Sample records for salmonella paratyphi b

  1. PCR Method To Identify Salmonella enterica Serovars Typhi, Paratyphi A, and Paratyphi B among Salmonella Isolates from the Blood of Patients with Clinical Enteric Fever▿

    PubMed Central

    Levy, Haim; Diallo, Souleymane; Tennant, Sharon M.; Livio, Sofie; Sow, Samba O.; Tapia, Milagritos; Fields, Patricia I.; Mikoleit, Matthew; Tamboura, Boubou; Kotloff, Karen L.; Lagos, Rosanna; Nataro, James P.; Galen, James E.; Levine, Myron M.

    2008-01-01

    PCR methodology was developed to identify Salmonella enterica serovars Typhi, Paratyphi A, and Paratyphi B. One multiplex PCR identifies serogroup D, A, and B and Vi-positive strains; another confirms flagellar antigen “d,” “a,” or “b.” Blinded testing of 664 Malian and Chilean Salmonella blood isolates demonstrated 100% sensitivity and specificity. PMID:18367574

  2. Molecular Characterization of Multiresistant d-Tartrate-Positive Salmonella enterica Serovar Paratyphi B Isolates

    PubMed Central

    Miko, Angelika; Guerra, Beatriz; Schroeter, Andreas; Dorn, Christina; Helmuth, Reiner

    2002-01-01

    Since 1996, the National Salmonella Reference Laboratory of Germany has received an increasing number of Salmonella enterica subsp. enterica serovar Paratyphi B isolates. Nearly all of these belonged to the dextrorotatory tartrate-positive variant (S. enterica subsp. enterica serovar Paratyphi B dT+), formerly called S. enterica subsp. enterica serovar Java. A total of 55 selected contemporary and older S. enterica subsp. enterica serovar Paratyphi B dT+ isolates were analyzed by plasmid profiling, antimicrobial resistance testing, pulsed-field gel electrophoresis, IS200 profiling, and PCR-based detection of integrons. The results showed a high genetic heterogeneity among 10 old strains obtained from 1960 to 1993. In the following years, however, new distinct multiresistant S. enterica subsp. enterica serovar Paratyphi B dT+ clones emerged, and one clonal lineage successfully displaced the older ones. Since 1994, 88% of the isolates investigated were multiple drug resistant. Today, a particular clone predominates in some German poultry production lines, poultry products, and various other sources. It was also detected in contemporary isolates from two neighboring countries as well. PMID:12202551

  3. [A case of Salmonella paratyphi A infection in Poland].

    PubMed

    Sobczyk-Krupiarz, Iwona; Garlicki, Aleksander; Biesiada, Grazyna; Czepiel, Jacek; Skwara, Paweł; Salamon, Dominika; Mach, Tomasz

    2008-01-01

    Paratyphoid fever is an acute infection caused by Salmonella paratyphi A, B or C. The disease is transmitted from person to person by fecal-oral way. Typical for typhoid fever are splenomegaly, bradycardia, fever, constipation or mild diarrhoea oftten associated with abdominal tenderness. We present the case of patient who was infected by Salmonella paratyphi C while his travelling in Asia.

  4. Salmonella paratyphi spondylitis: a case report.

    PubMed

    Kumar, Pradeep; Mahmoodi, Seyed Mohsen; Kalaparambil Moosa, Nooruddin; Edgar, Michael; Samt, Hussain Al; Hussain, Riyaz Amirali

    2008-05-01

    This is a case report of acute L3/4 vertebral osteomyelitis due to Salmonella paratyphi A confirmed by culture from vertebral needle biopsy. From a review of the literature this is the first reported case with bacteriological confirmation. The rarity of Salmonella paratyphi spondylitis and the options for treatment are discussed.

  5. Salmonella paratyphi spondylitis: a case report

    PubMed Central

    Mahmoodi, Seyed Mohsen; Kalaparambil Moosa, Nooruddin; Edgar, Michael; Samt, Hussain Al; Hussain, Riyaz Amirali

    2007-01-01

    This is a case report of acute L3/4 vertebral osteomyelitis due to Salmonella paratyphi A confirmed by culture from vertebral needle biopsy. From a review of the literature this is the first reported case with bacteriological confirmation. The rarity of Salmonella paratyphi spondylitis and the options for treatment are discussed. PMID:18008092

  6. Molecular characterization of Salmonella Paratyphi B dT+ and Salmonella Heidelberg from poultry and retail chicken meat in Colombia by pulsed-field gel electrophoresis

    USDA-ARS?s Scientific Manuscript database

    Salmonella Paratyphi B dT+ variant (also termed Salmonella Java) and Salmonella Heidelberg are human pathogens frequently isolated from poultry. As a step towards implementing the Colombian Integrated Program for Antimicrobial Resistant Surveillance (COIPARS), this study characterized molecular patt...

  7. What’s in a Name? Species-Wide Whole-Genome Sequencing Resolves Invasive and Noninvasive Lineages of Salmonella enterica Serotype Paratyphi B

    PubMed Central

    Owen, Sian V.; Langridge, Gemma; Connell, Steve; Nair, Satheesh; Reuter, Sandra; Dallman, Timothy J.; Corander, Jukka; Tabing, Kristine C.; Le Hello, Simon; Fookes, Maria; Doublet, Benoît; Zhou, Zhemin; Feltwell, Theresa; Ellington, Matthew J.; Herrera, Silvia; Gilmour, Matthew; Cloeckaert, Axel; Achtman, Mark; Wain, John; De Pinna, Elizabeth; Weill, François-Xavier; Peters, Tansy; Thomson, Nick

    2016-01-01

    ABSTRACT For 100 years, it has been obvious that Salmonella enterica strains sharing the serotype with the formula 1,4,[5],12:b:1,2—now known as Paratyphi B—can cause diseases ranging from serious systemic infections to self-limiting gastroenteritis. Despite considerable predicted diversity between strains carrying the common Paratyphi B serotype, there remain few methods that subdivide the group into groups that are congruent with their disease phenotypes. Paratyphi B therefore represents one of the canonical examples in Salmonella where serotyping combined with classical microbiological tests fails to provide clinically informative information. Here, we use genomics to provide the first high-resolution view of this serotype, placing it into a wider genomic context of the Salmonella enterica species. These analyses reveal why it has been impossible to subdivide this serotype based upon phenotypic and limited molecular approaches. By examining the genomic data in detail, we are able to identify common features that correlate with strains of clinical importance. The results presented here provide new diagnostic targets, as well as posing important new questions about the basis for the invasive disease phenotype observed in a subset of strains. PMID:27555304

  8. Vi Capsular Polysaccharide Produced by Recombinant Salmonella enterica Serovar Paratyphi A Confers Immunoprotection against Infection by Salmonella enterica Serovar Typhi

    PubMed Central

    Xiong, Kun; Zhu, Chunyue; Chen, Zhijin; Zheng, Chunping; Tan, Yong; Rao, Xiancai; Cong, Yanguang

    2017-01-01

    Enteric fever is predominantly caused by Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A, and accounts for an annual global incidence of 26.9 millions. In recent years, the rate of S. Paratyphi A infection has progressively increased. Currently licensed vaccines for typhoid fever, live Ty21a vaccine, Vi subunit vaccine, and Vi-conjugate vaccine, confer inadequate cross immunoprotection against enteric fever caused by S. Paratyphi A. Therefore, development of bivalent vaccines against enteric fever is urgently required. The immunogenic Vi capsular polysaccharide is characteristically produced in S. Typhi, but it is absent in S. Paratyphi A. We propose that engineering synthesis of Vi in S. Paratyphi A live-attenuated vaccine may expand its protection range to cover S. Typhi. In this study, we cloned the viaB locus, which contains 10 genes responsible for Vi biosynthesis, and integrated into the chromosome of S. Paratyphi A CMCC 50093. Two virulence loci, htrA and phoPQ, were subsequently deleted to achieve a Vi-producing attenuated vaccine candidate. Our data showed that, despite more than 200 passages, the viaB locus was stably maintained in the chromosome of S. Paratyphi A and produced the Vi polysaccharide. Nasal immunization of the vaccine candidate stimulated high levels of Vi-specific and S. Paratyphi A-specific antibodies in mice sera as well as total sIgA in intestinal contents, and showed significant protection against wild-type challenge of S. Paratyphi A or S. Typhi. Our study show that the Vi-producing attenuated S. Paratyphi A is a promising bivalent vaccine candidate for the prevention of enteric fever. PMID:28484685

  9. Molecular Properties of Salmonella enterica Serotype Paratyphi B Distinguish between Its Systemic and Its Enteric Pathovars

    PubMed Central

    Prager, Rita; Rabsch, Wolfgang; Streckel, Wiebke; Voigt, Wolfgang; Tietze, Erhardt; Tschäpe, Helmut

    2003-01-01

    Salmonella enterica serotype O1,4,5,12:Hb:1,2, designated according to the current Kauffmann-White scheme as S. enterica serotype Paratyphi B, is a very diverse serotype with respect to its clinical and microbiological properties. PCR and blot techniques, which identify the presence, polymorphism, and expression of various effector protein genes, help to distinguish between strains with systemic and enteric outcomes of disease. All serotype Paratyphi B strains from systemic infections have been found to be somewhat genetically related with respect to the pattern of their virulence genes sopB, sopD, sopE1, avrA, and sptP as well as other molecular properties (multilocus enzyme electrophoresis type, pulsed-field gel electrophoresis [PFGE] type, ribotype, and IS200 type). They have been classified as members of the systemic pathovar (SPV). All these SPV strains possess a new sopE1-carrying bacteriophage (designated ΦSopE309) with high SopE1 protein expression but lack the commonly occurring avrA determinant. They exhibit normal SopB protein expression but lack SopD protein production. In contrast, strains from enteric infections classified as belonging to the enteric pathovar possess various combinations of the respective virulence genes, PFGE pattern, and ribotypes. We propose that the PCR technique for testing for the presence of the virulence genes sopE1 and avrA be used as a diagnostic tool for identifying both pathovars of S. enterica serotype Paratyphi B. This will be of great public health importance, since strains of serotype Paratyphi B have recently reemerged worldwide. PMID:12958256

  10. A multiplex single nucleotide polymorphism typing assay for detecting mutations that result in decreased fluoroquinolone susceptibility in Salmonella enterica serovars Typhi and Paratyphi A

    PubMed Central

    Song, Yajun; Roumagnac, Philippe; Weill, François-Xavier; Wain, John; Dolecek, Christiane; Mazzoni, Camila J.; Holt, Kathryn E.; Achtman, Mark

    2010-01-01

    Objectives Decreased susceptibility to fluoroquinolones has become a major problem for the successful therapy of human infections caused by Salmonella enterica, especially the life-threatening typhoid and paratyphoid fevers. Methods By using Luminex xTAG beads, we developed a rapid, reliable and cost-effective multiplexed genotyping assay for simultaneously detecting 11 mutations in gyrA, gyrB and parE of S. enterica serovars Typhi and Paratyphi A that result in nalidixic acid resistance (NalR) and/or decreased susceptibility to fluoroquinolones. Results This assay yielded unambiguous single nucleotide polymorphism calls on extracted DNA from 292 isolates of Salmonella Typhi (NalR = 223 and NalS = 69) and 106 isolates of Salmonella Paratyphi A (NalR = 24 and NalS = 82). All of the 247 NalR Salmonella Typhi and Salmonella Paratyphi A isolates were found to harbour at least one of the target mutations, with GyrA Phe-83 as the most common one (143/223 for Salmonella Typhi and 18/24 for Salmonella Paratyphi A). We also identified three GyrB mutations in eight NalS Salmonella Typhi isolates (six for GyrB Phe-464, one for GyrB Leu-465 and one for GyrB Asp-466), and mutations GyrB Phe-464 and GyrB Asp-466 seem to be related to the decreased ciprofloxacin susceptibility phenotype in Salmonella Typhi. This assay can also be used directly on boiled single colonies. Conclusions The assay presented here would be useful for clinical and reference laboratories to rapidly screen quinolone-resistant isolates of Salmonella Typhi and Salmonella Paratyphi A, and decipher the underlying genetic changes for epidemiological purposes. PMID:20511368

  11. Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B.

    PubMed

    Borowiak, Maria; Fischer, Jennie; Hammerl, Jens A; Hendriksen, Rene S; Szabo, Istvan; Malorny, Burkhard

    2017-12-01

    Plasmid-mediated mobilized colistin resistance is currently known to be caused by phosphoethanolamine transferases termed MCR-1, MCR-2, MCR-3 and MCR-4. However, this study focuses on the dissection of a novel resistance mechanism in mcr-1-, mcr-2- and mcr-3-negative d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B (Salmonella Paratyphi B dTa+) isolates with colistin MIC values >2 mg/L. A selected isolate from the strain collection of the German National Reference Laboratory for Salmonella was investigated by WGS and bioinformatical analysis to identify novel phosphoethanolamine transferase genes involved in colistin resistance. Subsequently PCR screening, S1-PFGE and DNA-DNA hybridization were performed to analyse the prevalence and location of the identified mcr-5 gene. Cloning and transformation experiments in Escherichia coli DH5α and Salmonella Paratyphi B dTa+ control strains were carried out and the activity of MCR-5 was determined in vitro by MIC testing. In this study, we identified a novel phosphoethanolamine transferase in 14 mcr-1-, mcr-2- and mcr-3-negative Salmonella Paratyphi B dTa+ isolates with colistin MIC values >2 mg/L that were received during 2011-13. The respective gene, further termed as mcr-5 (1644 bp), is part of a 7337 bp transposon of the Tn3 family and usually located on related multi-copy ColE-type plasmids. Interestingly, in one isolate an additional subclone with a chromosomal location of the mcr-5 transposon was observed. Our findings suggest that the transfer of colistin-resistance-mediating phosphoethanolamine transferase genes from bacterial chromosomes to mobile genetic elements has occurred in multiple independent events raising concern regarding their variety, prevalence and impact on public health. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Breast abscess due to Salmonella paratyphi A : Case reports with review of literature.

    PubMed

    Agrawal, Sonu; Yadav, Vishwanath Singh; Srivastava, Anurag; Kapil, Arti; Dhawan, Benu

    2018-05-01

    Salmonella paratyphi A causes paratyphoid fever which is characterized by acute onset of fever, abdominal pain, diarrhoea, nausea and vomiting. Localized disease can occur following both overt and silent bacteremia followed by seeding of bacteria at distant sites. Salmonella species though associated with abscess formation in various organs,are rarely associated with breast abscess. We report 2 cases of breast abscess due to Salmonella enterica serotype paratyphi A. Appropriate sampling, surgery supplemented by a comprehensive microbiological work up aided in pathogen identification and appropriate antibiotic administration for a successful outcome of these patients.

  13. Breast abscess due to Salmonella paratyphi A : Case reports with review of literature

    PubMed Central

    Agrawal, Sonu; Yadav, Vishwanath Singh; Srivastava, Anurag; Kapil, Arti; Dhawan, Benu

    2018-01-01

    Summary Salmonella paratyphi A causes paratyphoid fever which is characterized by acute onset of fever, abdominal pain, diarrhoea, nausea and vomiting. Localized disease can occur following both overt and silent bacteremia followed by seeding of bacteria at distant sites. Salmonella species though associated with abscess formation in various organs,are rarely associated with breast abscess. We report 2 cases of breast abscess due to Salmonella enterica serotype paratyphi A. Appropriate sampling, surgery supplemented by a comprehensive microbiological work up aided in pathogen identification and appropriate antibiotic administration for a successful outcome of these patients. PMID:29862156

  14. Salmonella Typhi and Salmonella Paratyphi A elaborate distinct systemic metabolite signatures during enteric fever

    PubMed Central

    Näsström, Elin; Vu Thieu, Nga Tran; Dongol, Sabina; Karkey, Abhilasha; Voong Vinh, Phat; Ha Thanh, Tuyen; Johansson, Anders; Arjyal, Amit; Thwaites, Guy; Dolecek, Christiane; Basnyat, Buddha; Baker, Stephen; Antti, Henrik

    2014-01-01

    The host–pathogen interactions induced by Salmonella Typhi and Salmonella Paratyphi A during enteric fever are poorly understood. This knowledge gap, and the human restricted nature of these bacteria, limit our understanding of the disease and impede the development of new diagnostic approaches. To investigate metabolite signals associated with enteric fever we performed two dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC/TOFMS) on plasma from patients with S. Typhi and S. Paratyphi A infections and asymptomatic controls, identifying 695 individual metabolite peaks. Applying supervised pattern recognition, we found highly significant and reproducible metabolite profiles separating S. Typhi cases, S. Paratyphi A cases, and controls, calculating that a combination of six metabolites could accurately define the etiological agent. For the first time we show that reproducible and serovar specific systemic biomarkers can be detected during enteric fever. Our work defines several biologically plausible metabolites that can be used to detect enteric fever, and unlocks the potential of this method in diagnosing other systemic bacterial infections. DOI: http://dx.doi.org/10.7554/eLife.03100.001 PMID:24902583

  15. O:2-CRM(197) conjugates against Salmonella Paratyphi A.

    PubMed

    Micoli, Francesca; Rondini, Simona; Gavini, Massimiliano; Lanzilao, Luisa; Medaglini, Donata; Saul, Allan; Martin, Laura B

    2012-01-01

    Enteric fevers remain a common and serious disease, affecting mainly children and adolescents in developing countries. Salmonella enterica serovar Typhi was believed to cause most enteric fever episodes, but several recent reports have shown an increasing incidence of S. Paratyphi A, encouraging the development of a bivalent vaccine to protect against both serovars, especially considering that at present there is no vaccine against S. Paratyphi A. The O-specific polysaccharide (O:2) of S. Paratyphi A is a protective antigen and clinical data have previously demonstrated the potential of using O:2 conjugate vaccines. Here we describe a new conjugation chemistry to link O:2 and the carrier protein CRM(197), using the terminus 3-deoxy-D-manno-octulosonic acid (KDO), thus leaving the O:2 chain unmodified. The new conjugates were tested in mice and compared with other O:2-antigen conjugates, synthesized adopting previously described methods that use CRM(197) as carrier protein. The newly developed conjugation chemistry yielded immunogenic conjugates with strong serum bactericidal activity against S. Paratyphi A.

  16. Case report: failure under azithromycin treatment in a case of bacteremia due to Salmonella enterica Paratyphi A.

    PubMed

    Kobayashi, Tetsuro; Hayakawa, Kayoko; Mawatari, Momoko; Mezaki, Kazuhisa; Takeshita, Nozomi; Kutsuna, Satoshi; Fujiya, Yoshihiro; Kanagawa, Shuzo; Ohmagari, Norio; Kato, Yasuyuki; Morita, Masatomo

    2014-07-20

    Limited information is available regarding the clinical efficacy of azithromycin for the treatment of enteric fever due to fluoroquinolone-resistant Salmonella Typhi and Salmonella Paratyphi among travelers returning to their home countries. We report a case of a 52-year-old Japanese man who returned from India, who developed a fever of 39°C with no accompanying symptoms 10 days after returning to Japan from a 1-month business trip to Delhi, India. His blood culture results were positive for Salmonella Paratyphi A. He was treated with 14 days of ceftriaxone, after which he remained afebrile for 18 days before his body temperature again rose to 39°C with no apparent symptoms. He was then empirically given 500 mg of azithromycin, but experienced clinical and microbiological failure of azithromycin treatment for enteric fever due to Salmonella Paratyphi A. However, the minimum inhibitory concentration (MIC) of azithromycin was not elevated (8 mg/L). He was again given ceftriaxone for 14 days with no signs of recurrence during the follow-up. There are limited data available for the treatment of enteric fever using azithromycin in travelers from developed countries who are not immune to the disease, and thus, careful follow-up is necessary. In our case, the low azithromycin dose might have contributed the treatment failure. Additional clinical data are needed to determine the rate of success, MIC, and contributing factors for success and/or failure of azithromycin treatment for both Salmonella Typhi and Salmonella Paratyphi infections.

  17. The discrimination of d-tartrate positive and d-tartrate negative S. enterica subsp. enterica serovar Paratyphi B isolated in Malaysia by phenotypic and genotypic methods.

    PubMed

    Ahmad, Norazah; Hoon, Shirley Tang Gee; Ghani, Mohamed Kamel Abd; Tee, Koh Yin

    2012-06-01

    Serotyping is not sufficient to differentiate between Salmonella species that cause paratyphoid fever from the strains that cause milder gastroenteritis as these organisms share the same serotype Salmonella Paratyphi B (S. Paratyphi B). Strains causing paratyphoid fever do not ferment d-tartrate and this key feature was used in this study to determine the prevalence of these strains among the collection of S. Paratyphi B strains isolated from patients in Malaysia. A total of 105 isolates of S. Paratyphi B were discriminated into d-tartrate positive (dT+) and d-tartrate negative (dT) variants by two lead acetate test protocols and multiplex PCR. The lead acetate test protocol 1 differed from protocol 2 by a lower inoculum size and different incubation conditions while the multiplex PCR utilized 2 sets of primers targeting the ATG start codon of the gene STM3356. Lead acetate protocol 1 discriminated 97.1% of the isolates as S. Paratyphi B dT+ and 2.9% as dT while test protocol 2 discriminated all the isolates as S. Paratyphi B dT+. The multiplex PCR test identified all 105 isolates as S. Paratyphi B dT+ strains. The concordance of the lead acetate test relative to that of multiplex PCR was 97.7% and 100% for protocol 1 and 2 respectively. This study showed that S. Paratyphi B dT+ is a common causative agent of gastroenteritis in Malaysia while paratyphoid fever appears to be relatively uncommon. Multiplex PCR was shown to be a simpler, more rapid and reliable method to discriminate S. Paratyphi B than the phenotypic lead acetate test.

  18. Molecular and Clinical Epidemiology of Salmonella Paratyphi A Isolated from Patients with Bacteremia in Nepal.

    PubMed

    Sherchan, Jatan Bahadur; Morita, Masatomo; Matono, Takashi; Izumiya, Hidemasa; Ohnishi, Makoto; Sherchand, Jeevan B; Tandukar, Sarmila; Laghu, Ujjwal; Nagamatsu, Maki; Kato, Yasuyuki; Ohmagari, Norio; Hayakawa, Kayoko

    2017-12-01

    Little is known about the epidemiology of typhoid and paratyphoid fever in Nepal. We aimed to elucidate the molecular and clinical epidemiology of Salmonella Paratyphi A in Nepal. Isolates were collected from 23 cases of bacteremia due to S. Paratyphi A between December 2014 and October 2015. Thirteen patients (57%) were male, and the median age was 21 years. None of the patients had an underlying chronic disease. All S. Paratyphi A isolates were sensitive to ampicillin, trimethoprim/sulfamethoxazole, ceftriaxone, and chloramphenicol. All isolates were resistant to nalidixic acid and were categorized as intermediately susceptible to levofloxacin. Phylogenetic analysis revealed close relatedness among the isolates, including several clonal groups, suggesting local spread. Patients with bacteremia due to S. Paratyphi A in Kathmandu, Nepal, were relatively young and nondebilitated. Improving control of S . Paratyphi infections should focus on effective infection control measures and selection of empirical therapy based on current resistance patterns.

  19. Lack of efflux mediated quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi A

    PubMed Central

    Baucheron, Sylvie; Monchaux, Isabelle; Le Hello, Simon; Weill, François-Xavier; Cloeckaert, Axel

    2014-01-01

    Salmonella enterica serovars Typhi and Paratyphi A isolates from human patients in France displaying different levels of resistance to quinolones or fluoroquinolones were studied for resistance mechanisms to these antimicrobial agents. All resistant isolates carried either single or multiple target gene mutations (i.e., in gyrA, gyrB, or parC) correlating with the resistance levels observed. Active efflux, through upregulation of multipartite efflux systems, has also been previously reported as contributing mechanism for other serovars. Therefore, we investigated also the occurrence of non-target gene mutations in regulatory regions affecting efflux pump expression. However, no mutation was detected in these regions in both Typhi and Paratyphi isolates of this study. Besides, no overexpression of the major efflux systems was observed for these isolates. Nevertheless, a large deletion of 2334 bp was identified in the acrS-acrE region of all S. Typhi strains but which did not affect the resistance phenotype. As being specific to S. Typhi, this deletion could be used for specific molecular detection purposes. In conclusion, the different levels of quinolone or FQ resistance in both S. Typhi and S. Paratyphi A seem to rely only on target modifications. PMID:24478769

  20. Pan-Genomic Analysis Provides Insights into the Genomic Variation and Evolution of Salmonella Paratyphi A

    PubMed Central

    Chen, Chunxia; Cui, Xiaoying; Yu, Jun; Xiao, Jingfa; Kan, Biao

    2012-01-01

    Salmonella Paratyphi A (S. Paratyphi A) is a highly adapted, human-specific pathogen that causes paratyphoid fever. Cases of paratyphoid fever have recently been increasing, and the disease is becoming a major public health concern, especially in Eastern and Southern Asia. To investigate the genomic variation and evolution of S. Paratyphi A, a pan-genomic analysis was performed on five newly sequenced S. Paratyphi A strains and two other reference strains. A whole genome comparison revealed that the seven genomes are collinear and that their organization is highly conserved. The high rate of substitutions in part of the core genome indicates that there are frequent homologous recombination events. Based on the changes in the pan-genome size and cluster number (both in the core functional genes and core pseudogenes), it can be inferred that the sharply increasing number of pseudogene clusters may have strong correlation with the inactivation of functional genes, and indicates that the S. Paratyphi A genome is being degraded. PMID:23028950

  1. Human Infections Attributable to the d-Tartrate-Fermenting Variant of Salmonella enterica Serovar Paratyphi B in Germany Originate in Reptiles and, on Rare Occasions, Poultry

    PubMed Central

    Toboldt, Anne; Tietze, Erhard; Helmuth, Reiner; Fruth, Angelika; Junker, Ernst

    2012-01-01

    In this study, the population structure, incidence, and potential sources of human infection caused by the d-tartrate-fermenting variant of Salmonella enterica serovar Paratyphi B [S. Paratyphi B (dT+)] was investigated. In Germany, the serovar is frequently isolated from broilers. Therefore, a selection of 108 epidemiologically unrelated S. enterica serovar Paratyphi B (dT+) strains isolated in Germany between 2002 and 2010 especially from humans, poultry/poultry meat, and reptiles was investigated by phenotypic and genotypic methods. Strains isolated from poultry and products thereof were strongly associated with multilocus sequence type ST28 and showed antimicrobial multiresistance profiles. Pulsed-field gel electrophoresis XbaI profiles were highly homogeneous, with only a few minor XbaI profile variants. All strains isolated from reptiles, except one, were strongly associated with ST88, another distantly related type. Most of the strains were susceptible to antimicrobial agents, and XbaI profiles were heterogeneous. Strains isolated from humans yielded seven sequence types (STs) clustering in three distantly related lineages. The first lineage, comprising five STs, represented mainly strains belonging to ST43 and ST149. The other two lineages were represented only by one ST each, ST28 and ST88. The relatedness of strains based on the pathogenicity gene repertoire (102 markers tested) was mostly in agreement with the multilocus sequence type. Because ST28 was frequently isolated from poultry but rarely in humans over the 9-year period investigated, overall, this study indicates that in Germany S. enterica serovar Paratyphi B (dT+) poses a health risk preferentially by contact with reptiles and, to a less extent, by exposure to poultry or poultry meat. PMID:22885742

  2. Structural analysis of the O-acetylated O-polysaccharide isolated from Salmonella paratyphi A and used for vaccine preparation.

    PubMed

    Ravenscroft, N; Cescutti, P; Gavini, M; Stefanetti, G; MacLennan, C A; Martin, L B; Micoli, F

    2015-03-02

    Salmonella paratyphi A is increasingly recognized as a common cause of enteric fever cases and there are no licensed vaccines against this infection. Antibodies directed against the O-polysaccharide of the lipopolysaccharide of Salmonella are protective and conjugation of the O-polysaccharide to a carrier protein represents a promising strategy for vaccine development. O-Acetylation of S. paratyphi A O-polysaccharide is considered important for the immunogenicity of S. paratyphi A conjugate vaccines. Here, as part of a programme to produce a bivalent conjugate vaccine against both S. typhi and S. paratyphi A diseases, we have fully elucidated the O-polysaccharide structure of S. paratyphi A by use of HPLC-SEC, HPAEC-PAD/CD, GLC, GLC-MS, 1D and 2D-NMR spectroscopy. In particular, chemical and NMR studies identified the presence of O-acetyl groups on C-2 and C-3 of rhamnose in the lipopolysaccharide repeating unit, at variance with previous reports of O-acetylation at a single position. Moreover HR-MAS NMR analysis performed directly on bacterial pellets from several strains of S. paratyphi A also showed O-acetylation on C-2 and C-3 of rhamnose, thus this pattern is common and not an artefact from O-polysaccharide purification. Conjugation of the O-polysaccharide to the carrier protein had little impact on O-acetylation and therefore should not adversely affect the immunogenicity of the vaccine. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Molecular and cellular characterization of a Salmonella enterica serovar Paratyphi a outbreak strain and the human immune response to infection.

    PubMed

    Gal-Mor, Ohad; Suez, Jotham; Elhadad, Dana; Porwollik, Steffen; Leshem, Eyal; Valinsky, Lea; McClelland, Michael; Schwartz, Eliezer; Rahav, Galia

    2012-02-01

    Enteric fever is an invasive life-threatening systemic disease caused by the Salmonella enterica human-adapted serovars Typhi and Paratyphi. Increasing incidence of infections with Salmonella enterica serovar Paratyphi A and the spreading of its antibiotic-resistant derivates pose a significant health concern in some areas of the world. Herein, we describe a molecular and phenotypic characterization of an S. Paratyphi A strain accounted for a recent paratyphoid outbreak in Nepal that affected at least 37 travelers. Pulsed-field gel electrophoresis analysis of the outbreak isolates revealed one genetic clone (pulsotype), confirming a single infecting source. Genetic profiling of the outbreak strain demonstrated the contribution of specific bacteriophages as a prime source of genetic diversity among clinical isolates of S. Paratyphi A. Phenotypic characterization in comparison with the S. Paratyphi A ATCC 9150 reference sequenced strain showed differences in flagellar morphology and increased abilities of the outbreak strain with respect to its motility, invasion into nonphagocytic cells, intracellular multiplication, survival within macrophages, and higher induction of interleukin-8 (IL-8) secreted by host cells. Collectively, these differences suggest an enhanced virulence potential of this strain and demonstrate an interesting phenotypic variation among S. Paratyphi A isolates. In vivo profiling of 16 inflammatory cytokines in patients infected with the outbreak strain revealed a common profile of a remarkable gamma interferon (IFN-γ) induction together with elevated concentrations of tumor necrosis factor alpha (TNF-α), IL-6, IL-8, IL-10, and IL-15, but not IL-12, which was previously demonstrated as elevated in nontyphoidal Salmonella infections. This apparent profile implies a distinct immune response to paratyphoid infections.

  4. Genomic analysis of Salmonella enterica serotype Paratyphi A during an outbreak in Cambodia, 2013–2015

    PubMed Central

    Fawal, Nizar; Fabre, Laetitia; Tourdjman, Mathieu; Dufour, Muriel; Sar, Dara; Kham, Chun; Phe, Thong; Vlieghe, Erika; Bouchier, Christiane; Jacobs, Jan

    2016-01-01

    In 2013, an unusual increase in the number of Salmonella enterica serotype Paratyphi A (Salmonella Paratyphi A) infections was reported in patients in Phnom Penh, Cambodia, and in European, American and Japanese travellers returning from Cambodia. Epidemiological investigations did not identify a common source of exposure. To analyse the population structure and genetic diversity of these Salmonella Paratyphi A isolates, we used whole-genome sequencing on 65 isolates collected from 1999 to 2014: 55 from infections acquired in Cambodia and 10 from infections acquired in other countries in Asia, Africa and Europe. Short-read sequences from 80 published genomes from around the world and from 13 published genomes associated with an outbreak in China were also included. Pulsed-field gel electrophoresis (PFGE) was performed on a subset of isolates. Genomic analyses were found to provide much more accurate information for tracking the individual strains than PFGE. All but 2 of the 36 isolates acquired in Cambodia during 2013–2014 belonged to the same clade, C5, of lineage C. This clade has been isolated in Cambodia since at least 1999. The Chinese outbreak isolates belonged to a different clade (C4) and were resistant to nalidixic acid, whereas the Cambodian outbreak isolates displayed pan-susceptibility to antibiotics. Since 2014, the total number of cases has decreased, but there has been an increase in the frequency with which nalidixic acid-resistant C5 isolates are isolated. The frequency of these isolates should be monitored over time, because they display decreased susceptibility to ciprofloxacin, the first-choice antibiotic for treating paratyphoid fever. PMID:28348832

  5. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid.

    PubMed

    McClelland, Michael; Sanderson, Kenneth E; Clifton, Sandra W; Latreille, Phil; Porwollik, Steffen; Sabo, Aniko; Meyer, Rekha; Bieri, Tamberlyn; Ozersky, Phil; McLellan, Michael; Harkins, C Richard; Wang, Chunyan; Nguyen, Christine; Berghoff, Amy; Elliott, Glendoria; Kohlberg, Sara; Strong, Cindy; Du, Feiyu; Carter, Jason; Kremizki, Colin; Layman, Dan; Leonard, Shawn; Sun, Hui; Fulton, Lucinda; Nash, William; Miner, Tracie; Minx, Patrick; Delehaunty, Kim; Fronick, Catrina; Magrini, Vincent; Nhan, Michael; Warren, Wesley; Florea, Liliana; Spieth, John; Wilson, Richard K

    2004-12-01

    Salmonella enterica serovars often have a broad host range, and some cause both gastrointestinal and systemic disease. But the serovars Paratyphi A and Typhi are restricted to humans and cause only systemic disease. It has been estimated that Typhi arose in the last few thousand years. The sequence and microarray analysis of the Paratyphi A genome indicates that it is similar to the Typhi genome but suggests that it has a more recent evolutionary origin. Both genomes have independently accumulated many pseudogenes among their approximately 4,400 protein coding sequences: 173 in Paratyphi A and approximately 210 in Typhi. The recent convergence of these two similar genomes on a similar phenotype is subtly reflected in their genotypes: only 30 genes are degraded in both serovars. Nevertheless, these 30 genes include three known to be important in gastroenteritis, which does not occur in these serovars, and four for Salmonella-translocated effectors, which are normally secreted into host cells to subvert host functions. Loss of function also occurs by mutation in different genes in the same pathway (e.g., in chemotaxis and in the production of fimbriae).

  6. Mix-infection of S. Typhi and ParaTyphi A in Typhoid Fever and Chronic Typhoid Carriers: A Nested PCR Based Study in North India

    PubMed Central

    Pratap, Chandra Bhan; Kumar, Gopal; Patel, Saurabh Kumar; Shukla, Vijay K; Kumar, Kailash; Singh, Tej Bali

    2014-01-01

    Introduction: Enteric fever is a systemic disease caused by Salmonella organism such as serotypes Typhi and ParaTyphi A, B, C. Salmonella ParaTyphi A contributes more than 50% of all the enteric fever cases and it has recently been projected as an emerging pathogen. Materials and Methods: The present study was aimed to detect Salmonella Typhi and ParaTyphi A in urine, blood and stool specimens collected from cases of enteric fever (110), chronic typhoid carriers (46) and healthy controls (75) to explore the possibility of mixed infection by nested PCR. A new nested PCR primer was designed targeting putative fimbrial protein (stkG) gene which is one of the fimbrial gene families to Salmonella ParaTyphi A and for S. Typhi already reported primers targeting flagellin (fliC) gene. Results: Large volume of urine specimens (15 ml) was found to be the best for detection of Salmonella serotypes. The urine sample was found to have mixed-infection by both the serotypes in 40.9% of the cases but lower in blood (27.3%) and stool (13.6%). Conclusion: The present study concludes that occurrence of mixed infection may be quite frequent in typhoid and chronic typhoid carriers’ individuals, although the reported recent rise in ParaTyphi A incidence may not be real. PMID:25584217

  7. [About problems of carriers of Salmonella typhi and paratyphi B under hygienic, epidemiologic and sociologic view (authors transl)].

    PubMed

    Brossmann, D

    1977-01-01

    The carriers of salmonella typhi and paratyphi B are the central figures of the epidemiology of typhoid illnesses. The files available at the medical authorities' office of the Hansestadt Lübeck, with regards to all 543 carriers registered up to 1972, have been analysed, and 102 of 108 carriers who were inhabitants of Lübeck on 31.10.72, have been interviewed in their lodgings.--Following results are mentionable: 1. 55 carriers have been traced during a hospital stay, 22 of them were under hospital treatment because of cholecystectomy. 2. The circle of persons to be obligated for medical examination as per $ 17 of the Federal Republic of Germany's law of epidemics has proved as too small. For instance two female carriers--known since years--did their job without any hindering as plates washer or waitress in restaurants. 3. 21 persons=4% of the patients excreted salmonellae in urine only. 4. 10% of the carriers of salmonella typhi and 16% of the carriers of salmonella paratypi B had in their faeces as least 5-years intervals of non-excretion. 5. The precentage of carriers with at least 5-years intervals of non-excretion in urine was significantly larger than the corresponding percentage in faeces. 6. Falling ill of 280 persons out of the environs of the carriers have been lead back to the latters. 73% of these infections were placed by the carriers before their detection through the medical authorities' office. 7. For 10 patients whose health was recreated excretion did not cease promptly after the cholecystecystectomy. Salmonellae had been found in the faeces for several months more, at two persons even two years after the operation. 8. For 8 carriers a final decision with regards to the success of cholecystectomy is impossible because they denied a duodenal soundation. 9. 123 persons of 23% of total 543 carriers had--before their ascertation--professions not allowed for those persons. Efforts for a successful job arrangement, possibly combined with a change in

  8. Failure of oral antibiotic therapy, including azithromycin, in the treatment of a recurrent breast abscess caused by Salmonella enterica serotype Paratyphi A.

    PubMed

    Fernando, Shelanah; Molland, Janice Gail; Gottlieb, Thomas

    2012-10-01

    We report a case of recurrent, multifocal Salmonella enterica serotype Paratyphi A breast abscesses, resistant to ciprofloxacin, which relapsed despite surgery, aspiration and multiple courses of antibiotics, including co-trimoxazole and azithromycin. The patient was cured after a prolonged course of intravenous ceftriaxone.

  9. Failure of oral antibiotic therapy, including azithromycin, in the treatment of a recurrent breast abscess caused by Salmonella enterica serotype Paratyphi A

    PubMed Central

    Fernando, Shelanah; Molland, Janice Gail; Gottlieb, Thomas

    2012-01-01

    We report a case of recurrent, multifocal Salmonella enterica serotype Paratyphi A breast abscesses, resistant to ciprofloxacin, which relapsed despite surgery, aspiration and multiple courses of antibiotics, including co-trimoxazole and azithromycin. The patient was cured after a prolonged course of intravenous ceftriaxone. PMID:23182142

  10. SEROTYPING AND ANTIMICROBIAL DRUG RESISTANCE OF SALMONELLA ISOLATED FROM LETTUCE AND HUMAN DIARRHEA SAMPLES IN BURKINA FASO.

    PubMed Central

    Siourimè, Somda Namwin; Isidore, Bonkoungou Ouindgueta Juste; Oumar, Traoré; Nestor, Bassolé Ismael Henri; Yves, Traoré; Nicolas, Barro; Aly, Savadogo

    2017-01-01

    Background: In Burkina Faso dirty water in particular those of the stoppings and the gutter ones are used for vegetables irrigation in the gardens. The aim of this study was to determine the prevalence and antibiotic susceptibility of Salmonella serotypes from humans and lettuce samples inBurkina Faso. Materials and Methods:Salmonella strains isolated from patients in 2009 to 2015 and lettuce samples in 2014 in Burkina Faso were serotyped using specific antisera. All strains were subjected to a set of 14 antibiotics to study their antibiogram by using Baeur–Kirby disk diffusion method. Results: Out of 154 Salmonella isolated, 60 were from human and 94 from lettuce samples. Serotyping revealed four different serotypes and 39% (60) untypeable strains from human and lettuce (14 and 46 strains). Salmonella serotypes from human and lettuce samples were: Paratyphi A (10% and 22%), Paratyphi B (34% and 8%), Paratyphi C (14% and 18%) and Typhi (21% and 1%). A high resistance of Salmonella Paratyphi B and Salmonella spp to tetracycline were 70% from human and 35 % from lettuce samples. Multiresistance was observed to tetracycline, chloramphenicol and amoxicillin/clavulanic-acid or ampicillin with Salmonella ParatyphiB 35% and Salmonella Typhi 33% from human samples and Salmonella spp 4% from lettuce samples. Conclusion: This study showed the diversity of Salmonella serotypes from both clinical and environmental samples and emergence of multiresistant Salmonella to antibiotics in Burkina Faso. A lettuce is a potential source of transmission of Salmonella causing diarrhea among human in Burkina Faso. List of non-standard Abbreviations : HDB: Hôpital du District de Bogodogo, LNSP: Laboratoire National de Santé Publique, DSG : District Sanitaire de Gourcy, DSB : District Sanitaire de Boromo PMID:28670637

  11. Differential Epidemiology of Salmonella Typhi and Paratyphi A in Kathmandu, Nepal: A Matched Case Control Investigation in a Highly Endemic Enteric Fever Setting

    PubMed Central

    Tran Vu Thieu, Nga; Dongol, Sabina; Le Thi Phuong, Tu; Voong Vinh, Phat; Arjyal, Amit; Martin, Laura B.; Rondini, Simona; Farrar, Jeremy J.; Dolecek, Christiane; Basnyat, Buddha; Baker, Stephen

    2013-01-01

    Background Enteric fever, a systemic infection caused by the bacteria Salmonella Typhi and Salmonella Paratyphi A, is endemic in Kathmandu, Nepal. Previous work identified proximity to poor quality water sources as a community-level risk for infection. Here, we sought to examine individual-level risk factors related to hygiene and sanitation to improve our understanding of the epidemiology of enteric fever in this setting. Methodology and principal findings A matched case-control analysis was performed through enrollment of 103 blood culture positive enteric fever patients and 294 afebrile community-based age and gender-matched controls. A detailed questionnaire was administered to both cases and controls and the association between enteric fever infection and potential exposures were examined through conditional logistic regression. Several behavioral practices were identified as protective against infection with enteric fever, including water storage and hygienic habits. Additionally, we found that exposures related to poor water and socioeconomic status are more influential in the risk of infection with S. Typhi, whereas food consumption habits and migration play more of a role in risk of S. Paratyphi A infection. Conclusions and significance Our work suggests that S. Typhi and S. Paratyphi A follow different routes of infection in this highly endemic setting and that sustained exposure to both serovars probably leads to the development of passive immunity. In the absence of a polyvalent vaccine against S. Typhi and S. Paratyphi A, we advocate better systems for water treatment and storage, improvements in the quality of street food, and vaccination with currently available S. Typhi vaccines. PMID:23991240

  12. Clinically and Microbiologically Derived Azithromycin Susceptibility Breakpoints for Salmonella enterica Serovars Typhi and Paratyphi A

    PubMed Central

    Thieu, Nga Tran Vu; Dolecek, Christiane; Karkey, Abhilasha; Gupta, Ruchi; Turner, Paul; Dance, David; Maude, Rapeephan R.; Ha, Vinh; Tran, Chinh Nguyen; Thi, Phuong Le; Be, Bay Pham Van; Phi, La Tran Thi; Ngoc, Rang Nguyen; Ghose, Aniruddha; Dongol, Sabina; Campbell, James I.; Thanh, Duy Pham; Thanh, Tuyen Ha; Moore, Catrin E.; Sona, Soeng; Gaind, Rajni; Deb, Monorama; Anh, Ho Van; Van, Sach Nguyen; Tinh, Hien Tran; Day, Nicholas P. J.; Dondorp, Arjen; Thwaites, Guy; Faiz, Mohamed Abul; Phetsouvanh, Rattanaphone; Newton, Paul; Basnyat, Buddha; Farrar, Jeremy J.; Baker, Stephen

    2015-01-01

    Azithromycin is an effective treatment for uncomplicated infections with Salmonella enterica serovar Typhi and serovar Paratyphi A (enteric fever), but there are no clinically validated MIC and disk zone size interpretative guidelines. We studied individual patient data from three randomized controlled trials (RCTs) of antimicrobial treatment in enteric fever in Vietnam, with azithromycin used in one treatment arm, to determine the relationship between azithromycin treatment response and the azithromycin MIC of the infecting isolate. We additionally compared the azithromycin MIC and the disk susceptibility zone sizes of 1,640 S. Typhi and S. Paratyphi A clinical isolates collected from seven Asian countries. In the RCTs, 214 patients who were treated with azithromycin at a dose of 10 to 20 mg/ml for 5 to 7 days were analyzed. Treatment was successful in 195 of 214 (91%) patients, with no significant difference in response (cure rate, fever clearance time) with MICs ranging from 4 to 16 μg/ml. The proportion of Asian enteric fever isolates with an MIC of ≤16 μg/ml was 1,452/1,460 (99.5%; 95% confidence interval [CI], 98.9 to 99.7) for S. Typhi and 207/240 (86.3%; 95% CI, 81.2 to 90.3) (P < 0.001) for S. Paratyphi A. A zone size of ≥13 mm to a 5-μg azithromycin disk identified S. Typhi isolates with an MIC of ≤16 μg/ml with a sensitivity of 99.7%. An azithromycin MIC of ≤16 μg/ml or disk inhibition zone size of ≥13 mm enabled the detection of susceptible S. Typhi isolates that respond to azithromycin treatment. Further work is needed to define the response to treatment in S. Typhi isolates with an azithromycin MIC of >16 μg/ml and to determine MIC and disk breakpoints for S. Paratyphi A. PMID:25733500

  13. CRISPR Is an Optimal Target for the Design of Specific PCR Assays for Salmonella enterica Serotypes Typhi and Paratyphi A

    PubMed Central

    Fabre, Laetitia; Le Hello, Simon; Roux, Chrystelle; Issenhuth-Jeanjean, Sylvie; Weill, François-Xavier

    2014-01-01

    Background Serotype-specific PCR assays targeting Salmonella enterica serotypes Typhi and Paratyphi A, the causal agents of typhoid and paratyphoid fevers, are required to accelerate formal diagnosis and to overcome the lack of typing sera and, in some situations, the need for culture. However, the sensitivity and specificity of such assays must be demonstrated on large collections of strains representative of the targeted serotypes and all other bacterial populations producing similar clinical symptoms. Methodology Using a new family of repeated DNA sequences, CRISPR (clustered regularly interspaced short palindromic repeats), as a serotype-specific target, we developed a conventional multiplex PCR assay for the detection and differentiation of serotypes Typhi and Paratyphi A from cultured isolates. We also developed EvaGreen-based real-time singleplex PCR assays with the same two sets of primers. Principal findings We achieved 100% sensitivity and specificity for each protocol after validation of the assays on 188 serotype Typhi and 74 serotype Paratyphi A strains from diverse genetic groups, geographic origins and time periods and on 70 strains of bacteria frequently encountered in bloodstream infections, including 29 other Salmonella serotypes and 42 strains from 38 other bacterial species. Conclusions The performance and convenience of our serotype-specific PCR assays should facilitate the rapid and accurate identification of these two major serotypes in a large range of clinical and public health laboratories with access to PCR technology. These assays were developed for use with DNA from cultured isolates, but with modifications to the assay, the CRISPR targets could be used in the development of assays for use with clinical and other samples. PMID:24498453

  14. Rapid multiplex PCR and Real-Time TaqMan PCR assays for detection of Salmonella enterica and the highly virulent serovars Choleraesuis and Paratyphi C

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica is a human pathogen with over 2,500 serovars characterized. S. enterica serovars Choleraesuis (Cs) and Paratyphi C (Pc) are two globally distributed serovars. We have developed a rapid molecular typing method to detect Cs and Pc in food samples by using a comparative genomics ap...

  15. Highly specific and cost-efficient detection of Salmonella Paratyphi A combining aptamers with single-walled carbon nanotubes.

    PubMed

    Yang, Ming; Peng, Zhihui; Ning, Yi; Chen, Yongzhe; Zhou, Qin; Deng, Le

    2013-05-22

    In this paper, a panel of single-stranded DNA aptamers with high affinity and specificity against Salmonella Paratyphi A was selected from an enriched oligonucleotide pool by a whole-cell-Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedure, during which four other Salmonella serovars were used as counter-selection targets. It was determined through a fluorescence assay that the selected aptamers had high binding ability and specificity to this pathogen. The dissociation constant of these aptamers were up to nanomolar range, and aptamer Apt22 with the lowest Kd (47 ± 3 nM) was used in cell imaging experiments. To detect this bacteria with high specificity and cost-efficiently, a novel useful detection method was also constructed based on the noncovalent self-assembly of single-walled carbon nanotubes (SWNTs) and DNAzyme-labeled aptamer detection probes. The amounts of target bacteria could be quantified by exploiting chemoluminescence intensity changes at 420 nm and the detection limit of the method was 103 cfu/mL. This study demonstrated the applicability of Salmonella specific aptamers and their potential for use in the detection of Salmonella in food, clinical and environmental samples.

  16. Growth and survival of Salmonella Paratyphi A in roasted marinated chicken during refrigerated storage: Effect of temperature abuse and computer simulation for cold chain management

    USDA-ARS?s Scientific Manuscript database

    This research was conducted to evaluate the feasibility of using a one-step dynamic numerical analysis and optimization method to directly construct a tertiary model to describe the growth and survival of Salmonella Paratyphi A (SPA) in a marinated roasted chicken product. Multiple dynamic growth a...

  17. Evaluation of the Clinical and Microbiological Response to Salmonella Paratyphi A Infection in the First Paratyphoid Human Challenge Model.

    PubMed

    Dobinson, Hazel C; Gibani, Malick M; Jones, Claire; Thomaides-Brears, Helena B; Voysey, Merryn; Darton, Thomas C; Waddington, Claire S; Campbell, Danielle; Milligan, Iain; Zhou, Liqing; Shrestha, Sonu; Kerridge, Simon A; Peters, Anna; Stevens, Zoe; Podda, Audino; Martin, Laura B; D'Alessio, Flavia; Thanh, Duy Pham; Basnyat, Buddha; Baker, Stephen; Angus, Brian; Levine, Myron M; Blohmke, Christoph J; Pollard, Andrew J

    2017-04-15

    To expedite the evaluation of vaccines against paratyphoid fever, we aimed to develop the first human challenge model of Salmonella enterica serovar Paratyphi A infection. Two groups of 20 participants underwent oral challenge with S. Paratyphi A following sodium bicarbonate pretreatment at 1 of 2 dose levels (group 1: 1-5 × 103 colony-forming units [CFU] and group 2: 0.5-1 × 103 CFU). Participants were monitored in an outpatient setting with daily clinical review and collection of blood and stool cultures. Antibiotic treatment was started when prespecified diagnostic criteria were met (temperature ≥38°C for ≥12 hours and/or bacteremia) or at day 14 postchallenge. The primary study objective was achieved following challenge with 1-5 × 103 CFU (group 1), which resulted in an attack rate of 12 of 20 (60%). Compared with typhoid challenge, paratyphoid was notable for high rates of subclinical bacteremia (at this dose, 11/20 [55%]). Despite limited symptoms, bacteremia persisted for up to 96 hours after antibiotic treatment (median duration of bacteremia, 53 hours [interquartile range, 24-85 hours]). Shedding of S. Paratyphi A in stool typically preceded onset of bacteremia. Challenge with S. Paratyphi A at a dose of 1-5 × 103 CFU was well tolerated and associated with an acceptable safety profile. The frequency and persistence of bacteremia in the absence of clinical symptoms was notable, and markedly different from that seen in previous typhoid challenge studies. We conclude that the paratyphoid challenge model is suitable for the assessment of vaccine efficacy using endpoints that include bacteremia and/or symptomatology. NCT02100397. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  18. A severe Salmonella enterica serotype Paratyphi B infection in a child related to a pet turtle, Trachemys scripta elegans.

    PubMed

    Nagano, Noriyuki; Oana, Shinji; Nagano, Yukiko; Arakawa, Yoshichika

    2006-04-01

    Our report highlights a case of severe childhood salmonellosis related to a pet turtle, a red-eared slider (Trachemys scripta elegans). A 6-year-old girl had gastroenteritis complicated with sepsis caused by serotype Paratyphi B, which shared the same pulsed-field gel electrophoresis profiles with the organism isolated from a pet turtle. Based on our literature survey on childhood invasive salmonellosis acquired from reptiles, this case is the first documented reptile-associated salmonellosis including sepsis caused by this serotype.

  19. Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers.

    PubMed Central

    Selander, R K; Beltran, P; Smith, N H; Helmuth, R; Rubin, F A; Kopecko, D J; Ferris, K; Tall, B D; Cravioto, A; Musser, J M

    1990-01-01

    Multilocus enzyme electrophoresis was employed to measure chromosomal genotypic diversity and evolutionary relationships among 761 isolates of the serovars Salmonella typhi, S. paratyphi A, S. paratyphi B, S. paratyphi C, and S. sendai, which are human-adapted agents of enteric fever, and S. miami and S. java, which are serotypically similar to S. sendai and S. paratyphi B, respectively, but cause gastroenteritis in both humans and animals. To determine the phylogenetic positions of the clones of these forms within the context of the salmonellae of subspecies I, comparative data for 22 other common serovars were utilized. Except for S. paratyphi A and S. sendai, the analysis revealed no close phylogenetic relationships among clones of different human-adapted serovars, which implies convergence in host adaptation and virulence factors. Clones of S. miami are not allied with those of S. sendai or S. paratyphi A, being, instead, closely related to strains of S. panama. Clones of S. paratyphi B and S. java belong to a large phylogenetic complex that includes clones of S. typhimurium, S. heidelberg, S. saintpaul, and S. muenchen. Most strains of S. paratyphi B belong to a globally distributed clone that is highly polymorphic in biotype, bacteriophage type, and several other characters, whereas strains of S. java represent seven diverse lineages. The flagellar monophasic forms of S. java are genotypically more similar to clones of S. typhimurium than to other clones of S. java or S. paratyphi B. Clones of S. paratyphi C are related to those of S. choleraesuis. DNA probing with a segment of the viaB region specific for the Vi capsular antigen genes indicated that the frequent failure of isolates of S. paratyphi C to express Vi antigen is almost entirely attributable to regulatory processes rather than to an absence of the structural determinant genes themselves. Two clones of S. typhisuis are related to those of S. choleraesuis and S. paratyphi C, but a third clone is not

  20. Counts, serovars, and antimicrobial resistance phenotypes of Salmonella on raw chicken meat at retail in Colombia.

    PubMed

    Donado-Godoy, Pilar; Clavijo, Viviana; León, Maribel; Arevalo, Alejandra; Castellanos, Ricardo; Bernal, Johan; Tafur, Mc Allister; Ovalle, Maria Victoria; Alali, Walid Q; Hume, Michael; Romero-Zuñiga, Juan Jose; Walls, Isabel; Doyle, Michael P

    2014-02-01

    The objective of this study was to determine Salmonella counts, serovars, and antimicrobial-resistant phenotypes on retail raw chicken carcasses in Colombia. A total of 301 chicken carcasses were collected from six departments (one city per department) in Colombia. Samples were analyzed for Salmonella counts using the most-probable-number method as recommended by the U.S. Department of Agriculture, Food Safety Inspection Service protocol. A total of 378 isolates (268 from our previous study) were serotyped and tested for antimicrobial susceptibility. The overall Salmonella count (mean log most probable number per carcass ± 95% confidence interval) and prevalence were 2.1 (2.0 to 2.3) and 37%, respectively. There were significant differences (P < 0.05) by Salmonella levels (i.e., counts and prevalence) by storage temperature (i.e., frozen, chilled, or ambient), retail store type (wet markets, supermarkets, and independent markets), and poultry company (chicken produced by integrated or nonintegrated company). Frozen chicken had the lowest Salmonella levels compared with chicken stored at other temperatures, chickens from wet markets had higher levels than those from other retail store types, and chicken produced by integrated companies had lower levels than nonintegrated companies. Thirty-one Salmonella serovars were identified among 378 isolates, with Salmonella Paratyphi B tartrate-positive (i.e., Salmonella Paratyphi B dT+) the most prevalent (44.7%), followed by Heidelberg (19%), Enteritidis (17.7%), Typhimurium (5.3%), and Anatum (2.1%). Of all the Salmonella isolates, 35.2% were resistant to 1 to 5 antimicrobial agents, 24.6% to 6 to 10, and 33.9% to 11 to 15. Among all the serovars obtained, Salmonella Paratyphi B dT+ and Salmonella Heidelberg were the most antimicrobial resistant. Salmonella prevalence was determined to be high, whereas cell numbers were relatively low. These data can be used in developing risk assessment models for preventing the

  1. Ultra-Fast and Sensitive Detection of Non-Typhoidal Salmonella Using Microwave-Accelerated Metal-Enhanced Fluorescence (“MAMEF”)

    PubMed Central

    Galen, James E.; Geddes, Chris D.; Levine, Myron M.

    2011-01-01

    Certain serovars of Salmonella enterica subsp. enterica cause invasive disease (e.g., enteric fever, bacteremia, septicemia, meningitis, etc.) in humans and constitute a global public health problem. A rapid, sensitive diagnostic test is needed to allow prompt initiation of therapy in individual patients and for measuring disease burden at the population level. An innovative and promising new rapid diagnostic technique is microwave-accelerated metal-enhanced fluorescence (MAMEF). We have adapted this assay platform to detect the chromosomal oriC locus common to all Salmonella enterica subsp. enterica serovars. We have shown efficient lysis of biologically relevant concentrations of Salmonella spp. suspended in bacteriological media using microwave-induced lysis. Following lysis and DNA release, as little as 1 CFU of Salmonella in 1 ml of medium can be detected in <30 seconds. Furthermore the assay is sensitive and specific: it can detect oriC from Salmonella serovars Typhi, Paratyphi A, Paratyphi B, Paratyphi C, Typhimurium, Enteritidis and Choleraesuis but does not detect Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pneumoniae, Haemophilus influenzae or Acinetobacter baumanii. We have also performed preliminary experiments using a synthetic Salmonella oriC oligonucleotide suspended in whole human blood and observed rapid detection when the sample was diluted 1∶1 with PBS. These pre-clinical data encourage progress to the next step to detect Salmonella in blood (and other ordinarily sterile, clinically relevant body fluids). PMID:21494634

  2. Revised Ciprofloxacin Breakpoints for Salmonella: Is it Time to Write an Obituary?

    PubMed

    Girish, Revathy; Kumar, Anil; Khan, Sadia; Dinesh, Kavitha R; Karim, Shamsul

    2013-11-01

    To determine the minimum inhibitory concentration of ciprofloxacin among 50 blood stream isolates of Salmonella enterica. A total of 50 consecutive isolates of Salmonella enterica were tested for susceptibility to antimicrobials using the Kirby Bauer disk diffusion method. Minimum inhibitory concentrations were determined using Hi-Comb strips. All results were interpreted according to the CLSI guidelines. Of the 50 isolates 70%were Salmonella Typhi, 4% Salmonella paratyphi A, 2% Salmonella paratyphi B and the remaining 10% were identified only as Salmonella species. Using the CLSI 2011 breakpoints for disc diffusion, 86% (43/50) were resistant to nalidixic acid(NA), 22% (11/50) to ciprofloxacin, 12% to azithromycin, 6% to cotrimoxazole, 4% to ampicillin and 1% to chloramphenicol. The MIC50 and MIC90 of ciprofloxacin for S.Typhi were 0.181 μg/mL and 5.06 μg/mL respectively. While the same for S. paratyphi A was 0.212μg/mL and 0.228μg/mL respectively. None of the isolates were multi drug resistant and all were susceptible to ceftriaxone. Using the CLSI 2012 revised ciprofloxacin breakpoints for disc diffusion (>31mm) & MIC (<0.06 μg/mL), 90% (45/50) of these isolates were found to be resistant. MIC's of ciprofloxacin should be reported for all salmonella isolates and should be used to guide treatment. Blindly following western guidelines for a disease which is highly endemic in the subcontinent will spell the death knell of a cheap and effective drug in our armamentarium. Therefore it will be too premature to declare that "the concept of using ciprofloxacin in typhoid fever is dead!"

  3. Baseline Antibody Titre against Salmonella enterica in Healthy Population of Mumbai, Maharashtra, India.

    PubMed

    Patki, Rucha; Lilani, Sunil; Lanjewar, Dhaneshwar

    2017-01-01

    The aim of this study was to establish a baseline titre for the population of Mumbai, Maharashtra, India. Four hundred healthy blood donors, attending blood donation camps, were screened using a survey questionnaire. Widal tube agglutination test was performed on the diluted sera (with 0.9% normal saline) of blood donors, with final dilution ranging from 1 : 40 to 1 : 320. Out of 400 individuals providing samples, 78 (19.5%) individuals showed antibody titres ≥ 1 : 40 for at least one antigen and 322 (80.5%) showed no agglutination. The baseline antibody titres against O antigen and H antigen of Salmonella enterica serotype Typhi were found to be 1 : 40 and 1 : 80, respectively. Similarly, the baseline antibody titres for the H antigen of Salmonella enterica serotypes Paratyphi A and Paratyphi B were found to be 1 : 40 and 1 : 80, respectively. Thus, it was noted that the diagnostically significant cutoff of antibody titre from acute phase sample was ≥ 1 : 80 for S. Typhi O antigen and titre of ≥ 1 : 160 for both S. Typhi H antigen and S. Paratyphi BH antigen. Antibody titre of ≥ 1 : 80 can be considered significant for S. Paratyphi AH antigen.

  4. Baseline Antibody Titre against Salmonella enterica in Healthy Population of Mumbai, Maharashtra, India

    PubMed Central

    Lilani, Sunil; Lanjewar, Dhaneshwar

    2017-01-01

    Objective The aim of this study was to establish a baseline titre for the population of Mumbai, Maharashtra, India. Method Four hundred healthy blood donors, attending blood donation camps, were screened using a survey questionnaire. Widal tube agglutination test was performed on the diluted sera (with 0.9% normal saline) of blood donors, with final dilution ranging from 1 : 40 to 1 : 320. Results Out of 400 individuals providing samples, 78 (19.5%) individuals showed antibody titres ≥ 1 : 40 for at least one antigen and 322 (80.5%) showed no agglutination. The baseline antibody titres against O antigen and H antigen of Salmonella enterica serotype Typhi were found to be 1 : 40 and 1 : 80, respectively. Similarly, the baseline antibody titres for the H antigen of Salmonella enterica serotypes Paratyphi A and Paratyphi B were found to be 1 : 40 and 1 : 80, respectively. Conclusion Thus, it was noted that the diagnostically significant cutoff of antibody titre from acute phase sample was ≥ 1 : 80 for S. Typhi O antigen and titre of ≥ 1 : 160 for both S. Typhi H antigen and S. Paratyphi BH antigen. Antibody titre of ≥ 1 : 80 can be considered significant for S. Paratyphi AH antigen. PMID:29081804

  5. Antimicrobial susceptibility of Salmonella isolates from healthy pigs and chickens (2008-2011).

    PubMed

    de Jong, Anno; Smet, Annemieke; Ludwig, Carolin; Stephan, Bernd; De Graef, Evelyne; Vanrobaeys, Mia; Haesebrouck, Freddy

    2014-07-16

    Using the agar dilution method, antimicrobial susceptibility to human-use antibiotics was determined among Belgian faecal Salmonella isolates from healthy pigs and broiler chickens. Both epidemiological cut-off values and clinical breakpoints were applied for interpretation of the results. Cephalosporin-resistant isolates were examined for the presence of genes encoding CTX-M, SHV, TEM and CMY β-lactamases. All isolates with decreased quinolone susceptibility were screened for plasmid-borne genes qnr, qepA and aac(6')-Ib-cr. In all, 368 Salmonella isolates were recovered from pigs and 452 from chickens. Clinical resistance to ciprofloxacin was absent in isolates of both host species, and was 1.9 and 13.1% to cefotaxime in pig and poultry isolates, respectively. Decreased susceptibility to cefotaxime amounted to 2.2 and 0.7%, whereas for ciprofloxacin this was 3.0 and 23.0% in pig and poultry isolates, respectively. Ciprofloxacin decreased susceptibility was limited to few serovars, mainly Paratyphi B. Multidrug resistance was markedly higher for pig isolates (39.7%) than for chicken isolates (17.3%). Sixty-six cefotaxime-resistant isolates, 59 from chickens and 7 from pigs, were phenotypically determined as ESBL/AmpC producers; predominantly Paratyphi B and Typhimurium serovars. BlaCTX-M (mostly blaCTXM-1, but also blaCTXM-2 and blaCTXM-9) and blaTEM-52 were the predominant ESBL genes. Only few isolates expressed SHV-12 or an AmpC enzyme (CMY-2). Isolates of four serovars carried qnr genes: Brandenburg and Llandof from pigs, both qnrS; Indiana and Paratyphi B from chickens with qnrB and qnrA. The latter isolate carried blaCTX-M-9 and was the only strain with a plasmid-borne quinolone resistance gene among the ESBL/AmpC producers. This Salmonella survey confirms that the ESBL/AmpC producers are particularly prevalent in chickens (12.8%), and much less in pigs (1.9%). A link between plasmid-borne quinolone resistance genes and ESBLs/AmpC was uncommon. Copyright

  6. Salmonella on Raw Poultry in Retail Markets in Guatemala: Levels, Antibiotic Susceptibility, and Serovar Distribution.

    PubMed

    Jarquin, Claudia; Alvarez, Danilo; Morales, Oneida; Morales, Ana Judith; López, Beatriz; Donado, Pilar; Valencia, Maria F; Arévalo, Alejandra; Muñoz, Fredy; Walls, Isabel; Doyle, Michael P; Alali, Walid Q

    2015-09-01

    The objective of this study was to determine Salmonella numbers on retail raw chicken carcasses in Guatemala and to phenotypically characterize the isolates (serotyping and antibiotic susceptibility). In total, 300 chicken carcasses were collected from seven departments in Guatemala. Salmonella numbers were determined using the most-probable-number method following the U. S. Department of Agriculture's Food Safety and Inspection Service protocol. In total, 103 isolates were obtained, all of which were tested for antibiotic susceptibility, whereas 46 isolates were serotyped. Overall, Salmonella prevalence and mean number (mean log most probable number per carcass) was 34.3% and 2.3 (95% confidence interval: 2.1 to 2.5), respectively. Significant differences (P < 0.05) in Salmonella prevalence were found by storage condition (refrigerated or ambient temperature), market type (wet markets, supermarkets, and independent poultry stores), chicken production system (integrated or nonintegrated production company), and chicken skin color (white or yellow). Chickens produced by integrated companies had lower Salmonella numbers (P < 0.05) than nonintegrated companies, and white-skin carcasses had lower numbers (P < 0.05) than yellow-skin carcasses. Among 13 different Salmonella serovars identified, Paratyphi B (34.8%) was most prevalent, followed by Heidelberg (16.3%) and Derby (11.6%). Of all the Salmonella isolates, 59.2% were resistant to one to three antibiotics and 13.6% to four or more antibiotics. Among all the serovars obtained, Salmonella Paratyphi B and Heidelberg were the most resistant to the antibiotics tested. Salmonella levels and antibiotic resistant profiles among isolates from raw poultry at the retail market level were high relative to other reports from North and South America. These data can be used by Guatemalan stakeholders to develop risk assessment models and support further research opportunities to control transmission of Salmonella spp. and

  7. Ten years experience of Salmonella infections in Cambridge, UK.

    PubMed

    Matheson, Nicholas; Kingsley, Robert A; Sturgess, Katherine; Aliyu, Sani H; Wain, John; Dougan, Gordon; Cooke, Fiona J

    2010-01-01

    Review of all Salmonella infections diagnosed in the Cambridge area over 10 years. All Salmonella enterica isolated in the Clinical Microbiology Laboratory, Addenbrooke's Hospital between 1.1.1999 and 31.12.2008 were included. Patient demographics, serotype and additional relevant details (travel history, resistance-type, phage-type) were recorded. 1003 episodes of Salmonella gastroenteritis were confirmed by stool culture, representing 88 serotypes. Serotypes Enteritidis (59%), Typhimurium (4.7%), Virchow (2.6%), Newport (1.8%) and Braenderup (1.7%) were the 5 most common isolates. There were an additional 37 invasive Salmonella infections (32 blood cultures, 4 tissue samples, 1 CSF). 13/15 patients with Salmonella Typhi or Salmonella Paratyphi isolated from blood or faeces with an available travel history had returned from the Indian subcontinent. 8/10 S. Typhi or Paratyphi isolates tested had reduced susceptibility to fluoroquinolones (MIC > or = 0.125 mg/L). 7/21 patients with non-typhoidal Salmonella bacteraemia were known to be immunosuppressed. This study describes Salmonella serotypes circulating within a defined geographical area over a decade. Prospective molecular analysis of isolates of S. enterica by multi-locus sequence typing (MLST) and single nucleotide polymorphism (SNP) detection will determine the geo-phylogenetic relationship of isolates within our region. 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.

  8. Understanding paratyphoid infection: study protocol for the development of a human model of Salmonella enterica serovar Paratyphi A challenge in healthy adult volunteers.

    PubMed

    McCullagh, David; Dobinson, Hazel C; Darton, Thomas; Campbell, Danielle; Jones, Claire; Snape, Matthew; Stevens, Zoe; Plested, Emma; Voysey, Merryn; Kerridge, Simon; Martin, Laura B; Angus, Brian; Pollard, Andrew J

    2015-06-16

    This study will develop the first human challenge model of paratyphoid infection which may then be taken forward to evaluate paratyphoid vaccine candidates. Salmonella Paratyphi A is believed to cause a quarter of the estimated 20 million cases of enteric fever annually. Epidemiological evidence also suggests that an increasing proportion of the enteric fever burden is attributable to S. Paratyphi infection meriting further attention and interest in vaccine development. Assessment of paratyphoid vaccine efficacy in preclinical studies is complicated by the lack of a small animal model and the human-restricted nature of the infection. The use of experimental human infection in healthy volunteers provides an opportunity to address these problems in a cost-effective manner. Volunteers will ingest virulent S. Paratyphi A bacteria (NVGH308 strain) with a bicarbonate buffer solution to establish the infectious dose resulting in an 'attack rate' of 60-75%. Using an a priori decision-making algorithm, the challenge dose will be escalated or de-escalated to achieve the target attack rate, with the aim of reaching the study end point while exposing as few individuals as possible to infection. The attack rate will be determined by the proportion of paratyphoid infection in groups of 20 healthy adult volunteers, with infection being defined by one or more positive blood cultures (microbiological end point) and/or fever, defined as an oral temperature exceeding 38 °C sustained for at least 12 h (clinical end point); 20-80 participants will be required. Challenge participants will start a 2-week course of an oral antibiotic on diagnosis of infection, or after 14 days follow-up. The strict eligibility criterion aims to minimise risk to participants and their close contacts. Ethical approval has been obtained. The results will be disseminated in a peer-reviewed journal and presented at international congresses. NCT02100397. Published by the BMJ Publishing Group Limited. For

  9. THE USE OF GAMMA RADIATION TO DESTROY SALMONELLAE IN FROZEN WHOLE EGG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, J.; Hannan, R.S.; Hobbs, B.C.

    Frozen whole egg (an intimate mixture of the white and yolk) is the most important egg product in international commerce. Average imports into the United Kingdom alone have amounted to about 22,000 tons per annum over the last ten years. It has been known for some time that egg products may contain members of the Salmonella group capable of causing food poisoning, but the position has been rendered more serious by the recent discovery of S. paratyphi B in egg products imported. In fact, the proved association of egg products with paratyphoid B fever has created a new situation inmore » the epidemiology of the disease. After treatment of small samples of frozen whole egg with 2-Mev cathode rays, it was concluded that a dose of about 300,000 to 500,000 rads would destroy the numbers of salmonellas normally encountered in the product without impairing the baking qualities of the material. Whole tins, each containing 22 pounds, were therefore irradiated in the frozen state with cobalt-80 gamma rays. Two tins were treated at each of three dose levels of 300,000, 400,000, and 500,000 rads. The contaminants present before irradiation were S. paratyphi B (three tins), S. newport (two tins), and S. thompson (one tin). No salmonellas were detected in duplicate samples of material taken from each of the tins after irradiation. If the effectiveness of the treatment is confirmed by further work, the process has obvious attractions since it dispenses with the need to thaw or otherwise to handle the product. (auth)« less

  10. CRISPRs: Molecular Markers for Tracking Antibiotic Resistant Strains of Salmonella Enterica

    DTIC Science & Technology

    2014-01-01

    S.Paratyphi A, B and C) are confined to human hosts and cause typhoid and paratyphoid (enteric) fevers . These are spread from human to human—often shed by...poisoning) with symptoms of diarrhea, fever , and abdominal cramps that run 5-7 days. In contrast, non- typhoidal salmonellosis in sub-Saharan Africa... typhoid fever , due to Salmonella Typhi, is an important cause of illness and death. Most serotype Typhi infections in the United States are acquired

  11. Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin

    PubMed Central

    Kisiela, Dagmara I.; Chattopadhyay, Sujay; Libby, Stephen J.; Karlinsey, Joyce E.; Fang, Ferric C.; Tchesnokova, Veronika; Kramer, Jeremy J.; Beskhlebnaya, Viktoriya; Samadpour, Mansour; Grzymajlo, Krzysztof; Ugorski, Maciej; Lankau, Emily W.; Mackie, Roderick I.; Clegg, Steven; Sokurenko, Evgeni V.

    2012-01-01

    Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella. PMID:22685400

  12. Laboratory-based surveillance of paratyphoid fever in the United States: travel and antimicrobial resistance.

    PubMed

    Gupta, Sundeep K; Medalla, Felicita; Omondi, Michael W; Whichard, Jean M; Fields, Patricia I; Gerner-Smidt, Peter; Patel, Nehal J; Cooper, Kara L F; Chiller, Tom M; Mintz, Eric D

    2008-06-01

    The incidence of paratyphoid fever, including paratyphoid fever caused by antimicrobial-resistant strains, is increasing globally. However, the epidemiologic and laboratory characteristics of paratyphoid fever in the United States have never been studied. We attempted to interview all patients who had been infected with laboratory-confirmed Salmonella serotypes Paratyphi A, Paratyphi B, or Paratyphi C in the United States with specimens collected from 1 April 2005 through 31 March 2006. At the Centers for Disease Control and Prevention (CDC), isolates underwent serotype confirmation, antimicrobial susceptibility testing, and pulsed-field gel electrophoresis typing. Of 149 patients infected with Salmonella Paratyphi A, we obtained epidemiologic information for 89 (60%); 55 (62%) of 86 were hospitalized. Eighty-five patients (96%) reported having travel internationally, and 80 (90%) had traveled to South Asia. Of the 146 isolates received at the CDC, 127 (87%) were nalidixic acid resistant; nalidixic acid resistance was associated with travel to South Asia (odds ratio, 17.0; 95% confidence interval, 3.8-75.9). All nalidixic acid-resistant isolates showed decreased susceptibility to ciprofloxacin (minimum inhibitory concentration, > or = 0.12 microg/mL). Of 49 patients infected with Salmonella Paratyphi B, only 12 (24%) were confirmed to have Paratyphi B when tested at the CDC. Four (67%) of 6 patients were hospitalized, and 5 (83%) reported travel (4 to the Andean region of South America). One case of Salmonella Paratyphi C infection was reported in a traveler to West Africa with a urinary tract infection. Physicians should be aware of the increasing incidence of infection due to Salmonella Paratyphi A and treatment options given its widespread antimicrobial resistance. A paratyphoid fever vaccine is urgently needed. Continued surveillance for paratyphoid fever will help guide future prevention and treatment recommendations.

  13. Food poisoning due to Salmonella enterica serotype weltevreden in Mangalore.

    PubMed

    Antony, B; Dias, M; Shetty, A K; Rekha, B

    2009-01-01

    An outbreak of food poisoning due to Salmonella enterica serotype Weltevreden ( S.weltevreden ) involving 34 students has been reported from a tertiary care hospital in Mangalore. The symptoms developed 8-10 hours, after consuming a non- vegetarian dish, probably fish, from an outside caterer. The identity of the organism was confirmed at Central Research Institute, Kasauli. This report emphasizes the geographical distribution of this organism in the Coastal Karnataka region. S.Weltevreden may be overlooked due to the biochemical similarity to S. Paratyphi B & S. Typhimurium.

  14. Salmonella serotype distribution in the Dutch broiler supply chain.

    PubMed

    van Asselt, E D; Thissen, J T N M; van der Fels-Klerx, H J

    2009-12-01

    Salmonella serotype distribution can give insight in contamination routes and persistence along a production chain. Therefore, it is important to determine not only Salmonella prevalence but also to specify the serotypes involved at the different stages of the supply chain. For this purpose, data from a national monitoring program in the Netherlands were used to estimate the serotype distribution and to determine whether this distribution differs for the available sampling points in the broiler supply chain. Data covered the period from 2002 to 2005, all slaughterhouses (n = 22), and the following 6 sampling points: departure from hatchery, arrival at the farm, departure from the farm, arrival at the slaughterhouse, departure from the slaughterhouse, and end of processing. Furthermore, retail data for 2005 were used for comparison with slaughterhouse data. The following serotypes were followed throughout the chain: Salmonella Enteritidis, Salmonella Typhimurium, Salmonella Paratyphi B var. Java (Salmonella Java), Salmonella Infantis, Salmonella Virchow, and Salmonella Mbandaka. Results showed that serotype distribution varied significantly throughout the supply chain (P < 0.05). Main differences were found at the farm and at the slaughterhouse (within one stage), and least differences were found between departure from one stage and arrival at the next stage. The most prominent result was the increase of Salmonella Java at farm level. This serotype remained the most prominent pathogen throughout the broiler supply chain up to the retail phase.

  15. The Ecological Dynamics of Fecal Contamination and Salmonella Typhi and Salmonella Paratyphi A in Municipal Kathmandu Drinking Water

    PubMed Central

    Walker, Alan W.; Thompson, Corinne N.; Torres, Andres; Dongol, Sabina; Tran Vu Thieu, Nga; Pham Thanh, Duy; Tran Thi Ngoc, Dung; Voong Vinh, Phat; Singer, Andrew C.; Parkhill, Julian; Thwaites, Guy; Basnyat, Buddha; Ferguson, Neil; Baker, Stephen

    2016-01-01

    One of the UN sustainable development goals is to achieve universal access to safe and affordable drinking water by 2030. It is locations like Kathmandu, Nepal, a densely populated city in South Asia with endemic typhoid fever, where this goal is most pertinent. Aiming to understand the public health implications of water quality in Kathmandu we subjected weekly water samples from 10 sources for one year to a range of chemical and bacteriological analyses. We additionally aimed to detect the etiological agents of typhoid fever and longitudinally assess microbial diversity by 16S rRNA gene surveying. We found that the majority of water sources exhibited chemical and bacterial contamination exceeding WHO guidelines. Further analysis of the chemical and bacterial data indicated site-specific pollution, symptomatic of highly localized fecal contamination. Rainfall was found to be a key driver of this fecal contamination, correlating with nitrates and evidence of S. Typhi and S. Paratyphi A, for which DNA was detectable in 333 (77%) and 303 (70%) of 432 water samples, respectively. 16S rRNA gene surveying outlined a spectrum of fecal bacteria in the contaminated water, forming complex communities again displaying location-specific temporal signatures. Our data signify that the municipal water in Kathmandu is a predominant vehicle for the transmission of S. Typhi and S. Paratyphi A. This study represents the first extensive spatiotemporal investigation of water pollution in an endemic typhoid fever setting and implicates highly localized human waste as the major contributor to poor water quality in the Kathmandu Valley. PMID:26735696

  16. The Ecological Dynamics of Fecal Contamination and Salmonella Typhi and Salmonella Paratyphi A in Municipal Kathmandu Drinking Water.

    PubMed

    Karkey, Abhilasha; Jombart, Thibaut; Walker, Alan W; Thompson, Corinne N; Torres, Andres; Dongol, Sabina; Tran Vu Thieu, Nga; Pham Thanh, Duy; Tran Thi Ngoc, Dung; Voong Vinh, Phat; Singer, Andrew C; Parkhill, Julian; Thwaites, Guy; Basnyat, Buddha; Ferguson, Neil; Baker, Stephen

    2016-01-01

    One of the UN sustainable development goals is to achieve universal access to safe and affordable drinking water by 2030. It is locations like Kathmandu, Nepal, a densely populated city in South Asia with endemic typhoid fever, where this goal is most pertinent. Aiming to understand the public health implications of water quality in Kathmandu we subjected weekly water samples from 10 sources for one year to a range of chemical and bacteriological analyses. We additionally aimed to detect the etiological agents of typhoid fever and longitudinally assess microbial diversity by 16S rRNA gene surveying. We found that the majority of water sources exhibited chemical and bacterial contamination exceeding WHO guidelines. Further analysis of the chemical and bacterial data indicated site-specific pollution, symptomatic of highly localized fecal contamination. Rainfall was found to be a key driver of this fecal contamination, correlating with nitrates and evidence of S. Typhi and S. Paratyphi A, for which DNA was detectable in 333 (77%) and 303 (70%) of 432 water samples, respectively. 16S rRNA gene surveying outlined a spectrum of fecal bacteria in the contaminated water, forming complex communities again displaying location-specific temporal signatures. Our data signify that the municipal water in Kathmandu is a predominant vehicle for the transmission of S. Typhi and S. Paratyphi A. This study represents the first extensive spatiotemporal investigation of water pollution in an endemic typhoid fever setting and implicates highly localized human waste as the major contributor to poor water quality in the Kathmandu Valley.

  17. Salmonella L-forms: formation in human bile in vitro and isolation culture from patients' gallbladder samples by a non-high osmotic isolation technique.

    PubMed

    Wang, D N; Wu, W J; Wang, T; Pan, Y Z; Tang, K L; She, X L; Ding, W J; Wang, H

    2015-05-01

    Bacterial L-forms have always been considered as osmotic-pressure-sensitive cell-wall-deficient bacteria and isolation culture of L-forms must use media with high osmotic pressure. However, isolation culture of stable L-forms formed in humans and animals is very difficult because they have adapted to the physiological osmotic pressure condition of the host. We use a non-high osmotic isolation technique to isolate stable L-forms of Salmonella Typhi and Salmonella Paratyphi A from bile-inducer cultures in vitro and from patients' gallbladder specimens. Multiplex PCR assay for Salmonella-specific genes and nucleotide sequencing are used to identify the Salmonella L-forms in stable L-form isolates. Using this method, we confirmed that Salmonella Paratyphi A and Salmonella Typhi cannot be isolated from bile-inducer cultures cultured for 6 h or 48 h, but the L-forms can be isolated from 1 h to 45 days. In the 524 gallbladder samples, the positive rate for bacterial forms was 19.7% and the positive rate for Salmonella spp. was 0.6% by routine bacteriological methods. The positive rate for bacterial L-forms was 75.4% using non-high osmotic isolation culture. In the L-form isolates, the positive rate of Salmonella invA gene was 3.1%. In these invA-positive L-form isolates, four were positive for the invA and flic-d genes of Salmonella Typhi, and ten were positive for the invA and flic-a genes of Salmonella Paratyphi A. Copyright © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Comparative evaluation of two rapid Salmonella-IgM tests and blood culture in the diagnosis of enteric fever.

    PubMed

    Prasad, K J; Oberoi, J K; Goel, N; Wattal, C

    2015-01-01

    Enteric fever is a major public health problem in developing countries like India. An early and accurate diagnosis is necessary for a prompt and effective treatment. We have evaluated the diagnostic accuracy of two Rapid Salmonella-IgM tests (Typhidot-IgM and Enteroscreen-IgM) as compared to blood culture in rapid and early diagnosis of enteric fever. A total of 2,699 patients' serum samples were tested by Rapid Salmonella-IgM tests and blood culture. Patients were divided into two groups. Test group - patients with enteric fever and blood culture positives for Salmonella Typhi; and three types of Controls, i.e. patients with non-enteric fever illnesses, normal healthy controls and patients positive for S. Paratyphi- A. In addition to this we have also evaluated the significance of positive Salmonella-IgM tests among blood culture-negative cases. The overall sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the Typhidot-IgM test and Enteroscreen-IgM test considering blood culture as gold standard were 97.29% and 88.13%, 97.40% and 87.83%, 98.18% and 92.03%, 96.15% and 82.27%, respectively. Typhidot-IgM test was found to be significantly more sensitive and specific as compared to Enteroscreen-IgM. Among blood culture-negative patients, Rapid Salmonella-IgM tests detected 72.25% additional cases of enteric fever. Although the Rapid Salmonella-IgM tests are meant to diagnose S. Typhi only, but these tests detect S. Paratyphi- A also. Thirty-eight patients who were blood culture-positive for S. Paratyphi- A were also positive by Rapid Salmonella-IgM tests. Rapid Salmonella-IgM tests offer an advantage of increased sensitivity, rapidity, early diagnosis and simplicity over blood culture.

  19. Non-protein coding RNA genes as the novel diagnostic markers for the discrimination of Salmonella species using PCR.

    PubMed

    Nithya, Ravichantar; Ahmed, Siti Aminah; Hoe, Chee-Hock; Gopinath, Subash C B; Citartan, Marimuthu; Chinni, Suresh V; Lee, Li Pin; Rozhdestvensky, Timofey S; Tang, Thean-Hock

    2015-01-01

    Salmonellosis, a communicable disease caused by members of the Salmonella species, transmitted to humans through contaminated food or water. It is of paramount importance, to generate accurate detection methods for discriminating the various Salmonella species that cause severe infection in humans, including S. Typhi and S. Paratyphi A. Here, we formulated a strategy of detection and differentiation of salmonellosis by a multiplex polymerase chain reaction assay using S. Typhi non-protein coding RNA (sRNA) genes. With the designed sequences that specifically detect sRNA genes from S. Typhi and S. Paratyphi A, a detection limit of up to 10 pg was achieved. Moreover, in a stool-seeding experiment with S. Typhi and S. Paratyphi A, we have attained a respective detection limit of 15 and 1.5 CFU/mL. The designed strategy using sRNA genes shown here is comparatively sensitive and specific, suitable for clinical diagnosis and disease surveillance, and sRNAs represent an excellent molecular target for infectious disease.

  20. Vaccines against invasive Salmonella disease

    PubMed Central

    MacLennan, Calman A; Martin, Laura B; Micoli, Francesca

    2014-01-01

    Though primarily enteric pathogens, Salmonellae are responsible for a considerable yet under-appreciated global burden of invasive disease. In South and South-East Asia, this manifests as enteric fever caused by serovars Typhi and Paratyphi A. In sub-Saharan Africa, a similar disease burden results from invasive nontyphoidal Salmonellae, principally serovars Typhimurium and Enteritidis. The existing Ty21a live-attenuated and Vi capsular polysaccharide vaccines target S. Typhi and are not effective in young children where the burden of invasive Salmonella disease is highest. After years of lack of investment in new Salmonella vaccines, recent times have seen increased interest in the area led by emerging-market manufacturers, global health vaccine institutes and academic partners. New glycoconjugate vaccines against S. Typhi are becoming available with similar vaccines against other invasive serovars in development. With other new vaccines under investigation, including live-attenuated, protein-based and GMMA vaccines, now is an exciting time for the Salmonella vaccine field. PMID:24804797

  1. Comprehensive analysis of Salmonella sequence polymorphisms and development of a LDR-UA assay for the detection and characterization of selected serotypes.

    PubMed

    Lauri, Andrea; Castiglioni, Bianca; Mariani, Paola

    2011-07-01

    Salmonella is a major cause of food-borne disease, and Salmonella enterica subspecies I includes the most clinically relevant serotypes. Salmonella serotype determination is important for the disease etiology assessment and contamination source tracking. This task will be facilitated by the disclosure of Salmonella serotype sequence polymorphisms, here annotated in seven genes (sefA, safA, safC, bigA, invA, fimA, and phsB) from 139 S. enterica strains, of which 109 belonging to 44 serotypes of subsp. I. One hundred nineteen polymorphic sites were scored and associated to single serotypes or to serotype groups belonging to S. enterica subsp. I. A diagnostic tool was constructed based on the Ligation Detection Reaction-Universal Array (LDR-UA) for the detection of polymorphic sites uniquely associated to serotypes of primary interest (Salmonella Hadar, Salmonella Infantis, Salmonella Enteritidis, Salmonella Typhimurium, Salmonella Gallinarum, Salmonella Virchow, and Salmonella Paratyphi B). The implementation of promiscuous probes allowed the diagnosis of ten further serotypes that could be associated to a unique hybridization pattern. Finally, the sensitivity and applicability of the tool was tested on target DNA dilutions and with controlled meat contamination, allowing the detection of one Salmonella CFU in 25 g of meat.

  2. A scalable method for O-antigen purification applied to various Salmonella serovars

    PubMed Central

    Micoli, F.; Rondini, S.; Gavini, M.; Pisoni, I.; Lanzilao, L.; Colucci, A.M.; Giannelli, C.; Pippi, F.; Sollai, L.; Pinto, V.; Berti, F.; MacLennan, C.A.; Martin, L.B.; Saul, A.

    2014-01-01

    The surface lipopolysaccharide of gram-negative bacteria is both a virulence factor and a B cell antigen. Antibodies against O-antigen of lipopolysaccharide may confer protection against infection, and O-antigen conjugates have been designed against multiple pathogens. Here, we describe a simplified methodology for extraction and purification of the O-antigen core portion of Salmonella lipopolysaccharide, suitable for large-scale production. Lipopolysaccharide extraction and delipidation are performed by acetic acid hydrolysis of whole bacterial culture and can take place directly in a bioreactor, without previous isolation and inactivation of bacteria. Further O-antigen core purification consists of rapid filtration and precipitation steps, without using enzymes or hazardous chemicals. The process was successfully applied to various Salmonella enterica serovars (Paratyphi A, Typhimurium, and Enteritidis), obtaining good yields of high-quality material, suitable for conjugate vaccine preparations. PMID:23142430

  3. Characterization of Salmonella enterica isolates causing bacteremia in Lima, Peru, using multiple typing methods

    PubMed Central

    Betancor, Laura; García, Coralith; Astocondor, Lizeth; Hinostroza, Noemí; Bisio, Julieta; Rivera, Javier; Perezgasga, Lucía; Pérez Escanda, Victoria; Yim, Lucía; Jacobs, Jan; García-del Portillo, Francisco; Chabalgoity, José A.; Puente, José L.

    2017-01-01

    In this study, different molecular typing tools were applied to characterize 95 Salmonella enterica blood isolates collected between 2008 and 2013 from patients at nine public hospitals in Lima, Peru. Combined results of multiplex PCR serotyping, two- and seven-loci multilocus sequence typing (MLST) schemes, serotyping, IS200 amplification and RAPD fingerprints, showed that these infections were caused by eight different serovars: Enteritidis, Typhimurium, Typhi, Choleraesuis, Dublin, Paratyphi A, Paratyphi B and Infantis. Among these, Enteritidis, Typhimurium and Typhi were the most prevalent, representing 45, 36 and 11% of the isolates, respectively. Most isolates (74%) were not resistant to ten primarily used antimicrobial drugs; however, 37% of the strains showed intermediate susceptibility to ciprofloxacin (ISC). Antimicrobial resistance integrons were carried by one Dublin (dfra1 and aadA1) and two Infantis (aadA1) isolates. The two Infantis isolates were multidrug resistant and harbored a large megaplasmid. Amplification of spvC and spvRA regions showed that all Enteritidis (n = 42), Typhimurium (n = 34), Choleraesuis (n = 3) and Dublin (n = 1) isolates carried the Salmonella virulence plasmid (pSV). We conclude that the classic serotyping method can be substituted by the multiplex PCR and, when necessary, sequencing of only one or two loci of the MLST scheme is a valuable tool to confirm the results. The effectiveness and feasibility of different typing tools is discussed. PMID:29267322

  4. Decreased ciprofloxacin susceptibility in Salmonella Typhi and Paratyphi infections in ill-returned travellers: the impact on clinical outcome and future treatment options.

    PubMed

    Hassing, R-J; Goessens, W H F; Mevius, D J; van Pelt, W; Mouton, J W; Verbon, A; van Genderen, P J

    2013-10-01

    The emergence of decreased ciprofloxacin susceptibility (DCS) in Salmonella enterica serovar Typhi and serovar Paratyphi A, B or C limits treatment options. We studied the impact of DCS isolates on the fate of travellers returning with enteric fever and possible alternative treatment options. We evaluated the clinical features, susceptibility data and efficacy of empirical treatment in patients with positive blood cultures of a DCS isolate compared to patients infected with a ciprofloxacin-susceptible (CS) isolate in the period from January 2002 to August 2008. In addition, the pharmacokinetic and pharmacodynamic parameters of ciprofloxacin, levofloxacin and gatifloxacin were determined to assess if increasing the dose would result in adequate unbound fraction of the drug 24-h area under the concentration-time curve/minimum inhibitory concentration (ƒAUC(0-24)/MIC) ratio. Patients with DCS more often returned from the Indian subcontinent and had a longer fever clearance time and length of hospital stay compared to patients in whom the initial empirical therapy was adequate. The mean ƒAUC(0-24)/MIC was 41.3 ± 18.8 in the patients with DCS and 585.4 ± 219 in patients with a CS isolate. For DCS isolates, the mean ƒAUC0-24/MIC for levofloxacin was 60.5 ± 28.7 and for gatifloxacin, it was 97.9 ± 28.0. Increasing the dose to an adequate ƒAUC(0-24)/MIC ratio will lead to conceivably toxic drug levels in 50% of the patients treated with ciprofloxacin. Emerging DCS isolates has led to the failure of empirical treatment in ill-returned travellers. We demonstrated that, in some cases, an adequate ƒAUC(0-24)/MIC ratio could be achieved by increasing the dose of ciprofloxacin or by the use of alternative fluoroquinolones.

  5. Feverlike Temperature is a Virulence Regulatory Cue Controlling the Motility and Host Cell Entry of Typhoidal Salmonella.

    PubMed

    Elhadad, Dana; McClelland, Michael; Rahav, Galia; Gal-Mor, Ohad

    2015-07-01

    Human infection with typhoidal Salmonella serovars causes a febrile systemic disease, termed enteric fever. Here we establish that in response to a temperature equivalent to fever (39 °C-42 °C) Salmonella enterica serovars Typhi, Paratyphi A, and Sendai significantly attenuate their motility, epithelial cell invasion, and uptake by macrophages. Under these feverlike conditions, the residual epithelial cell invasion of S. Paratyphi A occurs in a type III secretion system (T3SS) 1-independent manner and results in restrained disruption of epithelium integrity. The impaired motility and invasion are associated with down-regulation of T3SS-1 genes and class II and III (but not I) of the flagella-chemotaxis regulon. In contrast, we demonstrate up-regulation of particular Salmonella pathogenicity island 2 genes (especially spiC) and increased intraepithelial growth in a T3SS-2-dependent manner. These results indicate that elevated physiological temperature is a novel cue controlling virulence phenotypes in typhoidal serovars, which is likely to play a role in the distinct clinical manifestations elicited by typhoidal and nontyphoidal salmonellae. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. A Multicountry Molecular Analysis of Salmonella enterica Serovar Typhi With Reduced Susceptibility to Ciprofloxacin in Sub-Saharan Africa

    PubMed Central

    Al-Emran, Hassan M.; Eibach, Daniel; Krumkamp, Ralf; Ali, Mohammad; Baker, Stephen; Biggs, Holly M.; Bjerregaard-Andersen, Morten; Breiman, Robert F.; Clemens, John D.; Crump, John A.; Cruz Espinoza, Ligia Maria; Deerin, Jessica; Dekker, Denise Myriam; Gassama Sow, Amy; Hertz, Julian T.; Im, Justin; Ibrango, Samuel; von Kalckreuth, Vera; Kabore, Leon Parfait; Konings, Frank; Løfberg, Sandra Valborg; Meyer, Christian G.; Mintz, Eric D.; Montgomery, Joel M.; Olack, Beatrice; Pak, Gi Deok; Panzner, Ursula; Park, Se Eun; Razafindrabe, Jean Luco Tsiriniaina; Rabezanahary, Henintsoa; Rakotondrainiarivelo, Jean Philibert; Rakotozandrindrainy, Raphaël; Raminosoa, Tiana Mirana; Schütt-Gerowitt, Heidi; Sampo, Emmanuel; Soura, Abdramane Bassiahi; Tall, Adama; Warren, Michelle; Wierzba, Thomas F.; May, Jürgen; Marks, Florian

    2016-01-01

    Background. Salmonella enterica serovar Typhi is a predominant cause of bloodstream infections in sub-Saharan Africa (SSA). Increasing numbers of S. Typhi with resistance to ciprofloxacin have been reported from different parts of the world. However, data from SSA are limited. In this study, we aimed to measure the ciprofloxacin susceptibility of S. Typhi isolated from patients with febrile illness in SSA. Methods. Febrile patients from 9 sites within 6 countries in SSA with a body temperature of ≥38.0°C were enrolled in this study. Blood samples were obtained for bacterial culture, and Salmonella isolates were identified biochemically and confirmed by multiplex polymerase chain reaction (PCR). Antimicrobial susceptibility of all Salmonella isolates was performed by disk diffusion test, and minimum inhibitory concentrations (MICs) against ciprofloxacin were measured by Etest. All Salmonella isolates with reduced susceptibility to ciprofloxacin (MIC > 0.06 µg/mL) were screened for mutations in quinolone resistance-determining regions in target genes, and the presence of plasmid-mediated quinolone resistance (PMQR) genes was assessed by PCR. Results. A total of 8161 blood cultures were performed, and 100 (1.2%) S. Typhi, 2 (<0.1%) Salmonella enterica serovar Paratyphi A, and 27 (0.3%) nontyphoid Salmonella (NTS) were isolated. Multidrug-resistant S. Typhi were isolated in Kenya (79% [n = 38]) and Tanzania (89% [n = 8]) only. Reduced ciprofloxacin-susceptible (22% [n = 11]) S. Typhi were isolated only in Kenya. Among those 11 isolates, all had a Glu133Gly mutation in the gyrA gene combined with either a gyrA (Ser83Phe) or gyrB mutation (Ser464Phe). One Salmonella Paratyphi A isolate with reduced susceptibility to ciprofloxacin was found in Senegal, with 1 mutation in gyrA (Ser83Phe) and a second mutation in parC (Ser57Phe). Mutations in the parE gene and PMQR genes were not detected in any isolate. Conclusions. Salmonella Typhi with reduced susceptibility

  7. O-Serotype Conversion in Salmonella Typhimurium Induces Protective Immune Responses against Invasive Non-Typhoidal Salmonella Infections.

    PubMed

    Li, Pei; Liu, Qing; Luo, Hongyan; Liang, Kang; Yi, Jie; Luo, Ying; Hu, Yunlong; Han, Yue; Kong, Qingke

    2017-01-01

    Salmonella infections remain a big problem worldwide, causing enteric fever by Salmonella Typhi (or Paratyphi) or self-limiting gastroenteritis by non-typhoidal Salmonella (NTS) in healthy individuals. NTS may become invasive and cause septicemia in elderly or immuno-compromised individuals, leading to high mortality and morbidity. No vaccines are currently available for preventing NTS infection in human. As these invasive NTS are restricted to several O-antigen serogroups including B1, D1, C1, and C2, O-antigen polysaccharide is believed to be a good target for vaccine development. In this study, a strategy of O-serotype conversion was investigated to develop live attenuated S . Typhimurium vaccines against the major serovars of NTS infections. The immunodominant O4 serotype of S . Typhimurium was converted into O9, O7, and O8 serotypes through unmarked chromosomal deletion-insertion mutations. O-serotype conversion was confirmed by LPS silver staining and western blotting. All O-serotype conversion mutations were successfully introduced into the live attenuated S . Typhimurium vaccine S738 (Δ crp Δ cya ) to evaluate their immunogenicity in mice model. The vaccine candidates induced high amounts of heterologous O-polysaccharide-specific functional IgG responses. Vaccinated mice survived a challenge of 100 times the 50% lethality dose (LD 50 ) of wild-type S . Typhimurium. Protective efficacy against heterologous virulent Salmonella challenges was highly O-serotype related. Furthermore, broad-spectrum protection against S . Typhimurium, S . Enteritidis, and S . Choleraesuis was observed by co-vaccination of O9 and O7 O-serotype-converted vaccine candidates. This study highlights the strategy of expressing heterologous O-polysaccharides via genetic engineering in developing live attenuated S . Typhimurium vaccines against NTS infections.

  8. The clinical and microbiological characteristics of enteric fever in Cambodia, 2008-2015

    PubMed Central

    Phe, Thong; Veng, Chhun H.; Lim, Kruy; Ieng, Sovann; Kham, Chun; Fawal, Nizar; Fabre, Laetitia; Le Hello, Simon; Vlieghe, Erika; Weill, François-Xavier; Jacobs, Jan; Peetermans, Willy E.

    2017-01-01

    Background Enteric fever remains a major public health problem in low resource settings and antibiotic resistance is increasing. In Asia, an increasing proportion of infections is caused by Salmonella enterica serovar Paratyphi A, which for a long time was assumed to cause a milder clinical syndrome compared to Salmonella enterica serovar Typhi. Methodology A retrospective chart review study was conducted of 254 unique cases of blood culture confirmed enteric fever who presented at a referral adult hospital in Phnom Penh, Cambodia between 2008 and 2015. Demographic, clinical and laboratory data were collected from clinical charts and antibiotic susceptibility testing was performed. Whole genome sequence analysis was performed on a subset of 121 isolates. Results One-hundred-and-ninety unique patients were diagnosed with Salmonella Paratyphi A and 64 with Salmonella Typhi. In the period 2008–2012, Salmonella Paratyphi A comprised 25.5% of 47 enteric fever cases compared to 86.0% of 207 cases during 2013–2015. Presenting symptoms were identical for both serovars but higher median leukocyte counts (6.8 x 109/L vs. 6.3 x 109/L; p = 0.035) and C-reactive protein (CRP) values (47.0 mg/L vs. 36 mg/L; p = 0.034) were observed for Salmonella Typhi infections. All but one of the Salmonella Typhi isolates belonged to haplotype H58 associated with multidrug resistance (MDR) (i.e. resistance to ampicillin, chloramphenicol and co-trimoxazole).;42.9% actually displayed MDR compared to none of the Salmonella Paratyphi A isolates. Decreased ciprofloxacin susceptibility (DCS) was observed in 96.9% (62/64) of Salmonella Typhi isolates versus 11.5% (21/183) of Salmonella Paratyphi A isolates (all but one from 2015). All isolates were susceptible to azithromycin and ceftriaxone. Conclusions In Phnom Penh, Cambodia, Salmonella Paratyphi A now causes the majority of enteric fever cases and decreased susceptibility against ciprofloxacin is increasing. Overall, Salmonella Typhi was

  9. The enhanced immune responses induced by Salmonella enteritidis ghosts loaded with Neisseria gonorrhoeae porB against Salmonella in mice.

    PubMed

    Jiao, Hongmei; Yang, Hui; Zhao, Dan; He, Li; Chen, Jin; Li, Guocai

    2016-11-01

    Human health has been seriously endangered by highly prevalent salmonellosis and multidrug-resistant Salmonella strains. Current vaccines suffer from variable immune-protective effects, so more effective ones are needed to control Salmonella infection : Bacterial ghosts have been produced by the expression of lysis gene E from bacteriophage PhiX174 and can be filled with considerable exogenous substances such as DNA or drugs as a novel platform. In this study, Salmonella enteritidis (SE) ghosts were developed and loaded with Neisseria gonorrhoeae porin B (porB) to construct a novel inactive vaccine. Our new studies show that SE ghosts loaded with porB displayed increased production of pro-inflammatory cytokines (IL-1β, IL-6, IL-10 and IL-12p70) in bone marrow-derived dendritic cells (BMDCs), and elicited significantly higher specific systemic and mucosal immune responses to Salmonella than SE ghosts alone. In addition, the novel porB-loaded ghosts conferred higher protective effects on virulent Salmonella challenge. For the first time, we demonstrate that N. gonorrhoeae porB, as a novel adjuvant, can increase the immunogenicity of SE ghosts. Our studies suggested that Salmonella enteritidis ghosts loaded with Neisseria gonorrhoeae porin B might be a useful mucosal Salmonella vaccine candidate for practical use in the future. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Anti-Salmonella activity of medicinal plants from Cameroon.

    PubMed

    Nkuo-Akenji, T; Ndip, R; McThomas, A; Fru, E C

    2001-06-01

    To evaluate the effects of herbal extracts derived from plants commonly prescribed by traditional practitioners for the treatment of typhoid fever. A cross sectional study. Departments of Life Sciences and Chemistry, University of Buea, Cameroon. Methanol extracts of plant parts commonly used in Cameroon for the treatment of typhoid fever. Antimicrobial activity was tested using the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assays. Methanol extracts of plant parts commonly used in Cameroon for the treatment of typhoid fever were tested for antibacterial activity against Salmonella typhi, S. paratyphi and S. typhimurium. The formulations used were: 1) Formulation A comprising Cymbogogon citratus leaves, Carica papaya leaves, and Zea mays silk. 2) Formulation B comprising C. papaya roots, Mangifera indica leaves, Citrus limon fruit and C. citratus leaves. 3) C. papaya leaves. 4) Emilia coccinea whole plant. 5) Comelina bengalensis leaves. 6) Telfaria occidentalis leaves. 7) Gossypium arboreum whole plant. Antimicrobial activity was tested using the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assays. Generally, Formulation A elicited inhibitory activity at a lower range of 0.02 to 0.06 mg/ml. Similarly, Formulation B elicited bacterial activity at the lowest range of 0.06 to 0.25 mg/ml. C. bengalensis leaves on the other hand, showed the lowest activity with a concentration range of 0.132 to 2.0 mg/ml and 1 to 4 mg/ml in MIC and MBC assays respectively. S. paratyphi was most sensitive to the formulations (concentration range of 0.02 to 1 mg/ml in both MIC and MBC assays) while S. typhimurium was the least sensitive and concentrations of up to 4 mg/ml were required to be bactericidal. It is concluded that plant extracts with low MIC and MBC values (1 mg/ml and lower) may contain compounds with therapeutic activity.

  11. The prevalence and clinical features of multi-drug resistant Salmonella typhi infections in Baluchistan, Pakistan.

    PubMed

    Mirza, S H; Beeching, N J; Hart, C A

    1995-10-01

    Between January and July 1994, a prospective study of bacteraemia in 692 patients with fever without localizing signs was undertaken at the Quetta Military Hospital in Baluchistan, Pakistan. Salmonella spp. were isolated from 76 (11%) of the patients; 62 had S. typhi and 14 had S. paratyphi A. Significantly more isolations of S. typhi were made in the hot dry months of May and June than in the earlier months. Although multi-drug resistance (to chloramphenicol ampicillin and cotrimoxazole) was detected in 43 (69%) of the S. typhi isolates, it was not found in any of the S. paratyphi A. Defervescence of patients with chloramphenicol-sensitive S. typhi took 7-10 days of chloramphenicol therapy. In contrast, most (91%) of the patients infected with multi-drug resistant S. typhi who were treated with fluoroquinolones achieved defervescence in 1-3 days; the remainder took 4-6 days.

  12. Antimicrobial Susceptibility to Azithromycin among Salmonella enterica Isolates from the United States▿

    PubMed Central

    Sjölund-Karlsson, Maria; Joyce, Kevin; Blickenstaff, Karen; Ball, Takiyah; Haro, Jovita; Medalla, Felicita M.; Fedorka-Cray, Paula; Zhao, Shaohua; Crump, John A.; Whichard, Jean M.

    2011-01-01

    Due to emerging resistance to traditional antimicrobial agents, such as ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol, azithromycin is increasingly used for the treatment of invasive Salmonella infections. In the present study, 696 isolates of non-Typhi Salmonella collected from humans, food animals, and retail meats in the United States were investigated for antimicrobial susceptibility to azithromycin. Seventy-two Salmonella enterica serotype Typhi isolates from humans were also tested. For each isolate, MICs of azithromycin and 15 other antimicrobial agents were determined by broth microdilution. Among the non-Typhi Salmonella isolates, azithromycin MICs among human isolates ranged from 1 to 32 μg/ml, whereas the MICs among the animal and retail meat isolates ranged from 2 to 16 μg/ml and 4 to 16 μg/ml, respectively. Among Salmonella serotype Typhi isolates, the azithromycin MICs ranged from 4 to 16 μg/ml. The highest MIC observed in the present study was 32 μg/ml, and it was detected in three human isolates belonging to serotypes Kentucky, Montevideo, and Paratyphi A. Based on our findings, we propose an epidemiological cutoff value (ECOFF) for wild-type Salmonella of ≤16 μg/ml of azithromycin. The susceptibility data provided could be used in combination with clinical outcome data to determine tentative clinical breakpoints for azithromycin and Salmonella enterica. PMID:21690279

  13. Cirtical role for Salmonella effector SopB in regulating inflammasome activation.

    PubMed

    Hu, Gui-Qiu; Song, Pei-Xuan; Chen, Wei; Qi, Shuai; Yu, Shui-Xing; Du, Chong-Tao; Deng, Xu-Ming; Ouyang, Hong-Sheng; Yang, Yong-Jun

    2017-10-01

    Salmonella is known to evolve many mechanisms to avoid or delay inflammasome activation which remain largely unknown. In this study, we investigated whether the SopB protein critical to bacteria virulence capacity was an effector that involved in the regulation of inflammasome activation. BMDMs from NLRC4-, NLRP3-, caspase-1/-11-, IFI16- and AIM2-deficient mice were pretreated with LPS, and subsequently stimulated with a series of SopB-related strains of Salmonella, inflammasome induced cell death, IL-1β secretion, cleaved caspase-1 production and ASC speckle formation were detected. We found that SopB could inhibit host IL-1β secretion, caspase-1 activation and inflammasome induced cell death using a series of SopB-related strains of Salmonella; however the reduction of IL-1β secretion was not dependent on sensor that contain PYD domain, such as NLRP3, AIM2 or IFI16, but dependent on NLRC4. Notably, SopB specifically prevented ASC oligomerization and the enzymatic activity of SopB was responsible for the inflammasome inhibition. Furthermore, inhibition of Akt signaling induced enhanced inflammasome activation. These results revealed a novel role in inhibition of NLRC4 inflammasome for Salmonella effector SopB. Copyright © 2017. Published by Elsevier Ltd.

  14. Diagnostics for invasive Salmonella infections: current challenges and future directions

    PubMed Central

    Andrews, Jason R.; Ryan, Edward T.

    2015-01-01

    Invasive Salmonellosis caused by Salmonella enterica serotype Typhi or Paratyphi A, B, C, or invasive non-typhoidal Salmonella serotypes, is an immensely important disease cluster for which reliable, rapid diagnostic tests are not available. Blood culture remains the gold standard but is insensitive, slow, and resource-intensive. Existing molecular diagnostics have poor sensitivity due to the low organism burden in bodily fluids. Commercially available serologic tests for typhoidal Salmonella have had limited sensitivity and specificity. In high burden, resource-limited settings, reliance on clinical diagnosis or inaccurate tests often results in frequent, unnecessary treatment, which contributes selective pressure for the emergence of antimicrobial resistance. This practice also results in inadequate therapy for other etiologies of acute febrile illnesses, including leptospirosis and rickettsial infections. A number of novel serologic, molecular, transcriptomic and metabolomic approaches to diagnostics are under development. Target product profiles that outline specific needs may focus development and investment, and establish benchmarks for accuracy, cost, speed, and portability of new diagnostics. Of note, a critical barrier to diagnostic assay rollout will be the low cost and low perceived harm of empiric therapy on behalf of providers and patients, which leaves few perceived incentives to utilize diagnostics. Approaches that align incentives with societal goals of limiting inappropriate antimicrobial use, such as subsidizing diagnostics, may be essential for stimulating development and uptake of such assays in resource-limited settings. New diagnostics for invasive Salmonellosis should be developed and deployed alongside diagnostics for alternative etiologies of acute febrile illnesses to improve targeted use of antibiotics. PMID:25937611

  15. Diagnostics for invasive Salmonella infections: Current challenges and future directions.

    PubMed

    Andrews, Jason R; Ryan, Edward T

    2015-06-19

    Invasive Salmonellosis caused by Salmonella enterica serotype Typhi or Paratyphi A, B, C, or invasive non-typhoidal Salmonella serotypes, is an immensely important disease cluster for which reliable, rapid diagnostic tests are not available. Blood culture remains the gold standard but is insensitive, slow, and resource-intensive. Existing molecular diagnostics have poor sensitivity due to the low organism burden in bodily fluids. Commercially available serologic tests for typhoidal Salmonella have had limited sensitivity and specificity. In high burden, resource-limited settings, reliance on clinical diagnosis or inaccurate tests often results in frequent, unnecessary treatment, which contributes selective pressure for the emergence of antimicrobial resistance. This practice also results in inadequate therapy for other etiologies of acute febrile illnesses, including leptospirosis and rickettsial infections. A number of novel serologic, molecular, transcriptomic and metabolomic approaches to diagnostics are under development. Target product profiles that outline specific needs may focus development and investment, and establish benchmarks for accuracy, cost, speed, and portability of new diagnostics. Of note, a critical barrier to diagnostic assay rollout will be the low cost and low perceived harm of empiric therapy on behalf of providers and patients, which leaves few perceived incentives to utilize diagnostics. Approaches that align incentives with societal goals of limiting inappropriate antimicrobial use, such as subsidizing diagnostics, may be essential for stimulating development and uptake of such assays in resource-limited settings. New diagnostics for invasive Salmonellosis should be developed and deployed alongside diagnostics for alternative etiologies of acute febrile illnesses to improve targeted use of antibiotics. Copyright © 2015. Published by Elsevier Ltd.

  16. Selective Infection of Antigen-Specific B Lymphocytes by Salmonella Mediates Bacterial Survival and Systemic Spreading of Infection

    PubMed Central

    de Wit, Jelle; Martinoli, Chiara; Zagato, Elena; Janssen, Hans; Jorritsma, Tineke; Bar-Ephraïm, Yotam E.; Rescigno, Maria; Neefjes, Jacques; van Ham, S. Marieke

    2012-01-01

    Background The bacterial pathogen Salmonella causes worldwide disease. A major route of intestinal entry involves M cells, providing access to B cell-rich Peyer’s Patches. Primary human B cells phagocytose Salmonella typhimurium upon recognition by the specific surface Ig receptor (BCR). As it is unclear how Salmonella disseminates systemically, we studied whether Salmonella can use B cells as a transport device for spreading. Methodology/Principal Findings Human primary B cells or Ramos cell line were incubated with GFP-expressing Salmonella. Intracellular survival and escape was studied in vitro by live cell imaging, flow cytometry and flow imaging. HEL-specific B cells were transferred into C57BL/6 mice and HEL-expressing Salmonella spreading in vivo was analyzed investigating mesenteric lymph nodes, spleen and blood. After phagocytosis by B cells, Salmonella survives intracellularly in a non-replicative state which is actively maintained by the B cell. Salmonella is later excreted followed by reproductive infection of other cell types. Salmonella-specific B cells thus act both as a survival niche and a reservoir for reinfection. Adoptive transfer of antigen-specific B cells before oral infection of mice showed that these B cells mediate in vivo systemic spreading of Salmonella to spleen and blood. Conclusions/Significance This is a first example of a pathogenic bacterium that abuses the antigen-specific cells of the adaptive immune system for systemic spreading for dissemination of infection. PMID:23209805

  17. Evaluation of an Electricity-free, Culture-based Approach for Detecting Typhoidal Salmonella Bacteremia during Enteric Fever in a High Burden, Resource-limited Setting

    PubMed Central

    Andrews, Jason R.; Prajapati, Krishna G.; Eypper, Elizabeth; Shrestha, Poojan; Shakya, Mila; Pathak, Kamal R.; Joshi, Niva; Tiwari, Priyanka; Risal, Manisha; Koirala, Samir; Karkey, Abhilasha; Dongol, Sabina; Wen, Shawn; Smith, Amy B.; Maru, Duncan; Basnyat, Buddha; Baker, Stephen; Farrar, Jeremy; Ryan, Edward T.; Hohmann, Elizabeth; Arjyal, Amit

    2013-01-01

    Background In many rural areas at risk for enteric fever, there are few data on Salmonella enterica serotypes Typhi (S. Typhi) and Paratyphi (S. Paratyphi) incidence, due to limited laboratory capacity for microbiologic culture. Here, we describe an approach that permits recovery of the causative agents of enteric fever in such settings. This approach involves the use of an electricity-free incubator based upon use of phase-change materials. We compared this against conventional blood culture for detection of typhoidal Salmonella. Methodology/Principal Findings Three hundred and four patients with undifferentiated fever attending the outpatient and emergency departments of a public hospital in the Kathmandu Valley of Nepal were recruited. Conventional blood culture was compared against an electricity-free culture approach. Blood from 66 (21.7%) patients tested positive for a Gram-negative bacterium by at least one of the two methods. Sixty-five (21.4%) patients tested blood culture positive for S. Typhi (30; 9.9%) or S. Paratyphi A (35; 11.5%). From the 65 individuals with culture-confirmed enteric fever, 55 (84.6%) were identified by the conventional blood culture and 60 (92.3%) were identified by the experimental method. Median time-to-positivity was 2 days for both procedures. The experimental approach was falsely positive due to probable skin contaminants in 2 of 239 individuals (0.8%). The percentages of positive and negative agreement for diagnosis of enteric fever were 90.9% (95% CI: 80.0%–97.0%) and 96.0% (92.7%–98.1%), respectively. After initial incubation, Salmonella isolates could be readily recovered from blood culture bottles maintained at room temperature for six months. Conclusions/Significance A simple culture approach based upon a phase-change incubator can be used to isolate agents of enteric fever. This approach could be used as a surveillance tool to assess incidence and drug resistance of the etiologic agents of enteric fever in settings

  18. Evaluation of an electricity-free, culture-based approach for detecting typhoidal Salmonella bacteremia during enteric fever in a high burden, resource-limited setting.

    PubMed

    Andrews, Jason R; Prajapati, Krishna G; Eypper, Elizabeth; Shrestha, Poojan; Shakya, Mila; Pathak, Kamal R; Joshi, Niva; Tiwari, Priyanka; Risal, Manisha; Koirala, Samir; Karkey, Abhilasha; Dongol, Sabina; Wen, Shawn; Smith, Amy B; Maru, Duncan; Basnyat, Buddha; Baker, Stephen; Farrar, Jeremy; Ryan, Edward T; Hohmann, Elizabeth; Arjyal, Amit

    2013-01-01

    In many rural areas at risk for enteric fever, there are few data on Salmonella enterica serotypes Typhi (S. Typhi) and Paratyphi (S. Paratyphi) incidence, due to limited laboratory capacity for microbiologic culture. Here, we describe an approach that permits recovery of the causative agents of enteric fever in such settings. This approach involves the use of an electricity-free incubator based upon use of phase-change materials. We compared this against conventional blood culture for detection of typhoidal Salmonella. Three hundred and four patients with undifferentiated fever attending the outpatient and emergency departments of a public hospital in the Kathmandu Valley of Nepal were recruited. Conventional blood culture was compared against an electricity-free culture approach. Blood from 66 (21.7%) patients tested positive for a Gram-negative bacterium by at least one of the two methods. Sixty-five (21.4%) patients tested blood culture positive for S. Typhi (30; 9.9%) or S. Paratyphi A (35; 11.5%). From the 65 individuals with culture-confirmed enteric fever, 55 (84.6%) were identified by the conventional blood culture and 60 (92.3%) were identified by the experimental method. Median time-to-positivity was 2 days for both procedures. The experimental approach was falsely positive due to probable skin contaminants in 2 of 239 individuals (0.8%). The percentages of positive and negative agreement for diagnosis of enteric fever were 90.9% (95% CI: 80.0%-97.0%) and 96.0% (92.7%-98.1%), respectively. After initial incubation, Salmonella isolates could be readily recovered from blood culture bottles maintained at room temperature for six months. A simple culture approach based upon a phase-change incubator can be used to isolate agents of enteric fever. This approach could be used as a surveillance tool to assess incidence and drug resistance of the etiologic agents of enteric fever in settings without reliable local access to electricity or local diagnostic

  19. Salmonella species group B causing endocarditis of the prosthetic mitral valve.

    PubMed

    Al-Sherbeeni, Nisreen M

    2009-08-01

    The Salmonella species is an extremely rare cause of infective endocarditis. This case report is for Salmonella spp. group B proven by positive multiple blood cultures, and positive intraoperative culture from the vegetation of the mitral valve prosthesis.

  20. Antimicrobial resistance and management of invasive Salmonella disease.

    PubMed

    Kariuki, Samuel; Gordon, Melita A; Feasey, Nicholas; Parry, Christopher M

    2015-06-19

    Invasive Salmonella infections (typhoidal and non-typhoidal) cause a huge burden of illness estimated at nearly 3.4 million cases and over 600,000 deaths annually especially in resource-limited settings. Invasive non-typhoidal Salmonella (iNTS) infections are particularly important in immunosuppressed populations especially in sub-Saharan Africa, causing a mortality of 20-30% in vulnerable children below 5 years of age. In these settings, where routine surveillance for antimicrobial resistance is rare or non-existent, reports of 50-75% multidrug resistance (MDR) in NTS are common, including strains of NTS also resistant to flouroquinolones and 3rd generation cephalosporins. Typhoid (enteric) fever caused by Salmonella Typhi and Salmonella Paratyphi A remains a major public health problem in many parts of Asia and Africa. Currently over a third of isolates in many endemic areas are MDR, and diminished susceptibility or resistance to fluoroquinolones, the drugs of choice for MDR cases over the last decade is an increasing problem. The situation is particularly worrying in resource-limited settings where the few remaining effective antimicrobials are either unavailable or altogether too expensive to be afforded by either the general public or by public health services. Although the prudent use of effective antimicrobials, improved hygiene and sanitation and the discovery of new antimicrobial agents may offer hope for the management of invasive salmonella infections, it is essential to consider other interventions including the wider use of WHO recommended typhoid vaccines and the acceleration of trials for novel iNTS vaccines. The main objective of this review is to describe existing data on the prevalence and epidemiology of antimicrobial resistant invasive Salmonella infections and how this affects the management of these infections, especially in endemic developing countries. Copyright © 2015. Published by Elsevier Ltd.

  1. Antimicrobial resistance and management of invasive Salmonella disease

    PubMed Central

    Kariuki, Samuel; Gordon, Melita A.; Feasey, Nicholas; Parry, Christopher M

    2015-01-01

    Invasive Salmonella infections (typhoidal and non-typhoidal) cause a huge burden of illness estimated at nearly 3.4 million cases and over 600,000 deaths annually especially in resource-limited settings. Invasive non-typhoidal Salmonella (iNTS) infections are particularly important in immunosuppressed populations especially in sub-Saharan Africa, causing a mortality of 20–30% in vulnerable children below 5 years of age. In these settings, where routine surveillance for antimicrobial resistance is rare or non-existent, reports of 50–75% multidrug resistance (MDR) in NTS are common, including strains of NTS also resistant to flouroquinolones and 3rd generation cephalosporins. Typhoid (enteric) fever caused by Salmonella Typhi and Salmonella Paratyphi A remains a major public health problem in many parts of Asia and Africa. Currently over a third of isolates in many endemic areas are MDR, and diminished susceptibility or resistance to fluoroquinolones, the drugs of choice for MDR cases over the last decade is an increasing problem. The situation is particularly worrying in resource-limited settings where the few remaining effective antimicrobials are either unavailable or altogether too expensive to be afforded by either the general public or by public health services. Although the prudent use of effective antimicrobials, improved hygiene and sanitation and the discovery of new antimicrobial agents may offer hope for the management of invasive salmonella infections, it is essential to consider other interventions including the wider use of WHO recommended typhoid vaccines and the acceleration of trials for novel iNTS vaccines. The main objective of this review is to describe existing data on the prevalence and epidemiology of antimicrobial resistant invasive Salmonella infections and how this affects the management of these infections, especially in endemic developing countries. PMID:25912288

  2. Salmonella infections associated with international travel: a Foodborne Diseases Active Surveillance Network (FoodNet) study.

    PubMed

    Johnson, Laura R; Gould, L Hannah; Dunn, John R; Berkelman, Ruth; Mahon, Barbara E

    2011-09-01

    Salmonella species cause an estimated 1.2 million infections per year in the United States, making it one of the most commonly reported enteric pathogens. In addition, Salmonella is an important cause of travel-associated diarrhea and enteric fever, a systemic illness commonly associated with Salmonella serotypes Typhi and Paratyphi A. We reviewed cases of Salmonella infection reported to the Centers for Disease Control and Prevention's (CDC) Foodborne Diseases Active Surveillance Network (FoodNet), a sentinel surveillance network, from 2004 to 2008. We compared travelers with Salmonella infection to nontravelers with Salmonella infection with respect to demographics, clinical characteristics, and serotypes. Among 23,712 case-patients with known travel status, 11% had traveled internationally in the 7 days before illness. Travelers with Salmonella infection tended to be older (median age, 30 years) than nontravelers (median age, 24 years; p<0.0001), but were similar with respect to gender. The most common destinations reported were Mexico (38% of travel-associated infections), India (9%), Jamaica (7%), the Dominican Republic (4%), China (3%), and the Bahamas (2%). The proportions of travelers with Salmonella infection hospitalized and with invasive disease were inversely related to the income level of the destination (p<0.0001). The most commonly reported serotypes, regardless of travel status, were Enteritidis (19% of cases), Typhimurium (14%), Newport (9%), and Javiana (5%). Among infections caused by these four serotypes, 22%, 6%, 5%, and 4%, respectively, were associated with travel. A high index of clinical suspicion for Salmonella infection is appropriate when evaluating recent travelers, especially those who visited Africa, Asia, or Latin America.

  3. Variable Number of Tandem Repeats in Salmonella enterica subsp. enterica for Typing Purposes

    PubMed Central

    Ramisse, Vincent; Houssu, Perrine; Hernandez, Eric; Denoeud, France; Hilaire, Valérie; Lisanti, Olivier; Ramisse, Françoise; Cavallo, Jean-Didier; Vergnaud, Gilles

    2004-01-01

    The genomic sequences of Salmonella enterica subsp. enterica strains CT18, Ty2 (serovar Typhi), and LT2 (serovar Typhimurium) were analyzed for potential variable number tandem repeats (VNTRs). A multiple-locus VNTR analysis (MLVA) of 99 strains of S. enterica supsp. enterica based on 10 VNTRs distinguished 52 genotypes and placed them into four groups. All strains tested were independent human isolates from France and did not reflect isolates from outbreak episodes. Of these 10 VNTRs, 7 showed variability within serovar Typhi, whereas 1 showed variability within serovar Typhimurium. Four VNTRs showed high Nei's diversity indices (DIs) of 0.81 to 0.87 within serovar Typhi (n = 27). Additionally, three of these more variable VNTRs showed DIs of 0.18 to 0.58 within serovar Paratyphi A (n = 10). The VNTR polymorphic site within multidrug-resistant (MDR) serovar Typhimurium isolates (n = 39; resistance to ampicillin, chloramphenicol, spectinomycin, sulfonamides, and tetracycline) showed a DI of 0.81. Cluster analysis not only identified three genetically distinct groups consistent with the present serovar classification of salmonellae (serovars Typhi, Paratyphi A, and Typhimurium) but also discriminated 25 subtypes (93%) within serovar Typhi isolates. The analysis discriminated only eight subtypes within serovar Typhimurium isolates resistant to ampicillin, chloramphenicol, spectinomycin, sulfonamides, and tetracycline, possibly reflecting the emergence in the mid-1990s of the DT104 phage type, which often displays such an MDR spectrum. Coupled with the ongoing improvements in automated procedures offered by capillary electrophoresis, use of these markers is proposed in further investigations of the potential of MLVA in outbreaks of salmonellosis, especially outbreaks of typhoid fever. PMID:15583305

  4. Molecular typing of Salmonella enterica serovar typhi isolates from various countries in Asia by a multiplex PCR assay on variable-number tandem repeats.

    PubMed

    Liu, Yichun; Lee, May-Ann; Ooi, Eng-Eong; Mavis, Yeo; Tan, Ai-Ling; Quek, Hung-Hiang

    2003-09-01

    A multiplex PCR method incorporating primers flanking three variable-number tandem repeat (VNTR) loci (arbitrarily labeled TR1, TR2, and TR3) in the CT18 strain of Salmonella enterica serovar Typhi has been developed for molecular typing of S. enterica serovar Typhi clinical isolates from several Asian countries, including Singapore, Indonesia, India, Bangladesh, Malaysia, and Nepal. We have demonstrated that the multiplex PCR could be performed on crude cell lysates and that the VNTR banding profiles produced could be easily analyzed by visual inspection after conventional agarose gel electrophoresis. The assay was highly discriminative in identifying 49 distinct VNTR profiles among 59 individual isolates. A high level of VNTR profile heterogeneity was observed in isolates from within the same country and among countries. These VNTR profiles remained stable after the strains were passaged extensively under routine laboratory culture conditions. In contrast to the S. enterica serovar Typhi isolates, an absence of TR3 amplicons and a lack of length polymorphisms in TR1 and TR2 amplicons were observed for other S. enterica serovars, such as Salmonella enterica serovar Typhimurium, Salmonella enterica serovar Enteritidis, and Salmonella enterica serovar Paratyphi A, B, and C. DNA sequencing of the amplified VNTR regions substantiated these results, suggesting the high stability of the multiplex PCR assay. The multiplex-PCR-based VNTR profiling developed in this study provides a simple, rapid, reproducible, and high-resolution molecular tool for the epidemiological analysis of S. enterica serovar Typhi strains.

  5. [Typhoid fever in school children: by what measures is the modification of the clinical course due to oral vaccination?].

    PubMed

    Contreras, R; Ferreccio, C; Sotomayor, V; Astroza, L; Berríos, G; Ortiz, E; Palomino, C; Prenzel, I; Pinto, M E; Levine, M

    1992-02-01

    The clinical course of infection by Salmonellae was compared between patients who had been vaccinated against typhoid fever using the Ty21a vaccine and those who had not. Of 2566 bacteriological confirmed cases 84% were infected with S typhi, 14% with S paratyphi B and 2% with S paratyphi A. Among patients with typhoid fever, 34% were treated in hospital, 3.5% had relapses, 5.4% developed complications and 1 patient died (0.05%). Among patients with paratyphoid fever, 18% were treated in hospital, 0.6% had relapses, 1.4% developed complications and there were no deaths. These figures were similar among vaccinated and non-vaccinated cases. A slightly greater proportion of vaccinated cases were treated in hospital (38 vs 30%). Thus, use of oral vaccination against typhoid fever does not alter the clinical course of infection with Salmonellae.

  6. An allele of an ancestral transcription factor dependent on a horizontally acquired gene product.

    PubMed

    Chen, H Deborah; Jewett, Mollie W; Groisman, Eduardo A

    2012-01-01

    Changes in gene regulatory circuits often give rise to phenotypic differences among closely related organisms. In bacteria, these changes can result from alterations in the ancestral genome and/or be brought about by genes acquired by horizontal transfer. Here, we identify an allele of the ancestral transcription factor PmrA that requires the horizontally acquired pmrD gene product to promote gene expression. We determined that a single amino acid difference between the PmrA proteins from the human adapted Salmonella enterica serovar Paratyphi B and the broad host range S. enterica serovar Typhimurium rendered transcription of PmrA-activated genes dependent on the PmrD protein in the former but not the latter serovar. Bacteria harboring the serovar Typhimurium allele exhibited polymyxin B resistance under PmrA- or under PmrA- and PmrD-inducing conditions. By contrast, isogenic strains with the serovar Paratyphi B allele displayed PmrA-regulated polymyxin B resistance only when experiencing activating conditions for both PmrA and PmrD. We establish that the two PmrA orthologs display quantitative differences in several biochemical properties. Strains harboring the serovar Paratyphi B allele showed enhanced biofilm formation, a property that might promote serovar Paratyphi B's chronic infection of the gallbladder. Our findings illustrate how subtle differences in ancestral genes can impact the ability of horizontally acquired genes to confer new properties.

  7. Recurrent paratyphoid fever A co-infected with hepatitis A reactivated chronic hepatitis B.

    PubMed

    Liu, Yanling; Xiong, Yujiao; Huang, Wenxiang; Jia, Bei

    2014-05-12

    We report here a case of recurrent paratyphoid fever A with hepatitis A co-infection in a patient with chronic hepatitis B. A 26-year-old male patient, who was a hepatitis B virus carrier, was co-infected with Salmonella enterica serovar Paratyphi A and hepatitis A virus. The recurrence of the paratyphoid fever may be ascribed to the coexistence of hepatitis B, a course of ceftriaxone plus levofloxacin that was too short and the insensitivity of paratyphoid fever A to levofloxacin. We find that an adequate course and dose of ceftriaxone is a better strategy for treating paratyphoid fever. Furthermore, the co-infection of paratyphoid fever with hepatitis A may stimulate cellular immunity and break immunotolerance. Thus, the administration of the anti-viral agent entecavir may greatly improve the prognosis of this patient with chronic hepatitis B, and the episodes of paratyphoid fever and hepatitis A infection prompt the use of timely antiviral therapy.

  8. Recurrent paratyphoid fever A co-infected with hepatitis A reactivated chronic hepatitis B

    PubMed Central

    2014-01-01

    We report here a case of recurrent paratyphoid fever A with hepatitis A co-infection in a patient with chronic hepatitis B. A 26-year-old male patient, who was a hepatitis B virus carrier, was co-infected with Salmonella enterica serovar Paratyphi A and hepatitis A virus. The recurrence of the paratyphoid fever may be ascribed to the coexistence of hepatitis B, a course of ceftriaxone plus levofloxacin that was too short and the insensitivity of paratyphoid fever A to levofloxacin. We find that an adequate course and dose of ceftriaxone is a better strategy for treating paratyphoid fever. Furthermore, the co-infection of paratyphoid fever with hepatitis A may stimulate cellular immunity and break immunotolerance. Thus, the administration of the anti-viral agent entecavir may greatly improve the prognosis of this patient with chronic hepatitis B, and the episodes of paratyphoid fever and hepatitis A infection prompt the use of timely antiviral therapy. PMID:24884719

  9. Incidence of Quinolone Resistance Over the Period 1986 to 1998 in Veterinary Salmonella Isolates from Germany

    PubMed Central

    Malorny, Burkhard; Schroeter, Andreas; Helmuth, Reiner

    1999-01-01

    A total of 24,591 nonhuman salmonella strains isolated in Germany between 1986 and 1998 were examined for their resistance to nalidixic acid by an agar diffusion method. The rate of resistance (inhibition zone, ≤13 mm) ranged from 0.2% in 1986 to a peak of 14.8% in 1990. Between 1991 and 1998 the MICs for nalidixic acid-resistant strains ranged from more than 256 μg/ml for nalidixic acid to between 0.25 and 128 μg/ml for enrofloxacin. In the early 1990s a particularly high incidence of fluoroquinolone resistance (49.5%) was seen among isolates of Salmonella enterica serotype Typhimurium (Salmonella Typhimurium) definitive phage type 204c that mainly originated from cattle. Among isolates from poultry an increase in the incidence of nalidixic acid resistance to a peak of 14.4% was observed in 1994. This peak was due to the presence of specific resistant serotypes, mainly serotypes Hadar, Saintpaul, Paratyphi B (d-tartrate positive; formerly serotype Java) and Newport. Such strains exhibited a decreased susceptibility to enrofloxacin (MIC, 1 μg/ml). Among isolates from pigs the peak incidence of resistance was reached in 1993, with 7.5% of isolates resistant to nalidixic acid and enrofloxacin. The study demonstrates an increase in the incidence of strains that are resistant to nalidixic acid and that have decreased susceptibility to enrofloxacin after the licensing of enrofloxacin. In addition, the number of other serotypes that exhibited nalidixic acid resistance or reduced enrofloxacin susceptibility increased among the total number of isolates investigated between 1992 and 1998. PMID:10471579

  10. Gastroenteritis outbreak associated with unpasteurized tempeh, North Carolina, USA.

    PubMed

    Griese, Stephanie E; Fleischauer, Aaron T; MacFarquhar, Jennifer K; Moore, Zackary; Harrelson, Cris; Valiani, Anita; Morrison, Sue Ellen; Sweat, David; Maillard, Jean-Marie; Griffin, Denise; Springer, Debra; Mikoleit, Matthew; Newton, Anna E; Jackson, Brendan; Nguyen, Thai-An; Bosch, Stacey; Davies, Megan

    2013-01-01

    During an investigation of an outbreak of gastroenteritis caused by Salmonella enterica serovar Paratyphi B variant L(+) tartrate(+), we identified unpasteurized tempeh as a novel food vehicle and Rhizopus spp. starter culture as the source of the contamination. Safe handling of uncooked, unpasteurized tempeh should be emphasized for prevention of foodborne illnesses.

  11. Liquid based formulations of bacteriophages for the management of waterborne bacterial pathogens in water microcosms.

    PubMed

    Ahiwale, Sangeeta; Tagunde, Sujata; Khopkar, Sushama; Karni, Mrudula; Gajbhiye, Milind; Kapadnis, Balasaheb

    2013-11-01

    Water resources are contaminated by life-threatening multidrug resistant pathogenic bacteria. Unfortunately, these pathogenic bacteria do not respond to the traditional water purification methods. Therefore, there is a need of environmentally friendly strategies to overcome the problems associated with the antimicrobial resistant bacterial pathogens. In the present study, highly potent lytic phages against multidrug-resistant Salmonella enterica serovar Paratyphi B, Pseudomonas aeruginosa and Klebsiella pneumoniae were isolated from the Pavana river water. They belonged to the Podoviridae and Siphoviridae families. These phages were purified and enriched in the laboratory. Monovalent formulations of phiSPB, BVPaP-3 and KPP phages were prepared in three different liquids viz., phage broth, saline and distilled water. The phages were stable for almost 8-10 months in the phage broth at 4 degrees C. The stability of the phages in saline and distilled water was 5-6 months at 4 degrees C. All of the phages were stable only for 4-6 months in the phage broth at 30 degrees C. The monovalent phage formulation of psiSPB was applied at MOI < 1, as disinfectant against an exponential and stationary phase cells of Salmonella enterica serovar Paratyphi B in various water microcosms. The results indicated that there was almost 80 % reduction in the log phase cells of Salmonella serovar Paratyphi B in 24 h. In stationary phase cells, the reduction was comparatively less within same period. At the same time, there was concomitant increase in the phage population by 80% in all the microcosms indicating that psiSPB phage is highly potent in killing pathogen in water. Results strongly support that the formulation of psiSPB in the phage broth in monovalent form could be used as an effective biological disinfectant for preventing transmission of water-borne bacterial pathogens, including antimicrobial resistant ones.

  12. Salmonellosis Outbreak Traced to Playground Sand, Australia, 2007–2009

    PubMed Central

    Musto, Jennie; Hogg, Geoff; Janssen, Monika; Rose, Karrie

    2012-01-01

    A community outbreak of gastroenteritis in Australia during 2007–2009 was caused by ingestion of playground sand contaminated with Salmonella enterica Paratyphi B, variant Java. The bacterium was also isolated from local wildlife. Findings support consideration of nonfood sources during salmonellosis outbreak investigations and indicate transmission through the animal–human interface. PMID:22709539

  13. Differential roles for pathogenicity islands SPI-13 and SPI-8 in the interaction of Salmonella Enteritidis and Salmonella Typhi with murine and human macrophages.

    PubMed

    Espinoza, Rodrigo A; Silva-Valenzuela, Cecilia A; Amaya, Fernando A; Urrutia, Ítalo M; Contreras, Inés; Santiviago, Carlos A

    2017-02-15

    Salmonella pathogenicity island (SPI)-13 is conserved in many serovars of S. enterica, including S. Enteritidis, S. Typhimurium and S. Gallinarum. However, it is absent in typhoid serovars such as S. Typhi and Paratyphi A, which carry SPI-8 at the same genomic location. Because the interaction with macrophages is a critical step in Salmonella pathogenicity, in this study we investigated the role played by SPI-13 and SPI-8 in the interaction of S. Enteritidis and S. Typhi with cultured murine (RAW264.7) and human (THP-1) macrophages. Our results showed that SPI-13 was required for internalization of S. Enteritidis in murine but not human macrophages. On the other hand, SPI-8 was not required for the interaction of S. Typhi with human or murine macrophages. Of note, the presence of an intact copy of SPI-13 in a S. Typhi mutant carrying a deletion of SPI-8 did not improve its ability to be internalized by, or survive in human or murine macrophages. Altogether, our results point out to different roles for SPI-13 and SPI-8 during Salmonella infection. While SPI-13 contributes to the interaction of S. Enteritidis with murine macrophages, SPI-8 is not required in the interaction of S. Typhi with murine or human macrophages. We hypothesized that typhoid serovars have lost SPI-13 and maintained SPI-8 to improve their fitness during another phase of human infection.

  14. Salmonella Biofilm Development Depends on the Phosphorylation Status of RcsB

    PubMed Central

    Latasa, Cristina; García, Begoña; Echeverz, Maite; Toledo-Arana, Alejandro; Valle, Jaione; Campoy, Susana; García-del Portillo, Francisco; Solano, Cristina

    2012-01-01

    The Rcs phosphorelay pathway is a complex signaling pathway involved in the regulation of many cell surface structures in enteric bacteria. In response to environmental stimuli, the sensor histidine kinase (RcsC) autophosphorylates and then transfers the phosphate through intermediary steps to the response regulator (RcsB), which, once phosphorylated, regulates gene expression. Here, we show that Salmonella biofilm development depends on the phosphorylation status of RcsB. Thus, unphosphorylated RcsB, hitherto assumed to be inactive, is essential to activate the expression of the biofilm matrix compounds. The prevention of RcsB phosphorylation either by the disruption of the phosphorelay at the RcsC or RcsD level or by the production of a nonphosphorylatable RcsB allele induces biofilm development. On the contrary, the phosphorylation of RcsB by the constitutive activation of the Rcs pathway inhibits biofilm development, an effect that can be counteracted by the introduction of a nonphosphorylatable RcsB allele. The inhibition of biofilm development by phosphorylated RcsB is due to the repression of CsgD expression, through a mechanism dependent on the accumulation of the small noncoding RNA RprA. Our results indicate that unphosphorylated RcsB plays an active role for integrating environmental signals and, more broadly, that RcsB phosphorylation acts as a key switch between planktonic and sessile life-styles in Salmonella enterica serovar Typhimurium. PMID:22582278

  15. Influence of On-farm pig Salmonella status on Salmonella Shedding at Slaughter.

    PubMed

    Casanova-Higes, A; Andrés-Barranco, S; Mainar-Jaime, R C

    2017-08-01

    The risk of Salmonella shedding among pigs at slaughter with regard to their previous on-farm Salmonella status was assessed in a group of pigs from a farm from NE of Spain. A total of 202 pigs that had been serologically monitored monthly during the fattening period and from which mesenteric lymph nodes (MLN) and faecal (SFEC) samples were collected at slaughter for Salmonella isolation were included. A repeated-measures anova was used to assess the relationship between mean OD% values during the fattening period and sampling time and bacteriology on MLN and SFEC. Pigs were also grouped into four groups, that is pigs seronegative during the fattening period and Salmonella negative in MLN (group A; n = 69); pigs seronegative during the fattening period but Salmonella positive in MLN (B; n = 36); pigs seropositive at least once and Salmonella positive in MLN (C; n = 50); and pigs seropositive at least once but Salmonella negative in (D; n = 47). Pigs shedding at slaughter seroconverted much earlier and showed much higher mean OD% values than non-shedders pigs. The proportion of Salmonella shedders in groups A and D was high and similar (26.1% and 29.8%, respectively), but significantly lower than that for groups B and C. The odds of shedding Salmonella for groups B and C were 4.8 (95% CI = 1.5-15.5) and 20.9 (3.7-118) times higher, respectively, when compared to A. It was concluded that a large proportion of Salmonella seronegative pigs may shed Salmonella at slaughter, which would be likely associated to previous exposure with contaminated environments (i.e. transport and lairage). For pigs already infected at farm, the likelihood of shedding Salmonella was much higher and may depend on whether the bacterium has colonized the MLN or not. The odds of shedding Salmonella spp. were always much higher for pigs in which Salmonella was isolated from MLN. © 2016 Blackwell Verlag GmbH.

  16. HLA-B27 Modulates Intracellular Growth of Salmonella Pathogenicity Island 2 Mutants and Production of Cytokines in Infected Monocytic U937 Cells

    PubMed Central

    Ge, Shichao; He, Qiushui; Granfors, Kaisa

    2012-01-01

    Background Salmonella enterica serovar Enteritidis PT4 KS8822/88 replicates rapidly in HLA-B27-transfected human monocytic U937 cells. In this process, Salmonella pathogenicity island 2 (SPI-2) genes play a crucial role. Our previous study indicated that 118 Salmonella genes, including 8 SPI-2 genes were affected by HLA-B27 antigen during Salmonella infection of U937 cells. Methods/Principal Findings To further investigate Salmonella replication in HLA-B27-positive U937 monocytic cells, two SPI-2 genes, ssaS and sscA up-regulated most during Salmonella infection of HLA-B27-transfected U937 cells, were mutated by using one-step gene disruption method. Intracellular survival and replication of the mutants in the U937 cells was compared to that of the wild type strain. Surprisingly, the two mutated strains replicated significantly more than the wild type bacteria in HLA-B27-transfected cells. Secretion of tumor necrosis factor alpha (TNF-α) and interleukin 10 (IL-10) was significantly induced during the infection of HLA-B27-transfected U937 cells with the mutants. The results indicated that the certain SPI-2 genes in wild type bacteria suppress Salmonella intracellular growth and production of cytokines in infected HLA-B27-transfected cells. HLA-B27-associated modulation of Salmonella SPI-2 genes and cytokine production may have importance in the persistent infection of the bacteria and the pathogenesis of reactive arthritis. Conclusions The study provides evidence that certain virulence factors of pathogens can reduce the intracellular growth in the host cells. We suggest that the limiting intracellular growth might be a strategy for persistence of bacteria in host cells, keeping a balance between pathogenic growth and pathogenesis. PMID:22470519

  17. Oral administration of a Salmonella enterica-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis.

    PubMed

    Stokes, Margaret G M; Titball, Richard W; Neeson, Brendan N; Galen, James E; Walker, Nicola J; Stagg, Anthony J; Jenner, Dominic C; Thwaite, Joanne E; Nataro, James P; Baillie, Leslie W J; Atkins, Helen S

    2007-04-01

    Bacillus anthracis is the causative agent of anthrax, a disease that affects wildlife, livestock, and humans. Protection against anthrax is primarily afforded by immunity to the B. anthracis protective antigen (PA), particularly PA domains 4 and 1. To further the development of an orally delivered human vaccine for mass vaccination against anthrax, we produced Salmonella enterica serovar Typhimurium expressing full-length PA, PA domains 1 and 4, or PA domain 4 using codon-optimized PA DNA fused to the S. enterica serovar Typhi ClyA and under the control of the ompC promoter. Oral immunization of A/J mice with Salmonella expressing full-length PA protected five of six mice against a challenge with 10(5) CFU of aerosolized B. anthracis STI spores, whereas Salmonella expressing PA domains 1 and 4 provided only 25% protection (two of eight mice), and Salmonella expressing PA domain 4 or a Salmonella-only control afforded no measurable protection. However, a purified recombinant fusion protein of domains 1 and 4 provided 100% protection, and purified recombinant 4 provided protection in three of eight immunized mice. Thus, we demonstrate for the first time the efficacy of an oral S. enterica-based vaccine against aerosolized B. anthracis spores.

  18. Influence of Salmonella enterica Serovar Typhimurium ssrB on Colonization of Eastern Oysters (Crassostrea virginica) as Revealed by a Promoter Probe Screen

    PubMed Central

    Cox, Clayton E.; Wright, Anita C.; McClelland, Michael

    2015-01-01

    Although Salmonella has been isolated from 7.4 to 8.6% of domestic raw oysters, representing a significant risk for food-borne illness, little is known about the factors that influence their initial colonization by Salmonella. This study tested the hypothesis that specific regulatory changes enable a portion of the invading Salmonella population to colonize oysters. An in vivo promoter probe library screen identified 19 unique regions as regulated during colonization. The mutants in the nearest corresponding downstream genes were tested for colonization defects in oysters. Only one mutation, in ssrB, resulted in a significantly reduced ability to colonize oysters compared to that of wild-type Salmonella. Because ssrB regulates Salmonella pathogenicity island 2 (SPI-2)-dependent infections in vertebrate macrophages, the possibility that ssrB mediated colonization of oyster hemocytes in a similar manner was examined. However, no difference in hemocyte colonization was observed. The complementary hypothesis that signal exchange between Salmonella and the oyster's native microbial community aids colonization was also tested. Signals that triggered responses in quorum sensing (QS) reporters were shown to be produced by oyster-associated bacteria and present in oyster tissue. However, no evidence for signal exchange was observed in vivo. The sdiA reporter responded to salinity, suggesting that SdiA may also have a role in environmental sensing. Overall, this study suggests the initial colonization of live oysters by Salmonella is controlled by a limited number of regulators, including ssrB. PMID:26497459

  19. Evaluation of Enterococcus faecium NRRL B-2354 as a Surrogate for Salmonella During Extrusion of Low-Moisture Food.

    PubMed

    Verma, Tushar; Wei, Xinyao; Lau, Soon Kiat; Bianchini, Andreia; Eskridge, Kent M; Subbiah, Jeyamkondan

    2018-04-01

    Salmonella in low-moisture foods is an emerging challenge due to numerous food product recalls and foodborne illness outbreaks. Identification of suitable surrogate is critical for process validation at industry level due to implementation of new Food Safety Modernization Act of 2011. The objective of this study was to evaluate Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella during the extrusion of low-moisture food. Oat flour, a low-moisture food, was adjusted to different moisture (14% to 26% wet basis) and fat (5% to 15% w/w) contents and was inoculated with E. faecium NRRL B-2354. Inoculated material was then extruded in a lab-scale single-screw extruder running at different screw speeds (75 to 225 rpm) and different temperatures (75, 85, and 95 °C). A split-plot central composite 2nd order response surface design was used, with the central point replicated six times. The data from the selective media (m-Enterococcus agar) was used to build the response surface model for inactivation of E. faecium NRRL B-2354. Results indicated that E. faecium NRRL B-2354 always had higher heat resistance compared to Salmonella at all conditions evaluated in this study. However, the patterns of contour plots showing the effect of various product and process parameters on inactivation of E. faecium NRRL B-2354 was different from that of Salmonella. Although E. faecium NRRL B-2354 may be an acceptable surrogate for extrusion of low-moisture products due to higher resistance than Salmonella, another surrogate with similar inactivation behavior may be preferred and needs to be identified. Food Safety Modernization Act requires the food industry to validate processing interventions. This study validated extrusion processing and demonstrated that E. faecium NRRL B-2354 is an acceptable surrogate for extrusion of low-moisture products. The developed response surface model allows the industry to identify process conditions to achieve a desired lethality for their

  20. Characterization of a broad host-spectrum virulent Salmonella bacteriophage fmb-p1 and its application on duck meat.

    PubMed

    Wang, Changbao; Chen, Qiming; Zhang, Chong; Yang, Jie; Lu, Zhaoxin; Lu, Fengxia; Bie, Xiaomei

    2017-05-15

    The aim of this study was to find a virulent bacteriophage for the biocontrol of Salmonella in duck meat. A broad host-spectrum virulent phage, fmb-p1, was isolated and purified from an duck farm, and its host range was determined to include S. Typhimurium, S. Enteritidis, S. Saintpaul, S. Agona, S. Miami, S. Anatum, S. Heidelberg and S. Paratyphi-C. Electron microscopy and genome sequencing showed that fmb-p1 belongs to the family Siphoviridae. The genome of fmb-p1 is composed of a 43,327-bp double-stranded DNA molecule with 60 open reading frames and a total G+C content of 46.09%. There are no deleterious sequences or genes encoding known harmful products in the phage fmb-p1 genome. Phage fmb-p1 was stable under different temperature (40-75°C), pH (4-10) and NaCl solutions (1-11%). The phage treatment (9.9×10 9 PFU/cm 2 ) caused a peak reduction in S. Typhimurium of 4.52 log CFU/cm 2 in ready-to-eat (RTE) duck meat, whereas potassium sorbate treatment (PS, 2mg/cm 2 ) resulted in a 0.05-0.12 log reduction. Compared to PS treatment, there was significant difference in the S. Typhimurium reduction (P˂0.05) by phage treatment at both 4°C and 25°C. The results suggested that phage could be applied to reduce Salmonella, on commercial poultry products. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Occurrence of plasmid-mediated quinolone resistance determinants and rmtB gene in Salmonella enterica serovar enteritidis and Typhimurium isolated from food-animal products in Tunisia.

    PubMed

    Al-Gallas, Nazek; Abbassi, Mohamed Salah; Gharbi, Becher; Manai, Molka; Ben Fayala, Mohamed N; Bichihi, Raghda; Al-Gallas, Amna; Ben Aissa, Ridha

    2013-09-01

    Four hundred and thirty Salmonella isolates, recovered from various food-animal products, were tested for nalidixic acid resistance, plasmid-mediated quinolone resistance, and genetic relationship. One hundred fifteen isolates (113 Salmonella serovar Enteritidis and two Salmonella serovar Typhimurium isolates) of 430 (26.7%) Salmonella isolates exhibited nalidixic acid resistance. Polymerase chain reaction screening for qnrA, qnrB, qnrS, qepA (encoding fluoroquinolones resistance) and rmtB (encoding aminoglycosides resistance) showed that 5 (1.16%) isolates were positive for qnr- and qepA-type genes, and the aac(6')-Ib-cr gene was observed in two (1.7%) Enteritidis isolates concomitantly with qnrA or qnrB. The co-occurrence of qepA and rmtB in one Typhimurium isolate is noteworthy. Pulsed-field gel electrophoresis revealed a high genetic homogeneity of nalidixic-resistant isolates and the persistence of clonal clusters over 4 years in different regions in Tunisia and from various food-animal products. To the best of our knowledge, this is the first report of co-occurrence of qepA and rmtB in a Salmonella strain.

  2. Specific Discrimination of Three Pathogenic Salmonella enterica subsp. enterica Serotypes by carB-Based Oligonucleotide Microarray

    PubMed Central

    Shin, Hwa Hui; Hwang, Byeong Hee; Seo, Jeong Hyun

    2014-01-01

    It is important to rapidly and selectively detect and analyze pathogenic Salmonella enterica subsp. enterica in contaminated food to reduce the morbidity and mortality of Salmonella infection and to guarantee food safety. In the present work, we developed an oligonucleotide microarray containing duplicate specific capture probes based on the carB gene, which encodes the carbamoyl phosphate synthetase large subunit, as a competent biomarker evaluated by genetic analysis to selectively and efficiently detect and discriminate three S. enterica subsp. enterica serotypes: Choleraesuis, Enteritidis, and Typhimurium. Using the developed microarray system, three serotype targets were successfully analyzed in a range as low as 1.6 to 3.1 nM and were specifically discriminated from each other without nonspecific signals. In addition, the constructed microarray did not have cross-reactivity with other common pathogenic bacteria and even enabled the clear discrimination of the target Salmonella serotype from a bacterial mixture. Therefore, these results demonstrated that our novel carB-based oligonucleotide microarray can be used as an effective and specific detection system for S. enterica subsp. enterica serotypes. PMID:24185846

  3. Specific discrimination of three pathogenic Salmonella enterica subsp. enterica serotypes by carB-based oligonucleotide microarray.

    PubMed

    Shin, Hwa Hui; Hwang, Byeong Hee; Seo, Jeong Hyun; Cha, Hyung Joon

    2014-01-01

    It is important to rapidly and selectively detect and analyze pathogenic Salmonella enterica subsp. enterica in contaminated food to reduce the morbidity and mortality of Salmonella infection and to guarantee food safety. In the present work, we developed an oligonucleotide microarray containing duplicate specific capture probes based on the carB gene, which encodes the carbamoyl phosphate synthetase large subunit, as a competent biomarker evaluated by genetic analysis to selectively and efficiently detect and discriminate three S. enterica subsp. enterica serotypes: Choleraesuis, Enteritidis, and Typhimurium. Using the developed microarray system, three serotype targets were successfully analyzed in a range as low as 1.6 to 3.1 nM and were specifically discriminated from each other without nonspecific signals. In addition, the constructed microarray did not have cross-reactivity with other common pathogenic bacteria and even enabled the clear discrimination of the target Salmonella serotype from a bacterial mixture. Therefore, these results demonstrated that our novel carB-based oligonucleotide microarray can be used as an effective and specific detection system for S. enterica subsp. enterica serotypes.

  4. A brief review on the immunological scenario and recent developmental status of vaccines against enteric fever.

    PubMed

    Howlader, Debaki Ranjan; Koley, Hemanta; Maiti, Suhrid; Bhaumik, Ushasi; Mukherjee, Priyadarshini; Dutta, Shanta

    2017-11-07

    Enteric fever has been one of the leading causes of severe illness and deaths worldwide. S. Typhi and S. Paratyphi A, B and C are important enteric fever-causing organisms globally. This infection causes about 21 million cases among which 222,000 typhoid related deaths occurred in 2015. These estimates do not reflect the ultimate and real status of the disease due to the lack of unified diagnostic and proper reporting system from typhoid endemic and other regions. Current control strategies have become increasingly ineffective due to the emergence of multi-drug resistance among the strains. This situation worsens the disease-burden in developing as well as in developed countries. Moreover the emergence of S. Paratyphi A as a major enteric fever-causing organism in several Asian countries, demands a prophylactic measure at this hour. Other than two licensed vaccines of S. Typhi, there are no exsisting vaccines for S. Paratyphi A. Moreover, travelers returning from endemic regions are becoming more susceptible to have these infections. In this situation, a need for bivalent approach is required where a single immunogen (consisting from each organism) will be effective against the disease. In this review, we have focused on the general information about typhoidal fever, its spread and epidemiology in brief and the present status of typhoidal vaccines and its future. This review highlights existing gaps in the typhoidal salmonellae research with a special emphasis on the status of present typhoidal salmonellae vaccine research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Genotypic and phenotypic characterization of multidrug resistant Salmonella Typhimurium and Salmonella Kentucky strains recovered from chicken carcasses

    PubMed Central

    Grant, Ar’Quette; Choi, Seon Young; Alam, M. Samiul; Bell, Rebecca; Cavanaugh, Christopher; Balan, Kannan V.; Babu, Uma S.

    2017-01-01

    Abstract Salmonella Typhimurium is the leading cause of human non-typhoidal gastroenteritis in the US. S. Kentucky is one the most commonly recovered serovars from commercially processed poultry carcasses. This study compared the genotypic and phenotypic properties of two Salmonella enterica strains Typhimurium (ST221_31B) and Kentucky (SK222_32B) recovered from commercially processed chicken carcasses using whole genome sequencing, phenotype characterizations and an intracellular killing assay. Illumina MiSeq platform was used for sequencing of two Salmonella genomes. Phylogenetic analysis employing homologous alignment of a 1,185 non-duplicated protein-coding gene in the Salmonella core genome demonstrated fully resolved bifurcating patterns with varying levels of diversity that separated ST221_31B and SK222_32B genomes into distinct monophyletic serovar clades. Single nucleotide polymorphism (SNP) analysis identified 2,432 (ST19) SNPs within 13 Typhimurium genomes including ST221_31B representing Sequence Type ST19 and 650 (ST152) SNPs were detected within 13 Kentucky genomes including SK222_32B representing Sequence Type ST152. In addition to serovar-specific conserved coding sequences, the genomes of ST221_31B and SK222_32B harbor several genomic regions with significant genetic differences. These included phage and phage-like elements, carbon utilization or transport operons, fimbriae operons, putative membrane associated protein-encoding genes, antibiotic resistance genes, siderophore operons, and numerous hypothetical protein-encoding genes. Phenotype microarray results demonstrated that ST221_31B is capable of utilizing certain carbon compounds more efficiently as compared to SK222_3B; namely, 1,2-propanediol, M-inositol, L-threonine, α-D-lactose, D-tagatose, adonitol, formic acid, acetoacetic acid, and L-tartaric acid. ST221_31B survived for 48 h in macrophages, while SK222_32B was mostly eliminated. Further, a 3-fold growth of ST221_31B was observed at

  6. Genotypic and phenotypic characterization of multidrug resistant Salmonella Typhimurium and Salmonella Kentucky strains recovered from chicken carcasses.

    PubMed

    Tasmin, Rizwana; Hasan, Nur A; Grim, Christopher J; Grant, Ar'Quette; Choi, Seon Young; Alam, M Samiul; Bell, Rebecca; Cavanaugh, Christopher; Balan, Kannan V; Babu, Uma S; Parveen, Salina

    2017-01-01

    Salmonella Typhimurium is the leading cause of human non-typhoidal gastroenteritis in the US. S. Kentucky is one the most commonly recovered serovars from commercially processed poultry carcasses. This study compared the genotypic and phenotypic properties of two Salmonella enterica strains Typhimurium (ST221_31B) and Kentucky (SK222_32B) recovered from commercially processed chicken carcasses using whole genome sequencing, phenotype characterizations and an intracellular killing assay. Illumina MiSeq platform was used for sequencing of two Salmonella genomes. Phylogenetic analysis employing homologous alignment of a 1,185 non-duplicated protein-coding gene in the Salmonella core genome demonstrated fully resolved bifurcating patterns with varying levels of diversity that separated ST221_31B and SK222_32B genomes into distinct monophyletic serovar clades. Single nucleotide polymorphism (SNP) analysis identified 2,432 (ST19) SNPs within 13 Typhimurium genomes including ST221_31B representing Sequence Type ST19 and 650 (ST152) SNPs were detected within 13 Kentucky genomes including SK222_32B representing Sequence Type ST152. In addition to serovar-specific conserved coding sequences, the genomes of ST221_31B and SK222_32B harbor several genomic regions with significant genetic differences. These included phage and phage-like elements, carbon utilization or transport operons, fimbriae operons, putative membrane associated protein-encoding genes, antibiotic resistance genes, siderophore operons, and numerous hypothetical protein-encoding genes. Phenotype microarray results demonstrated that ST221_31B is capable of utilizing certain carbon compounds more efficiently as compared to SK222_3B; namely, 1,2-propanediol, M-inositol, L-threonine, α-D-lactose, D-tagatose, adonitol, formic acid, acetoacetic acid, and L-tartaric acid. ST221_31B survived for 48 h in macrophages, while SK222_32B was mostly eliminated. Further, a 3-fold growth of ST221_31B was observed at 24 hours

  7. Inactivation of Salmonella, Listeria monocytogenes and Enterococcus faecium NRRL B-2354 in a selection of low moisture foods.

    PubMed

    Rachon, Grzegorz; Peñaloza, Walter; Gibbs, Paul A

    2016-08-16

    The aims of this study were to obtain data on survival and heat resistance of cocktails of Salmonella, Listeria monocytogenes and the surrogate Enterococcus faecium (NRRL B-2354) in four low moisture foods (confectionery formulation, chicken meat powder, pet food and savoury seasoning) during storage before processing. Inoculated samples were stored at 16°C and cell viability examined at day 0, 3, 7 and 21. At each time point, the heat resistance at 80°C was determined. The purpose was to determine a suitable storage time of inoculated foods that can be applied in heat resistance studies or process validations with similar cell viability and heat resistance characteristics. The main inactivation study was carried out within 7days after inoculation, the heat resistance of each bacterial cocktail was evaluated in each low moisture food heated in thermal cells exposed to temperatures between 70 and 140°C. The Weibull model and the first order kinetics (D-value) were used to express inactivation data and calculate the heating time to achieve 5 log reduction at each temperature. Results showed that the pathogens Salmonella and L. monocytogenes and the surrogate E. faecium NRRL B-2354, can survive well (maximum reduction <0.8 log) in low moisture foods maintained at 16°C, as simulation of warehouse raw material storage in winter and before processing. The D80 value of the pathogens and surrogate did not significantly change during the 21day storage (p>0.05). The inactivation kinetics of the pathogens and surrogate at temperatures between 70 and 140°C, were different between each organism and product. E. faecium NRRL B-2354 was a suitable Salmonella surrogate for three of the low moisture foods studied, but not for the sugar-containing confectionery formulation. Heating low moisture food in moisture-tight environments (thermal cells) to 111.2, 105.3 or 111.8°C can inactivate 5 log of Salmonella, L. monocytogenes or E. faecium NRRL B-2354 respectively. Copyright

  8. Screening for Salmonella in backyard chickens.

    PubMed

    Manning, Johanna; Gole, Vaibhav; Chousalkar, Kapil

    2015-06-15

    Salmonellosis is a significant zoonotic disease which has a considerable economic impact on the egg layer industry. There is limited information about the prevalence of Salmonella spp. in backyard chickens. The current study was conducted to determine the prevalence of Salmonella in backyard chickens, and the associated virulence of any serovars identified. Hundred and fifteen pooled samples from 30 backyard flocks in South Australia were screened. Four flocks tested positive for Salmonella spp. The overall Salmonella isolation rate in the current study was 10.4%. The estimated prevalence at individual bird level was 0.02% (95% CI 0.025-0.975). The serovars isolated were Salmonella Agona, Salmonella subsp 2 ser 21:z10:z6 (Wandsbek) and Salmonella Bovismorbificans. All Salmonella isolates tested positive for the prgH, orfL and spiC genes. The Salmonella subsp 2 ser 21:z10:z6 (Wandsbek) had the most antibiotic resistance, being resistant to ampicillin and cephalothin and having intermediate resistance to florphenicol. All of the Salmonella Agona had intermediate resistance to the ampicillin, while the Salmonella Bovismorbificans were susceptible to all antibiotics tested. With the increased interest of keeping backyard chickens, the current study highlights the zoonotic risk from Salmonella spp. associated with home flocks. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  9. Glycerol supplementation enhances the protective effect of dietary FloraMax-B11 against Salmonella Enteritidis colonization in neonate broiler chickens.

    PubMed

    Delgado, R; Latorre, J D; Vicuña, E; Hernandez-Velasco, X; Vicente, J L; Menconi, A; Kallapura, G; Layton, S; Hargis, B M; Téllez, G

    2014-09-01

    Two independent trials were conducted in the present study to evaluate the effect of 5% glycerol supplementation combined with dietary FloraMax-B11 (FM) against Salmonella Enteritidis colonization in neonate broiler chickens. In each trial, 60 chicks were randomly assigned into 4 groups. Group 1 received a control diet. Group 2 received a control diet supplemented with 5% glycerol. Group 3 received a control diet supplemented with FM, and group 4 received a control diet supplemented with 5% glycerol and FM. At placement, chickens were challenged with Salmonella Enteritidis at 10(4) cfu/bird. In each trial, 12 chicks were humanely killed 72 h postchallenge, respectively, for Salmonella Enteritidis colonization. Supplementation of 5% glycerol or FM by themselves, showed no significant effect on Salmonella Enteritidis recovery or incidence when compared with control nontreated chickens in both trials. However, no detectable Salmonella Enteritidis was observed in the chickens that received the supplementation of 5% glycerol combined with FM in both trials. Further studies are in progress in older birds to substantiate these findings. © 2014 Poultry Science Association Inc.

  10. Salmonella enterica Serotype Napoli is the First Cause of Invasive Nontyphoidal Salmonellosis in Lombardy, Italy (2010-2014), and Belongs to Typhi Subclade.

    PubMed

    Huedo, Pol; Gori, Maria; Zolin, Anna; Amato, Ettore; Ciceri, Giulia; Bossi, Anna; Pontello, Mirella

    2017-03-01

    Salmonella enterica serotype Napoli (S. Napoli) is currently emerging in Europe and particularly in Italy, where in 2014 it caused a large outbreak associated with elevated rates of bacteremia. However, no study has yet investigated its invasive ability and phylogenetic classification. Here, we show that between 2010 and 2014, S. Napoli was the first cause of invasive salmonellosis affecting 40 cases out of 687 (invasive index: 5.8%), which is significantly higher than the invasive index of all the other nontyphoidal serotypes (2.0%, p < 0.05). Genomic and phylogenetic analyses of an invasive isolate revealed that S. Napoli belongs to Typhi subclade in clade A, Paratyphi A being the most related serotype and carrying almost identical pattern of typhoid-associated genes. This work presents evidence of invasive capacity of S. Napoli and argues for reconsideration of its nontyphoidal category.

  11. Salmonella, including antibiotic-resistant Salmonella, from flies captured from cattle farms in Georgia, U.S.A.

    PubMed

    Xu, Yumin; Tao, Sha; Hinkle, Nancy; Harrison, Mark; Chen, Jinru

    2018-03-01

    Flies can be transmission vehicles of Salmonella from cattle to humans. This study determined the prevalence of Salmonella in/on flies captured from 33 cattle farms, including 5 beef and 28 dairy farms, in Georgia, USA, and characterized antibiotic resistance profiles of the isolated Salmonella. Twenty-six out of the 33 cattle farms (79%) and 185 out of the 1650 flies (11%) tested positive for Salmonella in the study. The incidence of Salmonella-positive flies varied from farm to farm, ranging from 0 to 78%. Among the 185 Salmonella isolated from flies, 29% were resistant to ampicillin, 28% to tetracycline, 21% to amoxicillin/clavulanic acid, 20% to cefoxitin, and 12% to streptomycin. Incidences of resistance against other tested antibiotics were low, ranging from 0 to 3%. Furthermore, 28% of the Salmonella isolates were multidrug resistant, demonstrating resistance to 3 or more antibiotics. The minimal inhibitory concentrations of ampicillin, cefoxitin, streptomycin, and tetracycline against the Salmonella isolates ranged from 32 to >2048, 64 to 2048, 128 to 1024, and 32 to 1024μg/mL, respectively. These data suggest that flies could be effective vehicles of transmitting antibiotic resistant Salmonella and disseminating antibiotic resistance genes on cattle farms, posing risks to human and animal health. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Assessment of 2 Salmonella enterica serovar Typhimurium-based vaccines against necrotic enteritis in reducing colonization of chickens by Salmonella serovars of different serogroups.

    PubMed

    Jiang, Yanfen; Kulkarni, Raveendra R; Parreira, Valeria R; Poppe, Cornelius; Roland, Kenneth L; Prescott, John F

    2010-10-01

    This study assessed the protective efficacy of oral vaccination with 2 experimental attenuated Salmonella Typhimurium-vectored vaccines for necrotic enteritis in protecting chickens against intestinal colonization by common serovars of Salmonella belonging to the 4 major serogroups affecting chickens. Birds were vaccinated orally with 1 × 10⁸ colony-forming units (CFU) of 1 of the vaccine strains χ9241 and χ9352, which express a plasmid-encoded partial recombinant hypothetical protein gene (tHP) of Clostridium perfringens, at days 1 and 7 of age, and then were challenged at 14 d of age with 10⁶ CFU of Salmonella serovars Anatum, Enteritidis, Heidelberg, Kentucky, or Typhimurium (representative serovars of serogroups B, C, D, and E). Birds were necropsied at 4 wk of age, and samples were collected to determine reduction in tissue and intestinal colonization. The chickens vaccinated with χ9241-tHP showed reduced colonization by Salmonella Enteritidis (serogroup D) and by Salmonella Heidelberg and Salmonella Typhimurium (serogroup B) compared with the control birds. No reduction in colonization was observed in the chickens vaccinated with χ9352-tHP. There was an association between the efficacy of these vaccine strains in protecting against necrotic enteritis, assessed on an earlier occasion, and their efficacy in protecting against Salmonella colonization. Thus, the choice of an attenuated Salmonella Typhimurium vaccine vector for delivery of heterologous antigens to chickens should be based partly on the vaccine's value in protecting against colonization by serovars within serogroups B and D. Such vectors would have the additional benefit of reducing colonization of important Salmonella serovars.

  13. Assessment of 2 Salmonella enterica serovar Typhimurium-based vaccines against necrotic enteritis in reducing colonization of chickens by Salmonella serovars of different serogroups

    PubMed Central

    Jiang, Yanfen; Kulkarni, Raveendra R.; Parreira, Valeria R.; Poppe, Cornelius; Roland, Kenneth L.; Prescott, John F.

    2010-01-01

    This study assessed the protective efficacy of oral vaccination with 2 experimental attenuated Salmonella Typhimurium-vectored vaccines for necrotic enteritis in protecting chickens against intestinal colonization by common serovars of Salmonella belonging to the 4 major serogroups affecting chickens. Birds were vaccinated orally with 1 × 108 colony-forming units (CFU) of 1 of the vaccine strains χ9241 and χ9352, which express a plasmid-encoded partial recombinant hypothetical protein gene (tHP) of Clostridium perfringens, at days 1 and 7 of age, and then were challenged at 14 d of age with 106 CFU of Salmonella serovars Anatum, Enteritidis, Heidelberg, Kentucky, or Typhimurium (representative serovars of serogroups B, C, D, and E). Birds were necropsied at 4 wk of age, and samples were collected to determine reduction in tissue and intestinal colonization. The chickens vaccinated with χ9241-tHP showed reduced colonization by Salmonella Enteritidis (serogroup D) and by Salmonella Heidelberg and Salmonella Typhimurium (serogroup B) compared with the control birds. No reduction in colonization was observed in the chickens vaccinated with χ9352-tHP. There was an association between the efficacy of these vaccine strains in protecting against necrotic enteritis, assessed on an earlier occasion, and their efficacy in protecting against Salmonella colonization. Thus, the choice of an attenuated Salmonella Typhimurium vaccine vector for delivery of heterologous antigens to chickens should be based partly on the vaccine’s value in protecting against colonization by serovars within serogroups B and D. Such vectors would have the additional benefit of reducing colonization of important Salmonella serovars. PMID:21197226

  14. Global Systems-Level Analysis of Hfq and SmpB Deletion Mutants in Salmonella: Implications for Virulence and Global Protein Translation

    PubMed Central

    Porwollik, Steffen; Mottaz-Brewer, Heather; Petritis, Brianne O.; Jaitly, Navdeep; Adkins, Joshua N.; McClelland, Michael; Heffron, Fred; Smith, Richard D.

    2009-01-01

    Using sample-matched transcriptomics and proteomics measurements it is now possible to begin to understand the impact of post-transcriptional regulatory programs in Enterobacteria. In bacteria post-transcriptional regulation is mediated by relatively few identified RNA-binding protein factors including CsrA, Hfq and SmpB. A mutation in any one of these three genes, csrA, hfq, and smpB, in Salmonella is attenuated for mouse virulence and unable to survive in macrophages. CsrA has a clearly defined specificity based on binding to a specific mRNA sequence to inhibit translation. However, the proteins regulated by Hfq and SmpB are not as clearly defined. Previous work identified proteins regulated by hfq using purification of the RNA-protein complex with direct sequencing of the bound RNAs and found binding to a surprisingly large number of transcripts. In this report we have used global proteomics to directly identify proteins regulated by Hfq or SmpB by comparing protein abundance in the parent and isogenic hfq or smpB mutant. From these same samples we also prepared RNA for microarray analysis to determine if alteration of protein expression was mediated post-transcriptionally. Samples were analyzed from bacteria grown under four different conditions; two laboratory conditions and two that are thought to mimic the intracellular environment. We show that mutants of hfq and smpB directly or indirectly modulate at least 20% and 4% of all possible Salmonella proteins, respectively, with limited correlation between transcription and protein expression. These proteins represent a broad spectrum of Salmonella proteins required for many biological processes including host cell invasion, motility, central metabolism, LPS biosynthesis, two-component regulatory systems, and fatty acid metabolism. Our results represent one of the first global analyses of post-transcriptional regulons in any organism and suggest that regulation at the translational level is widespread and plays

  15. Salmonella Utilizes Zinc To Subvert Antimicrobial Host Defense of Macrophages via Modulation of NF-κB Signaling

    PubMed Central

    Wu, Aimin; Haschka, David; Heeke, Simon; Dichtl, Stefanie; Petzer, Verena; Seifert, Markus; Hilbe, Richard; Sopper, Sieghart; Talasz, Heribert; Bumann, Dirk; Lass-Flörl, Cornelia; Theurl, Igor; Zhang, Keying

    2017-01-01

    ABSTRACT Zinc sequestration by macrophages is considered a crucial host defense strategy against infection by the intracellular bacterium Salmonella enterica serovar Typhimurium. However, the underlying mechanisms remain elusive. In this study, we found that zinc favors pathogen survival within macrophages. Salmonella-hosting macrophages contained higher free zinc levels than did uninfected macrophages and cells that successfully eliminated bacteria, which was paralleled by the impaired production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in bacterium-harboring cells. A profound, zinc-mediated inhibition of NF-κB p65 transcriptional activity affecting the expression of the ROS- and RNS-forming enzymes phos47 and inducible nitric oxide synthase (iNOS) provided a mechanistic explanation for this phenomenon. Macrophages responded to infection by enhancing the expression of zinc-scavenging metallothioneins 1 and 2, whose genetic deletion caused increased free zinc levels, reduced ROS and RNS production, and increased the survival of Salmonella. Our data suggest that Salmonella invasion of macrophages results in a bacterium-driven increase in the intracellular zinc level, which weakens antimicrobial defense and the ability of macrophages to eradicate the pathogen. Thus, limitation of cytoplasmic zinc levels may help to control infection by intracellular bacteria. PMID:28874447

  16. Salmonella utilizes zinc to subvert anti-microbial host defense of macrophages via modulation of NF-κB signaling.

    PubMed

    Wu, Aimin; Tymoszuk, Piotr; Haschka, David; Heeke, Simon; Dichtl, Stefanie; Petzer, Verena; Seifert, Markus; Hilbe, Richard; Sopper, Sieghart; Talasz, Heribert; Bumann, Dirk; Lass-Flörl, Cornelia; Theurl, Igor; Zhang, Keying; Weiss, Guenter

    2017-09-05

    Zinc sequestration by macrophages is considered a crucial host defense strategy against infection with the intracellular bacterium Salmonella Typhimurium. However, the underlying mechanisms remain elusive. In this study we found zinc to favor pathogen survival within macrophages. Salmonella -hosting macrophages contained higher free zinc levels than uninfected macrophages and cells that successfully eliminated bacteria, which was paralleled by impaired production of reactive oxygen (ROS) and nitrogen (RNS) species in bacteria-harboring cells. A profound, zinc-mediated inhibition of NF-κB p65 transcriptional activity affecting expression of the ROS- and RNS-forming enzymes phos47 and iNOS provided a mechanistic explanation for this phenomenon. Macrophages responded to infection by enhanced expression of zinc scavenging methallothioneins-1 and 2, whose genetic deletion caused a rise of free zinc levels, reduced ROS and RNS production and increased survival of Salmonella Our data suggest that Salmonella invasion of macrophages results in a bacteria-driven rise of intracellular zinc levels which weakens anti-microbial defense and the ability of macrophages to eradicate the pathogen. Thus, limitation of cytoplasmic zinc levels may help to control infection with intracellular bacteria. Copyright © 2017 Wu et al.

  17. Changing trends of culture-positive typhoid fever and antimicrobial susceptibility in a tertiary care North Indian Hospital over the last decade.

    PubMed

    Sharma, Priyanka; Dahiya, Sushila; Manral, Neelam; Kumari, Bhavana; Kumar, Sambuddha; Pandey, Sangeeta; Sood, Seema; Das, Bimal Kumar; Kapil, Arti

    2018-01-01

    The present study was undertaken to analyse the trend in prevalence of culture-positive typhoid fever during the last decade and to determine antimicrobial susceptibility profile of Salmonella Typhi and Salmonella Paratyphi A isolated from patients of enteric fever presenting to our hospital. All the culture-positive enteric fever cases during 2005-2016 presenting to our Hospital were included in the study. Antimicrobial susceptibility was done against chloramphenicol, amoxicillin, co-trimoxazole, ciprofloxacin, ofloxacin, levofloxacin, pefloxacin, ceftriaxone and azithromycin as per corresponding CLSI guidelines for each year. We also analysed the proportion of culture positivity during 1993-2016 in light of the antibiotic consumption data from published literature. A total of 1066 strains-S. Typhi (772) and S. Paratyphi A (294) were isolated from the blood cultures during the study. A maximum number of cases were found in July-September. Antimicrobial susceptibility for chloramphenicol, amoxicillin and co-trimoxazole was found to be 87.9%, 75.5%, 87.3% for S. Typhi and 94.2%, 90.1% and 94.2% for S. Paratyphi A, respectively. Ciprofloxacin, ofloxacin and levofloxacin susceptibility were 71.3%, 70.8% and 70.9% for S. Typhi and 58.1%, 57.4% and 57.1% for S. Paratyphi A, respectively. Azithromycin susceptibility was 98.9% in S. Typhi. Although susceptibility to ceftriaxone and cefixime was 100% in our isolates, there is a continuous increase in ceftriaxone minimum inhibitory concentration (MIC) 50 and MIC 90 values over the time. The proportion of blood culture-positive cases during 1993-2016 ranged from a minimum of 0.0006 in 2014 to a maximum of 0.0087 in 1999. We found that the most common etiological agent of enteric fever is S. Typhi causing the majority of cases from July to October in our region. MIC to ceftriaxone in typhoidal salmonellae is creeping towards resistance and more data are needed to understand the azithromycin susceptibility.

  18. Outbreak of Salmonella enteritidis phage type 1B associated with frozen pre-cooked chicken cubes, Finland 2012.

    PubMed

    Huusko, S; Pihlajasaari, A; Salmenlinna, S; Sõgel, J; Dontšenko, I; DE Pinna, E; Lundström, H; Toikkanen, S; Rimhanen-Finne, R

    2017-10-01

    In August to October 2012, a nationwide outbreak of Salmonella enteritidis phase type (PT) 1B with 53 cases occurred in Finland. Hypothesis generating interviews pointed toward ready-to-eat chicken salad from a Finnish company and at the same time Estonian authorities informed of a S. enteritidis PT 1B outbreak linked to chicken wrap prepared at an Estonian restaurant. We found that chicken salad was associated with the infection (odds ratio (OR) 16·1, 95% confidence interval (CI) 1·7-148·7 for consumption and OR 17·5. 95% CI 4·0-76·0 for purchase). The frozen pre-cooked chicken cubes used in Finnish salad and in Estonian wraps were traced back to a production plant in China. Great Britain made two Rapid Alert Systems for Food and Feed notifications on chicken cubes imported to the UK from the same Chinese production plant. Microbiological investigation confirmed that the patient isolates in Estonia and in Finland were indistinguishable from the strains isolated from chicken cubes in Estonia and in the UK. We recommend that despite certificates for tested Salmonella, food items should be analyzed when Salmonella contamination in outbreak investigations is suspected. In outbreak investigations, electronically implemented case-case study saves time, effort, and money compared with case-control study.

  19. Modification of Salmonella Typhimurium Motility by the Probiotic Yeast Strain Saccharomyces boulardii

    PubMed Central

    Pontier-Bres, Rodolphe; Prodon, François; Munro, Patrick; Rampal, Patrick; Lemichez, Emmanuel; Peyron, Jean François; Czerucka, Dorota

    2012-01-01

    Background Motility is an important component of Salmonella enterica serovar Typhimurium (ST) pathogenesis allowing the bacteria to move into appropriate niches, across the mucus layer and invade the intestinal epithelium. In vitro, flagellum-associated motility is closely related to the invasive properties of ST. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B) is widely prescribed for the prophylaxis and treatment of diarrheal diseases caused by bacteria or antibiotics. In case of Salmonella infection, S.b-B has been shown to decrease ST invasion of T84 colon cell line. The present study was designed to investigate the impact of S.b-B on ST motility. Methodology/Principal Findings Experiments were performed on human colonic T84 cells infected by the Salmonella strain 1344 alone or in the presence of S.b-B. The motility of Salmonella was recorded by time-lapse video microscopy. Next, a manual tracking was performed to analyze bacteria dynamics (MTrackJ plugin, NIH image J software). This revealed that the speed of bacterial movement was modified in the presence of S.b-B. The median curvilinear velocity (CLV) of Salmonella incubated alone with T84 decreased from 43.3 µm/sec to 31.2 µm/sec in the presence of S.b-B. Measurement of track linearity (TL) showed similar trends: S.b-B decreased by 15% the number of bacteria with linear tract (LT) and increased by 22% the number of bacteria with rotator tract (RT). Correlation between ST motility and invasion was further established by studying a non-motile flagella-deficient ST strain. Indeed this strain that moved with a CLV of 0.5 µm/sec, presented a majority of RT and a significant decrease in invasion properties. Importantly, we show that S.b-B modified the motility of the pathogenic strain SL1344 and significantly decreased invasion of T84 cells by this strain. Conclusions This study reveals that S.b-B modifies Salmonella's motility and trajectory which may account for the modification of Salmonella

  20. A comparisoin of the R25 modification of Rappaport s enrichment medium with strontium chloride B for salmonella isolation from sewage polluted natural water.

    PubMed Central

    Harvey, R. W.; Price, T. H.

    1982-01-01

    The relation of salmonella isolation efficiency and the size of inoculum introduced from a buffered peptone water culture of sewage polluted water into strontium chloride B medium was investigated. Two separate studies were made, one using enrichment at 37 degrees C, the other at 43 degrees C. From these trials, two inocula suitable for efficient salmonella isolation were determined. Using this information, strontium chloride B medium was compared with modified Rappaport's broth (R25). The inoculum used with R25 was 0.005 ml, determined in an earlier study. Two incubation temperatures were employed with strontium chloride enrichment (37 and 43 degrees C). Rappaport's medium was incubated at 37 degrees C only. Elevated temperature enrichment at 43 degrees C improved the performance of strontium chloride B, but Rappaport's broth still gave significantly better results. This supports earlier studies on simplification of salmonella isolation and standardization of routine technique on a single enrichment medium: Rappaport broth (R25) incubated at 37 degrees C. PMID:7047641

  1. Complete Proteome of a Quinolone-Resistant Salmonella Typhimurium Phage Type DT104B Clinical Strain

    PubMed Central

    Correia, Susana; Nunes-Miranda, Júlio D.; Pinto, Luís; Santos, Hugo M.; de Toro, María; Sáenz, Yolanda; Torres, Carmen; Capelo, José Luis; Poeta, Patrícia; Igrejas, Gilberto

    2014-01-01

    Salmonellosis is one of the most common and widely distributed foodborne diseases. The emergence of Salmonella strains that are resistant to a variety of antimicrobials is a serious global public health concern. Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) is one of these emerging epidemic multidrug resistant strains. Here we collate information from the diverse and comprehensive range of experiments on Salmonella proteomes that have been published. We then present a new study of the proteome of the quinolone-resistant Se20 strain (phage type DT104B), recovered after ciprofloxacin treatment and compared it to the proteome of reference strain SL1344. A total of 186 and 219 protein spots were recovered from Se20 and SL1344 protein extracts, respectively, after two-dimensional gel electrophoresis. The signatures of 94% of the protein spots were successfully identified through matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). Three antimicrobial resistance related proteins, whose genes were previously detected by polymerase chain reaction (PCR), were identified in the clinical strain. The presence of these proteins, dihydropteroate synthase type-2 (sul2 gene), aminoglycoside resistance protein A (strA gene) and aminoglycoside 6'-N-acetyltransferase type Ib-cr4 (aac(6')-Ib-cr4 gene), was confirmed in the DT104B clinical strain. The aac(6')-Ib-cr4 gene is responsible for plasmid-mediated aminoglycoside and quinolone resistance. This is a preliminary analysis of the proteome of these two S. Typhimurium strains and further work is being developed to better understand how antimicrobial resistance is developing in this pathogen. PMID:25196519

  2. Probiotics L. acidophilus and B. clausii Modulate Gut Microbiota in Th1- and Th2-Biased Mice to Ameliorate Salmonella Typhimurium-Induced Diarrhea.

    PubMed

    Pradhan, Biswaranjan; Guha, Dipanjan; Naik, Aman Kumar; Banerjee, Arka; Tambat, Subodh; Chawla, Saurabh; Senapati, Shantibhusan; Aich, Palok

    2018-06-16

    Gut microbiota play important role in maintaining health. Probiotics are believed to augment it further. We aimed at comparing effects of probiotics, Lactobacillus acidophilus (LA) and Bacillus clausii (BC) (a) on the gut microbiota abundance and diversity and (b) their contributions to control intestinal dysbiosis and inflammation in Th1- and Th2-biased mice following Salmonella infection. We report how could gut microbiota and the differential immune bias (Th1 or Th2) of the host regulate host responses when challenged with Salmonella typhimurium in the presence and absence of either of the probiotics. LA was found to be effective in ameliorating the microbial dysbiosis and inflammation caused by Salmonella infection, in Th1 (C57BL/6) and Th2 (BALB/c)-biased mouse. BC was able to ameliorate Salmonella-induced dysbiosis and inflammation in Th2 but not in Th1-biased mouse. These results may support probiotics LA as a treatment option in the case of Salmonella infection.

  3. Production of human rotavirus and Salmonella antigens in plants and elicitation of fljB-specific humoral responses in mice.

    PubMed

    Bergeron-Sandoval, Louis-Philippe; Girard, Aurélie; Ouellet, François; Archambault, Denis; Sarhan, Fathey

    2011-02-01

    A Nicotiana benthamiana transient expression system was used to express single antigen and dimeric combinations of the human rotavirus (HRV) VP7 and a truncated VP4 (VP4Δ) proteins fused with Salmonella typhimurium's flagellin fljB subunit. Immunoblot analyses using rabbit antibodies generated against these proteins demonstrated that the constructs were successfully expressed with yields ranging from 0.85 to 31.97 μg of recombinant protein per gram of fresh leaf tissue. Expressing the single and dimeric antigens has no effect on plant growth and development except for VP7 and VP4Δ::VP7, which show mild necrotic lesions. Immunization of mice with proteins from leaves transformed with constructs bearing the fljB moiety elicited an fljB-specific humoral response. The Nicotiana benthamiana transient system is efficient to express multiple combinations of pathogen proteins and demonstrates the potential of generating a Salmonella typhimurium subunit vaccine in plants.

  4. Antibody-defective, genetically susceptible CBA/N mice have an altered Salmonella typhimurium-specific B cell repertoire.

    PubMed

    Duran, L W; Metcalf, E S

    1987-01-01

    CBA/N mice, which express the X-linked immunodeficiency gene xid, are susceptible to Salmonella typhimurium. The basis for this susceptibility is currently unknown. However, previous studies (10) from this laboratory have provided evidence that susceptibility may be due to a defective anti-S. typhimurium antibody response. In that report we hypothesized that the defective antibody response may be a reflection of an altered S. typhimurium-specific B cell repertoire. In the studies described here, we have investigated this hypothesis using a modification of the in vitro splenic focus system. The frequency and characteristics of salmonella-specific B cells in normal, innately resistant, CBA/Ca mice have been compared with those of salmonella-susceptible, anti-S. typhimurium antibody-defective CBA/N mice. The results show that CBA/N mice express no primary or secondary S. typhimurium-specific B cell precursors after stimulation with an acetone-killed and dried (AKD) preparation of S. typhimurium strain TML. However, after three immunizations, the CBA/N tertiary frequency of 15.4 per 10(6) splenic B cells was similar to the primary precursor frequency in immunologically normal CBA/Ca mice, but 23-fold lower than the tertiary precursor frequency in CBA/Ca control mice. Moreover, CBA/N mice had an altered isotype distribution pattern after stimulation with AKD-TML. Greater than 70% of the tertiary CBA/N TML-specific B cells secreted IgG2, in contrast to either nonimmune or primed control mice. In addition, 80% of the CBA/N TML-specific B cells secreted only a single isotype, whereas the majority of B cells from primed normal mice secreted multiple isotypes. Fine specificity analysis of the TML-specific B cells indicated that the array of antigenic determinants to which CBA/N B cells could respond was restricted. Although the majority of primed CBA/Ca and primed CBA/N B cells were specific for LPS, the fine specificity pattern exhibited by CBA/N B cells was similar to that

  5. Isolation and characterization of Salmonella enterica in day-old ducklings in Egypt

    PubMed Central

    Osman, Kamelia M; Marouf, Sherif H; Zolnikov, Tara R; AlAtfeehy, Nayerah

    2014-01-01

    Importing day-old ducklings (DOD) unknowingly infected with non-typhoid Salmonella (NTS) may be associated with disease risk. Domestic and international trade may enhance this risk. Salmonella enterica serovars, their virulence genes combinations and antibiotic resistance, garner attention for their potentiality to contribute to the adverse health effects on populations throughout the world. The aim of this study was to estimate the risk of imported versus domestic DOD as potential carriers of NTS. The results confirm the prevalence of salmonellosis in imported ducklings was 18.5% (25/135), whereas only 12% (9/75) of cases were determined in the domestic ducklings. Fourteen serovars (Salmonella enteritidis, Salmonella kisii, Salmonella typhimurium, Salmonella gaillac, Salmonella uno, Salmonella eingedi, Salmonella shubra, Salmonella bardo, Salmonella inganda, Salmonella kentucky, Salmonella stanley, Salmonella virchow, Salmonella haifa, and Salmonella anatum) were isolated from the imported ducklings, whereas only S. enteritidis, S. typhimurium, S. virchow, and S. shubra were isolated from the domestic ducklings. The isolated Salmonella serovars were 100% susceptible to only colistin sulphate and 100% resistant to lincomycin. The 14 Salmonella serovars were screened for 11 virulence genes (invA, avrA, ssaQ, mgtC, siiD, sopB, gipA, sodC1, sopE1, spvC, and bcfC) by PCR. The invA, sopB, and bcfC genes were detected in 100% of the Salmonella serovars; alternatively, the gipA gene was absent in all of the isolated Salmonella serovars. The 11 virulent genes were not detected in either of S. stanley or S. haifa serovars. The results confirm an association between antibiotic resistance and virulence of Salmonella in the DOD. This study confirms the need for a country adherence to strict public health and food safety regimes. PMID:24548159

  6. Intergenic Sequence Ribotyping using a region neighboring dkgB links genovar to Kauffman-White serotype of Salmonella enterica

    USDA-ARS?s Scientific Manuscript database

    Previous research identified that the 5S ribosomal (rrn) gene and associated flanking sequences that are closely linked to the dkgB gene of Salmonella enterica were highly variable between serotypes, but not between subpopulations within the same serotype (PMID: 17005008). The degree of variability ...

  7. Two Novel Salmonella Bivalent Vaccines Confer Dual Protection against Two Salmonella Serovars in Mice

    PubMed Central

    Zhao, Xinxin; Dai, Qinlong; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Wang, Mingshu; Chen, Shun; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Cheng, Anchun

    2017-01-01

    Non-typhoidal Salmonella includes thousands of serovars that are leading causes of foodborne diarrheal illness worldwide. In this study, we constructed three bivalent vaccines for preventing both Salmonella Typhimurium and Salmonella Newport infections by using the aspartate semialdehyde dehydrogenase (Asd)-based balanced-lethal vector-host system. The constructed Asd+ plasmid pCZ11 carrying a subset of the Salmonella Newport O-antigen gene cluster including the wzx-wbaR-wbaL-wbaQ-wzy-wbaW-wbaZ genes was introduced into three Salmonella Typhimurium mutants: SLT19 (Δasd) with a smooth LPS phenotype, SLT20 (Δasd ΔrfbN) with a rough LPS phenotype, and SLT22 (Δasd ΔrfbN ΔpagL::T araC PBAD rfbN) with a smooth LPS phenotype when grown with arabinose. Immunoblotting demonstrated that SLT19 harboring pCZ11 [termed SLT19 (pCZ11)] co-expressed the homologous and heterologous O-antigens; SLT20 (pCZ11) exclusively expressed the heterologous O-antigen; and when arabinose was available, SLT22 (pCZ11) expressed both types of O-antigens, while in the absence of arabinose, SLT22 (pCZ11) expressed only the heterologous O-antigen. Exclusive expression of the heterologous O-antigen in Salmonella Typhimurium decreased the swimming ability of the bacterium and its susceptibility to polymyxin B. Next, the crp gene was deleted from the three recombinant strains for attenuation purposes, generating the three bivalent vaccine strains SLT25 (pCZ11), SLT26 (pCZ11), and SLT27 (pCZ11), respectively. Groups of BALB/c mice (12 mice/group) were orally immunized with 109 CFU of each vaccine strain twice at an interval of 4 weeks. Compared with a mock immunization, immunization with all three vaccine strains induced significant serum IgG responses against both Salmonella Typhimurium and Salmonella Newport LPS. The bacterial loads in the mouse tissues were significantly lower in the three vaccine-strain-immunized groups than in the mock group after either Salmonella Typhimurium or Salmonella

  8. Salmonella Immunotherapy Improves the Outcome of CHOP Chemotherapy in Non-Hodgkin Lymphoma-Bearing Mice

    PubMed Central

    Bascuas, Thais; Moreno, María; Grille, Sofía; Chabalgoity, José A.

    2018-01-01

    We have previously shown that Salmonella immunotherapy is effective to treat B-cell non-Hodgkin lymphoma (B-NHL) in mice. However, this model involves animals with high tumor burden, whereas in the clinics B-NHL patients are usually treated with chemotherapy (CHOP: cyclophosphamide, doxorubicin, vincristine, and prednisone) as first-line therapy prior to immunotherapy. Recently, we have described a NHL-B preclinical model using CHOP chemotherapy to achieve MRD in immunocompetent animals that closely resemble patients’ conditions. In this work, we assessed the efficacy of Salmonella immunotherapy in B-NHL-bearing mice undergoing chemotherapy. Salmonella administration significantly delayed tumor growth and prolonged survival of chemotherapy-treated NHL-bearing animals. Mice receiving the CHOP–Salmonella combined therapy showed increased numbers of tumor-infiltrating leukocytes and a different profile of cytokines and chemokines expressed in the tumor microenvironment. Further, Salmonella immunotherapy in CHOP-treated animals also enhanced NK cells cytotoxic activity as well as induced systemic lymphoma-specific humoral and cellular responses. Chemotherapy treatment profoundly impacted on the general health status of recipient animals, but those receiving Salmonella showed significantly better overall body condition. Altogether, the results clearly demonstrated that Salmonella immunotherapy could be safely used in individuals under CHOP treatment, resulting in a better prognosis. These results give strong support to consider Salmonella as a neoadjuvant therapy in a clinical setting. PMID:29410666

  9. Observations on the distribution and control of Salmonella species in two integrated broiler companies.

    PubMed

    Davies, R; Breslin, M; Corry, J E; Hudson, W; Allen, V M

    2001-08-25

    The effectiveness of cleaning and disinfecting broiler farms and the persistence of Salmonella species in two integrated broiler companies was investigated for two years. Both companies used a cleaning and disinfection regime which included the application of a spray of phenolic disinfectant followed by fogging with formaldehyde solution, and this was highly effective in preventing carry-over of infection in the broiler houses. The disinfection of service areas and areas outside the houses was less effective but it had no influence on the Salmonella status of later flocks. Both companies had persistent problems with the contamination of pellet cooling systems in their feedmills with Salmonella 4, 12:d:- in company A, and with Salmonella binza and Salmonella ohio in company B. The hatcher incubators of both companies were also persistently contaminated with Salmonella livingstone and Salmonella thomasville in company A and with Salmonella senftenberg in company B. At both companies sites Salmonella enteritidis and Salmonella typhimurium Tr104 were also isolated occasionally from various locations.

  10. Salmonella species isolated from animal feed in Iraq.

    PubMed Central

    Al-Hindawi, N; Taha, R R

    1979-01-01

    Of 700 animal feed samples, 32 (4.5%) harbored Salmonella. The highest percentage of contamination was found in sheep feed and local protein. A total of 17 Salmonella serotypes were identified. The most frequent serotypes were Salmonella meleagridis. S. bornum, S. montevideo, and S. drypool. S. bornum was isolated for the first time in Iraq and from both local feed and its ingredients. The common somatic group found was that of Salmonella group C; then came groups E, G, B, and D. Three serotypes (S. enteritidis, S. california, and S. muenchen) seemed to form a link of infection among feed, food, patients, and carriers. PMID:453836

  11. Isolation and characterization of Salmonella Enteritidis and Salmonella Typhimurium from chicken meat in Egypt.

    PubMed

    Tarabees, Reda; Elsayed, Mohamed S A; Shawish, Reyad; Basiouni, Shereen; Shehata, Awad A

    2017-04-30

    Salmonella enterica serovars Enteritidis and Typhimurium represent the major serovars associated with human salmonellosis. Contamination of meat products with these serovars is considered the main source of infection. In this study, 100 raw chicken meat samples were investigated for the presence of Salmonella spp., which were subsequently identified based on biochemical and serological tests as well as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) profile. Furthermore, the isolated serovars were examined using multiplex polymerase chain reaction (PCR) for the presence of virulence genes suspected to have a role in infection. S. Enteritidis was isolated from two samples (2%), while S. Typhimurium was isolated from three samples (3%) of chicken meat. Of the 17 examined virulence genes using multiplex PCR, the sitC, sopB, sifA, lpfC, spaN, sipB, invA, spiA, and msgA genes were detected in S. Enteritidis. However, the sitC, iroN, sopB, sifA, lpfC, spaN, sipB, invA, and tolC genes were successfully amplified in S. Typhimurium. The detection of S. Enteritidis and S. Typhimurium in meat, even at low incidence, has important implications. In addition, the data presented here is the first attempt to identify a wide range of virulence genes in Egyptian Salmonella isolates recovered from meat products. A strict public health and food safety regime is urgently needed in order to decrease the human health hazard risk associated with salmonellosis.

  12. The diversity of the secondary Salmonella typhimurium-specific B cell repertoire.

    PubMed

    Metcalf, E S; Gaffney, M; Duran, L W

    1987-05-15

    This report describes the first analysis of the expressed B cell repertoire specific for a bacterium. In this study, responses to an acetone-killed and dried preparation of Salmonella typhimurium strain TML (AKD-TML) are described. The results show that AKD-TML can stimulate splenic B cells from primed CBA/Ca mice over a wide dose range. The average frequency of secondary TML-specific B cells is 16.4 per 10(5) splenic B cells. This frequency is similar to that observed for another complex, natural antigen, the hemagglutinin of influenza virus. The majority of all secondary TML-specific B cells (greater than 70%) secrete immunoglobulin M, but most of these clones also secrete other isotypes of which immunoglobulins G2 and A are the most prevalent. Analysis of the specificity of secondary TML-specific B cells showed that the vast majority of these B cells were specific for the lipopolysaccharide (LPS) molecule. Moreover, fine specificity analysis demonstrated that approximately two-thirds of these anti-LPS-specific B cell clones are directed against the core polysaccharides or lipid A regions of the LPS molecule, while only about one-third are directed toward the O antigen region. Since anti-S. typhimurium serum antibodies are directed primarily against the O antigens, these studies suggest that the serum levels of antibodies to a given epitope on a bacterial antigen may not be a true reflection of the expressed B cell repertoire when analyzed at the single B cell level. These studies also suggest that the role of antibodies to lipid A molecules in the development of protective immunity to S. typhimurium be reevaluated.

  13. Conformational dynamism for DNA interaction in the Salmonella RcsB response regulator

    PubMed Central

    Miguel-Romero, Laura; Huesa, Juanjo; García, Pablo; García-del Portillo, Francisco

    2018-01-01

    Abstract The RcsCDB phosphorelay system controls an extremely large regulon in Enterobacteriaceae that involves processes such as biofilm formation, flagella production, synthesis of extracellular capsules and cell division. Therefore, fine-tuning of this system is essential for virulence in pathogenic microorganisms of this group. The final master effector of the RcsCDB system is the response regulator (RR) RcsB, which activates or represses multiple genes by binding to different promoter regions. This regulatory activity of RcsB can be done alone or in combination with additional transcriptional factors in phosphorylated or dephosphorylated states. The capacity of RcsB to interact with multiple promoters and partners, either dephosphorylated or phosphorylated, suggests an extremely conformational dynamism for this RR. To shed light on the activation mechanism of RcsB and its implication on promoter recognition, we solved the crystal structure of full-length RcsB from Salmonella enterica serovar Typhimurium in the presence and absence of a phosphomimetic molecule BeF3−. These two novel structures have guided an extensive site-directed mutagenesis study at the structural and functional level that confirms RcsB conformational plasticity and dynamism. Our data allowed us to propose a β5-T switch mechanism where phosphorylation is coupled to alternative DNA binding ways and which highlights the conformational dynamism of RcsB to be so pleiotropic. PMID:29186528

  14. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σ E-regulated SPI-2 gene expression

    DOE PAGES

    Li, Jie; Overall, Christopher C.; Nakayasu, Ernesto S.; ...

    2015-02-10

    The extracytoplasmic functioning sigma factor σ E is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well characterized, especially during infection. Here we used microarray to identify genes regulated by σ E in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σ E regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression ofmore » genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σ E in at least one of the three conditions. An important finding is that σ E up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σ E is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σ E and SPI-2 genes, combined with the global regulatory effect of σ E, may account for the lethality of rpoE-deficient Salmonella in murine infection.« less

  15. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σ E-regulated SPI-2 gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Overall, Christopher C.; Nakayasu, Ernesto S.

    The extracytoplasmic functioning sigma factor σ E is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well characterized, especially during infection. Here we used microarray to identify genes regulated by σ E in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σ E regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression ofmore » genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σ E in at least one of the three conditions. An important finding is that σ E up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σ E is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σ E and SPI-2 genes, combined with the global regulatory effect of σ E, may account for the lethality of rpoE-deficient Salmonella in murine infection.« less

  16. Survival of Salmonella Newport in oysters.

    PubMed

    Morrison, Christopher M; Armstrong, Alexandra E; Evans, Sanford; Mild, Rita M; Langdon, Christopher J; Joens, Lynn A

    2011-08-02

    -pathogenic relative, the results of this study also suggest that unidentified virulence factors may play a role in Salmonella's interactions with oysters. Published by Elsevier B.V.

  17. Chasing Salmonella Typhimurium in free range egg production system.

    PubMed

    Chousalkar, Kapil; Gole, Vaibhav; Caraguel, Charles; Rault, Jean-Loup

    2016-08-30

    Free range production systems are becoming a major source of egg production in Australia and worldwide. This study investigated shedding and ecology of Salmonella Typhimurium and Salmonella species in a free range layer flock, wild birds and foxes in the vicinity of the free range farm in different seasons. Shedding of Salmonella was significantly higher in summer. Within the shed, overall, Salmonella prevalence was highest in dust. Corticosterone level in faeces was highest in spring and lowest in winter. There was no direct association between the Salmonella shedding (MPN/gm) and corticosterone levels in faeces. Salmonella Typhimurium MLVA types isolated from fox and wild birds were similar to MLVA types isolated from layer flock and reported during human food borne illness. Wild birds and foxes appear to play an important role in S. Typhimurium ecology and food safety. Environmental factors could play a role in evolution of S. Typhimurium in free range environment. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  18. Conformational dynamism for DNA interaction in the Salmonella RcsB response regulator.

    PubMed

    Casino, Patricia; Miguel-Romero, Laura; Huesa, Juanjo; García, Pablo; García-Del Portillo, Francisco; Marina, Alberto

    2018-01-09

    The RcsCDB phosphorelay system controls an extremely large regulon in Enterobacteriaceae that involves processes such as biofilm formation, flagella production, synthesis of extracellular capsules and cell division. Therefore, fine-tuning of this system is essential for virulence in pathogenic microorganisms of this group. The final master effector of the RcsCDB system is the response regulator (RR) RcsB, which activates or represses multiple genes by binding to different promoter regions. This regulatory activity of RcsB can be done alone or in combination with additional transcriptional factors in phosphorylated or dephosphorylated states. The capacity of RcsB to interact with multiple promoters and partners, either dephosphorylated or phosphorylated, suggests an extremely conformational dynamism for this RR. To shed light on the activation mechanism of RcsB and its implication on promoter recognition, we solved the crystal structure of full-length RcsB from Salmonella enterica serovar Typhimurium in the presence and absence of a phosphomimetic molecule BeF3-. These two novel structures have guided an extensive site-directed mutagenesis study at the structural and functional level that confirms RcsB conformational plasticity and dynamism. Our data allowed us to propose a β5-T switch mechanism where phosphorylation is coupled to alternative DNA binding ways and which highlights the conformational dynamism of RcsB to be so pleiotropic. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Oral vaccination with a live Salmonella Enteritidis/Typhimurium bivalent vaccine in layers induces cross-protection against caecal and internal organ colonization by a Salmonella Infantis strain.

    PubMed

    Eeckhaut, Venessa; Haesebrouck, Freddy; Ducatelle, Richard; Van Immerseel, Filip

    2018-05-01

    Salmonella is an important zoonotic agent, and poultry products remain one of the main sources of infection for humans. Salmonella Infantis is an emerging serotype in poultry worldwide, reflected by an increased prevalence in poultry flocks, on broiler meat and in human foodborne illness cases. In the current study, the efficacy of oral administration of a live monovalent Salmonella Enteritidis and a live bivalent Salmonella Enteritidis/Typhimurium vaccine, against a Salmonella Enteritidis and Infantis infection, was determined. Oral administration of the live vaccines to day-old chickens caused a decrease in caecal colonization by Salmonella Enteritidis, but not Infantis, at day 7, when challenged at day 2. Vaccination with the bivalent vaccine at day 1 resulted in a decreased spleen colonization by both Salmonella Infantis and Enteritidis. Twice (at day 1 and week 6) and thrice vaccination (at day 1, week 6 and 16) of laying hens with the bivalent vaccine resulted in a decreased caecal colonization by Salmonella Enteritidis and Infantis, and significantly lower oviduct colonization levels by Salmonella Enteritidis. These data show cross-protection against Salmonella Infantis by oral administration of live vaccine strains belonging to other serogroups. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Salmonella serotypes in reptiles and humans, French Guiana.

    PubMed

    Gay, Noellie; Le Hello, Simon; Weill, François-Xavier; de Thoisy, Benoit; Berger, Franck

    2014-05-14

    In French Guiana, a French overseas territory located in the South American northern coast, nearly 50% of Salmonella serotypes isolated from human infections belong to serotypes rarely encountered in metropolitan France. A reptilian source of contamination has been investigated. Between April and June 2011, in the area around Cayenne, 151 reptiles were collected: 38 lizards, 37 snakes, 32 turtles, 23 green iguanas and 21 caimans. Cloacal swab samples were collected and cultured. Isolated Salmonella strains were identified biochemically and serotyped. The overall carriage frequency of carriage was 23.2% (95% confidence interval: 16.7-30.4) with 23 serotyped strains. The frequency of Salmonella carriage was significantly higher for wild reptiles. Near two-thirds of the Salmonella serotypes isolated from reptiles were also isolated from patients in French Guiana. Our results highlight the risk associated with the handling and consumption of reptiles and their role in the spread of Salmonella in the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Role of Electronic Data Exchange in an International Outbreak Caused by Salmonella enterica Serotype Typhimurium DT204b

    PubMed Central

    Lindsay, Elizabeth A.; Lawson, Andrew J.; Walker, Rachel A.; Ward, Linda R.; Smith, Henry R.; Scott, Fiona W.; O'Brien, Sarah J.; Fisher, Ian S.T.; Crook, Paul D.; Wilson, Deborah; Brown, Derek J; Hardardottir, Hjordis; Wannet, Wim J.B.; Tschäpe, Helmut

    2002-01-01

    From July through September 2000, patients in five European countries were infected with a multidrug-resistant strain of Salmonella Typhimurium DT204b. Epidemiologic investigations were facilitated by the transmission of electronic images (Tagged Image Files) of pulsed-field gel electrophoresis profiles. This investigation highlights the importance of standardized protocols for molecular typing in international outbreaks of foodborne disease. PMID:12095445

  2. Salmonella Overcomes Drug Resistance in Tumor through P-glycoprotein Downregulation.

    PubMed

    Yang, Chih-Jen; Chang, Wen-Wei; Lin, Song-Tao; Chen, Man-Chin; Lee, Che-Hsin

    2018-01-01

    Chemotherapy is one of effective methods for the treatment of tumor. Patients often develop drug resistance after chemotherapic cycles. Salmonella has potential as antitumor agent. Salmonella used in tandem with chemotherapy had additive effects, providing a rationale for using tumor-targeting Salmonella in combination with conventional chemotherapy. To improve the efficacy and safety of Salmonella , a further understanding of Salmonella interactions with the tumor microenvironment is required. The presence of plasma membrane multidrug resistance protein P-glycoprotein (P-gp) is highly relevant for the success of chemotherapy. Following Salmonella infection, dose-dependent downregulation of P-gp expressions were examined. Salmonella significantly decreased the efflux capabilities of P-gp, as based on the influx of Rhodamine 123 assay. In addition, Salmonella significant reduced the protein express the expression levels of phosph-protein kinase B (P-AKT), phosph-mammalian targets of rapamycin (P-mTOR), and phosph-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells. The Salmonella -induced downregulation of P-gp was rescued by transfection of cells with active P-AKT. Our results demonstrate that Salmonella in tumor sites leads to decrease the expression of P-gp and enhances the combination of Salmonell a and 5-Fluorouracil therapeutic effects.

  3. Investigation of the Role of Genes Encoding Zinc Exporters zntA, zitB, and fieF during Salmonella Typhimurium Infection.

    PubMed

    Huang, Kaisong; Wang, Dan; Frederiksen, Rikki F; Rensing, Christopher; Olsen, John E; Fresno, Ana H

    2017-01-01

    The transition metal zinc is involved in crucial biological processes in all living organisms and is essential for survival of Salmonella in the host. However, little is known about the role of genes encoding zinc efflux transporters during Salmonella infection. In this study, we constructed deletion mutants for genes encoding zinc exporters ( zntA , zitB , and fieF ) in the wild-type (WT) strain Salmonella enterica serovar Typhimurium ( S. Typhimurium) 4/74. The mutants 4/74Δ zntA and 4/74Δ zntA/zitB exhibited a dramatic growth delay and abrogated growth ability, respectively, in Luria Bertani medium supplemented with 0.25 mM ZnCl 2 or 1.5 mM CuSO 4 compared to the WT strain. In order to investigate the role of genes encoding zinc exporters on survival of S. Typhimurium inside cells, amoeba and macrophage infection models were used. No significant differences in uptake or survival were detected for any of the mutants compared to the WT during infection of amoebae. In natural resistance-associated macrophage protein 1 (Nramp1)-negative J774.1 murine macrophages, significantly higher bacterial counts were observed for the mutant strains 4/74Δ zntA and 4/74Δ zntA/zitB compared to the WT at 4 h post-infection although the fold net replication was similar between all the strains. All four tested mutants (4/74Δ zntA , 4/74Δ zitB , 4/74Δ fieF , and 4/74Δ zntA/zitB ) showed enhanced intracellular survival capacity within the modified Nramp1-positive murine RAW264.7 macrophages at 20 h post-infection. The fold net replication was also significantly higher for 4/74Δ zntA , 4/74Δ zitB , and 4/74Δ zntA/zitB mutants compared to the WT. Intriguingly, the ability to survive and cause infection was significantly impaired in all the three mutants tested (4/74Δ zntA , 4/74Δ zitB , and 4/74Δ zntA/zitB ) in C3H/HeN mice, particularly the double mutant 4/74Δ zntA/zitB was severely attenuated compared to the WT in all the three organs analyzed. These findings suggest

  4. Salmonella prevalence in bovine lymph nodes differs among feedyards.

    PubMed

    Haneklaus, Ashley N; Harris, Kerri B; Griffin, Davey B; Edrington, Thomas S; Lucia, Lisa M; Savell, Jeffrey W

    2012-06-01

    Lymphatic tissue, specifically lymph nodes, is commonly incorporated into ground beef products as a component of lean trimmings. Salmonella and other pathogenic bacteria have been identified in bovine lymph nodes, which may impact compliance with the Salmonella performance standards for ground beef established by the U.S. Department of Agriculture. Although Salmonella prevalence has been examined among lymph nodes between animals, no data are currently available regarding feedyard origin of the cattle and Salmonella prevalence. Bovine lymph nodes (279 superficial cervical plus 28 iliofemoral = 307) were collected from beef carcasses at a commercial beef harvest and processing plant over a 3-month period and examined for the prevalence of Salmonella. Cattle processed were from seven feedyards (A through G). Salmonella prevalence was exceptionally low (0% of samples were positive ) in cattle from feedyard A and high (88.2%) in cattle from feedyard B. Prevalence in the remaining feedyards ranged widely: 40.0% in feedyard C, 4.0% in feedyard D, 24.0% in feedyard E, 42.9% in feedyard F, and 40.0% in feedyard G. These data indicate the range of differences in Salmonella prevalence among feedyards. Such information may be useful for developing interventions to reduce or eliminate Salmonella from bovine lymph nodes, which would assist in the reduction of Salmonella in ground beef.

  5. Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica.

    PubMed

    Gay, Kathryn; Robicsek, Ari; Strahilevitz, Jacob; Park, Chi Hye; Jacoby, George; Barrett, Timothy J; Medalla, Felicita; Chiller, Tom M; Hooper, David C

    2006-08-01

    Serious infections with Salmonella species are often treated with fluoroquinolones or extended-spectrum beta-lactams. Increasingly recognized in Enterobacteriaceae, plasmid-mediated quinolone resistance is encoded by qnr genes. Here, we report the presence of qnr variants in human isolates of non-Typhi serotypes of Salmonella enterica (hereafter referred to as non-Typhi Salmonella) from the United States National Antimicrobial Resistance Monitoring System for Enteric Bacteria. All non-Typhi Salmonella specimens from the United States National Antimicrobial Resistance Monitoring System for Enteric Bacteria collected from 1996 to 2003 with ciprofloxacin minimum inhibitory concentrations > or = 0.06 microg/mL (233 specimens) and a subset with minimum inhibitory concentrations < or = 0.03 microg/mL (102 specimens) were screened for all known qnr genes (A, B, and S) by polymerase chain reaction. For isolates with positive results, qnr and quinolone resistance-determining region sequences were determined. Plasmids containing qnr genes were characterized by conjugation or transformation. Conjugative plasmids harboring qnrB variants were detected in 7 Salmonella enterica serotype Berta isolates and 1 Salmonella enterica serotype Mbandaka isolate. The S. Mbandaka plasmid also had an extended-spectrum beta -lactamase. Variants of qnrS on nonconjugative plasmids were detected in isolates of Salmonella enterica serotype Anatum and Salmonella enterica serotype Bovismorbificans. Plasmid-mediated quinolone resistance appears to be widely distributed, though it is still uncommon in non-Typhi Salmonella isolates from the United States, including strains that are quinolone susceptible by the criteria of the Clinical and Laboratory Standards Institute (formerly the National Committee for Clinical Laboratory Standards). The presence of this gene in non-Typhi Salmonella that causes infection in humans suggests potential for spread through the food supply, which is a public health

  6. Rcs and PhoPQ regulatory overlap in the control of Salmonella enterica virulence.

    PubMed

    García-Calderón, Clara B; Casadesús, Josep; Ramos-Morales, Francisco

    2007-09-01

    Genetic screens based on the use of MudJ-generated lac fusions permitted the identification of novel genes regulated by the Rcs signal transduction system in Salmonella enterica serovar Typhimurium. Besides genes that are also found in the Escherichia coli genome, our screens identified Salmonella-specific genes regulated by RcsB, including bapA, siiE, srfA, and srfB. Here we show that the srfABC operon is negatively regulated by RcsB and by PhoP. In vivo studies using mutants with constitutive activation of the Rcs and/or PhoPQ system suggested that there is an overlap between these regulatory systems in the control of Salmonella virulence.

  7. Receptor Diversity and Host Interaction of Bacteriophages Infecting Salmonella enterica Serovar Typhimurium

    PubMed Central

    Kim, Hyeryen; Choi, Younho; Heu, Sunggi; Ryu, Sangryeol

    2012-01-01

    Background Salmonella enterica subspecies enterica serovar Typhimurium is a Gram-negative pathogen causing salmonellosis. Salmonella Typhimurium-targeting bacteriophages have been proposed as an alternative biocontrol agent to antibiotics. To further understand infection and interaction mechanisms between the host strains and the bacteriophages, the receptor diversity of these phages needs to be elucidated. Methodology/Principal Findings Twenty-five Salmonella phages were isolated and their receptors were identified by screening a Tn5 random mutant library of S. Typhimurium SL1344. Among them, three types of receptors were identified flagella (11 phages), vitamin B12 uptake outer membrane protein, BtuB (7 phages) and lipopolysaccharide-related O-antigen (7 phages). TEM observation revealed that the phages using flagella (group F) or BtuB (group B) as a receptor belong to Siphoviridae family, and the phages using O-antigen of LPS as a receptor (group L) belong to Podoviridae family. Interestingly, while some of group F phages (F-I) target FliC host receptor, others (F-II) target both FliC and FljB receptors, suggesting that two subgroups are present in group F phages. Cross-resistance assay of group B and L revealed that group L phages could not infect group B phage-resistant strains and reversely group B phages could not infect group L SPN9TCW-resistant strain. Conclusions/Significance In this report, three receptor groups of 25 newly isolated S. Typhimurium-targeting phages were determined. Among them, two subgroups of group F phages interact with their host receptors in different manner. In addition, the host receptors of group B or group L SPN9TCW phages hinder other group phage infection, probably due to interaction between receptors of their groups. This study provides novel insights into phage-host receptor interaction for Salmonella phages and will inform development of optimal phage therapy for protection against Salmonella. PMID:22927964

  8. National outbreak of Salmonella Enteritidis phage type 14b in England, September to December 2009: case-control study.

    PubMed

    Janmohamed, K; Zenner, D; Little, C; Lane, C; Wain, J; Charlett, A; Adak, B; Morgan, D

    2011-04-14

    We conducted an unmatched retrospective case–control study to investigate an upsurge of non-travel-related sporadic cases of infection with Salmonella enterica subsp. enterica serotype Enteritidis phage type 14b with antimicrobial resistance to nalidixic acid and partial resistance to ciprofloxacin (S. Enteritidis PT 14b NxCp(L)) that was reported in England from 1 September to 31 December 2009. We analysed data from 63 cases and 108 controls to determine whether cases had the same sources of infection as those found through investigation of 16 concurrent local foodborne outbreaks in England and Wales. Multivariable logistic regression analysis adjusting for age and sex identified food consumption at restaurants serving Chinese or Thai cuisine (odds ratio (OR): 4.4; 95% CI: 1.3–14.8; p=0.02), egg consumed away from home (OR: 5.1; 95% CI: 1.3–21.2; p=0.02) and eating vegetarian foods away from home (OR: 14.6; 95% CI: 2.1–99; p=0.006) as significant risk factors for infection with S. Enteritidis PT 14b NxCp(L). These findings concurred with those from the investigation of the16 outbreaks, which identified the same Salmonella strain in eggs from a specified source outside the United Kingdom. The findings led to a prohibition of imports from this source, in order to control the outbreak.

  9. A magneto-DNA nanoparticle system for the rapid and sensitive diagnosis of enteric fever

    PubMed Central

    Park, Ki Soo; Chung, Hyun Jung; Khanam, Farhana; Lee, Hakho; Rashu, Rasheduzzaman; Bhuiyan, Md. Taufiqur; Berger, Amanda; Harris, Jason B.; Calderwood, Stephen B.; Ryan, Edward T.; Qadri, Firdausi; Weissleder, Ralph; Charles, Richelle C.

    2016-01-01

    There is currently no widely available optimal assay for diagnosing patients with enteric fever. Here we present a novel assay designed to detect amplified Salmonella nucleic acid (mRNA) using magneto-DNA probes and a miniaturized nuclear magnetic resonance device. We designed primers for genes specific to S. Typhi, S. Paratyphi A, and genes conserved among Salmonella enterica spp. and utilized strongly magnetized nanoparticles to enhance the detection signal. Blood samples spiked with in vitro grown S. Typhi, S. Paratyphi A, S. Typhimurium, and E. coli were used to confirm the specificity of each probe-set, and serial 10-fold dilutions were used to determine the limit of the detection of the assay, 0.01–1.0 CFU/ml. For proof of principle, we applied our assay to 0.5 mL blood samples from 5 patients with culture-confirmed enteric fever from Bangladesh in comparison to 3 healthy controls. We were able to detect amplified target cDNA in all 5 cases of enteric fever; no detectable signal was seen in the healthy controls. Our results suggest that a magneto-DNA nanoparticle system, with an assay time from blood collection of 3.5 hours, may be a promising platform for the rapid and culture-free diagnosis of enteric fever and non-typhoidal Salmonella bacteremia. PMID:27605393

  10. [Antibacterial antibodies in human immunoglobulins and sera: past and present].

    PubMed

    Romanov, V A; Kulibin, A Iu; Zaĭtseva, I P

    2010-01-01

    To measure levels of several types of antibacterial antibodies in preparations of normal human immunoglobulin as well as in samples of donor sera obtained in 1965 and 2009. Five batches of human normal immunoglobulin manufactured in 1965 and five batches manufactured in 2009 as well as 77 and 28 blood serum samples respectively were tested by agglutination assay for the presence of antibodies to enterobacteria, Brucella species, tularemia agent, Rickettsia burnetii, Rickettsia prowazekii, and several species of opportunistic bacteria. Higher antibody titers to Salmonella typhi, Salmonella paratyphi A and B, Salmonella enteritidis, Salmonella typhimurium, Shigella flexneri and Shigella sonnei were revealed in immunoglobulin preparations and donor sera obtained in 1965 compared to that obtained in 2009. There was no difference in antibody titers to Shigella boydii, Salmonella choleraesuis, Escherichia coli O-55, Pseudomonas aeruginosa, Proteus vulgaris, Serratia marcescens and E. coli. Antibodies to Brucella species, tularemia agent, R. burnetii, R. prowazekii were not detected in normal human immunoglobulin. Decrease of antibody levels to several pathogenic enterobacteria in human immunoglobulin preparations as well as in sera of donors for 40 years could be linked with decrease of number of immunized persons, changes in circulation of pathogenic bacteria, decrease of rate of asymptomatic infections. Stability of antibody titers to opportunistic bacteria is a rationale to use them for assessment of humoral immunity function.

  11. [Salmonella].

    PubMed

    Amo, Kiyoko

    2012-08-01

    Nontyphoidal salmonella causes infectious gastroenteritis, and sometimes causes bacteremia and meningitis. Gastroenteritis associated with nontyphoidal salmonella, in which fever, diarrhea, vomiting and abdominal cramps, is a common disease. The major way of transmittion is food of animal origin, for example egg. That is the reason why precausion is so important such as wash hands before cooking, avoid eating raw egg and wash the cooking utensils after contact raw foods. In this report, I presented the rare severe case of encephalitis caused by salmonella infection.

  12. Deoxyribonucleic acid restriction and modification systems in Salmonella: chromosomally located systems of different serotypes.

    PubMed Central

    Bullas, L R; Colson, C; Neufeld, B

    1980-01-01

    With the use of four different phages, Salmonella strains representing 85 different serotypes were examined to determine their restriction-modification phenotype. They fell into one of three groups on this basis: group 1, those which lacked the common LT system; group 2, those in which only the LT system could be recognized; and group 3. those which possessed the LT system and at least one other system shown with some serotypes to be closely linked to serB. The specificity of the serB-linked restriction-modification system was unique for each serotype, but different strains of the same serotype expressed the same specificity. Two of the systems were shown to behave in genetic crosses as functional alleles of the S. typhimurium SB system. It is possible that these serB-linked restriction-modification systems constitute a large multiallelic series of genes extending throughout the Salmonella genus and Escherichia coli. We suggest that the division of the Salmonella into the three restriction-modification groups may be significant in defining a "biological grouping" of the different serotypes within the genus which may ultimately be useful in describing the Salmonella species. From the genetic relatedness between the genes of some of the Salmonella restriction-modification systems with those of the E. coli systems, we deduce that the restriction endonuclases produced by the Salmonella serB-linked systems are of type 1. Determination of the nucleotide sequences of the recognition sites of the restriction endonucleases of selected Salmonella systems should further our understanding of specificity with these enzymes. PMID:6243623

  13. Microbiological study of biofilm formation in isolates of Salmonella enterica Typhimurium DT104 and DT104b cultured from the modern pork chain.

    PubMed

    O'Leary, Denis; Cabe, Evonne M Mc; McCusker, Matthew P; Martins, Marta; Fanning, Séamus; Duffy, Geraldine

    2013-01-15

    The purpose of this study was to characterise 172 Salmonella Typhimurium isolates taken from the pork chain for their biofilm forming abilities and to analyse their potential to survive on food processing surfaces. Many Salmonella have the ability to form biofilms. These natural structures, elaborated by bacteria are important in food production because their formation contributes to bacterial survival. Adherent bacterial cells are more resilient to displacement strategies including physical and chemical procedures as a consequence of their altered more resistant phenotype. By improving our understanding of the nature of biofilms, this data could positively contribute to the development and implementation of eradication strategies. In this study, Salmonella Typhimurium DT104 and DT104b were investigated for their ability to form biofilms on a range of different surfaces under defined environmental growth conditions. Phenotypic characterisation involved examining colony morphology on indicator agars, assessing their ability to survive chlorine-based challenges and investigating their ability to attach to stainless steel and to plastic surfaces. All bacterial isolates were investigated for the presence of Salmonella genomic island I (SGI1) which is thought to enhance efficient biofilm formation. It was found that the majority of strains possess biofilm forming capabilities but successful attachment is highly dependent on the surface on which the biofilm is forming. The strains readily attached to stainless steel and plastic surfaces and survived high chlorine concentrations. Molecular and phenotypic comparisons of strong and weak biofilm forming strains indicate that biofilm development is not solely dependent on the acquirement of SGI1. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Acute parvovirus B19 infection causes nonspecificity frequently in Borrelia and less often in Salmonella and Campylobacter serology, posing a problem in diagnosis of infectious arthropathy.

    PubMed

    Tuuminen, Tamara; Hedman, Klaus; Söderlund-Venermo, Maria; Seppälä, Ilkka

    2011-01-01

    Several infectious agents may cause arthritis or arthropathy. For example, infection with Borrelia burgdorferi, the etiologic agent of Lyme disease, may in the late phase manifest as arthropathy. Infections with Campylobacter, Salmonella, or Yersinia may result in a postinfectious reactive arthritis. Acute infection with parvovirus B19 (B19V) may likewise initiate transient or chronic arthropathy. All these conditions may be clinically indistinguishable from rheumatoid arthritis. Here, we present evidence that acute B19V infection may elicit IgM antibodies that are polyspecific or cross-reactive with a variety of bacterial antigens. Their presence may lead to misdiagnosis and improper clinical management, exemplified here by two case descriptions. Further, among 33 subjects with proven recent B19V infection we found IgM enzyme immunoassay (EIA) positivity for Borrelia only; for Borrelia and Salmonella; for Borrelia and Campylobacter; and for Borrelia, Campylobacter, and Salmonella in 26 (78.7%), 1 (3%), 2 (6%), and 1 (3%), respectively; however, when examined by Borrelia LineBlot, all samples were negative. These antibodies persisted over 3 months in 4/13 (38%) patients tested. Likewise, in a retrospective comparison of the results of a diagnostic laboratory, 9/11 (82%) patients with confirmed acute B19V infection showed IgM antibody to Borrelia. However, none of 12 patients with confirmed borreliosis showed any serological evidence of acute B19V infection. Our study demonstrates that recent B19V infection can be misinterpreted as secondary borreliosis or enteropathogen-induced reactive arthritis. To obtain the correct diagnosis, we emphasize caution in interpretation of polyreactive IgM and exclusion of recent B19V infection in patients examined for infectious arthritis or arthropathy.

  15. Evaluation of a dkgB linked intergenic sequence ribotyping (ISR) method for assigning serotype to Salmonella enterica isolated from poultry environmental samples.

    USDA-ARS?s Scientific Manuscript database

    The Kauffman White (KW) serotyping method requires more than 250 antisera to characterize more than 2,500 Salmonella serovars. The complexity of serotyping could be overcome using molecular methods. In this study, a dkgB-linked intergenic sequence ribotyping (ISR) method that generates sequence occu...

  16. Assessment of Salmonella survival in dry-cured Italian salami.

    PubMed

    Bonardi, S; Bruini, I; Bolzoni, L; Cozzolino, P; Pierantoni, M; Brindani, F; Bellotti, P; Renzi, M; Pongolini, S

    2017-12-04

    on the occurrence of Salmonella in salami, statistical analysis revealed a role for aw in salami and for Salmonella load in GRMs, while pH and NaCl content did not significantly affect the probability of finding Salmonella in dry-cured salami in the context of this study. In particular the lower aw values due to longer curing were associated with lower Salmonella presence in traditional dry-cured salami. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Thermal inactivation of Salmonella spp. in pork burger patties.

    PubMed

    Gurman, P M; Ross, T; Holds, G L; Jarrett, R G; Kiermeier, A

    2016-02-16

    Predictive models, to estimate the reduction in Escherichia coli O157:H7 concentration in beef burgers, have been developed to inform risk management decisions; no analogous model exists for Salmonella spp. in pork burgers. In this study, "Extra Lean" and "Regular" fat pork minces were inoculated with Salmonella spp. (Salmonella 4,[5],12,i:-, Salmonella Senftenberg and Salmonella Typhimurium) and formed into pork burger patties. Patties were cooked on an electric skillet (to imitate home cooking) to one of seven internal temperatures (46, 49, 52, 55, 58, 61, 64 °C) and Salmonella enumerated. A generalised linear logistic regression model was used to develop a predictive model for the Salmonella concentration based on the internal endpoint temperature. It was estimated that in pork mince with a fat content of 6.1%, Salmonella survival will be decreased by -0.2407log10 CFU/g for a 1 °C increase in internal endpoint temperature, with a 5-log10 reduction in Salmonella concentration estimated to occur when the geometric centre temperature reaches 63 °C. The fat content influenced the rate of Salmonella inactivation (P=0.043), with Salmonella survival increasing as fat content increased, though this effect became negligible as the temperature approached 62 °C. Fat content increased the time required for patties to achieve a specified internal temperature (P=0.0106 and 0.0309 for linear and quadratic terms respectively), indicating that reduced fat pork mince may reduce the risk of salmonellosis from consumption of pork burgers. Salmonella serovar did not significantly affect the model intercepts (P=0.86) or slopes (P=0.10) of the fitted logistic curve. This predictive model can be applied to estimate the reduction in Salmonella in pork burgers after cooking to a specific endpoint temperature and hence to assess food safety risk. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  18. Prevalence of salmonella in neck skin and bone of chickens.

    PubMed

    Wu, Diezhang; Alali, W Q; Harrison, M A; Hofacre, C L

    2014-07-01

    Bone-in and boneless parts, such as drumsticks, are used in ground chicken production. In addition, neck skin is used as a source of fat in ground products. Contaminated chicken neck skin and bones containing internalized Salmonella are potential sources of this pathogen in ground chicken. This study determined the prevalence of Salmonella and serotype distribution in drumstick bones and neck skin of postchill chicken carcasses. One week prior to slaughter, chicken houses (n = 26) at nine farms were tested for the presence of Salmonella, using the boot sock method. Chicken flocks from these houses originated from Salmonella-positive breeders. Eight Salmonella-positive chicken flocks and one flock with undetermined Salmonella status were monitored through processing. Three hundred postchill drumsticks and 299 neck skin samples were analyzed for Salmonella prevalence. Skin samples were rinsed and stomached prior to analysis. Bones were extracted from the drumsticks, external surfaces were sterilized, and bones were crushed for analysis. One Salmonella isolate from each positive sample was serogrouped. Half of the isolates representing different sample types were serotyped. Overall, Salmonella was found in 0.8, 21.4, and 80.1% of bone marrow, neck skin, and farms, respectively. Prevalence of Salmonella on rinsed skin samples (2.3%) and stomached skin samples (20.7%) differed significantly (P ≤ 0.05). Serogroups B, C2, D, and E were found at 23.4, 31.9, 11.7, and 29.8%, respectively. Six Salmonella serotypes were identified: Liverpool (37.9%), Kentucky (27.6%), and Typhimurium (27.6%) were isolated most frequently from neck skin; the two bone isolates were Kentucky; and more than 50% of the farm isolates were Kentucky and Ouakam. Salmonella-contaminated neck skin might be a more significant source of this contamination in ground chicken than Salmonella internalized in bones.

  19. Comparison of CHROMagar Salmonella Medium and Xylose-Lysine-Desoxycholate and Salmonella-Shigella Agars for Isolation of Salmonella Strains from Stool Samples

    PubMed Central

    Maddocks, Susan; Olma, Tom; Chen, Sharon

    2002-01-01

    The growth and appearance of 115 stock Salmonella isolates on a new formulation of CHROMagar Salmonella (CAS) medium were compared to those on xylose-lysine-desoxycholate agar (XLD), Salmonella-Shigella agar (SS), and Hektoen enteric agar (HEA) media. CAS medium was then compared prospectively to XLD and SS for the detection and presumptive identification of Salmonella strains in 500 consecutive clinical stool samples. All stock Salmonella isolates produced typical mauve colonies on CAS medium. Nine Salmonella strains were isolated from clinical specimens. The sensitivities for the detection of salmonellae after primary plating on CAS medium and the combination of XLD and SS after enrichment were 100%. The specificity for the detection of salmonellae after primary plating on CAS medium (83%) was significantly (P < 0.0001) higher than that after primary plating on the combination of SS and XLD media (55%) (a 28% difference in rates; 95% confidence interval, 23.0 to 34%). Twenty-nine non-Salmonella organisms produced mauve colonies on CAS medium, including 17 Candida spp. (59%) and 8 Pseudomonas spp. (28%). These were easily excluded as salmonellae by colony morphology, microscopic examination of a wet preparation, or oxidase testing. One biochemically inert Escherichia coli isolate required further identification to differentiate it from Salmonella spp. The use of plating on CAS medium demonstrated high levels of sensitivity and specificity and reduced the time to final identification of Salmonella spp., resulting in substantial cost savings. It can be recommended for use for the primary isolation of Salmonella spp. from stool specimens. Other media (e.g., XLD) are required to detect Shigella spp. concurrently. PMID:12149365

  20. Contribution of Salmonella Enteritidis virulence factors to intestinal colonization and systemic dissemination in 1-day-old chickens.

    PubMed

    Addwebi, Tarek M; Call, Douglas R; Shah, Devendra H

    2014-04-01

    Salmonella enterica serovar Enteritidis is one of the most common serovars associated with poultry and poultry product contamination in the United States. We previously identified 14 mutant strains of Salmonella Enteritidis phage type 4 (PT4) with significantly reduced invasiveness in human intestinal epithelial cells (Caco-2), chicken macrophages (HD-11), and chicken hepatocellular epithelial cells (LMH). These included Salmonella Enteritidis mutants with transposon insertions in 6 newly identified Salmonella Enteritidis-specific genes (pegD and SEN1393), and genes or genomic islands common to most other Salmonella serovars (SEN0803, SEN0034, SEN2278, and SEN3503) along with 8 genes previously known to contribute to enteric infection (hilA, pipA, fliH, fljB, csgB, spvR, and rfbMN). We hypothesized that Salmonella Enteritidis employs both common Salmonella enterica colonization factors and Salmonella Enteritidis-specific traits to establish infection in chickens. Four Salmonella Enteritidis mutants (SEN0034::Tn5, fliH::Tn5, SEN1393::Tn5, and spvR::Tn5) were indistinguishable from the isogenic wild-type strain when orally inoculated in 1-d-old chickens, whereas 2 mutants (CsgB::Tn5 and PegD::Tn5) were defective for intestinal colonization (P < 0.05) and 8 mutants (hilA::Tn5, SEN3503::Tn5, SEN0803::Tn5, SEN2278::Tn5, fljB::Tn5, rfbM::Tn5, rfbN::Tn5, and pipA::Tn5) showed significant in vivo attenuation in more than one organ (P < 0.05). Complementation studies confirmed the role of rfbN and SEN3503 during infection. This study should contribute to a better understanding of the mechanisms involved in Salmonella Enteritidis pathogenesis, and the target genes identified here could potentially serve as targets for the development of live-attenuated or subunit vaccine.

  1. A trans-acting leader RNA from a Salmonella virulence gene

    PubMed Central

    Choi, Eunna; Han, Yoontak; Cho, Yong-Joon; Nam, Daesil; Lee, Eun-Jin

    2017-01-01

    Bacteria use flagella to move toward nutrients, find its host, or retract from toxic substances. Because bacterial flagellum is one of the ligands that activate the host innate immune system, its synthesis should be tightly regulated during host infection, which is largely unknown. Here, we report that a bacterial leader mRNA from the mgtCBR virulence operon in the intracellular pathogen Salmonella enterica serovar Typhimurium binds to the fljB coding region of mRNAs in the fljBA operon encoding the FljB phase 2 flagellin, a main component of bacterial flagella and the FljA repressor for the FliC phase 1 flagellin, and degrades fljBA mRNAs in an RNase E-dependent fashion during infection. A nucleotide substitution of the fljB flagellin gene that prevents the mgtC leader RNA-mediated down-regulation increases the fljB-encoded flagellin synthesis, leading to a hypermotile phenotype inside macrophages. Moreover, the fljB nucleotide substitution renders Salmonella hypervirulent, indicating that FljB-based motility must be compromised in the phagosomal compartment where Salmonella resides. This suggests that this pathogen promotes pathogenicity by producing a virulence protein and limits locomotion by a trans-acting leader RNA from the same virulence gene during infection. PMID:28874555

  2. Low-oxygen tensions found in Salmonella-infected gut tissue boost Salmonella replication in macrophages by impairing antimicrobial activity and augmenting Salmonella virulence.

    PubMed

    Jennewein, Jonas; Matuszak, Jasmin; Walter, Steffi; Felmy, Boas; Gendera, Kathrin; Schatz, Valentin; Nowottny, Monika; Liebsch, Gregor; Hensel, Michael; Hardt, Wolf-Dietrich; Gerlach, Roman G; Jantsch, Jonathan

    2015-12-01

    In Salmonella infection, the Salmonella pathogenicity island-2 (SPI-2)-encoded type three secretion system (T3SS2) is of key importance for systemic disease and survival in host cells. For instance, in the streptomycin-pretreated mouse model SPI-2-dependent Salmonella replication in lamina propria CD11c(-)CXCR1(-) monocytic phagocytes/macrophages (MΦ) is required for the development of colitis. In addition, containment of intracellular Salmonella in the gut critically depends on the antimicrobial effects of the phagocyte NADPH oxidase (PHOX), and possibly type 2 nitric oxide synthase (NOS2). For both antimicrobial enzyme complexes, oxygen is an essential substrate. However, the amount of available oxygen upon enteroinvasive Salmonella infection in the gut tissue and its impact on Salmonella-MΦ interactions was unknown. Therefore, we measured the gut tissue oxygen levels in a model of Salmonella enterocolitis using luminescence two-dimensional in vivo oxygen imaging. We found that gut tissue oxygen levels dropped from ∼78 Torr (∼11% O2) to values of ∼16 Torr (∼2% O2) during infection. Because in vivo virulence of Salmonella depends on the Salmonella survival in MΦ, Salmonella-MΦ interaction was analysed under such low oxygen values. These experiments revealed an increased intracellular replication and survival of wild-type and t3ss2 non-expressing Salmonella. These findings were paralleled by blunted nitric oxide and reactive oxygen species (ROS) production and reduced Salmonella ROS perception. In addition, hypoxia enhanced SPI-2 transcription and translocation of SPI-2-encoded virulence protein. Neither pharmacological blockade of PHOX and NOS2 nor impairment of T3SS2 virulence function alone mimicked the effect of hypoxia on Salmonella replication under normoxic conditions. However, if t3ss2 non-expressing Salmonella were used, hypoxia did not further enhance Salmonella recovery in a PHOX and NOS2-deficient situation. Hence, these data suggest that

  3. The effects of different enrofloxacin dosages on clinical efficacy and resistance development in chickens experimentally infected with Salmonella Typhimurium.

    PubMed

    Li, Jun; Hao, Haihong; Cheng, Guyue; Wang, Xu; Ahmed, Saeed; Shabbir, Muhammad Abu Bakr; Liu, Zhenli; Dai, Menghong; Yuan, Zonghui

    2017-09-15

    To investigate the optimal dosage which can improve clinical efficacy and minimize resistance, pharmacokinetics/pharmacodynamics model of enrofloxacin was established. Effect of enrofloxacin treatments on clearance of Salmonella in experimentally infected chickens and simultaneously resistance selection in Salmonella and coliforms were evaluated in three treatment groups (100, PK/PD designed dosage of 4, 0.1 mg/kg b.w.) and a control group. Treatment duration was three rounds of 7-day treatment alternated with 7-day withdrawal. Results showed that 100 mg/kg b.w. of enrofloxacin completely eradicated Salmonella, but resistant coliforms (4.0-60.8%) were selected from the end of the second round's withdrawal period till the end of the experiment (days 28-42). PK/PD based dosage (4 mg/kg b.w.) effectively reduced Salmonella for the first treatment duration. However upon cessation of medication, Salmonella repopulated chickens and persisted till the end with reduced susceptibility (MIC CIP  = 0.03-0.25 mg/L). Low frequency (5-9.5%) of resistant coliforms was selected (days 39-42). Enrofloxacin at dosage of 0.1 mg/kg b.w. was not able to eliminate Salmonella and selected coliforms with slight decreased susceptibility (MIC ENR  = 0.25 mg/L). In conclusion, short time treatment (7 days) of enrofloxacin at high dosage (100 mg/kg b.w.) could be effective in treating Salmonella infection while minimizing resistance selection in both Salmonella and coliforms.

  4. Immunity to intestinal pathogens: lessons learned from Salmonella

    PubMed Central

    McSorley, Stephen J.

    2014-01-01

    Summary Salmonella are a common source of food or water-borne infection and cause a wide range of clinical disease in human and animal hosts. Salmonella are relatively easy to culture and manipulate in a laboratory setting, and the infection of laboratory animals induces robust innate and adaptive immune responses. Thus, immunologists have frequently turned to Salmonella infection models to expand understanding of immunity to intestinal pathogens. In this review, I summarize current knowledge of innate and adaptive immunity to Salmonella and highlight features of this response that have emerged from recent studies. These include the heterogeneity of the antigen-specific T-cell response to intestinal infection, the prominence of microbial mechanisms to impede T and B-cell responses, and the contribution of non-cognate pathways for elicitation of T-cell effector functions. Together, these different issues challenge an overly simplistic view of host-pathogen interaction during mucosal infection but also allow deeper insight into the real-world dynamic of protective immunity to intestinal pathogens. PMID:24942689

  5. Prevalence and antimicrobial susceptibility of Salmonella and Shigella spp. among children with gastroenteritis in an Iranian referral hospital.

    PubMed

    Mahmoudi, Shima; Pourakbari, Babak; Moradzadeh, Mina; Eshaghi, Hamid; Ramezani, Amitis; Haghi Ashtiani, Mohammad Taghi; Keshavarz Valian, Sepideh; Mamishi, Setareh

    2017-08-01

    Gastroenteritis is one of the leading cause of illnesses through the world, especially in developing countries.Salmonella and Shigella infections are considered as the main public health problems in children. The aim of this study was to detect the prevalence and antimicrobial susceptibility of Salmonella and Shigella spp. among children with gastroenteritis in an Iranian referral hospital. During April 2013 to April 2014, all medical records of children with gastroenteritis admitted to a pediatric medical center were evaluated. Positive stool cultures of children were evaluated and frequency of Salmonella and Shigella spp. and their antimicrobial susceptibility were detected. In this study, 676 patients with the mean age of 24.94 months were enrolled. Eighty-eight (42%) Salmonella spp., 85 (40%) Shigella spp., 33 (16%) E. coli and 5(2%) candida albicans were isolated from 211 positive stool cultures. Among 85 Shigella spp. isolates, S. sonnei, S. flexneri and other Shigella spp. were isolated from 39 (46%) isolates, 36(42%) and 10(12%), respectively. Among 88 isolated Salmonella spp., 36 (41%) isolates were Salmonella Serogroup D, 26 (30%) were Salmonella Serogroup B, 20 (23%) isolates were Salmonella Serogroup C and 6 (7%) were other Salmonella spp. isolates. Thirty-eight percent of Salmonella serogroup B were resistant to nalidixic acid, while higher frequency of nalidixic acid resistant was found in Salmonella serogroup C and Salmonella serogroup D. The higher frequency of ampicillin resistant was found in Shigella spp. than Salmonella spp. High frequency of cefotaxime resistant was seen in S. sonei and S. flexneri (77% and 56%, respectively), whereas more than 90% of Salmonella serogroup B, C and D were susceptible to this antibiotic. In conclusion, Shigella and Salmonella serogroups can be considered as important etiological agents of acute diarrhea in children. Since the prevalence of antibiotic resistance is increasing in recent years in Iran, further

  6. The Human Transcriptome During Nontyphoid Salmonella and HIV Coinfection Reveals Attenuated NFκB-Mediated Inflammation and Persistent Cell Cycle Disruption

    PubMed Central

    Schreiber, Fernanda; Lynn, David J.; Houston, Angela; Peters, Joanna; Mwafulirwa, Gershom; Finlay, Brett B.; Brinkman, Fiona S. L.; Hancock, Robert E. W.; Heyderman, Robert S.; Dougan, Gordon

    2011-01-01

    Background. Invasive nontyphoid Salmonella (iNTS) disease is common and severe in adults with human immunodeficiency virus (HIV) infection in Africa. We previously observed that ex vivo macrophages from HIV-infected subjects challenged with Salmonella Typhimurium exhibit dysregulated proinflammatory cytokine responses. Methods. We studied the transcriptional response in whole blood from HIV-positive patients during acute and convalescent iNTS disease compared to other invasive bacterial diseases, and to HIV-positive and -negative controls. Results. During iNTS disease, there was a remarkable lack of a coordinated inflammatory or innate immune signaling response. Few interferon γ (IFNγ)--induced genes or Toll-like receptor/transcription factor nuclear factor κB (TLR/NFκB) gene pathways were upregulated in expression. Ex vivo lipopolysacharide (LPS) or flagellin stimulation of whole blood, however, showed that convalescent iNTS subjects and controls were competent to mount prominent TLR/NFκB-associated patterns of mRNA expression. In contrast, HIV-positive patients with other invasive bacterial infections (Escherichia coli and Streptococcus pneumoniae) displayed a pronounced proinflammatory innate immune transcriptional response. There was also upregulated mRNA expression in cell cycle, DNA replication, translation and repair, and viral replication pathways during iNTS. These patterns persisted for up to 2 months into convalescence. Conclusions. Attenuation of NFκB-mediated inflammation and dysregulation of cell cycle and DNA-function gene pathway expression are key features of the interplay between iNTS and HIV. PMID:21917897

  7. Development of protective immunity to Salmonella, a mucosal pathogen with a systemic agenda

    PubMed Central

    Griffin, Amanda J.; McSorley, Stephen J.

    2014-01-01

    Salmonella infections can cause a range of intestinal and systemic disease in human and animal hosts. While some Salmonella serovars initiate a localized intestinal inflammatory response, others use the intestine as a portal of entry to initiate a systemic infection. Considerable progress has been made in understanding bacterial invasion and dissemination strategies and the nature of the Salmonella-specific immune response to oral infection. Innate and adaptive immunity are rapidly initiated after oral infection but these effector responses can also be hindered by bacterial evasion strategies. Furthermore, although Salmonella resides within intramacrophage phagosomes, recent studies highlight a surprising collaboration of CD4 Th1, Th17, and B cell responses in mediating resistance to Salmonella infection. PMID:21307847

  8. Molecular Characterization of Salmonella from Human and Animal Origins in Uganda

    PubMed Central

    Kagirita, Atek Atwiine; Owalla, Tonny Jimmy; Majalija, Samuel

    2017-01-01

    Sporadic Salmonella outbreaks with varying clinical presentations have been on the rise in various parts of Uganda. The sources of outbreaks and factors underlying the different clinical manifestation are curtailed by paucity of information on Salmonella genotypes and the associated virulence genes. This study reports molecular diversity of Salmonella enterica and their genetic virulence profiles among human and animal isolates. Characterization was done using Kauffman-White classification scheme and virulence genes analysis using multiplex PCR. Overall, 52% of the isolates belonged to serogroup D, 16% to serogroup E, 15% to poly F, H-S, and 12% to serogroup B. Serogroups A, C1, and C2 each consisted of only one isolate representing 5%. Virulence genes located on SPI-1 [spaN and sipB] and on SPI-2 [spiA] in addition to pagC and msgA were equally distributed in isolates obtained from all sources. Plasmid encoded virulence gene spvB was found in <5% of isolates from both human epidemic and animal origins whereas it occurred in 80% of clinical isolates. This study reveals that serogroup D is the predominant Salmonella serogroup in circulation and it is widely shared among animals and humans and calls for joint and coordinated surveillance for one health implementation in Uganda. PMID:28634597

  9. Preexisting Salmonella-specific immunity interferes with the subsequent development of immune responses against the Salmonella strains delivering H9N2 hemagglutinin.

    PubMed

    Hajam, Irshad Ahmed; Lee, John Hwa

    2017-06-01

    Recombinant Salmonella strains expressing foreign heterologous antigens have been extensively studied as promising live vaccine delivery vehicles. In this study, we constructed attenuated smooth (S-HA) and rough (R-HA) Salmonella strains expressing hemagglutinin (HA) of H9N2, a low pathogenic avian influenza A virus. We then investigated the HA-specific immune responses following oral immunization with either S-HA or R-HA strain in chicken model. We further examined the effects of the preexisting anti-Salmonella immunity on the subsequent elicitation of the HA and the Salmonella ompA specific immune responses. Our results showed that primary immunization with either the S-HA or the R-HA strain elicited comparable HA-specific immune responses and the responses were significantly (p<0.05) higher compared to the Salmonella vector control. When chickens were pre-immunized with the smooth Salmonella carrier alone and then vaccinated with either S-HA or R-HA strain 3, 6 and 9 weeks later, respectively, significant reductions were seen for HA-specific immune responses at week 6, a point which corresponded to the peak of the primary Salmonella-specific antibody responses. No reductions were seen at week 3 and 9, albeit, the HA-specific immune responses were boosted at week 9, a point which corresponded to the lowest primary Salmonella-specific antibody responses. The ompA recall responses remain refractory at week 3 and 6 following deliberate immunization with the carrier strain, but were significantly (p<0.05) increased at week 9 post-primary immunization. We conclude that preexisting anti-Salmonella immunity inhibits antigen-specific immune responses and this effect could be avoided by carefully selecting the time point when carrier-specific immune responses are relatively low. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Storing drinking-water in copper pots kills contaminating diarrhoeagenic bacteria.

    PubMed

    Sudha, V B Preethi; Ganesan, Sheeba; Pazhani, G P; Ramamurthy, T; Nair, G B; Venkatasubramanian, Padma

    2012-03-01

    Microbially-unsafe water is still a major concern in most developing countries. Although many water-purification methods exist, these are expensive and beyond the reach of many people, especially in rural areas. Ayurveda recommends the use of copper for storing drinking-water. Therefore, the objective of this study was to evaluate the effect of copper pot on microbially-contaminated drinking-water. The antibacterial effect of copper pot against important diarrhoeagenic bacteria, including Vibrio cholerae O1, Shigella flexneri 2a, enterotoxigenic Escherichia coli, enteropathogenic E. coli, Salmonella enterica Typhi, and Salmonella Paratyphi is reported. When drinking-water (pH 7.83 +/- 0.4; source: ground) was contaminated with 500 CFU/mL of the above bacteria and stored in copper pots for 16 hours at room temperature, no bacteria could be recovered on the culture medium. Recovery failed even after resuscitation in enrichment broth, followed by plating on selective media, indicating loss of culturability. This is the first report on the effect of copper on S. flexneri 2a, enteropathogenic E. coli, and Salmonella Paratyphi. After 16 hours, there was a slight increase in the pH of water from 7.83 to 7.93 in the copper pots while the other physicochemical parameters remained unchanged. Copper content (177 +/- 16 ppb) in water stored in copper pots was well within the permissible limits of the World Health Organization. Copper holds promise as a point-of-use solution for microbial purification of drinking-water, especially in developing countries.

  11. Salmonella persistence within the peripheral lymph nodes of cattle following experimental inoculation

    USDA-ARS?s Scientific Manuscript database

    Utilizing a transdermal method of inoculation developed in our laboratory, the duration of infection of Salmonella in the peripheral lymph nodes of steers was examined. Thirty-six Holstein steers (mean body weight of 137 kg) were inoculated with Salmonella Montevideo (day 0) on each lower leg and b...

  12. MALDI-TOF mass spectrometry provides high accuracy in identification of Salmonella at species level but is limited to type or subtype Salmonella serovars.

    PubMed

    Kang, Lin; Li, Nan; Li, Ping; Zhou, Yang; Gao, Shan; Gao, Hongwei; Xin, Wenwen; Wang, Jinglin

    2017-04-01

    Salmonella can cause global foodborne illnesses in humans and many animals. The current diagnostic gold standard used for detecting Salmonella infection is microbiological culture followed by serological confirmation tests. However, these methods are complicated and time-consuming. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis offers some advantages in rapid identification, for example, simple and fast sample preparation, fast and automated measurement, and robust and reliable identification up to genus and species levels, possibly even to the strain level. In this study, we established a reference database for species identification using whole-cell MALDI-TOF MS; the database consisted of 12 obtained main spectra of the Salmonella culture collection strains belonged to seven serotypes. Eighty-two clinical isolates of Salmonella were identified using established database, and partial 16S rDNA gene sequencing and serological method were used as comparison. We found that MALDI-TOF mass spectrometry provided high accuracy in identification of Salmonella at species level but was limited to type or subtype Salmonella serovars. We also tried to find serovar-specific biomarkers and failed. Our study demonstrated that (a) MALDI-TOF MS was suitable for identification of Salmonella at species level with high accuracy and (b) that MALDI-TOF MS method presented in this study was not useful for serovar assignment of Salmonella currently, because of its low matching with serological method and (c) MALDI-TOF MS method presented in this study was not suitable to subtype S. typhimurium because of its low discriminatory ability.

  13. Salmonella Infections in Childhood.

    PubMed

    Bula-Rudas, Fernando J; Rathore, Mobeen H; Maraqa, Nizar F

    2015-08-01

    Salmonella are gram-negative bacilli within the family Enterobacteriaceae. They are the cause of significant morbidity and mortality worldwide. Animals (pets) are an important reservoir for nontyphoidal Salmonella, whereas humans are the only natural host and reservoir for Salmonella Typhi. Salmonella infections are a major cause of gastroenteritis worldwide. They account for an estimated 2.8 billion cases of diarrheal disease each year. The transmission of Salmonella is frequently associated with the consumption of contaminated water and food of animal origin, and it is facilitated by conditions of poor hygiene. Nontyphoidal Salmonella infections have a worldwide distribution, whereas most typhoidal Salmonella infections in the United States are acquired abroad. In the United States, Salmonella is a common agent for food-borne–associated infections. Several outbreaks have been identified and are most commonly associated with agricultural products. Nontyphoidal Salmonella infection is usually characterized by a self-limited gastroenteritis in immunocompetent hosts in industrialized countries, but it may also cause invasive disease in vulnerable individuals (eg, children less than 1 year of age, immunocompromised). Antibiotic treatment is not recommended for treatment of mild to moderate gastroenteritis by nontyphoidal Salmonella in immunocompetent adults or children more than 1 year of age. Antibiotic treatment is recommended for nontyphoidal Salmonella infections in infants less than 3 months of age, because they are at higher risk for bacteremia and extraintestinal complications. Typhoid (enteric) fever and its potential complications have a significant impact on children, especially those who live in developing countries. Antibiotic treatment of typhoid fever has become challenging because of the emergence of Salmonella Typhi strains that are resistant to classically used first-line agents: ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol. The

  14. Serotype determination of Salmonella by xTAG assay.

    PubMed

    Zheng, Zhibei; Zheng, Wei; Wang, Haoqiu; Pan, Jincao; Pu, Xiaoying

    2017-10-01

    Currently, no protocols or commercial kits are available to determine the serotypes of Salmonella by using Luminex MAGPIX®. In this study, an xTAG assay for serotype determination of Salmonella suitable for Luminex MAGPIX® is described and 228 Salmonella isolates were serotype determined by this xTAG assay. The xTAG assay consists of two steps: 1) Multiplex PCR to amplify simultaneously O, H and Vi antigen genes of Salmonella, and 2) Magplex-TAG™ microsphere hybridization to identify accurately the specific PCR products of different antigens. Compared with the serotyping results of traditional serum agglutination test, the sensitivity and specificity of the xTAG assay were 95.1% and 100%, respectively. The agreement rate of these two assays was 95.2%. Compared with Luminex xMAP® Salmonella Serotyping Assay (SSA) kit, the advantages of this xTAG assay are: First, the magnetic beads make it applicable to both the Luminex®100/200™ and MAGPIX® systems. Second, only primers rather than both primers and probes are needed in the xTAG assay, and the process of coupling antigen-specific oligonucleotide probes to beads is circumvented, which make the xTAG assay convenient to be utilized by other laboratories. The xTAG assay may serve as a rapid alternative or complementary method for traditional Salmonella serotyping tests, especially for laboratories that utilize the MAGPIX® systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Potential Regrowth and Recolonization of Salmonellae and Indicators in Biosolids and Biosolid-Amended Soil

    PubMed Central

    Zaleski, Kathleen J.; Josephson, Karen L.; Gerba, Charles P.; Pepper, Ian L.

    2005-01-01

    This study evaluated the potential for conversion of Class B to Class A biosolids with respect to salmonellae and fecal coliforms during solar drying in concrete lined drying beds. Anaerobically (8% solids) and aerobically (2% solids) digested Class B biosolids were pumped into field-scale drying beds, and microbial populations and environmental conditions were monitored. Numbers of fecal coliforms and salmonellae decreased as temperature and rate of desiccation increased. After 3 to 4 weeks, Class A requirements were achieved in both biosolids for the pathogens and the indicators. However, following rainfall events, significant increase in numbers was observed for both fecal coliforms and salmonellae. In laboratory studies, regrowth of fecal coliforms was observed in both biosolids and biosolid-amended soil, but the regrowth of salmonellae observed in the concrete-lined drying beds did not occur. These laboratory studies demonstrated that pathogens decreased in numbers when soil was amended with biosolids. Based on serotyping, the increased numbers of salmonellae seen in the concrete lined drying beds following rainfall events was most likely due to recolonization due to contamination from fecal matter introduced by animals and not from regrowth of salmonellae indigenous to biosolids. Overall, we conclude that the use of concrete-lined beds created a situation in which moisture added as rainfall accumulated in the beds, promoting the growth of fecal coliforms and salmonellae added from external sources. PMID:16000779

  16. Screening of antibacterial potentials of some medicinal plants from Melghat forest in India.

    PubMed

    Tambekar, D H; Khante, B S; Chandak, B R; Titare, A S; Boralkar, S S; Aghadte, S N

    2009-05-07

    Cyperus rotundus, Caesalpinia bonducella, Tinospora cordifolia, Gardenia gummifera, Ailanthus excelsa, Acacia arabica, Embelia ribes and Ventilago maderspatana from Melghat forest were screened for their antibacterial potential against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Proteus vulgaris, Salmonella typhi, Shigella flexneri, Salmonella paratyphi, Salmonella typhimurium, Pseudomonas aeruginosa, Enterobacter aerogenes by disc diffusion method. Out of these medicinal plants Caesalpinia bonducella, Gardenia gummifera and Acacia arabica showed remarkable antibacterial potential. The phytochemical analysis had showed the presence of Cardiac glycosides in all extracts (aqueous, acetone, ethanol and methanol) of Acacia arabica, Gardenia gummifera and ethanol, methanol extracts of Caesalpinia bonducella. Flavonoids were present in Gardenia gummifera, Ailanthus excelsa and acetone, methanol extracts of Acacia Arabica. Tannins and phenolic were present in Cyperus rotundus, Embelia ribes, and organic extracts of Ventilago maderspatana.

  17. Inactivation of Salmonella Senftenberg, Salmonella Typhimurium and Salmonella Tennessee in peanut butter by 915 MHz microwave heating.

    PubMed

    Song, Won-Jae; Kang, Dong-Hyun

    2016-02-01

    This study evaluated the efficacy of a 915 MHz microwave with 3 different levels to inactivate 3 serovars of Salmonella in peanut butter. Peanut butter inoculated with Salmonella enterica serovar Senftenberg, S. enterica serovar Typhimurium and S. enterica serovar Tennessee were treated with a 915 MHz microwave with 2, 4 and 6 kW and acid and peroxide values and color changes were determined after 5 min of microwave heating. Salmonella populations were reduced with increasing treatment time and treatment power. Six kW 915 MHz microwave treatment for 5 min reduced these three Salmonella serovars by 3.24-4.26 log CFU/g. Four and two kW 915 MHz microwave processing for 5 min reduced these Salmonella serovars by 1.14-1.48 and 0.15-0.42 log CFU/g, respectively. Microwave treatment did not affect acid, peroxide, or color values of peanut butter. These results demonstrate that 915 MHz microwave processing can be used as a control method for reducing Salmonella in peanut butter without producing quality deterioration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The relationship between the numbers of Salmonella Enteritidis, Salmonella Heidelberg, or Salmonella Hadar colonizing reproductive tissues of experimentally infected laying hens and deposition inside eggs.

    PubMed

    Gast, Richard K; Guraya, Rupa; Guard, Jean; Holt, Peter S

    2011-06-01

    Contamination of eggs by Salmonella Enteritidis has been a prominent cause of human illness for several decades and is the focus of a recently implemented national regulatory plan for egg-producing flocks in the United States. Salmonella Heidelberg has also been identified as an egg-transmitted pathogen. The deposition of Salmonella strains inside eggs is a consequence of reproductive tract colonization in infected laying hens, but prior research has not determined the relationship between the numbers of Salmonella that colonize reproductive organs and the associated frequency of egg contamination. In the present study, groups of laying hens in two trials were experimentally infected with large oral doses of strains of Salmonella Enteritidis (phage type 13a), Salmonella Heidelberg, or Salmonella Hadar. Reproductive tissues of selected hens were cultured to detect and enumerate Salmonella at 5 days postinoculation, and the interior contents of eggs laid between 6 and 25 days postinoculation were tested for contamination. Significantly more internally contaminated eggs were laid by hens infected with Salmonella Enteritidis (3.58%) than with strains of either Salmonella Heidelberg (0.47%) or Salmonella Hadar (0%). However, no significant differences were observed between Salmonella strains in either isolation frequency or the number of colony-forming units (CFU) isolated from ovaries or oviducts. Salmonella isolation frequencies ranged from 20.8% to 41.7% for ovaries and from 8.3% to 33.3% for oviducts. Mean Salmonella colonization levels ranged from 0.10 to 0.51 log CFU/g for ovaries and from 0.25 to 0.46 log CFU/g for oviducts. Although parallel rank-orders were observed for Salmonella enumeration (in both ovaries and oviducts) and egg contamination frequency, a statistically significant relationship could not be established between these two parameters of infection.

  19. Impact of litter Salmonella status during feed withdrawal on Salmonella recovery from the broiler crop and ceca.

    PubMed

    Buhr, R J; Bourassa, D V; Hinton, A; Fairchild, B D; Ritz, C W

    2017-12-01

    Research was conducted to evaluate the impact of litter Salmonella status during feed withdrawal on Salmonella recovery from the crop and ceca following feed withdrawal. In 4 experiments, pens of broilers in separate rooms were challenged with marker strains of either Salmonella Montevideo or Salmonella Heidelberg. Three d post challenge, a 12-hour feed withdrawal was initiated, and one pen of broilers was switched between rooms for each Salmonella serotype. In experiments 3 and 4, non-challenged broilers also were added to the Salmonella challenge pens. The litter of each pen was sampled before and after the feed withdrawal period, the broilers euthanized, and the crop and ceca aseptically removed for Salmonella isolation. Results showed that only the challenge Salmonella serotype was recovered from the litter in challenge pens where broilers were not moved, while both Salmonella serotypes were recovered from the litter of the switched pens. Salmonella was recovered from 56/80 crops and from 66/80 ceca of challenged broilers that remained in the challenge pens. The challenge Salmonella serotype was recovered from 50/80 crops and from 60/80 ceca, and the switched pens' litter Salmonella serotype was recovered from 19/80 crops but not from the ceca in broilers challenged with Salmonella and then switched between pens. For experiments 3 and 4, Salmonella was recovered from 19/40 crops and from only 2/40 ceca from the non-challenged broilers placed into the Salmonella challenge pens. The results from broilers that were switched between Salmonella challenge pens indicate that the recovery of Salmonella from the crop of broilers following feed withdrawal (on Salmonella-contaminated litter) appears to depend mainly on the initial challenge Salmonella (62%) and less on the litter Salmonella (24%) status during the feed withdrawal period. In contrast, only the initial challenge Salmonella was recovered from the ceca (79%) from broilers that remained in challenge pens or

  20. A mutation in the NLRC5 promoter limits NF-κB signaling after Salmonella Enteritidis infection in the spleen of young chickens.

    PubMed

    Chang, Guobin; Liu, Xiangping; Ma, Teng; Xu, Lu; Wang, Hongzhi; Li, Zhiteng; Guo, Xiaomin; Xu, Qi; Chen, Guohong

    2015-09-01

    To date, the functions of the NLRC5 in chickens remain undefined. In the current study, chicken NLRC5 was cloned and an A1017G mutation was detected in its promoter region. The relative expression levels of the NLRC5 and key NF-κB pathway genes, IKKα, IKKβ, NF-κB, IL-6, IL-1β and IFN-γ, in the spleens of wild and mutant type birds, AA and GG, were determined using FQ-PCR at 7 day post-infection (DPI) with Salmonella Enteritidis. Additionally, the bacterial burden in the caecum and various immune response parameters were measured to evaluate immune responses. All of the examined immune response parameters were significantly different between the AA chickens and the GG chickens. Specifically, the mRNA expression levels of IKKα, NF-κB, IL-6, IL-1β and IFN-γ were higher in AA chickens than those in GG chickens, while the mRNA expression levels of NLRC5 were lower in AA chickens than those in GG chickens (P<0.05). Moreover, the mRNA expression levels of TLR4 and MyD88 were not affected in either group. Collectively, considering former NLRC5 functional study in vitro, the wild genotype birds presented with better resistance to Salmonella Enteritidis through the actions of the NLRC5 and subsequent inhibition of the NF-κB pathway in chickens. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. TLR7 agonist in combination with Salmonella as an effective antimelanoma immunotherapy.

    PubMed

    Vola, Magdalena; Mónaco, Amy; Bascuas, Thais; Rimsky, Geraldine; Agorio, Caroline Isabel; Chabalgoity, José Alejandro; Moreno, María

    2018-03-22

    We evaluated a novel approach combining the use of attenuated Salmonella immunotherapy with a Toll-like receptor agonist, imiquimod, in B16F1 melanoma-bearing mice. B16F1 melanoma-bearing mice were daily treated with topical imiquimod in combination with one intratumoral injection of attenuated Salmonella enterica serovar Typhimurium LVR01. The combined therapy resulted in retarded tumor growth and prolonged survival. Combination treatment led to an enhancement in the expression of pro-inflammatory cytokines and chemokines in the tumor microenvironment, with a Th1-skewed profile, resulting in a broad antitumor response. The induced immunity was effective in controlling the occurrence of metastasis. Salmonella LVR01 immunotherapy in combination with imiquimod is a novel approach that could be considered as an effective antimelanoma therapy.

  2. Bovine salmonellosis in northeast of Iran: frequency, genetic fingerprinting and antimicrobial resistance patterns of Salmonella spp.

    PubMed

    Halimi, Hessam A; Seifi, Hesam A; Rad, Mehrnaz

    2014-01-01

    To evaluate serovar and antimicrobial resistance patterns of Salmonella spp isolated from healthy, diseased and necropsied cows and calves in this observational study. Nineteen isolates recovered from feces and tissues of salmonellosis-affected animals of two commercial farms in north-east of Iran. In second part of the study, the two farms were sampled 4 times with an interval of 2 month. The samples included calves' feces, adult cows' feces, feeds, water, milk filters, and milk fed to calves. Five Salmonella were isolated from 332 fecal samples collected from calves and peri-parturient cows. No Salmonella was recovered from water, feed, milk filers and milk fed to calves. Salmonella Typhimurium was the most frequently isolate among all sero-groups. S. Dublin was only accounted for 8% (two out of 24) of isolates. Isolated Salmonella strains were used for the ERIC PCR DNA fingerprinting assay. Our results grouped Salmonella isolates into 3 clusters, suggesting that specific genotypes were responsible for each sero-group of Salmonella. The results also revealed diversity among Salmonella isolates in cluster III (sero-group B). Eighteen out of 19 Salmonella spp. were resistant to oxytetracycline. Five isolates out of 19 showed more than one drug resistance. Multi-drug resistance was seen only among Salmonella Typhimurium isolates. Enrofloxacin was the most susceptible antibiotic against all isolates in this study. The emergence of multiple antibiotic-resistant strains of Salmonella Typhimurium should be of great concern to the public. No correlation between ERIC fingerprinting and resistance patterns of Salmonella isolates was found, which indicates resistance to antimicrobial agents was not related to specific genetic background. Copyright © 2014 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  3. Salmonella Infections (For Parents)

    MedlinePlus

    ... iguanas). Another, rarer form — called Salmonella typhi — causes typhoid fever . What Is Salmonella Infection? Salmonella infection, or salmonellosis , ... More on this topic for: Parents Kids Teens Typhoid Fever E. Coli Stool Test: Bacteria Culture Food Safety ...

  4. Frequency and correlation of some enteric indicator bacteria and Salmonella in ready-to-eat raw vegetable salads from Mexican restaurants.

    PubMed

    Gómez-Aldapa, Carlos A; Rangel-Vargas, Esmeralda; Castro-Rosas, Javier

    2013-08-01

    Data about Salmonella presence in ready-to-eat raw vegetable salads (REVS) consumed in restaurants or sold as REVS in México is not available. The objective of the study was to measure the frequency of coliform bacteria (CB), fecal coliform (FC), Escherichia coli, and Salmonella in REVS from different types of restaurants and determine the correlations of CB, FC, and E. coli versus Salmonella from frequencies and concentration data. The REVS were purchased from 3 types of restaurants: national chain restaurants (A1 , A2 ); local restaurants (B1 , B2 ); and small restaurants in local markets (C1 , C2 , C3 ). Two restaurants for each A and B, and 3 for C, were included. Forty REVS were purchased at each A and B restaurant, and 20 at each C restaurant. CB were tested by plate count using violet red bile agar, FC and E. coli were detected by the most probable number method and E. coli confirmed using IMViC test; conventional method of culture was used for Salmonella. Of 220 analyzed samples, 100% had CB, 95.5% had FC, 83.2% had E. coli, and 6.8% had Salmonella. E. coli frequency was equal to or exceeded 75% in all the cases: 75% (A1 , C1 , C2 ), 80% (B2 ), 85% (B1 , C3 ), and 100% (A2 ). Salmonella frequency was equal to or exceeded 2.5% in all cases: 2.5% (A1 ), 5% (B2 , C2 ), 7.5% (B1 ), and 10% (A2 , C1 , C3 ). No correlation was observed between FC or E. coli versus Salmonella in the analyzed salads. All the tested salads were of poor quality microbiologically, and microbiological quality did not differ between the restaurants types. © 2013 Institute of Food Technologists®

  5. Nano-materials for use in sensing of salmonella infections: Recent advances.

    PubMed

    Pashazadeh, Paria; Mokhtarzadeh, Ahad; Hasanzadeh, Mohammad; Hejazi, Maryam; Hashemi, Maryam; de la Guardia, Miguel

    2017-01-15

    Salmonella infectious diseases spreading every day through food have become a life-threatening problem for millions of people and growing menace to society. Health expert's estimate that the yearly cost of all the food borne diseases is approximately $5-6 billion. Traditional methodologies for salmonella analysis provide high reliability and very low limits of detection. Among them immunoassays and Nucleic acid-based assays provide results within 24h, but they are expensive, tedious and time consuming. So, there is an urgent need for development of rapid, robust and cost-effective alternative technologies for real-time monitoring of salmonella. Several biosensors have been designed and commercialized for detection of this pathogen in food and water. In this overview, we have updated the literature concerning novel biosensing methods such as various optical and electrochemical biosensors and newly developed nano- and micro-scaled and aptamers based biosensors for detection of salmonella pathogen. Furthermore, attention has been focused on the principal concepts, applications, and examples that have been achieved up to diagnose salmonella. In addition, commercial biosensors and foreseeable future trends for onsite detecting salmonella have been summarized. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A defective mutant of Salmonella enterica Serovar Gallinarum in cobalamin biosynthesis is avirulent in chickens

    PubMed Central

    de Paiva, Jacqueline Boldrin; Penha Filho, Rafael Antonio Casarin; Arguello, Yuli Melisa Sierra; Berchieri Junior, Ângelo; Lemos, Manuel Victor Franco; Barrow, Paul A.

    2009-01-01

    Salmonella enterica serovar Gallinarum (SG) is a fowl typhoid agent in chickens and is a severe disease with worldwide economic impact as its mortality may reach up to 80%. It is one of a small group of serovars that typically produces typhoid-like infections in a narrow range of host species and which therefore represents a good model for human typhoid. The survival mechanisms are not considered to be virulent mechanisms but are essential for the life of the bacterium. Mutants of Salmonella Gallinarum containing defective genes, related to cobalamin biosynthesis and which Salmonella spp. has to be produced to survive when it is in an anaerobic environment, were produced in this study. Salmonella Gallinarum is an intracellular parasite. Therefore, this study could provide information about whether vitamin B12 biosynthesis might be essential to its survival in the host. The results showed that the singular deletion in cbiA or cobS genes did not interfere in the life of Salmonella Gallinarum in the host, perhaps because single deletion is not enough to impede vitamin B12 biosynthesis. It was noticed that diluted SG mutants with single deletion produced higher mortality than the wild strain of SG. When double mutation was carried out, the Salmonella Gallinarum mutant was unable to provoke mortality in susceptible chickens. This work showed that B12 biosynthesis is a very important step in the metabolism of Salmonella Gallinarum during the infection of the chickens. Further research on bacterium physiology should be carried out to elucidate the events described in this research and to assess the mutant as a vaccine strain. PMID:24031393

  7. Salmonella Typhimurium and Salmonella Sofia: Growth in and Persistence on Eggs under Production and Retail Conditions

    PubMed Central

    McAuley, Catherine M.; Duffy, Lesley L.; Subasinghe, Nela; Hogg, Geoff; Coventry, John; Fegan, Narelle

    2015-01-01

    Salmonellosis in Australia has been linked to eggs and egg products with specific serotypes associated with outbreaks. We compared attachment to and survival on egg shells and growth in eggs of two Salmonella serotypes, an egg outbreak associated Salmonella Typhimurium and a non-egg-associated Salmonella enterica ssp. II 1,4,12,27:b:[e,n,x] (S. Sofia). Experiments were conducted at combinations of 4, 15, 22, 37 and 42°C. No significant differences occurred between the serotypes in maximum growth rates, which were significantly greater (P < 0.001) in egg yolk (0.427 log10 CFU/mL/h) compared to whole egg (0.312 log10 CFU/mL/h) and egg white (0.029 log10 CFU/mL/h). Attachment to egg shells varied by time (1 or 20 min) and temperature (4, 22 and 42°C), with S. Typhimurium isolates attaching at higher levels (P < 0.05) than S. Sofia after 1 min at 4°C and S. Typhimurium ATCC 14028 attaching at higher (P < 0.05) levels at 22°C. Survival on egg shells was not significantly different across isolates. Salmonella serotypes behaved similarly regarding growth in egg contents, attachment to egg shells and survival on eggs, indicating that other factors more likely contributed to reasons for S. Typhimurium being implicated in multiple egg-associated outbreaks. PMID:26539536

  8. Infection with Salmonella enterica Serovar Typhimurium Leads to Increased Proportions of F4/80+ Red Pulp Macrophages and Decreased Proportions of B and T Lymphocytes in the Spleen.

    PubMed

    Rosche, Kristin L; Aljasham, Alanoud T; Kipfer, James N; Piatkowski, Bryan T; Konjufca, Vjollca

    2015-01-01

    Infection of mice with Salmonella enterica serovar Typhimurium (Salmonella) causes systemic inflammatory disease and enlargement of the spleen (splenomegaly). Splenomegaly has been attributed to a general increase in the numbers of phagocytes, lymphocytes, as well as to the expansion of immature CD71+Ter119+ reticulocytes. The spleen is important for recycling senescent red blood cells (RBCs) and for the capture and eradication of blood-borne pathogens. Conservation of splenic tissue architecture, comprised of the white pulp (WP), marginal zone (MZ), and red pulp (RP) is essential for initiation of adaptive immune responses to captured pathogens. Using flow cytometry and four color immunofluorescence microscopy (IFM), we show that Salmonella-induced splenomegaly is characterized by drastic alterations of the splenic tissue architecture and cell population proportions, as well as in situ cell distributions. A major cause of splenomegaly appears to be the significant increase in immature RBC precursors and F4/80+ macrophages that are important for recycling of heme-associated iron. In contrast, the proportions of B220+, CD4+ and CD8+ lymphocytes, as well as MZ MOMA+ macrophages decrease significantly as infection progresses. Spleen tissue sections show visible tears and significantly altered tissue architecture with F4/80+ macrophages and RBCs expanding beyond the RP and taking over most of the spleen tissue. Additionally, F4/80+ macrophages actively phagocytose not only RBCs, but also lymphocytes, indicating that they may contribute to declining lymphocyte proportions during Salmonella infection. Understanding how these alterations of spleen microarchitecture impact the generation of adaptive immune responses to Salmonella has implications for understanding Salmonella pathogenesis and for the design of more effective Salmonella-based vaccines.

  9. Salmonella risk to consumers via pork is related to the Salmonella prevalence in pig feed.

    PubMed

    Rönnqvist, M; Välttilä, V; Ranta, J; Tuominen, P

    2018-05-01

    Pigs are an important source of human infections with Salmonella, one of the most common causes of sporadic gastrointestinal infections and foodborne outbreaks in the European region. Feed has been estimated to be a significant source of Salmonella in piggeries in countries of a low Salmonella prevalence. To estimate Salmonella risk to consumers via the pork production chain, including feed production, a quantitative risk assessment model was constructed. The Salmonella prevalence in feeds and in animals was estimated to be generally low in Finland, but the relative importance of feed as a source of Salmonella in pigs was estimated as potentially high. Discontinuation of the present strict Salmonella control could increase the risk of Salmonella in slaughter pigs and consequent infections in consumers. The increased use of low risk and controlled feed ingredients could result in a consistently lower residual contamination in pigs and help the tracing and control of the sources of infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. THE DELTA UVRB MUTATIONS IN THE AMES STRAINS OF SALMONELLA SPAN 15-119 GENES

    EPA Science Inventory

    Abstract

    The 4uvrB mutationesent in strains of Salmonella enterica Typhirnurium used commonly in the Salmonella (Ames) mutagenicity assay were isolated independently on separate occasions: chl-1005 (bio uvrBgal) for the hisG46-containing strains TA1535 and TA100; chl- 10...

  11. Brucella lipopolysaccharide reinforced Salmonella delivering Brucella immunogens protects mice against virulent challenge.

    PubMed

    Lalsiamthara, Jonathan; Lee, John Hwa

    2017-06-01

    Intracellular pathogen Salmonella exhibits natural infection broadly analogous to Brucella, this phenomenon makes Salmonella a pragmatic choice for an anti-Brucella vaccine delivery platform. In this study we developed and formulated a combination of four attenuated Salmonella Typhimurium live vector strains delivering heterologous Brucella antigens (rBs), namely lumazine synthase, proline racemase subunit A, lipoprotein outer membrane protein-19, and Cu-Zn superoxide dismutase. With an aim to develop a cross-protecting vaccine, Brucella pan-species conserved rBs were selected. The present study compared the efficacy of smooth and rough variants of Salmonella delivery vector and also evaluated the inclusion of purified Brucella lipopolysaccharide (LPS) in the formulation. Immunization of SPF-BALB/c mice with the vaccine combinations significantly (P≤0.05) reduced splenic wild-type Brucella abortus 544 colonization as compared to non-immunized mice as well as Salmonella only immunized mice. Increased induction of Brucella specific-IgG, sIgA production, and antigen-specific splenocyte proliferative responses were observed in the mice immunized with the formulations as compared to naïve or vector only immunized mice. Modulatory effects of rB and LPS on production of interleukin (IL)-4, IL-12, and interferon-γ were detected in splenocytes of mice immunized with the formulation. Rough Salmonella variant in combination with LPS could further enhance the efficacy of the delivery when applied intraperitoneally. Taken together, it is compelling that Brucella LPS-augmented Salmonella vector delivering immunogenic Brucella proteins may be more suitable than the current non-ideal live Brucella abortus vaccine. The vaccine system also provides a basis for the development of cross-protecting vaccine capable of preventing multispecies brucellosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Control of Salmonella enterica serovar Enteritidis in laying hens by inactivated Salmonella Enteritidis vaccines

    PubMed Central

    de Freitas Neto, Oliveiro Caetano; Mesquita, Aline Lopes; de Paiva, Jaqueline Boldrin; Zotesso, Fábio; Berchieri Júnior, Angelo

    2008-01-01

    Salmonella Enteritidis is one of the agents that is responsible for outbreaks of human foodborne salmonellosis caused by Salmonella Enteritidis and is generally associated with the consumption of poultry products. Inactivated Salmonella Enteritidis cell vaccine is one of the available methods to control Salmonella Enteritidis in breeders and laying hens, however results in terms of efficacy vary. This vaccine has never been tested in Brazil, therefore, the present work was carried out to assess three commercial inactivated Salmonella Enteritidis vaccines allowed in Brazil. Four hundred white light variety commercial laying hens were obtained at one-day-of age. At eight weeks old, the birds were divided into four groups with one hundred animals each. Birds from three groups (V1, V2 and V3) received different intramuscular vaccines, followed by a booster dose at 16 weeks of age. Birds from another group (CG) were not vaccinated. When the laying hens were 20, 25 and 31 weeks old, 13 from each group were transferred to another room and were challenged by inoculating 2 mL neat culture of Salmonella Enteritidis. On the second day after each challenge, the caecal contents, spleen, liver and ovary of three birds from each group were analyzed for the presence of Salmonella Enteritidis. Twice a week a cloacal swab of each bird was taken and all eggs laid were examined for the presence of Salmonella Enteritidis. After four consecutive negative cloacal swabs in all the groups, the birds were sacrificed so as to examine the liver, caecal contents and ovaries. Overall, the inactivated vaccine used in group V3 reduced Salmonella Enteritidis in the feces and eggs. A very small amount of Salmonella was found in the spleen, liver, ovary and caeca of the birds in the four groups during the whole experiment. In general, inactivated Salmonella Enteritidis vaccines was able to decrease the presence of Salmonella Enteritidis in the birds and in the eggs as well. Nevertheless, they must

  13. Lactobacillus acidophilus attenuates Salmonella-induced intestinal inflammation via TGF-β signaling.

    PubMed

    Huang, I-Fei; Lin, I-Chun; Liu, Pei-Feng; Cheng, Ming-Fang; Liu, Yen-Chen; Hsieh, Yao-Dung; Chen, Jih-Jung; Chen, Chun-Lin; Chang, Hsueh-Wei; Shu, Chih-Wen

    2015-10-07

    Salmonella is a common intestinal pathogen that causes acute and chronic inflammatory response. Probiotics reduce inflammatory cytokine production and serve as beneficial commensal microorganisms in the human gastrointestinal tract. TGF-β (transforming growth factor β)/SMAD and NF-κB signaling play important roles in inflammation in intestinal cells. However, the involvement of the signaling in regulating inflammation between Salmonella and probiotics is not fully understood. L. acidophilus and prebiotic inulin were used to treat human intestinal Caco-2 cells prior to infection with Salmonella. The cells were harvested to examine the cytokines and MIR21 expression with immunoblotting and real-time PCR. NF-κB and SMAD3/4 reporter vectors were transfected into cells to monitor inflammation and TGF-β1 signaling, respectively. In this study, we showed that the probiotic L. acidophilus decreased Salmonella-induced NF-κB activation in human intestinal Caco-2 cells. Expression of the inflammatory cytokines, TNF-α and IL-8, in L. acidophilus-pretreated cells was also significantly lower than that in cells infected with Salmonella alone. Moreover, TGF-β1 and MIR21 expression was elevated in cells pretreated with L. acidophilus or synbiotic, a combination of inulin and L. acidophilus, compared to that in untreated cells or cells infected with S. typhimurium alone. By contrast, expression of SMAD7, a target of MIR21, was accordingly reduced in cells treated with L. acidophilus or synbiotics. Consistent with TGF-β1/MIR21 and SMAD7 expression, SMAD3/4 transcriptional activity was significantly higher in the cells treated with L. acidophilus or synbiotics. Furthermore, TGF-β1 antibody antagonized the SMAD3/4 and NF-κB transcriptional activity modulated by L. acidophilus in intestinal cells. Our results suggest that the TGF-β1/MIR21 signaling pathway may be involved in the suppressive effects of L. acidophilus on inflammation caused by S. typhimurium in intestinal

  14. Use of Attenuated but Metabolically Competent Salmonella as a Probiotic To Prevent or Treat Salmonella Infection

    PubMed Central

    Sabag-Daigle, Anice; Blunk, Henry M.; Gonzalez, Juan F.; Steidley, Brandi L.; Boyaka, Prosper N.

    2016-01-01

    Salmonella enterica is among the most burdensome of foodborne disease agents. There are over 2,600 serovars that cause a range of disease manifestations ranging from enterocolitis to typhoid fever. While there are two vaccines in use in humans to protect against typhoid fever, there are none that prevent enterocolitis. If vaccines preventing enterocolitis were to be developed, they would likely protect against only one or a few serovars. In this report, we tested the hypothesis that probiotic organisms could compete for the preferred nutrient sources of Salmonella and thus prevent or treat infection. To this end, we added the fra locus, which encodes a utilization pathway for the Salmonella-specific nutrient source fructose-asparagine (F-Asn), to the probiotic bacterium Escherichia coli Nissle 1917 (Nissle) to increase its ability to compete with Salmonella in mouse models. We also tested a metabolically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its ability to compete with wild-type Salmonella. The modified Nissle strain became more virulent and less able to protect against Salmonella in some instances. On the other hand, the modified Salmonella strain was safe and effective in preventing infection with wild-type Salmonella. While we tested for efficacy only against Salmonella Typhimurium, the modified Salmonella strain may be able to compete metabolically with most, if not all, Salmonella serovars, representing a novel approach to control of this pathogen. PMID:27185789

  15. Characterization and Antimicrobial Resistance of Salmonella Typhimurium Isolates from Clinically Diseased Pigs in Korea.

    PubMed

    Oh, Sang-Ik; Kim, Jong Wan; Chae, Myeongju; Jung, Ji-A; So, Byungjae; Kim, Bumseok; Kim, Ha-Young

    2016-11-01

    This study investigated the prevalence of Salmonella enterica serovar and antimicrobial resistance in Salmonella Typhimurium isolates from clinically diseased pigs collected from 2008 to 2014 in Korea. Isolates were also characterized according to the presence of antimicrobial resistance genes and pulsed-field gel electrophoresis patterns. Among 94 Salmonella isolates, 81 (86.2%) were identified as being of the Salmonella Typhimurium serotype, followed by Salmonella Derby (6 of 94, 6.4%), Salmonella 4,[5],12:i:- (4 of 94, 4.3%), Salmonella Enteritidis (2 of 94, 2.1%), and Salmonella Brandenburg (1 of 94, 1.1%). The majority of Salmonella Typhimurium isolates were resistant to tetracycline (92.6%), followed by streptomycin (88.9%) and ampicillin (80.2%). Overall, 96.3% of Salmonella Typhimurium isolates showed multidrug-resistant phenotypes and commonly harbored the resistance genes bla TEM (64.9%), flo (32.8%), aadA (55.3%), strA (58.5%), strB (58.5%), sulII (53.2%), and tetA (61.7%). The pulsed-field gel electrophoresis analysis of 45 Salmonella Typhimurium isolates from individual farms revealed 27 distinct patterns that formed one major and two minor clusters in the dendrogram analysis, suggesting that most of the isolates (91.1%) from diseased pigs were genetically related. These findings can assist veterinarians in the selection of appropriate antimicrobial agents to combat Salmonella Typhimurium infections in pigs. Furthermore, they highlight the importance of continuous surveillance of antimicrobial resistance and genetic status in Salmonella Typhimurium for the detection of emerging resistance trends.

  16. Application of genetically engineered Salmonella typhimurium for interferon-gamma-induced therapy against melanoma.

    PubMed

    Yoon, Wonsuck; Park, Yoo Chang; Kim, Jinseok; Chae, Yang Seok; Byeon, Jung Hye; Min, Sang-Hyun; Park, Sungha; Yoo, Young; Park, Yong Keun; Kim, Byeong Mo

    2017-01-01

    Salmonella have been experimentally used as anti-cancer agents, because they show selective growth in tumours. In this study, we genetically modified attenuated Salmonella typhimurium to express and secrete interferon-gamma (IFN-γ) as a tumouricidal agent to enhance the therapeutic efficacy of Salmonella. IFN-γ was fused to the N-terminal region (residues 1-160) of SipB (SipB160) for secretion from bacterial cells. Attenuated S. typhimurium expressing recombinant IFN-γ (S. typhimurium (IFN-γ)) invaded the melanoma cells and induced cytotoxicity. Subcutaneous administration of S. typhimurium (IFN-γ) also efficiently inhibited tumour growth and prolonged the survival of C57BL/6 mice bearing B16F10 melanoma compared with administration of phosphate-buffered saline (PBS), unmodified S. typhimurium or S. typhimurium expressing empty vector (S. typhimurium [Vec]) in a natural killer (NK) cell-dependent manner. Moreover, genetically modified Salmonella, including S. typhimurium (IFN-γ), showed little toxicity to normal tissues with no observable adverse effects. However, S. typhimurium (IFN-γ)-mediated tumour suppression was attributed to direct killing of tumour cells rather than to stable anti-tumour immunity. Collectively, these results suggest that tumour-targeted therapy using S. typhimurium (IFN-γ) has potential for melanoma treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Prevalence and Characterization of Monophasic Salmonella Serovar 1,4,[5],12:i:- of Food Origin in China.

    PubMed

    Yang, Xiaojuan; Wu, Qingping; Zhang, Jumei; Huang, Jiahui; Guo, Weipeng; Cai, Shuzhen

    2015-01-01

    Salmonella enterica subsp. enterica serovar 1,4,[5],12:i:- is a monophasic variant of Salmonella Typhimurium, which has recently been recognized as an emerging cause of infection worldwide. This bacterium has also ranked among the four most frequent serovars causing human salmonellosis in China. However, there are no reports on its contamination in Chinese food. Serotyping, polymerase chain reaction, antibiotic resistance, virulotyping, and multilocus sequence typing (MLST) assays were used to investigate the prevalence of this serological variant in food products in China, and to determine phenotypic and genotypic difference of monophasic isolates and Salmonella Typhimurium isolated over the same period. Salmonella 1,4,[5],12:i:- was prevalent in various food sources, including beef, pork, chicken, and pigeon. The study also confirmed the high prevalence (53.8%) of resistance to ampicillin, streptomycin, sulfonamides, and tetracycline in Salmonella 1,4,[5],12:i:-, which was higher than that in Salmonella Typhimurium. Moreover, Salmonella 1,4,[5],12:i:- isolates in our study were different from Salmonella Typhimurium isolates by the absence of three plasmid-borne genes (spvC, pefA, and rck) and the presence of gipA in all isolates. All Salmonella 1,4,[5],12:i:- isolates demonstrated MLST pattern ST34. Genomic deletions within the fljBA operon and surrounding genes were only found in Salmonella 1,4,[5],12:i:- isolates, with all isolates containing a deletion of fljB. However, hin and iroB were identified in all Salmonella 1,4,[5],12:i:- isolates. Three different deletion profiles were observed and two of them were different from the reported Salmonella 1,4,[5],12:i:- clones from Spain, America, and Italy, which provided some new evidence on the independent evolution of the multiple successful monophasic clones from Salmonella Typhimurium ancestors. This study is the first report of Salmonella 1,4,[5],12:i:- in food products from China. The data are more

  18. Prevalence and Characterization of Monophasic Salmonella Serovar 1,4,[5],12:i:- of Food Origin in China

    PubMed Central

    Yang, Xiaojuan; Wu, Qingping; Zhang, Jumei; Huang, Jiahui; Guo, Weipeng; Cai, Shuzhen

    2015-01-01

    Salmonella enterica subsp. enterica serovar 1,4,[5],12:i:- is a monophasic variant of Salmonella Typhimurium, which has recently been recognized as an emerging cause of infection worldwide. This bacterium has also ranked among the four most frequent serovars causing human salmonellosis in China. However, there are no reports on its contamination in Chinese food. Serotyping, polymerase chain reaction, antibiotic resistance, virulotyping, and multilocus sequence typing (MLST) assays were used to investigate the prevalence of this serological variant in food products in China, and to determine phenotypic and genotypic difference of monophasic isolates and Salmonella Typhimurium isolated over the same period. Salmonella 1,4,[5],12:i:- was prevalent in various food sources, including beef, pork, chicken, and pigeon. The study also confirmed the high prevalence (53.8%) of resistance to ampicillin, streptomycin, sulfonamides, and tetracycline in Salmonella 1,4,[5],12:i:-, which was higher than that in Salmonella Typhimurium. Moreover, Salmonella 1,4,[5],12:i:- isolates in our study were different from Salmonella Typhimurium isolates by the absence of three plasmid-borne genes (spvC, pefA, and rck) and the presence of gipA in all isolates. All Salmonella 1,4,[5],12:i:- isolates demonstrated MLST pattern ST34. Genomic deletions within the fljBA operon and surrounding genes were only found in Salmonella 1,4,[5],12:i:- isolates, with all isolates containing a deletion of fljB. However, hin and iroB were identified in all Salmonella 1,4,[5],12:i:- isolates. Three different deletion profiles were observed and two of them were different from the reported Salmonella 1,4,[5],12:i:- clones from Spain, America, and Italy, which provided some new evidence on the independent evolution of the multiple successful monophasic clones from Salmonella Typhimurium ancestors. This study is the first report of Salmonella 1,4,[5],12:i:- in food products from China. The data are more

  19. Storing Drinking-water in Copper pots Kills Contaminating Diarrhoeagenic Bacteria

    PubMed Central

    Sudha, V.B. Preethi; Ganesan, Sheeba; Pazhani, G.P.; Ramamurthy, T.; Nair, G.B.

    2012-01-01

    Microbially-unsafe water is still a major concern in most developing countries. Although many water-purification methods exist, these are expensive and beyond the reach of many people, especially in rural areas. Ayurveda recommends the use of copper for storing drinking-water. Therefore, the objective of this study was to evaluate the effect of copper pot on microbially-contaminated drinking-water. The antibacterial effect of copper pot against important diarrhoeagenic bacteria, including Vibrio cholerae O1, Shigella flexneri 2a, enterotoxigenic Escherichia coli, enteropathogenic E. coli, Salmonella enterica Typhi, and Salmonella Paratyphi is reported. When drinking-water (pH 7.83±0.4; source: ground) was contaminated with 500 CFU/mL of the above bacteria and stored in copper pots for 16 hours at room temperature, no bacteria could be recovered on the culture medium. Recovery failed even after resuscitation in enrichment broth, followed by plating on selective media, indicating loss of culturability. This is the first report on the effect of copper on S. flexneri 2a, enteropathogenic E. coli, and Salmonella Paratyphi. After 16 hours, there was a slight increase in the pH of water from 7.83 to 7.93 in the copper pots while the other physicochemical parameters remained unchanged. Copper content (177±16 ppb) in water stored in copper pots was well within the permissible limits of the World Health Organization. Copper holds promise as a point-of-use solution for microbial purification of drinking-water, especially in developing countries. PMID:22524115

  20. Enteric Fever in a Tertiary Paediatric Hospital: A Retrospective Six-Year Review.

    PubMed

    Ahmad Hatib, Nur Adila; Chong, Chia Yin; Thoon, Koh Cheng; Tee, Nancy Ws; Krishnamoorthy, Subramania S; Tan, Natalie Wh

    2016-07-01

    Enteric fever is a multisystemic infection which largely affects children. This study aimed to analyse the epidemiology, clinical presentation, treatment and outcome of paediatric enteric fever in Singapore. A retrospective review of children diagnosed with enteric fever in a tertiary paediatric hospital in Singapore was conducted from January 2006 to January 2012. Patients with positive blood cultures for Salmonella typhi or paratyphi were identified from the microbiology laboratory information system. Data was extracted from their case records. Of 50 enteric fever cases, 86% were due to Salmonella typhi, with 16.3% being multidrug resistant (MDR) strains. Sixty-two percent of S. typhi isolates were of decreased ciprofloxacin susceptibility (DCS). Five cases were both MDR and DCS. The remaining 14% were Salmonella paratyphi A. There were only 3 indigenous cases. Ninety-four percent had travelled to typhoid-endemic countries, 70.2% to the Indian subcontinent and the rest to Indonesia and Malaysia. All patients infected with MDR strains had travelled to the Indian subcontinent. Anaemia was a significant finding in children with typhoid, as compared to paratyphoid fever (P = 0.04). Although all children were previously well, 14% suffered severe complications including shock, pericardial effusion and enterocolitis. None had typhoid vaccination prior to their travel to developing countries. Enteric fever is largely an imported disease in Singapore and has contributed to significant morbidity in children. The use of typhoid vaccine, as well as education on food and water hygiene to children travelling to developing countries, needs to be emphasised.

  1. Prevalence and Characterization of Salmonella enterica and Salmonella Bacteriophages Recovered from Beef Cattle Feedlots in South Texas.

    PubMed

    Xie, Yicheng; Savell, Jeffrey W; Arnold, Ashley N; Gehring, Kerri B; Gill, Jason J; Taylor, T Matthew

    2016-08-01

    Asymptomatic Salmonella carriage in beef cattle is a food safety concern, and the beef feedlot environment may function as a reservoir of this pathogen. The goal of this study was to identify and isolate Salmonella and Salmonella bacteriophages from beef cattle feedlot environments in order to better understand the microbial ecology of Salmonella and identify phages that might be useful as anti-Salmonella beef safety interventions. Three feedlots in south Texas were visited, and 27 distinct samples from each source were collected from dropped feces, feed from feed bunks, drinking water from troughs, and soil in cattle pens (n = 108 samples). Preenrichment, selective enrichment, and selective/differential isolation of Salmonella were performed on each sample. A representative subset of presumptive Salmonella isolates was prepared for biochemical identification and serotyping. Samples were pooled by feedlot and sample type to create 36 samples and enriched to recover phages. Recovered phages were tested for host range against two panels of Salmonella hosts. Salmonella bacteria were identified in 20 (18.5%) of 108 samples by biochemical and/or serological testing. The serovars recovered included Salmonella enterica serovars Anatum, Muenchen, Altona, Kralingen, Kentucky, and Montevideo; Salmonella Anatum was the most frequently recovered serotype. Phage-positive samples were distributed evenly over the three feedlots, suggesting that phage prevalence is not strongly correlated with the presence of culturable Salmonella. Phages were found more frequently in soil and feces than in feed and water samples. The recovery of bacteriophages in the Salmonella-free feedlot suggests that phages might play a role in suppressing the Salmonella population in a feedlot environment.

  2. [Fluoroquinolone resistance mutations in topoisomerase genes of Salmonella typhimurium isolates].

    PubMed

    Guo, Yunchang; Pei, Xiaoyan; Liu, Xiumei

    2004-09-01

    Mutations in topoisomerase genes were main cause of the resistence of Salmonella typhimurium to fluoroquinolone. The MICs of three Salmonella typhimurium isolates X2, X7, X11 to ciprofloxacin were above 32 microg/ml, 0.38 microg/ml and 0.023 microg/ml, respectively. The genetic alterations in four topoisomerase genes, gyrA, gyrB, parC, and parE were detected by multiplex PCR amplimer conformation analysis in these three strains. X2 isolate showed both gyrA mutations (Ser83-->Phe, Asp87-->Asn) and parC mutation (Ser80-->Arg). X7 isolate showed a single gyrA mutation (Ser83-->Phe) and X11 isolate had no changes in all of the four quinolone resistance genes, gyrA, gyrB, parC, and parE. X7 isolate with a single gyrA mutation was less resistant to ciprofloxacin than X2 with double gyrA mutations and an additional parC mutation. GyrA and parC genes play important role of the resistance of Salmonella typhimurium to ciprofloxacin.

  3. Radiation survival of two nalidixic acid resistant strains of Salmonella typhimurium in various media

    NASA Astrophysics Data System (ADS)

    Shamsuzzaman, Kazi; Goodwin, Marlene; George, Ian; Singh, Harwant

    Radiation doses required for 90% inactivation, the D10 values, have been determined for two nalidixic acid-resistant strains of Salmonella typhimurium, Nal R ATCC 13311 and K1-2B, in different media. The D10 values were 0.20, 0.57 and 0.53 kGy for the ATCC 13311 strain, and were 0.21, 0.4 and 0.32 kGy for the K1-2B strain, in phosphate buffer, in nutrient broth and on chicken drumsticks, respectively. Since these two strains have radiation sensitivity similar to several Salmonella serotypes reported in the literature, they are good indicator organisms for use in studies on the effect of irradiation on Salmonella in foods that might frequently be contaminated with such organisms.

  4. Salmonella serovar-specific interaction with jejunal epithelial cells.

    PubMed

    Razzuoli, Elisabetta; Amadori, Massimo; Lazzara, Fabrizio; Bilato, Dania; Ferraris, Monica; Vito, Guendalina; Ferrari, Angelo

    2017-08-01

    Gut is often a receptacle for many different pathogens in feed and/or the environment, such as Salmonella spp. The current knowledge about pathogenicity of Salmonella is restricted to few serotypes, whereas other important ones like S. Coeln, S. Thompson, S. Veneziana, have not been investigated yet in human and animal models. Therefore, the aim of our work was to verify the ability of widespread environmental Salmonella strains to penetrate and modulate innate immunity in pig intestinal IPEC-J2 cells. Our results outline the different ability of Salmonella strains to modulate innate immunity; the expression of the IFN-β gene was increased by S. Typhimurium, S. Ablogame and S. Diarizonae 2, that also caused an inflammatory response in terms of Interleukin (IL)-1β and/or IL-8 gene espression. In particular, IL-8 gene expression and protein release were significantly modulated by 5 Salmonella strains out of 7. Interestingly, S. Typhimurium, S. Coeln and S. Thompson strains, characterized by a peculiar ability to penetrate into IPEC-J2 cells, up-regulated both IL-8 and TNF-α gene expression. Accordingly, blocking IL-8 was shown to decrease the penetration of S. Typhimurium. On the contrary, S. Diarizonae strain 1, showing lesser invasion of IPEC-J2 cells, down-regulated the p38-MAPK pathway, and it did not induce an inflammatory response. Our results confirm that IPEC-J2 cells are a useful model to evaluate host-gut pathogen interaction and indicate IL-8 and TNF-α as possible predictive markers of invasiveness of Salmonella strains in enterocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Prevalence of Salmonella in Australian reptiles.

    PubMed

    Scheelings, T Franciscus; Lightfoot, Dianne; Holz, Peter

    2011-01-01

    From January 2007 until June 2008, 504 reptiles of four families and 57 species were examined for Salmonella by using cloacal or intestinal swabs. Salmonella was identified in 139 (28%) of the 504 animals tested. Of the 504 reptiles examined, 210 were captive and 294 were wild. Ninety-eight (47%) of the captive reptiles were shedding Salmonella at the time of sampling. In contrast, only 41 (14%) of the wild reptiles were shedding Salmonella. The higher prevalence of Salmonella in captive reptiles was statistically significant (P<0.0001). No Salmonella was found in 60 wild, freshwater chelonians or 48 wild southern water skinks (Eulamprus heatwolei). Our results suggest that some species of wild reptiles in Australia are not natural carriers of Salmonella and that diet and captivity may influence Salmonella excretion in other species.

  6. Effects of egg shell quality and washing on Salmonella Infantis penetration.

    PubMed

    Samiullah; Chousalkar, K K; Roberts, J R; Sexton, M; May, D; Kiermeier, A

    2013-07-15

    The vast majority of eggs in Australia are washed prior to packing to remove dirt and fecal material and to reduce the microbial contamination of the egg shell. The egg contents can be an ideal growth medium for microorganisms which can result in human illness if eggs are stored improperly and eaten raw or undercooked, and it is estimated that egg-related salmonellosis is costing Australia $44 million per year. Egg shell characteristics such as shell thickness, amount of cuticle present, and thickness of individual egg shell layers can affect the ease with which bacteria can penetrate the egg shell and washing could partially or completely remove the cuticle layer. The current study was conducted to investigate the effects of egg washing on cuticle cover and effects of egg shell quality and cuticle cover on Salmonella Infantis penetration of the egg shell. A higher incidence of unfavorable ultrastructural variables of the mammillary layer such as late fusion, type B bodies, type A bodies, poor cap quality, alignment, depression, erosion and cubics were recorded in Salmonella penetrated areas of egg shells. The influence of egg washing on the ability of Salmonella Infantis on the egg shell surface to enter the egg internal contents was also investigated using culture-based agar egg penetration and real-time qPCR based experiments. The results from the current study indicate that washing affected cuticle cover. There were no significant differences in Salmonella Infantis penetration of washed or unwashed eggs. Egg shell translucency may have effects on Salmonella Infantis penetration of the egg shell. The qPCR assay was more sensitive for detection of Salmonella Infantis from egg shell wash and internal contents than traditional microbiological methods. The agar egg and whole egg inoculation experiments indicated that Salmonella Infantis penetrated the egg shells. Egg washing not only can be highly effective at removing Salmonella Infantis from the egg shell surface

  7. Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria

    PubMed Central

    2013-01-01

    Background The main objective of this study was the phytochemical characterization of four indigenous essential oils obtained from spices and their antibacterial activities against the multidrug resistant clinical and soil isolates prevalent in Pakistan, and ATCC reference strains. Methods Chemical composition of essential oils from four Pakistani spices cumin (Cuminum cyminum), cinnamon (Cinnamomum verum), cardamom (Amomum subulatum) and clove (Syzygium aromaticum) were analyzed on GC/MS. Their antibacterial activities were investigated by minimum inhibitory concentration (MIC) and Thin-Layer Chromatography-Bioautographic (TLC-Bioautographic) assays against pathogenic strains Salmonella typhi (D1 Vi-positive), Salmonella typhi (G7 Vi-negative), Salmonella paratyphi A, Escherichia coli (SS1), Staphylococcus aureus, Pseudomonas fluorescens and Bacillus licheniformis (ATCC 14580). The data were statistically analyzed by using Analysis of Variance (ANOVA) and Least Significant Difference (LSD) method to find out significant relationship of essential oils biological activities at p <0.05. Results Among all the tested essential oils, oil from the bark of C. verum showed best antibacterial activities against all selected bacterial strains in the MIC assay, especially with 2.9 mg/ml concentration against S. typhi G7 Vi-negative and P. fluorescens strains. TLC-bioautography confirmed the presence of biologically active anti-microbial components in all tested essential oils. P. fluorescens was found susceptible to C. verum essential oil while E. coli SS1 and S. aureus were resistant to C. verum and A. subulatum essential oils, respectively, as determined in bioautography assay. The GC/MS analysis revealed that essential oils of C. cyminum, C. verum, A. subulatum, and S. aromaticum contain 17.2% cuminaldehyde, 4.3% t-cinnamaldehyde, 5.2% eucalyptol and 0.73% eugenol, respectively. Conclusions Most of the essential oils included in this study possessed good antibacterial

  8. Oral immunisation of laying hens with the live vaccine strains of TAD Salmonella vac E and TAD Salmonella vac T reduces internal egg contamination with Salmonella Enteritidis.

    PubMed

    Gantois, Inne; Ducatelle, Richard; Timbermont, Leen; Boyen, Filip; Bohez, Lotte; Haesebrouck, Freddy; Pasmans, Frank; van Immerseel, Filip

    2006-09-11

    Eggs are a major source of human infections with Salmonella. Therefore controlling egg contamination in laying hen flocks is one of the main targets for control programmes. A study was carried out to assess the effect of oral vaccination with TAD Salmonella vac E, TAD Salmonella vac T and with both vaccines TAD Salmonella vac E and TAD Salmonella vac T, on colonization of the reproductive tract and internal egg contamination of laying hens with Salmonella Enteritidis. Three groups of 30 laying hens were vaccinated at 1 day, 6 weeks and 16 weeks of age with either one of the vaccine strains, or a combination of both vaccine strains, while a fourth group was left unvaccinated. At 24 weeks of age, the birds were intravenously challenged with 0.5 ml containing 5 x 10(7)cfu Salmonella Enteritidis PT4 S1400/94. The number of oviducts from which Salmonella was isolated, was significantly lower in the vaccinated than in the non-vaccinated hens at 3 weeks post-challenge. Significantly less egg contents were Salmonella positive in the birds vaccinated with TAD Salmonella vac E or TAD Salmonella vac T (12/105 batches of eggs in both groups) than in the unvaccinated birds (28/105 batches of eggs). Internal egg contamination in the hens vaccinated with both TAD Salmonella vac E and TAD Salmonella vac T was even more reduced, as over the whole experiment, only one batch of eggs was positive. In conclusion, these data indicate that vaccination of laying hens with these live vaccines could be considered as a valuable tool in controlling internal egg contamination.

  9. Structural Insight inot the low Affinity Between Thermotoga maritima CheA and CheB Compared to their Escherichia coli/Salmonella typhimurium Counterparts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Park; B Crane

    2011-12-31

    CheA-mediated CheB phosphorylation and the subsequent CheB-mediated demethylation of the chemoreceptors are important steps required for the bacterial chemotactic adaptation response. Although Escherichia coli CheB has been reported to interact with CheA competitively against CheY, we have observed that Thermotoga maritima CheB has no detectable CheA-binding. By determining the CheY-like domain crystal structure of T. maritima CheB, and comparing against the T. maritima CheY and Salmonella typhimurium CheB structures, we propose that the two consecutive glutamates in the {beta}4/{alpha}4 loop of T. maritima CheB that is absent in T. maritima CheY and in E. coli/S. typhimurium CheB may be onemore » factor contributing to the low CheA affinity.« less

  10. Development of a Salmonella cross-protective vaccine for food animal production systems.

    PubMed

    Heithoff, Douglas M; House, John K; Thomson, Peter C; Mahan, Michael J

    2015-01-01

    Intensive livestock production is associated with increased Salmonella exposure, transmission, animal disease, and contamination of food and water supplies. Modified live Salmonella enterica vaccines that lack a functional DNA adenine methylase (Dam) confer cross-protection to a diversity of salmonellae in experimental models of murine, avian, ovine, and bovine models of salmonellosis. However, the commercial success of any vaccine is dependent upon the therapeutic index, the ratio of safety/efficacy. Herein, secondary virulence-attenuating mutations targeted to genes involved in intracellular and/or systemic survival were introduced into Salmonella dam vaccines to screen for vaccine candidates that were safe in the animal and the environment, while maintaining the capacity to confer cross-protective immunity to pathogenic salmonellae serotypes. Salmonella dam mgtC, dam sifA, and dam spvB vaccine strains exhibited significantly improved vaccine safety as evidenced by the failure to give rise to virulent revertants during the infective process, contrary to the parental Salmonella dam vaccine. Further, these vaccines exhibited a low grade persistence in host tissues that was associated with reduced vaccine shedding, reduced environmental persistence, and induction of cross-protective immunity to pathogenic serotypes derived from infected livestock. These data indicate that Salmonella dam double mutant vaccines are suitable for commercial applications against salmonellosis in livestock production systems. Reducing pre-harvest salmonellae load through vaccination will promote the health and productivity of livestock and reduce contamination of livestock-derived food products, while enhancing overall food safety. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Broad-range (pan) Salmonella and Salmonella serotype typhi-specific real-time PCR assays: potential tools for the clinical microbiologist.

    PubMed

    Farrell, John J; Doyle, Laura J; Addison, Rachel M; Reller, L Barth; Hall, Geraldine S; Procop, Gary W

    2005-03-01

    We describe broad-range salmonellae (ie, Salmonella) and Salmonella serotype Typhi-specific LightCycler (Roche Diagnostics, Indianapolis, IN) real-time polymerase chain reaction assays. We validated these with a battery of 280 bacteria, 108 of which were salmonellae representing 20 serotypes. In addition, 298 isolates from 170 clinical specimens that were suspected to possibly represent Salmonella were tested with the pan- Salmonella assay. Finally, the pan-Salmonella assay also was used to test DNA extracts from 101 archived, frozen stool specimens, 55 of which were culture-positive for salmonellae. Both assays were 100% sensitive and specific when cultured isolates of the battery were tested. The pan- Salmonella assay also characterized correctly all salmonellae on the primary isolation agar and was 96% sensitive (53/55) and 96% specific (49/51) when nucleic acid extracts from direct stool specimens were tested. These assays represent potential tools the clinical microbiologist could use to screen suspect isolates or stool specimens for Salmonella.

  12. Pathogenesis of Salmonellosis: Salmonella Exotoxins

    DTIC Science & Technology

    1982-03-08

    Newport; Sal. 9633 - serotype Newport; and Sal. 9186 - serotype Newport. Salmonella enteritidis serotype typhimurium strain 2000 was obtained from...7054 Table 1I CULTURE MEDIA SURVEY Salmonella enteritidis Salmonella typhimurium serotype Javiana #10016 SRlI Culture Media C H 0 Cell Factor C H 0 Cell...C r AD REPORT NUMBER 2 0 Pathogenesis of Salmonellosis: Salmonella Exotoxins Annual Progress Report (9/1/78-9/1/79) Johnny W. Peterson, Ph.D. March 8

  13. Molecular epidemiology of fluoroquinolone resistant Salmonella in Africa: A systematic review and meta-analysis

    PubMed Central

    Tessema, Tesfaye S.; Beyene, Getenet; Aseffa, Abraham

    2018-01-01

    Background Wide-ranging evidence on the occurrence of fluoroquinolone (FQ) resistance genetic determinants in African Salmonella strains is not available. The main objectives of this study were to assess the heterogeneity, estimate pooled proportions and describe the preponderance of FQ-resistance determinants in typhoidal and non-typhoidal Salmonella (NTS) isolates of Africa. Methods Genetic and phenotypic data on 6103 Salmonella isolates were considered. Meta- and frequency analyses were performed depending on the number of studies by category, number of isolates and risks of bias. A random effects model was used to assess heterogeneity and estimate pooled proportions. Relative and cumulative frequencies were calculated to describe the overall preponderance of FQ-resistance determinants in quinolone resistant isolates. Results The pooled proportion of gyrA mutants (Salmonella enterica serovar Typhi, Salmonella enterica serovar Typhimurium, and Salmonella enterica serovar Enteritidis) was estimated at 5.7% (95% Confidence interval (CI) = 2.6, 9.8; Tau squared (T2) = 0.1105), and was higher in S. Typhi than in S. Typhimurium (odds ratio (OR) = 3.3, 95%CI = 2, 5.7). The proportions of each of gyrB and parC mutants, and strains with Plasmid Mediated Quinolone Resistance genes (qnrA, qnrB and qnrS) were low (≤ 0.3%). Overall, 23 mutant serotypes were identified, and most strains had mutations at codons encoding Ser83 and Asp87 of gyrA (82%, 95%CI = 78, 86). Conclusions Mutations at gyrA appear to account for ciprofloxacin non-susceptibility in most clinical Salmonella strains in Africa. The estimates could be harnessed to develop a mismatch-amplification mutation-assay for the detection of FQ-resistant strains in Africa. PMID:29432492

  14. Molecular epidemiology of fluoroquinolone resistant Salmonella in Africa: A systematic review and meta-analysis.

    PubMed

    Tadesse, Getachew; Tessema, Tesfaye S; Beyene, Getenet; Aseffa, Abraham

    2018-01-01

    Wide-ranging evidence on the occurrence of fluoroquinolone (FQ) resistance genetic determinants in African Salmonella strains is not available. The main objectives of this study were to assess the heterogeneity, estimate pooled proportions and describe the preponderance of FQ-resistance determinants in typhoidal and non-typhoidal Salmonella (NTS) isolates of Africa. Genetic and phenotypic data on 6103 Salmonella isolates were considered. Meta- and frequency analyses were performed depending on the number of studies by category, number of isolates and risks of bias. A random effects model was used to assess heterogeneity and estimate pooled proportions. Relative and cumulative frequencies were calculated to describe the overall preponderance of FQ-resistance determinants in quinolone resistant isolates. The pooled proportion of gyrA mutants (Salmonella enterica serovar Typhi, Salmonella enterica serovar Typhimurium, and Salmonella enterica serovar Enteritidis) was estimated at 5.7% (95% Confidence interval (CI) = 2.6, 9.8; Tau squared (T2) = 0.1105), and was higher in S. Typhi than in S. Typhimurium (odds ratio (OR) = 3.3, 95%CI = 2, 5.7). The proportions of each of gyrB and parC mutants, and strains with Plasmid Mediated Quinolone Resistance genes (qnrA, qnrB and qnrS) were low (≤ 0.3%). Overall, 23 mutant serotypes were identified, and most strains had mutations at codons encoding Ser83 and Asp87 of gyrA (82%, 95%CI = 78, 86). Mutations at gyrA appear to account for ciprofloxacin non-susceptibility in most clinical Salmonella strains in Africa. The estimates could be harnessed to develop a mismatch-amplification mutation-assay for the detection of FQ-resistant strains in Africa.

  15. Unusual increase in reported cases of paratyphoid A fever among travellers returning from Cambodia, January to September 2013.

    PubMed

    Tourdjman, M; Le Hello, S; Gossner, C; Delmas, G; Tubiana, S; Fabre, L; Kerléguer, A; Tarantola, A; Fruth, A; Friesema, I; Thorstensen Brandal, L; Lawrence, J; Fisher, I; Dufour, M; Weill, F X; de Valk, H

    2013-09-26

    From January to September 2013, a marked increase in notifications of Salmonella Paratyphi A infections among travellers returning from Cambodia occurred in France. An investigation revealed 35 cases without a common source: 21 in France, five in Germany, three in the Netherlands, one in Norway, one in the United Kingdom, four in New-Zealand. Data suggest an ongoing event that should trigger further investigation. Travellers to Cambodia should observe preventive measures including good personal hygiene and food handling practices.

  16. Quinolone Resistance Mechanisms Among Salmonella enterica in Malaysia.

    PubMed

    Thong, Kwai Lin; Ngoi, Soo Tein; Chai, Lay Ching; Teh, Cindy Shuan Ju

    2016-06-01

    The prevalence of quinolone-resistant Salmonella enterica is on the rise worldwide. Salmonella enterica is one of the major foodborne pathogens in Malaysia. Therefore, we aim to investigate the occurrence and mechanisms of quinolone resistance among Salmonella strains isolated in Malaysia. A total of 283 Salmonella strains isolated from food, humans, and animals were studied. The disk diffusion method was used to examine the quinolone susceptibility of the strains, and the minimum inhibitory concentration (MIC) values of nalidixic acid and ciprofloxacin were also determined. DNA sequencing of the quinolone resistance-determining regions (QRDRs) of gyrase and topoisomerase IV genes and the plasmid-borne qnr genes was performed. The transfer of the qnr gene was examined through transconjugation experiment. A total of 101 nalidixic acid-resistant Salmonella strains were identified. In general, all strains were highly resistant to nalidixic acid (average MICNAL, 170 μg/ml). Resistance to ciprofloxacin was observed in 30.7% of the strains (1 ≤ MICCIP ≤ 2 μg/ml). Majority of the strains contained missense mutations in the QRDR of gyrA (69.3%). Silent mutations were frequently detected in gyrB (75.2%), parC (27.7%), and parE (51.5%) within and beyond the QRDRs. Novel mutations were detected in parC and parE. The plasmid-borne qnrS1 variant was found in 36.6% of the strains, and two strains were found to be able to transfer the qnrS1 gene. Overall, mutations in gyrA and the presence of qnrS1 genes might have contributed to the high level of quinolone resistance among the strains. Our study provided a better understanding on the status of quinolone resistance among Salmonella strains circulating in Malaysia.

  17. Surveillance of Salmonella prevalence in animal feeds and characterization of the Salmonella isolates by serotyping and antimicrobial susceptibility.

    PubMed

    Li, X; Bethune, L A; Jia, Y; Lovell, R A; Proescholdt, T A; Benz, S A; Schell, T C; Kaplan, G; McChesney, D G

    2012-08-01

    This article presents the surveillance data from the Feed Contaminants Program (2002-2009) and Salmonella Assignment (2007-2009) of the U.S. Food and Drug Administration (FDA), which monitor the trend of Salmonella contamination in animal feeds. A total of 2,058 samples were collected from complete animal feeds, feed ingredients, pet foods, pet treats, and supplements for pets in 2002-2009. These samples were tested for the presence of Salmonella. Those that were positive for Salmonella underwent serotyping and testing for antimicrobial susceptibility. Of the 2,058 samples, 257 were positive for Salmonella (12.5%). The results indicate a significant overall Salmonella reduction (p≤0.05) in animal feeds from 18.2% (187 samples tested) in 2002 to 8.0% (584 samples tested) in 2009. Among these samples, feed ingredients and pet foods/treats had the most significant reduction (p≤0.05). Of the 45 Salmonella serotypes identified, Salmonella Senftenberg and Salmonella Montevideo were the top two common serotypes (8.9%). Of the 257 Salmonella isolates obtained, 54 isolates (21%) were resistant to at least one antimicrobial. The findings provide the animal feed industries with Salmonella prevalence information that can be used to address Salmonella contamination problems. Our findings can also be used to educate pet owners when handling pet foods and treats at home to prevent salmonellosis.

  18. [Genetic mechanisms of Salmonella enteritidis biodiversity and clinical features of salmonellosis].

    PubMed

    Mavziutov, A R; Murzabaeva, R T; Nazmutdinova, R G; Mirsaiapova, I A

    2010-01-01

    To assess prevalence of fragments of Escherichia coli pathogenicity islands in Salmonella enteritidis strains as well as to study clinical signs of disease caused by these strains in adults. Ninety-six patients with salmonellosis were studied. Ninety strains of S. enteritidis were isolated and tested by PCR for the presence of genes associated with pathogenicity islands of E. coli: hlyA, hlyB, sfaG, and sfaA. It was determined that DNA fragments homologous to pathogenicity islands of E. coli were present in 87 (96.7%) of S. enteritidis clinical isolates. Disease caused by Salmonella strains which possess only sfaG was mostly mild--7 (33.3%), whereas strains which had sfaG with fragments of hlyA and/or hlyB caused severe disease--7 (50%). sfaA fragments were found mostly in combination with other genes. In such cases the disease was mostly severe--6 (42.8%). Correlation between presence of E. coli pathogenicity islands in Salmonella spp., their antibiotic resistance and severity of infection was established.

  19. The isolation of salmonellas from British pork sausages and sausage meat.

    PubMed Central

    Roberts, D.; Boag, K.; Hall, M. L.; Shipp, C. R.

    1975-01-01

    Between 1969 and 1974, 1467 packets (3309 samples) of pork sausages and sausage meat produced by two large and two medium sized manufacturers and several local butchers were examined for the presence of salmonellas. Of these, 435 packets (786 samples) were found to contain salmonellas, but there was a wide variation in the isolation rates according to the producer. The salmonella incidence in samples from several small and two medium sized producers was low (0-11%) while the results from the two large producers investigated showed a striking difference, the rate of salmonella contamination in the product of one was low (about 2%) and in that of the other consistently high (40-60%). A comparison of liquid enrichment media, incubation temperatures and selective agar media was also carried out to determine the most efficient combination for the isolation of salmonellas from minced meat products. The results showed that (a) incubation of enrichment cultures at 43 degrees C. yielded a consistently greater number of salmonella isolations that at 37 degrees C., regardless of plating medium, (b) tetrathionate broth A (Rolfe) was superior to selenite broth as en enrichment medium at both 37 and 43 degrees C. and (c) brilliant green agar gave better results than deoxycholate citrate sucrose agar and bismuth sulphite agar as a selective medium. PMID:1100710

  20. The isolation of salmonellas from British pork sausages and sausage meat.

    PubMed

    Roberts, D; Boag, K; Hall, M L; Shipp, C R

    1975-10-01

    Between 1969 and 1974, 1467 packets (3309 samples) of pork sausages and sausage meat produced by two large and two medium sized manufacturers and several local butchers were examined for the presence of salmonellas. Of these, 435 packets (786 samples) were found to contain salmonellas, but there was a wide variation in the isolation rates according to the producer. The salmonella incidence in samples from several small and two medium sized producers was low (0-11%) while the results from the two large producers investigated showed a striking difference, the rate of salmonella contamination in the product of one was low (about 2%) and in that of the other consistently high (40-60%). A comparison of liquid enrichment media, incubation temperatures and selective agar media was also carried out to determine the most efficient combination for the isolation of salmonellas from minced meat products. The results showed that (a) incubation of enrichment cultures at 43 degrees C. yielded a consistently greater number of salmonella isolations that at 37 degrees C., regardless of plating medium, (b) tetrathionate broth A (Rolfe) was superior to selenite broth as en enrichment medium at both 37 and 43 degrees C. and (c) brilliant green agar gave better results than deoxycholate citrate sucrose agar and bismuth sulphite agar as a selective medium.

  1. Lack of AcrB Efflux Function Confers Loss of Virulence on Salmonella enterica Serovar Typhimurium

    PubMed Central

    Wang-Kan, Xuan; Chirullo, Barbara; Betts, Jonathan; La Ragione, Roberto M.; Ivens, Alasdair; Ricci, Vito; Opperman, Timothy J.

    2017-01-01

    ABSTRACT AcrAB-TolC is the paradigm resistance-nodulation-division (RND) multidrug resistance efflux system in Gram-negative bacteria, with AcrB being the pump protein in this complex. We constructed a nonfunctional AcrB mutant by replacing D408, a highly conserved residue essential for proton translocation. Western blotting confirmed that the AcrB D408A mutant had the same native level of expression of AcrB as the parental strain. The mutant had no growth deficiencies in rich or minimal medium. However, compared with wild-type SL1344, the mutant had increased accumulation of Hoechst 33342 dye and decreased efflux of ethidium bromide and was multidrug hypersusceptible. The D408A mutant was attenuated in vivo in mouse and Galleria mellonella models and showed significantly reduced invasion into intestinal epithelial cells and macrophages in vitro. A dose-dependent inhibition of invasion was also observed when two different efflux pump inhibitors were added to the wild-type strain during infection of epithelial cells. RNA sequencing (RNA-seq) revealed downregulation of bacterial factors necessary for infection, including those in the Salmonella pathogenicity islands 1, 2, and 4; quorum sensing genes; and phoPQ. Several general stress response genes were upregulated, probably due to retention of noxious molecules inside the bacterium. Unlike loss of AcrB protein, loss of efflux function did not induce overexpression of other RND efflux pumps. Our data suggest that gene deletion mutants are unsuitable for studying membrane transporters and, importantly, that inhibitors of AcrB efflux function will not induce expression of other RND pumps. PMID:28720734

  2. Bacteriophage P22 to challenge Salmonella in foods.

    PubMed

    Zinno, Paola; Devirgiliis, Chiara; Ercolini, Danilo; Ongeng, Duncan; Mauriello, Gianluigi

    2014-11-17

    In this study we considered the influence of phage addition on the fate of Salmonella enterica serovar Typhimurium in different foods. Phage P22 was applied to the following: liquid eggs, energy drinks, whole and skimmed milk, apple juice, chicken breast and chicken mince all spiked with its host, whose growth was monitored for 24 and 48 h at 4 °C. Appreciable host inactivation, generally in the order of 2 log cycles, was achieved compared to phage-free controls in all food matrices when 10(4) UFC/g host inoculum was used. Furthermore, wild food strains belonging to the serotypes Typhimurium, Enteritidis, Derby Give, Newport, Muenchen and Muenster were assayed towards phage P22. Only isolates of Salmonella Typhimurium as well as Salmonella Derby and Salmonella Enteritidis was inhibited by the presence of P22 phage. Additional challenge experiments were carried out by spiking liquid-eggs, chicken breast and chicken mince with mixes of wild Salmonella Typhimurium (at concentration of about 10(4) UFC/g) strains along with their relative phage P22. The results showed a reduction of 2-3 log cycles after 48 h at 4 °C depending on both mix of strains and the specific food. Overall, the results indicate that phages may be useful in the control of food-borne pathogens. The food matrices considered, the liquid more than the solid, do not seem to affect the phage ability of infection compared to similar tests performed in vitro. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Identification of the lipopolysaccharide modifications controlled by the Salmonella PmrA/PmrB system mediating resistance to Fe(III) and Al(III)

    PubMed Central

    Nishino, Kunihiko; Hsu, Fong-Fu; Turk, John; Cromie, Michael J; Wösten, Marc M S M; Groisman, Eduardo A

    2006-01-01

    Iron is an essential metal but can be toxic in excess. While several homeostatic mechanisms prevent oxygen-dependent killing promoted by Fe(II), little is known about how cells cope with Fe(III), which kills by oxygen-independent means. Several Gram-negative bacterial species harbour a regulatory system – termed PmrA/PmrB – that is activated by and required for resistance to Fe(III). We now report the identification of the PmrA-regulated determinants mediating resistance to Fe(III) and Al(III) in Salmonella enterica serovar Typhimurium. We establish that these determinants remodel two regions of the lipopolysaccharide, decreasing the negative charge of this major constituent of the outer membrane. Remodelling entails the covalent modification of the two phosphates in the lipid A region with phosphoethanolamine and 4-aminoarabinose, which has been previously implicated in resistance to polymyxin B, as well as dephosphorylation of the Hep(II) phosphate in the core region by the PmrG protein. A mutant lacking the PmrA-regulated Fe(III) resistance genes bound more Fe(III) than the wild-type strain and was defective for survival in soil, suggesting that these PmrA-regulated lipopolysaccharide modifications aid Salmonella's survival and spread in non-host environments. PMID:16803591

  4. Deciphering Interplay between Salmonella Invasion Effectors

    PubMed Central

    Koronakis, Vassilis

    2008-01-01

    Bacterial pathogens have evolved a specialized type III secretion system (T3SS) to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP) can individually manipulate actin dynamics at the plasma membrane, which acts as a ‘signaling hub’ during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cis binary entry effector interplay (BENEFIT) screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen–host interaction. PMID:18389058

  5. Loop-Mediated Isothermal Amplification of the sefA Gene for Rapid Detection of Salmonella Enteritidis and Salmonella Gallinarum in Chickens.

    PubMed

    Gong, Jiansen; Zhuang, Linlin; Zhu, Chunhong; Shi, Shourong; Zhang, Di; Zhang, Linji; Yu, Yan; Dou, Xinhong; Xu, Bu; Wang, Chengming

    2016-04-01

    Salmonella spp. pose a threat to both human and animal health, with more than 2600 serovars having been reported to date. Salmonella serovars are usually identified by slide agglutination tests, which are labor intensive and time consuming. In an attempt to develop a more rapid screening method for the major poultry Salmonella serovars, we developed a loop-mediated isothermal amplification (LAMP) assay, which directly detected the sefA gene, a fimbrial operon gene existing in several specific serovars of Salmonella enterica including the major poultry serovars, namely Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) and Salmonella enterica serovar Gallinarum (Salmonella Gallinarum). With the 177 bacterial strains we tested, positive reactions were only observed with 85 strains of serovar Salmonella Enteritidis and Salmonella Gallinarum. The detection limit of the LAMP assay was 4 CFU/reaction with genomic DNAs of Salmonella Enteritidis (ATCC 13076) from pure culture and 400 CFU/ reaction with DNA extracted from spiked chicken feces. The LAMP assay was more sensitive than conventional culture, especially without enrichment, in detecting Salmonella Enteritidis (CMCC 50041) in the spiked fecal samples. The results show the sefA LAMP method is a rapid, sensitive, specific, and practical method for directly detection of Salmonella Enteritidis and Salmonella Gallinarum in chickens. The sefA LAMP assay can potentially serve as new on-site diagnostics in the poultry industry.

  6. Overview of the development of quinolone resistance in Salmonella species in China, 2005–2016

    PubMed Central

    Song, Qifa; Xu, Zhaojun; Gao, Hong; Zhang, Danyang

    2018-01-01

    Purpose Several factors contribute to the complexity of quinolone resistance in Salmonella, including >2000 different Salmonella serotypes, a variety of hosts for Salmonella, and wide use of quinolones in human beings and animals. We thus aimed to obtain an overview of the development of quinolone resistance and relevant molecular mechanisms of such a resistance in Salmonella species. Materials and methods A total of 1,776 Salmonella isolates were collected in Ningbo, China, between 2005 and 2016. Antimicrobial susceptibility to quinolone and relevant genetic mechanisms in these isolates were retrospectively analyzed. Results The ratio for ciprofloxacin (CIP) resistant:reduced CIP susceptible:CIP susceptible was 26:522:1,228. CIP resistance was found in nine of 51 serotypes: Derby, London, Kentucky, Indiana, Corvallis, Rissen, Hadar, Typhimurium, and Agona. Of 26 CIP-resistant isolates, all were concurrently resistant to ampicillin and 21 were also concurrently resistant to cefotaxime and produced extended-spectrum β-lactamase (ESBL). The minimal inhibitory concentration values were at three levels: 2–4 μg/mL (serotypes except for Kentucky and Indiana), 16 μg/mL (one Kentucky isolate), and >32 μg/mL (Indiana isolates). As with the three most common serotypes, Salmonella Typhi showed quickly increased prevalence of reduced CIP susceptibility in recent years, Salmonella Enteritidis remained at a high prevalence of reduced CIP susceptibility throughout the study period, and several isolates of Salmonella Typhimurium were resistant to CIP. Transferable plasmid-mediated quinolone resistance gene qnrB was only found in all CIP-resistant isolates. In contrast, gyrA mutations were often found in reduced CIP-susceptible isolates and were not necessarily found in all CIP-resistant isolates. Conclusion We conclude that in Salmonella, there exists a high prevalence of reduced CIP susceptibility and a low prevalence of CIP resistance, which focuses on several serotypes

  7. Detection of Salmonella invA gene in shrimp enrichment culture by polymerase chain reaction.

    PubMed

    Upadhyay, Bishnu Prasad; Utrarachkij, Fuangfa; Thongshoob, Jarinee; Mahakunkijcharoen, Yuvadee; Wongchinda, Niracha; Suthienkul, Orasa; Khusmith, Srisin

    2010-03-01

    Contamination of seafood with salmonellae is a major public health concern. Detection of Salmonella by standard culture methods is time consuming. In this study, an enrichment culture step prior to polymerase chain reaction (PCR) was applied to detect 284 bp fragment of Salmonella invA in comparison with the conventional culture method in 100 shrimp samples collected from four different shrimp farms and fresh food markets around Bangkok. Samples were pre-enriched in non-selective lactose broth (LB) and selective tetrathionate broth (TTB). PCR detection limit was 10 pg and 10(4) cfu/ml of viable salmonellae with 100% specificity. PCR assay detected 19 different Salmonella serovars belonging to 8 serogroups (B, C1, C2-C3, D1, E1, E4 and K) commonly found in clinical and environmental samples in Thailand. The detection rate of PCR following TTB enrichment (24%) was higher than conventional culture method (19%). PCR following TTB, but not in LB enrichment allowed salmonella detection with 84% sensitivity, 90% specificity and 89% accuracy. Shrimp samples collected from fresh food markets had higher levels of contaminated salmonellae than those from shrimp farms. The results indicated that incorporation of an enrichment step prior to PCR has the potential to be applied for detection of naturally contaminated salmonellae in food, environment and clinical samples.

  8. Recent Trends in Salmonella Outbreaks and Emerging Technology for Biocontrol of Salmonella Using Phages in Foods: A Review.

    PubMed

    Oh, Jun-Hyun; Park, Mi-Kyung

    2017-12-28

    Salmonella is one of the principal causes of foodborne outbreaks. As traditional control methods have shown less efficacy against emerging Salmonella serotypes or antimicrobialresistant Salmonella , new approaches have been attempted. The use of lytic phages for the biocontrol of Salmonella in the food industry has become an attractive method owing to the many advantages offered by the use of phages as biocontrol agents. Phages are natural alternatives to traditional antimicrobial agents; they have proven effective in the control of bacterial pathogens in the food industry, which has led to the development of different phage products. The treatment with specific phages in the food industry can prevent the decay of products and the spread of bacterial diseases, and ultimately promotes safe environments for animal and plant food production, processing, and handling. After an extensive investigation of the current literature, this review focuses predominantly on the efficacy of phages for the successful control of Salmonella spp. in foods. This review also addresses the current knowledge on the pathogenic characteristics of Salmonella , the prevalence of emerging Salmonella outbreaks, the isolation and characterization of Salmonella -specific phages, the effectiveness of Salmonella -specific phages as biocontrol agents, and the prospective use of Salmonella -specific phages in the food industry.

  9. Effect of dietary Bacillus coagulans supplementation on growth performance and immune responses of broiler chickens challenged by Salmonella enteritidis.

    PubMed

    Zhen, Wenrui; Shao, Yujing; Gong, Xiuyan; Wu, Yuanyuan; Geng, Yanqiang; Wang, Zhong; Guo, Yuming

    2018-04-11

    This study was conducted to evaluate the protective efficacy of dietary Bacillus coagulans (B. coagulans) supplementation in birds receiving Salmonella enteritidis (SE). Two hundred and forty 1-day-old Cobb broilers were randomly assigned to 2 × 2 factorial arrangements of treatments with 2 levels of dietary B. coagulans (0 or 400 mg/kg) and 2 levels of SE challenge (0 or 1 × 109 SE between d 9 to 11). Results showed that SE infection did not affect growth performance, but caused intestinal inflammation and barrier function impairment by reducing intestinal goblet cells and beneficial bacteria numbers, increasing cecal Salmonella colonization and liver Salmonella invasion, downregulating jejunal mucin-2 (at 7 and 17 d post-infection, DPI), TLR2 (at 7 and 17 DPI), TLR4 (at 17 DPI), TNFSF15 (at 7 and 17 DPI) gene mRNA levels, and upregulating jejunal IFN-γ mRNA levels (at 17 DPI) compared to uninfected birds. Moreover, SE infection also elevated the concentration of jejunal anti-Salmonella IgA and sera anti-Salmonella IgG compared to uninfected birds. However, chickens received B. coagulans diets showed significant increase in body weight gain and weight gain to feed intake ratio from d 15 to 21, alkaline phosphatase activity (at 7 DPI), cecal Lactobacilli and Bifidobacterium numbers (at 7 DPI; at 17 DPI), villous height: crypt ratio (at 17 DPI), and goblet cell numbers (at 7 and 17 DPI), whereas exhibiting reduced jejunal crypt depth (at 17 DPI), cecal Escherichia coli (at 7, 17, and 31 DPI), and Salmonella (at 7 and 17 DPI) levels compared with the non-supplemented birds, regardless of SE infection. In addition, B. coagulans supplement upregulated lysozyme mRNA levels (at 17 DPI), downregulated IFN-γ mRNA levels (at 7 and 17 DPI), showed an increased trend in Fowlicidin-2 mRNA levels (at 7 DPI) and a reduced trend in liver Salmonella load compared to the non-supplemented control. These data indicated that B. coagulans has a protective effect in SE infected

  10. Salmonella spp. in lymph nodes of fed and cull cattle: Relative assessment of risk to ground beef

    USDA-ARS?s Scientific Manuscript database

    Ground beef products have been implicated as the vehicle for the transmission of Salmonella in a number of outbreaks. Although carcass surface interventions have proven effective, Salmonella contamination in ground beef still occurs. Recent studies indicate that deep tissue lymph nodes (DTLNs) may b...

  11. Diversity of Multi-drug Resistant Salmonella enterica Associated with Cull Cattle at Harvest in the United States

    USDA-ARS?s Scientific Manuscript database

    Background: Salmonella is an important foodborne pathogen, causing millions of cases of food poisoning in the U.S. each year. While poultry products and contaminated fresh produce are well established vectors for Salmonella, several foodborne disease case studies have shown that undercooked ground b...

  12. Development of a quantitative fluorescence single primer isothermal amplification-based method for the detection of Salmonella.

    PubMed

    Wang, Jianchang; Li, Rui; Hu, Lianxia; Sun, Xiaoxia; Wang, Jinfeng; Li, Jing

    2016-02-16

    Food-borne disease caused by Salmonella has long been, and continues to be, an important global public health problem, necessitating rapid and accurate detection of Salmonella in food. Real time PCR is the most recently developed approach for Salmonella detection. Single primer isothermal amplification (SPIA), a novel gene amplification technique, has emerged as an attractive microbiological testing method. SPIA is performed under a constant temperature, eliminating the need for an expensive thermo-cycler. In addition, SPIA reactions can be accomplished in 30 min, faster than real time PCR that usually takes over 2h. We developed a quantitative fluorescence SPIA-based method for the detection of Salmonella. Using Salmonella Typhimurium genomic DNA as template and a primer targeting Salmonella invA gene, we showed the detection limit of SPIA was 2.0 × 10(1)fg DNA. Its successful amplification of different serotypic Salmonella genomic DNA but not non-Salmonella bacterial DNA demonstrated the specificity of SPIA. Furthermore, this method was validated with artificially contaminated beef. In conclusion, we showed high sensitivity and specificity of SPIA in the detection of Salmonella, comparable to real time PCR. In addition, SPIA is faster and more cost-effective (non-use of expensive cyclers), making it a potential alternative for field detection of Salmonella in resource-limited settings that are commonly encountered in developing countries. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Atmospheric pressure plasma jet treatment of Salmonella Enteritidis inoculated eggshells.

    PubMed

    Moritz, Maike; Wiacek, Claudia; Koethe, Martin; Braun, Peggy G

    2017-03-20

    Contamination of eggshells with Salmonella Enteritidis remains a food safety concern. In many cases human salmonellosis within the EU can be traced back to raw or undercooked eggs and egg products. Atmospheric pressure plasma is a novel decontamination method that can reduce a wide range of pathogens. The aim of this work was to evaluate the possibility of using an effective short time cold plasma treatment to inactivate Salmonella Enteritidis on the eggshell. Therefore, artificially contaminated eggshells were treated with an atmospheric pressure plasma jet under different experimental settings with various exposure times (15-300s), distances from the plasma jet nozzle to the eggshell surface (5, 8 or 12mm), feed gas compositions (Ar, Ar with 0.2, 0.5 or 1.0% O 2 ), gas flow rates (5 and 7slm) and different inoculations of Salmonella Enteritidis (10 1 -10 6 CFU/cm 2 ). Atmospheric pressure plasma could reduce Salmonella Enteritidis on eggshells significantly. Reduction factors ranged between 0.22 and 2.27 log CFU (colony-forming units). Exposure time and, particularly at 10 4 CFU/cm 2 inoculation, feed gas had a major impact on Salmonella reduction. Precisely, longer exposure times led to higher reductions and Ar as feed gas was more effective than ArO 2 mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Antibacterial activity and effects of Colla corii asini on Salmonella typhimurium invasion in vitro and in vivo.

    PubMed

    Park, Kwang-Il; Lee, Mi-Ra; Oh, Tae-Woo; Kim, Kwang-Youn; Ma, Jin-Yeul

    2017-12-04

    Salmonella enterica serovar Typhimurium is a foodborne pathogen that triggers inflammatory responses in the intestines of humans and livestock. Colla corii asini is a traditional medicine used to treat gynecologic and chronic diseases in Korea and China. However, the antibacterial activity of Colla corii asini has been unknown. In this study, we investigated the antibacterial activity and effects of Colla corii asini extract on Salmonella typhimurium invasion. To tested for antibacterial effects of Colla corii asini extracts, we confirmed the agar diffusion using Luria solid broth medium. Also, we determined the MIC (minimum inhibitory concentration) and the MBC (minimum bactericidal concentration) value of the Colla corii asini ethanol extract (CEE) by using two-fold serial dilution methods. We evaluated the expression of salmonella invasion proteins including SipA, SipB and SipC by using Western blot and qPCR at the concentration of CEE without inhibition of bacterial growth. In vitro and vivo, we determined the inhibitory effect of invasion of S. typhimurium on CEE by using gentamicin assay and S. typhimurium-infected mice. CEE significantly inhibited the growth of Salmonella typhimurium in an agar diffuse assay and had an MIC of 0.78 mg/ml and an MBC of 1.56 mg/ml. Additionally, CEE reduced Salmonella typhimurium cell invasion via the inhibition of Salmonella typhimurium invasion proteins, such as SipA, SipB and SipC. Furthermore, CEE significantly suppressed invasion in the small intestines (ilea) of mice injected with Salmonella typhimurium. These findings show that Colla corii asini exerts antibacterial activity and suppresses Salmonella typhimurium invasion in vitro and in vivo. Together, these findings demonstrate that Colla corii asini is a potentially useful therapeutic herbal medicine for treating salmonella-mediated diseases.

  15. Combined Effects of Diphenyliodonium Chloride, Pine Oils, and Mustard Oil Soaps on Certain Microorganisms

    PubMed Central

    Ahmed, Zahir; Siddiqui, Mahmood A.; Khan, Ismat

    1969-01-01

    Bactericidal and bacteriostatic activities of an emulsion containing 10.0% (v/v) terpineol, 0.5% (w/v) diphenyliodonium chloride, 11.0% (v/v) ethyl alcohol, and 5.62% saponified mustard oil were tested against a number of different types of organisms. The bactericidal concentration for Salmonella typhosa was 1:400. In the presence of 5.0% horse serum, it increased to 1:250. The bacteriostatic concentration varied from organism to organism; Escherichia coli and Staphylococcus aureus required 4,000 μg/ml for complete bacteriostasis, whereas Corynebacterium diphtheriae, Salmonella paratyphi-A, and Shigella required only 2,000 μg/ml for complete inhibition. A 4.0% concentration of the emulsion killed the spores of Bacillus subtilis within 6 hr. PMID:4389659

  16. Epidemiology, clinical presentation, and patterns of drug resistance of Salmonella Typhi in Karachi, Pakistan.

    PubMed

    Khan, M Imran; Soofi, Sajid Bashir; Ochiai, R Leon; Khan, Mohammad Jawed; Sahito, Shah Muhammad; Habib, Mohammad Atif; Puri, Mahesh K; Von Seidlein, Lorenz; Park, Jin Kyung; You, Young Ae; Ali, Mohammad; Nizami, S Qamarudding; Acosta, Camilo J; Sack, R Bradley; Clemens, John D; Bhutta, Zulfiqar A

    2012-10-19

    Enteric fever remains a major public health problem in Asia. Planning appropriate preventive measures such as immunization requires a clear understanding of disease burden. We conducted a community-based surveillance for Salmonella Typhi infection in children in Karachi, Pakistan. A de jure household census was conducted at baseline in the study setting to enumerate all individuals. A health-care facility-based passive surveillance system was used to capture episodes of fever lasting three or more 3 days in children 2 to 16 years old. A total of 7,401 blood samples were collected for microbiological confirmation, out of which 189 S. Typhi and 32 S. Paratyphi A isolates were identified with estimated annual incidences of 451/100,000 (95% CI: 446 - 457) and 76/100,000 (95% CI: 74 - 78) respectively. At the time of presentation, after adjusting for age, there was an association between the duration of fever and temperature at presentation, and being infected with multidrug-resistant S. Typhi. Of 189 isolates 83 were found to be resistant to first-line antimicrobial therapy. There was no statistically significant difference in clinical presentation of blood culture sensitive and resistant S. Typhi isolates. Incidence of S. Typhi in children is high in urban squatter settlements of Karachi, Pakistan. Findings from this study identified duration of fever and temperature at the time of presentation as important symptoms associated with blood culture-confirmed typhoid fever. Preventive strategies such as immunization and improvements in water and sanitation conditions should be the focus of typhoid control in urban settlements of Pakistan.

  17. Assessment of attenuated Salmonella vaccine strains in controlling experimental Salmonella Typhimurium infection in chickens

    PubMed Central

    Pei, Yanlong; Parreira, Valeria R.; Roland, Kenneth L.; Curtiss, Roy; Prescott, John F.

    2014-01-01

    Salmonella hold considerable promise as vaccine delivery vectors for heterologous antigens in chickens. Such vaccines have the potential additional benefit of also controlling Salmonella infection in immunized birds. As a way of selecting attenuated strains with optimal immunogenic potential as antigen delivery vectors, this study screened 20 novel Salmonella Typhimurium vaccine strains, differing in mutations associated with delayed antigen synthesis and delayed attenuation, for their efficacy in controlling colonization by virulent Salmonella Typhimurium, as well as for their persistence in the intestine and the spleen. Marked differences were observed between strains in these characteristics, which provide the basis for selection for further study as vaccine vectors. PMID:24396177

  18. Assessment of attenuated Salmonella vaccine strains in controlling experimental Salmonella Typhimurium infection in chickens.

    PubMed

    Pei, Yanlong; Parreira, Valeria R; Roland, Kenneth L; Curtiss, Roy; Prescott, John F

    2014-01-01

    Salmonella hold considerable promise as vaccine delivery vectors for heterologous antigens in chickens. Such vaccines have the potential additional benefit of also controlling Salmonella infection in immunized birds. As a way of selecting attenuated strains with optimal immunogenic potential as antigen delivery vectors, this study screened 20 novel Salmonella Typhimurium vaccine strains, differing in mutations associated with delayed antigen synthesis and delayed attenuation, for their efficacy in controlling colonization by virulent Salmonella Typhimurium, as well as for their persistence in the intestine and the spleen. Marked differences were observed between strains in these characteristics, which provide the basis for selection for further study as vaccine vectors.

  19. The microbiology "unknown" misadventure.

    PubMed

    Boyer, B; DeBenedictis, K J; Master, R; Jones, R S

    1998-06-01

    A 19-year-old nursing student was hospitalized after several days of nausea, vomiting, diarrhea, and fevers. Salmonella paratyphi A was isolated from multiple blood cultures. Because this is an unlikely isolate in the United States, an investigation ensued. Two and a half weeks earlier, the student had been working on a microbiology laboratory exercise "unknown." Both the "unknown" organism and the patient's blood culture isolates were identified as S. paratyphi A, with the same biochemical reactions and antimicrobial susceptibility results. The patient's condition improved with antibiotic therapy, and she was discharged after 9 days in the hospital. Conclusions related to our investigation are as follows: (1) relatively virulent organisms were unnecessary to fulfill the laboratory objectives, (2) pipetting by mouth must never be allowed, (3) proper labeling of specimens is imperative, (4) instructors should have knowledge of laboratory safety regulations, and (5) it is the obligation of laboratory directors and administrators to provide a safe academic environment.

  20. PREVALENCE OF SALMONELLA IN CAPTIVE REPTILES FROM CROATIA.

    PubMed

    Lukac, Maja; Pedersen, Karl; Prukner-Radovcic, Estella

    2015-06-01

    Salmonellosis transmitted by pet reptiles is an increasing public health issue worldwide. The aim of this study was to investigate the prevalence of Salmonella strains from captive reptiles in Croatia. From November 2009 to November 2011 a total of 292 skin, pharyngeal, cloacal, and fecal samples from 200 apparently healthy reptiles were tested for Salmonella excretions by bacteriologic culture and serotyping. These 200 individual reptiles included 31 lizards, 79 chelonians, and 90 snakes belonging to private owners or housed at the Zagreb Zoo, Croatia. Salmonella was detected in a total of 13% of the animals, among them 48.4% lizards, 8.9% snakes, and 3.8% turtles. Representatives of five of the six Salmonella enterica subspecies were identified with the following proportions in the total number of isolates: Salmonella enterica enterica 34.6%, Salmonella enterica houtenae 23.1%, Salmonella enterica arizonae 23.1%, Salmonella enterica diarizonae 15.4%, and Salmonella enterica salamae 3.8%. The 14 different serovars isolated included several rarely occurring serovars such as Salmonella Apapa, Salmonella Halle, Salmonella Kisarawe, and Salmonella Potengi. These findings confirm that the prevalence of Salmonella is considerable in captive reptiles in Croatia, indicating that these animals may harbor serovars not commonly seen in veterinary or human microbiologic practice. This should be addressed in the prevention and diagnostics of human reptile-transmitted infections.

  1. Genetic relatedness of a rarely isolated Salmonella: Salmonella enterica serotype Niakhar from NARMS animal isolates.

    PubMed

    Tankson, J D; Fedorka-Cray, P J; Jackson, C R; Headrick, M

    2006-02-01

    In the United States, Salmonella enterica serotype Niakhar is infrequently isolated. Between 1997 and 2000, the animal arm of the National Antimicrobial Resistance Monitoring System-Enteric Bacteria (NARMS) assayed a total of 22,383 Salmonella isolates from various animal sources (swine, cattle, chickens, turkeys, cats, horses, exotics and dogs) for antimicrobial susceptibility. Isolates originated from diagnostic and non-diagnostic submissions. To study the phenotypic and genotypic characteristics of Salmonella Niakhar. Only five (0.02%) of the 22,383 isolates were identified as Salmonella Niakhar. Antimicrobial resistance testing indicated that three isolates were pan-susceptible, one isolate was resistant to ampicillin and one isolate was resistant to ampicillin, chloramphenicol, ciprofloxacin, kanamycin, nalidixic acid, streptomycin, sulfamethoxazole, tetracycline and trimethoprim/sulfamethoxazole. RAPD-PCR analysis, PFGE and ribotyping indicated that two pan-susceptible isolates were genetically similar, whereas the three remaining isolates were genetically different. The one Salmonella Niakhar isolate that was multiresistant harboured a class I integron, intI1 and two large plasmids. This study represents the first report of a ciprofloxacin-resistant Salmonella isolate from the animal arm of NARMS.

  2. Farm-level associations with the shedding of Salmonella and antimicrobial-resistant Salmonella in U.S. dairy cattle.

    PubMed

    Habing, Greg G; Lombard, Jason E; Kopral, Christine A; Dargatz, David A; Kaneene, John B

    2012-09-01

    Salmonella enterica is the leading cause of foodborne-related deaths and hospitalizations within the United States. Infections caused by antimicrobial-resistant (AMR) strains are associated with higher hospital costs and case fatality. The objective for this study was to determine the association of management practices with the recovery of Salmonella and AMR Salmonella on dairy herds. Individual adult cow fecal samples and/or composite fecal samples were collected from 265 dairy herds in 17 states. Samples were cultured for Salmonella, and the MIC was determined for 15 antimicrobials. Herds were classified as Salmonella positive if at least one isolate was recovered, and AMR Salmonella positive if at least one resistant isolate was recovered. Questionnaires regarding management practices were administered to herd operators, and a subset of practices was selected based on subject knowledge and prior research. Data on preventive and therapeutic antimicrobial usage were included in the analysis. Logistic regression models were used to determine which practices were significantly (p<0.05) associated with each herd classification. A total of 124 and 25 herds were classified as Salmonella positive and AMR Salmonella positive, respectively. Variables significantly associated with Salmonella-positive herds included using sprinklers or misters for heat abatement (OR=2.8; CI: 1.6-4.9), feeding anionic salts to cows (OR=1.9; CI: 1.1-3.5), and feeding ionophores to cows (OR=2.1; CI: 1.2-3.7). Herds that used a broadcast/solid spread had lower odds (OR=0.26; CI: 0.11-0.63) of being Salmonella positive. Herds with at least one resistant isolate were more likely to have used composted/dried manure for bedding relative to herds with only susceptible isolates (OR=3.6; CI: 1.2-11.0). These results can be useful to focus additional research aimed at decreasing the prevalence of Salmonella and AMR Salmonella on U.S. dairy herds.

  3. Effects of meat juice on biofilm formation of Campylobacter and Salmonella.

    PubMed

    Li, Jiaqi; Feng, Jinsong; Ma, Lina; de la Fuente Núñez, César; Gölz, Greta; Lu, Xiaonan

    2017-07-17

    Campylobacter and Salmonella are leading causes of foodborne illnesses worldwide, vastly harboured by raw meat as their common food reservoir. Both microbes are prevalent in meat processing environments in the form of biofilms that contribute to cross-contamination and foodborne infection. This study applied raw meat juice (chicken juice and pork juice) as a minimally processed food model to study its effects on bacterial biofilm formation. Meat juice was collected during the freeze-thaw process of raw meat and sterilized by filtration. In 96-well polystyrene plates and glass chambers, supplementation of over 25% meat juice (v/v) in laboratory media led to an increase in biofilm formation of Campylobacter and Salmonella. During the initial attachment stage of biofilm development, more bacterial cells were present on surfaces treated with meat juice residues compared to control surfaces. Meat juice particulates on abiotic surfaces facilitated biofilm formation of Campylobacter and Salmonella under both static and flow conditions, with the latter being assessed using a microfluidic platform. Further, the deficiency in biofilm formation of selected Campylobacter and Salmonella mutant strains was restored in the presence of meat juice particulates. These results suggested that meat juice residues on the abiotic surfaces might act as a surface conditioner to support initial attachment and biofilm formation of Campylobacter and Salmonella. This study sheds light on a possible survival mechanism of Campylobacter and Salmonella in meat processing environments, and indicates that thorough cleaning of meat residues during meat production and handling is critical to reduce the bacterial load of Campylobacter and Salmonella. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Role of anionic charges of osmoregulated periplasmic glucans of Salmonella enterica Serovar Typhimurium SL1344 in mice virulence

    USDA-ARS?s Scientific Manuscript database

    Osmoregulated periplasmic glucans (OPGs) are important periplasmic constituents of Salmonella spp. and are required for optimal growth in hypoosmotic environments such as irrigation and vegetable wash waters as well as for mice virulence. opgB gene of Salmonella enterica serovar Typhimurium was ide...

  5. Prevalence of Salmonella serovars and antimicrobial resistance profiles in poultry of Savar area, Bangladesh.

    PubMed

    Mahmud, Md Showkat; Bari, Md Latiful; Hossain, M Anwar

    2011-10-01

    Salmonellosis is one of the major concerns in the poultry industry and some serovars of Salmonella involve in zoonosis. This study determines the seroprevalence of Salmonella in poultry and their drug-resistant patterns, variability in infectivity and mortality rate of birds, and predilection of some serovars to cause zoonoses. The average seroprevalance of Salmonella in three different age groups was found to be 37.9%. A total of 503 samples were examined over a period of 1 year from five different poultry farms of a semiurban area of Savar, Dhaka, Bangladesh. The prevalence of Salmonella was recorded to be 21.1%. Salmonella was found high in dead birds (31.2%) than live birds (18.1%). Salmonella infection was higher (23.6%) in summer than in winter (12.9%) season. Among the 106 isolates, 46 belong to serogroup B (43%) and 60 isolates to serogroup D (57%). The highest Salmonella infection was recorded as 47.9% on the 30-35-week-old birds. A total of 106 Salmonella isolates were used for antimicrobial susceptibility test against 10 common antibiotics and 17 multiple drug resistance patterns were found. Among the isolates, 69 (65%) harbored plasmids 1-4 with size variation between >1.63 and >40 kb and rest 37 (35%) isolates were plasmid free but showed resistance against 5-10 antibiotics. The results of the present investigation suggested that multiple drug resistance is common among the Salmonella isolates of poultry and some of these isolates may have zoonotic implications.

  6. Detection of Salmonellae in the Environment

    PubMed Central

    Thomason, Berenice M.; Biddle, James W.; Cherry, William B.

    1975-01-01

    The incidence of salmonellae in contrasting environments was compared in this study. Samples collected from or near surface waters in a lush hardwood forest yielded four salmonellae serotypes from six culturally positive samples. A total of 76 samples collected from the top of a granite outcropping over a 3-month period yielded 10 positive samples. Only two salmonellae serotypes were isolated, and one of these was isolated only once. The nature of the sample material had no significant effect on the detection of salmonellae from the two sampling sites. However, the presence or absence of visible moisture in the sample significantly affected the recovery of salmonellae. The results showed that even a harsh environment such as that found on top of Stone Mountain may serve as an ecological niche for the survival and transmission of salmonellae. PMID:1106319

  7. Salmonella Infections - Multiple Languages

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Salmonella Infections URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Salmonella Infections - Multiple Languages To use the sharing features ...

  8. Fecal shedding of Salmonella in exotic felids.

    PubMed

    Clyde, V L; Ramsay, E C; Bemis, D A

    1997-06-01

    Two collections of exotic felids were screened for the presence of Salmonella by selective fecal culture utilizing selenite broth and Hektoen enteric agar. In > 90% of the samples, Salmonella was isolated from a single culture. A commercial horsemeat-based diet was fed in both collections, and one collection also was fed raw chicken. Salmonella was cultured from the raw chicken and the horsemeat diet for both collections. Multiple Salmonella serotypes were identified, with S. typhimurium and S. typhimurium (copenhagen) isolated most frequently. Approximately half of the Salmonella isolates demonstrated multiple antibiotic resistance. The ability to harbor Salmonella as normal nonpathogenic bacteria of the gastrointestinal tract may be a physiological adaptation to carnivory. The high rate of fecal shedding of Salmonella in healthy individuals clouds the interpretation of a positive fecal culture in an ill felid, or one with diarrhea. All zoo employees having contact with cat feces or raw diets have a high rate of occupational exposure to Salmonella and should exercise appropriate hygienic precautions.

  9. Oral Challenge with Wild-Type Salmonella Typhi Induces Distinct Changes in B Cell Subsets in Individuals Who Develop Typhoid Disease.

    PubMed

    Toapanta, Franklin R; Bernal, Paula J; Fresnay, Stephanie; Magder, Laurence S; Darton, Thomas C; Jones, Claire; Waddington, Claire S; Blohmke, Christoph J; Angus, Brian; Levine, Myron M; Pollard, Andrew J; Sztein, Marcelo B

    2016-06-01

    A novel human oral challenge model with wild-type Salmonella Typhi (S. Typhi) was recently established by the Oxford Vaccine Group. In this model, 104 CFU of Salmonella resulted in 65% of participants developing typhoid fever (referred here as typhoid diagnosis -TD-) 6-9 days post-challenge. TD was diagnosed in participants meeting clinical (oral temperature ≥38°C for ≥12h) and/or microbiological (S. Typhi bacteremia) endpoints. Changes in B cell subpopulations following S. Typhi challenge remain undefined. To address this issue, a subset of volunteers (6 TD and 4 who did not develop TD -NoTD-) was evaluated. Notable changes included reduction in the frequency of B cells (cells/ml) of TD volunteers during disease days and increase in plasmablasts (PB) during the recovery phase (>day 14). Additionally, a portion of PB of TD volunteers showed a significant increase in activation (CD40, CD21) and gut homing (integrin α4β7) molecules. Furthermore, all BM subsets of TD volunteers showed changes induced by S. Typhi infections such as a decrease in CD21 in switched memory (Sm) CD27+ and Sm CD27- cells as well as upregulation of CD40 in unswitched memory (Um) and Naïve cells. Furthermore, changes in the signaling profile of some BM subsets were identified after S. Typhi-LPS stimulation around time of disease. Notably, naïve cells of TD (compared to NoTD) volunteers showed a higher percentage of cells phosphorylating Akt suggesting enhanced survival of these cells. Interestingly, most these changes were temporally associated with disease onset. This is the first study to describe differences in B cell subsets directly related to clinical outcome following oral challenge with wild-type S. Typhi in humans.

  10. Contribution of flagella and motility to gut colonisation and pathogenicity of Salmonella Enteritidis in the chicken.

    PubMed

    Barbosa, Fernanda de Oliveira; Freitas Neto, Oliveiro Caetano de; Batista, Diego Felipe Alves; Almeida, Adriana Maria de; Rubio, Marcela da Silva; Alves, Lucas Bocchini Rodrigues; Vasconcelos, Rosemeire de Oliveira; Barrow, Paul Andrew; Berchieri Junior, Angelo

    Salmonella Enteritidis causes fowl paratyphoid in poultry and is frequently associated to outbreaks of food-borne diseases in humans. The role of flagella and flagella-mediated motility into host-pathogen interplay is not fully understood and requires further investigation. In this study, one-day-old chickens were challenged orally with a wild-type strain Salmonella Enteritidis, a non-motile but fully flagellated (SE ΔmotB) or non-flagellated (SE ΔfliC) strain to evaluate their ability to colonise the intestine and spread systemically and also of eliciting gross and histopathological changes. SE ΔmotB and SE ΔfliC were recovered in significantly lower numbers from caecal contents in comparison with Salmonella Enteritidis at early stages of infection (3 and 5dpi). The SE ΔmotB strain, which synthesises paralysed flagella, showed poorer intestinal colonisation ability than the non-flagellated SE ΔfliC. Histopathological analyses demonstrated that the flagellated strains induced more intense lymphoid reactivity in liver, ileum and caeca. Thus, in the present study the flagellar structure and motility seemed to play a role in the early stages of the intestinal colonisation by Salmonella Enteritidis in the chicken. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Analysis of antimicrobial resistance genes detected in multidrug-resistant Salmonella enterica serovar Typhimurium isolated from food animals.

    PubMed

    Glenn, LaShanda M; Lindsey, Rebecca L; Frank, Joseph F; Meinersmann, Richard J; Englen, Mark D; Fedorka-Cray, Paula J; Frye, Jonathan G

    2011-09-01

    Multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium is the most prevalent penta-resistant serovar isolated from animals by the U.S. National Antimicrobial Resistance Monitoring System. Penta-resistant isolates are often resistant to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline. To investigate MDR in Salmonella Typhimurium (including variant 5-), one isolate each from cattle, poultry, and swine with at least the ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline phenotype were selected for each year from 1997 to 2007 (n = 33) for microarray analysis of antimicrobial resistance, incompatibility IncA/C, and HI1 plasmid genes. Cluster analysis based on these data separated 31 of the isolates into two groups A and B (15 and 16 isolates, respectively). Isolates in group A were phage type DT104 or U302 and were mostly swine isolates (7/15). Genes detected included intI1, bla(PSE-1), floR, aadA, sulI, tet(G), and tetR, which are often found in Salmonella Genomic Island I. Isolates in group B had numerous IncA/C plasmid genes detected and were mostly cattle isolates (9/16). Genes detected included bla(CMY-2), floR, aac(3), aadA, aphA1, strA, strB, sulI, sulII, dfrA, dhf, tet(A)(B)(C)(D), and tetR, which are often found on MDR-AmpC IncA/C plasmids. The IncA/C replicon was also detected in all group B isolates. The two remaining isolates did not cluster with any others and both had many HI1 plasmid genes detected. Linkage disequilibrium analysis detected significant associations between plasmid replicon type, phage type, and animal source. These data suggest that MDR in Salmonella Typhimurium is associated with DT104/Salmonella Genomic Island I or IncA/C MDR-AmpC encoding plasmids and these genetic elements have persisted throughout the study period.

  12. Serotype Diversity and Antimicrobial Resistance among Salmonella enterica Isolates from Patients at an Equine Referral Hospital.

    PubMed

    Leon, I M; Lawhon, S D; Norman, K N; Threadgill, D S; Ohta, N; Vinasco, J; Scott, H M

    2018-07-01

    Although Salmonella enterica can produce life-threatening colitis in horses, certain serotypes are more commonly associated with clinical disease. Our aim was to evaluate the proportional morbidity attributed to different serotypes, as well as the phenotypic and genotypic antimicrobial resistance (AMR) of Salmonella isolates from patients at an equine referral hospital in the southern United States. A total of 255 Salmonella isolates was obtained from clinical samples of patients admitted to the hospital between 2007 and 2015. Phenotypic resistance to 14 antibiotics surveilled by the U.S. National Antimicrobial Resistance Monitoring System was determined using a commercially available panel. Whole-genome sequencing was used to identify serotypes and genotypic AMR. The most common serotypes were Salmonella enterica serotype Newport (18%), Salmonella enterica serotype Anatum (15.2%), and Salmonella enterica serotype Braenderup (11.8%). Most ( n = 219) of the isolates were pansusceptible, while 25 were multidrug resistant (≥3 antimicrobial classes). Genes encoding beta-lactam resistance, such as bla CMY-2 , bla SHV-12 , bla CTX-M-27 , and bla TEM-1B , were detected. The qnr B2 and aac(6')-Ib-cr genes were present in isolates with reduced susceptibility to ciprofloxacin. Genes encoding resistance to gentamicin ( aph(3')-Ia , aac(6')-IIc ), streptomycin ( str A and str B), sulfonamides ( sul1 ), trimethoprim ( dfrA ), phenicols ( catA ), tetracyclines [ tet (A) and tet (E)], and macrolides [ ere (A)] were also identified. The main predicted incompatibility plasmid type was I1 (10%). Core genome-based analyses revealed phylogenetic associations between isolates of common serotypes. The presence of AMR Salmonella in equine patients increases the risk of unsuccessful treatment and causes concern for potential zoonotic transmission to attending veterinary personnel, animal caretakers, and horse owners. Understanding the epidemiology of Salmonella in horses admitted to

  13. Bovine salmonellosis in Northeast of Iran: Frequency, genetic fingerprinting and antimicrobial resistance patterns of Salmonella spp.

    PubMed Central

    Halimi, Hessam A.; Seifi, Hesam A.; Rad, Mehrnaz

    2014-01-01

    Objective To evaluate serovar and antimicrobial resistance patterns of Salmonella spp isolated from healthy, diseased and necropsied cows and calves in this observational study. Methods Nineteen isolates recovered from feces and tissues of salmonellosis-affected animals of two commercial farms in north-east of Iran. In second part of the study, the two farms were sampled 4 times with an interval of 2 month. The samples included calves' feces, adult cows' feces, feeds, water, milk filters, and milk fed to calves. Five Salmonella were isolated from 332 fecal samples collected from calves and peri-parturient cows. No Salmonella was recovered from water, feed, milk filers and milk fed to calves. Results Salmonella Typhimurium was the most frequently isolate among all sero-groups. S. Dublin was only accounted for 8% (two out of 24) of isolates. Isolated Salmonella strains were used for the ERIC PCR DNA fingerprinting assay. Our results grouped Salmonella isolates into 3 clusters, suggesting that specific genotypes were responsible for each sero-group of Salmonella. The results also revealed diversity among Salmonella isolates in cluster III (sero-group B). Eighteen out of 19 Salmonella spp. were resistant to oxytetracycline. Five isolates out of 19 showed more than one drug resistance. Multi-drug resistance was seen only among Salmonella Typhimurium isolates. Enrofloxacin was the most susceptible antibiotic against all isolates in this study. Conclusion The emergence of multiple antibiotic-resistant strains of Salmonella Typhimurium should be of great concern to the public. No correlation between ERIC fingerprinting and resistance patterns of Salmonella isolates was found, which indicates resistance to antimicrobial agents was not related to specific genetic background. PMID:24144122

  14. Increased susceptibility to beta-lactam antibiotics and decreased porin content caused by envB mutations of Salmonella typhimurium.

    PubMed Central

    Oppezzo, O J; Avanzati, B; Antón, D N

    1991-01-01

    Isogenic derivatives carrying envB6, envB9, or envB+ alleles were obtained from a strain of Salmonella typhimurium that was partially resistant to mecillinam, a beta-lactam antibiotic specific for penicillin-binding protein 2 (PBP 2). Testing of the isogenic strains with several antibacterial agents demonstrated that envB mutations either increased resistance (mecillinam) or did not affect the response (imipemen) to beta-lactams that act primarily on PBP 2, while susceptibilities to beta-lactams that act on PBP 1B, PBP 3, or both were increased. Furthermore, the susceptibilities of envB strains to hydrophobic compounds such as rifampin, novobiocin, or chloramphenicol were not modified, even though their susceptibilities to deoxycholate and crystal violet were enhanced. Outer cell membranes of envB mutants presented a 50% reduction in protein content compared with that of the isogenic envB+ strains, and OmpF and OmpD porins were particularly affected by the reduction. No alteration in the amount or pattern of periplasmic proteins was noticed, and lipopolysaccharides from envB mutants appeared to be normal by sodium dodecyl sulfate-urea-polyacrylamide gel electrophoresis. By using derivatives that produced a plasmid-encoded beta-lactamase, it was demonstrated that envB cells are slightly less permeable to cephalothin than envB+ bacteria are. It is concluded that the high susceptibility of envB mutants to beta-lactams is due to the increased effectiveness of the antibiotics on PBP 1B, PBP 3, or both. Images PMID:1656857

  15. Antimicrobial resistance and typing of Salmonella isolated from street vended foods and associated environment.

    PubMed

    Anukampa; Shagufta, Bi; Sivakumar, M; Kumar, Surender; Agarwal, Rajesh Kumar; Bhilegaonkar, Kiran Narayan; Kumar, Ashok; Dubal, Zunjar Baburao

    2017-07-01

    The present study was carried out to find out the occurrence and types of Salmonella present in street vended foods and associated environment, and their resistance pattern against various antibiotics. About 1075 street vended food and associated environment samples were processed for isolation and confirmation of different Salmonella spp. by targeting gene specific inv A gene and serotype specific Sdf I, Via B and Spy genes by PCR. Selected Salmonella isolates were screened for antibiotic resistance by using Baeur-Kirby disk diffusion test. Out of 1075 samples, only 31 (2.88%) isolates could be amplified the inv A gene of which 19 could be recovered from meat vendors; 8 from egg vendors while remaining 4 from milk vendors. Though, majority of Salmonella recovered from raw foods the ready-to-eat food like chicken gravy and rasmalai also showed its presence which pose a serious public health threat. Overall, 19, 6 and 1 isolates of S. Typhimurium, S. Enteritidis and S. Typhi could be detected by PCR while remaining 5 isolates could not be amplified suggesting other type of Salmonella. Selected Salmonella isolates were completely resistance to Oxacillin (100%) followed by Cefoxitin (30.43%) and Ampicillin (26.10%). Thus, it is observed that the street vended foods of animal origin and associated environment play an important role in transmission of food borne pathogens including Salmonella .

  16. Performance of the chromID Salmonella Elite chromogenic agar in comparison with CHROMagar™ Salmonella, Oxoid™ Brilliance™ Salmonella and Hektoen agars for the isolation of Salmonella from stool specimens.

    PubMed

    Martiny, Delphine; Dediste, Anne; Anglade, Claire; Vlaes, Linda; Moens, Catherine; Mohamed, Souad; Vandenberg, Olivier

    2016-10-01

    chromID™ Salmonella Elite is compared with 3 culture media commonly used for Salmonella isolation from stool specimens. As results were equivalent to other chromogenic media (100% sensitivity, 98% specificity), only financial arguments should guide the choice for a medium with respect to another. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Evaluation of VIDAS Salmonella (SLM) easy Salmonella method for the detection of Salmonella in a variety of foods: collaborative study.

    PubMed

    Crowley, Erin; Bird, Patrick; Fisher, Kiel; Goetz, Katherine; Benzinger, M Joseph; Agin, James; Goins, David; Johnson, Ronald L

    2011-01-01

    The VIDAS Salmonella (SLM) Easy Salmonella method is a specific enzyme-linked fluorescent immunoassay performed in the automated VIDAS instrument. The VIDAS Easy Salmonella method is a simple 2-step enrichment procedure, using pre-enrichment followed by selective enrichment in a newly formulated broth, SX2 broth. This new method was compared in a multilaboratory collaborative study to the U.S. Food and Drug Administration's Bacteriological Analytical Manual, Chapter 5 method for five food matrixes (liquid egg, vanilla ice cream, spinach, raw shrimp, and peanut butter) and the U.S. Department of Agriculture's Microbiology Laboratory Guidebook 4.04 method for deli turkey. Each food type was artificially contaminated with Salmonella at three inoculation levels. A total of 15 laboratories representing government, academia, and industry, throughout the United States, participated. In this study, 1583 samples were analyzed, of which 792 were paired replicates and 791 were unpaired replicates. Of the 792 paired replicates, 285 were positive by both the VIDAS and reference methods. Of the 791 unpaired replicates, 341 were positive by the VIDAS method and 325 were positive by the cultural reference method. A Chi-square analysis of each of the six food types was performed at the three inoculation levels tested. For all foods evaluated, the VIDAS Easy SLM method demonstrated results comparable to those of the reference methods for the detection of Salmonella.

  18. Comparison of dkgB-linked intergenic sequence ribotyping to DNA microarray hybridization for assigning serotype to Salmonella enterica

    PubMed Central

    Guard, Jean; Sanchez-Ingunza, Roxana; Morales, Cesar; Stewart, Tod; Liljebjelke, Karen; Kessel, JoAnn; Ingram, Kim; Jones, Deana; Jackson, Charlene; Fedorka-Cray, Paula; Frye, Jonathan; Gast, Richard; Hinton, Arthur

    2012-01-01

    Two DNA-based methods were compared for the ability to assign serotype to 139 isolates of Salmonella enterica ssp. I. Intergenic sequence ribotyping (ISR) evaluated single nucleotide polymorphisms occurring in a 5S ribosomal gene region and flanking sequences bordering the gene dkgB. A DNA microarray hybridization method that assessed the presence and the absence of sets of genes was the second method. Serotype was assigned for 128 (92.1%) of submissions by the two DNA methods. ISR detected mixtures of serotypes within single colonies and it cost substantially less than Kauffmann–White serotyping and DNA microarray hybridization. Decreasing the cost of serotyping S. enterica while maintaining reliability may encourage routine testing and research. PMID:22998607

  19. Salmonella survival during thermal dehydration of fresh garlic and storage of dehydrated garlic products.

    PubMed

    Zhang, Hongmei; Qi, Yan; Wang, Lei; Zhang, Shaokang; Deng, Xiangyu

    2017-12-18

    Salmonella survival was characterized and modeled during thermal dehydration of fresh garlic and storage of dehydrated garlic products. In our experiments that simulated commercial dehydration processing at 80±5°C, moderate level of Salmonella contamination (4-5logCFU/g) on fresh garlic was reduced below the enumeration limit (1.7logCFU/g) after 4.5h of dehydration and not detectable by culture enrichment after 7h. With high level of contamination (7-8logCFU/g), the Salmonella population persisted at 3.6logCFU/g after 8h of processing. By increasing the dehydration temperature to 90±5°C, the moderate and high levels of initial Salmonella load on fresh garlic dropped below the enumeration limit after 1.5 and 3.75h of processing and became undetectable by culture enrichment after 2.5 and 6h, respectively. During the storage of dried garlic products, Salmonella was not able to grow under all tested combinations of temperature (25 and 35°C) and water activity (0.56-0.98) levels, suggesting active inhibition. Storage temperature played a primary role in determining Salmonella survival on dehydrated garlic flakes. Under a typical storage condition at 25°C and ambient relative humidity, Salmonella could persist over months with the population gradually declining (4.3 log reduction over 88days). Granular size of dehydrated garlic had an impact on Salmonella survival, with better survival of the pathogen observed in bigger granules. At the early stage of dehydrated garlic storage (until 7days), rising water activity appeared to initially promote but then inhibited Salmonella survival, resulting in a water activity threshold at 0.73 where Salmonella displayed strongest persistence. However, this phenomenon was less apparent during extended storage (after 14days). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Characterizing Salmonella Contamination in Two Rendering Processing Plants.

    PubMed

    Gong, Chao; Jiang, Xiuping

    2017-02-01

    A microbiological investigation on Salmonella contamination was conducted in two U.S. rendering plants to investigate the potential cross-contamination of Salmonella in the rendering processing environment. Sampling locations were predetermined at the areas where Salmonella contamination may potentially occur, including raw materials receiving, crax (rendered materials before grinding process) grinding, and finished meal loading-out areas. Salmonella was either enumerated directly on xylose lysine Tergitol 4 agar plates or enriched in Rappaport-Vassiliadis and tetrathionate broths. The presumptive Salmonella isolates were confirmed using CHROMagar plating and latex agglutination testing and then characterized using pulsed-field gel electrophoresis, serotyping, and biofilm-forming determination. Among 108 samples analyzed, 79 (73%) samples were Salmonella positive after enrichment. Selected Salmonella isolates (n = 65) were assigned to 31 unique pulsed-field gel electrophoresis patterns, with 16 Salmonella serotypes, including Typhimurium and Mbandaka, identified as predominant serotypes and 10 Salmonella strains determined as strong biofilm formers. Our results indicated that the raw materials receiving area was the primary source of Salmonella and that the surfaces surrounding crax grinding and finished meal loading-out areas harbor Salmonella in biofilms that may recontaminate the finished meals. The same Salmonella serotypes found in both raw materials receiving and the finished meal loading-out areas suggested a potential of cross-contamination between different areas in the rendering processing environment.

  1. Pathogenesis of Salmonellosis: Salmonella Exotoxins

    DTIC Science & Technology

    1982-03-08

    of Salmonella enteritidis , which included 9630 serotype newport, 9136 serotype newport, 10016 serotype javiana, and 8832, serotype javiana were also...supplied by Dr. T. Huber. Additionally, four clinical isolates of Salmonella enteritidis , which included 986 serotype typhimurium, 2000 serotype...77Z7I AD _ REPORT NUMBER 3 0 Pathogenesis of Salmonellosis: Salmonella Exotoxins Annual Progress Report (9/1/79-8/31/80) M Johnny W. Peterson, Ph.D

  2. Pathogenesis of Salmonellosis: Salmonella Exotoxins

    DTIC Science & Technology

    1982-03-08

    membrane-as3ociated enterotowin produced by S. enteritidis and by S. typhimurium ; however they could find no similarities between their Salmonella ...AD. . 0 REPORT NUJMBER 1 Pathogenesis of Salmoneiliosis: Salmonella Exotoxins Annual Progress Report (12/1/77-9/1/78) Johnny W. Peterson. Ph.D. March...TYPE OF REPORT & PERIOD COVEREOD",- Uathogenesis of ,Salmonellosils: Salmonella Annual Progress Report Exotoxins 12/T/77 9/1/78 C. PERFORMCNG ORG

  3. Impact of litter salmonella status during feed withdrawal on salmonella recovery from the broiler crop and ceca

    USDA-ARS?s Scientific Manuscript database

    Research was conducted to evaluate the impact of litter Salmonella status during feed withdrawal on Salmonella recovery from the crop and ceca following feed withdrawal. In 4 experiments, pens of broilers in separate rooms were challenged with marker strains of either Salmonella Montevideo or Salmon...

  4. A CRISPR-based MLST Scheme for Understanding the Population Biology and Epidemiology of Salmonella Enterica

    DTIC Science & Technology

    2015-05-26

    in other systems , or whether it has alternative functions. Here, we report that CRISPR can be used to subtype Salmonella enterica serovariants...protects the bacteria against foreign DNA as described in other systems , or whether it has alternative functions. Here, we report that CRISPR can be...N. Shariat, R. E. Timme, J. B. Pettengill, R. Barrangou, E. G. Dudley. Characterization and evolution of Salmonella CRISPR-Cas systems

  5. Paradigm Diagnostics Salmonella Indicator Broth (PDX-SIB) for detection of Salmonella on selected environmental surfaces.

    PubMed

    Olstein, Alan; Griffith, Leena; Feirtag, Joellen; Pearson, Nicole

    2013-01-01

    The Paradigm Diagnostics Salmonella Indicator Broth (PDX-SIB) is intended as a single-step selective enrichment indicator broth to be used as a simple screening test for the presence of Salmonella spp. in environmental samples. This method permits the end user to avoid multistep sample processing to identify presumptively positive samples, as exemplified by standard U.S. reference methods. PDX-SIB permits the outgrowth of Salmonella while inhibiting the growth of competitive Gram-negative and -positive microflora. Growth of Salmonella-positive cultures results in a visual color change of the medium from purple to yellow when the sample is grown at 37 +/- 1 degree C. Performance of PDX-SIB has been evaluated in five different categories: inclusivity-exclusivity, methods comparison, ruggedness, lot-to-lot variability, and shelf stability. The inclusivity panel included 100 different Salmonella serovars, 98 of which were SIB-positive during the 30 to 48 h incubation period. The exclusivity panel included 33 different non-Salmonella microorganisms, 31 of which were SIB-negative during the incubation period. Methods comparison studies included four different surfaces: S. Newport on plastic, S. Anatum on sealed concrete, S. Abaetetuba on ceramic tile, and S. Typhimurium in the presence of 1 log excess of Citrobacter freundii. Results of the methods comparison studies demonstrated no statistical difference between the SIB method and the U.S. Food and Drug Administration-Bacteriological Analytical Manual reference method, as measured by the Mantel-Haenszel Chi-square test. Ruggedness studies demonstrated little variation in test results when SIB incubation temperatures were varied over a 34-40 degrees C range. Lot-to-lot consistency results suggest no detectable differences in manufactured goods using two reference Salmonella serovars and one non-Salmonella microorganism.

  6. Encephalitis in a traveller with typhoid fever: efficacy of corticosteroids.

    PubMed

    Mellon, Guillaume; Eme, Anne-Line; Rohaut, Benjamin; Brossier, Florence; Epelboin, Loïc; Caumes, Eric

    2017-09-01

    Typhoid fever is a bacterial infection caused by Salmonella typhi or S. paratyphi, recognized as a classical cause of fever in returning travellers. However, neuropsychiatric presentations are rarely reported in travellers diagnosed in western countries, whereas they are more commonly described in patients treated in endemic areas. We describe such a case and discuss the pathophysiologic mechanisms of this complication. © International Society of Travel Medicine, 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. IRRADIATION OF EGGS AND EGG PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, J.; Hannan, R.S.; Hobbs, B.C.

    It has been known for some time that egg products may contain members of the Salmonella group capable of causing food poisoning, and the position has been rendered more serious by the recent discovery of S. paratyphi B in some of the samples of egg products. Attempts to destroy salmonellae in liquid egg by pasteurization before freezing or drying have met with considerable success but the process requires careful control. The tins in which the frozen product is distributed hold up to 20 kg, and are therefore of a size suitable for treatment with gamma -radiation. After treatment of smallmore » samples of frozen whole egg with 2 Mev cathode rays it was concluded that a dose of about O.3 to 0.5 Mrad would destroy the numbers of salmonellae normally encountered in the product without impairing the baking qualities of the material. Whole tins, each containing 10 kg of infected material, were therefore irradiated in the frozen state with Co/sup 60/ gamma -rays. Two tins were treated at each of three dose levels of 0.3, 0.4, and 0.5 Mrad. No salmonellae were detected in duplicate samples of 25 g of material taken from each of the tins after irradiation. If the effectiveness of the treatment is confirmed, the process has obvious attractions since it dispenses with the need to thaw or otherwise to handle the product. The paper also contains a general discussion on the irradiation of eggs and egg products. (auth)« less

  8. Distribution of Salmonella serovars and phage types on 80 Ontario swine farms in 2004

    PubMed Central

    Farzan, Abdolvahab; Friendship, Robert M.; Dewey, Catherine E.; Muckle, Anne C.; Gray, Jeff T.; Funk, Julie

    2008-01-01

    The objective of this study was to describe the distribution of Salmonella spp. on Ontario grower–finisher pig farms. Eighty swine farms were visited from January through July 2004. On each farm, fecal samples were collected from 5 pens, 2 rectal samples and 1 pooled sample from fresh manure on the floor per pen. Salmonella was isolated from 91 (11%) of the 800 rectal samples and 73 (18%) of the 397 pooled samples. Overall, Salmonella was recovered from 37 (46%) of the 80 farms. On each positive farm, Salmonella was cultured from 1 to 7 pigs or 1 to 5 pens. Of the 37 farms, 18, 13, 5, and 1 yielded 1, 2, 3, and 4 serovars, respectively. The most common serovars were S. Typhimurium var. Copenhagen, S. Infantis, S. Typhimurium, S. Derby, S. Agona, S. Havana, and S. enterica subsp. I:Rough-O. The 3 most frequent phage types were PT 104, PT 104a, and PT 104b. There was a statistically fair agreement between samples collected directly from pigs and pooled pen samples in determining the Salmonella status at the pen and farm level (κ = 0.6, P < 0.0001). However, in 62 pens, Salmonella status, serovars, or phage types differed between the pig and pooled pen samples. The distribution of Salmonella on the swine farms in this study indicates that, in developing an intervention strategy, priority should be given to farms positive for S. Typhimurium var. Copenhagen. Also, the variation in Salmonella status between pig and pooled pen samples deserves consideration in a sampling strategy. PMID:18214155

  9. Electrochemical biosensors for Salmonella: State of the art and challenges in food safety assessment.

    PubMed

    Silva, Nádia F D; Magalhães, Júlia M C S; Freire, Cristina; Delerue-Matos, Cristina

    2018-01-15

    According to the recent statistics, Salmonella is still an important public health issue in the whole world. Legislated reference methods, based on counting plate methods, are sensitive enough but are inadequate as an effective emergency response tool, and are far from a rapid device, simple to use out of lab. An overview of the commercially available rapid methods for Salmonella detection is provided along with a critical discussion of their limitations, benefits and potential use in a real context. The distinguished potentialities of electrochemical biosensors for the development of rapid devices are highlighted. The state-of-art and the newest technologic approaches in electrochemical biosensors for Salmonella detection are presented and a critical analysis of the literature is made in an attempt to identify the current challenges towards a complete solution for Salmonella detection in microbial food control based on electrochemical biosensors. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Potential associations between fecal shedding of Salmonella in feedlot cattle treated for apparent respiratory disease and subsequent adverse health outcomes

    PubMed Central

    Jahangir Alam, Mohammad; Renter, David G.; Ives, Samuel E.; Thomson, Daniel U.; Sanderson, Michael W.; Hollis, Larry C.; Nagaraja, Tiruvoor G.

    2009-01-01

    A prospective cohort study was used to assess whether Salmonella fecal shedding in commercial feedlot cattle treated with antimicrobials for respiratory disease was associated with subsequent adverse health outcomes. Feces were collected per rectum from cattle that were examined for apparent respiratory disease, had a rectal temperature ≥40 °C, and subsequently received antimicrobial treatment. Salmonella were recovered from 918 (73.7%) of 1 245 fecal samples and weekly prevalence estimates ranged from 49 to 100% over the 3-month study. Genotypic and phenotypic characteristics of Salmonella strains in the population were determined. Serogroup E Salmonella were most common (73.3%), followed by C1 (11.0%), C3 (8.6%), and B (1.1%). Predominant serotypes were Orion (46.5%), Anatum (19.8%), Kentucky (8.7%), Montevideo (7.5%), and Senftenberg (4.9%). Few isolates (36/918) were positive for antimicrobial resistance-associated integron gene intI1. Phenotypic susceptibility was associated with isolate intI1 status. Crude re-pull, re-treatment and case fatality risks were higher for cattle that were Salmonella-positive versus -negative at initial treatment, but not statistically different on multivariable analysis. However, case fatality risk was higher for cattle shedding Group B Salmonella than for cattle shedding other serogroups. Lots (groups) with a higher Salmonella prevalence at first treatment had a higher proportion of mortalities occur in a hospital pen, higher overall re-treatment risks, and were more likely to be sampled later in the study. Results indicate a high prevalence of Salmonella in this population of cattle treated for apparent respiratory disease, but that effects associated with clinical outcomes may depend on the Salmonella strain. PMID:18817722

  11. Live-cell imaging of Salmonella Typhimurium interaction with zebrafish larvae after injection and immersion delivery methods.

    PubMed

    Varas, Macarena; Fariña, Alonso; Díaz-Pascual, Francisco; Ortíz-Severín, Javiera; Marcoleta, Andrés E; Allende, Miguel L; Santiviago, Carlos A; Chávez, Francisco P

    2017-04-01

    The zebrafish model has been used to determine the role of vertebrate innate immunity during bacterial infections. Here, we compare the in vivo immune response induced by GFP-tagged Salmonella Typhimurium inoculated by immersion and microinjection in transgenic zebrafish larvae. Our novel infection protocols in zebrafish allow live-cell imaging of Salmonella colonization. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Meta-analysis of chicken--salmonella infection experiments.

    PubMed

    Te Pas, Marinus F W; Hulsegge, Ina; Schokker, Dirkjan; Smits, Mari A; Fife, Mark; Zoorob, Rima; Endale, Marie-Laure; Rebel, Johanna M J

    2012-04-24

    Chicken meat and eggs can be a source of human zoonotic pathogens, especially Salmonella species. These food items contain a potential hazard for humans. Chickens lines differ in susceptibility for Salmonella and can harbor Salmonella pathogens without showing clinical signs of illness. Many investigations including genomic studies have examined the mechanisms how chickens react to infection. Apart from the innate immune response, many physiological mechanisms and pathways are reported to be involved in the chicken host response to Salmonella infection. The objective of this study was to perform a meta-analysis of diverse experiments to identify general and host specific mechanisms to the Salmonella challenge. Diverse chicken lines differing in susceptibility to Salmonella infection were challenged with different Salmonella serovars at several time points. Various tissues were sampled at different time points post-infection, and resulting host transcriptional differences investigated using different microarray platforms. The meta-analysis was performed with the R-package metaMA to create lists of differentially regulated genes. These gene lists showed many similarities for different chicken breeds and tissues, and also for different Salmonella serovars measured at different times post infection. Functional biological analysis of these differentially expressed gene lists revealed several common mechanisms for the chicken host response to Salmonella infection. The meta-analysis-specific genes (i.e. genes found differentially expressed only in the meta-analysis) confirmed and expanded the biological functional mechanisms. The meta-analysis combination of heterogeneous expression profiling data provided useful insights into the common metabolic pathways and functions of different chicken lines infected with different Salmonella serovars.

  13. In ovo evaluation of FloraMax®-B11 on Marek´s disease HVT vaccine protective efficacy, hatchability, microbiota composition, morphometric analysis, and Salmonella Enteritidis infection in broiler chickens

    USDA-ARS?s Scientific Manuscript database

    Four experiments were conducted to evaluate the effect of in ovo administration of FloraMax®-B11 (FM) on Marek´s disease (MD) herpesvirus of turkeys (HVT) vaccine protective efficacy, hatchability, microbiota composition, morphometric analysis and Salmonella enteritidis (SE) infection in chickens. I...

  14. Outbreak of Salmonella enteritidis PT14b gastroenteritis at a restaurant in England: the use of molecular typing to achieve a successful prosecution.

    PubMed

    Chatt, C; Nicholds-Trainor, D; Scrivener, A; Suleman, S; Harvey, M; Dallman, T; Hawker, J; Sibal, B

    2017-10-01

    To describe an outbreak of Salmonella enteritidis phage type (PT) 14b in people who had eaten at a restaurant, and the investigation and subsequent prosecution of the food business operator (FBO). The local health protection team and environmental health department formed an outbreak control team to investigate the outbreak. Epidemiological, microbiological, and environmental investigations were undertaken. Epidemiological investigations involved case finding and interviews. Microbiological investigation: stool samples from the suspected cases and environmental samples from the implicated food business were investigated. Salmonella isolates obtained were subjected to multiple locus variable-number tandem repeat analysis (MLVA) profiling and whole genome sequencing. In addition, adenosine triphosphate (ATP) hygiene swab tests were used to verify the quality of cleaning procedures and data loggers were used to determine the water temperature of the mechanical dishwasher. Fifteen cases of illness where the causative agent was shown to be S. enteritidis PT14b were identified, all of whom had eaten at the same restaurant. S. enteritidis PT14b was also identified from three of the 11 food and environmental samples taken at the restaurant and found to have the same MLVA profile as the cases. A case for prosecution was built and the FBO was successfully prosecuted in July 2015. This investigation highlighted that the use of molecular typing as part of thorough epidemiological, microbiological, and environmental investigations can present a robust case for prosecution against restaurants which pose a risk to public health. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. 78 FR 42526 - Salmonella

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-D-0254] Salmonella Contamination of Dry Dog Food; Withdrawal of Compliance Policy Guide AGENCY: Food and Drug... entitled ``Sec. 690.700 Salmonella Contamination of Dry Dog Food (CPG 690.700)'' on October 1, 1980. CPG...

  16. Prevalence of antimicrobial resistance of non-typhoidal Salmonella serovars in retail aquaculture products.

    PubMed

    Zhang, Jianmin; Yang, Xiaowei; Kuang, Dai; Shi, Xianming; Xiao, Wenjia; Zhang, Jing; Gu, Zhen; Xu, Xuebin; Meng, Jianghong

    2015-10-01

    Aquaculture products can become sources of Salmonella by exposure to contaminated water or through processing practices, thus representing a public health hazard. A study was conducted on Salmonella contamination in aquaculture products sampled from marketplaces and retailers in Shanghai, China. A total of 730 samples (including fish, shellfish, bullfrog, clam, shrimp and others) were obtained from 2006 to 2011. Among them, 217 (29.7%) were positive for Salmonella. Thirty-eight serovars were identified in the 217 Salmonella isolates. The most prevalent were Salmonella Aberdeen (18.4%), S. Wandsworth (12.0%), S. Thompson (9.2%), S. Singapore (5.5%), S. Stanley (4.6%), S. Schwarzengrund (4.6%), S. Hvittingfoss (4.1%) and S. Typhimurium (4.1%). Many resistant isolates were detected, with 69.6% resistant to at least one antimicrobial drug. We observed high resistance to sulfonamides (56.5%), tetracycline (34.1%), streptomycin (28.6%), ampicillin (23.5%) and nalidixic acid (21.2%). Lower levels of resistance were found for gentamicin (3.2%), ciprofloxacin (2.3%), ceftiofur (1.3%), cefotaxime (0.9%), ceftazidime (0.5%) and cefepime (0.5%). A total of 43.3% of the Salmonella isolates were multidrug-resistant and 44 different resistance patterns were found. This study provided data on the prevalence, serovars and antimicrobial resistance of Salmonella from retail aquaculture products in Shanghai, and indicated the need for monitoring programs for microbiologic safety in such projects and for more prudent drug use in aquaculture production in order to reduce the risk of development and spread of antimicrobial resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Autophagy Facilitates Salmonella Replication in HeLa Cells

    PubMed Central

    Yu, Hong B.; Croxen, Matthew A.; Marchiando, Amanda M.; Ferreira, Rosana B. R.; Cadwell, Ken; Foster, Leonard J.; Finlay, B. Brett

    2014-01-01

    ABSTRACT Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. PMID:24618251

  18. In vitro studies of chicken egg yolk antibody (IgY) against Salmonella enteritidis and Salmonella typhimurium.

    PubMed

    Lee, E N; Sunwoo, H H; Menninen, K; Sim, J S

    2002-05-01

    Chicken egg yolk antibody (IgY) raised against Salmonella enteritidis or Salmonella typhimurium was found in highly specific activity levels by ELISA. S. enteritidis- and S. typhimurium-specific IgY powder, prepared by freeze-drying the egg yolk water-soluble fraction, contained 15.5 and 10.0% of specific IgY, respectively. Anti-S. enteritidis IgY cross-reacted 55.3% with S. typhimurium. The cross-reactivity of anti-S. typhimurium IgY with S. enteritidis was 42.4%. Salmonella-specific IgY was demonstrated to inhibit Salmonella growth in liquid medium. The growth rate of S. enteritidis incubated with S. enteritidis-specific IgY was fourfold less than that of the control group during a 4-to-6-h incubation. Cell counts of S. typhimurium incubated with S. typhimurium-specific IgY were reduced by 1.6 log cfu/mL in comparison to that of the control group after 6 h of incubation. The specific binding activity of IgY was further evaluated by using immunofluorescence and immunoelectron microscopy. It was found that Salmonella-specific IgY could bind to the antigens expressed on the Salmonella surface, resulting in structural alterations of the bacterial surface.

  19. Rapid real-time PCR methods to distinguish Salmonella Enteritidis wildtype field isolates from vaccine strains Salmovac SE/Gallivac SE and AviPro SALMONELLA VAC E.

    PubMed

    Maurischat, Sven; Szabo, Istvan; Baumann, Beatrice; Malorny, Burkhard

    2015-05-01

    Salmonella enterica serovar Enteritidis is a major non-typhoid Salmonella serovar causing human salmonellosis mainly associated with the consumption of poultry and products thereof. To reduce infections in poultry, S. Enteritidis live vaccine strains AviPro SALMONELLA VAC E and Salmovac SE/Gallivac SE have been licensed and used in several countries worldwide. To definitively diagnose a S. Enteritidis contamination in vaccinated herds a reliable and fast method for the differentiation between vaccine and wildtype field isolates is required. In this study, we developed and validated real-time PCR (qPCR) assays to distinguish those variants genetically. Suitable target sequences were identified by whole genome sequencing (WGS) using the Illumina MiSeq system. SNP regions in kdpA and nhaA proved to be most useful for differentiation of AviPro SALMONELLA VAC E and Salmovac SE/Gallivac SE, respectively, from wildtype strains. For each vaccine strain one TaqMan-qPCR assay and one alternative approach using High Resolution Melting (HRM) analysis was designed. All 30 Salmovac SE and 7 AviPro SALMONELLA VAC E vaccine strain reisolates tested were correctly identified by both approaches (100% inclusivity). Furthermore, all 137 (TaqMan) and 97 (HRM) Salmonella non-vaccine and related Enterobacteriaceae strains tested were excluded (100% exclusivity). The analytical detection limits were determined to be approx. 10(2) genome copies/reaction for the TaqMan and 10(4) genome copies/reaction for the HRM approach. The real-time PCR assays proved to be a reliable and fast alternative to the cultural vaccine strain identification tests helping decision makers in control measurements to take action within a shorter period of time. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Bioactivity studies of extracts from Tridax procumbens.

    PubMed

    Taddei, A; Rosas-Romero, A J

    2000-06-01

    An updated review on the biological activity of Tridax procumbens is presented. A detailed biological screening comprised of gram-positive and gram-negative bacteria, yeasts and fungi using crude extracts of this plant was undertaken. The n-hexane extract of the flowers showed activity against Escherichia coli. The same extract of the whole aerial parts was active against Mycobacterium smegmatis, Escherichia coli, Salmonella group C and Salmonella paratyphi. The ethyl-acetate extract of the flowers was active against Bacillus cereus and Klebsiella sp. The aerial parts extract also showed activity only against Mycobacterium smegmatis and Staphylococcus aureus, while the aqueous extract showed no antimicrobial activity. None of the tested extracts was active against the yeasts, Candida albicans, Candida tropicalis and Rhodotorula rubra; or the fungi: Aspergillus flavus, Aspergillus niger, Mucor sp. and Trichophyton rubrum.

  1. Prevalence of extended-spectrum b-lactamase-producing Salmonella on retail chicken in six provinces and two national cities in the People's Republic of China.

    PubMed

    Wu, Haiyun; Xia, Xiaodong; Cui, Yue; Hu, Yuanyuan; Xi, Meili; Wang, Xin; Shi, Xianming; Wang, Dapeng; Meng, Jianghong; Yang, Baowei

    2013-12-01

    Prevalence of extended-spectrum β-lactamase (ESBL)-producing Salmonella in food is not well documented. This study investigated the prevalence of ESBL-producing Salmonella in 699 Salmonella isolates recovered from 1,152 retail chickens collected from six provinces and two national cities in the People's Republic of China in 2011. ESBL-producing isolates were screened by double-disk synergy test and confirmed using PCR and DNA sequencing. Of the 699 isolates tested, 60 (8.58%) were identified to be ESBL-producing Salmonella. Prevalence of ESBL-producing Salmonella was the highest in Shanghai city (17 [24.64%] of 69), followed by Shaanxi (10 [15.38%] of 65), Fujian (9 [11.69%] of 77), Guangdong (9 [7.69%] of 117), Sichuan (5 [7.25%] of 69), Beijing (6 [5.17%] of 116), Henan (4 [4.65%] of 86), and Guangxi (0 [0%] of 100) province. Significant difference (P < 0.05) in the prevalence of ESBL-producing Salmonella was found among six provinces and two cities. No significant difference (P > 0.05) in the prevalence was found between wet markets and supermarkets or between whole chickens and chopped chickens. The prevalence of ESBL-producing Salmonella differed significantly (P < 0.05) among different seasons, being higher in autumn than in spring and winter. Overall, ESBL-producing Salmonella varied significantly (P < 0.05) among 12 detected Salmonella serotypes: Abony (1 [33.33%] of 3), Indiana (28 [28.57%] of 98), Edinburg (6 [24.00%] of 25), Shubra (2 [20.00%] of 10), Uppsala (1 [16.67%] of 6), Thompson (8 [14.81%] of 54), Haardt (1 [12.50%] of 8), Agona (3 [9.68%] of 31), Gueuletapee (1 [6.25%] of 16), Typhimurium (4 [5.56%] of 72), Heidelberg (1 [4.55%] of 22), and Enteritidis (4 [3.17%] of 126). This study revealed that ESBL-producing Salmonella do exist in retail chicken in the People's Republic of China and that the potential risk of their presence in foods needs further exploration.

  2. Effects of Climate Change on Salmonella Infections

    PubMed Central

    Akil, Luma; Reddy, Remata S.

    2014-01-01

    Abstract Background: Climate change and global warming have been reported to increase spread of foodborne pathogens. To understand these effects on Salmonella infections, modeling approaches such as regression analysis and neural network (NN) were used. Methods: Monthly data for Salmonella outbreaks in Mississippi (MS), Tennessee (TN), and Alabama (AL) were analyzed from 2002 to 2011 using analysis of variance and time series analysis. Meteorological data were collected and the correlation with salmonellosis was examined using regression analysis and NN. Results: A seasonal trend in Salmonella infections was observed (p<0.001). Strong positive correlation was found between high temperature and Salmonella infections in MS and for the combined states (MS, TN, AL) models (R2=0.554; R2=0.415, respectively). NN models showed a strong effect of rise in temperature on the Salmonella outbreaks. In this study, an increase of 1°F was shown to result in four cases increase of Salmonella in MS. However, no correlation between monthly average precipitation rate and Salmonella infections was observed. Conclusion: There is consistent evidence that gastrointestinal infection with bacterial pathogens is positively correlated with ambient temperature, as warmer temperatures enable more rapid replication. Warming trends in the United States and specifically in the southern states may increase rates of Salmonella infections. PMID:25496072

  3. Effects of climate change on Salmonella infections.

    PubMed

    Akil, Luma; Ahmad, H Anwar; Reddy, Remata S

    2014-12-01

    Climate change and global warming have been reported to increase spread of foodborne pathogens. To understand these effects on Salmonella infections, modeling approaches such as regression analysis and neural network (NN) were used. Monthly data for Salmonella outbreaks in Mississippi (MS), Tennessee (TN), and Alabama (AL) were analyzed from 2002 to 2011 using analysis of variance and time series analysis. Meteorological data were collected and the correlation with salmonellosis was examined using regression analysis and NN. A seasonal trend in Salmonella infections was observed (p<0.001). Strong positive correlation was found between high temperature and Salmonella infections in MS and for the combined states (MS, TN, AL) models (R(2)=0.554; R(2)=0.415, respectively). NN models showed a strong effect of rise in temperature on the Salmonella outbreaks. In this study, an increase of 1°F was shown to result in four cases increase of Salmonella in MS. However, no correlation between monthly average precipitation rate and Salmonella infections was observed. There is consistent evidence that gastrointestinal infection with bacterial pathogens is positively correlated with ambient temperature, as warmer temperatures enable more rapid replication. Warming trends in the United States and specifically in the southern states may increase rates of Salmonella infections.

  4. Characterization of an unusual Salmonella phage type DT7a and report of a foodborne outbreak of salmonellosis.

    PubMed

    Lettini, A A; Saccardin, C; Ramon, E; Longo, A; Cortini, E; Dalla Pozza, M C; Barco, L; Guerra, B; Luzzi, I; Ricci, A

    2014-10-17

    Salmonella enterica subsp. enterica serovar 4,[5],12,i:- is a monophasic variant of Salmonella Typhimurium and its occurrence has markedly increased in several European countries in the last ten years. In June 2011, an outbreak of Salmonella 4,[5],12,i:- was reported among attendees of a wedding reception in the North-East of Italy. The source of this outbreak was identified as a cooked pork product served during the wedding reception. All Salmonella isolates from humans and the contaminated pork products were identified as Salmonella 4,[5],12,i:- and phage typed as DT7a. Afterwards, the farm where the pigs were raised was identified and sampled, and Salmonella Typhimurium was isolated from swine fecal samples. Despite the difference in serovar, these Salmonella Typhimurium isolates were also phage typed as DT7a. In the present study, Salmonella isolates from animals, humans and pork products during the outbreak investigation were subtyped by pulsed-field gel electrophoresis (PFGE), Multiple-Locus Variable number tandem repeats Analysis (MLVA), and resistance patterns, aiming to identify the most suitable subtyping methods to characterize isolates associated with this outbreak. In addition, a collection of epidemiologically unrelated strains of Salmonella 4,[5],12,i:- and Salmonella Typhimurium sharing the same phage type (DT7a) was similarly characterized in order to investigate their genetic relationship. This study provides a first snapshot of a rare Salmonella phage type, DT7a, associated with both Salmonella 4,[5],12,i:- and Salmonella Typhimurium. Moreover, the study demonstrated that in this specific context MLVA could be a reliable tool to support outbreak investigations as well as to assess the genetic relatedness among Salmonella isolates. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Influence of the treatment of Listeria monocytogenes and Salmonella enterica serovar Typhimurium with citral on the efficacy of various antibiotics.

    PubMed

    Zanini, Surama F; Silva-Angulo, Angela B; Rosenthal, Amauri; Aliaga, Dolores Rodrigo; Martínez, Antonio

    2014-04-01

    The main goal of this work was to study the bacterial adaptive responses to antibiotics induced by sublethal concentration of citral on first-and second-generation cells of Listeria monocytogenes serovar 4b (CECT 4032) and Salmonella enterica serovar Typhimurium (CECT 443). The first-generation cells were not pretreated with citral, while the second-generation cells were obtained from cells previously exposed to citral during 5 h. The trials were conducted at 37°C. The presence of citral in the culture medium and the antibiotic strips resulted in a reduced minimum inhibitory concentration (MIC) for the first-generation cells of Listeria monocytogenes serovar 4b and Salmonella Typhimurium. This result was observed for almost all the antibiotics, compared with the same microorganisms of the control group (without citral), which could represent an additive effect. For Listeria serovar 4b, the second-generation cells of the test group maintained the same susceptibility to antibiotics compared with cells in the control group and in the test group of the first generation. The second-generation cells of the control group indicated that the Salmonella Typhimurium maintained the same sensitivity to the antibiotics tested compared with the first generation of this group, except in the case of erythromycin, which exhibited an increased MIC value. With respect to the second-generation cells of Salmonella Typhimurium, the presence of citral determined a decrease in the antibiotic susceptibility for almost all of the antibiotics, except colistin, compared with the first-generation of the test group, which can be seen by increase of MIC values. In conclusion, the presence of citral in the culture medium of Listeria 4b and Salmonella Typhimurium increased the antibiotic susceptibility of the first generations, while we observed an increase in antibiotic resistance in the second generation of Salmonella Typhimurium.

  6. Surveillance for human Salmonella infections in the United States.

    PubMed

    Swaminathan, Bala; Barrett, Timothy J; Fields, Patricia

    2006-01-01

    Surveillance for human Salmonella infections plays a critical role in understanding and controlling foodborne illness due to Salmonella. Along with its public health partners, the Centers for Disease Control and Prevention (CDC) has several surveillance systems that collect information on Salmonella infections in the United States. The National Salmonella Surveillance System, begun in 1962, receives reports of laboratory-confirmed Salmonella infections through state public health laboratories. Salmonella outbreaks are reported by state and local health departments through the Foodborne Disease Outbreak Reporting System, which became a Web-based, electronic system (eFORS) in 2001. PulseNet facilitates the detection of clusters of Salmonella infections through standardized molecular subtyping (DNA "fingerprinting") of isolates and maintenance of "fingerprint" databases. The National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS) monitors antimicrobial resistance in Salmonella by susceptibility testing of every 20th Salmonella isolate received by state and local public health laboratories. FootNet is an active surveillance system that monitors Salmonella infections in sentinel areas, providing population-based estimates of infection rates. Efforts are underway to electronically link all of the Salmonella surveillance systems at CDC to facilitate optimum use of available data and minimize duplication.

  7. Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract.

    PubMed

    Pontier-Bres, Rodolphe; Munro, Patrick; Boyer, Laurent; Anty, Rodolphe; Imbert, Véronique; Terciolo, Chloé; André, Fréderic; Rampal, Patrick; Lemichez, Emmanuel; Peyron, Jean-François; Czerucka, Dorota

    2014-01-01

    Salmonella enterica serovar Typhimurium (ST) is an enteropathogenic Gram-negative bacterium that causes infection following oral ingestion. ST spreads rapidly along the gastrointestinal tract (GIT) and invades the intestinal epithelium to ultimately reach internal body organs. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B) is prescribed for prophylaxis of diarrheal infectious diseases. We previously showed that S.b-B prevents weight loss in ST-infected mice and significantly decreases bacterial translocation to the spleen and liver. This study was designed to investigate the effect of S.b-B on ST migration along the GIT and the impact of the yeast on the host's early innate immune responses. Bioluminescent imaging (BLI) was used to evaluate the effect of S.b-B on the progression of luminescent Salmonella Typhimurium (ST-lux) in the GIT of mice pretreated with streptomycin. Photonic emission (PE) was measured in GIT extracts (stomach, small intestine, cecum and colon) at various time periods post-infection (PI). PE analysis revealed that, 45 min PI, ST-lux had migrated slightly faster in the mice treated with S.b-B than in the untreated infected animals. At 90 min PI, ST-lux had reached the cecum in both groups of mice. Adhesion of ST to S.b-B was visualized in the intestines of the mice and probably accounts for (1) the faster elimination of ST-lux in the feces, and (2) reduced translocation of ST to the spleen and liver. In the early phase of infection, S.b-B also modifies the host's immune responses by (1) increasing IFN-γ gene expression and decreasing IL-10 gene expression in the small intestine, and (2) elevating both IFN-γ, and IL-10 mRNA levels in the cecum. BLI revealed that S.b-B modifies ST migration and the host immune response along the GIT. Study findings shed new light on the protective mechanisms of S.b-B during the early phase of Salmonella pathogenesis.

  8. Factors associated with Salmonella prevalence on pork carcasses in very small abattoirs in Wisconsin.

    PubMed

    Algino, R J; Badtram, G A; Ingham, B H; Ingham, S C

    2009-04-01

    The U.S. Department of Agriculture has expressed concern over Salmonella prevalence on pork carcasses. Our objectives were to survey the prevalence of Salmonella on pork carcasses in very small Wisconsin abattoirs, and identify processing conditions and indicator bacteria levels associated with reduced Salmonella prevalence. During April to July 2007, sponge samples were obtained from 181 pork carcasses at 10 Wisconsin abattoirs before carcass washing (carcass half A), and after washing and chilling and before fabrication (carcass half B). Each sample was categorized by whether the carcass was skinned, by wash-water temperature (7 to 43 degrees C), and the duration (1 or 2 days), temperature, and percent relative humidity of chilling. Sponge samples were analyzed qualitatively for Salmonella and quantitatively for Escherichia coli, coliforms, Enterobacteriaceae, and aerobic plate count (APC). Salmonella prevalences on skinned and unskinned prewash carcasses were 11.7 and 8.3%, respectively. Corresponding values for chilled carcasses were 32.0 and 19.5% for 1-day chilled carcasses, and 11.4 and 14.7% for 2-day chilled carcasses. Lower Salmonella prevalence on prewash carcasses was significantly related to lower prewash carcass APC levels (odds ratio = 7.8 per change of 1.0 log CFU/cm2), while lower Salmonella prevalence on chilled carcasses was significantly related to 2-day chilling (odds ratio = 5.2), and chilled-carcass levels of coliforms, Enterobacteriaceae, and APC (odds ratio = 1.5 to 1.9 per change of 1.0 log CFU/cm2). Salmonella prevalence on chilled pork carcasses in very small Wisconsin plants could be reduced by chilling carcasses 2 days before fabrication and improving carcass-handling hygiene.

  9. Testing Feeds for Salmonella.

    USDA-ARS?s Scientific Manuscript database

    Human salmonellosis outbreaks have been linked to contamination of animal feeds. Thus it is crucial to employ sensitive Salmonella detection methods for animal feeds. Based on a review of the literature, Salmonella sustains acid injury at about pH 4.0 to5.0. Low pH can also alter the metabolism of S...

  10. Salmonella-secreted Virulence Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heffron, Fred; Niemann, George; Yoon, Hyunjin

    In this short review we discuss secreted virulence factors of Salmonella, which directly affect Salmonella interaction with its host. Salmonella secretes protein to subvert host defenses but also, as discussed, to reduce virulence thereby permitting the bacteria to persist longer and more successfully disperse. The type III secretion system (TTSS) is the best known and well studied of the mechanisms that enable secretion from the bacterial cytoplasm to the host cell cytoplasm. Other secretion systems include outer membrane vesicles, which are present in all Gram-negative bacteria examined to date, two-partner secretion, and type VI secretion will also be addressed. Excellentmore » reviews of Salmonella secreted effectors have focused on themes such as actin rearrangements, vesicular trafficking, ubiquitination, and the activities of the virulence factors themselves. This short review is based on S. Typhimurium infection of mice because it is a model of typhoid like disease in humans. We have organized effectors in terms of events that happen during the infection cycle and how secreted effectors may be involved.« less

  11. Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity.

    PubMed

    Raja, A; Ashokkumar, S; Pavithra Marthandam, R; Jayachandiran, J; Khatiwada, Chandra Prasad; Kaviyarasu, K; Ganapathi Raman, R; Swaminathan, M

    2018-04-01

    The present work reports the green synthesis of Zinc Oxide Nanoparticles (ZnO NPs) using aqueous Tabernaemontana divaricata green leaf extract. ZnO NPs have been characterized by X-ray diffraction (XRD), Ultra Violet-Visible (UV-Vis) studies, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Fourier Transform-Infra Red (FT-IR) analysis. XRD pattern analysis confirms the presence of pure hexagonal wurtzite crystalline structure of ZnO. The TEM images reveal the formation of spherical shape ZnO NPs with the sizes ranging from 20 to 50 nm. The FT-IR analysis suggests that the obtained ZnO NPs have been stabilized through the interactions of steroids, terpenoids, flavonoids, phenyl propanoids, phenolic acids and enzymes present in the leaf extract. Mechanism for the formation of ZnO NPs using Tabernaemontana divaricata as bioactive compound is proposed. As prepared ZnO NPs reveals antibacterial activity against three bacterial strains, Salmonella paratyphi, Escherichia coli and Staphylococcus aureus. The ZnO NPs shows higher antibacterial activity against S. aureus and E. coli and lesser antibacterial activity against S. paratyphi compared to the standard pharmaceutical formulation. Photocatalytic activity of synthesized ZnO NPs was analyzed for methylene blue (MB) dye degradation with sunlight. Almost complete degradation of dye occurred in 90 min. This nano-ZnO, prepared by eco-friendly method will be much useful for dye removal and bacterial decontamination. Copyright © 2018. Published by Elsevier B.V.

  12. Inactivation of Salmonella during cocoa roasting and chocolate conching.

    PubMed

    Nascimento, Maristela da Silva do; Brum, Daniela Merlo; Pena, Pamela Oliveira; Berto, Maria Isabel; Efraim, Priscilla

    2012-10-15

    The high heat resistance of Salmonella in foods with low water activity raises particular issues for food safety, especially chocolate, where outbreak investigations indicate that few colony-forming units are necessary to cause salmonellosis. This study evaluated the efficiency of cocoa roasting and milk chocolate conching in the inactivation of Salmonella 5-strain suspension. Thermal resistance of Salmonella was greater in nibs compared to cocoa beans upon exposure at 110 to 130°C. The D-values in nibs were 1.8, 2.2 and 1.5-fold higher than those calculated for cocoa beans at 110, 120 and 130°C. There was no significant difference (p>0.05) between the matrices only at 140°C. Since in the conching of milk chocolate the inactivation curves showed rapid death in the first 180 min followed by a lower inactivation rate, and two D-values were calculated. For the first time interval (0-180 min) the D-values were 216.87, 102.27 and 50.99 min at 50, 60 and 70°C, respectively. The other D-values were determined from the second time interval (180-1440 min), 1076.76 min at 50°C, 481.94 min at 60°C and 702.23 min at 70°C. The results demonstrated that the type of matrix, the process temperature and the initial count influenced the Salmonella resistance. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. A Large-Scale Community-Based Outbreak of Paratyphoid Fever Caused by Hospital-Derived Transmission in Southern China.

    PubMed

    Yan, Meiying; Yang, Bo; Wang, Zhigang; Wang, Shukun; Zhang, Xiaohe; Zhou, Yanhua; Pang, Bo; Diao, Baowei; Yang, Rusong; Wu, Shuyu; Klena, John D; Kan, Biao

    2015-01-01

    Since the 1990s, paratyphoid fever caused by Salmonella Paratyphi A has emerged in Southeast Asia and China. In 2010, a large-scale outbreak involving 601 cases of paratyphoid fever occurred in the whole of Yuanjiang county in China. Epidemiological and laboratory investigations were conducted to determine the etiology, source and transmission factors of the outbreak. A case-control study was performed to identify the risk factors for this paratyphoid outbreak. Cases were identified as patients with blood culture-confirmed S. Paratyphi A infection. Controls were healthy persons without fever within the past month and matched to cases by age, gender and geography. Pulsed-field gel electrophoresis and whole-genome sequencing of the S. Paratyphi A strains isolated from patients and environmental sources were performed to facilitate transmission analysis and source tracking. We found that farmers and young adults were the populations mainly affected in this outbreak, and the consumption of raw vegetables was the main risk factor associated with paratyphoid fever. Molecular subtyping and genome sequencing of S. Paratyphi A isolates recovered from improperly disinfected hospital wastewater showed indistinguishable patterns matching most of the isolates from the cases. An investigation showed that hospital wastewater mixed with surface water was used for crop irrigation, promoting a cycle of contamination. After prohibition of the planting of vegetables in contaminated fields and the thorough disinfection of hospital wastewater, the outbreak subsided. Further analysis of the isolates indicated that the origin of the outbreak was most likely from patients outside Yuanjiang county. This outbreak is an example of the combined effect of social behaviors, prevailing ecological conditions and improper disinfection of hospital wastewater on facilitating a sustained epidemic of paratyphoid fever. This study underscores the critical need for strict treatment measures of hospital

  14. The burden and characteristics of enteric fever at a healthcare facility in a densely populated area of Kathmandu.

    PubMed

    Karkey, Abhilasha; Arjyal, Amit; Anders, Katherine L; Boni, Maciej F; Dongol, Sabina; Koirala, Samir; My, Phan Vu Tra; Nga, Tran Vu Thieu; Clements, Archie C A; Holt, Kathryn E; Duy, Pham Thanh; Day, Jeremy N; Campbell, James I; Dougan, Gordon; Dolecek, Christiane; Farrar, Jeremy; Basnyat, Buddha; Baker, Stephen

    2010-11-15

    Enteric fever, caused by Salmonella enterica serovars Typhi and Paratyphi A (S. Typhi and S. Paratyphi A) remains a major public health problem in many settings. The disease is limited to locations with poor sanitation which facilitates the transmission of the infecting organisms. Efficacious and inexpensive vaccines are available for S. Typhi, yet are not commonly deployed to control the disease. Lack of vaccination is due partly to uncertainty of the disease burden arising from a paucity of epidemiological information in key locations. We have collected and analyzed data from 3,898 cases of blood culture-confirmed enteric fever from Patan Hospital in Lalitpur Sub-Metropolitan City (LSMC), between June 2005 and May 2009. Demographic data was available for a subset of these patients (n = 527) that were resident in LSMC and who were enrolled in trials. We show a considerable burden of enteric fever caused by S. Typhi (2,672; 68.5%) and S. Paratyphi A (1,226; 31.5%) at this Hospital over a four year period, which correlate with seasonal fluctuations in rainfall. We found that local population density was not related to incidence and we identified a focus of infections in the east of LSMC. With data from patients resident in LSMC we found that the median age of those with S. Typhi (16 years) was significantly less than S. Paratyphi A (20 years) and that males aged 15 to 25 were disproportionately infected. Our findings provide a snapshot into the epidemiological patterns of enteric fever in Kathmandu. The uneven distribution of enteric fever patients within the population suggests local variation in risk factors, such as contaminated drinking water. These findings are important for initiating a vaccination scheme and improvements in sanitation. We suggest any such intervention should be implemented throughout the LSMC area.

  15. Colonisation of poultry by Salmonella Enteritidis S1400 is reduced by combined administration of Lactobacillus salivarius 59 and Enterococcus faecium PXN-33.

    PubMed

    Carter, Alun; Adams, Martin; La Ragione, Roberto M; Woodward, Martin J

    2017-02-01

    Salmonella Enteritidis remains a significant issue within the poultry industry and one potential solution is to use probiotic bacteria to prevent Salmonella colonisation through competitive exclusion (CE). We demonstrate that combined administration of Lactobacillus salivarius 59 and Enterococcus faecium PXN33 were effective competitive excluders of Salmonella Enteritidis S1400 in poultry. Two models were developed to evaluate the efficacy of probiotic where birds received Salmonella Enteritidis S1400 by a) oral gavage and b) sentinel bird to bird transmission. A statistically significant (p<0.001) 2 log reduction of Salmonella Enteritidis S1400 colonisation was observed in the ileum, caecum and colon at day 43 using combined administration of the two probiotic bacteria. However, no Salmonella Enteritidis S1400 colonisation reduction was observed when either probiotic was administered individually. In the sentinel bird model the combined probiotic administered at days 12 and 20 was more effective than one-off or double administrations at age 1 and 12days. In vitro cell free culture supernatant studies suggest the mechanism of Salmonella Enteritidis S1400 inhibition was due to a reduction in pH by the probiotic bacteria. Our current study provides further evidence that probiotics can significantly reduce pathogenic bacterial colonisation in poultry and that mixed preparation of probiotics provide superior performance when compared to individual bacterial preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Nutrient Composition Promotes Switching between Pellicle and Bottom Biofilm in Salmonella.

    PubMed

    Paytubi, Sonia; Cansado, Cintia; Madrid, Cristina; Balsalobre, Carlos

    2017-01-01

    Salmonella is one of the most frequently reported causes of foodborne illness worldwide. Non-typhoidal serovars cause gastroenteritis in humans. Salmonella can grow on surfaces forming biofilms, contributing to its persistence since biofilms are difficult to eradicate due to the high resistance to antimicrobials and disinfectants. It has been described that there are two crucial biofilm promoting factors in Salmonella : curli and cellulose. The expression of both factors is coordinately regulated by the transcriptional regulator CsgD. Most biofilm studies of Salmonella have been performed by growing bacteria in low osmolarity rich medium and low temperature (25°C). In such conditions, the biofilm is formed at the air-liquid interface (pellicle biofilm). Remarkably, when Salmonella grow in minimal medium, biofilm formation switches from the air-liquid interface to the solid-liquid interface (bottom biofilm). In this report, the switching between pellicle and bottom biofilm has been characterized. Our data indicate that curli, but not cellulose, is crucial for the formation of both kinds of biofilms. In minimal medium, conditions promoting formation of bottom biofilm, a high transcriptional expression of csgD and consequently of the genes involved in the synthesis of curli and cellulose was detected. The nutritional status of the cells seems to be pivotal for the spatial distribution of the biofilms formed. When bacteria is growing in minimal medium the addition of amino acids downregulates the expression of csgB and causes the switch between bottom and pellicle biofilm. The crosstalk between general metabolism and biofilm formation is also highlighted by the fact that the metabolic sensor cAMP modulates the type of biofilm generated by Salmonella . Moreover, cAMP regulates transcriptional expression of csgD and stimulates pellicle biofilm formation, suggesting that the physiological conditions define the type of biofilm formed by Salmonella . The consequences of

  17. Nutrient Composition Promotes Switching between Pellicle and Bottom Biofilm in Salmonella

    PubMed Central

    Paytubi, Sonia; Cansado, Cintia; Madrid, Cristina; Balsalobre, Carlos

    2017-01-01

    Salmonella is one of the most frequently reported causes of foodborne illness worldwide. Non-typhoidal serovars cause gastroenteritis in humans. Salmonella can grow on surfaces forming biofilms, contributing to its persistence since biofilms are difficult to eradicate due to the high resistance to antimicrobials and disinfectants. It has been described that there are two crucial biofilm promoting factors in Salmonella: curli and cellulose. The expression of both factors is coordinately regulated by the transcriptional regulator CsgD. Most biofilm studies of Salmonella have been performed by growing bacteria in low osmolarity rich medium and low temperature (25°C). In such conditions, the biofilm is formed at the air–liquid interface (pellicle biofilm). Remarkably, when Salmonella grow in minimal medium, biofilm formation switches from the air–liquid interface to the solid–liquid interface (bottom biofilm). In this report, the switching between pellicle and bottom biofilm has been characterized. Our data indicate that curli, but not cellulose, is crucial for the formation of both kinds of biofilms. In minimal medium, conditions promoting formation of bottom biofilm, a high transcriptional expression of csgD and consequently of the genes involved in the synthesis of curli and cellulose was detected. The nutritional status of the cells seems to be pivotal for the spatial distribution of the biofilms formed. When bacteria is growing in minimal medium the addition of amino acids downregulates the expression of csgB and causes the switch between bottom and pellicle biofilm. The crosstalk between general metabolism and biofilm formation is also highlighted by the fact that the metabolic sensor cAMP modulates the type of biofilm generated by Salmonella. Moreover, cAMP regulates transcriptional expression of csgD and stimulates pellicle biofilm formation, suggesting that the physiological conditions define the type of biofilm formed by Salmonella. The consequences of

  18. Rapid DNA transformation in Salmonella Typhimurium by the hydrogel exposure method.

    PubMed

    Elabed, Hamouda; Hamza, Rim; Bakhrouf, Amina; Gaddour, Kamel

    2016-07-01

    Even with advances in molecular cloning and DNA transformation, new or alternative methods that permit DNA penetration in Salmonella enterica subspecies enterica serovar Typhimurium are required in order to use this pathogen in biotechnological or medical applications. In this work, an adapted protocol of bacterial transformation with plasmid DNA based on the "Yoshida effect" was applied and optimized on Salmonella enterica serovar Typhimurium LT2 reference strain. The plasmid transference based on the use of sepiolite as acicular materials to promote cell piercing via friction forces produced by spreading on the surface of a hydrogel. The transforming mixture containing sepiolite nanofibers, bacterial cells to be transformed and plasmid DNA were plated directly on selective medium containing 2% agar. In order to improve the procedure, three variables were tested and the transformation of Salmonella cells was accomplished using plasmids pUC19 and pBR322. Using the optimized protocol on Salmonella LT2 strain, the efficiency was about 10(5) transformed cells per 10(9) subjected to transformation with 0.2μg plasmid DNA. In summary, the procedure is fast, offers opportune efficiency and promises to become one of the widely used transformation methods in laboratories. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Salmonella and antimicrobial resistance in an animal-based agriculture river system.

    PubMed

    Palhares, Julio Cesar Pascale; Kich, Jalusa D; Bessa, Marjo C; Biesus, Luiza L; Berno, Lais G; Triques, Nelise J

    2014-02-15

    The aim of this study was to examine the Salmonella serovars and antimicrobial resistance within an animal-based agriculture river system. The study area consisted of a 1,345 ha upper part of Pinhal catchment. A total of 384 samples were collected in four years of monitoring. Salmonella was isolated from 241 samples (62.7%), resulting in 324 isolates. The highest number of Salmonella sp. occurred in samples associated with sites with high stoking density animal unit per hectare. It was possible to demonstrate the variability of serovars in the study area: 30 different serovars were found and at least 11 per monitoring site. Thirty-three potentially related isolates were genotyped by PFGE, one major clone was observed in serovar Typhimurium, which occurred in animal feces (swine and bovine), and different sites and samplings proving the cross-contamination and persistence of this specific clone. Among 180 isolates submitted to an antimicrobial susceptibility test, 50.5% were susceptible to all 21 antimicrobials tested and 54 different profiles were found. In the current study, 49.5% of the tested isolates were resistant to at least one antimicrobial, and multi-resistance occurred in 18% of isolates. Results indicate a close interaction between animal-based agriculture, Salmonella, and antimicrobial resistance. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Salmonella exploits the host endolysosomal tethering factor HOPS complex to promote its intravacuolar replication

    PubMed Central

    Sindhwani, Aastha; Kaur, Harmeet; Tuli, Amit

    2017-01-01

    Salmonella enterica serovar typhimurium extensively remodels the host late endocytic compartments to establish its vacuolar niche within the host cells conducive for its replication, also known as the Salmonella-containing vacuole (SCV). By maintaining a prolonged interaction with late endosomes and lysosomes of the host cells in the form of interconnected network of tubules (Salmonella-induced filaments or SIFs), Salmonella gains access to both membrane and fluid-phase cargo from these compartments. This is essential for maintaining SCV membrane integrity and for bacterial intravacuolar nutrition. Here, we have identified the multisubunit lysosomal tethering factor—HOPS (HOmotypic fusion and Protein Sorting) complex as a crucial host factor facilitating delivery of late endosomal and lysosomal content to SCVs, providing membrane for SIF formation, and nutrients for intravacuolar bacterial replication. Accordingly, depletion of HOPS subunits significantly reduced the bacterial load in non-phagocytic and phagocytic cells as well as in a mouse model of Salmonella infection. We found that Salmonella effector SifA in complex with its binding partner; SKIP, interacts with HOPS subunit Vps39 and mediates recruitment of this tethering factor to SCV compartments. The lysosomal small GTPase Arl8b that binds to, and promotes membrane localization of Vps41 (and other HOPS subunits) was also required for HOPS recruitment to SCVs and SIFs. Our findings suggest that Salmonella recruits the host late endosomal and lysosomal membrane fusion machinery to its vacuolar niche for access to host membrane and nutrients, ensuring its intracellular survival and replication. PMID:29084291

  1. Evaluation of a Multiplex PCR Assay for the Identification of Salmonella Serovars Enteritidis and Typhimurium Using Retail and Abattoir Samples.

    PubMed

    Ogunremi, Dele; Nadin-Davis, Susan; Dupras, Andrée Ann; Márquez, Imelda Gálvan; Omidi, Katayoun; Pope, Louise; Devenish, John; Burke, Teresa; Allain, Ray; Leclair, Daniel

    2017-02-01

    A multiplex PCR was developed to identify the two most common serovars of Salmonella causing foodborne illness in Canada, namely, serovars Enteritidis and Typhimurium. The PCR was designed to amplify DNA fragments from four Salmonella genes, namely, invA gene (211-bp fragment), iroB gene (309-bp fragment), Typhimurium STM 4497 (523-bp fragment), and Enteritidis SE147228 (612-bp fragment). In addition, a 1,026-bp ribosomal DNA (rDNA) fragment universally present in bacterial species was included in the assay as an internal control fragment. The detection rate of the PCR was 100% among Salmonella Enteritidis (n = 92) and Salmonella Typhimurium (n = 33) isolates. All tested Salmonella isolates (n = 194) were successfully identified based on the amplification of at least one Salmonella -specific DNA fragment. None of the four Salmonella DNA amplicons were detected in any of the non- Salmonella isolates (n = 126), indicating an exclusivity rate of 100%. When applied to crude extracts of 2,001 field isolates of Salmonella obtained during the course of a national microbiological baseline study in broiler chickens and chicken products sampled from abattoir and retail outlets, 163 isolates, or 8.1%, tested positive for Salmonella Enteritidis and another 80 isolates, or 4.0%, tested as Salmonella Typhimurium. All isolates identified by serological testing as Salmonella Enteritidis in the microbiological study were also identified by using the multiplex PCR. The new test can be used to identify or confirm pure isolates of the two serovars and is also amenable for integration into existing culture procedures for accurate detection of Salmonella colonies.

  2. Transmission and control of Salmonella in the pig feed chain: a conceptual model.

    PubMed

    Binter, Claudia; Straver, Judith Maria; Häggblom, Per; Bruggeman, Geert; Lindqvist, Per-Anders; Zentek, Jürgen; Andersson, Mats Gunnar

    2011-03-01

    . Prevention of recontamination and control of moisture throughout the chain are thus critical factors for controlling Salmonella in feed production. To verify successful control it is necessary to have monitoring strategies able to detect low levels of Salmonella heterogeneously distributed in large volumes of feed and feed material in bulk. Experience from monitoring programs and research investigations indicates that sampling of dust and sweepings from control points along the production line is an efficient strategy to gain an indication of Salmonella contamination. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Comparison of CHROMagar Salmonella Medium and Hektoen Enteric Agar for Isolation of Salmonellae from Stool Samples

    PubMed Central

    Gaillot, Olivier; Di Camillo, Patrick; Berche, Patrick; Courcol, René; Savage, Colette

    1999-01-01

    CHROMagar Salmonella (CAS), a new chromogenic medium, was retrospectively compared to Hektoen enteric agar (HEA) with 501 Salmonella stock isolates and was then prospectively compared to HEA for the detection and presumptive identification of Salmonella spp. with 508 stool samples before and after enrichment. All stock cultures (100%), including cultures of H2S-negative isolates, yielded typical mauve colonies on CAS, while 497 (99%) isolates produced typical lactose-negative, black-centered colonies on HEA. Following overnight incubation at 37°C, a total of 20 Salmonella strains were isolated from the 508 clinical samples. Sensitivities for primary plating and after enrichment were 95% (19 isolates) and 100% (20 isolates), respectively, for CAS and 80% (16 isolates) and 100% (20 isolates), respectively, for HEA. The specificity of CAS (88.9%) was significantly higher than that of HEA (78.5%; P < 0.0001). On the basis of its good sensitivity and specificity, CAS medium can be recommended for use for primary plating when human stool samples are screened for Salmonella spp. PMID:9986847

  4. Characteristics of invasion-reduced hilA gene mutant of Salmonella Enteritidis in vitro and in vivo.

    PubMed

    Lv, Shuang; Si, Wei; Yu, Shenye; Li, Zhaoli; Wang, Xiumei; Chen, Liping; Zhang, Wanjiang; Liu, Siguo

    2015-08-01

    Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) is a facultative intracellular pathogen that causes huge losses in poultry industry and also food poisoning in humans due to its being a food-borne pathogen. Functions of Invasion-related genes need to be explored, as invasion is a key step for Salmonella infection. In this study, a transposon mutant library of Salmonella Enteritidis isolate SM6 was constructed and screened for the invasion-related genes via incubation with Caco-2 cells. Three stably attenuated mutants were identified for significantly reduced invasion with insertions all in hilA (hyperinvasive locus A) gene. We constructed and evaluated the hilA deletion mutant in vivo and in vitro. SM6△hilA showed significantly reduced ability to invade Caco-2 cells and decreased pathogenicity in chicks. However, the bacterial load and pathological damage in the cecum were significantly higher than those in the SM6 in vivo. Present results provide new evidences for pathogenicity research on Salmonella Enteritidis. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A single-tube screen for Salmonella and Shigella.

    PubMed

    Procop, Gary W; Wallace, Jacqueline D; Tuohy, Marion J; Lasalvia, Margret M; Addison, Rachel M; Reller, L Barth

    2008-08-01

    Salmonella and Shigella species are routinely sought in stool specimens submitted for culture. It is a common practice to screen lactose-negative colonies by using triple sugar iron agar, lysine iron agar, and Christensen urea agar to determine if further identification is necessary. We designed and evaluated a novel combination of media, which are layered in a single tube, for screening isolates suspected to possibly represent Salmonella or Shigella. We tested this media combination with 106 Salmonella, 56 Shigella, and 56 other gram-negative bacilli. All Salmonella and Shigella isolates tested were appropriately characterized as possible Salmonella or Shigella by using an algorithm developed for use with this media combination. Similarly, 53 (95%) of 56 other gram-negative bacilli were appropriately screened as non -Salmonella and non -Shigella isolates. This unique media combination provides the most important biochemical reactions needed to screen for Salmonella and Shigella in a single-tube format, which decreases labor by two thirds (ie, 1 tube is inoculated vs 3).

  6. Identification of Plasmid-Mediated Quinolone Resistance in Salmonella Isolated from Swine Ceca and Retail Pork Chops in the United States.

    PubMed

    Tyson, Gregory H; Tate, Heather P; Zhao, Shaohua; Li, Cong; Dessai, Uday; Simmons, Mustafa; McDermott, Patrick F

    2017-10-01

    Fluoroquinolones are important antimicrobial drugs used to treat human Salmonella infections, and resistance is rare in the United States for isolates from human and animal sources. Recently, a number of Salmonella isolates from swine cecal contents and retail pork products from National Antimicrobial Resistance Monitoring System (NARMS) surveillance exhibited decreased susceptibility to ciprofloxacin. We identified two qnrB19 quinolone resistance plasmids that are predominantly responsible for this phenomenon and found them distributed among several Salmonella serotypes isolated throughout the United States.

  7. Validation of the baking process as a kill-step for controlling Salmonella in muffins.

    PubMed

    Channaiah, Lakshmikantha H; Michael, Minto; Acuff, Jennifer C; Phebus, Randall K; Thippareddi, Harshavardhan; Olewnik, Maureen; Milliken, George

    2017-06-05

    This research investigates the potential risk of Salmonella in muffins when contamination is introduced via flour, the main ingredient. Flour was inoculated with a 3-strain cocktail of Salmonella serovars (Newport, Typhimurium, and Senftenberg) and re-dried to achieve a target concentration of ~8logCFU/g. The inoculated flour was then used to prepare muffin batter following a standard commercial recipe. The survival of Salmonella during and after baking at 190.6°C for 21min was analyzed by plating samples on selective and injury-recovery media at regular intervals. The thermal inactivation parameters (D and z values) of the 3-strain Salmonella cocktail were determined. A ≥5logCFU/g reduction in Salmonella population was demonstrated by 17min of baking, and a 6.1logCFU/g reduction in Salmonella population by 21min of baking. The D-values of Salmonella serovar cocktail in muffin batter were 62.2±3.0, 40.1±0.9 and 16.5±1.7min at 55, 58 and 61°C, respectively; and the z-value was 10.4±0.6°C. The water activity (a w ) of the muffin crumb (0.928) after baking and 30min of cooling was similar to that of pre-baked muffin batter, whereas the a w of the muffin crust decreased to (0.700). This study validates a typical commercial muffin baking process utilizing an oven temperature of 190.6°C for at least 17min as an effective kill-step in reducing a Salmonella serovar population by ≥5logCFU/g. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Meta-analysis of Chicken – Salmonella infection experiments

    PubMed Central

    2012-01-01

    Background Chicken meat and eggs can be a source of human zoonotic pathogens, especially Salmonella species. These food items contain a potential hazard for humans. Chickens lines differ in susceptibility for Salmonella and can harbor Salmonella pathogens without showing clinical signs of illness. Many investigations including genomic studies have examined the mechanisms how chickens react to infection. Apart from the innate immune response, many physiological mechanisms and pathways are reported to be involved in the chicken host response to Salmonella infection. The objective of this study was to perform a meta-analysis of diverse experiments to identify general and host specific mechanisms to the Salmonella challenge. Results Diverse chicken lines differing in susceptibility to Salmonella infection were challenged with different Salmonella serovars at several time points. Various tissues were sampled at different time points post-infection, and resulting host transcriptional differences investigated using different microarray platforms. The meta-analysis was performed with the R-package metaMA to create lists of differentially regulated genes. These gene lists showed many similarities for different chicken breeds and tissues, and also for different Salmonella serovars measured at different times post infection. Functional biological analysis of these differentially expressed gene lists revealed several common mechanisms for the chicken host response to Salmonella infection. The meta-analysis-specific genes (i.e. genes found differentially expressed only in the meta-analysis) confirmed and expanded the biological functional mechanisms. Conclusions The meta-analysis combination of heterogeneous expression profiling data provided useful insights into the common metabolic pathways and functions of different chicken lines infected with different Salmonella serovars. PMID:22531008

  9. Salmonella can reach tomato fruits on plants exposed to aerosols formed by rain.

    PubMed

    Cevallos-Cevallos, Juan M; Gu, Ganyu; Danyluk, Michelle D; Dufault, Nicholas S; van Bruggen, Ariena H C

    2012-08-17

    Outbreaks of Salmonella enterica have been associated with tomatoes and traced back to production areas but the spread of Salmonella in agricultural fields is still poorly understood. Post-rain Salmonella transfer from a point source to the air and then to tomato plants was evaluated. GFP-labeled kanamycin-resistant S. enterica serovar Typhimurium (10(8)CFU/mL) with and without expression of the rdar morphotype (rough colonies; cells with fimbriae and cellulose) was used as the point source in the center of a rain simulator. Rain intensities of 60 and 110 mm/h were applied for 5, 10, 20, and 30 min. Petri dishes with lactose broth and tomato plants with fruit (50-80 cm high) were placed in the simulator after the rain had ceased. Salmonella recovery from air was maximum (300 CFU/plate) after a rain episode of 60 mm/h for 10 min at distances of at least 85.5 cm above the source and when the rdar morphotype strain was used. Small scale experiments showed that the smooth-colony strain without fimbriae precipitated from the air in significantly higher numbers than the rdar strain. Transfer of aerial Salmonella with the rdar morphotype to tomato fruits on plants followed a beta distribution (2.5950, 4.7393) within the generalized range from 0 to 30 min of rain. Results show for the first time that Salmonella may transfer from rain to the air and contaminate tomato fruits at levels that could possibly be infectious to humans. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Salmonella: an ecological success story

    USDA-ARS?s Scientific Manuscript database

    Salmonella was first described in 1885 as a secondary pathogen in the infectious disease process. In 1929, a paper published in the Proceedings of the Royal Society of Medicine reported that Salmonella organisms were predominant in food borne outbreaks but acknowledged that the path of infection wa...

  11. Phenotypic characteristics and genotypic correlation between Salmonella isolates from a slaughterhouse and retail markets in Yangzhou, China.

    PubMed

    Cai, Yinqiang; Tao, Jing; Jiao, Yang; Fei, Xiao; Zhou, Le; Wang, Yan; Zheng, Huijuan; Pan, Zhiming; Jiao, Xinan

    2016-04-02

    An epidemiological investigation of Salmonella spp. in pig and pork samples from one slaughterhouse and its downstream retail markets in Yangzhou, Jiangsu Province, China, was conducted from October 2013 to March 2014. A total of 71.8% (155/216) and 70.9% (78/110), respectively, of the slaughterhouse and retail market samples were recovered positive for Salmonella. All Salmonella isolates were characterized using serotyping, antimicrobial resistance detection, multilocus sequence typing (MLST), and pulsed-field gel electrophoresis (PFGE). Seven serotypes were shared by isolates from the two sources, with the most common serotypes being Salmonella Derby, Typhimurium, and Uganda. Antimicrobial sensitivity testing revealed that the highest antimicrobial resistance rate was against tetracycline (49.7% and 37.2% in isolates from the slaughterhouse and retail market, respectively) with many multidrug-resistant (MDR) isolates in both sources. MLST analysis showed that eight sequence type (ST) patterns were shared, and ST40 occupied an absolute superiority among isolates from both sources. PFGE permitted the resolution of XbaI macrorestriction fragments of the selected 31 Salmonella Derby and 19 Salmonella Typhimurium into 30 and 10 distinct pulsotypes, displaying the high similarity between the isolates from the two sources. Our findings indicated that Salmonella isolates from a slaughterhouse and its downstream retail markets were phenotypically and genetically homologous. Additionally, Salmonella may propagate along the slaughter line and pork production chain from the slaughterhouse to retail markets. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Development of multiplex PCR assay for simultaneous detection of Salmonella genus, Salmonella subspecies I, Salm. Enteritidis, Salm. Heidelberg and Salm. Typhimurium.

    PubMed

    Park, S H; Ricke, S C

    2015-01-01

    The aim of this research was to develop multiplex PCR assay that could simultaneously detect Salmonella genus, Salmonella subsp. I, Salm. Enteritidis, Heidelberg and Typhimurium because these Salmonella serovars are the most common isolates associated with poultry products. Five primers were utilized to establish multiplex PCR and applied to Salmonella isolates from chickens and farm environments. These isolates were identified as Salmonella subsp. I and 16 of 66 isolates were classified as Salm. Enteritidis, while Heidelberg or Typhimurium was not detected. We also spiked three Salmonella strains on chicken breast meat to evaluate the specificity and sensitivity of multiplex PCR as well as qPCR to optimize quantification of Salmonella in these samples. The optimized multiplex PCR and qPCR could detect approx. 2·2 CFU of Salmonella per gram after 18 h enrichment. The multiplex PCR and qPCR would provide rapid and consistent results. Also, these techniques would be useful for the detection and quantification of Salmonella in contaminated poultry, foods and environmental samples. The strategy for the rapid detection of Salmonella serovars in poultry is needed to further reduce the incidence of salmonellosis in humans. The optimized multiplex PCR will be useful to detect prevalent Salmonella serovars in poultry products. © 2014 The Society for Applied Microbiology.

  13. Identification of Plasmid-Mediated Quinolone Resistance in Salmonella Isolated from Swine Ceca and Retail Pork Chops in the United States

    PubMed Central

    Tate, Heather P.; Zhao, Shaohua; Li, Cong; Dessai, Uday; Simmons, Mustafa; McDermott, Patrick F.

    2017-01-01

    ABSTRACT Fluoroquinolones are important antimicrobial drugs used to treat human Salmonella infections, and resistance is rare in the United States for isolates from human and animal sources. Recently, a number of Salmonella isolates from swine cecal contents and retail pork products from National Antimicrobial Resistance Monitoring System (NARMS) surveillance exhibited decreased susceptibility to ciprofloxacin. We identified two qnrB19 quinolone resistance plasmids that are predominantly responsible for this phenomenon and found them distributed among several Salmonella serotypes isolated throughout the United States. PMID:28784677

  14. Culture- and molecular-based detection of swine-adapted Salmonella shed by avian scavengers.

    PubMed

    Blanco, Guillermo; Díaz de Tuesta, Juan A

    2018-09-01

    epidemiology and impact of Salmonella in wildlife populations. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Identification of a Plasmid-Mediated Quinolone Resistance Gene in Salmonella Isolates from Texas Dairy Farm Environmental Samples.

    PubMed

    Cummings, K J; Rodriguez-Rivera, L D; Norman, K N; Ohta, N; Scott, H M

    2017-06-01

    A recent increase in plasmid-mediated quinolone resistance (PMQR) has been detected among Salmonella isolated from humans in the United States, and it is necessary to determine the sources of human infection. We had previously isolated Salmonella from dairy farm environmental samples collected in Texas, and isolates were tested for anti-microbial susceptibility. Two isolates, serotyped as Salmonella Muenster, showed the discordant pattern of nalidixic acid susceptibility and intermediate susceptibility to ciprofloxacin. For this project, whole-genome sequencing of both isolates was performed to detect genes associated with quinolone resistance. The plasmid-mediated qnrB19 gene and IncR plasmid type were identified in both isolates. To our knowledge, this is the first report of PMQR in Salmonella isolated from food animals or agricultural environments in the United States. © 2016 Blackwell Verlag GmbH.

  16. Salmonella Levels Associated with Skin of Turkey Parts.

    PubMed

    Peng, Ye; Deng, Xiang Y; Harrison, Mark A; Alali, Walid Q

    2016-05-01

    Turkey skin is used as a source of fat in finished ground turkey products. Salmonella-contaminated skin may potentially disseminate this pathogen to ground turkey. The objective of this study was to determine and compare Salmonella levels (presence and numbers) associated with the skin of turkey parts (i.e., drumstick, thigh, and wing). Over a 10-month period, 20 turkey flocks expected to be highly contaminated with Salmonella based on boot-sock testing data of turkey houses were sampled. A total of 300 samples per type of turkey part were collected postchill and were tested for Salmonella using the most-probable-number (MPN) and enrichment methods. Overall, Salmonella was detected in 13.7, 19.7, and 25.0% of drumstick skin, thigh skin, and wing skin samples, respectively. Salmonella prevalence from wing skin was significantly higher (P < 0.05) than in drumstick skin, but the difference was not significant (P > 0.05) when compared with thigh skin. Salmonella was 2.4 times more likely to be present from thigh skin (odds ratio = 2.4; P < 0.05) when the pathogen was found from wing skin. Salmonella mean numbers from drumstick, thigh, and wing were 1.18, 1.29, and 1.45 log MPN per sample, respectively; these values were not significantly different (P > 0.05). Based on our findings, the high prevalence of Salmonella associated with the skin of turkey parts could be a potential source for ground turkey contamination.

  17. Development and Evaluation of a Multiplex Real-Time Polymerase Chain Reaction Procedure to Clinically Type Prevalent Salmonella enterica Serovars

    PubMed Central

    Muñoz, Nélida; Diaz-Osorio, Miguel; Moreno, Jaime; Sánchez-Jiménez, Miryan; Cardona-Castro, Nora

    2010-01-01

    A multiplex real-time polymerase chain reaction procedure was developed to identify the most prevalent clinical isolates of Salmonella enterica subsp. enterica. Genes from the rfb, fliC, fljB, and viaB groups that encode the O, H, and Vi antigens were used to design 15 primer pairs and TaqMan probes specific for the genes rfbJ, wzx, fliC, fljB, wcdB, the sdf-l sequence, and invA, which was used as an internal amplification control. The primers and probes were variously combined into six sets. The first round of reactions used two of these sets to detect Salmonella O:4, O:9, O:7, O:8, and O:3,10 serogroups. Once the serogroups were identified, the results of a second round of reactions that used primers and probes for the flagellar antigen l genes, 1,2; e,h; g,m; d; e,n,x; and z10, and the Vi gene were used to identify individual serovars. The procedure was standardized using 18 Salmonella reference strains and other enterobacteria. The procedure's reliability and sensitivity was evaluated using 267 randomly chosen serotyped Salmonella clinical isolates. The procedure had a sensitivity of 95.5% and was 100% specific. Thus, our technique is a quick, sensitive, reliable, and specific means of identifying S. enterica serovars and can be used in conjunction with traditional serotyping. Other primer and probe combinations could be used to increase the number of identifiable serovars. PMID:20110454

  18. Quantitative transfer of Salmonella Typhimurium LT2 during mechanical slicing of tomatoes as impacted by multiple processing variables.

    PubMed

    Wang, Haiqiang; Ryser, Elliot T

    2016-10-03

    Slicing of fresh produce can readily lead to pathogen cross-contamination with pre-sliced tomatoes having been linked to multistate outbreaks of salmonellosis in the United States. This study aimed to assess the impact of multiple processing variables on quantitative transfer of Salmonella during simulated commercial slicing of tomatoes. One red round tomato was inoculated with Salmonella Typhimurium LT2 at ~5logCFU/g and sliced using a manual or electric slicer, followed by 20 uninoculated tomatoes. Thereafter, the distribution of Salmonella on inoculated and uninoculated tomato slices was evaluated along with the transfer of Salmonella from different parts of the slicer. The impact of multiple processing variables including post-contamination hold time (0 and 30min), tomato wetness (dry and wet), processing room temperature (23, 10 and 4°C), slice thickness (0.48, 0.64, and 0.95cm), tomato variety (Torero, Rebelski, and Bigdena) and pre-wash treatment (no wash, tap water, and chlorine) was also investigated. The data were fitted to a two-parameter exponential decay model (Y=A⋅exp(BX)) with the percentage of Salmonella transferred to 20 uninoculated tomatoes then calculated. Salmonella populations on nine inoculated tomato slices ranged from 4.6±0.2 to 5.5±0.3logCFU/g, with higher populations on slices from the blossom and stem scar ends. However, Salmonella transfer to the previously uninoculated slices was similar (P>0.05), ranging from 2.1±0.2 to 3.4±0.2logCFU/g. Significantly fewer salmonellae transferred from the blade (3.4±0.4 log CFU, P≤0.05) than from the back and bottom plates (4.7±0.3 log CFU) or the whole manual slicer (5.2±0.2 log CFU) to the 20 uninoculated tomatoes. However, the blade was the primary contributor to Salmonella transfer for the electric slicer. Post-contamination hold time, processing temperature and tomato slice thickness did not significantly impact (P>0.05) the Salmonella transfer rate (parameter B) or the overall

  19. Phenotyping and genetic characterization of Salmonella enterica isolates from Turkey revealing arise of different features specific to geography.

    PubMed

    Acar, Sinem; Bulut, Ece; Durul, Bora; Uner, Ilhan; Kur, Mehmet; Avsaroglu, M Dilek; Kirmaci, Hüseyin Avni; Tel, Yasar Osman; Zeyrek, Fadile Y; Soyer, Yesim

    2017-01-16

    192 Food samples (commonly consumed 8 food types), 355 animal samples (animal feces of bovine, ovine, goat and chicken) and 50 samples from clinical human cases in Sanliurfa city, Turkey in a year were collected to determine the Salmonella enterica subsp. enterica mosaic in Turkey. 161 Salmonella isolates represented 17 serotypes, 20 sequence types (STs) and 44 PFGE patterns (PTs). 3 serotypes, S. Enteritidis, S. Typhimurium and S. Kentucky, were recovered from three different hosts. The highest discriminatory power was obtained by PFGE (SID=0.945), followed by MLST (SID=0.902) and serotyping (SID=0.885) for all isolates. The prevalence of antimicrobial resistance genes (aadA1, aadA2, strA, strB, aphA 1-Iab , bla TEM-1 , bla PSE-1 , tetA) was highly correlated with phenotypic profiles of aminoglycoside, ß-lactam and tetracycline groups (kappa >0.85). From our knowledge, this is the first study reporting spatial and temporal distribution of Salmonella species through phenotypic and genetic approaches over farm to fork chain in Turkey. Thus, our data provided further information for evolution, ecology and transmission of Salmonella in Turkey. Copyright © 2016. Published by Elsevier B.V.

  20. Risk factors for Salmonella spp in Portuguese breeding pigs using a multilevel analysis.

    PubMed

    Correia-Gomes, C; Mendonça, D; Vieira-Pinto, M; Niza-Ribeiro, J

    2013-02-01

    Salmonella in breeding pigs. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Genotypic and epidemiologic characterization of extended-spectrum cephalosporin resistant Salmonella enterica from US beef feedlots.

    PubMed

    Mollenkopf, D F; Mathys, D A; Dargatz, D A; Erdman, M M; Habing, G G; Daniels, J B; Wittum, T E

    2017-10-01

    In the US, nontyphoidal Salmonellae are a common foodborne zoonotic pathogen causing gastroenteritis. Invasive Salmonella infections caused by extended-spectrum cephalosporin resistant (ESCR) phenotypes are more likely to result in treatment failure and adverse health outcomes, especially in severe pediatric Salmonella infections where the extended-spectrum β-lactams are the therapy of choice. To examine the genetic and epidemiologic characteristics of ESCR Salmonellae which may enter the food chain, we characterized 44 ceftiofur-resistant Salmonella isolates from the National Animal Health Monitoring System (NAHMS) 2011 beef cattle feedlot health and management study. As part of the NAHMS Feedlot 2011 study, 5050 individual fecal samples from 68 large (1000+ head capacity) feedlots were cultured for Salmonella spp. The resulting 460 positive samples yielded 571 Salmonella isolates with 44 (8%) expressing an AmpC β-lactamase phenotype. These phenotypic bla CMY-2 Salmonella isolates represented 8 serotypes, most commonly S. Newport (n=14, 32%), S. Typhimurium (n=13, 30%), and S. Reading (n=5, 11%), followed by S. Dublin, S. Infantis, S. Montevideo, S. Rough O:i;v:1;7, and S. Uganda. Carriage of the bla CMY-2 gene was confirmed for all isolates expressing an AmpC β-lactamase phenotype by PCR. Additionally, all 44 isolates were shown to carry the bla CMY-2 gene on a large IncA/C plasmid, a gene/plasmid combination which has been previously reported in multiple species. Other plasmids, including IncN, FIC, and FIIA, were also detected in some isolates. Cattle fed chlortetracycline were less likely to be positive for a bla CMY-2 Salmonella isolate in their enteric flora compared to those not receiving chlortetracycline during the feeding period. Carriage of bla CMY-2 was more prevalent in Salmonella isolates originating from lighter weight cattle, cattle fed tylosin and dairy breeds. Our characterization of the NAHMS Feedlot 2011 study Salmonella isolates with ESCR

  2. Sources of salmonellae in an uninfected commercially-processed broiler flock.

    PubMed

    Rigby, C E; Pettit, J R; Baker, M F; Bentley, A H; Salomons, M O; Lior, H

    1980-07-01

    Cultural monitoring was used to study the incidence and sources of salmonellae in a 4160 bird broiler flock during the growing period, transport and processing in a commercial plant. No salmonellae were isolated from any of 132 litter samples of 189 chickens cultured during the seven-week growing period, even though nest litter samples from four of the eight parent flocks yielded salmonellae and Salmonella worthington was isolated from the meat meal component of the grower ration. On arrival at the plant, 2/23 birds sampled carried S. infantis on their feathers, although intestinal cultures failed to yield salmonellae. Three of 18 processed carcasses samples yielded salmonellae (S. infantis, S. heidelberg, S. typhimurium var copenhagen). The most likely source of these salmonellae was the plastic transport crates, since 15/107 sampled before the birds were loaded yielded salmonellae (S. infantis, S. typhimurium). The crate washer at the plant did not reduce the incidence of Salmonella-contaminated crates, since 16/116 sampled after washing yielded salmonellae (S. infantis, S. typhimurium, S. heidelberg, S. schwarzengrund, S. albany).

  3. First detection and characterization of Salmonella spp. in poultry and swine raised in backyard production systems in central Chile.

    PubMed

    Alegria-Moran, R; Rivera, D; Toledo, V; Moreno-Switt, A I; Hamilton-West, C

    2017-11-01

    Little is known about Salmonella serovars circulating in backyard poultry and swine populations worldwide. Backyard production systems (BPS) that raise swine and/or poultry are distributed across Chile, but are more heavily concentrated in central Chile, where industrialized systems are in close contact with BPS. This study aims to detect and identify circulating Salmonella serovars in poultry and swine raised in BPS. Bacteriological Salmonella isolation was carried out for 1744 samples collected from 329 BPS in central Chile. Faecal samples were taken from swine, poultry, geese, ducks, turkeys and peacocks, as well as environmental faecal samples. Confirmation of Salmonella spp. was performed using invA-polymerase chain reaction (PCR). Identification of serovars was carried out using a molecular serotyping approach, where serogroups were confirmed by a multiplex PCR of Salmonella serogroup genes for five Salmonella O antigens (i.e., D, B, C1, C2-C3, and E1), along with two PCR amplifications, followed by sequencing of fliC and fljB genes. A total of 25 samples (1·4% of total samples) from 15 BPS (4·6 % of total sampled BPS) were found positive for Salmonella. Positive samples were found in poultry (chickens and ducks), swine and environmental sources. Molecular prediction of serovars on Salmonella isolated showed 52·0% of S. Typhimurium, 16·0% of S. Infantis, 16·0% S. Enteritidis, 8·0% S. Hadar, 4·0% S. Tennessee and 4·0% S. Kentucky. Poor biosecurity measures were found on sampled BPS, where a high percentage of mixed confinement systems (72·8%); and almost half of the sampled BPS with improper management of infected mortalities (e.g. selling the carcasses of infected animals for consumption). Number of birds other than chickens (P = 0·014; OR = 1·04; IC (95%) = 1·01-1·07), mixed productive objective (P = 0·030; OR = 5·35; IC (95%) = 1·24-27·59) and mixed animal replacement origin (P = 0017; OR = 5·19; IC (95%) = 1·35-20·47) were detected as

  4. The Bacterial Cytoskeleton Modulates Motility, Type 3 Secretion, and Colonization in Salmonella

    PubMed Central

    Bulmer, David M.; Kharraz, Lubna; Grant, Andrew J.; Dean, Paul; Morgan, Fiona J. E.; Karavolos, Michail H.; Doble, Anne C.; McGhie, Emma J.; Koronakis, Vassilis; Daniel, Richard A.; Mastroeni, Pietro; Anjam Khan, C. M.

    2012-01-01

    Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its importance to virulence. In this study we have explored the contribution of the bacterial cytoskeleton to the ability of Salmonella to express and assemble virulence factors and cause disease. The bacterial actin-like protein MreB polymerises into helical filaments and interacts with other cytoskeletal elements including MreC to control cell-shape. As mreB appears to be an essential gene, we have constructed a viable ΔmreC depletion mutant in Salmonella. Using a broad range of independent biochemical, fluorescence and phenotypic screens we provide evidence that the Salmonella pathogenicity island-1 type three secretion system (SPI1-T3SS) and flagella systems are down-regulated in the absence of MreC. In contrast the SPI-2 T3SS appears to remain functional. The phenotypes have been further validated using a chemical genetic approach to disrupt the functionality of MreB. Although the fitness of ΔmreC is reduced in vivo, we observed that this defect does not completely abrogate the ability of Salmonella to cause disease systemically. By forcing on expression of flagella and SPI-1 T3SS in trans with the master regulators FlhDC and HilA, it is clear that the cytoskeleton is dispensable for the assembly of these structures but essential for their expression. As two-component systems are involved in sensing and adapting to environmental and cell surface signals, we have constructed and screened a panel of such mutants and identified the sensor kinase RcsC as a key phenotypic regulator in ΔmreC. Further genetic analysis revealed the importance of the Rcs two-component system in modulating the expression of these virulence factors. Collectively, these results suggest that expression of virulence genes might be directly coordinated with cytoskeletal integrity, and this regulation is mediated by the two-component system sensor kinase Rcs

  5. Salmonella: A century old conundrum

    USDA-ARS?s Scientific Manuscript database

    In 1885 a new bacterial species, Salmonella cholerae suis which was thought to cause hog cholera. Interestingly, Salmonella cholerae suis was not the etiologic agent of hog cholera (which is caused by a virus), but it was observed to be a secondary pathogen in the infectious process. In 1929, a pa...

  6. Survival of Salmonella during baking of peanut butter cookies.

    PubMed

    Lathrop, Amanda A; Taylor, Tiffany; Schnepf, James

    2014-04-01

    Peanuts and peanut-based products have been the source of recent Salmonella outbreaks worldwide. Because peanut butter is commonly used as an ingredient in baked goods, such as cookies, the potential risk of Salmonella remaining in these products after baking needs to be assessed. This research examines the potential hazard of Salmonella in peanut butter cookies when it is introduced via the peanut-derived ingredient. The survival of Salmonella during the baking of peanut butter cookies was determined. Commercial, creamy-style peanut butter was artificially inoculated with a five-strain Salmonella cocktail at a target concentration of 10(8) CFU/g. The inoculated peanut butter was then used to prepare peanut butter cookie dough following a standard recipe. Cookies were baked at 350 °F (177 °C) and were sampled after 10, 11, 12, 13, 14, and 15 min. Temperature profiles of the oven and cookies were monitored during baking. The water activity and pH of the inoculated and uninoculated peanut butter, raw dough, and baked cookies were measured. Immediately after baking, cookies were cooled, and the survival of Salmonella was determined by direct plating or enrichment. After baking cookies for 10 min, the minimum reduction of Salmonella observed was 4.8 log. In cookies baked for 13 and 14 min, Salmonella was only detectable by enrichment reflecting a Salmonella reduction in the range of 5.2 to 6.2 log. Cookies baked for 15 min had no detectable Salmonella. Results of this study showed that proper baking will reduce Salmonella in peanut butter cookies by 5 log or more.

  7. Dysregulated humoral immunity to nontyphoidal Salmonella in HIV-infected African adults

    PubMed Central

    MacLennan, Calman A.; Gilchrist, James J.; Gordon, Melita A.; Cunningham, Adam F.; Cobbold, Mark; Goodall, Margaret; Kingsley, Robert A.; van Oosterhout, Joep J. G.; Msefula, Chisomo L.; Mandala, Wilson L.; Leyton, Denisse L.; Marshall, Jennifer L.; Gondwe, Esther N.; Bobat, Saeeda; López-Macías, Constantino; Doffinger, Rainer; Henderson, Ian R.; Zijlstra, Eduard E.; Dougan, Gordon; Drayson, Mark T.; MacLennan, Ian C. M.; Molyneux, Malcolm E.

    2013-01-01

    Nontyphoidal Salmonellae are a major cause of life-threatening bacteremia among HIV-infected individuals. Although cell-mediated immunity controls intracellular infection, antibody protects against Salmonella bacteremia. We report that high titer antibodies specific for Salmonella lipopolysaccharide (LPS) associate with absent Salmonella-killing in HIV-infected African adults. Killing was restored by genetically shortening LPS from target Salmonella, or removing LPS-specific antibodies from serum. Complement-mediated killing of Salmonella by healthy serum is shown to be induced specifically by antibodies against outer membrane proteins. This killing is lost when excess antibody against Salmonella LPS is added. Thus our study indicates impaired immunity against nontyphoidal Salmonella bacteremia in HIV infection results from excess inhibitory antibodies against Salmonella LPS, whilst serum killing of Salmonella is induced by antibodies against outer membrane proteins. PMID:20413503

  8. Study of the cross-contamination and survival of Salmonella in fresh apples.

    PubMed

    Perez-Rodriguez, F; Begum, M; Johannessen, G S

    2014-08-01

    The present work aimed at studying the cross contamination of apples by Salmonella during the processing of commercial fresh apples and its survival capacity on apple at room temperature. For the first study, the typical process of fresh apples was simulated at laboratory scale in which an apple that was artificially contaminated by Salmonella at different concentration levels (8, 6 and 5 log cfu/apple) was introduced in one batch and processed including a simulated transport/washing step and drying step using sponges to simulate the porous material used in the industry. Results indicated that at 8 log cfu/apple, 50% fresh apples were contaminated after processing, with all analysed environmental samples being positive for the pathogen, consisting of washing water and sponges. However, at lower inoculum levels (5-6 log cfu/apple) no cross contamination was detected in apples, and only environmental samples showed contamination by Salmonella after processing including both water and sponges. Experiments on the survival of Salmonella on apple showed that the pathogen was capable to survive for 12 days, only showing a significant drop at the end of the experiment. Finally, two-class attribute sampling plans were assessed as tool to detect Salmonella in different contamination scenarios in fresh apple. This analysis indicated that with the highest inoculum level, a total of 16 apples would be needed to reach 95% of detecting Salmonella (i.e. lot rejection). In turn, when low levels were assessed (5-6 log cfu/apple), a large number of apples (n=1021) would have to be sampled to obtain the same confidence level (95%). If the environment is sampled (i.e. water and sponges), a lower number of samples would be needed to detect the pathogen. However, the feasibility of environmental sampling has not been assessed from a practical point of view. Overall, the results in this study evidenced that cross contamination by Salmonella might occur during processing of fresh apples

  9. Validation of a Salmonella loop-mediated isothermal amplification assay in animal food.

    PubMed

    Domesle, Kelly J; Yang, Qianru; Hammack, Thomas S; Ge, Beilei

    2018-01-02

    Loop-mediated isothermal amplification (LAMP) has emerged as a promising alternative to PCR for pathogen detection in food testing and clinical diagnostics. This study aimed to validate a Salmonella LAMP method run on both turbidimetry (LAMP I) and fluorescence (LAMP II) platforms in representative animal food commodities. The U.S. Food and Drug Administration (FDA)'s culture-based Bacteriological Analytical Manual (BAM) method was used as the reference method and a real-time quantitative PCR (qPCR) assay was also performed. The method comparison study followed the FDA's microbiological methods validation guidelines, which align well with those from the AOAC International and ISO. Both LAMP assays were 100% specific among 300 strains (247 Salmonella of 185 serovars and 53 non-Salmonella) tested. The detection limits ranged from 1.3 to 28 cells for six Salmonella strains of various serovars. Six commodities consisting of four animal feed items (cattle feed, chicken feed, horse feed, and swine feed) and two pet food items (dry cat food and dry dog food) all yielded satisfactory results. Compared to the BAM method, the relative levels of detection (RLODs) for LAMP I ranged from 0.317 to 1 with a combined value of 0.610, while those for LAMP II ranged from 0.394 to 1.152 with a combined value of 0.783, which all fell within the acceptability limit (2.5) for an unpaired study. This also suggests that LAMP was more sensitive than the BAM method at detecting low-level Salmonella contamination in animal food and results were available 3days sooner. The performance of LAMP on both platforms was comparable to that of qPCR but notably faster, particularly LAMP II. Given the importance of Salmonella in animal food safety, the LAMP assays validated in this study holds great promise as a rapid, reliable, and robust method for routine screening of Salmonella in these commodities. Published by Elsevier B.V.

  10. Salmonella induces prominent gene expression in the rat colon

    PubMed Central

    Rodenburg, Wendy; Keijer, Jaap; Kramer, Evelien; Roosing, Susanne; Vink, Carolien; Katan, Martijn B; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg MJ

    2007-01-01

    Background Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point). As fructo-oligosaccharides (FOS) affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Results Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase), antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2), inflammation (e.g. calprotectin), oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2) and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9). Furthermore, Salmonella translocation increased serum IFNγ and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap), showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. Conclusion We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in mucosal gene expression

  11. Salmonella induces prominent gene expression in the rat colon.

    PubMed

    Rodenburg, Wendy; Keijer, Jaap; Kramer, Evelien; Roosing, Susanne; Vink, Carolien; Katan, Martijn B; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J

    2007-09-12

    Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point). As fructo-oligosaccharides (FOS) affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase), antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2), inflammation (e.g. calprotectin), oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2) and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9). Furthermore, Salmonella translocation increased serum IFN gamma and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap), showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in mucosal gene expression.

  12. Molecular study on some antibiotic resistant genes in Salmonella spp. isolates

    NASA Astrophysics Data System (ADS)

    Nabi, Ari Q.

    2017-09-01

    Studying the genes related with antimicrobial resistance in Salmonella spp. is a crucial step toward a correct and faster treatment of infections caused by the pathogen. In this work Integron mediated antibiotic resistant gene IntI1 (Class I Integrase IntI1) and some plasmid mediated antibiotic resistance genes (Qnr) were scanned among the isolated non-Typhoid Salmonellae strains with known resistance to some important antimicrobial drugs using Sybr Green real time PCR. The aim of the study was to correlate the multiple antibiotics and antimicrobial resistance of Salmonella spp. with the presence of integrase (IntI1) gene and plasmid mediated quinolone resistant genes. Results revealed the presence of Class I Integrase gene in 76% of the isolates with confirmed multiple antibiotic resistances. Moreover, about 32% of the multiple antibiotic resistant serotypes showed a positive R-PCR for plasmid mediated qnrA gene encoding for nalidixic acid and ciprofloxacin resistance. No positive results could be revealed form R-PCRs targeting qnrB or qnrS. In light of these results we can conclude that the presence of at least one of the qnr genes and/or the presence of Integrase Class I gene were responsible for the multiple antibiotic resistance to for nalidixic acid and ciprofloxacin from the studied Salmonella spp. and further studies required to identify the genes related with multiple antibiotic resistance of the pathogen.

  13. Isolation of Salmonella enterica serovar Enteritidis from houseflies (Musca domestica) found in rooms containing Salmonella serovar Enteritidis-challenged hens.

    PubMed

    Holt, Peter S; Geden, Christopher J; Moore, Randle W; Gast, Richard K

    2007-10-01

    Houseflies (Musca domestica) released into rooms containing hens challenged with Salmonella enterica serovar Enteritidis (Salmonella serovar Enteritidis) rapidly became contaminated with Salmonella serovar Enteritidis. Forty to 50% of the flies were contaminated at 48 h, and the percentage increased to 50 to 70% at 4 and 7 days postexposure and then decreased to 30% at day 15. Initial attempts at recovering surface organisms for culture using an aqueous rinse were largely unsuccessful, while cultures of internal contents readily recovered Salmonella serovar Enteritidis. However, when 0.5% detergent was incorporated into the rinse, high recovery levels of bacteria were observed from both external and internal culture regimens, indicating equal distribution of the organism on and in the fly and a tighter interaction of the organism with the host than previously thought. Salmonella serovar Enteritidis was isolated routinely from the fly gut, on rare occasions from the crop, and never from the salivary gland. Feeding contaminated flies to hens resulted in gut colonization of a third of the birds, but release of contaminated flies in a room containing previously unchallenged hens failed to result in colonization of any of the subject birds. These results indicate that flies exposed to an environment containing Salmonella serovar Enteritidis can become colonized with the organism and might serve as a source for transmission of Salmonella serovar Enteritidis within a flock situation.

  14. Isolation of Salmonella enterica Serovar Enteritidis from Houseflies (Musca domestica) Found in Rooms Containing Salmonella Serovar Enteritidis-Challenged Hens▿

    PubMed Central

    Holt, Peter S.; Geden, Christopher J.; Moore, Randle W.; Gast, Richard K.

    2007-01-01

    Houseflies (Musca domestica) released into rooms containing hens challenged with Salmonella enterica serovar Enteritidis (Salmonella serovar Enteritidis) rapidly became contaminated with Salmonella serovar Enteritidis. Forty to 50% of the flies were contaminated at 48 h, and the percentage increased to 50 to 70% at 4 and 7 days postexposure and then decreased to 30% at day 15. Initial attempts at recovering surface organisms for culture using an aqueous rinse were largely unsuccessful, while cultures of internal contents readily recovered Salmonella serovar Enteritidis. However, when 0.5% detergent was incorporated into the rinse, high recovery levels of bacteria were observed from both external and internal culture regimens, indicating equal distribution of the organism on and in the fly and a tighter interaction of the organism with the host than previously thought. Salmonella serovar Enteritidis was isolated routinely from the fly gut, on rare occasions from the crop, and never from the salivary gland. Feeding contaminated flies to hens resulted in gut colonization of a third of the birds, but release of contaminated flies in a room containing previously unchallenged hens failed to result in colonization of any of the subject birds. These results indicate that flies exposed to an environment containing Salmonella serovar Enteritidis can become colonized with the organism and might serve as a source for transmission of Salmonella serovar Enteritidis within a flock situation. PMID:17675422

  15. Salmonella

    USDA-ARS?s Scientific Manuscript database

    Salmonella are facultative anaerobic Gram-negative non-spore forming rods belonging to the family Enterobacteriaceae. Salmonellosis is a zoonotic and foodborne illness that is usually transmitted by the fecal-oral route estimated to be responsible for 1.4 million cases of human infections in 2009 in...

  16. Subinhibitory concentrations of phloretin repress the virulence of Salmonella typhimurium and protect against Salmonella typhimurium infection.

    PubMed

    Shuai-Cheng, Wu; Ben-Dong, Fu; Xiu-Ling, Chu; Jian-Qing, Su; Yun-Xing, Fu; Zhen-Qiang, Cui; Dao-Xiu, Xu; Zong-Mei, Wu

    2016-11-01

    Phloretin, a natural component of many fruits, exhibits anti-virulence effects and provides a new alternative to counter bacterial infection. The aim of this study was to determine the effect of subinhibitory concentrations of phloretin on the virulence of Salmonella typhimurium. At concentrations where growth of Salmonella was not inhibited, phloretin significantly inhibited bacteria biofilm formation and motility. Subinhibitory concentrations of phloretin repressed eight genes involved in the Salmonella pathogenicity island 1 and 3 genes involved in flagella production. Furthermore, subinhibitory concentrations of phloretin inhibited the adhesion and invasion of Salmonella in IEC-6 cells and reduced the LDH levels of S. typhimurium-infected IEC-6 cells. Additionally, phloretin significantly decreased the cecum bacterial loads of the mice infected with live S. typhimurium containing subinhibitory concentrations of phloretin by gavage. These results suggested that subinhibitory concentrations of phloretin attenuate the virulence of S. typhimurium and protect against S. typhimurium infection.

  17. Incidence of Salmonella contamination in broiler chickens in Saskatchewan.

    PubMed

    Bhargava, K K; O'Neil, J B; Prior, M G; Dunkelgod, K E

    1983-01-01

    The incidence of Salmonella contamination in ten Saskatchewan broiler flocks varying in size from 6 200 to 14 000 was investigated from February, 1977 to April, 1979. Prior to the initial chick placement, brooding equipment, feed, water and fresh litter samples were found to be free of Salmonellae. Samples obtained from the clean and disinfected processing plant equipment before the commencement of daily operation were negative except the isolation for Salmonella anatum from the fingers of the defeathering machine in flock 4. There was no evidence of Salmonella contamination in flocks 5, 6, 8 and 10. The incidence of Salmonella was lower when cloacal swabs were taken from day old chicks fasted for 48 hours than for the same groups of chicks when carcasses were blended in nutrient broth (flocks 7 and 9). The blending of such chicks appears to be a more critical test. The serotypes isolated from eviscerated birds were the same as those isolated from used litter samples. Salmonella saintpaul was isolated from a water sample at 53 days in flock 1 and the same serotype was recovered from the intestinal contents and skin of eviscerated birds. Salmonella typhimurium was recovered from the eviscerated birds and neck samples in flock 3. In flock 4, S. saintpaul and S. anatum were isolated from 13% of the eviscerated birds sampled. Salmonella thompson, Salmonella agona and Salmonella heidelberg were recovered from 61%, 5% and 1%, respectively, of the processed carcasses sampled in flock 7.

  18. Incidence of Salmonella Contamination in Broiler Chickens in Saskatchewan

    PubMed Central

    Bhargava, K.K.; O'Neil, J.B.; Prior, M.G.; Dunkelgod, K.E.

    1983-01-01

    The incidence of Salmonella contamination in ten Saskatchewan broiler flocks varying in size from 6 200 to 14 000 was investigated from February, 1977 to April, 1979. Prior to the initial chick placement, brooding equipment, feed, water and fresh litter samples were found to be free of Salmonellae. Samples obtained from the clean and disinfected processing plant equipment before the commencement of daily operation were negative except the isolation for Salmonella anatum from the fingers of the defeathering machine in flock 4. There was no evidence of Salmonella contamination in flocks 5, 6, 8 and 10. The incidence of Salmonella was lower when cloacal swabs were taken from day old chicks fasted for 48 hours than for the same groups of chicks when carcasses were blended in nutrient broth (flocks 7 and 9). The blending of such chicks appears to be a more critical test. The serotypes isolated from eviscerated birds were the same as those isolated from used litter samples. Salmonella saintpaul was isolated from a water sample at 53 days in flock 1 and the same serotype was recovered from the intestinal contents and skin of eviscerated birds. Salmonella typhimurium was recovered from the eviscerated birds and neck samples in flock 3. In flock 4, S. saintpaul and S. anatum were isolated from 13% of the eviscerated birds sampled. Salmonella thompson, Salmonella agona and Salmonella heidelberg were recovered from 61%, 5% and 1%, respectively, of the processed carcasses sampled in flock 7. PMID:6831304

  19. Applications of microscopy in Salmonella research.

    PubMed

    Malt, Layla M; Perrett, Charlotte A; Humphrey, Suzanne; Jepson, Mark A

    2015-01-01

    Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in humans and many other animals. Understanding the mechanisms by which Salmonella induces disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type 3 secretion system. Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second type 3 secretion system initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. Elucidation of the complex and highly dynamic pathogen-host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopy techniques to analyze Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and high-resolution light microscopy techniques such as confocal microscopy can reveal the precise location of Salmonella and its relationship to cellular components. Widefield light microscopy is a simpler approach with which to study the interaction of bacteria with host cells and often has advantages for live cell imaging, enabling detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on some microscopy techniques used routinely in our own research.

  20. Prevalence and antibiotic resistance of Salmonella Enteritidis and Salmonella Typhimurium in raw chicken meat at retail markets in Malaysia.

    PubMed

    Thung, T Y; Mahyudin, N A; Basri, D F; Wan Mohamed Radzi, C W J; Nakaguchi, Y; Nishibuchi, M; Radu, S

    2016-08-01

    Salmonellosis is one of the major food-borne diseases in many countries. This study was carried out to determine the occurrence of Salmonella spp., Salmonella Enteritidis, and Salmonella Typhimurium in raw chicken meat from wet markets and hypermarkets in Selangor, as well as to determine the antibiotic susceptibility profile of S. Enteritidis and S. Typhimurium. The most probable number (MPN) in combination with multiplex polymerase chain reaction (mPCR) method was used to quantify the Salmonella spp., S. Enteritidis, and S. Typhimurium in the samples. The occurrence of Salmonella spp., S. Enteritidis, and S. Typhimurium in 120 chicken meat samples were 20.80%, 6.70%, and 2.50%, respectively with estimated quantity varying from <3 to 15 MPN/g. The antibiogram testing revealed differential multi-drug resistance among S. Enteritidis and S. Typhimurium isolates. All the isolates were resistance to erythromycin, penicillin, and vancomycin whereas sensitivity was recorded for Amoxicillin/Clavulanic acid, Gentamicin, Tetracycline, and Trimethoprim. Our findings demonstrated that the retail chicken meat could be a source of multiple antimicrobial-resistance Salmonella and may constitute a public health concern in Malaysia. © 2016 Poultry Science Association Inc.

  1. Reversible synthesis of colanic acid and O-antigen polysaccharides in Salmonella Typhimurium enhances induction of cross-immune responses and provides protection against heterologous Salmonella challenge.

    PubMed

    Li, Pei; Liu, Qing; Huang, Chun; Zhao, Xinxin; Roland, Kenneth L; Kong, Qingke

    2017-05-15

    Colanic Acid (CA) and lipopolysaccharide (LPS) are two major mannose-containing extracellular polysaccharides of Salmonella. Their presence on the bacterial surface can mask conserved protective outer membrane proteins (OMPs) from the host immune system. The mannose moiety in these molecules is derived from GDP-mannose, which is synthesized in several steps. The first two steps require the action of phosphomannose isomerase, encoded by pmi (manA), followed by phosphomannomutase, encoded by manB. There are two copies of manB present in the Salmonella chromosome, one located in the cps gene cluster (cpsG) responsible for CA synthesis, and the other in the rfb gene cluster (rfbK) involved in LPS O-antigen synthesis. In this study, it was demonstrated that the products of cpsG and rfbK are isozymes. To evaluate the impact of these genes on O-antigen synthesis, virulence and immunogenicity, single mutations (Δpmi, ΔrfbK or ΔcpsG) and a double mutation (ΔrfbK ΔcpsG) were introduced into both wild-type Salmonella enterica and an attenuated Δcya Δcrp vaccine strain. The Δpmi, ΔrfbK and ΔcpsG ΔrfbK mutants were defective in LPS synthesis and attenuated for virulence. In orally inoculated mice, strain S122 (Δcrp Δcya ΔcpsG ΔrfbK) and its parent S738 (Δcrp Δcya) were both avirulent and colonized internal tissues. Strain S122 elicited higher levels of anti-S. Typhimurium OMP serum IgG than its parent strain. Mice immunized with S122 were completely protected against challenge with wild-type virulent S. Typhimurium and partially protected against challenge with either wild-type virulent S. Choleraesuis or S. Enteritidis. These data indicate that deletions in rfbK and cpsG are useful mutations for inclusion in future attenuated Salmonella vaccine strains to induce cross-protective immunity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Reorganization of the Endosomal System in Salmonella-Infected Cells: The Ultrastructure of Salmonella-Induced Tubular Compartments

    PubMed Central

    Krieger, Viktoria; Liebl, David; Zhang, Yuying; Rajashekar, Roopa; Chlanda, Petr; Giesker, Katrin; Chikkaballi, Deepak; Hensel, Michael

    2014-01-01

    During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella. PMID:25254663

  3. Salmonella spp. on chicken carcasses in processing plants in Poland.

    PubMed

    Mikołajczyk, Anita; Radkowski, Mieczysław

    2002-09-01

    Chickens at selected points in the slaughter process and after slaughter on the dressing line in poultry plants were sampled and analyzed for Salmonella. These chickens came from the northeast part of Poland. The examinations were carried out in quarters I, II, III, and IV of 1999. All the birds were determined to be healthy by a veterinary inspection. Swab samples were taken from the cloaca after stunning and from the skin surface and body cavity of the whole bird after evisceration, after rinsing at the final rinse station but before chilling in the spin-chiller, and after cooling in the continuous cooling plant at the end of the production day. In 1999, 400 whole chickens were examined. The percentage of these 400 chickens from which Salmonella spp. were isolated was relatively high (23.75%; Salmonella-positive results were observed in 95 cases). Salmonella spp. were found after stunning in 6% of the chickens (6 of 100 samples), after evisceration in 24% (24 of 100), before cooling in 52% (52 of 100), and after cooling in 13% (13 of 100). These results show that Salmonella spp. were found more often at some processing points than at others. The lowest Salmonella spp. contamination rate (6%) for slaughter birds was found after stunning, and the highest contamination rate was found before chilling (52%). The serological types of Salmonella spp. isolated from whole chickens were Salmonella Enteritidis, Salmonella Typhimurium, Salmonella Saintpaul, Salmonella Agona, and Salmonella Infantis. The results of these investigations indicate that Salmonella Enteritidis is the dominant serological type in infections of slaughter chickens, as it is in many countries.

  4. Refined Live Attenuated Salmonella enterica Serovar Typhimurium and Enteritidis Vaccines Mediate Homologous and Heterologous Serogroup Protection in Mice

    PubMed Central

    Schmidlein, Patrick; Simon, Raphael; Pasetti, Marcela F.; Galen, James E.; Levine, Myron M.

    2015-01-01

    Invasive nontyphoidal Salmonella (NTS) infections constitute a major health problem among infants and toddlers in sub-Saharan Africa; these infections also occur in infants and the elderly in developed countries. We genetically engineered a Salmonella enterica serovar Typhimurium strain of multilocus sequence type 313, the predominant genotype circulating in sub-Saharan Africa. We evaluated the capacities of S. Typhimurium and Salmonella enterica serovar Enteritidis ΔguaBA ΔclpX live oral vaccines to protect mice against a highly lethal challenge dose of the homologous serovar and determined protection against other group B and D serovars circulating in sub-Saharan Africa. The vaccines S. Typhimurium CVD 1931 and S. Enteritidis CVD 1944 were immunogenic and protected BALB/c mice against 10,000 50% lethal doses (LD50) of S. Typhimurium or S. Enteritidis, respectively. S. Typhimurium CVD 1931 protected mice against the group B serovar Salmonella enterica serovar Stanleyville (91% vaccine efficacy), and S. Enteritidis CVD 1944 protected mice against the group D serovar Salmonella enterica serovar Dublin (85% vaccine efficacy). High rates of survival were observed when mice were infected 12 weeks postimmunization, indicating that the vaccines elicited long-lived protective immunity. Whereas CVD 1931 did not protect against S. Enteritidis R11, CVD 1944 did mediate protection against S. Typhimurium D65 (81% efficacy). These findings suggest that a bivalent (S. Typhimurium and S. Enteritidis) vaccine would provide broad protection against the majority of invasive NTS infections in sub-Saharan Africa. PMID:26351285

  5. Virulence and antimicrobial resistance of Salmonella spp. and Escherichia coli in the beef jerky production line.

    PubMed

    Fernandes, Fernanda Pereira; Voloski, Flávia Liége Schütz; Ramires, Tassiana; Haubert, Louise; Reta, Giulia Giugliani; Mondadori, Rafael Gianella; Silva, Wladimir Padilha da; Conceição, Rita de Cássia Dos Santos da; Duval, Eduarda Hallal

    2017-05-01

    Intense manipulation during beef jerky production increases the possibility of contamination with pathogenic microorganisms. This study evaluated the contamination by thermotolerant coliforms, Escherichia coli and Salmonella spp., on processing surfaces and raw materials during beef jerky production, as well as in the final product. Thermotolerant coliforms were found on all surfaces tested and in the raw material. Escherichia coli was identified in 6.7% of the surface samples, while Salmonella spp. was found in 3.3% of the surface samples and 8.6% of raw material samples. Virulence genes were detected in Salmonella spp. isolates. One Salmonella spp. isolate was resistant to sulfonamide, while one E. coli isolate was multiresistant, including the presence of resistance genes sul2, strA, strB, tetA and tetB. The presence of coliforms demonstrates failings in hygienic-sanitary procedures. The presence of pathogenic microorganisms causing foodborne diseases in the production line indicates persistent contamination in the production plant. Although the drying process applied to beef jerky should guarantee the safety of the final product, the presence of multiresistant pathogenic microorganisms, presenting virulence genes, should be a matter of concern. Because beef jerky is a ready-to-eat product, a failure in the production process may cause such microorganisms to pose a public health risk. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil.

    PubMed

    Zishiri, Oliver T; Mkhize, Nelisiwe; Mukaratirwa, Samson

    2016-05-26

    Salmonellosis is a significant public health concern around the world. The injudicious use of antimicrobial agents in poultry production for treatment, growth promotion and prophylaxis has resulted in the emergence of drug resistant strains of Salmonella. The current study was conducted to investigate the prevalence of virulence and antimicrobial resistance genes from Salmonella isolated from South African and Brazilian broiler chickens as well as human clinical isolates. Out of a total of 200 chicken samples that were collected from South Africa 102 (51%) tested positive for Salmonella using the InvA gene. Of the overall 146 Salmonella positive samples that were screened for the iroB gene most of them were confirmed to be Salmonella enterica with the following prevalence rates: 85% of human clinical samples, 68.6% of South African chicken isolates and 70.8% of Brazilian chicken samples. All Salmonella isolates obtained were subjected to antimicrobial susceptibility testing with 10 antibiotics. Salmonella isolates from South African chickens exhibited resistance to almost all antimicrobial agents used, such as tetracycline (93%), trimethoprim-sulfamthoxazole (84%), trimethoprim (78.4%), kanamycin (74%), gentamicin (48%), ampicillin (47%), amoxicillin (31%), chloramphenicol (31%), erythromycin (18%) and streptomycin (12%). All samples were further subjected to PCR in order to screen some common antimicrobial and virulence genes of interest namely spiC, pipD, misL, orfL, pse-1, tet A, tet B, ant (3")-la, sul 1 and sul. All Salmonella positive isolates exhibited resistance to at least one antimicrobial agent; however, antimicrobial resistance patterns demonstrated that multiple drug resistance was prevalent. The findings provide evidence that broiler chickens are colonised by pathogenic Salmonella harbouring antimicrobial resistance genes. Therefore, it is evident that there is a need for prudent use of antimicrobial agents in poultry production systems in order to

  7. Enhanced immune response to a dual-promoter anti-caries DNA vaccine orally delivered by attenuated Salmonella typhimurium.

    PubMed

    Jiang, Hao; Hu, Yijun; Yang, Mei; Liu, Hao; Jiang, Guangshui

    2017-05-01

    The strength of immune responses induced by DNA vaccine is closely associated with the expression level of cloned antigens available to the antigen presenting cells (APCs). To acquire a larger and more persistent amount of antigen, a dual-promoter, which could double the target antigen output through its expression both in prokaryotic and eukaryotic cells, was employed in the constructed anti-caries DNA vaccine with attenuated Salmonella as mucosal delivery vector in this study. Here, both CMV and nirB promoters were included in the plasmid that harbors the genes encoding the functional epitopes of two virulence factors of S. mutans, i.e. the saliva-binding region (SBR) of PAc and the glucan-binding region (GBR) of glucosyltransferase-I (GTF-I). Delivered by attenuated Salmonella Typhimurium strain SL3261, the anti-caries vaccine was administered intragastrointestinally to BALB/c mice for evaluation of the effectiveness of this immune regime. Specific anti-SBR and anti-GBR antibodies were detected in the serum and saliva of experimental animals by week 3 after immunization. These immune responses were further enhanced after a booster vaccination at week 16. However, in mice receiving Salmonella expressing SBR and GBR under the control of nirB alone these antibody responses were significantly (P<0.01) lower. The serum IgG subclass profiles suggested a Th1/Th2-mixed but Th2 biased immune response to the cloned antigens, which was further confirmed by a significant increase in the Th1 (IFN-γ, IL-2) and Th2 (IL-4, IL-10) cytokines in splenocytes of immunized mice upon stimulation with SBR or GBR. To further determine the protective efficacy of these responses, a challenge test with S. mutans strain UA159 was performed in mice after the second immunization. Following challenge, mice immunized with Salmonella expressing SBR and GBR under the control of the CMV-nirB promoter showed a significant (P<0.01) reduction in the number of S. mutans in the dental plaque compared

  8. Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis

    PubMed Central

    2013-01-01

    The characterization of the immune response of chickens to Salmonella infection is usually limited to the quantification of expression of genes coding for cytokines, chemokines or antimicrobial peptides. However, processes occurring in the cecum of infected chickens are likely to be much more diverse. In this study we have therefore characterized the transcriptome and proteome in the chicken cecum after infection with Salmonella Enteritidis. Using a combination of 454 pyrosequencing, protein mass spectrometry and quantitative real-time PCR, we identified 48 down- and 56 up-regulated chicken genes after Salmonella Enteritidis infection. The most inducible gene was that coding for MMP7, exhibiting a 5952 fold induction 9 days post-infection. An induction of greater than 100 fold was observed for IgG, IRG1, SAA, ExFABP, IL-22, TRAP6, MRP126, IFNγ, iNOS, ES1, IL-1β, LYG2, IFIT5, IL-17, AVD, AH221 and SERPIN B. Since prostaglandin D2 synthase was upregulated and degrading hydroxyprostaglandin dehydrogenase was downregulated after the infection, prostaglandin must accumulate in the cecum of chickens infected with Salmonella Enteritidis. Finally, above mentioned signaling was dependent on the presence of a SPI1-encoded type III secretion system in Salmonella Enteritidis. The inflammation lasted for 2 weeks after which time the expression of the “inflammatory” genes returned back to basal levels and, instead, the expression of IgA and IgG increased. This points to an important role for immunoglobulins in the restoration of homeostasis in the cecum after infection. PMID:23687968

  9. 9 CFR 113.30 - Detection of Salmonella contamination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Detection of Salmonella contamination... REQUIREMENTS Standard Procedures § 113.30 Detection of Salmonella contamination. The test for detection of Salmonella contamination provided in this section shall be conducted when such a test is prescribed in an...

  10. 9 CFR 113.30 - Detection of Salmonella contamination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Detection of Salmonella contamination... REQUIREMENTS Standard Procedures § 113.30 Detection of Salmonella contamination. The test for detection of Salmonella contamination provided in this section shall be conducted when such a test is prescribed in an...

  11. Evaluation of 3M molecular detection assay (MDA) Salmonella for the detection of Salmonella in selected foods: collaborative study.

    PubMed

    Bird, Patrick; Fisher, Kiel; Boyle, Megan; Huffman, Travis; Benzinger, M Joseph; Bedinghaus, Paige; Flannery, Jonathan; Crowley, Erin; Agin, James; Goins, David; Benesh, DeAnn; David, John

    2013-01-01

    The 3M Molecular Detection Assay (MDA) Salmonella is used with the 3M Molecular Detection System for the detection of Salmonella spp. in food, food-related, and environmental samples after enrichment. The assay utilizes loop-mediated isothermal amplification to rapidly amplify Salmonella target DNA with high specificity and sensitivity, combined with bioluminescence to detect the amplification. The 3M MDA Salmonella method was compared using an unpaired study design in a multilaboratory collaborative study to the U.S. Department of Agriculture/Food Safety and Inspection Service-Microbiology Laboratory Guidebook (USDA/FSIS-MLG 4.05), Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg and Catfish Products for raw ground beef and the U.S. Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Chapter 5 Salmonella reference method for wet dog food following the current AOAC guidelines. A total of 20 laboratories participated. For the 3M MDA Salmonella method, raw ground beef was analyzed using 25 g test portions, and wet dog food was analyzed using 375 g test portions. For the reference methods, 25 g test portions of each matrix were analyzed. Each matrix was artificially contaminated with Salmonella at three inoculation levels: an uninoculated control level (0 CFU/test portion), a low inoculum level (0.2-2 CFU/test portion), and a high inoculum level (2-5 CFU/test portion). In this study, 1512 unpaired replicate samples were analyzed. Statistical analysis was conducted according to the probability of detection (POD). For the low-level raw ground beef test portions, the following dLPOD (difference between the POD of the reference and candidate method) values with 95% confidence intervals were obtained: -0.01 (-0.14, +0.12). For the low-level wet dog food test portions, the following dLPOD with 95% confidence intervals were obtained: -0.04 (-0.16, +0.09). No significant differences were observed in the number of positive

  12. Role of systemic infection, cross contaminations and super-shedders in Salmonella carrier state in chicken.

    PubMed

    Menanteau, Pierrette; Kempf, Florent; Trotereau, Jerome; Virlogeux-Payant, Isabelle; Gitton, Edouard; Dalifard, Julie; Gabriel, Irene; Rychlik, Ivan; Velge, Philippe

    2018-06-19

    Carriage of Salmonella is often associated with a high level of bacterial excretion and generally occurs after a short systemic infection. However, we do not know whether this systemic infection is required or whether the carrier-state corresponds to continuous reinfection or real persistence in caecal tissue. The use of a Salmonella Enteritidis bamB mutant demonstrated that a carrier-state could be obtained in chicken in the absence of systemic infection. The development of a new infection model in isolator showed that a marked decrease in animal reinfection and host-to-host transmission between chicks led to a heterogeneity of S. Enteritidis excretion and colonization contrary to what was observed in cages. This heterogeneity of infection was characterized by the presence of super-shedders, which constantly disseminated Salmonella to the low-shedder chicks, mainly through airborne movements of contaminated dust particles. The presence of super-shedders, in the absence of host-to-host transmission, demonstrated that constant reinfection was not required to induce a carrier-state. Finally, our results suggest that low-shedder chicks do not have a higher capability to destroy Salmonella but instead can block initial Salmonella colonization. This new paradigm opens new avenues to improve understanding of the carrier-state mechanisms and to define new strategies to control Salmonella infections. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. The major sources of Salmonella enteritidis in Thailand.

    PubMed

    Sakai, T; Chalermchaikit, T

    1996-08-01

    The data of Salmonella serotypes during 1989-1993 from the World Health Organisation (WHO) National Salmonella and Shigella Center, Division of Clinical Pathology, Department of Medical Science, Ministry of Health, Thailand was analysed and found that the prevalence of Salmonella enteritidis had been dramatically increased since 1990. The average S. enteritidis isolates from human patient samples was 0.70% +/- 0.41% of the total reported Salmonella isolates during 1972-1989 and increased to 1.33%, 2.98%, 9.54%, and 16.98% in 1990, 1991, 1992, and 1993, respectively. The similar trend of S. enteritidis isolates from chicken meat samples were also observed. However, the conclusive epidemiological relationship between human and chicken S. enteritidis isolates needs to be proved by phage typing or other Salmonella typing methods.

  14. Comparison of Microbial Communities Isolated from Feces of Asymptomatic Salmonella-Shedding and Non-Salmonella Shedding Dairy Cows

    PubMed Central

    Haley, Bradd J.; Pettengill, James; Gorham, Sasha; Ottesen, Andrea; Karns, Jeffrey S.; Van Kessel, Jo Ann S.

    2016-01-01

    In the United States Salmonella enterica subsp. enterica serotypes Kentucky and Cerro are frequently isolated from asymptomatic dairy cows. However, factors that contribute to colonization of the bovine gut by these two serotypes have not been identified. To investigate associations between Salmonella status and bacterial diversity, as well as the diversity of the microbial community in the dairy cow hindgut, the bacterial and archaeal communities of fecal samples from cows on a single dairy farm were determined by high-throughput sequencing of 16S rRNA gene amplicons. Fecal grab samples were collected from two Salmonella-positive cows and two Salmonella-negative cows on five sampling dates (n = 20 cows), and 16S rRNA gene amplicons from these samples were sequenced on the Illumina MiSeq platform. A high level of alpha (within) and beta diversity (between) samples demonstrated that microbial profiles of dairy cow hindguts are quite diverse. To determine whether Salmonella presence, sampling year, or sampling date explained a significant amount of the variation in microbial diversity, we performed constrained ordination analyses (distance based RDA) on the unifrac distance matrix produced with QIIME. Results indicated that there was not a significant difference in the microbial diversity associated with Salmonella presence (P > 0.05), but there were significant differences between sampling dates and years (Pseudo-F = 2.157 to 4.385, P < 0.05). Based on these data, it appears that commensal Salmonella infections with serotypes Cerro and Kentucky in dairy cows have little or no association with changes in the abundance of major bacterial groups in the hindgut. Rather, our results indicated that temporal dynamics and other undescribed parameters associated with them were the most influential drivers of the differences in microbial diversity and community structure in the dairy cow hindgut. PMID:27313565

  15. Interactions of Salmonella with animals and plants.

    PubMed

    Wiedemann, Agnès; Virlogeux-Payant, Isabelle; Chaussé, Anne-Marie; Schikora, Adam; Velge, Philippe

    2014-01-01

    Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.

  16. Prevalence of Salmonella in diverse environmental farm samples.

    PubMed

    Rodriguez, Andres; Pangloli, Philipus; Richards, Harold A; Mount, John R; Draughon, F Ann

    2006-11-01

    The development of suitable intervention strategies to control Salmonella populations at the farm level requires reliable data on the occurrence and prevalence of the pathogen. Previous studies on Salmonella prevalence have focused on acquiring data from specific farm types and/or selected regions. The purpose of this study was to evaluate the distribution of this pathogen across a variety of farm types and regions in order to generate comparative data from a diverse group of environmental samples. Farm samples (n = 2,496) were collected quarterly from 18 different farms across five states (Tennessee, North Carolina, Alabama, California, and Washington) over a 24-month period. The participating farms included beef and dairy cattle operations, swine production and farrowing facilities, and poultry farms (both broiler chicken and turkey). The samples were analyzed for the presence of Salmonella by means of the U.S. Food and Drug Administration's Bacteriological Analytical Manual methods optimized for farm samples. Salmonella isolates were characterized by automated riboprinting. Salmonella serovars were recovered from 4.7% of all samples. The majority of positive findings were isolated from swine farms (57.3%). The occurrence of Salmonella was lower on dairy farms (17.9%), poultry farms (16.2%), and beef cattle farms (8.5%). The most commonly isolated serovar was Salmonella Anatum (48.4%), which was isolated notably more frequently than the next most common Salmonella serovars, Arizonae (12.1%) and Javiana (8.8%). The results of this study suggest that significant reservoirs of Salmonella populations still exist on swine production facilities and to a lesser extent in other animal production facilities. Data showed that the surrounding farm environment could be an important source of contamination.

  17. Multi-drug resistant non-typhoidal Salmonella associated with invasive disease in western Kenya.

    PubMed

    Akullian, Adam; Montgomery, Joel M; John-Stewart, Grace; Miller, Samuel I; Hayden, Hillary S; Radey, Matthew C; Hager, Kyle R; Verani, Jennifer R; Ochieng, John Benjamin; Juma, Jane; Katieno, Jim; Fields, Barry; Bigogo, Godfrey; Audi, Allan; Walson, Judd

    2018-01-01

    Non-typhoidal Salmonella (NTS) is a leading cause of bloodstream infections in Africa, but the various contributions of host susceptibility versus unique pathogen virulence factors are unclear. We used data from a population-based surveillance platform (population ~25,000) between 2007-2014 and NTS genome-sequencing to compare host and pathogen-specific factors between individuals presenting with NTS bacteremia and those presenting with NTS diarrhea. Salmonella Typhimurium ST313 and Salmonella Enteritidis ST11 were the most common isolates. Multi-drug resistant strains of NTS were more commonly isolated from patients presenting with NTS bacteremia compared to NTS diarrhea. This relationship was observed in patients under age five [aOR = 15.16, 95% CI (2.84-81.05), P = 0.001], in patients five years and older, [aOR = 6.70 95% CI (2.25-19.89), P = 0.001], in HIV-uninfected patients, [aOR = 21.61, 95% CI (2.53-185.0), P = 0.005], and in patients infected with Salmonella serogroup B [aOR = 5.96, 95% CI (2.28-15.56), P < 0.001] and serogroup D [aOR = 14.15, 95% CI (1.10-182.7), P = 0.042]. Thus, multi-drug-resistant NTS was strongly associated with bacteremia compared to diarrhea among children and adults. This association was seen in HIV-uninfected individuals infected with either S. Typhimurium or S. Enteritidis. Risk of developing bacteremia from NTS infection may be driven by virulence properties of the Salmonella pathogen.

  18. Salmonella in beef and produce from honduras.

    PubMed

    Maradiaga, Martha; Miller, Mark F; Thompson, Leslie; Pond, Ansen; Gragg, Sara E; Echeverry, Alejandro; Garcia, Lyda G; Loneragan, Guy H; Brashears, Mindy M

    2015-03-01

    Salmonella continues to cause a considerable number of foodborne illnesses worldwide. The sources of outbreaks include contaminated meat and produce. The purpose of this study was to establish an initial investigation of the burden of Salmonella in produce and beef from Honduras by sampling retail markets and abattoirs. Retail produce samples (cantaloupes, cilantro, cucumbers, leafy greens, peppers, and tomatoes; n = 573) were purchased in three major cities of Honduras, and retail whole-muscle beef (n = 555) samples were also purchased in four major cities. Additionally, both hide and beef carcass (n = 141) samples were collected from two Honduran abattoirs. Whole-muscle beef samples were obtained using a sponge hydrated with buffered peptone water, and 10 ml of the buffered peptone water rinsate of each produce sample was collected with a dry sponge and placed in a bag to be transported back to the United States. Salmonella was detected using a commercially available, closeplatform PCR system, and positive samples were subjected to culture on selective media to obtain isolates. Overall, the prevalence of Salmonella-positive samples, based on PCR detection in Honduras (n = 555) retail beef was 10.1% (95% confidence interval = 7.8, 12.9), whereas 7.8% (n = 141) of beef carcass and hides samples were positive in both beef plants. The overall Salmonella prevalence for all produce samples (n = 573) collected was 2.1% (95% confidence interval = 1.2, 3.6). The most common serotypes identified in Honduras were Salmonella Typhimurium followed by Derby. These results provide an indication of Salmonella contamination of beef and produce in Honduras. Developing a Salmonella baseline for Latin America through an initial investigation like the one presented here contributes to a broader global understanding of the potential exposure through food, thus providing insight into the needs for control strategies.

  19. Immunity to Intracellular Salmonella Depends on Surface-associated Antigens

    PubMed Central

    Claudi, Beatrice; Mazé, Alain; Schemmer, Anne K.; Kirchhoff, Dennis; Schmidt, Alexander; Burton, Neil; Bumann, Dirk

    2012-01-01

    Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. PMID:23093937

  20. Laboratory-based Salmonella surveillance in Fiji, 2004-2005.

    PubMed

    Dunn, John; Pryor, Jan; Saketa, Salanieta; Delai, Wasale; Buadromo, Eka; Kishore, Kamal; Naidu, Shakila; Greene, Sharon; Varma, Jay; Chiller, Tom

    2005-09-01

    Although foodborne diseases are an important public health problem worldwide, the burden of foodborne illness is not well described in most Pacific Island Countries and Territories. Laboratory-based surveillance programs can detect trends and outbreaks, estimate burden of illness, and allow subtyping of enteric pathogens (e.g. Salmonella serotyping), which is critical for linking illness to food vehicles and animal reservoirs. To enhance public health capacity in Fiji for foodborne disease surveillance, we developed the Salmonella Surveillance Project (SSP), a collaboration to pilot laboratory-based surveillance for Salmonella. A network of national and international partners was formed including epidemiologists, microbiologists, and environmental health personnel. Ministry of Health personnel were trained in foodborne disease surveillance and outbreak investigation. Three clinical microbiology laboratories from different parts of the country functioned as sentinel sites, reporting all laboratory-confirmed Salmonella infections using a standardized case report form. Non-Typhi Salmonella isolates were collected for serotyping. In 2004-2005, 86 non-Typhi Salmonella and 275 S. Typhi laboratory-confirmed infections were reported. Salmonella enterica serotype I 3,10: r:- and Salmonella enterica serotype Weltevreden were the most commonly isolated non-Typhi serotypes. In Fiji, the SSP utilized international partnerships to facilitate training, and to enhance laboratory capacity and surveillance for salmonellosis. Incorporating laboratory-based foodborne disease reporting into national disease surveillance will enable public health officials to describe the burden of foodborne illness, identify outbreaks, conduct analytic epidemiology studies, and improve food safety.

  1. Wild Griffon Vultures (Gyps fulvus) as a Source of Salmonella and Campylobacter in Eastern Spain

    PubMed Central

    Marin, Clara; Palomeque, Maria-Dolores; Marco-Jiménez, Francisco; Vega, Santiago

    2014-01-01

    The existence of Campylobacter and Salmonella reservoirs in wildlife is a potential hazard to animal and human health; however, the prevalence of these species is largely unknown. Until now, only a few studies have evaluated the presence of Campylobacter and Salmonella in wild griffon vultures and based on a small number of birds. The aim of this study was to evaluate the presence of Campylobacter and Salmonella in wild griffon vultures (n = 97) during the normal ringing programme at the Cinctorres Observatory in Eastern Spain. In addition, the effect of ages of individuals (juveniles, subadult and adult) on the presence were compared. Campylobacter was isolated from 1 of 97 (1.0%) griffon vultures and identified as C. jejuni. Salmonella was isolated from 51 of 97 (52.6%) griffon vultures. No significant differences were found between the ages of individuals for the presence of Salmonella. Serotyping revealed 6 different serovars among two Salmonella enterica subspecies; S. enterica subsp. enterica (n = 49, 96.1%) and S. enterica subsp. salamae (n = 2, 3.9%). No more than one serovar was isolated per individual. The serovars isolated were S. Typhimurium (n = 42, 82.3%), S. Rissen (n = 4, 7.8%), S. Senftenberg (n = 3, 5.9%) and S. 4,12:b[-] (n = 2, 3.9%). Our results imply that wild griffon vultures are a risk factor for Salmonella transmission, but do not seem to be a reservoir for Campylobacter. We therefore rule out vultures as a risk factor for human campylobacteriosis. Nevertheless, further studies should be undertaken in other countries to confirm these results. PMID:24710464

  2. Diversity of Salmonella isolates from central Florida surface waters.

    PubMed

    McEgan, Rachel; Chandler, Jeffrey C; Goodridge, Lawrence D; Danyluk, Michelle D

    2014-11-01

    Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608-3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:-. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella

  3. Diversity of Salmonella Isolates from Central Florida Surface Waters

    PubMed Central

    McEgan, Rachel; Chandler, Jeffrey C.; Goodridge, Lawrence D.

    2014-01-01

    Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608–3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:−. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella

  4. Salmonella Infections

    MedlinePlus

    ... reptiles like snakes, turtles, and lizards. Symptoms include Fever Diarrhea Abdominal cramps Headache Possible nausea, vomiting, and ... be serious. The usual treatment is antibiotics. Typhoid fever, a more serious disease caused by Salmonella, is ...

  5. Salmonella Isolates in the Introduced Asian House Gecko (Hemidactylus frenatus) with Emphasis on Salmonella Weltevreden, in Two Regions in Costa Rica.

    PubMed

    Jiménez, Randall R; Barquero-Calvo, Elías; Abarca, Juan G; Porras, Laura P

    2015-09-01

    The Asian house gecko Hemidactylus frenatus has been widely introduced in Costa Rica and tends to establish in human settlements. Some studies in other invaded countries have suggested that this gecko plays a significant role in the epidemiology of salmonellosis and it is of value to public health. To our knowledge, no studies have examined Salmonella from this species in Costa Rica. Therefore, we collected 115 geckos from houses in two Costa Rican regions. We examined gut contents for Salmonella through microbiological analysis. Presumptive Salmonella spp. were sent to a reference laboratory for serotyping and antimicrobial susceptibility testing. Molecular typing was also conducted with the main Salmonella isolates of zoonotic relevance in Costa Rica. H. frenatus was found in 95% of the houses surveyed. Salmonella was isolated in 4.3% of the samples, and four zoonotic serovars were detected. None of the isolates were resistant to the antibiotics most frequently used for salmonellosis treatment in Costa Rica. All Salmonella isolates from the lower gut of H. frenatus are associated with human salmonellosis. Pulsotypes from Salmonella enterica serotype Weltevreden were identical to the only clone previously reported from human samples in Costa Rica. Molecular typing of Salmonella Weltevreden suggested that H. frenatus harbors a serovar of public health importance in Costa Rica. Results demonstrated that H. frenatus plays a role in the epidemiology of human salmonellosis in two regions of Costa Rica. However, more detailed epidemiological studies are needed to understand better the role of the Asian house gecko with human salmonellosis, especially caused by Salmonella Weltevreden, and to quantify its risk in Costa Rica accurately.

  6. Detection of Salmonella enterica in pigs at slaughter and comparison with human isolates in Italy.

    PubMed

    Bonardi, Silvia; Alpigiani, Irene; Bruini, Ilaria; Barilli, Elena; Brindani, Franco; Morganti, Marina; Cavallini, Pierugo; Bolzoni, Luca; Pongolini, Stefano

    2016-02-02

    Manhattan, S. Brandenburg, Salmonella Livingstone, Salmonella London and Salmonella Muenchen were identified. Among S. Derby and S. enterica 4,[5],12:i:- isolates found in pigs, 6/15 profiles (40.0%) and 8/10 (80.0%) were shared with human isolates. High resistance rates to streptomycin (97.3%), sulphonamide compounds (84.0%) and tetracycline (56.0%) were observed. No resistance was detected to ertapenem and meropenem. High proportions of isolates showed intermediate sensitivity to ciprofloxacin (85.3%) and cefotaxime (66.7%). High sensitivity rates were found to chloramphenicol (96.0%) and trimethoprim/sulfamethoxazole (81.3%). Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Salmonella-based plague vaccines for bioterrorism.

    PubMed

    Calhoun, Leona Nicole; Kwon, Young-Min

    2006-04-01

    Yersinia pestis, the causative agent of plague, is an emerging threat as a means of bioterrorism. Accordingly, the Working Group on Civilian Biodefense, as well as the Centers for Disease Control and Prevention, has specified Y. pestis as a prime candidate for use in bioterrorism. As the threat of bioterrorism increases, so does the need for an effective vaccine against this potential agent. Experts agree that a stable, non-invasive vaccine would be necessary for the rapid large-scale immunization of a population following a bioterrorism attack. Thus far, live Salmonella-based oral vaccines show the most potential for this purpose. When delivered via a mucosal route, Salmonella-based plague vaccines show the ability to protect against the deadly pneumonic form of plague. Also, mass production, distribution, and administration are easier and less costly for attenuated Salmonella-based plague vaccines than for plague vaccines consisting of purified proteins. Most attenuated Salmonella-based plague vaccines have utilized a plasmid-based expression system to deliver plague antigen(s) to the mucosa. However, these systems are frequently associated with plasmid instability, an increased metabolic burden upon the vaccine strain, and highly undesirable antibiotic resistance genes. The future of Salmonella-based plague vaccines seems to lie in the use of chromosomally encoded plague antigens and the use of in vivo inducible promoters to drive their expression. This method of vaccine development has been proven to greatly increase the retention of foreign genes, and also eliminates the need for antibiotic resistance genes within Salmonella-based vaccines.

  8. Transcriptomic analysis of Salmonella desiccation resistance.

    PubMed

    Li, Haiping; Bhaskara, Anuhya; Megalis, Christina; Tortorello, Mary Lou

    2012-12-01

    The survival of Salmonella in low moisture foods and processing environments remains a great challenge for the food industry and public health. To explore the mechanisms of Salmonella desiccation resistance, we studied the transcriptomic responses in Salmonella Tennessee (Tennessee), using Salmonella Typhimurium LT2 (LT2), a strain weakly resistant to desiccation, as a reference strain. In response to 2 h of air-drying at 11% equilibrated relative humidity, approximately one-fourth of the open reading frames (ORFs) in the Tennessee genome and one-fifth in LT2 were differentially expressed (>2-fold). Among all differentially expressed functional groups (>5-fold) in both strains, the expression fold change associated with fatty acid metabolism was the highest, and constituted 51% and 35% of the total expression fold change in Tennessee and LT2, respectively. Tennessee showed greater changes in expression of genes associated with stress response and envelope modification than LT2, while showing lesser changes in protein biosynthesis expression. Expression of flagella genes was significantly more inhibited in stationary phase cells of Tennessee than LT2 both before and after desiccation. The accumulation of the osmolyte trehalose was significantly induced by desiccation in Tennessee, but no increase was detectable in LT2, which is consistent with the expression patterns of the entire trehalose biosynthesis and degradation pathways in both strains. Results from this study present a global view of the dynamic desiccation responses in Salmonella, which will guide future research efforts to control Salmonella in low moisture environments.

  9. Collaborative ring-trial of Dynabeads anti-Salmonella for immunomagnetic separation of stressed Salmonella cells from herbs and spices.

    PubMed

    Mansfield, L; Forsythe, S

    1996-02-01

    Eight laboratories participated in a Salmonella detection ring-trial which compared selective enrichment by conventional broths with immunomagnetic separation (IMS) using Dynabeads Anti-Salmonella. Laboratories analyzed six types of herbs and spices that were spiked with one of six freeze-dried Salmonella species. Each herb and spice analysis comprised of 12 samples (25 g each) which had been spiked at three different levels, plus a negative control and stored for one week prior to testing. Out of a total 468 samples analyzed, 195 (41.7%) were positive by both methods. Eighteen samples were positive only by IMS enrichment, in comparison with 19 positive samples by conventional enrichment broths and not IMS. These results confirm the potential use of IMS as an alternative to enrichment broths for Salmonella isolation.

  10. Salmonella enterocolitis

    MedlinePlus

    ... you: Eat foods such as turkey, turkey dressing, chicken, or eggs that have not been cooked well or stored properly Are around family members with a recent salmonella infection Have been in or worked in a ...

  11. Molecular diagnosis of Salmonella typhi and its virulence in suspected typhoid blood samples through nested multiplex PCR.

    PubMed

    Prabagaran, Solai Ramatchandirane; Kalaiselvi, Vellingiri; Chandramouleeswaran, Naganathan; Deepthi, Krishnan Nair Geetha; Brahmadathan, Kootallur Narayanan; Mani, Mariappa

    2017-08-01

    A nested multiplex polymerase chain reaction (PCR) based diagnosis was developed for the detection of virulent Salmonella typhi in the blood specimens from patients suspected for typhoid fever. After the Widal test, two pairs of primers were used for the detection of flagellin gene (fliC) of S. typhi. Among them, those positive for fliC alone were subjected to identification of genes in Via B operon of Salmonella Pathogenesity Island (SPI-7) where four primer pairs were used to detect tviA and tviB genes. Among 250 blood samples tested, 115 were positive by fliC PCR; 22 of these were negative for tviA and tviB. Hence, the method described here can be used to diagnose the incidence of Vi-negative serovar typhi especially in endemic regions where the Vi vaccine is administered. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. [Sensitivity of three inmunocromathographic tests in faeces samples for Campylobacter and Salmonella detection in comparison to culture].

    PubMed

    Liébana-Martos, Ma del Carmen; Gutierrez, José; Riazzo, Cristina; Navarro, José Ma

    2014-06-01

    Introduction: Campylobacter sp. and Salmonella enterica are two of the main organisms causing gastroenteritis in our environment. Immunochromatographic tests for antigen detection performed directly on stool samples for its simplicity and rapid results may make them useful diagnostic elements in the context of primary care. During October 2012 we selected all feces in which enteropathogenic bacteria are isolated from those received for stool culture in the laboratory of Microbiology of the University Hospital Virgen de las Nieves of Granada. After standard management of faeces samples and isolation of any enteropathogen, the commercial kits: Campy Leti, Ridaquick Campylobacterscreen and Salmonella Leti were tested for simultaneous research of Campylobacter and Salmonella antigens. Sensitivity and specificity were determined. Two hundred and thirty five stool samples were received in which 8 Salmonella enterica (7 B serogroup and 1 D serogroup), 7 Campylobacter jejuni, 4 Aeromonas hydrophila and 1 Yersinia enterocolitica were isolated. Campy Leti, Ridaquick Campylobacterscreen and Salmonella Leti presented a sensitivity of 100%, 100% and 75%, respectively. Specificities corresponded to 46%, 69% and 100%, respectively. Immunocromatographic tests can be useful for a first screening of enteropathogen in primary care.

  13. Comparisons of Salmonella conjugation and virulence gene hyperexpression mediated by rumen protozoa from domestic and exotic ruminants.

    PubMed

    Brewer, Matt T; Xiong, Nalee; Dier, Jeffery D; Anderson, Kristi L; Rasmussen, Mark A; Franklin, Sharon K; Carlson, Steve A

    2011-08-05

    Recent studies have identified a phenomenon in which ciliated protozoa engulf Salmonella and the intra-protozoal environment hyperactivates virulence gene expression and provides a venue for conjugal transfer of antibiotic resistance plasmids. The former observation is relegated to Salmonella bearing the SGI1 multiresistance integron while the latter phenomenon appears to be a more generalized event for recipient Salmonella. Our previous studies have assessed virulence gene hyperexpression only with protozoa from the bovine rumen while conjugal transfer has been demonstrated in rumen protozoa from cattle and goats. The present study examined virulence gene hyperexpression for Salmonella exposed to rumen protozoa obtained from cattle, sheep, goats, or two African ruminants (giraffe and bongo). Conjugal transfer was also assessed in these protozoa using Salmonella as the recipient. Virulence gene hyperexpression was only observed following exposure to the rumen protozoa from cattle and sheep while elevated virulence was also observed in these animals. Conjugal transfer events were, however, observed in all protozoa evaluated. It therefore appears that the protozoa-based hypervirulence is not universal to all ruminants while conjugal transfer is more ubiquitous. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Immune Reaction and Survivability of Salmonella Typhimurium and Salmonella Infantis after Infection of Primary Avian Macrophages

    PubMed Central

    Braukmann, Maria; Methner, Ulrich; Berndt, Angela

    2015-01-01

    Salmonella serovars are differentially able to infect chickens. The underlying causes are not yet fully understood. Aim of the present study was to elucidate the importance of Salmonella Pathogenicity Island 1 and 2 (SPI-1 and -2) for the virulence of two non-host-specific, but in-vivo differently invasive, Salmonella serovars in conjunction with the immune reaction of the host. Primary avian splenic macrophages were inoculated with Salmonella enterica sub-species enterica serovar (S.) Typhimurium and S. Infantis. The number and viability of intracellular bacteria and transcription of SPI-1 and -2 genes by the pathogens, as well as transcription of immune-related proteins, surface antigen expression and nitric oxide production by the macrophages, were compared at different times post inoculation. After infection, both of the Salmonella serovars were found inside the primary macrophages. Invasion-associated SPI-1 genes were significantly higher transcribed in S. Infantis- than S. Typhimurium-infected macrophages. The macrophages counteracted the S. Infantis and S. Typhimurium infection with elevated mRNA expression of inducible nitric oxide synthase (iNOS), interleukin (IL)-12, IL-18 and lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF) as well as with an increased synthesis of nitric oxide. Despite these host cell attacks, S. Typhimurium was better able than S. Infantis to survive within the macrophages and transcribed higher rates of the SPI-2 genes spiC, ssaV, sifA, and sseA. The results showed similar immune reactions of primary macrophages after infection with both of the Salmonella strains. The more rapid and stronger transcription of SPI-2-related genes by intracellular S. Typhimurium compared to S. Infantis might be responsible for its better survival in avian primary macrophages. PMID:25811871

  15. Salmonella surrogate reduction using industrial peanut dry roasting parameters

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted to evaluate the effectiveness of industrial peanut dry roasting parameters in Salmonella reduction using a Salmonella surrogate, Enterococcus faecium, which is slightly more heat tolerant than Salmonella. Runner-type peanuts were inoculated with E. faecium and roasted in a lab...

  16. Refined live attenuated Salmonella enterica serovar Typhimurium and Enteritidis vaccines mediate homologous and heterologous serogroup protection in mice.

    PubMed

    Tennant, Sharon M; Schmidlein, Patrick; Simon, Raphael; Pasetti, Marcela F; Galen, James E; Levine, Myron M

    2015-12-01

    Invasive nontyphoidal Salmonella (NTS) infections constitute a major health problem among infants and toddlers in sub-Saharan Africa; these infections also occur in infants and the elderly in developed countries. We genetically engineered a Salmonella enterica serovar Typhimurium strain of multilocus sequence type 313, the predominant genotype circulating in sub-Saharan Africa. We evaluated the capacities of S. Typhimurium and Salmonella enterica serovar Enteritidis ΔguaBA ΔclpX live oral vaccines to protect mice against a highly lethal challenge dose of the homologous serovar and determined protection against other group B and D serovars circulating in sub-Saharan Africa. The vaccines S. Typhimurium CVD 1931 and S. Enteritidis CVD 1944 were immunogenic and protected BALB/c mice against 10,000 50% lethal doses (LD50) of S. Typhimurium or S. Enteritidis, respectively. S. Typhimurium CVD 1931 protected mice against the group B serovar Salmonella enterica serovar Stanleyville (91% vaccine efficacy), and S. Enteritidis CVD 1944 protected mice against the group D serovar Salmonella enterica serovar Dublin (85% vaccine efficacy). High rates of survival were observed when mice were infected 12 weeks postimmunization, indicating that the vaccines elicited long-lived protective immunity. Whereas CVD 1931 did not protect against S. Enteritidis R11, CVD 1944 did mediate protection against S. Typhimurium D65 (81% efficacy). These findings suggest that a bivalent (S. Typhimurium and S. Enteritidis) vaccine would provide broad protection against the majority of invasive NTS infections in sub-Saharan Africa. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Saccharomyces boulardii prevention of the hepatic injury induced by Salmonella Enteritidis infection.

    PubMed

    Wu, Daichao; Teng, Da; Wang, Xiumin; Dai, Changsong; Wang, Jianhua

    2014-10-01

    Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis) is the predominant cause of serovar-associated food-borne outbreaks in many countries and causes significant clinical symptoms of liver injury, enteritis, and diarrheal diseases. Saccharomyces boulardii is used in clinical application for prophylaxis and the treatment of a variety of diseases caused by bacterial infection. We used a mouse model of Salmonella Enteritidis infection, which included pretreatment with S. boulardii, to reveal the protection mechanisms of S. boulardii against Salmonella Enteritidis infection, including the translocation of Salmonella Enteritidis to the liver 10 days after Salmonella Enteritidis challenge, and the colonisation of Salmonella Enteritidis and the formation of hepatic tissue lesions in mice after Salmonella Enteritidis challenge on the 10th day. Compared with Salmonella Enteritidis infection in mice, S. boulardii decreased Salmonella Enteritidis translocation to the liver by 96%, and 99% of Salmonella Enteritidis colonised the cecum on the 10th day. Saccharomyces boulardii also abated hepatic tissue injury caused by the infiltration of neutrophilic granulocytes, lymphocytes, and plasmocytes by decreasing the translocation of Salmonella to the liver. These findings demonstrated that S. boulardii is an effective agent in the prevention of the hepatic injury induced by Salmonella Enteritidis infection in a mouse model.

  18. Longitudinal study of Salmonella 1,4,[5],12:i:- shedding in five Australian pig herds.

    PubMed

    Weaver, T; Valcanis, M; Mercoulia, K; Sait, M; Tuke, J; Kiermeier, A; Hogg, G; Pointon, A; Hamilton, D; Billman-Jacobe, H

    2017-01-01

    The shedding patterns of Salmonella spp. and MLVA profiles of Salmonella enterica subspecies enterica (I) serotype 1,4,[5],12:i:- were monitored in a 12-month longitudinal observational study of five pig herds to inform management; provide indications of potential hazard load at slaughter; and assist evaluation of MLVA for use by animal and public health practitioners. Twenty pooled faecal samples, stratified by age group, were collected quarterly. When Salmonella was cultured, multiple colonies were characterized by serotyping and where S. Typhimurium-like serovars were confirmed, isolates were further characterized by phage typing and multiple locus variable number tandem repeat analysis (MLVA). Salmonella was detected in 43% of samples. Salmonella 1,4,[5],12:i- was one of several serovars that persisted within the herds and was found among colonies from each production stage. Virtually all Salmonella 1,4,[5],12:i:- isolates were phage type 193, but exhibited 12 different, closely-related MLVA profiles. Salmonella 1,4,[5],12:i:- diversity within herds was low and MLVA profiles were stable indicating colonization throughout the herds and suggesting each farm had an endemic strain. High prevalence of S. 1,4,[5],12:i:- specific shedding among terminal animals indicated high hazard load at slaughter, suggesting that primary production may be an important pathway of S. 1,4,[5],12:i:- into the human food chain, this has implications for on-farm management and the application and targeting control measures and further evidence of the need for effective process control procedures to be in place during slaughter and in pork boning rooms. These findings have implications for animal health and food safety risk mitigation and risk management. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Reduction of Salmonella on chicken meat and chicken skin by combined or sequential application of lytic bacteriophage with chemical antimicrobials.

    PubMed

    Sukumaran, Anuraj T; Nannapaneni, Rama; Kiess, Aaron; Sharma, Chander Shekhar

    2015-08-17

    The effectiveness of recently approved Salmonella lytic bacteriophage preparation (SalmoFresh™) in reducing Salmonella in vitro and on chicken breast fillets was examined in combination with lauric arginate (LAE) or cetylpyridinium chloride (CPC). In another experiment, a sequential spray application of this bacteriophage (phage) solution on Salmonella inoculated chicken skin after a 20s dip in chemical antimicrobials (LAE, CPC, peracetic acid, or chlorine) was also examined in reducing Salmonella counts on chicken skin. The application of phage in combination with CPC or LAE reduced S. Typhimurium, S. Heidelberg, and S. Enteritidis up to 5 log units in vitro at 4 °C. On chicken breast fillets, phage in combination with CPC or LAE resulted in significant (p<0.05) reductions of Salmonella ranging from 0.5 to 1.3 log CFU/g as compared to control up to 7 days of refrigerated storage. When phage was applied sequentially with chemical antimicrobials, all the treatments resulted in significant reductions of Salmonella. The application of chlorine (30 ppm) and PAA (400 ppm) followed by phage spray (10(9)PFU/ml) resulted in highest Salmonella reductions of 1.6-1.7 and 2.2-2.5l og CFU/cm(2), respectively. In conclusion, the surface applications of phage in combination with LAE or CPC significantly reduced Salmonella counts on chicken breast fillets. However, higher reductions in Salmonella counts were achieved on chicken skin by the sequential application of chemical antimicrobials followed by phage spray. The sequential application of chlorine, PAA, and phage can provide additional hurdles to reduce Salmonella on fresh poultry carcasses or cut up parts. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms.

    PubMed

    Ghosal, Abhisek; Jellbauer, Stefan; Kapadia, Rubina; Raffatellu, Manuela; Said, Hamid M

    2015-07-15

    Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines.

  1. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms

    PubMed Central

    Ghosal, Abhisek; Jellbauer, Stefan; Kapadia, Rubina; Raffatellu, Manuela

    2015-01-01

    Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines. PMID:25999427

  2. Salmonella burden in Lebanon.

    PubMed

    Malaeb, M; Bizri, A R; Ghosn, N; Berry, A; Musharrafieh, U

    2016-06-01

    Salmonellosis is a disease that represents a major public health concern in both developing and developed countries. The aim of this article is to evaluate the public health burden of Salmonella illness in Lebanon. The current scope of the Salmonella infection problem was assessed in relation to disease incidence and distribution with respect to age, gender and district. Factors that provide a better understanding of the magnitude of the problem were explored and highlighted. Data reported to the Epidemiologic Surveillance Department at the Lebanese Ministry of Public Health between 2001 and 2013 was reviewed. Information obtained was compared to information reported regionally and globally. The estimated true incidence was derived using multipliers from the CDC and Jordan. A literature review of all published data from Lebanon about Salmonella susceptibility/resistance patterns and its serious clinical complications was conducted. The estimated incidence was 13·34 cases/100 000 individuals, most cases occurred in the 20-39 years age group with no significant gender variation. Poor and less developed districts of Lebanon had the highest number of cases and the peak incidence was in summer. Reflecting on the projected incidence derived from the use of multipliers indicates a major discrepancy between what is reported and what is estimated. We conclude that data about Salmonella infection in Lebanon and many Middle Eastern and developing countries lack crucial information and are not necessarily representative of the true incidence, prevalence and burden of illness.

  3. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend?

    PubMed

    Michael, G B; Schwarz, S

    2016-12-01

    Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  4. Multi-drug resistant non-typhoidal Salmonella associated with invasive disease in western Kenya

    PubMed Central

    Montgomery, Joel M.; Miller, Samuel I.; Hayden, Hillary S.; Radey, Matthew C.; Hager, Kyle R.; Verani, Jennifer R.; Ochieng, John Benjamin; Juma, Jane; Katieno, Jim; Fields, Barry; Bigogo, Godfrey; Audi, Allan; Walson, Judd

    2018-01-01

    Non-typhoidal Salmonella (NTS) is a leading cause of bloodstream infections in Africa, but the various contributions of host susceptibility versus unique pathogen virulence factors are unclear. We used data from a population-based surveillance platform (population ~25,000) between 2007–2014 and NTS genome-sequencing to compare host and pathogen-specific factors between individuals presenting with NTS bacteremia and those presenting with NTS diarrhea. Salmonella Typhimurium ST313 and Salmonella Enteritidis ST11 were the most common isolates. Multi-drug resistant strains of NTS were more commonly isolated from patients presenting with NTS bacteremia compared to NTS diarrhea. This relationship was observed in patients under age five [aOR = 15.16, 95% CI (2.84–81.05), P = 0.001], in patients five years and older, [aOR = 6.70 95% CI (2.25–19.89), P = 0.001], in HIV-uninfected patients, [aOR = 21.61, 95% CI (2.53–185.0), P = 0.005], and in patients infected with Salmonella serogroup B [aOR = 5.96, 95% CI (2.28–15.56), P < 0.001] and serogroup D [aOR = 14.15, 95% CI (1.10–182.7), P = 0.042]. Thus, multi-drug-resistant NTS was strongly associated with bacteremia compared to diarrhea among children and adults. This association was seen in HIV-uninfected individuals infected with either S. Typhimurium or S. Enteritidis. Risk of developing bacteremia from NTS infection may be driven by virulence properties of the Salmonella pathogen. PMID:29329299

  5. Reduction of Salmonella in ground chicken using a bacteriophage.

    PubMed

    Grant, Ar'Quette; Parveen, Salina; Schwarz, Jurgen; Hashem, Fawzy; Vimini, Bob

    2017-08-01

    This study's goal was to ascertain the effectiveness of a commercially available Salmonella bacteriophage during ground chicken production focusing on: water source, different Salmonella serovars, and time. Salmonella-free boneless, skinless chicken meat was inoculated with 4.0 Log CFU/cm2 of either a cocktail of 3 Salmonella isolates derived from ground chicken (GC) or a cocktail of 3 Salmonella strains not isolated from ground chicken (non-GC). Bacteriophages were spread onto the chicken using sterile tap or filtered water for 30 min or 8 h. Salmonella was recovered using standard plating method. Greater Salmonella reduction was observed when the bacteriophage was diluted in sterile tap water than in sterile filtered water: 0.39 Log CFU/cm2 and 0.23 Log CFU/cm2 reduction after 30 min, respectively (P < 0.05). The non-GC isolates showed reductions of 0.71 Log CFU/cm2 and 0.90 Log CFU/cm2 after 30 min and 8 h, respectively (P < 0.05). The GC isolates were less sensitive to the bacteriophage: 0.39 Log CFU/cm2 and 0.67 Log CFU/cm2 reductions after 30 min and 8 h, respectively (P < 0.05). In conclusion, bacteriophage reduction was dependent on water used to dilute the bacteriophage, Salmonella's susceptibility to the bacteriophage, and treatment time. © 2017 Poultry Science Association Inc.

  6. Initial contamination of chicken parts with Salmonella at retail and cross-contamination of cooked chicken with Salmonella from raw chicken during meal preparation.

    PubMed

    Oscar, T P

    2013-01-01

    The current study was undertaken to acquire data on contamination of chicken parts with Salmonella at retail and to acquire data on cross-contamination of cooked chicken with Salmonella from raw chicken during meal preparation. Whole raw chickens (n = 31) were obtained from local retail stores and cut into two wings, two breasts without skin or bones, two thighs, and two drumsticks. Data for cross-contamination were obtained by cutting up a sterile, cooked chicken breast with the same board and knife used to cut up the raw chicken. The board, knife, and latex gloves used by the food handler were not rinsed or washed before cutting up the sterile, cooked chicken breast, thus providing a worst-case scenario for cross-contamination. Standard curves for the concentration of Salmonella bacteria in 400 ml of buffered peptone water after 6 h of incubation of chicken parts as a function of the initial log number of Salmonella bacteria inoculated onto chicken parts were developed and used to enumerate Salmonella bacteria. Standard curves were not affected by the type of chicken part but did differ (P < 0.05) among the five isolates of Salmonella examined. Consequently, Salmonella bacteria were enumerated on naturally contaminated chicken parts using a standard curve developed with the serotype of Salmonella that was isolated from the original sample. The prevalence of contamination was 3 % (4 of 132), whereas the incidence of cross-contamination was 1.8 % (1 of 57). The positive chicken parts were a thigh from chicken 4, which contained 3 CFU of Salmonella enterica serotype Kentucky, and both wings, one thigh, and one cooked breast portion from chicken 15, which all contained 1 CFU of serotype 8,20:-:z(6). These results indicated that the poultry industry is providing consumers in the studied area with chicken that has a low prevalence and low number of Salmonella bacteria at retail and that has a low incidence and low level of cross-contamination of cooked chicken with

  7. Survival and growth of Salmonella in salsa and related ingredients.

    PubMed

    Ma, Li; Zhang, Guodong; Gerner-Smidt, Peter; Tauxe, Robert V; Doyle, Michael P

    2010-03-01

    A large outbreak of Salmonella Saintpaul associated with raw jalapeño peppers, serrano peppers, and possibly tomatoes was reported in the United States in 2008. During the outbreak, two clusters of illness investigated among restaurant patrons were significantly associated with eating salsa. Experiments were performed to determine the survival and growth characteristics of Salmonella in salsa and related major ingredients, i.e., tomatoes, jalapeño peppers, and cilantro. Intact and chopped vegetables and different formulations of salsas were inoculated with a five-strain mixture of Salmonella and then stored at 4, 12, and 21 degrees C for up to 7 days. Salmonella populations were monitored during storage. Salmonella did not grow, but survived on intact tomatoes and jalapeño peppers, whereas significant growth at 12 and 21 degrees C was observed on intact cilantro. In general, growth of Salmonella occurred in all chopped vegetables when stored at 12 and 21 degrees C, with chopped jalapeño peppers being the most supportive of Salmonella growth. Regardless of differences in salsa formulation, no growth of Salmonella (initial inoculation ca. 3 log CFU/g) was observed in salsa held at 4 degrees C; however, rapid or gradual decreases in Salmonella populations were only observed in formulations that contained both fresh garlic and lime juice. Salmonella grew at 12 and 21 degrees C in salsas, except for those formulations that contained both fresh garlic and lime juice, in which salmonellae were rapidly or gradually inactivated, depending on salsa formulation. These results highlight the importance of preharvest pathogen contamination control of fresh produce and proper formulation and storage of salsa.

  8. Direct feeding of microencapsulated bacteriophages to reduce Salmonella colonization in pigs

    USDA-ARS?s Scientific Manuscript database

    Salmonella shedding often increases in pigs following pre-slaughter transportation and/or lairage. We previously showed that administering anti-Salmonella bacteriophages to pigs by gavage significantly reduced Salmonella colonization when the pigs were exposed to a Salmonella-contaminated pen. In ...

  9. Modeling of Salmonella Contamination in the Pig Slaughterhouse.

    PubMed

    Swart, A N; Evers, E G; Simons, R L L; Swanenburg, M

    2016-03-01

    In this article we present a model for Salmonella contamination of pig carcasses in the slaughterhouse. This model forms part of a larger QMRA (quantitative microbial risk assessment) on Salmonella in slaughter and breeder pigs, which uses a generic model framework that can be parameterized for European member states, to describe the entire chain from farm-to-consumption and the resultant human illness. We focus on model construction, giving mathematical formulae to describe Salmonella concentrations on individual pigs and slaughter equipment at different stages of the slaughter process. Variability among individual pigs and over slaughterhouses is incorporated using statistical distributions, and simulated by Monte Carlo iteration. We present the results over the various slaughter stages and show that such a framework is especially suitable to investigate the effect of various interventions. In this article we present the results of the slaughterhouse module for two case study member states. The model outcome represents an increase in average prevalence of Salmonella contamination and Salmonella numbers at dehairing and a decrease of Salmonella numbers at scalding. These results show good agreement when compared to several other QMRAs and microbiological studies. © 2016 Society for Risk Analysis.

  10. Sources of Salmonellae in broiler chickens in Ontario.

    PubMed Central

    Hacking, W C; Mitchell, W R; Carlson, H C

    1978-01-01

    Sources of Salmonellae infecting broiler chicken flocks in Ontario were investigated from July, 1975 to April, 1976. Three broiler flocks were investigated on each of four farms which received chicks from a common hatchery. Samples of feed and new litter were preenriched in nonselective broth subcultured to Salmonella-selective enrichment broth and plated on Salmonella-selective differential agar.Samples of used litter, water, culled chicks, insects, mice, wild birds and environmental swabs were not cultured initially in the nonselective broth. Fecal samples from principal and occasional flock attendants were examined for Samonellae. Salmonella infection, as judged by contaminated flock litter was detected in six flocks on two of the farms while the flocks on the other farms remained negative. Salmonellae were isolated from 23 of 412 feed samples (nine serotypes), six of 35 new wood shaving samples (four serotypes), one of 29 pools of culled chick viscera (one serotype) and 44 of 267 used litter samples (14 serotypes). These results indicate that broiler chicken flocks were infected with diverse Salmonellae introduced in day old chicks, pelleted feeds, wood shavings and residual contamination from the preceding flock. PMID:743597

  11. Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from South Africa and Brazil.

    PubMed

    Zishiri, Oliver T; Mkhize, Nelisiwe; Mukaratirwa, Samson

    2016-05-26

    Salmonellosis is a significant public health concern around the world. The injudicious use of antimicrobial agents in poultry production for treatment, growth promotion and prophylaxis has resulted in the emergence of drug resistant strains of Salmonella. The current study was conducted to investigate the prevalence of virulence and antimicrobial resistance genes from Salmonella isolated from South African and Brazilian broiler chickens as well as human clinical isolates. Out of a total of 200 chicken samples that were collected from South Africa 102 (51%) tested positive for Salmonella using the InvA gene. Of the overall 146 Salmonella positive samples that were screened for the iroB gene most of them were confirmed to be Salmonella enterica with the following prevalence rates: 85% of human clinical samples, 68.6% of South African chicken isolates and 70.8% of Brazilian chicken samples. All Salmonella isolates obtained were subjected to antimicrobial susceptibility testing with 10 antibiotics. Salmonella isolates from South African chickens exhibited resistance to almost all antimicrobial agents used, such as tetracycline (93%), trimethoprim-sulfamthoxazole (84%), trimethoprim (78.4%), kanamycin (74%), gentamicin (48%), ampicillin (47%), amoxicillin (31%), chloramphenicol (31%), erythromycin (18%) and streptomycin (12%). All samples were further subjected to PCR in order to screen some common antimicrobial and virulence genes of interest namely spiC, pipD, misL, orfL, pse-1, tet A, tet B, ant (3")-la, sul 1 and sul. All Salmonella positive isolates exhibited resistance to at least one antimicrobial agent; however, antimicrobial resistance patterns demonstrated that multiple drug resistance was prevalent. The findings provide evidence that broiler chickens are colonised by pathogenic Salmonella harbouring antimicrobial resistance genes. Therefore, it is evident that there is a need for prudent use of antimicrobial agents in poultry production systems in order to

  12. A connecter-like factor, CacA, links RssB/RpoS and the CpxR/CpxA two-component system in Salmonella

    PubMed Central

    2012-01-01

    Background Bacteria integrate numerous environmental stimuli when generating cellular responses. Increasing numbers of examples describe how one two-component system (TCS) responds to signals detected by the sensor of another TCS. However, the molecular mechanisms underlying this phenomenon remain poorly defined. Results Here, we report a connector-like factor that affects the activity of the CpxR/CpxA two-component system in Salmonella enterica serovar Typhimurium. We isolated a clone that induced the expression of a cpxP-lac gene fusion from a high-copy-number plasmid pool of random Salmonella genomic fragments. A 63-amino acid protein, CacA, was responsible for the CpxA/CpxR-dependent activation of the cpxP gene. The CpxR-activated genes cpxP and spy exhibited approximately 30% and 50% reductions in transcription, respectively, in a clean cacA deletion mutant strain in comparison to wild-type. From 33 response regulator (RR) deletion mutants, we identified that the RssB regulator represses cacA transcription. Substitution mutations in a conserved -10 region harboring the RNA polymerase recognition sequence, which is well conserved with a known RpoS -10 region consensus sequence, rendered the cacA promoter RpoS-independent. The CacA-mediated induction of cpxP transcription was affected in a trxA deletion mutant, which encodes thioredoxin 1, suggesting a role for cysteine thiol-disulfide exchange(s) in CacA-dependent Cpx activation. Conclusions We identified CacA as an activator of the CpxR/CpxA system in the plasmid clone. We propose that CacA may integrate the regulatory status of RssB/RpoS into the CpxR/CpxA system. Future investigations are necessary to thoroughly elucidate how CacA activates the CpxR/CpxA system. PMID:23031642

  13. A connecter-like factor, CacA, links RssB/RpoS and the CpxR/CpxA two-component system in Salmonella.

    PubMed

    Kato, Akinori; Hayashi, Hironori; Nomura, Wataru; Emori, Haruka; Hagihara, Kei; Utsumi, Ryutaro

    2012-10-02

    Bacteria integrate numerous environmental stimuli when generating cellular responses. Increasing numbers of examples describe how one two-component system (TCS) responds to signals detected by the sensor of another TCS. However, the molecular mechanisms underlying this phenomenon remain poorly defined. Here, we report a connector-like factor that affects the activity of the CpxR/CpxA two-component system in Salmonella enterica serovar Typhimurium. We isolated a clone that induced the expression of a cpxP-lac gene fusion from a high-copy-number plasmid pool of random Salmonella genomic fragments. A 63-amino acid protein, CacA, was responsible for the CpxA/CpxR-dependent activation of the cpxP gene. The CpxR-activated genes cpxP and spy exhibited approximately 30% and 50% reductions in transcription, respectively, in a clean cacA deletion mutant strain in comparison to wild-type. From 33 response regulator (RR) deletion mutants, we identified that the RssB regulator represses cacA transcription. Substitution mutations in a conserved -10 region harboring the RNA polymerase recognition sequence, which is well conserved with a known RpoS -10 region consensus sequence, rendered the cacA promoter RpoS-independent. The CacA-mediated induction of cpxP transcription was affected in a trxA deletion mutant, which encodes thioredoxin 1, suggesting a role for cysteine thiol-disulfide exchange(s) in CacA-dependent Cpx activation. We identified CacA as an activator of the CpxR/CpxA system in the plasmid clone. We propose that CacA may integrate the regulatory status of RssB/RpoS into the CpxR/CpxA system. Future investigations are necessary to thoroughly elucidate how CacA activates the CpxR/CpxA system.

  14. Coconut and Salmonella Infection

    PubMed Central

    Schaffner, Carl P.; Mosbach, Klaus; Bibit, Venuso C.; Watson, Colin H.

    1967-01-01

    Raw, unprocessed coconut supports the growth of salmonellae as well as that of other enteric bacteria, salmonellae being particularly resistant to subsequent desiccation. Original contamination is not due to carriers or to polluted water supplies, but to contact with bacteria-containing soils followed by dispersion via infected coconut milk and shells. Pasteurization of raw coconut meat in a water bath at 80 C for 8 to 10 min effectively killed such bacteria, did not injure the product, and provided a prophylactic method now widely used by the coconut industry. PMID:5340650

  15. Salmonella Typhimurium pneumonia in a patient with multiple myeloma.

    PubMed

    Khan, Sadia; Kumar, V Anil; Sidharthan, Neeraj; Mehta, Asmita; Backer, Binita; Dinesh, Kavitha R

    2015-04-01

    Pneumonia due to non-typhoidal Salmonella is a rarely reported entity. A fatal case of Salmonella pneumonia is reported here where Salmonella Typhimurium was isolated from the endotracheal aspirate and blood culture. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  16. Isolation of Salmonella Virchow from a fruit bat (Pteropus giganteus).

    PubMed

    Islam, Ausraful; Mikolon, Andrea; Mikoleit, Matthew; Ahmed, Dilruba; Khan, Salah Udddin; Sharker, M A Yushuf; Hossain, M Jahangir; Islam, Ariful; Epstein, Jonathan H; Zeidner, Nord; Luby, Stephen P

    2013-12-01

    Detection of zoonotic pathogens carried by bats is important both for understanding disease ecology and for developing preventive measures. Pteropus fruit bats have been identified as potential carriers of Salmonella enterica serotype Typhi. A cross-sectional study was conducted to determine the prevalence of Salmonella Typhi and other Salmonella serotypes in Pteropus giganteus fruit bats in Bangladesh. Rectal swabs were collected from 302 bats and cultured for Salmonella species. The bats were trapped in three districts (Faridpur, Rajbari, and Cox's Bazar). Salmonella Typhi was not found but one juvenile female bat from Faridpur district was positive for Salmonella Virchow. Close associations between frugivorous bats, humans, and livestock in rural Bangladesh make it likely that the bat was infected by consuming contaminated water.

  17. Comparing validation of four ELISA-systems for detection of Salmonella derby- and Salmonella infantis-infected pigs.

    PubMed

    Roesler, Uwe; Szabo, Istvan; Matthies, Claudia; Albrecht, Kerstin; Leffler, Martin; Scherer, Kathrin; Nöckler, Karsten; Lehmann, Jörg; Methner, Ulrich; Hensel, Andreas; Truyen, Uwe

    2011-01-01

    The objective of this study was the comparative evaluation of four indirect Salmonella ELISA tests at study time approved in Germany to detect Salmonella infection in pigs.Three tests are based on a LPS-antigen mix and directed against specific IgG antibodies. The fourth test is based on a purified S. Typhimurium whole-cell lysate antigen and discriminates between Salmonella-specific IgM-, IgA-, and IgG- antibodies. In a longitudinal study, two groups of six weeks old hybrid piglets were orally infected with a porcine S. Infantis or S. Derby strain. Clinical and bacteriological parameters were monitored weekly during an observation period of 130 days after infection and serum samples were investigated in parallel with the respective ELISAs. Apparently, the LPS-based ELISA systems used in this study failed to recognize S. Infantis-infected pigs although those animals shed the pathogen in high amounts throughout the study until day 81 post infection (p. i.). In contrast, the isotype-specific Salmonella Typhimurium whole-cell-lysate based ELISA was capable of detecting Salmonella-infected pigs from day ten p. i. at all tested serotypes and revealed the highest sensitivity in detection of S. Infantis-infected pigs. Furthermore, it became apparent that the often used surveillance cut-off value of 40 OD% is not appropriate for intra-vitam detection of S. Infantis- and S. Derby-infected pigs. In contrast, the cut-off values of the ELISAs given by the suppliers result in considerable higher detection rates.

  18. Examination of predictors of Salmonella enterica contamination in cattle feedlot environments

    USDA-ARS?s Scientific Manuscript database

    Objective: To identify a “predictor” or “environmental marker” that can be used to estimate Salmonella prevalence in a given feedlot environment. Further, to examine the correlation between environmental Salmonella contamination, Salmonella fecal shedding status, and prevalence of Salmonella in per...

  19. Characterization of extended-spectrum β-lactamases (ESBLs)-producing Salmonella in retail raw chicken carcasses.

    PubMed

    Qiao, Jing; Zhang, Qiang; Alali, Walid Q; Wang, Jiawei; Meng, Lingyuan; Xiao, Yingping; Yang, Hua; Chen, Sheng; Cui, Shenghui; Yang, Baowei

    2017-05-02

    Extended-spectrum β-lactamases (ESBLs)-producing Salmonella is considered a serious concern to public health worldwide. However, limited information is available on ESBLs-producing Salmonella in retail chicken products in China. The objective of this study was to characterize ESBLs-producing Salmonella isolates from retail chickens in China. A total of 890 Salmonella isolates from retail chicken carcasses collected from 4 provinces were firstly screened for ESBLs-production phenotype via the double-disk synergy test method. A total of 96 (10.8%, n=890) ESBLs-producing Salmonella were identified and subjected to PFGE analysis, characterization for the presence of ESBLs encoding genes, transposons, carbapenemase and virulence genes. A total of 59 PFGE profiles were detected in these 96 isolates, among which 57.3% were found to harbor bla TEM-1 , whereas 30.2%, 24.0%, 18.8% and 7.3% were carrying bla OXA-1 , bla CTX-M-15 , bla CTX-M-3 and bla PSE-1 genes, respectively. Moreover, 42 (43.8%) isolates co-carried 2 ESBLs-producing genes, and two (2.1%) isolates co-carried 3 genes. Furthermore, 24 (25.0%) ESBLs-producing isolates carried VIM and 10 (10.4%) carried KPC encoding genes that closely associated with carbapenems resistance. Eighty-eight isolates harbored transposons ranging from 4.2% for Tn903 to 76.0% for Tn21. Out of the 88 Salmonella that harbored transposons, 25%, 22.7%, 23.9%, 10.2% and 1.1% of isolates were found to carry 2, 3, 4, 5 and 6 transposons, respectively. The minimum inhibitory concentration (MIC) values for cephalosporins (ceftriaxone, cefoperazone and cefoxitin) to ESBLs-producing isolates were from 4 to 1024μg/mL, for nalidixic acid were from 64 to 512μg/mL, for fluoroquinolones (ciprofloxacin, levofloxacin and gatifloxacin) were from 4 to 256μg/mL. Twenty-nine virulence genes were detected in the 96 ESBLs-producing isolates with 2.1% harbored spvR (lowest) and 90.6% harbored marT and steB (highest). All isolates carried at least one

  20. Toward Molecular Level of the “Salmonella-Victim” Ecology, Genetics, and Evolution

    PubMed Central

    Rumyantsev, S.N.

    2004-01-01

    Bacteria of the Salmonella genus are polypathogenic agents that can affect both men and animals, causing devastating and fatal illness. Despite considerable immunological, epidemiological, and genetic efforts, and increased understanding of how the Salmonella infection develops, many key questions concerning Salmonella infection remain unanswered. Salmonella can be carried as harmless commensals in some sectors of the population. In some individuals, however, the same microbes cause illness while others display immunity to primary Salmonella infection. Nothing is known about the molecular base of the Salmonella pathogenicity. Even the ability of Salmonella to destroy the victims cells has been the subject of century-long discussions. In this article, some key findings concerning ecology, molecular ecology, and cell level of the Salmonella infection genetics are summarized and interpreted from the viewpoint of evolutionary theory with certitude that this approach can help to decipher the undiscovered secrets of Salmonella infections epidemiology and pathogenesis, as well as the clinical course and severity, and to select ways for fighting against Salmonella. PMID:15105959

  1. Evaluation of YadC protein delivered by live attenuated Salmonella as a vaccine against plague.

    PubMed

    Sun, Wei; Olinzock, Joseph; Wang, Shifeng; Sanapala, Shilpa; Curtiss, Roy

    2014-03-01

    Yersinia pestis YadB and YadC are two new outer membrane proteins related to its pathogenicity. Here, codon-optimized yadC, yadC810 (aa 32-551), or yadBC antigen genes delivered by live attenuated Salmonella strains are evaluated in mice for induction of protective immune responses against Y. pestis CO92 through subcutaneous or intranasal challenge. Our findings indicate that mice immunized with Salmonella synthesizing YadC, YadC810, or YadBC develop significant serum IgG responses to purified recombinant YadC protein. For subcutaneous challenge (approximately 230 LD50 of Y. pestis CO92), mice immunized with Salmonella synthesizing YadC or YadC810 are afforded 50% protection, but no protection by immunization with the Salmonella strain synthesizing YadBC. None of these antigens provided protection against intranasal challenge (approximately 31 LD50 of Y. pestis CO92). In addition, subcutaneous immunization with purified YadC810 protein emulsified with alum adjuvant does not elicit a protective response against Y. pestis administered by either challenge route. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  2. Fate of Salmonella Typhimurium in laboratory-scale drinking water biofilms.

    PubMed

    Schaefer, L M; Brözel, V S; Venter, S N

    2013-12-01

    Investigations were carried out to evaluate and quantify colonization of laboratory-scale drinking water biofilms by a chromosomally green fluorescent protein (gfp)-tagged strain of Salmonella Typhimurium. Gfp encodes the green fluorescent protein and thus allows in situ detection of undisturbed cells and is ideally suited for monitoring Salmonella in biofilms. The fate and persistence of non-typhoidal Salmonella in simulated drinking water biofilms was investigated. The ability of Salmonella to form biofilms in monoculture and the fate and persistence of Salmonella in a mixed aquatic biofilm was examined. In monoculture S. Typhimurium formed loosely structured biofilms. Salmonella colonized established multi-species drinking water biofilms within 24 hours, forming micro-colonies within the biofilm. S. Typhimurium was also released at high levels from the drinking water-associated biofilm into the water passing through the system. This indicated that Salmonella could enter into, survive and grow within, and be released from a drinking water biofilm. The ability of Salmonella to survive and persist in a drinking water biofilm, and be released at high levels into the flow for recolonization elsewhere, indicates the potential for a persistent health risk to consumers once a network becomes contaminated with this bacterium.

  3. Adhesion and splash dispersal of Salmonella enterica Typhimurium on tomato leaflets: effects of rdar morphotype and trichome density.

    PubMed

    Cevallos-Cevallos, Juan M; Gu, Ganyu; Danyluk, Michelle D; van Bruggen, Ariena H C

    2012-11-01

    Salmonella enterica strains with rdar (red dry and rough) and saw (smooth and white) morphotypes have previously been associated with tomato outbreaks but the dispersal mechanisms of these morphotypes are still poorly understood. In this study, Salmonella adhesion was distinguished from attachment by comparing different contact periods. Initial adhesion of rdar and saw morphotypes of Salmonella was compared in relation to tomato plants with different leaf trichome densities. Trichome densities were increased or reduced by treatment with jasmonic or salicylic acid, respectively. The overall effect of Salmonella morphotype and trichome density on splash dispersal was assessed in a rain simulator and correlated to cell hydrophobicity and initial adhesion. The presence of the rdar morphotype increased initial adhesion at high trichome densities but not at low trichome densities. Attachment of the rdar strain occurred after 30s contact time regardless of trichome density. Splash dispersal was slightly further for the saw morphotype than the rdar morphotype of S. enterica at all trichome densities. Salmonella cells of both morphotypes survived significantly better on the surface of high trichome density leaflets. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Salmonella Infections

    USDA-ARS?s Scientific Manuscript database

    Infections with bacteria of the genus Salmonella are responsible for both acute and chronic poultry diseases. These diseases cause economically significant losses for poultry producers in many nations and absorb large investments of public and private resources in testing and control efforts. Infect...

  5. Detection of Salmonella C1, D and V1 Antigens, by Coagglutination, in Blood Cultures from Patients with Salmonella Infections

    DTIC Science & Technology

    1980-01-01

    of this document is unlimited W.H. SCHROEDER CAPT MSC USN Accession For .+ -NTIS GT. •&I ~~~TL , -~:’.9 C••- •. 1 a • j : is ,,r iut - śC Just11...Salmonella selective medium (Kaye et al., 96528 or Sarmiento Building, Ayala Avenue, Makati, Metro Manila. Philippines. 1966) and the blood cultures (B...transported Vol. 11 No. 4 December 1980 441 SOUTHEAST ASIAN J . TRoP. MED. PUB. HLTH. to the NAMRU-2 laboratories and incubated >_ 2048. These antisera were

  6. Salmonella infection and carriage in reptiles in a zoological collection.

    PubMed

    Clancy, Meredith M; Davis, Meghan; Valitutto, Marc T; Nelson, Kenrad; Sykes, John M

    2016-05-01

    OBJECTIVE To identify important subspecies and serovars of Salmonella enterica in a captive reptile population and clinically relevant risk factors for and signs of illness in Salmonella-positive reptiles. DESIGN Retrospective cross-sectional study. ANIMALS 11 crocodilians (4 samples), 78 snakes (91 samples), 59 lizards (57 samples), and 34 chelonians (23 samples) at the Bronx Zoo from 2000 through 2012. PROCEDURES Data pertaining to various types of biological samples obtained from reptiles with positive Salmonella culture results and the reptiles themselves were analyzed to determine period prevalence of and risk factors for various Salmonella-related outcomes. RESULTS Serovar distribution differences were identified for sample type, reptile phylogenetic family, and reptile origin and health. Salmonella enterica subsp enterica was the most common subspecies in Salmonella cultures (78/175 [45%]), identified across all reptilian taxa. Salmonella enterica subsp diarizonae was also common (42/175 [24%]) and was recovered almost exclusively from snakes (n = 33), many of which had been clinically ill (17). Clinically ill reptiles provided 37% (64) of Salmonella cultures. Factors associated with an increased risk of illness in reptiles with a positive culture result were carnivorous diet and prior confiscation. Snakes had a higher risk of illness than other reptile groups, whereas lizards had a lower risk. Bony changes, dermatitis, and anorexia were the most common clinical signs. CONCLUSIONS AND CLINICAL RELEVANCE This study provided new information on Salmonella infection or carriage and associated clinical disease in reptiles. Associations identified between serovars or subspecies and reptile groups or clinical disease can guide management of Salmonella-positive captive reptiles.

  7. Modeling the survival kinetics of Salmonella in tree nuts for use in risk assessment.

    PubMed

    Santillana Farakos, Sofia M; Pouillot, Régis; Anderson, Nathan; Johnson, Rhoma; Son, Insook; Van Doren, Jane

    2016-06-16

    Salmonella has been shown to survive in tree nuts over long periods of time. This survival capacity and its variability are key elements for risk assessment of Salmonella in tree nuts. The aim of this study was to develop a mathematical model to predict survival of Salmonella in tree nuts at ambient storage temperatures that considers variability and uncertainty separately and can easily be incorporated into a risk assessment model. Data on Salmonella survival on raw almonds, pecans, pistachios and walnuts were collected from the peer reviewed literature. The Weibull model was chosen as the baseline model and various fixed effect and mixed effect models were fit to the data. The best model identified through statistical analysis testing was then used to develop a hierarchical Bayesian model. Salmonella in tree nuts showed slow declines at temperatures ranging from 21°C to 24°C. A high degree of variability in survival was observed across tree nut studies reported in the literature. Statistical analysis results indicated that the best applicable model was a mixed effect model that included a fixed and random variation of δ per tree nut (which is the time it takes for the first log10 reduction) and a fixed variation of ρ per tree nut (parameter which defines the shape of the curve). Higher estimated survival rates (δ) were obtained for Salmonella on pistachios, followed in decreasing order by pecans, almonds and walnuts. The posterior distributions obtained from Bayesian inference were used to estimate the variability in the log10 decrease levels in survival for each tree nut, and the uncertainty of these estimates. These modeled uncertainty and variability distributions of the estimates can be used to obtain a complete exposure assessment of Salmonella in tree nuts when including time-temperature parameters for storage and consumption data. The statistical approach presented in this study may be applied to any studies that aim to develop predictive models to be

  8. [Salmonella spp. strains resistant to drugs].

    PubMed

    Białucha, Agata; Kozuszko, Sylwia; Gospodarek, Eugenia

    2010-01-01

    The aim of the study was retrospective analysis of Salmonella spp. strains isolated from patients of State Infectious Diseases Observatory Hospital of T. Browicz in Bydgoszcz (SZAK) and University of dr. A. Jurasz in Bydgoszcz (SU CM UMK) in 2006-2009. The percentages of Salmonella spp. strains resistant to at least one drug were: 19,0% in 2006, 12,5% in 2007, 50,6% in 2008 and 43,8% in the first half of 2009 year. The highest number of Salmonella spp. strains resistant to drugs were isolated from stool (96,7%) and from patients of SZAK (83,3%). Among all isolated Salmonella spp. strains resistant to drugs the highest percentage were S. enterica serovar Enteritidis (56,7%). Among S. enterica bacilli predominated resitant phenotypes to ampicillin, amoxicillin, chloramphenicol and nalidixic acid. The increasing number of strains resistant to ciprofloxacin (0,0 - 26,7%) and high percentage of strains resistant to nalidixic acid (97,3%) were noted. Decreasing resistance to chloramphenicol was observed in our study (54,5 - 14,3%).

  9. Presence of Salmonella Enteritidis and Salmonella Gallinarum in commercial laying hens diagnosed with Fowl Typhoid Disease in Colombia

    USDA-ARS?s Scientific Manuscript database

    : A severe outbreak of salmonellosis in commercial brown table egg layers first occurred in Colombia in 2006. From 2008 to 2012, 35 samples collected from commercial layers farms in the states of Cundinamarca, Santander, Bolivar and San Andres, were positive to Salmonella enterica. Salmonella (S) wa...

  10. Application of Fourier transform infrared spectroscopy and chemometrics for differentiation of Salmonella enterica serovar Enteritidis phage types.

    PubMed

    Preisner, Ornella; Guiomar, Raquel; Machado, Jorge; Menezes, José Cardoso; Lopes, João Almeida

    2010-06-01

    Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques were used to discriminate five closely related Salmonella enterica serotype Enteritidis phage types, phage type 1 (PT1), PT1b, PT4b, PT6, and PT6a. Intact cells and outer membrane protein (OMP) extracts from bacterial cell membranes were subjected to FT-IR analysis in transmittance mode. Spectra were collected over a wavenumber range from 4,000 to 600 cm(-1). Partial least-squares discriminant analysis (PLS-DA) was used to develop calibration models based on preprocessed FT-IR spectra. The analysis based on OMP extracts provided greater separation between the Salmonella Enteritidis PT1-PT1b, PT4b, and PT6-PT6a groups than the intact cell analysis. When these three phage type groups were considered, the method based on OMP extract FT-IR spectra was 100% accurate. Moreover, complementary local models that considered only the PT1-PT1b and PT6-PT6a groups were developed, and the level of discrimination increased. PT1 and PT1b isolates were differentiated successfully with the local model using the entire OMP extract spectrum (98.3% correct predictions), whereas the accuracy of discrimination between PT6 and PT6a isolates was 86.0%. Isolates belonging to different phage types (PT19, PT20, and PT21) were used with the model to test its robustness. For the first time it was demonstrated that FT-IR analysis of OMP extracts can be used for construction of robust models that allow fast and accurate discrimination of different Salmonella Enteritidis phage types.

  11. Salmonellae Associated with Further-processed Turkey Products1

    PubMed Central

    Bryan, Frank L.; Ayres, John C.; Kraft, Allen A.

    1968-01-01

    “Further-processed” turkey products, prepared from chilled, eviscerated, and thawed carcasses at two commercial turkey-processing plants, were evaluated, for the presence of salmonellae. These organisms were isolated from swab samples from 12% of chilled, eviscerated turkey carcasses, 27% of finished products, and 24% of processing equipment. The same serotypes as those found throughout a plant on any one visit were recovered from 31% of rinse-samples taken from hands and gloves of processing personnel. Salmonellae were found in samples taken on 37 of 48 visits; a greater number of recoveries were made on days when freshly killed turkeys were processed (87%) than when frozen-defrosted carcasses were processed (59%). The predominant serotype isolated from meat and environment usually changed from visit to visit. Salmonella sandiego and Salmonella anatum were the most frequent among 23 serotypes recovered. Most of the isolated serotypes are commonly associated with turkeys and have been incriminated as causative agents of human salmonellosis. The implication is that further-processed turkey products, if inadequately cooked by the consumer and if improperly refrigerated between the time of manufacture and consumption, could directly transmit salmonellae. These same products might also contaminate other foods by introducing salmonellae into food-preparation areas. PMID:5688832

  12. Efficacy of disinfectants and detergents intended for a pig farm environment where Salmonella is present.

    PubMed

    Gosling, Rebecca J; Mawhinney, Ian; Vaughan, Kelly; Davies, Robert H; Smith, Richard P

    2017-05-01

    Disinfection is a useful component of disease control, although products and chemical groups vary in their activity against different pathogens. This study investigated the ability of fifteen disinfectants to eliminate pig-associated Salmonella. Active compounds of products included chlorocresol, glutaraldehyde/formaldehyde, glutaraldehyde/quaternary ammonium compounds (QAC), iodine, peracetic acid and potassium peroxomonosulphate. Six detergents were also tested for their ability to dislodge faecal material, and interactions with specific disinfectants. Eight serovars were screened against all products using dilution tests and a monophasic Salmonella Typhimurium strain was selected for further testing. The disinfectants were tested using models to replicate boot dip (faecal suspension) and animal housing (surface contamination) disinfection respectively at the Department for Environment, Food and Rural Affairs Approved Disinfectant General Orders (GO) concentration, half GO and twice GO. Stability over time and ability to eliminate Salmonella in biofilm was also assessed. The most effective products were then field tested. Most products at GO concentration eliminated Salmonella in the faecal suspension model. One glutaraldehyde/QAC and one glutaraldehyde/formaldehyde-based product at GO concentration eliminated Salmonella in the surface contamination model. Chlorocresol-based products were more stable in the faecal suspension model. One chlorocresol and the glutaraldehyde/formaldehyde-based product were most successful in eliminating Salmonella from biofilms. All products tested on farm reduced bacterial log counts; the glutaraldehyde/QAC based product produced the greatest reduction. The type of product and the application concentration can impact on efficacy of farm disinfection; therefore, clearer guidance is needed to ensure the appropriate programmes are used for specific environments. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. The effect of feeding diets containing avoparcin on the excretion of salmonellas by chickens experimentally infected with natural sources of salmonella organisms.

    PubMed Central

    Barrow, P. A.; Smith, H. W.; Tucker, J. F.

    1984-01-01

    Chickens were readily infected with salmonella organisms when fed diets containing unsterilized bone-meal or provided with drinking water containing a suspension of natural salmonella infected chicken faeces. When fed diets containing avoparcin at concentrations of 10 or 100 mg/kg chickens infected in these ways excreted larger numbers of salmonellas for longer periods than did chickens fed a nonmedicated diet. PMID:6512249

  14. Risk assessment of Salmonella in Danish meatballs produced in the catering sector.

    PubMed

    Møller, Cleide O de A; Nauta, Maarten J; Schaffner, Donald W; Dalgaard, Paw; Christensen, Bjarke B; Hansen, Tina B

    2015-03-02

    A modular process risk model approach was used to assess health risks associated with Salmonella spp. after consumption of the Danish meatball product (frikadeller) produced with fresh pork in a catering unit. Meatball production and consumption were described as a series of processes (modules), starting from 1.3kg meat pieces through conversion to 70g meatballs, followed by a dose response model to assess the risk of illness from consumption of these meatballs. Changes in bacterial prevalence, concentration, and unit size were modelled within each module. The risk assessment was built using observational data and models that were specific for Salmonella spp. in meatballs produced in the catering sector. Danish meatballs are often pan-fried followed by baking in an oven before consumption, in order to reach the core temperature of 75°C recommended by the Danish Food Safety Authority. However, in practice this terminal heat treatment in the oven may be accidentally omitted. Eleven production scenarios were evaluated with the model, to test the impact of heat treatments and cooling rates at different room temperatures. The risk estimates revealed that a process comprising heat treatment of meatballs to core temperatures higher than 70°C, and subsequent holding at room temperatures lower than 20°C, for no longer than 3.5h, were very effective in Salmonella control. The current Danish Food Safety Authority recommendation of cooking to an internal temperature of 75°C is conservative, at least with respect to Salmonella risk. Survival and growth of Salmonella during cooling of meatballs not heat treated in oven had a significant impact on the risk estimates, and therefore, cooling should be considered a critical step during meatball processing. Copyright © 2014. Published by Elsevier B.V.

  15. Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds.

    PubMed

    Byappanahalli, Muruleedhara N; Sawdey, Richard; Ishii, Satoshi; Shively, Dawn A; Ferguson, John A; Whitman, Richard L; Sadowsky, Michael J

    2009-02-01

    The bacterial pathogens Shigella, Salmonella, Campylobacter, and shiga toxin-producing E. coli (STEC) were recently found to be associated with Cladophora growing in southern Lake Michigan. Preliminary results indicated that the Salmonella strains associated with Cladophora were genetically identical to each other. However, because of the small sample size (n=37 isolates) and a lack of information on spatial-temporal relationships, the nature of the association between Cladophora and Salmonella remained speculative. In this study, we investigated the population structure and genetic relatedness of a large number of Cladophora-borne Salmonella isolates from Lake Michigan (n=133), as well as those isolated from stream and lake water (n=31), aquatic plants (n=8), and beach sands and sediments (n=8) from adjacent watersheds. Salmonella isolates were collected during 2005-2007 between May and August from Lake Michigan beachsheds in Wisconsin, Illinois, and Indiana. The genetic relatedness of Salmonella isolates was examined by using the horizontal, fluorophore-enhanced rep-PCR (HFERP) DNA fingerprinting technique. While the Salmonella isolates associated with Cladophora exhibited a high degree of genetic relatedness (>or=92% similarity), the isolates were not all genetically identical. Spatial and temporal relationships were evident in the populations examined, with tight clustering of the isolates both by year and location. These findings suggest that the relationship between Salmonella and Cladophora is likely casual and is related to input sources (e.g. wastewater, runoff, birds) and the predominant Salmonella genotype surviving in the environment during a given season. Our studies indicate that Cladophora is likely an important reservoir for Salmonella and other enteric bacterial pathogens in Lake Michigan beachsheds, which in turn may influence nearshore water quality.

  16. Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds

    USGS Publications Warehouse

    Byappanahalli, M.N.; Sawdey, R.; Ishii, S.; Shively, D.A.; Ferguson, J.A.; Whitman, R.L.; Sadowsky, M.J.

    2009-01-01

    The bacterial pathogens Shigella, Salmonella, Campylobacter, and shiga toxin-producing E. coli (STEC) were recently found to be associated with Cladophora growing in southern Lake Michigan. Preliminary results indicated that the Salmonella strains associated with Cladophora were genetically identical to each other. However, because of the small sample size (n = 37 isolates) and a lack of information on spatial-temporal relationships, the nature of the association between Cladophora and Salmonella remained speculative. In this study, we investigated the population structure and genetic relatedness of a large number of Cladophora-borne Salmonella isolates from Lake Michigan (n = 133), as well as those isolated from stream and lake water (n = 31), aquatic plants (n = 8), and beach sands and sediments (n = 8) from adjacent watersheds. Salmonella isolates were collected during 2005-2007 between May and August from Lake Michigan beachsheds in Wisconsin, Illinois, and Indiana. The genetic relatedness of Salmonella isolates was examined by using the horizontal, fluorophore-enhanced rep-PCR (HFERP) DNA fingerprinting technique. While the Salmonella isolates associated with Cladophora exhibited a high degree of genetic relatedness (???92% similarity), the isolates were not all genetically identical. Spatial and temporal relationships were evident in the populations examined, with tight clustering of the isolates both by year and location. These findings suggest that the relationship between Salmonella and Cladophora is likely casual and is related to input sources (e.g. wastewater, runoff, birds) and the predominant Salmonella genotype surviving in the environment during a given season. Our studies indicate that Cladophora is likely an important reservoir for Salmonella and other enteric bacterial pathogens in Lake Michigan beachsheds, which in turn may influence nearshore water quality. ?? 2008 Elsevier Ltd.

  17. Diffuse abdominal gallium-67 citrate uptake in salmonella infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garty, I.; Koren, A.

    1987-11-01

    Two pediatric patients with salmonella infections (one with typhoid fever and the second with salmonella C2 gastroenteritis), had a diffuse abdominal uptake of Ga-67 citrate. The possible explanation for this finding is discussed. Salmonella infection should be included as a cause in the differential diagnosis of diffuse accumulation of Ga-67 citrate.

  18. Prevention of Salmonella cross-contamination in an oilmeal manufacturing plant.

    PubMed

    Morita, T; Kitazawa, H; Iida, T; Kamata, S

    2006-08-01

    The mechanisms of Salmonella contamination in an oilmeal plant were investigated and the basic data were collected in order to achieve control of Salmonella in oilmeal. Salmonella was detected in all contamination vectors and environmental factors investigated, namely: operators, processing floor, dust in the air and rodents. In particular, high concentrations of Salmonella were detected on the processing floor of the manufacturing area, which has high oil content. Steam was the most effective disinfection method used for the processing floor, as the effects of heat sterilization and disinfection may work in tandem. In addition, restricting the movement of operators of the production chain remarkably reduced Salmonella contamination, even in areas of otherwise high contamination. Within the oilmeal plant, high Salmonella contamination rates for the processing floor represent the greatest risk of contamination of oilmeal via operators, dust in the air and rodents. Therefore, control of the processing floor is the most important means for reducing the oilmeal contamination rate. Specific Salmonella control methods for oilmeal plants have been established.

  19. Molecular detection assay of five Salmonella serotypes of public interest: Typhimurium, Enteritidis, Newport, Heidelberg, and Hadar.

    PubMed

    Bugarel, M; Tudor, A; Loneragan, G H; Nightingale, K K

    2017-03-01

    Foodborne illnesses due to Salmonella represent an important public-health concern worldwide. In the United States, a majority of Salmonella infections are associated with a small number of serotypes. Furthermore, some serotypes that are overrepresented among human disease are also associated with multi-drug resistance phenotypes. Rapid detection of serotypes of public-health concern might help reduce the burden of salmonellosis cases and limit exposure to multi-drug resistant Salmonella. We developed a two-step real-time PCR-based rapid method for the identification and detection of five Salmonella serotypes that are either overrepresented in human disease or frequently associated with multi-drug resistance, including serotypes Enteritidis, Typhimurium, Newport, Hadar, and Heidelberg. Two sets of four markers were developed to detect and differentiate the five serotypes. The first set of markers was developed as a screening step to detect the five serotypes; whereas, the second set was used to further distinguish serotypes Heidelberg, Newport and Hadar. The utilization of these markers on a two-step investigation strategy provides a diagnostic specificity of 97% for the detection of Typhimurium, Enteritidis, Heidelberg, Infantis, Newport and Hadar. The diagnostic sensitivity of the detection makers is >96%. The availability of this two-step rapid method will facilitate specific detection of Salmonella serotypes that contribute to a significant proportion of human disease and carry antimicrobial resistance. Published by Elsevier B.V.

  20. Recombinant Salmonella Bacteria Vectoring HIV/AIDS Vaccines

    PubMed Central

    Chin’ombe, Nyasha; Ruhanya, Vurayai

    2013-01-01

    HIV/AIDS is an important public health problem globally. An affordable, easy-to-deliver and protective HIV vaccine is therefore required to curb the pandemic from spreading further. Recombinant Salmonella bacteria can be harnessed to vector HIV antigens or DNA vaccines to the immune system for induction of specific protective immunity. These are capable of activating the innate, humoral and cellular immune responses at both mucosal and systemic compartments. Several studies have already demonstrated the utility of live recombinant Salmonella in delivering expressed foreign antigens as well as DNA vaccines to the host immune system. This review gives an overview of the studies in which recombinant Salmonella bacteria were used to vector HIV/AIDS antigens and DNA vaccines. Most of the recombinant Salmonella-based HIV/AIDS vaccines developed so far have only been tested in animals (mainly mice) and are yet to reach human trials. PMID:24478808

  1. The occurrence of Salmonella in airline meals.

    PubMed

    Hatakka, M; Asplund, K

    1993-01-01

    The occurrence of Salmonella in airline meals was studied in 1989-1992. Samples were collected from flight kitchens in 29 countries. The material consisted of 400 cold dishes and 1,288 hot dishes as well as salads, cheese plates and deserts. Total number of samples was 2211. Salmonella spp. were isolated from 6 samples; 1 contaminated sample was a cold dish prepared in Bangkok, 1 was a hot dish prepared in Mombasa and the remaining 4 contaminated samples were hot dishes prepared within one week in Beijing. The isolated serotypes were S. ohio, S. manchester and S. braenderup. The contaminated cold dish prepared by a flight kitchen in Bangkok was found to be connected with a Salmonella outbreak which occurred in Finland in 1990. Cold airline dishes containing food of animal origin seems to be more risky as a source of Salmonella infections among airline passengers.

  2. Prevalence of Virulence Genes in Extended-Spectrum β-lactamases (ESBLs)-Producing Salmonella in Retail Raw Chicken in China.

    PubMed

    Qiao, Jing; Alali, Walid Q; Liu, Jiangshan; Wang, Yaping; Chen, Sheng; Cui, Shenghui; Yang, Baowei

    2018-04-01

    Extended-spectrum β-lactamases (ESBLs)-producing Salmonella is a tremendous hazard to food safety and public health. The objective of this study was to determine the prevalence of 30 virulence genes (avrA, sipA, sseC, marT, rhuM, siiE, pipA, pipD, envR, gogB, gtgA, sodC1, sseI, irsA, sopE2, spvC, rck, spvR, fhuA, msgA, pagK, srfj, stkc, fimA, lpfD, pefA, stcC, steB, stjB, and tcfA) in 156 ESBLs-producing Salmonella isolates that belonged to 21 serotypes. These isolates were recovered from retail raw chicken samples collected from 5 provinces and 2 national cities in China between 2007 and 2012. The results indicated that 154 (98.7%) ESBLs-producing Salmonella isolates carried at least 1 virulence gene, 138 (88.5%) simultaneously carried at least 5 virulence genes, 107 (68.6%) carried 10 or more, and 20 (12.8%) carried 15 or more virulence genes. The most frequently detected virulence genes were marT (n = 127, 81.4%), siiE (n = 126, 80.8%), msgA (n = 121, 77.6%), and sipA (n = 121, 77.6%). Significant difference was identified between detection percentages of virulence genes of rhuM, pipD, envR, sopE2, pagK, lpfD, steB, and stjB in S. Indiana, S. Thompson, S. Enteritidis, S. Typhimurium, S. Shubra, S. Edinburg, and S. Agona isolates. Distribution of virulence genes were significantly influenced by sampling districts (P < 0.01), especially for sodC1 and pipD, and then were msgA and sopE2. The heatmap showed the frequencies of virulence genes in ESBLs-producing isolates from retail chickens in southern, central, and northern regions of China were completely different from each other. Based on our findings, ESBLs-producing Salmonella of retail chicken origin were common carriers of multiple virulence genes and were regionally distributed. © 2018 Institute of Food Technologists®.

  3. Salmonella infections

    USDA-ARS?s Scientific Manuscript database

    Infections of poultry with bacteria of the genus Salmonella can cause clinical disease, but are of greater current concern as agents of food-borne transmission of illness to humans. However, two nonmotile organisms, S. Pullorum and S. Gallinarum, are host-specific for avian species. Pullorum disease...

  4. Nutritional strategies to combat Salmonella in mono-gastric food animal production.

    PubMed

    Berge, A C; Wierup, M

    2012-04-01

    Nutritional strategies to minimize Salmonella in food animal production are one of the key components in producing safer food. The current European approach is to use a farm-to-fork strategy, where each sector must implement measures to minimize and reduce Salmonella contamination. In the pre-harvest phase, this means that all available tools need to be used such as implementation of biosecurity measures, control of Salmonella infections in animals at the farm as well as in transport and trade, optimal housing and management including cleaning, disinfection procedures as well as efforts to achieve Salmonella-free feed production. This paper describes some nutritional strategies that could be used in farm control programmes in the major mono-gastric food production animals: poultry and pigs. Initially, it is important to prevent the introduction of Salmonella onto the farm through Salmonella-contaminated feed and this risk is reduced through heat treatment and the use of organic acids and their salts and formaldehyde. Microbiological sampling and monitoring for Salmonella in the feed mills is required to minimize the introduction of Salmonella via feed onto the farm. In addition, feed withdrawal may create a stressful situation in animals, resulting in an increase in Salmonella shedding. Physical feed characteristics such as coarse-ground meal to pigs can delay gastric emptying, thereby increasing the acidity of the gut and thus reducing the possible prevalence of Salmonella. Coarse-ground grains and access to litter have also been shown to decrease Salmonella shedding in poultry. The feed can also modify the gastro-intestinal tract microflora and influence the immune system, which can minimize Salmonella colonization and shedding. Feed additives, such as organic acids, short- and medium-chain fatty acids, probiotics, including competitive exclusion cultures, prebiotics and certain specific carbohydrates, such as mannan-based compounds, egg proteins, essential oils

  5. Decrease in the prevalence of extended-spectrum cephalosporin-resistant Salmonella following cessation of ceftiofur use by the Japanese poultry industry.

    PubMed

    Shigemura, Hiroaki; Matsui, Mari; Sekizuka, Tsuyoshi; Onozuka, Daisuke; Noda, Tamie; Yamashita, Akifumi; Kuroda, Makoto; Suzuki, Satowa; Kimura, Hirokazu; Fujimoto, Shuji; Oishi, Kazunori; Sera, Nobuyuki; Inoshima, Yasuo; Murakami, Koichi

    2018-06-02

    Extended-spectrum cephalosporin (ESC)-resistant Salmonella in chicken meat is a significant food safety concern. We previously reported that the prevalence of ESC-resistant Salmonella in chicken meat, giblets, and processed chicken (chicken meat products) increased in Japan between 2005 and 2010, with 27.9% (17/61) of Salmonella isolated from chicken meat products in 2010 showing resistance to ESC. The aims of the present study were to clarify trends in the prevalence of ESC-resistant Salmonella in chicken meat products in Japan between 2011 and 2015, and to determine the genetic profiles of bla-harboring plasmids, including replicon types, using next-generation sequencing. Our results showed that the prevalence of ESC-resistant Salmonella, mainly consisting of AmpC β-lactamase CMY-2-producing isolates, in chicken meat products had increased to 45.5% (10/22) by 2011. However, following the voluntary cessation of ceftiofur use by the Japanese poultry industry in 2012, the prevalence of ESC-resistant Salmonella steadily decreased each year, to 29.2% (7/24), 18.2% (4/22), 10.5% (2/19), and 10.5% (2/19) in 2012, 2013, 2014, and 2015, respectively. Furthermore, no AmpC β-lactamase CMY-2-producing isolates were identified in 2014 and 2015. However, the prevalence of Salmonella enterica subspecies enterica serovar Manhattan isolates harboring a bla TEM-52 -carrying IncX1 plasmid remained steady even after the cessation of ceftiofur use. Therefore, continuous monitoring of ESC resistance amongst Salmonella isolates from chicken meat products is required for food safety. Copyright © 2018. Published by Elsevier B.V.

  6. Samsung Salmonella Detection Kit. AOAC Performance Tested Method(SM) 021203.

    PubMed

    Li, Jun; Cheung, Win Den; Opdyke, Jason; Harvey, John; Chong, Songchun; Moon, Cheol Gon

    2012-01-01

    Salmonella, one of the most common causes of foodborne illness, is a significant public health concern worldwide. There is a need in the food industry for methods that are simple, rapid, and sensitive for the detection of foodborne pathogens. In this study, the Samsung Salmonella Detection Kit, a real-time PCR assay for the detection of Salmonella, was evaluated according to the current AOAC guidelines. The validation consisted of lot-to-lot consistency, stability, robustness, and inclusivity/exclusivity studies, as well as a method comparison of 10 different food matrixes. In the validation, the Samsung Salmonella Detection Kit was used in conjunction with the Applied Biosystems StepOnePlus PCR system and the Samsung Food Testing Software for the detection of Salmonella species. The performance of the assays was compared to the U.S. Department of Agriculture/Food Safety and Inspection Service-Microbiology Laboratory Guidebook (USDA/FSIS-MLG) 4.05: Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg, and Catfish and the and U.S. Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Chapter 5 Salmonella reference methods. The validation was conducted using an unpaired study design for detection of Salmonella spp. in raw ground beef, raw pork, raw ground pork, raw chicken wings, raw salmon, alfalfa sprouts, pasteurized orange juice, peanut butter, pasteurized whole milk, and shell eggs. The Samsung Salmonella Detection Kit demonstrated lot-to-lot consistency among three independent lots as well as ruggedness with minor modifications to changes in enrichment incubation time, enrichment incubation temperature, and DNA sample volume for PCR reaction. Stability was observed for 13 months at -20 degrees C and 3 months at 5 degrees C. For the inclusivity/exclusivity study, the Samsung Salmonella Detection Kit correctly identified 147 Salmonella species isolates out of 147 isolates tested from each of three different enrichment

  7. Physiology, pathogenicity and immunogenicity of live, attenuated Salmonella enterica serovar Enteritidis mutants in chicks.

    PubMed

    Si, Wei; Wang, Xiumei; Liu, Huifang; Yu, Shenye; Li, Zhaoli; Chen, Liping; Zhang, Wanjiang; Liu, Siguo

    2015-01-01

    To construct a novel live, attenuated Salmonella vaccine, the lon, cpxR and cpdB genes were deleted from a wild-type Salmonella enterica serovar Enteritidis-6 (SM-6) strain using the phage λ Red homologous recombination system, resulting in SM-△CpxR, SM-△C/Lon and SM-△C/L/CpdB. The growth curves of strain SM-△C/Lon grew more rapidly than the other strains and had OD 600 values higher than the other strains starting at the 4 h time point. The growth curves of strain SM-△C/L/CpdB were relatively flat. The colonization time of SM-△C/L/CpdB is about 8-10 days. Deleting the lon/cpxR/cpdB (SM-6) genes resulted in an approximate 10(3)-fold attenuation in virulence assessed by the analysis of the LD50 of specific pathogen-free (SPF) chicks. This result indicated that the deletion of the lon, cpxR and cpdB genes induced significant virulence attenuation. The protective effects of SM-△C/L/CpdB vaccination in SPF chicks against 5 × 10(9) colony forming units (CFU) of S. Enteritidis were resulted from the induction of an effective immune response. These findings demonstrate the potential of mutant SM-△C/L/CpdB to be used as an effective vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Salmonella contamination risk points in broiler carcasses during slaughter line processing.

    PubMed

    Rivera-Pérez, Walter; Barquero-Calvo, Elías; Zamora-Sanabria, Rebeca

    2014-12-01

    Salmonella is one of the foodborne pathogens most commonly associated with poultry products. The aim of this work was to identify and analyze key sampling points creating risk of Salmonella contamination in a chicken processing plant in Costa Rica and perform a salmonellosis risk analysis. Accordingly, the following examinations were performed: (i) qualitative testing (presence or absence of Salmonella), (ii) quantitative testing (Salmonella CFU counts), and (iii) salmonellosis risk analysis, assuming consumption of contaminated meat from the processing plant selected. Salmonella was isolated in 26% of the carcasses selected, indicating 60% positive in the flocks sampled. The highest Salmonella counts were observed after bleeding (6.1 log CFU per carcass), followed by a gradual decrease during the subsequent control steps. An increase in the percentage of contamination (10 to 40%) was observed during evisceration and spray washing (after evisceration), with Salmonella counts increasing from 3.9 to 5.1 log CFU per carcass. According to the prevalence of Salmonella -contaminated carcasses released to trade (20%), we estimated a risk of 272 cases of salmonellosis per year as a result of the consumption of contaminated chicken. Our study suggests that the processes of evisceration and spray washing represent a risk of Salmonella cross-contamination and/ or recontamination in broilers during slaughter line processing.

  9. Detection of viable Salmonella in ice cream by TaqMan real-time polymerase chain reaction assay combining propidium monoazide.

    PubMed

    Wang, Yuexia; Yang, Ming; Liu, Shuchun; Chen, Wanyi; Suo, Biao

    2015-09-01

    Real-time polymerase chain reaction (PCR) allows rapid detection of Salmonella in frozen dairy products, but it might cause a false positive detection result because it might amplify DNA from dead target cells as well. In this study, Salmonella-free frozen ice cream was initially inoculated with heat-killed Salmonella Typhimurium cells and stored at -18°C. Bacterial DNA extracted from the sample was amplified using TaqMan probe-based real-time PCR targeting the invA gene. Our results indicated that DNA from the dead cells remained stable in frozen ice cream for at least 20 days, and could produce fluorescence signal for real-time PCR as well. To overcome this limitation, propidium monoazide (PMA) was combined with real-time PCR. PMA treatment can effectively prevent PCR amplification from heat-killed Salmonella cells in frozen ice cream. The PMA real-time PCR assay can selectively detect viable Salmonella at as low as 10 3  CFU/mL. Combining 18 hours of pre-enrichment with the assay allows for the detection of viable Salmonella at 10 0  CFU/mL and avoiding the false-positive result of dead cells. The PMA real-time PCR assay provides an alternative specifically for detection of viable Salmonella in ice cream. However, when the PMA real-time PCR assay was evaluated in ice cream subjected to frozen storage, it obviously underestimated the contamination situation of viable Salmonella, which might lead to a false negative result. According to this result, the use of enrichment prior to PMA real-time PCR analysis remains as the more appropriate approach. Copyright © 2015. Published by Elsevier B.V.

  10. A Novel Chromogenic Ester Agar Medium for Detection of Salmonellae

    PubMed Central

    Cooke, Venitia M.; Miles, R. J.; Price, R. G.; Richardson, A. C.

    1999-01-01

    A novel agar medium, chromogenic Salmonella esterase (CSE) agar, for the differentiation of salmonellae is described. The agar contains peptones and nutrient extracts together with the following (grams per liter unless otherwise specified): 4-[2-(4-octanoyloxy-3,5-dimethoxyphenyl)-vinyl]-quinolinium-1-(propan-3-yl carboxylic acid) bromide (SLPA-octanoate; bromide form), 0.3223; lactose, 14.65; trisodium citrate dihydrate, 0.5; Tween 20, 3.0; ethyl 4-dimethylaminobenzoate, 0.035% (wt/vol), novobiocin, 70 mg liter−1. The key component of the medium is SLPA-octanoate, a newly synthesized ester formed from a C8 fatty acid and a phenolic chromophore. In CSE agar, the ester is hydrolyzed by Salmonella spp. to yield a brightly colored phenol which remains tightly bound within colonies. After 24 h of incubation at 37 or 42°C, colonies of typical Salmonella spp. were burgundy colored on a transparent yellow background, whereas non-Salmonella spp. were white, cream, yellow or transparent. CSE agar was evaluated by using a panel of strains including a high proportion of Salmonella and non-Salmonella strains giving atypical reactions on other differential agars. The sensitivity (93.1%) of CSE agar for non-typhi salmonellae compared favorably with those of Rambach (82.8%), xylose-lysine-deoxycholate (XLD; 91.4%), Hektoen-enteric (89.7%), and SM ID (91.4%) agars. The specificity (93.9%) was also comparable to those of other Salmonella media (SM ID agar, 95.9%; Rambach agar, 91.8%; XLD agar, 91.8%; Hektoen-enteric agar, 87.8%). Strains of Citrobacter freundii and Proteus spp. giving false-positive reactions with other media gave a negative color reaction on CSE agar. CSE agar enabled the detection of >30 Salmonella serotypes, including agona, anatum, enteritidis, hadar, heidelberg, infantis, montevideo, thompson, typhimurium, and virchow, which accounted for 91.8% of the salmonella isolates recorded by the Public Health Laboratory Service (Colindale, London, England) for 1997

  11. Cross contamination of turkey carcasses by Salmonella species during defeathering.

    PubMed

    Nde, C W; McEvoy, J M; Sherwood, J S; Logue, C M

    2007-01-01

    Salmonella present on the feathers of live birds could be a source of contamination to carcass skin during defeathering. In this study, the possibility of transfer of Salmonella from the feathers of live turkeys to carcass tissue during the defeathering process at a commercial turkey processing plant was investigated. The contribution of scald water and the fingers of the picker machines to cross contamination were also examined. Over 4 visits, swab samples were collected from 174 randomly selected tagged birds before and after defeathering. Two swab samples from the fingers of the picker machines and a sample of scald water were also collected during each visit. Detection of Salmonella was carried out following standard cultural and identification methods. The DNA fingerprints obtained from pulsed field gel electrophoresis of Salmonella serotypes isolated before and after defeathering, from scald water, and from the fingers of the picker machines were compared to trace cross contamination routes. Salmonella prevalence was similar before and after defeathering during visits 2 and 3 and significantly increased after defeathering during visits 1 and 4. Over the 4 visits, all Salmonella subtypes obtained after defeathering were also isolated before defeathering. The results of this study suggest that Salmonella was transferred from the feathers to carcass skin during each visit. On each visit, the Salmonella subtypes isolated from the fingers of the picker machines were similar to subtypes isolated before and after defeathering, indicating that the fingers facilitate carcass cross contamination during defeathering. Salmonella isolated from scald water during visit 4 was related to isolates obtained before and after defeathering, suggesting that scald water is also a vehicle for cross contamination during defeathering. By using molecular subtyping, this study demonstrated the relationship between Salmonella present on the feathers of live turkeys and carcass skin after

  12. Structural characterization and biomedical properties of sulfated polysaccharide from the gladius of Sepioteuthis lessoniana (Lesson, 1831).

    PubMed

    Seedevi, Palaniappan; Moovendhan, Meivelu; Vairamani, Shanmugam; Shanmugam, Annian

    2016-04-01

    Sulfated polysaccharide was extracted from the internal shell (gladius) of Sepioteuthis lessoniana. The sulfated polysaccharide contained 61.3% of carbohydrate, 0.8% of protein, 28.2% of ash and 1.33% of moisture respectively. The elemental composition was analyzed using CHNS/O analyzer. The molecular weight of sulfated polysaccharide determined through PAGE was found to be as 66 kDa. Monosaccharides analysis revealed that sulfated polysaccharide was composed of rhamnose, galactose, xylose and glucose. The structural features of sulfated polysaccharide were analyzed by FT-IR and NMR spectroscopy. Further the sulfated polysaccharide was evaluated for its antibacterial activity against selected human clinical pathogens, namely Staphylococcus aureus, Klebsiella pneumoniae, Salmonella typhi, Vibrio cholerae, Klebsiella oxytoca, Escherichia coli, Salmonella paratyphi, Proteus mirabilis, Vibrio parahaemolyticus and Streptococcus pyogenes using agar well diffusion method. The polysaccharide has showed good antibacterial activity and MIC and MBC have also been evaluated. The anticancer activity was tested against HeLa cell line by MTT assay. The Cytotoxic Concentration (CC50) was observed as 700 μg/ml and the maximum anticancer activity of 62.89% was recorded at 200 μg/ml; whereas, the lowest of 9.87% was observed at 25 μg/ml. In conclusion, the sulfated polysaccharide is an alternate, non-toxic and cheap source of substance that showed good antibacterial and anticancer acitivity. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Case report of Salmonella cross-contamination in a food laboratory.

    PubMed

    Rasschaert, Geertrui; De Reu, K; Heyndrickx, M; Herman, L

    2016-03-10

    This paper describes a case of Salmonella cross-contamination in a food laboratory. In 2012, chocolate bars shipped from Belgium to the USA were prevented from entering the USA because a Salmonella Rissen strain had been isolated from one of the chocolate bars in a Belgian food laboratory. However, a retrospective study of the Salmonella isolates sent from the laboratory to the Belgian National Reference Laboratory for Salmonella revealed that 7 weeks prior, a Salmonella Rissen strain has been isolated from fish meal in the same food laboratory. The chocolate bars were not expected to be contaminated with Salmonella because the ingredients all tested negative during the production process. Furthermore, because Salmonella Rissen is only rarely isolated from food, it was hypothesized that the two Salmonella Rissen isolates belonged to the same strain and that the second isolation event in this laboratory was caused by cross-contamination. To confirm this hypothesis, both Salmonella Rissen isolates were fingerprinted using different molecular techniques. To evaluate the discriminatory power of the techniques used, 11 other Salmonella Rissen isolates from different origins were included in the comparison. Pulsed-field gel electrophoresis, repetitive element palindromic PCR and three random amplified polymorphic DNA PCR assays were used. Repetitive element palindromic PCR and random amplified polymorphic DNA PCR assays were insufficiently discriminatory, whereas pulsed-field gel electrophoresis using the combination of two restriction enzymes showed sufficient discrimination to confirm the hypothesis. Although cross-contamination in food laboratories are rarely reported, cross-contamination can always occur. Laboratories should therefore always be aware of the possibility of cross-contamination, especially when enrichment is used in the microbiological analysis. Furthermore, it is advised that results showing isolates of the same serotype isolated in a short time frame

  14. Fate of Salmonella throughout Production and Refrigerated Storage of Tahini.

    PubMed

    Zhang, Yangjunna; Keller, Susanne E; Grasso-Kelley, Elizabeth M

    2017-06-01

    Tahini, a low-moisture food that is made from sesame seeds, has been implicated in outbreaks of salmonellosis. In this study, the fate of Salmonella was determined through an entire process for the manufacture of tahini, including a 24-h seed soaking period before roasting, subsequent grinding, and storage at refrigeration temperature. Salmonella populations increased by more than 3 log CFU/g during a 24-h soaking period, reaching more than 7 log CFU/g. Survival of Salmonella during roasting at three temperatures, 95, 110, and 130°C, was assessed using seeds on which Salmonella was grown. Salmonella survival was impacted both by temperature and the water activity (a w ) at the beginning of the roasting period. When roasted at 130°C with a high initial a w (≥0.90) and starting Salmonella populations of ∼8.5 log CFU/g, populations quickly decreased below detection limits within the first 10 min. However, when the seeds were reduced to an a w of 0.45 before roasting at the same temperature, 3.5 log CFU/g remained on the seeds after 60 min. In subsequent storage studies, seeds were roasted at 130°C for 15 min before processing into tahini. For the storage studies, tahini was inoculated using two methods. The first method used seeds on which Salmonella was first grown before roasting. In the second method, Salmonella was inoculated into the tahini after manufacture. All tahini was stored for 119 days at 4°C. No change in Salmonella populations was recorded for tahini throughout the entire 119 days regardless of the inoculation method used. These combined results indicate the critical importance of a w during a roasting step during tahini manufacture. Salmonella that survive roasting will likely remain viable throughout the normal shelf life of tahini.

  15. Salmonella Serogroup C: Current Status of Vaccines and Why They Are Needed

    PubMed Central

    Fuche, Fabien J.; Sow, Ousmane; Simon, Raphael

    2016-01-01

    Nontyphoidal Salmonella (NTS; i.e., Salmonella enterica organisms that do not cause typhoid or paratyphoid) are responsible for 94 million infections and 155,000 deaths worldwide annually, 86% of which are estimated to be foodborne. Although more than 50 serogroups and 2,600 serovars have been described, not all Salmonella serovars cause disease in humans and animals. Efforts are being made to develop NTS vaccines, with most approaches eliciting protection against serovars Typhimurium and Enteritidis (serogroups B [O:4] and D [O:9], respectively), as they are widely considered the most prevalent. Here, we show that serogroup C (O:6,7, O:6,8, or O:8 epitopes) is the most common serogroup in the United States, and the prevalence of serovars from this serogroup has been increasing in Europe and the United States over the last decade. They are also the most commonly isolated serovars from healthy cattle and poultry, indicating the underlying importance of surveillance in animals. Four out of the 10 most lethal serovars in the United States are serogroup C, and reports from African countries suggest that strains within this serogroup are highly antibiotic resistant. Serogroup C consists of highly diverse organisms among which 37 serovars account for the majority of human cases, compared to 17 and 11 serovars for serogroups B and D, respectively. Despite these concerning data, no human vaccines targeting serogroup C NTS are available, and animal vaccines are in limited use. Here, we describe the underestimated burden represented by serogroup C NTS, as well as a discussion of vaccines that target these pathogens. PMID:27413069

  16. Evaluation of the broad-spectrum lytic capability of bacteriophage cocktails against various Salmonella serovars and their effects on weaned pigs infected with Salmonella Typhimurium.

    PubMed

    Seo, Byoung-Joo; Song, Eu-Tteum; Lee, Kichan; Kim, Jong-Won; Jeong, Chang-Gi; Moon, Sung-Hyun; Son, Jee Soo; Kang, Sang Hyeon; Cho, Ho-Seong; Jung, Byeong Yeal; Kim, Won-Il

    2018-06-06

    The broad-spectrum lytic capability of Salmonella bacteriophages against various Salmonella species was evaluated to determine their potential as an alternative for antibiotics, and the safety and preventive effects of the bacteriophages were assessed on mice and pigs. Four bacteriophage cocktails were prepared using 13 bacteriophages, and the lytic capability of the four bacteriophage cocktails was tested using Salmonella reference strains and field isolates. Bacteriophage cocktail C (SEP-1, SGP-1, STP-1, SS3eP-1, STP-2, SChP-1, SAP-1, SAP-2; ≥10 9 pfu/ml) showed the best lytic activity against the Salmonella reference strains (100% of 34) and field isolates (92.5% of 107). Fifty mice were then orally inoculated with bacteriophage cocktail C to determine the distribution of bacteriophages in various organs, blood and feces. The effects of bacteriophages on Salmonella infection in weaned pigs (n=15) were also evaluated through an experimental challenge with Salmonella Typhimurium after treatment with bacteriophage cocktail C. All mice exhibited distribution of the bacteriophages in all organs, blood and feces until 15 days post infection (dpi). After 35 dpi, bacteriophages were not detected in any of these specimens. As demonstrated in a pig challenge study, treatment with bacteriophage cocktail C reduced the level of Salmonella shedding in feces. The metagenomic analyses of these pig feces also revealed that bacteriophage treatment decreased the number of species of the Enterobacteriaceae family without significant disturbance to the normal fecal flora. This study showed that bacteriophages effectively controlled Salmonella in a pig challenge model and could be a good alternative for antibiotics to control Salmonella infection.

  17. Biofilm Formation and Morphotypes of Salmonella enterica subsp.arizonae Differs from Those of Other Salmonella enterica Subspecies in Isolates from Poultry Houses.

    PubMed

    Lamas, A; Fernandez-No, I C; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M

    2016-07-01

    Salmonella serovars are responsible for foodborne diseases around the world. The ability to form biofilms allows microorganisms to survive in the environment. In this study, 73 Salmonella strains, belonging to four different subspecies, were isolated from poultry houses and foodstuffs and tested. Biofilm formation was measured at four different temperatures and two nutrient concentrations. Morphotypes and cellulose production were evaluated at three different temperatures. The presence of several genes related to biofilm production was also examined. All strains and subspecies of Salmonella had the ability to form biofilms, and 46.57% of strains produced biofilms under all conditions tested. Biofilm formation was strain dependent and varied according to the conditions. This is the first study to analyze biofilm formation in a wide number of Salmonella enterica subsp. arizonae strains, and no direct relationship between the high prevalence of Salmonella enterica subsp. arizonae strains and their ability to form biofilm was established. Morphotypes and cellulose production varied as the temperature changed, with 20°C being the optimum temperature for expression of the red, dry, and rough morphotype and cellulose. Salmonella enterica subsp. arizonae, whose morphotype is poorly studied, only showed a smooth and white morphotype and lacked the csgD and gcpA genes that are implicated in biofilm production. Thus, Salmonella biofilm formation under different environmental conditions is a public health problem because it can survive and advance through the food chain to reach the consumer.

  18. Survey of Salmonella contamination in chicken layer farms in three Caribbean countries.

    PubMed

    Adesiyun, Abiodun; Webb, Lloyd; Musai, Lisa; Louison, Bowen; Joseph, George; Stewart-Johnson, Alva; Samlal, Sannandan; Rodrigo, Shelly

    2014-09-01

    This study was conducted to investigate the demography, management, and production practices on layer chicken farms in Trinidad and Tobago, Grenada, and St. Lucia and the frequency of risk factors for Salmonella infection. The frequency of isolation of Salmonella from the layer farm environment, eggs, feeds, hatchery, and imported day-old chicks was determined using standard methods. Of the eight risk factors (farm size, age group of layers, source of day-old chicks, vaccination, sanitation practices, biosecurity measures, presence of pests, and previous disease outbreaks) for Salmonella infection investigated, farm size was the only risk factor significantly associated (P = 0.031) with the prevalence of Salmonella; 77.8% of large farms were positive for this pathogen compared with 33.3 and 26.1% of medium and small farms, respectively. The overall isolation rate of Salmonella from 35 layer farms was 40.0%. Salmonella was isolated at a significantly higher rate (P < 0.05) from farm environments than from the cloacae. Only in Trinidad and Tobago did feeds (6.5% of samples) and pooled egg contents (12.5% of samples) yield Salmonella; however, all egg samples from hotels, hatcheries, and airports in this country were negative. Salmonella Anatum, Salmonella group C, and Salmonella Kentucky were the predominant serotypes in Trinidad and Tobago, Grenada, and St. Lucia, respectively. Although Salmonella infections were found in layer birds sampled, table eggs appear to pose minimal risk to consumers. However, the detection of Salmonella -contaminated farm environments and feeds cannot be ignored. Only 2.9% of the isolates belonged to Salmonella Enteritidis, a finding that may reflect the impact of changes in farm management and poultry production in the region.

  19. Negative regulatory loci coupling flagellin synthesis to flagellar assembly in Salmonella typhimurium.

    PubMed Central

    Gillen, K L; Hughes, K T

    1991-01-01

    The complex regulation of flagellin gene expression in Salmonella typhimurium was characterized in vivo by using lac transcriptional fusions to the two flagellin structural genes (fliC [H1] and fljB [H2]). Phase variation was measured as the rate of switching of flagellin gene expression. Switching frequencies varied from 1/500 per cell per generation to 1/10,000 per cell per generation depending on the particular insertion and the direction of switching. There is a 4- to 20-fold bias in favor of switching from the fljB(On) to the fljB(Off) orientation. Random Tn10dTc insertions were isolated which failed to express flagellin. While most of these insertions mapped to loci known to be required for flagellin expression, several new loci were identified. The presence of functional copies of all of the genes responsible for complete flagellar assembly, except the hook-associated proteins (flgK, flgL, and fliD gene products), were required for expression of the fliC or fljB flagellin genes. Two novel loci involved in negative regulation of fliC and fljB in fla mutant backgrounds were identified. One of these loci, designated the flgR locus, mapped to the flg operon at 23 min on the Salmonella linkage map. An flgR insertion mutation resulted in relief of repression of the fliC and fljB genes in all fla mutant backgrounds except for mutants in the positive regulatory loci (flhC, flhD, and fliA genes). PMID:1848842

  20. Acyl homoserine lactone changes the abundance of proteins and the levels of organic acids associated with stationary phase in Salmonella Enteritidis.

    PubMed

    de Almeida, Felipe Alves; Pimentel-Filho, Natan de Jesus; Carrijo, Lanna Clícia; Bento, Cláudia Braga Pereira; Baracat-Pereira, Maria Cristina; Pinto, Uelinton Manoel; de Oliveira, Leandro Licursi; Vanetti, Maria Cristina Dantas

    2017-01-01

    Quorum sensing (QS) is cell-cell communication mechanism mediated by signaling molecules known as autoinducers (AIs) that lead to differential gene expression. Salmonella is unable to synthesize the AI-1 acyl homoserine lactone (AHL), but is able to recognize AHLs produced by other microorganisms through SdiA protein. Our study aimed to evaluate the influence of AI-1 on the abundance of proteins and the levels of organic acids of Salmonella Enteritidis. The presence of N-dodecyl-homoserine lactone (C12-HSL) did not interfere on the growth or the total amount of extracted proteins of Salmonella. However, the abundance of the proteins PheT, HtpG, PtsI, Adi, TalB, PmgI (or GpmI), Eno, and PykF enhanced while the abundance of the proteins RplB, RplE, RpsB, Tsf, OmpA, OmpC, OmpD, and GapA decreased when Salmonella Enteritidis was anaerobically cultivated in the presence of C12-HSL. Additionally, the bacterium produced less succinic, lactic, and acetic acids in the presence of C12-HSL. However, the concentration of extracellular formic acid reached 20.46 mM after 24 h and was not detected when the growth was in the absence of AI-1. Considering the cultivation period for protein extraction, their abundance, process and function, as well as the levels of organic acids, we observed in cells cultivated in presence of C12-HSL a correlation with what is described in the literature as entry into the stationary phase of growth, mainly related to nitrogen and amino acid starvation and acid stress. Further studies are needed in order to determine the specific role of the differentially abundant proteins and extracellular organic acids secreted by Salmonella in the presence of quorum sensing signaling molecules. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. High resolution melting analysis for rapid mutation screening in gyrase and Topoisomerase IV genes in quinolone-resistant Salmonella enterica.

    PubMed

    Ngoi, Soo Tein; Thong, Kwai Lin

    2014-01-01

    The increased Salmonella resistance to quinolones and fluoroquinolones is a public health concern in the Southeast Asian region. The objective of this study is to develop a high resolution melt curve (HRM) assay to rapidly screen for mutations in quinolone-resistant determining region (QRDR) of gyrase and topoisomerase IV genes. DNA sequencing was performed on 62 Salmonella strains to identify mutations in the QRDR of gyrA, gyrB, parC, and parE genes. Mutations were detected in QRDR of gyrA (n = 52; S83F, S83Y, S83I, D87G, D87Y, and D87N) and parE (n = 1; M438I). Salmonella strains with mutations within QRDR of gyrA are generally more resistant to nalidixic acid (MIC 16 > 256 μg/mL). Mutations were uncommon within the QRDR of gyrB, parC, and parE genes. In the HRM assay, mutants can be distinguished from the wild-type strains based on the transition of melt curves, which is more prominent when the profiles are displayed in difference plot. In conclusion, HRM analysis allows for rapid screening for mutations at the QRDRs of gyrase and topoisomerase IV genes in Salmonella. This assay markedly reduced the sequencing effort involved in mutational studies of quinolone-resistance genes.

  2. High Resolution Melting Analysis for Rapid Mutation Screening in Gyrase and Topoisomerase IV Genes in Quinolone-Resistant Salmonella enterica

    PubMed Central

    Thong, Kwai Lin

    2014-01-01

    The increased Salmonella resistance to quinolones and fluoroquinolones is a public health concern in the Southeast Asian region. The objective of this study is to develop a high resolution melt curve (HRM) assay to rapidly screen for mutations in quinolone-resistant determining region (QRDR) of gyrase and topoisomerase IV genes. DNA sequencing was performed on 62 Salmonella strains to identify mutations in the QRDR of gyrA, gyrB, parC, and parE genes. Mutations were detected in QRDR of gyrA (n = 52; S83F, S83Y, S83I, D87G, D87Y, and D87N) and parE (n = 1; M438I). Salmonella strains with mutations within QRDR of gyrA are generally more resistant to nalidixic acid (MIC 16 > 256 μg/mL). Mutations were uncommon within the QRDR of gyrB, parC, and parE genes. In the HRM assay, mutants can be distinguished from the wild-type strains based on the transition of melt curves, which is more prominent when the profiles are displayed in difference plot. In conclusion, HRM analysis allows for rapid screening for mutations at the QRDRs of gyrase and topoisomerase IV genes in Salmonella. This assay markedly reduced the sequencing effort involved in mutational studies of quinolone-resistance genes. PMID:25371903

  3. Molecular typing of monophasic Salmonella 4,[5]:i:- strains isolated in Belgium (2008-2011).

    PubMed

    Boland, Cécile; Bertrand, Sophie; Mattheus, Wesley; Dierick, Katelijne; Wattiau, Pierre

    2014-01-31

    To assess the distribution of Salmonella 4,[5]:i:- subtypes in the Belgian food chain and compare it to the subtypes associated with human infections, a molecular assessment was initiated. Two hundred fifty-three Salmonella isolates serotyped as 4,[5]:i:- during the period 2008-2011 in Belgium and originating from animal productions, food or human clinical samples were analysed by a specific duplex PCR. One hundred ninety-four isolates (76.7%) fit the profile of a S. Typhimurium monophasic variant as defined by the European Food Safety Authority. The other isolates possessed but did not express the phase II flagellin gene (23.3%). Multiple Locus Variable Number of Tandem Repeats Analysis (MLVA) revealed many but closely related profiles in the fljB-negative S. Typhimurium monophasic variant isolates. Some MLVA types were associated with both human and animal isolates but no unique source of human contamination could be demonstrated. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Increased lymphocyte subpopulations and macrophages in the ovaries and oviducts of laying hens infected with Salmonella enterica serovar Enteritidis.

    PubMed

    Withanage, G S K; Sasai, K; Fukata, T; Miyamoto, T; Lillehoj, H S; Baba, E

    2003-12-01

    Salmonella enterica serovar Enteritidis (SE) is a causative agent for human food poisoning cases throughout the world. The ovaries and the oviducts of the laying hens are the major sites of SE colonization from which vertical transmission to eggs occurs. In this study, Salmonella-induced changes in T lymphocytes, B lymphocytes and macrophages in the ovaries and oviducts were assessed after primary and secondary experimental inoculations of laying hen with SE. Statistically significant increases in the numbers of T cells (both CD4+ and CD8+) and macrophages were observed 7 to 14 days after primary inoculation, followed by a peak in B-cell numbers from the 14th day post-primary inoculation onwards in the secretory areas of the oviducts. The peak in lymphocyte numbers immediately preceded a decline in the rate of SE recovery from the reproductive tract beginning at day 14. The correlation of decreased Salmonella recovery with elevated lymphocyte and macrophage numbers strongly suggests that local cell-mediated immunity is involved in controlling SE injection in the ovaries and oviducts.

  5. From Exit to Entry: Long-term Survival and Transmission of Salmonella

    PubMed Central

    Waldner, Landon L.; MacKenzie, Keith D.; Köster,, Wolfgang; White, Aaron P.

    2012-01-01

    Salmonella spp. are a leading cause of human infectious disease worldwide and pose a serious health concern. While we have an improving understanding of pathogenesis and the host-pathogen interactions underlying the infection process, comparatively little is known about the survival of pathogenic Salmonella outside their hosts. This review focuses on three areas: (1) in vitro evidence that Salmonella spp. can survive for long periods of time under harsh conditions; (2) observations and conclusions about Salmonella persistence obtained from human outbreaks; and (3) new information revealed by genomic- and population-based studies of Salmonella and related enteric pathogens. We highlight the mechanisms of Salmonella persistence and transmission as an essential part of their lifecycle and a prerequisite for their evolutionary success as human pathogens. PMID:25436767

  6. A questionnaire study of associations between potential risk factors and salmonella status in Swedish dairy herds.

    PubMed

    Ågren, Estelle C C; Frössling, Jenny; Wahlström, Helene; Emanuelson, Ulf; Sternberg Lewerin, Susanna

    2017-08-01

    . The study confirms the importance of local transmission routes for salmonella, but does not identify specific components in this local spread. Therefore, it supports the use of a broad biosecurity approach in the prevention of salmonella. In Öland, some potential risk factors are more common than in other parts of Sweden. Theoretically these could contribute to the spread of salmonella, but this was not confirmed in the present study. The study also highlights the difficulty in identifying associations between potential risk factors and infections with low prevalence and large regional variation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Comparison of Cultivation and PCR-Hybridization for Detection of Salmonella in Porcine Fecal and Water Samples†

    PubMed Central

    Feder, Ingrid; Nietfeld, Jerome C.; Galland, John; Yeary, Teresa; Sargeant, Jan M.; Oberst, Richard; Tamplin, Mark L.; Luchansky, John B.

    2001-01-01

    A total of 150 fecal and water samples from four swine farms were tested for the presence of Salmonella enterica using different enrichment techniques as follows: (i) 92 fecal samples from nursery and farrowing barns at three swine farms were preenriched overnight in tryptic soy broth (TSB) at 37°C followed by overnight enrichment in Rappaport-Vassiliadis 10 broth (RV10) at 42°C; (ii) 24 water samples from the third farm were preenriched overnight in 3MC broth at 37°C followed by overnight enrichment in RV10 at 42°C; and (iii) 34 fecal samples from a fourth farm, a finishing farm, were enriched overnight in RV10 at 42°C with no additional enrichment. Following each of the enrichment techniques, samples were subcultured onto modified semisolid Rappaport-Vassiliadis (MSRV) agar prior to transfer to Hektoen Enteric agar plates for the recovery of viable Salmonella bacteria. Presumptive Salmonella isolates were biochemically and serologically confirmed. For the PCR detection of Salmonella, a 1-ml portion was removed from each sample after the first overnight enrichment and the DNA was extracted using a Sepharose CL-6B spin column. Amplicons (457 bp) derived from primers to the invA and invE genes were confirmed as Salmonella specific on ethidium bromide-stained agarose gels by Southern hybridization with a 20-mer oligonucleotide probe specific for the Salmonella invA gene. Neither the standard microbiological method nor the molecular method detected all of the 65 samples that tested positive by both methods or either method alone. Salmonella bacteria were detected by both cultivation and PCR-hybridization in 68% (17 of 25) of the positive samples that were preenriched in TSB, in 73% (11 of 15) of the positive samples preenriched in 3MC broth, and in 24% (6 of 25) of the positive samples enriched in RV10. Agreement between Salmonella detection using cultivation with preenrichment and detection by PCR was 76% using the kappa statistic. However, agreement between

  8. Evaluation of Molecular Methods for Identification of Salmonella Serovars

    PubMed Central

    Gurnik, Simone; Ahmad, Aaminah; Blimkie, Travis; Murphy, Stephanie A.; Kropinski, Andrew M.; Nash, John H. E.

    2016-01-01

    Classification by serotyping is the essential first step in the characterization of Salmonella isolates and is important for surveillance, source tracking, and outbreak detection. To improve detection and reduce the burden of salmonellosis, several rapid and high-throughput molecular Salmonella serotyping methods have been developed. The aim of this study was to compare three commercial kits, Salm SeroGen (Salm Sero-Genotyping AS-1 kit), Check&Trace (Check-Points), and xMAP (xMAP Salmonella serotyping assay), to the Salmonella genoserotyping array (SGSA) developed by our laboratory. They were assessed using a panel of 321 isolates that represent commonly reported serovars from human and nonhuman sources globally. The four methods correctly identified 73.8% to 94.7% of the isolates tested. The methods correctly identified 85% and 98% of the clinically important Salmonella serovars Enteritidis and Typhimurium, respectively. The methods correctly identified 75% to 100% of the nontyphoidal, broad host range Salmonella serovars, including Heidelberg, Hadar, Infantis, Kentucky, Montevideo, Newport, and Virchow. The sensitivity and specificity of Salmonella serovars Typhimurium and Enteritidis ranged from 85% to 100% and 99% to 100%, respectively. It is anticipated that whole-genome sequencing will replace serotyping in public health laboratories in the future. However, at present, it is approximately three times more expensive than molecular methods. Until consistent standards and methodologies are deployed for whole-genome sequencing, data analysis and interlaboratory comparability remain a challenge. The use of molecular serotyping will provide a valuable high-throughput alternative to traditional serotyping. This comprehensive analysis provides a detailed comparison of commercial kits available for the molecular serotyping of Salmonella. PMID:27194688

  9. Increase in paratyphoid fever cases in Japanese travellers returning from Cambodia in 2013.

    PubMed

    Saitoh, T; Morita, M; Shimada, T; Izumiya, H; Kanayama, A; Oishi, K; Ohnishi, M; Sunagawa, T

    2016-02-01

    In 2013, an unusual increase of paratyphoid fever cases in travellers returning from Cambodia was reported in Japan. From December 2012 to September 2013, 18 cases of Salmonella Paratyphi A infection were identified. Microbiological analyses revealed that most isolates had the same clonal identity, although the epidemiological link between these cases remains unclear. It was inferred that the outbreak was caused by a common and persistent source in Cambodia that was likely to have continued during 2014. The information of surveillance and laboratory data from cases arising in travellers from countries with limited surveillance systems should be timely shared with the country of origin.

  10. In vitro selection of RNA aptamer specific to Salmonella typhimurium.

    PubMed

    Han, Seung Ryul; Lee, Seong-Wook

    2013-06-28

    Salmonella is a major foodborne pathogen that causes a variety of human diseases. Development of ligands directly and specifically binding to the Salmonella will be crucial for the rapid detection of, and thus for efficient protection from, the virulent bacteria. In this study, we identified a RNA aptamer-based ligand that can specifically recognize Salmonella Typhimurium through SELEX technology. To this end, we isolated and characterized an RNase-resistant RNA aptamer that bound to the OmpC protein of Salmonella Typhimurium with high specificity and affinity (Kd ~ 20 nM). Of note, the selected aptamer was found to specifically bind to Salmonella Typhimurium, but neither to Gram-positive bacteria (Staphylococcus aureus) nor to other Gram-negative bacteria (Escherichia coli O157:H7). This was evinced by aptamer-immobilized ELISA and aptamer-linked precipitation experiments. This Salmonella species-specific aptamer could be useful as a diagnostic ligand against pathogen-caused foodborne sickness.

  11. Administration of a Salmonella Enteritidis ΔhilAssrAfliG strain by coarse spray to newly hatched broilers reduces colonization and shedding of a Salmonella Enteritidis challenge strain.

    PubMed

    De Cort, W; Haesebrouck, F; Ducatelle, R; van Immerseel, F

    2015-01-01

    Consumption of contaminated poultry meat is still an important cause of Salmonella infections in humans. Colonization inhibition (CI) occurs when a live Salmonella strain is administered to chickens and subsequently protects against challenge with another Salmonella strain belonging to the same serotype. A Salmonella Enteritidis hilAssrAfliG deletion mutant has previously been proven to reduce colonization and shedding of a wild-type Salmonella Enteritidis strain in newly hatched broilers after experimental infection. In this study, we compared two administration routes for this strain. Administering the Salmonella Enteritidis ΔhilAssrAfliG strain through drinking water on the first day of life resulted in decreased fecal shedding and cecal colonization of a wild-type Salmonella Enteritidis challenge strain administered 24 h later using a seeder-bird model. When administering the CI strain by coarse spray on newly hatched broiler chicks, an even more pronounced reduction of cecal colonization was observed, and fecal shedding of the Salmonella Enteritidis challenge strain ceased during the course of the experiment. These data suggest that administering a Salmonella Enteritidis ΔhilAssrAfliG strain to newly hatched chicks using a coarse spray is a useful and effective method that reduces colonization and shedding of a wild-type Salmonella Enteritidis strain after early challenge. © 2014 Poultry Science Association Inc.

  12. Prevalence and antimicrobial susceptibility of salmonellae isolates from reptiles in Taiwan.

    PubMed

    Chen, Chun-Yu; Chen, Wan-Ching; Chin, Shih-Chien; Lai, Yen-Hsueh; Tung, Kwong-Chung; Chiou, Chien-Shun; Hsu, Yuan-Man; Chang, Chao-Chin

    2010-01-01

    Pets, including reptiles, have been shown to be a source of Salmonella infection in humans. Due to increasing popularity and variety of exotic reptiles as pets in recent years, more human clinical cases of reptile-associated Salmonella infection have been identified. However, limited information is available with regard to serotypes in different reptiles (turtles, snakes, and lizards) and antimicrobial resistance of Salmonella in pet reptiles. The current study was thus conducted to determine the prevalence of Salmonella colonization in pet reptiles. Salmonella organisms were isolated from 30.9% of 476 reptiles investigated. The isolation prevalences were 69.7% (23/33), 62.8% (27/43), and 24.3% (97/400) in snakes, lizards, and turtles, respectively. A total of 44 different Salmonella serovars were identified. Compared with S. Heron, Bredeney, Treforest, and 4,[5],12:i:-, S. Typhimurium isolates were resistant to many antimicrobials tested, and notably 61.1% of the isolates were resistant to cephalothin. The results indicated that raising reptiles as pets could be a possible source of Salmonella infection in humans, particularly zoonotic Salmonella serovars such as S. Typhimurium that may be resistant to antimicrobials.

  13. Survival and Filamentation of Salmonella enterica Serovar Enteritidis PT4 and Salmonella enterica Serovar Typhimurium DT104 at Low Water Activity

    PubMed Central

    Mattick, K. L.; Jørgensen, F.; Legan, J. D.; Cole, M. B.; Porter, J.; Lappin-Scott, H. M.; Humphrey, T. J.

    2000-01-01

    In this study we investigated the long-term survival of and morphological changes in Salmonella strains at low water activity (aw). Salmonella enterica serovar Enteritidis PT4 and Salmonella enterica serovar Typhimurium DT104 survived at low aw for long periods, but minimum humectant concentrations of 8% NaCl (aw, 0.95), 96% sucrose (aw, 0.94), and 32% glycerol (aw, 0.92) were bactericidal under most conditions. Salmonella rpoS mutants were usually more sensitive to bactericidal levels of NaCl, sucrose, and glycerol. At a lethal aw, incubation at 37°C resulted in more rapid loss of viability than incubation at 21°C. At aw values of 0.93 to 0.98, strains of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium formed filaments, some of which were at least 200 μm long. Filamentation was independent of rpoS expression. When the preparations were returned to high-aw conditions, the filaments formed septa, and division was complete within approximately 2 to 3 h. The variable survival of Salmonella strains at low aw highlights the importance of strain choice when researchers produce modelling data to simulate worst-case scenarios or conduct risk assessments based on laboratory data. The continued increase in Salmonella biomass at low aw (without a concomitant increase in microbial count) would not have been detected by traditional microbiological enumeration tests if the tests had been performed immediately after low-aw storage. If Salmonella strains form filaments in food products that have low aw values (0.92 to 0.98), there are significant implications for public health and for designing methods for microbiological monitoring. PMID:10742199

  14. Maternal vaccination as a Salmonella Typhimurium reduction strategy on pig farms.

    PubMed

    Smith, R P; Andres, V; Martelli, F; Gosling, B; Marco-Jimenez, F; Vaughan, K; Tchorzewska, M; Davies, R

    2018-01-01

    The control of Salmonella in pig production is necessary for public and animal health, and vaccination was evaluated as a strategy to decrease pig prevalence. The study examined the efficacy of a live Salmonella Typhimurium vaccine, administered to sows on eight commercial farrow-to-finish herds experiencing clinical salmonellosis or Salmonella carriage associated with S. Typhimurium or its monophasic variants. Results of longitudinal Salmonella sampling were compared against eight similarly selected and studied control farms. At the last visit (~14 months after the start of vaccination), when all finishing stock had been born to vaccinated sows, both faecal shedding and environmental prevalence of Salmonella substantially declined on the majority of vaccinated farms in comparison to the controls. A higher proportion of vaccine farms resolved clinical salmonellosis than controls. However, Salmonella counts in positive faeces samples were similar between nonvaccinated and vaccinated herds. The results suggest that maternal vaccination is a suitable option for a Salmonella Typhimurium reduction strategy in farrow-to-finish pig herds. Salmonella vaccines have the potential to reduce the prevalence of Salmonella in pigs and result in a reduction of human cases attributed to pork. © 2017 Crown copyright. Journal of Applied Microbiology © 2017 The Society for Applied Microbiology. This article is published with the permission of the Controller of HMSO and the Queen’s Printer for Scotland.

  15. Effect of egg washing and correlation between cuticle and egg penetration by various Salmonella strains.

    PubMed

    Gole, Vaibhav C; Roberts, Juliet R; Sexton, Margaret; May, Damian; Kiermeier, Andreas; Chousalkar, Kapil K

    2014-07-16

    In Australia, Europe and the United States, eggs and egg products are frequently associated with Salmonella food poisoning outbreaks. Many of the egg-associated Salmonella outbreaks have been due to the products such as mayonnaise, ice-cream and cold desserts which are eaten without cooking following the addition of raw egg. The ability of four Salmonella isolates (one each of S. Singapore, S. Adelaide, S. Worthington and S. Livingstone) to penetrate washed and unwashed eggs using whole egg and agar egg penetration methods was investigated in the current study. The results of the agar penetration experiment indicated that all the isolates used in the present study have the capacity to penetrate the eggshell. Eggshell penetration by the S. Worthington isolate was higher but not significant (p=0.06) in washed eggs compared to unwashed eggs. However, for all other isolates (S. Singapore, S. Adelaide and S. Livingstone), there was no significant difference in penetration of washed and unwashed eggs. Statistical analysis indicated that cuticle score was a significant linear predictor of Salmonella eggshell penetration. Whole egg penetration results showed that all of the Salmonella isolates used in the present study were capable of surviving on the eggshell surface after 21days of incubation (at 20°C) following a high dose of inoculation (10(5)CFU/mL). The combined data of all isolates demonstrated that, the survival rate of Salmonella on eggshells (inoculated with 10(5)CFU/mL) was significantly higher (p=0.002) at 20°C as compared to 37°C. S. Singapore, S. Worthington, and S. Livingstone were not detected in egg internal contents whereas S. Adelaide was detected in one egg's internal contents. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  16. Prophylactic administration of vector-encoded porcine granulocyte-colony stimulating factor reduces Salmonella shedding,tonsil colonization,& microbiota alterations of the gastrointestinal tract in Salmonella-challenged swine

    USDA-ARS?s Scientific Manuscript database

    Salmonella colonization of food animals is a concern for animal health and public health as a food safety risk. Various obstacles impede the effort to reduce asymptomatic Salmonella carriage in food animals, including the existence of numerous serovars and the ubiquitous nature of Salmonella. To d...

  17. [A quantitative risk assessment model of salmonella on carcass in poultry slaughterhouse].

    PubMed

    Zhang, Yu; Chen, Yuzhen; Hu, Chunguang; Zhang, Huaning; Bi, Zhenwang; Bi, Zhenqiang

    2015-05-01

    To construct a quantitative risk assessment model of salmonella on carcass in poultry slaughterhouse and to find out effective interventions to reduce salmonella contamination. We constructed a modular process risk model (MPRM) from evisceration to chilling in Excel Sheet using the data of the process parameters in poultry and the Salmomella concentration surveillance of Jinan in 2012. The MPRM was simulated by @ risk software. The concentration of salmonella on carcass after chilling was 1.96MPN/g which was calculated by model. The sensitive analysis indicated that the correlation coefficient of the concentration of salmonella after defeathering and in chilling pool were 0.84 and 0.34,which were the primary factors to the concentration of salmonella on carcass after chilling. The study provided a quantitative assessment model structure for salmonella on carcass in poultry slaughterhouse. The risk manager could control the contamination of salmonella on carcass after chilling by reducing the concentration of salmonella after defeathering and in chilling pool.

  18. An outbreak of Salmonella gastroenteritis in an urban jail.

    PubMed

    Alcabes, P; O'Sullivan, B; Nadal, E; Mouzon, M

    1988-12-01

    An outbreak of gastroenteritis in New York City's largest jail involved 145 cases over a two-month period. The outbreak was unusual in that two Salmonella strains (serogroups B and D) were involved. Management of the outbreak involved screening kitchen workers by culture of stool samples, and education regarding personal hygiene. Obstacles to investigation and management of the outbreak arose out of the special nature of the jail environment; these included jurisdictional problems and high turnover of the inmate population.

  19. Specific Responses of Salmonella enterica to Tomato Varieties and Fruit Ripeness Identified by In Vivo Expression Technology

    PubMed Central

    Noel, Jason T.; Arrach, Nabil; Alagely, Ali; McClelland, Michael; Teplitski, Max

    2010-01-01

    Background Recent outbreaks of vegetable-associated gastroenteritis suggest that enteric pathogens colonize, multiply and persist in plants for extended periods of time, eventually infecting people. Genetic and physiological pathways, by which enterics colonize plants, are still poorly understood. Methodology/Principal Findings To better understand interactions between Salmonella enterica sv. Typhimurium and tomatoes, a gfp-tagged Salmonella promoter library was screened inside red ripe fruits. Fifty-one unique constructs that were potentially differentially regulated in tomato relative to in vitro growth were identified. The expression of a subset of these promoters was tested in planta using recombinase-based in vivo expression technology (RIVET) and fitness of the corresponding mutants was tested. Gene expression in Salmonella was affected by fruit maturity and tomato cultivar. A putative fadH promoter was upregulated most strongly in immature tomatoes. Expression of the fadH construct depended on the presence of linoleic acid, which is consistent with the reduced accumulation of this compound in mature tomato fruits. The cysB construct was activated in the fruit of cv. Hawaii 7997 (resistant to a race of Ralstonia solanacearum) more strongly than in the universally susceptible tomato cv. Bonny Best. Known Salmonella motility and animal virulence genes (hilA, flhDC, fliF and those encoded on the pSLT virulence plasmid) did not contribute significantly to fitness of the bacteria inside tomatoes, even though deletions of sirA and motA modestly increased fitness of Salmonella inside tomatoes. Conclusions/Significance This study reveals the genetic basis of the interactions of Salmonella with plant hosts. Salmonella relies on a distinct set of metabolic and regulatory genes, which are differentially regulated in planta in response to host genotype and fruit maturity. This enteric pathogen colonizes tissues of tomatoes differently than plant pathogens, and relies

  20. Biofilms promote survival and virulence of Salmonella enterica sv. Tennessee during prolonged dry storage and after passage through an in vitro digestion system.

    PubMed

    Aviles, Bryan; Klotz, Courtney; Eifert, Joseph; Williams, Robert; Ponder, Monica

    2013-04-01

    Salmonella enterica serotypes have been linked to outbreaks associated with low water activity foods. While the biofilm-forming abilities of Salmonella improve its survival during thermal processing and sanitation it is unclear whether biofilms enhance survival to desiccation and gastric stresses. The purpose of this study was to quantify the effect of physiological state (planktonic versus biofilm) and prior exposure to desiccation and storage in dry milk powder on Salmonella survival and gene expression after passage through an in vitro digestion model. Planktonic cells of Salmonella enterica serotype Tennessee were deposited onto membranes while biofilms were formed on glass beads. The cells were subsequently dried at room temperature and stored in dried milk powder (a(w)=0.3) for up to 30 days. Salmonella survival was quantified by serial dilution onto Brilliant Green Agar before desiccation, after desiccation, after 1-day storage and after 30-day storage. At each sampling period both physiological states were tested for survival through a simulated gastrointestinal system. RNA was extracted at the identical time points and Quantitative Real-Time PCR was used to determine relative expression for genes associated with stress response (rpoS, otsB), virulence (hilA, invA, sipC) and a housekeeping gene 16S rRNA. The physiological state and length of storage affected the survival and gene expression of Salmonella within the desiccated milk powder environment and after passage through an in vitro digestion system (p<0.05). Larger numbers of S. Tennessee were recovered by plate counts for biofilms compared to planktonic, however, the numbers of Salmonella genomes detected by qPCR were not significantly different suggesting entry of the planktonic cells of S. Tennessee into a viable but non-culturable state. The increased expression of stress response genes rpoS and otsB correlated with survival, indicating cross-protection to low water activity and acid stress

  1. Sequence Analysis of IncA/C and IncI1 Plasmids Isolated from Multidrug-Resistant Salmonella Newport Using Single-Molecule Real-Time Sequencing.

    PubMed

    Cao, Guojie; Allard, Marc; Hoffmann, Maria; Muruvanda, Tim; Luo, Yan; Payne, Justin; Meng, Kevin; Zhao, Shaohua; McDermott, Patrick; Brown, Eric; Meng, Jianghong

    2018-06-01

    Multidrug-resistant (MDR) plasmids play an important role in disseminating antimicrobial resistance genes. To elucidate the antimicrobial resistance gene compositions in A/C incompatibility complex (IncA/C) plasmids carried by animal-derived MDR Salmonella Newport, and to investigate the spread mechanism of IncA/C plasmids, this study characterizes the complete nucleotide sequences of IncA/C plasmids by comparative analysis. Complete nucleotide sequencing of plasmids and chromosomes of six MDR Salmonella Newport strains was performed using PacBio RSII. Open reading frames were assigned using prokaryotic genome annotation pipeline (PGAP). To understand genomic diversity and evolutionary relationships among Salmonella Newport IncA/C plasmids, we included three complete IncA/C plasmid sequences with similar backbones from Salmonella Newport and Escherichia coli: pSN254, pAM04528, and peH4H, and additional 200 draft chromosomes. With the exception of canine isolate CVM22462, which contained an additional IncI1 plasmid, each of the six MDR Salmonella Newport strains contained only the IncA/C plasmid. These IncA/C plasmids (including references) ranged in size from 80.1 (pCVM21538) to 176.5 kb (pSN254) and carried various resistance genes. Resistance genes floR, tetA, tetR, strA, strB, sul, and mer were identified in all IncA/C plasmids. Additionally, bla CMY-2 and sugE were present in all IncA/C plasmids, excepting pCVM21538. Plasmid pCVM22462 was capable of being transferred by conjugation. The IncI1 plasmid pCVM22462b in CVM22462 carried bla CMY-2 and sugE. Our data showed that MDR Salmonella Newport strains carrying similar IncA/C plasmids clustered together in the phylogenetic tree using chromosome sequences and the IncA/C plasmids from animal-derived Salmonella Newport contained diverse resistance genes. In the current study, we analyzed genomic diversities and phylogenetic relationships among MDR Salmonella Newport using complete plasmids and chromosome

  2. Rapid Determination of Salmonella in Samples of Egg Noodles, Cake Mixes, and Candies

    PubMed Central

    Banwart, George J.; Kreitzer, Madeleine J.

    1969-01-01

    A glass apparatus system was compared with a standard enrichment broth-selective agar method to test samples of egg noodles, cake mixes, and candy for the presence or absence of salmonellae. The glass apparatus system used fermentation of mannitol, production of H2S, or motility, in conjunction with a serological test of flagellar antigens, to detect salmonellae. No salmonellae were detected in 173 samples of food products. Of these samples, 171 were found to be Salmonella-negative after 48 hr with the glass apparatus system. After 72 hr, the standard Salmonella procedure yielded 38 samples which produced Salmonella false-positive results on selective agars. Inoculation of samples with cultures of Salmonella showed that approximately one inoculated cell could be detected after 48 hr of incubation with the glass apparatus. The standard Salmonella test requires a minimum of 72 hr for completion. Compared with the standard Salmonella test, the glass apparatus system is a more rapid and simple system that can be used to determine the presence or absence of Salmonella in these food products. Images PMID:5370460

  3. Construction of a Salmonella Gallinarum ghost as a novel inactivated vaccine candidate and its protective efficacy against fowl typhoid in chickens

    PubMed Central

    2012-01-01

    In order to develop a novel, safe and immunogenic fowl typhoid (FT) vaccine candidate, a Salmonella Gallinarum ghost with controlled expression of the bacteriophage PhiX174 lysis gene E was constructed using pMMP99 plasmid in this study. The formation of the Salmonella Gallinarum ghost with tunnel formation and loss of cytoplasmic contents was observed by scanning electron microscopy and transmission electron microscopy. No viable cells were detectable 24 h after the induction of gene E expression by an increase in temperature from 37 °C to 42 °C. The safety and protective efficacy of the Salmonella Gallinarum ghost vaccine was tested in chickens that were divided into four groups: group A (non-immunized control), group B (orally immunized), group C (subcutaneously immunized) and group D (intramuscularly immunized). The birds were immunized at day 7 of age. None of the immunized animals showed any adverse reactions such as abnormal behavior, mortality, or signs of FT such as anorexia, depression, or diarrhea. These birds were subsequently challenged with a virulent Salmonella Gallinarum strain at 3 weeks post-immunization (wpi). Significant protection against the virulent challenge was observed in all immunized groups based on mortality and post-mortem lesions compared to the non-immunized control group. In addition, immunization with the Salmonella Gallinarum ghosts induced significantly high systemic IgG response in all immunized groups. Among the groups, orally-vaccinated group B showed significantly higher levels of secreted IgA. A potent antigen-specific lymphocyte activation response along with significantly increased percentages of CD4+ and CD8+ T lymphocytes found in all immunized groups clearly indicate the induction of cellular immune responses. Overall, these findings suggest that the newly constructed Salmonella Gallinarum ghost appears to be a safe, highly immunogenic, and efficient non-living bacterial vaccine candidate that protects against

  4. A FRET-Based DNA Biosensor Tracks OmpR-Dependent Acidification of Salmonella during Macrophage Infection

    PubMed Central

    Chakraborty, Smarajit; Mizusaki, Hideaki; Kenney, Linda J.

    2015-01-01

    In bacteria, one paradigm for signal transduction is the two-component regulatory system, consisting of a sensor kinase (usually a membrane protein) and a response regulator (usually a DNA binding protein). The EnvZ/OmpR two-component system responds to osmotic stress and regulates expression of outer membrane proteins. In Salmonella, EnvZ/OmpR also controls expression of another two-component system SsrA/B, which is located on Salmonella Pathogenicity Island (SPI) 2. SPI-2 encodes a type III secretion system, which functions as a nanomachine to inject bacterial effector proteins into eukaryotic cells. During the intracellular phase of infection, Salmonella switches from assembling type III secretion system structural components to secreting effectors into the macrophage cytoplasm, enabling Salmonella to replicate in the phagocytic vacuole. Major questions remain regarding how bacteria survive the acidified vacuole and how acidification affects bacterial secretion. We previously reported that EnvZ sensed cytoplasmic signals rather than extracellular ones, as intracellular osmolytes altered the dynamics of a 17-amino-acid region flanking the phosphorylated histidine. We reasoned that the Salmonella cytoplasm might acidify in the macrophage vacuole to activate OmpR-dependent transcription of SPI-2 genes. To address these questions, we employed a DNA-based FRET biosensor (“I-switch”) to measure bacterial cytoplasmic pH and immunofluorescence to monitor effector secretion during infection. Surprisingly, we observed a rapid drop in bacterial cytoplasmic pH upon phagocytosis that was not predicted by current models. Cytoplasmic acidification was completely dependent on the OmpR response regulator, but did not require known OmpR-regulated genes such as ompC, ompF, or ssaC (SPI-2). Microarray analysis highlighted the cadC/BA operon, and additional experiments confirmed that it was repressed by OmpR. Acidification was blocked in the ompR null background in a Cad

  5. Salmonella and eggs: from production to plate.

    PubMed

    Whiley, Harriet; Ross, Kirstin

    2015-02-26

    Salmonella contamination of eggs and egg shells has been identified as a public health concern worldwide. A recent shift in consumer preferences has impacted on the egg industry, with a push for cage-free egg production methods. There has also been an increased desire from consumers for raw and unprocessed foods, potentially increasing the risk of salmonellosis. In response to these changes, this review explores the current literature regarding Salmonella contamination of eggs during the production processing through to food handling protocols. The contamination of eggs with Salmonella during the production process is a complex issue, influenced by many variables including flock size, flock age, stress, feed, vaccination, and cleaning routines. Currently there is no consensus regarding the impact of caged, barn and free range egg production has on Salmonella contamination of eggs. The literature regarding the management and control strategies post-collection, during storage, transport and food handling is also reviewed. Pasteurisation and irradiation were identified as the only certain methods for controlling Salmonella and are essential for the protection of high risk groups, whereas control of temperature and pH were identified as potential control methods to minimise the risk for foods containing raw eggs; however, further research is required to provide more detailed control protocols and education programs to reduce the risk of salmonellosis from egg consumption.

  6. Salmonella and Eggs: From Production to Plate

    PubMed Central

    Whiley, Harriet; Ross, Kirstin

    2015-01-01

    Salmonella contamination of eggs and egg shells has been identified as a public health concern worldwide. A recent shift in consumer preferences has impacted on the egg industry, with a push for cage-free egg production methods. There has also been an increased desire from consumers for raw and unprocessed foods, potentially increasing the risk of salmonellosis. In response to these changes, this review explores the current literature regarding Salmonella contamination of eggs during the production processing through to food handling protocols. The contamination of eggs with Salmonella during the production process is a complex issue, influenced by many variables including flock size, flock age, stress, feed, vaccination, and cleaning routines. Currently there is no consensus regarding the impact of caged, barn and free range egg production has on Salmonella contamination of eggs. The literature regarding the management and control strategies post-collection, during storage, transport and food handling is also reviewed. Pasteurisation and irradiation were identified as the only certain methods for controlling Salmonella and are essential for the protection of high risk groups, whereas control of temperature and pH were identified as potential control methods to minimise the risk for foods containing raw eggs; however, further research is required to provide more detailed control protocols and education programs to reduce the risk of salmonellosis from egg consumption. PMID:25730295

  7. Survival potential of wild type cellulose deficient Salmonella from the feed industry.

    PubMed

    Vestby, Lene K; Møretrø, Trond; Ballance, Simon; Langsrud, Solveig; Nesse, Live L

    2009-11-23

    Biofilm has been shown to be one way for Salmonella to persist in the feed factory environment. Matrix components, such as fimbriae and cellulose, have been suggested to play an important role in the survival of Salmonella in the environment. Multicellular behaviour by Salmonella is often categorized according to colony morphology into rdar (red, dry and rough) expressing curli fimbriae and cellulose, bdar (brown, dry and rough) expressing curli fimbriae and pdar (pink, dry and rough) expressing cellulose. The aim of the study was to look into the distribution of morphotypes among feed and fish meal factory strains of Salmonella, with emphasis on potential differences between morphotypes with regards to survival in the feed factory environment. When screening a total of 148 Salmonella ser. Agona, Salmonella ser. Montevideo, Salmonella ser. Senftenberg and Salmonella ser. Typhimurium strains of feed factory, human clinical and reference collection origin, as many as 99% were able to express rough morphology (rdar or bdar). The dominant morphotype was rdar (74%), however as many as 55% of Salmonella ser. Agona and 19% of Salmonella ser. Senftenberg displayed the bdar morphology. Inconsistency in Calcofluor binding, indicating expression of cellulose, was found among 25% of all the strains tested, however Salmonella ser. Agona showed to be highly consistent in Calcofluor binding (98%). In biofilm, Salmonella ser. Agona strains with bdar mophology was found to be equally tolerant to disinfection treatment as strains with rdar morphotype. However, rdar morphology appeared to be favourable in long term survival in biofilm in a very dry environment. Chemical analysis showed no major differences in polysaccharide content between bdar and rdar strains. Our results indicate that cellulose is not a major component of the Salmonella biofilm matrix. The bdar morphotype is common among Salmonella ser. Agona strains isolated from the factory environment. The rdar and the bdar

  8. Zoonoses action plan Salmonella monitoring programme: an investigation of the sampling protocol.

    PubMed

    Snary, E L; Munday, D K; Arnold, M E; Cook, A J C

    2010-03-01

    The Zoonoses Action Plan (ZAP) Salmonella Programme was established by the British Pig Executive to monitor Salmonella prevalence in quality-assured British pigs at slaughter by testing a sample of pigs with a meat juice enzyme-linked immunosorbent assay for antibodies against group B and C(1) Salmonella. Farms were assigned a ZAP level (1 to 3) depending on the monitored prevalence, and ZAP 2 or 3 farms were required to act to reduce the prevalence. The ultimate goal was to reduce the risk of human salmonellosis attributable to British pork. A mathematical model has been developed to describe the ZAP sampling protocol. Results show that the probability of assigning a farm the correct ZAP level was high, except for farms that had a seroprevalence close to the cutoff points between different ZAP levels. Sensitivity analyses identified that the probability of assigning a farm to the correct ZAP level was dependent on the sensitivity and specificity of the test, the number of batches taken to slaughter each quarter, and the number of samples taken per batch. The variability of the predicted seroprevalence was reduced as the number of batches or samples increased and, away from the cutoff points, the probability of being assigned the correct ZAP level increased as the number of batches or samples increased. In summary, the model described here provided invaluable insight into the ZAP sampling protocol. Further work is required to understand the impact of the program for Salmonella infection in British pig farms and therefore on human health.

  9. Diversity of Antimicrobial Resistance Phenotypes in Salmonella Isolated from Commercial Poultry Farms.

    PubMed

    Liljebjelke, Karen A; Hofacre, Charles L; White, David G; Ayers, Sherry; Lee, Margie D; Maurer, John J

    2017-01-01

    Salmonella remains the leading cause of foodborne illness in the United States, and the dissemination of drug-resistant Salmonellae through the food chain has important implications for treatment failure of salmonellosis. We investigated the ecology of Salmonella in integrated broiler production in order to understand the flow of antibiotic susceptible and resistant strains within this system. Data were analyzed from a retrospective study focused on antimicrobial resistant Salmonella recovered from commercial broiler chicken farms conducted during the initial years of the US FDA's foray into retail meat surveillance by the National Antimicrobial Resistance Monitoring System (NARMS). Sixty-three percentage of Salmonella were pan-susceptible to a panel of 19 antimicrobials used by the NARMS program. Twenty-five antimicrobial resistance phenotypes were observed in Salmonella isolated from two broiler chicken farms. However, Salmonella displaying resistance to streptomycin, alone, and in combination with other antibiotics was the most prevalent (36.3%) antimicrobial resistance phenotype observed. Resistance to streptomycin and sulfadimethoxine appeared to be linked to the transposon, Tn 21 . Combinations of resistance against streptomycin, gentamicin, sulfadimethoxine, trimethoprim, and tetracycline were observed for a variety of Salmonella enterica serovars and genetic types as defined by pulsed-field gel electrophoresis. There were within and between farm differences in the antibiotic susceptibilities of Salmonella and some of these differences were linked to specific serovars. However, farm differences were not linked to antibiotic usage. Analysis of the temporal and spatial distribution of the endemic Salmonella serovars on these farms suggests that preventing vertical transmission of antibiotic-resistant Salmonella would reduce carcass contamination with antibiotic-resistant Salmonella and subsequently human risk exposure.

  10. Diversity of Antimicrobial Resistance Phenotypes in Salmonella Isolated from Commercial Poultry Farms

    PubMed Central

    Liljebjelke, Karen A.; Hofacre, Charles L.; White, David G.; Ayers, Sherry; Lee, Margie D.; Maurer, John J.

    2017-01-01

    Salmonella remains the leading cause of foodborne illness in the United States, and the dissemination of drug-resistant Salmonellae through the food chain has important implications for treatment failure of salmonellosis. We investigated the ecology of Salmonella in integrated broiler production in order to understand the flow of antibiotic susceptible and resistant strains within this system. Data were analyzed from a retrospective study focused on antimicrobial resistant Salmonella recovered from commercial broiler chicken farms conducted during the initial years of the US FDA’s foray into retail meat surveillance by the National Antimicrobial Resistance Monitoring System (NARMS). Sixty-three percentage of Salmonella were pan-susceptible to a panel of 19 antimicrobials used by the NARMS program. Twenty-five antimicrobial resistance phenotypes were observed in Salmonella isolated from two broiler chicken farms. However, Salmonella displaying resistance to streptomycin, alone, and in combination with other antibiotics was the most prevalent (36.3%) antimicrobial resistance phenotype observed. Resistance to streptomycin and sulfadimethoxine appeared to be linked to the transposon, Tn21. Combinations of resistance against streptomycin, gentamicin, sulfadimethoxine, trimethoprim, and tetracycline were observed for a variety of Salmonella enterica serovars and genetic types as defined by pulsed-field gel electrophoresis. There were within and between farm differences in the antibiotic susceptibilities of Salmonella and some of these differences were linked to specific serovars. However, farm differences were not linked to antibiotic usage. Analysis of the temporal and spatial distribution of the endemic Salmonella serovars on these farms suggests that preventing vertical transmission of antibiotic-resistant Salmonella would reduce carcass contamination with antibiotic-resistant Salmonella and subsequently human risk exposure. PMID:28691011

  11. The treatment of mouse colorectal cancer by oral delivery tumor-targeting Salmonella

    PubMed Central

    Wang, Wei-Kuang; Lu, Meng-Fan; Kuan, Yu-Diao; Lee, Che-Hsin

    2015-01-01

    Systemic administration of Salmonella to tumor-bearing mice leads to its preferential accumulation in tumor sites, the enhancement of host immunity, and the inhibition of tumor growth. However, the underlying mechanism for Salmonella-induced antitumor immune response via oral delivery remained uncertain. Herein, we used mouse colorectal cancer (CT26) as tumor model to study the therapeutic effects after oral delivery of Salmonella. When orally administered into tumor-bearing mice, Salmonella significantly accumulated in the tumor sites, inhibited tumor growth and extended the survival of mice. No obvious toxicity was observed during orally administered Salmonella by examining body weight and inflammatory cytokines. As indoleamine 2, 3-dioxygenase 1 (IDO) is a crucial mediator for tumor-mediated immune tolerance, we examined the expression of IDO. We demonstrated that Salmonella inhibited IDO expression in mouse cancer cells. Furthermore, immunohistochemical studies of the tumors revealed the infiltration of neutrophils and T cells in mice treated with Salmonella. In conclusion, our results indicate that Salmonella exerts its tumoricidal effects and stimulates T cell activities by inhibiting IDO expression. Oral delivery of Salmonella may, represent a potential strategy for the treatment of tumor. PMID:26328252

  12. A Perspective on Invasive Salmonella Disease in Africa.

    PubMed

    Crump, John A; Heyderman, Robert S

    2015-11-01

    Salmonella enterica is a leading cause of community-acquired bloodstream infection in Africa. The contribution of typhoidal and nontyphoidal Salmonella serovars to invasive disease varies considerably in place and time, even within the same country. Nonetheless, many African countries are now thought to experience typhoid fever incidence >100 per 100,000 per year with approximately 1% of patients dying. Invasive nontyphoidal Salmonella (iNTS) disease was estimated to cause 3.4 million illnesses and 681 316 deaths in 2010, with the most disease in Africa. Antimicrobial drug resistance is a growing problem in S. enterica that threatens to further compromise patient outcomes. Reservoirs for nontyphoidal Salmonella and the predominant routes of transmission for typhoidal and nontyphoidal Salmonella are not well understood in Africa, hampering the design of evidence-based, non-vaccine- and vaccine-based prevention measures. It is difficult to distinguish clinically invasive Salmonella disease from febrile illnesses caused by other pathogens. Blood cultures are the mainstay of laboratory diagnosis, but lack sensitivity due to the low magnitude of bacteremia, do not produce results at point of care, and are not widely available in Africa. Serologic approaches to diagnosis remain inaccurate, and nucleic acid amplification tests are also compromised by low concentrations of bacteria. High-throughput whole-genome sequencing, together with a range of novel analytic pipelines, has provided new insights into the complex pattern of epidemiology, pathogenesis, and host adaptation. Concerted efforts are therefore needed to apply these new tools in the context of high-quality field surveillance to improve diagnosis, patient management, control, and prevention of invasive Salmonella infections in Africa. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Around the World in 1,475 Salmonella Geo-serotypes

    PubMed Central

    Le Hello, Simon; de Jong, Birgitta; Rolfhamre, Per; Faensen, Daniel; Weill, François-Xavier; Giesecke, Johan

    2016-01-01

    It’s easy to remember Salmonella serotypes names, isn’t it? Surely, this is because the naming system of Salmonella serotypes is by far the most scientist friendly. Traditionally, most Salmonella serotypes have been named after geographic locations. We decided to explore the geographic locations to which Salmonella serotypes refer and describe some unexpected twists in the naming scheme. We found that 93% (n = 1,475) of the 1,585 serotypes could be categorized as geo-serotypes; that is, the name refers to a geographic location. The 3 countries with the most geo-serotypes are Germany, the United Kingdom, and the United States. Other serotype names refer to the name of a person, animal, tribe, or food item or are a composite of symptoms and host. The Salmonella serotypes naming scheme has had a valuable effect on public health microbiology, and in the current era of fast development of whole-genome sequencing, it should remain a reference.

  14. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours.

    PubMed

    Mercado-Lubo, Regino; Zhang, Yuanwei; Zhao, Liang; Rossi, Kyle; Wu, Xiang; Zou, Yekui; Castillo, Antonio; Leonard, Jack; Bortell, Rita; Greiner, Dale L; Shultz, Leonard D; Han, Gang; McCormick, Beth A

    2016-07-25

    Salmonella enterica serotype Typhimurium is a food-borne pathogen that also selectively grows in tumours and functionally decreases P-glycoprotein (P-gp), a multidrug resistance transporter. Here we report that the Salmonella type III secretion effector, SipA, is responsible for P-gp modulation through a pathway involving caspase-3. Mimicking the ability of Salmonella to reverse multidrug resistance, we constructed a gold nanoparticle system packaged with a SipA corona, and found this bacterial mimic not only accumulates in tumours but also reduces P-gp at a SipA dose significantly lower than free SipA. Moreover, the Salmonella nanoparticle mimic suppresses tumour growth with a concomitant reduction in P-gp when used with an existing chemotherapeutic drug (that is, doxorubicin). On the basis of our finding that the SipA Salmonella effector is fundamental for functionally decreasing P-gp, we engineered a nanoparticle mimic that both overcomes multidrug resistance in cancer cells and increases tumour sensitivity to conventional chemotherapeutics.

  15. Nalidixic acid surrogate test for susceptibility to ciprofloxacin in Salmonella. Revisiting the question.

    PubMed

    Guzmán-Martín, José Luis; Navarro-Marí, José María; Expósito-Ruiz, Manuela; Gutiérrez-Fernández, José

    2018-05-16

    We investigated the reliability of nalidixic acid (NA) susceptibility as a marker of ciprofloxacin susceptibility in Salmonella, analysing 302 stool isolates. NC53 of the MicroScan system was used for NA susceptibility tests and the E-test was used for ciprofloxacin susceptibility tests. Among the isolates, 178 (58.9 %) were serogroup B, 74 (24.5 %) were serogroup D, 27 (8.9 %) were serogroup C and 23 (7.6 %) were from other minor serogroups. Globally, susceptibility to NA correctly predicted the susceptibility of Salmonella to ciprofloxacin, with a sensitivity of 81.5 %, a specificity of 97.6 %, and positive and negative predictive values of 88 and 96 %, respectively. However, there were differences among the serogroups in terms of sensitivity (P<0.001) and positive predictive values (P=0.013). NA is a reliable marker for serogroup D, but not for serogroups B or C. According to these findings, NA susceptibility measured with the MicroScan system can be used as a marker of ciprofloxacin resistance in some serogroups in our setting.

  16. Salmonella occurrence and Enterobacteriaceae counts in pig feed ingredients and compound feed from feed mills in Ireland.

    PubMed

    Burns, Anne Marie; Lawlor, Peadar G; Gardiner, Gillian E; McCabe, Evonne M; Walsh, Des; Mohammed, Manal; Grant, Jim; Duffy, Geraldine

    2015-10-01

    ingredients in the present study was low, even minor Salmonella contamination in feed has the potential to affect many herds and may subsequently cause human infection. Furthermore, the recovery of a recently emerged serovar with multi-antibiotic resistance is a potential cause for concern. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Gene expression in the chicken caecum in response to infections with non-typhoid Salmonella.

    PubMed

    Rychlik, Ivan; Elsheimer-Matulova, Marta; Kyrova, Kamila

    2014-12-05

    Chickens can be infected with Salmonella enterica at any time during their life. However, infections within the first hours and days of their life are epidemiologically the most important, as newly hatched chickens are highly sensitive to Salmonella infection. Salmonella is initially recognized in the chicken caecum by TLR receptors and this recognition is followed by induction of chemokines, cytokines and many effector genes. This results in infiltration of heterophils, macrophages, B- and T-lymphocytes and changes in total gene expression in the caecal lamina propria. The highest induction in expression is observed for matrix metalloproteinase 7 (MMP7). Expression of this gene is increased in the chicken caecum over 4000 fold during the first 10 days after the infection of newly hatched chickens. Additional highly inducible genes in the caecum following S. Enteritidis infection include immune responsive gene 1 (IRG1), serum amyloid A (SAA), extracellular fatty acid binding protein (ExFABP), serine protease inhibitor (SERPINB10), trappin 6-like (TRAP6), calprotectin (MRP126), mitochondrial ES1 protein homolog (ES1), interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), avidin (AVD) and transglutaminase 4 (TGM4). The induction of expression of these proteins exceeds a factor of 50. Similar induction rates are also observed for chemokines and cytokines such as IL1β, IL6, IL8, IL17, IL18, IL22, IFNγ, AH221 or iNOS. Once the infection is under control, which happens approx. 2 weeks after infection, expression of IgY and IgA increases to facilitate Salmonella elimination from the gut lumen. This review outlines the function of individual proteins expressed in chickens after infection with non-typhoid Salmonella serovars.

  18. Salmonella-host cell interactions, changes in host cell architecture, and destruction of prostate tumor cells with genetically altered Salmonella.

    PubMed

    Zhong, Zhisheng; Kazmierczak, Robert A; Dino, Alison; Khreis, Rula; Eisenstark, Abraham; Schatten, Heide

    2007-10-01

    Increasingly, genetically modified Salmonella are being explored as a novel treatment for cancer because Salmonella preferentially replicate within tumors and destroy cancer cells without causing the septic shock that is typically associated with wild-type S. typhimurium infections. However, the mechanisms by which genetically modified Salmonella strains preferentially invade cancer cells have not yet been addressed in cellular detail. Here we present data that show S. typhimurium strains VNP20009, LT2, and CRC1674 invasion of PC-3M prostate cancer cells. S. typhimurium-infected PC-3M human prostate cancer cells were analyzed with immunofluorescence microscopy and transmission electron microscopy (TEM) at various times after inoculation. We analyzed microfilaments, microtubules, and DNA with fluorescence and immunofluorescence microscopy. 3T3 Phi-Yellow-mitochondria mouse 3T3 cells were used to study the effects of Salmonella infestation on mitochondria distribution in live cells. Our TEM results show gradual destruction of mitochondria within the PC-3M prostate cancer cells with complete loss of cristae at 8 h after inoculation. The fluorescence intensity in YFP-mitochondria-transfected mouse 3T3 cells decreased, which indicates loss of mitochondria structure. Interestingly, the nucleus does not appear affected by Salmonella within 8 h. Our data demonstrate that genetically modified S. typhimurium destroy PC-3M prostate cancer cells, perhaps by preferential destruction of mitochondria.

  19. MicroSEQ® Salmonella spp. Detection Kit Using the Pathatrix® 10-Pooling Salmonella spp. Kit Linked Protocol Method Modification.

    PubMed

    Wall, Jason; Conrad, Rick; Latham, Kathy; Liu, Eric

    2014-03-01

    Real-time PCR methods for detecting foodborne pathogens offer the advantages of simplicity and quick time to results compared to traditional culture methods. The addition of a recirculating pooled immunomagnetic separation method prior to real-time PCR analysis increases processing output while reducing both cost and labor. This AOAC Research Institute method modification study validates the MicroSEQ® Salmonella spp. Detection Kit [AOAC Performance Tested Method (PTM) 031001] linked with the Pathatrix® 10-Pooling Salmonella spp. Kit (AOAC PTM 090203C) in diced tomatoes, chocolate, and deli ham. The Pathatrix 10-Pooling protocol represents a method modification of the enrichment portion of the MicroSEQ Salmonella spp. The results of the method modification were compared to standard cultural reference methods for diced tomatoes, chocolate, and deli ham. All three matrixes were analyzed in a paired study design. An additional set of chocolate test portions was analyzed using an alternative enrichment medium in an unpaired study design. For all matrixes tested, there were no statistically significant differences in the number of positive test portions detected by the modified candidate method compared to the appropriate reference method. The MicroSEQ Salmonella spp. protocol linked with the Pathatrix individual or 10-Pooling procedure demonstrated reliability as a rapid, simplified, method for the preparation of samples and subsequent detection of Salmonella in diced tomatoes, chocolate, and deli ham.

  20. In Vivo Blockage of Nitric Oxide with Aminoguanidine Inhibits Immunosuppression Induced by an Attenuated Strain of Salmonella typhimurium, Potentiates Salmonella Infection, and Inhibits Macrophage and Polymorphonuclear Leukocyte Influx into the Spleen

    PubMed Central

    MacFarlane, Amanda Shearer; Schwacha, Martin G.; Eisenstein, Toby K.

    1999-01-01

    Our laboratory has previously shown that after immunization with a strain of Salmonella typhimurium, SL3235, made avirulent by a blockage in the pathway of aromatic synthesis, murine splenocytes were profoundly suppressed in their capacity to mount an in vitro antibody plaque-forming cell (PFC) response to sheep erythrocytes. Evidence indicated that suppression was mediated by nitric oxide (NO), since the in vitro addition of NG-monomethyl-l-arginine blocked suppression. The present studies examined the effect of blocking NO production on Salmonella-induced immunosuppression by in vivo administration of aminoguanidine hemisulfate (AG). AG was administered to C3HeB/FeJ mice in their drinking water (2.5% solution) for 7 days prior to intraperitoneal inoculation with SL3235. AG treatment inhibited the increase in nitrate and nitrite levels in plasma and nitrite levels in the spleen seen in immunized mice. Importantly, AG treatment completely blocked suppression of the splenic PFC response and markedly attenuated the suppression of the response to concanavalin A in immunized mice, providing further evidence that Salmonella-induced immunosuppression is mediated by NO. AG treatment also alleviated the majority of the splenomegaly associated with SL3235 inoculation, which correlated with a blockage of influx of neutrophils and macrophages into spleens, as assessed by flow cytometry. AG treatment unexpectedly resulted in 90% mortality in mice injected with the highly attenuated vaccine strain of Salmonella, SL3235. Increased mortality in AG-treated mice correlated with inability to clear organisms from the spleen by day 15 postinoculation and with persistent bacteremia, compared with control mice. Collectively, these in vivo results underscore the dual biological consequences of NO production following Salmonella infection, with NO being necessary for host defense, but also having the potentially adverse effect of immunosuppression. A unifying hypothesis to explain how

  1. Global Screening of Salmonella enterica Serovar Typhimurium Genes for Desiccation Survival

    PubMed Central

    Mandal, Rabindra K.; Kwon, Young M.

    2017-01-01

    Salmonella spp., one of the most common foodborne bacterial pathogens, has the ability to survive under desiccation conditions in foods and food processing facilities for years. This raises the concerns of Salmonella infection in humans associated with low water activity foods. Salmonella responds to desiccation stress via complex pathways involving immediate physiological actions as well as coordinated genetic responses. However, the exact mechanisms of Salmonella to resist desiccation stress remain to be fully elucidated. In this study, we screened a genome-saturating transposon (Tn5) library of Salmonella Typhimurium (S. Typhimurium) 14028s under the in vitro desiccation stress using transposon sequencing (Tn-seq). We identified 61 genes and 6 intergenic regions required to overcome desiccation stress. Salmonella desiccation resistance genes were mostly related to energy production and conversion; cell wall/membrane/envelope biogenesis; inorganic ion transport and metabolism; regulation of biological process; DNA metabolic process; ABC transporters; and two component system. More than 20% of the Salmonella desiccation resistance genes encode either putative or hypothetical proteins. Phenotypic evaluation of 12 single gene knockout mutants showed 3 mutants (atpH, atpG, and corA) had significantly (p < 0.02) reduced survival as compared to the wild type during desiccation survival. Thus, our study provided new insights into the molecular mechanisms utilized by Salmonella for survival against desiccation stress. The findings might be further exploited to develop effective control strategies against Salmonella contamination in low water activity foods and food processing facilities. PMID:28943871

  2. Prevalence of Salmonella spp. in pet turtles and their environment

    PubMed Central

    Back, Du-San; Shin, Gee-Wook; Wendt, Mitchell

    2016-01-01

    Pet turtles are known as a source of Salmonella infection to humans when handled in captivity. Thirty four turtles purchased from pet shops and online markets in Korea were examined to determine whether the turtles and their environment were contaminated with Salmonella spp. Salmonella spp. were isolated from fecal samples of 17 turtles. These isolates were identified as S. enterica through 16S rRNA gene sequencing. The isolation rate of Salmonella spp. from the soil and water samples increased over time. We concluded that a high percentage of turtles being sold in pet shops were infected with Salmonella spp., and their environments tend to become contaminated over time unless they are maintained properly. These results indicate that pet turtles could be a potential risk of salmonellosis in Korea. PMID:27729933

  3. Turtles as a Possible Reservoir of Nontyphoidal Salmonella in Shanghai, China

    PubMed Central

    Zhang, Jianmin; Kuang, Dai; Wang, Fei; Meng, Jianghong; Jin, Huiming; Yang, Xiaowei; Liao, Ming; Klena, John D.; Wu, Shuyu; Zhang, Yongbiao; Xu, Xuebin

    2017-01-01

    Terrapins and turtles are known to transmit Salmonella to humans. However, little was known about the occurrence of this pathogen in soft-shelled terrapin that is a popular delicacy in Chinese and other East Asian cuisines. We isolated and characterized 82 (24.4%) isolates of Salmonella from 336 fecal samples of soft-shelled terrapins (51 of 172; 29.7%) and pet turtles (31 of 164; 18.9%) in Shanghai. Salmonella Thompson was the most common serotype (17.1%) among others. Many isolates (84.1%) were resistant to multiple antimicrobials (≥3). Molecular analysis of Salmonella Thompson and Salmonella Typhimurium using pulsed-field gel electrophoresis unveiled a close genetic relationship between several human and terrapin isolates. Our results highlight the risk associated with the handling and consumption of turtles and their role in the spread of Salmonella in the human salmonellosis. PMID:27267492

  4. Salmonella rarely detected in Mississippi coastal waters and sediment.

    PubMed

    Carr, M R; Wang, S Y; McLean, T I; Flood, C J; Ellender, R D

    2010-12-01

    Standards for the rapid detection of individual pathogens from environmental samples have not been developed, but in their absence, the use of molecular-based detection methods coupled with traditional microbiology techniques allows for rapid and accurate pathogen detection from environmental waters and sediment. The aim of this research was to combine the use of enrichment with PCR for detection of Salmonella in Mississippi coastal waters and sediment and observe if that presence correlated with levels of enterococci and climatological variables. Salmonella were primarily found in samples that underwent nutrient enrichment and were present more frequently in freshwater than marine waters. Salmonella were detected infrequently in marine and freshwater sediments. There was a significant positive correlation between the presence of detectable Salmonella and the average enterococcal count. An inverse relationship, however, was observed between the frequency of detection and the levels of salinity, turbidity and sunlight exposure. Results from this study indicated the presence of Salmonella in Mississippi coastal waters, and sediments are very low with significant differences between freshwater and marine environments. Using pathogenic and novel nonpathogenic molecular markers, Salmonella do not appear to be a significant pathogenic genus along the Mississippi Coast. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  5. Development of a novel hexa-plex PCR method for identification and serotyping of Salmonella species.

    PubMed

    Li, Ruichao; Wang, Yang; Shen, Jianzhong; Wu, Congming

    2014-01-01

    Salmonella is one of the most important foodborne pathogens, which causes a huge economic burden worldwide. To detect Salmonella rapidly is very meaningful in preventing salmonellosis and decreasing economic losses. Currently, isolation of Salmonella is confirmed by biochemical and serobased serotyping methods, which are time consuming, labor intensive, and complicated. To solve this problem, a hexa-plex polymerase chain reaction (PCR) method was developed using comparative genomics analysis and multiplex PCR technology to detect Salmonella and Salmonella Typhimurium, Salmonella Enteritidis, Salmonella Agona, Salmonella Choleraesuis, and Salmonella Pullorum simultaneously. The accuracy of this method was tested by a collection of 142 Salmonella. Furthermore, the strategy described in this article to mine serovar-specific fragments for Salmonella could be used to find specific fragments for other Salmonella serotypes and bacteria. The combination of this strategy and multiplex PCR is promising in the rapid identification of foodborne pathogens.

  6. SURVIVAL OF SALMONELLA IN WASTE EGG WASH WATER

    EPA Science Inventory

    The survival of salmonellae under various environmental conditions has been subject of numerous research studies. Due to low densities of these organisms in natural samples, laboratory or clinical cultures were used to ensure that the initial density of salmonellae was sufficien...

  7. A case-control study of domestic kitchen microbiology and sporadic Salmonella infection.

    PubMed

    Parry, S M; Slader, J; Humphrey, T; Holmes, B; Guildea, Z; Palmer, S R

    2005-10-01

    The microbiology of domestic kitchens in the homes of subjects who had suffered sporadic Salmonella infection (cases) was compared with control domestic kitchens. Case and control dishcloths and refrigerator swabs were examined for the presence of Salmonella spp., total Enterobacteriaceae counts and total aerobic colony counts. Salmonella spp. were isolated from both case and control dishcloths and refrigerators but there were no significant differences between the two groups. Colony counts were similar in case and control dishcloths and refrigerator swabs. There was no relationship between the total counts and presence of Salmonella . There was no evidence that cases of Salmonella infection were more likely to have kitchens which were contaminated with these bacteria or have higher bacterial counts than controls. Total bacterial counts were poor indicators of Salmonella contamination of the domestic kitchen environment. Further factors which could not be identified by a study of this design may increase risk of Salmonella food poisoning. These factors may include individual susceptibility of the patient. Alternatively, sporadic cases of Salmonella food poisoning may arise from food prepared outside the home.

  8. Salmonella and raw shell eggs: results of a cross-sectional study of contamination rates and egg safety practices in the United Kingdom catering sector in 2003.

    PubMed

    Elson, R; Little, C L; Mitchell, R T

    2005-02-01

    This study was prompted by epidemiological investigations of the unusual number of Salmonella Enteritidis outbreaks associated with the use of eggs in catering premises in England and Wales during 2002. The aims of the study, performed between April and May 2003, were to establish the rate of Salmonella contamination in raw shell eggs from catering premises, investigate any correlation between the origin and type of eggs and the presence of particular serotypes or phage types (PTs) of Salmonella, and examine the use of raw shell eggs in catering premises in the United Kingdom. A total of 34,116 eggs (5,686 pooled samples of six eggs) were collected from 2,104 catering premises, most of which were eggs produced in the United Kingdom (88%). Salmonella was isolated from 17 pools (0.3%) of eggs. Of these, 15 were Salmonella Enteritidis, which were further characterized to PTs as follows: PT6 (0.1%), PT4 (0.07%), PT12 (0.04%), PT1 (0.04%), and PT14b (0.02%). Salmonella Livingstone and Salmonella Typhimurium definitive type 7 resistant to ampicillin, streptomycin, sulfonamides, and tetracycline were also isolated. The Salmonella contamination rate of eggs produced in the United Kingdom appears to have decreased significantly since 1995 and 1996. This trend is reflected in the decrease of Salmonella Enteritidis and, in particular, Salmonella Enteritidis PT4. The impact of the United Kingdom Food Standards Agency's advice on the use of eggs, issued in January 2003, is discussed.

  9. Use of Intragenic Sequence Ribotyping (ISR) for serotyping Salmonella obtained from poultry and their environment

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: The dkgB-linked ribosomal region of Salmonella enterica flanking a 5S gene shows genetic heterogeneity that distinguishes closely related serovars such as Enteritidis, Dublin, Gallinarum and Pullorum (Morales et al, 2006). We wanted to know how sequence-based ISR compared to the traditio...

  10. Salmonella in pork retail outlets and dissemination of its pulsotypes through pig production chain in Chiang Mai and surrounding areas, Thailand.

    PubMed

    Patchanee, Prapas; Tansiricharoenkul, Kankanok; Buawiratlert, Tunyamai; Wiratsudakul, Anuwat; Angchokchatchawal, Kittipat; Yamsakul, Panuwat; Yano, Terdsak; Boonkhot, Phacharaporn; Rojanasatien, Suvichai; Tadee, Pakpoom

    2016-08-01

    Salmonella spp. is acknowledged as a significant zoonotic foodborne pathogen throughout the world. Contaminated pork consumption is considered as a main cause of human salmonellosis. In the later stage of the pig production chain, poor hygiene and unsuitable storage conditions in retail outlets are considered to be key factors linked to the risk of Salmonella infection. The purpose of current study, which was conducted throughout April 2014 to September 2014, was to determine the prevalence and characteristics of Salmonella spp. in pork sold at the retail stage in wet markets and supermarkets in the Chiang Mai urban area of Thailand. Additionally, clonal relations between Salmonella strains described in this study and those identified in earlier study from the same geographical area were considered. It is provided as a means of contributing to current knowledge regarding Salmonella epidemiology with an ultimate aim of improved food security and consumer protection in this region. From a total of 82 pork samples analyzed in this study, 41% were positive for Salmonella, with prevalence of 73.2% from wet markets (n=30/41) and 9.8% from supermarkets (n=4/41). Twelve Salmonella serovars were identified, S. Rissen being the most commonly encountered. Antibiotic resistance of the isolates was highest for ampicillin and tetracycline (53%), followed by streptomycin (44%). Pulsed-field gel electrophoresis (PFGE) and subsequent geographical distribution analysis indicated that the clonal Salmonella strains originated from multiple sources had been spread over a wide area. The existence of a common pig supply chain "farm-slaughterhouse-retail" transmission route is inferred. Continuous monitoring of Salmonella along the entire production chain is needed to reduce contamination loads and to ensure the safety of pork products for end consumers. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Immunogenicity of Salmonella enterica serovar Enteritidis virulence protein, InvH, and cross-reactivity of its antisera with Salmonella strains.

    PubMed

    Dehghani, Behzad; Rasooli, Iraj; Gargari, Seyed Latif Mousavi; Nadooshan, Mohammad Reza Jalali; Owlia, Parviz; Nazarian, Shahram

    2013-02-22

    Acellular vaccines containing bacterial immunodominant components such as surface proteins may be potent alternatives to live attenuated vaccines in order to reduce salmonellosis risk to human health. invH gene, an important part of needle complex in type three secretion system (TTSS) plays important role in efficient bacterial adherence and entry into epithelial cells. In this work we hypothesize that use of a 15 kDa recombinant InvH as Salmonella enterica serovar Enteritidis surface protein could provoke antibody production in mouse and would help us study feasibility of its potential for diagnosis and/or a recombinant vaccine. The purified InvH provoked significant rise of IgG in mice. Active protection induced by immunization with InvH against variable doses of S. enterica serovar Enteritidis, indicated that the immunized mice were completely protected against challenge with 10(4) LD(50). The immunoreaction of sera from immunized mice with other Salmonella strains or cross reaction with sera of Salmonella strains inoculated mice is indicative of possessing by Salmonella strains of the surface protein, InvH, that can be employed in both prophylactic and diagnostic measures against S. enterica. Bacteria free spleen and ileum of the immunized mice in this study indicate that the invH gene affects bacterial invasion. Efficacy of the virulence protein, InvH, in shuttling into host cells in injectisome of S. enterica serovar Enteritidis and inhibition of this phenomenon by active immunization was shown in this study. In conclusion immunization with InvH protein can develop protection against S. enterica serovar Enteritidis infections. InvH in Salmonella strains can be exploited in protective measures as well as a diagnostic tool in Salmonella infections. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. 21 CFR 118.6 - Egg testing for Salmonella Enteritidis (SE).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Egg testing for Salmonella Enteritidis (SE). 118.6... testing for Salmonella Enteritidis (SE). (a)(1) If the environmental test for pullets at 14 to 16 weeks of... requires that these eggs must be treated to achieve at least a 5-log destruction of Salmonella Enteritidis...

  13. 21 CFR 118.6 - Egg testing for Salmonella Enteritidis (SE).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Egg testing for Salmonella Enteritidis (SE). 118.6... testing for Salmonella Enteritidis (SE). (a)(1) If the environmental test for pullets at 14 to 16 weeks of... requires that these eggs must be treated to achieve at least a 5-log destruction of Salmonella Enteritidis...

  14. 21 CFR 118.6 - Egg testing for Salmonella Enteritidis (SE).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Egg testing for Salmonella Enteritidis (SE). 118.6... testing for Salmonella Enteritidis (SE). (a)(1) If the environmental test for pullets at 14 to 16 weeks of... requires that these eggs must be treated to achieve at least a 5-log destruction of Salmonella Enteritidis...

  15. Dispersal of Salmonella Typhimurium by rain splash onto tomato plants.

    PubMed

    Cevallos-Cevallos, Juan M; Danyluk, Michelle D; Gu, Ganyu; Vallad, Gary E; van Bruggen, Ariena H C

    2012-03-01

    Outbreaks of Salmonella enterica have increasingly been associated with tomatoes and traced back to production areas, but the spread of Salmonella from a point source onto plants has not been described. Splash dispersal by rain could be one means of dissemination. Green fluorescent protein-labeled, kanamycin-resistant Salmonella enterica sv. Typhimurium dispensed on the surface of plastic mulch, organic mulch, or soil at 10⁸ CFU/cm² was used as the point source in the center of a rain simulator. Tomato plants in soil with and without plastic or organic mulch were placed around the point source, and rain intensities of 60 and 110 mm/h were applied for 5, 10, 20, and 30 min. Dispersal of Salmonella followed a negative exponential model with a half distance of 3 cm at 110 mm/h. Dispersed Salmonella survived for 3 days on tomato leaflets, with a total decline of 5 log and an initial decimal reduction time of 10 h. Recovery of dispersed Salmonella from plants at the maximum observed distance ranged from 3 CFU/g of leaflet after a rain episode of 110 mm/h for 10 min on soil to 117 CFU/g of leaflet on plastic mulch. Dispersal of Salmonella on plants with and without mulch was significantly enhanced by increasing rain duration from 0 to 10 min, but dispersal was reduced when rainfall duration increased from 10 to 30 min. Salmonella may be dispersed by rain to contaminate tomato plants in the field, especially during rain events of 10 min and when plastic mulch is used.

  16. Relationship between aerobic bacteria, salmonellae and Campylobacter on broiler carcasses.

    PubMed

    Cason, J A; Bailey, J S; Stern, N J; Whittemore, A D; Cox, N A

    1997-07-01

    Broiler carcasses were removed from commercial processing lines immediately after defeathering, before chilling, and after chilling to determine whether any relationship exists between aerobic bacteria and the human enteropathogens salmonellae and Campylobacter. In two experiments, a whole carcass rinse procedure was used to sample 30 carcasses after defeathering, 90 carcasses before chilling, and 90 carcasses after chilling, for a total of 210 different carcasses. Aerobic bacteria and Campylobacter spp. were enumerated and the incidence of salmonellae was determined. Salmonellae and Campylobacter incidences were 20 and 94%, respectively, for all carcasses sampled. After picking, neither salmonellae-positive nor Campylobacter-positive carcasses had mean aerobic most probable number (MPN) values that were different from carcasses negative for those organisms. Immediately before chilling, aerobic and Campylobacter counts were 7.12 and 5.33 log10 cfu per carcass, respectively. Immersion chilling reduced aerobic counts by approximately 1.8 log and Campylobacter by 1.5 log, with no change in salmonellae-positive carcasses. There was no difference in aerobic or Campylobacter counts between carcasses that were positive or negative for salmonellae at any of the sampling locations, nor was any correlation found between levels of aerobic organisms and Campylobacter. Carcasses with aerobic counts above the mean or more than one standard deviation above the mean also failed to show any correlation. Discriminant analysis indicated error rates as high as 50% when numbers of aerobic bacteria were used to predict incidence of salmonellae or Campylobacter on individual carcasses. Aerobic bacteria are not suitable as index organisms for salmonellae or Campylobacter on broiler carcasses.

  17. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals

    PubMed Central

    Frye, Jonathan G.; Jackson, Charlene R.

    2013-01-01

    The prevalence of antimicrobial resistance (AR) in bacteria isolated from U.S. food animals has increased over the last several decades as have concerns of AR foodborne zoonotic human infections. Resistance mechanisms identified in U.S. animal isolates of Salmonella enterica included resistance to aminoglycosides (e.g., alleles of aacC, aadA, aadB, ant, aphA, and StrAB), β-lactams (e.g., blaCMY−2, TEM−1, PSE−1), chloramphenicol (e.g., floR, cmlA, cat1, cat2), folate pathway inhibitors (e.g., alleles of sul and dfr), and tetracycline [e.g., alleles of tet(A), (B), (C), (D), (G), and tetR]. In the U.S., multi-drug resistance (MDR) mechanisms in Salmonella animal isolates were associated with integrons, or mobile genetic elements (MGEs) such as IncA/C plasmids which can be transferred among bacteria. It is thought that AR Salmonella originates in food animals and is transmitted through food to humans. However, some AR Salmonella isolated from humans in the U.S. have different AR elements than those isolated from food animals, suggesting a different etiology for some AR human infections. The AR mechanisms identified in isolates from outside the U.S. are also predominantly different. For example the extended spectrum β-lactamases (ESBLs) are found in human and animal isolates globally; however, in the U.S., ESBLs thus far have only been found in human and not food animal isolates. Commensal bacteria in animals including Escherichia coli and Enterococcus spp. may be reservoirs for AR mechanisms. Many of the AR genes and MGEs found in E. coli isolated from U.S. animals are similar to those found in Salmonella. Enterococcus spp. isolated from animals frequently carry MGEs with AR genes, including resistances to aminoglycosides (e.g., alleles of aac, ant, and aph), macrolides [e.g., erm(A), erm(B), and msrC], and tetracyclines [e.g., tet(K), (L), (M), (O), (S)]. Continuing investigations are required to help understand and mitigate the impact of AR bacteria on human

  18. Bacteriophage SP6 encodes a second tailspike protein that recognizes Salmonella enterica serogroups C{sub 2} and C{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhart, Dana; Williams, Steven R.; Scholl, Dean,

    SP6 is a salmonella phage closely related to coliphage K1-5. K1-5 is notable in that it encodes two polysaccharide-degrading tailspike proteins, an endosialidase that allows it to infect E. coli K1, and a lyase that enables it to infect K5 strains. SP6 is similar to K1-5 except that it encodes a P22-like endorhamnosidase tailspike, gp46, allowing it to infect group B Salmonella. We show here that SP6 can also infect Salmonella serogroups C{sub 2} and C{sub 3} and that a mutation in a putative second tailspike, gp47, eliminates this specificity. Gene 47 was fused to the coding region of themore » N-terminal portion of the Pseudomonas aeruginosa R2 pyocin tail fiber and expressed in trans such that the fusion protein becomes incorporated into pyocin particles. These pyocins, termed AvR2-SP47, killed serogroups C{sub 2} and C{sub 3}Salmonella. We conclude that SP6 encodes two tail proteins providing it a broad host range among Salmonella enterica. - Highlights: • SP6 is a “dual specificity” bacteriophage that encodes two different receptor binding proteins giving it a broad host range. • These receptor binding proteins can be used to re-target the spectrum of R-type bacteriocins to Salmonella enterica. • Both SP6 and the engineered R-type bacteriocins can kill the Salmonella serovars most associated with human disease making them attractive for development as antimicrobial agents.« less

  19. One Health and Food-Borne Disease: Salmonella Transmission between Humans, Animals, and Plants.

    PubMed

    Silva, Claudia; Calva, Edmundo; Maloy, Stanley

    2014-02-01

    There are >2,600 recognized serovars of Salmonella enterica. Many of these Salmonella serovars have a broad host range and can infect a wide variety of animals, including mammals, birds, reptiles, amphibians, fish, and insects. In addition, Salmonella can grow in plants and can survive in protozoa, soil, and water. Hence, broad-host-range Salmonella can be transmitted via feces from wild animals, farm animals, and pets or by consumption of a wide variety of common foods: poultry, beef, pork, eggs, milk, fruit, vegetables, spices, and nuts. Broad-host-range Salmonella pathogens typically cause gastroenteritis in humans. Some Salmonella serovars have a more restricted host range that is associated with changes in the virulence plasmid pSV, accumulation of pseudogenes, and chromosome rearrangements. These changes in host-restricted Salmonella alter pathogen-host interactions such that host-restricted Salmonella organisms commonly cause systemic infections and are transmitted between host populations by asymptomatic carriers. The secondary consequences of efforts to eliminate host-restricted Salmonella serovars demonstrate that basic ecological principles govern the environmental niches occupied by these pathogens, making it impossible to thwart Salmonella infections without a clear understanding of the human, animal, and environmental reservoirs of these pathogens. Thus, transmission of S. enterica provides a compelling example of the One Health paradigm because reducing human infections will require the reduction of Salmonella in animals and limitation of transmission from the environment.

  20. Specificity tests of an oligonucleotide probe against food-outbreak salmonella for biosensor detection

    NASA Astrophysics Data System (ADS)

    Chen, I.-H.; Horikawa, S.; Xi, J.; Wikle, H. C.; Barbaree, J. M.; Chin, B. A.

    2017-05-01

    Phage based magneto-elastic (ME) biosensors have been shown to be able to rapidly detect Salmonella in various food systems to serve food pathogen monitoring purposes. In this ME biosensor platform, the free-standing strip-shaped magneto-elastic sensor is the transducer and the phage probe that recognizes Salmonella in food serves as the bio-recognition element. According to Sorokulova et al. at 2005, a developed oligonucleotide probe E2 was reported to have high specificity to Salmonella enterica Typhimurium. In the report, the specificity tests were focused in most of Enterobacterace groups outside of Salmonella family. Here, to understand the specificity of phage E2 to different Salmonella enterica serotypes within Salmonella Family, we further tested the specificity of the phage probe to thirty-two Salmonella serotypes that were present in the major foodborne outbreaks during the past ten years (according to Centers for Disease Control and Prevention). The tests were conducted through an Enzyme linked Immunosorbent Assay (ELISA) format. This assay can mimic probe immobilized conditions on the magnetoelastic biosensor platform and also enable to study the binding specificity of oligonucleotide probes toward different Salmonella while avoiding phage/ sensor lot variations. Test results confirmed that this oligonucleotide probe E2 was high specific to Salmonella Typhimurium cells but showed cross reactivity to Salmonella Tennessee and four other serotypes among the thirty-two tested Salmonella serotypes.