daily temperature variability in association with population-specific differences in behaviour and physiological

  20. Size selection from fishways and potential evolutionary responses in a threatened Atlantic salmon population

    USGS Publications Warehouse

    Maynard, George A.; Kinnison, M.T.; Zydlewski, Joseph D.

    2017-01-01

    The evolutionary effects of harvest on wild fish populations have been documented around the world; however, sublethal selective pressures can also cause evolutionary changes in phenotypes. For migratory fishes, passage facilities may represent instances of nonlethal selective pressure. Our analysis of 6 years of passage data suggests that certain fish passage facilities on the Penobscot River have been exerting selective pressure against large-bodied, anadromous Atlantic salmon (Salmo salar). At the second and third dams in the river, a 91-cm salmon was 21%–27% and 12%–16% less likely to pass than a 45-cm salmon, respectively. Fish size positively influences egg survival and number and is a heritable trait. Therefore, in a wild-reproducing population, exclusion of large fish from spawning areas may have population-level impacts. In the Penobscot River, most returning adults derive from a hatchery program that collects its broodstock after passing the first dam in the river. Analysis of fork lengths of salmon returning to the Penobscot River from 1978 to 2012 provided mixed support for evolution of size at maturity in different age classes in a pattern that may be expected from interactions with conservation hatchery operations. Additionally, slow-maturing and iteroparous individuals that represent the largest salmon size classes were essentially lost from the population during that time, and Penobscot River fish have shorter fork lengths at maturity than Atlantic salmon in undammed systems.

  1. Transport, dam passage, and size selection of adult Atlantic Salmon in the Penobscot River, Maine

    USGS Publications Warehouse

    Sigourney, Douglas B.; Zydlewski, Joseph D.; Hughes, Edward; Cox, Oliver

    2015-01-01

    Prior to 2012, returning adult Atlantic Salmon Salmo salar had to pass through fishways at three dams in the lower section of the Penobscot River, Maine: Veazie Dam (river kilometer [rkm] 48; removed in 2013), Great Works Dam (rkm 60; removed in 2012), and Milford Dam (rkm 62). To facilitate better passage through the lower river, a fish transport program was implemented in 2010 and 2011. Fish were captured at Veazie Dam and were either transported by truck above Milford Dam (TRKD group) or released into the head pond above Veazie Dam (run-of-the-river [ROR] group). To assess the efficacy of transport, we used PIT telemetry to compare the performance and passage of TRKD and ROR fish based on their (1) success in reaching one of the three dams upstream of Milford Dam, (2) time taken to reach an upstream dam (transit time), and (3) success in passing that upstream dam. In both years, the percentage of fish detected at upstream dams was higher for the TRKD group (82.4% in 2010; 78.6% in 2011) than for the ROR group (41.3% in 2010; 22.4% in 2011). In addition, median transit time was faster for TRKD fish (7 d in 2010; 5 d in 2011) than for ROR fish (23 d in 2010; 25 d in 2011). However, passage success through the upstream dams did not differ between the two release groups. Our analysis also revealed a strong, negative size-selective force on dam passage: larger fish were consistently less likely to successfully pass dams than smaller fish. Finally, environmental conditions also influenced passage success. Our analysis shows that the transport of adult Atlantic Salmon can be an effective means by which to increase migration success in systems where upstream passage is poor.

  2. Quantifying production of salmon fry in an unscreened irrigation system: A case study on the Rangitata River, New Zealand

    USGS Publications Warehouse

    Unwin, M.J.; Webb, M.; Barker, R.J.; Link, W.A.

    2005-01-01

    Diversion of out-imigrant juvenile salmon into unscreened irrigation and hydroelectric canals is thought to have contributed significantly to declining populations of anadromous salmonids in the Pacific Northwest but is seldom studied in detail. Here we describe a program to study the fate of Chinook salmon Oncorhynchus tshawytscha fry diverted into the unscreened Rangitata Diversion Race (RDR) on the Rangitata River, New Zealand, by trapping fish in a random sample of on-farm canals in irrigation schemes (systems) served by the RDR. The catch rate at a site 9 km below the intake was strongly related to Rangitata River flow, but catches further downstream were unrelated to flow. Most fish entering the RDR were fry or early postfry ( 70 mm FL), suggesting that many such fish became resident in the RDR for up to 3 months. Consequently, our estimate of the total number of fish leaving the RDR via on-farm canals (204,200 fish; 95% confidence limits = 127, 100 and 326,700) is a conservative measure of the number lost from the Rangitata River because it does not allow for mortality within the RDR. We did not quantify the proportion of Rangitata River out-migrants that entered the RDR, but our results suggest that this figure was at least 5% and that it may have been as high as 25%, depending on mortality rates within the Rangitata River main stem and the RDR itself.

  3. Evaluation of a pumping test of the Snake River Plain aquifer using axial-flow numerical modeling

    NASA Astrophysics Data System (ADS)

    Johnson, Gary S.; Frederick, David B.; Cosgrove, Donna M.

    2002-06-01

    The Snake River Plain aquifer in southeast Idaho is hosted in a thick sequence of layered basalts and interbedded sediments. The degree to which the layering impedes vertical flow has not been well understood, yet is a feature that may exert a substantial control on the movement of contaminants. An axial-flow numerical model, RADFLOW, was calibrated to pumping test data collected by a straddle-packer system deployed at 23 depth intervals in four observation wells to evaluate conceptual models and estimate properties of the Snake River Plain aquifer at the Idaho National Engineering and Environmental Laboratory. A delayed water-table response observed in intervals beneath a sediment interbed was best reproduced with a three-layer simulation. The results demonstrate the hydraulic significance of this interbed as a semi-confining layer. Vertical hydraulic conductivity of the sediment interbed was estimated to be about three orders of magnitude less than vertical hydraulic conductivity of the lower basalt and upper basalt units. The numerical model was capable of representing aquifer conceptual models that could not be represented with any single analytical technique. The model proved to be a useful tool for evaluating alternative conceptual models and estimating aquifer properties in this application.

  4. Geostatistical analysis of regional hydraulic conductivity variations in the Snake River Plain aquifer, eastern Idaho

    USGS Publications Warehouse

    Welhan, J.A.; Reed, M.F.

    1997-01-01

    The regional spatial correlation structure of bulk horizontal hydraulic conductivity (Kb) estimated from published transmissivity data from 79 open boreholes in the fractured basalt aquifer of the eastern Snake River Plain was analyzed with geostatistical methods. The two-dimensional spatial correlation structure of In Kb shows a pronounced 4:1 range anisotropy, with a maximum correlation range in the north-northwest- south-southeast direction of about 6 km. The maximum variogram range of In Kb is similar to the mean length of flow groups exposed at the surface. The In Kb range anisotropy is similar to the mean width/length ratio of late Quaternary and Holocene basalt lava flows and the orientations of the major volcanic structural features on the eastern Snake River Plain. The similarity between In Kb correlation scales and basalt flow dimensions and between basalt flow orientations and correlation range anisotropy suggests that the spatial distribution of zones of high hydraulic conductivity may be controlled by the lateral dimensions, spatial distribution, and interconnection between highly permeable zones which are known to occur between lava flows within flow groups. If hydraulic conductivity and lithology are eventually shown to be cross correlative in this geologic setting, it may be possible to stochastically simulate hydraulic conductivity distributions, which are conditional on a knowledge of volcanic stratigraphy.

  5. Analysis of the spatial and temporal variability of mountain snowpack and terrestrial water storage in the Upper Snake River, USA

    EPA Science Inventory

    The spatial and temporal relationships of winter snowpack and terrestrial water storage (TWS) in the Upper Snake River were analyzed for water years 2001–2010 at a monthly time step. We coupled a regionally validated snow model with gravimetric measurements of the Earth’s water...

  6. Steelhead Supplementation in Idaho Rivers, 2000 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byrne, Alan

    In 2000, we continued our assessment of the Sawtooth Hatchery steelhead stock to reestablish natural populations in Beaver and Frenchman creeks in the upper Salmon River. We stocked both streams with 15 pair of hatchery adults and estimated the potential smolt production from the 1999 outplant. I estimated that about nine smolts per female could be produced in both streams from the 1999 outplant. The smolt-to-adult return would need to exceed 20% to return two adults at this level of production. In the Red River drainage, we stocked Dworshak hatchery stock fingerlings and smolts, from 1993 to 1999, to assessmore » which life-stage produces more progeny when the adults return to spawn. In 2000, we operated the Red River weir to trap adults that returned from these stockings, but none were caught from either group. We continued to monitor wild steelhead populations in the Lochsa and Selway river drainages. We estimated that 26 wild adult steelhead returned to Fish Creek. This is the lowest adult escapement we have documented (when the weir was intact all spring) since we began monitoring Fish Creek in 1992. I estimated that nearly 25,000 juvenile steelhead migrated out of Fish Creek this year. Juvenile steelhead densities in Lochsa and Selway tributaries were similar to those observed in 1999. In 2000, we obtained funding for a DNA analysis to assess Idaho's steelhead stock structure. We collected fin samples from wild steelhead in 70 streams of the Clearwater, Snake, and Salmon River drainages and from our five hatchery stocks. The DNA analysis was subcontracted to Dr. Jennifer Nielsen, Alaska Biological Science Center, Anchorage, and will be completed in 2001.« less

  7. System-Wide Significance of Predation on Juvenile Salmonids in the Columbia and Snake River Reservoirs : Annual Report of Research 1991.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shively, R.S.

    1991-01-01

    We indexed consumption rates of northern squawfish (Ptychoch oregonensis) preying upon juvenile salmonids in four lower Snake River reservoirs. Stomach contents were also collected from smallmouth bass (Micropterus dolomieui), channel catfish (Ictaluris gunctatus), and walleye (Stizostedion vitreum). Northern squawfish digestive tracts were analyzed and the overall diet (% weight) was dominated by fish and crustaceans. Examination of stomach contents smallmouth bass showed that crustaceans (primarily crayfish) dominated their diets. Overall, the consumption rate of juvenile salmonids by smallmouth bass was low. The northern squawfish consumption index (CI) at Snake River locations ranged from zero at all mid-reservoir locations to 1.2more » at Lower Granite forebay. In John Day Reservoir, CI values ranged from 0.5 to 1.9 in May and from 0.9 to 3.0 in July. Consumption index values were highest in forebay and tailrace areas, and were slightly higher in BRZs than in non-restricted zones.« less

  8. Effects of Jackson Lake dam and Tributaries on the Hydrology and Geomorphology of the Snake River, Grand Teton National Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Nelson, N. C.; Schmidt, J. C.

    2006-05-01

    Geomorphic and hydrologic analyses of the Snake River in Grand Teton National Park (GTNP) indicate that flow contributions of tributaries mitigate impacts of regulation. Since a flow regime change in 1958, regulation resulted in a 43 and 35% decrease in estimated unregulated flows immediately downstream of Jackson Lake Dam (JLD) and at Moose (43 km and 5 tributaries downstream of JLD), respectively. Geomorphic evidence indicates that some channel characteristics are more sensitive than others to this decreasing influence of flow regulation. First, entrainment of tracer rocks suggests that the ability of the Snake River to mobilize its bed increases downstream. A greater proportion of the bed became active, and the mobilized clasts moved further, in the two study reaches furthest downstream. Second, repeat mapping from aerial photographs suggest that some changes in channel form are the result of flow regulation and some are the result of climatically driven changes in runoff determined by tributaries. Initial decreases in flows due to regulation may have caused the observed channel narrowing between 1945 and 1969, and greater precipitation causing greater natural flows may have resulted in the subsequent channel widening between 1969 and 1990. Third, flow models were used to obtain the magnitudes of flows necessary to inundate two floodplain surfaces in 4 reaches from JLD to Moose. Recurrence intervals and inundation periods were similar for a narrow, inset floodplain in all 4 reaches, suggesting that this surface developed due to regulation. Recurrence intervals for a much broader and higher floodplain decreased downstream from 9 to 3.2 years and inundation periods increased downstream from 1.1 to 3 days immediately below JLD and at Moose, respectively. This suggests the upper floodplain was formed prior to regulation of the Snake River. Thus, the effects of flow regulation on bed mobility and connectivity between the channel and the upper floodplain decrease

  9. Migratory Patterns of Wild Chinook Salmon Oncorhynchus tshawytscha Returning to a Large, Free-Flowing River Basin

    PubMed Central

    Eiler, John H.; Evans, Allison N.; Schreck, Carl B.

    2015-01-01

    Upriver movements were determined for Chinook salmon Oncorhynchus tshawytscha returning to the Yukon River, a large, virtually pristine river basin. These returns have declined dramatically since the late 1990s, and information is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio tagged during 2002–2004. Most (97.5%) of the fish tracked upriver to spawning areas displayed continual upriver movements and strong fidelity to the terminal tributaries entered. Movement rates were substantially slower for fish spawning in lower river tributaries (28–40 km d-1) compared to upper basin stocks (52–62 km d-1). Three distinct migratory patterns were observed, including a gradual decline, pronounced decline, and substantial increase in movement rate as the fish moved upriver. Stocks destined for the same region exhibited similar migratory patterns. Individual fish within a stock showed substantial variation, but tended to reflect the regional pattern. Differences between consistently faster and slower fish explained 74% of the within-stock variation, whereas relative shifts in sequential movement rates between “hares” (faster fish becoming slower) and “tortoises” (slow but steady fish) explained 22% of the variation. Pulses of fish moving upriver were not cohesive. Fish tagged over a 4-day period took 16 days to pass a site 872 km upriver. Movement rates were substantially faster and the percentage of atypical movements considerably less than reported in more southerly drainages, but may reflect the pristine conditions within the Yukon River, wild origins of the fish, and discrete run timing of the returns. Movement data can provide numerous insights into the status and management of salmon returns, particularly in large river drainages with widely scattered fisheries where management actions in the lower river potentially impact harvests and escapement farther upstream. However, the substantial variation

  10. Impact of forest management on coho salmon (Oncorhynchus kisutch) populations of the Clearwater River, Washington: A project summary

    Treesearch

    C. J. Cederholm; L. M. Reid

    1987-01-01

    Abstract - In 1972, declining coho salmon production and visible forestry impacts on coho habitats prompted the initiation of an ongoing fisheries research project in the Clearwater River basin of the Olympic Peninsula. Heavy fishery catches have resulted in a general under-seeding of the basin, as demonstrated by stocking experiments and inventories of potential...

  11. Cle Elum Lake Sockeye Salmon Restoration Feasibility Study, 1987-1989 Progress Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flagg, Thomas A.

    1990-02-01

    This report summarizes research activities conducted by the National Marine Fisheries Service (NMFS) from July 1988 through March 1989 relating to the Cle Elum Lake sockeye salmon restoration feasibility study. During this period, efforts focused on collection and spawning of adult sockeye salmon from the Wenatchee River, incubation of eggs from the 1988-brood, and the rearing of juveniles from the 1987-brood. In late July and early August 1988, 520 adult sockeye salmon were captured at fishways on the Wenatchee River and transferred to net-pens in Lake Wenatchee. Fish were held to maturity in late September and early October, spawned, andmore » eggs incubated at a quarantine hatchery in Seattle, WA. The 336 sockeye salmon successfully spawned from the net-pens at Lake Wenatchee were surveyed for the presence of infectious hematopoietic necrosis (IHN) and other replicating viruses. In addition, 13 and 5 sockeye salmon spawners were surveyed from spawning grounds on the White and Little Wenatchee Rivers, respectively, from within the Lake Wenatchee system. 12 refs., 4 figs., 6 tabs.« less

  12. Iodine-129 in the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory, Idaho, 1990-91

    USGS Publications Warehouse

    Mann, L.J.; Beasley, T.M.

    1994-01-01

    From 1953 to 1990, an estimated 0.56 to 1.18 curies of iodine-129 were contained in wastewater generated by the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory. The waste- water was discharged directly to the Snake River Plain aquifer through a deep disposal well prior to February 1984 and through unlined disposal ponds in 1984-90. The wastewater did not contain measurable concentrations of iodine-129 in 1989-90. Samples were collected from 51 wells that obtain water from the Snake River Plain aquifer and 1 well that obtains water from a perched ground-water zone. The samples were analyzed for iodine-129 using an accelerator mass spectrometer which is two to six orders of magnitude more sensitive than neutron- activation methods. Therefore, iodine-129 was detectable in samples from a larger number of wells distributed over a larger area than previously was possible. Ground-water flow velocities calculated using iodine-129 data are estimated to be at least 6 feet per day. These velocities compare favorably with those of 4 to 10 feet per day calculated from tritium data and tracer studies at wells down- gradient from the ICPP. In 1990-91, concentrations of iodine-129 in water samples from wells that obtain water from the Snake River Plain aquifer ranged from less than 0.0000006+0.0000002 to 3.82.+0.19 picocuries per liter (pCi/L). The mean concentration in water from 18 wells was 0.81+0.19 pCi/L as compared with 1.30+0.26 pCi/L in 1986. The decrease in the iodine-l29 concentrations from 1986 to 1990-91 chiefly was the result of a decrease in the amount of iodine-129 disposed of annually, and changes in disposal techniques.

  13. Adaptive strategies and life history characteristics in a warming climate: salmon in the Arctic?

    USGS Publications Warehouse

    Nielsen, Jennifer L.; Ruggerone, Gregory T.; Zimmerman, Christian E.

    2013-01-01

    In the warming Arctic, aquatic habitats are in flux and salmon are exploring their options. Adult Pacific salmon, including sockeye (Oncorhynchus nerka), coho (O. kisutch), Chinook (O. tshawytscha), pink (O. gorbuscha) and chum (O. keta) have been captured throughout the Arctic. Pink and chum salmon are the most common species found in the Arctic today. These species are less dependent on freshwater habitats as juveniles and grow quickly in marine habitats. Putative spawning populations are rare in the North American Arctic and limited to pink salmon in drainages north of Point Hope, Alaska, chum salmon spawning rivers draining to the northwestern Beaufort Sea, and small populations of chum and pink salmon in Canada’s Mackenzie River. Pacific salmon have colonized several large river basins draining to the Kara, Laptev and East Siberian seas in the Russian Arctic. These populations probably developed from hatchery supplementation efforts in the 1960’s. Hundreds of populations of Arctic Atlantic salmon (Salmo salar) are found in Russia, Norway and Finland. Atlantic salmon have extended their range eastward as far as the Kara Sea in central Russian. A small native population of Atlantic salmon is found in Canada’s Ungava Bay. The northern tip of Quebec seems to be an Atlantic salmon migration barrier for other North American stocks. Compatibility between life history requirements and ecological conditions are prerequisite for salmon colonizing Arctic habitats. Broad-scale predictive models of climate change in the Arctic give little information about feedback processes contributing to local conditions, especially in freshwater systems. This paper reviews the recent history of salmon in the Arctic and explores various patterns of climate change that may influence range expansions and future sustainability of salmon in Arctic habitats. A summary of the research needs that will allow informed expectation of further Arctic colonization by salmon is given.

  14. Arctic-Yukon-Kuskokwim Salmon Research and Restoration Plan

    USGS Publications Warehouse

    2006-01-01

    The Arctic-Yukon-Kuskokwim Sustainable Salmon Initiative (AYK SSI) is an innovative partnership between public and private institutions which provides a forum for non-governmental organizations and state and federal agencies to cooperatively identify and address salmon research and restoration needs. The affected region encompasses over 40% of the State of Alaska; the AYK region includes the watersheds of the Norton Sound region up to and including the village of Shishmaref, the Yukon River Watershed within Alaska, and the Kuskokwim River Watershed (including the coastal watersheds north of Cape Newenham), plus the Bering Sea marine ecosystem. The AYK SSI is a response to disastrously low salmon returns to western Alaska in the late 1990s and early 2000s, which created numerous hardships for the people and communities that depend heavily on the salmon fishery. Some stocks in the region have been in a decline for more than a decade and a half, leading to severe restrictions on commercial and subsistence fisheries. The first step for the AYK SSI has been to collaboratively develop and implement a comprehensive research plan to understand the causes of the declines and recoveries of AYK salmon.

  15. Integrating Salmon Recovery, Clean Water Act Compliance ...

    EPA Pesticide Factsheets

    "The South Fork Nooksack River (SFNR) is an important tributary to the Nooksack River, Bellingham Bay, and the Salish Sea. The South Fork Nooksack River comprises one of the 22 independent populations of spring Chinook in the Puget Sound Chinook Evolutionarily Significant Unit (ESU), which are listed as threatened under the Endangered Species Act (ESA). The population is considered essential for recovery of the ESU. The SFNR has suffered from legacy impacts, temperature exceedances and fine sediment, due to forestry, agriculture, flood control, and transportation facilities. The temperature exceedances threaten spring Chinook salmon survival and as such under the Clean Water Act, this pollution must be addressed through a total maximum daily load (TMDL) regulatory program. Further, climate change is projected to cumulatively add to the existing legacy impacts. Millions of dollars are spent on salmon habitat restoration in the SFNR that primarily addresses these legacy impacts, but few if any restoration actions take climate change into direct consideration. The Nooksack Indian Tribe and USEPA-ORD jointly completed a climate change pilot research project that addresses legacy impacts, ESA recovery actions, CWA regulatory compliance, and salmon habitat restoration in one comprehensive project. The project evaluates how land use impacts, including altered hydrology, stream temperature, sediment dynamics, and flooding of adjacent river floodplains, combined with pr

  16. 76 FR 20302 - Listing Endangered and Threatened Species; 90-Day Finding on a Petition To List Chinook Salmon

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... a Petition To List Chinook Salmon AGENCY: National Marine Fisheries Service (NMFS), National Oceanic... salmon (Oncorhynchus tshawytscha) in the Upper Klamath and Trinity Rivers Basin as threatened or... conduct a status review of the Chinook salmon in the Upper Klamath and Trinity Rivers Basin to determine...

  17. Doubling sockeye salmon production in the Fraser River—Is this sustainable development?

    NASA Astrophysics Data System (ADS)

    Henderson, Michael A.; Healey, Michael C.

    1993-11-01

    We evaluate a proposal to double sockeye salmon production from the Fraser River and conclude that significant changes will be required to current management processes, particularly the way available catch is allocated, if the plan is to be consistent with five major principles embodied in the concept of sustainable development. Doubling sockeye salmon production will not, in itself, increase economic equity either regionally or globally. Developing nations may actually be hindered in their attempts to institute other, nonsalmon fisheries in the North Pacific Ocean as a result of the possible interception of salmon. Further, other users of the Fraser River basin will have to forgo opportunities so that salmon habitat can be conserved. If doubling sockeye salmon production is to meet the goal of doing more with less, it will be necessary to develop more efficient technologies to harvest the fish. If increasing salmon production is to reflect the integration of environmental and economic decision making at the highest level, then a serious attempt must be made to incorporate environmental assets into national economic accounting. Finally, to promote biodiversity and cultural self-sufficiency within the Fraser River basin, it will be important to safeguard the small, less-productive salmon stocks as well as the large ones and to allocate a substantial portion of the increased production to the Native Indian community.

  18. Modelling approaches for relating effects of change in river flow to populations of Atlantic salmon and brown trout

    Treesearch

    John D. Armstrong; Keith H. Nislow

    2012-01-01

    Modelling approaches for relating discharge to the biology of Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L., growing in rivers are reviewed. Process-based and empirical models are set within a common framework of input of water flow and output of characteristics of fish, such as growth and survival, which relate directly to population dynamics. A...

  19. White Sturgeon Mitgation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rein, Thomas A.; Hughes, Michele L.; Kern, J. Chris

    2005-08-01

    We report on our progress from April 2003 through March 2004 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

  20. Comparative Studies on the Fungi and Bio-Chemical Characteristics of Snake Gourd (Trichosanthes curcumerina Linn) and Tomato (Lycopersicon esculentus Mill) in Rivers State, Nigeria

    NASA Astrophysics Data System (ADS)

    Chuku, E. C.; Ogbonna, D. N.; Onuegbu, B. A.; Adeleke, M. T. V.

    Comparative studies on the fungi and biochemical characteristics of Tomatoes (Lycopersicon esculentus Mill) and the Snake gourd (Trichosanthes curcumerina Linn) products were investigated in Rivers State using various analytical procedures. Results of the proximate analysis of fresh snake gourd and tomatoes show that the essential minerals such as protein, ash, fibre, lipid, phosphorus and niacin contents were higher in snake gourd but low in carbohydrate, calcium, iron, vitamins A and C when compared to the mineral fractions of tomatoes which has high values of calcium, iron, vitamins A and C. The mycoflora predominantly associated with the fruit rot of tomato were Fusarium oxysporium, Fusarium moniliforme, Rhizopus stolonifer and Aspergillus niger, while other fungi isolates from Snake gourd include Rhizopus stolonifer, Aspergillus niger, Aspergillus tamari, Penicillium ita/icum and Neurospora crassa. Rhizopus stolonifer and Aspergillus niger were common spoilage fungi to both the Tomato and Snake gourd. All the fungal isolates were found to be pathogenic. The duration for storage of the fruits at room temperature (28±1°C) showed that Tomato could store for 5 days while Snake gourd stored for as much as 7 days. Sensory evaluation shows that Snake gourd is preferred to Tomatoes because of its culinary and medicinal importance.