Sample records for salmonella infections animal

  1. Virulence of invasive Salmonella Typhimurium ST313 in animal models of infection.

    PubMed

    Ramachandran, Girish; Panda, Aruna; Higginson, Ellen E; Ateh, Eugene; Lipsky, Michael M; Sen, Sunil; Matson, Courtney A; Permala-Booth, Jasnehta; DeTolla, Louis J; Tennant, Sharon M

    2017-08-01

    Salmonella Typhimurium sequence type (ST) 313 produces septicemia in infants in sub-Saharan Africa. Although there are known genetic and phenotypic differences between ST313 strains and gastroenteritis-associated ST19 strains, conflicting data about the in vivo virulence of ST313 strains have been reported. To resolve these differences, we tested clinical Salmonella Typhimurium ST313 and ST19 strains in murine and rhesus macaque infection models. The 50% lethal dose (LD50) was determined for three Salmonella Typhimurium ST19 and ST313 strains in mice. For dissemination studies, bacterial burden in organs was determined at various time-points post-challenge. Indian rhesus macaques were infected with one ST19 and one ST313 strain. Animals were monitored for clinical signs and bacterial burden and pathology were determined. The LD50 values for ST19 and ST313 infected mice were not significantly different. However, ST313-infected BALB/c mice had significantly higher bacterial numbers in blood at 24 h than ST19-infected mice. ST19-infected rhesus macaques exhibited moderate-to-severe diarrhea while ST313-infected monkeys showed no-to-mild diarrhea. ST19-infected monkeys had higher bacterial burden and increased inflammation in tissues. Our data suggest that Salmonella Typhimurium ST313 invasiveness may be investigated using mice. The non-human primate results are consistent with clinical data, suggesting that ST313 strains do not cause diarrhea.

  2. Salmonella Infections in Childhood.

    PubMed

    Bula-Rudas, Fernando J; Rathore, Mobeen H; Maraqa, Nizar F

    2015-08-01

    Salmonella are gram-negative bacilli within the family Enterobacteriaceae. They are the cause of significant morbidity and mortality worldwide. Animals (pets) are an important reservoir for nontyphoidal Salmonella, whereas humans are the only natural host and reservoir for Salmonella Typhi. Salmonella infections are a major cause of gastroenteritis worldwide. They account for an estimated 2.8 billion cases of diarrheal disease each year. The transmission of Salmonella is frequently associated with the consumption of contaminated water and food of animal origin, and it is facilitated by conditions of poor hygiene. Nontyphoidal Salmonella infections have a worldwide distribution, whereas most typhoidal Salmonella infections in the United States are acquired abroad. In the United States, Salmonella is a common agent for food-borne–associated infections. Several outbreaks have been identified and are most commonly associated with agricultural products. Nontyphoidal Salmonella infection is usually characterized by a self-limited gastroenteritis in immunocompetent hosts in industrialized countries, but it may also cause invasive disease in vulnerable individuals (eg, children less than 1 year of age, immunocompromised). Antibiotic treatment is not recommended for treatment of mild to moderate gastroenteritis by nontyphoidal Salmonella in immunocompetent adults or children more than 1 year of age. Antibiotic treatment is recommended for nontyphoidal Salmonella infections in infants less than 3 months of age, because they are at higher risk for bacteremia and extraintestinal complications. Typhoid (enteric) fever and its potential complications have a significant impact on children, especially those who live in developing countries. Antibiotic treatment of typhoid fever has become challenging because of the emergence of Salmonella Typhi strains that are resistant to classically used first-line agents: ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol. The

  3. Interactions of Salmonella with animals and plants.

    PubMed

    Wiedemann, Agnès; Virlogeux-Payant, Isabelle; Chaussé, Anne-Marie; Schikora, Adam; Velge, Philippe

    2014-01-01

    Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.

  4. One Health and Food-Borne Disease: Salmonella Transmission between Humans, Animals, and Plants.

    PubMed

    Silva, Claudia; Calva, Edmundo; Maloy, Stanley

    2014-02-01

    There are >2,600 recognized serovars of Salmonella enterica. Many of these Salmonella serovars have a broad host range and can infect a wide variety of animals, including mammals, birds, reptiles, amphibians, fish, and insects. In addition, Salmonella can grow in plants and can survive in protozoa, soil, and water. Hence, broad-host-range Salmonella can be transmitted via feces from wild animals, farm animals, and pets or by consumption of a wide variety of common foods: poultry, beef, pork, eggs, milk, fruit, vegetables, spices, and nuts. Broad-host-range Salmonella pathogens typically cause gastroenteritis in humans. Some Salmonella serovars have a more restricted host range that is associated with changes in the virulence plasmid pSV, accumulation of pseudogenes, and chromosome rearrangements. These changes in host-restricted Salmonella alter pathogen-host interactions such that host-restricted Salmonella organisms commonly cause systemic infections and are transmitted between host populations by asymptomatic carriers. The secondary consequences of efforts to eliminate host-restricted Salmonella serovars demonstrate that basic ecological principles govern the environmental niches occupied by these pathogens, making it impossible to thwart Salmonella infections without a clear understanding of the human, animal, and environmental reservoirs of these pathogens. Thus, transmission of S. enterica provides a compelling example of the One Health paradigm because reducing human infections will require the reduction of Salmonella in animals and limitation of transmission from the environment.

  5. Outbreak of Salmonella infantis infection in a large animal veterinary teaching hospital.

    PubMed

    Tillotson, K; Savage, C J; Salman, M D; Gentry-Weeks, C R; Rice, D; Fedorka-Cray, P J; Hendrickson, D A; Jones, R L; Nelson, W; Traub-Dargatz, J L

    1997-12-15

    During the past 11 years, there have been numerous reports of outbreaks of salmonellosis involving horses in veterinary teaching hospitals. Some of these outbreaks have been associated with Salmonella serotypes not commonly associated with infection of horses. Salmonella infantis is among the more common Salmonella serotypes isolated from human beings, and is an important pathogen in the broiler chicken industry. However, it was not commonly isolated from horses or cattle on a national basis between 1993 and 1995. In this report, we describe an outbreak of S infantis infection among large animals, primarily horses, in a veterinary teaching hospital and the control measures that were implemented. Factors that appeared to be key in control of this outbreak in this hospital included providing biosecurity training sessions for hospital personnel, adopting a standard operating procedure manual for biosecurity procedures, installing additional handwashing sinks throughout the facility, painting the interior of the facility with a nontoxic readily cleanable paint, replacing the dirt flooring in 4 stalls with concrete flooring, and removing noncleanable surfaces such as rubber stall mats, wooden hay storage bins, and open grain bins. Our experience with this outbreak suggests that although it is virtually impossible to eliminate Salmonella organisms from the environment, minimizing contamination is possible. Prevention of nosocomial infection must be approached in a multifaceted manner and care must be taken to search out covert sources of contamination, especially if standard intervention procedures do not prevent spread of the disease.

  6. Incidence of salmonella infection in animals in England and Wales 1968--1974.

    PubMed Central

    Sojka, W. J.; Wray, C.; Shreeve, J.; Benson, A. J.

    1977-01-01

    Of a total of 23,609 incidents of salmonella infection reported during the period 1968--74, 20,326 occurred in cattle, 1744 in poultry and other birds, 675 in sheep, 558 in pigs and 306 in other species of animals. Despite the large number of serotypes isolated (153), 88% of incidents were due to only two stereotypes: S. dublin (15,929 incidents of which 15,446 occurred in cattle ) and S. typhimurium (4842 incidents of which 3785 occurred in cattle and 732 in birds). S. choleraesuis was the third (314 incidents which with only 5 exceptions occurred in pigs) and S. abortusovis (243 incidents all in sheep) was the fourth most commonly isolated serotype. The following six serotypes were each recorded in more than 100 incidents: S. newport (177), S. agona (170), S. virchow (169), S. anatum (152), S. enteritidis (150) and S. montevideo (111). The other 143 serotypes accounted for only 5-8% of total incidents. The trends of annual incidence of salmonella infection in cattle, sheep, pigs, poultry and other birds during the 17-year period 1958-74 and the distribution of the main serotypes in the individual species of animals from 1968 to 1974 are discussed. PMID:319168

  7. Salmonella species isolated from animal feed in Iraq.

    PubMed Central

    Al-Hindawi, N; Taha, R R

    1979-01-01

    Of 700 animal feed samples, 32 (4.5%) harbored Salmonella. The highest percentage of contamination was found in sheep feed and local protein. A total of 17 Salmonella serotypes were identified. The most frequent serotypes were Salmonella meleagridis. S. bornum, S. montevideo, and S. drypool. S. bornum was isolated for the first time in Iraq and from both local feed and its ingredients. The common somatic group found was that of Salmonella group C; then came groups E, G, B, and D. Three serotypes (S. enteritidis, S. california, and S. muenchen) seemed to form a link of infection among feed, food, patients, and carriers. PMID:453836

  8. Salmonella Infections (For Parents)

    MedlinePlus

    ... iguanas). Another, rarer form — called Salmonella typhi — causes typhoid fever . What Is Salmonella Infection? Salmonella infection, or salmonellosis , ... More on this topic for: Parents Kids Teens Typhoid Fever E. Coli Stool Test: Bacteria Culture Food Safety ...

  9. [Use of new immunoglobulin isotype-specific ELISA-systems to detect Salmonella infections in pigs].

    PubMed

    Ehlers, Joachim; Alt, Michael; Trepnau, Daniela; Lehmann, Jörg

    2006-01-01

    In Germany, the program for controlling salmonella infections in pigs is based on tests detecting salmonella-lipopolysaccharide (LPS) induced antibodies in meat-juice or blood. These conventional tests which are based on the technology of enzyme-linked immunosorbent assay (ELISA) detect exclusively or mainly immunoglobulin(lg)G antibodies. Meanwhile, novel ELISA systems (WCE-ELISA, 3-Isotype-Screening-ELISA) have been developed, which additionally detect the antibody classes IgM and IgA.This fact enables the registration of fresh salmonella infections (starting with day 5 p.i.) and thus, the distinction between early and older infections. The results show that animals with early salmonella infections appear significantly more often in herds with a high than with a low prevalence. With the newly developed tests this group of animals can be detected much more efficiently and precisely than with the tests used so far. Due to their clearly improved sensitivity the application of the WCE-ELISA and the 3-Isotype-Screening-ELISA in terms of the QS-Salmonella-Monitoring program can therefore significantly improve the selection of farms with potential salmonella excretors. Additionally, the WCE-ELISA can be applied very suitable for the examination of individual animals.

  10. How to become a top model: impact of animal experimentation on human Salmonella disease research.

    PubMed

    Tsolis, Renée M; Xavier, Mariana N; Santos, Renato L; Bäumler, Andreas J

    2011-05-01

    Salmonella serotypes are a major cause of human morbidity and mortality worldwide. Over the past decades, a series of animal models have been developed to advance vaccine development, provide insights into immunity to infection, and study the pathogenesis of human Salmonella disease. The successive introduction of new animal models, each suited to interrogate previously neglected aspects of Salmonella disease, has ushered in important conceptual advances that continue to have a strong and sustained influence on the ideas driving research on Salmonella serotypes. This article reviews important milestones in the use of animal models to study human Salmonella disease and identify research needs to guide future work.

  11. [Protagonists of innate immunity during in Salmonella infections].

    PubMed

    Salez, Laurent; Malo, Danielle

    2004-12-01

    Salmonella are facultative intracellular Gram-negative bacteria that are found ubiquitously in nature and have the ability to infect a wide range of hosts including humans, domesticated, wild mammals, and birds. The principal clinical manifestations associated with Salmonella infection in humans are enteric fever (typhoid and paratyphoid) and a self-limiting gastroenteritis (salmonellosis). Additionally, silent carriage of this bacterium is frequent and contributes to disease dissemination. Typhoid fever still represents a major public health problem in many developing countries. On the other hand, industrialized countries experience an increased incidence of nontyphoidal Salmonella infections with most cases tracing back to food contamination. Studies using mouse model of infection with a highly virulent Salmonella typhimurium serotype have provided important insight into the complexity of the innate immune response to infection. The players are numerous but emphasis was placed on the genes that were discovered using genetic approaches and in vivo assay with live pathogen and include positional cloning of mouse mutations and manipulation of genes in the context of whole animal either by transgenesis or knockout technologies. Some of the critical genes include those known to play a role in the detection of the bacteria (Cd14, Lbp, Tlr4 and Tlr5) and in microbicidal activity (Slc11a1, Nos2, NADPH oxidase and cryptdins). These discoveries have already initiated the search for the contribution of particular genetic pathways in the innate immune response of humans to infection with Salmonella and other intracellular microorganisms.

  12. The Epidemiology of Childhood Salmonella Infections in Alberta, Canada.

    PubMed

    Faulder, Kate E; Simmonds, Kimberley; Robinson, Joan L

    2017-06-01

    The objectives were to describe the incidence, demographics, laboratory findings, and suspected sources of childhood Salmonella infections in Alberta, Canada, with a focus on preventable cases. Data from Notifiable Disease Reports for children with nontyphoidal salmonellosis (NTS) or typhoid/paratyphoid fever from 2007 through 2015 were analyzed. NTS was detected from 2285 children. Bacteremia was documented in 55 cases (2.4%), whereas a single infant had NTS meningitis. The suspected source was food (N = 577; 25.3%) followed by animal or animal manure contact (N = 426; 18.6%), of which a reptile was the suspected source in 264 cases (11.5%). There were 44 outbreaks with none sharing the same food source. Ninety-five children were diagnosed with typhoid/paratyphoid fever, of which 48 cases (51%) were typhoid cases in unimmunized children 2 years or older. There are still ∼275 pediatric cases of Salmonella infection in Alberta annually, the bulk of which are preventable. Public education about reptile exposure, food safety, and pretravel immunizations could potentially prevent many cases of Salmonella infection.

  13. Assessing the potential impact of Salmonella vaccines in an endemically infected dairy herd

    USDA-ARS?s Scientific Manuscript database

    Salmonella spp. in cattle are contributing to bacterial foodborne disease for humans. Reduction of Salmonella prevalence in herds is important to prevent human Salmonella infections. Typical control measures are culling of infectious animals, vaccination, and improved hygiene management. Vaccines ha...

  14. Incidence of Nontyphoidal Salmonella in Food-Producing Animals, Animal Feed, and the Associated Environment in South Africa, 2012-2014.

    PubMed

    Magwedere, Kudakwashe; Rauff, Dionne; De Klerk, Grietjie; Keddy, Karen H; Dziva, Francis

    2015-11-01

    Nontyphoidal salmonellosis continues to pose a global threat to human health, primarily by causing food-borne illnesses, and food-producing animals are the principal reservoirs of many pathogenic serovars. To identify key control points and generate information that may enable future estimation of the transmission routes between the environment, animals, and humans, we examined data on Salmonella isolates in South Africa. Samples were obtained from livestock and poultry on farms, meat at abattoirs, raw materials at feed mills, animal feed, and environmental sources (eg, poultry houses, abattoirs, feed mills, water) from 2012 to 2014 in compliance with each establishment's protocols conforming to International Organization for Standardization (ISO) (ISO/TS 17728, ISO 18593:2004 and ISO 17604:2003) standards. Isolation and serotyping of Salmonella were performed according to the scope of accreditation of the respective laboratories conforming to ISO/IEC 17025:2005 standard techniques. Salmonella was isolated from 9031 of 180 298 (5.0%) samples, and these isolates were distributed among 188 different serovars. Salmonella Enteritidis was the most frequent isolate, with 1944 of 180 298 (21.5%) originating from poultry on farms, poultry meat, and poultry houses, followed by Salmonella Havana, with 677 of 180 298 (7.5%), mostly from environmental samples. Serovars that are uncommonly associated with human disease (Salmonella Idikan, Salmonella Salford, and Salmonella Brancaster) were isolated at higher frequencies than Salmonella Typhimurium, a common cause of human illness. Environmental samples accounted for 3869 of 9031 (42.8%) samples positive for Salmonella. We describe the frequent isolation of Salmonella of a wide variety of serovars, from an array of animal feeds, food animals, and food animal environment. As prevention of human salmonellosis requires the effective control of Salmonella in food animals, these data can be used to facilitate Salmonella control in

  15. Comparing validation of four ELISA-systems for detection of Salmonella derby- and Salmonella infantis-infected pigs.

    PubMed

    Roesler, Uwe; Szabo, Istvan; Matthies, Claudia; Albrecht, Kerstin; Leffler, Martin; Scherer, Kathrin; Nöckler, Karsten; Lehmann, Jörg; Methner, Ulrich; Hensel, Andreas; Truyen, Uwe

    2011-01-01

    The objective of this study was the comparative evaluation of four indirect Salmonella ELISA tests at study time approved in Germany to detect Salmonella infection in pigs.Three tests are based on a LPS-antigen mix and directed against specific IgG antibodies. The fourth test is based on a purified S. Typhimurium whole-cell lysate antigen and discriminates between Salmonella-specific IgM-, IgA-, and IgG- antibodies. In a longitudinal study, two groups of six weeks old hybrid piglets were orally infected with a porcine S. Infantis or S. Derby strain. Clinical and bacteriological parameters were monitored weekly during an observation period of 130 days after infection and serum samples were investigated in parallel with the respective ELISAs. Apparently, the LPS-based ELISA systems used in this study failed to recognize S. Infantis-infected pigs although those animals shed the pathogen in high amounts throughout the study until day 81 post infection (p. i.). In contrast, the isotype-specific Salmonella Typhimurium whole-cell-lysate based ELISA was capable of detecting Salmonella-infected pigs from day ten p. i. at all tested serotypes and revealed the highest sensitivity in detection of S. Infantis-infected pigs. Furthermore, it became apparent that the often used surveillance cut-off value of 40 OD% is not appropriate for intra-vitam detection of S. Infantis- and S. Derby-infected pigs. In contrast, the cut-off values of the ELISAs given by the suppliers result in considerable higher detection rates.

  16. [Antimicrobial resistance of Salmonella spp isolated animal food for human consumption].

    PubMed

    Quesada, Adriana; Reginatto, Gabriel A; Ruiz Español, Ayelen; Colantonio, Lisandro D; Burrone, María Soledad

    2016-03-01

    To analyze all information available on antimicrobial-resistant Salmonella species isolated from foods of animal origin that are used for human consumption in Latin America. A systematic review of observational epidemiological studies conducted in Latin America between 2003 and 2014 was carried out using the PubMed and LILACS databases. Studies conducted as part of analyses of outbreaks or cases of human infection were not included. Three reviewers independently participated in the study selection. Additionally, the studies included underwent quality assessment. A total of 25 studies met the inclusion criteria. The studies included were conducted in Brazil, Mexico, Colombia, Argentina, and Venezuela. Salmonella spp. isolates were obtained mainly from animal-based foods derived from cattle, swine, and poultry, revealing that Salmonella typhimurium and S. enteritidis were the most frequently isolated serotypes (17 and 11 studies, respectively). In 23 studies, Salmonella spp. showed resistance to more than one antibiotic, including nalidixic acid, streptomycin, tetracycline, chloramphenicol, ampicillin, trimethoprim-sulfamethoxazole, gentamicin, ciprofloxacin, and cephalosporins. Salmonella spp. isolates obtained mainly from animal-based foods for human consumption in the countries analyzed often show resistance to several antibiotics. It is important that more countries in Latin America carry out and publish studies on Salmonella spp. resistance in order to establish and monitor adequate control strategies.

  17. Salmonella Infections - Multiple Languages

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Salmonella Infections URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Salmonella Infections - Multiple Languages To use the sharing features ...

  18. Development of a Salmonella cross-protective vaccine for food animal production systems.

    PubMed

    Heithoff, Douglas M; House, John K; Thomson, Peter C; Mahan, Michael J

    2015-01-01

    Intensive livestock production is associated with increased Salmonella exposure, transmission, animal disease, and contamination of food and water supplies. Modified live Salmonella enterica vaccines that lack a functional DNA adenine methylase (Dam) confer cross-protection to a diversity of salmonellae in experimental models of murine, avian, ovine, and bovine models of salmonellosis. However, the commercial success of any vaccine is dependent upon the therapeutic index, the ratio of safety/efficacy. Herein, secondary virulence-attenuating mutations targeted to genes involved in intracellular and/or systemic survival were introduced into Salmonella dam vaccines to screen for vaccine candidates that were safe in the animal and the environment, while maintaining the capacity to confer cross-protective immunity to pathogenic salmonellae serotypes. Salmonella dam mgtC, dam sifA, and dam spvB vaccine strains exhibited significantly improved vaccine safety as evidenced by the failure to give rise to virulent revertants during the infective process, contrary to the parental Salmonella dam vaccine. Further, these vaccines exhibited a low grade persistence in host tissues that was associated with reduced vaccine shedding, reduced environmental persistence, and induction of cross-protective immunity to pathogenic serotypes derived from infected livestock. These data indicate that Salmonella dam double mutant vaccines are suitable for commercial applications against salmonellosis in livestock production systems. Reducing pre-harvest salmonellae load through vaccination will promote the health and productivity of livestock and reduce contamination of livestock-derived food products, while enhancing overall food safety. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. [Neonatal infection with Salmonella apapa after contact with a reptile in the home].

    PubMed

    Haase, R; Beier, T; Bernstädt, M; Merkel, N; Bartnicki, J

    2011-04-01

    Salmonella apapa is transmitted by reptiles, e.g., bearded dragons. To date only few cases of S. apapa-related human infections have been reported. Because the bacteria are transmitted through the feces of animals or direct contact with low infection doses, infection in early infancy is possible. We report an 18-day-old newborn with sepsis caused by Salmonella apapa. Salmonella apapa was isolated from the feces of a bearded dragon living along with the family. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Prevalence of Salmonella strains in wild animals from a highly populated area of north-eastern Italy.

    PubMed

    Rubini, Silva; Ravaioli, Cinzia; Previato, Sara; D'Incau, Mario; Tassinari, Massimo; Guidi, Enrica; Lupi, Silvia; Merialdi, Giuseppe; Bergamini, Mauro

    2016-01-01

    Salmonella is a ubiquitous pathogen that can infect host species, like wild birds, rodents, and/or arthropods, which may transmit infection to domestic animals and human population. In order to assess the related risk, a cross-sectional study was performed on 1114 carcasses of wild animals from a north-eastern area of the Emilia-Romagna Region, Italy. During post mortem examination, intestine samples were cultured. A statistical analysis demonstrated that there is no correlation between the presence of sub-clinically infected animals and greater human population density. In contrast, a significant correlation between the number of carcasses positive for Salmonella spp. and greater spatial density of pig, poultry, and cattle farms was observed (p < 0.01). The results of the present study show that wild animals with omnivorous feeding habits are particularly exposed to Salmonella colonization and, consequently, to spreading the organism. Regarding drug resistance, this study confirms the resistance to antimicrobials is increasing in commensal and environmental isolates.

  1. Nutritional strategies to combat Salmonella in mono-gastric food animal production.

    PubMed

    Berge, A C; Wierup, M

    2012-04-01

    Nutritional strategies to minimize Salmonella in food animal production are one of the key components in producing safer food. The current European approach is to use a farm-to-fork strategy, where each sector must implement measures to minimize and reduce Salmonella contamination. In the pre-harvest phase, this means that all available tools need to be used such as implementation of biosecurity measures, control of Salmonella infections in animals at the farm as well as in transport and trade, optimal housing and management including cleaning, disinfection procedures as well as efforts to achieve Salmonella-free feed production. This paper describes some nutritional strategies that could be used in farm control programmes in the major mono-gastric food production animals: poultry and pigs. Initially, it is important to prevent the introduction of Salmonella onto the farm through Salmonella-contaminated feed and this risk is reduced through heat treatment and the use of organic acids and their salts and formaldehyde. Microbiological sampling and monitoring for Salmonella in the feed mills is required to minimize the introduction of Salmonella via feed onto the farm. In addition, feed withdrawal may create a stressful situation in animals, resulting in an increase in Salmonella shedding. Physical feed characteristics such as coarse-ground meal to pigs can delay gastric emptying, thereby increasing the acidity of the gut and thus reducing the possible prevalence of Salmonella. Coarse-ground grains and access to litter have also been shown to decrease Salmonella shedding in poultry. The feed can also modify the gastro-intestinal tract microflora and influence the immune system, which can minimize Salmonella colonization and shedding. Feed additives, such as organic acids, short- and medium-chain fatty acids, probiotics, including competitive exclusion cultures, prebiotics and certain specific carbohydrates, such as mannan-based compounds, egg proteins, essential oils

  2. Mathematical Modeling of the Dynamics of Salmonella Cerro Infection in a US Dairy Herd

    NASA Astrophysics Data System (ADS)

    Chapagain, Prem; van Kessel, Jo Ann; Karns, Jeffrey; Wolfgang, David; Schukken, Ynte; Grohn, Yrjo

    2006-03-01

    Salmonellosis has been one of the major causes of human foodborne illness in the US. The high prevalence of infections makes transmission dynamics of Salmonella in a farm environment of interest both from animal and human health perspectives. Mathematical modeling approaches are increasingly being applied to understand the dynamics of various infectious diseases in dairy herds. Here, we describe the transmission dynamics of Salmonella infection in a dairy herd with a set of non-linear differential equations. Although the infection dynamics of different serotypes of Salmonella in cattle are likely to be different, we find that a relatively simple SIR-type model can describe the observed dynamics of the Salmonella enterica serotype Cerro infection in the herd.

  3. Salmonella Infections

    USDA-ARS?s Scientific Manuscript database

    Infections with bacteria of the genus Salmonella are responsible for both acute and chronic poultry diseases. These diseases cause economically significant losses for poultry producers in many nations and absorb large investments of public and private resources in testing and control efforts. Infect...

  4. A mouse model of Salmonella typhi infection

    PubMed Central

    Mathur, Ramkumar; Oh, Hyunju; Zhang, Dekai; Park, Sung-Gyoo; Seo, Jin; Koblansky, Alicia; Hayden, Matthew S.; Ghosh, Sankar

    2012-01-01

    Salmonella spp. are gram-negative flagellated bacteria that can cause food and water-borne gastroenteritis and typhoid fever in humans. We now report that flagellin from Salmonella spp. is recognized in mouse intestine by Toll-like receptor 11 (TLR11). Absence of TLR11 renders mice more susceptible to infection by S. typhimurium, with increased dissemination of the bacteria and enhanced lethality. Unlike S. typhimurium, S. typhi, a human obligatory pathogen that causes typhoid fever, is normally unable to infect mice. TLR11 is expressed in mice but not in humans, and remarkably, we find that tlr11−/− mice are efficiently infected with orally-administered S. typhi. We also find that tlr11−/− mice can be immunized against S. typhi. Therefore, tlr11−/− mice represent the first small animal model for the study of the immune response to S. typhi, and for the development of vaccines against this important human pathogen. PMID:23101627

  5. Meta-analysis of chicken--salmonella infection experiments.

    PubMed

    Te Pas, Marinus F W; Hulsegge, Ina; Schokker, Dirkjan; Smits, Mari A; Fife, Mark; Zoorob, Rima; Endale, Marie-Laure; Rebel, Johanna M J

    2012-04-24

    Chicken meat and eggs can be a source of human zoonotic pathogens, especially Salmonella species. These food items contain a potential hazard for humans. Chickens lines differ in susceptibility for Salmonella and can harbor Salmonella pathogens without showing clinical signs of illness. Many investigations including genomic studies have examined the mechanisms how chickens react to infection. Apart from the innate immune response, many physiological mechanisms and pathways are reported to be involved in the chicken host response to Salmonella infection. The objective of this study was to perform a meta-analysis of diverse experiments to identify general and host specific mechanisms to the Salmonella challenge. Diverse chicken lines differing in susceptibility to Salmonella infection were challenged with different Salmonella serovars at several time points. Various tissues were sampled at different time points post-infection, and resulting host transcriptional differences investigated using different microarray platforms. The meta-analysis was performed with the R-package metaMA to create lists of differentially regulated genes. These gene lists showed many similarities for different chicken breeds and tissues, and also for different Salmonella serovars measured at different times post infection. Functional biological analysis of these differentially expressed gene lists revealed several common mechanisms for the chicken host response to Salmonella infection. The meta-analysis-specific genes (i.e. genes found differentially expressed only in the meta-analysis) confirmed and expanded the biological functional mechanisms. The meta-analysis combination of heterogeneous expression profiling data provided useful insights into the common metabolic pathways and functions of different chicken lines infected with different Salmonella serovars.

  6. Effects of Climate Change on Salmonella Infections

    PubMed Central

    Akil, Luma; Reddy, Remata S.

    2014-01-01

    Abstract Background: Climate change and global warming have been reported to increase spread of foodborne pathogens. To understand these effects on Salmonella infections, modeling approaches such as regression analysis and neural network (NN) were used. Methods: Monthly data for Salmonella outbreaks in Mississippi (MS), Tennessee (TN), and Alabama (AL) were analyzed from 2002 to 2011 using analysis of variance and time series analysis. Meteorological data were collected and the correlation with salmonellosis was examined using regression analysis and NN. Results: A seasonal trend in Salmonella infections was observed (p<0.001). Strong positive correlation was found between high temperature and Salmonella infections in MS and for the combined states (MS, TN, AL) models (R2=0.554; R2=0.415, respectively). NN models showed a strong effect of rise in temperature on the Salmonella outbreaks. In this study, an increase of 1°F was shown to result in four cases increase of Salmonella in MS. However, no correlation between monthly average precipitation rate and Salmonella infections was observed. Conclusion: There is consistent evidence that gastrointestinal infection with bacterial pathogens is positively correlated with ambient temperature, as warmer temperatures enable more rapid replication. Warming trends in the United States and specifically in the southern states may increase rates of Salmonella infections. PMID:25496072

  7. Effects of climate change on Salmonella infections.

    PubMed

    Akil, Luma; Ahmad, H Anwar; Reddy, Remata S

    2014-12-01

    Climate change and global warming have been reported to increase spread of foodborne pathogens. To understand these effects on Salmonella infections, modeling approaches such as regression analysis and neural network (NN) were used. Monthly data for Salmonella outbreaks in Mississippi (MS), Tennessee (TN), and Alabama (AL) were analyzed from 2002 to 2011 using analysis of variance and time series analysis. Meteorological data were collected and the correlation with salmonellosis was examined using regression analysis and NN. A seasonal trend in Salmonella infections was observed (p<0.001). Strong positive correlation was found between high temperature and Salmonella infections in MS and for the combined states (MS, TN, AL) models (R(2)=0.554; R(2)=0.415, respectively). NN models showed a strong effect of rise in temperature on the Salmonella outbreaks. In this study, an increase of 1°F was shown to result in four cases increase of Salmonella in MS. However, no correlation between monthly average precipitation rate and Salmonella infections was observed. There is consistent evidence that gastrointestinal infection with bacterial pathogens is positively correlated with ambient temperature, as warmer temperatures enable more rapid replication. Warming trends in the United States and specifically in the southern states may increase rates of Salmonella infections.

  8. Vaccination against Salmonella Infection: the Mucosal Way.

    PubMed

    Gayet, Rémi; Bioley, Gilles; Rochereau, Nicolas; Paul, Stéphane; Corthésy, Blaise

    2017-09-01

    Salmonella enterica subspecies enterica includes several serovars infecting both humans and other animals and leading to typhoid fever or gastroenteritis. The high prevalence of associated morbidity and mortality, together with an increased emergence of multidrug-resistant strains, is a current global health issue that has prompted the development of vaccination strategies that confer protection against most serovars. Currently available systemic vaccine approaches have major limitations, including a reduced effectiveness in young children and a lack of cross-protection among different strains. Having studied host-pathogen interactions, microbiologists and immunologists argue in favor of topical gastrointestinal administration for improvement in vaccine efficacy. Here, recent advances in this field are summarized, including mechanisms of bacterial uptake at the intestinal epithelium, the assessment of protective host immunity, and improved animal models that closely mimic infection in humans. The pros and cons of existing vaccines are presented, along with recent progress made with novel formulations. Finally, new candidate antigens and their relevance in the refined design of anti- Salmonella vaccines are discussed, along with antigen vectorization strategies such as nanoparticles or secretory immunoglobulins, with a focus on potentiating mucosal vaccine efficacy. Copyright © 2017 American Society for Microbiology.

  9. Methyl Gallate from Galla rhois Successfully Controls Clinical Isolates of Salmonella Infection in Both In Vitro and In Vivo Systems

    PubMed Central

    Choi, Jang-Gi; Mun, Su-Hyun; Chahar, Harendra S.; Bharaj, Preeti; Kang, Ok-Hwa; Kim, Se-Gun; Shin, Dong-Won; Kwon, Dong-Yeul

    2014-01-01

    Galla rhois is a commonly used traditional medicine for the treatment of pathogenic bacteria in Korea as well as in other parts of Asia. Methyl gallate (MG), a major component of Galla Rhois, exhibits strong antibacterial activity, but its mechanism of action against Salmonella spp. is unclear. In the present study, we investigated the antibacterial actions of MG against Salmonella. The antibacterial activity determined by broth dilution method indicated that the antibacterial activity of MG against Salmonella strains ranged from 3.9 to 125 µg/ml. In vitro bacterial viability test indicated that MG significantly decreased the viability of Salmonella over 40% when combined with ATPase inhibitors. The time-kill curves showed that a combined MG and ATPase inhibitors (DCCD and NaN3) treatment reduced the bacterial counts dramatically after 24 h. Oral administration of MG showed a strong anti-bacterial activity against WS-5 infected BALB/c mice. In contrast to the untreated Salmonella infected control animals, MG treated groups showed no clinical symptoms of the disease, such as lethargy and liver damage. It was observed that MG treatment significantly increased the survival of animals from Salmonella infection, while in untreated groups all animal succumbed to disease by the sixth day post infection. Thus, the present study demonstrates the therapeutic ability of MG against Salmonella infections. PMID:25048362

  10. Methyl gallate from Galla rhois successfully controls clinical isolates of Salmonella infection in both in vitro and in vivo systems.

    PubMed

    Choi, Jang-Gi; Mun, Su-Hyun; Chahar, Harendra S; Bharaj, Preeti; Kang, Ok-Hwa; Kim, Se-Gun; Shin, Dong-Won; Kwon, Dong-Yeul

    2014-01-01

    Galla rhois is a commonly used traditional medicine for the treatment of pathogenic bacteria in Korea as well as in other parts of Asia. Methyl gallate (MG), a major component of Galla Rhois, exhibits strong antibacterial activity, but its mechanism of action against Salmonella spp. is unclear. In the present study, we investigated the antibacterial actions of MG against Salmonella. The antibacterial activity determined by broth dilution method indicated that the antibacterial activity of MG against Salmonella strains ranged from 3.9 to 125 µg/ml. In vitro bacterial viability test indicated that MG significantly decreased the viability of Salmonella over 40% when combined with ATPase inhibitors. The time-kill curves showed that a combined MG and ATPase inhibitors (DCCD and NaN3) treatment reduced the bacterial counts dramatically after 24 h. Oral administration of MG showed a strong anti-bacterial activity against WS-5 infected BALB/c mice. In contrast to the untreated Salmonella infected control animals, MG treated groups showed no clinical symptoms of the disease, such as lethargy and liver damage. It was observed that MG treatment significantly increased the survival of animals from Salmonella infection, while in untreated groups all animal succumbed to disease by the sixth day post infection. Thus, the present study demonstrates the therapeutic ability of MG against Salmonella infections.

  11. The commercial impact of pig Salmonella spp. infections in border-free markets during an economic recession

    PubMed Central

    Evangelopoulou, G.; Kritas, S.; Christodoulopoulos, G.; Burriel, A. R.

    2015-01-01

    The genus Salmonella, a group of important zoonotic pathogens, is having global economic and political importance. Its main political importance results from the pathogenicity of many of its serovars for man. Serovars Salmonella Enteritidis and Salmonella Typhimurium are currently the most frequently associated to foodborne infections, but they are not the only ones. Animal food products contaminated from subclinically infected animals are a risk to consumers. In border free markets, an example is the EU, these consumers at risk are international. This is why, economic competition could use the risk of consumer infection either to restrict or promote free border trade in animals and their products. Such use of public health threats increases during economic recessions in nations economically weak to effectively enforce surveillance. In free trade conditions, those unable to pay the costs of pathogen control are unable to effectively implement agreed regulations, centrally decided, but leaving their enforcement to individual states. Free trade of animal food products depends largely on the promotion of safety, included in “quality,” when traders target foreign markets. They will overtake eventually the markets of those ineffectively implementing agreed safety regulations, if their offered prices are also attractive for recession hit consumers. Nations unable to effectively enforce safety regulations become disadvantaged partners unequally competing with producers of economically robust states when it comes to public health. Thus, surveillance and control of pathogens like Salmonella are not only quantitative. They are also political issues upon which states base national trade decisions. Hence, the quantitative calculation of costs incurring from surveillance and control of animal salmonelloses, should not only include the cost for public health protection, but also the long term international economic and political costs for an individual state. These

  12. Ceftriaxone-Resistant Nontyphoidal Salmonella from Humans, Retail Meats, and Food Animals in the United States, 1996-2013.

    PubMed

    Iwamoto, Martha; Reynolds, Jared; Karp, Beth E; Tate, Heather; Fedorka-Cray, Paula J; Plumblee, Jodie R; Hoekstra, Robert M; Whichard, Jean M; Mahon, Barbara E

    2017-02-01

    Ceftriaxone resistance in Salmonella is a serious public health threat. Ceftriaxone is commonly used to treat severe Salmonella infections, especially in children. Identifying the sources and drivers of ceftriaxone resistance among nontyphoidal Salmonella is crucial. The National Antimicrobial Resistance Monitoring System (NARMS) tracks antimicrobial resistance in foodborne and other enteric bacteria from humans, retail meats, and food animals. We examined NARMS data reported during 1996-2013 to characterize ceftriaxone-resistant Salmonella infections in humans. We used Spearman rank correlation to examine the relationships between the annual percentage of ceftriaxone resistance among Salmonella isolates from humans with isolates from retail meats and food animals. A total of 978 (2.9%) of 34,100 nontyphoidal Salmonella isolates from humans were resistant to ceftriaxone. Many (40%) ceftriaxone-resistant isolates were from children younger than 18 years. Most ceftriaxone-resistant isolates were one of three serotypes: Newport (40%), Typhimurium (26%), or Heidelberg (12%). All were resistant to other antimicrobials, and resistance varied by serotype. We found statistically significant correlations in ceftriaxone resistance between human and ground beef Newport isolates (r = 0.83), between human and cattle Typhimurium isolates (r = 0.57), between human and chicken Heidelberg isolates (r = 0.65), and between human and turkey Heidelberg isolates (r = 0.67). Ceftriaxone resistance among Salmonella Newport, Typhimurium, and Heidelberg isolates from humans strongly correlates with ceftriaxone resistance in isolates from ground beef, cattle, and poultry, respectively. These findings support other lines of evidence that food animals are important reservoirs of ceftriaxone-resistant Salmonella that cause human illness in the United States.

  13. Surveillance for human Salmonella infections in the United States.

    PubMed

    Swaminathan, Bala; Barrett, Timothy J; Fields, Patricia

    2006-01-01

    Surveillance for human Salmonella infections plays a critical role in understanding and controlling foodborne illness due to Salmonella. Along with its public health partners, the Centers for Disease Control and Prevention (CDC) has several surveillance systems that collect information on Salmonella infections in the United States. The National Salmonella Surveillance System, begun in 1962, receives reports of laboratory-confirmed Salmonella infections through state public health laboratories. Salmonella outbreaks are reported by state and local health departments through the Foodborne Disease Outbreak Reporting System, which became a Web-based, electronic system (eFORS) in 2001. PulseNet facilitates the detection of clusters of Salmonella infections through standardized molecular subtyping (DNA "fingerprinting") of isolates and maintenance of "fingerprint" databases. The National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS) monitors antimicrobial resistance in Salmonella by susceptibility testing of every 20th Salmonella isolate received by state and local public health laboratories. FootNet is an active surveillance system that monitors Salmonella infections in sentinel areas, providing population-based estimates of infection rates. Efforts are underway to electronically link all of the Salmonella surveillance systems at CDC to facilitate optimum use of available data and minimize duplication.

  14. Antimicrobial drug resistance and molecular characterization of Salmonella isolated from domestic animals, humans, and meat products.

    PubMed

    Oloya, J; Doetkott, D; Khaitsa, M L

    2009-04-01

    1) To characterize and determine genotypic relatedness of Salmonella serovars commonly isolated from domestic animals and humans in North Dakota, and 2) to assess their role in transferring antimicrobial resistance (AMR) to humans. A total of 434 Salmonella isolates obtained from 1) feces of apparently healthy feedlot, range, and dairy cattle in North Dakota; 2) clinical samples from sick or dead animals submitted to North Dakota State University-Veterinary Diagnostic Laboratory (2000-2005); 3) previous meat product surveillance studies in North Dakota; and 4) 179 samples from human patients in North Dakota (2000-2005) by the North Dakota Department of Health were studied. The isolates were initially serotyped and later genotyped by pulsed-field gel electrophoresis (PFGE) to investigate their relatedness. The National Antimicrobial Resistance Monitoring Systems panel was used to compare AMR profiles of animal and human isolates to assess a possible role of domestic animals in transfer of AMR to humans. Salmonella Typhimurium was the predominant serotype in both humans (13.4%) and domestic animals (34.3%), followed by Newport in animals (2.6%) and human (3.9%). Salmonella Arizona (0.7%), Salmonella Give (0.9%), and Salmonella Muenster (3.5%) were isolated from sick or dead animals. PFGE results confirmed occurrence of similar Salmonella genotypes in both domestic animals and humans. AMR profiles showed that most animal strains were multidrug resistant. A single human isolate had PFGE and multidrug resistance profiles similar to a major cattle genotype, suggesting a possible AMR transmission from cattle to humans. CONCLUSION AND APPLICATION: Similar Salmonella genotypes were infecting domestic animals and humans in North Dakota. The AMR levels were higher in domestic animal isolates than in humans, implying that the occurrence of AMR in animal isolates may not translate directly into AMR in human isolates in North Dakota. This is helpful in determining future

  15. Meta-analysis of Chicken – Salmonella infection experiments

    PubMed Central

    2012-01-01

    Background Chicken meat and eggs can be a source of human zoonotic pathogens, especially Salmonella species. These food items contain a potential hazard for humans. Chickens lines differ in susceptibility for Salmonella and can harbor Salmonella pathogens without showing clinical signs of illness. Many investigations including genomic studies have examined the mechanisms how chickens react to infection. Apart from the innate immune response, many physiological mechanisms and pathways are reported to be involved in the chicken host response to Salmonella infection. The objective of this study was to perform a meta-analysis of diverse experiments to identify general and host specific mechanisms to the Salmonella challenge. Results Diverse chicken lines differing in susceptibility to Salmonella infection were challenged with different Salmonella serovars at several time points. Various tissues were sampled at different time points post-infection, and resulting host transcriptional differences investigated using different microarray platforms. The meta-analysis was performed with the R-package metaMA to create lists of differentially regulated genes. These gene lists showed many similarities for different chicken breeds and tissues, and also for different Salmonella serovars measured at different times post infection. Functional biological analysis of these differentially expressed gene lists revealed several common mechanisms for the chicken host response to Salmonella infection. The meta-analysis-specific genes (i.e. genes found differentially expressed only in the meta-analysis) confirmed and expanded the biological functional mechanisms. Conclusions The meta-analysis combination of heterogeneous expression profiling data provided useful insights into the common metabolic pathways and functions of different chicken lines infected with different Salmonella serovars. PMID:22531008

  16. Genetic relatedness of a rarely isolated Salmonella: Salmonella enterica serotype Niakhar from NARMS animal isolates.

    PubMed

    Tankson, J D; Fedorka-Cray, P J; Jackson, C R; Headrick, M

    2006-02-01

    In the United States, Salmonella enterica serotype Niakhar is infrequently isolated. Between 1997 and 2000, the animal arm of the National Antimicrobial Resistance Monitoring System-Enteric Bacteria (NARMS) assayed a total of 22,383 Salmonella isolates from various animal sources (swine, cattle, chickens, turkeys, cats, horses, exotics and dogs) for antimicrobial susceptibility. Isolates originated from diagnostic and non-diagnostic submissions. To study the phenotypic and genotypic characteristics of Salmonella Niakhar. Only five (0.02%) of the 22,383 isolates were identified as Salmonella Niakhar. Antimicrobial resistance testing indicated that three isolates were pan-susceptible, one isolate was resistant to ampicillin and one isolate was resistant to ampicillin, chloramphenicol, ciprofloxacin, kanamycin, nalidixic acid, streptomycin, sulfamethoxazole, tetracycline and trimethoprim/sulfamethoxazole. RAPD-PCR analysis, PFGE and ribotyping indicated that two pan-susceptible isolates were genetically similar, whereas the three remaining isolates were genetically different. The one Salmonella Niakhar isolate that was multiresistant harboured a class I integron, intI1 and two large plasmids. This study represents the first report of a ciprofloxacin-resistant Salmonella isolate from the animal arm of NARMS.

  17. Salmonella infections

    USDA-ARS?s Scientific Manuscript database

    Infections of poultry with bacteria of the genus Salmonella can cause clinical disease, but are of greater current concern as agents of food-borne transmission of illness to humans. However, two nonmotile organisms, S. Pullorum and S. Gallinarum, are host-specific for avian species. Pullorum disease...

  18. Surveillance of Salmonella prevalence in animal feeds and characterization of the Salmonella isolates by serotyping and antimicrobial susceptibility.

    PubMed

    Li, X; Bethune, L A; Jia, Y; Lovell, R A; Proescholdt, T A; Benz, S A; Schell, T C; Kaplan, G; McChesney, D G

    2012-08-01

    This article presents the surveillance data from the Feed Contaminants Program (2002-2009) and Salmonella Assignment (2007-2009) of the U.S. Food and Drug Administration (FDA), which monitor the trend of Salmonella contamination in animal feeds. A total of 2,058 samples were collected from complete animal feeds, feed ingredients, pet foods, pet treats, and supplements for pets in 2002-2009. These samples were tested for the presence of Salmonella. Those that were positive for Salmonella underwent serotyping and testing for antimicrobial susceptibility. Of the 2,058 samples, 257 were positive for Salmonella (12.5%). The results indicate a significant overall Salmonella reduction (p≤0.05) in animal feeds from 18.2% (187 samples tested) in 2002 to 8.0% (584 samples tested) in 2009. Among these samples, feed ingredients and pet foods/treats had the most significant reduction (p≤0.05). Of the 45 Salmonella serotypes identified, Salmonella Senftenberg and Salmonella Montevideo were the top two common serotypes (8.9%). Of the 257 Salmonella isolates obtained, 54 isolates (21%) were resistant to at least one antimicrobial. The findings provide the animal feed industries with Salmonella prevalence information that can be used to address Salmonella contamination problems. Our findings can also be used to educate pet owners when handling pet foods and treats at home to prevent salmonellosis.

  19. Characterization of antimicrobial resistance of Salmonella Newport isolated from animals, the environment, and animal food products in Canada

    PubMed Central

    Martin, Laura; Muckle, Anne; Archambault, Marie; McEwen, Scott; Weir, Emily

    2006-01-01

    Abstract Multi-drug-resistant (MDR) Salmonella enterica serovar Newport strains are increasingly isolated from animals and food products of animal origin and have caused septicemic illness in animals and humans. The purpose of this study was to determine the occurrence and the epidemiologic, phenotypic, and genotypic characteristics of S. Newport of animal origin that may infect humans, either via the food chain or directly. During the 1993–2002 period, the Office International des Épizooties Reference Laboratory for Salmonellosis in Guelph, Ontario, received 36 841 Salmonella strains for serotyping that had been isolated from animals, environmental sources, and food of animal origin in Canada. Of these, 119 (0.3%) were S. Newport. Before 2000, none of 49 S. Newport strains was resistant to more than 3 antimicrobials. In contrast, between January 2000 and December 2002, 35 of 70 isolates, primarily of bovine origin, were resistant to at least 11 antimicrobials, including the extended-spectrum cephalosporins. The blaCMY-2, flost, strA, strB, sulII, and tetA resistance genes were located on plasmids of 80 to 90 MDa that were self-transmissible in 25% of the strains. Conserved segments of the integron 1 gene were found on the large MDR-encoding plasmids in 3 of 35 strains additionally resistant to gentamicin and spectinomycin or to spectinomycin, sulfamethoxazole– trimethoprim, and trimethoprim. Resistance to kanamycin and neomycin was encoded by the aphA-1 gene, located on small plasmids (2.3 to 6 MDa). The increase in bovine-associated MDR S. Newport infections is cause for concern since it indicates an increased risk of human acquisition of the infection via the food chain. PMID:16639942

  20. Occurrence of ß-lactamase genes among non-Typhi Salmonella enterica isolated from humans, food animals, and retail meats in the United States and Canada

    USDA-ARS?s Scientific Manuscript database

    Non-Typhi Salmonella cause over 1.7 million cases of gastroenteritis in North America each year, and food-animal products are commonly implicated in human infections. For invasive infections, antimicrobial therapy is implicated. In North America, the antimicrobial susceptibility of Salmonella is m...

  1. Animal Salmonella surveillance in Peninsular Malaysia, 1981-1985.

    PubMed Central

    Joseph, P. G.; Sivanandan, S. P.; Yee, H. T.

    1988-01-01

    During the 5-year (1981-5) surveillance period, 2322 salmonella isolations were recorded from animals and other non-human sources in Peninsular Malaysia. This was an increase of 356% over the preceding 5-year period. The 83 serotypes isolated were recovered from 41 sources. Of these 34 were new serotypes bringing the total number of serotypes isolated from non-human sources to date up 97. Food animals and edible animal products accounted for 92.2% of the total isolations, with cattle and beef accounting for 70% of the total. Salmonella dublin was the most frequently isolated serotype, whereas S. typhimurium had the widest zoological distribution. More than 80% of the non-human salmonella serotypes have also been reported in man in this country. PMID:3378581

  2. Contaminated water delivery as a simple and effective method of experimental Salmonella infection.

    PubMed

    O'Donnell, Hope; Pham, Oanh H; Benoun, Joseph M; Ravesloot-Chávez, Marietta M; McSorley, Stephen J

    2015-01-01

    In most infectious disease models, it is assumed that gavage needle infection is the most reliable means of pathogen delivery to the GI tract. However, this methodology can cause esophageal tearing and induces stress in experimental animals, both of which have the potential to impact early infection and the subsequent immune response. C57BL/6 mice were orally infected with virulent Salmonella Typhimurium SL1344 either by intragastric gavage preceded by sodium bicarbonate, or by contamination of drinking water. We demonstrate that water contamination delivery of Salmonella is equivalent to gavage inoculation in providing a consistent model of infection. Furthermore, exposure of mice to contaminated drinking water for as little as 4 h allowed maximal mucosal and systemic infection, suggesting an abbreviated window exists for natural intestinal entry. Together, these data question the need for gavage delivery for infection with oral pathogens.

  3. Role of systemic infection, cross contaminations and super-shedders in Salmonella carrier state in chicken.

    PubMed

    Menanteau, Pierrette; Kempf, Florent; Trotereau, Jerome; Virlogeux-Payant, Isabelle; Gitton, Edouard; Dalifard, Julie; Gabriel, Irene; Rychlik, Ivan; Velge, Philippe

    2018-06-19

    Carriage of Salmonella is often associated with a high level of bacterial excretion and generally occurs after a short systemic infection. However, we do not know whether this systemic infection is required or whether the carrier-state corresponds to continuous reinfection or real persistence in caecal tissue. The use of a Salmonella Enteritidis bamB mutant demonstrated that a carrier-state could be obtained in chicken in the absence of systemic infection. The development of a new infection model in isolator showed that a marked decrease in animal reinfection and host-to-host transmission between chicks led to a heterogeneity of S. Enteritidis excretion and colonization contrary to what was observed in cages. This heterogeneity of infection was characterized by the presence of super-shedders, which constantly disseminated Salmonella to the low-shedder chicks, mainly through airborne movements of contaminated dust particles. The presence of super-shedders, in the absence of host-to-host transmission, demonstrated that constant reinfection was not required to induce a carrier-state. Finally, our results suggest that low-shedder chicks do not have a higher capability to destroy Salmonella but instead can block initial Salmonella colonization. This new paradigm opens new avenues to improve understanding of the carrier-state mechanisms and to define new strategies to control Salmonella infections. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Dysregulated humoral immunity to nontyphoidal Salmonella in HIV-infected African adults

    PubMed Central

    MacLennan, Calman A.; Gilchrist, James J.; Gordon, Melita A.; Cunningham, Adam F.; Cobbold, Mark; Goodall, Margaret; Kingsley, Robert A.; van Oosterhout, Joep J. G.; Msefula, Chisomo L.; Mandala, Wilson L.; Leyton, Denisse L.; Marshall, Jennifer L.; Gondwe, Esther N.; Bobat, Saeeda; López-Macías, Constantino; Doffinger, Rainer; Henderson, Ian R.; Zijlstra, Eduard E.; Dougan, Gordon; Drayson, Mark T.; MacLennan, Ian C. M.; Molyneux, Malcolm E.

    2013-01-01

    Nontyphoidal Salmonellae are a major cause of life-threatening bacteremia among HIV-infected individuals. Although cell-mediated immunity controls intracellular infection, antibody protects against Salmonella bacteremia. We report that high titer antibodies specific for Salmonella lipopolysaccharide (LPS) associate with absent Salmonella-killing in HIV-infected African adults. Killing was restored by genetically shortening LPS from target Salmonella, or removing LPS-specific antibodies from serum. Complement-mediated killing of Salmonella by healthy serum is shown to be induced specifically by antibodies against outer membrane proteins. This killing is lost when excess antibody against Salmonella LPS is added. Thus our study indicates impaired immunity against nontyphoidal Salmonella bacteremia in HIV infection results from excess inhibitory antibodies against Salmonella LPS, whilst serum killing of Salmonella is induced by antibodies against outer membrane proteins. PMID:20413503

  5. [Occurrence of enteritis-causing salmonellae in food and in domestic animals in 1991].

    PubMed

    Hartung, M

    1993-07-01

    The control of salmonellae in foods and animals in Germany, 1991, is based on voluntary contributions of veterinary institutions, e. g. governmental investigation centres, universities, agricultural institutions and slaughter-house laboratories. The results of questionnaire-based evaluations are presented (s. a. HARTUNG, 1993 a). Also reported were 101 outbreaks involving 2272 cases of salmonellosis (fig. 1), of which 92% were caused by S. enteritidis. 46% of the cases were caused by egg and egg-containing meals, 24% by bakery products, often containing raw eggs. From poultry meat the organism was only isolated in less than 1% of the known cases. Meat and meat products (10%) and milk (5%) were further sources of infection. Summarizing it can be assumed that in 70% of the cases the cause of foodborne salmonellosis were meals prepared with raw eggs. The mean salmonella rate in routine food investigations was 0.88% (tab. 1). Poultry had a salmonella rate of 13% and eggs, incl. egg-containing dishes, a rate of 1%. All other food groups were contaminated with salmonella at the level of the mean rate (meat and meat products) or less (fish and milk and their products: 0.1%). The mean salmonella rate in diagnostic examinations of domestic animals was 5.77% (tab. 2). Cattle and chicken showed salmonella rates at the level of the mean rate, whereas pig, sheep, goats and equines showed much lower levels. On the other hand "other poultry" (9.5%) and especially chicks (13%) had higher levels of salmonella.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Dissemination of antimicrobial-resistant clones of Salmonella enterica among domestic animals, wild animals, and humans.

    PubMed

    Palomo, Gonzalo; Campos, Maria Jorge; Ugarte, María; Porrero, María Concepción; Alonso, Juan Manuel; Borge, Carmen; Vadillo, Santiago; Domínguez, Lucas; Quesada, Alberto; Píriz, Segundo

    2013-02-01

    Non-typhoidal salmonellosis is an important zoonotic disease caused by Salmonella enterica. This work focuses on the identification of Salmonella enterica clonal strains which, presenting a wide distribution potential, express resistance determinants that compromise effectiveness of the antimicrobial therapy. The screening was performed on 506 Salmonella enterica isolates from animals and humans, which were characterized by serovar and phage typing, genome macrorestriction and pulsed-field gel electrophoresis, and detection of phenotypic and genotypic traits for antimicrobial resistance. A Salmonella Enteritidis strain with strong quinolone resistance is spread on three host environments carrying one of the four variants found for the GyrA protein: (1) Asp87Tyr, the major polymorphism found in 39 Salmonella isolates from human origin and six from poultry; (2) Ser83Phe, with four isolates from human origin and one from white stork (Ciconia ciconia); and (3) Asp87Asn or (4) Asp87Gly, with two isolates each from human origins. Several Salmonella Typhimurium strains that presented int1 elements and the classically associated pentaresistance (ACSSuT) phenotype were found distributed between two host environments: domestic animals and humans, domestics and wild animals, or wild fauna plus humans. This study points out the importance of monitoring gut microbiota and its antimicrobial resistance from wildlife, in parallel to livestock animals and humans, especially for animal species that are in close contact with people.

  7. Seroincidence of Human Infections With Nontyphoid Salmonella Compared With Data From Public Health Surveillance and Food Animals in 13 European Countries

    PubMed Central

    Griffin, Patricia M.; Mølbak, Kåre; Simonsen, Jacob; Jørgensen, Charlotte S.; Krogfelt, Karen A.; Falkenhorst, Gerhard; Ethelberg, Steen; Takkinen, Johanna; Emborg, Hanne-Dorthe

    2014-01-01

    We developed a model that enabled a back-calculation of the annual salmonellosis seroincidence from measurements of Salmonella antibodies and applied this model to 9677 serum samples collected from populations in 13 European countries. We found a 10-fold difference in the seroincidence, which was lowest in Sweden (0.06 infections per person-year), Finland (0.07), and Denmark (0.08) and highest in Spain (0.61), followed by Poland (0.55). These numbers were not correlated with the reported national incidence of Salmonella infections in humans but were correlated with prevalence data of Salmonella in laying hens (P < .001), broilers (P < .001), and slaughter pigs (P = .03). Seroincidence also correlated with Swedish data on the country-specific risk of travel-associated Salmonella infections (P = .001). Estimates based on seroepidemiological methods are well suited to measure the force of transmission of Salmonella to human populations, in particular relevant for assessments where data include notifications from areas, states or countries with diverse characteristics of the Salmonella surveillance. PMID:25100865

  8. Multidrug-resistant Salmonella Typhimurium in Four Animal Facilities

    PubMed Central

    Wright, Jennifer G.; Tengelsen, Leslie A.; Smith, Kirk E.; Bender, Jeff B.; Frank, Rodney K.; Grendon, John H.; Rice, Daniel H.; Thiessen, Ann Marie B.; Gilbertson, Catherine Jo; Sivapalasingam, Sumathi; Barrett, Timothy J.; Besser, Thomas E.; Hancock, Dale D.

    2005-01-01

    In 1999 and 2000, 3 state health departments reported 4 outbreaks of gastrointestinal illness due to Salmonella enterica serotype Typhimurium in employees, clients, and client animals from 3 companion animal veterinary clinics and 1 animal shelter. More than 45 persons and companion animals became ill. Four independent investigations resulted in the testing of 19 human samples and >200 animal samples; 18 persons and 36 animals were culture-positive for S. Typhimurium. One outbreak was due to multidrug-resistant S. Typhimurium R-type ACKSSuT, while the other 3 were due to multidrug-resistant S. Typhimurium R-type ACSSuT DT104. This report documents nosocomial transmission of S. Typhimurium and demonstrates that companion animal facilities may serve as foci of transmission for salmonellae between animals and humans if adequate precautions are not followed. PMID:16102313

  9. Contaminated water delivery as a simple and effective method of experimental Salmonella infection

    PubMed Central

    O’Donnell, Hope; Pham, Oanh H.; Benoun, Joseph M.; Ravesloot-Chávez, Marietta M.; McSorley, Stephen J.

    2016-01-01

    Aims In most infectious disease models, it is assumed that gavage needle infection is the most reliable means of pathogen delivery to the gastrointestinal tract. However, this methodology can cause esophageal tearing and induces stress in experimental animals, both of which have the potential to impact early infection and the subsequent immune response. Materials and Methods C57BL/6 mice were orally infected with virulent Salmonella Typhimurium SL1344 either by intragastric gavage preceded by sodium bicarbonate, or by contamination of drinking water. Results We demonstrate that water contamination delivery of Salmonella is equivalent to gavage inoculation in providing a consistent model of infection. Furthermore, exposure of mice to contaminated drinking water for as little as 4 hours allowed maximal mucosal and systemic infection, suggesting an abbreviated window exists for natural intestinal entry. Conclusions Together, these data question the need for gavage delivery for infection with oral pathogens. PMID:26439708

  10. Prevalence and antimicrobial resistance pattern of Salmonella in animal feed produced in Namibia.

    PubMed

    Shilangale, Renatus P; Di Giannatale, Elisabetta; Chimwamurombe, Percy M; Kaaya, Godwin P

    2012-01-01

    The occurrence of Salmonella is a global challenge in the public health and food production sectors. Our study investigated the prevalence, serovar and antimicrobial susceptibility of strains of Salmonella serovars isolated from animal feed (meat-and-bone and blood meal) samples from two commercial abattoirs in Namibia. A total of 650 samples (n=650) were examined for the presence of Salmonella. Results showed that 10.9% (n=71) were positive for Salmonella. Of the Salmonella serovars isolated, S. Chester was the most commonly isolated serovar (19.7%), followed by S. Schwarzengrund at 12.7%. From the Salmonella isolates, 19.7% (n=14) were resistant to one or more of the antimicrobials (nalidixic acid, trimethoprim-sulfamethoxazole, sulfisoxazole, streptomycin and/or tetracycline), whereas 80.3% (n=57) were susceptible to all 16 antimicrobials tested. Resistance to sulfisoxazole and the trimethroprimsuflamethoxazole combination were the most common. The resistant isolates belonged to ten different Salmonella serovars. The susceptibility of most of the Salmonella isolated to the antimicrobials tested indicates that anti-microbial resistance is not as common and extensive in Namibia as has been reported in many other countries. It also appears that there is a range of antimicrobials available that are effective in managing Salmonella infections in Namibia. However, there is some evidence that resistance is developing and this will need further monitoring to ensure it does not become a problem.

  11. Salmonella Muenster infection in a dairy herd.

    PubMed

    Radke, Brian R; McFall, Margaret; Radostits, Steve M

    2002-06-01

    The overall purpose of this study was to provide information on animal and occupational health associated with the infection of a diary herd with Salmonella Muenster that would be useful in the management of dairy herds so infected. This retrospective, longitudinal report records a 2-year infection of a 140-cow dairy herd with S. Muenster, which was likely introduced by additions to the herd. Six cows aborted or had diarrhea due to salmonellosis in the last trimester of pregnancy. Additions to the herd and the presence of animals that had not received an Escherichia coli bacterin-toxoid were risk factors for salmonellosis. One neonate died, and 24 of 36 calves born between November 1998 and May 1999 had diarrhea by 1 mo of age. Initially, over 60% of the cows were fecal positive; within 6 months, all cows but I had become infected. The intermittent shedding of the organism and the eventual zero prevalence highlight the inappropriateness of extensive culling as an eradication strategy. Cultures of the bulk-tank milk filters were more sensitive than cultures of the bulk-tank milk samples at detecting S. Muenster. Two months after the index case, S. Muenster was cultured from the milk of 7.8% of the cows. Positive fecal or milk cultures were not associated with impaired health or production. The herd's milk was a zoonotic risk, but contact with infected animals was not. The organism spread easily between operations, likely via manure-contaminated clothing and footwear.

  12. Seroincidence of human infections with nontyphoid Salmonella compared with data from public health surveillance and food animals in 13 European countries.

    PubMed

    Mølbak, Kåre; Simonsen, Jacob; Jørgensen, Charlotte S; Krogfelt, Karen A; Falkenhorst, Gerhard; Ethelberg, Steen; Takkinen, Johanna; Emborg, Hanne-Dorthe

    2014-12-01

    We developed a model that enabled a back-calculation of the annual salmonellosis seroincidence from measurements of Salmonella antibodies and applied this model to 9677 serum samples collected from populations in 13 European countries. We found a 10-fold difference in the seroincidence, which was lowest in Sweden (0.06 infections per person-year), Finland (0.07), and Denmark (0.08) and highest in Spain (0.61), followed by Poland (0.55). These numbers were not correlated with the reported national incidence of Salmonella infections in humans but were correlated with prevalence data of Salmonella in laying hens (P < .001), broilers (P < .001), and slaughter pigs (P = .03). Seroincidence also correlated with Swedish data on the country-specific risk of travel-associated Salmonella infections (P = .001). Estimates based on seroepidemiological methods are well suited to measure the force of transmission of Salmonella to human populations, in particular relevant for assessments where data include notifications from areas, states or countries with diverse characteristics of the Salmonella surveillance. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Early Salmonella Typhimurium infection in pigs disrupts Microbiome composition and functionality principally at the ileum mucosa.

    PubMed

    Argüello, Héctor; Estellé, Jordi; Zaldívar-López, Sara; Jiménez-Marín, Ángeles; Carvajal, Ana; López-Bascón, Mª Asunción; Crispie, Fiona; O'Sullivan, Orla; Cotter, Paul D; Priego-Capote, Feliciano; Morera, Luis; Garrido, Juan J

    2018-05-17

    Salmonella is a major foodborne pathogen which successfully infects animal species for human consumption such as swine. The pathogen has a battery of virulence factors which it uses to colonise and persist within the host. The host microbiota may play a role in resistance to, and may also be indirectly responsible from some of the consequences of, Salmonella infection. To investigate this, we used 16S rRNA metagenomic sequencing to determine the changes in the gut microbiota of pigs in response to infection by Salmonella Typhimurium at three locations: ileum mucosa, ileum content and faeces. Early infection (2 days post-infection) impacted on the microbiome diversity at the mucosa, reflected in a decrease in representatives of the generally regarded as desirable genera (i.e., Bifidobacterium and Lactobacillus). Severe damage in the epithelium of the ileum mucosa correlated with an increase in synergistic (with respect to Salmonella infection; Akkermansia) or opportunistically pathogenic bacteria (Citrobacter) and a depletion in anaerobic bacteria (Clostridium spp., Ruminococcus, or Dialliser). Predictive functional analysis, together with metabolomic analysis revealed changes in glucose and lipid metabolism in infected pigs. The observed changes in commensal healthy microbiota, including the growth of synergistic or potentially pathogenic bacteria and depletion of beneficial or competing bacteria, could contribute to the pathogen's ability to colonize the gut successfully. The findings from this study could be used to form the basis for further research aimed at creating intervention strategies to mitigate the effects of Salmonella infection.

  14. Salmonella risk to consumers via pork is related to the Salmonella prevalence in pig feed.

    PubMed

    Rönnqvist, M; Välttilä, V; Ranta, J; Tuominen, P

    2018-05-01

    Pigs are an important source of human infections with Salmonella, one of the most common causes of sporadic gastrointestinal infections and foodborne outbreaks in the European region. Feed has been estimated to be a significant source of Salmonella in piggeries in countries of a low Salmonella prevalence. To estimate Salmonella risk to consumers via the pork production chain, including feed production, a quantitative risk assessment model was constructed. The Salmonella prevalence in feeds and in animals was estimated to be generally low in Finland, but the relative importance of feed as a source of Salmonella in pigs was estimated as potentially high. Discontinuation of the present strict Salmonella control could increase the risk of Salmonella in slaughter pigs and consequent infections in consumers. The increased use of low risk and controlled feed ingredients could result in a consistently lower residual contamination in pigs and help the tracing and control of the sources of infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals

    PubMed Central

    Frye, Jonathan G.; Jackson, Charlene R.

    2013-01-01

    The prevalence of antimicrobial resistance (AR) in bacteria isolated from U.S. food animals has increased over the last several decades as have concerns of AR foodborne zoonotic human infections. Resistance mechanisms identified in U.S. animal isolates of Salmonella enterica included resistance to aminoglycosides (e.g., alleles of aacC, aadA, aadB, ant, aphA, and StrAB), β-lactams (e.g., blaCMY−2, TEM−1, PSE−1), chloramphenicol (e.g., floR, cmlA, cat1, cat2), folate pathway inhibitors (e.g., alleles of sul and dfr), and tetracycline [e.g., alleles of tet(A), (B), (C), (D), (G), and tetR]. In the U.S., multi-drug resistance (MDR) mechanisms in Salmonella animal isolates were associated with integrons, or mobile genetic elements (MGEs) such as IncA/C plasmids which can be transferred among bacteria. It is thought that AR Salmonella originates in food animals and is transmitted through food to humans. However, some AR Salmonella isolated from humans in the U.S. have different AR elements than those isolated from food animals, suggesting a different etiology for some AR human infections. The AR mechanisms identified in isolates from outside the U.S. are also predominantly different. For example the extended spectrum β-lactamases (ESBLs) are found in human and animal isolates globally; however, in the U.S., ESBLs thus far have only been found in human and not food animal isolates. Commensal bacteria in animals including Escherichia coli and Enterococcus spp. may be reservoirs for AR mechanisms. Many of the AR genes and MGEs found in E. coli isolated from U.S. animals are similar to those found in Salmonella. Enterococcus spp. isolated from animals frequently carry MGEs with AR genes, including resistances to aminoglycosides (e.g., alleles of aac, ant, and aph), macrolides [e.g., erm(A), erm(B), and msrC], and tetracyclines [e.g., tet(K), (L), (M), (O), (S)]. Continuing investigations are required to help understand and mitigate the impact of AR bacteria on human

  16. Diffuse abdominal gallium-67 citrate uptake in salmonella infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garty, I.; Koren, A.

    1987-11-01

    Two pediatric patients with salmonella infections (one with typhoid fever and the second with salmonella C2 gastroenteritis), had a diffuse abdominal uptake of Ga-67 citrate. The possible explanation for this finding is discussed. Salmonella infection should be included as a cause in the differential diagnosis of diffuse accumulation of Ga-67 citrate.

  17. Multiple Food-Animal-Borne Route in Transmission of Antibiotic-Resistant Salmonella Newport to Humans

    PubMed Central

    Pan, Hang; Paudyal, Narayan; Li, Xiaoliang; Fang, Weihuan; Yue, Min

    2018-01-01

    Characterization of transmission routes of Salmonella among various food-animal reservoirs and their antibiogram is crucial for appropriate intervention and medical treatment. Here, we analyzed 3728 Salmonella enterica serovar Newport (S. Newport) isolates collected from various food-animals, retail meats and humans in the United States between 1996 and 2015, based on their minimum inhibitory concentration (MIC) toward 27 antibiotics. Random Forest and Hierarchical Clustering statistic was used to group the isolates according to their MICs. Classification and Regression Tree (CART) analysis was used to identify the appropriate antibiotic and its cut-off value between human- and animal-population. Two distinct populations were revealed based on the MICs of individual strain by both methods, with the animal population having significantly higher MICs which correlates to antibiotic-resistance (AR) phenotype. Only ∼9.7% (267/2763) human isolates could be attributed to food–animal origins. Furthermore, the isolates of animal origin had less diverse antibiogram than human isolates (P < 0.001), suggesting multiple sources involved in human infections. CART identified trimethoprim-sulfamethoxazole to be the best classifier for differentiating the animal and human isolates. Additionally, two typical AR patterns, MDR-Amp and Tet-SDR dominant in bovine- or turkey-population, were identified, indicating that distinct food-animal sources could be involved in human infections. The AR analysis suggested fluoroquinolones (i.e., ciprofloxacin), but not extended-spectrum cephalosporins (i.e., ceftriaxone, cefoxitin), is the adaptive choice for empirical therapy. Antibiotic-resistant S. Newport from humans has multiple origins, with distinct food-animal-borne route contributing to a significant proportion of heterogeneous isolates. PMID:29410657

  18. Salmonella infection and carriage in reptiles in a zoological collection.

    PubMed

    Clancy, Meredith M; Davis, Meghan; Valitutto, Marc T; Nelson, Kenrad; Sykes, John M

    2016-05-01

    OBJECTIVE To identify important subspecies and serovars of Salmonella enterica in a captive reptile population and clinically relevant risk factors for and signs of illness in Salmonella-positive reptiles. DESIGN Retrospective cross-sectional study. ANIMALS 11 crocodilians (4 samples), 78 snakes (91 samples), 59 lizards (57 samples), and 34 chelonians (23 samples) at the Bronx Zoo from 2000 through 2012. PROCEDURES Data pertaining to various types of biological samples obtained from reptiles with positive Salmonella culture results and the reptiles themselves were analyzed to determine period prevalence of and risk factors for various Salmonella-related outcomes. RESULTS Serovar distribution differences were identified for sample type, reptile phylogenetic family, and reptile origin and health. Salmonella enterica subsp enterica was the most common subspecies in Salmonella cultures (78/175 [45%]), identified across all reptilian taxa. Salmonella enterica subsp diarizonae was also common (42/175 [24%]) and was recovered almost exclusively from snakes (n = 33), many of which had been clinically ill (17). Clinically ill reptiles provided 37% (64) of Salmonella cultures. Factors associated with an increased risk of illness in reptiles with a positive culture result were carnivorous diet and prior confiscation. Snakes had a higher risk of illness than other reptile groups, whereas lizards had a lower risk. Bony changes, dermatitis, and anorexia were the most common clinical signs. CONCLUSIONS AND CLINICAL RELEVANCE This study provided new information on Salmonella infection or carriage and associated clinical disease in reptiles. Associations identified between serovars or subspecies and reptile groups or clinical disease can guide management of Salmonella-positive captive reptiles.

  19. [Salmonella].

    PubMed

    Amo, Kiyoko

    2012-08-01

    Nontyphoidal salmonella causes infectious gastroenteritis, and sometimes causes bacteremia and meningitis. Gastroenteritis associated with nontyphoidal salmonella, in which fever, diarrhea, vomiting and abdominal cramps, is a common disease. The major way of transmittion is food of animal origin, for example egg. That is the reason why precausion is so important such as wash hands before cooking, avoid eating raw egg and wash the cooking utensils after contact raw foods. In this report, I presented the rare severe case of encephalitis caused by salmonella infection.

  20. 21 CFR 500.35 - Animal feeds contaminated with Salmonella microorganisms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Animal feeds contaminated with Salmonella microorganisms. 500.35 Section 500.35 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Decisions § 500.35 Animal feeds contaminated with Salmonella microorganisms. (a) Investigations by the Food...

  1. Dynamics of Salmonella infection of macrophages at the single cell level.

    PubMed

    Gog, Julia R; Murcia, Alicia; Osterman, Natan; Restif, Olivier; McKinley, Trevelyan J; Sheppard, Mark; Achouri, Sarra; Wei, Bin; Mastroeni, Pietro; Wood, James L N; Maskell, Duncan J; Cicuta, Pietro; Bryant, Clare E

    2012-10-07

    Salmonella enterica causes a range of diseases. Salmonellae are intracellular parasites of macrophages, and the control of bacteria within these cells is critical to surviving an infection. The dynamics of the bacteria invading, surviving, proliferating in and killing macrophages are central to disease pathogenesis. Fundamentally important parameters, however, such as the cellular infection rate, have not previously been calculated. We used two independent approaches to calculate the macrophage infection rate: mathematical modelling of Salmonella infection experiments, and analysis of real-time video microscopy of infection events. Cells repeatedly encounter salmonellae, with the bacteria often remain associated with the macrophage for more than ten seconds. Once Salmonella encounters a macrophage, the probability of that bacterium infecting the cell is remarkably low: less than 5%. The macrophage population is heterogeneous in terms of its susceptibility to the first infection event. Once infected, a macrophage can undergo further infection events, but these reinfection events occur at a lower rate than that of the primary infection.

  2. Prevalence and Characterization of Salmonella in Animal Meals Collected from Rendering Operations.

    PubMed

    Jiang, Xiuping

    2016-06-01

    As part of the Salmonella Education Reduction Program, the Animal Protein Producers Industry initiated a yearlong microbiological survey of animal meals from 1 January to 31 December 2010. The types of animal meals included poultry meal, pork and beef crax, meat meal, meat and bone meal, feather meal, blood meal, and fish meal from a variety of rendering operations (n = 65). Salmonella was positive in 731 (8.3%) of 8,783 analyzed samples, with contamination rates as 1.0, 33.2, and 21.3% from samples collected right after press, being loaded out, or unidentified, respectively. The randomly selected positive Salmonella samples (n = 100) representing 1.1% of the total samples tested were enumerated by the most-probable-number (MPN) method. The Salmonella contamination level ranged from <0.03 (below the detection limit) to 240 MPN/g with a median MPN per gram of 0.036. Among 102 Salmonella isolates from those 100 positive samples, a total of 42 Salmonella serotypes or groups were identified with Montevideo (13%), Senftenberg (11%), Mbandaka (7%), Orion (7%), Livingstone (6%), Tennessee (4%), Infantis (4%), Cerro (4%), and group C1 (4%) as the most predominant ones. Those Salmonella isolates were further analyzed for antimicrobial resistance to the 15 most common antibiotics by using the National Antimicrobial Resistance Monitoring System gram-negative plate. Most Salmonella isolates (n = 94) were sensitive to all antibiotics tested, with seven isolates resistant to one antibiotic and one resistant to seven antibiotics. Clearly, the prevalence of Salmonella in animal meals declined compared with previous surveys, and none of the Salmonella serotypes concerning target animal health were isolated. In addition, most Salmonella isolates remained susceptible to the majority of the 15 most commonly used antibiotics.

  3. Saccharomyces boulardii prevention of the hepatic injury induced by Salmonella Enteritidis infection.

    PubMed

    Wu, Daichao; Teng, Da; Wang, Xiumin; Dai, Changsong; Wang, Jianhua

    2014-10-01

    Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis) is the predominant cause of serovar-associated food-borne outbreaks in many countries and causes significant clinical symptoms of liver injury, enteritis, and diarrheal diseases. Saccharomyces boulardii is used in clinical application for prophylaxis and the treatment of a variety of diseases caused by bacterial infection. We used a mouse model of Salmonella Enteritidis infection, which included pretreatment with S. boulardii, to reveal the protection mechanisms of S. boulardii against Salmonella Enteritidis infection, including the translocation of Salmonella Enteritidis to the liver 10 days after Salmonella Enteritidis challenge, and the colonisation of Salmonella Enteritidis and the formation of hepatic tissue lesions in mice after Salmonella Enteritidis challenge on the 10th day. Compared with Salmonella Enteritidis infection in mice, S. boulardii decreased Salmonella Enteritidis translocation to the liver by 96%, and 99% of Salmonella Enteritidis colonised the cecum on the 10th day. Saccharomyces boulardii also abated hepatic tissue injury caused by the infiltration of neutrophilic granulocytes, lymphocytes, and plasmocytes by decreasing the translocation of Salmonella to the liver. These findings demonstrated that S. boulardii is an effective agent in the prevention of the hepatic injury induced by Salmonella Enteritidis infection in a mouse model.

  4. Salmonella Muenster infection in a dairy herd

    PubMed Central

    Radke, Brian R.; McFall, Margaret; Radostits, Steve M.

    2002-01-01

    The overall purpose of this study was to provide information on animal and occupational health associated with the infection of a dairy herd with Salmonella Muenster that would be useful in the management of dairy herds so infected. This retrospective, longitudinal report records a 2-year infection of a 140-cow dairy herd with S. Muenster, which was likely introduced by additions to the herd. Six cows aborted or had diarrhea due to salmonellosis in the last trimester of pregnancy. Additions to the herd and the presence of animals that had not received an Escherichia coli bacterin-toxoid were risk factors for salmonellosis. One neonate died, and 24 of 36 calves born between November 1998 and May 1999 had diarrhea by 1 mo of age. Initially, over 60% of the cows were fecal positive; within 6 months, all cows but 1 had become infected. The intermittent shedding of the organism and the eventual zero prevalence highlight the inappropriateness of extensive culling as an eradication strategy. Cultures of the bulk-tank milk filters were more sensitive than cultures of the bulk-tank milk samples at detecting S. Muenster. Two months after the index case, S. Muenster was cultured from the milk of 7.8% of the cows. Positive fecal or milk cultures were not associated with impaired health or production. The herd's milk was a zoonotic risk, but contact with infected animals was not. The organism spread easily between operations, likely via manure-contaminated clothing and footwear. PMID:12058570

  5. Coconut and Salmonella Infection

    PubMed Central

    Schaffner, Carl P.; Mosbach, Klaus; Bibit, Venuso C.; Watson, Colin H.

    1967-01-01

    Raw, unprocessed coconut supports the growth of salmonellae as well as that of other enteric bacteria, salmonellae being particularly resistant to subsequent desiccation. Original contamination is not due to carriers or to polluted water supplies, but to contact with bacteria-containing soils followed by dispersion via infected coconut milk and shells. Pasteurization of raw coconut meat in a water bath at 80 C for 8 to 10 min effectively killed such bacteria, did not injure the product, and provided a prophylactic method now widely used by the coconut industry. PMID:5340650

  6. Ten years experience of Salmonella infections in Cambridge, UK.

    PubMed

    Matheson, Nicholas; Kingsley, Robert A; Sturgess, Katherine; Aliyu, Sani H; Wain, John; Dougan, Gordon; Cooke, Fiona J

    2010-01-01

    Review of all Salmonella infections diagnosed in the Cambridge area over 10 years. All Salmonella enterica isolated in the Clinical Microbiology Laboratory, Addenbrooke's Hospital between 1.1.1999 and 31.12.2008 were included. Patient demographics, serotype and additional relevant details (travel history, resistance-type, phage-type) were recorded. 1003 episodes of Salmonella gastroenteritis were confirmed by stool culture, representing 88 serotypes. Serotypes Enteritidis (59%), Typhimurium (4.7%), Virchow (2.6%), Newport (1.8%) and Braenderup (1.7%) were the 5 most common isolates. There were an additional 37 invasive Salmonella infections (32 blood cultures, 4 tissue samples, 1 CSF). 13/15 patients with Salmonella Typhi or Salmonella Paratyphi isolated from blood or faeces with an available travel history had returned from the Indian subcontinent. 8/10 S. Typhi or Paratyphi isolates tested had reduced susceptibility to fluoroquinolones (MIC > or = 0.125 mg/L). 7/21 patients with non-typhoidal Salmonella bacteraemia were known to be immunosuppressed. This study describes Salmonella serotypes circulating within a defined geographical area over a decade. Prospective molecular analysis of isolates of S. enterica by multi-locus sequence typing (MLST) and single nucleotide polymorphism (SNP) detection will determine the geo-phylogenetic relationship of isolates within our region. 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.

  7. Clinical outcomes of nalidixic acid, ceftriaxone, and multidrug-resistant nontyphoidal salmonella infections compared with pansusceptible infections in FoodNet sites, 2006-2008.

    PubMed

    Krueger, Amy L; Greene, Sharon A; Barzilay, Ezra J; Henao, Olga; Vugia, Duc; Hanna, Samir; Meyer, Stephanie; Smith, Kirk; Pecic, Gary; Hoefer, Dina; Griffin, Patricia M

    2014-05-01

    unnecessary antimicrobial use in patient care settings and in food animals to help prevent the emergence of resistance and infections with resistant nontyphoidal Salmonella.

  8. A Comparison of Non-Typhoidal Salmonella from Humans and Food Animals Using Pulsed-Field Gel Electrophoresis and Antimicrobial Susceptibility Patterns

    PubMed Central

    Sandt, Carol H.; Fedorka-Cray, Paula J.; Tewari, Deepanker; Ostroff, Stephen; Joyce, Kevin; M’ikanatha, Nkuchia M.

    2013-01-01

    Salmonellosis is one of the most important foodborne diseases affecting humans. To characterize the relationship between Salmonella causing human infections and their food animal reservoirs, we compared pulsed-field gel electrophoresis (PFGE) and antimicrobial susceptibility patterns of non-typhoidal Salmonella isolated from ill humans in Pennsylvania and from food animals before retail. Human clinical isolates were received from 2005 through 2011 during routine public health operations in Pennsylvania. Isolates from cattle, chickens, swine and turkeys were recovered during the same period from federally inspected slaughter and processing facilities in the northeastern United States. We found that subtyping Salmonella isolates by PFGE revealed differences in antimicrobial susceptibility patterns and, for human Salmonella, differences in sources and invasiveness that were not evident from serotyping alone. Sixteen of the 20 most common human Salmonella PFGE patterns were identified in Salmonella recovered from food animals. The most common human Salmonella PFGE pattern, Enteritidis pattern JEGX01.0004 (JEGX01.0003ARS), was associated with more cases of invasive salmonellosis than all other patterns. In food animals, this pattern was almost exclusively (99%) found in Salmonella recovered from chickens and was present in poultry meat in every year of the study. Enteritidis pattern JEGX01.0004 (JEGX01.0003ARS) was associated with susceptibility to all antimicrobial agents tested in 94.7% of human and 97.2% of food animal Salmonella isolates. In contrast, multidrug resistance (resistance to three or more classes of antimicrobial agents) was observed in five PFGE patterns. Typhimurium patterns JPXX01.0003 (JPXX01.0003 ARS) and JPXX01.0018 (JPXX01.0002 ARS), considered together, were associated with resistance to five or more classes of antimicrobial agents: ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline (ACSSuT), in 92% of human and 80% of food

  9. Genetic and Dietary Iron Overload Differentially Affect the Course of Salmonella Typhimurium Infection

    PubMed Central

    Nairz, Manfred; Schroll, Andrea; Haschka, David; Dichtl, Stefanie; Tymoszuk, Piotr; Demetz, Egon; Moser, Patrizia; Haas, Hubertus; Fang, Ferric C.; Theurl, Igor; Weiss, Günter

    2017-01-01

    Genetic and dietary forms of iron overload have distinctive clinical and pathophysiological features. HFE-associated hereditary hemochromatosis is characterized by overwhelming intestinal iron absorption, parenchymal iron deposition, and macrophage iron depletion. In contrast, excessive dietary iron intake results in iron deposition in macrophages. However, the functional consequences of genetic and dietary iron overload for the control of microbes are incompletely understood. Using Hfe+/+ and Hfe−/− mice in combination with oral iron overload in a model of Salmonella enterica serovar Typhimurium infection, we found animals of either genotype to induce hepcidin antimicrobial peptide expression and hypoferremia following systemic infection in an Hfe-independent manner. As predicted, Hfe−/− mice, a model of hereditary hemochromatosis, displayed reduced spleen iron content, which translated into improved control of Salmonella replication. Salmonella adapted to the iron-poor microenvironment in the spleens of Hfe−/− mice by inducing the expression of its siderophore iron-uptake machinery. Dietary iron loading resulted in higher bacterial numbers in both WT and Hfe−/− mice, although Hfe deficiency still resulted in better pathogen control and improved survival. This suggests that Hfe deficiency may exert protective effects in addition to the control of iron availability for intracellular bacteria. Our data show that a dynamic adaptation of iron metabolism in both immune cells and microbes shapes the host-pathogen interaction in the setting of systemic Salmonella infection. Moreover, Hfe-associated iron overload and dietary iron excess result in different outcomes in infection, indicating that tissue and cellular iron distribution determines the susceptibility to infection with specific pathogens. PMID:28443246

  10. Salmonella species and serotypes isolated from farm animals, animal feed, sewage, and sludge in Saudi Arabia*

    PubMed Central

    Nabbut, N. H.; Barbour, E. K.; Al-Nakhli, H. M.

    1982-01-01

    A total of 264 salmonellae representing 65 different species and serotypes were isolated for the first time in Saudi Arabia, from various animal species, animal feed, sewage, and sludge. The six most frequently isolated Salmonella species or serotypes were: livingstone, concord, “S. schottmuelleri” (invalid), lille, S. typhimurium, and cerro. PMID:6983931

  11. Subinhibitory concentrations of phloretin repress the virulence of Salmonella typhimurium and protect against Salmonella typhimurium infection.

    PubMed

    Shuai-Cheng, Wu; Ben-Dong, Fu; Xiu-Ling, Chu; Jian-Qing, Su; Yun-Xing, Fu; Zhen-Qiang, Cui; Dao-Xiu, Xu; Zong-Mei, Wu

    2016-11-01

    Phloretin, a natural component of many fruits, exhibits anti-virulence effects and provides a new alternative to counter bacterial infection. The aim of this study was to determine the effect of subinhibitory concentrations of phloretin on the virulence of Salmonella typhimurium. At concentrations where growth of Salmonella was not inhibited, phloretin significantly inhibited bacteria biofilm formation and motility. Subinhibitory concentrations of phloretin repressed eight genes involved in the Salmonella pathogenicity island 1 and 3 genes involved in flagella production. Furthermore, subinhibitory concentrations of phloretin inhibited the adhesion and invasion of Salmonella in IEC-6 cells and reduced the LDH levels of S. typhimurium-infected IEC-6 cells. Additionally, phloretin significantly decreased the cecum bacterial loads of the mice infected with live S. typhimurium containing subinhibitory concentrations of phloretin by gavage. These results suggested that subinhibitory concentrations of phloretin attenuate the virulence of S. typhimurium and protect against S. typhimurium infection.

  12. The relationship between the numbers of Salmonella Enteritidis, Salmonella Heidelberg, or Salmonella Hadar colonizing reproductive tissues of experimentally infected laying hens and deposition inside eggs.

    PubMed

    Gast, Richard K; Guraya, Rupa; Guard, Jean; Holt, Peter S

    2011-06-01

    Contamination of eggs by Salmonella Enteritidis has been a prominent cause of human illness for several decades and is the focus of a recently implemented national regulatory plan for egg-producing flocks in the United States. Salmonella Heidelberg has also been identified as an egg-transmitted pathogen. The deposition of Salmonella strains inside eggs is a consequence of reproductive tract colonization in infected laying hens, but prior research has not determined the relationship between the numbers of Salmonella that colonize reproductive organs and the associated frequency of egg contamination. In the present study, groups of laying hens in two trials were experimentally infected with large oral doses of strains of Salmonella Enteritidis (phage type 13a), Salmonella Heidelberg, or Salmonella Hadar. Reproductive tissues of selected hens were cultured to detect and enumerate Salmonella at 5 days postinoculation, and the interior contents of eggs laid between 6 and 25 days postinoculation were tested for contamination. Significantly more internally contaminated eggs were laid by hens infected with Salmonella Enteritidis (3.58%) than with strains of either Salmonella Heidelberg (0.47%) or Salmonella Hadar (0%). However, no significant differences were observed between Salmonella strains in either isolation frequency or the number of colony-forming units (CFU) isolated from ovaries or oviducts. Salmonella isolation frequencies ranged from 20.8% to 41.7% for ovaries and from 8.3% to 33.3% for oviducts. Mean Salmonella colonization levels ranged from 0.10 to 0.51 log CFU/g for ovaries and from 0.25 to 0.46 log CFU/g for oviducts. Although parallel rank-orders were observed for Salmonella enumeration (in both ovaries and oviducts) and egg contamination frequency, a statistically significant relationship could not be established between these two parameters of infection.

  13. Characterization of Salmonella Typhimurium of animal origin obtained from the National Antimicrobial Resistance Monitoring System.

    PubMed

    Zhao, S; Fedorka-Cray, P J; Friedman, S; McDermott, P F; Walker, R D; Qaiyumi, S; Foley, S L; Hubert, S K; Ayers, S; English, L; Dargatz, D A; Salamone, B; White, D G

    2005-01-01

    Salmonella Typhimurium remains one of the most common causes of salmonellosis in animals and humans in the United States. The emergence of multi-drug resistant Salmonella reduces the therapeutic options in cases of invasive infections, and has been shown to be associated with an increased burden of illness. In this study, 588 S. Typhimurium (including var. Copenhagen) isolates obtained from either animal diagnostic specimens (n = 199) or food animals after slaughter/processing (n = 389) were examined for antimicrobial susceptibility, presence of class-1 integrons, and characterized using pulsed-field gel electrophoresis and phage typing. Seventy-six percent (448/588) of isolates were resistant to at least one antimicrobial. Salmonella isolates displayed resistance most often to streptomycin (63%), tetracycline (61%), ampicillin (61%), and to a lesser extent, chloramphenicol (36%), ceftiofur (15%), gentamicin (9%), and nalidixic acid (4%), with more resistance observed among diagnostic isolates. Salmonella recovered from turkeys (n = 38) exhibited the highest rates of resistance, with 92% of isolates resistant to least one antimicrobial, and 58% resistant to > or =10 antimicrobials. Class 1 integrons were present in 51% of all isolates. Five integron associated resistance genes (aadA, aadB, pse-1, oxa-2 and dhfr) were identified. A total of 311 PFGE patterns were generated using XbaI, indicating a genetically diverse population. The largest PFGE cluster contained 146 isolates, including DT104 isolates obtained from all seven animal species. Results demonstrated a varied spectrum of antimicrobial resistance, including several multidrug resistant clonal groups, among S. Typhimurium and S. Typhimurium var. Copenhagen isolates recovered from both diagnostic and slaughter/processing samples.

  14. Low-oxygen tensions found in Salmonella-infected gut tissue boost Salmonella replication in macrophages by impairing antimicrobial activity and augmenting Salmonella virulence.

    PubMed

    Jennewein, Jonas; Matuszak, Jasmin; Walter, Steffi; Felmy, Boas; Gendera, Kathrin; Schatz, Valentin; Nowottny, Monika; Liebsch, Gregor; Hensel, Michael; Hardt, Wolf-Dietrich; Gerlach, Roman G; Jantsch, Jonathan

    2015-12-01

    In Salmonella infection, the Salmonella pathogenicity island-2 (SPI-2)-encoded type three secretion system (T3SS2) is of key importance for systemic disease and survival in host cells. For instance, in the streptomycin-pretreated mouse model SPI-2-dependent Salmonella replication in lamina propria CD11c(-)CXCR1(-) monocytic phagocytes/macrophages (MΦ) is required for the development of colitis. In addition, containment of intracellular Salmonella in the gut critically depends on the antimicrobial effects of the phagocyte NADPH oxidase (PHOX), and possibly type 2 nitric oxide synthase (NOS2). For both antimicrobial enzyme complexes, oxygen is an essential substrate. However, the amount of available oxygen upon enteroinvasive Salmonella infection in the gut tissue and its impact on Salmonella-MΦ interactions was unknown. Therefore, we measured the gut tissue oxygen levels in a model of Salmonella enterocolitis using luminescence two-dimensional in vivo oxygen imaging. We found that gut tissue oxygen levels dropped from ∼78 Torr (∼11% O2) to values of ∼16 Torr (∼2% O2) during infection. Because in vivo virulence of Salmonella depends on the Salmonella survival in MΦ, Salmonella-MΦ interaction was analysed under such low oxygen values. These experiments revealed an increased intracellular replication and survival of wild-type and t3ss2 non-expressing Salmonella. These findings were paralleled by blunted nitric oxide and reactive oxygen species (ROS) production and reduced Salmonella ROS perception. In addition, hypoxia enhanced SPI-2 transcription and translocation of SPI-2-encoded virulence protein. Neither pharmacological blockade of PHOX and NOS2 nor impairment of T3SS2 virulence function alone mimicked the effect of hypoxia on Salmonella replication under normoxic conditions. However, if t3ss2 non-expressing Salmonella were used, hypoxia did not further enhance Salmonella recovery in a PHOX and NOS2-deficient situation. Hence, these data suggest that

  15. Prevalence, risk factors and antimicrobial resistance of Salmonella diarrhoeal infection among children in Thi-Qar Governorate, Iraq.

    PubMed

    Harb, A; O'Dea, M; Hanan, Z K; Abraham, S; Habib, I

    2017-12-01

    We conducted a hospital-based cross-sectional study among children aged <5 years in Thi-Qar Governorate, south-eastern Iraq, in order to examine the prevalence, risk factors and antimicrobial resistance associated with gastroenteritis caused by Salmonella infection. From 320 diarrhoea cases enrolled between March and August 2016, 33 (10·3%, 95% confidence interval (CI) 8·4-12·4) cases were stool culture-positive for non-typhoidal Salmonella enterica. The most commonly identified serovar was Typhimurium (54%). Multivariable logistic regression analysis indicated that the odds of Salmonella infection in children from households supplied by pipe water was 4·7 (95% CI 1·6-13·9) times higher compared with those supplied with reverse osmosis treated water. Similarly, children from households with domestic animals were found to have a higher odds (OR 10·5; 95% CI 3·8-28·4) of being Salmonella stool culture-positive. The likelihood of Salmonella infection was higher (OR 3·9; 95% CI 1·0-6·4) among children belonging to caregiver with primary vs. tertiary education levels. Lower odds (OR 0·4; 95% CI 0·1-0·9) of Salmonella infection were associated with children exclusively breast fed as compared with those exclusively bottle fed. Salmonella infection was three times lower (95% CI 0·1-0·7) in children belonging to caregiver who reported always washing hands after cleaning children following defecation, vs. those belonging to caregivers who did not wash hands. The antimicrobial resistance profile by disc diffusion revealed that non-susceptibility to tetracycline (78·8%), azithromycin (66·7%) and ciprofloxacin (57·6%) were the most commonly seen, and 84·9% of Salmonella isolates were classified as multi-drug resistant. This is the first study on prevalence and antimicrobial resistance of Salmonella infection among children in this setting. This work provides specific epidemiological data which are crucial to understand and combat paediatric diarrhoea in

  16. Antimicrobial-resistant nontyphoidal Salmonella is associated with excess bloodstream infections and hospitalizations.

    PubMed

    Varma, Jay K; Molbak, Kåre; Barrett, Timothy J; Beebe, James L; Jones, Timothy F; Rabatsky-Ehr, Therese; Smith, Kirk E; Vugia, Duc J; Chang, Hwa-Gan H; Angulo, Frederick J

    2005-02-15

    Nontyphoidal Salmonella is a leading cause of foodborne illness. Few studies have explored the health consequences of antimicrobial-resistant Salmonella. The National Antimicrobial Resistance Monitoring System (NARMS) performs susceptibility testing on nontyphoidal Salmonella isolates. The Foodborne Diseases Active Surveillance Network (FoodNet) ascertains outcomes for patients with culture-confirmed Salmonella infection, in 9 states, each of which participates in NARMS. We analyzed the frequency of bloodstream infection and hospitalization among patients with resistant infections. Isolates defined as resistant to a clinically important agent were resistant to 1 or more of the following agents: ampicillin, ceftriaxone, ciprofloxacin, gentamicin, and/or trimethoprim-sulfamethoxazole. During 1996-2001, NARMS received 7370 serotyped, nontyphoidal Salmonella isolates from blood or stool. Bloodstream infection occurred more frequently among patients infected with an isolate resistant to > or =1 clinically important agent (adjusted odds ratio [OR], 1.6; 95% confidence interval [CI], 1.2-2.1), compared with patients with pansusceptible infection. During 1996-2001, FoodNet staff ascertained outcomes for 1415 patients who had isolates tested in NARMS. Hospitalization with bloodstream infection occurred more frequently among patients infected with an isolate resistant to > or =1 clinically important agent (adjusted OR, 3.1; 95% CI, 1.4-6.6), compared with patients with pansusceptible infection. Patients with antimicrobial-resistant nontyphoidal Salmonella infection were more likely to have bloodstream infection and to be hospitalized than were patients with pansusceptible infection. Mitigation of antimicrobial resistance in Salmonella will likely benefit human health.

  17. Enjoying Homemade Ice Cream without the Risk of Salmonella Infection

    MedlinePlus

    ... Contaminants Buy, Store & Serve Safe Food Enjoying Homemade Ice Cream without the Risk of Salmonella Infection Share ... it Email Print August 2004 Every year homemade ice cream causes several outbreaks of Salmonella infection with ...

  18. A rabbit model of non-typhoidal Salmonella bacteremia.

    PubMed

    Panda, Aruna; Tatarov, Ivan; Masek, Billie Jo; Hardick, Justin; Crusan, Annabelle; Wakefield, Teresa; Carroll, Karen; Yang, Samuel; Hsieh, Yu-Hsiang; Lipsky, Michael M; McLeod, Charles G; Levine, Myron M; Rothman, Richard E; Gaydos, Charlotte A; DeTolla, Louis J

    2014-09-01

    Bacteremia is an important cause of morbidity and mortality in humans. In this study, we focused on the development of an animal model of bacteremia induced by non-typhoidal Salmonella. New Zealand White rabbits were inoculated with a human isolate of non-typhoidal Salmonella strain CVD J73 via the intra-peritoneal route. Blood samples were collected at specific time points and at euthanasia from infected rabbits. Additionally, tissue samples from the heart, lungs, spleen, gastrointestinal tract, liver and kidneys were obtained at euthanasia. All experimentally infected rabbits displayed clinical signs of disease (fever, dehydration, weight loss and lethargy). Tissues collected at necropsy from the animals exhibited histopathological changes indicative of bacteremia. Non-typhoidal Salmonella bacteria were detected in the blood and tissue samples of infected rabbits by microbiological culture and real-time PCR assays. The development of this animal model of bacteremia could prove to be a useful tool for studying how non-typhoidal Salmonella infections disseminate and spread in humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Immunity to intestinal pathogens: lessons learned from Salmonella

    PubMed Central

    McSorley, Stephen J.

    2014-01-01

    Summary Salmonella are a common source of food or water-borne infection and cause a wide range of clinical disease in human and animal hosts. Salmonella are relatively easy to culture and manipulate in a laboratory setting, and the infection of laboratory animals induces robust innate and adaptive immune responses. Thus, immunologists have frequently turned to Salmonella infection models to expand understanding of immunity to intestinal pathogens. In this review, I summarize current knowledge of innate and adaptive immunity to Salmonella and highlight features of this response that have emerged from recent studies. These include the heterogeneity of the antigen-specific T-cell response to intestinal infection, the prominence of microbial mechanisms to impede T and B-cell responses, and the contribution of non-cognate pathways for elicitation of T-cell effector functions. Together, these different issues challenge an overly simplistic view of host-pathogen interaction during mucosal infection but also allow deeper insight into the real-world dynamic of protective immunity to intestinal pathogens. PMID:24942689

  20. The relationship between infecting dose and severity of disease in reported outbreaks of Salmonella infections.

    PubMed Central

    Glynn, J. R.; Bradley, D. J.

    1992-01-01

    The relationship between size of the infecting dose and severity of the resulting disease has been investigated for salmonella infections by reanalysis of data within epidemics for 32 outbreaks, and comparing data between outbreaks for 68 typhoid epidemics and 49 food-poisoning outbreaks due to salmonellas. Attack rate, incubation period, amount of infected food consumed and type of vehicle are used as proxy measures of infecting dose, while case fatality rates for typhoid and case hospitalization rates for food poisoning salmonellas were used to assess severity. Limitations of the data are discussed. Both unweighted and logit analysis models are used. There is no evidence for a dose-severity relationship for Salmonella typhi, but evidence of a correlation between dose and severity is available from within-epidemic or between-epidemic analysis, or both, for Salmonella typhimurium, S. enteritidis, S. infantis, S. newport, and S. thompson. The presence of such a relationship affects the way in which control interventions should be assessed. PMID:1468522

  1. Babies and bearded dragons: sudden increase in reptile-associated Salmonella enterica serovar Tennessee infections, Germany 2008.

    PubMed

    Weiss, Bettina; Rabsch, Wolfgang; Prager, Rita; Tietze, Erhard; Koch, Judith; Mutschmann, Frank; Roggentin, Peter; Frank, Christina

    2011-09-01

    In 2008 a marked increase in Salmonella enterica serovar Tennessee infections in infants occurred in Germany. In March and April 2008, eight cases were notified compared to a median of 0-1 cases in 2001-2006. We carried out an investigation including a case-control study to identify the source of infection. A patient was a child < 3 years of age with Salmonella Tennessee isolated from stool from September 1, 2007, through December 31, 2008, identified through the national surveillance system. A control was a child with a notified rotavirus infection in the matching district, frequency matched by age group. We conducted telephone interviews on feeding, herbal infusions, and animal contact. Matched odds ratios (mOR) were calculated using exact conditional logistic regression. For Salmonella Tennessee isolates, pulsed-field gel electrophoresis and multiple-locus variable number tandem repeat analysis were performed. Further cloacal swab samples of reptiles kept in case households were investigated. We identified 18 cases < 3 years. Ten children were male; median age was 3 months (1-32 months). In 8 of 16 case households reptiles were kept. Direct contact between child and reptile was denied. Other forms of reptile contact were reported in four of the remaining eight households. Ten case- and 21 control-patients were included in the study. Only keeping of a reptile and "any reptile contact" were associated with Salmonella Tennessee infection (mOR 29.0; 95% CI 3.1 ± ∞ and mOR 119.5; 95% CI 11.7 - ∞). Identical Salmonella Tennessee strains of child and reptile kept in the same household could be shown in 2 cases. Reptiles were the apparent source of Salmonella Tennessee infection in these infants. Indirect contact between infants and reptiles seems to be sufficient to cause infection and should therefore be avoided.

  2. Use of Attenuated but Metabolically Competent Salmonella as a Probiotic To Prevent or Treat Salmonella Infection

    PubMed Central

    Sabag-Daigle, Anice; Blunk, Henry M.; Gonzalez, Juan F.; Steidley, Brandi L.; Boyaka, Prosper N.

    2016-01-01

    Salmonella enterica is among the most burdensome of foodborne disease agents. There are over 2,600 serovars that cause a range of disease manifestations ranging from enterocolitis to typhoid fever. While there are two vaccines in use in humans to protect against typhoid fever, there are none that prevent enterocolitis. If vaccines preventing enterocolitis were to be developed, they would likely protect against only one or a few serovars. In this report, we tested the hypothesis that probiotic organisms could compete for the preferred nutrient sources of Salmonella and thus prevent or treat infection. To this end, we added the fra locus, which encodes a utilization pathway for the Salmonella-specific nutrient source fructose-asparagine (F-Asn), to the probiotic bacterium Escherichia coli Nissle 1917 (Nissle) to increase its ability to compete with Salmonella in mouse models. We also tested a metabolically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its ability to compete with wild-type Salmonella. The modified Nissle strain became more virulent and less able to protect against Salmonella in some instances. On the other hand, the modified Salmonella strain was safe and effective in preventing infection with wild-type Salmonella. While we tested for efficacy only against Salmonella Typhimurium, the modified Salmonella strain may be able to compete metabolically with most, if not all, Salmonella serovars, representing a novel approach to control of this pathogen. PMID:27185789

  3. Proteins from latex of Calotropis procera prevent septic shock due to lethal infection by Salmonella enterica serovar Typhimurium.

    PubMed

    Lima-Filho, José V; Patriota, Joyce M; Silva, Ayrles F B; Filho, Nicodemos T; Oliveira, Raquel S B; Alencar, Nylane M N; Ramos, Márcio V

    2010-06-16

    The latex of Calotropis procera has been used in traditional medicine to treat different inflammatory diseases. The anti-inflammatory activity of latex proteins (LP) has been well documented using different inflammatory models. In this work the anti-inflammatory protein fraction was evaluated in a true inflammatory process by inducing a lethal experimental infection in the murine model caused by Salmonella enterica Subsp. enterica serovar Typhimurium. Experimental Swiss mice were given 0.2 ml of LP (30 or 60 mg/kg) by the intraperitoneal route 24 h before or after lethal challenge (0.2 ml) containing 10(6) CFU/ml of Salmonella Typhimurium using the same route of administration. All the control animals succumbed to infection within 6 days. When given before bacterial inoculums LP prevented the death of mice, which remained in observation until day 28. Even, LP-treated animals exhibited only discrete signs of infection which disappeared latter. LP fraction was also protective when given orally or by subcutaneous route. Histopathological examination revealed that necrosis and inflammatory infiltrates were similar in both the experimental and control groups on days 1 and 5 after infection. LP activity did not clear Salmonella Typhimurium, which was still present in the spleen at approximately 10(4) cells/g of organ 28 days after challenge. However, no bacteria were detected in the liver at this stage. LP did not inhibit bacterial growth in culture medium at all. In the early stages of infection bacteria population was similar in organs and in the peritoneal fluid but drastically reduced in blood. Titration of TNF-alpha in serum revealed no differences between experimental and control groups on days 1 and 5 days after infection while IL-12 was only discretely diminished in serum of experimental animals on day 5. Moreover, cultured macrophages treated with LP and stimulated by LPS released significantly less IL-1beta. LP-treated mice did not succumb to septic shock when

  4. Salmonella contamination: a significant challenge to the global marketing of animal food products.

    PubMed

    L Plym, Forshell; Wierup, M

    2006-08-01

    Salmonellosis is the most common food-borne bacterial disease in the world. Salmonella is a significant pathogen for food-producing animals and these animals are the primary source of salmonellosis. It is estimated that herd prevalence varies between 0% and 90%, depending on the animal species and region. The pathogen is spread by trade in animals and non-heated animal food products. The emergence of strains that are resistant to antimicrobials, often as a result of antimicrobial usage in animals, is a public health hazard of great concern. It is increasingly accepted that the prevalence of Salmonella in animal production must be decreased and, in the European Union, plans to achieve this are currently being implemented. In this paper, the authors propose various risk mitigation strategies. Successful control must focus on a range of preventive actions because there is no simple 'silver bullet' solution to reduce Salmonella contamination. The authors conclude that the key to controlling Salmonella is to follow the general rules that have been successfully applied to other infectious diseases.

  5. Prevalence and Spatial Distribution of Salmonella Infections in the Pennsylvania Raccoon (Procyon lotor).

    PubMed

    Very, K J; Kirchner, M K; Shariat, N; Cottrell, W; Sandt, C H; Dudley, E G; Kariyawasam, S; Jayarao, B M

    2016-05-01

    A study was conducted to determine the prevalence and spatial distribution of Salmonella infection in Pennsylvania raccoons (Procyon lotor), common wildlife mammals known to occupy overlapping habitats with humans and domestic food animals. The Pennsylvania Game Commission provided a total of 371 raccoon intestinal samples from trapped and road-killed raccoons collected between May and November 2011. Salmonella was isolated from the faeces of 56 (15.1%) of 371 raccoons in 35 (54%) of 65 counties across Pennsylvania. The five most frequently isolated serotypes were Newport (28.6%), Enteritidis (19.6%), Typhimurium (10.7%), Braenderup (8.9%) and Bareilly (7.1%). Pulsed-field gel electrophoresis (PFGE) analysis of the Salmonella isolates and subsequent comparison to the Pennsylvania Department of Health human Salmonella PFGE database revealed 16 different pulsetypes in Salmonella isolates recovered from raccoons that were indistinguishable from pulsetypes of Salmonella collected from clinically ill humans during the study period. The pulsetypes of seven raccoon Salmonella isolates matched those of 56 human Salmonella isolates by month and geographical region of sample collection. Results from Clustered Regularly Interspaced Short Palindromic Repeats and Multi-Virulence Locus Sequence Typing (CRISPR-MVLST) analysis corroborated the PFGE and serotyping data. The findings of this study show that several PFGE pulsetypes of Salmonella were shared between humans and raccoons in Pennsylvania, indicating that raccoons and humans might share the same source of Salmonella. © 2015 Blackwell Verlag GmbH.

  6. A Multistate Investigation of Antibiotic-Resistant Salmonella enterica Serotype I 4,[5],12:i:- Infections as Part of an International Outbreak Associated with Frozen Feeder Rodents

    PubMed Central

    Cartwright, E. J.; Nguyen, T.; Melluso, C.; Ayers, T.; Lane, C.; Hodges, A.; Li, X.; Quammen, J.; Yendell, S. J.; Adams, J.; Mitchell, J.; Rickert, R.; Klos, R.; Williams, I. T.; Behravesh, C. Barton; Wright, J.

    2015-01-01

    While most human Salmonella infections result from exposure to contaminated foods, an estimated 11% of all Salmonella infections are attributed to animal exposures, including both direct animal handling and indirect exposures such as cleaning cages and handling contaminated pet food. This report describes the epidemiologic, environmental and laboratory investigations conducted in the United States as part of the response to an international outbreak of tetracycline-resistant Salmonella enterica serotype I 4,[5],12:i:- infections with over 500 illnesses occurring from 2008 to 2010. This investigation found that illness due to the outbreak strain was significantly associated with exposure to pet reptiles and frozen feeder rodents used as food for pet reptiles. Salmonella isolates indistinguishable from the outbreak strain were isolated from a frozen feeder mice-fed reptile owned by a case patient, as well as from frozen feeder mice and environmental samples collected from a rodent producing facility (Company A). An international voluntary recall of all Company A produced frozen feeder animals sold between May 2009 and July 2010 occurred. Only 13% of cases in our investigation were aware of the association between Salmonella infection and mice or rats. Consumers, the pet industry, healthcare providers and veterinarians need to be aware of the potential health risk posed by feeder rodents, whether live or frozen. Frozen feeder rodent producers, suppliers and distributors should follow the animal food labelling requirements as described in 21 CFR §501.5, and all packages of frozen feeder rodents should include safe handling instructions. Persons should wash their hands thoroughly with soap and water after handling live or frozen feeder rodents, as well as reptiles or anything in the area where the animals live. Continued opportunities exist for public health officials, the pet industry, veterinarians and consumers to work together to prevent salmonellosis associated

  7. Salmonella Typhimurium gastroenteritis leading to chronic prosthetic vascular graft infection.

    PubMed

    Cullinan, Milo; Clarke, Michael; Dallman, Tim; Peart, Steven; Wilson, Deborah; Weiand, Daniel

    2017-08-01

    Introduction. It is estimated up to 6 % of prosthetic vascular grafts become infected. Staphylococcus aureus is predominant in early infection and coagulase-negative staphylococci are predominant in late infections. Enterobacteriaceae cause 14-40 % of prosthetic vascular graft infections. This is, to our knowledge the first reported case of Salmonella gastroenteritis causing chronic prosthetic vascular graft infection (PVGI). Case presentation. A 57 years old lady presented with signs and symptoms of prosthetic vascular graft infection. Three years earlier, she had undergone a prosthetic axillo-femoral bypass graft for critical limb ischaemia. The infected prosthetic vascular graft was removed and Salmonella Typhimurium was isolated on culture. In the intervening period, Salmonella Typhimurium was isolated from a faecal specimen, collected during an episode of acute gastroenteritis. Whole-genome sequencing (WGS) showed that the respective Salmonella Typhimurium isolates differed by only a single nucleotide polymorphism (SNP). Salmonella Typhimurium was not isolated on culture of a faecal specimen collected five days following cessation of antimicrobial therapy. Six months after removal of the prosthetic graft, the patient remains under follow-up for her peripheral vascular disease, which currently requires no further surgical intervention. Conclusion. This case has clear implications for the management of chronic PVGI. It is vital to collect high-quality surgical specimens for microbiological analysis and empirical choices of antibiotics are unlikely to cover all potential pathogens. It may also be prudent to enquire about a history of acute gastroenteritis when assessing patients presenting with chronic PVGI.

  8. Proteomic analysis of intestinal mucosa responses to Salmonella enterica serovar typhimurium in naturally infected pig.

    PubMed

    Arce, C; Lucena, C; Moreno, A; Garrido, J J

    2014-01-01

    Salmonella enterica serovar typhimurium (S. typhimurium) is one of the most frequent Salmonella serotypes isolated from European pigs. Despite the advances in understanding the mechanisms involved in host-pathogen interactions and host cell responses to S. typhimurium, the global change that occurs in naturally exposed populations has been poorly characterized. Here, we present a proteomics study on intestinal mucosa of pigs naturally infected with S. typhimurium, in order to better understand the pathogenesis of salmonellosis and the pathways which might be affected after infection. Samples were analyzed by 2D-DIGE and 44 different proteins exhibited statistically significant differences. The data set was analyzed by employing the Ingenuity Pathway Analysis and the physiological function most significantly perturbed were immunological and infectious disease, cellular assembly and organization and metabolism. The pathways implicated in the porcine immune response to S. typhimurium were gluconeogenesis and Rho GDI/RhoA signaling, and our results suggest that keratins and the intermediate filaments could play an important role in the damage of the mucosa and in the success of infection. The role of these findings in salmonellosis has been discussed, as well as the importance of analyzing naturally infected animals to have a complete picture of the infection. Also, we compared the results found in this work with those obtained in a similar study using experimentally infected animals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. [A case of Salmonella paratyphi A infection in Poland].

    PubMed

    Sobczyk-Krupiarz, Iwona; Garlicki, Aleksander; Biesiada, Grazyna; Czepiel, Jacek; Skwara, Paweł; Salamon, Dominika; Mach, Tomasz

    2008-01-01

    Paratyphoid fever is an acute infection caused by Salmonella paratyphi A, B or C. The disease is transmitted from person to person by fecal-oral way. Typical for typhoid fever are splenomegaly, bradycardia, fever, constipation or mild diarrhoea oftten associated with abdominal tenderness. We present the case of patient who was infected by Salmonella paratyphi C while his travelling in Asia.

  10. A comparison of non-typhoidal Salmonella from humans and food animals using pulsed-field gel electrophoresis and antimicrobial susceptibility patterns

    USDA-ARS?s Scientific Manuscript database

    Salmonellosis is one of the most important foodborne diseases affecting humans. To characterize the relationship between Salmonella causing human infections and their food animal reservoirs, we compared pulsed-field gel electrophoresis (PFGE) and antimicrobial susceptibility patterns of non-typhoida...

  11. Immune Reaction and Survivability of Salmonella Typhimurium and Salmonella Infantis after Infection of Primary Avian Macrophages

    PubMed Central

    Braukmann, Maria; Methner, Ulrich; Berndt, Angela

    2015-01-01

    Salmonella serovars are differentially able to infect chickens. The underlying causes are not yet fully understood. Aim of the present study was to elucidate the importance of Salmonella Pathogenicity Island 1 and 2 (SPI-1 and -2) for the virulence of two non-host-specific, but in-vivo differently invasive, Salmonella serovars in conjunction with the immune reaction of the host. Primary avian splenic macrophages were inoculated with Salmonella enterica sub-species enterica serovar (S.) Typhimurium and S. Infantis. The number and viability of intracellular bacteria and transcription of SPI-1 and -2 genes by the pathogens, as well as transcription of immune-related proteins, surface antigen expression and nitric oxide production by the macrophages, were compared at different times post inoculation. After infection, both of the Salmonella serovars were found inside the primary macrophages. Invasion-associated SPI-1 genes were significantly higher transcribed in S. Infantis- than S. Typhimurium-infected macrophages. The macrophages counteracted the S. Infantis and S. Typhimurium infection with elevated mRNA expression of inducible nitric oxide synthase (iNOS), interleukin (IL)-12, IL-18 and lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF) as well as with an increased synthesis of nitric oxide. Despite these host cell attacks, S. Typhimurium was better able than S. Infantis to survive within the macrophages and transcribed higher rates of the SPI-2 genes spiC, ssaV, sifA, and sseA. The results showed similar immune reactions of primary macrophages after infection with both of the Salmonella strains. The more rapid and stronger transcription of SPI-2-related genes by intracellular S. Typhimurium compared to S. Infantis might be responsible for its better survival in avian primary macrophages. PMID:25811871

  12. Similarities between Salmonella Enteritidis isolated from humans and captive wild animals in South Africa.

    PubMed

    Smith, Anthony M; Ismail, Husna; Henton, Maryke M; Keddy, Karen H

    2014-12-15

    Salmonella is well recognized as an aetiological agent of gastrointestinal and diarrhoeal disease. Salmonella enterica serotype Enteritidis (Salmonella Enteritidis) is one of the commonest serotypes associated with foodborne illness. In South Africa, we compared Salmonella Enteritidis strains isolated from humans with gastroenteritis and strains isolated from captive wild animals, between June 2011 and July 2012. Bacteria were phenotypically characterized using standard microbiological techniques. Genotypic relatedness of isolates was investigated by pulsed-field gel electrophoresis (PFGE) analysis. a diversity of 27 PFGE patterns amongst 196 human non-invasive isolates was shown; two PFGE patterns predominated and accounted for 74% of all human isolates. Human isolates showed a 12% prevalence rate for nalidixic acid resistance. Animal isolates from 5 different sources were investigated. With the exception of an isolate from a ground hornbill, all animal isolates (jaguar, crocodile, lion and poultry) showed PFGE pattern matches to a human isolate. Animal isolates showed susceptibility to all antimicrobial agents tested, with the exception of nalidixic acid resistance in isolates from the lion and poultry source. Our data showed similarities between Salmonella Enteritidis strains isolated from humans and captive wild animals, suggesting a probable common source for strains from humans and animals.

  13. Production of the Plant Hormone Auxin by Salmonella and Its Role in the Interactions with Plants and Animals.

    PubMed

    Cox, Clayton E; Brandl, Maria T; de Moraes, Marcos H; Gunasekera, Sarath; Teplitski, Max

    2017-01-01

    The ability of human enteric pathogens to colonize plants and use them as alternate hosts is now well established. Salmonella , similarly to phytobacteria, appears to be capable of producing the plant hormone auxin via an indole-3-pyruvate decarboxylase (IpdC), a key enzyme of the IPyA pathway. A deletion of the Salmonella ipdC significantly reduced auxin synthesis in laboratory culture. The Salmonella ipdC gene was expressed on root surfaces of Medicago truncatula . M. truncatula auxin-responsive GH3::GUS reporter was activated by the wild type Salmonella , and not but the ipdC mutant, implying that the bacterially produced IAA (Indole Acetic Acid) was detected by the seedlings. Seedling infections with the wild type Salmonella caused an increase in secondary root formation, which was not observed in the ipdC mutant. The wild type Salmonella cells were detected as aggregates at the sites of lateral root emergence, whereas the ipdC mutant cells were evenly distributed in the rhizosphere. However, both strains appeared to colonize seedlings well in growth pouch experiments. The ipdC mutant was also less virulent in a murine model of infection. When mice were infected by oral gavage, the ipdC mutant was as proficient as the wild type strain in colonization of the intestine, but it was defective in the ability to cross the intestinal barrier. Fewer cells of the ipdC mutant, compared with the wild type strain, were detected in Peyer's patches, spleen and in the liver. Orthologs of ipdC are found in all Salmonella genomes and are distributed among many animal pathogens and plant-associated bacteria of the Enterobacteriaceae , suggesting a broad ecological role of the IpdC-catalyzed pathway.

  14. Salmonella and antimicrobial resistance in an animal-based agriculture river system.

    PubMed

    Palhares, Julio Cesar Pascale; Kich, Jalusa D; Bessa, Marjo C; Biesus, Luiza L; Berno, Lais G; Triques, Nelise J

    2014-02-15

    The aim of this study was to examine the Salmonella serovars and antimicrobial resistance within an animal-based agriculture river system. The study area consisted of a 1,345 ha upper part of Pinhal catchment. A total of 384 samples were collected in four years of monitoring. Salmonella was isolated from 241 samples (62.7%), resulting in 324 isolates. The highest number of Salmonella sp. occurred in samples associated with sites with high stoking density animal unit per hectare. It was possible to demonstrate the variability of serovars in the study area: 30 different serovars were found and at least 11 per monitoring site. Thirty-three potentially related isolates were genotyped by PFGE, one major clone was observed in serovar Typhimurium, which occurred in animal feces (swine and bovine), and different sites and samplings proving the cross-contamination and persistence of this specific clone. Among 180 isolates submitted to an antimicrobial susceptibility test, 50.5% were susceptible to all 21 antimicrobials tested and 54 different profiles were found. In the current study, 49.5% of the tested isolates were resistant to at least one antimicrobial, and multi-resistance occurred in 18% of isolates. Results indicate a close interaction between animal-based agriculture, Salmonella, and antimicrobial resistance. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Assessment of attenuated Salmonella vaccine strains in controlling experimental Salmonella Typhimurium infection in chickens

    PubMed Central

    Pei, Yanlong; Parreira, Valeria R.; Roland, Kenneth L.; Curtiss, Roy; Prescott, John F.

    2014-01-01

    Salmonella hold considerable promise as vaccine delivery vectors for heterologous antigens in chickens. Such vaccines have the potential additional benefit of also controlling Salmonella infection in immunized birds. As a way of selecting attenuated strains with optimal immunogenic potential as antigen delivery vectors, this study screened 20 novel Salmonella Typhimurium vaccine strains, differing in mutations associated with delayed antigen synthesis and delayed attenuation, for their efficacy in controlling colonization by virulent Salmonella Typhimurium, as well as for their persistence in the intestine and the spleen. Marked differences were observed between strains in these characteristics, which provide the basis for selection for further study as vaccine vectors. PMID:24396177

  16. Assessment of attenuated Salmonella vaccine strains in controlling experimental Salmonella Typhimurium infection in chickens.

    PubMed

    Pei, Yanlong; Parreira, Valeria R; Roland, Kenneth L; Curtiss, Roy; Prescott, John F

    2014-01-01

    Salmonella hold considerable promise as vaccine delivery vectors for heterologous antigens in chickens. Such vaccines have the potential additional benefit of also controlling Salmonella infection in immunized birds. As a way of selecting attenuated strains with optimal immunogenic potential as antigen delivery vectors, this study screened 20 novel Salmonella Typhimurium vaccine strains, differing in mutations associated with delayed antigen synthesis and delayed attenuation, for their efficacy in controlling colonization by virulent Salmonella Typhimurium, as well as for their persistence in the intestine and the spleen. Marked differences were observed between strains in these characteristics, which provide the basis for selection for further study as vaccine vectors.

  17. The effect of feeding diets containing avoparcin on the excretion of salmonellas by chickens experimentally infected with natural sources of salmonella organisms.

    PubMed Central

    Barrow, P. A.; Smith, H. W.; Tucker, J. F.

    1984-01-01

    Chickens were readily infected with salmonella organisms when fed diets containing unsterilized bone-meal or provided with drinking water containing a suspension of natural salmonella infected chicken faeces. When fed diets containing avoparcin at concentrations of 10 or 100 mg/kg chickens infected in these ways excreted larger numbers of salmonellas for longer periods than did chickens fed a nonmedicated diet. PMID:6512249

  18. Applications of microscopy in Salmonella research.

    PubMed

    Malt, Layla M; Perrett, Charlotte A; Humphrey, Suzanne; Jepson, Mark A

    2015-01-01

    Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in humans and many other animals. Understanding the mechanisms by which Salmonella induces disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type 3 secretion system. Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second type 3 secretion system initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. Elucidation of the complex and highly dynamic pathogen-host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopy techniques to analyze Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and high-resolution light microscopy techniques such as confocal microscopy can reveal the precise location of Salmonella and its relationship to cellular components. Widefield light microscopy is a simpler approach with which to study the interaction of bacteria with host cells and often has advantages for live cell imaging, enabling detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on some microscopy techniques used routinely in our own research.

  19. Early immune response following Salmonella enterica subspecies enterica serovar Typhimurium infection in porcine jejunal gut loops

    PubMed Central

    Meurens, François; Berri, Mustapha; Auray, Gael; Melo, Sandrine; Levast, Benoît; Virlogeux-Payant, Isabelle; Chevaleyre, Claire; Gerdts, Volker; Salmon, Henri

    2009-01-01

    Salmonella enterica subspecies enterica serovar Typhimurium, commonly called S. Typhimurium, can cause intestinal infections in humans and various animal species such as swine. To analyze the host response to Salmonella infection in the pig we used an in vivo gut loop model, which allows the analysis of multiple immune responses within the same animal. Four jejunal gut-loops were each inoculated with 3×108 cfu of S. Typhimurium in 3 one-month-old piglets and mRNA expressions of various cytokines, chemokines, transcription factors, antimicrobial peptides, toll like and chemokine receptors were assessed by quantitative real-time PCR in the Peyer’s patch and the gut wall after 24 h. Several genes such as the newly cloned CCRL1/CCX-CKR were assessed for the first time in the pig at the mRNA level. Pro-inflammatory and T-helper type-1 (Th1) cytokine mRNA were expressed at higher levels in infected compared to non-infected control loops. Similarly, some B cell activation genes, NOD2 and toll like receptor 2 and 4 transcripts were more expressed in both tissues while TLR5 mRNA was down-regulated. Interestingly, CCL25 mRNA expression as well as the mRNA expressions of its receptors CCR9 and CCRL1 were decreased both in the Peyer’s patch and gut wall suggesting a potential Salmonella strategy to reduce lymphocyte homing to the intestine. In conclusion, these results provide insight into the porcine innate mucosal immune response to infection with entero-invasive microorganisms such as S. Typhimurium. In the future, this knowledge should help in the development of improved prophylactic and therapeutic approaches against porcine intestinal S. Typhimurium infections. PMID:18922229

  20. Horizontal transmission of Salmonella Enteritidis in experimentally infected laying hens housed in conventional or enriched cages.

    PubMed

    Gast, Richard K; Guraya, Rupa; Jones, Deana R; Anderson, Kenneth E

    2014-12-01

    The majority of human illnesses caused by Salmonella Enteritidis are attributed to contaminated eggs, and the prevalence of this pathogen in commercial laying flocks has been identified as a leading epidemiologic risk factor. Flock housing and management systems can affect opportunities for the introduction, transmission, and persistence of foodborne pathogens in poultry. The animal welfare implications of different types of housing for laying hens have been widely discussed in recent years, but the food safety consequences of these production systems remain incompletely understood. The present study assessed the effects of 2 different housing systems (conventional cages and colony cages enriched with perching and nesting areas) on the horizontal transmission of experimentally introduced Salmonella Enteritidis infection within groups of laying hens. In each of 2 trials, 136 hens were distributed among cages of both housing systems and approximately one-third of the hens in each cage were orally inoculated with doses of 10(8) cfu of Salmonella Enteritidis (phage type 13a in one trial and phage type 4 in the other). At regular intervals through 23 d postinoculation, cloacal swabs were collected from all hens (inoculated and uninoculated) and cultured for Salmonella Enteritidis. Horizontal contact transmission of infection was observed for both Salmonella Enteritidis strains, reaching peak prevalence values of 27.1% of uninoculated hens in conventional cages and 22.7% in enriched cages. However, no significant differences (P > 0.05) in the overall frequencies of horizontal Salmonella Enteritidis transmission were evident between the 2 types of housing. These results suggest that opportunities for Salmonella Enteritidis infection to spread horizontally throughout laying flocks may be similar in conventional and enriched cage-based production systems. ©2014 Poultry Science Association Inc.

  1. Occurrence of β-lactamase genes among non-Typhi Salmonella enterica isolated from humans, food animals, and retail meats in the United States and Canada.

    PubMed

    Sjölund-Karlsson, Maria; Howie, Rebecca L; Blickenstaff, Karen; Boerlin, Patrick; Ball, Takiyah; Chalmers, Gabhan; Duval, Brea; Haro, Jovita; Rickert, Regan; Zhao, Shaohua; Fedorka-Cray, Paula J; Whichard, Jean M

    2013-06-01

    Non-Typhi Salmonella cause over 1.7 million cases of gastroenteritis in North America each year, and food-animal products are commonly implicated in human infections. For invasive infections, antimicrobial therapy is indicated. In North America, the antimicrobial susceptibility of Salmonella is monitored by the U.S. National Antimicrobial Resistance Monitoring System (NARMS) and The Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS). In this study, we determined the susceptibility to cephalosporins by broth microdilution among 5,041 non-Typhi Salmonella enterica isolated from food animals, retail meats, and humans. In the United States, 109 (4.6%) of isolates collected from humans, 77 (15.7%) from retail meat, and 140 (10.6%) from food animals displayed decreased susceptibility to cephalosporins (DSC). Among the Canadian retail meat and food animal isolates, 52 (13.0%) and 42 (9.4%) displayed DSC. All isolates displaying DSC were screened for β-lactamase genes (bla(TEM), bla(SHV), bla(CMY), bla(CTX-M), and bla(OXA-1)) by polymerase chain reaction. At least one β-lactamase gene was detected in 74/109 (67.9%) isolates collected from humans, and the bla(CMY) genes were most prevalent (69/109; 63.3%). Similarly, the bla(CMY) genes predominated among the β-lactamase-producing isolates collected from retail meats and food animals. Three isolates from humans harbored a bla(CTX-M-15) gene. No animal or retail meat isolates harbored a bla(CTX-M) or bla(OXA-1) gene. A bla(TEM) gene was found in 5 human, 9 retail meat, and 17 animal isolates. Although serotype distributions varied among human, retail meat, and animal sources, overlap in bla(CMY)-positive serotypes across sample sources supports meat and food-animal sources as reservoirs for human infection.

  2. Toward Molecular Level of the “Salmonella-Victim” Ecology, Genetics, and Evolution

    PubMed Central

    Rumyantsev, S.N.

    2004-01-01

    Bacteria of the Salmonella genus are polypathogenic agents that can affect both men and animals, causing devastating and fatal illness. Despite considerable immunological, epidemiological, and genetic efforts, and increased understanding of how the Salmonella infection develops, many key questions concerning Salmonella infection remain unanswered. Salmonella can be carried as harmless commensals in some sectors of the population. In some individuals, however, the same microbes cause illness while others display immunity to primary Salmonella infection. Nothing is known about the molecular base of the Salmonella pathogenicity. Even the ability of Salmonella to destroy the victims cells has been the subject of century-long discussions. In this article, some key findings concerning ecology, molecular ecology, and cell level of the Salmonella infection genetics are summarized and interpreted from the viewpoint of evolutionary theory with certitude that this approach can help to decipher the undiscovered secrets of Salmonella infections epidemiology and pathogenesis, as well as the clinical course and severity, and to select ways for fighting against Salmonella. PMID:15105959

  3. Salmonella Urinary Tract Infection Heralding Thoracic Mycotic Aneurysm: Case Report as Medical Apology

    PubMed Central

    White, Jennifer L.; Golfus, Gabriel R.; Sadosty, Annie T.

    2017-01-01

    We report a case as a patient apology as a means of teaching other physicians about a unique presentation of a rare disease. Salmonella species are unusually isolated organisms in urine. In the case described, appreciation for the rarity of Salmonella species in the urine facilitated recognition of a serious disseminated Salmonella infection. Physicians should consider disseminated Salmonella infection, as was found in a patient with an aortic mycotic an eurysm, after isolation of Salmonella in urine despite an initially benign clinical presentation.

  4. Clonal Differences between Non-Typhoidal Salmonella (NTS) Recovered from Children and Animals Living in Close Contact in The Gambia

    PubMed Central

    Dione, Michel M.; Ikumapayi, Usman N.; Saha, Debasish; Mohammed, Nuredin I.; Geerts, Stanny; Ieven, Margareta; Adegbola, Richard A.; Antonio, Martin

    2011-01-01

    Background Non-Typhoidal Salmonella (NTS) is an important cause of invasive bacterial disease and associated with mortality in Africa. However, little is known about the environmental reservoirs and predominant modes of transmission. Our study aimed to study the role of domestic animals in the transmission of NTS to humans in rural area of The Gambia. Methodology Human NTS isolates were obtained through an active population-based case-control surveillance study designated to determine the aetiology and epidemiology of enteric infections covering 27,567 Gambian children less than five years of age in the surveillance area. Fourteen children infected with NTS were traced back to their family compounds and anal swabs collected from 210 domestic animals present in their households. Identified NTSs were serotyped and genotyped by multi-locus sequencing typing. Principal Findings NTS was identified from 21/210 animal sources in the households of the 14 infected children. Chickens carried NTS more frequently than sheep and goats; 66.6%, 28.6% and 4.8% respectively. The most common NTS serovars were S. Colindale in humans (21.42%) and S. Poona in animals (14.28%). MLST on the 35 NTS revealed four new alleles and 24 sequence types (ST) of which 18 (75%) STs were novel. There was no overlap in serovars or genotypes of NTS recovered from humans or animal sources in the same household. Conclusion Our results do not support the hypothesis that humans and animals in close contact in the same household carry genotypically similar Salmonella serovars. These findings form an important baseline for future studies of transmission of NTS in humans and animals in Africa. PMID:21655353

  5. A Multistate Investigation of Antibiotic-Resistant Salmonella enterica Serotype I 4,[5],12:i:- Infections as Part of an International Outbreak Associated with Frozen Feeder Rodents.

    PubMed

    Cartwright, E J; Nguyen, T; Melluso, C; Ayers, T; Lane, C; Hodges, A; Li, X; Quammen, J; Yendell, S J; Adams, J; Mitchell, J; Rickert, R; Klos, R; Williams, I T; Barton Behravesh, C; Wright, J

    2016-02-01

    While most human Salmonella infections result from exposure to contaminated foods, an estimated 11% of all Salmonella infections are attributed to animal exposures, including both direct animal handling and indirect exposures such as cleaning cages and handling contaminated pet food. This report describes the epidemiologic, environmental and laboratory investigations conducted in the United States as part of the response to an international outbreak of tetracycline-resistant Salmonella enterica serotype I 4,[5],12:i:- infections with over 500 illnesses occurring from 2008 to 2010. This investigation found that illness due to the outbreak strain was significantly associated with exposure to pet reptiles and frozen feeder rodents used as food for pet reptiles. Salmonella isolates indistinguishable from the outbreak strain were isolated from a frozen feeder mice-fed reptile owned by a case patient, as well as from frozen feeder mice and environmental samples collected from a rodent producing facility (Company A). An international voluntary recall of all Company A produced frozen feeder animals sold between May 2009 and July 2010 occurred. Only 13% of cases in our investigation were aware of the association between Salmonella infection and mice or rats. Consumers, the pet industry, healthcare providers and veterinarians need to be aware of the potential health risk posed by feeder rodents, whether live or frozen. Frozen feeder rodent producers, suppliers and distributors should follow the animal food labelling requirements as described in 21 CFR §501.5, and all packages of frozen feeder rodents should include safe handling instructions. Persons should wash their hands thoroughly with soap and water after handling live or frozen feeder rodents, as well as reptiles or anything in the area where the animals live. Continued opportunities exist for public health officials, the pet industry, veterinarians and consumers to work together to prevent salmonellosis associated

  6. Selective Infection of Antigen-Specific B Lymphocytes by Salmonella Mediates Bacterial Survival and Systemic Spreading of Infection

    PubMed Central

    de Wit, Jelle; Martinoli, Chiara; Zagato, Elena; Janssen, Hans; Jorritsma, Tineke; Bar-Ephraïm, Yotam E.; Rescigno, Maria; Neefjes, Jacques; van Ham, S. Marieke

    2012-01-01

    Background The bacterial pathogen Salmonella causes worldwide disease. A major route of intestinal entry involves M cells, providing access to B cell-rich Peyer’s Patches. Primary human B cells phagocytose Salmonella typhimurium upon recognition by the specific surface Ig receptor (BCR). As it is unclear how Salmonella disseminates systemically, we studied whether Salmonella can use B cells as a transport device for spreading. Methodology/Principal Findings Human primary B cells or Ramos cell line were incubated with GFP-expressing Salmonella. Intracellular survival and escape was studied in vitro by live cell imaging, flow cytometry and flow imaging. HEL-specific B cells were transferred into C57BL/6 mice and HEL-expressing Salmonella spreading in vivo was analyzed investigating mesenteric lymph nodes, spleen and blood. After phagocytosis by B cells, Salmonella survives intracellularly in a non-replicative state which is actively maintained by the B cell. Salmonella is later excreted followed by reproductive infection of other cell types. Salmonella-specific B cells thus act both as a survival niche and a reservoir for reinfection. Adoptive transfer of antigen-specific B cells before oral infection of mice showed that these B cells mediate in vivo systemic spreading of Salmonella to spleen and blood. Conclusions/Significance This is a first example of a pathogenic bacterium that abuses the antigen-specific cells of the adaptive immune system for systemic spreading for dissemination of infection. PMID:23209805

  7. Prevalence of Salmonella typhimurium infection in Norwegian hedgehog populations associated with two human disease outbreaks.

    PubMed Central

    Handeland, K.; Refsum, T.; Johansen, B. S.; Holstad, G.; Knutsen, G.; Solberg, I.; Schulze, J.; Kapperud, G.

    2002-01-01

    Faecal carriage of salmonella was investigated in 320 hedgehogs from Moss municipality in south-eastern Norway, Askøy, Bergen and Os municipalities in central-western Norway, and five municipalities in south-western and central Norway. The sampling in Moss was carried out 1 year after a human outbreak of salmonellosis, whereas the sampling in Askøy, Bergen and Os was carried out during a human outbreak. Both outbreaks were caused by Salmonella Typhimurium 4,5,12:i:1,2. No salmonella were detected in the hedgehogs from south-western (0/115) and central (0/24) Norway. Thirty-nine percent (39/99) of the animals sampled on Jeløy, and 41% (34/82) of those from Askøy, Bergen and Os, carried S. Typhimurium 4,5,12:i:1,2. The PFGE profile of isolates from hedgehogs and human beings were identical within each of the two outbreak areas. A significantly higher carrier rate of S. Typhimurium occurred among hedgehogs sampled at feeding places, compared to those caught elsewhere. The salmonella-infected hedgehog populations most likely constituted the primary source of infection during both of the human disease outbreaks, and the Norwegian hedgehog is suggested as a reservoir host of S. Typhimurium 4,5,12:i:1,2. PMID:12113498

  8. Salmonella infections associated with international travel: a Foodborne Diseases Active Surveillance Network (FoodNet) study.

    PubMed

    Johnson, Laura R; Gould, L Hannah; Dunn, John R; Berkelman, Ruth; Mahon, Barbara E

    2011-09-01

    Salmonella species cause an estimated 1.2 million infections per year in the United States, making it one of the most commonly reported enteric pathogens. In addition, Salmonella is an important cause of travel-associated diarrhea and enteric fever, a systemic illness commonly associated with Salmonella serotypes Typhi and Paratyphi A. We reviewed cases of Salmonella infection reported to the Centers for Disease Control and Prevention's (CDC) Foodborne Diseases Active Surveillance Network (FoodNet), a sentinel surveillance network, from 2004 to 2008. We compared travelers with Salmonella infection to nontravelers with Salmonella infection with respect to demographics, clinical characteristics, and serotypes. Among 23,712 case-patients with known travel status, 11% had traveled internationally in the 7 days before illness. Travelers with Salmonella infection tended to be older (median age, 30 years) than nontravelers (median age, 24 years; p<0.0001), but were similar with respect to gender. The most common destinations reported were Mexico (38% of travel-associated infections), India (9%), Jamaica (7%), the Dominican Republic (4%), China (3%), and the Bahamas (2%). The proportions of travelers with Salmonella infection hospitalized and with invasive disease were inversely related to the income level of the destination (p<0.0001). The most commonly reported serotypes, regardless of travel status, were Enteritidis (19% of cases), Typhimurium (14%), Newport (9%), and Javiana (5%). Among infections caused by these four serotypes, 22%, 6%, 5%, and 4%, respectively, were associated with travel. A high index of clinical suspicion for Salmonella infection is appropriate when evaluating recent travelers, especially those who visited Africa, Asia, or Latin America.

  9. Characterization of blaCMY plasmids and their possible role in source attribution of Salmonella enterica serotype Typhimurium infections.

    PubMed

    Folster, Jason P; Tolar, Beth; Pecic, Gary; Sheehan, Deborah; Rickert, Regan; Hise, Kelley; Zhao, Shaohua; Fedorka-Cray, Paula J; McDermott, Patrick; Whichard, Jean M

    2014-04-01

    Salmonella is an important cause of foodborne illness; however, identifying the source of these infections can be difficult. This is especially true for Salmonella serotype Typhimurium, which is found in diverse agricultural niches. Extended-spectrum cephalosporins (ESC) are one of the primary treatment choices for complicated Salmonella infections. In Salmonella, ESC resistance in the United States is mainly mediated by blaCMY genes carried on various plasmids. In this study, we examined whether the characterization of blaCMY plasmids, along with additional information, can help us identify potential sources of infection by Salmonella, and used serotype Typhimurium as a model. In the United States, monitoring of retail meat, food animals, and ill persons for antimicrobial-resistant Salmonella is conducted by the National Antimicrobial Resistance Monitoring System. In 2008, 70 isolates (70/581; 12.0%) (34 isolates from retail meat, 23 food animal, and 13 human) were resistant to ceftriaxone and amoxicillin/clavulanic acid. All were polymerase chain reaction (PCR)-positive for blaCMY and 59/70 (84.3%) of these genes were plasmid encoded. PCR-based replicon typing identified 42/59 (71.2%) IncI1-blaCMY plasmids and 17/59 (28.8%) IncA/C-blaCMY plasmids. Isolates from chickens or chicken products with blaCMY plasmids primarily had IncI1-blaCMY plasmids (37/40; 92.5%), while all isolates from cattle had IncA/C-blaCMY plasmids. Isolates from humans had either IncA/C- blaCMY (n=8/12; [66.7%]) or IncI1- blaCMY (n=4/12 [33.3%]) plasmids. All of the IncI1-blaCMY plasmids were ST12 or were closely related to ST12. Antimicrobial susceptibility patterns (AST) and pulsed-field gel electrophoresis (PFGE) patterns of the isolates were also compared and differences were identified between isolate sources. When the source of a Typhimurium outbreak or sporadic illness is unknown, characterizing the outbreak isolate's blaCMY plasmids, AST, and PFGE patterns may help identify it.

  10. Characterization of blaCMY Plasmids and Their Possible Role in Source Attribution of Salmonella enterica Serotype Typhimurium Infections

    PubMed Central

    Folster, J.P.; Tolar, B.; Pecic, G.; Sheehan, D.; Rickert, R.; Hise, K.; Zhao, S.; Fedorka-Cray, P. J.; McDermott, P.; Whichard, J.M.

    2015-01-01

    Salmonella is an important cause of foodborne illness; however, identifying the source of these infections can be difficult. This is especially true for Salmonella serotype Typhimurium which is found in diverse agricultural niches. Extended spectrum cephalosporins (ESC) are one of the primary treatment choices for complicated Salmonella infections. In Salmonella, ESC resistance in the U.S. is mainly mediated by blaCMY genes carried on various plasmids. In this study, we examined whether the characterization of blaCMY plasmids, along with additional information, can help us identify potential sources of infection by Salmonella, and use serotype Typhimurium as a model. In the U.S., monitoring of retail meat, food animals, and ill persons for antimicrobial resistant Salmonella is conducted by the National Antimicrobial Resistance Monitoring System (NARMS). In 2008, 70 isolates (70/581;12.0 %) (34 isolates from retail meat, 23 food animal, and 13 human) were resistant to ceftriaxone and amoxicillin/clavulanic acid. All were PCR-positive for blaCMY and 59/70 (84.3%) of these genes were plasmid-encoded. PCR-based replicon typing (PBRT) identified 42/59 (71.2%) IncI1-blaCMY plasmids and 17/59 (28.8%) IncA/C-blaCMY plasmids. Isolates from chickens or chicken products with blaCMY plasmids primarily had IncI1-blaCMY plasmids (37/40; 92.5%), while all isolates from cattle had IncA/C-blaCMY plasmids. Isolates from humans had either IncA/C- blaCMY (n = 8/12; [66.7%]) or IncI1- blaCMY (n = 4/12 [33.3%]) plasmids. All of the IncI1-blaCMY plasmids were ST12 or were closely related to ST12. Antimicrobial susceptibility patterns (AST) and pulsed-field gel electrophoresis (PFGE) patterns of the isolates were also compared and differences were identified between isolate sources. When the source of a Typhimurium outbreak or sporadic illness is unknown, characterizing outbreak isolate’s blaCMY plasmids, AST, and PFGE patterns may help identify it. PMID:24484290

  11. Antimicrobial sensitivity pattern of Salmonella: comparison of isolates from HIV-infected and HIV-uninfected patients.

    PubMed

    Wolday, D; Erge, W

    1998-07-01

    A retrospective analysis of all cases of Salmonella infections occurring between 1991 and 1995 was undertaken in order to evaluate the antimicrobial sensitivity pattern of the isolates from both human immunodeficiency virus (HIV) infected and uninfected Ethiopian patients. During the 5-year study period, we identified 147 cases of Salmonella infections. Only in 49 cases was the HIV serostatus known; 22 (44.9%) of the infections were in HIV seronegative patients while 27 (55.9%) were in HIV seropositive patients. The strains were isolated from blood (71.4%), urine (18.4%) and stool (8.2%). Salmonella infection was found to be more frequent (55.15% versus 44.9%) among HIV positive than HIV-negative patients. Moreover, Salmonella isolates recovered from HIV-seropositive patients were significantly resistant to many of the antibiotics tested when compared to the isolates from HIV-seronegative patients. The only chloramphenicol resistant Salmonella typhi occurred in a patient who was seropositive for HIV. According to these results, Ethiopian patients infected with HIV may be at risk of acquiring infections, especially non-typhoidal salmonellas, that are multi-drug resistant (MDR) strains than HIV-uninfected subjects. The emergence of MDR Salmonella infection among HIV-positive patients requires reassessment of chemotherapeutic approaches in this patient population, and warrants continued laboratory surveillance.

  12. Molecular Characterization of Salmonella from Human and Animal Origins in Uganda

    PubMed Central

    Kagirita, Atek Atwiine; Owalla, Tonny Jimmy; Majalija, Samuel

    2017-01-01

    Sporadic Salmonella outbreaks with varying clinical presentations have been on the rise in various parts of Uganda. The sources of outbreaks and factors underlying the different clinical manifestation are curtailed by paucity of information on Salmonella genotypes and the associated virulence genes. This study reports molecular diversity of Salmonella enterica and their genetic virulence profiles among human and animal isolates. Characterization was done using Kauffman-White classification scheme and virulence genes analysis using multiplex PCR. Overall, 52% of the isolates belonged to serogroup D, 16% to serogroup E, 15% to poly F, H-S, and 12% to serogroup B. Serogroups A, C1, and C2 each consisted of only one isolate representing 5%. Virulence genes located on SPI-1 [spaN and sipB] and on SPI-2 [spiA] in addition to pagC and msgA were equally distributed in isolates obtained from all sources. Plasmid encoded virulence gene spvB was found in <5% of isolates from both human epidemic and animal origins whereas it occurred in 80% of clinical isolates. This study reveals that serogroup D is the predominant Salmonella serogroup in circulation and it is widely shared among animals and humans and calls for joint and coordinated surveillance for one health implementation in Uganda. PMID:28634597

  13. Bioluminescent pathogens as a tool to monitor infection in live animals

    NASA Astrophysics Data System (ADS)

    Brovko, Lubov Y.

    2002-05-01

    The study of pathogenic processes is mostly limited to in vitro assays, cell-culture techniques and post mortem examination of infected animals. A better understanding of the infectious process, efficiency of antimicrobial and antibiotic treatment as well as immunomodulatory effects of different food supplements could be achieved by in vivo real-time monitoring of bacterial colonization in live animals. It was proposed recently to use bacterial pathogens with luminescent or fluorescent phenotypes for photonic detection of bacterial cells in living hosts. 14 It was shown that both bacteria transformed with full cassette of luminescent genes from Xenorhabdus luminescens and with Green Fluorescent Protein (GFP) could be visualized in animal using whole-body luminescent or fluorescent imaging techniques with high sensitivity and in real time. We used this approach to investigate the effect of diet on the time-course of infection in mice orally infected with bioluminescent strain of Salmonella enteritidis.

  14. Development of protective immunity to Salmonella, a mucosal pathogen with a systemic agenda

    PubMed Central

    Griffin, Amanda J.; McSorley, Stephen J.

    2014-01-01

    Salmonella infections can cause a range of intestinal and systemic disease in human and animal hosts. While some Salmonella serovars initiate a localized intestinal inflammatory response, others use the intestine as a portal of entry to initiate a systemic infection. Considerable progress has been made in understanding bacterial invasion and dissemination strategies and the nature of the Salmonella-specific immune response to oral infection. Innate and adaptive immunity are rapidly initiated after oral infection but these effector responses can also be hindered by bacterial evasion strategies. Furthermore, although Salmonella resides within intramacrophage phagosomes, recent studies highlight a surprising collaboration of CD4 Th1, Th17, and B cell responses in mediating resistance to Salmonella infection. PMID:21307847

  15. Validation of a Salmonella loop-mediated isothermal amplification assay in animal food.

    PubMed

    Domesle, Kelly J; Yang, Qianru; Hammack, Thomas S; Ge, Beilei

    2018-01-02

    Loop-mediated isothermal amplification (LAMP) has emerged as a promising alternative to PCR for pathogen detection in food testing and clinical diagnostics. This study aimed to validate a Salmonella LAMP method run on both turbidimetry (LAMP I) and fluorescence (LAMP II) platforms in representative animal food commodities. The U.S. Food and Drug Administration (FDA)'s culture-based Bacteriological Analytical Manual (BAM) method was used as the reference method and a real-time quantitative PCR (qPCR) assay was also performed. The method comparison study followed the FDA's microbiological methods validation guidelines, which align well with those from the AOAC International and ISO. Both LAMP assays were 100% specific among 300 strains (247 Salmonella of 185 serovars and 53 non-Salmonella) tested. The detection limits ranged from 1.3 to 28 cells for six Salmonella strains of various serovars. Six commodities consisting of four animal feed items (cattle feed, chicken feed, horse feed, and swine feed) and two pet food items (dry cat food and dry dog food) all yielded satisfactory results. Compared to the BAM method, the relative levels of detection (RLODs) for LAMP I ranged from 0.317 to 1 with a combined value of 0.610, while those for LAMP II ranged from 0.394 to 1.152 with a combined value of 0.783, which all fell within the acceptability limit (2.5) for an unpaired study. This also suggests that LAMP was more sensitive than the BAM method at detecting low-level Salmonella contamination in animal food and results were available 3days sooner. The performance of LAMP on both platforms was comparable to that of qPCR but notably faster, particularly LAMP II. Given the importance of Salmonella in animal food safety, the LAMP assays validated in this study holds great promise as a rapid, reliable, and robust method for routine screening of Salmonella in these commodities. Published by Elsevier B.V.

  16. Experimental infection of Salmonella Enteritidis by the poultry red mite, Dermanyssus gallinae.

    PubMed

    Valiente Moro, C; Chauve, C; Zenner, L

    2007-05-31

    Dermanyssus gallinae is an important ectoparasite of laying hens in Europe and it is suspected of being a vector of pathogens. We carried out an in vitro study to evaluate the role of D. gallinae as a vector of Salmonella enterica subsp. enterica serotype Enteritidis. Two means of infecting the mite were tested: through the blood meal and after cuticular contact. Mites became carriers of Salmonella immediately after the infection with 29% and 53%, respectively, for oral route and cuticular contact. This percentage increased over time until it reached 95% (D7) and 80% (D14). The numerical identification of bacteria on the selective medium SM ID demonstrated the multiplication of Salmonella inside previously infected mites. In addition, transovarial passage as well as transstadial passage (from N1 to N2 stages) were demonstrated. Moreover, the observation of a negative effect of Salmonella on Dermanyssus oviposition was also observed. Finally, previously infected mites were able to contaminate the blood during the blood meal. Therefore, it appears that D. gallinae may act as a biological vector of S. Enteritidis under experimental conditions. It may represent a suitable environment for the development of Salmonella and could be an additional factor for the persistence of salmonellosis infection between successive flocks.

  17. Invasive Infections with Nontyphoidal Salmonella in Sub-Saharan Africa.

    PubMed

    Mahon, Barbara E; Fields, Patricia I

    2016-06-01

    Invasive nontyphoidal Salmonella (NTS) infections in Africa cause an enormous burden of illness. These infections are often devastating, with mortality estimated at 20%, even with appropriate antimicrobial therapy. Two major groups-young children and HIV-infected adults-suffer the great majority of these infections. In children, younger age itself, as well as malaria, malnutrition, and HIV infection, are prominent risk factors. In adults, HIV infection is by far the most important risk factor. The most common serotypes in invasive infections are Salmonella enterica serotypes Typhimurium and Enteritidis. In recent years, a specific strain of Salmonella Typhimurium, multilocus sequence type 313, has caused epidemics of invasive disease. Little is known about risk factors for exposure to NTS, making the design of rational interventions to decrease exposure difficult. Antimicrobial therapy is critically important for treatment of invasive NTS infections. Thus, the emergence and spread of resistance to agents commonly used for treatment of invasive NTS infection, now including third-generation cephalosporins, is an ominous development. Already, many invasive NTS infections are essentially untreatable in many health care facilities in sub-Saharan Africa. Several candidate vaccines are in early development and, if safe and effective, could be promising. Interventions to prevent exposure to NTS (e.g., improved sanitation), to prevent the occurrence of disease if exposure does occur (e.g., vaccination, malaria control), and to prevent severe disease and death in those who become ill (e.g., preserving antimicrobial effectiveness) are all important in reducing the toll of invasive NTS disease in sub-Saharan Africa.

  18. Effect of Salmonella infection on cecal tonsil regulatory T cell properties in chickens

    USDA-ARS?s Scientific Manuscript database

    Two experiments were conducted to study Regulatory T cell (Treg) properties post-Salmonella infection in broiler birds. Four-day-old broiler chicks were orally infected with 5x106 CFU/ml Salmonella enteritidis or sterile PBS (control). Samples were collected at 4, 7, 10, and 14 d post-infection. ...

  19. Investigation of a cutaneous delayed hypersensitivity response as a means of detecting Salmonella dublin infection in cattle.

    PubMed

    Aitken, M M; Hall, G A; Jones, P W

    1978-05-01

    Delayed hypersensitivity reactions developed 48 to 96 h after intradermal injection of killed Salmonella dublin in 25 of 28 cattle which had been inoculated intravenously, and in five of 10 cattle which had been inoculated orally with S dublin 24 to 493 days previously. Control animals showed no delayed hypersensitivity reactions. Persistence of infection in five of the intravenously inoculated and in four of the orally inoculated animals was confirmed by isolation of S dublin from the carcases at necropsy one week after skin testing. Failure to isolate the organism from the carcases of 21 animals which had reacted positively to the intradermal test did not eliminate the possibility of their being carriers of S dublin. Skin testing was concluded to be a reliable means of identifying animals which had been, and possibly still were, infected systemically with S dublin. However recovered animals might be falsely identified as infected. Repeated testing gave misleading results.

  20. Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis

    PubMed Central

    2013-01-01

    The characterization of the immune response of chickens to Salmonella infection is usually limited to the quantification of expression of genes coding for cytokines, chemokines or antimicrobial peptides. However, processes occurring in the cecum of infected chickens are likely to be much more diverse. In this study we have therefore characterized the transcriptome and proteome in the chicken cecum after infection with Salmonella Enteritidis. Using a combination of 454 pyrosequencing, protein mass spectrometry and quantitative real-time PCR, we identified 48 down- and 56 up-regulated chicken genes after Salmonella Enteritidis infection. The most inducible gene was that coding for MMP7, exhibiting a 5952 fold induction 9 days post-infection. An induction of greater than 100 fold was observed for IgG, IRG1, SAA, ExFABP, IL-22, TRAP6, MRP126, IFNγ, iNOS, ES1, IL-1β, LYG2, IFIT5, IL-17, AVD, AH221 and SERPIN B. Since prostaglandin D2 synthase was upregulated and degrading hydroxyprostaglandin dehydrogenase was downregulated after the infection, prostaglandin must accumulate in the cecum of chickens infected with Salmonella Enteritidis. Finally, above mentioned signaling was dependent on the presence of a SPI1-encoded type III secretion system in Salmonella Enteritidis. The inflammation lasted for 2 weeks after which time the expression of the “inflammatory” genes returned back to basal levels and, instead, the expression of IgA and IgG increased. This points to an important role for immunoglobulins in the restoration of homeostasis in the cecum after infection. PMID:23687968

  1. A case-control study of domestic kitchen microbiology and sporadic Salmonella infection.

    PubMed

    Parry, S M; Slader, J; Humphrey, T; Holmes, B; Guildea, Z; Palmer, S R

    2005-10-01

    The microbiology of domestic kitchens in the homes of subjects who had suffered sporadic Salmonella infection (cases) was compared with control domestic kitchens. Case and control dishcloths and refrigerator swabs were examined for the presence of Salmonella spp., total Enterobacteriaceae counts and total aerobic colony counts. Salmonella spp. were isolated from both case and control dishcloths and refrigerators but there were no significant differences between the two groups. Colony counts were similar in case and control dishcloths and refrigerator swabs. There was no relationship between the total counts and presence of Salmonella . There was no evidence that cases of Salmonella infection were more likely to have kitchens which were contaminated with these bacteria or have higher bacterial counts than controls. Total bacterial counts were poor indicators of Salmonella contamination of the domestic kitchen environment. Further factors which could not be identified by a study of this design may increase risk of Salmonella food poisoning. These factors may include individual susceptibility of the patient. Alternatively, sporadic cases of Salmonella food poisoning may arise from food prepared outside the home.

  2. Pathogen translocation and histopathological lesions in an experimental model of Salmonella Dublin infection in calves receiving lactic acid bacteria and lactose supplements

    PubMed Central

    Zbrun, María V.; Soto, Lorena P.; Bertozzi, Ezequiel; Sequeira, Gabriel J.; Marti, Luis E.; Signorini, Marcelo L.; Armesto, Roberto Rodríguez; Rosmini, Marcelo R.

    2012-01-01

    The purpose of this study was to evaluate the capacity of a lactic acid bacteria (LAB) inoculum to protect calves with or without lactose supplements against Salmonella Dublin infection by evaluating histopathological lesions and pathogen translocation. Fifteen calves were divided into three groups [control group (C-G), a group inoculated with LAB (LAB-G), and a group inoculated with LAB and given lactose supplements (L-LAB-G)] with five, six, and four animals, respectively. The inoculum, composed of Lactobacillus (L.) casei DSPV 318T, L. salivarius DSPV 315T, and Pediococcus acidilactici DSPV 006T, was administered with milk replacer. The LAB-G and L-LAB-G received a daily dose of 109 CFU/kg body weight of each strain throughout the experiment. Lactose was provided to the L-LAB-G in doses of 100 g/day. Salmonella Dublin (2 × 1010 CFU) was orally administered to all animals on day 11 of the experiment. The microscopic lesion index values in target organs were 83%, 70%, and 64.3% (p < 0.05) for the C-G, LAB-G, and L-LAB-G, respectively. Administration of the probiotic inoculum was not fully effective against infection caused by Salmonella. Although probiotic treatment was unable to delay the arrival of pathogen to target organs, it was evident that the inoculum altered the response of animals against pathogen infection. PMID:23000583

  3. Multistate outbreak of Salmonella enterica serotype enteritidis infection associated with pet guinea pigs.

    PubMed

    Bartholomew, Michael L; Heffernan, Richard T; Wright, Jennifer G; Klos, Rachel F; Monson, Timothy; Khan, Sofiya; Trees, Eija; Sabol, Ashley; Willems, Robert A; Flynn, Raymond; Deasy, Marshall P; Jones, Benjamen; Davis, Jeffrey P

    2014-06-01

    Salmonella causes about one million illnesses annually in the United States. Although most infections result from foodborne exposures, animal contact is an important mode of transmission. We investigated a case of Salmonella enterica serotype Enteritidis (SE) sternal osteomyelitis in a previously healthy child who cared for two recently deceased guinea pigs (GPs). A case was defined as SE pulsed-field gel electrophoresis (PFGE) XbaI pattern JEGX01.0021, BlnI pattern JEGA26.0002 (outbreak strain) infection occurring during 2010 in a patient who reported GP exposure. To locate outbreak strain isolates, PulseNet and the US Department of Agriculture National Veterinary Service Laboratories (NVSL) databases were queried. Outbreak strain isolates underwent multilocus variable-number tandem repeat analysis (MLVA). Traceback and environmental investigations were conducted at homes, stores, and breeder or broker facilities. We detected 10 cases among residents of eight states and four NVSL GP outbreak strain isolates. One patient was hospitalized; none died. The median patient age was 9.5 (range, 1-61) years. Among 10 patients, two purchased GPs at independent stores, and three purchased GPs at different national retail chain (chain A) store locations; three were chain A employees and two reported GP exposures of unknown characterization. MLVA revealed four related patterns. Tracebacks identified four distributors and 92 sources supplying GPs to chain A, including one breeder potentially supplying GPs to all case-associated chain A stores. All environmental samples were Salmonella culture-negative. A definitive SE-contaminated environmental source was not identified. Because GPs can harbor Salmonella, consumers and pet industry personnel should be educated regarding risks.

  4. The Inositol Phosphatase SHIP Controls Salmonella enterica Serovar Typhimurium Infection In Vivo▿

    PubMed Central

    Bishop, Jennifer L.; Sly, Laura M.; Krystal, Gerald; Finlay, B. Brett

    2008-01-01

    The SH2 domain-containing inositol 5′-phosphatase, SHIP, negatively regulates various hematopoietic cell functions and is critical for maintaining immune homeostasis. However, whether SHIP plays a role in controlling bacterial infections in vivo remains unknown. Salmonella enterica causes human salmonellosis, a disease that ranges in severity from mild gastroenteritis to severe systemic illness, resulting in significant morbidity and mortality worldwide. The susceptibility of ship+/+and ship−/− mice and bone marrow-derived macrophages to S. enterica serovar Typhimurium infection was compared. ship−/− mice displayed an increased susceptibility to both oral and intraperitoneal serovar Typhimurium infection and had significantly higher bacterial loads in intestinal and systemic sites than ship+/+mice, indicating a role for SHIP in the gut-associated and systemic pathogenesis of serovar Typhimurium in vivo. Cytokine analysis of serum from orally infected mice showed that ship−/− mice produce lower levels of Th1 cytokines than do ship+/+ animals at 2 days postinfection, and in vitro analysis of supernatants taken from infected bone marrow-derived macrophages derived to mimic the in vivo ship−/− alternatively activated (M2) macrophage phenotype correlated with these data. M2 macrophages were the predominant population in vivo in both oral and intraperitoneal infections, since tissue macrophages within the small intestine and peritoneal macrophages from ship−/− mice showed elevated levels of the M2 macrophage markers Ym1 and Arginase 1 compared to ship+/+ cells. Based on these data, we propose that M2 macrophage skewing in ship−/− mice contributes to ineffective clearance of Salmonella in vivo. PMID:18426884

  5. Salmonella infections modelling in Mississippi using neural network and geographical information system (GIS).

    PubMed

    Akil, Luma; Ahmad, H Anwar

    2016-03-03

    Mississippi (MS) is one of the southern states with high rates of foodborne infections. The objectives of this paper are to determine the extent of Salmonella and Escherichia coli infections in MS, and determine the Salmonella infections correlation with socioeconomic status using geographical information system (GIS) and neural network models. In this study, the relevant updated data of foodborne illness for southern states, from 2002 to 2011, were collected and used in the GIS and neural networks models. Data were collected from the Centers for Disease Control and Prevention (CDC), MS state Department of Health and the other states department of health. The correlation between low socioeconomic status and Salmonella infections were determined using models created by several software packages, including SAS, ArcGIS @RISK and NeuroShell. Results of this study showed a significant increase in Salmonella outbreaks in MS during the study period, with highest rates in 2011 (47.84 ± 24.41 cases/100,000; p<0.001). MS had the highest rates of Salmonella outbreaks compared with other states (36 ± 6.29 cases/100,000; p<0.001). Regional and district variations in the rates were also observed. GIS maps of Salmonella outbreaks in MS in 2010 and 2011 showed the districts with higher rates of Salmonella. Regression analysis and neural network models showed a moderate correlation between cases of Salmonella infections and low socioeconomic factors. Poverty was shown to have a negative correlation with Salmonella outbreaks (R(2)=0.152, p<0.05). Geographic location besides socioeconomic status may contribute to the high rates of Salmonella outbreaks in MS. Understanding the geographical and economic relationship with infectious diseases will help to determine effective methods to reduce outbreaks within low socioeconomic status communities. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  6. Protective Effect of Moderate Exercise for BALB/c Mice with Salmonella Typhimurium Infection.

    PubMed

    Campos-Rodríguez, R; Godínez-Victoria, M; Arciniega-Martínez, I M; Reséndiz-Albor, A A; Reyna-Garfias, H; Cruz-Hernández, T R; Drago-Serrano, M E

    2016-01-01

    Moderate exercise enhances resistance to pathogen-associated infections. However, its influence on intestinal IgA levels and resistance to Salmonella typhimurium in mice has not been reported. The aim of this study was to assess the impact of moderate exercise on bacterial resistance and the intestinal-IgA response in a murine typhoid model. Sedentary and exercised (under a protocol of moderate swimming) BALB/c mice were orally infected with Salmonella typhimurium and sacrificed on days 7 or 14 post-infection (n=5 per group). Compared with infected sedentary mice, infected exercised animals had i) lower intestinal and systemic bacterial loads; ii) higher total and specific intestinal-IgA levels, iii) a higher percentage of IgA plasma cells in lamina propria; iv) a higher level on day 7 and lower level on day 14 of intestinal α- and J-chain mRNA and plasma corticosterone, v) unchanged mRNA expression of intestinal pIgR, and vi) a higher mRNA expression of liver pIgR, α-chain and J-chain on day 7. Hence, it is likely that an increase in corticosterone levels (stress response) induced by moderate exercise increased intestinal IgA levels by enabling greater liver expression of pIgR mRNA, leading to a rise in IgA transcytosis from the liver to intestine. The overall effect of these changes is an enhanced resistance to infection. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Prevalence and Antimicrobial Resistance of Salmonella Isolated from Animal-Origin Food Items in Gondar, Ethiopia

    PubMed Central

    Garedew, Legesse; Alebachew, Zabishwork; Worku, Walelgn

    2016-01-01

    Salmonella has been found to be the major cause of foodborne diseases and a serious public health problem in the world, with an increasing concern for the emergence and spread of antimicrobial-resistant strains. A cross-sectional study was conducted between February 2014 and December 2015 on food items of animal origin to assess the prevalence and antimicrobial resistance profiles of Salmonella isolates using standard bacteriological methods. The overall prevalence rate of 5.5% was recorded from the total analyzed food items of animal origin. Salmonella isolates were detected from 12% of raw meat, 8% of minced meat, 2.9% of burger samples, 18% of raw eggs, and 6% of raw milk. Furthermore, antimicrobial susceptibility test identified 47.6% resistant Salmonella isolates, 28.6% intermediately sensitive isolates, and 23.8% susceptible isolates. Among Salmonella isolates tested, 42.6%, 28.6%, and 14.3% were found to be relatively resistant to tetracycline, sulfamethoxazole-trimethoprim, and ampicillin, respectively, while 9.5%–19% were intermediately resistant to tetracycline, amoxicillin, ampicillin, cephalothin, and nitrofurantoin. Therefore, our findings provide the prevalence and drug resistance of Salmonella from foods of animal origin and contribute information to scientists as well as public health researchers to minimize the prevalent and resistant foodborne Salmonella species in Ethiopia. PMID:28074185

  8. Prevalence of antimicrobial resistance in Salmonella serotype Hadar isolated from humans, retail meat, and food animals at slaughter, United States, NARMS 1996-2008

    USDA-ARS?s Scientific Manuscript database

    Background Non-Typhi Salmonella (NTS) is a leading cause of bacterial gastroenteritis in the United States. Although most infections are self-limited, antibiotic treatment is essential for severe illness. Use of antimicrobial agents in food animals contributes to resistance in NTS. Multidrug resis...

  9. Antimicrobial resistance in Salmonella that caused foodborne disease outbreaks: United States, 2003-2012.

    PubMed

    Brown, A C; Grass, J E; Richardson, L C; Nisler, A L; Bicknese, A S; Gould, L H

    2017-03-01

    Although most non-typhoidal Salmonella illnesses are self-limiting, antimicrobial treatment is critical for invasive infections. To describe resistance in Salmonella that caused foodborne outbreaks in the United States, we linked outbreaks submitted to the Foodborne Disease Outbreak Surveillance System to isolate susceptibility data in the National Antimicrobial Resistance Monitoring System. Resistant outbreaks were defined as those linked to one or more isolates with resistance to at least one antimicrobial drug. Multidrug resistant (MDR) outbreaks had at least one isolate resistant to three or more antimicrobial classes. Twenty-one per cent (37/176) of linked outbreaks were resistant. In outbreaks attributed to a single food group, 73% (16/22) of resistant outbreaks and 46% (31/68) of non-resistant outbreaks were attributed to foods from land animals (P < 0·05). MDR Salmonella with clinically important resistance caused 29% (14/48) of outbreaks from land animals and 8% (3/40) of outbreaks from plant products (P < 0·01). In our study, resistant Salmonella infections were more common in outbreaks attributed to foods from land animals than outbreaks from foods from plants or aquatic animals. Antimicrobial susceptibility data on isolates from foodborne Salmonella outbreaks can help determine which foods are associated with resistant infections.

  10. Evaluation of the association between feeding raw meat and Salmonella enterica infections at a Greyhound breeding facility.

    PubMed

    Morley, Paul S; Strohmeyer, Rachel A; Tankson, Jeanetta D; Hyatt, Doreene R; Dargatz, David A; Fedorka-Cray, Paula J

    2006-05-15

    To investigate Salmonella enterica infections at a Greyhound breeding facility. Cross-sectional study. ANIMAL AND SAMPLE POPULATIONS: 138 adult and juvenile dogs and S. enterica isolates recovered from the dogs and their environment. The investigation was conducted at the request of a Greyhound breeder. Observations regarding the environment and population of dogs were recorded. Fecal, food, and environmental specimens were collected and submitted for Salmonella culture. Isolates were serotyped and tested for susceptibility to 16 antimicrobials. Isolates underwent genetic analyses by use of pulsed-field gel electrophoresis and ribotyping. S. enterica was recovered from 88 of 133 (66%) samples of all types and from 57 of 61 (93%) fecal samples. Eighty-three (94.3%) of the isolates were serotype Newport, 77 (87.5%) of which had identical resistance phenotypes. Genetic evaluations suggested that several strains of S. enterica existed at the facility, but there was a high degree of relatedness among many of the Newport isolates. Multiple strains of Salmonella enterica serotype Newport were recovered from raw meat fed on 1 day. S. enterica infections and environmental contamination were common at this facility. A portion of the Salmonella strains detected on the premises was likely introduced via raw meat that was the primary dietary constituent. Some strains appeared to be widely disseminated in the population. Feeding meat that had not been cooked properly, particularly meat classified as unfit for human consumption, likely contributed to the infections in these dogs.

  11. Age-Dependent Enterocyte Invasion and Microcolony Formation by Salmonella

    PubMed Central

    Zhang, Kaiyi; Dupont, Aline; Torow, Natalia; Gohde, Fredrik; Leschner, Sara; Lienenklaus, Stefan; Weiss, Siegfried; Brinkmann, Melanie M.; Kühnel, Mark; Hensel, Michael; Fulde, Marcus; Hornef, Mathias W.

    2014-01-01

    The coordinated action of a variety of virulence factors allows Salmonella enterica to invade epithelial cells and penetrate the mucosal barrier. The influence of the age-dependent maturation of the mucosal barrier for microbial pathogenesis has not been investigated. Here, we analyzed Salmonella infection of neonate mice after oral administration. In contrast to the situation in adult animals, we observed spontaneous colonization, massive invasion of enteroabsorptive cells, intraepithelial proliferation and the formation of large intraepithelial microcolonies. Mucosal translocation was dependent on enterocyte invasion in neonates in the absence of microfold (M) cells. It further resulted in potent innate immune stimulation in the absence of pronounced neutrophil-dominated pathology. Our results identify factors of age-dependent host susceptibility and provide important insight in the early steps of Salmonella infection in vivo. We also present a new small animal model amenable to genetic manipulation of the host for the analysis of the Salmonella enterocyte interaction in vivo. PMID:25210785

  12. Non-typhi Salmonella infection in patients with rheumatic diseases on TNF-alpha antagonist therapy.

    PubMed

    Peña-Sagredo, J L; Fariñas, M C; Perez-Zafrilla, B; Cruz-Valenciano, A; Crespo, M; Joven-Ibañez, B; Riera, E; Manero-Ruiz, F J; Chalmeta, I; Hernández, M V; Rodríguez-Gómez, M; Maíz, O; López, R; Cobo, T; Pita, J; Carmona, L; Gonzalez-Gay, M A

    2009-01-01

    The morbidity and mortality of patients with rheumatic diseases has improved considerably following the use of biologic therapies. However, an increase in the frequency of bacterial infections has been observed in patients receiving these drugs. In the present study we aimed to establish the incidence and clinical manifestations of non-typhi Salmonella infection in a large cohort of patients with rheumatic diseases undergoing TNF-alpha antagonist therapy due to severe rheumatic diseases refractory to conventional therapies. The rate of non-typhi Salmonella infection found in the Spanish Registry of Adverse Events of Biological Therapies in Rheumatic Diseases (BIOBADASER) was compared with that observed in a cohort of rheumatoid arthritis (RA) patients from the EMECAR (Morbidity and Clinical Expression of Rheumatoid Arthritis) Study, who were not treated with TNF-alpha antagonists. The rate found in the BIOBADASER registry was also compared with that available in a non-RA historic control cohort reported in a population from Huesca (Northern Spain). Seventeen cases of non-typhi Salmonella infection were observed in the series of patients exposed to anti-TNF-alpha therapies. The incidence rate of non-typhi Salmonella in BIOBADASER was 0.73 per 1000 patient-years (95% confidence interval [CI]: 0.45-1.17). The incidence rate in the EMECAR cohort was 0.44 per 1000 patient-years. The relative risk for non-typhi salmonellosis in RA patients exposed to TNF-alpha inhibitors compared to those not treated with biological therapies was 2.07 (95% CI: 0.27-15.73) (p=0.480) whereas the relative risk of non-typhi Salmonella infections in patients with rheumatic diseases undergoing TNF-alpha antagonist therapy compared with the non-RA Spanish control cohort was 0.63 (95% CI: 0.38-1.04) (p=0.07). Nine of the 17 patients with non-typhi salmonellosis presented a severe systemic infection. Incidence of non-typhi Salmonella infection is not increased significantly in rheumatic patients

  13. Antimicrobial resistance in Salmonella that caused foodborne disease outbreaks: United States, 2003–2012

    PubMed Central

    BROWN, A. C.; GRASS, J. E.; RICHARDSON, L. C.; NISLER, A. L.; BICKNESE, A. S.; GOULD, L. H.

    2016-01-01

    SUMMARY Although most non-typhoidal Salmonella illnesses are self-limiting, antimicrobial treatment is critical for invasive infections. To describe resistance in Salmonella that caused foodborne outbreaks in the United States, we linked outbreaks submitted to the Foodborne Disease Outbreak Surveillance System to isolate susceptibility data in the National Antimicrobial Resistance Monitoring System. Resistant outbreaks were defined as those linked to one or more isolates with resistance to at least one antimicrobial drug. Multidrug resistant (MDR) outbreaks had at least one isolate resistant to three or more antimicrobial classes. Twenty-one per cent (37/176) of linked outbreaks were resistant. In outbreaks attributed to a single food group, 73% (16/22) of resistant outbreaks and 46% (31/68) of non-resistant outbreaks were attributed to foods from land animals (P < 0.05). MDR Salmonella with clinically important resistance caused 29% (14/48) of outbreaks from land animals and 8% (3/40) of outbreaks from plant products (P < 0.01). In our study, resistant Salmonella infections were more common in outbreaks attributed to foods from land animals than outbreaks from foods from plants or aquatic animals. Antimicrobial susceptibility data on isolates from foodborne Salmonella outbreaks can help determine which foods are associated with resistant infections. PMID:27919296

  14. O-Serotype Conversion in Salmonella Typhimurium Induces Protective Immune Responses against Invasive Non-Typhoidal Salmonella Infections.

    PubMed

    Li, Pei; Liu, Qing; Luo, Hongyan; Liang, Kang; Yi, Jie; Luo, Ying; Hu, Yunlong; Han, Yue; Kong, Qingke

    2017-01-01

    Salmonella infections remain a big problem worldwide, causing enteric fever by Salmonella Typhi (or Paratyphi) or self-limiting gastroenteritis by non-typhoidal Salmonella (NTS) in healthy individuals. NTS may become invasive and cause septicemia in elderly or immuno-compromised individuals, leading to high mortality and morbidity. No vaccines are currently available for preventing NTS infection in human. As these invasive NTS are restricted to several O-antigen serogroups including B1, D1, C1, and C2, O-antigen polysaccharide is believed to be a good target for vaccine development. In this study, a strategy of O-serotype conversion was investigated to develop live attenuated S . Typhimurium vaccines against the major serovars of NTS infections. The immunodominant O4 serotype of S . Typhimurium was converted into O9, O7, and O8 serotypes through unmarked chromosomal deletion-insertion mutations. O-serotype conversion was confirmed by LPS silver staining and western blotting. All O-serotype conversion mutations were successfully introduced into the live attenuated S . Typhimurium vaccine S738 (Δ crp Δ cya ) to evaluate their immunogenicity in mice model. The vaccine candidates induced high amounts of heterologous O-polysaccharide-specific functional IgG responses. Vaccinated mice survived a challenge of 100 times the 50% lethality dose (LD 50 ) of wild-type S . Typhimurium. Protective efficacy against heterologous virulent Salmonella challenges was highly O-serotype related. Furthermore, broad-spectrum protection against S . Typhimurium, S . Enteritidis, and S . Choleraesuis was observed by co-vaccination of O9 and O7 O-serotype-converted vaccine candidates. This study highlights the strategy of expressing heterologous O-polysaccharides via genetic engineering in developing live attenuated S . Typhimurium vaccines against NTS infections.

  15. Prevalence of Salmonella enterica serovar Albany in captive zoo wild animals in the Culiacán Zoo in Mexico.

    PubMed

    Silva-Hidalgo, Gabriela; López-Moreno, Héctor Samuel; Ortiz-Navarrete, Vianney Francisco; Alpuche-Aranda, Celia; Rendón-Maldonado, José Guadalupe; López-Valenzuela, José Angel; López-Valenzuela, Martin; Juárez-Barranco, Felipe

    2013-03-01

    Salmonellosis is an important zoonotic disease but little is known about the role that free-living animals play as carriers of this pathogen. Moreover, the primary route of infection in the wild needs to be elucidated. The aim of this study was to determine the source and the route of transmission of Salmonella enterica serovar Albany (S. Albany) infection in captive zoo wild animals in the Culiacán Zoo. A total of 267 samples were analyzed including 220 fecal samples from zoo animals, 15 fecal samples from rodents, 5 pooled samples each of two insects (Musca domestica and Periplaneta americana), and 22 samples of animal feed. We detected S. Albany in 28 (10.5%) of the samples analyzed, including in samples from raw chicken meat. Characterization of isolates was performed by serotyping and pulsed-field gel electrophoresis. All isolates shared a single pulsed-field gel electrophoresis profile, indicating a possible common origin. These data suggest that the infected meat consumed by the wild felines was the primary source of infection in this zoo. It is likely that the pathogen was shed in the feces and disseminated by insects and rats to other locations in the zoo.

  16. Salmonella organisms in garden fertilizers of animal origin.

    PubMed Central

    Smith, H. W.; Tucker, J. F.; Hall, M. L.; Rowe, B.

    1982-01-01

    Of 120 specimens of garden fertilizers of animal origin purchased in retail shops, 40 (33.3%) were found to be contaminated with salmonella organisms. Untreated bone meal (53.1%) was the most heavily contaminated but 25% of specimens of this product classed as heat-treated or sterilized were positive. In all, 32 serotypes were identified. PMID:6284835

  17. The Role of Sphingolipids on Innate Immunity to Intestinal Salmonella Infection.

    PubMed

    Huang, Fu-Chen

    2017-08-07

    Salmonella spp. remains a major public health problem for the whole world. To reduce the use of antimicrobial agents and drug-resistant Salmonella , a better strategy is to explore alternative therapy rather than to discover another antibiotic. Sphingolipid- and cholesterol-enriched lipid microdomains attract signaling proteins and orchestrate them toward cell signaling and membrane trafficking pathways. Recent studies have highlighted the crucial role of sphingolipids in the innate immunity against infecting pathogens. It is therefore mandatory to exploit the role of the membrane sphingolipids in the innate immunity of intestinal epithelia infected by this pathogen. In the present review, we focus on the role of sphingolipids in the innate immunity of intestinal epithelia against Salmonella infection, including adhesion, autophagy, bactericidal effect, barrier function, membrane trafficking, cytokine and antimicrobial peptide expression. The intervention of sphingolipid-enhanced foods to make our life healthy or pharmacological agents regulating sphingolipids is provided at the end.

  18. 78 FR 42451 - Animal Feeds Contaminated With Salmonella Microorganisms

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 500 [Docket No. FDA-2013-N-0253] Animal Feeds Contaminated With Salmonella Microorganisms AGENCY: Food and Drug Administration, HHS. ACTION: Final rule; removal. SUMMARY: The Food and Drug Administration (FDA or Agency) is...

  19. Relationship between Salmonella infection, shedding and serology in fattening pigs in low-moderate prevalence areas.

    PubMed

    San Román, B; Garrido, V; Sánchez, S; Martínez-Ballesteros, I; Garaizar, J; Mainar-Jaime, R C; Migura-Garcia, L; Grilló, M J

    2018-04-27

    Salmonella is a major foodborne pathogen causing important zoonosis worldwide. Pigs asymptomatically infected in mesenteric lymph nodes (MLN) can be intermittent shedders of the pathogen through faeces, being considered a major source of human infections. European baseline studies of fattening pig salmonellosis are based on Salmonella detection in MLN. This work studies the relationship between Salmonella infection in MLN and intestinal content (IC) shedding at slaughter and the relationship between the presence of the pathogen and the serologic status at farm level. Mean Salmonella prevalence in the selected pigs (vertically integrated production system of Navarra, Spain) was 7.2% in MLN, 8.4% in IC and 9.6% in serum samples. In this low-moderate prevalence context, poor concordance was found between MLN infection and shedding at slaughter and between bacteriology and serology. In fact, most of shedders were found uninfected in MLN (83%) or carrying different Salmonella strains in MLN and in IC (90%). The most prevalent Salmonellae were Typhimurium resistant to ACSSuT ± Nx or ASSuT antibiotic families, more frequently found invading the MLN (70%) than in IC (33.9%). Multivariable analysis revealed that risk factors associated with the presence of Salmonella in MLN or in IC were different, mainly related either to good hygiene practices or to water and feed control, respectively. Overall, in this prevalence context, detection of Salmonella in MLN is an unreliable predictor of faecal shedding at abattoir, indicating that subclinical infections in fattening pigs MLN could have limited relevance in the IC shedding. © 2018 Blackwell Verlag GmbH.

  20. Salmonella Prevalence and Antimicrobial Susceptibility from the National Animal Health Monitoring System Sheep 2011 Study.

    PubMed

    Dargatz, David A; Marshall, Katherine L; Fedorka-Cray, Paula J; Erdman, Matthew M; Kopral, Christine A

    2015-12-01

    Salmonella is a major cause of foodborne illness and can cause clinical disease in animals. Understanding the on-farm ecology of Salmonella will be helpful in decreasing the risk of foodborne transmission. An objective of this study was to determine the prevalence of Salmonella among fecal samples collected on sheep operations in the United States. Another objective was to compare the use of composite fecal samples with fecal samples collected from individual sheep as a tool for screening sheep flocks for Salmonella. Sheep fecal samples (individual and composite) were collected on operations in 22 states. Salmonella isolates were characterized with regard to species, serotype, and antimicrobial susceptibility profile. Most operations (72.1%) had at least one positive sample and overall 26.9% of samples were positive. The percentage of positive samples varied by animal age class. Composite and individual samples gave similar results. The majority of the isolates (94%) were Salmonella enterica subspecies diarizonae serotype 61:-:1,5,7. Nearly all of the isolates (91.2%) tested for antimicrobial susceptibility were susceptible to all antimicrobials in the panel. The findings suggest that salmonellae typically associated with foodborne disease transmission are infrequently found on sheep operations in the United States.

  1. Salmonella DIVA vaccine reduces disease, colonization and shedding due to virulent S. Typhimurium infection in swine

    PubMed Central

    Bearson, Shawn M. D; Brunelle, Brian W; Bayles, Darrell O; Lee, In Soo; Kich, Jalusa D

    2017-01-01

    Purpose Non-host-adapted Salmonella serovars, including the common human food-borne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), are opportunistic pathogens that can colonize food-producing animals without causing overt disease. Interventions against Salmonella are needed to enhance food safety, protect animal health and allow the differentiation of infected from vaccinated animals (DIVA). Methodology An attenuated S. Typhimurium DIVA vaccine (BBS 866) was characterized for the protection of pigs following challenge with virulent S. Typhimurium. The porcine transcriptional response to BBS 866 vaccination was evaluated. RNA-Seq analysis was used to compare gene expression between BBS 866 and its parent; phenotypic assays were performed to confirm transcriptional differences observed between the strains. Results Vaccination significantly reduced fever and interferon-gamma (IFNγ) levels in swine challenged with virulent S. Typhimurium compared to mock-vaccinated pigs. Salmonella faecal shedding and gastrointestinal tissue colonization were significantly lower in vaccinated swine. RNA-Seq analysis comparing BBS 866 to its parental S. Typhimurium strain demonstrated reduced expression of the genes involved in cellular invasion and bacterial motility; decreased invasion of porcine-derived IPEC-J2 cells and swimming motility for the vaccine strain was consistent with the RNA-Seq analysis. Numerous membrane proteins were differentially expressed, which was an anticipated gene expression pattern due to the targeted deletion of several regulatory genes in the vaccine strain. RNA-Seq analysis indicated that genes involved in the porcine immune and inflammatory response were differentially regulated at 2 days post-vaccination compared to pre-vaccination. Conclusion Evaluation of the S. Typhimurium DIVA vaccine indicates that vaccination will provide both swine health and food safety benefits. PMID:28516860

  2. Prevalence, serovars, phage types, and antibiotic susceptibilities of Salmonella strains isolated from animals in the United Arab Emirates from 1996 to 2009.

    PubMed

    Münch, Sebastian; Braun, Peggy; Wernery, Ulrich; Kinne, Jörg; Pees, Michael; Flieger, Antje; Tietze, Erhard; Rabsch, Wolfgang

    2012-10-01

    The aim of this study was to give some insights into the prevalence, serovars, phage types, and antibiotic resistances of Salmonella from animal origin in the United Arab Emirates. Data on diagnostic samples from animals (n = 20,871) examined for Salmonella between 1996 and 2009 were extracted from the databases of the Central Veterinary Research Laboratory in Dubai and from typed strains (n = 1052) from the Robert Koch Institute, Wernigerode Branch in Germany and analyzed for general and animal-specific trends. Salmonella was isolated from 1,928 (9 %) of the 20,871 samples examined. Among the 1,052 typed strains, most were from camels (n = 232), falcons (n = 166), bustards (n = 101), antelopes (n = 66), and horses (n = 63). The predominant serovars were Salmonella Typhimurium (25 %), Salmonella Kentucky (8 %), followed by Salmonella Frintrop (7 %), and Salmonella Hindmarsh (5 %). When analyzed by animal species, the most frequent serovars in camels were Salmonella Frintrop (28 %) and Salmonella Hindmarsh (21 %), in falcons Salmonella Typhimurium (32 %), in bustards Salmonella Kentucky (19 %), in antelopes Salmonella Typhimurium (9 %), and in horses Salmonella Typhimurium (17 %) and S. Kentucky (16 %). Resistance of all typed Salmonella strains (n = 1052) was most often seen to tetracycline (23 %), streptomycin (22 %), nalidixic acid (18 %), and ampicillin (15 %). These data show trends in the epidemiology of Salmonella in different animal species which can be used as a base for future prevention, control, and therapy strategies.

  3. PREVALENCE OF SALMONELLA IN CAPTIVE REPTILES FROM CROATIA.

    PubMed

    Lukac, Maja; Pedersen, Karl; Prukner-Radovcic, Estella

    2015-06-01

    Salmonellosis transmitted by pet reptiles is an increasing public health issue worldwide. The aim of this study was to investigate the prevalence of Salmonella strains from captive reptiles in Croatia. From November 2009 to November 2011 a total of 292 skin, pharyngeal, cloacal, and fecal samples from 200 apparently healthy reptiles were tested for Salmonella excretions by bacteriologic culture and serotyping. These 200 individual reptiles included 31 lizards, 79 chelonians, and 90 snakes belonging to private owners or housed at the Zagreb Zoo, Croatia. Salmonella was detected in a total of 13% of the animals, among them 48.4% lizards, 8.9% snakes, and 3.8% turtles. Representatives of five of the six Salmonella enterica subspecies were identified with the following proportions in the total number of isolates: Salmonella enterica enterica 34.6%, Salmonella enterica houtenae 23.1%, Salmonella enterica arizonae 23.1%, Salmonella enterica diarizonae 15.4%, and Salmonella enterica salamae 3.8%. The 14 different serovars isolated included several rarely occurring serovars such as Salmonella Apapa, Salmonella Halle, Salmonella Kisarawe, and Salmonella Potengi. These findings confirm that the prevalence of Salmonella is considerable in captive reptiles in Croatia, indicating that these animals may harbor serovars not commonly seen in veterinary or human microbiologic practice. This should be addressed in the prevention and diagnostics of human reptile-transmitted infections.

  4. Chicken-Specific Kinome Array Reveals that Salmonella enterica Serovar Enteritidis Modulates Host Immune Signaling Pathways in the Cecum to Establish a Persistence Infection

    PubMed Central

    Kogut, Michael H.; Swaggerty, Christina L.; Byrd, James Allen; Selvaraj, Ramesh; Arsenault, Ryan J.

    2016-01-01

    Non-typhoidal Salmonella enterica induces an early, short-lived pro-inflammatory response in chickens that is asymptomatic of clinical disease and results in a persistent colonization of the gastrointestinal (GI) tract that transmits infections to naïve hosts via fecal shedding of bacteria. The underlying mechanisms that control this persistent colonization of the ceca of chickens by Salmonella are only beginning to be elucidated. We hypothesize that alteration of host signaling pathways mediate the induction of a tolerance response. Using chicken-specific kinomic immune peptide arrays and quantitative RT-PCR of infected cecal tissue, we have previously evaluated the development of disease tolerance in chickens infected with Salmonella enterica serovar Enteritidis (S. Enteritidis) in a persistent infection model (4–14 days post infection). Here, we have further outlined the induction of an tolerance defense strategy in the cecum of chickens infected with S. Enteritidis beginning around four days post-primary infection. The response is characterized by alterations in the activation of T cell signaling mediated by the dephosphorylation of phospholipase c-γ1 (PLCG1) that inhibits NF-κB signaling and activates nuclear factor of activated T-cells (NFAT) signaling and blockage of interferon-γ (IFN-γ) production through the disruption of the JAK-STAT signaling pathway (dephosphorylation of JAK2, JAK3, and STAT4). Further, we measured a significant down-regulation reduction in IFN-γ mRNA expression. These studies, combined with our previous findings, describe global phenotypic changes in the avian cecum of Salmonella Enteritidis-infected chickens that decreases the host responsiveness resulting in the establishment of persistent colonization. The identified tissue protein kinases also represent potential targets for future antimicrobial compounds for decreasing Salmonella loads in the intestines of food animals before going to market. PMID:27472318

  5. Chicken-Specific Kinome Array Reveals that Salmonella enterica Serovar Enteritidis Modulates Host Immune Signaling Pathways in the Cecum to Establish a Persistence Infection.

    PubMed

    Kogut, Michael H; Swaggerty, Christina L; Byrd, James Allen; Selvaraj, Ramesh; Arsenault, Ryan J

    2016-07-27

    Non-typhoidal Salmonella enterica induces an early, short-lived pro-inflammatory response in chickens that is asymptomatic of clinical disease and results in a persistent colonization of the gastrointestinal (GI) tract that transmits infections to naïve hosts via fecal shedding of bacteria. The underlying mechanisms that control this persistent colonization of the ceca of chickens by Salmonella are only beginning to be elucidated. We hypothesize that alteration of host signaling pathways mediate the induction of a tolerance response. Using chicken-specific kinomic immune peptide arrays and quantitative RT-PCR of infected cecal tissue, we have previously evaluated the development of disease tolerance in chickens infected with Salmonella enterica serovar Enteritidis (S. Enteritidis) in a persistent infection model (4-14 days post infection). Here, we have further outlined the induction of an tolerance defense strategy in the cecum of chickens infected with S. Enteritidis beginning around four days post-primary infection. The response is characterized by alterations in the activation of T cell signaling mediated by the dephosphorylation of phospholipase c-γ1 (PLCG1) that inhibits NF-κB signaling and activates nuclear factor of activated T-cells (NFAT) signaling and blockage of interferon-γ (IFN-γ) production through the disruption of the JAK-STAT signaling pathway (dephosphorylation of JAK2, JAK3, and STAT4). Further, we measured a significant down-regulation reduction in IFN-γ mRNA expression. These studies, combined with our previous findings, describe global phenotypic changes in the avian cecum of Salmonella Enteritidis-infected chickens that decreases the host responsiveness resulting in the establishment of persistent colonization. The identified tissue protein kinases also represent potential targets for future antimicrobial compounds for decreasing Salmonella loads in the intestines of food animals before going to market.

  6. Salmonellae in Rhodesia: sources and serotypes of some isolates from abattoirs, domestic animals, birds and man.

    PubMed

    Chambers, P G

    1977-12-01

    Sources and serotypes of some salmonellae isolated from abattoirs, domestic animals, birds and man are given. At least 72 serotypes have been identified from 1273 isolations from abattoirs, animals and birds, and from 7 137 isolations from man. The sources and serotypes of these isolations are discussed and some suggestions concerning the epidemiology of Salmonella in Rhodesia are made.

  7. Estimation of the rate of egg contamination from Salmonella-infected chickens.

    PubMed

    Arnold, M E; Martelli, F; McLaren, I; Davies, R H

    2014-02-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is one of the most prevalent causes for human gastroenteritis and is by far the predominant Salmonella serovar among human cases, followed by Salmonella Typhimurium. Contaminated eggs produced by infected laying hens are thought to be the main source of human infection with S. Enteritidis throughout the world. Although previous studies have looked at the proportion of infected eggs from infected flocks, there is still uncertainty over the rate at which infected birds produce contaminated eggs. The aim of this study was to estimate the rate at which infected birds produce contaminated egg shells and egg contents. Data were collected from two studies, consisting of 15 and 20 flocks, respectively. Faecal and environmental sampling and testing of ovaries/caeca from laying hens were carried out in parallel with (i) for the first study, testing 300 individual eggs, contents and shells together and (ii) for the second study, testing 4000 eggs in pools of six, with shells and contents tested separately. Bayesian methods were used to estimate the within-flock prevalence of infection from the faecal and hen post-mortem data, and this was related to the proportion of positive eggs. Results indicated a linear relationship between the rate of contamination of egg contents and the prevalence of infected chickens, but a nonlinear (quadratic) relationship between infection prevalence and the rate of egg shell contamination, with egg shell contamination occurring at a much higher rate than that of egg contents. There was also a significant difference in the rate of egg contamination between serovars, with S. Enteritidis causing a higher rate of contamination of egg contents and a lower rate of contamination of egg shells compared to non-S. Enteritidis serovars. These results will be useful for risk assessments of human exposure to Salmonella-contaminated eggs. © 2013 Crown copyright. This article is published with the

  8. A temporal study of Salmonella serovars in animals in Alberta between 1990 and 2001

    PubMed Central

    2005-01-01

    Abstract Passive laboratory-based surveillance data from Alberta Agriculture Food and Rural Development were analyzed for common Salmonella serovars, prevalences, trends, and for the presence of temporal clusters. There were 1767 isolates between October 1990 and December 2001 comprising 63 different serovars, including 961 isolates from chickens, 418 from cattle, 108 from pigs, 102 from turkeys, and 178 from all other species combined. Salmonella Typhimurium, Heidelberg, Hadar, Kentucky, and Thompson were the 5 most frequently isolated serovars. Approximately 60% of the S. Typhimurium were isolated from cattle, whereas over 90% of the S. Heidelberg, Hadar, Kentucky, and Thompson were isolated from chickens. Salmonella Enteritidis was rarely isolated. There was an increasing trend in isolates from chickens, cattle, and pigs, and a decreasing trend in isolates from turkeys. Temporal clusters were observed in 11 of 15 serovars examined in chickens (S. Anatum, Heidelberg, Infantis, Kentucky, Mbandaka, Montevideo, Nienstedten, Oranienburg, Thompson, Typhimurium, and Typhimurium var. Copenhagen), 5 of 5 serovars in cattle (S. Dublin, Montevideo, Muenster, Typhimurium, and Typhimurium var. Copenhagen), and 1 of 3 serovars in pigs (S. Typhimurium). Short-duration clusters may imply point source infections, whereas long-duration clusters may indicate an increase in the prevalence of the serovar, farm-to-farm transmission, or a wide-spread common source. A higher concentration of clusters in the winter months may reflect greater confinement, reduced ventilation, stressors, or increased exposure to wildlife vectors that are sharing housing during the winter. Detection of large clusters of Salmonella may have public health implications in addition to animal health concerns. PMID:15971672

  9. Investigations of Salmonella enterica serovar newport infections of oysters by using immunohistochemistry and knockout mutagenesis.

    PubMed

    Morrison, Christopher M; Dial, Sharon M; Day, William A; Joens, Lynn A

    2012-04-01

    The consumption of raw oysters is an important risk factor in the acquisition of food-borne disease, with Salmonella being one of a number of pathogens that have been found in market oysters. Previous work by our lab found that Salmonella was capable of surviving in oysters for over 2 months under laboratory conditions, and this study sought to further investigate Salmonella's tissue affinity and mechanism of persistence within the oysters. Immunohistochemistry was used to show that Salmonella was capable of breaching the epithelial barriers, infecting the deeper connective tissues of the oysters, and evading destruction by the oysters' phagocytic hemocytes. To further investigate the mechanism of these infections, genes vital to the function of Salmonella's two main type III secretion systems were disrupted and the survivability of these knockout mutants within oysters was assayed. When the Salmonella pathogenicity island 1 and 2 mutant strains were exposed to oysters, there were no detectable deficiencies in their abilities to survive, suggesting that Salmonella's long-term infection of oysters does not rely upon these two important pathogenicity islands and must be due to some other, currently unknown, mechanism.

  10. Investigations of Salmonella enterica Serovar Newport Infections of Oysters by Using Immunohistochemistry and Knockout Mutagenesis

    PubMed Central

    Morrison, Christopher M.; Dial, Sharon M.; Day, William A.

    2012-01-01

    The consumption of raw oysters is an important risk factor in the acquisition of food-borne disease, with Salmonella being one of a number of pathogens that have been found in market oysters. Previous work by our lab found that Salmonella was capable of surviving in oysters for over 2 months under laboratory conditions, and this study sought to further investigate Salmonella's tissue affinity and mechanism of persistence within the oysters. Immunohistochemistry was used to show that Salmonella was capable of breaching the epithelial barriers, infecting the deeper connective tissues of the oysters, and evading destruction by the oysters' phagocytic hemocytes. To further investigate the mechanism of these infections, genes vital to the function of Salmonella's two main type III secretion systems were disrupted and the survivability of these knockout mutants within oysters was assayed. When the Salmonella pathogenicity island 1 and 2 mutant strains were exposed to oysters, there were no detectable deficiencies in their abilities to survive, suggesting that Salmonella's long-term infection of oysters does not rely upon these two important pathogenicity islands and must be due to some other, currently unknown, mechanism. PMID:22307286

  11. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms.

    PubMed

    Ghosal, Abhisek; Jellbauer, Stefan; Kapadia, Rubina; Raffatellu, Manuela; Said, Hamid M

    2015-07-15

    Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines.

  12. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms

    PubMed Central

    Ghosal, Abhisek; Jellbauer, Stefan; Kapadia, Rubina; Raffatellu, Manuela

    2015-01-01

    Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines. PMID:25999427

  13. Reconstruction of the temporal signaling network in Salmonella-infected human cells.

    PubMed

    Budak, Gungor; Eren Ozsoy, Oyku; Aydin Son, Yesim; Can, Tolga; Tuncbag, Nurcan

    2015-01-01

    Salmonella enterica is a bacterial pathogen that usually infects its host through food sources. Translocation of the pathogen proteins into the host cells leads to changes in the signaling mechanism either by activating or inhibiting the host proteins. Given that the bacterial infection modifies the response network of the host, a more coherent view of the underlying biological processes and the signaling networks can be obtained by using a network modeling approach based on the reverse engineering principles. In this work, we have used a published temporal phosphoproteomic dataset of Salmonella-infected human cells and reconstructed the temporal signaling network of the human host by integrating the interactome and the phosphoproteomic dataset. We have combined two well-established network modeling frameworks, the Prize-collecting Steiner Forest (PCSF) approach and the Integer Linear Programming (ILP) based edge inference approach. The resulting network conserves the information on temporality, direction of interactions, while revealing hidden entities in the signaling, such as the SNARE binding, mTOR signaling, immune response, cytoskeleton organization, and apoptosis pathways. Targets of the Salmonella effectors in the host cells such as CDC42, RHOA, 14-3-3δ, Syntaxin family, Oxysterol-binding proteins were included in the reconstructed signaling network although they were not present in the initial phosphoproteomic data. We believe that integrated approaches, such as the one presented here, have a high potential for the identification of clinical targets in infectious diseases, especially in the Salmonella infections.

  14. Non-typhoidal Salmonella serotypes, antimicrobial resistance and co-infection with parasites among patients with diarrhea and other gastrointestinal complaints in Addis Ababa, Ethiopia.

    PubMed

    Eguale, Tadesse; Gebreyes, Wondwossen A; Asrat, Daniel; Alemayehu, Haile; Gunn, John S; Engidawork, Ephrem

    2015-11-04

    Non-typhoidal Salmonella (NTS) is an important public health problem worldwide. Consumption of animal-derived food products and direct and/or indirect contact with animals are the major routes of acquiring infection with NTS. Published information, particularly on the serotype distribution of NTS among human patients with gastroenteritis and associated risk factors, is scarce in Ethiopia. This study investigated the prevalence, risk factors, serotype distribution and antimicrobial susceptibility of Salmonella species among diarrheic out-patients attending health centers in Addis Ababa and patients with various gastrointestinal complaints at Tikur Anbessa Specialized Hospital (TASH). Stool samples were cultured for Salmonella species according to the WHO Global Foodborne Infections Network laboratory protocol. Salmonella serotyping was conducted using slide agglutination and microplate agglutination techniques. Antibiotic susceptibility testing was performed using the disk diffusion method according to Clinical and Laboratory Standards Institute guidelines. A total of 59 (6.2 %) stool samples, out of 957 were culture positive for Salmonella species. Fifty-five (7.2 %) of 765 diarrheic patients from health centers and 4 (2.1 %) of 192 patients from TASH were culture positive for Salmonella species. Multivariable logistic regression analysis after adjusting for all other variables revealed statistically significant association of Salmonella infection with consumption of raw vegetables (OR = 1.91, 95 % CI = 1.29-2.83, χ(2) = 4.74, p = 0.025) and symptom of watery diarrhea (OR = 3.3, 95 % CI = 1.23-8.88, χ(2) = 10.54, p = 0.005). Eleven serotypes were detected, and the most prominent were S. Typhimurium (37.3 %), S. Virchow (34 %), and S. Kottbus (10.2 %). Other serotypes were S. Miami, S. Kentucky, S. Newport, S. Enteritidis, S. Braenderup, S. Saintpaul, S. Concord and S. V:ROUGH-O. Resistance to three or more antimicrobials was detected in 27 (40.3 %) of the

  15. Intraspecies Competition for Niches in the Distal Gut Dictate Transmission during Persistent Salmonella Infection

    PubMed Central

    Lam, Lilian H.; Monack, Denise M.

    2014-01-01

    In order to be transmitted, a pathogen must first successfully colonize and multiply within a host. Ecological principles can be applied to study host-pathogen interactions to predict transmission dynamics. Little is known about the population biology of Salmonella during persistent infection. To define Salmonella enterica serovar Typhimurium population structure in this context, 129SvJ mice were oral gavaged with a mixture of eight wild-type isogenic tagged Salmonella (WITS) strains. Distinct subpopulations arose within intestinal and systemic tissues after 35 days, and clonal expansion of the cecal and colonic subpopulation was responsible for increases in Salmonella fecal shedding. A co-infection system utilizing differentially marked isogenic strains was developed in which each mouse received one strain orally and the other systemically by intraperitoneal (IP) injection. Co-infections demonstrated that the intestinal subpopulation exerted intraspecies priority effects by excluding systemic S. Typhimurium from colonizing an extracellular niche within the cecum and colon. Importantly, the systemic strain was excluded from these distal gut sites and was not transmitted to naïve hosts. In addition, S. Typhimurium required hydrogenase, an enzyme that mediates acquisition of hydrogen from the gut microbiota, during the first week of infection to exert priority effects in the gut. Thus, early inhibitory priority effects are facilitated by the acquisition of nutrients, which allow S. Typhimurium to successfully compete for a nutritional niche in the distal gut. We also show that intraspecies colonization resistance is maintained by Salmonella Pathogenicity Islands SPI1 and SPI2 during persistent distal gut infection. Thus, important virulence effectors not only modulate interactions with host cells, but are crucial for Salmonella colonization of an extracellular intestinal niche and thereby also shape intraspecies dynamics. We conclude that priority effects and

  16. Colonization of internal organs by Salmonella Enteritidis in experimentally infected laying hens housed in enriched colony cages at different stocking densities.

    PubMed

    Gast, Richard K; Guraya, Rupa; Jones, Deana R; Anderson, Kenneth E; Karcher, Darrin M

    2016-06-01

    Epidemiologic analyses have linked the frequency of human infections with Salmonella enterica subspecies enterica serovar Enteritidis to the consumption of contaminated eggs and thus to the prevalence of this pathogen in commercial egg-laying flocks. Contamination of the edible contents of eggs by Salmonella Enteritidis is a consequence of the colonization of reproductive tissues in systemically infected hens. The animal welfare implications of laying hen housing systems have been widely debated, but no definitive consensus has yet emerged about the food safety significance of poultry housing options. The present study sought to determine the effects of two different bird stocking densities on the invasion of internal organs by Salmonella Enteritidis in groups of experimentally infected laying hens housed in colony cages enriched with perching and nesting areas. In two trials, groups of laying hens were distributed at two different stocking densities into colony cages and (along with a group housed in conventional cages) orally inoculated with doses of 1.0 × 10(7) cfu of Salmonella Enteritidis. At 5 to 6 d post-inoculation, hens were euthanized and samples of internal organs were removed for bacteriologic culturing. For both trials combined, Salmonella Enteritidis was recovered at a significantly (P < 0.05) greater frequency from hens in enriched colony cages at the higher stocking density than at the lower density from livers (75.0% vs. 51.4%) and ovaries (51.4% vs. 30.6%). However, spleens from hens in enriched colony cages at the higher stocking density were significantly less often positive for Salmonella Enteritidis than from hens in conventional cages at that same density (90.3% vs. 68.1%). These results suggest that stocking density can influence the susceptibility of hens to Salmonella Enteritidis, but other housing systems parameters may also contribute to the outcome of infections. Published by Oxford University Press on behalf of Poultry Science

  17. Gene expression in the chicken caecum in response to infections with non-typhoid Salmonella.

    PubMed

    Rychlik, Ivan; Elsheimer-Matulova, Marta; Kyrova, Kamila

    2014-12-05

    Chickens can be infected with Salmonella enterica at any time during their life. However, infections within the first hours and days of their life are epidemiologically the most important, as newly hatched chickens are highly sensitive to Salmonella infection. Salmonella is initially recognized in the chicken caecum by TLR receptors and this recognition is followed by induction of chemokines, cytokines and many effector genes. This results in infiltration of heterophils, macrophages, B- and T-lymphocytes and changes in total gene expression in the caecal lamina propria. The highest induction in expression is observed for matrix metalloproteinase 7 (MMP7). Expression of this gene is increased in the chicken caecum over 4000 fold during the first 10 days after the infection of newly hatched chickens. Additional highly inducible genes in the caecum following S. Enteritidis infection include immune responsive gene 1 (IRG1), serum amyloid A (SAA), extracellular fatty acid binding protein (ExFABP), serine protease inhibitor (SERPINB10), trappin 6-like (TRAP6), calprotectin (MRP126), mitochondrial ES1 protein homolog (ES1), interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), avidin (AVD) and transglutaminase 4 (TGM4). The induction of expression of these proteins exceeds a factor of 50. Similar induction rates are also observed for chemokines and cytokines such as IL1β, IL6, IL8, IL17, IL18, IL22, IFNγ, AH221 or iNOS. Once the infection is under control, which happens approx. 2 weeks after infection, expression of IgY and IgA increases to facilitate Salmonella elimination from the gut lumen. This review outlines the function of individual proteins expressed in chickens after infection with non-typhoid Salmonella serovars.

  18. Paratyphoid Infections

    USDA-ARS?s Scientific Manuscript database

    The numerous motile members of the bacterial genus Salmonella are collectively referred to as paratyphoid (PT) salmonellae. Found throughout the world, these organisms infect a wide variety of hosts (including invertebrate and vertebrate wildlife, domestic animals, and humans) to yield either asympt...

  19. Noninvasive monitoring of salmonella infections in young mice

    NASA Astrophysics Data System (ADS)

    Olomu, Isoken N.; Reilly-Contag, Pamela; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    A recently developed bioluminescent assay was used to study the influence of age and inoculum size on the acute susceptibility of newborn and juvenile BALB/c mice to Salmonella gastrointestinal infection. Three strains of Salmonella were tagged by expression of the lux operon from Photohabdus luminescenes. Using a range of inoculum sizes varied over 6 orders of magnitude, mice aged 0-6 weeks were infected by oral inoculation. LIght emitted from the tagged bacteria and transmitted through mouse tissues was used to noninvasively monitor disease progression over 7 days. In neonatal mice there was evidence of gastrointestinal infection at 24 hours even with small inocular, and at 4-7 days, the patterns of photon emission and remained and healthy throughout the study period. Inoculation of neonates with tagged LB5000 and BJ66 resulted in severe gastrointestinal infections with low and intermediate sizes of inocula respectively. These strains are known to be of reduced virulence in adult mice. These age-related differences in susceptibility emphasize the need to define virulence in the context of age of the host, and implicate maturation of innate resistance factors in determining disease patterns. Identifying these host-factors and further defining the bacterial determinants of virulence in the neonatal host will be facilitated by this noninvasive study of infection using bioluminenscent methods.

  20. Salmonella montevideo infection in sheep and cattle in Scotland, 1970-81.

    PubMed

    Sharp, J C; Reilly, W J; Linklater, K A; Inglis, D M; Johnston, W S; Miller, J K

    1983-04-01

    Outbreaks of abortion associated with infection by Salmonella montevideo have affected sheep in the east, especially the south-east, of Scotland each year since 1972. Disease in the north and north-east was usually less severe. Between 1 January 1970 and 31 December 1981, a total of 67 incidents affecting sheep were reported by veterinary laboratories to the Communicable Diseases (Scotland) Unit, 87% of which presented during the main lambing months of February, March and April. Twenty-one episodes of bovine infection were also recorded over the same period, 17 of which involved single animals only, usually an aborted cow or a scouring calf. Despite intensive investigations, neither the origin nor the mode of spread of S. montevideo infection among sheep and cattle in Scotland have been established with any certainty, although there has been considerable evidence indicating the role of scavenging wild birds, particularly seagulls, as vectors transmitting infection to other farms in the same district. Also largely unexplained are the differences in the epidemiology and clinical pattern of disease in the south-east compared to the north and north-east, while sheep in the west of Scotland have remained virtually unaffected throughout.

  1. Salmonella montevideo infection in sheep and cattle in Scotland, 1970-81.

    PubMed Central

    Sharp, J. C.; Reilly, W. J.; Linklater, K. A.; Inglis, D. M.; Johnston, W. S.; Miller, J. K.

    1983-01-01

    Outbreaks of abortion associated with infection by Salmonella montevideo have affected sheep in the east, especially the south-east, of Scotland each year since 1972. Disease in the north and north-east was usually less severe. Between 1 January 1970 and 31 December 1981, a total of 67 incidents affecting sheep were reported by veterinary laboratories to the Communicable Diseases (Scotland) Unit, 87% of which presented during the main lambing months of February, March and April. Twenty-one episodes of bovine infection were also recorded over the same period, 17 of which involved single animals only, usually an aborted cow or a scouring calf. Despite intensive investigations, neither the origin nor the mode of spread of S. montevideo infection among sheep and cattle in Scotland have been established with any certainty, although there has been considerable evidence indicating the role of scavenging wild birds, particularly seagulls, as vectors transmitting infection to other farms in the same district. Also largely unexplained are the differences in the epidemiology and clinical pattern of disease in the south-east compared to the north and north-east, while sheep in the west of Scotland have remained virtually unaffected throughout. Images Map 2 PMID:6833746

  2. Salmonella infections in the absence of the major histocompatibility complex II

    NASA Technical Reports Server (NTRS)

    Chapes, S. K.; Beharka, A. A.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    We examined the pathogenesis of the facultative intracellular bacterium, Salmonella typhimurium in MHCII-/-, C2D knock-out mice, and wild-type C57BL/6J mice. The MHCII knock-out shortened the kinetics of animal death and reduced the dose of S. typhimurium needed to kill mice. We measured the physiological and cytokine responses of both mouse strains after S. typhimurium injection. Animal weight loss, spleen weights, liver weights, thymus weights, and serum corticosterone concentrations were comparable after injection with several doses of bacteria. The only physiological differences observed between the two strains were observed 3 days after injection of the highest dose of bacteria tested. Serum concentrations of tumor necrosis factor alpha, interleukin-2, and interleukin-6 increased in a dose-dependent fashion irrespective of mouse MHCII expression. Therefore, even in the absence of MHCII, mice are able to mount relatively normal physiological and immunological responses. Consistent with these normal responses, an increased percentage of MHCII-/- mice, primed with a low dose of bacteria 13 days earlier, were able to survive a lethal challenge of Salmonella compared with unprimed controls. Lastly, C2D mice had significantly higher serum interleukin-10 concentrations than C57BL/6J mice 48 h after infection with all doses of S. typhimurium. C2D macrophages also secreted significantly more IL-10 and less NO and O2- after lipopolysaccharide or phorbol ester stimulation in vitro than wild-type macrophages.

  3. Evaluation of the broad-spectrum lytic capability of bacteriophage cocktails against various Salmonella serovars and their effects on weaned pigs infected with Salmonella Typhimurium.

    PubMed

    Seo, Byoung-Joo; Song, Eu-Tteum; Lee, Kichan; Kim, Jong-Won; Jeong, Chang-Gi; Moon, Sung-Hyun; Son, Jee Soo; Kang, Sang Hyeon; Cho, Ho-Seong; Jung, Byeong Yeal; Kim, Won-Il

    2018-06-06

    The broad-spectrum lytic capability of Salmonella bacteriophages against various Salmonella species was evaluated to determine their potential as an alternative for antibiotics, and the safety and preventive effects of the bacteriophages were assessed on mice and pigs. Four bacteriophage cocktails were prepared using 13 bacteriophages, and the lytic capability of the four bacteriophage cocktails was tested using Salmonella reference strains and field isolates. Bacteriophage cocktail C (SEP-1, SGP-1, STP-1, SS3eP-1, STP-2, SChP-1, SAP-1, SAP-2; ≥10 9 pfu/ml) showed the best lytic activity against the Salmonella reference strains (100% of 34) and field isolates (92.5% of 107). Fifty mice were then orally inoculated with bacteriophage cocktail C to determine the distribution of bacteriophages in various organs, blood and feces. The effects of bacteriophages on Salmonella infection in weaned pigs (n=15) were also evaluated through an experimental challenge with Salmonella Typhimurium after treatment with bacteriophage cocktail C. All mice exhibited distribution of the bacteriophages in all organs, blood and feces until 15 days post infection (dpi). After 35 dpi, bacteriophages were not detected in any of these specimens. As demonstrated in a pig challenge study, treatment with bacteriophage cocktail C reduced the level of Salmonella shedding in feces. The metagenomic analyses of these pig feces also revealed that bacteriophage treatment decreased the number of species of the Enterobacteriaceae family without significant disturbance to the normal fecal flora. This study showed that bacteriophages effectively controlled Salmonella in a pig challenge model and could be a good alternative for antibiotics to control Salmonella infection.

  4. Prevalence of nontyphoidal Salmonella and Salmonella strains with conjugative antimicrobial-resistant serovars contaminating animal feed in Texas

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to characterize 365 nontyphoidal Salmonella enterica isolates from animal feed. Among the 365 isolates, 78 serovars were identified. Twenty-four isolates (7.0%) were recovered from three of six medicated feed types. Three of these isolates derived from the medicate...

  5. "Salmonella arizona" Infections in Latinos Associated with Rattlesnake Folk Medicine.

    ERIC Educational Resources Information Center

    Waterman, Stephen H.; And Others

    1990-01-01

    Conducted a case-control study to determine the magnitude of the problem of Latino patients who ingested rattlesnake capsules and then developed serious "Salmonella arizona" infections. Eighty-two percent of infected Latinos in 1986-87 who were questioned reported ingesting snake capsules. Discusses the association of ingesting snake…

  6. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections

    PubMed Central

    Sjölund-Karlsson, Maria; Gordon, Melita A.; Parry, Christopher M.

    2015-01-01

    SUMMARY Salmonella enterica infections are common causes of bloodstream infection in low-resource areas, where they may be difficult to distinguish from other febrile illnesses and may be associated with a high case fatality ratio. Microbiologic culture of blood or bone marrow remains the mainstay of laboratory diagnosis. Antimicrobial resistance has emerged in Salmonella enterica, initially to the traditional first-line drugs chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole. Decreased fluoroquinolone susceptibility and then fluoroquinolone resistance have developed in association with chromosomal mutations in the quinolone resistance-determining region of genes encoding DNA gyrase and topoisomerase IV and also by plasmid-mediated resistance mechanisms. Resistance to extended-spectrum cephalosporins has occurred more often in nontyphoidal than in typhoidal Salmonella strains. Azithromycin is effective for the management of uncomplicated typhoid fever and may serve as an alternative oral drug in areas where fluoroquinolone resistance is common. In 2013, CLSI lowered the ciprofloxacin susceptibility breakpoints to account for accumulating clinical, microbiologic, and pharmacokinetic-pharmacodynamic data suggesting that revision was needed for contemporary invasive Salmonella infections. Newly established CLSI guidelines for azithromycin and Salmonella enterica serovar Typhi were published in CLSI document M100 in 2015. PMID:26180063

  7. Salmonella serovars and antimicrobial resistance in strains isolated from wild animals in captivity in Sinaloa, Mexico.

    PubMed

    Silva-Hidalgo, Gabriela; López-Valenzuela, Martin; Juárez-Barranco, Felipe; Montiel-Vázquez, Edith; Valenzuela-Sánchez, Beatriz

    2014-08-01

    The aim of the present study was to evaluate the frequency of antibiotic resistance in Salmonella spp. strains from wild animals in captivity at the Culiacan Zoo and the Mazatlan Aquarium in Sinaloa, Mexico. We identified 17 different Salmonella enterica serovars at a prevalence of 19.90% (Culiacan Zoo) and 6.25% (Mazatlan Aquarium). Antibiotic sensitivity tests revealed that, of the 83 strains studied, 100% were multidrug resistant (MDR). The drugs against which the greatest resistance was observed were: penicillin, erythromycin, dicloxacillin, ampicillin, cephalothin, and chloramphenicol. We therefore conclude that MDR is common among Salmonella isolates originating from wild animals in captivity in Sinaloa.

  8. Animal contact as a source of human non-typhoidal salmonellosis

    PubMed Central

    2011-01-01

    Non-typhoidal Salmonella represents an important human and animal pathogen world-wide. Most human salmonellosis cases are foodborne, but each year infections are also acquired through direct or indirect animal contact in homes, veterinary clinics, zoological gardens, farm environments or other public, professional or private settings. Clinically affected animals may exhibit a higher prevalence of shedding than apparently healthy animals, but both can shed Salmonella over long periods of time. In addition, environmental contamination and indirect transmission through contaminated food and water may complicate control efforts. The public health risk varies by animal species, age group, husbandry practice and health status, and certain human subpopulations are at a heightened risk of infection due to biological or behavioral risk factors. Some serotypes such as Salmonella Dublin are adapted to individual host species, while others, for instance Salmonella Typhimurium, readily infect a broad range of host species, but the potential implications for human health are currently unclear. Basic hygiene practices and the implementation of scientifically based management strategies can efficiently mitigate the risks associated with animal contacts. However, the general public is frequently unaware of the specific disease risks involved, and high-risk behaviors are common. Here we describe the epidemiology and serotype distribution of Salmonella in a variety of host species. In addition, we review our current understanding of the public health risks associated with different types of contacts between humans and animals in public, professional or private settings, and, where appropriate, discuss potential risk mitigation strategies. PMID:21324103

  9. Pathogenic traits of Salmonella Montevideo in experimental infections in vivo and in vitro

    PubMed Central

    Lalsiamthara, Jonathan; Lee, John Hwa

    2017-01-01

    Salmonella serovar Montevideo (SM) is frequently associated with human Salmonella infections and causes gastrointestinal disease, cases are common particularly among individuals who come in close contact with live poultry or poultry meat products. To characterize SM disease in chickens, the pathogenic traits and tissue predilections of the disease were investigated. Dissemination of fluorescent-tagged SM (JOL1575GFP) was monitored after oral and intramuscular mock infections of specific-pathogen-free chickens. The spleen was predominantly affected by intramuscular infection while the cecum, spleen, and minimally liver were affected by oral infection. No conspicuous illness was observed in infected birds, and histopathological examination showed minimal damage of the intestinal epithelium and splenic parenchyma though SM was readily isolated from these tissues. Levels of SM internalization by primary chicken peritoneal macrophages were similar to that of Salmonella Typhimurium. SM was more sensitive to chicken than rabbit serum complement killing. Internal egg contamination of SM mock infected layers also occurred at trace levels and lasted for a week after inoculation. This study also confirmed that SM infection in chickens is sub-clinical and asymptomatic, which suggests that latent asymptomatic carriers may excrete a large number of bacteria and transmit the pathogen by contaminating water or food sources. PMID:28387311

  10. A longitudinal study of Salmonella infection in different types of turkey flocks in Great Britain.

    PubMed

    Danguy des Déserts, J; Davies, R H; Vaughan, K; McLaren, I; Canning, P; Wintrip, A; Mueller-Doblies, D; Carrique-Mas, J J

    2011-05-01

    Salmonella is, after Campylobacter, the most reported zoonotic pathogen in the EU. Poultry are a common source of infection to humans, and turkey flocks are commonly colonized with the organism. We investigated the prevalence and risk factors of Salmonella infection in 179 houses in 60 holdings representative of turkey meat and breeder production in Great Britain. From each holding, up to four houses were chosen, and two consecutive flocks per house were sampled/tested for Salmonella to investigate the persistence, elimination and introduction of Salmonella in consecutive crops. At the first sampling, the overall flock-level Salmonella prevalence was 32.8% and 8.9% for meat and breeding flocks respectively. There was a higher prevalence of Salmonella in flocks in the rearing stage than in the fattening and breeding stages. At the first sampling, the flock-level prevalence of Salmonella was 26.8% (95% CI: 20.7-33.7%), while the prevalence level in the subsequent flock was 20.5% (95% CI: 13.6-29.7%). No houses were positive for any of the EU-regulated serovars. The most commonly encountered serovars were S. Kottbus and S. Kedougou. Carry-over of infection was observed in 44.8% of the positive houses, and introduction of new infection occurred in 8.4% of houses. Data from the questionnaires and auditing of all holdings and houses were combined and used to calculate adjusted farm- and house-adjusted risk factors. Significant risk factors were feed from a source other than a national compounder (OR = 2.4), feeder type other than pan feeders (OR = 2.4) and hygiene practices other than terminal cleaning and disinfection using power-washing with sanitizer and anteroom with boot change (OR = 2.8). The study discusses the main challenges currently faced by the industry to control Salmonella in turkey production. © 2010 Blackwell Verlag GmbH.

  11. Salmonella DIVA vaccine reduces disease, colonization and shedding due to virulent S. Typhimurium infection in swine

    USDA-ARS?s Scientific Manuscript database

    Non-host adapted Salmonella serovars are opportunistic pathogens that can colonize food-producing animals without causing overt disease, including the frequent foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). Interventions against Salmonella need to both enhance food safe...

  12. Characterization of Salmonella food isolates with concurrent resistance to ceftriaxone and ciprofloxacin.

    PubMed

    Wong, Marcus Ho Yin; Zeng, Li; Liu, Jian Hua; Chen, Sheng

    2013-01-01

    Foodborne salmonellosis is an important public health problem worldwide. Most human Salmonella infections occur through the consumption of contaminated food of animal origin. The study reported the first isolation of two Salmonella enterica serovar Oranienburg strains from pork in China with concurrent resistance to ciprofloxacin and ceftriaxone. Both isolates also showed resistance to norfloxacin, trimethoprim-sulfamethoxazole, and chloramphenicol, and an elevated minimal inhibitory concentraton of azithromycin; one strain was also resistant to amikacin, gentamicin, tetracycline, and amoxicillin-clavulanic acid. Salmonella ceftriaxone resistance was due to the production of IncN plasmidborne CTX-M-14 ESBL, and their ciprofloxacin resistance was mediated by target mutations and efflux pump activity. This is the first time that ceftriaxone- and ciprofloxacin-resistant Salmonella was reported in meat products, which may be due to the uses of antibiotics in animal production. The study warrants the continuous surveillance of multidrug-resistant Salmonella in meat products and cautious use of antibiotics in food animals.

  13. Receptor Diversity and Host Interaction of Bacteriophages Infecting Salmonella enterica Serovar Typhimurium

    PubMed Central

    Kim, Hyeryen; Choi, Younho; Heu, Sunggi; Ryu, Sangryeol

    2012-01-01

    Background Salmonella enterica subspecies enterica serovar Typhimurium is a Gram-negative pathogen causing salmonellosis. Salmonella Typhimurium-targeting bacteriophages have been proposed as an alternative biocontrol agent to antibiotics. To further understand infection and interaction mechanisms between the host strains and the bacteriophages, the receptor diversity of these phages needs to be elucidated. Methodology/Principal Findings Twenty-five Salmonella phages were isolated and their receptors were identified by screening a Tn5 random mutant library of S. Typhimurium SL1344. Among them, three types of receptors were identified flagella (11 phages), vitamin B12 uptake outer membrane protein, BtuB (7 phages) and lipopolysaccharide-related O-antigen (7 phages). TEM observation revealed that the phages using flagella (group F) or BtuB (group B) as a receptor belong to Siphoviridae family, and the phages using O-antigen of LPS as a receptor (group L) belong to Podoviridae family. Interestingly, while some of group F phages (F-I) target FliC host receptor, others (F-II) target both FliC and FljB receptors, suggesting that two subgroups are present in group F phages. Cross-resistance assay of group B and L revealed that group L phages could not infect group B phage-resistant strains and reversely group B phages could not infect group L SPN9TCW-resistant strain. Conclusions/Significance In this report, three receptor groups of 25 newly isolated S. Typhimurium-targeting phages were determined. Among them, two subgroups of group F phages interact with their host receptors in different manner. In addition, the host receptors of group B or group L SPN9TCW phages hinder other group phage infection, probably due to interaction between receptors of their groups. This study provides novel insights into phage-host receptor interaction for Salmonella phages and will inform development of optimal phage therapy for protection against Salmonella. PMID:22927964

  14. Comparison of individual, pooled, and composite fecal sampling methods for detection of Salmonella on U.S. dairy operations

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were to estimate the prevalence of Salmonella for individual, pooled, and composite fecal samples and to compare culture results from each sample type for determining herd Salmonella infection status and identifying Salmonella serotype(s). The USDA’s National Animal Hea...

  15. Persistence of fecal shedding of Salmonella Enteritidis by experimentally infected laying hens housed in conventional or enriched cages.

    PubMed

    Gast, Richard K; Guraya, Rupa; Jones, Deana R; Anderson, Kenneth E

    2015-07-01

    Salmonella Enteritidis can be deposited inside eggs laid by infected hens, so the prevalence of this pathogen in commercial egg-producing flocks is an important risk factor for human illness. Opportunities for the introduction, transmission, and persistence of salmonellae in poultry are potentially influenced by flock housing and management systems. Animal welfare concerns have spurred the development of alternatives to traditional cage-based housing. However, the consequences of poultry housing systems for food safety have not been fully resolved by prior research. The present study assessed the effects of two different housing systems (conventional cages and colony cages enriched with perching and nesting areas) on the persistence of fecal shedding of Salmonella Enteritidis by groups of experimentally infected laying hens. In each of two trials, 136 hens were distributed among cages of both housing systems and orally inoculated with doses of 10(8) cfu of Salmonella Enteritidis (phage type 13a in one trial and phage type 4 in the other). At weekly intervals, samples of voided feces were collected from beneath each cage and cultured to detect Salmonella Enteritidis. Fecal shedding of Salmonella Enteritidis was detected for up to 8 wk post-inoculation by hens housed in enriched colony cages and 10 wk by hens housed in conventional cages. For both trials combined, the frequency of positive fecal cultures was significantly (P < 0.05) greater for conventional cages than for enriched colony cages at 1 wk (84.7 vs. 71.5%), 2 wk (54.2 vs. 31.3%), 3 wk (21.5 vs. 7.6%), and 4 wk (9.7 vs. 2.8%) post-inoculation. These results demonstrate that the susceptibility of hens to intestinal colonization by Salmonella Enteritidis can differ between conventional and enriched cage-based production systems, although this effect does not necessarily translate into a corresponding difference in the longer-term persistence of fecal shedding. © 2015 Poultry Science Association Inc.

  16. Epidemiological studies on Salmonella in a certain area ("Walcheren project"). I. The presence of Salmonella in man, pigs, insects, seagulls and in foods and effluents.

    PubMed

    Edel, W; van Schothorst, M; Kampelmacher, E H

    1976-08-01

    During a certain period various materials (pigs, foods, insects, seagull droppings, chopping-block scrapings from butcher's shops, effluents of sewage treatment plants and stools of patients) were examined for the presence of Salmonella at the same time in a relatively small area (Walcheren). Certain types of Salmonella (S. typhi murium type II 505, S. panama, S. infantis and S. brandenburg) were frequently isolated from almost all materials examined. This may indicate the existence of Salmonella contamination cycles: one may think of the cycle: slaughter animal (infected from the environment and/or by meal) - meat - consumer - patient or healthy carrier - effluent and surface water - insects, birds and rodents - slaughter animal or meat and possibly other foods - consumer.

  17. Salmonella typhimurium contamination of processed broiler chickens after a subclinical infection

    PubMed Central

    Knivett, V. A.

    1971-01-01

    A subclinical infection of Salmonella typhimurium in a broiler flock was investigated and attempts were made to eradicate the infection by treatment with furazolidone. One-quarter of the chickens were still infected after they had been through the processing plant. Washing in heavily chlorinated water reduced the number of contaminated carcasses. Infected chickens were also found in four other companion flocks on the same farm. PMID:4937856

  18. Gene co-expression network analysis identifies porcine genes associated with variation in Salmonella shedding

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar Typhimurium is a gram-negative bacterium that can colonize the gut of humans and several species of food producing farm animals to cause enteric or septicaemic salmonellosis. While many studies have looked into the host genetic response to Salmonella infection, relatively...

  19. Estimation of costs for control of Salmonella in high-risk feed materials and compound feed

    PubMed Central

    Wierup, Martin; Widell, Stig

    2014-01-01

    Introduction Feed is a potential and major source for introducing Salmonella into the animal-derived food chain. This is given special attention in the European Union (EU) efforts to minimize human food-borne Salmonella infections from animal-derived food. The objective of this study was to estimate the total extra cost for preventing Salmonella contamination of feed above those measures required to produce commercial feed according to EU regulation (EC) No 183/2005. The study was carried out in Sweden, a country where Salmonella infections in food-producing animals from feed have largely been eliminated. Methods On the initiative and leadership of the competent authority, the different steps of feed production associated with control of Salmonella contamination were identified. Representatives for the major feed producers operating in the Swedish market then independently estimated the annual mean costs during the years 2009 and 2010. The feed producers had no known incentives to underestimate the costs. Results and discussion The total cost for achieving a Salmonella-safe compound feed, when such a control is established, was estimated at 1.8–2.3 € per tonne of feed. Of that cost, 25% relates to the prevention of Salmonella contaminated high-risk vegetable feed materials (mainly soybean meal and rapeseed meal) from entering feed mills, and 75% for measures within the feed mills. Based on the feed formulations applied, those costs in relation to the farmers’ 2012 price for compound feed were almost equal for broilers and dairy cows (0.7%). Due to less use of protein concentrate to fatten pigs, the costs were lower (0.6%). These limited costs suggest that previous recommendations to enforce a Salmonella-negative policy for animal feed are realistic and economically feasible to prevent a dissemination of the pathogen to animal herds, their environment, and potentially to human food products. PMID:24959328

  20. Animal Models for Salmonellosis: Applications in Vaccine Research

    PubMed Central

    Higginson, Ellen E.; Simon, Raphael

    2016-01-01

    Salmonellosis remains an important cause of human disease worldwide. While there are several licensed vaccines for Salmonella enterica serovar Typhi, these vaccines are generally ineffective against other Salmonella serovars. Vaccines that target paratyphoid and nontyphoidal Salmonella serovars are very much in need. Preclinical evaluation of candidate vaccines is highly dependent on the availability of appropriate scientific tools, particularly animal models. Many different animal models exist for various Salmonella serovars, from whole-animal models to smaller models, such as those recently established in insects. Here, we discuss various mouse, rat, rabbit, calf, primate, and insect models for Salmonella infection, all of which have their place in research. However, choosing the right model is imperative in selecting the best vaccine candidates for further clinical testing. In this minireview, we summarize the various animal models that are used to assess salmonellosis, highlight some of the advantages and disadvantages of each, and discuss their value in vaccine development. PMID:27413068

  1. Diminished nuclear RNA decay upon Salmonella infection upregulates antibacterial noncoding RNAs.

    PubMed

    Imamura, Katsutoshi; Takaya, Akiko; Ishida, Yo-Ichi; Fukuoka, Yayoi; Taya, Toshiki; Nakaki, Ryo; Kakeda, Miho; Imamachi, Naoto; Sato, Aiko; Yamada, Toshimichi; Onoguchi-Mizutani, Rena; Akizuki, Gen; Tanu, Tanzina; Tao, Kazuyuki; Miyao, Sotaro; Suzuki, Yutaka; Nagahama, Masami; Yamamoto, Tomoko; Jensen, Torben Heick; Akimitsu, Nobuyoshi

    2018-06-07

    Cytoplasmic mRNA degradation controls gene expression to help eliminate pathogens during infection. However, it has remained unclear whether such regulation also extends to nuclear RNA decay. Here, we show that 145 unstable nuclear RNAs, including enhancer RNAs (eRNAs) and long noncoding RNAs (lncRNAs) such as NEAT1v2, are stabilized upon Salmonella infection in HeLa cells. In uninfected cells, the RNA exosome, aided by the Nuclear EXosome Targeting (NEXT) complex, degrades these labile transcripts. Upon infection, the levels of the exosome/NEXT components, RRP6 and MTR4, dramatically decrease, resulting in transcript stabilization. Depletion of lncRNAs, NEAT1v2, or eRNA07573 in HeLa cells triggers increased susceptibility to Salmonella infection concomitant with the deregulated expression of a distinct class of immunity-related genes, indicating that the accumulation of unstable nuclear RNAs contributes to antibacterial defense. Our results highlight a fundamental role for regulated degradation of nuclear RNA in the response to pathogenic infection. © 2018 The Authors.

  2. Quinolone-resistant Salmonella enterica serotype Enteritidis infections associated with international travel.

    PubMed

    O'Donnell, Allison T; Vieira, Antonio R; Huang, Jennifer Y; Whichard, Jean; Cole, Dana; Karp, Beth E

    2014-11-01

    We found a strong association between nalidixic acid-resistant Salmonella enterica serotype Enteritidis infections in the United States and recent international travel by linking Salmonella Enteritidis data from the National Antimicrobial Resistance Monitoring System and the Foodborne Diseases Active Surveillance Network. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Occurrence of Campylobacter and Salmonella in ducks and duck eggs in Selangor, Malaysia.

    PubMed

    Nor Faiza, S; Saleha, A A; Jalila, A; Fauziah, N

    2013-03-01

    The importance of Campylobacter and Salmonella as foodborne pathogens is well recognised globally. A recent work in Penang found ducks in commercial farms were infected with these organisms. The aim of the study was to detect the presence of Campylobacter and Salmonella in ducks and Salmonella in duck eggs in farms in a small part of Selangor. Cloacal swabs were obtained from 75 ducks and 30 duck eggs from three farms. The isolation and identification of Campylobacter and Salmonella were done using conventional methods. Twelve percent of Campylobacter and 16.0% of Salmonella were isolated from the ducks sampled. Salmonella was absent on and in eggs. Campylobacter isolates consisted of 22% Campylobacter jejuni and the remaining was Campylobacter coli. Three Salmonella serovars identified were Salmonella Agona, S. Braenderup and S. Corvallis. The presence of Campylobacter and Salmonella in ducks may cause contamination of the meat during processing and handling which can constitute public health hazard. Moreover, the farm workers may be exposed to the organisms through contact with the infected animals.

  4. Coordinated Regulation of Virulence during Systemic Infection of Salmonella enterica serovar Typhimurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Hyunjin; McDermott, Jason E.; Porwollik, Steffen

    Salmonella must respond to a myriad of environmental cues during infection of a mouse and express specific subsets of genes in a temporal and spatial manner to subvert the host defense mechanisms but these regulatory pathways are poorly established. To unravel how micro-environmental signals are processed and integrated into coordinated action, we constructed in-frame non-polar deletions of 84 regulators inferred to play a role in Salmonella typhimurium virulence and tested them in three virulence assays (intraperitoneal (i.p.), and intragastric (i.g.) infection in BALB/c mice, and persistence in SvJ129 mice). Overall 36 regulators were identified that were less virulent in atmore » least one assay, and of those, 15 regulators were required for systemic mouse infection in an acute infection model. As a first step towards understanding the interplay between a pathogen and its host from a systems biology standpoint we focused on these 15 genes. Transcriptional profiles were obtained for each of these 15 regulators from strains grown under four different environmental conditions. These results as well as publicly available transcriptional profiles were analyzed using both network inference and cluster analysis algorithms. The analysis predicts a regulatory network in which all 15 regulators control a specific set of genes necessary for Salmonella to cause systemic infection. We tested the regulatory model by expressing a subset of the regulators in trans and monitoring transcription of 7 known virulence factors located within Salmonella pathogenicity island 2 (SPI-2). These experiments validated the regulatory model and showed that, for these 7 genes, the response regulator SsrB and the marR type regulator SlyA co-regulate in a regulatory cascade by integrating multiple signals.« less

  5. Analysis of Antimicrobial Resistance Genes Detected in MDR Salmonella enterica Serovar Typhimurium animal isolates from the National Antimicrobial Resistance Monitoring System

    USDA-ARS?s Scientific Manuscript database

    Background: The presence of Multi-Drug Resistant (MDR) Salmonella in food animals is concerning. To understand how antimicrobial resistance (AR) develops, the genetic elements responsible for MDR phenotypes in Salmonella animal isolates were investigated. National Antimicrobial Resistance Monitoring...

  6. Prevalence of Salmonella enterica and Shiga toxin-producing Escherichia coli in zoo animals from Chile.

    PubMed

    Marchant, Paulina; Hidalgo-Hermoso, Ezequiel; Espinoza, Karen; Retamal, Patricio

    2016-12-30

    Salmonella (S.) enterica and Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens. Here, we report the prevalence of S. enterica and STEC in feces of 316 zoo animals belonging to 61 species from Chile. S. enterica and STEC strains were detected in 7.5% and 4.4% of animals, respectively. All Salmonella isolates corresponded to the serotype Enteritidis. To the best of our knowledge, this is the first report of S. Enteritidis in the culpeo fox ( Lycalopex culpaeus ), black-capped capuchin ( Sapajus apella ) and Peruvian pelican ( Pelecanus thagus ) and the first STEC report in Thomson's gazelle ( Eudorcas thomsonii ).

  7. Prevalence of Salmonella enterica and Shiga toxin-producing Escherichia coli in zoo animals from Chile

    PubMed Central

    Marchant, Paulina; Hidalgo-Hermoso, Ezequiel; Espinoza, Karen

    2016-01-01

    Salmonella (S.) enterica and Shiga toxin-producing Escherichia coli (STEC) are foodborne pathogens. Here, we report the prevalence of S. enterica and STEC in feces of 316 zoo animals belonging to 61 species from Chile. S. enterica and STEC strains were detected in 7.5% and 4.4% of animals, respectively. All Salmonella isolates corresponded to the serotype Enteritidis. To the best of our knowledge, this is the first report of S. Enteritidis in the culpeo fox (Lycalopex culpaeus), black-capped capuchin (Sapajus apella) and Peruvian pelican (Pelecanus thagus) and the first STEC report in Thomson's gazelle (Eudorcas thomsonii). PMID:27030195

  8. Animal and environmental impact on the presence and distribution of Salmonella and Escherichia coli in hydroponic tomato greenhouses.

    PubMed

    Orozco R, Leopoldo; Iturriaga, Montserrat H; Tamplin, Mark L; Fratamico, Pina M; Call, Jeffrey E; Luchansky, John B; Escartin, Eduardo F

    2008-04-01

    From 2003 to 2004, we studied the impact of environmental influences on the microbiological quality of a hydroponic tomato farm. The presence of Salmonella was investigated on 906 samples of tomatoes and 714 environmental samples. The farm comprised 14 greenhouses and a technologically advanced packinghouse, and operated under a sanitary agricultural practices plan. The objective of the present study was to determine the operating sources of contamination. During the course of the study, two independent natural events affected the farm. In 2003, water runoff entered some of the greenhouses. A year later, wild animals (opossums, mice, and sparrows) gained entry into several of the greenhouses. Salmonella and Escherichia coli were found in samples of tomatoes, water puddles, soil, shoes, and the feces of local wild and farm animals. Salmonella Montevideo, Salmonella Newport, and strains of the F serogroup were isolated from tomatoes. Almost all of the Salmonella Newport strains were isolated from samples collected during or immediately after the flood. Analysis by pulsed-field gel electrophoresis revealed that some Salmonella Montevideo isolates from tomatoes, opossums, and mice displayed identical XbaI or AvrII patterns, suggesting that these wild animals represented one source of contamination. F serogroup strains were found mostly on samples of goat feces and personnel shoes when standard working practices were in place. Shoes were found to be an important vehicle for dissemination of Salmonella into the greenhouses. The level of protection provided by hydroponic greenhouses does not exclude the eventuality that enteric pathogenic bacteria can gain access through various avenues.

  9. Salmonella prevalence and antimicrobial susceptibility from the National Animal Health Monitoring System Swine 2000 and 2006 Studies

    USDA-ARS?s Scientific Manuscript database

    Concern over Salmonella contamination of food is compounded by fear that antimicrobials traditionally used to combat the infection will become useless due to rising antibiotic resistance. Livestock, in particular swine, are often blamed for illnesses caused by Salmonella and for increasing antibioti...

  10. Effect of treatment with interferon-gamma and concanavalin A on the course of infection of mice with Salmonella typhimurium strain LT-2

    NASA Technical Reports Server (NTRS)

    Gould, Cheryl L.; Sonnenfeld, Gerald

    1987-01-01

    The effect of pretreatment of mice with 34 units/day, for five days, of interferon-gamma (IFN-gamma) on the course of infection with LD50 of Salmonella typhimurium strain LT-2 was assessed, using two IFN preparations: (1) a hybridoma supernatant fluid containing concanavalin-A-induced IFN-gamma activity and (2) pure murine IFN-gamma produced by recombinant DNA technology. The hybridoma supernatant-treated Salmonella-infected mice were found to die faster than mice treated only with Salmonella. Pure murine IFN-gamma was found to protect infected mice significantly, with 95 percent of mice surviving LD50 infection. In contrast, the Salmonella-infected mice treated with hybridoma supernatant were found to die faster than the Salmonella-infected untreated controls. Mice treated with concanavalin A alone prior to infection with S. typhimurium died more quickly than the untreated infected controls, suggesting that contamination with concanavalin A had a detrimental effect on mice survival.

  11. Highly resistant Salmonella Newport-MDRAmpC transmitted through the domestic US food supply: a FoodNet case-control study of sporadic Salmonella Newport infections, 2002-2003.

    PubMed

    Varma, Jay K; Marcus, Ruthanne; Stenzel, Sara A; Hanna, Samir S; Gettner, Sharmeen; Anderson, Bridget J; Hayes, Tameka; Shiferaw, Beletshachew; Crume, Tessa L; Joyce, Kevin; Fullerton, Kathleen E; Voetsch, Andrew C; Angulo, Frederick J

    2006-07-15

    A new multidrug-resistant (MDR) strain of Salmonella serotype Newport, Newport-MDRAmpC, has recently emerged. We sought to identify the medical, behavioral, and dietary risk factors for laboratory-confirmed Salmonella Newport infection, including that with Newport-MDRAmpC. A 12-month population-based case-control study was conducted during 2002-2003 in 8 sites of the Foodborne Diseases Active Surveillance Network (FoodNet), with 215 case patients with Salmonella Newport infection and 1154 healthy community control subjects. Case patients with Newport-MDRAmpC infection were more likely than control subjects to have taken an antimicrobial agent to which Newport-MDRAmpC is resistant during the 28 days before the onset of diarrheal illness (odds ratio [OR], 5.0 [95% confidence interval {CI}, 1.6-16]). Case patients with Newport-MDRAmpC infection were also more likely to have eaten uncooked ground beef (OR, 7.8 [95% CI, 1.4-44]) or runny scrambled eggs or omelets prepared in the home (OR, 4.9 [95% CI, 1.3-19]) during the 5 days before the onset of illness. International travel was not a risk factor for Newport-MDRAmpC infection but was a strong risk factor for pansusceptible Salmonella Newport infection (OR, 7.1 [95% CI, 2.0-24]). Case patients with pansusceptible infection were also more likely to have a frog or lizard in their household (OR, 2.9 [95% CI, 1.1-7.7]). Newport-MDRAmpC infection is acquired through the US food supply, most likely from bovine and, perhaps, poultry sources, particularly among persons already taking antimicrobial agents.

  12. Laboratory-based Salmonella surveillance in Fiji, 2004-2005.

    PubMed

    Dunn, John; Pryor, Jan; Saketa, Salanieta; Delai, Wasale; Buadromo, Eka; Kishore, Kamal; Naidu, Shakila; Greene, Sharon; Varma, Jay; Chiller, Tom

    2005-09-01

    Although foodborne diseases are an important public health problem worldwide, the burden of foodborne illness is not well described in most Pacific Island Countries and Territories. Laboratory-based surveillance programs can detect trends and outbreaks, estimate burden of illness, and allow subtyping of enteric pathogens (e.g. Salmonella serotyping), which is critical for linking illness to food vehicles and animal reservoirs. To enhance public health capacity in Fiji for foodborne disease surveillance, we developed the Salmonella Surveillance Project (SSP), a collaboration to pilot laboratory-based surveillance for Salmonella. A network of national and international partners was formed including epidemiologists, microbiologists, and environmental health personnel. Ministry of Health personnel were trained in foodborne disease surveillance and outbreak investigation. Three clinical microbiology laboratories from different parts of the country functioned as sentinel sites, reporting all laboratory-confirmed Salmonella infections using a standardized case report form. Non-Typhi Salmonella isolates were collected for serotyping. In 2004-2005, 86 non-Typhi Salmonella and 275 S. Typhi laboratory-confirmed infections were reported. Salmonella enterica serotype I 3,10: r:- and Salmonella enterica serotype Weltevreden were the most commonly isolated non-Typhi serotypes. In Fiji, the SSP utilized international partnerships to facilitate training, and to enhance laboratory capacity and surveillance for salmonellosis. Incorporating laboratory-based foodborne disease reporting into national disease surveillance will enable public health officials to describe the burden of foodborne illness, identify outbreaks, conduct analytic epidemiology studies, and improve food safety.

  13. The Prevalences of Salmonella Genomic Island 1 Variants in Human and Animal Salmonella Typhimurium DT104 Are Distinguishable Using a Bayesian Approach

    PubMed Central

    Mather, Alison E.; Denwood, Matthew J.; Haydon, Daniel T.; Matthews, Louise; Mellor, Dominic J.; Coia, John E.; Brown, Derek J.; Reid, Stuart W. J.

    2011-01-01

    Throughout the 1990 s, there was an epidemic of multidrug resistant Salmonella Typhimurium DT104 in both animals and humans in Scotland. The use of antimicrobials in agriculture is often cited as a major source of antimicrobial resistance in pathogenic bacteria of humans, suggesting that DT104 in animals and humans should demonstrate similar prevalences of resistance determinants. Until very recently, only the application of molecular methods would allow such a comparison and our understanding has been hindered by the fact that surveillance data are primarily phenotypic in nature. Here, using large scale surveillance datasets and a novel Bayesian approach, we infer and compare the prevalence of Salmonella Genomic Island 1 (SGI1), SGI1 variants, and resistance determinants independent of SGI1 in animal and human DT104 isolates from such phenotypic data. We demonstrate differences in the prevalences of SGI1, SGI1-B, SGI1-C, absence of SGI1, and tetracycline resistance determinants independent of SGI1 between these human and animal populations, a finding that challenges established tenets that DT104 in domestic animals and humans are from the same well-mixed microbial population. PMID:22125606

  14. Laboratory-acquired infections of Salmonella enterica serotype Typhi in South Africa: phenotypic and genotypic analysis of isolates.

    PubMed

    Smith, Anthony Marius; Smouse, Shannon Lucrecia; Tau, Nomsa Pauline; Bamford, Colleen; Moodley, Vineshree Mischka; Jacobs, Charlene; McCarthy, Kerrigan Mary; Lourens, Adré; Keddy, Karen Helena

    2017-09-29

    Workers in clinical microbiology laboratories are exposed to a variety of pathogenic microorganisms. Salmonella species is among the most commonly reported bacterial causes of laboratory-acquired infections. We report on three cases of laboratory-acquired Salmonella enterica serotype Typhi (Salmonella Typhi) infection which occurred over the period 2012 to 2016 in South Africa. Laboratory investigation included phenotypic and genotypic characterization of isolates. Phenotypic analysis included standard microbiological identification techniques, serotyping and antimicrobial susceptibility testing. Genotypic analysis included the molecular subtyping methodologies of pulsed-field gel electrophoresis analysis, multilocus sequence typing and whole-genome sequencing (WGS); with WGS data analysis including phylogenetic analysis based upon comparison of single nucleotide polymorphism profiles of isolates. All cases of laboratory-acquired infection were most likely the result of lapses in good laboratory practice and laboratory safety. The following critical issues were highlighted. There was misdiagnosis and misreporting of Salmonella Typhi as nontyphoidal Salmonella by a diagnostic laboratory, with associated public health implications. We highlight issues concerning the importance of accurate fluoroquinolone susceptibility testing and interpretation of results according to updated guidelines. We describe potential shortcomings of a single disk susceptibility screening test for fluoroquinolone susceptibility and suggest that confirmatory minimum inhibitory concentration testing should always be performed in cases of invasive Salmonella infections. These antimicrobial susceptibility testing issues resulted in inappropriate ciprofloxacin therapy which may have been responsible for failure in clearance of pathogen from patients. Salmonella Typhi capsular polysaccharide vaccine was not protective in one case, possibly secondarily to a faulty vaccine. Molecular subtyping of

  15. Composition of Gut Microbiota Influences Resistance of Newly Hatched Chickens to Salmonella Enteritidis Infection

    PubMed Central

    Varmuzova, Karolina; Kubasova, Tereza; Davidova-Gerzova, Lenka; Sisak, Frantisek; Havlickova, Hana; Sebkova, Alena; Faldynova, Marcela; Rychlik, Ivan

    2016-01-01

    Since poultry is a very common source of non-typhoid Salmonella for humans, different interventions aimed at decreasing the prevalence of Salmonella in chickens are understood as an effective measure for decreasing the incidence of human salmonellosis. One such intervention is the use of probiotic or competitive exclusion products. In this study we tested whether microbiota from donor hens of different age will equally protect chickens against Salmonella Enteritidis infection. Newly hatched chickens were therefore orally inoculated with cecal extracts from 1-, 3-, 16-, 28-, and 42-week-old donors and 7 days later, the chickens were infected with S. Enteritidis. The experiment was terminated 4 days later. In the second experiment, groups of newly hatched chickens were inoculated with cecal extracts of 35-week-old hens either on day 1 of life followed by S. Enteritidis infection on day 2 or were infected with S. Enteritidis infection on day 1 followed by therapeutic administration of the cecal extract on day 2 or were inoculated on day 1 of life with a mixture of the cecal extract and S. Enteritidis. This experiment was terminated when the chickens were 5 days old. Both Salmonella culture and chicken gene expression confirmed that inoculation of newly hatched chickens with microbiota from 3-week-old or older chickens protected them against S. Enteritidis challenge. On the other hand, microbiota from 1-week-old donors failed to protect chickens against S. Enteritidis challenge. Microbiota from 35-week-old hens protected chickens even 24 h after administration. However, simultaneous or therapeutic microbiota administration failed to protect chickens against S. Enteritidis infection. Gut microbiota can be used as a preventive measure against S. Enteritidis infection but its composition and early administration is critical for its efficacy. PMID:27379083

  16. Seroincidence of non-typhoid Salmonella infections: convenience vs. random community-based sampling.

    PubMed

    Emborg, H-D; Simonsen, J; Jørgensen, C S; Harritshøj, L H; Krogfelt, K A; Linneberg, A; Mølbak, K

    2016-01-01

    The incidence of reported infections of non-typhoid Salmonella is affected by biases inherent to passive laboratory surveillance, whereas analysis of blood sera may provide a less biased alternative to estimate the force of Salmonella transmission in humans. We developed a mathematical model that enabled a back-calculation of the annual seroincidence of Salmonella based on measurements of specific antibodies. The aim of the present study was to determine the seroincidence in two convenience samples from 2012 (Danish blood donors, n = 500, and pregnant women, n = 637) and a community-based sample of healthy individuals from 2006 to 2007 (n = 1780). The lowest antibody levels were measured in the samples from the community cohort and the highest in pregnant women. The annual Salmonella seroincidences were 319 infections/1000 pregnant women [90% credibility interval (CrI) 210-441], 182/1000 in blood donors (90% CrI 85-298) and 77/1000 in the community cohort (90% CrI 45-114). Although the differences between study populations decreased when accounting for different age distributions the estimates depend on the study population. It is important to be aware of this issue and define a certain population under surveillance in order to obtain consistent results in an application of serological measures for public health purposes.

  17. The Salmonella Pathogenicity Island 13 contributes to pathogenesis in streptomycin pre-treated mice but not in day-old chickens

    USDA-ARS?s Scientific Manuscript database

    Salmonella Enteritidis (S. Enteritidis) is a human and animal pathogen that causes gastroenteritis characterized by inflammatory diarrhea and occasionally an invasive systemic infection. Salmonella pathogenicity islands (SPIs) are horizontally acquired genomic segments known to contribute to Salmone...

  18. Salmonella Infections

    MedlinePlus

    ... reptiles like snakes, turtles, and lizards. Symptoms include Fever Diarrhea Abdominal cramps Headache Possible nausea, vomiting, and ... be serious. The usual treatment is antibiotics. Typhoid fever, a more serious disease caused by Salmonella, is ...

  19. Relationship of Salmonella infection and inflammatory intestinal response with hematological and serum biochemical values in laying hens.

    PubMed

    Soria, Mario Alberto; Bonnet, María Agustina; Bueno, Dante Javier

    2015-06-15

    There are few studies about the blood serum of laying hens infected with Salmonella. The differential leukocyte count and blood chemistry values are an important aid in the diagnosis of human diseases, but blood parameters in the avian species are not well known. On the other hand, invasive forms of bacterial gastroenteritis, like Salmonella, often cause intestinal inflammation so this study was undertaken to find a biomarker of Salmonella infection and inflammatory intestinal response in the hematological or serum biochemical parameters in laying hens. Furthermore, we evaluated the association of some farm characteristics with Salmonella infection and fecal leukocytes (FL). A fecal sample with at least one fecal leukocyte per field was considered positive for inflammatory intestinal response. False positive serum reactions for Salmonella infection, by serum plate agglutination (SPA) test, were reduced by heating the sample to 56°C for 30 min and then diluting it 5-fold. The range of hematological and biochemical parameter values was very wide, in addition, there was a poor agreement between the SPA and FL results. Comparison of the positive and negative samples in SPA and FL showed that 1.3% and 79.8% of the laying hens were positive and negative in both tests, respectively. Hens with a positive SPA result showed a higher percentage of monocytes than those with a negative SPA result. Hens with a positive FL test had a higher percentage of heterophils, ratio of heterophils to lymphocytes and aspartate aminotransferase values, while the percentage of lymphocytes was significantly lower (P < 0.05) than those with a negative FL test. The risk of Salmonella infection increased when the age of laying hens and the number of hens per poultry house was greater than or equal to 18 months old and 10,000 laying hens, compared to less than 18 months old and 10,000 laying hens, respectively. On the other hand, the risk of inflammatory intestinal response was higher in laying

  20. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend?

    PubMed

    Michael, G B; Schwarz, S

    2016-12-01

    Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  1. Notes from the Field: Outbreak of Multidrug-Resistant Salmonella Infections Linked to Pork--Washington, 2015.

    PubMed

    Kawakami, Vance M; Bottichio, Lyndsay; Angelo, Kristina; Linton, Natalie; Kissler, Bonnie; Basler, Colin; Lloyd, Jennifer; Inouye, Wendy; Gonzales, Elysia; Rietberg, Krista; Melius, Beth; Oltean, Hanna; Wise, Matthew; Sinatra, Jennifer; Marsland, Paula; Li, Zhen; Meek, Roxanne; Kay, Meagan; Duchin, Jeff; Lindquist, Scott

    2016-04-15

    During June-July 2015, Public Health-Seattle & King County (PHSKC) and Washington State Department of Health (WADOH) investigated 22 clusters of Salmonella serotype I 4,[5], 12:i:- infections. Serotype I 4,[5], 12:i:- is the fifth most frequently reported Salmonella serotype in the United States, but is uncommon in Washington. On July 29, 2015, WADOH and PHSKC requested assistance from CDC to identify the infection source, determine risk factors, and make recommendations for prevention.

  2. Animal Diseases and Your Health

    MedlinePlus

    ... cause Lyme disease. Some wild animals may carry rabies. Enjoy wildlife from a distance. Pets can also ... Salmonella bacteria to their owners. You can get rabies from an infected dog or toxoplasmosis from handling ...

  3. Ubiquitination as an efficient molecular strategy employed in salmonella infection

    USDA-ARS?s Scientific Manuscript database

    The ubiquitin modification has various functions in the host innate immune system in response to the bacterial infection. To counteract the host immunity, Salmonella can specifically target ubiquitin pathways by its effector proteins. In this review, we describe the multiple facets of ubiquitin func...

  4. Antibiotic resistance pattern among the Salmonella isolated from human, animal and meat in India.

    PubMed

    Singh, Shweta; Agarwal, Rajesh Kumar; Tiwari, Suresh C; Singh, Himanshu

    2012-03-01

    The present study was conducted to study the antibiotic resistance pattern among nontyphoidal Salmonella isolated from human, animal and meat. A total of 37 Salmonella strains isolated from clinical cases (human and animal) and meat during 2008-2009 belonging to 12 serovars were screened for their antimicrobial resistance pattern using 25 antimicrobial agents falling under 12 different antibiotic classes. All the Salmonella isolates tested showed multiple drug resistance varying from 5.40% to 100% with 16 of the 25 antibiotics tested. None of the isolates were sensitive to erythromycin and metronidazole. Resistance was also observed against clindamycin (94.59%), ampicillin (86.49%), co-trimoxazole (48.65%), colistin (45.94%), nalidixic acid (35.10%), amoxyclave (18.90%), cephalexin, meropenem, tobramycin, nitrofurantoin, tetracycline, amoxicillin (8.10% each), sparfloxacin and streptomycin (5.40% each). Isolates from clinical cases of animals were resistant to as many as 16 antibiotics, whereas isolates from human clinical cases and meat were resistant to 9 and 14 antibiotics, respectively. Overall, 19 resistotypes were recorded. Analysis of multiple antibiotic resistance index (MARI) indicated that clinical isolates from animals had higher MARI (0.25) as compared to isolates from food (0.22) and human (0.21). Among the different serotypes studied for antibiogram, Paratyhi B isolates, showed resistance to three to 13 antibiotics, whereas Typhimurium strains were resistant to four to seven antibiotics. Widespread multidrug resistance among the isolates from human, animal and meat was observed. Some of the uncommon serotypes exhibited higher resistance rate. Considerable changes in the resistance pattern were also noted. An interesting finding was the reemergence of sensitivity to some of the old antibiotics (chloromphenicol, tetracycline).

  5. Salmonella Enteritidis infections associated with a contaminated immersion blender at a cAMP.

    PubMed

    Daly, Elizabeth R; Smith, Colleen M; Wikoff, Peter; Seiferth, John; Finnigan, Jayne; Nadeau, Alisha M; Welch, Joyce J

    2010-09-01

    More than 100 foodborne salmonellosis outbreaks occur each year in the United States. Contaminated food preparation equipment is implicated in approximately 32% of Salmonella outbreaks with a known source. In April 2009, we investigated reported Salmonella infections at a camp in New Hampshire. Camp attendees were contacted to complete a standard questionnaire. The questionnaire asked about foods eaten while at the camp, symptoms of gastrointestinal illness, visits to healthcare providers, and specimen submission for pathogen testing. Laboratory and environmental investigations were conducted, including testing of foods and food preparation equipment. A total of 133 ill persons, including 47 laboratory-confirmed Salmonella Enteritidis infections, were identified during this investigation. A total of 142 (80%) of 178 camp attendees completed a standard questionnaire and 109 cases of gastrointestinal illness and 33 healthy individuals were identified. Statistical analysis of survey data indicated that people who ate pudding were 15 times more likely to become ill with salmonellosis than those who did not eat pudding (risk ratio, 15.2; 95% confidence interval, 2.3-102.3). Salmonella Enteritidis was identified in leftover pudding and in the internal mixing components of the blender used to mix the pudding. All patient, food, and blender isolates exhibited the same pulsed-field gel electrophoresis pattern. This outbreak of Salmonella Enteritidis was caused by a Salmonella-contaminated hand-held immersion blender used to prepare pudding at a camp. A malfunctioning blender shaft seal is suspected to have resulted in contamination of the blender and subsequently pudding prepared using the blender.

  6. Human migration is important in the international spread of exotic Salmonella serovars in animal and human populations.

    PubMed

    Iveson, J B; Bradshaw, S D; How, R A; Smith, D W

    2014-11-01

    The exposure of indigenous humans and native fauna in Australia and the Wallacea zoogeographical region of Indonesia to exotic Salmonella serovars commenced during the colonial period and has accelerated with urbanization and international travel. In this study, the distribution and prevalence of exotic Salmonella serovars are mapped to assess the extent to which introduced infections are invading native wildlife in areas of high natural biodiversity under threat from expanding human activity. The major exotic Salmonella serovars, Bovismorbificans, Derby, Javiana, Newport, Panama, Saintpaul and Typhimurium, isolated from wildlife on populated coastal islands in southern temperate areas of Western Australia, were mostly absent from reptiles and native mammals in less populated tropical areas of the state. They were also not recorded on the uninhabited Mitchell Plateau or islands of the Bonaparte Archipelago, adjacent to south-eastern Indonesia. Exotic serovars were, however, isolated in wildlife on 14/17 islands sampled in the Wallacea region of Indonesia and several islands off the west coast of Perth. Increases in international tourism, involving islands such as Bali, have resulted in the isolation of a high proportion of exotic serovar infections suggesting that densely populated island resorts in the Asian region are acting as staging posts for the interchange of Salmonella infections between tropical and temperate regions.

  7. Differential outcome of infection with attenuated Salmonella in MyD88-deficient mice is dependent on the route of administration.

    PubMed

    Issac, Jincy M; Sarawathiamma, Dhanya; Al-Ketbi, Mai I; Azimullah, Sheikh; Al-Ojali, Samia M; Mohamed, Yassir A; Flavell, Richard A; Fernandez-Cabezudo, Maria J; al-Ramadi, Basel K

    2013-01-01

    Activation of the innate immune system is a prerequisite for the induction of adaptive immunity to both infectious and non-infectious agents. TLRs are key components of the innate immune recognition system and detect pathogen-associated molecular patterns. Most TLRs utilize the MyD88 adaptor for their signaling pathways. In the current study, we investigated innate and adaptive immune responses to primary as well as secondary Salmonella infections in MyD88-deficient (MyD88(-/-)) mice. Using i.p. or oral route of inoculation, we demonstrate that MyD88(-/-) mice are hypersusceptible to infection by an attenuated, double auxotrophic, mutant of Salmonella enterica serovar Typhimurium (S. typhimurium). This is manifested by 2-3 logs higher bacterial loads in target organs, delayed recruitment of phagocytic cells, and defective production of proinflammatory cytokines in MyD88(-/-) mice. Despite these deficiencies, MyD88(-/-) mice developed Salmonella-specific memory Th1 responses and produced elevated serum levels of anti-Salmonella Abs, not only of Th1-driven (IgG2c, IgG3) but also IgG1 and IgG2b isotypes. Curiously, these adaptive responses were insufficient to afford full protection against a secondary challenge with a virulent strain of S. typhimurium. In comparison with the high degree of mortality seen in MyD88(-/-) mice following i.p. inoculation, oral infections led to the establishment of a state of long-term persistence, characterized by continuous bacterial shedding in animal feces that lasted for more than 6 months, but absence from systemic organs. These findings suggest that the absent expression of MyD88 affects primarily the innate effector arm of the immune system and highlights its critical role in anti-bacterial defense. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. Evaluation of environmental sampling methods for detection of Salmonella enterica in a large animal veterinary hospital.

    PubMed

    Goeman, Valerie R; Tinkler, Stacy H; Hammac, G Kenitra; Ruple, Audrey

    2018-04-01

    Environmental surveillance for Salmonella enterica can be used for early detection of contamination; thus routine sampling is an integral component of infection control programs in hospital environments. At the Purdue University Veterinary Teaching Hospital (PUVTH), the technique regularly employed in the large animal hospital for sample collection uses sterile gauze sponges for environmental sampling, which has proven labor-intensive and time-consuming. Alternative sampling methods use Swiffer brand electrostatic wipes for environmental sample collection, which are reportedly effective and efficient. It was hypothesized that use of Swiffer wipes for sample collection would be more efficient and less costly than the use of gauze sponges. A head-to-head comparison between the 2 sampling methods was conducted in the PUVTH large animal hospital and relative agreement, cost-effectiveness, and sampling efficiency were compared. There was fair agreement in culture results between the 2 sampling methods, but Swiffer wipes required less time and less physical effort to collect samples and were more cost-effective.

  9. An occurrence of salmonella infection in cranes at the Izumi Plains, Japan.

    PubMed

    Maeda, Y; Tohya, Y; Nakagami, Y; Yamashita, M; Sugimura, T

    2001-08-01

    Ten thousand or more cranes migrate from Siberia and stay at the Izumi Plains, in the northern part of Kagoshima prefecture, Japan, every winter season. Four hundred and twenty samples of cranes feces were obtained 1995 to 1997 and investigated for Salmonella. As a result, twenty-nine of Salmonella strains were isolated. All isolates were determined to be identical, Salmonella Typhimurium (04:i: 1,2). since all of them indicated the same patterns of plasmid profiling and antibiotic sensitive spectrums. The isolates showed a high pathogenicity to chicken, and most of them were isolated in the latter half of the winter season; therefore the cranes were infected with the isolates during the winter season.

  10. Technologies and Approaches to Elucidate and Model the Virulence Program of Salmonella.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Yoon, Hyunjin; Nakayasu, Ernesto S.

    Salmonella is a primary cause of enteric diseases in a variety of animals. During its evolution into a pathogenic bacterium, Salmonella acquired an elaborate regulatory network that responds to multiple environmental stimuli within host animals and integrates them resulting in fine regulation of the virulence program. The coordinated action by this regulatory network involves numerous virulence regulators, necessitating genome-wide profiling analysis to assess and combine efforts from multiple regulons. In this review we discuss recent high-throughput analytic approaches to understand the regulatory network of Salmonella that controls virulence processes. Application of high-throughput analyses have generated a large amount of datamore » and driven development of computational approaches required for data integration. Therefore, we also cover computer-aided network analyses to infer regulatory networks, and demonstrate how genome-scale data can be used to construct regulatory and metabolic systems models of Salmonella pathogenesis. Genes that are coordinately controlled by multiple virulence regulators under infectious conditions are more likely to be important for pathogenesis. Thus, reconstructing the global regulatory network during infection or, at the very least, under conditions that mimic the host cellular environment not only provides a bird’s eye view of Salmonella survival strategy in response to hostile host environments but also serves as an efficient means to identify novel virulence factors that are essential for Salmonella to accomplish systemic infection in the host.« less

  11. The occurrence of Salmonella in airline meals.

    PubMed

    Hatakka, M; Asplund, K

    1993-01-01

    The occurrence of Salmonella in airline meals was studied in 1989-1992. Samples were collected from flight kitchens in 29 countries. The material consisted of 400 cold dishes and 1,288 hot dishes as well as salads, cheese plates and deserts. Total number of samples was 2211. Salmonella spp. were isolated from 6 samples; 1 contaminated sample was a cold dish prepared in Bangkok, 1 was a hot dish prepared in Mombasa and the remaining 4 contaminated samples were hot dishes prepared within one week in Beijing. The isolated serotypes were S. ohio, S. manchester and S. braenderup. The contaminated cold dish prepared by a flight kitchen in Bangkok was found to be connected with a Salmonella outbreak which occurred in Finland in 1990. Cold airline dishes containing food of animal origin seems to be more risky as a source of Salmonella infections among airline passengers.

  12. Heat stress decreases expression of the cytokines, avian β-defensins 4 and 6 and Toll-like receptor 2 in broiler chickens infected with Salmonella Enteritidis.

    PubMed

    Quinteiro-Filho, W M; Calefi, A S; Cruz, D S G; Aloia, T P A; Zager, A; Astolfi-Ferreira, C S; Piantino Ferreira, J A; Sharif, S; Palermo-Neto, J

    2017-04-01

    A high ambient temperature is a highly relevant stressor in poultry production. Heat stress (HS) has been reported to reduce animal welfare, performance indices and increase Salmonella susceptibility. Salmonella spp. are major zoonotic pathogen that cause over 1 billion of human infections worldwide annually. Therefore, the current study was designed to analyze the effect of heat stress on Salmonella infection in chickens through modulation of the immune responses. Salmonella Enteritidis was inoculated via gavage at one day of age (10 6 cfu/mL). Heat stress 31±1°C was applied from 35 to 41 days of age. Broiler chickens were divided into the following groups of 12 chickens: control (C); heat stress (HS31°C); S. Enteritidis positive control (PC); and S. Enteritidis+heat stress (PHS31°C). We observed that heat stress increased corticosterone serum levels. Concomitantly heat stress decreased (1) the IgA and IFN-γ plasmatic levels; (2) the mRNA expression of IL-6, IL-12 in spleen and IL-1β, IL-10, TGF-β in cecal tonsils; (3) the mRNA expression of AvBD4 and AvBD6 in cecal tonsils; and (4) the mRNA expression of TLR2 in spleen and cecal tonsils of chickens infected with S. Enteritidis (PHS31°C group). Heat stress also increased Salmonella colonization in the crop and caecum as well as Salmonella invasion to the spleen, liver and bone marrow, showing a deficiency in the control of S. Enteritidis induced infection. Together, the present data suggested that heat stress activated hypothalamus-pituitary-adrenal (HPA) axis, as observed by the increase in the corticosterone levels, which in turn presumably decreases the immune system activity, leading to an impairment of the intestinal mucosal barrier and increasing chicken susceptibility to the invasion of different organs by S. Enteritidis . Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Prevalence, distribution and characterisation of ceftiofur resistance in Salmonella enterica isolated from animals in the USA from 1999 to 2003.

    PubMed

    Frye, Jonathan G; Fedorka-Cray, Paula J

    2007-08-01

    Third-generation cephalosporin (3GC) antimicrobials are the drugs of choice for treatment of salmonellosis in children. Salmonella isolated in the USA are assayed by the National Antimicrobial Resistance Monitoring System (NARMS) for resistance to antimicrobials including first-, second- and third-generation cephalosporins. From 1999 to 2003, 34,411 Salmonella were isolated from animals in the USA, of which 10.9% were found to be resistant to ceftiofur, a 3GC used in animals, whilst only 0.3% were resistant to ceftriaxone, a 3GC used in human medicine. Ceftiofur resistance rose from 4.0% in 1999 to 18.8% in 2003. Isolates from diagnostic laboratories had higher levels of resistance (18.5%), whereas levels in isolates from on-farm (3.4%) and slaughter (7.1%) sources were lower. Animals with a higher than average proportion of resistant Salmonella included cattle (17.6%), horses (19.2%) and dogs (20.8%). Levels in turkeys (6.8%), chickens (7.1%), eggs (3.6%) and swine (4.6%) were lower. Resistance varied between Salmonella serotypes. A few serotypes had significantly high levels, e.g. S. Newport was 70.4% ceftiofur resistant. Resistance was predominantly associated with bla(CMY-2)-encoding plasmids. These data suggest that the acquisition of resistance plasmids and the spread of specific serotypes harbouring these plasmids are driving the observed resistance to ceftiofur in Salmonella animal isolates.

  14. Label-free detection of salmonella typhimurium with ssDNA aptamers

    USDA-ARS?s Scientific Manuscript database

    Foodborne pathogen Salmonella enterica is one of the major causes of gastrointestinal infections in human and animals. Conventional detection methods are time consuming and not effective enough under emergency circumstances to control outbreaks immediately. Therefore, biosensors that can detect Salm...

  15. Dietary rice bran promotes resistance to Salmonella enterica serovar Typhimurium colonization in mice.

    PubMed

    Kumar, Ajay; Henderson, Angela; Forster, Genevieve M; Goodyear, Andrew W; Weir, Tiffany L; Leach, Jan E; Dow, Steven W; Ryan, Elizabeth P

    2012-07-04

    Dietary rice bran consists of many bioactive components with disease fighting properties; including the capacity to modulate the gut microbiota. Studies point to the important roles of the gut microbiota and the mucosal epithelium in the establishment of protection against enteric pathogens, such as Salmonella. The ability of rice bran to reduce the susceptibility of mice to a Salmonella infection has not been previously investigated. Therefore, we hypothesized that the incorporation of rice bran into the diet would inhibit the colonization of Salmonella in mice through the induction of protective mucosal responses. Mice were fed diets containing 0%, 10% and 20% rice bran for one week prior to being orally infected with Salmonella enterica serovar Typhimurium. We found that mice consuming the 10 and 20% rice bran diets exhibited a reduction in Salmonella fecal shedding for up to nine days post-infection as compared to control diet fed animals (p < 0.05). In addition, we observed decreased concentrations of the pro-inflammatory cytokines, TNF-alpha, IFN-gamma, and IL-12 (p < 0.05) as well as increased colonization of native Lactobacillus spp. in rice bran fed mice (p < 0.05). Furthermore, in vitro experiments revealed the ability of rice bran extracts to reduce Salmonella entry into mouse small intestinal epithelial cells. Increasing rice bran consumption represents a novel dietary means for reducing susceptibility to enteric infection with Salmonella and potentially via induction of native Lactobacillus spp.

  16. Dietary rice bran promotes resistance to Salmonella enterica serovar Typhimurium colonization in mice

    PubMed Central

    2012-01-01

    Background Dietary rice bran consists of many bioactive components with disease fighting properties; including the capacity to modulate the gut microbiota. Studies point to the important roles of the gut microbiota and the mucosal epithelium in the establishment of protection against enteric pathogens, such as Salmonella. The ability of rice bran to reduce the susceptibility of mice to a Salmonella infection has not been previously investigated. Therefore, we hypothesized that the incorporation of rice bran into the diet would inhibit the colonization of Salmonella in mice through the induction of protective mucosal responses. Results Mice were fed diets containing 0%, 10% and 20% rice bran for one week prior to being orally infected with Salmonella enterica serovar Typhimurium. We found that mice consuming the 10 and 20% rice bran diets exhibited a reduction in Salmonella fecal shedding for up to nine days post-infection as compared to control diet fed animals (p < 0.05). In addition, we observed decreased concentrations of the pro-inflammatory cytokines, TNF-alpha, IFN-gamma, and IL-12 (p < 0.05) as well as increased colonization of native Lactobacillus spp. in rice bran fed mice (p < 0.05). Furthermore, in vitro experiments revealed the ability of rice bran extracts to reduce Salmonella entry into mouse small intestinal epithelial cells. Conclusions Increasing rice bran consumption represents a novel dietary means for reducing susceptibility to enteric infection with Salmonella and potentially via induction of native Lactobacillus spp. PMID:22583915

  17. Comparison of two sampling and culture systems for detection of Salmonella enterica in the environment of a large animal hospital.

    PubMed

    Ruple-Czerniak, A; Bolte, D S; Burgess, B A; Morley, P S

    2014-07-01

    Nosocomial salmonellosis is an important problem in veterinary hospitals that treat horses and other large animals. Detection and mitigation of outbreaks and prevention of healthcare-associated infections often require detection of Salmonella enterica in the hospital environment. To compare 2 previously published methods for detecting environmental contamination with S. enterica in a large animal veterinary teaching hospital. Hospital-based comparison of environmental sampling techniques. A total of 100 pairs of environmental samples were collected from stalls used to house large animal cases (horses, cows or New World camelids) that were confirmed to be shedding S. enterica by faecal culture. Stalls were cleaned and disinfected prior to sampling, and the same areas within each stall were sampled for the paired samples. One method of detection used sterile, premoistened sponges that were cultured using thioglycolate enrichment before plating on XLT-4 agar. The other method used electrostatic wipes that were cultured using buffered peptone water, tetrathionate and Rappaport-Vassiliadis R10 broths before plating on XLT-4 agar. Salmonella enterica was recovered from 14% of samples processed using the electrostatic wipe sampling and culture procedure, whereas S. enterica was recovered from only 4% of samples processed using the sponge sampling and culture procedure. There was test agreement for 85 pairs of culture-negative samples and 3 pairs of culture-positive samples. However, the remaining 12 pairs of samples with discordant results created significant disagreement between the 2 detection methods (P<0.01). Persistence of Salmonella in the environment of veterinary hospitals can occur even with rigorous cleaning and disinfection. Use of sensitive methods for detection of environmental contamination is critical when detecting and mitigating this problem in veterinary hospitals. These results suggest that the electrostatic wipe sampling and culture method was

  18. Split marketing as a risk factor for Salmonella enterica infection in swine.

    PubMed

    Rostagno, Marcos H; Hurd, H Scott; McKean, James D

    2009-09-01

    On-farm reduction of Salmonella carriage prevalence in pigs requires the identification of risk factors to direct interventions development. This study was designed to determine if split marketing of finishing pigs constitutes a risk factor for Salmonella infections, by comparing Salmonella prevalence in the first group of pigs selected for harvest ("first pull") versus the prevalence in the last group of pigs selected for harvest ("close out") from multiple commercial finishing lots. Nine paired samplings were conducted consisting in matched groups of pigs from individual barns as the first pull and the close out with a 4-week interval between groups. From each group, fecal and meat samples were collected, on-farm and at harvest, respectively. Fecal samples were selectively enriched, and analyzed for the presence of Salmonella, whereas meat juice samples were analyzed for the presence of antibodies against Salmonella. In 7/9 (77.8%) of the studied barns, an increase in Salmonella prevalence was observed, based on both bacteriologic and serologic analysis. Overall, there was an increase of 9.2% (p < 0.05) in bacteriologic prevalence, and 31.3% (p < 0.05) in serologic prevalence from first pull to close out groups. This study demonstrates that a significant increase in Salmonella prevalence occurs between the first and the last group of pigs harvested from finishing lots, with close out groups of market pigs posing a higher risk for Salmonella contaminations.

  19. Disseminated Salmonella arizona infection associated with rattlesnake meat ingestion.

    PubMed

    Bhatt, B D; Zuckerman, M J; Foland, J A; Polly, S M; Marwah, R K

    1989-04-01

    Salmonella arizona is an uncommon enteric pathogen. We report a case of a woman with systemic lupus erythematosus, receiving prednisone therapy, who developed fatal disseminated S. arizona infection after ingesting raw dried rattlesnake meat as a form of treatment for her illness. S. arizona was isolated from stool, blood, peritoneal fluid, and cerebrospinal fluid. The importance of being aware of the Mexican-American folk remedy involving the ingestion of rattlesnake meat in the forms of dried snake, snake powder, or snake powder capsules, and the risk of acquiring S. arizona enteric infections is discussed.

  20. Nationwide outbreak of multidrug-resistant Salmonella Heidelberg infections associated with ground turkey: United States, 2011.

    PubMed

    Routh, J A; Pringle, J; Mohr, M; Bidol, S; Arends, K; Adams-Cameron, M; Hancock, W T; Kissler, B; Rickert, R; Folster, J; Tolar, B; Bosch, S; Barton Behravesh, C; Williams, I T; Gieraltowski, L

    2015-11-01

    On 23 May 2011, CDC identified a multistate cluster of Salmonella Heidelberg infections and two multidrug-resistant (MDR) isolates from ground turkey retail samples with indistinguishable pulsed-field gel electrophoresis patterns. We defined cases as isolation of outbreak strains in persons with illness onset between 27 February 2011 and 10 November 2011. Investigators collected hypothesis-generating questionnaires and shopper-card information. Food samples from homes and retail outlets were collected and cultured. We identified 136 cases of S. Heidelberg infection in 34 states. Shopper-card information, leftover ground turkey from a patient's home containing the outbreak strain and identical antimicrobial resistance profiles of clinical and retail samples pointed to plant A as the source. On 3 August, plant A recalled 36 million pounds of ground turkey. This outbreak increased consumer interest in MDR Salmonella infections acquired through United States-produced poultry and played a vital role in strengthening food safety policies related to Salmonella and raw ground poultry.

  1. Phage therapy reduces lairage-induced increases in Salmonella colonization in market weight pigs

    USDA-ARS?s Scientific Manuscript database

    Contamination of meat and meat products with foodborne pathogens usually results from the carcass coming in contact with the feces of an infected animal during processing. In the case of Salmonella, several recent studies have reported that pigs become rapidly infected with the organism during tran...

  2. Systemic infections in three infants due to a lactose-fermenting strain of Salmonella virchow.

    PubMed

    Ruiz, J; Núñez, M L; Sempere, M A; Díaz, J; Gómez, J

    1995-05-01

    Three previously healthy children developed gastroenteritis which led within a few days to systemic infections, two cases of bacteremia and one of meningitis. A lactose-fermenting Salmonella virchow strain was isolated from cerebrospinal fluid and blood cultures. In one case, this strain was also isolated from stool cultures. All the children had been fed the same milk formula. There was no other relationship between them. The batch of dried-milk formula was confirmed as the source of the infection by isolation of an identical lactose-fermenting Salmonella virchow strain by the Centro Nacional de Alimentación.

  3. Lack of effect of feeding citrus by-products in reducing Salmonella in experimentally infected weanling pigs

    USDA-ARS?s Scientific Manuscript database

    The objective of the current research was to determine if feeding citrus by-products D’Limonene (DL) and citrus molasses (MOL) would reduce the concentration and prevalence of Salmonella in weanling pigs experimentally infected with Salmonella Typhimurium. Twenty crossbred weanling pigs (avg. BW = ...

  4. The occurrence and significance to animal health of salmonellas in sewage and sewage sludges.

    PubMed Central

    Jones, P. W.; Rennison, L. M.; Lewin, V. H.; Redhead, D. L.

    1980-01-01

    A total of 882 samples of settled sewage, sewage sludges and final effluents from eight sewage treatment plants were examined for the presence of salmonellas. Of these samples 68% were positive, isolations being made most frequently from settled sewage (85%), raw sludge (87%) and anaerobically digested sludge (96%). Fewer isolations were made from final effluent (24%) and processed sludges (58%). Samples usually contained less than 200 salmonellas/100 ml and arguments are presented that such concentrations should not lead to disease in animals if suitable grazing restrictions are followed. PMID:6985928

  5. Estimated Incidence of Antimicrobial Drug-Resistant Nontyphoidal Salmonella Infections, United States, 2004-2012.

    PubMed

    Medalla, Felicita; Gu, Weidong; Mahon, Barbara E; Judd, Michael; Folster, Jason; Griffin, Patricia M; Hoekstra, Robert M

    2016-01-01

    Salmonella infections are a major cause of illness in the United States. The antimicrobial agents used to treat severe infections include ceftriaxone, ciprofloxacin, and ampicillin. Antimicrobial drug resistance has been associated with adverse clinical outcomes. To estimate the incidence of resistant culture-confirmed nontyphoidal Salmonella infections, we used Bayesian hierarchical models of 2004-2012 data from the Centers for Disease Control and Prevention National Antimicrobial Resistance Monitoring System and Laboratory-based Enteric Disease Surveillance. We based 3 mutually exclusive resistance categories on susceptibility testing: ceftriaxone and ampicillin resistant, ciprofloxacin nonsusceptible but ceftriaxone susceptible, and ampicillin resistant but ceftriaxone and ciprofloxacin susceptible. We estimated the overall incidence of resistant infections as 1.07/100,000 person-years for ampicillin-only resistance, 0.51/100,000 person-years for ceftriaxone and ampicillin resistance, and 0.35/100,000 person-years for ciprofloxacin nonsusceptibility, or ≈6,200 resistant culture-confirmed infections annually. These national estimates help define the magnitude of the resistance problem so that control measures can be appropriately targeted.

  6. Fecal prevalence, serotype distribution and antimicrobial resistance of Salmonellae in dairy cattle in central Ethiopia.

    PubMed

    Eguale, Tadesse; Engidawork, Ephrem; Gebreyes, Wondwossen A; Asrat, Daniel; Alemayehu, Haile; Medhin, Girmay; Johnson, Roger P; Gunn, John S

    2016-02-16

    Salmonellae are major worldwide zoonotic pathogens infecting a wide range of vertebrate species including humans. Consumption of contaminated dairy products and contact with dairy cattle represent a common source of non-typhoidal Salmonella infection in humans. Despite a large number of small-scale dairy farms in Addis Ababa and its surrounding districts, little is known about the status of Salmonella in these farms. Salmonella was recovered from the feces of at least one animal in 7.6% (10/132) of the dairy farms. Out of 1203 fecal samples examined, 30 were positive for Salmonella resulting in a weighted animal level prevalence of 2.3%. Detection of diarrhea in an animal and in a farm was significantly associated with animal level (p = 0.012) and herd level (p < 0.001) prevalence of Salmonella. Animal level prevalence of Salmonella was significantly associated with age (p = 0.023) and study location; it was highest among those under 6 months of age and in farms from Adaa district and Addis Ababa (p < 0.001). Nine different serotypes were identified using standard serological agglutination tests. The most frequently recovered serotypes were Salmonella Typhimurium (23.3%), S. Saintpaul (20%), S. Kentucky (16.7%) and S. Virchow (16.7%). All isolates were resistant or intermediately resistant to at least one of the 18 drugs tested. Twenty-six (86.7%), 19 (63.3 %), 18 (60%), 16 (53.3%) of the isolates were resistant to streptomycin, nitrofurantoin, sulfisoxazole and tetracycline , respectively. Resistance to 2 drugs was detected in 27 (90%) of the isolates. Resistance to 3 or more drugs was detected in 21 (70%) of the isolates, while resistance to 7 or more drugs was detected in 11 (36.7%) of the isolates. The rate of occurrence of multi-drug resistance (MDR) in Salmonella strains isolated from dairy farms in Addis Ababa was significantly higher than those isolated from farms outside of Addis Ababa (p = 0.009). MDR was more common in S. Kentucky, S

  7. [Infection prevention in animal husbandry. A contribution to the improvement of the sanitary consumer protection].

    PubMed

    Grossklaus, D

    1985-02-01

    The scientific and organizational development of an effective prophylaxis against infections in animal husbandry results from the fact that many zoonoses, like salmonellosis, campylobacteriosis, toxoplasmosis, leptospirosis, listeriosis, rickettsiosis (Q-Fever) and cysticercosis as well as certain important virus infections with regard to meat hygiene cannot be detected during official ante- and postmortem inspection. The cause of these infections is clinically inapparent and leaves no pathologic-anatomical lesions. Partly responsible for these latent infections is mass production with its specific forms of husbandry, particularly in poultry and pigs. The development of these animal production methods as well as the spread of the aforementioned zoonoses in man and animal is being discussed in this paper. The information on zoonoses is based on cases reported in accordance with the Federal Communicable Diseases Act and/or the regulations on notifiable animal diseases. The potential harmfulness to the consumer's health, especially in view of his food habits, is discussed in the light of the increase of foodborne infections and intoxications caused by Salmonella. Up until now, several regulations exist to keep causative agents of zoonoses away from animal farms. In view of the successful eradication of tuberculosis in cattle and brucellosis, it is recommended on a longterm basis, to eliminate those zoonoses from animal farms, which are of special importance from the meat-hygienic point of view. On a medium-term basis, examination of farm animals should be introduced voluntarily prior to the official ante- and postmortem inspection. It is of vital importance to establish the necessary diagnostic and practical conditions for the herd-tests. A recommendation worked out by the European Community for the examination of broiler-farms is welcomed as an example of prophylactic measures suitable for the improvement of consumer protection.

  8. Isolation and characterization of polyvalent bacteriophages infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt.

    PubMed

    Mahmoud, Mayada; Askora, Ahmed; Barakat, Ahmed Barakat; Rabie, Omar El-Farouk; Hassan, Sayed Emam

    2018-02-02

    In this study, we isolated and characterized three phages named as Salmacey1, Salmacey2 and Salmacey3, infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. The most prevalent Salmonella serovars were S. typhimurium, S. enteritidis, and S. kentucky. All these Salmonella serovars were found to be resistant to more than two of the ten antimicrobial agents tested. Only S. kentucky was found to be resistant to seven antimicrobial agents. Examination of these phage particles by transmission electron microscopy (TEM), demonstrated that two phages (Salmacey1, Salmacey2) were found to belong to family Siphoviridae, and Salmacey3 was assigned to the family Myoviridae. The results of host range assay revealed that these bacteriophages were polyvalent and thus capable of infecting four strains of Salmonella serovars and Citrobacter freundii. Moreover, the two phages (Salmacey1, Salmacey2) had a lytic effect on Enterobacter cloacae and Salmacey3 was able to infect E. coli. All phages could not infect S. para Typhi, Staphylococus aureus and Bacillus cereus. One-step growth curves of bacteriophages revealed that siphovirus phages (Salmacey1, Salmacey2) have burst size (80 and 90pfu per infected cell with latent period 35min and 40min respectively), and for the myovirus Salmacey3 had a burst size 110pfu per infected cell with latent period 60min. Molecular analyses indicated that these phages contained double-stranded DNA genomes. The lytic activity of the phages against the most multidrug resistant serovars S. kentucky as host strain was evaluated. The result showed that these bacteriophages were able to completely stop the growth of S. kentucky in vitro. These results suggest that phages have a high potential for phage application to control Salmonella serovars isolated from broilers in Egypt. Copyright © 2017. Published by Elsevier B.V.

  9. Microbiological, clinical and molecular findings of non-typhoidal Salmonella bloodstream infections associated with malaria, Oriental Province, Democratic Republic of the Congo.

    PubMed

    Falay, Dadi; Kuijpers, Laura Maria Francisca; Phoba, Marie-France; De Boeck, Hilde; Lunguya, Octavie; Vakaniaki, Emmanuel; Bertrand, Sophie; Mattheus, Wesley; Ceyssens, Pieter-Jan; Vanhoof, Raymond; Devlieger, Hugo; Van Geet, Chris; Verheyen, Erik; Ngbonda, Dauly; Jacobs, Jan

    2016-06-10

    In sub-Saharan Africa, non-typhoidal Salmonella (NTS) can cause bloodstream infections, referred to as invasive non-typhoidal Salmonella disease (iNTS disease); it can occur in outbreaks and is often preceded by malaria. Data from Central Africa is limited. Clinical, microbiological and molecular findings of NTS recovered in a blood culture surveillance project (2009-2014) were analyzed. In March-July 2012 there was an epidemic increase in malaria infections in the Oriental Province of the Democratic Republic of the Congo (DRC). In one referral hospital, overall hospital admissions in June 2012 were 2.6 times higher as compared to the same period in the years before and after (336 versus an average of 128 respectively); numbers of malaria cases and blood transfusions were nearly three- and five-fold higher respectively (317 versus 112 and 250 versus 55). Case fatality rates (in-hospital deaths versus all admissions) peaked at 14.6 %. Salmonella Typhimurium and Salmonella Enteritidis together accounted for 88.9 % of pathogens isolated from blood cultures collected during an outreach visit to the affected districts in June 2012. Children infected with Salmonella Enteritidis (33 patient files available) tended to be co-infected with Plasmodium falciparum more often than children infected with Salmonella Typhimurium (40 patients files available) (81.8 % versus 62.5 %). Through the microbiological surveillance project (May 2009-May 2014) 113 unique NTS isolates were collected (28.5 % (113/396) of pathogens); most (95.3 %) were recovered from children < 15 years. Salmonella Typhimurium (n = 54) and Salmonella Enteritidis (n = 56) accounted for 47.8 % and of 49.6 % NTS isolates respectively. Multilocus variable-number tandem-repeat analysis (MLVA) revealed more heterogeneity for Salmonella Typhimurium than for Salmonella Enteritidis. Most (82/96, 85.4 %) NTS isolates that were available for antibiotic susceptibility testing were multidrug resistant

  10. A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Brooke LD; Li, Jie; Sanford, James A.

    The potential for commensal microorganisms indigenous to a host (the ‘microbiome’ or ‘microbiota’) to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics “systems” approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alterationmore » of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium’s lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.« less

  11. Foodborne outbreak of Salmonella subspecies IV infections associated with contamination from bearded dragons.

    PubMed

    Lowther, S A; Medus, C; Scheftel, J; Leano, F; Jawahir, S; Smith, K

    2011-12-01

    Approximately 1.4 million Salmonella infections and 400 deaths occur annually in the United States. Approximately 6% of human Salmonella cases are thought to be associated with reptiles; Salmonella enterica subspecies IV is primarily reptile-associated. During 1-4 December, 2009, three isolates of Salmonella IV 6,7:z4,z24:- with indistinguishable pulsed-field gel electrophoresis (PFGE) patterns were identified through Minnesota Department of Health laboratory-based surveillance. None of the three patients associated with the isolates reported reptile contact; however, all had attended the same potluck dinner. Dinner attendees were asked questions regarding illness history, foods they prepared for and consumed at the event, and pet ownership. Cases were defined as illness in a person who had eaten potluck food and subsequently experienced fever and diarrhoea (three or more loose stools in 24 h) or laboratory-confirmed infection with Salmonella IV matching the outbreak PFGE subtype. Nineteen days after the event, environmental samples were collected from a food preparer's house where two pet bearded dragons were kept. Sixty-six of 73 potluck food consumers were interviewed; 19 cases were identified; 18 persons reported illness but did not meet the case definition. Median incubation period was 19 h (range: 3-26 h). Median duration of illness was 5 days (range: 1-11 days). Consumption of gravy, prepared by the bearded dragons' asymptomatic owner, was associated with illness (16/32 exposed versus 1/12 unexposed; risk ratio: 6.0; exact P = 0.02). Salmonella Labadi was recovered from 10 samples, including from one bearded dragon, the bathroom door knob and sink drain, and the kitchen sink drain. The outbreak PFGE subtype of Salmonella subspecies IV was isolated from vacuum-cleaner bag contents. This foodborne outbreak probably resulted from environmental contamination from bearded dragons. Reptiles pose a community threat when food for public consumption is prepared in

  12. Occurrence and antimicrobial resistance of Salmonella strains from food of animal origin in southern Italy.

    PubMed

    Proroga, Yolande T R; Capuano, Federico; Carullo, Maria Rosaria; La Tela, Immacolata; Capparelli, Rosanna; Barco, Lisa; Pasquale, Vincenzo

    2016-01-01

    Six hundred fourteen strains of Salmonella enterica were isolated from 16,926 samples of food of animal origin collected in southern Italy from 2003 to 2012. The isolates were identified, serotyped, and challenged against 15 antibiotics according to the protocol defined at national level for veterinary isolates of Salmonella (EnterVet surveillance network). Salmonella serotypes Typhimurium, Hadar, Enteritidis, Derby, and 4,[5],12:i:- were those most frequently isolated. The widest resistances were recorded towards sulfonamides (69 % of the isolates), trimethoprim-sulfamethoxazole (52 % of the isolates), and tetracycline (51 % of the isolates). The rate of multidrug resistance of the isolates decreased significantly from the first 5 years of the study period (82.6 %) to the last 5 years (54.3 %).

  13. Safety, Protective Immunity, and DIVA Capability of a Rough Mutant Salmonella Pullorum Vaccine Candidate in Broilers.

    PubMed

    Guo, Rongxian; Jiao, Yang; Li, Zhuoyang; Zhu, Shanshan; Fei, Xiao; Geng, Shizhong; Pan, Zhiming; Chen, Xiang; Li, Qiuchun; Jiao, Xinan

    2017-01-01

    Salmonella enterica subsp. enterica serovar Gallinarum biovar Pullorum ( Salmonella Pullorum) is highly adapted to chickens causing an acute systemic disease that results in high mortality. Vaccination represents one approach for promoting animal health, food safety and reducing environmental persistence in Salmonella control. An important consideration is that Salmonella vaccination in poultry should not interfere with the salmonellosis monitoring program. This is the basis of the DIVA (Differentiation of Infected and Vaccinated Animals) program. In order to achieve this goal, waaL mutant was developed on a spiC mutant that was developed previously. The safety, efficacy, and DIVA features of this vaccine candidate ( Salmonella Pullorum Δ spiC Δ waaL ) were evaluated in broilers. Our results show that the truncated LPS in the vaccine strain has a differentiating use as both a bacteriological marker (rough phenotype) and also as a serological marker facilitating the differentiation between infected and vaccinated chickens. The rough mutant showed adequate safety being avirulent in the host chicks and showed increased sensitivity to environmental stresses. Single intramuscular immunization of day-old broiler chicks with the mutant confers ideal protection against lethal wild type challenge by significantly stimulating both humoral and cellular immune responses as well as reducing the colonization of the challenge strain. Significantly lower mean pathology scores were observed in the vaccination group compared to the control group. Additionally, the mutant strain generated cross-protection against challenge with the wild type Salmonella Gallinarum thereby improving survival and with the wild type Salmonella Enteritidis thereby reducing colonization. These results suggest that the double-mutant strain may be a safe, effective, and cross-protective vaccine against Salmonella infection in chicks while conforming to the requirements of the DIVA program.

  14. Transcriptional changes of cytokines in rooster testis and epididymis during sexual maturation stages and Salmonella infection.

    PubMed

    Anastasiadou, M; Michailidis, G

    2016-08-01

    Infection of rooster testis and epididymis by pathogens can lead to impaired fertility, resulting in economic losses in the poultry industry. Antimicrobial protection of rooster reproductive organs is, therefore, an important aspect of reproductive physiology. Salmonellosis is one of the most important zoonotic diseases, caused by Salmonella bacteria including Salmonella Enteritidis (SE) and is usually the result of infection of the reproductive organs. Thus, knowledge of the endogenous innate immune mechanisms of the rooster testis and epididymis is an emerging aspect of reproductive physiology. Cytokines are key factors for stimulating the immune response and inflammation in chickens to Salmonella infection. In the present study the expression profile of 11 pro-inflammatory cytokine genes in the rooster testis and epididymis in vivo and transcriptional changes in these organs during sexual maturation and SE infection were investigated. Gene expression analysis data revealed that in both testis and epididymis nine cytokines namely the IL-1β, IL-6, IL-8, IL-10, IL-12, IL-15, IL-16, IL-17 and IL-18 genes were expressed, while no mRNA transcripts were detected in both organs for IL-2 and IL-4. Furthermore, the expression of various cytokine genes during sexual maturation appeared to be developmentally regulated, while SE infection resulted in a significant up-regulation of IL-1β, -6, -12 and -18 genes in the testis and an increase in the mRNA relative abundance of IL-1β, -6, -12, -16 and -18 in the epididymis of SE-infected sexually mature 28-week-old roosters. These results suggest a cytokine-mediated immune response mechanism against Salmonella infection in the rooster reproductive tract. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Risk for zoonotic Salmonella transmission from pet reptiles: A survey on knowledge, attitudes and practices of reptile-owners related to reptile husbandry.

    PubMed

    Corrente, Marialaura; Sangiorgio, Giancarlo; Grandolfo, Erika; Bodnar, Livia; Catella, Cristiana; Trotta, Adriana; Martella, Vito; Buonavoglia, Domenico

    2017-10-01

    Reptiles are becoming increasingly popular as pets. Those animals are reservoirs of a wide variety of Salmonella serotypes, that may be transmitted to warm-blooded animals, including humans. Accordingly, good hygiene practices related to husbandry are important for prevention of Reptile-associated salmonellosis (RAS). A cross-sectional study was conducted among reptile owners, by administration of a detailed questionnaire. In addition, the cloacal swabs of the sampled reptiles were screened for Salmonella spp. and the husbandry management practices were evaluated in order to assess any possible link between the presence of Salmonella spp. and the hygiene practices. The response rate to the questionnaire was 66.6% (100 out of 150 contacted owners). In 26 out of 100 families, members at risk of RAS (children and elderly) were present. One hundred animals were screened for the presence of Salmonella spp. The prevalence of Salmonella spp. carriers was 57% (Confidence interval 47-66%). Co-habitation of the animals with other reptiles in the same terrarium was associated with a 2-fold increase in the risk of infection by Salmonella spp.(Odds ratio=2.3, CI 1.2;13, p=0.02). Animals handled by owners that did not report washing their hands after the cleaning procedures or the handling were exposed to a 3-fold increase in the risk of infection (OR=3.1, CI 1.1;16, p=0.019). When drinking water was not replaced regularly, the animals were 7 times more exposed to infection (OR=6.8, CI 1.8;25, p=0.005). When the diet was constituted by rodents, 27 out of 48 reptiles (56.3%) were fed with live animals. In the present survey the typical reptile owner was a person, aware of ethological aspects of reptile husbandry but ignorant of some ethical recommendations and poorly informed about the health risks for himself and for the other family members. Prevention of RAS must rely mainly on information and education, with the veterinarian health bodies primarily involved in this difficult

  16. International outbreak of Salmonella Eastbourne infection traced to contaminated chocolate.

    PubMed

    Craven, P C; Mackel, D C; Baine, W B; Barker, W H; Gangarosa, E J

    1975-04-05

    Between Dec. 4, 1973, and Feb. 15, 1974, 80 cases of infection due to Salmonella eastbourne, previously a rare isolated serotype in the United States, were reported from twenty-three States. An additional 39 cases were reported from seven Provinces in Canada during a similar period. A telephone case-control study implicated Christmas-wrapped chocolate balls manufactured by a Canadian company as the vehicle of transmission. S. eastbourne was subsequently isolated from several samples of leftover chocolate balls obtained from homes where cases occurred. Investigation of the factory revealed that the contaminated Christmas and Easter chocolates, and a few chocolate items for year-round sale, had been produced between May and October, 1973. Bacteriological testing of samples taken at the plant implicated cocoa beans as the probable source of the salmonella organisms which, in the low-moisture chocolate, were able to survive heating during production. This outbreak and the finding of salmonella of other serotypes in chocolates produced by another manufacturer suggest that chocolate-related salmonellosis may be a significant public-health problem.

  17. Reduction of risk of Salmonella infection from kitchen cleaning clothes by use of sodium hypochlorite disinfectant cleaner.

    PubMed

    Chaidez, C; Soto-Beltran, M; Gerba, C P; Tamimi, A H

    2014-11-01

    The objective of this study was to evaluate the reduction of infection risk due to exposure to Salmonella sp. in kitchen cleaning clothes by the use of a bleach (sodium hypochlorite) cleaner utilizing a continuous-time dynamic exposure model. The only route of exposure considered was hand contamination during cloth use. The occurrence and numbers of Salmonella was studied in 60 homes over a 6-week period in which half disinfected kitchen cleaning clothes with a sodium hypochlorite based disinfectant cleaner. This study demonstrated that a significant risk exists for Salmonella infection from kitchen cleaning clothes in Mexican homes and that this risk can be reduced by almost 100-fold by soaking cleaning clothes in a bleach product. The risks of infection and illness could likely be further reduced by developing a more effective procedure for reducing Salmonella in cleaning clothes treated twice a day with a sodium hypochlorite disinfectant (i.e. longer soaking time) or using a greater concentration of the disinfectant. Hygiene intervention is a key strategy to reduce the potential risk of disease-causing micro-organisms in households. There is a lack of understanding of the human health risk associated with the use of contaminated kitchen cleaning cloths. The study used a quantitative microbial risk assessment to estimate the risk associated with the use of kitchen cleaning clothes by using disinfectant products. The results showed that the use of prescribe protocols can reduce the risk of Salmonella infections in household kitchens. © 2014 The Society for Applied Microbiology.

  18. AMPK and mTOR: sensors and regulators of immunometabolic changes during Salmonella infection in the chicken.

    PubMed

    Kogut, Michael H; Genovese, Kenneth J; He, Haiqi; Arsenault, Ryan J

    2016-02-01

    Non-typhoidal Salmonella enterica induce an early pro-inflammatory response in chickens, but the response is short-lived, asymptomatic of clinical disease, results in a persistent colonization of the gastrointestinal (GI) tract, and can transmit infections to naïve hosts via fecal shedding of bacteria. The underlying mechanisms that facilitate this persistent colonization of the ceca of chickens by Salmonella are unknown. We have begun to concentrate on the convergence of metabolism and immune function as playing a major role in regulating the host responsiveness to infection. It is now recognized that the immune system monitors the metabolic state of tissues and responds by modulating metabolic function. The aim in this review is to summarize the literature that has defined a series of genotypic and phenotypic alterations in the regulatory host immune-metabolic signaling pathways in the local cecal microenvironment during the first 4 d following infection with Salmonella enterica serovar Enteritidis. Using chicken-specific kinomic immune-metabolism peptide arrays and quantitative real-time-PCR of cecal tissue during the early (4 to 48 h) and late stages (4 to 17 d) of a Salmonella infection in young broiler chickens, the local immunometabolic microenvironment has been ascertained. Distinct immune and metabolic pathways are altered between 2 to 4 d post-infection that dramatically changed the local immunometabolic environment. Thus, the tissue immunometabolic phenotype of the cecum plays a major role in the ability of the bacterium to establish a persistent cecal colonization. In general, our findings show that AMPK and mTOR are key players linking specific extracellular milieu and intracellular metabolism. Phenotypically, the early response (4 to 48 h) to Salmonella infection is pro-inflammatory, fueled by glycolysis and mTOR-mediated protein synthesis, whereas by the later phase (4 to 5 d), the local environment has undergone an immune-metabolic reprogramming to

  19. Characterization of extended-spectrum cephalosporin-resistant Salmonella enterica serovar Heidelberg isolated from food animals, retail meat, and humans in the United States 2009.

    PubMed

    Folster, J P; Pecic, G; Singh, A; Duval, B; Rickert, R; Ayers, S; Abbott, J; McGlinchey, B; Bauer-Turpin, J; Haro, J; Hise, K; Zhao, S; Fedorka-Cray, P J; Whichard, J; McDermott, P F

    2012-07-01

    Salmonella enterica is one of the most common causes of foodborne illness in the United States. Although salmonellosis is usually self-limiting, severe infections typically require antimicrobial treatment, and ceftriaxone, an extended-spectrum cephalosporin (ESC), is commonly used in both adults and children. Surveillance conducted by the National Antimicrobial Resistance Monitoring System (NARMS) has shown a recent increase in ESC resistance among Salmonella Heidelberg isolated from food animals at slaughter, retail meat, and humans. ESC resistance among Salmonella in the United States is usually mediated by a plasmid-encoded bla(CMY) β-lactamase. In 2009, we identified 47 ESC-resistant bla(CMY)-positive Heidelberg isolates from humans (n=18), food animals at slaughter (n=16), and retail meats (n=13) associated with a spike in the prevalence of this serovar. Almost 90% (26/29) of the animal and meat isolates were isolated from chicken carcasses or retail chicken meat. We screened NARMS isolates for the presence of bla(CMY), determined whether the gene was plasmid-encoded, examined pulsed-field gel electrophoresis patterns to assess the genetic diversities of the isolates, and categorized the bla(CMY) plasmids by plasmid incompatibility groups and plasmid multi-locus sequence typing (pMLST). All 47 bla(CMY) genes were found to be plasmid encoded. Incompatibility/replicon typing demonstrated that 41 were IncI1 plasmids, 40 of which only conferred bla(CMY)-associated resistance. Six were IncA/C plasmids that carried additional resistance genes. pMLST of the IncI1-bla(CMY) plasmids showed that 27 (65.8%) were sequence type (ST) 12, the most common ST among bla(CMY)-IncI1 plasmids from Heidelberg isolated from humans. Ten plasmids had a new ST profile, ST66, a type very similar to ST12. This work showed that the 2009 increase in ESC resistance among Salmonella Heidelberg was caused mainly by the dissemination of bla(CMY) on IncI1 and IncA/C plasmids in a variety of

  20. Colonization of reproductive organs and internal contamination of eggs after experimental infection of laying hens with Salmonella heidelberg and Salmonella enteritidis.

    PubMed

    Gast, Richard K; Guard-Bouldin, Jean; Holt, Peter S

    2004-12-01

    Internal contamination of eggs laid by hens infected with Salmonella enteritidis has been a prominent international public health issue since the mid-1980s. Considerable resources have been committed to detecting and controlling S. enteritidis infections in commercial laying flocks. Recently, the Centers for Disease Control and Prevention also reported a significant association between eggs or egg-containing foods and S. heidelberg infections in humans. The present study sought to determine whether several S. heidelberg isolates obtained from egg-associated human disease outbreaks were able to colonize reproductive tissues and be deposited inside eggs laid by experimentally infected hens in a manner similar to the previously documented behavior of S. enteritidis. In two trials, groups of laying hens were orally inoculated with large doses of four S. heidelberg strains and an S. enteritidis strain that consistently caused egg contamination in previous studies. All five Salmonella strains (of both serotypes) colonized the intestinal tracts and invaded the livers, spleens, ovaries, and oviducts of inoculated hens, with no significant differences observed between the strains for any of these parameters. All four S. heidelberg strains were recovered from the interior liquid contents of eggs laid by infected hens, although at lower frequencies (between 1.1% and 4.5%) than the S. enteritidis strain (7.0%).

  1. Outbreak of Salmonella Oslo Infections Linked to Persian Cucumbers - United States, 2016.

    PubMed

    Bottichio, Lyndsay; Medus, Carlota; Sorenson, Alida; Donovan, Danielle; Sharma, Reeti; Dowell, Natasha; Williams, Ian; Wellman, Allison; Jackson, Alikeh; Tolar, Beth; Griswold, Taylor; Basler, Colin

    2016-12-30

    In April 2016, PulseNet, the national molecular subtyping network for foodborne disease surveillance, detected a multistate cluster of Salmonella enterica serotype Oslo infections with an indistinguishable pulsed-field gel electrophoresis (PFGE) pattern (XbaI PFGE pattern OSLX01.0090).* This PFGE pattern was new in the database; no previous infections or outbreaks have been identified. CDC, state and local health and agriculture departments and laboratories, and the Food and Drug Administration (FDA) conducted epidemiologic, traceback, and laboratory investigations to identify the source of this outbreak. A total of 14 patients in eight states were identified, with illness onsets occurring during March 21-April 9, 2016. Whole genome sequencing, a highly discriminating subtyping method, was used to further characterize PFGE pattern OSLX01.0090 isolates. Epidemiologic evidence indicates Persian cucumbers as the source of Salmonella Oslo infections in this outbreak. This is the fourth identified multistate outbreak of salmonellosis associated with cucumbers since 2013. Further research is needed to understand the mechanism and factors that contribute to contamination of cucumbers during growth, harvesting, and processing to prevent future outbreaks.

  2. A recurrent, multistate outbreak of salmonella serotype agona infections associated with dry, unsweetened cereal consumption, United States, 2008.

    PubMed

    Russo, Elizabeth T; Biggerstaff, Gwen; Hoekstra, R Michael; Meyer, Stephanie; Patel, Nehal; Miller, Benjamin; Quick, Rob

    2013-02-01

    An outbreak of Salmonella enterica serotype Agona infections associated with nationwide distribution of cereal from Company X was identified in April 2008. This outbreak was detected using PulseNet, the national molecular subtyping network for foodborne disease surveillance, which coincided with Company X's voluntary recall of unsweetened puffed rice and wheat cereals after routine product sampling yielded Salmonella Agona. A case patient was defined as being infected with the outbreak strain of Salmonella Agona, with illness onset from 1 January through 1 July 2008. Case patients were interviewed using a standard questionnaire, and the proportion of ill persons who reported eating Company X puffed rice cereal was compared with Company X's market share data using binomial testing. The Minnesota Department of Agriculture inspected the cereal production facility and collected both product and environmental swab samples. Routine surveillance identified 33 case patients in 17 states. Of 32 patients interviewed, 24 (83%) reported eating Company X puffed rice cereal. Company X puffed rice cereal represented 0.063% of the total ready-to-eat dry cereal market share in the United States at the time of the investigation. Binomial testing suggested that the proportion of exposed case patients would not likely occur by chance (P < 0.0001). Of 17 cereal samples collected from case patient homes for laboratory testing, 2 (12%) yielded Salmonella Agona indistinguishable from the outbreak strain. Twelve environmental swabs and nine product samples from the cereal plant yielded the outbreak strain of Salmonella Agona. Company X cereal was implicated in a similar outbreak of Salmonella Agona infection in 1998 with the same outbreak strain linked to the same production facility. We hypothesize that a recent construction project at this facility created an open wall near the cereal production area allowing reintroduction of Salmonella Agona into the product, highlighting the

  3. An evaluation of the effect of sodium bisulfate as a feed additive on Salmonella enterica serotype Enteritidis in experimentally infected broilers.

    PubMed

    Kassem, I I; Sanad, Y M; Stonerock, R; Rajashekara, G

    2012-04-01

    The colonization of broiler chickens with Salmonella can pose serious health and economic risks for both consumers and the poultry industry. Because colonization with Salmonella can lead to subsequent contamination of chicken carcasses during processing, preemptive control measures should include the reduction of this pathogen in chickens before slaughter. In this study, we evaluated the effect of sodium bisulfate, a potential antimicrobial feed additive, on Salmonella colonization of experimentally infected broiler chickens. Two hundred and forty 1-d-old chickens were infected orally with Salmonella enterica serotype Enteritidis and divided into 4 groups (each comprised of 60 chickens). Three groups received different concentrations of sodium bisulfate integrated into their feed, while the feed of the fourth group (positive control) was not treated. At time points before the broilers' slaughter age, different organs/tissues (liver, spleen, cecum, and bone marrow) and feces were aseptically collected and tested for the occurrence and density of Salmonella Enteritidis. Our results show that at 3 d postinfection, high colonization with Salmonella Enteritidis was detected and affected all tested tissues and fecal samples. Although colonization decreased across time, Salmonella Enteritidis persisted in the cecum, feces, spleen, and bone marrow, but not in the liver, until slaughter age. Furthermore, the addition of sodium bisulfate to the feed did not significantly reduce Salmonella Enteritidis numbers in infected chickens or affect the shedding of the pathogen.

  4. Isolation of Escherichia coli and Salmonella spp. from free-ranging wild animals.

    PubMed

    Iovine, Renata de Oliveira; Dejuste, Catia; Miranda, Flávia; Filoni, Claudia; Bueno, Marina Galvão; de Carvalho, Vania Maria

    2015-01-01

    Increasing interactions between humans, domestic animals and wildlife may result in inter-species transmission of infectious agents. To evaluate the presence of pathogenic E. coli and Salmonella spp. and to test the antimicrobial susceptibility of isolates, rectal swabs from 36 different free-ranging wild mammals were taken from two distinct natural sites in Brazil: Cantareira State Park (CSP, state of São Paulo) and Santa Isabel do Rio Negro Region (SIRNR, state of Amazonas). The swabs were randomly collected and processed for bacterial isolation, identification, characterization and antimicrobial resistance. Eighteen E. coli strains from CSP and 20 from SIRNR were recovered from 14 and 22 individuals, respectively. Strains from animals captured in CSP, the site with the greatest anthropization, exhibited a higher range and percentage of virulence genes, including an eae+/bfpA+ strain. Antimicrobial resistance was verified in strains originating from both sites; however, in strains from SIRNR, aminopenicillins were almost the exclusive antimicrobial class to which strains exhibited resistance, whereas in CSP there were strains resistant to cephalosporins, sulfonamide, aminoglycoside, tetracycline and fluoroquinolone, in addition to strains exhibiting multidrug resistance. Two strains of Salmonella enterica that are known to be associated with reptiles, serotypes Belem and 60:r:e,n,z15, were recovered only from Amazonian animals and showed susceptibility to all classes of antimicrobials that were tested. Although the potential impact of these pathogens on wildlife remains unknown, bacteria isolated from free-ranging wild animals may provide relevant information about environmental health and should therefore be more deeply studied.

  5. Estimated Incidence of Antimicrobial Drug–Resistant Nontyphoidal Salmonella Infections, United States, 2004–2012

    PubMed Central

    Gu, Weidong; Mahon, Barbara E.; Judd, Michael; Folster, Jason; Griffin, Patricia M.; Hoekstra, Robert M.

    2017-01-01

    Salmonella infections are a major cause of illness in the United States. The antimicrobial agents used to treat severe infections include ceftriaxone, ciprofloxacin, and ampicillin. Antimicrobial drug resistance has been associated with adverse clinical outcomes. To estimate the incidence of resistant culture-confirmed nontyphoidal Salmonella infections, we used Bayesian hierarchical models of 2004–2012 data from the Centers for Disease Control and Prevention National Antimicrobial Resistance Monitoring System and Laboratory-based Enteric Disease Surveillance. We based 3 mutually exclusive resistance categories on susceptibility testing: ceftriaxone and ampicillin resistant, ciprofloxacin nonsusceptible but ceftriaxone susceptible, and ampicillin resistant but ceftriaxone and ciprofloxacin susceptible. We estimated the overall incidence of resistant infections as 1.07/100,000 person-years for ampicillin-only resistance, 0.51/100,000 person-years for ceftriaxone and ampicillin resistance, and 0.35/100,000 person-years for ciprofloxacin nonsusceptibility, or ≈6,200 resistant culture-confirmed infections annually. These national estimates help define the magnitude of the resistance problem so that control measures can be appropriately targeted. PMID:27983506

  6. [Severe cases of Salmonella non typhi infections on sickle cell patients in Réunion Island].

    PubMed

    Vandroux, D; Jabot, J; Angue, M; Belcour, D; Galliot, R; Allyn, J; Gaüzère, B-A

    2014-12-01

    We report two cases of septic shocks due to Salmonella non typhi infection on sickle cell patients admitted to an intensive care unit. Such patients should enforce food hygiene measures, especially under tropical settings, to avoid potentially deadly severe infections.

  7. Trends in salmonella food poisoning in England and Wales 1941-72.

    PubMed Central

    McCoy, J. H.

    1975-01-01

    Cattle and pig herds and flocks of domestic fowl have formed the main reservoir of human salmonella food poisoning in England and Wales from 1941 to 1972. Changes in the incidence of human salmonella food poisoning and in the serotypes of salmonellas isolated from human infections are shown to have been associated with the introduction of new foods, with changes in animal husbandry, and with changes in the relative proportions of flesh food from different species consumed. New foods, dried powdered egg, liquid egg and frozen liquid egg were introduced during the period of food rationing which extended from 1940 to 1953. Changes in animal husbandry, in particular the intensive production of pigs, poultry and eggs, followed the re-establishment of pig herds and fowl flocks after the derationing of animal feed in 1953. The changes in the proportions of flesh foods consumed followed the introduction of frozen oven-ready fowl in the late 1950s and early 1960s which by 1964 became cheaper than traditional flesh foods. PMID:1054731

  8. Salmonella infections in food workers identified through routine Public Health Surveillance in Minnesota: impact on outbreak recognition.

    PubMed

    Medus, Carlota; Smith, Kirk E; Bender, Jeffrey B; Leano, Fe; Hedberg, Craig W

    2010-11-01

    The frequency of Salmonella-infected food workers identified through routine surveillance from 1997 to 2004 in Minnesota was determined in order to evaluate the impact of surveillance on the detection of outbreaks in restaurants and to quantify the duration of Salmonella shedding in stool. Of 4,976 culture-confirmed Salmonella cases reported to the Minnesota Department of Health, 110 (2.2%) were identified as food workers; this was less than one-half the number expected based on the incidence of Salmonella in the general population. Twenty food workers (18%) were associated with outbreaks. Twelve were involved in nine independent outbreaks at the restaurants where they worked. The identification of the index food worker in six of these outbreaks was critical to the initiation of outbreak investigations that revealed much larger problems. Among food workers who submitted specimens until at least one negative result was obtained (n = 69), the median duration of shedding was 22 days (range, 1 to 359 days). Among the four most common serotypes (Enteritidis, Typhimurium, Heidelberg, and Newport) the median duration of shedding was significantly longer for Salmonella Newport (80 days; P = 0.02) and for Salmonella Enteritidis (32 days; P = 0.04) than for Salmonella Heidelberg (8 days). Food workers should be considered an important source of Salmonella transmission, and those identified through surveillance should raise a high index of suspicion of a possible outbreak at their place of work. Food service managers need to be alert to Salmonella-like illnesses among food workers to facilitate prevention and control efforts, including exclusion of infected food workers or restriction of their duties.

  9. Effect of infectious bursal disease (IBD) vaccine on Salmonella Enteritidis infected chickens.

    PubMed

    Arafat, Nagah; Eladl, Abdelfattah H; Mahgoub, Hebatallah; El-Shafei, Reham A

    2017-06-22

    Chickens infected with both infectious bursal disease virus (IBDV) and Salmonella had higher mortality. In this work, we investigated the effect of IBDV vaccine (modified live-virus bursal disease vaccine, Nobilis strain 228E®) on experimentally infected chickens with Salmonella Enteritidis (SE). Four experimental groups were included in this study, negative control group, 228E®group, 228E®+SE infected group, and SE infected group. Chickens were ocularly administrated 228E® at 12days of age and orally infected with S. Enteritidis at 13days of age. Sera, intestinal fluid, blood, cloacal swabs and tissue samples were collected at 1, 2 and 3weeks post vaccination (PV). The recorded mortalities were higher in the 228E®+SE infected group, compared to the SE infected group. The anti-S. Enteritidis serum antibody titer and the intestinal mucosal IgA level were higher in the SE infected group at 2 and 3weeks PV, compared to 228E®+SE infected group. S. Enteritidis fecal shedding and organ colonization were significantly higher in the 228E®+SE infected group than the SE infected group at 2 and 3weeks PV. The 228E®+SE group had significantly lower bursa to body weight ratios at 2 and 3weeks PV, as well as had higher bursal lesion scores than the SE infected group. IBDV vaccine depressed the specific-SE systemic and mucosal antibody responses, but did not affect the specific-SE cellular immune responses. Chickens administrated IBDV vaccine, followed by S. Enteritidis infection, could cause a significant effect on the bursa of Fabricius, resulting in failure of systemic and mucosal antibody responses to the S. Enteritidis and reduce the elimination and the clearance of S. Enteritidis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Molecular Epidemiology of Nontyphoidal Salmonella in Poultry and Poultry Products in India: Implications for Human Health.

    PubMed

    Saravanan, Sellappan; Purushothaman, Venketaraman; Murthy, Thippichettypalayam Ramasamy Gopala Krishna; Sukumar, Kuppannan; Srinivasan, Palani; Gowthaman, Vasudevan; Balusamy, Mohan; Atterbury, Robert; Kuchipudi, Suresh V

    2015-09-01

    Human infections with non-typhoidal Salmonella (NTS) serovars are increasingly becoming a threat to human health globally. While all motile Salmonellae have zoonotic potential, Salmonella Enteritidis and Salmonella Typhimurium are most commonly associated with human disease, for which poultry are a major source. Despite the increasing number of human NTS infections, the epidemiology of NTS in poultry in India has not been fully understood. Hence, as a first step, we carried out epidemiological analysis to establish the incidence of NTS in poultry to evaluate the risk to human health. A total of 1215 samples (including poultry meat, tissues, egg and environmental samples) were collected from 154 commercial layer farms from southern India and screened for NTS. Following identification by cultural and biochemical methods, Salmonella isolates were further characterized by multiplex PCR, allele-specific PCR, enterobacterial repetitive intergenic consensus (ERIC) PCR and pulse field gel electrophoresis (PFGE). In the present study, 21/1215 (1.73 %) samples tested positive for NTS. We found 12/392 (3.06 %) of tissue samples, 7/460 (1.52 %) of poultry products, and 2/363 (0.55 %) of environmental samples tested positive for NTS. All the Salmonella isolates were resistant to oxytetracycline, which is routinely used as poultry feed additive. The multiplex PCR results allowed 16/21 isolates to be classified as S. Typhimurium, and five isolates as S. Enteritidis. Of the five S. Enteritidis isolates, four were identified as group D Salmonella by allele-specific PCR. All of the isolates produced different banding patterns in ERIC PCR. Of the thirteen macro restriction profiles (MRPs) obtained by PFGE, MRP 6 was predominant which included 6 (21 %) isolates. In conclusion, the findings of the study revealed higher incidence of contamination of NTS Salmonella in poultry tissue and animal protein sources used for poultry. The results of the study warrants further investigation

  11. Antimicrobial Susceptibility to Azithromycin among Salmonella enterica Isolates from the United States▿

    PubMed Central

    Sjölund-Karlsson, Maria; Joyce, Kevin; Blickenstaff, Karen; Ball, Takiyah; Haro, Jovita; Medalla, Felicita M.; Fedorka-Cray, Paula; Zhao, Shaohua; Crump, John A.; Whichard, Jean M.

    2011-01-01

    Due to emerging resistance to traditional antimicrobial agents, such as ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol, azithromycin is increasingly used for the treatment of invasive Salmonella infections. In the present study, 696 isolates of non-Typhi Salmonella collected from humans, food animals, and retail meats in the United States were investigated for antimicrobial susceptibility to azithromycin. Seventy-two Salmonella enterica serotype Typhi isolates from humans were also tested. For each isolate, MICs of azithromycin and 15 other antimicrobial agents were determined by broth microdilution. Among the non-Typhi Salmonella isolates, azithromycin MICs among human isolates ranged from 1 to 32 μg/ml, whereas the MICs among the animal and retail meat isolates ranged from 2 to 16 μg/ml and 4 to 16 μg/ml, respectively. Among Salmonella serotype Typhi isolates, the azithromycin MICs ranged from 4 to 16 μg/ml. The highest MIC observed in the present study was 32 μg/ml, and it was detected in three human isolates belonging to serotypes Kentucky, Montevideo, and Paratyphi A. Based on our findings, we propose an epidemiological cutoff value (ECOFF) for wild-type Salmonella of ≤16 μg/ml of azithromycin. The susceptibility data provided could be used in combination with clinical outcome data to determine tentative clinical breakpoints for azithromycin and Salmonella enterica. PMID:21690279

  12. HLA-B27 Modulates Intracellular Growth of Salmonella Pathogenicity Island 2 Mutants and Production of Cytokines in Infected Monocytic U937 Cells

    PubMed Central

    Ge, Shichao; He, Qiushui; Granfors, Kaisa

    2012-01-01

    Background Salmonella enterica serovar Enteritidis PT4 KS8822/88 replicates rapidly in HLA-B27-transfected human monocytic U937 cells. In this process, Salmonella pathogenicity island 2 (SPI-2) genes play a crucial role. Our previous study indicated that 118 Salmonella genes, including 8 SPI-2 genes were affected by HLA-B27 antigen during Salmonella infection of U937 cells. Methods/Principal Findings To further investigate Salmonella replication in HLA-B27-positive U937 monocytic cells, two SPI-2 genes, ssaS and sscA up-regulated most during Salmonella infection of HLA-B27-transfected U937 cells, were mutated by using one-step gene disruption method. Intracellular survival and replication of the mutants in the U937 cells was compared to that of the wild type strain. Surprisingly, the two mutated strains replicated significantly more than the wild type bacteria in HLA-B27-transfected cells. Secretion of tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10) was significantly induced during the infection of HLA-B27-transfected U937 cells with the mutants. The results indicated that the certain SPI-2 genes in wild type bacteria suppress Salmonella intracellular growth and production of cytokines in infected HLA-B27-transfected cells. HLA-B27-associated modulation of Salmonella SPI-2 genes and cytokine production may have importance in the persistent infection of the bacteria and the pathogenesis of reactive arthritis. Conclusions The study provides evidence that certain virulence factors of pathogens can reduce the intracellular growth in the host cells. We suggest that the limiting intracellular growth might be a strategy for persistence of bacteria in host cells, keeping a balance between pathogenic growth and pathogenesis. PMID:22470519

  13. Characterization of blaCMY plasmids and their possible role in source attribution of salmonella enterica serotype typhimurium infections

    USDA-ARS?s Scientific Manuscript database

    Salmonella is an important cause of foodborne illness; however, identifying the source of these infections can be difficult. This is especially true for Salmonella serotype Typhimurium, which is found in diverse agricultural niches. Cephalosporins are one of the primary treatment choices for complic...

  14. Persistence of fecal shedding of Salmonella Enteritidis by experimentally infected laying hens housed in conventional or enriched cages

    USDA-ARS?s Scientific Manuscript database

    : Because Salmonella Enteritidis can be deposited inside eggs laid by infected hens, the prevalence of this pathogen in commercial egg-producing flocks is an important risk factor for human illness. Opportunities for the introduction, transmission, and persistence of salmonellae in poultry are poten...

  15. Persistence of fecal shedding of Salmonella Enteritidis by experimentally infected laying hens housed in conventional or enriched cages.

    USDA-ARS?s Scientific Manuscript database

    Because Salmonella Enteritidis can be deposited inside eggs laid by infected hens, the prevalence of this pathogen in commercial egg-producing flocks is an important risk factor for human illness. Opportunities for the introduction, transmission, and persistence of salmonellae in poultry are potenti...

  16. Cytoplasmic Copper Detoxification in Salmonella Can Contribute to SodC Metalation but Is Dispensable during Systemic Infection

    PubMed Central

    Fenlon, Luke A.

    2017-01-01

    ABSTRACT Salmonella enterica serovar Typhimurium is a leading cause of foodborne disease worldwide. Severe infections result from the ability of S. Typhimurium to survive within host immune cells, despite being exposed to various host antimicrobial factors. SodCI, a copper-zinc-cofactored superoxide dismutase, is required to defend against phagocytic superoxide. SodCII, an additional periplasmic superoxide dismutase, although produced during infection, does not function in the host. Previous studies suggested that CueP, a periplasmic copper binding protein, facilitates acquisition of copper by SodCII. CopA and GolT, both inner membrane ATPases that pump copper from the cytoplasm to the periplasm, are a source of copper for CueP. Using in vitro SOD assays, we found that SodCI can also utilize CueP to acquire copper. However, both SodCI and SodCII have a significant fraction of activity independent of CueP and cytoplasmic copper export. We utilized a series of mouse competition assays to address the in vivo role of CueP-mediated SodC activation. A copA golT cueP triple mutant was equally as competitive as the wild type, suggesting that sufficient SodCI is active to defend against phagocytic superoxide independent of CueP and cytoplasmic copper export. We also confirmed that a strain containing a modified SodCII, which is capable of complementing a sodCI deletion, was fully virulent in a copA golT cueP background competed against the wild type. These competitions also address the potential impact of cytoplasmic copper toxicity within the phagosome. Our data suggest that Salmonella does not encounter inhibitory concentrations of copper during systemic infection. IMPORTANCE Salmonella is a leading cause of gastrointestinal disease worldwide. In severe cases, Salmonella can cause life-threatening systemic infections, particularly in very young children, the elderly, or people who are immunocompromised. To cause disease, Salmonella must survive the hostile environment

  17. Cytoplasmic Copper Detoxification in Salmonella Can Contribute to SodC Metalation but Is Dispensable during Systemic Infection.

    PubMed

    Fenlon, Luke A; Slauch, James M

    2017-12-15

    Salmonella enterica serovar Typhimurium is a leading cause of foodborne disease worldwide. Severe infections result from the ability of S Typhimurium to survive within host immune cells, despite being exposed to various host antimicrobial factors. SodCI, a copper-zinc-cofactored superoxide dismutase, is required to defend against phagocytic superoxide. SodCII, an additional periplasmic superoxide dismutase, although produced during infection, does not function in the host. Previous studies suggested that CueP, a periplasmic copper binding protein, facilitates acquisition of copper by SodCII. CopA and GolT, both inner membrane ATPases that pump copper from the cytoplasm to the periplasm, are a source of copper for CueP. Using in vitro SOD assays, we found that SodCI can also utilize CueP to acquire copper. However, both SodCI and SodCII have a significant fraction of activity independent of CueP and cytoplasmic copper export. We utilized a series of mouse competition assays to address the in vivo role of CueP-mediated SodC activation. A copA golT cueP triple mutant was equally as competitive as the wild type, suggesting that sufficient SodCI is active to defend against phagocytic superoxide independent of CueP and cytoplasmic copper export. We also confirmed that a strain containing a modified SodCII, which is capable of complementing a sodCI deletion, was fully virulent in a copA golT cueP background competed against the wild type. These competitions also address the potential impact of cytoplasmic copper toxicity within the phagosome. Our data suggest that Salmonella does not encounter inhibitory concentrations of copper during systemic infection. IMPORTANCE Salmonella is a leading cause of gastrointestinal disease worldwide. In severe cases, Salmonella can cause life-threatening systemic infections, particularly in very young children, the elderly, or people who are immunocompromised. To cause disease, Salmonella must survive the hostile environment inside host

  18. Effectiveness of Simulated Interventions in Reducing the Estimated Prevalence of Salmonella in UK Pig Herds

    PubMed Central

    Berriman, Alexander D. C.; Clancy, Damian; Clough, Helen E.; Armstrong, Derek; Christley, Robert M.

    2013-01-01

    Salmonella spp are a major foodborne zoonotic cause of human illness. Consumption of pork products is believed to be a major source of human salmonellosis and Salmonella control throughout the food-chain is recommended. A number of on-farm interventions have been proposed, and some have been implemented in order to try to achieve Salmonella control. In this study we utilize previously developed models describing Salmonella dynamics to investigate the potential effects of a range of these on-farm interventions. As the models indicated that the number of bacteria shed in the faeces of an infectious animal was a key factor, interventions applied within a high-shedding scenario were also analysed. From simulation of the model, the probability of infection after Salmonella exposure was found to be a key driver of Salmonella transmission. The model also highlighted that minimising physiological stress can have a large effect but only when shedding levels are not excessive. When shedding was high, weekly cleaning and disinfection was not effective in Salmonella control. However it is possible that cleaning may have an effect if conducted more often. Furthermore, separating infectious animals, shedding bacteria at a high rate, from the rest of the population was found to be able to minimise the spread of Salmonella. PMID:23840399

  19. The Type VI Secretion System Encoded in Salmonella Pathogenicity Island 19 Is Required for Salmonella enterica Serotype Gallinarum Survival within Infected Macrophages

    PubMed Central

    Blondel, Carlos J.; Jiménez, Juan C.; Leiva, Lorenzo E.; Álvarez, Sergio A.; Pinto, Bernardo I.; Contreras, Francisca; Pezoa, David; Santiviago, Carlos A.

    2013-01-01

    Salmonella enterica serotype Gallinarum is the causative agent of fowl typhoid, a disease characterized by high morbidity and mortality that causes major economic losses in poultry production. We have reported that S. Gallinarum harbors a type VI secretion system (T6SS) encoded in Salmonella pathogenicity island 19 (SPI-19) that is required for efficient colonization of chicks. In the present study, we aimed to characterize the SPI-19 T6SS functionality and to investigate the mechanisms behind the phenotypes previously observed in vivo. Expression analyses revealed that SPI-19 T6SS core components are expressed and produced under in vitro bacterial growth conditions. However, secretion of the structural/secreted components Hcp1, Hcp2, and VgrG to the culture medium could not be determined, suggesting that additional signals are required for T6SS-dependent secretion of these proteins. In vitro bacterial competition assays failed to demonstrate a role for SPI-19 T6SS in interbacterial killing. In contrast, cell culture experiments with murine and avian macrophages (RAW264.7 and HD11, respectively) revealed production of a green fluorescent protein-tagged version of VgrG soon after Salmonella uptake. Furthermore, infection of RAW264.7 and HD11 macrophages with deletion mutants of SPI-19 or strains with genes encoding specific T6SS core components (clpV and vgrG) revealed that SPI-19 T6SS contributes to S. Gallinarum survival within macrophages at 20 h postuptake. SPI-19 T6SS function was not linked to Salmonella-induced cytotoxicity or cell death of infected macrophages, as has been described for other T6SS. Our data indicate that SPI-19 T6SS corresponds to a novel tool used by Salmonella to survive within host cells. PMID:23357385

  20. Testing Feeds for Salmonella.

    USDA-ARS?s Scientific Manuscript database

    Human salmonellosis outbreaks have been linked to contamination of animal feeds. Thus it is crucial to employ sensitive Salmonella detection methods for animal feeds. Based on a review of the literature, Salmonella sustains acid injury at about pH 4.0 to5.0. Low pH can also alter the metabolism of S...

  1. Selected Lactobacillus strains isolated from sugary and milk kefir reduce Salmonella infection of epithelial cells in vitro.

    PubMed

    Zavala, L; Golowczyc, M A; van Hoorde, K; Medrano, M; Huys, G; Vandamme, P; Abraham, A G

    2016-09-01

    The isolation of potentially probiotic strains and the subsequent study of their properties are very important steps to gain insight in the health benefits ascribed to sugary and milk kefir. The aim of the present study was to characterise fifteen Lactobacillus strains isolated from these beverages by determining some surface properties and their ability to antagonise enterocyte cell damage after Salmonella infection in vitro. Lactobacillus surface properties were determined by hydrophobicity, autoaggregation, and coaggregation assays with Salmonella. In addition, lactobacilli adhesion to Caco-2/TC-7 cells and the effect on Salmonella invasion were evaluated. Finally, the disassembly of F-actin cytoskeleton on intestinal epithelial cells was assayed in vitro when Salmonella infection was performed in the presence of selected Lactobacillus strains. Ten out of the 15 strains showed a high adhesion capacity to Caco-2/TC-7 cells. Most of the strains were hydrophilic and non-autoaggregating. Strains isolated from sugary kefir were non-coaggregating with Salmonella, while strains Lactobacillus paracasei CIDCA 83120, 83121, 83123, 83124, 8339, 83102 isolated from milk kefir were able to coaggregate after 1 h. L. paracasei CIDCA 8339 and Lactobacillus kefiri CIDCA 83102 were able to diminish Salmonella invasion to the enterocytes. An antagonistic effect on cytoskeleton disruption elicited by the pathogen was also demonstrated. Our results suggest that both strains isolated from milk kefir could be considered as appropriate probiotic candidates.

  2. Salmonella infections in Antarctic fauna and island populations of wildlife exposed to human activities in coastal areas of Australia.

    PubMed

    Iveson, J B; Shellam, G R; Bradshaw, S D; Smith, D W; Mackenzie, J S; Mofflin, R G

    2009-06-01

    Salmonella infections in Antarctic wildlife were first reported in 1970 and in a search for evidence linking isolations with exposure to human activities, a comparison was made of serovars reported from marine fauna in the Antarctic region from 1982-2004 with those from marine mammals in the Northern hemisphere. This revealed that 10 (83%) Salmonella enterica serovars isolated from Antarctic penguins and seals were classifiable in high-frequency (HF) quotients for serovars prevalent in humans and domesticated animals. In Australia, 16 (90%) HF serovars were isolated from marine birds and mammals compared with 12 (86%) HF serovars reported from marine mammals in the Northern hemisphere. In Western Australia, HF serovars from marine species were also recorded in humans, livestock, mussels, effluents and island populations of wildlife in urban coastal areas. Low-frequency S. enterica serovars were rarely detected in humans and not detected in seagulls or marine species. The isolation of S. Enteritidis phage type 4 (PT4), PT8 and PT23 strains from Adélie penguins and a diversity of HF serovars reported from marine fauna in the Antarctic region and coastal areas of Australia, signal the possibility of transient serovars and endemic Salmonella strains recycling back to humans from southern latitudes in marine foodstuffs and feed ingredients.

  3. Multistate outbreak of human Salmonella infections caused by contaminated dry dog food--United States, 2006-2007.

    PubMed

    2008-05-16

    During January 1, 2006-December 31, 2007, CDC collaborated with public health officials in Pennsylvania, other states, and the Food and Drug Administration (FDA) to investigate a prolonged multistate outbreak of Salmonella enterica serotype Schwarzengrund infections in humans. A total of 70 cases of S. Schwarzengrund infection with the outbreak strain (XbaI pulsed-field gel electrophoresis [PFGE] pattern JM6X01.0015) were identified in 19 states, mostly in the northeastern United States. This report describes the outbreak investigation, which identified the source of infection as dry dog food produced at a manufacturing plant in Pennsylvania. This investigation is the first to identify contaminated dry dog food as a source of human Salmonella infections. After handling pet foods, pet owners should wash their hands immediately, and infants should be kept away from pet feeding areas.

  4. Proteomic Investigation of the Time Course Responses of RAW 264.7 Macrophages to Infection with Salmonella enterica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Liang; Chowdhury, Saiful M.; Smallwood, Heather S.

    2009-08-01

    Macrophages plan important roles in controlling Salmonella-mediated systemic infection. To investigate the responses of macrophages to Salmonella infection, we infected RAW 264.7 macrophages with Salmonella enterica serovar Typhimurium (STM) and then performed a comparative liquid chromatography-tandem mass spectrometry [LC-MS(/MS)]-based proteomics analysis of the infected macrophages. A total of 1006 macrophage and 115 STM proteins were indentified from this study. Most of STM proteins were found at late stage of the time course of infection, consistent with the fact that STM proliferates inside RAW 264.7 macrophages. Majority of the identified macrophage proteins were house keeping-related, including cytoplasmic superoxide dismutase 1 (SOD1),more » whose peptide abundances were relatively constant during the time course of infection. Compared to those in no infection control, the peptide abundances of 244 macrophage proteins (or 24% of total indentified macrophage proteins) changed considerably after STM infection. The functions of these STM infection-affected macrophage proteins were diverse and ranged from production of antibacterial nitric oxide (i.e., inducible nitric oxide synthase or iNOS) or production of prostaglandin H2 (i.e., prostaglandin-endoperoxide synthase 2, also know as cyclooxygenase-2 or COX-2) to regulation of intracellular traffic (e.g., sorting nexin or SNX 5, 6 and 9), demonstrating a global impact of STM infection on macrophage proteome. Western-blot analysis not only confirmed the LC-MS(/MS) results of SOD1, COX-2 and iNOS, but also revealed that the protein abundances of mitochondrial SOD2 increased after STM infection, indicating an infection-induced oxidative stress in mitochondria.« less

  5. Evidence for Transfer of CMY-2 AmpC β-Lactamase Plasmids between Escherichia coli and Salmonella Isolates from Food Animals and Humans

    PubMed Central

    Winokur, P. L.; Vonstein, D. L.; Hoffman, L. J.; Uhlenhopp, E. K.; Doern, G. V.

    2001-01-01

    Escherichia coli is an important pathogen that shows increasing antimicrobial resistance in isolates from both animals and humans. Our laboratory recently described Salmonella isolates from food animals and humans that expressed an identical plasmid-mediated, AmpC-like β-lactamase, CMY-2. In the present study, 59 of 377 E. coli isolates from cattle and swine (15.6%) and 6 of 1,017 (0.6%) isolates of human E. coli from the same geographic region were resistant to both cephamycins and extended-spectrum cephalosporins. An ampC gene could be amplified with CMY-2 primers in 94.8% of animal and 33% of human isolates. Molecular epidemiological studies of chromosomal DNA revealed little clonal relatedness among the animal and human E. coli isolates harboring the CMY-2 gene. The ampC genes from 10 animal and human E. coli isolates were sequenced, and all carried an identical CMY-2 gene. Additionally, all were able to transfer a plasmid containing the CMY-2 gene to a laboratory strain of E. coli. CMY-2 plasmids demonstrated two different plasmid patterns that each showed strong similarities to previously described Salmonella CMY-2 plasmids. Additionally, Southern blot analyses using a CMY-2 probe demonstrated conserved fragments among many of the CMY-2 plasmids identified in Salmonella and E. coli isolates from food animals and humans. These data demonstrate that common plasmids have been transferred between animal-associated Salmonella and E. coli, and identical CMY-2 genes carried by similar plasmids have been identified in humans, suggesting that the CMY-2 plasmid has undergone transfer between different bacterial species and may have been transmitted between food animals and humans. PMID:11557460

  6. Efficiency of organic acid preparations for the elimination of naturally occurring Salmonella in feed material.

    PubMed

    Axmann, Sonja; Kolar, Veronika; Adler, Andreas; Strnad, Irmengard

    2017-11-01

    Salmonella can enter animal stocks via feedstuffs, thus posing not only an infection risk for animals, but also threatening to contaminate food of animal origin and finally humans. Salmonella contamination in feedstuffs is still a recurring and serious issue in animal production (especially for the poultry sector), and is regularly detected upon self-monitoring by feed companies (self-checks) and official inspections authorities. Operators within the feed chain in certain cases need to use hygienic condition enhancers, such as organic acids, to improve the quality of feed for animal nutrition, providing additional guarantees for the protection of animal and public health. The present study investigated the efficiencies of five organic acid preparations. The acid products were added to three different feed materials contaminated with Salmonella (contamination occurred by recontamination in the course of the production process) at seven different inclusion rates (1-7%) and analysed after 1, 2, and 7 days' exposure time using culture method (tenfold analysis). A reliable standard was established for defining a successful decontamination under the prevailing test conditions: 10 Salmonella-negative results out of 10 tested samples (0/10: i.e. 0 positive samples and 10 negative samples). The results demonstrated that the tested preparations showed significant differences with regard to the reduction in Salmonella contamination. At an inclusion rate of 7% of the feed materials, two out of five acid preparations showed an insufficient, very small, decontamination effect, whereas two others had a relatively large partial effect. Reliable decontamination was demonstrated only for one acid preparation, however, subject to the use of the highest acid concentration.

  7. Salmonella induces prominent gene expression in the rat colon

    PubMed Central

    Rodenburg, Wendy; Keijer, Jaap; Kramer, Evelien; Roosing, Susanne; Vink, Carolien; Katan, Martijn B; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg MJ

    2007-01-01

    Background Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point). As fructo-oligosaccharides (FOS) affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Results Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase), antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2), inflammation (e.g. calprotectin), oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2) and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9). Furthermore, Salmonella translocation increased serum IFNγ and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap), showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. Conclusion We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in mucosal gene expression

  8. Salmonella induces prominent gene expression in the rat colon.

    PubMed

    Rodenburg, Wendy; Keijer, Jaap; Kramer, Evelien; Roosing, Susanne; Vink, Carolien; Katan, Martijn B; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J

    2007-09-12

    Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point). As fructo-oligosaccharides (FOS) affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase), antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2), inflammation (e.g. calprotectin), oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2) and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9). Furthermore, Salmonella translocation increased serum IFN gamma and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap), showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in mucosal gene expression.

  9. Bayesian hierarchical model of ceftriaxone resistance proportions among Salmonella serotype Heidelberg infections.

    PubMed

    Gu, Weidong; Medalla, Felicita; Hoekstra, Robert M

    2018-02-01

    The National Antimicrobial Resistance Monitoring System (NARMS) at the Centers for Disease Control and Prevention tracks resistance among Salmonella infections. The annual number of Salmonella isolates of a particular serotype from states may be small, making direct estimation of resistance proportions unreliable. We developed a Bayesian hierarchical model to improve estimation by borrowing strength from relevant sampling units. We illustrate the models with different specifications of spatio-temporal interaction using 2004-2013 NARMS data for ceftriaxone-resistant Salmonella serotype Heidelberg. Our results show that Bayesian estimates of resistance proportions were smoother than observed values, and the difference between predicted and observed proportions was inversely related to the number of submitted isolates. The model with interaction allowed for tracking of annual changes in resistance proportions at the state level. We demonstrated that Bayesian hierarchical models provide a useful tool to examine spatio-temporal patterns of small sample size such as those found in NARMS. Published by Elsevier Ltd.

  10. Application of Scutellariae radix, Gardeniae fructus, and Probiotics to Prevent Salmonella enterica Serovar Choleraesuis Infection in Swine

    PubMed Central

    Chang, Chiung-Hung; Chen, Yueh-Sheng; Chiou, Ming-Tang; Su, Chiu-Hsian; Chen, Daniel S.; Tsai, Chin-En; Yu, Bi; Hsu, Yuan-Man

    2013-01-01

    Salmonella enterica serovar Choleraesuis, a host-adapted pathogen of swine, usually causes septicemia. Lactic acid bacteria (LAB) strains have been widely studied in recent years for their probiotic properties. In this study, a mouse infection model first screened for potential agents against infection, then a pig infection model evaluated effects of LAB strains and herbal plants against infection. Scutellariae radix (SR) and Gardeniae fructus (GF) showed abilities to reduce bacteria shedding and suppressing serum level of TNF-α induced by infection in swine. Bioactivities of SR and GF were enhanced by combining with LAB strains, which alone could speed up the bacteria elimination time in feces and boost immunity of infected pigs. Baicalein and genipin exhibited stronger cytotoxicity than baicalin and geniposide did, as well as prevent Salmonella from invading macrophages. Our study suggests LAB strains as exhibiting multiple functions: preventing infection, enhancing immunity to prepare host defenses against further infection, and adjusting intestinal microbes' enzymatic activity in order to convert herbal compounds to active compounds. The SR/GF-LAB strain mixture holds potential infection-prevention agents supplied as feed additives. PMID:23533497

  11. The effects of different enrofloxacin dosages on clinical efficacy and resistance development in chickens experimentally infected with Salmonella Typhimurium.

    PubMed

    Li, Jun; Hao, Haihong; Cheng, Guyue; Wang, Xu; Ahmed, Saeed; Shabbir, Muhammad Abu Bakr; Liu, Zhenli; Dai, Menghong; Yuan, Zonghui

    2017-09-15

    To investigate the optimal dosage which can improve clinical efficacy and minimize resistance, pharmacokinetics/pharmacodynamics model of enrofloxacin was established. Effect of enrofloxacin treatments on clearance of Salmonella in experimentally infected chickens and simultaneously resistance selection in Salmonella and coliforms were evaluated in three treatment groups (100, PK/PD designed dosage of 4, 0.1 mg/kg b.w.) and a control group. Treatment duration was three rounds of 7-day treatment alternated with 7-day withdrawal. Results showed that 100 mg/kg b.w. of enrofloxacin completely eradicated Salmonella, but resistant coliforms (4.0-60.8%) were selected from the end of the second round's withdrawal period till the end of the experiment (days 28-42). PK/PD based dosage (4 mg/kg b.w.) effectively reduced Salmonella for the first treatment duration. However upon cessation of medication, Salmonella repopulated chickens and persisted till the end with reduced susceptibility (MIC CIP  = 0.03-0.25 mg/L). Low frequency (5-9.5%) of resistant coliforms was selected (days 39-42). Enrofloxacin at dosage of 0.1 mg/kg b.w. was not able to eliminate Salmonella and selected coliforms with slight decreased susceptibility (MIC ENR  = 0.25 mg/L). In conclusion, short time treatment (7 days) of enrofloxacin at high dosage (100 mg/kg b.w.) could be effective in treating Salmonella infection while minimizing resistance selection in both Salmonella and coliforms.

  12. A study of the dynamics of Salmonella infection in turkey breeding, rearing and finishing houses with special reference to elimination, persistence and introduction of Salmonella.

    PubMed

    Mueller-Doblies, Doris; Carrique-Mas, Juan J; Davies, Robert H

    2014-01-01

    In this descriptive study, the dynamics of Salmonella infection of turkey flocks were investigated by repeated sampling of houses where Salmonella had been identified. The aim of the study was to identify the most common scenarios involved in elimination, persistence and introduction of Salmonella in the different branches of the turkey industry. Sixty-two houses on 34 turkey farms (comprising breeding, rearing and finishing farms) were sampled longitudinally, starting with the identification of a positive flock. A total of 117 follow-on flocks were tested and cleaning and disinfection (C&D) was assessed during 66 post-C&D visits. A total of 155 incidents (clearance, persistence or introduction of Salmonella) were recorded. Persistence was seen in 35.5% of incidents and was seen more frequently in breeding and rearing houses compared with finishing houses. Most persistence incidents were the result of insufficient C&D. Clearance was seen in 40% of incidents and was more often observed in finishing houses than in breeding or rearing houses. Introduction was seen in 24.5% of incidents and was more common in breeding and finishing flocks than in rearing flocks. Contamination of a house with Salmonella Typhimurium was more likely to be cleared compared with other serovars. The total number of positive samples found at a post-C&D visit was correlated with the probability of carry-over of infection, whereas the location of the positive samples seemed to be less important. Our highly sensitive post-C&D sampling method allowed us to predict a negative follow-on flock in most cases.

  13. Serotype Distribution, Antimicrobial Resistance, and Class 1 Integrons Profiles of Salmonella from Animals in Slaughterhouses in Shandong Province, China

    PubMed Central

    Zhao, Xiaonan; Ye, Chaoqun; Chang, Weishan; Sun, Shuhong

    2017-01-01

    The current study aimed to analyze the prevalence and characterization of Salmonella enterica isolated from animals in slaughterhouses before slaughter. A total of 143 non-duplicate Salmonella were recovered from 1,000 fresh fecal swabs collected from four major pig slaughterhouses (49/600, 8.2%) and four major chicken slaughterhouses (94/400, 23.5%) between March and July 2016. Among Salmonella isolates from pigs, the predominant serovars were Salmonella Rissen (28/49, 57.1%) and Typhimurium (14/49, 28.6%), and high antimicrobial resistance rates were observed for tetracycline (44/49, 89.8%) and ampicillin (16/49, 32.7%). Class 1 integrons were detected in 10.2% (5/49) of these isolates and all contained gene cassettes aadA2 (0.65 kb). Two β-lactamase genes were detected among these isolates, and most of these isolates carried blaTEM-1 (46/49), followed by blaOXA-1(4/49). Seven STs (MLST/ST, multilocus sequence typing) were detected in these isolates, and the predominant type was ST469 (19.6%). Among Salmonella isolates from chickens, the predominant serovars were Salmonella Indiana (67/94, 71.3%) and Enteritidis (23/94, 24.5%), and high antimicrobial resistance rates were observed for nalidixic acid (89/94, 94.7%), ampicillin (88/94, 93.6%) and tetracycline (81/94, 86.2%). Class 1 integrons were detected in 23 isolates (23/94, 24.5%), which contained empty integrons (0.15 kb, n = 6) or gene cassettes drfA17-aadA5 (1.7 kb, n = 6), aadA2 (1.2 kb, n = 5), drfA16-blaPSE-1-aadA2-ereA2 (1.6 kb, n = 5) or drfA1-aadA1 (1.4 kb, n = 1). Three β-lactamase genes were detected, and all 94 isolates carried blaTEM-1, followed by blaCTX-M-55 (n = 19) and blaSPE−1 (n = 3). Five STs were found in these isolates, and the predominant type was ST17 (71.3%). Our findings indicated that Salmonella was widespread in animals at slaughter and may be transmitted from animal to fork. PMID:28680418

  14. Salmonella typhimurium infections associated with peanut products.

    PubMed

    Cavallaro, Elizabeth; Date, Kashmira; Medus, Carlota; Meyer, Stephanie; Miller, Benjamin; Kim, Clara; Nowicki, Scott; Cosgrove, Shaun; Sweat, David; Phan, Quyen; Flint, James; Daly, Elizabeth R; Adams, Jennifer; Hyytia-Trees, Eija; Gerner-Smidt, Peter; Hoekstra, Robert M; Schwensohn, Colin; Langer, Adam; Sodha, Samir V; Rogers, Michael C; Angulo, Frederick J; Tauxe, Robert V; Williams, Ian T; Behravesh, Casey Barton

    2011-08-18

    Contaminated food ingredients can affect multiple products, each distributed through various channels and consumed in multiple settings. Beginning in November 2008, we investigated a nationwide outbreak of salmonella infections. A case was defined as laboratory-confirmed infection with the outbreak strain of Salmonella Typhimurium occurring between September 1, 2008, and April 20, 2009. We conducted two case-control studies, product "trace-back," and environmental investigations. Among 714 case patients identified in 46 states, 166 (23%) were hospitalized and 9 (1%) died. In study 1, illness was associated with eating any peanut butter (matched odds ratio, 2.5; 95% confidence interval [CI], 1.3 to 5.3), peanut butter-containing products (matched odds ratio, 2.2; 95% CI, 1.1 to 4.7), and frozen chicken products (matched odds ratio, 4.6; 95% CI, 1.7 to 14.7). Investigations of focal clusters and single cases associated with nine institutions identified a single institutional brand of peanut butter (here called brand X) distributed to all facilities. In study 2, illness was associated with eating peanut butter outside the home (matched odds ratio, 3.9; 95% CI, 1.6 to 10.0) and two brands of peanut butter crackers (brand A: matched odds ratio, 17.2; 95% CI, 6.9 to 51.5; brand B: matched odds ratio, 3.6; 95% CI, 1.3 to 9.8). Both cracker brands were made from brand X peanut paste. The outbreak strain was isolated from brand X peanut butter, brand A crackers, and 15 other products. A total of 3918 peanut butter-containing products were recalled between January 10 and April 29, 2009. Contaminated peanut butter and peanut products caused a nationwide salmonellosis outbreak. Ingredient-driven outbreaks are challenging to detect and may lead to widespread contamination of numerous food products.

  15. Salmonella Persistence in Tomatoes Requires a Distinct Set of Metabolic Functions Identified by Transposon Insertion Sequencing.

    PubMed

    de Moraes, Marcos H; Desai, Prerak; Porwollik, Steffen; Canals, Rocio; Perez, Daniel R; Chu, Weiping; McClelland, Michael; Teplitski, Max

    2017-03-01

    Human enteric pathogens, such as Salmonella spp. and verotoxigenic Escherichia coli , are increasingly recognized as causes of gastroenteritis outbreaks associated with the consumption of fruits and vegetables. Persistence in plants represents an important part of the life cycle of these pathogens. The identification of the full complement of Salmonella genes involved in the colonization of the model plant (tomato) was carried out using transposon insertion sequencing analysis. With this approach, 230,000 transposon insertions were screened in tomato pericarps to identify loci with reduction in fitness, followed by validation of the screen results using competition assays of the isogenic mutants against the wild type. A comparison with studies in animals revealed a distinct plant-associated set of genes, which only partially overlaps with the genes required to elicit disease in animals. De novo biosynthesis of amino acids was critical to persistence within tomatoes, while amino acid scavenging was prevalent in animal infections. Fitness reduction of the Salmonella amino acid synthesis mutants was generally more severe in the tomato rin mutant, which hyperaccumulates certain amino acids, suggesting that these nutrients remain unavailable to Salmonella spp. within plants. Salmonella lipopolysaccharide (LPS) was required for persistence in both animals and plants, exemplifying some shared pathogenesis-related mechanisms in animal and plant hosts. Similarly to phytopathogens, Salmonella spp. required biosynthesis of amino acids, LPS, and nucleotides to colonize tomatoes. Overall, however, it appears that while Salmonella shares some strategies with phytopathogens and taps into its animal virulence-related functions, colonization of tomatoes represents a distinct strategy, highlighting this pathogen's flexible metabolism. IMPORTANCE Outbreaks of gastroenteritis caused by human pathogens have been increasingly associated with foods of plant origin, with tomatoes being

  16. Salmonella Persistence in Tomatoes Requires a Distinct Set of Metabolic Functions Identified by Transposon Insertion Sequencing

    PubMed Central

    Desai, Prerak; Porwollik, Steffen; Canals, Rocio; Perez, Daniel R.; Chu, Weiping; McClelland, Michael; Teplitski, Max

    2016-01-01

    ABSTRACT Human enteric pathogens, such as Salmonella spp. and verotoxigenic Escherichia coli, are increasingly recognized as causes of gastroenteritis outbreaks associated with the consumption of fruits and vegetables. Persistence in plants represents an important part of the life cycle of these pathogens. The identification of the full complement of Salmonella genes involved in the colonization of the model plant (tomato) was carried out using transposon insertion sequencing analysis. With this approach, 230,000 transposon insertions were screened in tomato pericarps to identify loci with reduction in fitness, followed by validation of the screen results using competition assays of the isogenic mutants against the wild type. A comparison with studies in animals revealed a distinct plant-associated set of genes, which only partially overlaps with the genes required to elicit disease in animals. De novo biosynthesis of amino acids was critical to persistence within tomatoes, while amino acid scavenging was prevalent in animal infections. Fitness reduction of the Salmonella amino acid synthesis mutants was generally more severe in the tomato rin mutant, which hyperaccumulates certain amino acids, suggesting that these nutrients remain unavailable to Salmonella spp. within plants. Salmonella lipopolysaccharide (LPS) was required for persistence in both animals and plants, exemplifying some shared pathogenesis-related mechanisms in animal and plant hosts. Similarly to phytopathogens, Salmonella spp. required biosynthesis of amino acids, LPS, and nucleotides to colonize tomatoes. Overall, however, it appears that while Salmonella shares some strategies with phytopathogens and taps into its animal virulence-related functions, colonization of tomatoes represents a distinct strategy, highlighting this pathogen's flexible metabolism. IMPORTANCE Outbreaks of gastroenteritis caused by human pathogens have been increasingly associated with foods of plant origin, with tomatoes

  17. Colonization of internal organs by Salmonella serovars Heidelberg and Typhimurium in experimentally infected laying hens housed in enriched colony cages at different stocking densities

    USDA-ARS?s Scientific Manuscript database

    Contaminated eggs produced by infected commercial laying flocks are often implicated as sources of human infections with Salmonella Enteritidis, but Salmonella serovars Heidelberg and Typhimurium have also been significantly associated with egg-transmitted illness. Contamination of the edible conten...

  18. In vitro evaluation of anti-infective activity of a Lactobacillus plantarum strain against Salmonella enterica serovar Enteritidis

    PubMed Central

    2013-01-01

    Background Salmonella enterica serovar Enteritidis infections are known to exhibit worldwide prevalence with increased morbidity and mortality. The conventional strategies like antibiotic therapy and vaccination have not only proved to be of sub-optimal efficacy but also led to the development of multidrug resistant strains of Salmonella. Antimicrobial activities of probiotics against various enteropathogens and other health promoting effects have assumed greater significance in recent years. The present study aims to evaluate the efficacy of a Lactobacillus plantarum strain (KSBT 56, isolated from a traditional food product of India), in preventing Salmonella enterica serovar Enteritidis growth and pathogenicity in vitro. Methods and results The cell free culture supernatant (CFCS) of KSBT 56 strain notably inhibited the growth of Salmonella Enteritidis without affecting the growth of other gram-positive lactic acid bacteria. The isolated KSBT 56 strain produces lactic acid similar to other standard probiotic strains like Lactobacillus plantarum MTCC 1407. The free radical production by KSBT 56 strain was studied by using sodC mutant of S. Enteritidis, which exhibited reduced growth in the presence of CFCS of the KSBT 56 strain, indicating the inhibitory activity of free radicals on the growth of S. Enteritidis. Our results also showed a significant reduction in the biofilm forming ability of Salmonella Enteritidis in the presence of the KSBT 56 strain (2 log cfu/ml, p = 0.01). Further, the anti-infective characteristics of KSBT 56 strain was validated by gentamicin protection assay which revealed 80% reduction in the invasion of Salmonella Enteritidis to HCT-116 cell line (Salmonella Enteritidis and KSBT 56 in a 1:1 ratio) and delayed addition of Salmonella Enteritidis by 1 h. Similarly, the reduced adhesion of Salmonella to the HCT-116 cells was observed along with the down regulation of hilA gene of Salmonella Pathogenicity Island 1 (SPI1) indicating that they

  19. Characterization of extended-spectrum cephalosporin resistant Salmonella enterica serovar Heidelberg isolated from food animals, retail meat, and humans in the United States 2009

    PubMed Central

    Folster, J. P.; Pecic, G.; Singh, A.; Duval, B.; Rickert, R.; Ayers, S.; Abbott, J.; McGlinchey, B.; Bauer-Turpin, J.; Haro, J.; Hise, K.; Zhao, S.; Fedorka-Cray, P. J.; Whichard, J.; McDermott, P. F.

    2015-01-01

    Salmonella enterica is one of the most common causes of foodborne illness in the United States. Although salmonellosis is usually self-limiting, severe infections typically require antimicrobial treatment and ceftriaxone, an extended-spectrum cephalosporin, is commonly used in both adults and children. Surveillance conducted by the National Antimicrobial Resistance Monitoring System (NARMS) has shown a recent increase in extended-spectrum cephalosporin (ESC) resistance among Salmonella Heidelberg isolated from food animals at slaughter, retail meat, and humans. ESC resistance among Salmonella in the United States is usually mediated by a plasmid-encoded blaCMY β-lactamase. In 2009, we identified 47 ESC resistant blaCMY-positive Heidelberg isolates from humans (n=18), food animals at slaughter (n=16), and retail meats (n=13) associated with a spike in the prevalence of this serovar. Almost 90% (26/29) of the animal and meat isolates were isolated from chicken carcasses or retail chicken meat. We screened NARMS isolates for the presence of blaCMY, determined whether the gene was plasmid-encoded, examined pulsed-field gel electrophoresis patterns to assess the genetic diversities of the isolates, and categorized the blaCMY plasmids by plasmid incompatibility groups and plasmid multi-locus sequence typing. All 47 blaCMY genes were found to be plasmid encoded. Incompatibility/replicon typing demonstrated that 41 were IncI1 plasmids, 40 of which only conferred blaCMY associated resistance. Six were IncA/C plasmids that carried additional resistance genes. Plasmid multi-locus sequence typing (pMLST) of the IncI1-blaCMY plasmids showed that 27 (65.8%) were sequence type (ST) 12, the most common ST among blaCMY-IncI1 plasmids from Heidelberg isolated from humans. Ten plasmids had a new ST profile, ST66, a type very similar to ST12. This work showed that the 2009 increase in ESC resistance among Salmonella Heidelberg was caused mainly by the dissemination of blaCMY on IncI1

  20. Colonization of internal organs by Salmonella serovars Heidelberg and Typhimurium in experimentally infected laying hens housed in enriched colony cages at different stocking densities

    USDA-ARS?s Scientific Manuscript database

    Contaminated eggs produced by infected commercial laying flocks are often implicated as sources of human infections with Salmonella Enteritidis, but Salmonella serovars Heidelberg and Typhimurium have also been associated with egg-transmitted illness. Contamination of the edible contents of eggs is ...

  1. Invasive Salmonella enterica Serotype Typhimurium Infections, Democratic Republic of the Congo, 2007–2011

    PubMed Central

    Ley, Benedikt; Le Hello, Simon; Lunguya, Octavie; Lejon, Veerle; Muyembe, Jean-Jacques; Jacobs, Jan

    2014-01-01

    Infection with Salmonella enterica serotype Typhimurium sequence type (ST) 313 is associated with high rates of drug resistance, bloodstream infections, and death. To determine whether ST313 is dominant in the Democratic Republic of the Congo, we studied 180 isolates collected during 2007–2011; 96% belonged to CRISPOL type CT28, which is associated with ST313. PMID:24655438

  2. Tiny Turtles Purchased at Pet Stores are a Potential High Risk for Salmonella Human Infection in the Valencian Region, Eastern Spain.

    PubMed

    Marin, Clara; Vega, Santiago; Marco-Jiménez, Francisco

    2016-07-01

    Turtles may be considered unsafe pets, particularly in households with children. This study aimed to assess Salmonella carriage by turtles in pet stores and in private ownership to inform the public of the potential health risk, enabling informed choices around pet selection. During the period between September and October 2013, 24 pet stores and 96 private owners were sampled in the Valencian Region (Eastern Spain). Salmonella identification procedure was based on ISO 6579: 2002 recommendations (Annex D). Salmonella strains were serotyped in accordance with Kauffman-White-Le-Minor technique. The rate of isolation of Salmonella was very high from pet store samples (75.0% ± 8.8%) and moderate for private owners (29.0% ± 4.6%). Serotyping revealed 18 different serotypes among two Salmonella enterica subspecies: S. enterica subsp. enterica and S. enterica subsp. diarizonae. Most frequently isolated serotypes were Salmonella Typhimurium (39.5%, 17/43) and Salmonella Pomona (9.3%, 4/43). Serotypes identified have previously been reported in turtles, and child Salmonella infections associate with pet turtle exposure. The present study clearly demonstrates that turtles in pet stores, as well as in private owners, could be a direct or indirect source of a high risk of human Salmonella infections. In addition, pet stores should advise their customers of the potential risks associated with reptile ownership.

  3. Intermittent fasting promotes bacterial clearance and intestinal IgA production in Salmonella typhimurium-infected mice.

    PubMed

    Godínez-Victoria, M; Campos-Rodriguez, R; Rivera-Aguilar, V; Lara-Padilla, E; Pacheco-Yepez, J; Jarillo-Luna, R A; Drago-Serrano, M E

    2014-05-01

    The impact of intermittent fasting versus ad libitum feeding during Salmonella typhimurium infection was evaluated in terms of duodenum IgA levels, bacterial clearance and intestinal and extra-intestinal infection susceptibility. Mice that were intermittently fasted for 12 weeks or fed ad libitum were infected with S. typhimurium and assessed at 7 and 14 days post-infection. Next, we evaluated bacterial load in the faeces, Peyer's patches, spleen and liver by plate counting, as well as total and specific intestinal IgA and plasmatic corticosterone levels (by immunoenzymatic assay) and lamina propria IgA levels in plasma cells (by cytofluorometry). Polymeric immunoglobulin receptor, α- and J-chains, Pax-5 factor, pro-inflammatory cytokine (tumour necrosis factor-α and interferon-γ) and anti-inflammatory cytokine (transforming growth factor-β) mRNA levels were assessed in mucosal and liver samples (by real-time PCR). Compared with the infected ad libitum mice, the intermittently fasted infected animals had (1) lower intestinal and systemic bacterial loads; (2) higher SIgA and IgA plasma cell levels; (3) higher mRNA expression of most intestinal parameters; and (4) increased or decreased corticosterone levels on day 7 and 14 post-infection, respectively. No contribution of liver IgA was observed at the intestinal level. Apparently, the changes following metabolic stress induced by intermittent fasting during food deprivation days increased the resistance to S. typhimurium infection by triggering intestinal IgA production and presumably, pathogen elimination by phagocytic inflammatory cells. © 2014 John Wiley & Sons Ltd.

  4. Studies on the therapeutic effect of propolis along with standard antibacterial drug in Salmonella enterica serovar Typhimurium infected BALB/c mice.

    PubMed

    Kalia, Preeti; Kumar, Neelima R; Harjai, Kusum

    2016-11-25

    Antibiotic resistance is an emerging public health problem. Centers for Disease Control and Prevention (CDC) has described antibiotic resistance as one of the world's most pressing health problems in 21 st century. WHO rated antibiotic resistance as "one of the three greatest threats to human health". One important strategy employed to overcome this resistance is the use of combination of drugs. Many plants, natural extracts have been shown to exhibit synergistic response with standard drugs against microorganisms. The present study focused on the antibacterial potential of propolis in combination with the standard antibiotic Cefixime against the typhoid causing bacteria i.e. Salmonella. Ethanolic extract of propolis was taken for the present work. For the experiment BALB/c mice were taken as animal model and divided into ten groups. Along with normal and infected control groups, four different combinations of cefixime and propolis were used. Biochemical, hematological and histopathological indices were studied by following the standard protocols. In BALB/c mice, Salmonella causes severe biochemical, hematological and histopathological alterations by 5 th day of infection. Ethanolic extract of propolis at a dose of 300 mg/kg body weight of mice when used alone to treat Salmonella infection in mice gave significant results by 30 th day of treatment. Similarly, when cefixime (4 mg/kg body weight of mice) was used to treat infection in mice, significant results as compared to infected control were observed after 5 th day. But when propolis and cefixime were used together in different concentrations in combination therapy, evident results were observed after 5 days of treatment. The levels of various liver and kidney function enzymes, blood indices and the histopathology of liver, spleen and kidney were restored to near normal after 5 days of treatment and at much lower doses as compared to the effective dose when used alone. The study confirmed that significant

  5. Gene Expression Profiles of Chicken Embryo Fibroblasts in Response to Salmonella Enteritidis Infection.

    PubMed

    Szmolka, Ama; Wiener, Zoltán; Matulova, Marta Elsheimer; Varmuzova, Karolina; Rychlik, Ivan

    2015-01-01

    The response of chicken to non-typhoidal Salmonella infection is becoming well characterised but the role of particular cell types in this response is still far from being understood. Therefore, in this study we characterised the response of chicken embryo fibroblasts (CEFs) to infection with two different S. Enteritidis strains by microarray analysis. The expression of chicken genes identified as significantly up- or down-regulated (≥3-fold) by microarray analysis was verified by real-time PCR followed by functional classification of the genes and prediction of interactions between the proteins using Gene Ontology and STRING Database. Finally the expression of the newly identified genes was tested in HD11 macrophages and in vivo in chickens. Altogether 19 genes were induced in CEFs after S. Enteritidis infection. Twelve of them were also induced in HD11 macrophages and thirteen in the caecum of orally infected chickens. The majority of these genes were assigned different functions in the immune response, however five of them (LOC101750351, K123, BU460569, MOBKL2C and G0S2) have not been associated with the response of chicken to Salmonella infection so far. K123 and G0S2 were the only 'non-immune' genes inducible by S. Enteritidis in fibroblasts, HD11 macrophages and in the caecum after oral infection. The function of K123 is unknown but G0S2 is involved in lipid metabolism and in β-oxidation of fatty acids in mitochondria.

  6. 9 CFR 113.30 - Detection of Salmonella contamination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Detection of Salmonella contamination... REQUIREMENTS Standard Procedures § 113.30 Detection of Salmonella contamination. The test for detection of Salmonella contamination provided in this section shall be conducted when such a test is prescribed in an...

  7. 9 CFR 113.30 - Detection of Salmonella contamination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Detection of Salmonella contamination... REQUIREMENTS Standard Procedures § 113.30 Detection of Salmonella contamination. The test for detection of Salmonella contamination provided in this section shall be conducted when such a test is prescribed in an...

  8. Prevalence of Shiga toxin-producing Escherichia coli, Salmonella spp. and Campylobacter spp. in large game animals intended for consumption: relationship with management practices and livestock influence.

    PubMed

    Díaz-Sánchez, S; Sánchez, S; Herrera-León, S; Porrero, C; Blanco, J; Dahbi, G; Blanco, J E; Mora, A; Mateo, R; Hanning, I; Vidal, D

    2013-05-03

    Although wild ruminants have been identified as reservoirs of Shiga-toxin producing Escherichia coli (STEC), little information is available concerning the role of Salmonella spp. and Campylobacter spp. in large game species. We evaluated the presence of these pathogens in faeces (N=574) and carcasses (N=585) sampled from red deer (N=295), wild boar (N=333) and other ungulates (fallow deer, mouflon) (N=9). Animal sampling was done in situ from 33 hunting estates during two hunting seasons. Salmonella spp. and Campylobacter spp. strains associated with human campylobacteriosis were infrequently detected indicating that both pathogens had a limited zoonotic risk in our study area. The overall STEC prevalence in animals was 21% (134/637), being significantly higher in faeces from red deer (90 out of 264). A total of 58 isolates were serotyped. Serotypes O146:H- and O27:H30 were the most frequent in red deer and the majority of isolates from red deer and wild boar were from serotypes previously found in STEC strains associated with human infection, including the serotype O157:H7. The STEC prevalence in red deer faeces was significantly higher with the presence of livestock (p<0, 01) where high densities of red deer (p<0.001) were present. To the best of our knowledge, this is the first study reporting the occurrence of Salmonella spp. and STEC in carcasses of large game animals. Furthermore, this study confirmed by pulsed-field gel electrophoresis (PFGE) that cross contamination of STEC during carcass dressing occurred, implying the likelihood of these pathogens entering into the food chain. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Diversification of the Salmonella Fimbriae: A Model of Macro- and Microevolution

    PubMed Central

    Yue, Min; Rankin, Shelley C.; Blanchet, Ryan T.; Nulton, James D.; Edwards, Robert A.; Schifferli, Dieter M.

    2012-01-01

    Bacteria of the genus Salmonella comprise a large and evolutionary related population of zoonotic pathogens that can infect mammals, including humans and domestic animals, birds, reptiles and amphibians. Salmonella carries a plethora of virulence genes, including fimbrial adhesins, some of them known to participate in mammalian or avian host colonization. Each type of fimbria has its structural subunit and biogenesis genes encoded by one fimbrial gene cluster (FGC). The accumulation of new genomic information offered a timely opportunity to better evaluate the number and types of FGCs in the Salmonella pangenome, to test the use of current classifications based on phylogeny, and to infer potential correlations between FGC evolution in various Salmonella serovars and host niches. This study focused on the FGCs of the currently deciphered 90 genomes and 60 plasmids of Salmonella. The analysis highlighted a fimbriome consisting of 35 different FGCs, of which 16 were new, each strain carrying between 5 and 14 FGCs. The Salmonella fimbriome was extremely diverse with FGC representatives in 8 out of 9 previously categorized fimbrial clades and subclades. Phylogenetic analysis of Salmonella suggested macroevolutionary shifts detectable by extensive FGC deletion and acquisition. In addition, microevolutionary drifts were best depicted by the high level of allelic variation in predicted or known adhesins, such as the type 1 fimbrial adhesin FimH for which 67 different natural alleles were identified in S. enterica subsp. I. Together with strain-specific collections of FGCs, allelic variation among adhesins attested to the pathoadaptive evolution of Salmonella towards specific hosts and tissues, potentially modulating host range, strain virulence, disease progression, and transmission efficiency. Further understanding of how each Salmonella strain utilizes its panel of FGCs and specific adhesin alleles for survival and infection will support the development of new approaches

  10. Non-Hematopoietic MLKL Protects Against Salmonella Mucosal Infection by Enhancing Inflammasome Activation.

    PubMed

    Yu, Shui-Xing; Chen, Wei; Liu, Zhen-Zhen; Zhou, Feng-Hua; Yan, Shi-Qing; Hu, Gui-Qiu; Qin, Xiao-Xia; Zhang, Jie; Ma, Ke; Du, Chong-Tao; Gu, Jing-Min; Deng, Xu-Ming; Han, Wen-Yu; Yang, Yong-Jun

    2018-01-01

    The intestinal mucosal barrier is critical for host defense against pathogens infection. Here, we demonstrate that the mixed lineage kinase-like protein (MLKL), a necroptosis effector, promotes intestinal epithelial barrier function by enhancing inflammasome activation. MLKL -/- mice were more susceptible to Salmonella infection compared with wild-type counterparts, with higher mortality rates, increased body weight loss, exacerbated intestinal inflammation, more bacterial colonization, and severe epithelial barrier disruption. MLKL deficiency promoted early epithelial colonization of Salmonella prior to developing apparent intestinal pathology. Active MLKL was predominantly expressed in crypt epithelial cells, and experiments using bone marrow chimeras found that the protective effects of MLKL were dependent on its expression in non-hematopoietic cells. Intestinal mucosa of MLKL -/- mice had impaired caspase-1 and gasdermin D cleavages and decreased interleukin (IL)-18 release. Moreover, administration of exogenous recombinant IL-18 rescued the phenotype of increased bacterial colonization in MLKL -/- mice. Thus, our results uncover the role of MLKL in enhancing inflammasome activation in intestinal epithelial cells to inhibit early bacterial colonization.

  11. Non-Hematopoietic MLKL Protects Against Salmonella Mucosal Infection by Enhancing Inflammasome Activation

    PubMed Central

    Yu, Shui-Xing; Chen, Wei; Liu, Zhen-Zhen; Zhou, Feng-Hua; Yan, Shi-Qing; Hu, Gui-Qiu; Qin, Xiao-Xia; Zhang, Jie; Ma, Ke; Du, Chong-Tao; Gu, Jing-Min; Deng, Xu-Ming; Han, Wen-Yu; Yang, Yong-Jun

    2018-01-01

    The intestinal mucosal barrier is critical for host defense against pathogens infection. Here, we demonstrate that the mixed lineage kinase-like protein (MLKL), a necroptosis effector, promotes intestinal epithelial barrier function by enhancing inflammasome activation. MLKL−/− mice were more susceptible to Salmonella infection compared with wild-type counterparts, with higher mortality rates, increased body weight loss, exacerbated intestinal inflammation, more bacterial colonization, and severe epithelial barrier disruption. MLKL deficiency promoted early epithelial colonization of Salmonella prior to developing apparent intestinal pathology. Active MLKL was predominantly expressed in crypt epithelial cells, and experiments using bone marrow chimeras found that the protective effects of MLKL were dependent on its expression in non-hematopoietic cells. Intestinal mucosa of MLKL−/− mice had impaired caspase-1 and gasdermin D cleavages and decreased interleukin (IL)-18 release. Moreover, administration of exogenous recombinant IL-18 rescued the phenotype of increased bacterial colonization in MLKL−/− mice. Thus, our results uncover the role of MLKL in enhancing inflammasome activation in intestinal epithelial cells to inhibit early bacterial colonization. PMID:29456533

  12. Prophylactic administration of vector-encoded porcine granulocyte-colony stimulating factor reduces Salmonella shedding,tonsil colonization,& microbiota alterations of the gastrointestinal tract in Salmonella-challenged swine

    USDA-ARS?s Scientific Manuscript database

    Salmonella colonization of food animals is a concern for animal health and public health as a food safety risk. Various obstacles impede the effort to reduce asymptomatic Salmonella carriage in food animals, including the existence of numerous serovars and the ubiquitous nature of Salmonella. To d...

  13. Identification of Plasmid-Mediated Quinolone Resistance in Salmonella Isolated from Swine Ceca and Retail Pork Chops in the United States.

    PubMed

    Tyson, Gregory H; Tate, Heather P; Zhao, Shaohua; Li, Cong; Dessai, Uday; Simmons, Mustafa; McDermott, Patrick F

    2017-10-01

    Fluoroquinolones are important antimicrobial drugs used to treat human Salmonella infections, and resistance is rare in the United States for isolates from human and animal sources. Recently, a number of Salmonella isolates from swine cecal contents and retail pork products from National Antimicrobial Resistance Monitoring System (NARMS) surveillance exhibited decreased susceptibility to ciprofloxacin. We identified two qnrB19 quinolone resistance plasmids that are predominantly responsible for this phenomenon and found them distributed among several Salmonella serotypes isolated throughout the United States.

  14. Analysis of antimicrobial resistance genes detected in multidrug-resistant Salmonella enterica serovar Typhimurium isolated from food animals.

    PubMed

    Glenn, LaShanda M; Lindsey, Rebecca L; Frank, Joseph F; Meinersmann, Richard J; Englen, Mark D; Fedorka-Cray, Paula J; Frye, Jonathan G

    2011-09-01

    Multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium is the most prevalent penta-resistant serovar isolated from animals by the U.S. National Antimicrobial Resistance Monitoring System. Penta-resistant isolates are often resistant to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline. To investigate MDR in Salmonella Typhimurium (including variant 5-), one isolate each from cattle, poultry, and swine with at least the ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline phenotype were selected for each year from 1997 to 2007 (n = 33) for microarray analysis of antimicrobial resistance, incompatibility IncA/C, and HI1 plasmid genes. Cluster analysis based on these data separated 31 of the isolates into two groups A and B (15 and 16 isolates, respectively). Isolates in group A were phage type DT104 or U302 and were mostly swine isolates (7/15). Genes detected included intI1, bla(PSE-1), floR, aadA, sulI, tet(G), and tetR, which are often found in Salmonella Genomic Island I. Isolates in group B had numerous IncA/C plasmid genes detected and were mostly cattle isolates (9/16). Genes detected included bla(CMY-2), floR, aac(3), aadA, aphA1, strA, strB, sulI, sulII, dfrA, dhf, tet(A)(B)(C)(D), and tetR, which are often found on MDR-AmpC IncA/C plasmids. The IncA/C replicon was also detected in all group B isolates. The two remaining isolates did not cluster with any others and both had many HI1 plasmid genes detected. Linkage disequilibrium analysis detected significant associations between plasmid replicon type, phage type, and animal source. These data suggest that MDR in Salmonella Typhimurium is associated with DT104/Salmonella Genomic Island I or IncA/C MDR-AmpC encoding plasmids and these genetic elements have persisted throughout the study period.

  15. Integrated Food Chain Surveillance System for Salmonella spp. in Mexico1

    PubMed Central

    Calva, Juan Jose; Estrada-Garcia, Maria Teresa; Leon, Veronica; Vazquez, Gabriela; Figueroa, Gloria; Lopez, Estela; Contreras, Jesus; Abbott, Jason; Zhao, Shaohua; McDermott, Patrick; Tollefson, Linda

    2008-01-01

    Few developing countries have foodborne pathogen surveillance systems, and none of these integrates data from humans, food, and animals. We describe the implementation of a 4-state, integrated food chain surveillance system (IFCS) for Salmonella spp. in Mexico. Significant findings were 1) high rates of meat contamination (21.3%–36.4%), 2) high rates of ceftriaxone-resistant S. Typhimurium in chicken, ill humans, and swine (77.3%, 66.3%, and 40.4% of S. Typhimurium T isolates, respectively), and 3) the emergence of ciprofloxacin resistance in S. Heidelberg (10.4%) and S. Typhimurium (1.7%) from swine. A strong association between Salmonella spp. contamination in beef and asymptomatic Salmonella spp. infection was only observed in the state with the lowest poverty level (Pearson r = 0.91, p<0.001). Pulsed-field gel electrophoresis analysis of 311 S. Typhimurium isolates showed 14 clusters with 102 human, retail meat, and food-animal isolates with indistinguishable patterns. An IFCS is technically and economically feasible in developing countries and can effectively identify major public health priorities. PMID:18325258

  16. Curcuma and Scutellaria plant extracts protect chickens against inflammation and Salmonella Enteritidis infection.

    PubMed

    Varmuzova, Karolina; Matulova, Marta Elsheimer; Gerzova, Lenka; Cejkova, Darina; Gardan-Salmon, Delphine; Panhéleux, Marina; Robert, Fabrice; Sisak, Frantisek; Havlickova, Hana; Rychlik, Ivan

    2015-09-01

    After a ban on the use of antibiotics as growth promoters in farm animals in the European Union in 2006, an interest in alternative products with antibacterial or anti-inflammatory properties has increased. In this study, we therefore tested the effects of extracts from Curcuma longa and Scutellaria baicalensis used as feed additives against cecal inflammation induced by heat stress or Salmonella Enteritidis (S. Enteritidis) infection in chickens. Curcuma extract alone was not enough to decrease gut inflammation induced by heat stress. However, a mixture of Curcuma and Scutellaria extracts used as feed additives decreased gut inflammation induced by heat or S. Enteritidis, decreased S. Enteritidis counts in the cecum but was of no negative effect on BW or humoral immune response. Using next-generation sequencing of 16S rRNA we found out that supplementation of feed with the 2 plant extracts had no effect on microbiota diversity. However, if the plant extract supplementation was provided to the chickens infected with S. Enteritidis, Faecalibacterium, and Lactobacillus, both bacterial genera with known positive effects on gut health were positively selected. The supplementation of chicken feed with extracts from Curcuma and Scutelleria thus may be used in poultry production to effectively decrease gut inflammation and increase chicken performance. © 2015 Poultry Science Association Inc.

  17. Investigation of an outbreak of Salmonella enterica serovar Newport infection.

    PubMed

    Irvine, W N; Gillespie, I A; Smyth, F B; Rooney, P J; McClenaghan, A; Devine, M J; Tohani, V K

    2009-10-01

    A large outbreak of Salmonella enterica serotype Newport infection occurred in Northern Ireland during September and October 2004. Typing of isolates from patients confirmed that this strain was indistinguishable from that in concurrent outbreaks in regions of England, in Scotland and in the Isle of Man. A total of 130 cases were distributed unequally across local government district areas in Northern Ireland. The epidemic curve suggested a continued exposure over about 4 weeks. A matched case-control study of 23 cases and 39 controls found a statistically significant association with a history of having eaten lettuce in a meal outside the home and being a case (odds ratio 23.7, 95% confidence interval 1.4-404.3). This exposure was reported by 57% of cases. Although over 300 food samples were tested, none yielded any Salmonella spp. Complexity and limited traceability in salad vegetable distribution hindered further investigation of the ultimate source of the outbreak.

  18. Significance of the Bacteriophage Treatment Schedule in Reducing Salmonella Colonization of Poultry

    PubMed Central

    Bardina, Carlota; Spricigo, Denis A.; Cortés, Pilar

    2012-01-01

    Salmonella remains the major cause of food-borne diseases worldwide, with chickens known to be the main reservoir for this zoonotic pathogen. Among the many approaches to reducing Salmonella colonization of broilers, bacteriophage offers several advantages. In this study, three bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87) obtained from our collection that exhibited a broad host range against Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium were characterized with respect to morphology, genome size, and restriction patterns. A cocktail composed of the three bacteriophages was more effective in promoting the lysis of S. Enteritidis and S. Typhimurium cultures than any of the three bacteriophages alone. In addition, the cocktail was able to lyse the Salmonella enterica serovars Virchow, Hadar, and Infantis. The effectiveness of the bacteriophage cocktail in reducing the concentration of S. Typhimurium was tested in two animal models using different treatment schedules. In the mouse model, 50% survival was obtained when the cocktail was administered simultaneously with bacterial infection and again at 6, 24, and 30 h postinfection. Likewise, in the White Leghorn chicken specific-pathogen-free (SPF) model, the best results, defined as a reduction of Salmonella concentration in the chicken cecum, were obtained when the bacteriophage cocktail was administered 1 day before or just after bacterial infection and then again on different days postinfection. Our results show that frequent treatment of the chickens with bacteriophage, and especially prior to colonization of the intestinal tract by Salmonella, is required to achieve effective bacterial reduction over time. PMID:22773654

  19. Prevalence of Trichomonas, Salmonella, and Listeria in Wild Birds from Southeast Texas.

    PubMed

    Brobey, Britni; Kucknoor, Ashwini; Armacost, Jim

    2017-09-01

    Infectious diseases can be a major threat to wildlife populations, especially in human-modified habitats, but infection rates in populations of wild animals are often poorly studied. Trichomonas, Salmonella, and Listeria are all pathogens known to infect birds, but their infection rates in wild bird populations are not well documented. This study documents infection rates of the three pathogens in wild bird populations inhabiting a suburban to rural gradient in Southeast Texas. Various species of wild birds were sampled at five sites in Southeastern Texas representing rural (<1 house per ha), exurban (approximately 1 house per ha), and suburban (approximately 10 houses per ha) habitat types. Birds were captured in mist nets and samples were taken from the oral cavity, crop, and vent to detect the presence of pathogens. Samples were screened for Trichomonas by examining wet mounts under a light microscope, whereas samples were screened for Salmonella and Listeria by examining colonies grown on agar plates. Pathogens detected during the initial screening were further confirmed by PCR and DNA sequencing. Infection rates for Trichomonas, Salmonella, and Listeria were 9%, 17%, and 5%, respectively. The distributions of infection rates across habitats (i.e., rural, exurban, rural) did not differ significantly from the expected null distributions for any of the three pathogens; however, the data suggested some interesting patterns that should be confirmed with a larger dataset. Infection rates for Trichomonas and Salmonella were highest at the suburban sites, whereas the infection rate for Listeria was highest at the rural site. Feeder birds were more likely to be infected by all three pathogens than non-feeder birds. Small sample sizes prevent definitive conclusions regarding variation in infection rates along the suburban to rural gradient, but the results suggest that pathogens followed the predicted patterns. For many of the bird species sampled, this study presents

  20. Cytokine activation during embryonic development and in hen ovary and vagina during reproductive age and Salmonella infection.

    PubMed

    Anastasiadou, M; Michailidis, G

    2016-12-01

    Salmonellosis is one of the most important zoonotic diseases and is usually associated with consumption of Salmonella Enteritidis (SE) contaminated poultry meat or eggs. Contamination with SE is usually the result of infection of the digestive tract, or reproductive organs, especially the ovary and vagina. Thus, knowledge of endogenous innate immune mechanisms operating in the ovary and vagina of hen is an emerging aspect of reproductive physiology. Cytokines are key factors for triggering the immune response and inflammation in chicken to Salmonella infection. The aim of this study was to investigate the expression profile of 11 proinflammatory cytokines in the chicken embryos during embryonic development, as well as in the hen ovary and vagina in vivo, to investigate whether sexual maturation affects their ovarian and vaginal mRNA abundance and to determine whether cytokine expression was constitutive or induced in the ovary and vagina as a response to SE infection. RT-PCR analysis revealed that several cytokines were expressed in the chicken embryos, and in the ovary and vagina of healthy birds. Expression of various cytokines during sexual maturation appeared to be developmentally regulated. In addition, a significant up-regulation of several cytokines in the ovary and vagina of sexually mature SE infected birds compared to healthy birds of the same age was observed. These results suggest a cytokine-mediated immune response mechanism against Salmonella infection in the hen reproductive organs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. [Antimicrobial susceptibility of animal and food isolates of Salmonella enterica].

    PubMed

    Junod, Tania; López-Martin, Juana; Gädicke, Paula

    2013-03-01

    Bacterial resistance to one or more antimicrobiak is worrisome. To determine the susceptibility to antimicrobials of Salmonella entérica isolates from animáis and food, from the Laboratory of Veterinary Microbiology at the University of Concepción. The samples were isolated according to traditional microbiological methods standardized protocols. Resistance was determined by the Kirby-Bauer method and minimal inhibitory concentration (MIC), following Clinical and Laboratory Standards Institute recommendations (2008). Nine serotypes were identified among the 68 isolates. Strains were resistant to one or more antibiotics and 11 patterns of resistance were identified. Multidrug resistance (MDR) was observed in 20.5% of the strains tested. The most common was Oxytetracycline resistance (69.1%). Infood, the predominant serotype was S. Derby (2.9%) and S. Senftenberg (2.9%), which is commonly found infood intended for animal consumption. In samples of animal origin, the predominant serotypes were S. infantis (33.8%) and S. Group E (3.9;-;-) (23.5%). The frequeney of resistance found and the impending risk that these strains could reach humans through the food chain, should prompt a follow-up study of this pathogen.

  2. Animal models of external traumatic wound infections

    PubMed Central

    Dai, Tianhong; Kharkwal, Gitika B; Tanaka, Masamitsu; Huang, Ying-Ying; Bil de Arce, Vida J

    2011-01-01

    Background: Despite advances in traumatic wound care and management, infections remain a leading cause of mortality, morbidity and economic disruption in millions of wound patients around the world. Animal models have become standard tools for studying a wide array of external traumatic wound infections and testing new antimicrobial strategies. Results: Animal models of external traumatic wound infections reported by different investigators vary in animal species used, microorganism strains, the number of microorganisms applied, the size of the wounds and for burn infections, the length of time the heated object or liquid is in contact with the skin. Methods: This review covers experimental infections in animal models of surgical wounds, skin abrasions, burns, lacerations, excisional wounds and open fractures. Conclusions: As antibiotic resistance continues to increase, more new antimicrobial approaches are urgently needed. These should be tested using standard protocols for infections in external traumatic wounds in animal models. PMID:21701256

  3. Gene Expression Profiles of Chicken Embryo Fibroblasts in Response to Salmonella Enteritidis Infection

    PubMed Central

    Szmolka, Ama; Wiener, Zoltán; Matulova, Marta Elsheimer; Varmuzova, Karolina; Rychlik, Ivan

    2015-01-01

    The response of chicken to non-typhoidal Salmonella infection is becoming well characterised but the role of particular cell types in this response is still far from being understood. Therefore, in this study we characterised the response of chicken embryo fibroblasts (CEFs) to infection with two different S. Enteritidis strains by microarray analysis. The expression of chicken genes identified as significantly up- or down-regulated (≥3-fold) by microarray analysis was verified by real-time PCR followed by functional classification of the genes and prediction of interactions between the proteins using Gene Ontology and STRING Database. Finally the expression of the newly identified genes was tested in HD11 macrophages and in vivo in chickens. Altogether 19 genes were induced in CEFs after S. Enteritidis infection. Twelve of them were also induced in HD11 macrophages and thirteen in the caecum of orally infected chickens. The majority of these genes were assigned different functions in the immune response, however five of them (LOC101750351, K123, BU460569, MOBKL2C and G0S2) have not been associated with the response of chicken to Salmonella infection so far. K123 and G0S2 were the only ’non-immune’ genes inducible by S. Enteritidis in fibroblasts, HD11 macrophages and in the caecum after oral infection. The function of K123 is unknown but G0S2 is involved in lipid metabolism and in β-oxidation of fatty acids in mitochondria. PMID:26046914

  4. Outbreaks of Salmonella newport infection in dairy herds and their relationship to management and contamination of the environment.

    PubMed

    Clegg, F G; Chiejina, S N; Duncan, A L; Kay, R N; Wray, C

    1983-06-18

    Two outbreaks of Salmonella newport infection in dairy herds are described which were characterised by haemorrhagic enteritis. The history of the outbreaks, the extent of the losses, clinical and laboratory findings and treatment are described. The first herd consisted of 193 cattle, of which seven died, three aborted and another 84 required treatment. Salmonellosis persisted over 14 months throughout the summer on a paddock grazing system and continued during the following winter when the herd was loose housed. The relationship of the commencement of clinical disease to dietary changes and to the time of calving is described, as are the problems in controlling the disease. The second herd consisted of 98 milking cows and a few beef animals. One cow died and two aborted; altogether 18 were clinically affected. The epidemiology of the disease and the geographical relationship between the two farms is described. Extensive contamination of streams occurred and one cow died on a neighbouring third farm. In contact humans were found to be excreting the organism. The public health significance of the outbreak is discussed because bulk milk samples were contaminated with salmonellae for 10 months and local streams were polluted with human sewage.

  5. A FRET-Based DNA Biosensor Tracks OmpR-Dependent Acidification of Salmonella during Macrophage Infection

    PubMed Central

    Chakraborty, Smarajit; Mizusaki, Hideaki; Kenney, Linda J.

    2015-01-01

    In bacteria, one paradigm for signal transduction is the two-component regulatory system, consisting of a sensor kinase (usually a membrane protein) and a response regulator (usually a DNA binding protein). The EnvZ/OmpR two-component system responds to osmotic stress and regulates expression of outer membrane proteins. In Salmonella, EnvZ/OmpR also controls expression of another two-component system SsrA/B, which is located on Salmonella Pathogenicity Island (SPI) 2. SPI-2 encodes a type III secretion system, which functions as a nanomachine to inject bacterial effector proteins into eukaryotic cells. During the intracellular phase of infection, Salmonella switches from assembling type III secretion system structural components to secreting effectors into the macrophage cytoplasm, enabling Salmonella to replicate in the phagocytic vacuole. Major questions remain regarding how bacteria survive the acidified vacuole and how acidification affects bacterial secretion. We previously reported that EnvZ sensed cytoplasmic signals rather than extracellular ones, as intracellular osmolytes altered the dynamics of a 17-amino-acid region flanking the phosphorylated histidine. We reasoned that the Salmonella cytoplasm might acidify in the macrophage vacuole to activate OmpR-dependent transcription of SPI-2 genes. To address these questions, we employed a DNA-based FRET biosensor (“I-switch”) to measure bacterial cytoplasmic pH and immunofluorescence to monitor effector secretion during infection. Surprisingly, we observed a rapid drop in bacterial cytoplasmic pH upon phagocytosis that was not predicted by current models. Cytoplasmic acidification was completely dependent on the OmpR response regulator, but did not require known OmpR-regulated genes such as ompC, ompF, or ssaC (SPI-2). Microarray analysis highlighted the cadC/BA operon, and additional experiments confirmed that it was repressed by OmpR. Acidification was blocked in the ompR null background in a Cad

  6. Identification of Transcriptional Modules and Key Genes in Chickens Infected with Salmonella enterica Serovar Pullorum Using Integrated Coexpression Analyses.

    PubMed

    Liu, Bao-Hong; Cai, Jian-Ping

    2017-01-01

    Salmonella enterica Pullorum is one of the leading causes of mortality in poultry. Understanding the molecular response in chickens in response to the infection by S. enterica is important in revealing the mechanisms of pathogenesis and disease progress. There have been studies on identifying genes associated with Salmonella infection by differential expression analysis, but the relationships among regulated genes have not been investigated. In this study, we employed weighted gene coexpression network analysis (WGCNA) and differential coexpression analysis (DCEA) to identify coexpression modules by exploring microarray data derived from chicken splenic tissues in response to the S. enterica infection. A total of 19 modules from 13,538 genes were associated with the Jak-STAT signaling pathway, the extracellular matrix, cytoskeleton organization, the regulation of the actin cytoskeleton, G-protein coupled receptor activity, Toll-like receptor signaling pathways, and immune system processes; among them, 14 differentially coexpressed modules (DCMs) and 2,856 differentially coexpressed genes (DCGs) were identified. The global expression of module genes between infected and uninfected chickens showed slight differences but considerable changes for global coexpression. Furthermore, DCGs were consistently linked to the hubs of the modules. These results will help prioritize candidate genes for future studies of Salmonella infection.

  7. Identification of Transcriptional Modules and Key Genes in Chickens Infected with Salmonella enterica Serovar Pullorum Using Integrated Coexpression Analyses

    PubMed Central

    2017-01-01

    Salmonella enterica Pullorum is one of the leading causes of mortality in poultry. Understanding the molecular response in chickens in response to the infection by S. enterica is important in revealing the mechanisms of pathogenesis and disease progress. There have been studies on identifying genes associated with Salmonella infection by differential expression analysis, but the relationships among regulated genes have not been investigated. In this study, we employed weighted gene coexpression network analysis (WGCNA) and differential coexpression analysis (DCEA) to identify coexpression modules by exploring microarray data derived from chicken splenic tissues in response to the S. enterica infection. A total of 19 modules from 13,538 genes were associated with the Jak-STAT signaling pathway, the extracellular matrix, cytoskeleton organization, the regulation of the actin cytoskeleton, G-protein coupled receptor activity, Toll-like receptor signaling pathways, and immune system processes; among them, 14 differentially coexpressed modules (DCMs) and 2,856 differentially coexpressed genes (DCGs) were identified. The global expression of module genes between infected and uninfected chickens showed slight differences but considerable changes for global coexpression. Furthermore, DCGs were consistently linked to the hubs of the modules. These results will help prioritize candidate genes for future studies of Salmonella infection. PMID:28529955

  8. Identification of Plasmid-Mediated Quinolone Resistance in Salmonella Isolated from Swine Ceca and Retail Pork Chops in the United States

    PubMed Central

    Tate, Heather P.; Zhao, Shaohua; Li, Cong; Dessai, Uday; Simmons, Mustafa; McDermott, Patrick F.

    2017-01-01

    ABSTRACT Fluoroquinolones are important antimicrobial drugs used to treat human Salmonella infections, and resistance is rare in the United States for isolates from human and animal sources. Recently, a number of Salmonella isolates from swine cecal contents and retail pork products from National Antimicrobial Resistance Monitoring System (NARMS) surveillance exhibited decreased susceptibility to ciprofloxacin. We identified two qnrB19 quinolone resistance plasmids that are predominantly responsible for this phenomenon and found them distributed among several Salmonella serotypes isolated throughout the United States. PMID:28784677

  9. Evaluation of guinea pig model for experimental Salmonella serovar Abortusequi infection in reference to infertility.

    PubMed

    Singh, B R; Alam, Javed; Hansda, D; Verma, J C; Singh, V P; Yadav, M P

    2002-03-01

    The present study conclusively revealed the role for Salmonella enterica subspecies enterica serovar Abortusequi in conception failure. None of the 12 guinea pigs conceived when orally exposed to sublethal dose of the pathogen during breeding, while 66.67% of animals in control group were found pregnant during same period of observation under similar conditions. Salmonella carrier animals also had drastic reduction in conception rate (16.67%). During mid pregnancy, S. Abortusequi exposure to guinea pigs through intravaginal, intramuscular and subcutaneous routes induced fetal death followed by resorption. While 2 out of 6 orally inoculated and 3 out of 6 intraperitonially inoculated guinea pigs aborted, in rest of the animals fetal death was followed by meceration and resorption. It was interesting to note that S. Abortusequi could not persist longer than a week in males while in pregnant females it could be detected for >10 weeks after inoculation. In late pregnancy, most of the exposed animals aborted and non aborting animals though had normal parturition, survival rate of their babies was nearly zero in comparison to the control group. The study revealed role for S. Abortusequi in impairing conception, abortion, early fetal deaths, fetal meceration and resorption. Further studies are required to identify factors responsible for increased susceptibility of females particularly during pregnancy.

  10. Substantial within-Animal Diversity of Salmonella Isolates from Lymph Nodes, Feces, and Hides of Cattle at Slaughter

    PubMed Central

    Loneragan, Guy H.; Nightingale, Kendra K.; Brichta-Harhay, Dayna M.; Ruiz, Henry; Elder, Jacob R.; Garcia, Lyda G.; Miller, Markus F.; Echeverry, Alejandro; Ramírez Porras, Rosa G.; Brashears, Mindy M.

    2013-01-01

    Lymph nodes (mandibular, mesenteric, mediastinal, and subiliac; n = 68) and fecal (n = 68) and hide (n = 35) samples were collected from beef carcasses harvested in an abattoir in Mexico. Samples were analyzed for Salmonella, and presumptive colonies were subjected to latex agglutination. Of the isolates recovered, a subset of 91 was characterized by serotyping, pulsed-field gel electrophoresis (PFGE), and antimicrobial susceptibility phenotyping. Salmonella was isolated from 100% (hide), 94.1% (feces), 91.2% (mesenteric), 76.5% (subiliac), 55.9% (mandibular), and 7.4% (mediastinal) of samples. From the 87 typeable isolates, eight Salmonella enterica serotypes, including Kentucky (32.2%), Anatum (29.9%), Reading (17.2%), Meleagridis (12.6%), Cerro (4.6%), Muenster (1.1%), Give (1.1%), and Mbandaka (1.1%), were identified. S. Meleagridis was more likely (P = 0.03) to be recovered from lymph nodes than from feces or hides, whereas S. Kentucky was more likely (P = 0.02) to be recovered from feces and hides than from lymph nodes. The majority (59.3%) of the Salmonella isolates were pansusceptible; however, multidrug resistance was observed in 13.2% of isolates. Typing by PFGE revealed that Salmonella strains generally clustered by serotype, but some serotypes (Anatum, Kentucky, Meleagridis, and Reading) were comprised of multiple PFGE subtypes. Indistinguishable PFGE subtypes and, therefore, serotypes were isolated from multiple sample types, and multiple PFGE subtypes were commonly observed within an animal. Given the overrepresentation of some serotypes within lymph nodes, we hypothesize that certain Salmonella strains may be better at entering the bovine host than other Salmonella strains or that some may be better adapted for survival within lymph nodes. Our data provide insight into the ecology of Salmonella within cohorts of cattle and offer direction for intervention opportunities. PMID:23793628

  11. Molecular Epidemiology of Salmonella enterica Serovar Typhimurium Isolates Determined by Pulsed-Field Gel Electrophoresis: Comparison of Isolates from Avian Wildlife, Domestic Animals, and the Environment in Norway

    PubMed Central

    Refsum, Thorbjørn; Heir, Even; Kapperud, Georg; Vardund, Traute; Holstad, Gudmund

    2002-01-01

    The molecular epidemiology of 142 isolates of Salmonella enterica serovar Typhimurium from avian wildlife, domestic animals, and the environment in Norway was investigated using pulsed-field gel electrophoresis (PFGE) and computerized numerical analysis of the data. The bacterial isolates comprised 79 isolates from wild-living birds, including 46 small passerines and 26 gulls, and 63 isolates of nonavian origin, including 50 domestic animals and 13 environmental samples. Thirteen main clusters were discernible at the 90% similarity level. Most of the isolates (83%) were grouped into three main clusters. These were further divided into 20 subclusters at the 95% similarity level. Isolates from passerines, gulls, and pigeons dominated within five subclusters, whereas isolates from domestic animals and the environment belonged to many different subclusters with no predominance. The results support earlier results that passerines constitute an important source of infection to humans in Norway, whereas it is suggested that gulls and pigeons, based on PFGE analysis, represent only a minor source of human serovar Typhimurium infections. Passerines, gulls, and pigeons may also constitute a source of infection of domestic animals and feed plants or vice versa. Three isolates from cattle and a grain source, of which two were multiresistant, were confirmed as serovar Typhimurium phage type DT 104. These represent the first reported phage type DT 104 isolates from other sources than humans in Norway. PMID:12406755

  12. Intermittent fasting favored the resolution of Salmonella typhimurium infection in middle-aged BALB/c mice.

    PubMed

    Campos-Rodríguez, Rafael; Godínez-Victoria, Marycarmen; Reyna-Garfias, Humberto; Arciniega-Martínez, Ivonne Maciel; Reséndiz-Albor, Aldo Arturo; Abarca-Rojano, Edgar; Cruz-Hernández, Teresita Rocío; Drago-Serrano, Maria Elisa

    2016-02-01

    Intermittent fasting (IF) reportedly increases resistance and intestinal IgA response to Salmonella typhimurium infection in mature mice. The aim of this study was to explore the effect of aging on the aforementioned improved immune response found with IF. Middle-aged male BALB/c mice were submitted to IF or ad libitum (AL) feeding for 40 weeks and then orally infected with S. typhimurium. Thereafter, infected animals were all fed AL (to maximize their viability) until sacrifice on day 7 or 14 post-infection. We evaluated body weight, bacterial load (in feces, Peyer's patches, spleen and liver), total and specific intestinal IgA, lamina propria IgA+ plasma cells, plasma corticosterone, and messenger RNA (mRNA) expression of α-chain, J-chain, and the polymeric immunoglobulin receptor (pIgR) in liver and intestinal mucosa. In comparison with the infected AL counterpart, the infected IF group (long-term IF followed by post-infection AL feeding) generally had lower intestinal and systemic bacterial loads as well as higher total IgA on both post-infection days. Both infected groups showed no differences in corticosterone levels, body weight, or food and caloric intake. The increase in intestinal IgA was associated with enhanced pIgR mRNA expression in the intestine (day 7) and liver. Thus, to maintain body weight and caloric intake, IF elicited metabolic signals that possibly induced the increased hepatic and intestinal pIgR mRNA expression found. The increase in IgA probably resulted from intestinal IgA transcytosis via pIgR. This IgA response along with phagocyte-induced killing of bacteria in systemic organs (not measured) may explain the resolution of the S. typhimurium infection.

  13. Infection of Mice by Salmonella enterica Serovar Enteritidis Involves Additional Genes That Are Absent in the Genome of Serovar Typhimurium

    PubMed Central

    Silva, Cecilia A.; Blondel, Carlos J.; Quezada, Carolina P.; Porwollik, Steffen; Andrews-Polymenis, Helene L.; Toro, Cecilia S.; Zaldívar, Mercedes; Contreras, Inés

    2012-01-01

    Salmonella enterica serovar Enteritidis causes a systemic, typhoid-like infection in newly hatched poultry and mice. In the present study, a library of 54,000 transposon mutants of S. Enteritidis phage type 4 (PT4) strain P125109 was screened for mutants deficient in the in vivo colonization of the BALB/c mouse model using a microarray-based negative-selection screening. Mutants in genes known to contribute to systemic infection (e.g., Salmonella pathogenicity island 2 [SPI-2], aro, rfa, rfb, phoP, and phoQ) and enteric infection (e.g., SPI-1 and SPI-5) in this and other Salmonella serovars displayed colonization defects in our assay. In addition, a strong attenuation was observed for mutants in genes and genomic islands that are not present in S. Typhimurium or in most other Salmonella serovars. These genes include a type I restriction/modification system (SEN4290 to SEN4292), the peg fimbrial operon (SEN2144A to SEN2145B), a putative pathogenicity island (SEN1970 to SEN1999), and a type VI secretion system remnant SEN1001, encoding a hypothetical protein containing a lysin motif (LysM) domain associated with peptidoglycan binding. Proliferation defects for mutants in these individual genes and in exemplar genes for each of these clusters were confirmed in competitive infections with wild-type S. Enteritidis. A ΔSEN1001 mutant was defective for survival within RAW264.7 murine macrophages in vitro. Complementation assays directly linked the SEN1001 gene to phenotypes observed in vivo and in vitro. The genes identified here may perform novel virulence functions not characterized in previous Salmonella models. PMID:22083712

  14. Allelic variation in TLR4 is linked to resistance to Salmonella Enteritidis infection in chickens.

    PubMed

    Li, Peng; Wang, Huihua; Zhao, Xingwang; Gou, Zhongyong; Liu, Ranran; Song, Yongmei; Li, Qinghe; Zheng, Maiqing; Cui, Huanxian; Everaert, Nadia; Zhao, Guiping; Wen, Jie

    2017-07-01

    Salmonella Enteritidis (SE) is a foodborne pathogen that negatively affects both animal and human health. Polymorphisms of the TLR4 gene may affect recognition by Toll-like receptor 4 (TLR4) of bacterial lipopolysaccharide (LPS), leading to differences in host resistance to pathogenic infections. The present study has investigated polymorphic loci of chicken TLR4 (ChTLR4) in ten chicken breeds, electrostatic potentials of mutant structures of TLR4, and a linkage analysis between allelic variation and survival ratio to infection with SE in specific-pathogen-free (SPF) White Leghorns. A total of 19 Single Nucleotide Polymorphisms (SNPs), of which 10 were novel, were found in chicken breeds. Seven newly identified amino acid variants (C68G, G674A, G782A, A896T, T959G, T986A, and A1104C) and previously reported important mutations (G247A, G1028A, C1147T, and A1832G) were demonstrated in the extracellular domain of the ChTLR4 gene. Significant changes in surface electrostatic potential of the ectodomain of TLR4, built by homology modeling, were observed at the Glu83Lys (G247A), Arg298Ser (A896T), Ser368Arg (A1104C), and Gln611Arg (A1832G) substitutions. Linkage analysis showed that one polymorphic locus G247A of TLR4 gene, common in all breeds examined, was significantly associated with increased resistance to SE in SPF White Leghorns chicks (log-rank P-value = 0.04). The genotypes from A1832G SNPs did not show statistically significant survival differences. This study has provided the first direct evidence that G247A substitution in ChTLR4 is associated with increased resistance to Salmonella Enteritidis. © 2017 Poultry Science Association Inc.

  15. Immunity to Intracellular Salmonella Depends on Surface-associated Antigens

    PubMed Central

    Claudi, Beatrice; Mazé, Alain; Schemmer, Anne K.; Kirchhoff, Dennis; Schmidt, Alexander; Burton, Neil; Bumann, Dirk

    2012-01-01

    Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. PMID:23093937

  16. A Multistate Outbreak of Human Salmonella Agona Infections Associated With Consumption of Fresh, Whole Papayas Imported From Mexico-United States, 2011.

    PubMed

    Mba-Jonas, Adamma; Culpepper, Wright; Hill, Thomas; Cantu, Venessa; Loera, Julie; Borders, Julie; Saathoff-Huber, Lori; Nsubuga, Johnson; Zambrana, Ingrid; Dalton, Shannon; Williams, Ian; Neil, Karen P

    2018-05-17

    Nontyphoidal Salmonella causes ~1 million food-borne infections annually in the United States. We began investigating a multistate outbreak of Salmonella serotype Agona infections in April 2011. A case was defined as infection with the outbreak strain of Salmonella Agona occurring between 1 January and 25 August 2011. We developed hypotheses through iterative interviews. Product distribution analyses and traceback investigations were conducted. The Food and Drug Administration (FDA) tested papayas from Mexico for Salmonella. We identified 106 case patients from 25 states. Their median age was 21 years (range, 1-91). Thirty-nine of 61 case patients (64%) reported Hispanic/Latino ethnicity; 11 of 65 (17%) travelled to Mexico before illness. Thirty-two of 56 case patients (57%) reported papaya consumption. Distribution analyses revealed that three firms, including Distributor A, distributed papaya to geographic areas that aligned with both the location and timing of illnesses. Traceback of papayas purchased by ill persons in four states identified Distributor A as the common supplier. FDA testing isolated the outbreak strain from a papaya sample collected at distributor A and from another sample collected at the US-Mexico border, destined for distributor A. FDA isolated Salmonella species from 62 of 388 papaya import samples (16%). The investigation led to a recall of fresh, whole papayas from Distributor A and an FDA import alert for all papayas from Mexico. This is the first reported Salmonella outbreak in the United States linked to fresh, whole papayas. The outbreak highlights important issues regarding the safety of imported produce.

  17. Assessing the probability of infection by Salmonella due to sewage sludge use in agriculture under several exposure scenarios for crops and soil ingestion.

    PubMed

    Krzyzanowski, Flávio; de Souza Lauretto, Marcelo; Nardocci, Adelaide Cássia; Sato, Maria Inês Zanoli; Razzolini, Maria Tereza Pepe

    2016-10-15

    A deeper understanding about the risks involved in sewage sludge practice in agriculture is required. The aims of the present study were to determine the annual risk of infection of consuming lettuce, carrots and tomatoes cultivated in soil amended with sewage sludge. The risk to agricultural workers of accidental ingestion of sludge or amended soil was also investigated. A Quantitative Microbial Risk Assessment was conducted based on Salmonella concentrations from five WWTPs were used to estimate the probability of annual infection associated with crops and soil ingestion. The risk of infection was estimated for nine exposure scenarios considering concentration of the pathogen, sewage sludge dilution in soil, variation of Salmonella concentration in soil, soil attachment to crops, seasonal average temperatures, hours of post-harvesting exposure, Salmonella regrowth in lettuce and tomatoes, Salmonella inhibition factor in carrots, crop ingestion and frequency of exposure, sludge/soil ingestion by agricultural workers and frequency of exposure. Annual risks values varied across the scenarios evaluated. Highest values of annual risk were found for scenarios in which the variation in the concentration of Salmonella spp. in both soil and crops (scenario 1) and without variation in the concentration of Salmonella spp. in soil and variation in crops (scenario 3) ranging from 10(-3) to 10(-2) for all groups considered. For agricultural workers, the highest annual risks of infection were found when workers applied sewage sludge to agricultural soils (2.26×10(-2)). Sensitivity analysis suggests that the main drivers for the estimated risks are Salmonella concentration and ingestion rate. These risk values resulted from conservative scenarios since some assumptions were derived from local or general studies. Although these scenarios can be considered conservative, the sensitivity analysis yielded the drivers of the risks, which can be useful for managing risks from the

  18. The role of neighborhood level socioeconomic characteristics in Salmonella infections in Michigan (1997–2007): Assessment using geographic information system

    PubMed Central

    Younus, Muhammad; Hartwick, Edward; Siddiqi, Azfar A; Wilkins, Melinda; Davies, Herbert D; Rahbar, Mohammad; Funk, Julie; Saeed, Mahdi

    2007-01-01

    Background: The majority of U.S. disease surveillance systems contain incomplete information regarding socioeconomic status (SES) indicators like household or family income and educational attainment in case reports, which reduces the usefulness of surveillance data for these parameters. We investigated the association between select SES attributes at the neighborhood level and Salmonella infections in the three most populated counties in Michigan using a geographic information system. Methods: We obtained data on income, education, and race from the 2000 U.S. Census, and the aggregate number of laboratory-confirmed cases of salmonellosis (1997–2006) at the block group level from the Michigan Department of Community Health. We used ArcGIS to visualize the distribution, and Poisson regression analysis to study associations between potential predictor variables and Salmonella infections. Results: Based on data from 3,419 block groups, our final multivariate model revealed that block groups with lower educational attainment were less commonly represented among cases than their counterparts with higher education levels (< high school degree vs. ≥ college degree: rate ratio (RR) = 0.79, 95% confidence interval (CI):0.63, 0.99; ≥ and high school degree, but no college degree vs. ≥ college degree: RR = 0.84, 95% CI: 0.76, 0.92). Levels of education also showed a dose-response relation with the outcome variable, i.e., decreasing years of education was associated with a decrease in Salmonella infections incidence at the block group level. Conclusion: Education plays a significant role in health-seeking behavior at the population level. It is conceivable that a reporting bias may exist due to a greater detection of Salmonella infections among high education block groups compared to low education block groups resulting from differential access to healthcare. In addition, individuals of higher education block groups who also have greater discretionary income may eat

  19. Flea market finds and global exports: Four multistate outbreaks of human Salmonella infections linked to small turtles, United States-2015.

    PubMed

    Gambino-Shirley, K; Stevenson, L; Concepción-Acevedo, J; Trees, E; Wagner, D; Whitlock, L; Roberts, J; Garrett, N; Van Duyne, S; McAllister, G; Schick, B; Schlater, L; Peralta, V; Reporter, R; Li, L; Waechter, H; Gomez, T; Fernández Ordenes, J; Ulloa, S; Ragimbeau, C; Mossong, J; Nichols, M

    2018-03-25

    Zoonotic transmission of Salmonella infections causes an estimated 11% of salmonellosis annually in the United States. This report describes the epidemiologic, traceback and laboratory investigations conducted in the United States as part of four multistate outbreaks of Salmonella infections linked to small turtles. Salmonella isolates indistinguishable from the outbreak strains were isolated from a total of 143 ill people in the United States, pet turtles, and pond water samples collected from turtle farm A, as well as ill people from Chile and Luxembourg. Almost half (45%) of infections occurred in children aged <5 years, underscoring the importance of the Centers for Disease Control and Prevention recommendation to keep pet turtles and other reptiles out of homes and childcare settings with young children. Although only 43% of the ill people who reported turtle exposure provided purchase information, most small turtles were purchased from flea markets or street vendors, which made it difficult to locate the vendor, trace the turtles to a farm of origin, provide education and enforce the United States federal ban on the sale and distribution of small turtles. These outbreaks highlight the importance of improving public awareness and education about the risk of Salmonella from small turtles not only in the United States but also worldwide. © 2018 Blackwell Verlag GmbH.

  20. 21 CFR 500.35 - Animal feeds contaminated with Salmonella microorganisms.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and Drug Administration, the Centers for Disease Control of the U.S. Public Health Service, the Animal... producing infection and disease in animals must be regarded as an adulterant within the meaning of section...

  1. 21 CFR 500.35 - Animal feeds contaminated with Salmonella microorganisms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and Drug Administration, the Centers for Disease Control of the U.S. Public Health Service, the Animal... producing infection and disease in animals must be regarded as an adulterant within the meaning of section...

  2. Salmonella Enteritidis deposition in eggs after experimental infection of laying hens with different oral doses

    USDA-ARS?s Scientific Manuscript database

    The continuing attribution of human Salmonella Enteritidis (SE) infections to internally contaminated eggs has necessitated the commitment of substantial public and private resources to SE testing and control programs in commercial laying flocks. Cost-effective risk reduction requires a detailed and...

  3. Salmonella Enteritidis Deposition inside Eggs after Experimental Infection of Laying Hens with Different Oral Doses

    USDA-ARS?s Scientific Manuscript database

    The continuing attribution of human Salmonella Enteritidis infections to internally contaminated eggs has necessitated the commitment of substantial public and private resources to risk reduction and testing programs for commercial laying flocks. Cost-effective risk reduction requires a detailed und...

  4. The Salmonella Transcriptome in Lettuce and Cilantro Soft Rot Reveals a Niche Overlap with the Animal Host Intestine

    PubMed Central

    Goudeau, Danielle M.; Parker, Craig T.; Zhou, Yaguang; Sela, Shlomo; Kroupitski, Yulia

    2013-01-01

    Fresh vegetables have been recurrently associated with salmonellosis outbreaks, and Salmonella contamination of retail produce has been correlated positively with the presence of soft rot disease. We observed that population sizes of Salmonella enterica serovar Typhimurium SL1344 increased 56-fold when inoculated alone onto cilantro leaves, versus 2,884-fold when coinoculated with Dickeya dadantii, a prevalent pathogen that macerates plant tissue. A similar trend in S. enterica populations was observed for soft-rotted lettuce leaves. Transcriptome analysis of S. enterica cells that colonized D. dadantii-infected lettuce and cilantro leaves revealed a clear shift toward anaerobic metabolism and catabolism of substrates that are available due to the degradation of plant cells by the pectinolytic pathogen. Twenty-nine percent of the genes that were upregulated in cilantro macerates were also previously observed to have increased expression levels in the chicken intestine. Furthermore, multiple genes induced in soft rot lesions are also involved in the colonization of mouse, pig, and bovine models of host infection. Among those genes, the operons for ethanolamine and propanediol utilization as well as for the synthesis of cobalamin, a cofactor in these pathways, were the most highly upregulated genes in lettuce and cilantro lesions. In S. Typhimurium strain LT2, population sizes of mutants deficient in propanediol utilization or cobalamin synthesis were 10- and 3-fold lower, respectively, than those of the wild-type strain in macerated cilantro (P < 0.0002); in strain SL1344, such mutants behaved similarly to the parental strain. Anaerobic conditions and the utilization of nutrients in macerated plant tissue that are also present in the animal intestine indicate a niche overlap that may explain the high level of adaptation of S. enterica to soft rot lesions, a common postharvest plant disease. PMID:23104408

  5. Functional characteristics of the porcine colonic epithelium following transportation stress and Salmonella infection.

    PubMed

    Aschenbach, Jörg R; Ahrens, Frank; Schwelberger, Hubert G; Fürll, Brigitta; Roesler, Uwe; Hensel, Andreas; Gäbel, Gotthold

    2007-06-01

    Stressful life events and infections contribute to gut disorders such as irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD). We used a pig model to analyse whether this could be linked to altered mediator sensitivity of the epithelial lining. Uninfected control pigs or pigs with subclinical Salmonella (S.) typhimurium DT 104 infection were killed either without (ConRest, InfRest) or with prior 8-h transportation (ConTrans, InfTrans). Short-circuit current (I(sc)), tissue conductance (G(t)) and release of mast cell mediators were monitored in isolated colonic epithelia mounted in Ussing chambers. Epithelia were exposed to histamine (100 microM, mucosally), substance P (SP; 1 microM, serosally), calcimycin A23187 (1 microM, serosally) and theophylline (10 mM, bilaterally). Transepithelial flux of histamine and colonic activities of histamine N-methyltransferase (HMT) and diamine oxidase (DAO) were determined. S. infection decreased baseline I(sc), G(t) and histamine fluxes, while transportation had no effect on these values. Mucosal histamine increased I(sc) only in ConTrans pigs. This was not associated with increased mucosal-to-serosal flux of histamine but with a 2-fold increased DAO activity. Serosal SP increased I(sc) only in transported animals, but the increase was six times higher in ConTrans versus InfTrans pigs. Effectiveness of SP was not dependent on the release of histamine or prostaglandin D2. A23187 and theophylline elicited increases in I(sc) that were not different between treatments. Transportation stress facilitates secretory responses of the colonic epithelium to SP and luminal histamine. This is suppressed by subclinical S. infection. Effects of S. infection on porcine colon resemble, in part, the known effects of an oral S. endotoxin application.

  6. Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence

    NASA Technical Reports Server (NTRS)

    Nickerson, C. A.; Ott, C. M.; Mister, S. J.; Morrow, B. J.; Burns-Keliher, L.; Pierson, D. L.

    2000-01-01

    The effects of spaceflight on the infectious disease process have only been studied at the level of the host immune response and indicate a blunting of the immune mechanism in humans and animals. Accordingly, it is necessary to assess potential changes in microbial virulence associated with spaceflight which may impact the probability of in-flight infectious disease. In this study, we investigated the effect of altered gravitational vectors on Salmonella virulence in mice. Salmonella enterica serovar Typhimurium grown under modeled microgravity (MMG) were more virulent and were recovered in higher numbers from the murine spleen and liver following oral infection compared to organisms grown under normal gravity. Furthermore, MMG-grown salmonellae were more resistant to acid stress and macrophage killing and exhibited significant differences in protein synthesis than did normal-gravity-grown cells. Our results indicate that the environment created by simulated microgravity represents a novel environmental regulatory factor of Salmonella virulence.

  7. Occurrence of plasmid-mediated quinolone resistance determinants and rmtB gene in Salmonella enterica serovar enteritidis and Typhimurium isolated from food-animal products in Tunisia.

    PubMed

    Al-Gallas, Nazek; Abbassi, Mohamed Salah; Gharbi, Becher; Manai, Molka; Ben Fayala, Mohamed N; Bichihi, Raghda; Al-Gallas, Amna; Ben Aissa, Ridha

    2013-09-01

    Four hundred and thirty Salmonella isolates, recovered from various food-animal products, were tested for nalidixic acid resistance, plasmid-mediated quinolone resistance, and genetic relationship. One hundred fifteen isolates (113 Salmonella serovar Enteritidis and two Salmonella serovar Typhimurium isolates) of 430 (26.7%) Salmonella isolates exhibited nalidixic acid resistance. Polymerase chain reaction screening for qnrA, qnrB, qnrS, qepA (encoding fluoroquinolones resistance) and rmtB (encoding aminoglycosides resistance) showed that 5 (1.16%) isolates were positive for qnr- and qepA-type genes, and the aac(6')-Ib-cr gene was observed in two (1.7%) Enteritidis isolates concomitantly with qnrA or qnrB. The co-occurrence of qepA and rmtB in one Typhimurium isolate is noteworthy. Pulsed-field gel electrophoresis revealed a high genetic homogeneity of nalidixic-resistant isolates and the persistence of clonal clusters over 4 years in different regions in Tunisia and from various food-animal products. To the best of our knowledge, this is the first report of co-occurrence of qepA and rmtB in a Salmonella strain.

  8. MALDI-TOF mass spectrometry provides high accuracy in identification of Salmonella at species level but is limited to type or subtype Salmonella serovars.

    PubMed

    Kang, Lin; Li, Nan; Li, Ping; Zhou, Yang; Gao, Shan; Gao, Hongwei; Xin, Wenwen; Wang, Jinglin

    2017-04-01

    Salmonella can cause global foodborne illnesses in humans and many animals. The current diagnostic gold standard used for detecting Salmonella infection is microbiological culture followed by serological confirmation tests. However, these methods are complicated and time-consuming. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis offers some advantages in rapid identification, for example, simple and fast sample preparation, fast and automated measurement, and robust and reliable identification up to genus and species levels, possibly even to the strain level. In this study, we established a reference database for species identification using whole-cell MALDI-TOF MS; the database consisted of 12 obtained main spectra of the Salmonella culture collection strains belonged to seven serotypes. Eighty-two clinical isolates of Salmonella were identified using established database, and partial 16S rDNA gene sequencing and serological method were used as comparison. We found that MALDI-TOF mass spectrometry provided high accuracy in identification of Salmonella at species level but was limited to type or subtype Salmonella serovars. We also tried to find serovar-specific biomarkers and failed. Our study demonstrated that (a) MALDI-TOF MS was suitable for identification of Salmonella at species level with high accuracy and (b) that MALDI-TOF MS method presented in this study was not useful for serovar assignment of Salmonella currently, because of its low matching with serological method and (c) MALDI-TOF MS method presented in this study was not suitable to subtype S. typhimurium because of its low discriminatory ability.

  9. The Pearling Transition Provides Evidence of Force-Driven Endosomal Tubulation during Salmonella Infection.

    PubMed

    Gao, Yunfeng; Spahn, Christoph; Heilemann, Mike; Kenney, Linda J

    2018-06-19

    Bacterial pathogens exploit eukaryotic pathways for their own end. Upon ingestion, Salmonella enterica serovar Typhimurium passes through the stomach and then catalyzes its uptake across the intestinal epithelium. It survives and replicates in an acidic vacuole through the action of virulence factors secreted by a type three secretion system located on Salmonella pathogenicity island 2 (SPI-2). Two secreted effectors, SifA and SseJ, are sufficient for endosomal tubule formation, which modifies the vacuole and enables Salmonella to replicate within it. Two-color, superresolution imaging of the secreted virulence factor SseJ and tubulin revealed that SseJ formed clusters of conserved size at regular, periodic intervals in the host cytoplasm. Analysis of SseJ clustering indicated the presence of a pearling effect, which is a force-driven, osmotically sensitive process. The pearling transition is an instability driven by membranes under tension; it is induced by hypotonic or hypertonic buffer exchange and leads to the formation of beadlike structures of similar size and regular spacing. Reducing the osmolality of the fixation conditions using glutaraldehyde enabled visualization of continuous and intact tubules. Correlation analysis revealed that SseJ was colocalized with the motor protein kinesin. Tubulation of the endoplasmic reticulum is driven by microtubule motors, and in the present work, we describe how Salmonella has coopted the microtubule motor kinesin to drive the force-dependent process of endosomal tubulation. Thus, endosomal tubule formation is a force-driven process catalyzed by Salmonella virulence factors secreted into the host cytoplasm during infection. IMPORTANCE This study represents the first example of using two-color, superresolution imaging to analyze the secretion of Salmonella virulence factors as they are secreted from the SPI-2 type three secretion system. Previous studies imaged effectors that were overexpressed in the host cytoplasm. The

  10. First detection and characterization of Salmonella spp. in poultry and swine raised in backyard production systems in central Chile.

    PubMed

    Alegria-Moran, R; Rivera, D; Toledo, V; Moreno-Switt, A I; Hamilton-West, C

    2017-11-01

    Little is known about Salmonella serovars circulating in backyard poultry and swine populations worldwide. Backyard production systems (BPS) that raise swine and/or poultry are distributed across Chile, but are more heavily concentrated in central Chile, where industrialized systems are in close contact with BPS. This study aims to detect and identify circulating Salmonella serovars in poultry and swine raised in BPS. Bacteriological Salmonella isolation was carried out for 1744 samples collected from 329 BPS in central Chile. Faecal samples were taken from swine, poultry, geese, ducks, turkeys and peacocks, as well as environmental faecal samples. Confirmation of Salmonella spp. was performed using invA-polymerase chain reaction (PCR). Identification of serovars was carried out using a molecular serotyping approach, where serogroups were confirmed by a multiplex PCR of Salmonella serogroup genes for five Salmonella O antigens (i.e., D, B, C1, C2-C3, and E1), along with two PCR amplifications, followed by sequencing of fliC and fljB genes. A total of 25 samples (1·4% of total samples) from 15 BPS (4·6 % of total sampled BPS) were found positive for Salmonella. Positive samples were found in poultry (chickens and ducks), swine and environmental sources. Molecular prediction of serovars on Salmonella isolated showed 52·0% of S. Typhimurium, 16·0% of S. Infantis, 16·0% S. Enteritidis, 8·0% S. Hadar, 4·0% S. Tennessee and 4·0% S. Kentucky. Poor biosecurity measures were found on sampled BPS, where a high percentage of mixed confinement systems (72·8%); and almost half of the sampled BPS with improper management of infected mortalities (e.g. selling the carcasses of infected animals for consumption). Number of birds other than chickens (P = 0·014; OR = 1·04; IC (95%) = 1·01-1·07), mixed productive objective (P = 0·030; OR = 5·35; IC (95%) = 1·24-27·59) and mixed animal replacement origin (P = 0017; OR = 5·19; IC (95%) = 1·35-20·47) were detected as

  11. Invasive Non-Typhoidal Salmonella Typhimurium ST313 Are Not Host-Restricted and Have an Invasive Phenotype in Experimentally Infected Chickens

    PubMed Central

    Parsons, Bryony N.; Humphrey, Suzanne; Salisbury, Anne Marie; Mikoleit, Julia; Hinton, Jay C. D.; Gordon, Melita A.; Wigley, Paul

    2013-01-01

    Salmonella enterica serovar Typhimurium Sequence Type (ST) 313 is a major cause of invasive non-Typhoidal salmonellosis in sub-Saharan Africa. No animal reservoir has been identified, and it has been suggested that ST313 is adapted to humans and transmission may occur via person-to-person spread. Here, we show that ST313 cause severe invasive infection in chickens as well as humans. Oral infection of chickens with ST313 isolates D23580 and Q456 resulted in rapid infection of spleen and liver with all birds infected at these sites by 3 days post-infection. In contrast, the well-defined ST19 S. Typhimurium isolates F98 and 4/74 were slower to cause invasive disease. Both ST19 and ST313 caused hepatosplenomegaly, and this was most pronounced in the ST313-infected animals. At 3 and 7 days post-infection, colonization of the gastrointestinal tract was lower in birds infected with the ST313 isolates compared with ST19. Histological examination and expression of CXCL chemokines in the ileum showed that both D23580 (ST313) and 4/74 (ST19) strains caused increased CXCL expression at 3 days post-infection, and this was significantly higher in the ileum of D23580 vs 4/74 infected birds. At 7 days post-infection, reduced chemokine expression occurred in the ileum of the D23580 but not 4/74-infected birds. Histological analysis showed that D23580 infection resulted in rapid inflammation and pathology including villous flattening and fusion at 3 days post-infection, and subsequent resolution by 7 days. In contrast, 4/74 induced less inflammation and pathology at 3 days post-infection. The data presented demonstrate that ST313 is capable of causing invasive disease in a non-human host. The rapid invasive nature of infection in the chicken, coupled with lower gastrointestinal colonization, supports the hypothesis that ST313 is a distinct pathovariant of S. Typhimurium that has evolved to become a systemic pathogen that can cause disease in several hosts. PMID:24130915

  12. Transcriptome and proteome analysis of Salmonella enterica serovar Typhimurium systemic infection of wild type and immune-deficient mice

    PubMed Central

    Oshota, Olusegun; Fookes, Maria; Schreiber, Fernanda; Chaudhuri, Roy R.; Yu, Lu; Clare, Simon; Choudhary, Jyoti; Thomson, Nicholas R.; Lio, Pietro

    2017-01-01

    Salmonella enterica are a threat to public health. Current vaccines are not fully effective. The ability to grow in infected tissues within phagocytes is required for S. enterica virulence in systemic disease. As the infection progresses the bacteria are exposed to a complex host immune response. Consequently, in order to continue growing in the tissues, S. enterica requires the coordinated regulation of fitness genes. Bacterial gene regulation has so far been investigated largely using exposure to artificial environmental conditions or to in vitro cultured cells, and little information is available on how S. enterica adapts in vivo to sustain cell division and survival. We have studied the transcriptome, proteome and metabolic flux of Salmonella, and the transcriptome of the host during infection of wild type C57BL/6 and immune-deficient gp91-/-phox mice. Our analyses advance the understanding of how S. enterica and the host behaves during infection to a more sophisticated level than has previously been reported. PMID:28796780

  13. Phenotypic and genotypic profile of clinical and animal multidrug-resistant Salmonella enterica isolates from Mexico.

    PubMed

    Aguilar-Montes de Oca, S; Talavera-Rojas, M; Soriano-Vargas, E; Barba-León, J; Vázquez-Navarrete, J; Acosta-Dibarrat, J; Salgado-Miranda, C

    2018-01-01

    The objective of this study was to obtain a phenotypic and genotypic profile of Salmonella enterica including multidrug-resistant (MDR) isolates from food-producing animals and clinical isolates, as well as their genetic relatedness in two different States of Mexico (Jalisco and State of Mexico). A total of 243 isolates were evaluated in terms of antimicrobial resistance (AMR) and related genes through a disk diffusion method and PCR respectively; we found 16 MDR isolates, all of them harbouring the bla CMY gene but not qnr genes, these isolates represent less than 10% of the collection. The pulsed-field gel electrophoresis revealed a higher genotypic similitude within isolates of State of Mexico than Jalisco. A low percentage of Salmonella isolates were resistant to relevant antibiotics in human health, nevertheless, the AMR and involved genes were similar despite the different serovars and origin of the isolates. This investigation provided an insight of the current status of AMR of Salmonella isolates in two States of Mexico and pinpoint the genes involved in AMR and their epidemiological relationship, the information could help to determine an adequate therapy in human and veterinary medicine. © 2017 The Society for Applied Microbiology.

  14. Coordinate Intracellular Expression of Salmonella Genes Induced during Infection

    PubMed Central

    Heithoff, Douglas M.; Conner, Christopher P.; Hentschel, Ute; Govantes, Fernando; Hanna, Philip C.; Mahan, Michael J.

    1999-01-01

    Salmonella typhimurium in vivo-induced (ivi) genes were grouped by their coordinate behavior in response to a wide variety of environmental and genetic signals, including pH, Mg2+, Fe2+, and PhoPQ. All of the seven ivi fusions that are induced by both low pH and low Mg2+ (e.g., iviVI-A) are activated by the PhoPQ regulatory system. Iron-responsive ivi fusions include those induced under iron limitation (e.g., entF) as well as one induced by iron excess but only in the absence of PhoP (pdu). Intracellular expression studies showed that each of the pH- and Mg2+-responsive fusions is induced upon entry into and growth within three distinct mammalian cell lines: RAW 264.7 murine macrophages and two cultured human epithelial cell lines: HEp-2 and Henle-407. Each ivi fusion has a characteristic level of induction consistent within all three cell types, suggesting that this class of coordinately expressed ivi genes responds to general intracellular signals that are present both in initial and in progressive stages of infection and may reflect their responses to similar vacuolar microenvironments in these cell types. Investigation of ivi expression patterns reveals not only the inherent versatility of pathogens to express a given gene(s) at various host sites but also the ability to modify their expression within the context of different animal hosts, tissues, cell types, or subcellular compartments. PMID:9922242

  15. Reduced salmonella fecal shedding in swine administered porcine granulocyte-colony stimulating factor (G-CSF)

    USDA-ARS?s Scientific Manuscript database

    Salmonella colonization of food animals is a concern for animal health, food safety and public health. Key objectives of pre-harvest food safety programs are to detect asymptomatic Salmonella carriage in food animals, reduce colonization, and prevent transmission of Salmonella to other animals and ...

  16. An outbreak of Salmonella dublin infection in England and Wales associated with a soft unpasteurized cows' milk cheese.

    PubMed

    Maguire, H; Cowden, J; Jacob, M; Rowe, B; Roberts, D; Bruce, J; Mitchell, E

    1992-12-01

    An outbreak of Salmonella dublin infection occurred in England and Wales in October to December 1989. Forty-two people were affected, mainly adults, and most lived in south-east England. Microbiological and epidemiological investigations implicated an imported Irish soft unpasteurized cows' milk cheese as the vehicle of infection. A case-control study showed a statistically significant association between infection and consumption of the suspect cheese (p = 0.001). Salmonella dublin was subsequently isolated from cheeses obtained from the manufacturer's premises. Initial control measures included the withdrawal of the cheese from retail sale and a Food Hazard Warning to Environmental Health Departments, as well as a press release, from the Department of Health. Subsequently, a decision was taken by the manufacturer to pasteurize milk used in the production of cheese for the UK market and importation of the cheese resumed in June 1990.

  17. Fecal microbiome of periparturient dairy cattle and associations with the onset of Salmonella shedding

    PubMed Central

    Opiyo, Stephen O.; Digianantonio, Rose; Williams, Michele L.; Wijeratne, Asela; Habing, Gregory

    2018-01-01

    Non-typhoidal Salmonella enterica is a zoonotic pathogen with critical importance in animal and public health. The persistence of Salmonella on farms affects animal productivity and health, and represents a risk for food safety. The intestinal microbiota plays a fundamental role in the colonization and invasion of this ubiquitous microorganism. To overcome the colonization resistance imparted by the gut microbiome, Salmonella uses invasion strategies and the host inflammatory response to survive, proliferate, and establish infections with diverse clinical manifestations. Cattle serve as reservoirs of Salmonella, and periparturient cows have high prevalence of Salmonella shedding; however, little is known about the association between the gut microbiome and the onset of Salmonella shedding during the periparturient period. Thus, the objective of this study was to assess the association between changes in bacterial communities and the onset of Salmonella shedding in cattle approaching parturition. In a prospective cohort study, fecal samples from 98 dairy cows originating from four different farms were collected at four time points relative to calving (-3 wks, -1 wk, +1 wk, +3 wks). All 392 samples were cultured for Salmonella. Sequencing of the V4 region of the 16S rRNA gene using the Illumina platform was completed to evaluate the fecal microbiome in a selected sample subset. Analyses of microbial composition, diversity, and structure were performed according to time points, farm, and Salmonella onset status. Individual cow fecal microbiomes, predominated by Bacteroidetes, Firmicutes, Spirochaetes, and Proteobacteria phyla, significantly changed before and after parturition. Microbial communities from different farms were distinguishable based on multivariate analysis. Although there were significant differences in some bacterial taxa between Salmonella positive and negative samples, our results did not identify differences in the fecal microbial diversity or

  18. Breast abscess in a man due to Salmonella enterica serotype Enteritidis.

    PubMed

    Brncic, Nada; Gorup, Lari; Strcic, Miroslav; Abram, Maja; Mustac, Elvira

    2012-01-01

    Nontyphoidal salmonellae can cause breast infection only exceptionally. A case of breast abscess in a 70-year-old man due to Salmonella enterica serotype Enteritidis (Salmonella Enteritidis) is reported. The infection was successfully treated with a combination of surgical and antibiotic treatment.

  19. Probiotic effect on calves infected with Salmonella Dublin: haematological parameters and serum biochemical profile.

    PubMed

    Soto, L P; Astesana, D M; Zbrun, M V; Blajman, J E; Salvetti, N R; Berisvil, A P; Rosmini, M R; Signorini, M L; Frizzo, L S

    2016-02-01

    The aim of this study was to evaluate the effect of a probiotic/lactose inoculum on haematological and immunological parameters and renal and hepatic biochemical profiles before and during a Salmonella Dublin DSPV 595T challenge in young calves. Twenty eight calves, divided into a control and probiotic group were used. The probiotic group was supplemented with 100 g lactose/calf/d and 10 10 cfu/calf/d of each strain of a probiotic inoculum composed of Lactobacillus casei DSPV318T, Lactobacillus salivarius DSPV315T and Pediococcus acidilactici DSPV006T throughout the experiment. The pathogen was administered on day 11 of the experiment, at an oral dose of 10 9 cfu/animal (LD 50 ). Aspartate aminotransferase (AST), gamma glutamyl transpeptidase (GGT), urea, red blood cells, haemoglobin, haematocrit, mean cell haemoglobin (MCH), mean corpuscular volume, mean corpuscular haemoglobin concentration (MCHC), white blood cells, lymphocytes, neutrophils, band neutrophils, monocytes, eosinophils, basophils and the neutrophils/lymphocytes ratio were measured on days 1, 10, 20 and 27 of the experiment. In addition, animals were necropsied to evaluate immunoglobulin A (IgA) production in the jejunal mucosa. The most significant differences caused by the administration of the inoculum/lactose were found during the acute phase of Salmonella challenge (9 days after challenge), when a difference between groups in neutrophils/lymphocytes ratio were detected. These results suggest that the probiotic/lactose inoculum administration increases the calf's ability to respond to the disease increasing the systemic immune response specific. No differences were found in haemoglobin, haematocrit, MCH, MCHC, AST, urea, GGT, band neutrophils, eosinophils, monocytes and IgA in the jejunum between the two groups of calves under the experimental conditions of this study. Further studies must be conducted to evaluate different probiotic/pathogens doses and different sampling times, to achieve a

  20. Breast Abscess in a Man Due to Salmonella enterica Serotype Enteritidis

    PubMed Central

    Brnčić, Nada; Strčić, Miroslav; Abram, Maja; Mustač, Elvira

    2012-01-01

    Nontyphoidal salmonellae can cause breast infection only exceptionally. A case of breast abscess in a 70-year-old man due to Salmonella enterica serotype Enteritidis (Salmonella Enteritidis) is reported. The infection was successfully treated with a combination of surgical and antibiotic treatment. PMID:22031702

  1. Comparative effect of direct-fed microbials on fecal shedding of Escherichia coli O157:H7 and Salmonella in naturally infected feedlot cattle.

    PubMed

    Tabe, Ebot S; Oloya, James; Doetkott, Dawn K; Bauer, Marc L; Gibbs, Penelope S; Khaitsa, Margaret L

    2008-03-01

    The effect of direct-fed microbials (DFM) on fecal shedding of Escherichia coli O157:H7 and Salmonella in naturally infected feedlot cattle was evaluated in a clinical trial involving 138 feedlot steers. Following standard laboratory methods, fecal samples collected from steers were evaluated for change in the detectable levels of E. coli O157:H7 and Salmonella shed in feces after DFM treatment. Sampling of steers was carried out every 3 weeks for 84 days. A significant reduction (32%) in fecal shedding of E. coli O157:H7 (P < 0.001), but not Salmonella (P = 0.24), was observed among the treatment steers compared with the control group during finishing. The probability of recovery of E. coli O157:H7 from the feces of treated and control steers was 34.0 and 66.0%, respectively. Steers placed on DFM supplement were almost three times less likely to shed E. coli O157:H7 (odds ratio, 0.36; 95% confidence interval, 0.25 to 0.53; P < 0.001) in their feces as opposed to their control counterparts. The probability of recovery of Salmonella from the feces of the control (14.0%) and the treated (11.3%) steers was similar. However, the DFM significantly reduced probability of new infections with Salmonella among DFM-treated cattle compared with controls (nontreated ones). It appears that DFM as applied in our study are capable of significantly reducing fecal shedding of E. coli O157:H7 in naturally infected cattle but not Salmonella. The factors responsible for the observed difference in the effects of DFM on E. coli O157:H7 and Salmonella warrants further investigation.

  2. National Outbreak of Multidrug Resistant Salmonella Heidelberg Infections Linked to a Single Poultry Company

    PubMed Central

    Gieraltowski, Laura; Higa, Jeffrey; Peralta, Vi; Green, Alice; Schwensohn, Colin; Rosen, Hilary; Libby, Tanya; Kissler, Bonnie; Marsden-Haug, Nicola; Booth, Hillary; Kimura, Akiko; Grass, Julian; Bicknese, Amelia; Tolar, Beth; Defibaugh-Chávez, Stephanie; Williams, Ian; Wise, Matthew

    2016-01-01

    Importance This large outbreak of foodborne salmonellosis demonstrated the complexity of investigating outbreaks linked to poultry products. The outbreak also highlighted the importance of efforts to strengthen food safety policies related to Salmonella in chicken parts and has implications for future changes within the poultry industry. Objective To investigate a large multistate outbreak of multidrug resistant Salmonella Heidelberg infections. Design Epidemiologic and laboratory investigations of patients infected with the outbreak strains of Salmonella Heidelberg and traceback of possible food exposures. Setting United States. Outbreak period was March 1, 2013 through July 11, 2014 Patients A case was defined as illness in a person infected with a laboratory-confirmed Salmonella Heidelberg with 1 of 7 outbreak pulsed-field gel electrophoresis (PFGE) XbaI patterns with illness onset from March 1, 2013 through July 11, 2014. A total of 634 case-patients were identified through passive surveillance; 200/528 (38%) were hospitalized, none died. Results Interviews were conducted with 435 case-patients: 371 (85%) reported eating any chicken in the 7 days before becoming ill. Of 273 case-patients interviewed with a focused questionnaire, 201 (74%) reported eating chicken prepared at home. Among case-patients with available brand information, 152 (87%) of 175 patients reported consuming Company A brand chicken. Antimicrobial susceptibility testing was completed on 69 clinical isolates collected from case-patients; 67% were drug resistant, including 24 isolates (35%) that were multidrug resistant. The source of Company A brand chicken consumed by case-patients was traced back to 3 California production establishments from which 6 of 7 outbreak strains were isolated. Conclusions Epidemiologic, laboratory, traceback, and environmental investigations conducted by local, state, and federal public health and regulatory officials indicated that consumption of Company A chicken

  3. National Outbreak of Multidrug Resistant Salmonella Heidelberg Infections Linked to a Single Poultry Company.

    PubMed

    Gieraltowski, Laura; Higa, Jeffrey; Peralta, Vi; Green, Alice; Schwensohn, Colin; Rosen, Hilary; Libby, Tanya; Kissler, Bonnie; Marsden-Haug, Nicola; Booth, Hillary; Kimura, Akiko; Grass, Julian; Bicknese, Amelia; Tolar, Beth; Defibaugh-Chávez, Stephanie; Williams, Ian; Wise, Matthew

    2016-01-01

    This large outbreak of foodborne salmonellosis demonstrated the complexity of investigating outbreaks linked to poultry products. The outbreak also highlighted the importance of efforts to strengthen food safety policies related to Salmonella in chicken parts and has implications for future changes within the poultry industry. To investigate a large multistate outbreak of multidrug resistant Salmonella Heidelberg infections. Epidemiologic and laboratory investigations of patients infected with the outbreak strains of Salmonella Heidelberg and traceback of possible food exposures. United States. Outbreak period was March 1, 2013 through July 11, 2014. A case was defined as illness in a person infected with a laboratory-confirmed Salmonella Heidelberg with 1 of 7 outbreak pulsed-field gel electrophoresis (PFGE) XbaI patterns with illness onset from March 1, 2013 through July 11, 2014. A total of 634 case-patients were identified through passive surveillance; 200/528 (38%) were hospitalized, none died. Interviews were conducted with 435 case-patients: 371 (85%) reported eating any chicken in the 7 days before becoming ill. Of 273 case-patients interviewed with a focused questionnaire, 201 (74%) reported eating chicken prepared at home. Among case-patients with available brand information, 152 (87%) of 175 patients reported consuming Company A brand chicken. Antimicrobial susceptibility testing was completed on 69 clinical isolates collected from case-patients; 67% were drug resistant, including 24 isolates (35%) that were multidrug resistant. The source of Company A brand chicken consumed by case-patients was traced back to 3 California production establishments from which 6 of 7 outbreak strains were isolated. Epidemiologic, laboratory, traceback, and environmental investigations conducted by local, state, and federal public health and regulatory officials indicated that consumption of Company A chicken was the cause of this outbreak. The outbreak involved multiple

  4. The Persistent Isolation of Salmonella typhimurium from the Mammary Gland of a Dairy Cow

    PubMed Central

    Ogilvie, Timothy H.

    1986-01-01

    The contamination of cheese by Salmonella typhimurium serotype 10 resulted in the bacteriological examination of raw milk from 327 farms on Prince Edward Island. A milk sample from a bulk tank from one farm was positive for this pathogen. The possible source was linked to the isolation of the strain from the milk from one quarter of one cow. Although the cow was asymptomatic for any clinical illness other than a chronic staphylococcal mastitis in two quarters, the animal continued to shed Salmonella in the milk during a 36 day period. Necropsy failed to reveal a source of the infection. PMID:17422692

  5. Transcriptional response of turkeys to MDR Salmonella enterica serovar heidelberg

    USDA-ARS?s Scientific Manuscript database

    Food-producing animals such as swine, cattle and poultry are a major reservoir of the human foodborne pathogen Salmonella. While some Salmonella serovars can cause disease in food-producing animals, most serovars colonize these animals asymptomatically, resulting in the hosts becoming carriers and ...

  6. Animal models of human immunodeficiency virus infection. Public Health Service Animal Models Committee.

    PubMed

    Spertzel, R O

    1989-12-01

    The search for a model of HIV infection continues. While much of the initial work focussed on animal models of AIDS, more recent efforts have sought animal models of HIV infection in which one or more signs of AIDS may be reproduced. Most initial small animal modelling efforts were negative and many such efforts remain unpublished. In 1988, the Public Health Service (PHS) AIDS Animal Model Committee conducted a survey among PHS agencies to identify published and unpublished data on animal models of HIV. To date, the chimpanzee is the only animal to be reliably infected with HIV albeit without development of signs and symptoms normally associated with human AIDS. One recent study has shown the gibbon to be similarly susceptible to infection with HIV. Mice carrying a chimera of elements of the human immune system have been shown to support the growth of HIV and F1 progeny of transgenic mice containing intact copies of HIV proviral DNA, have developed a disease that resembles some aspects of human AIDS. Rabbits, baboons and rhesus monkeys have also been shown to be infected under certain conditions and/or with selected strains of HIV but again without the development of AIDS symptomatology. This report briefly summarizes published and available unpublished data on these efforts to develop an animal model of HIV infection.

  7. Salmonella enterica serovar-specific transcriptional reprogramming of infected cells.

    PubMed

    Hannemann, Sebastian; Galán, Jorge E

    2017-07-01

    Despite their high degree of genomic similarity, different Salmonella enterica serovars are often associated with very different clinical presentations. In humans, for example, the typhoidal S. enterica serovar Typhi causes typhoid fever, a life-threatening systemic disease. In contrast, the non-typhoidal S. enterica serovar Typhimurium causes self-limiting gastroenteritis. The molecular bases for these different clinical presentations are incompletely understood. The ability to re-program gene expression in host cells is an essential virulence factor for typhoidal and non-typhoidal S. enterica serovars. Here, we have compared the transcriptional profile of cultured epithelial cells infected with S. Typhimurium or S. Typhi. We found that both serovars stimulated distinct transcriptional responses in infected cells that are associated with the stimulation of specific signal transduction pathways. These specific responses were associated with the presence of a distinct repertoire of type III secretion effector proteins. These observations provide major insight into the molecular bases for potential differences in the pathogenic mechanisms of typhoidal and non-typhoidal S. enterica serovars.

  8. Salmonella-secreted Virulence Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heffron, Fred; Niemann, George; Yoon, Hyunjin

    In this short review we discuss secreted virulence factors of Salmonella, which directly affect Salmonella interaction with its host. Salmonella secretes protein to subvert host defenses but also, as discussed, to reduce virulence thereby permitting the bacteria to persist longer and more successfully disperse. The type III secretion system (TTSS) is the best known and well studied of the mechanisms that enable secretion from the bacterial cytoplasm to the host cell cytoplasm. Other secretion systems include outer membrane vesicles, which are present in all Gram-negative bacteria examined to date, two-partner secretion, and type VI secretion will also be addressed. Excellentmore » reviews of Salmonella secreted effectors have focused on themes such as actin rearrangements, vesicular trafficking, ubiquitination, and the activities of the virulence factors themselves. This short review is based on S. Typhimurium infection of mice because it is a model of typhoid like disease in humans. We have organized effectors in terms of events that happen during the infection cycle and how secreted effectors may be involved.« less

  9. Local application of bacteria improves safety of Salmonella-mediated tumor therapy and retains advantages of systemic infection

    PubMed Central

    Schauer, Tim; Frahm, Michael; Heise, Ulrike; Zimmermann, Kurt; Erhardt, Marc; Weiss, Siegfried

    2017-01-01

    Cancer is a devastating disease and a large socio-economic burden. Novel therapeutic solutions are on the rise, although a cure remains elusive. Application of microorganisms represents an ancient therapeutic strategy, lately revoked and refined via simultaneous attenuation and amelioration of pathogenic properties. Salmonella Typhimurium has prevailed in preclinical development. Yet, using virulent strains for systemic treatment might cause severe side effects. In the present study, we highlight a modified strain based on Salmonella Typhimurium UK-1 expressing hexa-acylated Lipid A. We corroborate improved anti-tumor properties of this strain and investigate to which extent an intra-tumoral (i.t.) route of infection could help improve safety and retain advantages of systemic intravenous (i.v.) application. Our results show that i.t. infection exhibits therapeutic efficacy against CT26 and F1.A11 tumors similar to a systemic route of inoculation. Moreover, i.t. application allows extensive dose titration without compromising tumor colonization. Adverse colonization of healthy organs was generally reduced via i.t. infection and accompanied by less body weight loss of the murine host. Despite local application, adjuvanticity remained, and a CT26-specific CD8+ T cell response was effectively stimulated. Most interestingly, also secondary tumors could be targeted with this strategy, thereby extending the unique tumor targeting ability of Salmonella. The i.t. route of inoculation may reap the benefits of systemic infection and aid in safety assurance while directing potency of an oncolytic vector to where it is most needed, namely the primary tumor. PMID:28637010

  10. Local application of bacteria improves safety of Salmonella -mediated tumor therapy and retains advantages of systemic infection.

    PubMed

    Kocijancic, Dino; Felgner, Sebastian; Schauer, Tim; Frahm, Michael; Heise, Ulrike; Zimmermann, Kurt; Erhardt, Marc; Weiss, Siegfried

    2017-07-25

    Cancer is a devastating disease and a large socio-economic burden. Novel therapeutic solutions are on the rise, although a cure remains elusive. Application of microorganisms represents an ancient therapeutic strategy, lately revoked and refined via simultaneous attenuation and amelioration of pathogenic properties. Salmonella Typhimurium has prevailed in preclinical development. Yet, using virulent strains for systemic treatment might cause severe side effects. In the present study, we highlight a modified strain based on Salmonella Typhimurium UK-1 expressing hexa-acylated Lipid A. We corroborate improved anti-tumor properties of this strain and investigate to which extent an intra-tumoral (i.t.) route of infection could help improve safety and retain advantages of systemic intravenous (i.v.) application. Our results show that i.t. infection exhibits therapeutic efficacy against CT26 and F1.A11 tumors similar to a systemic route of inoculation. Moreover, i.t. application allows extensive dose titration without compromising tumor colonization. Adverse colonization of healthy organs was generally reduced via i.t. infection and accompanied by less body weight loss of the murine host. Despite local application, adjuvanticity remained, and a CT26-specific CD8+ T cell response was effectively stimulated. Most interestingly, also secondary tumors could be targeted with this strategy, thereby extending the unique tumor targeting ability of Salmonella. The i.t. route of inoculation may reap the benefits of systemic infection and aid in safety assurance while directing potency of an oncolytic vector to where it is most needed, namely the primary tumor.

  11. Diagnostics for invasive Salmonella infections: current challenges and future directions

    PubMed Central

    Andrews, Jason R.; Ryan, Edward T.

    2015-01-01

    Invasive Salmonellosis caused by Salmonella enterica serotype Typhi or Paratyphi A, B, C, or invasive non-typhoidal Salmonella serotypes, is an immensely important disease cluster for which reliable, rapid diagnostic tests are not available. Blood culture remains the gold standard but is insensitive, slow, and resource-intensive. Existing molecular diagnostics have poor sensitivity due to the low organism burden in bodily fluids. Commercially available serologic tests for typhoidal Salmonella have had limited sensitivity and specificity. In high burden, resource-limited settings, reliance on clinical diagnosis or inaccurate tests often results in frequent, unnecessary treatment, which contributes selective pressure for the emergence of antimicrobial resistance. This practice also results in inadequate therapy for other etiologies of acute febrile illnesses, including leptospirosis and rickettsial infections. A number of novel serologic, molecular, transcriptomic and metabolomic approaches to diagnostics are under development. Target product profiles that outline specific needs may focus development and investment, and establish benchmarks for accuracy, cost, speed, and portability of new diagnostics. Of note, a critical barrier to diagnostic assay rollout will be the low cost and low perceived harm of empiric therapy on behalf of providers and patients, which leaves few perceived incentives to utilize diagnostics. Approaches that align incentives with societal goals of limiting inappropriate antimicrobial use, such as subsidizing diagnostics, may be essential for stimulating development and uptake of such assays in resource-limited settings. New diagnostics for invasive Salmonellosis should be developed and deployed alongside diagnostics for alternative etiologies of acute febrile illnesses to improve targeted use of antibiotics. PMID:25937611

  12. Diagnostics for invasive Salmonella infections: Current challenges and future directions.

    PubMed

    Andrews, Jason R; Ryan, Edward T

    2015-06-19

    Invasive Salmonellosis caused by Salmonella enterica serotype Typhi or Paratyphi A, B, C, or invasive non-typhoidal Salmonella serotypes, is an immensely important disease cluster for which reliable, rapid diagnostic tests are not available. Blood culture remains the gold standard but is insensitive, slow, and resource-intensive. Existing molecular diagnostics have poor sensitivity due to the low organism burden in bodily fluids. Commercially available serologic tests for typhoidal Salmonella have had limited sensitivity and specificity. In high burden, resource-limited settings, reliance on clinical diagnosis or inaccurate tests often results in frequent, unnecessary treatment, which contributes selective pressure for the emergence of antimicrobial resistance. This practice also results in inadequate therapy for other etiologies of acute febrile illnesses, including leptospirosis and rickettsial infections. A number of novel serologic, molecular, transcriptomic and metabolomic approaches to diagnostics are under development. Target product profiles that outline specific needs may focus development and investment, and establish benchmarks for accuracy, cost, speed, and portability of new diagnostics. Of note, a critical barrier to diagnostic assay rollout will be the low cost and low perceived harm of empiric therapy on behalf of providers and patients, which leaves few perceived incentives to utilize diagnostics. Approaches that align incentives with societal goals of limiting inappropriate antimicrobial use, such as subsidizing diagnostics, may be essential for stimulating development and uptake of such assays in resource-limited settings. New diagnostics for invasive Salmonellosis should be developed and deployed alongside diagnostics for alternative etiologies of acute febrile illnesses to improve targeted use of antibiotics. Copyright © 2015. Published by Elsevier Ltd.

  13. Prevalence of Salmonella in Australian reptiles.

    PubMed

    Scheelings, T Franciscus; Lightfoot, Dianne; Holz, Peter

    2011-01-01

    From January 2007 until June 2008, 504 reptiles of four families and 57 species were examined for Salmonella by using cloacal or intestinal swabs. Salmonella was identified in 139 (28%) of the 504 animals tested. Of the 504 reptiles examined, 210 were captive and 294 were wild. Ninety-eight (47%) of the captive reptiles were shedding Salmonella at the time of sampling. In contrast, only 41 (14%) of the wild reptiles were shedding Salmonella. The higher prevalence of Salmonella in captive reptiles was statistically significant (P<0.0001). No Salmonella was found in 60 wild, freshwater chelonians or 48 wild southern water skinks (Eulamprus heatwolei). Our results suggest that some species of wild reptiles in Australia are not natural carriers of Salmonella and that diet and captivity may influence Salmonella excretion in other species.

  14. Four linked outbreaks of Salmonella enteritidis phage type 4 infection--the continuing egg threat.

    PubMed

    Ejidokun, O O; Killalea, D; Cooper, M; Holmyard, S; Cross, A; Kemp, C

    2000-06-01

    Four outbreaks of Salmonella enteritidis phage type (PT) 4 occurred among guests at functions for which a single commercial caterer supplied food. Retrospective cohort studies were used to describe the epidemiology of three of these outbreaks and identify the vehicle(s) responsible. Of 172 guests at these three events, 47 fitted the clinical case definition for illness and 24 cases were confirmed to have S. enteritidis PT4 infection. Food containing raw egg was identified epidemiologically as the likely vehicle of infection in two of the three outbreaks (odds ratios (OR) and 95% confidence intervals 9.1 (2.2-39.9) and 6.9 (1.2-46.4)). Logistic regression analysis yielded OR = 10.7 (p = 0.0022) and OR = 9.3 (p = 0.015) for egg consumption in two of the outbreaks. These outbreaks highlighted the continuing need to remind the public and commercial caterers of the potential high risks of contracting salmonella from shell eggs. Education of caterers includes advice to obtain eggs and other products from reputable and identifiable suppliers.

  15. Salmonella infection in healthy pet reptiles: Bacteriological isolation and study of some pathogenic characters.

    PubMed

    Bertelloni, Fabrizio; Chemaly, Marianne; Cerri, Domenico; Gall, Françoise Le; Ebani, Valentina Virginia

    2016-06-01

    The fecal samples from 213 captive reptiles were examined, and 29 (13.61%) Salmonella enterica isolates were detected: 14/62 (22.58%) from chelonians, 14/135 (10.37%) from saurians, and 1/16 (6.25%) from ophidians. The isolates were distributed among 14 different serotypes: Miami, Ebrie, Hermannsweder, Tiergarten, Tornov, Pomona, Poona, Goteborg, Abaetetube, Nyanza, Kumasi, Typhimurium, 50:b:z6, 9,12:z29:1,5, and a non-motile serotype with antigenic formula 1,4,[5],12:-:-. Salmonella typhimurium and 50:b:z6 isolates showed the spv plasmid virulence genes, responsible of the capability to induce extra-intestinal infections. In some cases, pulsed field gel electrophoresis revealed different profiles for the strains of the same serotypes, showing different origins, whereas a common source of infection was supposed when one pulsotype had been observed for isolates of a serovar. Twenty-seven (93.10%) isolates showed resistance to one or more antibiotics. Ceftazidime was active to all the tested isolates, whereas the highest percentages of strains were no susceptible to tigecycline (93.10%), streptomycin (89.66%), and sulfonamide (86.21%).

  16. 75 FR 66769 - Draft Compliance Policy Guide Sec. 690.800 Salmonella

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ...] Draft Compliance Policy Guide Sec. 690.800 Salmonella in Animal Feed; Availability; Extension of Comment... that are adulterated due to the presence of Salmonella. The Agency is taking this action in response to... action against animal feed or feed ingredients that are adulterated due to the presence of Salmonella...

  17. Independent Bottlenecks Characterize Colonization of Systemic Compartments and Gut Lymphoid Tissue by Salmonella

    PubMed Central

    Lim, Chee Han; Voedisch, Sabrina; Wahl, Benjamin; Rouf, Syed Fazle; Geffers, Robert

    2014-01-01

    Vaccination represents an important instrument to control typhoid fever in humans and protects mice from lethal infection with mouse pathogenic serovars of Salmonella species. Mixed infections with tagged Salmonella can be used in combination with probabilistic models to describe the dynamics of the infection process. Here we used mixed oral infections with tagged Salmonella strains to identify bottlenecks in the infection process in naïve and vaccinated mice. We established a next generation sequencing based method to characterize the composition of tagged Salmonella strains which offers a fast and reliable method to characterise the composition of genome-tagged Salmonella strains. We show that initial colonization of Salmonella was distinguished by a non-Darwinian selection of few bacteria setting up the infection independently in gut associated lymphoid tissue and systemic compartments. Colonization of Peyer's patches fuels the sustained spread of bacteria into mesenteric lymph nodes via dendritic cells. In contrast, infection of liver and spleen originated from an independent pool of bacteria. Vaccination only moderately reduced invasion of Peyer's patches but potently uncoupled bacterial populations present in different systemic compartments. Our data indicate that vaccination differentially skews the capacity of Salmonella to colonize systemic and gut immune compartments and provide a framework for the further dissection of infection dynamics. PMID:25079958

  18. Virulence Characterisation of Salmonella enterica Isolates of Differing Antimicrobial Resistance Recovered from UK Livestock and Imported Meat Samples

    PubMed Central

    Card, Roderick; Vaughan, Kelly; Bagnall, Mary; Spiropoulos, John; Cooley, William; Strickland, Tony; Davies, Rob; Anjum, Muna F.

    2016-01-01

    Salmonella enterica is a foodborne zoonotic pathogen of significant public health concern. We have characterized the virulence and antimicrobial resistance gene content of 95 Salmonella isolates from 11 serovars by DNA microarray recovered from UK livestock or imported meat. Genes encoding resistance to sulphonamides (sul1, sul2), tetracycline [tet(A), tet(B)], streptomycin (strA, strB), aminoglycoside (aadA1, aadA2), beta-lactam (blaTEM), and trimethoprim (dfrA17) were common. Virulence gene content differed between serovars; S. Typhimurium formed two subclades based on virulence plasmid presence. Thirteen isolates were selected by their virulence profile for pathotyping using the Galleria mellonella pathogenesis model. Infection with a chicken invasive S. Enteritidis or S. Gallinarum isolate, a multidrug resistant S. Kentucky, or a S. Typhimurium DT104 isolate resulted in high mortality of the larvae; notably presence of the virulence plasmid in S. Typhimurium was not associated with increased larvae mortality. Histopathological examination showed that infection caused severe damage to the Galleria gut structure. Enumeration of intracellular bacteria in the larvae 24 h post-infection showed increases of up to 7 log above the initial inoculum and transmission electron microscopy (TEM) showed bacterial replication in the haemolymph. TEM also revealed the presence of vacuoles containing bacteria in the haemocytes, similar to Salmonella containing vacuoles observed in mammalian macrophages; although there was no evidence from our work of bacterial replication within vacuoles. This work shows that microarrays can be used for rapid virulence genotyping of S. enterica and that the Galleria animal model replicates some aspects of Salmonella infection in mammals. These procedures can be used to help inform on the pathogenicity of isolates that may be antibiotic resistant and have scope to aid the assessment of their potential public and animal health risk. PMID:27199965

  19. Frequency and persistence of fecal shedding of Salmonella Enteritidis by experimentally infected laying hens housed in enriched colony cages at different stocking densities

    USDA-ARS?s Scientific Manuscript database

    Human infections with Salmonella Enteritidis are often attributed to the consumption of contaminated eggs, so the prevalence of this pathogen in egg-laying poultry is an important public health risk factor. Numerous and complex environmental influences on Salmonella persistence and transmission are ...

  20. Frequency and persistence of fecal shedding of Salmonella Enteritidis by experimentally infected laying hens housed in enriched colony cages at different stocking densities

    USDA-ARS?s Scientific Manuscript database

    Human Salmonella Enteritidis infections are often linked with consuming contaminated eggs, so the prevalence of this pathogen in egg-laying poultry is an important risk factor for public health. Salmonella persistence and transmission in commercial egg producing flocks are influenced by the complex ...

  1. Salmonella serotypes and their antimicrobial susceptibility in apparently healthy dogs in Addis Ababa, Ethiopia.

    PubMed

    Kiflu, Bitsu; Alemayehu, Haile; Abdurahaman, Mukarim; Negash, Yohannes; Eguale, Tadesse

    2017-05-19

    The close bond between pet animals and family members poses risk of infection with zoonotic bacterial pathogens such as Salmonella. No data is available on occurrence of Salmonella in dogs in Ethiopia. The aim of this study was therefore to determine the prevalence, serotype distribution and antimicrobial resistance of Salmonella from feces of apparently healthy dogs in Addis Ababa, Ethiopia. Of the total 360 dogs examined, 42 (11.7%; 95% Confidence limit of 8.5%-15.4%) were positive for Salmonella. Fourteen serotypes were detected and the predominant ones were S. Bronx (n = 7; 16.7%), S. Newport (n = 6; 14.3%), followed by S. Typhimurium, S. Indiana, S. Kentucky, S. Saintpaul and S. Virchow (n = 4; 9.5%) each. Salmonella infection status was significantly associated with history of symptom of diarrhea during the past 60 days (OR = 3.78; CI = 1.76-8.13; p = 0). Highest resistance rates were found for oxytetracycline (59.5%), neomycin (50%), streptomycin (38.1%), cephalothin (33.3%), doxycycline (30.9%), ampicillin (30.9%) and amoxicillin + clavulanic acid (26.2%). Thirty eight (90.5%) of the isolates were resistant or intermediately resistant to at least one of the 16 antimicrobials tested. Resistance to two or more antimicrobials was detected in 30 (71.4%) of the isolates. Resistance to three or more antimicrobials was detected in 19 (45.2%) of the isolates. This study demonstrated high carriage rate of Salmonella serotypes known for causing human salmonellosis and large proportion of them were resistant to antimicrobials used in public and veterinary medicine for management of various bacterial infections, suggesting the possible risk of infection of human population in close contact with these dogs by drug resistant pathogens. Therefore, it is vital to work on raising public awareness on zoonotic canine diseases prevention measures and good hygienic practices.

  2. Salmonella: an ecological success story

    USDA-ARS?s Scientific Manuscript database

    Salmonella was first described in 1885 as a secondary pathogen in the infectious disease process. In 1929, a paper published in the Proceedings of the Royal Society of Medicine reported that Salmonella organisms were predominant in food borne outbreaks but acknowledged that the path of infection wa...

  3. An outbreak of Salmonella dublin infection in England and Wales associated with a soft unpasteurized cows' milk cheese.

    PubMed Central

    Maguire, H.; Cowden, J.; Jacob, M.; Rowe, B.; Roberts, D.; Bruce, J.; Mitchell, E.

    1992-01-01

    An outbreak of Salmonella dublin infection occurred in England and Wales in October to December 1989. Forty-two people were affected, mainly adults, and most lived in south-east England. Microbiological and epidemiological investigations implicated an imported Irish soft unpasteurized cows' milk cheese as the vehicle of infection. A case-control study showed a statistically significant association between infection and consumption of the suspect cheese (p = 0.001). Salmonella dublin was subsequently isolated from cheeses obtained from the manufacturer's premises. Initial control measures included the withdrawal of the cheese from retail sale and a Food Hazard Warning to Environmental Health Departments, as well as a press release, from the Department of Health. Subsequently, a decision was taken by the manufacturer to pasteurize milk used in the production of cheese for the UK market and importation of the cheese resumed in June 1990. PMID:1468523

  4. Outbreak-associated Salmonella enterica Serotypes and Food Commodities, United States, 1998–2008

    PubMed Central

    Griffin, Patricia M.; Cole, Dana; Walsh, Kelly A.; Chai, Shua J.

    2013-01-01

    Salmonella enterica infections are transmitted not only by animal-derived foods but also by vegetables, fruits, and other plant products. To clarify links between Salmonella serotypes and specific foods, we examined the diversity and predominance of food commodities implicated in outbreaks of salmonellosis during 1998–2008. More than 80% of outbreaks caused by serotypes Enteritidis, Heidelberg, and Hadar were attributed to eggs or poultry, whereas >50% of outbreaks caused by serotypes Javiana, Litchfield, Mbandaka, Muenchen, Poona, and Senftenberg were attributed to plant commodities. Serotypes Typhimurium and Newport were associated with a wide variety of food commodities. Knowledge about these associations can help guide outbreak investigations and control measures. PMID:23876503

  5. Sources of Salmonellae in broiler chickens in Ontario.

    PubMed Central

    Hacking, W C; Mitchell, W R; Carlson, H C

    1978-01-01

    Sources of Salmonellae infecting broiler chicken flocks in Ontario were investigated from July, 1975 to April, 1976. Three broiler flocks were investigated on each of four farms which received chicks from a common hatchery. Samples of feed and new litter were preenriched in nonselective broth subcultured to Salmonella-selective enrichment broth and plated on Salmonella-selective differential agar.Samples of used litter, water, culled chicks, insects, mice, wild birds and environmental swabs were not cultured initially in the nonselective broth. Fecal samples from principal and occasional flock attendants were examined for Samonellae. Salmonella infection, as judged by contaminated flock litter was detected in six flocks on two of the farms while the flocks on the other farms remained negative. Salmonellae were isolated from 23 of 412 feed samples (nine serotypes), six of 35 new wood shaving samples (four serotypes), one of 29 pools of culled chick viscera (one serotype) and 44 of 267 used litter samples (14 serotypes). These results indicate that broiler chicken flocks were infected with diverse Salmonellae introduced in day old chicks, pelleted feeds, wood shavings and residual contamination from the preceding flock. PMID:743597

  6. Resolving Salmonella infection reveals dynamic and persisting changes in murine bone marrow progenitor cell phenotype and function

    PubMed Central

    Ross, Ewan A; Flores-Langarica, Adriana; Bobat, Saeeda; Coughlan, Ruth E; Marshall, Jennifer L; Hitchcock, Jessica R; Cook, Charlotte N; Carvalho-Gaspar, Manuela M; Mitchell, Andrea M; Clarke, Mary; Garcia, Paloma; Cobbold, Mark; Mitchell, Tim J; Henderson, Ian R; Jones, Nick D; Anderson, Graham; Buckley, Christopher D; Cunningham, Adam F

    2014-01-01

    The generation of immune cells from BM precursors is a carefully regulated process. This is essential to limit the potential for oncogenesis and autoimmunity yet protect against infection. How infection modulates this is unclear. Salmonella can colonize systemic sites including the BM and spleen. This resolving infection has multiple IFN-γ-mediated acute and chronic effects on BM progenitors, and during the first week of infection IFN-γ is produced by myeloid, NK, NKT, CD4+ T cells, and some lineage-negative cells. After infection, the phenotype of BM progenitors rapidly but reversibly alters, with a peak ∼30-fold increase in Sca-1hi progenitors and a corresponding loss of Sca-1lo/int subsets. Most strikingly, the capacity of donor Sca-1hi cells to reconstitute an irradiated host is reduced; the longer donor mice are exposed to infection, and Sca-1hic-kitint cells have an increased potential to generate B1a-like cells. Thus, Salmonella can have a prolonged influence on BM progenitor functionality not directly related to bacterial persistence. These results reflect changes observed in leucopoiesis during aging and suggest that BM functionality can be modulated by life-long, periodic exposure to infection. Better understanding of this process could offer novel therapeutic opportunities to modulate BM functionality and promote healthy aging. PMID:24825601

  7. Infection of the reproductive tract and eggs with Salmonella enterica serovar pullorum in the chicken is associated with suppression of cellular immunity at sexual maturity.

    PubMed

    Wigley, Paul; Hulme, Scott D; Powers, Claire; Beal, Richard K; Berchieri, Angelo; Smith, Adrian; Barrow, Paul

    2005-05-01

    Salmonella enterica serovar Pullorum causes persistent infections in laying hens. Splenic macrophages are the main site of persistence. At sexual maturity, numbers of bacteria increase and spread to the reproductive tract, which may result in vertical transmission to eggs or chicks. In this study we demonstrate that both male and female chickens may develop a carrier state following infection but that the increases in bacterial numbers and spread to the reproductive tract are phenomena restricted to hens, indicating that such changes are likely to be related to the onset of egg laying. The immunological responses during the carrier state and through the onset of laying in hens were determined. These indicate that chickens produce both humoral and T-cell responses to infection, but at the onset of laying both the T-cell response to Salmonella and nonspecific responses to mitogenic stimulation fall sharply in both infected and noninfected birds. The fall in T-cell responsiveness coincided with the increase in numbers of Salmonella serovar Pullorum and its spread to the reproductive tract. Three weeks after the onset of egg laying, T-cell responsiveness began to increase and bacterial numbers declined. Specific antibody levels changed little at the onset of laying but increased following the rise in bacterial numbers in a manner reminiscent of a secondary antibody response to rechallenge. These findings indicate that a nonspecific suppression of cellular responses occurs at the onset of laying and plays a major role the ability of Salmonella serovar Pullorum to infect the reproductive tract, leading to transmission to eggs. The loss of T-cell activity at the point of laying also has implications for Salmonella enterica serovar Enteritidis infection and transmission to eggs, along with its control by vaccination offering a "window of opportunity" in which infection may occur.

  8. SALMONELLA ENTERICA SEROVAR ENTERITIDIS INFECTION MODULATES DIVERSE FUNCTIONAL PROCESSES OF CHICKEN MACROPHAGE AT THE TRANSCRIPTIONAL LEVEL

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar Enteritidis (SE) is a major etiologic agent of non-typhoid salmonellosis. The organisms colonize adult chicken hosts without causing overt clinical signs. The immunological mechanisms underlying the silent and persistent infection of chickens by SE are not clearly underst...

  9. The extradomain a of fibronectin enhances the efficacy of lipopolysaccharide defective Salmonella bacterins as vaccines in mice

    PubMed Central

    2012-01-01

    The Extradomain A from fibronectin (EDA) has an immunomodulatory role as fusion protein with viral and tumor antigens, but its effect when administered with bacteria has not been assessed. Here, we investigated the adjuvant effect of EDA in mice immunizations against Salmonella enterica subspecies enterica serovar Enteritidis (Salmonella Enteritidis). Since lipopolysaccharide (LPS) is a major virulence factor and the LPS O-polysaccharide (O-PS) is the immunodominant antigen in serological diagnostic tests, Salmonella mutants lacking O-PS (rough mutants) represent an interesting approach for developing new vaccines and diagnostic tests to differentiate infected and vaccinated animals (DIVA tests). Here, antigenic preparations (hot-saline extracts and formalin-inactivated bacterins) from two Salmonella Enteritidis rough mutants, carrying either intact (SEΔwaaL) or deep-defective (SEΔgal) LPS-Core, were used in combination with EDA. Biotinylated bacterins, in particular SEΔwaaL bacterin, decorated with EDAvidin (EDA and streptavidin fusion protein) improved the protection conferred by hot-saline or bacterins alone and prevented significantly the virulent infection at least to the levels of live attenuated rough mutants. These findings demonstrate the adjuvant effect of EDAvidin when administered with biotinylated bacterins from Salmonella Enteritidis lacking O-PS and the usefulness of BEDA-SEΔwaaL as non-live vaccine in the mouse model. PMID:22515195

  10. Drug Resistance in Salmonella Typhimurium and its Implications*

    PubMed Central

    Anderson, E. S.

    1968-01-01

    A rise in Salmonella typhimurium infection was observed in calves in Britain during 1964–6, follwing the adoption of the intensive farming method. A single phage type of S. typhimurium, type 29, was incriminated as the major pathogen. Attempts to treat and control the disease with a range of antibiotics were ineffective, but resulted in the acquisition of transferable multiple drug resistance by type 29. The transmission of drug-resistant type 29, directly or indirectly, from bovines to man resulted in many human infections. Transferable drug resistance reaching man from enterobacteria of animal origin may ultimately enter specifically human pathogens. Infections such as that caused by type 29 can be eliminated, not by the massive use of antibiotics but by improvement in conditions of animal husbandry and reduction in the opportunities for the initiation and spread of the disease. A reappraisal is needed of the methods of using antibiotics to determine how these methods can be improved, in order to conserve the long-term efficacy of the antibiotics. PMID:4874171

  11. A Salmonella Typhimurium-Typhi Genomic Chimera: A Model to Study Vi Polysaccharide Capsule Function In Vivo

    PubMed Central

    Clare, Simon; Goulding, David; Holt, Kathryn E.; Grant, Andrew J.; Mastroeni, Piero; Dougan, Gordon; Kingsley, Robert A.

    2011-01-01

    The Vi capsular polysaccharide is a virulence-associated factor expressed by Salmonella enterica serotype Typhi but absent from virtually all other Salmonella serotypes. In order to study this determinant in vivo, we characterised a Vi-positive S. Typhimurium (C5.507 Vi+), harbouring the Salmonella pathogenicity island (SPI)-7, which encodes the Vi locus. S. Typhimurium C5.507 Vi+ colonised and persisted in mice at similar levels compared to the parent strain, S. Typhimurium C5. However, the innate immune response to infection with C5.507 Vi+ and SGB1, an isogenic derivative not expressing Vi, differed markedly. Infection with C5.507 Vi+ resulted in a significant reduction in cellular trafficking of innate immune cells, including PMN and NK cells, compared to SGB1 Vi− infected animals. C5.507 Vi+ infection stimulated reduced numbers of TNF-α, MIP-2 and perforin producing cells compared to SGB1 Vi−. The modulating effect associated with Vi was not observed in MyD88−/− and was reduced in TLR4−/− mice. The presence of the Vi capsule also correlated with induction of the anti-inflammatory cytokine IL-10 in vivo, a factor that impacted on chemotaxis and the activation of immune cells in vitro. PMID:21829346

  12. Diverse secreted effectors are required for Salmonella persistence in a mouse infection model.

    PubMed

    Kidwai, Afshan S; Mushamiri, Ivy; Niemann, George S; Brown, Roslyn N; Adkins, Joshua N; Heffron, Fred

    2013-01-01

    Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.

  13. Diverse Secreted Effectors Are Required for Salmonella Persistence in a Mouse Infection Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kidwai, Afshan S.; Mushamiri, Ivy T.; Niemann, George

    Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 moremore » strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.« less

  14. Comparison of sporadic cases of Salmonella Typhimurium with other Salmonella serotypes in Castellon (Spain): case-case study.

    PubMed

    Arnedo-Pena, Alberto; Vivas-Fornas, Iraya; Meseguer-Ferrer, Noemi; Tirado-Balaguer, María Dolores; Yagüe-Muñoz, Alberto; Herrera-León, Silvia; Sabater-Vidal, Susana; Romeu-García, María Ángeles; Vizcaino Batllés, Ana; Bellido-Blasco, Juan Bautista; Moreno-Muñoz, Rosario

    2017-10-07

    Salmonella infections (SI) are common in Spain. The aim of this study was to appraise risk factors and the clinical characteristics of sporadic Salmonella Typhimurium infections compared with other sporadic salmonella serotype infections (OSI). From September 2014 to August 2015, a case-case study was carried out by the Epidemiology Division of the Public Health Centre of Castellon. Case 1 consisted of patients with sporadic S. Typhimurium infections, while case 2 comprised OSI patients, assessed according to the stool cultures analyzed by the Microbiology Laboratories of Hospital General de Castellon and Hospital de La Plana in Vila-real. Patients from detected outbreaks were not included. The salmonella serotype was identified by the National Centre of Microbiology (Madrid). The total number of SI patients reported was 327, 242 of whom were studied (74.0%). 148 patients had sporadic S. Typhimurium infection and 64 had OSI, with median ages of 4 and 8.5 years, respectively. Sporadic S. Typhimurium infection patients presented more blood in feces and diarrhea episodes. Consumption of pork meat (OR=2.22; 95% CI 1.12-4.43), cold pork meats (OR=2.49; 95% CI 1.32-4.68) and playing in the dirt (OR=3.02; 95% CI 1.55-5.88), were associated with sporadic S. Typhimurium infection. In the 0-4 year-old group, the associated factors were consumption of cold pork meats, omelets and female gender. In the 5-year-old and over group, only playing in soil was associated with sporadic S. Typhimurium infection. The consumption of pork and omelets, as well as playing in the dirt, were the main factors associated with infection. Children were most affected by sporadic S. Typhimurium infection. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  15. Direct costs associated with a nosocomial outbreak of Salmonella infection: an ounce of prevention is worth a pound of cure.

    PubMed

    Spearing, N M; Jensen, A; McCall, B J; Neill, A S; McCormack, J G

    2000-02-01

    Nosocomial outbreaks of Salmonella infections in Australia are an infrequent but significant source of morbidity and mortality. Such an outbreak results in direct, measurable expenses for acute care management, as well as numerous indirect (and less quantifiable) costs to those affected, the hospital, and the wider community. This article describes the significant direct costs incurred as a result of a nosocomial outbreak of Salmonella infection involving patients and staff. Information on costs incurred by the hospital was gathered from a number of sources. The data were grouped into 4 sections (medical costs, investigative costs, lost productivity costs, and miscellaneous) with use of an existing tool for calculating the economic impact of foodborne illness. The outbreak cost the hospital more than AU $120, 000. (US $95,000). This amount is independent of more substantial indirect costs. Salmonella infections are preventable. Measures to aid the prevention of costly outbreaks of nosocomial salmonellosis, although available, require an investment of both time and money. We suggest that dedication of limited resources toward such preventive strategies as education is a practical and cost-effective option for health care facilities.

  16. Salmonella

    USDA-ARS?s Scientific Manuscript database

    Salmonella are facultative anaerobic Gram-negative non-spore forming rods belonging to the family Enterobacteriaceae. Salmonellosis is a zoonotic and foodborne illness that is usually transmitted by the fecal-oral route estimated to be responsible for 1.4 million cases of human infections in 2009 in...

  17. A mouse model for the human pathogen Salmonella Typhi

    PubMed Central

    Song, Jeongmin; Willinger, Tim; Rongvaux, Anthony; Eynon, Elizabeth E.; Stevens, Sean; Manz, Markus G.; Flavell, Richard A.; Galán, Jorge E.

    2010-01-01

    SUMMARY Salmonella enterica serovar Typhi (S. Typhi) is the cause of typhoid fever, a life-threatening disease of humans. The lack of an animal model due to S. typhi's strict human host specificity has been a significant obstacle in the understanding of its pathogenesis and the development of a safe and effective vaccine against typhoid fever. We report here the development of a mouse model for S. Typhi infection. We showed that immunodeficient Rag2 -/- γc -/- mice engrafted with human fetal liver hematopoietic stem and progenitor cells were able to support S. Typhi replication and persistent infection. A S. Typhi strain carrying a mutation in a gene required for its virulence in humans was not able to replicate in these humanized mice. In contrast, another mutant strain unable to produce the recently identified typhoid toxin, exhibited increased replication suggesting a potential role for this toxin in the establishment of persistent infection. Furthermore, infected animals mounted a human innate and adaptive immune response to S. Typhi resulting in the production of cytokines and pathogen-specific antibodies. These results therefore indicate that this animal model can be used to study S. Typhi pathogenesis and to evaluate potential vaccine candidates against typhoid fever. PMID:20951970

  18. AMPK and mTOR: Sensors and regulators of immunometabolic changes during Salmonella infection in the chicken

    USDA-ARS?s Scientific Manuscript database

    Non-typhoidal Salmonella enterica induce an early pro-inflammatory response in chickens, but the response is short-lived, asymptomatic of clinical disease, results in a persistent colonization of the gastrointestinal (GI) tract, and can transmit infections to naive hosts via fecal shedding of bacter...

  19. Salmonella enterocolitis

    MedlinePlus

    ... you: Eat foods such as turkey, turkey dressing, chicken, or eggs that have not been cooked well or stored properly Are around family members with a recent salmonella infection Have been in or worked in a ...

  20. Characterization of Resistance Genes and Plasmids from Outbreaks and Illness Clusters Caused by Salmonella Resistant to Ceftriaxone in the United States, 2011-2012.

    PubMed

    Folster, Jason P; Grass, Julian E; Bicknese, Amelia; Taylor, Julia; Friedman, Cindy R; Whichard, Jean M

    2017-03-01

    Salmonella is an important cause of foodborne illness; however, quickly identifying the source of these infections can be difficult, and source identification is a crucial step in preventing additional illnesses. Although most infections are self-limited, invasive salmonellosis may require antimicrobial treatment. Ceftriaxone, an extended-spectrum cephalosporin, is commonly used for treatment of salmonellosis. Previous studies have identified a correlation between the food animal/retail meat source of ceftriaxone-resistant Salmonella and the type of resistance gene and plasmid it carries. In this study, we examined seven outbreaks of ceftriaxone-resistant Salmonella infections, caused by serotypes Typhimurium, Newport, Heidelberg, and Infantis. All isolates were positive for a plasmid-encoded bla CMY gene. Plasmid incompatibility typing identified five IncI1 and two IncA/C plasmids. Both outbreaks containing bla CMY -IncA/C plasmids were linked to consumption of cattle products. Three of five outbreaks with bla CMY -IncI1 (ST12) plasmids were linked to a poultry source. The remaining IncI1 outbreaks were associated with ground beef (ST20) and tomatoes (ST12). In addition, we examined isolates from five unsolved clusters of ceftriaxone-resistant Salmonella infections and used our plasmid-encoded gene findings to predict the source. Overall, we identified a likely association between the source of ceftriaxone-resistant Salmonella outbreaks and the type of resistance gene/plasmid it carries.

  1. Identification of a Plasmid-Mediated Quinolone Resistance Gene in Salmonella Isolates from Texas Dairy Farm Environmental Samples.

    PubMed

    Cummings, K J; Rodriguez-Rivera, L D; Norman, K N; Ohta, N; Scott, H M

    2017-06-01

    A recent increase in plasmid-mediated quinolone resistance (PMQR) has been detected among Salmonella isolated from humans in the United States, and it is necessary to determine the sources of human infection. We had previously isolated Salmonella from dairy farm environmental samples collected in Texas, and isolates were tested for anti-microbial susceptibility. Two isolates, serotyped as Salmonella Muenster, showed the discordant pattern of nalidixic acid susceptibility and intermediate susceptibility to ciprofloxacin. For this project, whole-genome sequencing of both isolates was performed to detect genes associated with quinolone resistance. The plasmid-mediated qnrB19 gene and IncR plasmid type were identified in both isolates. To our knowledge, this is the first report of PMQR in Salmonella isolated from food animals or agricultural environments in the United States. © 2016 Blackwell Verlag GmbH.

  2. Salmonella typhimurium infection in high and low antibody responder mice: inverse correlation between antibody responsiveness and resistance to infection.

    PubMed

    Sant'Anna, O A; Massa, S; Mouton, D; Bouthillier, Y; Mevel, J C; Ibanez, O M; Vassao, R; de Franco, M; Bellinati, R; Siqueira, M

    1989-12-01

    Susceptibility to Salmonella typhimurium infection was compared in H (high Ab responder) and L (low Ab responder) mice obtained by several selective breeding experiments (Selections I, II, III, IV and IV A). H mice were always much more susceptible to infection than their L mice counterparts within a continuous LD 50 variation range. In three of the selections (I, II and IV A) the low responsiveness character is known to result mainly from rapid Ag degradation in L mice macrophages. It was hypothesized that resistance to multiplication of intracellular pathogens could be related to an increased catabolic activity towards Ag. This was actually demonstrated, in F2 segregant hybrids of selection IV A, by the significant inverse correlation between capacity for Ab production and resistance to infection.

  3. Generation of Influenza Virus from Avian Cells Infected by Salmonella Carrying the Viral Genome

    PubMed Central

    Zhang, Xiangmin; Kong, Wei; Wanda, Soo-Young; Xin, Wei; Alamuri, Praveen; Curtiss, Roy

    2015-01-01

    Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 107 50% tissue culture infective doses (TCID50)/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF) and Madin-Darby canine kidney (MDCK) cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo. PMID:25742162

  4. Salmonella enterica subclinical infection: bacteriological, serological, pulsed-field gel electrophoresis, and antimicrobial resistance profiles--longitudinal study in a three-site farrow-to-finish farm.

    PubMed

    Vigo, German B; Cappuccio, Javier A; Piñeyro, Pablo E; Salve, Angela; Machuca, Mariana A; Quiroga, Maria A; Moredo, Fabiana; Giacoboni, Gabriel; Cancer, Jose L; Caffer, Ines G; Binsztein, Norma; Pichel, Mariana; Perfumo, Carlos J

    2009-10-01

    The aim of this surveillance was to study both Salmonella spp. shedding patterns and the time course of serological response in farrow-to-finish reared pigs from a subclinically infected farm. Antimicrobial resistance profile, molecular subtyping, and the relationship among the isolates were determined by pulsed-field gel electrophoresis (PFGE). A farrow-to-finish farm of 6000 sows, with a history of Salmonella Typhimurium septicemia, was selected. A longitudinal bacteriological and serological study was conducted in 25 sows before farrowing (M/S1) and in 50 offspring at 21 (M/S2), 35 (M/S3), 65 (M/S4), 86 (M/S5), 128 (M/S6), and 165 (M/S7) days of age. Serum antibodies were tested using Herdcheck((R)) Swine Salmonella antibody test kit (Idexx Laboratories, ME). Bacteria were isolated from pooled fecal samples. Suspected isolates were confirmed by conventional biochemical assays, and those identified as Salmonella spp. were serotyped. A variation between seropositive percentages and positive fecal samples was observed. Serologically positive pigs decreased from S1 to S4, and subsequently increased from S4 to S7. The percentages of fecal positive culture increased from M1 to M3, and then declined in M4, increased in M5, and were negative in M6 and M7. In the study three serovars, Salmonella 3,10:e,h:-, Salmonella Muenster, and Salmonella Bovismorbificans, were identified with low pathogenicity for swine. Three multidrug resistance strains (one belonged to Salmonella 3,10:e,h:- and two belonged to Salmonella Muenster) were found. PFGE results showed three different but closely related patterns among the 13 isolates of Salmonella Bovismorbificans, and two patterns for the three Salmonella Muenster and Salmonella 3,10:e,h:- isolates. This longitudinal study established critical points of Salmonella spp. infection in the farm and the production stages, where appropriate control measures must be taken. PFGE showed clonal relationships in each serovar. Antibiotic

  5. Salmonella enterica Subclinical Infection: Bacteriological, Serological, Pulsed-Field Gel Electrophoresis, and Antimicrobial Resistance Profiles—Longitudinal Study in a Three-Site Farrow-to-Finish Farm

    PubMed Central

    Vigo, German B.; Cappuccio, Javier A.; Salve, Angela; Machuca, Mariana A.; Quiroga, Maria A.; Moredo, Fabiana; Giacoboni, Gabriel; Cancer, Jose L.; Caffer, Ines G.; Binsztein, Norma; Pichel, Mariana; Perfumo, Carlos J.

    2009-01-01

    Abstract The aim of this surveillance was to study both Salmonella spp. shedding patterns and the time course of serological response in farrow-to-finish reared pigs from a subclinically infected farm. Antimicrobial resistance profile, molecular subtyping, and the relationship among the isolates were determined by pulsed-field gel electrophoresis (PFGE). A farrow-to-finish farm of 6000 sows, with a history of Salmonella Typhimurium septicemia, was selected. A longitudinal bacteriological and serological study was conducted in 25 sows before farrowing (M/S1) and in 50 offspring at 21 (M/S2), 35 (M/S3), 65 (M/S4), 86 (M/S5), 128 (M/S6), and 165 (M/S7) days of age. Serum antibodies were tested using Herdcheck® Swine Salmonella antibody test kit (Idexx Laboratories, ME). Bacteria were isolated from pooled fecal samples. Suspected isolates were confirmed by conventional biochemical assays, and those identified as Salmonella spp. were serotyped. A variation between seropositive percentages and positive fecal samples was observed. Serologically positive pigs decreased from S1 to S4, and subsequently increased from S4 to S7. The percentages of fecal positive culture increased from M1 to M3, and then declined in M4, increased in M5, and were negative in M6 and M7. In the study three serovars, Salmonella 3,10:e,h:-, Salmonella Muenster, and Salmonella Bovismorbificans, were identified with low pathogenicity for swine. Three multidrug resistance strains (one belonged to Salmonella 3,10:e,h:- and two belonged to Salmonella Muenster) were found. PFGE results showed three different but closely related patterns among the 13 isolates of Salmonella Bovismorbificans, and two patterns for the three Salmonella Muenster and Salmonella 3,10:e,h:- isolates. This longitudinal study established critical points of Salmonella spp. infection in the farm and the production stages, where appropriate control measures must be taken. PFGE showed clonal relationships in each serovar. Antibiotic

  6. 9 CFR 147.11 - Laboratory procedure recommended for the bacteriological examination of salmonella.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... procedure recommended for the bacteriological examination of salmonella. (a) For egg- and meat-type chickens... the bacteriological examination of salmonella. 147.11 Section 147.11 Animals and Animal Products... 25 birds, and birds from Salmonella enteritidis (SE) positive environments should be cultured in...

  7. 9 CFR 147.11 - Laboratory procedure recommended for the bacteriological examination of salmonella.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... procedure recommended for the bacteriological examination of salmonella. (a) For egg- and meat-type chickens... the bacteriological examination of salmonella. 147.11 Section 147.11 Animals and Animal Products... 25 birds, and birds from Salmonella enteritidis (SE) positive environments should be cultured in...

  8. 9 CFR 147.11 - Laboratory procedure recommended for the bacteriological examination of salmonella.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... procedure recommended for the bacteriological examination of salmonella. (a) For egg- and meat-type chickens... the bacteriological examination of salmonella. 147.11 Section 147.11 Animals and Animal Products... 25 birds, and birds from Salmonella enteritidis (SE) positive environments should be cultured in...

  9. 9 CFR 147.11 - Laboratory procedure recommended for the bacteriological examination of salmonella.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... procedure recommended for the bacteriological examination of salmonella. (a) For egg- and meat-type chickens... the bacteriological examination of salmonella. 147.11 Section 147.11 Animals and Animal Products... 25 birds, and birds from Salmonella enteritidis (SE) positive environments should be cultured in...

  10. 9 CFR 147.11 - Laboratory procedure recommended for the bacteriological examination of salmonella.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... procedure recommended for the bacteriological examination of salmonella. (a) For egg- and meat-type chickens... the bacteriological examination of salmonella. 147.11 Section 147.11 Animals and Animal Products... 25 birds, and birds from Salmonella enteritidis (SE) positive environments should be cultured in...

  11. Microbiology of animal bite wound infections.

    PubMed

    Abrahamian, Fredrick M; Goldstein, Ellie J C

    2011-04-01

    The microbiology of animal bite wound infections in humans is often polymicrobial, with a broad mixture of aerobic and anaerobic microorganisms. Bacteria recovered from infected bite wounds are most often reflective of the oral flora of the biting animal, which can also be influenced by the microbiome of their ingested prey and other foods. Bacteria may also originate from the victim's own skin or the physical environment at the time of injury. Our review has focused on bite wound infections in humans from dogs, cats, and a variety of other animals such as monkeys, bears, pigs, ferrets, horses, sheep, Tasmanian devils, snakes, Komodo dragons, monitor lizards, iguanas, alligators/crocodiles, rats, guinea pigs, hamsters, prairie dogs, swans, and sharks. The medical literature in this area has been made up mostly of small case series or case reports. Very few studies have been systematic and are often limited to dog or cat bite injuries. Limitations of studies include a lack of established or inconsistent criteria for an infected wound and a failure to utilize optimal techniques in pathogen isolation, especially for anaerobic organisms. There is also a lack of an understanding of the pathogenic significance of all cultured organisms. Gathering information and conducting research in a more systematic and methodical fashion through an organized research network, including zoos, veterinary practices, and rural clinics and hospitals, are needed to better define the microbiology of animal bite wound infections in humans.

  12. Microbiology of Animal Bite Wound Infections

    PubMed Central

    Abrahamian, Fredrick M.; Goldstein, Ellie J. C.

    2011-01-01

    Summary: The microbiology of animal bite wound infections in humans is often polymicrobial, with a broad mixture of aerobic and anaerobic microorganisms. Bacteria recovered from infected bite wounds are most often reflective of the oral flora of the biting animal, which can also be influenced by the microbiome of their ingested prey and other foods. Bacteria may also originate from the victim's own skin or the physical environment at the time of injury. Our review has focused on bite wound infections in humans from dogs, cats, and a variety of other animals such as monkeys, bears, pigs, ferrets, horses, sheep, Tasmanian devils, snakes, Komodo dragons, monitor lizards, iguanas, alligators/crocodiles, rats, guinea pigs, hamsters, prairie dogs, swans, and sharks. The medical literature in this area has been made up mostly of small case series or case reports. Very few studies have been systematic and are often limited to dog or cat bite injuries. Limitations of studies include a lack of established or inconsistent criteria for an infected wound and a failure to utilize optimal techniques in pathogen isolation, especially for anaerobic organisms. There is also a lack of an understanding of the pathogenic significance of all cultured organisms. Gathering information and conducting research in a more systematic and methodical fashion through an organized research network, including zoos, veterinary practices, and rural clinics and hospitals, are needed to better define the microbiology of animal bite wound infections in humans. PMID:21482724

  13. Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin

    PubMed Central

    Kisiela, Dagmara I.; Chattopadhyay, Sujay; Libby, Stephen J.; Karlinsey, Joyce E.; Fang, Ferric C.; Tchesnokova, Veronika; Kramer, Jeremy J.; Beskhlebnaya, Viktoriya; Samadpour, Mansour; Grzymajlo, Krzysztof; Ugorski, Maciej; Lankau, Emily W.; Mackie, Roderick I.; Clegg, Steven; Sokurenko, Evgeni V.

    2012-01-01

    Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella. PMID:22685400

  14. Investigating Salmonella Eko from Various Sources in Nigeria by Whole Genome Sequencing to Identify the Source of Human Infections

    PubMed Central

    Leekitcharoenphon, Pimlapas; Raufu, Ibrahim; Nielsen, Mette T.; Rosenqvist Lund, Birthe S.; Ameh, James A.; Ambali, Abdul G.; Sørensen, Gitte; Le Hello, Simon; Aarestrup, Frank M.; Hendriksen, Rene S.

    2016-01-01

    Twenty-six Salmonella enterica serovar Eko isolated from various sources in Nigeria were investigated by whole genome sequencing to identify the source of human infections. Diversity among the isolates was observed and camel and cattle were identified as the primary reservoirs and the most likely source of the human infections. PMID:27228329

  15. Characterization of Resistance Genes and Plasmids from Outbreaks and Illness Clusters Caused by Salmonella Resistant to Ceftriaxone in the United States, 2011–2012

    PubMed Central

    Folster, Jason P.; Grass, Julian E.; Bicknese, Amelia; Taylor, Julia; Friedman, Cindy R.; Whichard, Jean M.

    2017-01-01

    Salmonella is an important cause of foodborne illness; however, quickly identifying the source of these infections can be difficult, and source identification is a crucial step in preventing additional illnesses. Although most infections are self-limited, invasive salmonellosis may require antimicrobial treatment. Ceftriaxone, an extended-spectrum cephalosporin, is commonly used for treatment of salmonellosis. Previous studies have identified a correlation between the food animal/retail meat source of ceftriaxone-resistant Salmonella and the type of resistance gene and plasmid it carries. In this study, we examined seven outbreaks of ceftriaxone-resistant Salmonella infections, caused by serotypes Typhimurium, Newport, Heidelberg, and Infantis. All isolates were positive for a plasmid-encoded blaCMY gene. Plasmid incompatibility typing identified five IncI1 and two IncA/C plasmids. Both outbreaks containing blaCMY-IncA/C plasmids were linked to consumption of cattle products. Three of five outbreaks with blaCMY-IncI1 (ST12) plasmids were linked to a poultry source. The remaining IncI1 outbreaks were associated with ground beef (ST20) and tomatoes (ST12). Additionally, we examined isolates from five unsolved clusters of ceftriaxone-resistant Salmonella infections and used our plasmid encoded gene findings to predict the source. Overall, we identified a likely association between the source of ceftriaxone-resistant Salmonella outbreaks and the type of resistance gene/plasmid it carries. PMID:27828730

  16. Molecular and comparative analysis of Salmonella enterica Senftenberg from humans and animals using PFGE, MLST and NARMS.

    PubMed

    Stepan, Ryan M; Sherwood, Julie S; Petermann, Shana R; Logue, Catherine M

    2011-06-27

    Salmonella species are recognized worldwide as a significant cause of human and animal disease. In this study the molecular profiles and characteristics of Salmonella enterica Senftenberg isolated from human cases of illness and those recovered from healthy or diagnostic cases in animals were assessed. Included in the study was a comparison with our own sequenced strain of S. Senfteberg recovered from production turkeys in North Dakota. Isolates examined in this study were subjected to antimicrobial susceptibility profiling using the National Antimicrobial Resistance Monitoring System (NARMS) panel which tested susceptibility to 15 different antimicrobial agents. The molecular profiles of all isolates were determined using Pulsed Field Gel Electrophoresis (PFGE) and the sequence types of the strains were obtained using Multi-Locus Sequence Type (MLST) analysis based on amplification and sequence interrogation of seven housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, and thrA). PFGE data was input into BioNumerics analysis software to generate a dendrogram of relatedness among the strains. The study found 93 profiles among 98 S. Senftenberg isolates tested and there were primarily two sequence types associated with humans and animals (ST185 and ST14) with overlap observed in all host types suggesting that the distribution of S. Senftenberg sequence types is not host dependent. Antimicrobial resistance was observed among the animal strains, however no resistance was detected in human isolates suggesting that animal husbandry has a significant influence on the selection and promotion of antimicrobial resistance. The data demonstrates the circulation of at least two strain types in both animal and human health suggesting that S. Senftenberg is relatively homogeneous in its distribution. The data generated in this study could be used towards defining a pathotype for this serovar.

  17. Molecular and comparative analysis of Salmonella enterica Senftenberg from humans and animals using PFGE, MLST and NARMS

    PubMed Central

    2011-01-01

    Background Salmonella species are recognized worldwide as a significant cause of human and animal disease. In this study the molecular profiles and characteristics of Salmonella enterica Senftenberg isolated from human cases of illness and those recovered from healthy or diagnostic cases in animals were assessed. Included in the study was a comparison with our own sequenced strain of S. Senfteberg recovered from production turkeys in North Dakota. Isolates examined in this study were subjected to antimicrobial susceptibility profiling using the National Antimicrobial Resistance Monitoring System (NARMS) panel which tested susceptibility to 15 different antimicrobial agents. The molecular profiles of all isolates were determined using Pulsed Field Gel Electrophoresis (PFGE) and the sequence types of the strains were obtained using Multi-Locus Sequence Type (MLST) analysis based on amplification and sequence interrogation of seven housekeeping genes (aroC, dnaN, hemD, hisD, purE, sucA, and thrA). PFGE data was input into BioNumerics analysis software to generate a dendrogram of relatedness among the strains. Results The study found 93 profiles among 98 S. Senftenberg isolates tested and there were primarily two sequence types associated with humans and animals (ST185 and ST14) with overlap observed in all host types suggesting that the distribution of S. Senftenberg sequence types is not host dependent. Antimicrobial resistance was observed among the animal strains, however no resistance was detected in human isolates suggesting that animal husbandry has a significant influence on the selection and promotion of antimicrobial resistance. Conclusion The data demonstrates the circulation of at least two strain types in both animal and human health suggesting that S. Senftenberg is relatively homogeneous in its distribution. The data generated in this study could be used towards defining a pathotype for this serovar. PMID:21708021

  18. Inflammation drives thrombosis after Salmonella infection via CLEC-2 on platelets

    PubMed Central

    Hitchcock, Jessica R.; Cook, Charlotte N.; Bobat, Saeeda; Ross, Ewan A.; Flores-Langarica, Adriana; Lowe, Kate L.; Khan, Mahmood; Dominguez-Medina, C. Coral; Lax, Sian; Carvalho-Gaspar, Manuela; Hubscher, Stefan; Rainger, G. Ed; Cobbold, Mark; Buckley, Christopher D.; Mitchell, Tim J.; Mitchell, Andrea; Jones, Nick D.; Van Rooijen, N.; Kirchhofer, Daniel; Henderson, Ian R.; Adams, David H.; Watson, Steve P.; Cunningham, Adam F.

    2015-01-01

    Thrombosis is a common, life-threatening consequence of systemic infection; however, the underlying mechanisms that drive the formation of infection-associated thrombi are poorly understood. Here, using a mouse model of systemic Salmonella Typhimurium infection, we determined that inflammation in tissues triggers thrombosis within vessels via ligation of C-type lectin–like receptor-2 (CLEC-2) on platelets by podoplanin exposed to the vasculature following breaching of the vessel wall. During infection, mice developed thrombi that persisted for weeks within the liver. Bacteria triggered but did not maintain this process, as thrombosis peaked at times when bacteremia was absent and bacteria in tissues were reduced by more than 90% from their peak levels. Thrombus development was triggered by an innate, TLR4-dependent inflammatory cascade that was independent of classical glycoprotein VI–mediated (GPVI-mediated) platelet activation. After infection, IFN-γ release enhanced the number of podoplanin-expressing monocytes and Kupffer cells in the hepatic parenchyma and perivascular sites and absence of TLR4, IFN-γ, or depletion of monocytic-lineage cells or CLEC-2 on platelets markedly inhibited the process. Together, our data indicate that infection-driven thrombosis follows local inflammation and upregulation of podoplanin and platelet activation. The identification of this pathway offers potential therapeutic opportunities to control the devastating consequences of infection-driven thrombosis without increasing the risk of bleeding. PMID:26571395

  19. Animal models for percutaneous-device-related infections: a review.

    PubMed

    Shao, Jinlong; Kolwijck, Eva; Jansen, John A; Yang, Fang; Walboomers, X Frank

    2017-06-01

    This review focuses on the construction of animal models for percutaneous-device-related infections, and specifically the role of inoculation of bacteria in such models. Infections around percutaneous devices, such as catheters, dental implants and limb prostheses, are a recurrent and persistent clinical problem. To promote the research on this clinical problem, the establishment of a reliable and validated animal model would be of keen interest. In this review, literature related to percutaneous devices was evaluated, and particular attention was paid to studies involving the use of bacteria. The design of percutaneous devices, susceptibility of various animal species, bacterial strains, amounts of bacteria, method of inoculation and methods for subsequent evaluation of the infection are discussed in detail. Given that an ideal animal model for study of percutaneous-device-related infection is still not existent, this article presents the basis for the construction of such a standardized animal model for percutaneous-device-related infection studies. The inoculation of bacteria is critical to obtain an animal model for standardized studies for percutaneous-device-related infections. Copyright © 2017. Published by Elsevier B.V.

  20. Prevalence and antimicrobial susceptibility of salmonellae isolates from reptiles in Taiwan.

    PubMed

    Chen, Chun-Yu; Chen, Wan-Ching; Chin, Shih-Chien; Lai, Yen-Hsueh; Tung, Kwong-Chung; Chiou, Chien-Shun; Hsu, Yuan-Man; Chang, Chao-Chin

    2010-01-01

    Pets, including reptiles, have been shown to be a source of Salmonella infection in humans. Due to increasing popularity and variety of exotic reptiles as pets in recent years, more human clinical cases of reptile-associated Salmonella infection have been identified. However, limited information is available with regard to serotypes in different reptiles (turtles, snakes, and lizards) and antimicrobial resistance of Salmonella in pet reptiles. The current study was thus conducted to determine the prevalence of Salmonella colonization in pet reptiles. Salmonella organisms were isolated from 30.9% of 476 reptiles investigated. The isolation prevalences were 69.7% (23/33), 62.8% (27/43), and 24.3% (97/400) in snakes, lizards, and turtles, respectively. A total of 44 different Salmonella serovars were identified. Compared with S. Heron, Bredeney, Treforest, and 4,[5],12:i:-, S. Typhimurium isolates were resistant to many antimicrobials tested, and notably 61.1% of the isolates were resistant to cephalothin. The results indicated that raising reptiles as pets could be a possible source of Salmonella infection in humans, particularly zoonotic Salmonella serovars such as S. Typhimurium that may be resistant to antimicrobials.

  1. Hemorrhagic colitis associated with Salmonella enterica serotype Infantis infection in a captive western lowland gorilla (Gorilla gorilla gorilla) in Brazil.

    PubMed

    Paixão, Tatiane A; Malta, Marcelo C C; Soave, Semíramis A; Tinoco, Herlandes P; Costa, Maria E L T; Pessanha, Angela T; Silva, Rodrigo O S; Coura, Fernanda M; Costa, Luciana F; Turchetti, Andreia P; Lobato, Francisco C F; Melo, Marilia M; Heinemann, Marcos B; Santos, Renato L

    2014-04-01

    Enteric diseases are among the most common causes of morbidity and mortality in gorillas, and it is often caused by bacteria. A thirteen-year-old captive female western lowland gorilla (Gorilla gorilla gorilla) developed hemorrhagic diarrhea. Despite the treatment, the animal died 7 days after the onset of clinical signs. The animal was submitted to a thorough pathological and microbiological evaluation. Pathologic examination revealed a severe acute hemorrhagic colitis, neutrophilic splenitis, glomerulitis, and interstitial pneumonia. Salmonella enterica serotype Infantis was isolated from a mesenteric lymph node. A diagnosis of hemorrhagic colitis associated with Salmonella enterica serotype Infantis was established. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Interaction of Saccharomyces boulardii with Salmonella enterica Serovar Typhimurium Protects Mice and Modifies T84 Cell Response to the Infection

    PubMed Central

    Martins, Flaviano S.; Dalmasso, Guillaume; Arantes, Rosa M. E.; Doye, Anne; Lemichez, Emmanuel; Lagadec, Patricia; Imbert, Veronique; Peyron, Jean-François; Rampal, Patrick; Nicoli, Jacques R.; Czerucka, Dorota

    2010-01-01

    Background Salmonella pathogenesis engages host cells in two-way biochemical interactions: phagocytosis of bacteria by recruitment of cellular small GTP-binding proteins induced by the bacteria, and by triggering a pro-inflammatory response through activation of MAPKs and nuclear translocation of NF-κB. Worldwide interest in the use of functional foods containing probiotic bacteria for health promotion and disease prevention has increased significantly. Saccharomyces boulardii is a non-pathogenic yeast used as a probiotic in infectious diarrhea. Methodology/Principal Findings In this study, we reported that S. boulardii (Sb) protected mice from Salmonella enterica serovar Typhimurium (ST)-induced death and prevented bacterial translocation to the liver. At a molecular level, using T84 human colorectal cancer cells, we demonstrate that incubation with Sb before infection totally abolished Salmonella invasion. This correlates with a decrease of activation of Rac1. Sb preserved T84 barrier function and decreased ST-induced IL-8 synthesis. This anti-inflammatory effect was correlated with an inhibitory effect of Sb on ST-induced activation of the MAPKs ERK1/2, p38 and JNK as well as on activation of NF-κB. Electron and confocal microscopy experiments showed an adhesion of bacteria to yeast cells, which could represent one of the mechanisms by which Sb exerts its protective effects. Conclusions Sb shows modulating effects on permeability, inflammation, and signal transduction pathway in T84 cells infected by ST and an in vivo protective effect against ST infection. The present results also demonstrate that Sb modifies invasive properties of Salmonella. PMID:20111723

  3. Salmosan, a β-Galactomannan-Rich Product, Protects Epithelial Barrier Function in Caco-2 Cells Infected by Salmonella enterica Serovar Enteritidis.

    PubMed

    Brufau, M Teresa; Campo-Sabariz, Joan; Bou, Ricard; Carné, Sergi; Brufau, Joaquim; Vilà, Borja; Marqués, Ana M; Guardiola, Francesc; Ferrer, Ruth; Martín-Venegas, Raquel

    2016-08-01

    One promising strategy for reducing human salmonellosis induced by Salmonella Enteritidis is to supplement animal diets with natural feed additives such as mannan oligosaccharides (MOSs). We sought to investigate the potential role of Salmosan (S-βGM), an MOS product extremely rich in β-galactomannan, in preventing epithelial barrier function disruption induced by S. Enteritidis colonization in an in vitro model of intestinal Caco-2 cells in culture. Differentiated Caco-2 cells were incubated for 3 h with S. Enteritidis at a multiplicity of infection of 10 in the absence or presence of 500 μg S-βGM/mL. Paracellular permeability (PP) was assessed by transepithelial electrical resistance (TER), d-mannitol, and fluorescein isothiocyanate-dextran (FD-4) flux. Tight junction proteins and cytoskeletal actin were also localized by confocal microscopy. Reactive oxygen species (ROS) and lipid peroxidation products were evaluated. Scanning and transmission electron microscopy were used to visualize S. Enteritidis adhesion to, and invasion of, the Caco-2 cell cultures. Compared with controls, TER was significantly reduced by 30%, and d-mannitol and FD-4 flux were significantly increased by 374% and 54% in S. Enteritidis-infected cultures, respectively. The presence of S-βGM in infected cultures induced total recoveries of TER and FD-4 flux to values that did not differ from the control and a partial recovery of d-mannitol flux. These effects were confirmed by immunolocalization of actin, zonula occludens protein 1, and occludin. Similar results were obtained for Salmonella Dublin. The protection of S-βGM on PP in infected cultures may be associated with a total recovery of ROS production to values that did not differ from the control. Moreover, S-βGM has the capacity to agglutinate bacteria, leading to a significant reduction of 32% in intracellular S Enteritidis. The results demonstrate that S-βGM contributes to protecting epithelial barrier function in a Caco-2 cell

  4. LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the Intracellular Proliferation of Salmonella typhimurium.

    PubMed

    Lee, Eun-Ju; Park, Kwan-Sik; Jeon, In-Sook; Choi, Jae-Woon; Lee, Sang-Jeon; Choy, Hyun E; Song, Ki-Duk; Lee, Hak-Kyo; Choi, Joong-Kook

    2016-07-01

    Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella-induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation.

  5. LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the Intracellular Proliferation of Salmonella typhimurium

    PubMed Central

    Lee, Eun-Ju; Park, Kwan-Sik; Jeon, In-Sook; Choi, Jae-Woon; Lee, Sang-Jeon; Choy, Hyun E.; Song, Ki-Duk; Lee, Hak-Kyo; Choi, Joong-Kook

    2016-01-01

    Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella-induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation. PMID:27329040

  6. Ancient typhoid epidemic reveals possible ancestral strain of Salmonella enterica serovar Typhi.

    PubMed

    Papagrigorakis, Manolis J; Synodinos, Philippos N; Yapijakis, Christos

    2007-01-01

    In contrast to other serotypes of Salmonella enterica, S. Typhi is exclusively adapted to human hosts. Recently, S. Typhi was identified in ancient skeletal material, thereby incriminating typhoid fever for the Plague of Athens. Since, according to Thucydides' report, animals were also affected by the disease, a working hypothesis is constituted that the causative agent of the Plague might be the anticipated original strain of S. Typhi, purportedly capable of infecting animals as well as humans. Possible future sequencing of the discovered ancient strain of S. Typhi may help towards identifying its genomic differences responsible for its modern specification to humans.

  7. An evaluation of strontium chloride, Rappaport and strontium selenite enrichment for the isolation of salmonellas from man, animals, meat products and abbattoir effluents

    PubMed Central

    Iveson, J. B.; Mackay-Scollay, E. M.

    1972-01-01

    Strontium chloride enrichment broth was found to be comparable to Rappaport broth for the recovery of a wide range of Salmonella serotypes from man, animals, meat products and effluents. With the exception of cloacal samples from reptiles, both procedures were superior to selenite F. The performance of strontium chloride Mand selenite F enrichment was improved when effluent samples were incubated at 43° C. Strontium chloride M and Rappaport enrichment were superior to selenite F for the isolation of Arizona species from reptiles. Strontium chloride B, strontium selenite and Rappaport broths were found suitable for the isolation of multiple Salmonella serotypes from sea water contaminated with abattoir effluents. The strontium chloride B and strontium selenite enrichment media were superior to Rappaport broth when samples were incubated at 43° C. Modified bismuth sulphite agar was found superior to Salmonella—Shigella agar as a solid subculture medium. The investigation of a food poisoning outbreak due to Salmonella typhimurium phage type 21 is reported. The significance of the choice of sampling and isolation techniques in salmonellosis in man and animals is discussed. PMID:4503874

  8. SALMONELLA SEPTIC BURSITIS OF THE ANKLE IN A HUMAN IMMUNODEFICIENCY VIRUS-INFECTED PATIENT: A CASE REPORT AND LITERATURE REVIEW.

    PubMed

    Hiransuthikul, Akarin; Hiransuthikul, Narin

    2016-11-01

    Salmonella is an unusual cause of septic bursitis of the ankle. A 48-yearold male fish-merchant with a history of HIV infection with a CD4 cell count of 79 cells/ml presented with pain of the left ankle for 2 weeks and fever for 1 day. The bursal fluid was aspirated and culture of the fluid revealed Salmonella group D. He was treated initially with intravenous ceftriaxone 2g once daily for 5 days, followed by oral ciprofloxacin 500mg twice daily for 4 weeks to give a treatment course of 5 weeks. Follow-up visit revealed complete recovery without any residual defects. Salmonella should be considered in the differential of the etiology of immunosuppressed patient with septic bursitis.

  9. Antimicrobial resistance and management of invasive Salmonella disease.

    PubMed

    Kariuki, Samuel; Gordon, Melita A; Feasey, Nicholas; Parry, Christopher M

    2015-06-19

    Invasive Salmonella infections (typhoidal and non-typhoidal) cause a huge burden of illness estimated at nearly 3.4 million cases and over 600,000 deaths annually especially in resource-limited settings. Invasive non-typhoidal Salmonella (iNTS) infections are particularly important in immunosuppressed populations especially in sub-Saharan Africa, causing a mortality of 20-30% in vulnerable children below 5 years of age. In these settings, where routine surveillance for antimicrobial resistance is rare or non-existent, reports of 50-75% multidrug resistance (MDR) in NTS are common, including strains of NTS also resistant to flouroquinolones and 3rd generation cephalosporins. Typhoid (enteric) fever caused by Salmonella Typhi and Salmonella Paratyphi A remains a major public health problem in many parts of Asia and Africa. Currently over a third of isolates in many endemic areas are MDR, and diminished susceptibility or resistance to fluoroquinolones, the drugs of choice for MDR cases over the last decade is an increasing problem. The situation is particularly worrying in resource-limited settings where the few remaining effective antimicrobials are either unavailable or altogether too expensive to be afforded by either the general public or by public health services. Although the prudent use of effective antimicrobials, improved hygiene and sanitation and the discovery of new antimicrobial agents may offer hope for the management of invasive salmonella infections, it is essential to consider other interventions including the wider use of WHO recommended typhoid vaccines and the acceleration of trials for novel iNTS vaccines. The main objective of this review is to describe existing data on the prevalence and epidemiology of antimicrobial resistant invasive Salmonella infections and how this affects the management of these infections, especially in endemic developing countries. Copyright © 2015. Published by Elsevier Ltd.

  10. Antimicrobial resistance and management of invasive Salmonella disease

    PubMed Central

    Kariuki, Samuel; Gordon, Melita A.; Feasey, Nicholas; Parry, Christopher M

    2015-01-01

    Invasive Salmonella infections (typhoidal and non-typhoidal) cause a huge burden of illness estimated at nearly 3.4 million cases and over 600,000 deaths annually especially in resource-limited settings. Invasive non-typhoidal Salmonella (iNTS) infections are particularly important in immunosuppressed populations especially in sub-Saharan Africa, causing a mortality of 20–30% in vulnerable children below 5 years of age. In these settings, where routine surveillance for antimicrobial resistance is rare or non-existent, reports of 50–75% multidrug resistance (MDR) in NTS are common, including strains of NTS also resistant to flouroquinolones and 3rd generation cephalosporins. Typhoid (enteric) fever caused by Salmonella Typhi and Salmonella Paratyphi A remains a major public health problem in many parts of Asia and Africa. Currently over a third of isolates in many endemic areas are MDR, and diminished susceptibility or resistance to fluoroquinolones, the drugs of choice for MDR cases over the last decade is an increasing problem. The situation is particularly worrying in resource-limited settings where the few remaining effective antimicrobials are either unavailable or altogether too expensive to be afforded by either the general public or by public health services. Although the prudent use of effective antimicrobials, improved hygiene and sanitation and the discovery of new antimicrobial agents may offer hope for the management of invasive salmonella infections, it is essential to consider other interventions including the wider use of WHO recommended typhoid vaccines and the acceleration of trials for novel iNTS vaccines. The main objective of this review is to describe existing data on the prevalence and epidemiology of antimicrobial resistant invasive Salmonella infections and how this affects the management of these infections, especially in endemic developing countries. PMID:25912288

  11. Highly pathogenic Salmonella Pomona was first isolated from the exotic red-eared slider (Trachemys scripta elegans) in the wild in China: Implications for public health.

    PubMed

    Gong, Shiping; Wang, Fumin; Shi, Haitao; Zhou, Peng; Ge, Yan; Hua, Liushuai; Liu, Wenhua

    2014-01-15

    Salmonella Pomona, a highly pathogenic serotype, can cause severe human salmonellosis, especially in children. Turtles and other reptiles are reservoirs for S. Pomona, and these cold-blooded animals remain a source of human Salmonella infections. Since the 1980s, this serotype has become a significant public health concern because of the increasing number of cases of S. Pomona infection in humans. To date, outbreaks of Salmonella Pomona infection in humans have mainly occurred in the United States, with some in other countries (e.g. Belgium, Germany, Canada), and most of the infections in humans were associated with turtles and other reptiles. In China, S. Pomona was first isolated from the feces of an infant in Shanghai in 2000, and two further cases of S. Pomona infection in humans were later found in Guangzhou. No one knew the source of S. Pomona in China. In this study, for the first time we isolated S. Pomona from free-living exotic red-eared sliders in the wild in China. Salmonella serotype (S. Pomona) was isolated from 16 turtle samples. The total carrying rate of S. Pomona in the collected red-eared sliders was 39% (n = 41) overall: 40% (n = 25) in juveniles and 38% (n = 16) in adult turtles. This study suggests that the widespread exotic red-eared sliders may impact on public health and ecosystems of China by transmitting S. Pomona. Additional steps should be considered by the governments and public health agencies to prevent the risk of turtle-associated Salmonella infections in humans in China. © 2013.

  12. Antibody response to experimental Salmonella typhimurium infection in chickens measured by ELISA.

    PubMed

    Hassan, J O; Barrow, P A; Mockett, A P; Mcleod, S

    1990-05-26

    An indirect ELISA has been developed to detect Salmonella typhimurium antibodies in chicken sera, using whole bacterial cell protein, flagellar protein or lipopolysaccharide as antigens. In experimental infections high concentrations of S typhimurium-specific IgG persisted after the faecal excretion of S typhimurium had ceased, whereas the specific IgM response was transitory. Some uninfected chickens placed in contact with experimentally infected birds developed high IgG titres in the absence of detectable faecal excretion. Other S typhimurium strains, which varied in their invasive abilities, also induced high titres of IgG. The ELISA allowed chickens infected experimentally with S typhimurium to be differentiated from chickens infected with 10 other serotypes, including S enteritidis. The use of whole blood in place of serum in the ELISA reduced the titres slightly. The storage of serum dried on to filter paper strips for four weeks produced little change in ELISA antibody titre, and the treatment of such strips with phenol or chloroform vapour had little or no effect on the antibody titre.

  13. Salmonella Enteritidis organ invasion and egg contamination in experimentally infected laying hens housed in conventional or enriched cages.

    USDA-ARS?s Scientific Manuscript database

    Both disease surveillance and epidemiologic analyses have confirmed a strong association between human salmonellosis and the prevalence of Salmonella Enteritidis (SE) in commercial egg flocks. The majority of human illnesses caused by this pathogen are attributed to contaminated eggs. Animal welfare...

  14. Influence of On-farm pig Salmonella status on Salmonella Shedding at Slaughter.

    PubMed

    Casanova-Higes, A; Andrés-Barranco, S; Mainar-Jaime, R C

    2017-08-01

    The risk of Salmonella shedding among pigs at slaughter with regard to their previous on-farm Salmonella status was assessed in a group of pigs from a farm from NE of Spain. A total of 202 pigs that had been serologically monitored monthly during the fattening period and from which mesenteric lymph nodes (MLN) and faecal (SFEC) samples were collected at slaughter for Salmonella isolation were included. A repeated-measures anova was used to assess the relationship between mean OD% values during the fattening period and sampling time and bacteriology on MLN and SFEC. Pigs were also grouped into four groups, that is pigs seronegative during the fattening period and Salmonella negative in MLN (group A; n = 69); pigs seronegative during the fattening period but Salmonella positive in MLN (B; n = 36); pigs seropositive at least once and Salmonella positive in MLN (C; n = 50); and pigs seropositive at least once but Salmonella negative in (D; n = 47). Pigs shedding at slaughter seroconverted much earlier and showed much higher mean OD% values than non-shedders pigs. The proportion of Salmonella shedders in groups A and D was high and similar (26.1% and 29.8%, respectively), but significantly lower than that for groups B and C. The odds of shedding Salmonella for groups B and C were 4.8 (95% CI = 1.5-15.5) and 20.9 (3.7-118) times higher, respectively, when compared to A. It was concluded that a large proportion of Salmonella seronegative pigs may shed Salmonella at slaughter, which would be likely associated to previous exposure with contaminated environments (i.e. transport and lairage). For pigs already infected at farm, the likelihood of shedding Salmonella was much higher and may depend on whether the bacterium has colonized the MLN or not. The odds of shedding Salmonella spp. were always much higher for pigs in which Salmonella was isolated from MLN. © 2016 Blackwell Verlag GmbH.

  15. Animal model for hepatitis C virus infection.

    PubMed

    Tsukiyama-Kohara, Kyoko; Kohara, Michinori

    2015-01-01

    Hepatitis C virus (HCV) infects more than 170 million people in the world and chronic HCV infection develops into cirrhosis and hepatocellular carcinoma (HCC). Recently, the effective compounds have been approved for HCV treatment, the protease inhibitor and polymerase inhibitor (direct acting antivirals; DAA). DAA-based therapy enabled to cure from HCV infection. However, development of new drug and vaccine is still required because of the generation of HCV escape mutants from DAA, development of HCC after treatment of DAA, and the high cost of DAA. In order to develop new anti-HCV drug and vaccine, animal infection model of HCV is essential. In this manuscript, we would like to introduce the history and the current status of the development of HCV animal infection model.

  16. Colonization of internal organs by Salmonella Enteritidis in experimentally infected laying hens housed in enriched colony cages at different stocking densities

    USDA-ARS?s Scientific Manuscript database

    The frequency of human infections with Salmonella Enteritidis (SE) has been linked to contaminated eggs and thus to SE prevalence in commercial egg-laying flocks. Contamination of the edible contents of eggs is a consequence of SE colonization of reproductive tissues in systemically infected hens. T...

  17. [Little epidemic caused by Salmonella panama (author's transl)].

    PubMed

    Kienitz, M; Licht, W; Richter, M

    1977-05-06

    Between 8. 1. 1976 and 10. 8. 1976 16 new or premature born children got a gastroenteritis due to salmonella panama. All these children were together in one pediatric ward of the hospital. Most of them came directly for the labour ward or from the newborn-ward. They had antibiotic therapy due to the indication of the mother or the child. It was impossible to fine the source of the salmonella infection, therefore, finally the ward was closed. After radical desinfection new patients came to the ward. Again they were infected with salmonella panama. Now it became clear that contaminated milk (Humanan-Heilnahrung) was the source of infections. Most papers mention a mild benign course of the infections. In contrary we could see severe conditions dependent on the pre-damage of the child or his reduced immunity. The minimal number of germs of dietic food products needs to be examinated.

  18. Prevalence and characterization of Salmonella enterica from the feces of cattle, poultry, swine and hedgehogs in Burkina Faso and their comparison to human Salmonella isolates

    PubMed Central

    2013-01-01

    Background Production and wild animals are major sources of human salmonellosis and animals raised for food also play an important role in transmission of antimicrobial resistant Salmonella strains to humans. Furthermore, in sub-Saharan Africa non-typhoidal Salmonella serotypes are common bloodstream isolates in febrile patients. Yet, little is known about the environmental reservoirs and predominant modes of transmission of these pathogens. The purpose of this study was to discover potential sources and distribution vehicles of Salmonella by isolating strains from apparently healthy slaughtered food animals and wild hedgehogs and by determining the genetic relatedness between the strains and human isolates. For this purpose, 729 feces samples from apparently healthy slaughtered cattle (n = 304), poultry (n = 350), swine (n = 50) and hedgehogs (n = 25) were examined for the presence of Salmonella enterica in Burkina Faso. The isolates were characterized by serotyping, antimicrobial-susceptibility testing, phage typing, and pulsed-field gel electrophoresis (PFGE) with XbaI and BlnI restriction enzymes. Results Of the 729 feces samples, 383 (53%) contained Salmonella, representing a total of 81 different serotypes. Salmonella was present in 52% of the cattle, 55% of the poultry, 16% of the swine and 96% of the hedgehog feces samples. Antimicrobial resistance was detected in 14% of the isolates. S. Typhimurium isolates from poultry and humans (obtained from a previous study) were multiresistant to the same antimicrobials (ampicillin, chloramphenicol, streptomycin, sulfonamides and trimethoprim), had the same phage type DT 56 and were closely related in PFGE. S. Muenster isolates from hedgehogs had similar PFGE patterns as the domestic animals. Conclusions Based on our results it seems that production and wild animals can share the same Salmonella serotypes and potentially transmit some of them to humans. As the humans and animals often live in close

  19. SadA, a trimeric autotransporter from Salmonella enterica serovar Typhimurium, can promote biofilm formation and provides limited protection against infection.

    PubMed

    Raghunathan, Dhaarini; Wells, Timothy J; Morris, Faye C; Shaw, Robert K; Bobat, Saeeda; Peters, Sarah E; Paterson, Gavin K; Jensen, Karina Tveen; Leyton, Denisse L; Blair, Jessica M A; Browning, Douglas F; Pravin, John; Flores-Langarica, Adriana; Hitchcock, Jessica R; Moraes, Claudia T P; Piazza, Roxane M F; Maskell, Duncan J; Webber, Mark A; May, Robin C; MacLennan, Calman A; Piddock, Laura J; Cunningham, Adam F; Henderson, Ian R

    2011-11-01

    Salmonella enterica is a major cause of morbidity worldwide and mortality in children and immunocompromised individuals in sub-Saharan Africa. Outer membrane proteins of Salmonella are of significance because they are at the interface between the pathogen and the host, they can contribute to adherence, colonization, and virulence, and they are frequently targets of antibody-mediated immunity. In this study, the properties of SadA, a purported trimeric autotransporter adhesin of Salmonella enterica serovar Typhimurium, were examined. We demonstrated that SadA is exposed on the Salmonella cell surface in vitro and in vivo during infection of mice. Expression of SadA resulted in cell aggregation, biofilm formation, and increased adhesion to human intestinal Caco-2 epithelial cells. Immunization of mice with folded, full-length, purified SadA elicited an IgG response which provided limited protection against bacterial challenge. When anti-SadA IgG titers were enhanced by administering alum-precipitated protein, a modest additional protection was afforded. Therefore, despite SadA having pleiotropic functions, it is not a dominant, protective antigen for antibody-mediated protection against Salmonella.

  20. [Outbreak of Salmonella Typhimurium infections associated with consumption of chorizo in Bizkaia].

    PubMed

    Hernández Arricibita, Esther; Santamaria Zuazua, Rosaura; Ramos López, Gemma; Herrera-León, Silvia; Kárkamo Zuñeda, José Antonio; Muniozguren Agirre, Nerea

    2016-11-01

    A report is presented on an outbreak of Salmonella enterica serovar Typhimurium infection that affected six people. The epidemiological and laboratory investigation associated the outbreak with the consumption of homemade chorizo purchased at a local street market. The vendor and producer were informed that the sale of meat products without sanitary authorization is prohibited, and the product was withdrawn from sale. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  1. Impact of phytopathogen infection and extreme weather stress on internalization of Salmonella Typhimurium in lettuce.

    PubMed

    Ge, Chongtao; Lee, Cheonghoon; Nangle, Ed; Li, Jianrong; Gardner, David; Kleinhenz, Matthew; Lee, Jiyoung

    2014-01-03

    Internalization of human pathogens, common in many types of fresh produce, is a threat to human health since the internalized pathogens cannot be fully inactivated/removed by washing with water or sanitizers. Given that pathogen internalization can be affected by many environmental factors, this study was conducted to investigate the influence of two types of plant stress on the internalization of Salmonella Typhimurium in iceberg lettuce during pre-harvest. The stresses were: abiotic (water stress induced by extreme weather events) and biotic (phytopathogen infection by lettuce mosaic virus [LMV]). Lettuce with and without LMV infection were purposefully contaminated with green fluorescence protein-labeled S. Typhimurium on the leaf surfaces. Lettuce was also subjected to water stress conditions (drought and storm) which were simulated by irrigating with different amounts of water. The internalized S. Typhimurium in the different parts of the lettuce were quantified by plate count and real-time quantitative PCR and confirmed with a laser scanning confocal microscope. Salmonella internalization occurred under the conditions outlined above; however internalization levels were not significantly affected by water stress alone. In contrast, the extent of culturable S. Typhimurium internalized in the leafy part of the lettuce decreased when infected with LMV under water stress conditions and contaminated with high levels of S. Typhimurium. On the other hand, LMV-infected lettuce showed a significant increase in the levels of culturable bacteria in the roots. In conclusion, internalization was observed under all experimental conditions when the lettuce surface was contaminated with S. Typhimurium. However, the extent of internalization was only affected by water stress when lettuce was infected with LMV. © 2013.

  2. Type 1 fimbriae are important factors limiting the dissemination and colonization of mice by Salmonella Enteritidis and contribute to the induction of intestinal inflammation during Salmonella invasion

    PubMed Central

    Kuźmińska-Bajor, Marta; Grzymajło, Krzysztof; Ugorski, Maciej

    2015-01-01

    We have recently shown that Salmonella Gallinarum type 1 fimbriae with endogenous mannose-resistant (MR) variant of the FimH protein increase systemic dissemination of S. Gallinarum and colonization of internal organs in comparison to the S. Gallinarum fimH knockout strain or the mutant expressing mannose-sensitive (MS) FimH variant from S. Enteritidis. Elaborating from these studies, we proposed that MS variants of FimH are advantageous in gastrointestinal infections, in contrast to MR FimH variants which decrease intestinal colonization and promote their systemic spreading. To support our hypothesis, we carried out in vivo studies using mice infected with wild-type S. Enteritidis and its fimH knockout strain (S. Enteritidis), which was characterized by significantly lower adhesion and invasiveness of murine ICE-1 intestinal cells. Using bioluminescence imaging, we observed that the loss of MS FimH adhesin correlates well with the highly increased colonization of mice by these bacteria. The appearance of the mutant strain was observed much earlier than wild-type Salmonella, and mice infected with 104–107 S. Enteritidis fimH::kan CFUs had significantly (P < 0.05) shorter infection-free time than animals inoculated with wild-type S. Enteritidis. Infections caused by non-typhoid Salmonella, such as S. Enteritidis, are associated with massive inflammation of the lamina propria and lymph nodes in the intestinal tract. Therefore, we evaluated the role of MS type 1 fimbriae in the induction of cytokine expression and secretion, using murine ICE-1 intestinal cells. We showed that the expression, as well as secretion, of Il-1b, Il-6, Il-10, and Il-12b was significantly higher in cells infected with wild-type S. Enteritidis compared to cells infected with the mutant strain. Based on our results, we propose that type 1 fimbriae may play an important role in the pathogenicity of S. Enteritidis and may contribute to an intestinal inflammatory response. PMID:25914682

  3. 99m Tc-tazobactam, a novel infection imaging agent: Radiosynthesis, quality control, biodistribution, and infection imaging studies.

    PubMed

    Rasheed, Rashid; Naqvi, Syed Ali Raza; Gillani, Syed Jawad Hussain; Zahoor, Ameer Fawad; Jielani, Asif; Saeed, Nidda

    2017-05-15

    The radiolabeled drug 99m Tc-tazobactam ( 99m Tc-TZB) was developed and assessed as an infection imaging agent in Pseudomonas aeruginosa and Salmonella enterica infection-induced animal models by comparing with inflammation induced animal models. Radiosynthesis of 99m Tc-TZB was assessed while changing ligand concentration, reducing agent concentration, pH, and reaction time while keeping radioactivity constant (~370 MBq). Percent labeling of the resulting complex was measured using paper chromatography and instant thin layer chromatography. The analysis of the 99m Tc-TZB complex indicated >95% labeling yield and electrophoresis revealed complex is neutral in nature. The biodistribution study also showed predominantly renal excretion; however liver, stomach, and intestine also showed slight tracer agent uptake. The agent significantly accumulated in Pseudomonas aeruginosa and Salmonella enterica infection induced tissues 3.58 ± 0.26% and 2.43 ± 0.42% respectively at 1 hour postinjection. The inflamed tissue failed to uptake noticeable activity at 1 hour time point. The scintigraphic study results were found in accordance with biodistribution pattern. On the basis of our preliminary results, the newly developed 99m Tc-TZB can be used to diagnose bacterial infection and to discriminate between infected and inflamed tissues. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Oral vaccination with a live Salmonella Enteritidis/Typhimurium bivalent vaccine in layers induces cross-protection against caecal and internal organ colonization by a Salmonella Infantis strain.

    PubMed

    Eeckhaut, Venessa; Haesebrouck, Freddy; Ducatelle, Richard; Van Immerseel, Filip

    2018-05-01

    Salmonella is an important zoonotic agent, and poultry products remain one of the main sources of infection for humans. Salmonella Infantis is an emerging serotype in poultry worldwide, reflected by an increased prevalence in poultry flocks, on broiler meat and in human foodborne illness cases. In the current study, the efficacy of oral administration of a live monovalent Salmonella Enteritidis and a live bivalent Salmonella Enteritidis/Typhimurium vaccine, against a Salmonella Enteritidis and Infantis infection, was determined. Oral administration of the live vaccines to day-old chickens caused a decrease in caecal colonization by Salmonella Enteritidis, but not Infantis, at day 7, when challenged at day 2. Vaccination with the bivalent vaccine at day 1 resulted in a decreased spleen colonization by both Salmonella Infantis and Enteritidis. Twice (at day 1 and week 6) and thrice vaccination (at day 1, week 6 and 16) of laying hens with the bivalent vaccine resulted in a decreased caecal colonization by Salmonella Enteritidis and Infantis, and significantly lower oviduct colonization levels by Salmonella Enteritidis. These data show cross-protection against Salmonella Infantis by oral administration of live vaccine strains belonging to other serogroups. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Salmonella Immunotherapy Improves the Outcome of CHOP Chemotherapy in Non-Hodgkin Lymphoma-Bearing Mice

    PubMed Central

    Bascuas, Thais; Moreno, María; Grille, Sofía; Chabalgoity, José A.

    2018-01-01

    We have previously shown that Salmonella immunotherapy is effective to treat B-cell non-Hodgkin lymphoma (B-NHL) in mice. However, this model involves animals with high tumor burden, whereas in the clinics B-NHL patients are usually treated with chemotherapy (CHOP: cyclophosphamide, doxorubicin, vincristine, and prednisone) as first-line therapy prior to immunotherapy. Recently, we have described a NHL-B preclinical model using CHOP chemotherapy to achieve MRD in immunocompetent animals that closely resemble patients’ conditions. In this work, we assessed the efficacy of Salmonella immunotherapy in B-NHL-bearing mice undergoing chemotherapy. Salmonella administration significantly delayed tumor growth and prolonged survival of chemotherapy-treated NHL-bearing animals. Mice receiving the CHOP–Salmonella combined therapy showed increased numbers of tumor-infiltrating leukocytes and a different profile of cytokines and chemokines expressed in the tumor microenvironment. Further, Salmonella immunotherapy in CHOP-treated animals also enhanced NK cells cytotoxic activity as well as induced systemic lymphoma-specific humoral and cellular responses. Chemotherapy treatment profoundly impacted on the general health status of recipient animals, but those receiving Salmonella showed significantly better overall body condition. Altogether, the results clearly demonstrated that Salmonella immunotherapy could be safely used in individuals under CHOP treatment, resulting in a better prognosis. These results give strong support to consider Salmonella as a neoadjuvant therapy in a clinical setting. PMID:29410666

  6. Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007.

    PubMed

    Hendriksen, Rene S; Vieira, Antonio R; Karlsmose, Susanne; Lo Fo Wong, Danilo M A; Jensen, Arne B; Wegener, Henrik C; Aarestrup, Frank M

    2011-08-01

    Salmonella enterica is commonly acquired from contaminated food and is an important cause of illness worldwide. Interventions are needed to control Salmonella; subtyping Salmonella by serotyping is useful for targeting such interventions. We, therefore, analyzed the global distribution of the 15 most frequently identified serovars of Salmonella isolated from humans from 2001 to 2007 in laboratories from 37 countries that participated in World Health Organization Global Foodborne Infections Network and demonstrated serotyping proficiency in the Global Foodborne Infections Network External Quality Assurance System. In all regions throughout the study period, with the exception of the Oceania and North American regions, Salmonella serovars Enteritidis and Typhimurium ranked as the most common and second most common serovar, respectively. In the North American and Oceania (Australia and New Zealand) regions, Salmonella serovar Typhimurium was the most common serovar reported, and Salmonella serovar Enteritidis was the second most common serovar. During the study period, the proportion of Salmonella isolates reported from humans that were Salmonella serovar Enteritidis was 43.5% (range: 40.6% [2007] to 44.9% [2003]), and Salmonella serovar Typhimurium was 17.1% (range: 15% [2007] to 18.9% [2001]). Salmonella serovars Newport (mainly observed in Latin and North American and European countries), Infantis (dominating in all regions), Virchow (mainly observed in Asian, European, and Oceanic countries), Hadar (profound in European countries), and Agona (intense in Latin and North American and European countries) were also frequently isolated with an overall proportion of 3.5%, 1.8%, 1.5%, 1.5%, and 0.8%, respectively. There were large differences in the most commonly isolated serovars between regions, but lesser differences between countries within the same region. The results also highlight the complexity of the global epidemiology of Salmonella and the need and importance

  7. Genotypic and epidemiologic characterization of extended-spectrum cephalosporin resistant Salmonella enterica from US beef feedlots.

    PubMed

    Mollenkopf, D F; Mathys, D A; Dargatz, D A; Erdman, M M; Habing, G G; Daniels, J B; Wittum, T E

    2017-10-01

    In the US, nontyphoidal Salmonellae are a common foodborne zoonotic pathogen causing gastroenteritis. Invasive Salmonella infections caused by extended-spectrum cephalosporin resistant (ESCR) phenotypes are more likely to result in treatment failure and adverse health outcomes, especially in severe pediatric Salmonella infections where the extended-spectrum β-lactams are the therapy of choice. To examine the genetic and epidemiologic characteristics of ESCR Salmonellae which may enter the food chain, we characterized 44 ceftiofur-resistant Salmonella isolates from the National Animal Health Monitoring System (NAHMS) 2011 beef cattle feedlot health and management study. As part of the NAHMS Feedlot 2011 study, 5050 individual fecal samples from 68 large (1000+ head capacity) feedlots were cultured for Salmonella spp. The resulting 460 positive samples yielded 571 Salmonella isolates with 44 (8%) expressing an AmpC β-lactamase phenotype. These phenotypic bla CMY-2 Salmonella isolates represented 8 serotypes, most commonly S. Newport (n=14, 32%), S. Typhimurium (n=13, 30%), and S. Reading (n=5, 11%), followed by S. Dublin, S. Infantis, S. Montevideo, S. Rough O:i;v:1;7, and S. Uganda. Carriage of the bla CMY-2 gene was confirmed for all isolates expressing an AmpC β-lactamase phenotype by PCR. Additionally, all 44 isolates were shown to carry the bla CMY-2 gene on a large IncA/C plasmid, a gene/plasmid combination which has been previously reported in multiple species. Other plasmids, including IncN, FIC, and FIIA, were also detected in some isolates. Cattle fed chlortetracycline were less likely to be positive for a bla CMY-2 Salmonella isolate in their enteric flora compared to those not receiving chlortetracycline during the feeding period. Carriage of bla CMY-2 was more prevalent in Salmonella isolates originating from lighter weight cattle, cattle fed tylosin and dairy breeds. Our characterization of the NAHMS Feedlot 2011 study Salmonella isolates with ESCR

  8. Short communication: Determination of Salmonella clustered regularly interspaced short palindromic repeats (CRISPR) diversity on dairy farms in Wisconsin and Minnesota.

    PubMed

    Wehnes, C A; Rehberger, T G; Barrangou, R; Smith, A H

    2014-10-01

    Salmonella enterica ssp. enterica is a foodborne pathogen able to cause disease in both humans and animals. Diverse serovars of this pathogen exist, some of which are host specific, causing a range of clinical symptoms from asymptomatic infection through morbidity and mortality. According to a 2007 survey by the USDA National Animal Health Monitoring System, fecal shedding of Salmonella from healthy cows occurs on 39.7% of dairy farms in the United States. Certain serovars are frequently isolated from dairy farms and the majority of isolates from the National Animal Health Monitoring System study were represented by 5 serovars; however, genotypic diversity was not examined. The objective of this study was to determine the diversity of clustered regularly interspaced short palindromic repeats (CRISPR) loci in Salmonella collected from 8 dairy farms with a previous history of salmonellosis. None of the cows or calves sampled on 2 of the 8 dairy farms were shedding Salmonella, although Salmonella was detected in a cow bedding sample on 1 of these farms. Salmonella populations were discrete on each farm, according to CRISPR typing, with the exception of an Anatum var. 15+ type on farms 5 and 6 and the Montevideo type on farms 1 and 2. One to 4 distinct CRISPR genotypes were identified per farm. The CRISPR typing differed within serovars, as Montevideo, Anatum var. 15+, and Muenster serovars had no overlap of spacer content, even on the same farm, reflecting between- and within-serovar genetic diversity. The dynamic nature of Salmonella populations was shown in a farm that was sampled longitudinally over 13.5 mo. Changes in serovar from 3,19:-:z27 to Montevideo was observed between the first sampling time and 8 mo later, with concomitant change in CRISPR alleles. The results indicate that Salmonella strains present in smaller dairy herds (<500 head) are specific to that farm and new Salmonella strains may emerge over time. Copyright © 2014 American Dairy Science

  9. Transmission and control of Salmonella in the pig feed chain: a conceptual model.

    PubMed

    Binter, Claudia; Straver, Judith Maria; Häggblom, Per; Bruggeman, Geert; Lindqvist, Per-Anders; Zentek, Jürgen; Andersson, Mats Gunnar

    2011-03-01

    Infected breeder pigs and contaminated feed represent potential sources of Salmonella introduction to fattening pig herds and may thereby cause human infections acquired via consumption of contaminated pork. Modelling approaches such as quantitative microbial risk assessment could improve the design of strategies for control and tracing of Salmonella in the feed chain. However, the construction of such models requires a thorough understanding of the dynamics of the feed chain, including production processes, microbial processes and transport logistics. The present article illustrates a conceptual model of Salmonella in the pig feed chain and explores the possibilities for quantitative modelling including identifying major gaps in data. Information was collected from peer-reviewed scientific journals, official documents and reports and by means of interviews with experts from authorities and the feed industry. Data on prevalence of Salmonella in different parts of the feed chain are difficult to compare as observed prevalence may be biased by variations in sampling procedures as well as limitations of the detection methods. There are almost no data on numbers of Salmonella in commodities of the feed chain, which often makes it difficult to evaluate risks, intervention strategies and sampling plans in a quantitative manner. Tracing the source of Salmonella contamination is hampered by the risk of cross-contamination as well as various mixing and partitioning events along the supply chain, which sometimes makes it impossible to trace the origin of a lot back to a batch or producer. Available information points to contaminated feed materials, animal vectors and persistent contamination of production environments as important sources of Salmonella in feed production. Technological procedures such as hydrothermal or acid treatment can be used to control Salmonella in feed production. However, a large fraction of pig feed is produced without decontamination procedures

  10. Seagulls (Larus spp.) as vectors of salmonellae: an investigation into the range of serotypes and numbers of salmonellae in gull faeces.

    PubMed

    Fenlon, D R

    1981-04-01

    Of 1241 samples of seagulls faeces examined, 12.9% were found to contain salmonellae. The number of positive samples was significantly higher (17-21%) near sewage outfalls. Twenty-seven serotypes were isolated, including a new serotype named Salmonella grampian. The range and frequency of serotypes carried by gulls was similar to those in the human population, suggesting sewage as a possible source of gull infection. The number of salmonellae found in positive samples was low (0.18-191 g-1 faeces). This was similar to the numbers found in sewage, 10-80 1-1, suggesting gulls may only carry infected material without infecting themselves. Antibiotic resistance in the isolates was low, only 21 showing resistance to the antibiotics tested, although most of these were determined by resistance transfer plasmids.

  11. Seagulls (Larus spp.) as vectors of salmonellae: an investigation into the range of serotypes and numbers of salmonellae in gull faeces.

    PubMed Central

    Fenlon, D. R.

    1981-01-01

    Of 1241 samples of seagulls faeces examined, 12.9% were found to contain salmonellae. The number of positive samples was significantly higher (17-21%) near sewage outfalls. Twenty-seven serotypes were isolated, including a new serotype named Salmonella grampian. The range and frequency of serotypes carried by gulls was similar to those in the human population, suggesting sewage as a possible source of gull infection. The number of salmonellae found in positive samples was low (0.18-191 g-1 faeces). This was similar to the numbers found in sewage, 10-80 1-1, suggesting gulls may only carry infected material without infecting themselves. Antibiotic resistance in the isolates was low, only 21 showing resistance to the antibiotics tested, although most of these were determined by resistance transfer plasmids. PMID:7462604

  12. Safety and tolerability of a live oral Salmonella typhimurium vaccine candidate in SIV-infected nonhuman primates.

    PubMed

    Ault, Alida; Tennant, Sharon M; Gorres, J Patrick; Eckhaus, Michael; Sandler, Netanya G; Roque, Annelys; Livio, Sofie; Bao, Saran; Foulds, Kathryn E; Kao, Shing-Fen; Roederer, Mario; Schmidlein, Patrick; Boyd, Mary Adetinuke; Pasetti, Marcela F; Douek, Daniel C; Estes, Jacob D; Nabel, Gary J; Levine, Myron M; Rao, Srinivas S

    2013-12-02

    Nontyphoidal Salmonella (NTS) serovars are a common cause of acute food-borne gastroenteritis worldwide and can cause invasive systemic disease in young infants, the elderly, and immunocompromised hosts, accompanied by high case fatality. Vaccination against invasive NTS disease is warranted where the disease incidence and mortality are high and multidrug resistance is prevalent, as in sub-Saharan Africa. Live-attenuated vaccines that mimic natural infection constitute one strategy to elicit protection. However, they must particularly be shown to be adequately attenuated for consideration of immunocompromised subjects. Accordingly, we examined the safety and tolerability of an oral live attenuated Salmonella typhimurium vaccine candidate, CVD 1921, in an established chronic simian immunodeficiency virus (SIV)-infected rhesus macaque model. We evaluated clinical parameters, histopathology, and measured differences in mucosal permeability to wild-type and vaccine strains. Compared to the wild-type S. typhimurium strain I77 in both SIV-infected and SIV-uninfected nonhuman primate hosts, this live-attenuated vaccine shows reduced shedding and systemic spread, exhibits limited pathological disease manifestations in the digestive tract, and induces low levels of cellular infiltration in tissues. Furthermore, wild-type S. typhimurium induces increased intestinal epithelial damage and permeability, with infiltration of neutrophils and macrophages in both SIV-infected and SIV-uninfected nonhuman primates compared to the vaccine strain. Based on shedding, systemic spread, and histopathology, the live-attenuated S. typhimurium strain CVD 1921 appears to be safe and well-tolerated in the nonhuman primate model, including chronically SIV-infected rhesus macaques. Copyright © 2013. Published by Elsevier Ltd.

  13. Reorganization of the Endosomal System in Salmonella-Infected Cells: The Ultrastructure of Salmonella-Induced Tubular Compartments

    PubMed Central

    Krieger, Viktoria; Liebl, David; Zhang, Yuying; Rajashekar, Roopa; Chlanda, Petr; Giesker, Katrin; Chikkaballi, Deepak; Hensel, Michael

    2014-01-01

    During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella. PMID:25254663

  14. Multidrug-resistant opportunistic pathogens challenging veterinary infection control.

    PubMed

    Walther, Birgit; Tedin, Karsten; Lübke-Becker, Antina

    2017-02-01

    Although the problems associated with healthcare-associated infections (HAI) and the emergence of zoonotic and multidrug-resistant pathogens in companion animal (dogs, cats and horses) medicine have been well-known for decades, current progress with respect to practical implementation of infection control programs in veterinary clinics has been limited. Clinical outbreak events reported for methicillin-resistant Staphylooccus aureus (MRSA) and Staphylococcus pseudintermedius (MRSP), extended spectrum beta-lactamase (ESBL)-producing Escherichia coli and multidrug-resistant (MDR) Salmonella Serovars indicate the necessity of infection control strategies for protecting animal patients at risk as well as veterinary personnel. The close bond between humans and their companion animals provides opportunities for exchange of microorganisms, including MDR pathogens. This particular aspect of the "One Health" idea requires more representative surveillance efforts and infection control strategies with respect to animal-species specific characters. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Molecular and cellular characterization of a Salmonella enterica serovar Paratyphi a outbreak strain and the human immune response to infection.

    PubMed

    Gal-Mor, Ohad; Suez, Jotham; Elhadad, Dana; Porwollik, Steffen; Leshem, Eyal; Valinsky, Lea; McClelland, Michael; Schwartz, Eliezer; Rahav, Galia

    2012-02-01

    Enteric fever is an invasive life-threatening systemic disease caused by the Salmonella enterica human-adapted serovars Typhi and Paratyphi. Increasing incidence of infections with Salmonella enterica serovar Paratyphi A and the spreading of its antibiotic-resistant derivates pose a significant health concern in some areas of the world. Herein, we describe a molecular and phenotypic characterization of an S. Paratyphi A strain accounted for a recent paratyphoid outbreak in Nepal that affected at least 37 travelers. Pulsed-field gel electrophoresis analysis of the outbreak isolates revealed one genetic clone (pulsotype), confirming a single infecting source. Genetic profiling of the outbreak strain demonstrated the contribution of specific bacteriophages as a prime source of genetic diversity among clinical isolates of S. Paratyphi A. Phenotypic characterization in comparison with the S. Paratyphi A ATCC 9150 reference sequenced strain showed differences in flagellar morphology and increased abilities of the outbreak strain with respect to its motility, invasion into nonphagocytic cells, intracellular multiplication, survival within macrophages, and higher induction of interleukin-8 (IL-8) secreted by host cells. Collectively, these differences suggest an enhanced virulence potential of this strain and demonstrate an interesting phenotypic variation among S. Paratyphi A isolates. In vivo profiling of 16 inflammatory cytokines in patients infected with the outbreak strain revealed a common profile of a remarkable gamma interferon (IFN-γ) induction together with elevated concentrations of tumor necrosis factor alpha (TNF-α), IL-6, IL-8, IL-10, and IL-15, but not IL-12, which was previously demonstrated as elevated in nontyphoidal Salmonella infections. This apparent profile implies a distinct immune response to paratyphoid infections.

  16. Allelic Variation in TLR4 Is Linked to Susceptibility to Salmonella enterica Serovar Typhimurium Infection in Chickens

    PubMed Central

    Leveque, Gary; Forgetta, Vincenzo; Morroll, Shaun; Smith, Adrian L.; Bumstead, Nat; Barrow, Paul; Loredo-Osti, J. C.; Morgan, Kenneth; Malo, Danielle

    2003-01-01

    Toll-like receptor 4 (TLR4) is part of a group of evolutionarily conserved pattern recognition receptors involved in the activation of the immune system in response to various pathogens and in the innate defense against infection. We describe here the cloning and characterization of the avian orthologue of mammalian TLR4. Chicken TLR4 encodes a 843-amino-acid protein that contains a leucine-rich repeat extracellular domain, a short transmembrane domain typical of type I transmembrane proteins, and a Toll-interleukin-1R signaling domain characteristic of all TLR proteins. The chicken TLR4 protein shows 46% identity (64% similarity) to human TLR4 and 41% similarity to other TLR family members. Northern blot analysis reveals that TLR4 is expressed at approximately the same level in all tissues tested, including brain, thymus, kidney, intestine, muscle, liver, lung, bursa of Fabricius, heart, and spleen. The probe detected only one transcript of ca. 4.4 kb in length for all tissues except muscle where the size of TLR4 mRNA was ca. 9.6 kb. We have mapped TLR4 to microchromosome E41W17 in a region harboring the gene for tenascin C and known to be well conserved between the chicken and mammalian genomes. This region of the chicken genome was shown previously to harbor a Salmonella susceptibility locus. By using linkage analysis, TLR4 was shown to be linked to resistance to infection with Salmonella enterica serovar Typhimurium in chickens (likelihood ratio test of 10.2, P = 0.00138), suggesting a role of TLR4 in the host response of chickens to Salmonella infection. PMID:12595422

  17. Rapid and Specific Detection of Salmonella spp. in Animal Feed Samples by PCR after Culture Enrichment

    PubMed Central

    Löfström, Charlotta; Knutsson, Rickard; Axelsson, Charlotta Engdahl; Rådström, Peter

    2004-01-01

    A PCR procedure has been developed for routine analysis of viable Salmonella spp. in feed samples. The objective was to develop a simple PCR-compatible enrichment procedure to enable DNA amplification without any sample pretreatment such as DNA extraction or cell lysis. PCR inhibition by 14 different feed samples and natural background flora was circumvented by the use of the DNA polymerase Tth. This DNA polymerase was found to exhibit a high level of resistance to PCR inhibitors present in these feed samples compared to DyNAzyme II, FastStart Taq, Platinum Taq, Pwo, rTth, Taq, and Tfl. The specificity of the Tth assay was confirmed by testing 101 Salmonella and 43 non-Salmonella strains isolated from feed and food samples. A sample preparation method based on culture enrichment in buffered peptone water and DNA amplification with Tth DNA polymerase was developed. The probability of detecting small numbers of salmonellae in feed, in the presence of natural background flora, was accurately determined and found to follow a logistic regression model. From this model, the probability of detecting 1 CFU per 25 g of feed in artificially contaminated soy samples was calculated and found to be 0.81. The PCR protocol was evaluated on 155 naturally contaminated feed samples and compared to an established culture-based method, NMKL-71. Eight percent of the samples were positive by PCR, compared with 3% with the conventional method. The reasons for the differences in sensitivity are discussed. Use of this method in the routine analysis of animal feed samples would improve safety in the food chain. PMID:14711627

  18. Characterization of Integrons and Resistance Genes in Salmonella Isolates from Farm Animals in Shandong Province, China

    PubMed Central

    Zhao, Xiaonan; Yang, Jie; Zhang, Baozhen; Sun, Shuhong; Chang, Weishan

    2017-01-01

    A total of 154 non-duplicate Salmonella isolates were recovered from 1,105 rectal swabs collected from three large-scale chicken farms (78/325, 24.0%), three large-scale duck farms (56/600, 9.3%) and three large-scale pig farms (20/180, 11.1%) between April and July 2016. Seven serotypes were identified among the 154 isolates, with the most common serotype in chickens and ducks being Salmonella enteritidis and in pigs Salmonella typhimurium. Antimicrobial susceptibility testing revealed that high antimicrobial resistance rates were observed for tetracycline (72.0%) and ampicillin (69.4%) in all sources. Class 1 integrons were detected in 16.9% (26/154) of these isolates and contained gene cassettes aadA2, aadA1, drfA1-aadA1, drfA12-aadA2, and drfA17-aadA5. Three β-lactamase genes were detected among the 154 isolates, and most of the isolates carried blaTEM−1(55/154), followed by blaPSE−1(14/154) and blaCTX−M−55 (11/154). Three plasmid-mediated quinolone resistance genes were detected among the 154 isolates, and most of the isolates carried qnrA (113/154), followed by qnrB (99/154) and qnrS (10/154). Fifty-four isolates carried floR among the 154 isolates. Multilocus sequence typing (MLST) analysis showed that nine sequence types (STs) were identified; ST11 was the most frequent genotype in chickens and ducks, and ST19 was identified in pigs. Our findings indicated that Salmonella was widespread, and the overuse of antibiotics in animals should be reduced considerably in developing countries. PMID:28747906

  19. Prevalence of Salmonella spp. in pet turtles and their environment

    PubMed Central

    Back, Du-San; Shin, Gee-Wook; Wendt, Mitchell

    2016-01-01

    Pet turtles are known as a source of Salmonella infection to humans when handled in captivity. Thirty four turtles purchased from pet shops and online markets in Korea were examined to determine whether the turtles and their environment were contaminated with Salmonella spp. Salmonella spp. were isolated from fecal samples of 17 turtles. These isolates were identified as S. enterica through 16S rRNA gene sequencing. The isolation rate of Salmonella spp. from the soil and water samples increased over time. We concluded that a high percentage of turtles being sold in pet shops were infected with Salmonella spp., and their environments tend to become contaminated over time unless they are maintained properly. These results indicate that pet turtles could be a potential risk of salmonellosis in Korea. PMID:27729933

  20. Creating student sleuths: how a team of graduate students helped solve an outbreak of Salmonella Heidelberg infections associated with kosher broiled chicken livers.

    PubMed

    Hanson, Heather; Hancock, W Thane; Harrison, Cassandra; Kornstein, Laura; Waechter, HaeNa; Reddy, Vasudha; Luker, John; Malavet, Michelle; Huth, Paula; Gieraltowski, Laura; Balter, Sharon

    2014-08-01

    Since 2009, the New York City Department of Health and Mental Hygiene (DOHMH) has received FoodCORE funding to hire graduate students to conduct in-depth food exposure interviews of salmonellosis case patients. In 2011, an increase in the number of Salmonella Heidelberg infections with pulsed-field gel electrophoresis Xba I pattern JF6X01.0022 among observant Jewish communities in New York and New Jersey was investigated. As this pattern is common nationwide, some cases identified were not associated with the outbreak. To reduce the number of background cases, DOHMH focused on the community initially identified in the outbreak and defined a case as a person infected with the outbreak strain of Salmonella Heidelberg with illness onset from 1 April to 17 November 2011 and who consumed a kosher diet, spoke Yiddish, or self-identified as Jewish. Nationally, 190 individuals were infected with the outbreak strain of Salmonella Heidelberg; 63 New York City residents met the DOHMH case definition. In October 2011, the graduate students (Team Salmonella) interviewed three case patients who reported eating broiled chicken livers. Laboratory testing of chicken liver samples revealed the outbreak strain of Salmonella Heidelberg. Although they were only partially cooked, the livers appeared fully cooked, and consumers and retail establishment food handlers did not cook them thoroughly before eating or using them in a ready-to-eat spread. This investigation highlighted the need to prevent further illnesses from partially cooked chicken products. Removing background cases helped to focus the investigation. Training graduate students to collect exposure information can be a highly effective model for conducting foodborne disease surveillance and outbreak investigations for local and state departments of public health.

  1. Molecular typing of monophasic Salmonella 4,[5]:i:- strains isolated in Belgium (2008-2011).

    PubMed

    Boland, Cécile; Bertrand, Sophie; Mattheus, Wesley; Dierick, Katelijne; Wattiau, Pierre

    2014-01-31

    To assess the distribution of Salmonella 4,[5]:i:- subtypes in the Belgian food chain and compare it to the subtypes associated with human infections, a molecular assessment was initiated. Two hundred fifty-three Salmonella isolates serotyped as 4,[5]:i:- during the period 2008-2011 in Belgium and originating from animal productions, food or human clinical samples were analysed by a specific duplex PCR. One hundred ninety-four isolates (76.7%) fit the profile of a S. Typhimurium monophasic variant as defined by the European Food Safety Authority. The other isolates possessed but did not express the phase II flagellin gene (23.3%). Multiple Locus Variable Number of Tandem Repeats Analysis (MLVA) revealed many but closely related profiles in the fljB-negative S. Typhimurium monophasic variant isolates. Some MLVA types were associated with both human and animal isolates but no unique source of human contamination could be demonstrated. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Evaluation of three commercial enzyme-linked immunosorbent assays for the detection of antibodies against Salmonella spp. in meat juice from finishing pigs in Spain.

    PubMed

    Vico, J P; Engel, B; Buist, W G; Mainar-Jaime, R C

    2010-11-01

    The control of animal salmonellosis is considered as a major objective in Europe and indirect ELISAs will be important tools for the implementation of control programs for this infection in pigs. We analyse the results yielded by three commercial ELISAs (Herdcheck Swine Salmonella, SALMOTYPE Pig Screen, and PrioCHECK Salmonella) on meat juice samples from a population of slaughter pigs of Aragon, NW Spain, to assess their efficacy using traditional and latent-class approaches. Overall, the Herdcheck Swine Salmonella detected more Salmonella-infected pigs than the other two tests, but its relative sensitivity was low (65.9%). A similar result was observed when only serotypes detectable by this test were considered (69.1%). When a Bayesian approach was used the Herdcheck Swine Salmonella showed also the highest overall accuracy (sensitivity = 88% and specificity = 74%). Our results suggest that a relatively small proportion of the observed prevalence in herds would be explained by using these ELISAs. Also, this study points out that when different ELISA tests are used within the same herd, results may differ substantially. Thus, caution is advised if it is decided to use these assays for herd health classification in Spanish Salmonella control programs. © 2010 Blackwell Verlag GmbH.

  3. Theoretical value of pre-trade testing for Salmonella in Swedish cattle herds.

    PubMed

    Sternberg Lewerin, Susanna

    2018-05-01

    The Swedish Salmonella control programme includes mandatory action if Salmonella is detected in a herd. The aim of this study was to assess the relative value of different strategies for pre-movement testing of cattle. Three fictitious herds were included: dairy, beef and specialised calf-fattening. The yearly risks of introducing Salmonella with and without individual serological or bulk milk testing were assessed as well as the effects of sourcing animals from low-prevalence areas or reducing the number of source herds. The initial risk was highest for the calf-fattening herd and lowest for the beef herd. For the beef and dairy herds, the yearly risk of Salmonella introduction was reduced by about 75% with individual testing. Sourcing animals from low-prevalence areas reduced the risk by >99%. For the calf-fattening herd, the yearly risk was reduced by almost 50% by individual testing or sourcing animals from a maximum of five herds. The method was useful for illustrating effects of risk mitigation when introducing animals into a herd. Sourcing animals from low-risk areas (or herds) is more effective than single testing of individual animals or bulk milk. A comprehensive approach to reduce the risk of introducing Salmonella from source herds is justified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Genetic diversity and antimicrobial resistance of Campylobacter and Salmonella strains isolated from decoys and raptors.

    PubMed

    Jurado-Tarifa, E; Torralbo, A; Borge, C; Cerdà-Cuéllar, M; Ayats, T; Carbonero, A; García-Bocanegra, I

    2016-10-01

    Infections caused by thermotolerant Campylobacter spp. and Salmonella spp. are the leading causes of human gastroenteritis worldwide. Wild birds can act as reservoirs of both pathogens. A survey was carried out to determine the prevalence, genetic diversity and antimicrobial resistance of thermotolerant Campylobacter and Salmonella in waterfowl used as decoys and wild raptors in Andalusia (Southern Spain). The overall prevalence detected for Campylobacter was 5.9% (18/306; CI95%: 3.25-8.52) in decoys and 2.3% (9/387; CI95%: 0.82-3.83) in wild raptors. Isolates were identified as C. jejuni, C. coli and C. lari in both bird groups. Salmonella was isolated in 3.3% (10/306; CI95%: 2.3-4.3) and 4.6% (18/394; CI95%: 3.5-5.6) of the decoys and raptors, respectively. Salmonella Enteritidis and Typhimurium were the most frequently identified serovars, although Salmonella serovars Anatum, Bredeney, London and Mikawasima were also isolated. Pulsed-field gel electrophoresis analysis of isolates showed higher genetic diversity within Campylobacter species compared to Salmonella serovars. Campylobacter isolates showed resistance to gentamicin, ciprofloxacin and tetracycline, while resistance to erythromycin and tetracycline was found in Salmonella isolates. The results indicate that both decoys and raptors can act as natural carriers of Campylobacter and Salmonella in Spain, which may have important implications for public and animal health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Survey of Salmonella contamination in chicken layer farms in three Caribbean countries.

    PubMed

    Adesiyun, Abiodun; Webb, Lloyd; Musai, Lisa; Louison, Bowen; Joseph, George; Stewart-Johnson, Alva; Samlal, Sannandan; Rodrigo, Shelly

    2014-09-01

    This study was conducted to investigate the demography, management, and production practices on layer chicken farms in Trinidad and Tobago, Grenada, and St. Lucia and the frequency of risk factors for Salmonella infection. The frequency of isolation of Salmonella from the layer farm environment, eggs, feeds, hatchery, and imported day-old chicks was determined using standard methods. Of the eight risk factors (farm size, age group of layers, source of day-old chicks, vaccination, sanitation practices, biosecurity measures, presence of pests, and previous disease outbreaks) for Salmonella infection investigated, farm size was the only risk factor significantly associated (P = 0.031) with the prevalence of Salmonella; 77.8% of large farms were positive for this pathogen compared with 33.3 and 26.1% of medium and small farms, respectively. The overall isolation rate of Salmonella from 35 layer farms was 40.0%. Salmonella was isolated at a significantly higher rate (P < 0.05) from farm environments than from the cloacae. Only in Trinidad and Tobago did feeds (6.5% of samples) and pooled egg contents (12.5% of samples) yield Salmonella; however, all egg samples from hotels, hatcheries, and airports in this country were negative. Salmonella Anatum, Salmonella group C, and Salmonella Kentucky were the predominant serotypes in Trinidad and Tobago, Grenada, and St. Lucia, respectively. Although Salmonella infections were found in layer birds sampled, table eggs appear to pose minimal risk to consumers. However, the detection of Salmonella -contaminated farm environments and feeds cannot be ignored. Only 2.9% of the isolates belonged to Salmonella Enteritidis, a finding that may reflect the impact of changes in farm management and poultry production in the region.

  6. Salmonella, including antibiotic-resistant Salmonella, from flies captured from cattle farms in Georgia, U.S.A.

    PubMed

    Xu, Yumin; Tao, Sha; Hinkle, Nancy; Harrison, Mark; Chen, Jinru

    2018-03-01

    Flies can be transmission vehicles of Salmonella from cattle to humans. This study determined the prevalence of Salmonella in/on flies captured from 33 cattle farms, including 5 beef and 28 dairy farms, in Georgia, USA, and characterized antibiotic resistance profiles of the isolated Salmonella. Twenty-six out of the 33 cattle farms (79%) and 185 out of the 1650 flies (11%) tested positive for Salmonella in the study. The incidence of Salmonella-positive flies varied from farm to farm, ranging from 0 to 78%. Among the 185 Salmonella isolated from flies, 29% were resistant to ampicillin, 28% to tetracycline, 21% to amoxicillin/clavulanic acid, 20% to cefoxitin, and 12% to streptomycin. Incidences of resistance against other tested antibiotics were low, ranging from 0 to 3%. Furthermore, 28% of the Salmonella isolates were multidrug resistant, demonstrating resistance to 3 or more antibiotics. The minimal inhibitory concentrations of ampicillin, cefoxitin, streptomycin, and tetracycline against the Salmonella isolates ranged from 32 to >2048, 64 to 2048, 128 to 1024, and 32 to 1024μg/mL, respectively. These data suggest that flies could be effective vehicles of transmitting antibiotic resistant Salmonella and disseminating antibiotic resistance genes on cattle farms, posing risks to human and animal health. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Evaluation of a Salmonella Strain Lacking the Secondary Messenger C-di-GMP and RpoS as a Live Oral Vaccine

    PubMed Central

    García, Begoña; Gil, Carmen; García-Ona, Enrique; Burgui, Saioa; Casares, Noelia; Hervás-Stubbs, Sandra; Lasarte, Juan José; Lasa, Iñigo

    2016-01-01

    Salmonellosis is one of the most important bacterial zoonotic diseases transmitted through the consumption of contaminated food, with chicken and pig related products being key reservoirs of infection. Although numerous studies on animal vaccination have been performed in order to reduce Salmonella prevalence, there is still a need for an ideal vaccine. Here, with the aim of constructing a novel live attenuated Salmonella vaccine candidate, we firstly analyzed the impact of the absence of cyclic-di-GMP (c-di-GMP) in Salmonella virulence. C-di-GMP is an intracellular second messenger that controls a wide range of bacterial processes, including biofilm formation and synthesis of virulence factors, and also modulates the host innate immune response. Our results showed that a Salmonella multiple mutant in the twelve genes encoding diguanylate cyclase proteins that, as a consequence, cannot synthesize c-di-GMP, presents a moderate attenuation in a systemic murine infection model. An additional mutation of the rpoS gene resulted in a synergic attenuating effect that led to a highly attenuated strain, referred to as ΔXIII, immunogenic enough to protect mice against a lethal oral challenge of a S. Typhimurium virulent strain. ΔXIII immunogenicity relied on activation of both antibody and cell mediated immune responses characterized by the production of opsonizing antibodies and the induction of significant levels of IFN-γ, TNF-α, IL-2, IL-17 and IL-10. ΔXIII was unable to form a biofilm and did not survive under desiccation conditions, indicating that it could be easily eliminated from the environment. Moreover, ΔXIII shows DIVA features that allow differentiation of infected and vaccinated animals. Altogether, these results show ΔXIII as a safe and effective live DIVA vaccine. PMID:27537839

  8. Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.

    PubMed Central

    Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar

    2015-01-01

    Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals. PMID:25956778

  9. Salmonella Serogroup C: Current Status of Vaccines and Why They Are Needed

    PubMed Central

    Fuche, Fabien J.; Sow, Ousmane; Simon, Raphael

    2016-01-01

    Nontyphoidal Salmonella (NTS; i.e., Salmonella enterica organisms that do not cause typhoid or paratyphoid) are responsible for 94 million infections and 155,000 deaths worldwide annually, 86% of which are estimated to be foodborne. Although more than 50 serogroups and 2,600 serovars have been described, not all Salmonella serovars cause disease in humans and animals. Efforts are being made to develop NTS vaccines, with most approaches eliciting protection against serovars Typhimurium and Enteritidis (serogroups B [O:4] and D [O:9], respectively), as they are widely considered the most prevalent. Here, we show that serogroup C (O:6,7, O:6,8, or O:8 epitopes) is the most common serogroup in the United States, and the prevalence of serovars from this serogroup has been increasing in Europe and the United States over the last decade. They are also the most commonly isolated serovars from healthy cattle and poultry, indicating the underlying importance of surveillance in animals. Four out of the 10 most lethal serovars in the United States are serogroup C, and reports from African countries suggest that strains within this serogroup are highly antibiotic resistant. Serogroup C consists of highly diverse organisms among which 37 serovars account for the majority of human cases, compared to 17 and 11 serovars for serogroups B and D, respectively. Despite these concerning data, no human vaccines targeting serogroup C NTS are available, and animal vaccines are in limited use. Here, we describe the underestimated burden represented by serogroup C NTS, as well as a discussion of vaccines that target these pathogens. PMID:27413069

  10. Cattle drive Salmonella infection in the wildlife-livestock interface.

    PubMed

    Mentaberre, G; Porrero, M C; Navarro-Gonzalez, N; Serrano, E; Domínguez, L; Lavín, S

    2013-11-01

    The genus Salmonella is found throughout the world and is a potential pathogen for most vertebrates. It is also the most common cause of food-borne illness in humans, and wildlife is an emerging source of food-borne disease in humans due to the consumption of game meat. Wild boar is one of the most abundant European game species and these wild swine are known to be carriers of zoonotic and food-borne pathogens such as Salmonella. Isolation of the pathogen, serotyping and molecular biology are necessary for elucidating epidemiological connections in multi-host populations. Although disease management at population level can be addressed using a number of different strategies, such management is difficult in free-living wildlife populations due to the lack of experience with the wildlife-livestock interface. Herein, we provide the results of a 4-year Salmonella survey in sympatric populations of wild boar and cattle in the Ports de Tortosa i Beseit National Game Reserve (NE Spain). We also evaluated the effects of two management strategies, cattle removal and increased wild boar harvesting (i.e. by hunting and trapping), on the prevalence of the Salmonella serovar community. The serovars Meleagridis and Anatum were found to be shared by cattle and wild boar, a finding that was confirmed by 100% DNA similarity patterns using pulse field gel electrophoresis. Cattle removal was more efficient than the culling of wild boar as a means of reducing the prevalence of shared serotypes, which underlines the role of cattle as a reservoir of Salmonella for wild boar. To our knowledge, this is the first attempt to manage Salmonella in the wild, and the results have implications for management. © 2012 Blackwell Verlag GmbH.

  11. International outbreak of multiple Salmonella serotype infections linked to sprouted chia seed powder - USA and Canada, 2013-2014.

    PubMed

    Harvey, R R; Heiman Marshall, K E; Burnworth, L; Hamel, M; Tataryn, J; Cutler, J; Meghnath, K; Wellman, A; Irvin, K; Isaac, L; Chau, K; Locas, A; Kohl, J; Huth, P A; Nicholas, D; Traphagen, E; Soto, K; Mank, L; Holmes-Talbot, K; Needham, M; Barnes, A; Adcock, B; Honish, L; Chui, L; Taylor, M; Gaulin, C; Bekal, S; Warshawsky, B; Hobbs, L; Tschetter, L R; Surin, A; Lance, S; Wise, M E; Williams, I; Gieraltowski, L

    2017-06-01

    Salmonella is a leading cause of bacterial foodborne illness. We report the collaborative investigative efforts of US and Canadian public health officials during the 2013-2014 international outbreak of multiple Salmonella serotype infections linked to sprouted chia seed powder. The investigation included open-ended interviews of ill persons, traceback, product testing, facility inspections, and trace forward. Ninety-four persons infected with outbreak strains from 16 states and four provinces were identified; 21% were hospitalized and none died. Fifty-four (96%) of 56 persons who consumed chia seed powder, reported 13 different brands that traced back to a single Canadian firm, distributed by four US and eight Canadian companies. Laboratory testing yielded outbreak strains from leftover and intact product. Contaminated product was recalled. Although chia seed powder is a novel outbreak vehicle, sprouted seeds are recognized as an important cause of foodborne illness; firms should follow available guidance to reduce the risk of bacterial contamination during sprouting.

  12. Infection with Salmonella enterica Serovar Typhimurium Leads to Increased Proportions of F4/80+ Red Pulp Macrophages and Decreased Proportions of B and T Lymphocytes in the Spleen.

    PubMed

    Rosche, Kristin L; Aljasham, Alanoud T; Kipfer, James N; Piatkowski, Bryan T; Konjufca, Vjollca

    2015-01-01

    Infection of mice with Salmonella enterica serovar Typhimurium (Salmonella) causes systemic inflammatory disease and enlargement of the spleen (splenomegaly). Splenomegaly has been attributed to a general increase in the numbers of phagocytes, lymphocytes, as well as to the expansion of immature CD71+Ter119+ reticulocytes. The spleen is important for recycling senescent red blood cells (RBCs) and for the capture and eradication of blood-borne pathogens. Conservation of splenic tissue architecture, comprised of the white pulp (WP), marginal zone (MZ), and red pulp (RP) is essential for initiation of adaptive immune responses to captured pathogens. Using flow cytometry and four color immunofluorescence microscopy (IFM), we show that Salmonella-induced splenomegaly is characterized by drastic alterations of the splenic tissue architecture and cell population proportions, as well as in situ cell distributions. A major cause of splenomegaly appears to be the significant increase in immature RBC precursors and F4/80+ macrophages that are important for recycling of heme-associated iron. In contrast, the proportions of B220+, CD4+ and CD8+ lymphocytes, as well as MZ MOMA+ macrophages decrease significantly as infection progresses. Spleen tissue sections show visible tears and significantly altered tissue architecture with F4/80+ macrophages and RBCs expanding beyond the RP and taking over most of the spleen tissue. Additionally, F4/80+ macrophages actively phagocytose not only RBCs, but also lymphocytes, indicating that they may contribute to declining lymphocyte proportions during Salmonella infection. Understanding how these alterations of spleen microarchitecture impact the generation of adaptive immune responses to Salmonella has implications for understanding Salmonella pathogenesis and for the design of more effective Salmonella-based vaccines.

  13. Salmonella enteritidis infections associated with foods purchased from mobile lunch trucks--Alberta, Canada, October 2010-February 2011.

    PubMed

    2013-07-19

    During October 2010-February 2011, an outbreak of 91 Salmonella Enteritidis (SE) infections in Alberta, Canada, was investigated by a local public health department (Alberta Health Services, Calgary Zone). Index cases initially were linked through a common history of consumption of food purchased from mobile food-vending vehicles (lunch trucks) operating at worksites in Alberta. Further investigation implicated one catering company that supplied items for the lunch trucks and other vendors. In 85 cases, patients reported consumption of food prepared by the catering company in the 7 days before illness. Six patients were employees of the catering company, and two food samples collected from the catering company were positive for SE. Foods likely were contaminated directly or indirectly through the use of illegally sourced, SE-contaminated eggs at the implicated catering facility and by catering employees who were infected with SE. Public health interventions put into place to control the outbreak included screening employees for Salmonella, excluding those infected from food-handling duties, and training employees in safe food-handling procedures. No further outbreak cases were identified after full implementation of the interventions. This investigation highlights the potential for lunch trucks to be a source of foodborne illness and the need for robust regulatory compliance monitoring of lunch trucks and their food suppliers.

  14. Salmonella Typhimurium Diarrhea Reveals Basic Principles of Enteropathogen Infection and Disease-Promoted DNA Exchange.

    PubMed

    Wotzka, Sandra Y; Nguyen, Bidong D; Hardt, Wolf-Dietrich

    2017-04-12

    Despite decades of research, efficient therapies for most enteropathogenic bacteria are still lacking. In this review, we focus on Salmonella enterica Typhimurium (S. Typhimurium), a frequent cause of acute, self-limiting food-borne diarrhea and a model that has revealed key principles of enteropathogen infection. We review the steps of gut infection and the mucosal innate-immune defenses limiting pathogen burdens, and we discuss how inflammation boosts gut luminal S. Typhimurium growth. We also discuss how S. Typhimurium-induced inflammation accelerates the transfer of plasmids and phages, which may promote the transmission of antibiotic resistance and facilitate emergence of pathobionts and pathogens with enhanced virulence. The targeted manipulation of the microbiota and vaccination might offer strategies to prevent this evolution. As gut luminal microbes impact various aspects of the host's physiology, improved strategies for preventing enteropathogen infection and disease-inflicted DNA exchange may be of broad interest well beyond the acute infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Pet-Related Infections.

    PubMed

    Day, Michael J

    2016-11-15

    Physicians and veterinarians have many opportunities to partner in promoting the well-being of people and their pets, especially by addressing zoonotic diseases that may be transmitted between a pet and a human family member. Common cutaneous pet-acquired zoonoses are dermatophytosis (ringworm) and sarcoptic mange (scabies), which are both readily treated. Toxoplasmosis can be acquired from exposure to cat feces, but appropriate hygienic measures can minimize the risk to pregnant women. Persons who work with animals are at increased risk of acquiring bartonellosis (e.g., cat-scratch disease); control of cat fleas is essential to minimize the risk of these infections. People and their pets share a range of tick-borne diseases, and exposure risk can be minimized with use of tick repellent, prompt tick removal, and appropriate tick control measures for pets. Pets such as reptiles, amphibians, and backyard poultry pose a risk of transmitting Salmonella species and are becoming more popular. Personal hygiene after interacting with these pets is crucial to prevent Salmonella infections. Leptospirosis is more often acquired from wildlife than infected dogs, but at-risk dogs can be protected with vaccination. The clinical history in the primary care office should routinely include questions about pets and occupational or other exposure to pet animals. Control and prevention of zoonoses are best achieved by enhancing communication between physicians and veterinarians to ensure patients know the risks of and how to prevent zoonoses in themselves, their pets, and other people.

  16. Specific Responses of Salmonella enterica to Tomato Varieties and Fruit Ripeness Identified by In Vivo Expression Technology

    PubMed Central

    Noel, Jason T.; Arrach, Nabil; Alagely, Ali; McClelland, Michael; Teplitski, Max

    2010-01-01

    Background Recent outbreaks of vegetable-associated gastroenteritis suggest that enteric pathogens colonize, multiply and persist in plants for extended periods of time, eventually infecting people. Genetic and physiological pathways, by which enterics colonize plants, are still poorly understood. Methodology/Principal Findings To better understand interactions between Salmonella enterica sv. Typhimurium and tomatoes, a gfp-tagged Salmonella promoter library was screened inside red ripe fruits. Fifty-one unique constructs that were potentially differentially regulated in tomato relative to in vitro growth were identified. The expression of a subset of these promoters was tested in planta using recombinase-based in vivo expression technology (RIVET) and fitness of the corresponding mutants was tested. Gene expression in Salmonella was affected by fruit maturity and tomato cultivar. A putative fadH promoter was upregulated most strongly in immature tomatoes. Expression of the fadH construct depended on the presence of linoleic acid, which is consistent with the reduced accumulation of this compound in mature tomato fruits. The cysB construct was activated in the fruit of cv. Hawaii 7997 (resistant to a race of Ralstonia solanacearum) more strongly than in the universally susceptible tomato cv. Bonny Best. Known Salmonella motility and animal virulence genes (hilA, flhDC, fliF and those encoded on the pSLT virulence plasmid) did not contribute significantly to fitness of the bacteria inside tomatoes, even though deletions of sirA and motA modestly increased fitness of Salmonella inside tomatoes. Conclusions/Significance This study reveals the genetic basis of the interactions of Salmonella with plant hosts. Salmonella relies on a distinct set of metabolic and regulatory genes, which are differentially regulated in planta in response to host genotype and fruit maturity. This enteric pathogen colonizes tissues of tomatoes differently than plant pathogens, and relies

  17. Recent Trends in Salmonella Outbreaks and Emerging Technology for Biocontrol of Salmonella Using Phages in Foods: A Review.

    PubMed

    Oh, Jun-Hyun; Park, Mi-Kyung

    2017-12-28

    Salmonella is one of the principal causes of foodborne outbreaks. As traditional control methods have shown less efficacy against emerging Salmonella serotypes or antimicrobialresistant Salmonella , new approaches have been attempted. The use of lytic phages for the biocontrol of Salmonella in the food industry has become an attractive method owing to the many advantages offered by the use of phages as biocontrol agents. Phages are natural alternatives to traditional antimicrobial agents; they have proven effective in the control of bacterial pathogens in the food industry, which has led to the development of different phage products. The treatment with specific phages in the food industry can prevent the decay of products and the spread of bacterial diseases, and ultimately promotes safe environments for animal and plant food production, processing, and handling. After an extensive investigation of the current literature, this review focuses predominantly on the efficacy of phages for the successful control of Salmonella spp. in foods. This review also addresses the current knowledge on the pathogenic characteristics of Salmonella , the prevalence of emerging Salmonella outbreaks, the isolation and characterization of Salmonella -specific phages, the effectiveness of Salmonella -specific phages as biocontrol agents, and the prospective use of Salmonella -specific phages in the food industry.

  18. Guanosine 5′-monophosphate-chelated calcium and iron feed additives maintains egg production and prevents Salmonella Gallinarum in experimentally infected layers

    PubMed Central

    Noh, Hye-Ji; Kim, HeeKyong; Heo, Su Jeong; Cho, Hyang Hyun

    2017-01-01

    We evaluated the effects of guanosine 5′-monophosphate (GMP)-chelated calcium and iron (CaFe-GMP) on health and egg quality in layers experimentally infected with Salmonella Gallinarum. In this study, a CaFe-GMP feed additive was added to a commercial layer feed and fed to layers over a four-week period. All were inoculated with Salmonella Gallinarum. Body weight, mortality, clinical symptoms, and poultry production including feed intake, egg production, egg loss, and feed conversion rate were observed, and Salmonella Gallinarum was re-isolated from the liver, spleen, and cecum of the layers. All tested internal organs for the CaFe-GMP additive group exhibited significantly lower re-isolation numbers of Salmonella Gallinarum and less severe pathological changes than those in the control group, indicating that the CaFe-GMP feed supplement induced bacterial clearance and increased resistance to Salmonella Gallinarum. Additionally, due to the inhibitory action of CaFe-GMP on the growth of Salmonella Gallinarum, the CaFe-GMP additive group exhibited better egg production, including a higher laying rate and fewer broken eggs. The results suggest that a 0.16% CaFe-GMP additive may help prevent salmonellosis in the poultry industry. PMID:28057911

  19. Salmonella Typhimurium metabolism affects virulence in the host - A mini-review.

    PubMed

    Herrero-Fresno, Ana; Olsen, John Elmerdhahl

    2018-05-01

    Salmonella enterica remains an important food borne pathogen in all regions of the world with S. Typhimurium as one of the most frequent serovars causing food borne disease. Since the majority of human cases are caused by food of animal origin, there has been a high interest in understanding how S. Typhimurium interacts with the animal host, mostly focusing on factors that allow it to breach host barriers and to manipulate host cells to the benefit of itself. Up to recently, such studies have ignored the metabolic factors that allow the bacteria to multiply in the host, but this is changing rapidly, and we are now beginning to understand that virulence and metabolism in the host are closely linked. The current review highlights which metabolic factors that are essential for Salmonella Typhimurium growth in the intestine, in cultured epithelial and macrophage-like cell lines, at systemic sites during invasive salmonellosis, and during long term asymptomatic colonization of the host. It also points to the limitations in our current knowledge, most notably that most studies have been carried out with few well-characterized laboratory strains, that we do not know how much the in vivo metabolism differs between serotypes, and that most results are based on challenges in the mouse model of infection. It will be very important to realize whether the current understanding of Salmonella metabolism in the host is true for all serotypes and all possible hosts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. 9 CFR 113.30 - Detection of Salmonella contamination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Detection of Salmonella contamination. 113.30 Section 113.30 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... collected from the bulk suspension before bacteriostatic or bactericidal agents have been added. When tissue...

  1. 9 CFR 113.30 - Detection of Salmonella contamination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Detection of Salmonella contamination. 113.30 Section 113.30 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... collected from the bulk suspension before bacteriostatic or bactericidal agents have been added. When tissue...

  2. 9 CFR 113.30 - Detection of Salmonella contamination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Detection of Salmonella contamination. 113.30 Section 113.30 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... collected from the bulk suspension before bacteriostatic or bactericidal agents have been added. When tissue...

  3. Salmonella enterica Infections in the United States and Assessment of Coefficients of Variation: A Novel Approach to Identify Epidemiologic Characteristics of Individual Serotypes, 1996-2011.

    PubMed

    Boore, Amy L; Hoekstra, R Michael; Iwamoto, Martha; Fields, Patricia I; Bishop, Richard D; Swerdlow, David L

    2015-01-01

    Despite control efforts, salmonellosis continues to cause an estimated 1.2 million infections in the United States (US) annually. We describe the incidence of salmonellosis in the US and introduce a novel approach to examine the epidemiologic similarities and differences of individual serotypes. Cases of salmonellosis in humans reported to the laboratory-based National Salmonella Surveillance System during 1996-2011 from US states were included. Coefficients of variation were used to describe distribution of incidence rates of common Salmonella serotypes by geographic region, age group and sex of patient, and month of sample isolation. During 1996-2011, more than 600,000 Salmonella isolates from humans were reported, with an average annual incidence of 13.1 cases/100,000 persons. The annual reported rate of Salmonella infections did not decrease during the study period. The top five most commonly reported serotypes, Typhimurium, Enteritidis, Newport, Heidelberg, and Javiana, accounted for 62% of fully serotyped isolates. Coefficients of variation showed the most geographically concentrated serotypes were often clustered in Gulf Coast states and were also more frequently found to be increasing in incidence. Serotypes clustered in particular months, age groups, and sex were also identified and described. Although overall incidence rates of Salmonella did not change over time, trends and epidemiological factors differed remarkably by serotype. A better understanding of Salmonella, facilitated by this comprehensive description of overall trends and unique characteristics of individual serotypes, will assist in responding to this disease and in planning and implementing prevention activities.

  4. Human and animal salmonellosis in Scotland associated with environmental contamination, 1973-79.

    PubMed

    Reilly, W J; Forbes, G I; Paterson, G M; Sharp, J C

    1981-06-27

    Twenty-six incidents of salmonellosis occurring in Scotland between 1973 and 1979 and attributed to environmental pollution are reviewed. The apparent sources of pollution were sewage effluent (10 incidents), septic tank effluent (eight), sewage sludge (three), seagulls (three) and abattoir effluents (two). Cattle were the species predominantly affected. Human infection was primary in three incidents and was secondary to bovine infection in another four. Thirteen salmonella serotypes were recovered from infected humans or animals and 17 during related environmental investigations. The factors causing pollutions and possible control measures are discussed.

  5. Prevalence of Salmonella enterica, Listeria monocytogenes, and pathogenic Escherichia coli in bulk tank milk and milk filters from US dairy operations in the National Animal Health Monitoring System Dairy 2014 study.

    PubMed

    Sonnier, Jakeitha L; Karns, Jeffrey S; Lombard, Jason E; Kopral, Christine A; Haley, Bradd J; Kim, Seon-Woo; Van Kessel, Jo Ann S

    2018-03-01

    The dairy farm environment is a well-documented reservoir for zoonotic pathogens such as Salmonella enterica, Shiga-toxigenic Escherichia coli, and Listeria monocytogenes, and humans may be exposed to these pathogens via consumption of unpasteurized milk and dairy products. As part of the National Animal Health Monitoring System Dairy 2014 study, bulk tank milk (BTM, n = 234) and milk filters (n = 254) were collected from a total of 234 dairy operations in 17 major dairy states and analyzed for the presence of these pathogens. The invA gene was detected in samples from 18.5% of operations and Salmonella enterica was isolated from 18.0% of operations. Salmonella Dublin was detected in 0.7% of operations. Sixteen Salmonella serotypes were isolated, and the most common serotypes were Cerro, Montevideo, and Newport. Representative Salmonella isolates (n = 137) were tested against a panel of 14 antimicrobials. Most (85%) were pansusceptible; the remaining were resistant to 1 to 9 antimicrobials, and within the resistant strains the most common profile was resistance to ampicillin/clavulanic acid, ampicillin, cefoxitin, ceftiofur, ceftriaxone, chloramphenicol, streptomycin, sulfisoxazole, and tetracycline. Listeria spp. were isolated from 19.9% of operations, and L. monocytogenes was isolated from 3.0% of operations. Serogroups 1/2a and 1/2b were the most common, followed by 4b and 4a. One or more E. coli virulence genes were detected in the BTM from 30.5% of operations and in the filters from 75.3% of operations. A combination of stx 2 , eaeA, and γ-tir genes was detected in the BTM from 0.5% of operations and in the filters from 6.6% of operations. The results of this study indicate an appreciable prevalence of bacterial pathogens in BTM and filters, including serovars known to infect humans. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. A national outbreak of Salmonella serotype Tennessee infections from contaminated peanut butter: a new food vehicle for salmonellosis in the United States.

    PubMed

    Sheth, Anandi N; Hoekstra, Mike; Patel, Nehal; Ewald, Gwen; Lord, Cathy; Clarke, Carmen; Villamil, Elizabeth; Niksich, Katherine; Bopp, Cheryl; Nguyen, Thai-An; Zink, Donald; Lynch, Michael

    2011-08-01

    Salmonella serotype Tennessee is a rare cause of the estimated 1 million cases of salmonellosis occurring annually in the United States. In January 2007, we began investigating a nationwide increase in Salmonella Tennessee infections. We defined a case as Salmonella Tennessee infection in a patient whose isolate demonstrated 1 of 3 closely related pulsed-field gel electrophoresis patterns and whose illness began during the period 1 August 2006 through 31 July 2007. We conducted a case-control study in 22 states and performed laboratory testing of foods and environmental samples. We identified 715 cases in 48 states; 37% of isolates were from urine specimens. Illness was associated with consuming peanut butter more than once a week (matched odds ratio [mOR], 3.5 [95% confidence interval {95% CI}, 1.4-9.9]), consuming Brand X peanut butter (mOR, 12.1 [95% CI, 3.6-66.3]), and consuming Brand Y peanut butter (mOR, 9.1 [95% CI, 1.0-433]). Brands X and Y were produced in 1 plant, which ceased production and recalled products on 14 February 2007. Laboratories isolated outbreak strains of Salmonella Tennessee from 34 Brands X and Y peanut butter jars and 2 plant environmental samples. This large, widespread outbreak of salmonellosis is the first linked to peanut butter in the United States; a nationwide recall resulted in outbreak control. Environmental contamination in the peanut butter plant likely caused this outbreak. This outbreak highlights the risk of salmonellosis from heat-processed foods of nonanimal origin previously felt to be low risk for Salmonella contamination.

  7. Litter aeration and spread of Salmonella in broilers.

    PubMed

    Bodí, Sara González; Garcia, Arantxa Villagra; García, Santiago Vega; Orenga, Clara Marín

    2013-08-01

    Litter quality in the poultry sector is one of the main parameters of health, productivity, and animal welfare. Therefore, innovative management methods have been developed to improve the quality of litter. One of them is litter aeration (LA) by tumbling. However, there is little information related to the effect of this technique on the spreading of pathogens of public health importance such as Salmonella. In this context, the objective of this study was to determine the epidemiology of Salmonella in poultry farms, when serial LA were implemented during the rearing cycle of broilers. For this purpose, an experimental broiler farm with 3 identical rooms was used in the study. Two rooms were assigned to the LA treatment, and the other one served as the control room. Environmental samples were taken in poultry houses after LA in 4 consecutive weeks at the end of the cycle. All samples collected were analyzed according to the standards of the International Organization for Standardization (ISO 6579:2002, Annex D). The results of this study showed that in the control and treated rooms, the percentage of positive samples for Salmonella decreased in the first 3 LA sessions (LA 1, LA 2, and LA 3). However, in the last LA session of rearing (LA 4), the percentage of positive samples increased from 8.2 to 33.2% in the control room instead the treated rooms where the positive samples decreased (P = 0.017). Thus, the aeration of the litter as litter management technique in poultry broiler production does not increase the shedding or the spread of Salmonella throughout broiler houses. In addition, it could be an effective technique to reduce the infective pressure of this bacterium in several areas of the farm or in certain moments of the rearing period with more risk of multiplication and spreading of Salmonella.

  8. Nano-materials for use in sensing of salmonella infections: Recent advances.

    PubMed

    Pashazadeh, Paria; Mokhtarzadeh, Ahad; Hasanzadeh, Mohammad; Hejazi, Maryam; Hashemi, Maryam; de la Guardia, Miguel

    2017-01-15

    Salmonella infectious diseases spreading every day through food have become a life-threatening problem for millions of people and growing menace to society. Health expert's estimate that the yearly cost of all the food borne diseases is approximately $5-6 billion. Traditional methodologies for salmonella analysis provide high reliability and very low limits of detection. Among them immunoassays and Nucleic acid-based assays provide results within 24h, but they are expensive, tedious and time consuming. So, there is an urgent need for development of rapid, robust and cost-effective alternative technologies for real-time monitoring of salmonella. Several biosensors have been designed and commercialized for detection of this pathogen in food and water. In this overview, we have updated the literature concerning novel biosensing methods such as various optical and electrochemical biosensors and newly developed nano- and micro-scaled and aptamers based biosensors for detection of salmonella pathogen. Furthermore, attention has been focused on the principal concepts, applications, and examples that have been achieved up to diagnose salmonella. In addition, commercial biosensors and foreseeable future trends for onsite detecting salmonella have been summarized. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Gastrointestinal microbial ecology and the safety of our food supply as related to Salmonella.

    PubMed

    Callaway, T R; Edrington, T S; Anderson, R C; Byrd, J A; Nisbet, D J

    2008-04-01

    Salmonella causes an estimated 1.3 million human foodborne illnesses and more than 500 deaths each year in the United States, representing an annual estimated cost to the economy of approximately $2.4 billion. Salmonella enterica comprises more than 2,500 serotypes. With this genetic and environmental diversity, serotypes are adapted to live in a variety of hosts, which may or may not manifest with clinical illness. Thus, Salmonella presents a multifaceted threat to food production and safety. Salmonella have been isolated from all food animals and can cause morbidity and mortality in swine, cattle, sheep, and poultry. The link between human salmonellosis and host animals is most clear in poultry. During the early part of the 20th century, a successful campaign was waged to eliminate fowl typhoid caused by Salmonella Gallinarum/Pullorum. Microbial ecology is much like macroecology; environmental niches are filled by adapted and specialized species. Elimination of S. Gallinarum cleared a niche in the on-farm and intestinal microbial ecology that was quickly exploited by Salmonella Enteritidis and other serotypes that live in other hosts, such as rodents. In the years since, human salmonellosis cases linked to poultry have increased to the point that uncooked chicken and eggs are regarded as toxic in the zeitgeist. Salmonellosis caused by poultry products have increased significantly in the past 5 yr, leading to a USDA Food Safety and Inspection Service "Salmonella Attack Plan" that aims to reduce the incidence of Salmonella in chickens below the current 19%. The prevalence of Salmonella in swine and cattle is lower, but still poses a threat to food safety and production efficiency. Thus, approaches to reducing Salmonella in animals must take into consideration that the microbial ecology of the animal is a critical factor that should be accounted for when designing intervention strategies. Use of competitive exclusion, sodium chlorate, vaccination, and bacteriophage

  10. Salmonellosis outbreak due to chicken contact leading to a foodborne outbreak associated with infected delicatessen workers.

    PubMed

    Hedican, Erin; Miller, Ben; Ziemer, Brian; LeMaster, Pam; Jawahir, Selina; Leano, Fe; Smith, Kirk

    2010-08-01

    Salmonella is the most common bacterial cause of foodborne outbreaks in the United States. Starting in June 2007, investigation of a cluster of Salmonella Montevideo cases with indistinguishable pulsed-field gel electrophoresis (PFGE) patterns resulted in the identification of an outbreak associated with contact with chickens purchased from a single hatchery. Nine Minnesota cases from May through August 2007 were part of this outbreak. Cases with the outbreak PFGE pattern of Salmonella Montevideo continued to occur in Minnesota after August, but none of these cases reported chicken contact. The majority of these cases resided in the same town in rural Minnesota. Routine interviews revealed that all cases from these counties purchased groceries from the same local grocery store, with two specifically reporting consuming items from the grocery store delicatessen in the week before illness. As a result, an investigation into the delicatessen was initiated. Illness histories and stool samples were collected from all delicatessen employees, and food and environmental samples were collected. None of the employees reported experiencing recent gastrointestinal symptoms, but the outbreak PFGE subtype of Salmonella Montevideo was identified from stool from two food workers. Food and environmental samples collected tested negative for Salmonella. One of the positive employees reported having chickens at home, but the animals did not test positive for Salmonella. The positive food workers were excluded from work until they had two consecutive negative stool cultures for Salmonella. There was no evidence of ongoing transmission thereafter. This was an outbreak of Salmonella Montevideo infections that began as an animal-contact-associated outbreak which subsequently resulted in a foodborne outbreak associated with infected food workers. These outbreaks illustrate the complex epidemiology of salmonellosis.

  11. Loop-Mediated Isothermal Amplification of the sefA Gene for Rapid Detection of Salmonella Enteritidis and Salmonella Gallinarum in Chickens.

    PubMed

    Gong, Jiansen; Zhuang, Linlin; Zhu, Chunhong; Shi, Shourong; Zhang, Di; Zhang, Linji; Yu, Yan; Dou, Xinhong; Xu, Bu; Wang, Chengming

    2016-04-01

    Salmonella spp. pose a threat to both human and animal health, with more than 2600 serovars having been reported to date. Salmonella serovars are usually identified by slide agglutination tests, which are labor intensive and time consuming. In an attempt to develop a more rapid screening method for the major poultry Salmonella serovars, we developed a loop-mediated isothermal amplification (LAMP) assay, which directly detected the sefA gene, a fimbrial operon gene existing in several specific serovars of Salmonella enterica including the major poultry serovars, namely Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) and Salmonella enterica serovar Gallinarum (Salmonella Gallinarum). With the 177 bacterial strains we tested, positive reactions were only observed with 85 strains of serovar Salmonella Enteritidis and Salmonella Gallinarum. The detection limit of the LAMP assay was 4 CFU/reaction with genomic DNAs of Salmonella Enteritidis (ATCC 13076) from pure culture and 400 CFU/ reaction with DNA extracted from spiked chicken feces. The LAMP assay was more sensitive than conventional culture, especially without enrichment, in detecting Salmonella Enteritidis (CMCC 50041) in the spiked fecal samples. The results show the sefA LAMP method is a rapid, sensitive, specific, and practical method for directly detection of Salmonella Enteritidis and Salmonella Gallinarum in chickens. The sefA LAMP assay can potentially serve as new on-site diagnostics in the poultry industry.

  12. Salmonella burden in Lebanon.

    PubMed

    Malaeb, M; Bizri, A R; Ghosn, N; Berry, A; Musharrafieh, U

    2016-06-01

    Salmonellosis is a disease that represents a major public health concern in both developing and developed countries. The aim of this article is to evaluate the public health burden of Salmonella illness in Lebanon. The current scope of the Salmonella infection problem was assessed in relation to disease incidence and distribution with respect to age, gender and district. Factors that provide a better understanding of the magnitude of the problem were explored and highlighted. Data reported to the Epidemiologic Surveillance Department at the Lebanese Ministry of Public Health between 2001 and 2013 was reviewed. Information obtained was compared to information reported regionally and globally. The estimated true incidence was derived using multipliers from the CDC and Jordan. A literature review of all published data from Lebanon about Salmonella susceptibility/resistance patterns and its serious clinical complications was conducted. The estimated incidence was 13·34 cases/100 000 individuals, most cases occurred in the 20-39 years age group with no significant gender variation. Poor and less developed districts of Lebanon had the highest number of cases and the peak incidence was in summer. Reflecting on the projected incidence derived from the use of multipliers indicates a major discrepancy between what is reported and what is estimated. We conclude that data about Salmonella infection in Lebanon and many Middle Eastern and developing countries lack crucial information and are not necessarily representative of the true incidence, prevalence and burden of illness.

  13. SadA, a Trimeric Autotransporter from Salmonella enterica Serovar Typhimurium, Can Promote Biofilm Formation and Provides Limited Protection against Infection ▿ †

    PubMed Central

    Raghunathan, Dhaarini; Wells, Timothy J.; Morris, Faye C.; Shaw, Robert K.; Bobat, Saeeda; Peters, Sarah E.; Paterson, Gavin K.; Jensen, Karina Tveen; Leyton, Denisse L.; Blair, Jessica M. A.; Browning, Douglas F.; Pravin, John; Flores-Langarica, Adriana; Hitchcock, Jessica R.; Moraes, Claudia T. P.; Piazza, Roxane M. F.; Maskell, Duncan J.; Webber, Mark A.; May, Robin C.; MacLennan, Calman A.; Piddock, Laura J.; Cunningham, Adam F.; Henderson, Ian R.

    2011-01-01

    Salmonella enterica is a major cause of morbidity worldwide and mortality in children and immunocompromised individuals in sub-Saharan Africa. Outer membrane proteins of Salmonella are of significance because they are at the interface between the pathogen and the host, they can contribute to adherence, colonization, and virulence, and they are frequently targets of antibody-mediated immunity. In this study, the properties of SadA, a purported trimeric autotransporter adhesin of Salmonella enterica serovar Typhimurium, were examined. We demonstrated that SadA is exposed on the Salmonella cell surface in vitro and in vivo during infection of mice. Expression of SadA resulted in cell aggregation, biofilm formation, and increased adhesion to human intestinal Caco-2 epithelial cells. Immunization of mice with folded, full-length, purified SadA elicited an IgG response which provided limited protection against bacterial challenge. When anti-SadA IgG titers were enhanced by administering alum-precipitated protein, a modest additional protection was afforded. Therefore, despite SadA having pleiotropic functions, it is not a dominant, protective antigen for antibody-mediated protection against Salmonella. PMID:21859856

  14. Oral immunisation of laying hens with the live vaccine strains of TAD Salmonella vac E and TAD Salmonella vac T reduces internal egg contamination with Salmonella Enteritidis.

    PubMed

    Gantois, Inne; Ducatelle, Richard; Timbermont, Leen; Boyen, Filip; Bohez, Lotte; Haesebrouck, Freddy; Pasmans, Frank; van Immerseel, Filip

    2006-09-11

    Eggs are a major source of human infections with Salmonella. Therefore controlling egg contamination in laying hen flocks is one of the main targets for control programmes. A study was carried out to assess the effect of oral vaccination with TAD Salmonella vac E, TAD Salmonella vac T and with both vaccines TAD Salmonella vac E and TAD Salmonella vac T, on colonization of the reproductive tract and internal egg contamination of laying hens with Salmonella Enteritidis. Three groups of 30 laying hens were vaccinated at 1 day, 6 weeks and 16 weeks of age with either one of the vaccine strains, or a combination of both vaccine strains, while a fourth group was left unvaccinated. At 24 weeks of age, the birds were intravenously challenged with 0.5 ml containing 5 x 10(7)cfu Salmonella Enteritidis PT4 S1400/94. The number of oviducts from which Salmonella was isolated, was significantly lower in the vaccinated than in the non-vaccinated hens at 3 weeks post-challenge. Significantly less egg contents were Salmonella positive in the birds vaccinated with TAD Salmonella vac E or TAD Salmonella vac T (12/105 batches of eggs in both groups) than in the unvaccinated birds (28/105 batches of eggs). Internal egg contamination in the hens vaccinated with both TAD Salmonella vac E and TAD Salmonella vac T was even more reduced, as over the whole experiment, only one batch of eggs was positive. In conclusion, these data indicate that vaccination of laying hens with these live vaccines could be considered as a valuable tool in controlling internal egg contamination.

  15. Risk factors for the occurrence of sporadic Salmonella enterica serotype enteritidis infections in children in France: a national case-control study.

    PubMed Central

    Delarocque-Astagneau, E.; Desenclos, J. C.; Bouvet, P.; Grimont, P. A.

    1998-01-01

    To determine risk factors associated with the occurrence of sporadic cases of Salmonella enteritidis infections among children in France, we conducted a matched case-control study. Cases were identified between 1 March and 30 September 1995. One hundred and five pairs of cases and controls matched for age and place of residence were interviewed. In the 1-5 years age group, illness was associated with the consumption of raw eggs or undercooked egg-containing foods (OR 2.4, 95% CI 1.2-4.8). Storing eggs more than 2 weeks after purchase was associated with Salmonella enteritidis infection (OR 3.8, 95% CI 1.4-10.2), particularly during the summer period (OR 6.0, 95% CI 1.3-26.8). Cases were more likely to report a case of diarrhoea in the household 10-3 days before the onset of symptoms, particularly in the age group < or = 1 year (P = 0.01). This study confirms the link between eggs and the occurrence of sporadic cases of Salmonella enteritidis among children, highlights the potential role of prolonged egg storage and underlines the role of person-to-person transmission in infants. PMID:10030705

  16. Control and monitoring of Salmonella in egg-laying chickens

    USDA-ARS?s Scientific Manuscript database

    Contaminated eggs have been internationally significant sources for the transmission of Salmonella infection to humans for several decades. Both the public and private sectors have invested substantial resources in comprehensive risk reduction and monitoring programs for Salmonella in commercial egg...

  17. Effects of methyltestosterone on immunity against Salmonella Pullorum in dwarf chicks.

    PubMed

    Li, H; Zhang, Y; Zuo, S F; Lian, Z X; Li, N

    2009-12-01

    This study was conducted to determine effects of methyltestosterone on innate immunity and adaptive immunity against Salmonella Pullorum in dwarf chicks. In vivo experiment, comparisons of pathological sections, viable counts of bacteria, specific antibody levels, and subsets of T lymphocytes were set forth between chicks with or without 10(-7) M methyltestosterone treatment (2 d of age through 21 d of age) and challenged with 5 x 10(8) virulent Salmonella Pullorum (7 d of age), and in vitro experiment, phagocytic and killing abilities, reactive oxygen intermediate production, and reactive nitrogen intermediate production of monocytes-macrophages treated with high (10(-8) M/10(6) cell) or physiological (10(-14) M/10(6) cell) concentration of methyltestosterone were examined after Salmonella Pullorum infection. The results showed that (1) in vivo, administration of methyltestosterone enhanced susceptibility to Salmonella Pullorum infection and depressed cellular immunity against Salmonella Pullorum, whereas it had no effect on humoral immunity in dwarf chicks; (2) in vitro, at high concentration, methyltestosterone reduced (P < 0.05) monocytes-macrophages mediated reactive oxygen intermediate-dependent killing of Salmonella Pullorum, whereas low concentration of methyltestosterone enhanced (P < 0.05) reactive oxygen intermediate-dependent killing of Salmonella Pullorum in male dwarf chicks but not in females; and (3) although challenged with Salmonella Pullorum, phagocytic ability and monocytes-macrophages mediated reactive nitrogen intermediate-dependent killing were not affected by methyltestosterone in vitro. The results indicated that methyltestosterone affected the immune response to Salmonella Pullorum in dwarf chicks by changing monocytes-macrophages mediated reactive oxygen intermediate-dependent killing and cellular immunity, and the effects were dose-dependent; furthermore, the former 2 pathways played important roles in preventing Salmonella Pullorum

  18. Salmonella modulation of host cell gene expression promotes its intracellular growth.

    PubMed

    Hannemann, Sebastian; Gao, Beile; Galán, Jorge E

    2013-01-01

    Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS), which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways.

  19. Salmonella Newport omphaloarteritis in a stranded killer whale (Orcinus orca) neonate.

    PubMed

    Colegrove, Kathleen M; St Leger, Judy A; Raverty, Stephen; Jang, Spencer; Berman-Kowalewski, Michelle; Gaydos, Joseph K

    2010-10-01

    Salmonella enterica serovar Newport (Salmonella Newport) was isolated from multiple tissues in a neonate killer whale (Orcinus orca) that stranded dead in 2005 along the central coast of California, USA. Necrotizing omphaloarteritis and omphalophlebitis was observed on histologic examination suggesting umbilical infection was the route of entry. Genetic analysis of skin samples indicated that the neonate had an offshore haplotype. Salmonellosis has rarely been identified in free-ranging marine mammals and the significance of Salmonella Newport infection to the health of free-ranging killer whales is currently unknown.

  20. Multistate Outbreak of Salmonella Anatum Infections Linked to Imported Hot Peppers - United States, May-July 2016.

    PubMed

    Hassan, Rashida; Rounds, Joshua; Sorenson, Alida; Leos, Greg; Concepción-Acevedo, Jeniffer; Griswold, Taylor; Tesfai, Adiam; Blessington, Tyann; Hardy, Cerise; Basler, Colin

    2017-06-30

    Foodborne salmonellosis causes an estimated 1 million illnesses and 400 deaths annually in the United States (1). Salmonella Anatum is one of the top 20 Salmonella serotypes in the United States. During 2013-2015 there were approximately 300-350 annual illnesses reported to PulseNet, the national molecular subtyping network for foodborne disease surveillance. In June 2016, PulseNet identified a cluster of 16 Salmonella Anatum infections with an indistinguishable pulsed-field gel electrophoresis (PFGE) pattern from four states.* In April 2016, the same PFGE pattern had been uploaded to PulseNet from an isolate obtained from an Anaheim pepper, a mild to medium hot pepper. Hot peppers include many pepper varieties, such as Anaheim, jalapeño, poblano, and serrano, which can vary in heat level from mild to very hot depending on the variety and preparation. This rare PFGE pattern had been seen only 24 times previously in the PulseNet database, compared with common PFGE patterns for this serotype which have been seen in the database hundreds of times. Local and state health departments, CDC, and the Food and Drug Administration (FDA) investigated to determine the cause of the outbreak. Thirty-two patients in nine states were identified with illness onsets from May 6-July 9, 2016. Whole-genome sequencing (WGS) was performed to characterize clinical isolates and the Anaheim pepper isolate further. The combined evidence indicated that fresh hot peppers were the likely source of infection; however, a single pepper type or source farm was not identified. This outbreak highlights challenges in reconciling epidemiologic and WGS data, and the difficulties of identifying ingredient-level exposures through epidemiologic investigations alone.

  1. Liposome-Encapsulated Bacteriophages for Enhanced Oral Phage Therapy against Salmonella spp.

    PubMed

    Colom, Joan; Cano-Sarabia, Mary; Otero, Jennifer; Cortés, Pilar; Maspoch, Daniel; Llagostera, Montserrat

    2015-07-01

    Bacteriophages UAB_Phi20, UAB_Phi78, and UAB_Phi87 were encapsulated in liposomes, and their efficacy in reducing Salmonella in poultry was then studied. The encapsulated phages had a mean diameter of 309 to 326 nm and a positive charge between +31.6 and +35.1 mV (pH 6.1). In simulated gastric fluid (pH 2.8), the titer of nonencapsulated phages decreased by 5.7 to 7.8 log units, whereas encapsulated phages were significantly more stable, with losses of 3.7 to 5.4 log units. The liposome coating also improved the retention of bacteriophages in the chicken intestinal tract. When cocktails of the encapsulated and nonencapsulated phages were administered to broilers, after 72 h the encapsulated phages were detected in 38.1% of the animals, whereas the nonencapsulated phages were present in only 9.5%. The difference was significant. In addition, in an in vitro experiment, the cecal contents of broilers promoted the release of the phages from the liposomes. In broilers experimentally infected with Salmonella, the daily administration of the two cocktails for 6 days postinfection conferred similar levels of protection against Salmonella colonization. However, once treatment was stopped, protection by the nonencapsulated phages disappeared, whereas that provided by the encapsulated phages persisted for at least 1 week, showing the enhanced efficacy of the encapsulated phages in protecting poultry against Salmonella over time. The methodology described here allows the liposome encapsulation of phages of different morphologies. The preparations can be stored for at least 3 months at 4°C and could be added to the drinking water and feed of animals. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Allelic variation in Salmonella: an underappreciated driver of adaptation and virulence

    PubMed Central

    Yue, Min; Schifferli, Dieter M.

    2014-01-01

    Salmonella enterica causes substantial morbidity and mortality in humans and animals. Infection and intestinal colonization by S. enterica require virulence factors that mediate bacterial binding and invasion of enterocytes and innate immune cells. Some S. enterica colonization factors and their alleles are host restricted, suggesting a potential role in regulation of host specificity. Recent data also suggest that colonization factors promote horizontal gene transfer of antimicrobial resistance genes by increasing the local density of Salmonella in colonized intestines. Although a profusion of genes are involved in Salmonella pathogenesis, the relative importance of their allelic variation has only been studied intensely in the type 1 fimbrial adhesin FimH. Although other Salmonella virulence factors demonstrate allelic variation, their association with specific metadata (e.g., host species, disease or carrier state, time and geographic place of isolation, antibiotic resistance profile, etc.) remains to be interrogated. To date, genome-wide association studies (GWAS) in bacteriology have been limited by the paucity of relevant metadata. In addition, due to the many variables amid metadata categories, a very large number of strains must be assessed to attain statistically significant results. However, targeted approaches in which genes of interest (e.g., virulence factors) are specifically sequenced alleviates the time-consuming and costly statistical GWAS analysis and increases statistical power, as larger numbers of strains can be screened for non-synonymous single nucleotide polymorphisms (SNPs) that are associated with available metadata. Congruence of specific allelic variants with specific metadata from strains that have a relevant clinical and epidemiological history will help to prioritize functional wet-lab and animal studies aimed at determining cause-effect relationships. Such an approach should be applicable to other pathogens that are being collected

  3. Pathogenicity of Salmonella Strains Isolated from Egg Shells and the Layer Farm Environment in Australia

    PubMed Central

    McWhorter, Andrea R.; Davos, Dianne

    2014-01-01

    In Australia, the egg industry is periodically implicated during outbreaks of Salmonella food poisoning. Salmonella enterica serovar Typhimurium and other nontyphoidal Salmonella spp., in particular, are a major concern for Australian public health. Several definitive types of Salmonella Typhimurium strains, but primarily Salmonella Typhimurium definitive type 9 (DT9), have been frequently reported during egg-related food poisoning outbreaks in Australia. The aim of the present study was to generate a pathogenicity profile of nontyphoidal Salmonella isolates obtained from Australian egg farms. To achieve this, we assessed the capacity of Salmonella isolates to cause gastrointestinal disease using both in vitro and in vivo model systems. Data from in vitro experiments demonstrated that the invasion capacity of Salmonella serovars cultured to stationary phase (liquid phase) in LB medium was between 90- and 300-fold higher than bacterial suspensions in normal saline (cultured in solid phase). During the in vivo infection trial, clinical signs of infection and mortality were observed only for mice infected with either 103 or 105 CFU of S. Typhimurium DT9. No mortality was observed for mice infected with Salmonella serovars with medium or low invasive capacity in Caco-2 cells. Pathogenicity gene profiles were also generated for all serovars included in this study. The majority of serovars tested were positive for selected virulence genes. No relationship between the presence or absence of virulence genes by PCR and either in vitro invasive capacity or in vivo pathogenicity was detected. Our data expand the knowledge of strain-to-strain variation in the pathogenicity of Australian egg industry-related Salmonella spp. PMID:25362057

  4. Characterization of extended-spectrum cephalosporin-resistant Salmonella enterica serovar Heidelberg isolated from food animals, retail meat, and humans in the United States 2009

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica is one of the most common causes of foodborne illness in the United States. Although salmonellosis is usually self-limiting, severe infections typically require antimicrobial treatment and ceftriaxone, an extended-spectrum cephalosporin, is commonly used in both adults and child...

  5. Control of Salmonella enterica serovar Enteritidis in laying hens by inactivated Salmonella Enteritidis vaccines

    PubMed Central

    de Freitas Neto, Oliveiro Caetano; Mesquita, Aline Lopes; de Paiva, Jaqueline Boldrin; Zotesso, Fábio; Berchieri Júnior, Angelo

    2008-01-01

    Salmonella Enteritidis is one of the agents that is responsible for outbreaks of human foodborne salmonellosis caused by Salmonella Enteritidis and is generally associated with the consumption of poultry products. Inactivated Salmonella Enteritidis cell vaccine is one of the available methods to control Salmonella Enteritidis in breeders and laying hens, however results in terms of efficacy vary. This vaccine has never been tested in Brazil, therefore, the present work was carried out to assess three commercial inactivated Salmonella Enteritidis vaccines allowed in Brazil. Four hundred white light variety commercial laying hens were obtained at one-day-of age. At eight weeks old, the birds were divided into four groups with one hundred animals each. Birds from three groups (V1, V2 and V3) received different intramuscular vaccines, followed by a booster dose at 16 weeks of age. Birds from another group (CG) were not vaccinated. When the laying hens were 20, 25 and 31 weeks old, 13 from each group were transferred to another room and were challenged by inoculating 2 mL neat culture of Salmonella Enteritidis. On the second day after each challenge, the caecal contents, spleen, liver and ovary of three birds from each group were analyzed for the presence of Salmonella Enteritidis. Twice a week a cloacal swab of each bird was taken and all eggs laid were examined for the presence of Salmonella Enteritidis. After four consecutive negative cloacal swabs in all the groups, the birds were sacrificed so as to examine the liver, caecal contents and ovaries. Overall, the inactivated vaccine used in group V3 reduced Salmonella Enteritidis in the feces and eggs. A very small amount of Salmonella was found in the spleen, liver, ovary and caeca of the birds in the four groups during the whole experiment. In general, inactivated Salmonella Enteritidis vaccines was able to decrease the presence of Salmonella Enteritidis in the birds and in the eggs as well. Nevertheless, they must

  6. Characterization of Chicken Spleen Transcriptome after Infection with Salmonella enterica Serovar Enteritidis

    PubMed Central

    Matulova, Marta; Rajova, Jana; Vlasatikova, Lenka; Volf, Jiri; Stepanova, Hana; Havlickova, Hana; Sisak, Frantisek; Rychlik, Ivan

    2012-01-01

    In this study we were interested in identification of new markers of chicken response to Salmonella Enteritidis infection. To reach this aim, gene expression in the spleens of naive chickens and those intravenously infected with S. Enteritidis with or without previous oral vaccination was determined by 454 pyrosequencing of splenic mRNA/cDNA. Forty genes with increased expression at the level of transcription were identified. The most inducible genes encoded avidin (AVD), extracellular fatty acid binding protein (EXFABP), immune responsive gene 1 (IRG1), chemokine ah221 (AH221), trappin-6-like protein (TRAP6) and serum amyloid A (SAA). Using cDNA from sorted splenic B-lymphocytes, macrophages, CD4, CD8 and γδ T-lymphocytes, we found that the above mentioned genes were preferentially expressed in macrophages. AVD, EXFABP, IRG1, AH221, TRAP6 and SAA were induced also in the cecum of chickens orally infected with S. Enteritidis on day 1 of life or day 42 of life. Unusual results were obtained for the immunoglobulin encoding transcripts. Prior to the infection, transcripts coding for the constant parts of IgM, IgY, IgA and Ig light chain were detected in B-lymphocytes. However, after the infection, immunoglobulin encoding transcripts were expressed also by T-lymphocytes and macrophages. Expression of AVD, EXFABP, IRG1, AH221, TRAP6, SAA and all immunoglobulin genes can be therefore used for the characterization of the course of S. Enteritidis infection in chickens. PMID:23094107

  7. FUNCTIONS EXERTED BY THE VIRULENCE ASSOCIATED TYPE THREE SECRETION SYSTEMS DURING SALMONELLA ENTERICA SEROVAR ENTERITIDIS INFECTION OF CHICKEN OVIDUCT EPITHELIAL CELLS AND MACROPHAGES

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar, Enteritidis (SE) infection of chicken is a major contributing factor to non-typhoidal salmonellosis. The roles of the type three secretion systems (T3SS-1 and T3SS-2) in the pathogenesis of SE infection of chickens are poorly understood. In this study, the functions exer...

  8. Salmonella and produce: survival in the plant environment and implications in food safety.

    PubMed

    Fatica, Marianne K; Schneider, Keith R

    2011-01-01

    There has been a continuous rise in the number of produce-based foodborne outbreaks in the recent decades despite the perception that foodborne diseases were primarily linked to animal-based products. The Centers for Disease Control and Prevention (CDC) estimates that 95% of Salmonella-based infections originate from foodborne sources, with multiple produce-based salmonellosis outbreaks occurring since 1990. The contamination of produce in both the pre-harvest and post-harvest produce environments is challenging to eliminate since produce is consumed as a raw, fresh commodity. Salmonella spp. contamination is possible through contact with the produce in the field as well as in the processing facility. The field contamination of produce infers the ability of Salmonella spp. to survive on the plant surface. The fitness of Salmonella spp. in the plant habitat is limited as opposed to naturally plant-associated bacteria, but survival is possible. The use of intensive farming practices, globalization of food products, high demand for convenience food products, and increased foodborne disease surveillance also have unknown ramifications in the ascending trends of produce-based outbreaks. A better understanding of the ecology of Salmonella spp. in the plant environment as well as the processing, food handling, and surveillance factors affecting the incidence of foodborne outbreaks will provide a comprehensive view of the etiology and epidemiology of produce-associated foodborne outbreaks. An understanding of the outbreaks and the factors facilitating produce contamination will allow for the development of intervention procedures and strategies to reduce the risk of produce contamination by Salmonella spp.

  9. Serotype Diversity and Antimicrobial Resistance among Salmonella enterica Isolates from Patients at an Equine Referral Hospital.

    PubMed

    Leon, I M; Lawhon, S D; Norman, K N; Threadgill, D S; Ohta, N; Vinasco, J; Scott, H M

    2018-07-01

    Although Salmonella enterica can produce life-threatening colitis in horses, certain serotypes are more commonly associated with clinical disease. Our aim was to evaluate the proportional morbidity attributed to different serotypes, as well as the phenotypic and genotypic antimicrobial resistance (AMR) of Salmonella isolates from patients at an equine referral hospital in the southern United States. A total of 255 Salmonella isolates was obtained from clinical samples of patients admitted to the hospital between 2007 and 2015. Phenotypic resistance to 14 antibiotics surveilled by the U.S. National Antimicrobial Resistance Monitoring System was determined using a commercially available panel. Whole-genome sequencing was used to identify serotypes and genotypic AMR. The most common serotypes were Salmonella enterica serotype Newport (18%), Salmonella enterica serotype Anatum (15.2%), and Salmonella enterica serotype Braenderup (11.8%). Most ( n = 219) of the isolates were pansusceptible, while 25 were multidrug resistant (≥3 antimicrobial classes). Genes encoding beta-lactam resistance, such as bla CMY-2 , bla SHV-12 , bla CTX-M-27 , and bla TEM-1B , were detected. The qnr B2 and aac(6')-Ib-cr genes were present in isolates with reduced susceptibility to ciprofloxacin. Genes encoding resistance to gentamicin ( aph(3')-Ia , aac(6')-IIc ), streptomycin ( str A and str B), sulfonamides ( sul1 ), trimethoprim ( dfrA ), phenicols ( catA ), tetracyclines [ tet (A) and tet (E)], and macrolides [ ere (A)] were also identified. The main predicted incompatibility plasmid type was I1 (10%). Core genome-based analyses revealed phylogenetic associations between isolates of common serotypes. The presence of AMR Salmonella in equine patients increases the risk of unsuccessful treatment and causes concern for potential zoonotic transmission to attending veterinary personnel, animal caretakers, and horse owners. Understanding the epidemiology of Salmonella in horses admitted to

  10. A comparative study of strains of salmonella isolated from irrigation waters, vegetables and human infections.

    PubMed Central

    Garcia-Villanova Ruiz, B.; Cueto Espinar, A.; Bolaños Carmona, M. J.

    1987-01-01

    A total of 181 samples of irrigation water from the farmlands of Granada were examined for the presence of Salmonella spp. At the same time 849 samples of the crops from these farmlands and of vegetables sold in city market-places were studied. Sampling was done regularly over the period of study which ran from March 1981 to February 1983. Isolates from these sources were compared with 93 salmonellas isolated from human pathological material at various hospitals of the city of Granada from 1979-80, and again from 1981-3. The most commonly isolated serotypes of human origin were S. typhimurium and S. enteritidis. In irrigation waters and in crops, S. typhimurium, S. kapemba, S. london and S. blockley were found to be the most common. The results indicate a close relationship between the isolates from the irrigation waters and those from the vegetables, but their relationship to prevalent human infections is less clear. PMID:3595745

  11. Tackling the issue of environmental survival of live Salmonella Typhimurium vaccines: deletion of the lon gene.

    PubMed

    Leyman, Bregje; Boyen, Filip; Van Parys, Alexander; Verbrugghe, Elin; Haesebrouck, Freddy; Pasmans, Frank

    2012-12-01

    Vaccination is an important measure to control Salmonella contamination in the meat production chain. A previous study showed that both the ΔrfaJ and ΔrfaL strains are suitable markers and allow serological differentiation of infected and vaccinated animals. The aim of this study was to verify whether deletion of the lon gene in a Salmonella Typhimurium ΔrfaJ marker strain resulted in decreased environmental survival. Our results indicate that deletion of the lon gene in the ΔrfaJ strain did not affect invasiveness in IPEC-J2 cells and resulted in an increased susceptibility to UV, disinfectants (such as hydrogen peroxide and tosylchloramide sodium) and citric acid. Immunization of pigs with inactivated ΔrfaJ or ΔlonΔrfaJ vaccines allowed differentiation of infected and vaccinated pigs. Furthermore, deletion of the lon gene did not reduce the protection conferred by live wild type or ΔrfaJ vaccines against subsequent challenge with a virulent Salmonella Typhimurium strain in BALB/c mice. Based on our results in mice, we conclude that deletion of lon in ΔrfaJ contributes to environmental safety of the ΔrfaJ DIVA strain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Administration of a Salmonella Enteritidis ΔhilAssrAfliG strain by coarse spray to newly hatched broilers reduces colonization and shedding of a Salmonella Enteritidis challenge strain.

    PubMed

    De Cort, W; Haesebrouck, F; Ducatelle, R; van Immerseel, F

    2015-01-01

    Consumption of contaminated poultry meat is still an important cause of Salmonella infections in humans. Colonization inhibition (CI) occurs when a live Salmonella strain is administered to chickens and subsequently protects against challenge with another Salmonella strain belonging to the same serotype. A Salmonella Enteritidis hilAssrAfliG deletion mutant has previously been proven to reduce colonization and shedding of a wild-type Salmonella Enteritidis strain in newly hatched broilers after experimental infection. In this study, we compared two administration routes for this strain. Administering the Salmonella Enteritidis ΔhilAssrAfliG strain through drinking water on the first day of life resulted in decreased fecal shedding and cecal colonization of a wild-type Salmonella Enteritidis challenge strain administered 24 h later using a seeder-bird model. When administering the CI strain by coarse spray on newly hatched broiler chicks, an even more pronounced reduction of cecal colonization was observed, and fecal shedding of the Salmonella Enteritidis challenge strain ceased during the course of the experiment. These data suggest that administering a Salmonella Enteritidis ΔhilAssrAfliG strain to newly hatched chicks using a coarse spray is a useful and effective method that reduces colonization and shedding of a wild-type Salmonella Enteritidis strain after early challenge. © 2014 Poultry Science Association Inc.

  13. Acute parvovirus B19 infection causes nonspecificity frequently in Borrelia and less often in Salmonella and Campylobacter serology, posing a problem in diagnosis of infectious arthropathy.

    PubMed

    Tuuminen, Tamara; Hedman, Klaus; Söderlund-Venermo, Maria; Seppälä, Ilkka

    2011-01-01

    Several infectious agents may cause arthritis or arthropathy. For example, infection with Borrelia burgdorferi, the etiologic agent of Lyme disease, may in the late phase manifest as arthropathy. Infections with Campylobacter, Salmonella, or Yersinia may result in a postinfectious reactive arthritis. Acute infection with parvovirus B19 (B19V) may likewise initiate transient or chronic arthropathy. All these conditions may be clinically indistinguishable from rheumatoid arthritis. Here, we present evidence that acute B19V infection may elicit IgM antibodies that are polyspecific or cross-reactive with a variety of bacterial antigens. Their presence may lead to misdiagnosis and improper clinical management, exemplified here by two case descriptions. Further, among 33 subjects with proven recent B19V infection we found IgM enzyme immunoassay (EIA) positivity for Borrelia only; for Borrelia and Salmonella; for Borrelia and Campylobacter; and for Borrelia, Campylobacter, and Salmonella in 26 (78.7%), 1 (3%), 2 (6%), and 1 (3%), respectively; however, when examined by Borrelia LineBlot, all samples were negative. These antibodies persisted over 3 months in 4/13 (38%) patients tested. Likewise, in a retrospective comparison of the results of a diagnostic laboratory, 9/11 (82%) patients with confirmed acute B19V infection showed IgM antibody to Borrelia. However, none of 12 patients with confirmed borreliosis showed any serological evidence of acute B19V infection. Our study demonstrates that recent B19V infection can be misinterpreted as secondary borreliosis or enteropathogen-induced reactive arthritis. To obtain the correct diagnosis, we emphasize caution in interpretation of polyreactive IgM and exclusion of recent B19V infection in patients examined for infectious arthritis or arthropathy.

  14. Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Infantis Strain SPE101, Isolated from a Chronic Human Infection

    PubMed Central

    Iriarte, Andrés; Giner-Lamia, Joaquín; Betancor, Laura; Astocondor, Lizeth; Cestero, Juan J.; Ochoa, Theresa; García, Coralith; Puente, José L.; Chabalgoity, José A.

    2017-01-01

    ABSTRACT We report a 4.99-Mb draft genome sequence of Salmonella enterica subsp. enterica serovar Infantis strain SPE101, isolated from feces of a 5-month-old breast-fed female showing diarrhea associated with severe dehydration and malnutrition. The infection prolonged for 6 months despite antibiotic treatment. PMID:28729277

  15. Occurrence and antimicrobial susceptibility of Salmonella isolates recovered from the pig slaughter process in Romania.

    PubMed

    Morar, Adriana; Sala, Claudia; Imre, Kálmán

    2015-01-15

    Reported human salmonellosis cases have increased in Romania. Antibiotic susceptibility testing of Salmonella strains isolated from pork and chicken meat indicate a worrying multidrug resistance pattern. This study aimed to investigate the occurrence of Salmonella and to evaluate the antibiotic resistance of Salmonella strains in a pig slaughterhouse-processing complex, which receives animals from 30% of the large industrialized swine farms in Romania. A total of 108 samples, including pork (n = 47), packaged pork products (n = 44), scald water sludge (n = 8), and detritus from the hair removal machine of the slaughterhouse (n = 9) were examined for the presence of Salmonella through standard methods. The antibiotic susceptibility of the isolated strains to 17 antibiotics was tested using the Vitek 2 system. Twenty-six (24.1%) samples were found to be Salmonella positive; this included 25.5% of meat samples and 15.9% of packaged products, as well as samples from two different points of the slaughter (41.2%). Resistance was observed against tetracycline (61.5%), ampicillin (50%), piperacillin (50%), trimethoprim-sulfamethoxazole (34.6%), amoxicillin/clavulanic acid (26.9%), nitrofurantion (23.1%), cefazolin (15.4%), piperacillin/tazobactam (7.7%), imipenem (3.8%), ciprofloxacin (3.8%), and norfloxacin (3.8%). No resistance towards cefoxitin, cefotaxime, ceftazidime, cefepime, amikacin, and gentamicin was found. Our study demonstrated the occurrence of multidrug-resistant Salmonella strains in the investigated pork production complex and highlighted it as a potential source of human infections. The results demonstrate the seriousness of antibiotic resistance of Salmonella in Romania, while providing a useful insight for the treatment of human salmonellosis by specialists.

  16. Merkel Cell Polyomavirus Infection of Animal Dermal Fibroblasts.

    PubMed

    Liu, Wei; Krump, Nathan A; MacDonald, Margo; You, Jianxin

    2018-02-15

    Merkel cell polyomavirus (MCPyV) is the first polyomavirus to be associated with human cancer. Mechanistic studies attempting to fully elucidate MCPyV's oncogenic mechanisms have been hampered by the lack of animal models for MCPyV infection. In this study, we examined the ability of MCPyV-GFP pseudovirus (containing a green fluorescent protein [GFP] reporter construct), MCPyV recombinant virions, and several MCPyV chimeric viruses to infect dermal fibroblasts isolated from various model animals, including mouse ( Mus musculus ), rabbit ( Oryctolagus cuniculus ), rat ( Rattus norvegicus ), chimpanzee ( Pan troglodytes ), rhesus macaque ( Macaca mulatta ), patas monkey ( Erythrocebus patas ), common woolly monkey ( Lagothrix lagotricha ), red-chested mustached tamarin ( Saguinus labiatus ), and tree shrew ( Tupaia belangeri ). We found that MCPyV-GFP pseudovirus was able to enter the dermal fibroblasts of all species tested. Chimpanzee dermal fibroblasts were the only type that supported vigorous MCPyV gene expression and viral replication, and they did so to a level beyond that of human dermal fibroblasts. We further demonstrated that both human and chimpanzee dermal fibroblasts produce infectious MCPyV virions that can successfully infect new cells. In addition, rat dermal fibroblasts supported robust MCPyV large T antigen expression after infection with an MCPyV chimeric virus in which the entire enhancer region of the MCPyV early promoter has been replaced with the simian virus 40 (SV40) analog. Our results suggest that viral transcription and/or replication events represent the major hurdle for MCPyV cross-species transmission. The capacity of rat dermal fibroblasts to support MCPyV early gene expression suggests that the rat is a candidate model organism for studying viral oncogene function during Merkel cell carcinoma (MCC) oncogenic progression. IMPORTANCE MCPyV plays an important role in the development of a highly aggressive form of skin cancer, Merkel

  17. Amphixenosic Aspects of Staphylococcus aureus Infection in Man and Animals.

    PubMed

    Rossi, Giacomo; Cerquetella, Matteo; Attili, Anna Rita

    2017-01-01

    According to the mode of transmission, Staphylococcus aureus infection between hosts is classified as "direct zoonoses," or infection that is transmitted from an infected vertebrate host to a susceptible host (man) by direct contact, by contact with a fomite or by a mechanical vector. The agent itself undergoes little or no propagative or developmental changes during transmission. According to the reservoir host, staphylococcosis is most precisely defined as "zooanthroponoses" or infections transmitted from man to lower vertebrate animals (e.g., streptococci, diphtheria, Enterobacteriaceae, human tuberculosis in cattle and parrots), but also "anthropozoonoses" or infections transmitted to man from lower vertebrate animals. In particular, actually, the correct definition of S. aureus infections between humans and animals is "amphixenoses" or infections maintained in both man and lower vertebrate animals and transmitted in either direction. S. aureus exhibits tropisms to many distinct animal hosts. While spillover events can occur wherever there is an interface between host species, changes in host tropism only occur with the establishment of sustained transmission in the new host species, leading to clonal expansion. Although the genomic variation underpinning adaptation in S. aureus genotypes infecting bovids and poultry has been well characterized, the frequency of switches from one host to another remains obscure. In this review, we sought to identify the sustained switches in host tropism in the S. aureus population, both anthroponotic and zoonotic, and their distribution over the species phylogeny. S. aureus is an organism with the capacity to switch into and adapt to novel hosts, even after long periods of isolation in a single host species. Based on this evidence, animal-adapted S. aureus lineages exhibiting resistance to antibiotics must be considered a major threat to public health, as they can adapt to the human population.

  18. Increase in resistance to ceftriaxone and nonsusceptibility to ciprofloxacin and decrease in multidrug resistance among Salmonella strains, United States, 1996-2009.

    PubMed

    Medalla, Felicita; Hoekstra, Robert M; Whichard, Jean M; Barzilay, Ezra J; Chiller, Tom M; Joyce, Kevin; Rickert, Regan; Krueger, Amy; Stuart, Andrew; Griffin, Patricia M

    2013-04-01

    Salmonella is a major bacterial pathogen transmitted commonly through food. Increasing resistance to antimicrobial agents (e.g., ceftriaxone, ciprofloxacin) used to treat serious Salmonella infections threatens the utility of these agents. Infection with antimicrobial-resistant Salmonella has been associated with increased risk of severe infection, hospitalization, and death. We describe changes in antimicrobial resistance among nontyphoidal Salmonella in the United States from 1996 through 2009. The Centers for Disease Control and Prevention's National Antimicrobial Resistance Monitoring System conducts surveillance of resistance among Salmonella isolated from humans. From 1996 through 2009, public health laboratories submitted isolates for antimicrobial susceptibility testing. We used interpretive criteria from the Clinical and Laboratory Standards Institute and defined isolates with ciprofloxacin resistance or intermediate susceptibility as nonsusceptible to ciprofloxacin. Using logistic regression, we modeled annual data to assess changes in antimicrobial resistance. From 1996 through 2009, the percentage of nontyphoidal Salmonella isolates resistant to ceftriaxone increased from 0.2% to 3.4% (odds ratio [OR]=20, 95% confidence interval [CI] 6.3-64), and the percentage with nonsusceptibility to ciprofloxacin increased from 0.4% to 2.4% (OR=8.3, 95% CI 3.3-21). The percentage of isolates that were multidrug resistant (resistant to ≥3 antimicrobial classes) decreased from 17% to 9.6% (OR=0.6, 95% CI 0.5-0.7), which was driven mainly by a decline among serotype Typhimurium. However, multidrug resistance increased from 5.9% in 1996 to a peak of 31% in 2001 among serotype Newport and increased from 12% in 1996 to 26% in 2009 (OR=2.6, 95% CI 1.1-6.2) among serotype Heidelberg. We describe an increase in resistance to ceftriaxone and nonsusceptibility to ciprofloxacin and an overall decline in multidrug resistance. Trends varied by serotype. Because of evidence that

  19. Salmonella-host cell interactions, changes in host cell architecture, and destruction of prostate tumor cells with genetically altered Salmonella.

    PubMed

    Zhong, Zhisheng; Kazmierczak, Robert A; Dino, Alison; Khreis, Rula; Eisenstark, Abraham; Schatten, Heide

    2007-10-01

    Increasingly, genetically modified Salmonella are being explored as a novel treatment for cancer because Salmonella preferentially replicate within tumors and destroy cancer cells without causing the septic shock that is typically associated with wild-type S. typhimurium infections. However, the mechanisms by which genetically modified Salmonella strains preferentially invade cancer cells have not yet been addressed in cellular detail. Here we present data that show S. typhimurium strains VNP20009, LT2, and CRC1674 invasion of PC-3M prostate cancer cells. S. typhimurium-infected PC-3M human prostate cancer cells were analyzed with immunofluorescence microscopy and transmission electron microscopy (TEM) at various times after inoculation. We analyzed microfilaments, microtubules, and DNA with fluorescence and immunofluorescence microscopy. 3T3 Phi-Yellow-mitochondria mouse 3T3 cells were used to study the effects of Salmonella infestation on mitochondria distribution in live cells. Our TEM results show gradual destruction of mitochondria within the PC-3M prostate cancer cells with complete loss of cristae at 8 h after inoculation. The fluorescence intensity in YFP-mitochondria-transfected mouse 3T3 cells decreased, which indicates loss of mitochondria structure. Interestingly, the nucleus does not appear affected by Salmonella within 8 h. Our data demonstrate that genetically modified S. typhimurium destroy PC-3M prostate cancer cells, perhaps by preferential destruction of mitochondria.

  20. Structural and enzymatic characterization of a host-specificity determinant from Salmonella

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Amanda C.; Spanò, Stefania; Galán, Jorge E.

    The Salmonella effector protein GtgE functions as a cysteine protease to cleave a subset of the Rab-family GTPases and to prevent delivery of antimicrobial agents to the Salmonella-containing vacuole. GtgE is an effector protein from Salmonella Typhimurium that modulates trafficking of the Salmonella-containing vacuole. It exerts its function by cleaving the Rab-family GTPases Rab29, Rab32 and Rab38, thereby preventing the delivery of antimicrobial factors to the bacteria-containing vacuole. Here, the crystal structure of GtgE at 1.65 Å resolution is presented, and structure-based mutagenesis and in vivo infection assays are used to identify its catalytic triad. A panel of cysteine proteasemore » inhibitors were examined and it was determined that N-ethylmaleimide, antipain and chymostatin inhibit GtgE activity in vitro. These findings provide the basis for the development of novel therapeutic strategies to combat Salmonella infections.« less