Sample records for salmonella reversion assay

  1. Studies on the genotoxic properties of essential oils with Bacillus subtilis rec-assay and Salmonella/microsome reversion assay.

    PubMed

    Zani, F; Massimo, G; Benvenuti, S; Bianchi, A; Albasini, A; Melegari, M; Vampa, G; Bellotti, A; Mazza, P

    1991-06-01

    Genotoxic properties of essential oils from Anthemis nobilis L., Artemisia dracunculus L., Salvia officinalis L., Salvia sclarea L., Satureja hortensis L., Satureja montana L., Thymus capitatus L., Thymus citriodorus Schreb., Thymus vulgaris L., Citrus bergamia Risso, were studied with Bacillus subtilis rec-assay and Salmonella/microsome reversion assay. The essential oil of Artemisia dracunculus L. "Piemontese" turned out to be active in the rec-assay but not in the Salmonella test. DNA-damaging activity was demonstrated to be due to the estragol component of the oil. Advantages of the combined use of these two short-term microbial assays in genotoxic studies are discussed.

  2. Comparison of reverse transcriptase PCR, reverse transcriptase loop-mediated isothermal amplification, and culture-based assays for Salmonella detection from pork processing environments.

    PubMed

    Techathuvanan, Chayapa; Draughon, Frances Ann; D'Souza, Doris Helen

    2011-02-01

    Novel rapid Salmonella detection assays without the need for sophisticated equipment or labor remain in high demand. Real-time reverse transcriptase PCR (RT-PCR) assays, though rapid and sensitive, require expensive thermocyclers, while a novel RT loop-mediated isothermal amplification (RT-LAMP) method requires only a simple water bath. Our objective was to compare the detection sensitivity of Salmonella Typhimurium from the pork processing environment by RT-LAMP, RT-PCR, and culture-based assays. Carcass and surface swabs and carcass rinses were obtained from a local processing plant. Autoclaved carcass rinses (500 ml) were spiked with Salmonella Typhimurium and filtered. Filters were placed in stomacher bags containing tetrathionate broth (TTB) and analyzed with or without 10-h enrichment at 37 °C. Natural swabs were stomached with buffered peptone water, and natural carcass rinses were filtered, preenriched, and further enriched in TTB. Serially-diluted enriched samples were enumerated by spread plating on xylose lysine Tergitol 4 agar. RNA was extracted from 5 ml of enriched TTB with TRIzol. RT-LAMP assay using previously described invA primers was conducted at 62 °C for 90 min in a water bath with visual detection and by gel electrophoresis. SYBR Green I-based-real-time RT-PCR was carried out with invA primers followed by melt temperature analysis. The results of RT-LAMP detection for spiked carcass rinses were comparable to those of RT-PCR and cultural plating, with detection limits of 1 log CFU/ml, although they were obtained significantly faster, within 24 h including preenrichment and enrichment. RT-LAMP showed 4 of 12 rinse samples positive, while RT-PCR showed 1 of 12 rinse samples positive. For swabs, 6 of 27 samples positive by RT-LAMP and 5 of 27 by RT-PCR were obtained. This 1-day RT-LAMP assay shows promise for routine Salmonella screening by the pork industry. Copyright ©, International Association for Food Protection

  3. Serotype determination of Salmonella by xTAG assay.

    PubMed

    Zheng, Zhibei; Zheng, Wei; Wang, Haoqiu; Pan, Jincao; Pu, Xiaoying

    2017-10-01

    Currently, no protocols or commercial kits are available to determine the serotypes of Salmonella by using Luminex MAGPIX®. In this study, an xTAG assay for serotype determination of Salmonella suitable for Luminex MAGPIX® is described and 228 Salmonella isolates were serotype determined by this xTAG assay. The xTAG assay consists of two steps: 1) Multiplex PCR to amplify simultaneously O, H and Vi antigen genes of Salmonella, and 2) Magplex-TAG™ microsphere hybridization to identify accurately the specific PCR products of different antigens. Compared with the serotyping results of traditional serum agglutination test, the sensitivity and specificity of the xTAG assay were 95.1% and 100%, respectively. The agreement rate of these two assays was 95.2%. Compared with Luminex xMAP® Salmonella Serotyping Assay (SSA) kit, the advantages of this xTAG assay are: First, the magnetic beads make it applicable to both the Luminex®100/200™ and MAGPIX® systems. Second, only primers rather than both primers and probes are needed in the xTAG assay, and the process of coupling antigen-specific oligonucleotide probes to beads is circumvented, which make the xTAG assay convenient to be utilized by other laboratories. The xTAG assay may serve as a rapid alternative or complementary method for traditional Salmonella serotyping tests, especially for laboratories that utilize the MAGPIX® systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Broad-range (pan) Salmonella and Salmonella serotype typhi-specific real-time PCR assays: potential tools for the clinical microbiologist.

    PubMed

    Farrell, John J; Doyle, Laura J; Addison, Rachel M; Reller, L Barth; Hall, Geraldine S; Procop, Gary W

    2005-03-01

    We describe broad-range salmonellae (ie, Salmonella) and Salmonella serotype Typhi-specific LightCycler (Roche Diagnostics, Indianapolis, IN) real-time polymerase chain reaction assays. We validated these with a battery of 280 bacteria, 108 of which were salmonellae representing 20 serotypes. In addition, 298 isolates from 170 clinical specimens that were suspected to possibly represent Salmonella were tested with the pan- Salmonella assay. Finally, the pan-Salmonella assay also was used to test DNA extracts from 101 archived, frozen stool specimens, 55 of which were culture-positive for salmonellae. Both assays were 100% sensitive and specific when cultured isolates of the battery were tested. The pan- Salmonella assay also characterized correctly all salmonellae on the primary isolation agar and was 96% sensitive (53/55) and 96% specific (49/51) when nucleic acid extracts from direct stool specimens were tested. These assays represent potential tools the clinical microbiologist could use to screen suspect isolates or stool specimens for Salmonella.

  5. Evaluation of the Thermo Scientific™ SureTect™ Salmonella species Assay.

    PubMed

    Cloke, Jonathan; Clark, Dorn; Radcliff, Roy; Leon-Velarde, Carlos; Larson, Nathan; Dave, Keron; Evans, Katharine; Crabtree, David; Hughes, Annette; Simpson, Helen; Holopainen, Jani; Wickstrand, Nina; Kauppinen, Mikko

    2014-03-01

    The Thermo Scientific™ SureTect™ Salmonella species Assay is a new real-time PCR assay for the detection of Salmonellae in food and environmental samples. This validation study was conducted using the AOAC Research Institute (RI) Performance Tested MethodsSM program to validate the SureTect Salmonella species Assay in comparison to the reference method detailed in International Organization for Standardization 6579:2002 in a variety of food matrixes, namely, raw ground beef, raw chicken breast, raw ground pork, fresh bagged lettuce, pork frankfurters, nonfat dried milk powder, cooked peeled shrimp, pasteurized liquid whole egg, ready-to-eat meal containing beef, and stainless steel surface samples. With the exception of liquid whole egg and fresh bagged lettuce, which were tested in-house, all matrixes were tested by Marshfield Food Safety, Marshfield, WI, on behalf of Thermo Fisher Scientific. In addition, three matrixes (pork frankfurters, lettuce, and stainless steel surface samples) were analyzed independently as part of the AOAC-RI-controlled laboratory study by the University of Guelph, Canada. No significant difference by probability of detection or McNemars Chi-squared statistical analysis was found between the candidate or reference methods for any of the food matrixes or environmental surface samples tested during the validation study. Inclusivity and exclusivity testing was conducted with 117 and 36 isolates, respectively, which demonstrated that the SureTect Salmonella species Assay was able to detect all the major groups of Salmonella enterica subspecies enterica (e.g., Typhimurium) and the less common subspecies of S. enterica (e.g., arizoniae) and the rarely encountered S. bongori. None of the exclusivity isolates analyzed were detected by the SureTect Salmonella species Assay. Ruggedness testing was conducted to evaluate the performance of the assay with specific method deviations outside of the recommended parameters open to variation

  6. Spiral Salmonella assay: validation against the standard pour-plate assay.

    PubMed

    Diehl, M; Fort, F

    1996-01-01

    The spiral Ames assay, an automated approach to bacterial mutagenicity testing which simplifies the test procedure and reduces the amount of drug required to generate mutagenic dose-response information, has been evaluated and validated for routine screening. The spiral plater delivers the Salmonella bacteria, exogenous metabolic activation system and drug to the surface of a rotating agar plate one on top of another in such a way that a uniform density of bacteria is exposed to a logarithmically decreasing volume of drug. Following an incubation of 48 hr at 37 degrees C, the plates are scanned by a laser counter, and the data are subjected to a computerized analysis. Petri plates of 15 cm diameter were used to provide a concentration range of about 250-fold per plate. The Salmonella were concentrated 20-fold to increase sensitivity. Thirty-eight compounds from a variety of chemical classes, including both pharmaceuticals and known mutagens of moderate to strong potency, were tested in both the spiral and the standard pour-plate assays. There was overall test agreement on positive or negative results for 82% of the compounds tested. When only the results from strains TA98 plus TA100 were considered, the agreement was 87%. When positive results were obtained, the fold increase over vehicle control was on average twice as great for the spiral assay compared to the pour-plate assay. It was concluded that the two assay procedures generally provided comparable results, with the spiral assay being somewhat more sensitive in terms of dose-response than the pour-plate assay.

  7. Rapid and Sensitive Salmonella Typhi Detection in Blood and Fecal Samples Using Reverse Transcription Loop-Mediated Isothermal Amplification.

    PubMed

    Fan, Fenxia; Yan, Meiying; Du, Pengcheng; Chen, Chen; Kan, Biao

    2015-09-01

    Typhoid fever caused by Salmonella enterica serovar Typhi remains a significant public health problem in developing countries. Although the main method for diagnosing typhoid fever is blood culture, the test is time consuming and not always able to detect infections. Thus, it is very difficult to distinguish typhoid from other infections in patients with nonspecific symptoms. A simple and sensitive laboratory detection method remains necessary. The purpose of this study is to establish and evaluate a rapid and sensitive reverse transcription-based loop-mediated isothermal amplification (RT-LAMP) method to detect Salmonella Typhi infection. In this study, a new specific gene marker, STY1607, was selected to develop a STY1607-RT-LAMP assay; this is the first report of specific RT-LAMP detection assay for typhoid. Human-simulated and clinical blood/stool samples were used to evaluate the performance of STY1607-RT-LAMP for RNA detection; this method was compared with STY1607-LAMP, reverse transcription real-time polymerase chain reaction (rRT-PCR), and bacterial culture methods for Salmonella Typhi detection. Using mRNA as the template, STY1607-RT-LAMP exhibited 50-fold greater sensitivity than STY1607-LAMP for DNA detection. The STY1607-RT-LAMP detection limit is 3 colony-forming units (CFU)/mL for both the pure Salmonella Typhi samples and Salmonella Typhi-simulated blood samples and was 30 CFU/g for the simulated stool samples, all of which were 10-fold more sensitive than the rRT-PCR method. RT-LAMP exhibited improved Salmonella Typhi detection sensitivity compared to culture methods and to rRT-PCR of clinical blood and stool specimens from suspected typhoid fever patients. Because it can be performed without sophisticated equipment or skilled personnel, RT-LAMP is a valuable tool for clinical laboratories in developing countries. This method can be applied in the clinical diagnosis and care of typhoid fever patients as well as for a quick public health response.

  8. Evaluation of the Thermo Scientific SureTect Salmonella species assay. AOAC Performance Tested Method 051303.

    PubMed

    Cloke, Jonathan; Clark, Dorn; Radcliff, Roy; Leon-Velarde, Carlos; Larson, Nathan; Dave, Keron; Evans, Katharine; Crabtree, David; Hughes, Annette; Simpson, Helen; Holopainen, Jani; Wickstrand, Nina; Kauppinen, Mikko

    2014-01-01

    The Thermo Scientific SureTect Salmonella species Assay is a new real-time PCR assay for the detection of Salmonellae in food and environmental samples. This validation study was conducted using the AOAC Research Institute (RI) Performance Tested Methods program to validate the SureTect Salmonella species Assay in comparison to the reference method detailed in International Organization for Standardization 6579:2002 in a variety of food matrixes, namely, raw ground beef, raw chicken breast, raw ground pork, fresh bagged lettuce, pork frankfurters, nonfat dried milk powder, cooked peeled shrimp, pasteurized liquid whole egg, ready-to-eat meal containing beef, and stainless steel surface samples. With the exception of liquid whole egg and fresh bagged lettuce, which were tested in-house, all matrixes were tested by Marshfield Food Safety, Marshfield, WI, on behalf of Thermo Fisher Scientific. In addition, three matrixes (pork frankfurters, lettuce, and stainless steel surface samples) were analyzed independently as part of the AOAC-RI-controlled laboratory study by the University of Guelph, Canada. No significant difference by probability of detection or McNemars Chi-squared statistical analysis was found between the candidate or reference methods for any of the food matrixes or environmental surface samples tested during the validation study. Inclusivity and exclusivity testing was conducted with 117 and 36 isolates, respectively, which demonstrated that the SureTect Salmonella species Assay was able to detect all the major groups of Salmonella enterica subspecies enterica (e.g., Typhimurium) and the less common subspecies of S. enterica (e.g., arizoniae) and the rarely encountered S. bongori. None of the exclusivity isolates analyzed were detected by the SureTect Salmonella species Assay. Ruggedness testing was conducted to evaluate the performance of the assay with specific method deviations outside of the recommended parameters open to variation (enrichment time

  9. Immunochromatographic strip assay for the rapid and sensitive detection of Salmonella Typhimurium in artificially contaminated tomato samples.

    PubMed

    Shukla, Shruti; Leem, Hyerim; Lee, Jong-Suk; Kim, Myunghee

    2014-06-01

    This study was designed to confirm the applicability of a liposome-based immunochromatographic assay for the rapid detection of Salmonella enterica subsp. enterica serovar Typhimurium (Salmonella Typhimurium) in artificially contaminated tomato samples. To determine the detection limit and pre-enrichment incubation time (10, 12, and 18 h pre-enrichment in 1% buffered peptone water), the tests were performed with different cell numbers of Salmonella Typhimurium (3 × 10(0), 3 × 10(1), 3 × 10(2), and 3 × 10(3) CFU·mL(-1)) inoculated into 25 g of crushed tomato samples. The assay was able to detect as few as 30 Salmonella Typhimurium cells per 25 g of tomato samples (1.2 cells·g(-1)) after 12 h pre-enrichment incubation. Moreover, when the developed assay was compared with traditional morphological and biochemical culture-based methods as well as colloidal gold nanoparticle-based commercial test strips, the developed assay yielded positive results for the detection of Salmonella Typhimurium within a shorter period time. These findings confirm that the developed assay may have practical application for the sensitive detection of Salmonella Typhimurium in various food samples, including raw vegetables, with a relatively low detection limit and shorter analysis time.

  10. Validation of a Salmonella loop-mediated isothermal amplification assay in animal food.

    PubMed

    Domesle, Kelly J; Yang, Qianru; Hammack, Thomas S; Ge, Beilei

    2018-01-02

    Loop-mediated isothermal amplification (LAMP) has emerged as a promising alternative to PCR for pathogen detection in food testing and clinical diagnostics. This study aimed to validate a Salmonella LAMP method run on both turbidimetry (LAMP I) and fluorescence (LAMP II) platforms in representative animal food commodities. The U.S. Food and Drug Administration (FDA)'s culture-based Bacteriological Analytical Manual (BAM) method was used as the reference method and a real-time quantitative PCR (qPCR) assay was also performed. The method comparison study followed the FDA's microbiological methods validation guidelines, which align well with those from the AOAC International and ISO. Both LAMP assays were 100% specific among 300 strains (247 Salmonella of 185 serovars and 53 non-Salmonella) tested. The detection limits ranged from 1.3 to 28 cells for six Salmonella strains of various serovars. Six commodities consisting of four animal feed items (cattle feed, chicken feed, horse feed, and swine feed) and two pet food items (dry cat food and dry dog food) all yielded satisfactory results. Compared to the BAM method, the relative levels of detection (RLODs) for LAMP I ranged from 0.317 to 1 with a combined value of 0.610, while those for LAMP II ranged from 0.394 to 1.152 with a combined value of 0.783, which all fell within the acceptability limit (2.5) for an unpaired study. This also suggests that LAMP was more sensitive than the BAM method at detecting low-level Salmonella contamination in animal food and results were available 3days sooner. The performance of LAMP on both platforms was comparable to that of qPCR but notably faster, particularly LAMP II. Given the importance of Salmonella in animal food safety, the LAMP assays validated in this study holds great promise as a rapid, reliable, and robust method for routine screening of Salmonella in these commodities. Published by Elsevier B.V.

  11. Evaluation of 3M molecular detection assay (MDA) Salmonella for the detection of Salmonella in selected foods: collaborative study.

    PubMed

    Bird, Patrick; Fisher, Kiel; Boyle, Megan; Huffman, Travis; Benzinger, M Joseph; Bedinghaus, Paige; Flannery, Jonathan; Crowley, Erin; Agin, James; Goins, David; Benesh, DeAnn; David, John

    2013-01-01

    The 3M Molecular Detection Assay (MDA) Salmonella is used with the 3M Molecular Detection System for the detection of Salmonella spp. in food, food-related, and environmental samples after enrichment. The assay utilizes loop-mediated isothermal amplification to rapidly amplify Salmonella target DNA with high specificity and sensitivity, combined with bioluminescence to detect the amplification. The 3M MDA Salmonella method was compared using an unpaired study design in a multilaboratory collaborative study to the U.S. Department of Agriculture/Food Safety and Inspection Service-Microbiology Laboratory Guidebook (USDA/FSIS-MLG 4.05), Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg and Catfish Products for raw ground beef and the U.S. Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Chapter 5 Salmonella reference method for wet dog food following the current AOAC guidelines. A total of 20 laboratories participated. For the 3M MDA Salmonella method, raw ground beef was analyzed using 25 g test portions, and wet dog food was analyzed using 375 g test portions. For the reference methods, 25 g test portions of each matrix were analyzed. Each matrix was artificially contaminated with Salmonella at three inoculation levels: an uninoculated control level (0 CFU/test portion), a low inoculum level (0.2-2 CFU/test portion), and a high inoculum level (2-5 CFU/test portion). In this study, 1512 unpaired replicate samples were analyzed. Statistical analysis was conducted according to the probability of detection (POD). For the low-level raw ground beef test portions, the following dLPOD (difference between the POD of the reference and candidate method) values with 95% confidence intervals were obtained: -0.01 (-0.14, +0.12). For the low-level wet dog food test portions, the following dLPOD with 95% confidence intervals were obtained: -0.04 (-0.16, +0.09). No significant differences were observed in the number of positive

  12. Rapid detection of Salmonella in food and feed by coupling loop-mediated isothermal amplification with bioluminescent assay in real-time.

    PubMed

    Yang, Qianru; Domesle, Kelly J; Wang, Fei; Ge, Beilei

    2016-06-17

    Salmonella is among the most significant pathogens causing food and feed safety concerns. This study examined the rapid detection of Salmonella in various types of food and feed samples by coupling loop-mediated isothermal amplification (LAMP) with a novel reporter, bioluminescent assay in real-time (BART). Performance of the LAMP-BART assay was compared to a conventional LAMP and the commercially available 3M Molecular Detection Assay (MDA) Salmonella. The LAMP-BART assay was 100 % specific among 178 strains (151 Salmonella and 27 non-Salmonella) tested. The detection limits were 36 cells per reaction in pure culture and 10(4) to 10(6) CFU per 25 g in spiked food and feed samples without enrichment, which were comparable to those of the conventional LAMP and 3M MDA Salmonella but 5-10 min faster. Ground turkey showed a strong inhibition on 3M MDA Salmonella, requiring at least 10(8) CFU per 25 g for detection. The correlation between Salmonella cell numbers and LAMP-BART signals was high (R (2) = 0.941-0.962), suggesting good quantification capability. After 24 h enrichment, all three assays accurately detected 1 to 3 CFU per 25 g of Salmonella among five types of food (cantaloupe, ground beef, ground turkey, shell eggs, and tomato) and three types of feed (cattle feed, chicken feed, and dry dog food) examined. However, 10(1) CFU per 25 g was required for cattle feed when tested by 3M MDA Salmonella. The Salmonella LAMP-BART assay was rapid, specific, sensitive, quantitative, and robust. Upon further validation, it may become a valuable tool for routine screening of Salmonella in various types of food and feed samples.

  13. METHODS FOR THE SPIRAL SALMONELLA MUTAGENICITY ASSAY INCLUDING SPECIALIZED APPLICATIONS

    EPA Science Inventory

    ABSTRACT

    An automated approach to bacterial mutagenicity testing--the spiral Salmonella assay--was developed to simplify testing and to reduce the labor and materials required to generate dose-responsive mutagenicity information. This document provides the reader with an ...

  14. 40 Years of the Salmonella Mutagenicity Assay: Implications for 21st Century Toxicology

    EPA Science Inventory

    The Salmonella (Ames) mutagenicity assay was developed and introduced by Bruce Ames and colleagues in 1971. Since then, it has become the standard assay for hazard identification of mutagens worldwide. It is a first-tier test for mutagenic activity in the pharmaceutical and chemi...

  15. Rapid detection and classification of Salmonella enterica shedding in feedlot cattle utilizing Roka Bioscience Atlas Salmonella detection assay for the analysis of rectoanal mucosal swabs

    USDA-ARS?s Scientific Manuscript database

    With an increasing focus on preharvest food safety, rapid methods are required for the detection and quantification of foodborne pathogens such as Salmonella enterica in beef cattle. We validated the Atlas Salmonella Detection Assay (SEN), a nucleic acid amplification technology that targets Salmone...

  16. Single-pipetting microfluidic assay device for rapid detection of Salmonella from poultry package.

    PubMed

    Fronczek, Christopher F; You, David J; Yoon, Jeong-Yeol

    2013-02-15

    A direct, sensitive, near-real-time, handheld optical immunoassay device was developed to detect Salmonella typhimurium in the naturally occurring liquid from fresh poultry packages (hereafter "chicken matrix"), with just single pipetting of sample (i.e., no filtration, culturing and/or isolation, thus reducing the assay time and the error associated with them). Carboxylated, polystyrene microparticles were covalently conjugated with anti-Salmonella, and the immunoagglutination due to the presence of Salmonella was detected by reading the Mie scatter signals from the microfluidic channels using a handheld device. The presence of chicken matrix did not affect the light scatter signal, since the optical parameters (particle size d, wavelength of incident light λ and scatter angle θ) were optimized to minimize the effect of sample matrix (animal tissues and blood proteins, etc.). The sample was loaded into a microfluidic chip that was split into two channels, one pre-loaded with vacuum-dried, antibody-conjugated particles and the other with vacuum-dried, bovine serum albumin-conjugated particles. This eliminated the need for a separate negative control, effectively minimizing chip-to-chip and sample-to-sample variations. Particles and the sample were diffused in-channel through chemical agitation by Tween 80, also vacuum-dried within the microchannels. Sequential mixing of the sample to the reagents under a strict laminar flow condition synergistically improved the reproducibility and linearity of the assay. In addition, dried particles were shown to successfully detect lower Salmonella concentrations for up to 8 weeks. The handheld device contains simplified circuitry eliminating unnecessary adjustment stages, providing a stable signal, thus maximizing sensitivity. Total assay time was 10 min, and the detection limit 10 CFU mL(-1) was observed in all matrices, demonstrating the suitability of this device for field assays. Copyright © 2012 Elsevier B.V. All rights

  17. Comparison of Real-Time PCR, Reverse Transcriptase Real-Time PCR, Loop-Mediated Isothermal Amplification, and the FDA Conventional Microbiological Method for the Detection of Salmonella spp. in Produce ▿ †

    PubMed Central

    Zhang, Guodong; Brown, Eric W.; González-Escalona, Narjol

    2011-01-01

    Contamination of foods, especially produce, with Salmonella spp. is a major concern for public health. Several methods are available for the detection of Salmonella in produce, but their relative efficiency for detecting Salmonella in commonly consumed vegetables, often associated with outbreaks of food poisoning, needs to be confirmed. In this study, the effectiveness of three molecular methods for detection of Salmonella in six produce matrices was evaluated and compared to the FDA microbiological detection method. Samples of cilantro (coriander leaves), lettuce, parsley, spinach, tomato, and jalapeno pepper were inoculated with Salmonella serovars at two different levels (105 and <101 CFU/25 g of produce). The inoculated produce was assayed by the FDA Salmonella culture method (Bacteriological Analytical Manual) and by three molecular methods: quantitative real-time PCR (qPCR), quantitative reverse transcriptase real-time PCR (RT-qPCR), and loop-mediated isothermal amplification (LAMP). Comparable results were obtained by these four methods, which all detected as little as 2 CFU of Salmonella cells/25 g of produce. All control samples (not inoculated) were negative by the four methods. RT-qPCR detects only live Salmonella cells, obviating the danger of false-positive results from nonviable cells. False negatives (inhibition of either qPCR or RT-qPCR) were avoided by the use of either a DNA or an RNA amplification internal control (IAC). Compared to the conventional culture method, the qPCR, RT-qPCR, and LAMP assays allowed faster and equally accurate detection of Salmonella spp. in six high-risk produce commodities. PMID:21803916

  18. Detection of viable Salmonella in ice cream by TaqMan real-time polymerase chain reaction assay combining propidium monoazide.

    PubMed

    Wang, Yuexia; Yang, Ming; Liu, Shuchun; Chen, Wanyi; Suo, Biao

    2015-09-01

    Real-time polymerase chain reaction (PCR) allows rapid detection of Salmonella in frozen dairy products, but it might cause a false positive detection result because it might amplify DNA from dead target cells as well. In this study, Salmonella-free frozen ice cream was initially inoculated with heat-killed Salmonella Typhimurium cells and stored at -18°C. Bacterial DNA extracted from the sample was amplified using TaqMan probe-based real-time PCR targeting the invA gene. Our results indicated that DNA from the dead cells remained stable in frozen ice cream for at least 20 days, and could produce fluorescence signal for real-time PCR as well. To overcome this limitation, propidium monoazide (PMA) was combined with real-time PCR. PMA treatment can effectively prevent PCR amplification from heat-killed Salmonella cells in frozen ice cream. The PMA real-time PCR assay can selectively detect viable Salmonella at as low as 10 3  CFU/mL. Combining 18 hours of pre-enrichment with the assay allows for the detection of viable Salmonella at 10 0  CFU/mL and avoiding the false-positive result of dead cells. The PMA real-time PCR assay provides an alternative specifically for detection of viable Salmonella in ice cream. However, when the PMA real-time PCR assay was evaluated in ice cream subjected to frozen storage, it obviously underestimated the contamination situation of viable Salmonella, which might lead to a false negative result. According to this result, the use of enrichment prior to PMA real-time PCR analysis remains as the more appropriate approach. Copyright © 2015. Published by Elsevier B.V.

  19. Development of multiplex PCR assay for simultaneous detection of Salmonella genus, Salmonella subspecies I, Salm. Enteritidis, Salm. Heidelberg and Salm. Typhimurium.

    PubMed

    Park, S H; Ricke, S C

    2015-01-01

    The aim of this research was to develop multiplex PCR assay that could simultaneously detect Salmonella genus, Salmonella subsp. I, Salm. Enteritidis, Heidelberg and Typhimurium because these Salmonella serovars are the most common isolates associated with poultry products. Five primers were utilized to establish multiplex PCR and applied to Salmonella isolates from chickens and farm environments. These isolates were identified as Salmonella subsp. I and 16 of 66 isolates were classified as Salm. Enteritidis, while Heidelberg or Typhimurium was not detected. We also spiked three Salmonella strains on chicken breast meat to evaluate the specificity and sensitivity of multiplex PCR as well as qPCR to optimize quantification of Salmonella in these samples. The optimized multiplex PCR and qPCR could detect approx. 2·2 CFU of Salmonella per gram after 18 h enrichment. The multiplex PCR and qPCR would provide rapid and consistent results. Also, these techniques would be useful for the detection and quantification of Salmonella in contaminated poultry, foods and environmental samples. The strategy for the rapid detection of Salmonella serovars in poultry is needed to further reduce the incidence of salmonellosis in humans. The optimized multiplex PCR will be useful to detect prevalent Salmonella serovars in poultry products. © 2014 The Society for Applied Microbiology.

  20. Screening complex hazardous wastes for mutagenic activity using a modified version of the TLC/Salmonella assay.

    PubMed

    Houk, V S; Claxton, L D

    1986-03-01

    10 complex hazardous wastes were tested for mutagenic activity using a modified version of the TLC/Salmonella assay developed by Bjørseth et al. (1982). This fractionation/bioassay scheme couples thin-layer chromatography (TLC) with the Salmonella/mammalian-microsome (Ames) assay for the detection of mutagenic constituents in complex mixtures. Crude (unadulterated) hazardous wastes and selected hazardous waste extracts were fractionated on commercially available cellulose TLC plates. Mutagenicity testing was performed in situ by applying a single overlay of minimal growth agar, tester strain TA98 or TA100, and the optional metabolic activation system directly onto the developed chromatogram. A mutagenic effect was indicated either by the appearance of localized clusters of revertant colonies or by an increase in total revertant growth vis-à-vis control plates. 7 of 10 hazardous wastes (including tars, emulsions, sludges, and spent acids and caustics) demonstrated mutagenic activity when tested by this method. To assess the sensitivity of the modified TLC/Salmonella assay, 14 Salmonella mutagens from a wide range of chemical classes and polarities were tested. Selected compounds included heterocyclics, aromatic amines, alkylating agents, antitumor agents, a nitrosamine and a nitroaromatic. 11 of the 14 mutagens were positive in this test system. The 3 compounds refractory to analysis included a polycyclic aromatic hydrocarbon and two volatiles.

  1. A multiplex single nucleotide polymorphism typing assay for detecting mutations that result in decreased fluoroquinolone susceptibility in Salmonella enterica serovars Typhi and Paratyphi A

    PubMed Central

    Song, Yajun; Roumagnac, Philippe; Weill, François-Xavier; Wain, John; Dolecek, Christiane; Mazzoni, Camila J.; Holt, Kathryn E.; Achtman, Mark

    2010-01-01

    Objectives Decreased susceptibility to fluoroquinolones has become a major problem for the successful therapy of human infections caused by Salmonella enterica, especially the life-threatening typhoid and paratyphoid fevers. Methods By using Luminex xTAG beads, we developed a rapid, reliable and cost-effective multiplexed genotyping assay for simultaneously detecting 11 mutations in gyrA, gyrB and parE of S. enterica serovars Typhi and Paratyphi A that result in nalidixic acid resistance (NalR) and/or decreased susceptibility to fluoroquinolones. Results This assay yielded unambiguous single nucleotide polymorphism calls on extracted DNA from 292 isolates of Salmonella Typhi (NalR = 223 and NalS = 69) and 106 isolates of Salmonella Paratyphi A (NalR = 24 and NalS = 82). All of the 247 NalR Salmonella Typhi and Salmonella Paratyphi A isolates were found to harbour at least one of the target mutations, with GyrA Phe-83 as the most common one (143/223 for Salmonella Typhi and 18/24 for Salmonella Paratyphi A). We also identified three GyrB mutations in eight NalS Salmonella Typhi isolates (six for GyrB Phe-464, one for GyrB Leu-465 and one for GyrB Asp-466), and mutations GyrB Phe-464 and GyrB Asp-466 seem to be related to the decreased ciprofloxacin susceptibility phenotype in Salmonella Typhi. This assay can also be used directly on boiled single colonies. Conclusions The assay presented here would be useful for clinical and reference laboratories to rapidly screen quinolone-resistant isolates of Salmonella Typhi and Salmonella Paratyphi A, and decipher the underlying genetic changes for epidemiological purposes. PMID:20511368

  2. A multiplex real-time PCR assay, based on invA and pagC genes, for the detection and quantification of Salmonella enterica from cattle lymph nodes.

    PubMed

    Bai, Jianfa; Trinetta, Valentina; Shi, Xiaorong; Noll, Lance W; Magossi, Gabriela; Zheng, Wanglong; Porter, Elizabeth P; Cernicchiaro, Natalia; Renter, David G; Nagaraja, Tiruvoor G

    2018-05-01

    Cattle lymph nodes can harbor Salmonella and potentially contaminate beef products. We have developed and validated a new real-time PCR (qPCR) assay for the detection and quantification of Salmonella enterica in cattle lymph nodes. The assay targets both the invA and pagC genes, the most conserved molecular targets in Salmonella enterica. An 18S rRNA gene assay that amplifies from cattle and other animal species was also included as an internal control. Available DNA sequences for invA, pagC and 18S rRNA genes were used for primer and probe selections. Three Salmonella serotypes, S. Typhimurium, S. Anatum, and S. Montevideo, were used to assess the assay's analytical sensitivity. Correlation coefficients of standard curves generated for each target and for all three serotypes were >99% and qPCR amplification efficiencies were between 93% and 110%. Assay sensitivity was also determined using standard curve data generated from Salmonella-negative cattle lymph nodes spiked with 10-fold dilutions of the three Salmonella serotypes. Assay specificity was determined using Salmonella culture method, and qPCR testing on 36 Salmonella strains representing 33 serotypes, 38 Salmonella strains of unknown serotypes, 252 E. coli strains representing 40 serogroups, and 31 other bacterial strains representing 18 different species. A collection of 647 cattle lymph node samples from steers procured from the Midwest region of the US were tested by the qPCR, and compared to culture-method of detection. Salmonella prevalence by qPCR for pre-enriched and enriched lymph nodes was 19.8% (128/647) and 94.9% (614/647), respectively. A majority of qPCR positive pre-enriched samples (105/128) were at concentrations between 10 4 and 10 5  CFU/mL. Culture method detected Salmonella in 7.7% (50/647) and 80.7% (522/647) of pre- and post-enriched samples, respectively; 96.0% (48/50) of pre-enriched and 99.4% (519/522) of post-enriched culture-positive samples were also positive by qPCR. More

  3. [Safety Evaluation of Rare Sugar Syrup: Single-dose Oral Toxicity in Rats, Reverse Mutation Assay, Chromosome Aberration Assay, and Acute Non-Effect Level for Diarrhea of a Single Dose in Humans].

    PubMed

    Yamada, Takako; Iida, Tetsuo; Takamine, Satoshi; Hayashi, Noriko; Okuma, Kazuhiro

    2015-01-01

    The safety of rare sugar syrup obtained from high-fructose corn syrup under slightly alkaline conditions was studied. Mutagenicity of rare sugar syrup was assessed by a reverse mutation assay using Salmonella typhimurium and Escherichia coli, and an in vitro chromosomal aberration assay using Chinese hamster lung cell line (CHL/IU). No mutagenicity of rare sugar syrup was detected under these experimental conditions. Oral administration of single dose (15,000 mg/kg) of rare sugar syrup to rats caused no abnormalities, suggesting no adverse effect of rare sugar syrup. In humans, the acute non-effect level of rare sugar syrup for causing diarrhea was estimated as 0.9 g/kg body weight as dry solid base in both males and females.

  4. Modification of the BAX System PCR assay for detecting Salmonella in beef, produce, and soy protein isolate. Performance Tested Method 100201.

    PubMed

    Peng, Linda X; Wallace, Morgan; Andaloro, Bridget; Fallon, Dawn; Fleck, Lois; Delduco, Dan; Tice, George

    2011-01-01

    The BAX System PCR assay for Salmonella detection in foods was previously validated as AOAC Research Institute (RI) Performance Tested Method (PTM) 100201. New studies were conducted on beef and produce using the same media and protocol currently approved for the BAX System PCR assay for E. coli O157:H7 multiplex (MP). Additionally, soy protein isolate was tested for matrix extension using the U.S. Food and Drug Administration-Bacteriological Analytical Manual (FDA-BAM) enrichment protocols. The studies compared the BAX System method to the U.S. Department of Agriculture culture method for detecting Salmonella in beef and the FDA-BAM culture method for detecting Salmonella in produce and soy protein isolate. Method comparison studies on low-level inoculates showed that the BAX System assay for Salmonella performed as well as or better than the reference method for detecting Salmonella in beef and produce in 8-24 h enrichment when the BAX System E. coli O157:H7 MP media was used, and soy protein isolate in 20 h enrichment with lactose broth followed by 3 h regrowth in brain heart infusion broth. An inclusivity panel of 104 Salmonella strains with diverse serotypes was tested by the BAX System using the proprietary BAX System media and returned all positive results. Ruggedness factors involved in the enrichment phase were also evaluated by testing outside the specified parameters, and none of the factors examined affected the performance of the assay.

  5. Mutagenicity evaluation of metal oxide nanoparticles by the bacterial reverse mutation assay.

    PubMed

    Pan, Xiaoping; Redding, James E; Wiley, Patricia A; Wen, Lisa; McConnell, J Scott; Zhang, Baohong

    2010-03-01

    Nanomaterials have been emerging as a new group of contaminants in the environment. We reported the use of a bacterial reverse mutation assay (Ames assay) to evaluate the mutagenicity of five metal oxide nanoparticles Al(2)O(3), Co(3)O(4), CuO, TiO(2), and ZnO in this study. Results showed the mutagenicity was negative for four nanoparticles (Al(2)O(3), Co(3)O(4), TiO(2), and ZnO) up to 1000mug/plate to all three tested strains without S9 metabolic activation. Using a preincubation procedure and high S9 (9%) activation, TiO(2) and ZnO induced marginal mutagenesis to strain Escherichia coli WP2 trp uvrA. CuO displayed low mutagenic potential to Salmonella typhimurium TA97a and TA100 at specific concentrations. However, the colony inhibition effect of CuO was predominant to the strain E. coli WP2 trp uvrA. A dose-dependent inhibition of Escherichia coli WP2 colony was found under CuO exposure at concentration range of 100-1600mug/plate. No growth inhibition of tested bacterial strains by Al(2)O(3), Co(3)O(4), and ZnO was observed at the concentrations used. Published by Elsevier Ltd.

  6. The Salmonella Mutagenicity Assay: The Stethoscope of Genetic Toxicology for the 21 st Century

    EPA Science Inventory

    OBJECTIVES: According to the 2007 National Research Council report Toxicology for the Twenty-first Century, modem methods ("omics," in vitro assays, high-throughput testing, computational methods, etc.) will lead to the emergence of a new approach to toxicology. The Salmonella ma...

  7. DETECTION OF FRNA COLIPHAGES IN GROUNDWATER: INTERFERENCE WITH THE ASSAY BY SOMATIC SALMONELLA BACTERIOPHAGES

    EPA Science Inventory

    Groundwater samples from two sites in Alabama, USA were plaque assayed for F-specific RNA (FRNA) coliphages using Salmonella typhimurium WG49 as the host bacterium. While numerous plaques were detected with WG49 (a strain possessing Escherichia coli F pili), plaques were also obs...

  8. Visual detection technique for efficient screening and isolation of Salmonella based on a novel enrichment assay using chromatography membrane.

    PubMed

    Tang, F; Xiong, Y; Zhang, H; Wu, K; Xiang, Y; Shao, J-B; Ai, H-W; Xiang, Y-P; Zheng, X-L; Lv, J-R; Sun, H; Bao, L-S; Zhang, Z; Hu, H-B; Zhang, J-Y; Chen, L; Lu, J; Liu, W-Y; Mei, H; Ma, Y; Xu, C-F; Fang, A-Y; Gu, M; Xu, C-Y; Chen, Y; Chen, Z; Sun, Z-Y

    2016-03-01

    To detect Salmonella more efficiently and isolate strains more easily, a novel and simple detection method that uses an enrichment assay and two chromogenic reactions on a chromatography membrane was developed. Grade 3 chromatography paper is used as functionalized solid phase support (SPS), which contains specially optimized medium. One reaction for screening is based on the sulfate-reducing capacity of Salmonella. Hydrogen sulfide (H2S) generated by Salmonella reacts with ammonium ferric citrate to produce black colored ferrous sulfide. Another reaction is based on Salmonella C8 esterase that is unique for Enterobacteriaceae except Serratia and interacts with 4-methylumbelliferyl caprylate (MUCAP) to produce fluorescent umbelliferone, which is visible under ultraviolet light. A very low detection limit (10(1) CFU ml(-1)) for Salmonella was achieved on the background of 10(5) CFU ml(-1) Escherichia coli. More importantly, testing with more than 1,000 anal samples indicated that our method has a high positive detection rate and is relatively low cost, compared with the traditional culture-based method. It took only 1 day for the preliminary screening and 2 days to efficiently isolate the Salmonella cells, indicating that the new assay is specific, rapid, and simple for Salmonella detection. In contrast to the traditional culture-based method, this method can be easily used to screen and isolate targeted strains with the naked eye. The results of quantitative and comparative experiments showed that the visual detection technique is an efficient alternative method for the screening of Salmonella spp. in many applications of large-sized samples related to public health surveillance.

  9. Use of the microscreen phage-induction assay to assess the genotoxicity of 14 hazardous industrial wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houk, V.S.; DeMarini, D.M.

    1988-01-01

    The Microscreen phage-induction assay, which quantitatively measures the induction of prophage lambda in Escherichia coli WP2s(lambda), was used to test 14 crude (unfractionated) hazardous industrial waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 pg per ml. Comparisons between the ability of these waste samples to induce prophage and their mutagenicity in the Salmonella reverse mutation assay indicate that the phage-induction assay detected genotoxic activity in all but one of the wastes that were mutagenic in Salmonella. Moreover, themore » Microscreen assay detected as genotoxic five additional wastes that were not detected in the Salmonella assay. The applicability of the Microscreen phage-induction assay for screening hazardous wastes for genotoxic activity is discussed, as are some of the problems associated with screening highly toxic wastes containing toxic volatile compounds.« less

  10. Loop-Mediated Isothermal Amplification of the sefA Gene for Rapid Detection of Salmonella Enteritidis and Salmonella Gallinarum in Chickens.

    PubMed

    Gong, Jiansen; Zhuang, Linlin; Zhu, Chunhong; Shi, Shourong; Zhang, Di; Zhang, Linji; Yu, Yan; Dou, Xinhong; Xu, Bu; Wang, Chengming

    2016-04-01

    Salmonella spp. pose a threat to both human and animal health, with more than 2600 serovars having been reported to date. Salmonella serovars are usually identified by slide agglutination tests, which are labor intensive and time consuming. In an attempt to develop a more rapid screening method for the major poultry Salmonella serovars, we developed a loop-mediated isothermal amplification (LAMP) assay, which directly detected the sefA gene, a fimbrial operon gene existing in several specific serovars of Salmonella enterica including the major poultry serovars, namely Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) and Salmonella enterica serovar Gallinarum (Salmonella Gallinarum). With the 177 bacterial strains we tested, positive reactions were only observed with 85 strains of serovar Salmonella Enteritidis and Salmonella Gallinarum. The detection limit of the LAMP assay was 4 CFU/reaction with genomic DNAs of Salmonella Enteritidis (ATCC 13076) from pure culture and 400 CFU/ reaction with DNA extracted from spiked chicken feces. The LAMP assay was more sensitive than conventional culture, especially without enrichment, in detecting Salmonella Enteritidis (CMCC 50041) in the spiked fecal samples. The results show the sefA LAMP method is a rapid, sensitive, specific, and practical method for directly detection of Salmonella Enteritidis and Salmonella Gallinarum in chickens. The sefA LAMP assay can potentially serve as new on-site diagnostics in the poultry industry.

  11. A rapid Salmonella detection method involving thermophilic helicase-dependent amplification and a lateral flow assay.

    PubMed

    Du, Xin-Jun; Zhou, Tian-Jiao; Li, Ping; Wang, Shuo

    2017-08-01

    Salmonella is a major foodborne pathogen that is widespread in the environment and can cause serious human and animal disease. Since conventional culture methods to detect Salmonella are time-consuming and laborious, rapid and accurate techniques to detect this pathogen are critically important for food safety and diagnosing foodborne illness. In this study, we developed a rapid, simple and portable Salmonella detection strategy that combines thermophilic helicase-dependent amplification (tHDA) with a lateral flow assay to provide a detection result based on visual signals within 90 min. Performance analyses indicated that the method had detection limits for DNA and pure cultured bacteria of 73.4-80.7 fg and 35-40 CFU, respectively. Specificity analyses showed no cross reactions with Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, Enterobacter aerogenes, Shigella and Campylobacter jejuni. The results for detection in real food samples showed that 1.3-1.9 CFU/g or 1.3-1.9 CFU/mL of Salmonella in contaminated chicken products and infant nutritional cereal could be detected after 2 h of enrichment. The same amount of Salmonella in contaminated milk could be detected after 4 h of enrichment. This tHDA-strip can be used for the rapid detection of Salmonella in food samples and is particularly suitable for use in areas with limited equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Multiplex quantification of Escherichia coli, Salmonella typhi and Vibrio cholera with three DNA targets in single reaction assay.

    PubMed

    Jangampalli Adi, Pradeepkiran; Naidu, Jagadish R; Matcha, Bhaskar

    2017-09-01

    Escherichia coli (E. coli), Salmonella typhi and Vibrio cholera harmful pathogens, which causes various diseases in humans. Rapid diagnosis of bacterial infection is an important for patient management and appropriate therapy during the early phase of the bacterial infected diseases. Among the existing techniques for identifying pathogens were less sensitive and time-consuming processes. In the present study total, 48 clinical 31 blood and 17 urine samples of patients suspected with the infections were collected from SVRR Hospital and used to detect the pathogens. Multiplex polymerase chain reaction (PCR) assay was set to design for the identification of Escherichia coli, Salmonella typhi and Vibrio cholera from the different clinical samples. Rapid diagnosis of Escherichia coli (E. coli), Salmonella and Vibrio cholera pathogens can be done with simultaneously in a single multiplex PCR assay by using specific primers with adjusted PCR conditions. Through this approach, the results represented with out of 31 blood samples 1-15 shows the positive with E. coli and remaining 14 only 11 were correlated with multiplex results of Vibrio cholera, remaining the urine samples all are positive with 17 samples correlate with the Salmonella typhi. Through the high specificity benefits of excellent sensitivity, with high resolution and reproducibility. This method of results proved and illustrates the best potential system for diagnosing the infectious disease with modern trendy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Rectal swab sampling followed by an enrichment culture-based real-time PCR assay to detect Salmonella enterocolitis in children.

    PubMed

    Lin, L-H; Tsai, C-Y; Hung, M-H; Fang, Y-T; Ling, Q-D

    2011-09-01

    Although routine bacterial culture is the traditional reference standard method for the detection of Salmonella infection in children with diarrhoea, it is a time-consuming procedure that usually only gives results after 3-4 days. Some molecular detection methods can improve the turn-around time to within 24 h, but these methods are not applied directly from stool or rectal swab specimens as routine diagnostic methods for the detection of gastrointestinal pathogens. In this study, we tested the feasibility of a bacterial enrichment culture-based real-time PCR assay method for detecting and screening for diarrhoea in children caused by Salmonella. Our results showed that the minimum real-time PCR assay time required to detect enriched bacterial culture from a swab was 3 h. In all children with suspected Salmonella diarrhoea, the enrichment culture-based real-time PCR achieved 85.4% sensitivity and 98.1% specificity, as compared with the 53.7% sensitivity and 100% specificity of detection with the routine bacterial culture method. We suggest that rectal swab sampling followed by enrichment culture-based real-time PCR is suitable as a rapid method for detecting and screening for Salmonella in paediatric patients. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  14. A Multiplex RT-PCR Assay for S. aureus, L. monocytogenes, and Salmonella spp. Detection in Raw Milk with Pre-enrichment.

    PubMed

    Ding, Tian; Suo, Yuanjie; Zhang, Zhaohuan; Liu, Donghong; Ye, Xingqian; Chen, Shiguo; Zhao, Yong

    2017-01-01

    This study firstly developed a multiplex real-time PCR (RT-PCR) technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus ( S. aureus ), Listeria monocytogenes ( L. monocytogenes ) and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water) in one reaction. Brain heart infusion (BHI) broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 10 2 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes , and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes , and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples.

  15. A Multiplex RT-PCR Assay for S. aureus, L. monocytogenes, and Salmonella spp. Detection in Raw Milk with Pre-enrichment

    PubMed Central

    Ding, Tian; Suo, Yuanjie; Zhang, Zhaohuan; Liu, Donghong; Ye, Xingqian; Chen, Shiguo; Zhao, Yong

    2017-01-01

    This study firstly developed a multiplex real-time PCR (RT-PCR) technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes) and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water) in one reaction. Brain heart infusion (BHI) broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 102 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes, and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes, and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples. PMID:28620364

  16. Optimization of the Ames/salmonella mutagenicity assay for use with extracts of aquatic sediments

    USGS Publications Warehouse

    Papoulias, Diana M.; Buckler, Denny R.; Tillitt, Donald E.

    1996-01-01

    Non-mutagenic components interfered with the ability of the standard Ames/salmonella assay to detect mutagenicity in extracts of contaminated Great Lakes sediments. The use of gel permeation chromatography (GPC) to remove these macromolecules from methylene chloride extracts prior to Ames testing enhanced the likelihood of transfer of mutagenic components into dimethyl sulf oxide (the assay solvent). Therefore, to optimize the assay's sensitivity we pre-treated sediment extracts using GPC and increased metabolic activity through the use of a 30% S9 mix. Increasing the level of Aroclor 1254-induced rat liver S9, typically used to metabolically activate promutagens, had the additional beneficial effect of reducing the cytotoxicity of the extracts. As applied in this study, the Ames assay can serve as a sensitive test for screening the mutagenic potential of large numbers of uncharacterized sediment extracts.

  17. Nonnucleoside reverse transcriptase inhibitor phenotypic hypersusceptibility can be demonstrated in different assays.

    PubMed

    Shulman, Nancy S; Delgado, Jamael; Bosch, Ronald J; Winters, Mark A; Johnston, Elizabeth; Shafer, Robert W; Katzenstein, David A; Merigan, Thomas C

    2005-05-01

    HIV-1 isolates harboring multiple nucleoside reverse transcriptase inhibitor (NRTI) resistance mutations are more susceptible ("hypersusceptible") to the nonnucleoside reverse transcriptase inhibitors (NNRTIs) than isolates lacking NRTI resistance mutations, but this has only been reported with a single-cycle replication phenotypic assay. In fact, there was a report that a commercial multicycle assay did not readily detect hypersusceptibility. To see whether NNRTI hypersusceptibility can be demonstrated in other types of phenotypic assays, including multicycle assays and enzyme inhibition assays. The susceptibility of HIV-1 clones derived from different patients in multicycle assays was tested in peripheral blood mononuclear cells (PBMCs) and in an established cell line. In addition, the reverse transcriptase (RT) of many of these clones was expressed and their susceptibility tested in an RT inhibition assay. Nevirapine and efavirenz susceptibilities were tested and compared with a control wild-type virus or RT. Hypersusceptibility to nevirapine and efavirenz was detected using each of the methods described above. R values correlating the other methods with single-cycle assay values were between 0.66 and 0.96. In addition to the high correlations, the different methods gave similar numeric results. NNRTI hypersusceptibility is readily seen in multicycle susceptibility assays and in enzyme inhibition assays.

  18. Evaluation of a Multiplex PCR Assay for the Identification of Salmonella Serovars Enteritidis and Typhimurium Using Retail and Abattoir Samples.

    PubMed

    Ogunremi, Dele; Nadin-Davis, Susan; Dupras, Andrée Ann; Márquez, Imelda Gálvan; Omidi, Katayoun; Pope, Louise; Devenish, John; Burke, Teresa; Allain, Ray; Leclair, Daniel

    2017-02-01

    A multiplex PCR was developed to identify the two most common serovars of Salmonella causing foodborne illness in Canada, namely, serovars Enteritidis and Typhimurium. The PCR was designed to amplify DNA fragments from four Salmonella genes, namely, invA gene (211-bp fragment), iroB gene (309-bp fragment), Typhimurium STM 4497 (523-bp fragment), and Enteritidis SE147228 (612-bp fragment). In addition, a 1,026-bp ribosomal DNA (rDNA) fragment universally present in bacterial species was included in the assay as an internal control fragment. The detection rate of the PCR was 100% among Salmonella Enteritidis (n = 92) and Salmonella Typhimurium (n = 33) isolates. All tested Salmonella isolates (n = 194) were successfully identified based on the amplification of at least one Salmonella -specific DNA fragment. None of the four Salmonella DNA amplicons were detected in any of the non- Salmonella isolates (n = 126), indicating an exclusivity rate of 100%. When applied to crude extracts of 2,001 field isolates of Salmonella obtained during the course of a national microbiological baseline study in broiler chickens and chicken products sampled from abattoir and retail outlets, 163 isolates, or 8.1%, tested positive for Salmonella Enteritidis and another 80 isolates, or 4.0%, tested as Salmonella Typhimurium. All isolates identified by serological testing as Salmonella Enteritidis in the microbiological study were also identified by using the multiplex PCR. The new test can be used to identify or confirm pure isolates of the two serovars and is also amenable for integration into existing culture procedures for accurate detection of Salmonella colonies.

  19. Biotin Switch Assays for Quantitation of Reversible Cysteine Oxidation.

    PubMed

    Li, R; Kast, J

    2017-01-01

    Thiol groups in protein cysteine residues can be subjected to different oxidative modifications by reactive oxygen/nitrogen species. Reversible cysteine oxidation, including S-nitrosylation, S-sulfenylation, S-glutathionylation, and disulfide formation, modulate multiple biological functions, such as enzyme catalysis, antioxidant, and other signaling pathways. However, the biological relevance of reversible cysteine oxidation is typically underestimated, in part due to the low abundance and high reactivity of some of these modifications, and the lack of methods to enrich and quantify them. To facilitate future research efforts, this chapter describes detailed procedures to target the different modifications using mass spectrometry-based biotin switch assays. By switching the modification of interest to a biotin moiety, these assays leverage the high affinity between biotin and avidin to enrich the modification. The use of stable isotope labeling and a range of selective reducing agents facilitate the quantitation of individual as well as total reversible cysteine oxidation. The biotin switch assay has been widely applied to the quantitative analysis of S-nitrosylation in different disease models and is now also emerging as a valuable research tool for other oxidative cysteine modifications, highlighting its relevance as a versatile, robust strategy for carrying out in-depth studies in redox proteomics. © 2017 Elsevier Inc. All rights reserved.

  20. Identification of Five Novel Salmonella Typhi-Specific Genes as Markers for Diagnosis of Typhoid Fever Using Single-Gene Target PCR Assays.

    PubMed

    Goay, Yuan Xin; Chin, Kai Ling; Tan, Clarissa Ling Ling; Yeoh, Chiann Ying; Ja'afar, Ja'afar Nuhu; Zaidah, Abdul Rahman; Chinni, Suresh Venkata; Phua, Kia Kien

    2016-01-01

    Salmonella Typhi ( S . Typhi) causes typhoid fever which is a disease characterised by high mortality and morbidity worldwide. In order to curtail the transmission of this highly infectious disease, identification of new markers that can detect the pathogen is needed for development of sensitive and specific diagnostic tests. In this study, genomic comparison of S . Typhi with other enteric pathogens was performed, and 6 S . Typhi genes, that is, STY0201, STY0307, STY0322, STY0326, STY2020, and STY2021, were found to be specific in silico . Six PCR assays each targeting a unique gene were developed to test the specificity of these genes in vitro . The diagnostic sensitivities and specificities of each assay were determined using 39 S . Typhi, 62 non-Typhi Salmonella , and 10 non- Salmonella clinical isolates. The results showed that 5 of these genes, that is, STY0307, STY0322, STY0326, STY2020, and STY2021, demonstrated 100% sensitivity (39/39) and 100% specificity (0/72). The detection limit of the 5 PCR assays was 32 pg for STY0322, 6.4 pg for STY0326, STY2020, and STY2021, and 1.28 pg for STY0307. In conclusion, 5 PCR assays using STY0307, STY0322, STY0326, STY2020, and STY2021 were developed and found to be highly specific at single-gene target resolution for diagnosis of typhoid fever.

  1. Origanum majorana Essential Oil Lacks Mutagenic Activity in the Salmonella/Microsome and Micronucleus Assays

    PubMed Central

    Klein-Júnior, Luiz Carlos; Guecheva, Temenouga N.; dos Santos, Luciana D.; Zanette, Régis A.; de Mello, Fernanda B.; de Mello, João Roberto Braga

    2016-01-01

    The present study aimed to investigate the in vitro mutagenic activity of Origanum majorana essential oil. The most abundant compounds identified by GC-MS were γ-terpinene (25.73%), α-terpinene (17.35%), terpinen-4-ol (17.24%), and sabinene (10.8%). Mutagenicity was evaluated by the Salmonella/microsome test using the preincubation procedure on TA98, TA97a, TA100, TA102, and TA1535 Salmonella typhimurium strains, in the absence or in the presence of metabolic activation. Cytotoxicity was detected at concentrations higher than 0.04 μL/plate in the absence of S9 mix and higher than 0.08 μL/plate in the presence of S9 mix and no gene mutation increase was observed. For the in vitro mammalian cell micronucleus test, V79 Chinese hamster lung fibroblasts were used. Cytotoxicity was only observed at concentrations higher than or equal to 0.05 μg/mL. Moreover, when tested in noncytotoxic concentrations, O. majorana essential oil was not able to induce chromosome mutation. The results from this study therefore suggest that O. majorana essential oil is not mutagenic at the concentrations tested in the Salmonella/microsome and micronucleus assays. PMID:27891531

  2. Detection of Salmonella enterica serovar Enteritidis (SE) Antibodies in Serum Using A Polystyrene Bead/SE Flagella Agglutination Assay

    USDA-ARS?s Scientific Manuscript database

    Serologic screening of flocks can be an important method to detect Salmonella enteritidis (SE) infections but can be labor intensive or lack specificity. Our goal was to develop a rapid agglutination assay using SE flagella adsorbed to polystyrene beads as a simple, relatively specific test to dete...

  3. 40 CFR 79.53 - Tier 2.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Salmonella typhimurium Reverse Mutation Assay). (b) Manufacturer determination. Manufacturers shall determine... Sister Chromatid Exchange Assay, and § 79.68 Salmonella typhimurium Reverse Mutation Assay. Teratogenic...

  4. 40 CFR 79.53 - Tier 2.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Salmonella typhimurium Reverse Mutation Assay). (b) Manufacturer Determination. Manufacturers shall determine... Sister Chromatid Exchange Assay, and § 79.68 Salmonella typhimurium Reverse Mutation Assay. Teratogenic...

  5. 40 CFR 79.53 - Tier 2.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Salmonella typhimurium Reverse Mutation Assay). (b) Manufacturer Determination. Manufacturers shall determine... Sister Chromatid Exchange Assay, and § 79.68 Salmonella typhimurium Reverse Mutation Assay. Teratogenic...

  6. 40 CFR 79.53 - Tier 2.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Salmonella typhimurium Reverse Mutation Assay). (b) Manufacturer Determination. Manufacturers shall determine... Sister Chromatid Exchange Assay, and § 79.68 Salmonella typhimurium Reverse Mutation Assay. Teratogenic...

  7. 40 CFR 79.53 - Tier 2.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Salmonella typhimurium Reverse Mutation Assay). (b) Manufacturer Determination. Manufacturers shall determine... Sister Chromatid Exchange Assay, and § 79.68 Salmonella typhimurium Reverse Mutation Assay. Teratogenic...

  8. Evaluation of Modification of the 3M™ Molecular Detection Assay (MDA) Salmonella Method (2013.09) for the Detection of Salmonella in Selected Foods: Collaborative Study.

    PubMed

    Bird, Patrick; Fisher, Kiel; Boyle, Megan; Huffman, Travis; Benzinger, M Joseph; Bedinghaus, Paige; Flannery, Jonathon; Crowley, Erin; Agin, James; Goins, David; Benesh, DeAnn; David, John

    2014-01-01

    The 3M(™) Molecular Detection Assay (MDA) Salmonella utilizes isothermal amplification of nucleic acid sequences with high specificity, efficiency, rapidity and bioluminescence to detect amplification of Salmonella spp. in food, food-related, and environmental samples after enrichment. A method modification and matrix extension study of the previously approved AOAC Official Method(SM) 2013.09 was conducted, and approval of the modification was received on March 20, 2014. Using an unpaired study design in a multilaboratory collaborative study, the 3M MDA Salmonella method was compared to the U.S. Department of Agriculture/Food Safety and Inspection Service (USDA/FSIS) Microbiology Laboratory Guidebook (MLG) 4.05 (2011), Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg, and Catfish Products for raw ground beef and the U.S. Food and Drug Administration (FDA)/Bacteriological Analytical Manual (BAM) Chapter 5, Salmonella reference method for wet dog food following the current AOAC guidelines. A total of 20 laboratories participated. For the 3M MDA Salmonella method, raw ground beef was analyzed using 25 g test portions, and wet dog food was analyzed using 375 g test portions. For the reference methods, 25 g test portions of each matrix were analyzed. Each matrix was artificially contaminated with Salmonella at three inoculation levels: an uninoculated control level (0 CFU/test portion), a low inoculum level (0.2-2 CFU/test portion), and a high inoculum level (2-5 CFU/test portion). In this study, 1512 unpaired replicate samples were analyzed. Statistical analysis was conducted according to the probability of detection (POD). For the low-level raw ground beef test portions, the following dLPOD (difference between the LPODs of the reference and candidate method) values with 95% confidence intervals were obtained: -0.01 (-0.14, +0.12). For the low-level wet dog food test portions, the following dLPOD with 95% confidence intervals were

  9. Evaluation of the 3M™ Molecular Detection Assay (MDA) 2 - Salmonella for the Detection of Salmonella spp. in Select Foods and Environmental Surfaces: Collaborative Study, First Action 2016.01.

    PubMed

    Bird, Patrick; Flannery, Jonathan; Crowley, Erin; Agin, James R; Goins, David; Monteroso, Lisa

    2016-07-01

    The 3M™ Molecular Detection Assay (MDA) 2 - Salmonella uses real-time isothermal technology for the rapid and accurate detection of Salmonella spp. from enriched select food, feed, and food-process environmental samples. The 3M MDA 2 - Salmonella was evaluated in a multilaboratory collaborative study using an unpaired study design. The 3M MDA 2 - Salmonella was compared to the U.S. Food and Drug Administration Bacteriological Analytical Manual Chapter 5 reference method for the detection of Salmonella in creamy peanut butter, and to the U.S. Department of Agriculture, Food Safety and Inspection Service Microbiology Laboratory Guidebook Chapter 4.08 reference method "Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg and Catfish Products and Carcass and Environmental Samples" for the detection of Salmonella in raw ground beef (73% lean). Technicians from 16 laboratories located within the continental United States participated. Each matrix was evaluated at three levels of contamination: an uninoculated control level (0 CFU/test portion), a low inoculum level (0.2-2 CFU/test portion), and a high inoculum level (2-5 CFU/test portion). Statistical analysis was conducted according to the probability of detection (POD) statistical model. Results obtained for the low inoculum level test portions produced difference in collaborator POD values of 0.03 (95% confidence interval, -0.10 to 0.16) for raw ground beef and 0.06 (95% confidence interval, -0.06 to 0.18) for creamy peanut butter, indicating no statistically significant difference between the candidate and reference methods.

  10. CRISPR Is an Optimal Target for the Design of Specific PCR Assays for Salmonella enterica Serotypes Typhi and Paratyphi A

    PubMed Central

    Fabre, Laetitia; Le Hello, Simon; Roux, Chrystelle; Issenhuth-Jeanjean, Sylvie; Weill, François-Xavier

    2014-01-01

    Background Serotype-specific PCR assays targeting Salmonella enterica serotypes Typhi and Paratyphi A, the causal agents of typhoid and paratyphoid fevers, are required to accelerate formal diagnosis and to overcome the lack of typing sera and, in some situations, the need for culture. However, the sensitivity and specificity of such assays must be demonstrated on large collections of strains representative of the targeted serotypes and all other bacterial populations producing similar clinical symptoms. Methodology Using a new family of repeated DNA sequences, CRISPR (clustered regularly interspaced short palindromic repeats), as a serotype-specific target, we developed a conventional multiplex PCR assay for the detection and differentiation of serotypes Typhi and Paratyphi A from cultured isolates. We also developed EvaGreen-based real-time singleplex PCR assays with the same two sets of primers. Principal findings We achieved 100% sensitivity and specificity for each protocol after validation of the assays on 188 serotype Typhi and 74 serotype Paratyphi A strains from diverse genetic groups, geographic origins and time periods and on 70 strains of bacteria frequently encountered in bloodstream infections, including 29 other Salmonella serotypes and 42 strains from 38 other bacterial species. Conclusions The performance and convenience of our serotype-specific PCR assays should facilitate the rapid and accurate identification of these two major serotypes in a large range of clinical and public health laboratories with access to PCR technology. These assays were developed for use with DNA from cultured isolates, but with modifications to the assay, the CRISPR targets could be used in the development of assays for use with clinical and other samples. PMID:24498453

  11. INVESTIGATING THE SOURCES OF THE MUTAGENIC ACTIVITY FOUND IN A RIVER USING THE SALMONELLA ASSAY AND DIFFERENT WATER EXTRACTION PROCEDURES

    EPA Science Inventory

    Abstract
    As a consequence of the routine surface water quality-monitoring program of Sao Paulo State (Brazil), which includes the Salmonella microsome mutagenicity assay as one of its parameters, we detected a river used as a drinking water source after treatment, that repeate...

  12. GENOTOXICITY OF 1,3-DICHLOROPROPANE, 2,2-DICHLOROPROPANE, AND L,1-DICHLOROPROPENE IN SALMONELLA AND E. COLI PROPHAGE-INDUCTION ASSAYS

    EPA Science Inventory

    Genotoxicity of 1,3-Dichloropropane, 2,2-Dichloropropane, and 1,1-Dichloropropene in
    Salmonella and E. coli Prophage-Induction Assays

    1,3-Dichloropropane (1,3-DCP), 2,2-dichloropropane (2,2-DCP), and 1,1- dichloropropene (I,I-DCP) have been detected in ground water i...

  13. Application of bacterial reverse mutation assay for detection of non-genotoxic carcinogens.

    PubMed

    Kanode, Rewan; Chandra, Saurabh; Sharma, Sharad

    2017-06-01

    Non-genotoxic carcinogens may play a significant role in development of cancer. Currently short-term assays for mutagenicity classify genotoxic carcinogens and lack the abilities to detect epigenetic carcinogens. The need to develop an endpoint always remains to recognize potentially carcinogenic agents employing rapid and practical bioassays. For this, the present study utilized TA98 and TA1537 tester strains of Salmonella typhimurium to evaluate four non-genotoxic carcinogenic agents (Coumarin, β-Myrcene, Bis(2-ethylhexyl) phthalate and trans-anethole). These chemicals were tested individually and in combination with promutagens 2-aminoanthracene (2AA) and benzo(a)pyrene (BP) in presence of metabolic activation system (S9) by plate incorporation method. Exposure to all four test chemicals revealed marked increase of revertant colonies in promutagen combined groups as compared to promutagens alone. However significantly greater fold responses were observed with 2AA combination groups (Coumarin +2AA, β-Myrcene +2AA, Bis(2-ethylhexyl) phthalate +2AA and trans-anethole +2AA) with TA98 strain as compared with TA1537, which seems to have enhanced the mutagenic response of 2AA in metabolically activated conditions. It is concluded that out of both tester strains TA98 strain of Salmonella typhimurium has the potential to detect non-genotoxic carcinogens when combined with potent promutgens either by inhibiting or modulating activities of liver microsomal enzymes biochemically which may indirectly contribute to neoplastic alterations. Further this simple, short-term alternative assay may provide rapid information during extrapolative toxicology for differentiating genotoxic and non-genotoxic carcinogens.

  14. Molecular typing of Salmonella enterica serovar typhi isolates from various countries in Asia by a multiplex PCR assay on variable-number tandem repeats.

    PubMed

    Liu, Yichun; Lee, May-Ann; Ooi, Eng-Eong; Mavis, Yeo; Tan, Ai-Ling; Quek, Hung-Hiang

    2003-09-01

    A multiplex PCR method incorporating primers flanking three variable-number tandem repeat (VNTR) loci (arbitrarily labeled TR1, TR2, and TR3) in the CT18 strain of Salmonella enterica serovar Typhi has been developed for molecular typing of S. enterica serovar Typhi clinical isolates from several Asian countries, including Singapore, Indonesia, India, Bangladesh, Malaysia, and Nepal. We have demonstrated that the multiplex PCR could be performed on crude cell lysates and that the VNTR banding profiles produced could be easily analyzed by visual inspection after conventional agarose gel electrophoresis. The assay was highly discriminative in identifying 49 distinct VNTR profiles among 59 individual isolates. A high level of VNTR profile heterogeneity was observed in isolates from within the same country and among countries. These VNTR profiles remained stable after the strains were passaged extensively under routine laboratory culture conditions. In contrast to the S. enterica serovar Typhi isolates, an absence of TR3 amplicons and a lack of length polymorphisms in TR1 and TR2 amplicons were observed for other S. enterica serovars, such as Salmonella enterica serovar Typhimurium, Salmonella enterica serovar Enteritidis, and Salmonella enterica serovar Paratyphi A, B, and C. DNA sequencing of the amplified VNTR regions substantiated these results, suggesting the high stability of the multiplex PCR assay. The multiplex-PCR-based VNTR profiling developed in this study provides a simple, rapid, reproducible, and high-resolution molecular tool for the epidemiological analysis of S. enterica serovar Typhi strains.

  15. Development of a Novel, Rapid Multiplex Polymerase Chain Reaction Assay for the Detection and Differentiation of Salmonella enterica Serovars Enteritidis and Typhimurium Using Ultra-Fast Convection Polymerase Chain Reaction.

    PubMed

    Kim, Tae-Hoon; Hwang, Hyun Jin; Kim, Jeong Hee

    2017-10-01

    Salmonella enterica serovars Enteritidis and Typhimurium are the most common causative agents of human nontyphoidal salmonellosis. The rapid detection and timely treatment of salmonellosis are important to increase the curative ratio and prevent spreading of the disease. In this study, we developed a rapid multiplex convection polymerase chain reaction (PCR) method to detect Salmonella spp. and differentiate Salmonella Enteritidis and Salmonella Typhimurium. We used the invA gene for Salmonella spp. detection. Salmonella Enteritidis-specific primers and Salmonella Typhimurium-specific primers were designed using the insertion element (IE) and spy genes, respectively. The primer set for Salmonella spp. detection clearly detected both Salmonella Enteritidis and Salmonella Typhimurium after a 21-min amplification reaction. Serovar-specific primer sets for Salmonella Enteritidis and Salmonella Typhimurium specifically detected each target species in a 21-min amplification reaction. We were able to detect Salmonella spp. at a single copy level in the singleplex mode. The limits of detection for Salmonella Enteritidis and Salmonella Typhimurium were 30 copies in both the singleplex and multiplex modes. The PCR run time could be reduced to 10.5 min/15 cycles. The multiplex convection PCR method developed in this study could detect the Salmonella spp. Salmonella Enteritidis and Salmonella Typhimurium in artificially contaminated milk with as few as 10 0 colony-forming unit/mL after 4-h enrichment. The PCR assay developed in this study provides a rapid, specific, and sensitive method for the detection of Salmonella spp. and the differentiation of Salmonella Enteritidis and Salmonella Typhimurium.

  16. Real-Time Reverse Transcription–Polymerase Chain Reaction Assay for SARS-associated Coronavirus

    PubMed Central

    Emery, Shannon L.; Bowen, Michael D.; Newton, Bruce R.; Winchell, Jonas M.; Meyer, Richard F.; Tong, Suxiang; Cook, Byron T.; Holloway, Brian P.; McCaustland, Karen A.; Rota, Paul A.; Bankamp, Bettina; Lowe, Luis E.; Ksiazek, Tom G.; Bellini, William J.; Anderson, Larry J.

    2004-01-01

    A real-time reverse transcription–polymerase chain reaction (RT-PCR) assay was developed to rapidly detect the severe acute respiratory syndrome–associated coronavirus (SARS-CoV). The assay, based on multiple primer and probe sets located in different regions of the SARS-CoV genome, could discriminate SARS-CoV from other human and animal coronaviruses with a potential detection limit of <10 genomic copies per reaction. The real-time RT-PCR assay was more sensitive than a conventional RT-PCR assay or culture isolation and proved suitable to detect SARS-CoV in clinical specimens. Application of this assay will aid in diagnosing SARS-CoV infection. PMID:15030703

  17. Isolation and identification of Salmonella spp. in environmental water by molecular technology in Taiwan

    NASA Astrophysics Data System (ADS)

    Kuo, Chun Wei; Hao Huang, Kuan; Hsu, Bing Mu; Tsai, Hsien Lung; Tseng, Shao Feng; Shen, Tsung Yu; Kao, Po Min; Shen, Shu Min; Chen, Jung Sheng

    2013-04-01

    Salmonella spp. is one of the most important causal agents of waterborne diseases. The taxonomy of Salmonella is very complicated and its genus comprises more than 2,500 serotypes. The detection of Salmonella in environmental water samples by routines culture methods using selective media and characterization of suspicious colonies based on biochemical tests and serological assay are generally time consuming. To overcome this drawback, it is desirable to use effective method which provides a higher discrimination and more rapid identification about Salmonella in environmental water. The aim of this study is to investigate the occurrence of Salmonella using molecular technology and to identify the serovars of Salmonella isolates from 70 environmental water samples in Taiwan. The analytical procedures include membrane filtration, non-selective pre-enrichment, selective enrichment of Salmonella. After that, we isolated Salmonella strains by selective culture plates. Both selective enrichment and culture plates were detected by Polymerase Chain Reaction (PCR). Finally, the serovars of Salmonella were confirmed by using biochemical tests and serological assay. In this study, 15 water samples (21.4%) were identified as Salmonella by PCR. The positive water samples will further identify their serotypes by culture method. The presence of Salmonella in environmental water indicates the possibility of waterborne transmission in drinking watershed. Consequently, the authorities need to provide sufficient source protection and to maintain the system for disease prevention. Keywords: Salmonella spp., serological assay, PCR

  18. MUTAGENICITY IN SALMONELLA AND DNA DAMAGE IN THE CHO/COMET ASSAY INDUCED BY NITROHALOMETHANES, A NOVEL CLASS OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Mutagenicity in Salmonella and DNA Damage in the CHO/Comet Assay Induced by Nitrohalomethanes, a Novel Class of Drinking Water Disinfection By-Products.

    Halomethanes are a class of drinking water disinfection by-products (DBPs) whose genotoxicity has been studied extensi...

  19. Evaluation of three commercial enzyme-linked immunosorbent assays for the detection of antibodies against Salmonella spp. in meat juice from finishing pigs in Spain.

    PubMed

    Vico, J P; Engel, B; Buist, W G; Mainar-Jaime, R C

    2010-11-01

    The control of animal salmonellosis is considered as a major objective in Europe and indirect ELISAs will be important tools for the implementation of control programs for this infection in pigs. We analyse the results yielded by three commercial ELISAs (Herdcheck Swine Salmonella, SALMOTYPE Pig Screen, and PrioCHECK Salmonella) on meat juice samples from a population of slaughter pigs of Aragon, NW Spain, to assess their efficacy using traditional and latent-class approaches. Overall, the Herdcheck Swine Salmonella detected more Salmonella-infected pigs than the other two tests, but its relative sensitivity was low (65.9%). A similar result was observed when only serotypes detectable by this test were considered (69.1%). When a Bayesian approach was used the Herdcheck Swine Salmonella showed also the highest overall accuracy (sensitivity = 88% and specificity = 74%). Our results suggest that a relatively small proportion of the observed prevalence in herds would be explained by using these ELISAs. Also, this study points out that when different ELISA tests are used within the same herd, results may differ substantially. Thus, caution is advised if it is decided to use these assays for herd health classification in Spanish Salmonella control programs. © 2010 Blackwell Verlag GmbH.

  20. Identification of total reversible cysteine oxidation in an atherosclerosis model using a modified biotin switch assay.

    PubMed

    Li, Ru; Huang, Jiqing; Kast, Juergen

    2015-05-01

    Oxidative stress due to the imbalance of reactive oxygen species (ROS) and the resulting reversible cysteine oxidation (CysOX) are involved in the early proatherogenic aspect of atherosclerosis. Given that the corresponding redox signaling pathways are still unclear, a modified biotin switch assay was developed to quantify the reversible CysOX in an atherosclerosis model established by using a monocytic cell line treated with platelet releasate. The accumulation of ROS was observed in the model system and validated in human primary monocytes. Through the application of the modified biotin switch assay, we obtained the first reversible CysOX proteome for this model. A total of 75 peptides, corresponding to 53 proteins, were quantified with oxidative modification. The bioinformatics analysis of these CysOX-containing proteins highlighted biological processes including glycolysis, cytoskeleton arrangement, and redox regulation. Moreover, the reversible oxidation of three glycolysis enzymes was observed using this method, and the regulation influence was verified by an enzyme activity assay. NADPH oxidase (NOX) inhibition treatment, in conjunction with the modified biotin switch method, was used to evaluate the global CysOX status. In conclusion, this versatile modified biotin switch assay provides an approach for the quantification of all reversible CysOX and for the study of redox signaling in atherosclerosis as well as in diseases in other biological systems.

  1. Genetic relatedness of a rarely isolated Salmonella: Salmonella enterica serotype Niakhar from NARMS animal isolates.

    PubMed

    Tankson, J D; Fedorka-Cray, P J; Jackson, C R; Headrick, M

    2006-02-01

    In the United States, Salmonella enterica serotype Niakhar is infrequently isolated. Between 1997 and 2000, the animal arm of the National Antimicrobial Resistance Monitoring System-Enteric Bacteria (NARMS) assayed a total of 22,383 Salmonella isolates from various animal sources (swine, cattle, chickens, turkeys, cats, horses, exotics and dogs) for antimicrobial susceptibility. Isolates originated from diagnostic and non-diagnostic submissions. To study the phenotypic and genotypic characteristics of Salmonella Niakhar. Only five (0.02%) of the 22,383 isolates were identified as Salmonella Niakhar. Antimicrobial resistance testing indicated that three isolates were pan-susceptible, one isolate was resistant to ampicillin and one isolate was resistant to ampicillin, chloramphenicol, ciprofloxacin, kanamycin, nalidixic acid, streptomycin, sulfamethoxazole, tetracycline and trimethoprim/sulfamethoxazole. RAPD-PCR analysis, PFGE and ribotyping indicated that two pan-susceptible isolates were genetically similar, whereas the three remaining isolates were genetically different. The one Salmonella Niakhar isolate that was multiresistant harboured a class I integron, intI1 and two large plasmids. This study represents the first report of a ciprofloxacin-resistant Salmonella isolate from the animal arm of NARMS.

  2. DNA hybridization assay for detection of Salmonella in foods: collaborative study.

    PubMed

    Flowers, R S; Klatt, M J; Mozola, M A; Curiale, M S; Gabis, D A; Silliker, J H

    1987-01-01

    A collaborative study was performed in 11 laboratories to validate a DNA hybridization (DNAH) procedure for detection of Salmonella in foods. The DNAH procedure was compared to the standard culture method for detection of Salmonella in 6 foods: ground pepper, soy flour, dry whole egg, milk chocolate, nonfat dry milk, and raw deboned turkey. With the exception of turkey which was naturally contaminated, uninoculated and inoculated samples of each food group were analyzed. Results for the DNAH method were significantly better than for the standard culture method at the 5% probability level for the detection of Salmonella in turkey. There was no significant difference between the methods for the other 5 foods. The method has been adopted official first action.

  3. In-house validation study of the DuPont Qualicon BAX system Q7 instrument with the BAX system PCR Assay for Salmonella (modification of AOAC Official Method 2003.09 and AOAC Research Institute Performance-Tested Method 100201).

    PubMed

    Tice, George; Andaloro, Bridget; White, H Kirk; Bolton, Lance; Wang, Siqun; Davis, Eugene; Wallace, Morgan

    2009-01-01

    In 2006, DuPont Qualicon introduced the BAX system Q7 instrument for use with its assays. To demonstrate the equivalence of the new and old instruments, a validation study was conducted using the BAX system PCR Assay for Salmonella, AOAC Official Method 2003.09, on three food types. The foods were simultaneously analyzed with the BAX system Q7 instrument and either the U.S. Food and Drug Administration Bacteriological Analytical Manual or the U.S. Department of Agriculture-Food Safety and Inspection Service Microbiology Laboratory Guidebook reference method for detecting Salmonella. Comparable performance between the BAX system and the reference methods was observed. Of the 75 paired samples analyzed, 39 samples were positive by both the BAX system and reference methods, and 36 samples were negative by both the BAX system and reference methods, demonstrating 100% correlation. Inclusivity and exclusivity for the BAX system Q7 instrument were also established by testing 50 Salmonella strains and 20 non-Salmonella isolates. All Salmonella strains returned positive results, and all non-Salmonella isolates returned a negative response.

  4. Prevalence and concentration of Salmonella on raw shelled peanuts in the United States.

    PubMed

    Calhoun, Stephen; Post, Laurie; Warren, Benjamin; Thompson, Sterling; Bontempo, Ann Rogers

    2013-04-01

    Recalls and/or outbreaks associated with Salmonella contamination in peanut-containing products were reported over the past several years. There are very limited data available on the prevalence and concentration of Salmonella on raw shelled peanuts in the United States. The objectives of this study were to estimate the prevalence of Salmonella on raw shelled peanuts in the United States and to estimate that concentration of Salmonella. Samples of Runner- and Virginia-type raw shelled peanuts from the 2008, 2009, and 2010 crop years were proportionately sampled from each growing region, based on 2007 production volume. Of 944 raw shelled peanut samples (375 g each), 22 (2.33%) were positive for Salmonella by the VIDAS Salmonella assay. Salmonella serovars identified in this study included Agona, Anatum, Braenderup, Dessau, Hartford, Meleagridis, Muenchen, Rodepoort, Tennessee, and Tornow. The concentration levels of Salmonella in positive samples, as determined by a most-probable-number assay, were <0.03 to 2.4 MPN/g. These data will be useful when designing and validating processes for the reduction or elimination of Salmonella in peanuts and/or peanut-containing products.

  5. Evaluation of mutagenic and antimutagenic activities of neem (Azadirachta indica) seed oil in the in vitro Ames Salmonella/microsome assay and in vivo mouse bone marrow micronucleus test.

    PubMed

    Vinod, V; Tiwari, P K; Meshram, G P

    2011-04-12

    The possible mutagenic and antimutagenic activity of neem oil (NO) and its DMSO extract (NDE) were, examined in the Ames Salmonella/microsome mutagenicity test and the mouse bone marrow micronucleus assay. Eight different strains of Salmonella typhimurium were, used to study the genotoxicity of neem oil both in the presence and absence of Aroclor-1254 induced rat liver homogenate (S9). Two-dose treatment protocol was, employed to study the cytogenetic activity in micronucleus assay. Similarly, the antimutagenic activity of neem oil and NDE was studied against mitomycin (MMC) and 7,12-dimethylbenz[a]anthracene (DMBA) in the above two test systems. Neem oil was non-mutagenic in all the eight tester strains of Salmonella typhimurium both in the presence and absence of S9 mix. In the present study, there was no significant increase in the frequency of micronucleated polychromatic erythrocytes (MNPCEs) in neem oil treated groups over the negative control (DMSO) group of animals, indicating the non-clastogenic activity of neem oil in the micronucleus test. Neem oil showed good antimutagenic activity against DMBA induced mutagenicity compared to its DMSO extract. However, neem oil showed comparatively less antimutagenicity against MMC in the Ames assay. In vivo anticlastogenic assays shows that neem oil exhibited better activity against DMBA induced clastogenicity. These results indicate non-mutagenic activity of neem oil and significant antimutagenic activity of neem oil suggesting its pharmacological importance for the prevention of cancer. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Selection of Salmonella enterica Serovar Typhi Genes Involved during Interaction with Human Macrophages by Screening of a Transposon Mutant Library

    PubMed Central

    Sabbagh, Sébastien C.; Lepage, Christine; McClelland, Michael; Daigle, France

    2012-01-01

    The human-adapted Salmonella enterica serovar Typhi (S. Typhi) causes a systemic infection known as typhoid fever. This disease relies on the ability of the bacterium to survive within macrophages. In order to identify genes involved during interaction with macrophages, a pool of approximately 105 transposon mutants of S. Typhi was subjected to three serial passages of 24 hours through human macrophages. Mutants recovered from infected macrophages (output) were compared to the initial pool (input) and those significantly underrepresented resulted in the identification of 130 genes encoding for cell membrane components, fimbriae, flagella, regulatory processes, pathogenesis, and many genes of unknown function. Defined deletions in 28 genes or gene clusters were created and mutants were evaluated in competitive and individual infection assays for uptake and intracellular survival during interaction with human macrophages. Overall, 26 mutants had defects in the competitive assay and 14 mutants had defects in the individual assay. Twelve mutants had defects in both assays, including acrA, exbDB, flhCD, fliC, gppA, mlc, pgtE, typA, waaQGP, SPI-4, STY1867-68, and STY2346. The complementation of several mutants by expression of plasmid-borne wild-type genes or gene clusters reversed defects, confirming that the phenotypic impairments within macrophages were gene-specific. In this study, 35 novel phenotypes of either uptake or intracellular survival in macrophages were associated with Salmonella genes. Moreover, these results reveal several genes encoding molecular mechanisms not previously known to be involved in systemic infection by human-adapted typhoidal Salmonella that will need to be elucidated. PMID:22574205

  7. Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of Salmonella Typhimurium.

    PubMed

    Wu, Wenhe; Li, Jun; Pan, Dun; Li, Jiang; Song, Shiping; Rong, Mingge; Li, Zixi; Gao, Jimin; Lu, Jianxin

    2014-10-08

    Enzyme-linked immunosorbent assay (ELISA) provides a convenient means for the detection of Salmonella enterica serovar Typhimurium (STM), which is important for rapid diagnosis of foodborne pathogens. However, conventional ELISA is limited by antibody-antigen immunoreactions and suffers from poor sensitivity and tedious sample pretreatment. Therefore, development of novel ELISA remains challenging. Herein, we designed a comprehensive strategy for rapid, sensitive, and quantitative detection of STM with high specificity by gold nanoparticle-based enzyme-linked antibody-aptamer sandwich (nano-ELAAS) method. STM was captured and preconcentrated from samples with aptamer-modified magnetic particles, followed by binding with detector antibodies. Then nanoprobes carrying a large amount of reporter antibodies and horseradish peroxidase molecules were used for colorimetric signal amplification. Under the optimized reaction conditions, the nano-ELAAS assay had a quantitative detection range from 1 × 10(3) to 1 × 10(8) CFU mL(-1), a limit of detection of 1 × 10(3) CFU mL(-1), and a selectivity of >10-fold for STM in samples containing other bacteria at higher concentration with an assay time less than 3 h. In addition, the developed nanoprobes were improved in terms of detection range and/or sensitivity when compared with two commercial enzyme-labeled antibody signal reporters. Finally, the nano-ELAAS method was demonstrated to work well in milk samples, a common source of STM contamination.

  8. Diversity of Salmonella isolates from central Florida surface waters.

    PubMed

    McEgan, Rachel; Chandler, Jeffrey C; Goodridge, Lawrence D; Danyluk, Michelle D

    2014-11-01

    Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608-3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:-. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella

  9. Diversity of Salmonella Isolates from Central Florida Surface Waters

    PubMed Central

    McEgan, Rachel; Chandler, Jeffrey C.; Goodridge, Lawrence D.

    2014-01-01

    Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608–3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:−. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella

  10. Rapid combined assay for Salmonella detection in food samples.

    PubMed

    Gadó, I; Major, P; Király, M; Pláveczky, M G

    2000-01-01

    A rapid method was developed to detect salmonellae in food samples. The method gave a possibility to obtain results after 28 h 30 min. The preenrichment in buffered peptone water lasted for 6 h, the enrichment in Rappaport-Vassiliadis medium was applied for 18 h followed by PCR with INVA1-INVA2 primer pair, adapting Chiu and Ou's method. This procedure was suitable to demonstrate salmonella contamination at min. 10 cfu/25 g sample. Out of 18 samples there was a good agreement between the results of the conventional and rapid methods in case of 17 samples. PCR with SPVC1-SPVC2 primer pair informing about the presence of virulence plasmid was performed in separate tubes, because decreased sensitivity was observed in case of multiplex PCR.

  11. Evaluation of a reverse-hybridization StripAssay for the detection of genetic polymorphisms leading to acenocoumarol sensitivity.

    PubMed

    Gialeraki, Argyri; Markatos, Christos; Grouzi, Elisabeth; Merkouri, Efrosyni; Travlou, Anthi; Politou, Marianna

    2010-04-01

    Acenocoumarol is mainly catabolized by CYP2C9 isoform of cytochrome P450 (CYP) liver complex and exerts its anticoagulant effect through the inhibition of Vitamin K Epoxide Reductase (VKOR). The most important genetic polymorphisms which lead to an impaired enzymatic activity and therefore predispose to acenocoumarol sensitivity, are considered to be CYP2C9*2 (Arg144Cys), CYP2C9*3 (Ile359Leu) and VKORC1-1639G>A, respectively. In this study we compared the results of the PGXThrombo StripAssay kit (ViennaLab Diagnostics,Vienna, Austria) with direct DNA sequencing and in house Restriction Fragment Length Polymorphisms (RFLP) for the detection of the aforementioned Single Nucleotide Polymorphisms (SNPs). The reverse hybridization StripAssay was found to be equally effective with RFLP and direct DNA sequencing for the detection of CYP2C9*2 and CYP2C9*3 polymorphisms, respectively. The comparison of the RFLP reference method with the reverse hybridization StripAssay for the detection of VKORC1-1639 G>A polymorphism showed that the reverse hybridization StripAsssay might misclassify some A/A homozygotes as heterozygotes. Optimization of the hybridization procedures may eliminate the extra low signal band observed in some samples at the reverse hybridization StripAssay and improve its diagnostic value.

  12. Specificity tests of an oligonucleotide probe against food-outbreak salmonella for biosensor detection

    NASA Astrophysics Data System (ADS)

    Chen, I.-H.; Horikawa, S.; Xi, J.; Wikle, H. C.; Barbaree, J. M.; Chin, B. A.

    2017-05-01

    Phage based magneto-elastic (ME) biosensors have been shown to be able to rapidly detect Salmonella in various food systems to serve food pathogen monitoring purposes. In this ME biosensor platform, the free-standing strip-shaped magneto-elastic sensor is the transducer and the phage probe that recognizes Salmonella in food serves as the bio-recognition element. According to Sorokulova et al. at 2005, a developed oligonucleotide probe E2 was reported to have high specificity to Salmonella enterica Typhimurium. In the report, the specificity tests were focused in most of Enterobacterace groups outside of Salmonella family. Here, to understand the specificity of phage E2 to different Salmonella enterica serotypes within Salmonella Family, we further tested the specificity of the phage probe to thirty-two Salmonella serotypes that were present in the major foodborne outbreaks during the past ten years (according to Centers for Disease Control and Prevention). The tests were conducted through an Enzyme linked Immunosorbent Assay (ELISA) format. This assay can mimic probe immobilized conditions on the magnetoelastic biosensor platform and also enable to study the binding specificity of oligonucleotide probes toward different Salmonella while avoiding phage/ sensor lot variations. Test results confirmed that this oligonucleotide probe E2 was high specific to Salmonella Typhimurium cells but showed cross reactivity to Salmonella Tennessee and four other serotypes among the thirty-two tested Salmonella serotypes.

  13. An integrated target sequence and signal amplification assay, reverse transcriptase-PCR-enzyme-linked immunosorbent assay, to detect and characterize flaviviruses.

    PubMed

    Chang, G J; Trent, D W; Vorndam, A V; Vergne, E; Kinney, R M; Mitchell, C J

    1994-02-01

    We previously described a reverse transcriptase-PCR using flavivirus genus-conserved and virus species-specific amplimers (D. W. Trent and G. J. Chang, p. 355-371, in Y. Becker and C. Darai; ed., Frontiers of Virology, vol. 1, 1992). Target amplification was improved by redesigning the amplimers, and a sensitive enzyme-linked immunosorbent assay (ELISA) technique has been developed to detect amplified digoxigenin (DIG)-modified DNA. A single biotin motif and multiple DIG motifs were incorporated into each amplicon, which permitted amplicon capture by a biotin-streptavidin interaction and detection with DIG-specific antiserum in a colorimetric ELISA. We evaluated the utility of this assay for detecting St. Louis encephalitis (SLE) viral RNA in infected mosquitoes and dengue viral RNA in human serum specimens. The reverse transcriptase-PCR-ELISA was as sensitive as isolation of SLE virus by cell culture in detecting SLE viral RNA in infected mosquitoes. The test was 89% specific and 95 to 100% sensitive for identification of dengue viral RNA in serum specimens compared with isolation of virus by Aedes albopictus C6/36 cell culture and identification by the indirect immunofluorescence assay.

  14. An integrated target sequence and signal amplification assay, reverse transcriptase-PCR-enzyme-linked immunosorbent assay, to detect and characterize flaviviruses.

    PubMed Central

    Chang, G J; Trent, D W; Vorndam, A V; Vergne, E; Kinney, R M; Mitchell, C J

    1994-01-01

    We previously described a reverse transcriptase-PCR using flavivirus genus-conserved and virus species-specific amplimers (D. W. Trent and G. J. Chang, p. 355-371, in Y. Becker and C. Darai; ed., Frontiers of Virology, vol. 1, 1992). Target amplification was improved by redesigning the amplimers, and a sensitive enzyme-linked immunosorbent assay (ELISA) technique has been developed to detect amplified digoxigenin (DIG)-modified DNA. A single biotin motif and multiple DIG motifs were incorporated into each amplicon, which permitted amplicon capture by a biotin-streptavidin interaction and detection with DIG-specific antiserum in a colorimetric ELISA. We evaluated the utility of this assay for detecting St. Louis encephalitis (SLE) viral RNA in infected mosquitoes and dengue viral RNA in human serum specimens. The reverse transcriptase-PCR-ELISA was as sensitive as isolation of SLE virus by cell culture in detecting SLE viral RNA in infected mosquitoes. The test was 89% specific and 95 to 100% sensitive for identification of dengue viral RNA in serum specimens compared with isolation of virus by Aedes albopictus C6/36 cell culture and identification by the indirect immunofluorescence assay. PMID:7512096

  15. A sandwich-type optical immunosensor based on the alkaline phosphatase enzyme for Salmonella thypimurium detection

    NASA Astrophysics Data System (ADS)

    Widyastuti, E.; Puspitasari Schonherr, M. F.; Masruroh, A.; Anggraeni, R. A.; Nisak, Y. K.; Mursidah, S.

    2018-03-01

    Salmonella is pathogenic bacteria that caused foodborne diseases which being called Salmonellosis. Prevalence of Salmonellosis that being caused by Salmonella thypimurium in Indonesia is quite high. However, detection of Salmonella bacteria in food still limited, complicated, and required a lot time. Sensitive optical assay for Salmonella thypimurium paper based detection has been developed by integrating sandwich assay between antibody-antigen complex and alkaline phosphatase enzyme that produce visible bluish-purple colour with presence of NBT-BCIP substrate. The results showed that Limit of Quantitation of detection is 105 CFU mL-1 with detection time 15 minutes. Linearity test between Colour intensity that produced from Salmonella concentration presence on samples showed that detection has good linearity. Selectivity test exhibited excellent sensitivity with good discrimination against Escherichia coli.

  16. Comparative Evaluation of Veriflow® Salmonella Species to USDA and FDA Culture-Based Methods for the Detection of Salmonella spp. in Food and Environmental Samples.

    PubMed

    Puri, Amrita; Joelsson, Adam C; Terkhorn, Shawn P; Brown, Ashley S; Gaudioso, Zara E; Siciliano, Nicholas A

    2017-09-01

    Veriflow® Salmonella species (Veriflow SS) is a molecular-based assay for the presumptive detection of Salmonella spp. from environmental surfaces (stainless steel, sealed concrete, plastic, and ceramic tile), dairy (2% milk), raw meat (20% fat ground beef), chicken carcasses, and ready-to-eat (RTE) food (hot dogs). The assay utilizes a PCR detection method coupled with a rapid, visual, flow-based assay that develops in 3 min post-PCR amplification and requires only an 18 h enrichment for maximum sensitivity. The Veriflow SS system eliminates the need for sample purification, gel electrophoresis, or fluorophore-based detection of target amplification and does not require complex data analysis. This Performance Tested MethodSM validation study demonstrated the ability of the Veriflow SS method to detect low levels of artificially inoculated or naturally occurring Salmonella spp. in eight distinct environmental and food matrixes. In each reference comparison study, probability of detection analysis indicated that there was no significant difference between the Veriflow SS method and the U.S. Department of Agriculture Food Safety and Inspection Service Microbiology Laboratory Guidebook Chapter 4.06 and the U.S. Food and Drug Administration Bacteriological Analytical Manual Chapter 5 reference methods. A total of 104 Salmonella strains were detected in the inclusivity study, and 35 nonspecific organisms went undetected in the exclusivity study. The study results show that the Veriflow SS method is a sensitive, selective, and robust assay for the presumptive detection of Salmonella spp. sampled from environmental surfaces (stainless steel, sealed concrete, plastic, and ceramic tile), dairy (2% milk), raw meat (20% fat ground beef), chicken carcasses, and RTE food (hot dogs).

  17. GENOTOXICITY OF 1,3-DICHLOROPROPANE, 2,2-DICHLOROPROPANE, AND 1,1-DICHLOROPROPENE IN SALMONELLA, THE E. COLI PROPHAGE-INDUCTION ASSAY, AND HUMAN HEPH2 CELLS

    EPA Science Inventory

    Genotoxicity of 1,3-Dichloropropane, 2,2-Dichloropropane, and 1,1-Dichloropropene in Salmonella, the E. coli Prophage-Induction Assay and Human HepG2 Cells

    1,3-Dichloropropane (1,3-DCP), 2,2-dichloropropane (2,2-DCP), and 1,1- dichloropropene ( 1,1- DCP) have been detecte...

  18. Case report of Salmonella cross-contamination in a food laboratory.

    PubMed

    Rasschaert, Geertrui; De Reu, K; Heyndrickx, M; Herman, L

    2016-03-10

    This paper describes a case of Salmonella cross-contamination in a food laboratory. In 2012, chocolate bars shipped from Belgium to the USA were prevented from entering the USA because a Salmonella Rissen strain had been isolated from one of the chocolate bars in a Belgian food laboratory. However, a retrospective study of the Salmonella isolates sent from the laboratory to the Belgian National Reference Laboratory for Salmonella revealed that 7 weeks prior, a Salmonella Rissen strain has been isolated from fish meal in the same food laboratory. The chocolate bars were not expected to be contaminated with Salmonella because the ingredients all tested negative during the production process. Furthermore, because Salmonella Rissen is only rarely isolated from food, it was hypothesized that the two Salmonella Rissen isolates belonged to the same strain and that the second isolation event in this laboratory was caused by cross-contamination. To confirm this hypothesis, both Salmonella Rissen isolates were fingerprinted using different molecular techniques. To evaluate the discriminatory power of the techniques used, 11 other Salmonella Rissen isolates from different origins were included in the comparison. Pulsed-field gel electrophoresis, repetitive element palindromic PCR and three random amplified polymorphic DNA PCR assays were used. Repetitive element palindromic PCR and random amplified polymorphic DNA PCR assays were insufficiently discriminatory, whereas pulsed-field gel electrophoresis using the combination of two restriction enzymes showed sufficient discrimination to confirm the hypothesis. Although cross-contamination in food laboratories are rarely reported, cross-contamination can always occur. Laboratories should therefore always be aware of the possibility of cross-contamination, especially when enrichment is used in the microbiological analysis. Furthermore, it is advised that results showing isolates of the same serotype isolated in a short time frame

  19. Loop-Mediated Isothermal Amplification for Salmonella Detection in Food and Feed: Current Applications and Future Directions

    PubMed Central

    Yang, Qianru; Domesle, Kelly J.

    2018-01-01

    Abstract Loop-mediated isothermal amplification (LAMP) has become a powerful alternative to polymerase chain reaction (PCR) for pathogen detection in clinical specimens and food matrices. Nontyphoidal Salmonella is a zoonotic pathogen of significant food and feed safety concern worldwide. The first study employing LAMP for the rapid detection of Salmonella was reported in 2005, 5 years after the invention of the LAMP technology in Japan. This review provides an overview of international efforts in the past decade on the development and application of Salmonella LAMP assays in a wide array of food and feed matrices. Recent progress in assay design, platform development, commercial application, and method validation is reviewed. Future perspectives toward more practical and wider applications of Salmonella LAMP assays in food and feed testing are discussed. PMID:29902082

  20. Interaction of Antibiotics with Innate Host Defense Factors against Salmonella enterica Serotype Newport

    PubMed Central

    Kumaraswamy, Monika; Kousha, Armin; Nizet, Victor

    2017-01-01

    ABSTRACT This study examines the pharmacodynamics of antimicrobials that are used to treat Salmonella with each other and with key components of the innate immune system. Antimicrobial synergy was assessed using time-kill and checkerboard assays. Antimicrobial interactions with innate immunity were studied by employing cathelicidin LL-37, whole-blood, and neutrophil killing assays. Ceftriaxone and ciprofloxacin were found to be synergistic in vitro against Salmonella enterica serotype Newport. Ceftriaxone, ciprofloxacin, and azithromycin each demonstrated synergy with the human cathelicidin defense peptide LL-37 in killing Salmonella. Exposure of Salmonella to sub-MICs of ceftriaxone resulted in enhanced susceptibility to LL-37, whole blood, and neutrophil killing. The activity of antibiotics in vivo against Salmonella may be underestimated in bacteriologic media lacking components of innate immunity. The pharmacodynamic interactions of antibiotics used to treat Salmonella with each other and with components of innate immunity warrant further study in light of recent findings showing in vivo selection of antimicrobial resistance by single agents in this pathogen. IMPORTANCE It is becoming increasingly understood that the current paradigms of in vitro antimicrobial susceptibility testing may have significant shortcomings in predicting activity in vivo. This study evaluated the activity of several antibiotics alone and in combination against clinical isolates of Salmonella enterica serotype Newport (meningitis case) utilizing both conventional and physiological media. In addition, the interactions of these antibiotics with components of the innate immune system were evaluated. Azithromycin, which has performed quite well clinically despite high MICs in conventional media, was shown to be more active in physiological media and to enhance innate immune system killing. Alternatively, chloramphenicol did not show enhanced immune system killing, paralleling its inferior

  1. Detection and Identification of Salmonella spp. in Surface Water by Molecular Technology in Taiwan

    NASA Astrophysics Data System (ADS)

    Tseng, S. F.; Hsu, B. M.; Huang, K. H.; Hsiao, H. Y.; Kao, P. M.; Shen, S. M.; Tsai, H. F.; Chen, J. S.

    2012-04-01

    Salmonella spp. is classified to gram-negative bacterium and is one of the most important causal agents of waterborne diseases. The genus of Salmonella comprises more than 2,500 serotypes and its taxonomy is also very complicated. In tradition, the detection of Salmonella in environmental water samples by routines culture methods using selective media and characterization of suspicious colonies based on biochemical tests and serological assay are generally time and labor consuming. To overcome this disadvantage, it is desirable to use effective method which provides a higher discrimination and more rapid identification about Salmonella in environmental water. The aim of this study is to investigate the occurrence of Salmonella using novel procedures of detection method and to identify the serovars of Salmonella isolates from 157 surface water samples in Taiwan. The procedures include membrane filtration, non-selective pre-enrichment, selective enrichment of Salmonella, and then isolation of Salmonella strains by selective culture plates. The selective enrichment and culture plates were both detected by PCR. Finally, we used biochemical tests and serological assay to confirm the serovars of Salmonella and also used Pulsed-field gel electrophoresis (PFGE) to identify their sarovar catagories by the genetic pattern. In this study, 44 water samples (28%) were indentified as Salmonella. The 44 positive water samples by culture method were further identified as S. Agona(1/44), S. Albany (10/44), S. Bareilly (13/44),S. Choleraesuis (2/44),S. Derby (4/44),S. Isangi (3/44),S.Kedougou(3/44),S. Mbandaka(1/44),S.Newport (3/44), S. Oranienburg(1/44), S. Potsdam (1/44),S. Typhimurium (1/44), andS. Weltevreden(1/44) by PFGE. The presence of Salmonella in surface water indicates the possibility of waterborne transmission in drinking watershed if water is not adequately treated. Therefore, the authorities need to have operating systems that currently provide adequate source

  2. Receptor Diversity and Host Interaction of Bacteriophages Infecting Salmonella enterica Serovar Typhimurium

    PubMed Central

    Kim, Hyeryen; Choi, Younho; Heu, Sunggi; Ryu, Sangryeol

    2012-01-01

    Background Salmonella enterica subspecies enterica serovar Typhimurium is a Gram-negative pathogen causing salmonellosis. Salmonella Typhimurium-targeting bacteriophages have been proposed as an alternative biocontrol agent to antibiotics. To further understand infection and interaction mechanisms between the host strains and the bacteriophages, the receptor diversity of these phages needs to be elucidated. Methodology/Principal Findings Twenty-five Salmonella phages were isolated and their receptors were identified by screening a Tn5 random mutant library of S. Typhimurium SL1344. Among them, three types of receptors were identified flagella (11 phages), vitamin B12 uptake outer membrane protein, BtuB (7 phages) and lipopolysaccharide-related O-antigen (7 phages). TEM observation revealed that the phages using flagella (group F) or BtuB (group B) as a receptor belong to Siphoviridae family, and the phages using O-antigen of LPS as a receptor (group L) belong to Podoviridae family. Interestingly, while some of group F phages (F-I) target FliC host receptor, others (F-II) target both FliC and FljB receptors, suggesting that two subgroups are present in group F phages. Cross-resistance assay of group B and L revealed that group L phages could not infect group B phage-resistant strains and reversely group B phages could not infect group L SPN9TCW-resistant strain. Conclusions/Significance In this report, three receptor groups of 25 newly isolated S. Typhimurium-targeting phages were determined. Among them, two subgroups of group F phages interact with their host receptors in different manner. In addition, the host receptors of group B or group L SPN9TCW phages hinder other group phage infection, probably due to interaction between receptors of their groups. This study provides novel insights into phage-host receptor interaction for Salmonella phages and will inform development of optimal phage therapy for protection against Salmonella. PMID:22927964

  3. Assessment of the microscreen phage-induction assay for screening hazardous wastes (1989)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houk, V.S.; DeMarini, D.M.

    1989-01-01

    The Microscreen phage-induction assay, which quantitatively measures the induction of prophage Lambda in Escherichia coli WP2s(Lambda), was used to test 14 crude (unfractionated) hazardous industrial-waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 picograms per ml. Comparisons of the mutagenic activity of these waste samples in Salmonella and their ability to induce prophage Lambda indicate that the phage-induction assay was a more-sensitive indicator of genetic damage for this group of wastes. All but one of the wastes that weremore » mutagenic to Salmonella were detected by the phage-induction assay, and 5 wastes not mutagenic to Salmonella were genetically active in the phage assay. The enhanced ability of the phage-induction assay to detect genotoxic activity may be related to the constituents comprising these waste samples. Partial chemical characterizations of the wastes showed high concentrations of carcinogenic metals, solvents, and chlorinated compounds, most of which are detected poorly by the Salmonella assay.« less

  4. Validation of the ANSR Salmonella method for detection of Salmonella spp. in selected foods and environmental samples.

    PubMed

    Mozola, Mark; Norton, Paul; Alles, Susan; Gray, R Lucas; Tolan, Jerry; Caballero, Oscar; Pinkava, Lisa; Hosking, Edan; Luplow, Karen; Rice, Jennifer

    2013-01-01

    ANSR Salmonella is a new molecular diagnostic assay for detection of Salmonella spp. in foods and environmental samples. The test is based on the nicking enzyme amplification reaction (NEAR) isothermal nucleic acid amplification technology. The assay platform features simple instrumentation, minimal labor, and, following a single-step 10-24 h enrichment (depending on sample type), an extremely short assay time of 30 min, including sample preparation. Detection is real-time using fluorescent molecular beacon probes. Inclusivity testing was performed using a panel of 113 strains of S. enterica and S. bongori, representing 109 serovars and all genetic subgroups. With the single exception of the rare serovar S. Weslaco, all serovars and genetic subgroups were detected. Exclusivity testing of 38 non-salmonellae, mostly Enterobacteriaceae, yielded no evidence of cross-reactivity. In comparative testing of chicken carcass rinse, raw ground turkey, raw ground beef, hot dogs, and oat cereal, there were no statistically significant differences in the number of positive results obtained with the ANSR and the U.S. Department of Agriculture-Food Safety and Inspection Service or U.S. Food and Drug Administration/Bacteriological Analytical Manual reference culture methods. In testing of swab or sponge samples from five different environmental surfaces, four trials showed no statistically significant differences in the number of positive results by the ANSR and the U.S. Food and Drug Administration/ Bacteriological Analytical Manual reference methods; in the trial with stainless steel surface, there were significantly more positive results by the ANSR method. Ruggedness experiments showed a high degree of assay robustness when deviations in reagent volumes and incubation times were introduced.

  5. Rapid real-time PCR methods to distinguish Salmonella Enteritidis wildtype field isolates from vaccine strains Salmovac SE/Gallivac SE and AviPro SALMONELLA VAC E.

    PubMed

    Maurischat, Sven; Szabo, Istvan; Baumann, Beatrice; Malorny, Burkhard

    2015-05-01

    Salmonella enterica serovar Enteritidis is a major non-typhoid Salmonella serovar causing human salmonellosis mainly associated with the consumption of poultry and products thereof. To reduce infections in poultry, S. Enteritidis live vaccine strains AviPro SALMONELLA VAC E and Salmovac SE/Gallivac SE have been licensed and used in several countries worldwide. To definitively diagnose a S. Enteritidis contamination in vaccinated herds a reliable and fast method for the differentiation between vaccine and wildtype field isolates is required. In this study, we developed and validated real-time PCR (qPCR) assays to distinguish those variants genetically. Suitable target sequences were identified by whole genome sequencing (WGS) using the Illumina MiSeq system. SNP regions in kdpA and nhaA proved to be most useful for differentiation of AviPro SALMONELLA VAC E and Salmovac SE/Gallivac SE, respectively, from wildtype strains. For each vaccine strain one TaqMan-qPCR assay and one alternative approach using High Resolution Melting (HRM) analysis was designed. All 30 Salmovac SE and 7 AviPro SALMONELLA VAC E vaccine strain reisolates tested were correctly identified by both approaches (100% inclusivity). Furthermore, all 137 (TaqMan) and 97 (HRM) Salmonella non-vaccine and related Enterobacteriaceae strains tested were excluded (100% exclusivity). The analytical detection limits were determined to be approx. 10(2) genome copies/reaction for the TaqMan and 10(4) genome copies/reaction for the HRM approach. The real-time PCR assays proved to be a reliable and fast alternative to the cultural vaccine strain identification tests helping decision makers in control measurements to take action within a shorter period of time. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effects of various chemical compounds on spontaneous and hydrogen peroxide-induced reversion in strain TA104 of Salmonella typhimurium.

    PubMed

    Han, J S

    1992-04-01

    In experiments designed to determine which active oxygen species contribute to hydrogen peroxide (HP)-induced reversion in strain TA104 of Salmonella typhimurium, 1,10-phenanthroline (an iron chelator, which prevents the formation of hydroxyl radicals from HP and DNA-bound iron by the Fenton reaction), sodium azide (a singlet oxygen scavenger), and potassium iodide (an hydroxyl radical scavenger) inhibited HP-induced reversion. These results indicate that hydroxyl radicals generated from HP by the Fenton reaction, and perhaps singlet oxygen, contribute to HP-induced reversion in TA104. However, reduced glutathione (reduces Fe3+ to Fe2+ and/or HP to water), diethyldithiocarbamic acid (an inhibitor of superoxide dismutase), diethyl maleate (a glutathione scavenger), and 3-amino-1,2,4-triazole (an inhibitor of catalase) did not inhibit HP-induced reversion in TA104. Thus, superoxide radical anions and HP itself do not appear to be the cause of HP-induced reversion in this strain. In experiments on the effect of 5 common dietary compounds (beta-carotene, retinoic acid, and vitamins A, C and E), chlorophyllin (CHL), and ergothioneine, the frequency of revertants in TA104 increased above the spontaneous frequency in the presence of beta-carotene or vitamin C (about 2-fold) or vitamin A (about 3-fold). The 5 dietary antimutagens and CHL did not inhibit HP-induced reversion in TA104. However, L-ergothioneine inhibited HP-induced reversion in this strain. Therefore, it is likely that L-ergothioneine is a scavenger of hydroxyl radicals or an inhibitor of their formation, and perhaps of singlet oxygen, at the concentrations tested in TA104.

  7. Rapid and specific detection of Salmonella in water samples using real-time PCR and High Resolution Melt (HRM) curve analysis.

    PubMed

    van Blerk, G N; Leibach, L; Mabunda, A; Chapman, A; Louw, D

    2011-01-01

    A real-time PCR assay combined with a pre-enrichment step for the specific and rapid detection of Salmonella in water samples is described. Following amplification of the invA gene target, High Resolution Melt (HRM) curve analysis was used to discriminate between products formed and to positively identify invA amplification. The real-time PCR assay was evaluated for specificity and sensitivity. The assay displayed 100% specificity for Salmonella and combined with a 16-18 h non-selective pre-enrichment step, the assay proved to be highly sensitive with a detection limit of 1.0 CFU/ml for surface water samples. The detection assay also demonstrated a high intra-run and inter-run repeatability with very little variation in invA amplicon melting temperature. When applied to water samples received routinely by the laboratory, the assay showed the presence of Salmonella in particularly surface water and treated effluent samples. Using the HRM based assay, the time required for Salmonella detection was drastically shortened to less than 24 h compared to several days when using standard culturing methods. This assay provides a useful tool for routine water quality monitoring as well as for quick screening during disease outbreaks.

  8. Samsung Salmonella Detection Kit. AOAC Performance Tested Method(SM) 021203.

    PubMed

    Li, Jun; Cheung, Win Den; Opdyke, Jason; Harvey, John; Chong, Songchun; Moon, Cheol Gon

    2012-01-01

    Salmonella, one of the most common causes of foodborne illness, is a significant public health concern worldwide. There is a need in the food industry for methods that are simple, rapid, and sensitive for the detection of foodborne pathogens. In this study, the Samsung Salmonella Detection Kit, a real-time PCR assay for the detection of Salmonella, was evaluated according to the current AOAC guidelines. The validation consisted of lot-to-lot consistency, stability, robustness, and inclusivity/exclusivity studies, as well as a method comparison of 10 different food matrixes. In the validation, the Samsung Salmonella Detection Kit was used in conjunction with the Applied Biosystems StepOnePlus PCR system and the Samsung Food Testing Software for the detection of Salmonella species. The performance of the assays was compared to the U.S. Department of Agriculture/Food Safety and Inspection Service-Microbiology Laboratory Guidebook (USDA/FSIS-MLG) 4.05: Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg, and Catfish and the and U.S. Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Chapter 5 Salmonella reference methods. The validation was conducted using an unpaired study design for detection of Salmonella spp. in raw ground beef, raw pork, raw ground pork, raw chicken wings, raw salmon, alfalfa sprouts, pasteurized orange juice, peanut butter, pasteurized whole milk, and shell eggs. The Samsung Salmonella Detection Kit demonstrated lot-to-lot consistency among three independent lots as well as ruggedness with minor modifications to changes in enrichment incubation time, enrichment incubation temperature, and DNA sample volume for PCR reaction. Stability was observed for 13 months at -20 degrees C and 3 months at 5 degrees C. For the inclusivity/exclusivity study, the Samsung Salmonella Detection Kit correctly identified 147 Salmonella species isolates out of 147 isolates tested from each of three different enrichment

  9. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours.

    PubMed

    Mercado-Lubo, Regino; Zhang, Yuanwei; Zhao, Liang; Rossi, Kyle; Wu, Xiang; Zou, Yekui; Castillo, Antonio; Leonard, Jack; Bortell, Rita; Greiner, Dale L; Shultz, Leonard D; Han, Gang; McCormick, Beth A

    2016-07-25

    Salmonella enterica serotype Typhimurium is a food-borne pathogen that also selectively grows in tumours and functionally decreases P-glycoprotein (P-gp), a multidrug resistance transporter. Here we report that the Salmonella type III secretion effector, SipA, is responsible for P-gp modulation through a pathway involving caspase-3. Mimicking the ability of Salmonella to reverse multidrug resistance, we constructed a gold nanoparticle system packaged with a SipA corona, and found this bacterial mimic not only accumulates in tumours but also reduces P-gp at a SipA dose significantly lower than free SipA. Moreover, the Salmonella nanoparticle mimic suppresses tumour growth with a concomitant reduction in P-gp when used with an existing chemotherapeutic drug (that is, doxorubicin). On the basis of our finding that the SipA Salmonella effector is fundamental for functionally decreasing P-gp, we engineered a nanoparticle mimic that both overcomes multidrug resistance in cancer cells and increases tumour sensitivity to conventional chemotherapeutics.

  10. Enhanced Reverse Transcription-PCR Assay for Detection of Norovirus Genogroup I

    PubMed Central

    Dreier, Jens; Störmer, Melanie; Mäde, Dietrich; Burkhardt, Sabine; Kleesiek, Knut

    2006-01-01

    We have developed a one-tube reverse transcription (RT)-PCR method using the real-time TaqMan PCR system for the detection of norovirus genogroup I (NV GGI). By introduction of a novel probe based on locked nucleic acid technology, we enhanced the sensitivity of the assay compared to those of conventional TaqMan probes. The sensitivity of the NV GGI RT-PCR was determined by probit analysis with defined RNA standards and quantified norovirus isolates to 711 copies/ml (95% detection limit). In order to detect PCR inhibition, we included a heterologous internal control (IC) system based on phage MS2. This internally controlled RT-PCR was tested on different real-time PCR platforms, LightCycler, Rotorgene, Mastercycler EP realplex, and ABI Prism. Compared to the assay without an IC, the duplex RT-PCR exhibited no reduction in sensitivity in clinical samples. In combination with an established NV GGII real-time RT-PCR, we used the novel assay in a routine assay for diagnosis of clinical and food-borne norovirus infection. We applied this novel assay to analyze outbreaks of nonbacterial acute gastroenteritis. Norovirus of GGI was detected in these outbreaks. Sequence and similarity plot analysis of open reading frame 1 (ORF1) and ORF2 showed two genotypes, GGI/2 and GGI/4, in semiclosed communities. PMID:16891482

  11. Armored RNA as Virus Surrogate in a Real-Time Reverse Transcriptase PCR Assay Proficiency Panel

    PubMed Central

    Hietala, S. K.; Crossley, B. M.

    2006-01-01

    In recent years testing responsibilities for high-consequence pathogens have been expanded from national reference laboratories into networks of local and regional laboratories in order to support enhanced disease surveillance and to test for surge capacity. This movement of testing of select agents and high-consequence pathogens beyond reference laboratories introduces a critical need for standardized, noninfectious surrogates of disease agents for use as training and proficiency test samples. In this study, reverse transcription-PCR assay RNA targets were developed and packaged as armored RNA for use as a noninfectious, quantifiable synthetic substitute for four high-consequence animal pathogens: classical swine fever virus; foot-and-mouth disease virus; vesicular stomatitis virus, New Jersey serogroup; and vesicular stomatitis virus, Indiana serogroup. Armored RNA spiked into oral swab fluid specimens mimicked virus-positive clinical material through all stages of the reverse transcription-PCR testing process, including RNA recovery by four different commercial extraction procedures, reverse transcription, PCR amplification, and real-time detection at target concentrations consistent with the dynamic ranges of the existing real-time PCR assays. The armored RNA concentrations spiked into the oral swab fluid specimens were stable under storage conditions selected to approximate the extremes of time and temperature expected for shipping and handling of proficiency panel samples, including 24 h at 37°C and 2 weeks at temperatures ranging from ambient room temperature to −70°C. The analytic test performance, including the reproducibility over the dynamic range of the assays, indicates that armored RNA can provide a noninfectious, quantifiable, and stable virus surrogate for specific assay training and proficiency test purposes. PMID:16390950

  12. Identification of salmonella enterica serovar Kentucky genes involved in attachment to chicken skin

    USDA-ARS?s Scientific Manuscript database

    Background: Regardless of sanitation practices implemented to reduce Salmonella prevalence in poultry processing plants, the problem continues to be an issue. To gain an understanding of the attachment mechanism of Salmonella to broiler skin, a bioluminescent-based mutant screening assay was used. A...

  13. Quantification of viable but nonculturable Salmonella spp. and Shigella spp. during sludge anaerobic digestion and their reactivation during cake storage.

    PubMed

    Fu, B; Jiang, Q; Liu, H-B; Liu, H

    2015-10-01

    The presence of viable but nonculturable (VBNC) bacterial pathogens which often fail to be detected by cultivation and can regain the cultivability if the living conditions improve were reported. The objective of this study was to determine the occurrence of VBNC Salmonella spp. and Shigella spp. in the biosolids during anaerobic digestion and its reactivation during the cake storage. The occurrence of VBNC Salmonella spp. and Shigella spp. during mesophilic, temperature-phased, thermophilic anaerobic digestion of sewage sludge and the subsequent storage were studied by RT-qPCR and most probable number (MPN) method. The VBNC incidence of Salmonella spp. and Shigella spp. during thermophilic digestion was four orders of magnitude higher than those of mesophilic digestion. Accordingly, higher resuscitation ratio of VBNC pathogens was also achieved in thermophilic digested sludge. As a result, the culturable Salmonella typhimurium contents in thermophilic digested sludge after cake storage were two orders of magnitude higher than mesophilic digestion. Both quantitative PCR and reverse transcription quantitative PCR assay results showed the two bacterial counting numbers remained stable throughout the cake storage. The results indicate that the increase in the culturable Salmonella spp. and Shigella spp. after centrifugal dewatering was attributed to the resuscitation from the VBNC state to the culturable state. Thermophilic anaerobic digestion mainly induced Salmonella spp. and Shigella spp. into VBNC state rather than killed them, suggesting that the biological safety of sewage sludge by temperature-phased anaerobic digestion should be carefully assessed. © 2015 The Society for Applied Microbiology.

  14. Salmonella Overcomes Drug Resistance in Tumor through P-glycoprotein Downregulation.

    PubMed

    Yang, Chih-Jen; Chang, Wen-Wei; Lin, Song-Tao; Chen, Man-Chin; Lee, Che-Hsin

    2018-01-01

    Chemotherapy is one of effective methods for the treatment of tumor. Patients often develop drug resistance after chemotherapic cycles. Salmonella has potential as antitumor agent. Salmonella used in tandem with chemotherapy had additive effects, providing a rationale for using tumor-targeting Salmonella in combination with conventional chemotherapy. To improve the efficacy and safety of Salmonella , a further understanding of Salmonella interactions with the tumor microenvironment is required. The presence of plasma membrane multidrug resistance protein P-glycoprotein (P-gp) is highly relevant for the success of chemotherapy. Following Salmonella infection, dose-dependent downregulation of P-gp expressions were examined. Salmonella significantly decreased the efflux capabilities of P-gp, as based on the influx of Rhodamine 123 assay. In addition, Salmonella significant reduced the protein express the expression levels of phosph-protein kinase B (P-AKT), phosph-mammalian targets of rapamycin (P-mTOR), and phosph-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells. The Salmonella -induced downregulation of P-gp was rescued by transfection of cells with active P-AKT. Our results demonstrate that Salmonella in tumor sites leads to decrease the expression of P-gp and enhances the combination of Salmonell a and 5-Fluorouracil therapeutic effects.

  15. Rapid detection of European orthobunyaviruses by reverse transcription loop-mediated isothermal amplification assays.

    PubMed

    Camp, Jeremy V; Nowotny, Norbert

    2016-10-01

    The development of reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) assays are described herein for the detection of two orthobunyaviruses (Bunyaviridae), which represent the two main serogroups found in mosquitoes in Central Europe. The RT-LAMP assays were optimized for the detection of Ťahyňa virus (a California encephalitis group virus found in Aedes sp or Ochlerotatus sp mosquitoes) and Batai virus (also called Čalovo virus, a Bunyamwera group virus found in Anopheles maculipennis s.l. mosquitoes) nucleic acid using endemic European virus isolates. The sensitivity of the RT-LAMP assays was determined to be comparable to that of conventional tests, with a limit of detection<0.1 pfu per reaction. The assays can be performed in 60min under isothermal conditions using very simple equipment. Furthermore, it was possible to proceed with the assays without nucleic acid extraction, albeit at a 100-fold loss of sensitivity. The RT-LAMP assays are a sensitive, cost-efficient method for both arbovirus surveillance as well as diagnostic laboratories to detect the presence of these endemic orthobunyaviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Use of Bacteriophage MS2 as an Internal Control in Viral Reverse Transcription-PCR Assays

    PubMed Central

    Dreier, Jens; Störmer, Melanie; Kleesiek, Knut

    2005-01-01

    Diagnostic systems based on reverse transcription (RT)-PCR are widely used for the detection of viral genomes in different human specimens. The application of internal controls (IC) to monitor each step of nucleic acid amplification is necessary to prevent false-negative results due to inhibition or human error. In this study, we designed various real-time RT-PCRs utilizing the coliphage MS2 replicase gene, which differ in detection format, amplicon size, and efficiency of amplification. These noncompetitive IC assays, using TaqMan, hybridization probe, or duplex scorpion probe techniques, were tested on the LightCycler and Rotorgene systems. In our approach, clinical specimens were spiked with the control virus to monitor the efficiency of extraction, reverse transcription, and amplification steps. The MS2 RT-PCR assays were applied for internal control when using a second target hepatitis C virus RNA in duplex PCR in blood donor screening. The 95% detection limit was calculated by probit analysis to 44.9 copies per PCR (range, 38.4 to 73.4). As demonstrated routinely, application of MS2 IC assays exhibits low variability and can be applied in various RT-PCR assays. MS2 phage lysates were obtained under standard laboratory conditions. The quantification of phage and template RNA was performed by plating assays to determine PFU or via real-time RT-PCR. High stability of the MS2 phage preparations stored at −20°C, 4°C, and room temperature was demonstrated. PMID:16145106

  17. Adhesion and growth inhibitory effect of chicken egg yolk antibody (IgY) on Salmonella enterica serovars Enteritidis and Typhimurium in vitro.

    PubMed

    Chalghoumi, Raja; Théwis, André; Beckers, Yves; Marcq, Christopher; Portetelle, Daniel; Schneider, Yves-Jacques

    2009-06-01

    The protective effects of powder preparation of egg yolk immunoglobulin Y (IgY), specific to Salmonella Enteritidis and Salmonella Typhimurium outer membrane proteins (OMP), against these two Salmonella sp. serovars were investigated in vitro in two different assays: adhesion-prevention and growth-inhibition. The adhesion-prevention assay was conducted using polarized monolayers of the human intestinal epithelial Caco-2 cell line. First, the conditions of Salmonella adherence to Caco-2 cells were optimized, and interferences of bacteria with the transepithelial electrical resistance (TER) of fully differentiated Caco-2 cell monolayers and the lactate dehydrogenase release upon exposure of the cells to Salmonella were evaluated. Both Salmonella sp. serovars were able to adhere to Caco-2 cells and decreased TER. Results from the adhesion-prevention assay demonstrated that specific IgY reduced the decrease in TER of the infected Caco-2 cell monolayers and blocked the Salmonella sp. adhesion in a concentration-dependent manner (p < 0.05). Nonspecific IgY also exhibited an inhibitory effect on these two parameters, but to a lesser extent than that of the specific IgY (p < 0.05). The protective effect of nonspecific IgY could be attributed to the low-density lipoprotein component of the water-soluble fraction of egg yolks that may not have been eliminated during ultrafiltration. The growth-inhibition assay revealed that specific IgY had an inhibitory effect on the bacterial growth, markedly during the late exponential phase, whereas nonspecific IgY failed to do so. Taken together, these results suggest that the in vitro growth inhibitory effect of specific IgY on Salmonella spp. resulted from the specific binding activity of these IgY to Salmonella sp. OMP. Passive immunization with Salmonella sp. OMP-specific IgY could thus be useful to prevent Salmonella colonization in broiler chickens and the subsequent carcass contamination during processing.

  18. Study on E. coli and Salmonella biofilms from fresh fruits and vegetables.

    PubMed

    Amrutha, Balagopal; Sundar, Kothandapani; Shetty, Prathapkumar Halady

    2017-04-01

    Foodborne outbreaks associated with fresh fruits and vegetables are on the rise worldwide. Biofilm formation is one of the important traits of pathogens making them strongly attached to substrates as well as express virulence phenotypes. Present study investigates the biofilm forming ability of E. coli and Salmonella sp. isolated from fresh fruits and vegetables. A total of 53 strains, including 35 E. coli and 18 Salmonella sp. isolated from different fruit and vegetable samples were taken into account for the study. Initial screening for biofilm formation was done using Congo Red agar plate test. Results revealed that 22.8% E. coli and 22.2% Salmonella sp. were potential biofilm formers. However, the MTP (Micro-Titre Plate) assay suggested more isolates of both E. coli and Salmonella sp. were moderate to strong biofilm producers. Agar plate diffusion assay with Agrobacterium tumefaciens NTL-4 showed the production of quorum signaling molecules (AHLs) by three isolates of E. coli and one Salmonella sp. Two E. coli isolates showed a significant amount of EPS production indicating higher biofilm forming potential. The Presence of LUX R homologue gene ( sdi A) in two of the Salmonella isolates were confirmed by PCR which demonstrated their potential pathogenicity. Results of the work underline the biofilm forming and potentially virulent capacities of isolates from the surface of fruits and vegetables.

  19. A multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean ready-to-eat food.

    PubMed

    Lee, Nari; Kwon, Kyung Yoon; Oh, Su Kyung; Chang, Hyun-Joo; Chun, Hyang Sook; Choi, Sung-Wook

    2014-07-01

    A multiplex polymerase chain reaction (PCR) assay was developed for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in various Korean ready-to-eat foods. The six specific primer pairs for multiplex PCR were selected based on the O157 antigen (rfbE) gene of E. coli O157:H7, the DNA gyrase subunit B (gyrB) gene of B. cereus, the toxin regulatory protein (toxR) gene of V. parahaemolyticus, the invasion protein A (invA) gene of Salmonella spp., the hemolysin (hly) gene of L. monocytogenes, and the thermonuclease (nuc) gene of S. aureus. The 16S rRNA gene was targeted as an internal control gene in the presence of bacterial DNA. The specificity and sensitivity assays for multiplex primer pairs were investigated by testing different strains. When this multiplex PCR assay was applied to evaluate the validity of detecting six foodborne pathogens in artificially inoculated several ready-to-eat food samples, the assay was able to specifically simultaneously detect as few as 1 colony-forming unit/mL of each pathogen after enrichment for 12 h. Their presence in naturally contaminated samples also indicates that the developed multiplex PCR assay is an effective and informative supplement for practical use.

  20. Assessment of the Microscreen phage-induction assay for screening hazardous wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houk, V.S.; DeMarini, D.M.

    1987-09-01

    The Microscreen phage-induction assay, which quantitatively measures the induction of prophage lambda in Escherichia coli WP2s(lambda), was used to test 14 crude (unfractionated) hazardous industrial waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 picograms per ml. Comparisons between the mutagenicity of these waste samples in Salmonella and their ability to induce prophage lambda indicate that the Microscreen phage-induction assay detected genotoxic activity in all but one of the wastes that were mutagenic in Salmonella. Moreover, the Microscreen assaymore » detected as genotoxic 5 additional wastes that were not detected in the Salmonella assay. The applicability of the Microscreen phage-induction assay for screening hazardous wastes for genotoxic activity is discussed along with some of the problems associated with screening highly toxic wastes containing toxic volatile compounds.« less

  1. Molecular identification of common Salmonella serovars using multiplex DNA sensor-based suspension array.

    PubMed

    Aydin, Muhsin; Carter-Conger, Jacqueline; Gao, Ning; Gilmore, David F; Ricke, Steven C; Ahn, Soohyoun

    2018-04-01

    Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.

  2. Rapid detection of Salmonella Typhimurium in chicken carcass using a SPR biosensor

    NASA Astrophysics Data System (ADS)

    Wang, Shizhou; Lan, Yubin; Yin, Yongguang; Dasari, Thirumala R.

    2005-11-01

    The SPR biosensor was sensitive to the presence of Salmonella Typhimurium in chicken carcass. The selectivity of the SPR biosensor was assayed using a series of antibody concentrations and dilution series of the organism. The SPR biosensor was specific to Salmonella Typhimurium at concentrations of 106 CFU/ml. Initial results show potential for its application for pathogenic bacteria monitoring.

  3. THE DELTA UVRB MUTATIONS IN THE AMES STRAINS OF SALMONELLA SPAN 15-119 GENES

    EPA Science Inventory

    Abstract

    The 4uvrB mutationesent in strains of Salmonella enterica Typhirnurium used commonly in the Salmonella (Ames) mutagenicity assay were isolated independently on separate occasions: chl-1005 (bio uvrBgal) for the hisG46-containing strains TA1535 and TA100; chl- 10...

  4. Development of an in vitro PIG-A gene mutation assay in human cells

    PubMed Central

    Rees, Benjamin J; Tate, Matthew; Lynch, Anthony M; Thornton, Catherine A; Jenkins, Gareth J; Walmsley, Richard M; Johnson, George E

    2017-01-01

    Abstract Mutagens can be carcinogens, and traditionally, they have been identified in vitro using the Salmonella ‘Ames’ reverse mutation assay. However, prokaryotic DNA packaging, replication and repair systems are mechanistically very different to those in the humans we inevitably seek to protect. Therefore, for many years, mammalian cell line genotoxicity assays that can detect eukaryotic mutagens as well as clastogens and aneugens have been used. The apparent lack of specificity in these largely rodent systems, due partly to their mutant p53 status, has contributed to the use of animal studies to resolve data conflicts. Recently, silencing mutations at the PIG-A locus have been demonstrated to prevent glycophosphatidylinositol (GPI) anchor synthesis and consequentially result in loss of GPI-anchored proteins from the cell’s extracellular surface. The successful exploitation of this mutant phenotype in animal studies has triggered interest in the development of an analogous in vitro PIG-A mutation screening assay. This article describes the development of a robust assay design using metabolically active human cells. The assay includes viability and cell membrane integrity assessment and conforms to the future ideas of the 21st-century toxicology testing. PMID:28057708

  5. Development of a Loop Mediated Isothermal Amplification (LAMP) - Surface Enhanced Raman spectroscopy (SERS) Assay for the Detection of Salmonella Enterica Serotype Enteritidis.

    PubMed

    Draz, Mohamed Shehata; Lu, Xiaonan

    2016-01-01

    As a major foodborne pathogen, Salmonella enterica serotype Enteritidis is increasingly rising as a global health concern. Here, we developed an integrated assay that combines loop mediated isothermal amplification (LAMP) and surface enhanced Raman spectroscopy (SERS) for DNA detection of S. Enteritidis using specifically designed Raman active Au-nanoprobes. The target DNA was amplified by LAMP and then labeled with Au-nanoprobes comprised of gold nanoparticle-modified with specific cy5/DNA probes to allow the detection by SERS. The sensitivity of the developed LAMP-SERS detection assay (66 CFU/mL) was ~100-fold higher than the conventional polymerase chain reaction (PCR) method. Significantly, this technique allowed highly specific detection of the target DNA of S. Enteritidis and could differentiate it from the DNA of closely related bacterial species or non-specific contamination, making it more accurate and reliable than the standard LAMP technique. The applicability of detection of S. Enteritidis in milk samples using LAMP-SERS assay was validated as well. In sum, the developed LAMP-SERS assay is highly specific and sensitive, and has the potential to be applied for rapid detection of different foodborne pathogens and other microbial contaminants.

  6. EFFECT OF THE ANTIMUTAGENS VANILLIN AND CINNAMALDEHYDE ON THE SPONTANEOUS MUTATION SPECTRA OF SALMONELLA TA104

    EPA Science Inventory

    Effect of the Antimutagens Vanillin and Cinnamaldehyde on the / Spontaneous Mutation Spectra of Salmonella TAlO4

    Vanillin (VAN) and cinnamaldehyde (CIN) are dietary antimutagens that, when added to assay plates, reduced the spontaneous mutant frequency in Salmonella typhi...

  7. Comprehensive analysis of Salmonella sequence polymorphisms and development of a LDR-UA assay for the detection and characterization of selected serotypes.

    PubMed

    Lauri, Andrea; Castiglioni, Bianca; Mariani, Paola

    2011-07-01

    Salmonella is a major cause of food-borne disease, and Salmonella enterica subspecies I includes the most clinically relevant serotypes. Salmonella serotype determination is important for the disease etiology assessment and contamination source tracking. This task will be facilitated by the disclosure of Salmonella serotype sequence polymorphisms, here annotated in seven genes (sefA, safA, safC, bigA, invA, fimA, and phsB) from 139 S. enterica strains, of which 109 belonging to 44 serotypes of subsp. I. One hundred nineteen polymorphic sites were scored and associated to single serotypes or to serotype groups belonging to S. enterica subsp. I. A diagnostic tool was constructed based on the Ligation Detection Reaction-Universal Array (LDR-UA) for the detection of polymorphic sites uniquely associated to serotypes of primary interest (Salmonella Hadar, Salmonella Infantis, Salmonella Enteritidis, Salmonella Typhimurium, Salmonella Gallinarum, Salmonella Virchow, and Salmonella Paratyphi B). The implementation of promiscuous probes allowed the diagnosis of ten further serotypes that could be associated to a unique hybridization pattern. Finally, the sensitivity and applicability of the tool was tested on target DNA dilutions and with controlled meat contamination, allowing the detection of one Salmonella CFU in 25 g of meat.

  8. A Portable Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid Detection of Foot-and-Mouth Disease Virus

    PubMed Central

    Abd El Wahed, Ahmed; El-Deeb, Ayman; El-Tholoth, Mohamed; Abd El Kader, Hanaa; Ahmed, Abeer; Hassan, Sayed; Hoffmann, Bernd; Haas, Bernd; Shalaby, Mohamed A.; Hufert, Frank T.; Weidmann, Manfred

    2013-01-01

    Foot-and-mouth disease (FMD) is a trans-boundary viral disease of livestock, which causes huge economic losses and constitutes a serious infectious threat for livestock farming worldwide. Early diagnosis of FMD helps to diminish its impact by adequate outbreak management. In this study, we describe the development of a real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of FMD virus (FMDV). The FMDV RT-RPA design targeted the 3D gene of FMDV and a 260 nt molecular RNA standard was used for assay validation. The RT-RPA assay was fast (4–10 minutes) and the analytical sensitivity was determined at 1436 RNA molecules detected by probit regression analysis. The FMDV RT-RPA assay detected RNA prepared from all seven FMDV serotypes but did not detect classical swine fever virus or swine vesicular disease virus. The FMDV RT-RPA assay was used in the field during the recent FMD outbreak in Egypt. In clinical samples, reverse transcription polymerase chain reaction (RT-PCR) and RT-RPA showed a diagnostic sensitivity of 100% and 98%, respectively. In conclusion, FMDV RT-RPA was quicker and much easier to handle in the field than real-time RT-PCR. Thus RT-RPA could be easily implemented to perform diagnostics at quarantine stations or farms for rapid spot-of-infection detection. PMID:23977101

  9. A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus.

    PubMed

    Abd El Wahed, Ahmed; El-Deeb, Ayman; El-Tholoth, Mohamed; Abd El Kader, Hanaa; Ahmed, Abeer; Hassan, Sayed; Hoffmann, Bernd; Haas, Bernd; Shalaby, Mohamed A; Hufert, Frank T; Weidmann, Manfred

    2013-01-01

    Foot-and-mouth disease (FMD) is a trans-boundary viral disease of livestock, which causes huge economic losses and constitutes a serious infectious threat for livestock farming worldwide. Early diagnosis of FMD helps to diminish its impact by adequate outbreak management. In this study, we describe the development of a real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of FMD virus (FMDV). The FMDV RT-RPA design targeted the 3D gene of FMDV and a 260 nt molecular RNA standard was used for assay validation. The RT-RPA assay was fast (4-10 minutes) and the analytical sensitivity was determined at 1436 RNA molecules detected by probit regression analysis. The FMDV RT-RPA assay detected RNA prepared from all seven FMDV serotypes but did not detect classical swine fever virus or swine vesicular disease virus. The FMDV RT-RPA assay was used in the field during the recent FMD outbreak in Egypt. In clinical samples, reverse transcription polymerase chain reaction (RT-PCR) and RT-RPA showed a diagnostic sensitivity of 100% and 98%, respectively. In conclusion, FMDV RT-RPA was quicker and much easier to handle in the field than real-time RT-PCR. Thus RT-RPA could be easily implemented to perform diagnostics at quarantine stations or farms for rapid spot-of-infection detection.

  10. Assessment of the mutagenic potential of ethanol auto engine exhaust gases by the Salmonella typhimurium microsomal mutagenesis assay, using a direct exposure method.

    PubMed

    Lotfi, C F; Brentani, M M; Böhm, G M

    1990-08-01

    The mutagenic activity of the new Brazilian fuel, ethanol, was determined by employing the Salmonella typhimurium microsomal mutagenesis assay (TA97, TA98, TA100, TA102, and TA104) and a direct exposure method. This methodology was first used to determine the mutagenic activity of gasoline, revealing mutagenic activity of base-pair substitution without any need for metabolic activation, indicating the presence of direct-action mutagens. Experiments with ethanol suggest an indirect mutagenic activity of the oxidant type. The exposure system was considered suitable for future studies of gaseous mixtures.

  11. Genotoxicity testing of sodium formononetin-3'-sulphonate (Sul-F) by assessing bacterial reverse mutation, chromosomal aberrations and micronucleus tests.

    PubMed

    Li, Chunmei; Gao, Yonglin; Wang, Yunzhi; Li, Guisheng; Fan, Xiaochen; Li, Yanshen; Guo, Chenghua; Tao, Jun

    2017-06-01

    As part of a safety evaluation, we evaluated the potential genotoxicity of sodium formononetin-3'-sulphonate (Sul-F) using bacterial reverse mutation assay, chromosomal aberrations detection, and mouse micronucleus test. In bacterial reverse mutation assay using five strains of Salmonella typhimurium (TA97, TA98, TA100, TA102 and TA1535), Sul-F (250, 500, 1000, 2000, 4000 μg/plate) did not increase the number of revertant colonies in any tester strain with or without S9 mix. In a chromosomal assay using Chinese hamster lung fibroblast (CHL) cells, there were no increases in either kind of aberration at any dose of Sul-F (400, 800, and 1600 μg/mL) treatment groups with or without S9 metabolic activation. In an in vivo bone marrow micronucleus test in ICR mice, Sul-F at up to 2000 mg/kg (intravenous injection) showed no significant increases in the incidence of micronucleated polychromatic erythrocytes, and the proportion of immature erythrocytes to total erythrocytes. The results demonstrated that Sul-F does not show mutagenic or genotoxic potential under these test conditions. Copyright © 2017. Published by Elsevier Inc.

  12. Molecular detection assay of five Salmonella serotypes of public interest: Typhimurium, Enteritidis, Newport, Heidelberg, and Hadar.

    PubMed

    Bugarel, M; Tudor, A; Loneragan, G H; Nightingale, K K

    2017-03-01

    Foodborne illnesses due to Salmonella represent an important public-health concern worldwide. In the United States, a majority of Salmonella infections are associated with a small number of serotypes. Furthermore, some serotypes that are overrepresented among human disease are also associated with multi-drug resistance phenotypes. Rapid detection of serotypes of public-health concern might help reduce the burden of salmonellosis cases and limit exposure to multi-drug resistant Salmonella. We developed a two-step real-time PCR-based rapid method for the identification and detection of five Salmonella serotypes that are either overrepresented in human disease or frequently associated with multi-drug resistance, including serotypes Enteritidis, Typhimurium, Newport, Hadar, and Heidelberg. Two sets of four markers were developed to detect and differentiate the five serotypes. The first set of markers was developed as a screening step to detect the five serotypes; whereas, the second set was used to further distinguish serotypes Heidelberg, Newport and Hadar. The utilization of these markers on a two-step investigation strategy provides a diagnostic specificity of 97% for the detection of Typhimurium, Enteritidis, Heidelberg, Infantis, Newport and Hadar. The diagnostic sensitivity of the detection makers is >96%. The availability of this two-step rapid method will facilitate specific detection of Salmonella serotypes that contribute to a significant proportion of human disease and carry antimicrobial resistance. Published by Elsevier B.V.

  13. 40 CFR 799.9510 - TSCA bacterial reverse mutation test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 32 2014-07-01 2014-07-01 false TSCA bacterial reverse mutation test... REQUIREMENTS Health Effects Test Guidelines § 799.9510 TSCA bacterial reverse mutation test. (a) Scope. This... mutation test uses amino-acid requiring strains of Salmonella typhimurium and Escherichia coli to detect...

  14. A rabbit model of non-typhoidal Salmonella bacteremia.

    PubMed

    Panda, Aruna; Tatarov, Ivan; Masek, Billie Jo; Hardick, Justin; Crusan, Annabelle; Wakefield, Teresa; Carroll, Karen; Yang, Samuel; Hsieh, Yu-Hsiang; Lipsky, Michael M; McLeod, Charles G; Levine, Myron M; Rothman, Richard E; Gaydos, Charlotte A; DeTolla, Louis J

    2014-09-01

    Bacteremia is an important cause of morbidity and mortality in humans. In this study, we focused on the development of an animal model of bacteremia induced by non-typhoidal Salmonella. New Zealand White rabbits were inoculated with a human isolate of non-typhoidal Salmonella strain CVD J73 via the intra-peritoneal route. Blood samples were collected at specific time points and at euthanasia from infected rabbits. Additionally, tissue samples from the heart, lungs, spleen, gastrointestinal tract, liver and kidneys were obtained at euthanasia. All experimentally infected rabbits displayed clinical signs of disease (fever, dehydration, weight loss and lethargy). Tissues collected at necropsy from the animals exhibited histopathological changes indicative of bacteremia. Non-typhoidal Salmonella bacteria were detected in the blood and tissue samples of infected rabbits by microbiological culture and real-time PCR assays. The development of this animal model of bacteremia could prove to be a useful tool for studying how non-typhoidal Salmonella infections disseminate and spread in humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Structural and enzymatic characterization of a host-specificity determinant from Salmonella

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Amanda C.; Spanò, Stefania; Galán, Jorge E.

    The Salmonella effector protein GtgE functions as a cysteine protease to cleave a subset of the Rab-family GTPases and to prevent delivery of antimicrobial agents to the Salmonella-containing vacuole. GtgE is an effector protein from Salmonella Typhimurium that modulates trafficking of the Salmonella-containing vacuole. It exerts its function by cleaving the Rab-family GTPases Rab29, Rab32 and Rab38, thereby preventing the delivery of antimicrobial factors to the bacteria-containing vacuole. Here, the crystal structure of GtgE at 1.65 Å resolution is presented, and structure-based mutagenesis and in vivo infection assays are used to identify its catalytic triad. A panel of cysteine proteasemore » inhibitors were examined and it was determined that N-ethylmaleimide, antipain and chymostatin inhibit GtgE activity in vitro. These findings provide the basis for the development of novel therapeutic strategies to combat Salmonella infections.« less

  16. A source of artifact in the lacZ reversion assay in Escherichia coli.

    PubMed

    Hoffmann, George R; Gray, Carol L; Lange, Paulina B; Marando, Christie I

    2015-06-01

    The lacZ reversion assay in Escherichia coli measures point mutations that occur by specific base substitutions and frameshift mutations. The tester strains cannot use lactose as a carbon source (Lac(-)), and revertants are easily detected by growth on lactose medium (Lac(+)). Six strains identify the six possible base substitutions, and five strains measure +G, -G, -CG, +A and -A frameshifts. Strong mutagens give dose-dependent increases in numbers of revertants per plate and revertant frequencies. Testing compounds that are arguably nonmutagens or weakly mutagenic, we often noted statistically significant dose-dependent increases in revertant frequency that were not accompanied by an absolute increase in numbers of revertants. The increase in frequency was wholly ascribable to a declining number of viable cells owing to toxicity. Analysis of the conditions revealed that the frequency of spontaneous revertants is higher when there are fewer viable cells per plate. The phenomenon resembles "adaptive" or "stress" mutagenesis, whereby lactose revertants accumulate in Lac(-) bacteria under starvation conditions in the absence of catabolite repression. Adaptive mutation is observed after long incubation and might be expected to be irrelevant in a standard assay using 48-h incubation. However, we found that elevated revertant frequencies occur under typical assay conditions when the bacterial lawn is thin, and this can cause increases in revertant frequency that mimic chemical mutagenesis when treatments are toxic but not mutagenic. Responses that resemble chemical mutagenesis were observed in the absence of mutagenic treatment in strains that revert by different frameshift mutations. The magnitude of the artifact is affected by cell density, dilution, culture age, incubation time, catabolite repression and the age and composition of media. Although the specific reversion assay is effective for quickly distinguishing classes of mutations induced by potent mutagens, its

  17. Genetics-based methods for detection of Salmonella spp. in foods.

    PubMed

    Mozola, Mark A

    2006-01-01

    Genetic methods are now at the forefront of foodborne pathogen testing. The sensitivity, specificity, and inclusivity advantages offered by deoxyribonucleic acid (DNA) probe technology have driven an intense effort in methods development over the past 20 years. DNA probe-based methods for Salmonella spp. and other pathogens have progressed from time-consuming procedures involving the use of radioisotopes to simple, high throughput, automated assays. The analytical sensitivity of nucleic acid amplification technology has facilitated a reduction in analysis time by allowing enriched samples to be tested for previously undetectable quantities of analyte. This article will trace the evolution of the development of genetic methods for detection of Salmonella in foods, review the basic assay formats and their advantages and limitations, and discuss method performance characteristics and considerations for selection of methods.

  18. Biofilm formation by Salmonella Enteritidis and Salmonella Typhimurium isolated from avian sources is partially related with their in vivo pathogenicity.

    PubMed

    Borges, Karen Apellanis; Furian, Thales Quedi; de Souza, Sara Neves; Menezes, Rafaela; de Lima, Diane Alves; Fortes, Flávia Bornancini Borges; Salle, Carlos Tadeu Pippi; Moraes, Hamilton Luiz Souza; Nascimento, Vladimir Pinheiro

    2018-03-22

    Salmonella Enteritidis and Salmonella Typhimurium are among the most prevalent serotypes isolated from salmonellosis outbreaks and poultry. Salmonella spp. have the capacity to form biofilms on several surfaces, which can favour survival in hostile environments, such as slaughterhouses. Salmonella strains present differences in pathogenicity. However, there is little information regarding the pathogenicity of S. Enteritidis and S. Typhimurium isolated from avian sources and their relationship to biofilm production. The aim of this study was to use a novel pathogenicity index and a biofilm production assay to evaluate their relationships within these serotypes. In addition, we detected the presence of the spiA and agfA genes in these strains. Biofilm formation was investigated at two temperatures (37 °C and 28 °C) using microtiter plate assay, and the results were compared with the individual pathogenicity index of each strain. PCR was used to detect spiA and agfA, virulence genes associated with biofilm production. S. Enteritidis and S. Typhimurium strains were capable of producing biofilm at 37 °C and 28 °C. Sixty-two percent and 59.5% of S. Enteritidis and 73.8% and 46.2% of S. Typhimurium produced biofilm at 37 °C and 28 °C, respectively. Biofilm production at 37 °C was significantly higher in both serotypes. Only S. Enteritidis was capable of adhering strongly at both temperatures. Biofilm production was related to pathogenicity index only at 28 °C for S. Enteritidis. spiA and agfA were found in almost all strains and were not statistically associated with biofilm production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. A multiplex real-time PCR assay for the identification and differentiation of Salmonella enterica serovar Typhimurium and monophasic serovar 4,[5],12:i:-.

    PubMed

    Prendergast, Deirdre M; Hand, Darren; Nί Ghallchóir, Eadaoin; McCabe, Evonne; Fanning, Seamus; Griffin, Margaret; Egan, John; Gutierrez, Montserrat

    2013-08-16

    Salmonella enterica subsp. enterica serovar 4,[5],12:i:- is considered to be a monophasic variant of Salmonella Typhimurium and is increasingly associated with human infections. The use of PCR for the unequivocal identification of strains identified by conventional serotyping as 4,[5],12:i:- has been recommended by the European Food Safety Authority (EFSA), in particular the conventional multiplex PCR developed by Tennant et al. (2010). An alternative protocol for the identification and differentiation of S. Typhimurium and S. Typhimurium-like strains, including its monophasic variants, based on a multiplex real-time PCR assay was developed in our laboratory. A panel of 206 Salmonella strains was used to validate our multiplex real-time PCR against the conventional multiplex PCR recommended by EFSA, i.e. 43 Salmonella strains of serovars other than Typhimurium and 163 routine isolates determined by slide agglutination serotyping to have an incomplete antigenic formula compatible with the S. Typhimurium formula 4,[5],12:i:1,2. Both methods correctly identified the 43 Salmonella strains as non S. Typhimurium. Among the 163 isolates of undetermined serovar by conventional serotyping, both PCR protocols identified 54 isolates as S. Typhimurium, 101 as monophasic S. Typhimurium and 8 as non-S. Typhimurium. Twenty isolates phenotypically lacking the phase-2 H antigen were positive for the fljB.1,2 gene. These strains have been recently described in the literature by other workers and have been referred to as "inconsistent" variants of S. Typhimurium. Antimicrobial resistance and phage typing were also performed on the S. Typhimurium isolates, including monophasic variants, and approximately half of the isolates identified as monophasic S. Typhimurium by our multiplex real-time PCR protocol were DT193 with the resistance pattern ASSuT. There was 100% concordance between the conventional PCR and the multiplex real-time PCR method developed in this study which proved that

  20. Ultra-Fast and Sensitive Detection of Non-Typhoidal Salmonella Using Microwave-Accelerated Metal-Enhanced Fluorescence (“MAMEF”)

    PubMed Central

    Galen, James E.; Geddes, Chris D.; Levine, Myron M.

    2011-01-01

    Certain serovars of Salmonella enterica subsp. enterica cause invasive disease (e.g., enteric fever, bacteremia, septicemia, meningitis, etc.) in humans and constitute a global public health problem. A rapid, sensitive diagnostic test is needed to allow prompt initiation of therapy in individual patients and for measuring disease burden at the population level. An innovative and promising new rapid diagnostic technique is microwave-accelerated metal-enhanced fluorescence (MAMEF). We have adapted this assay platform to detect the chromosomal oriC locus common to all Salmonella enterica subsp. enterica serovars. We have shown efficient lysis of biologically relevant concentrations of Salmonella spp. suspended in bacteriological media using microwave-induced lysis. Following lysis and DNA release, as little as 1 CFU of Salmonella in 1 ml of medium can be detected in <30 seconds. Furthermore the assay is sensitive and specific: it can detect oriC from Salmonella serovars Typhi, Paratyphi A, Paratyphi B, Paratyphi C, Typhimurium, Enteritidis and Choleraesuis but does not detect Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pneumoniae, Haemophilus influenzae or Acinetobacter baumanii. We have also performed preliminary experiments using a synthetic Salmonella oriC oligonucleotide suspended in whole human blood and observed rapid detection when the sample was diluted 1∶1 with PBS. These pre-clinical data encourage progress to the next step to detect Salmonella in blood (and other ordinarily sterile, clinically relevant body fluids). PMID:21494634

  1. 2,3,7,8 tetrachlorodibenzodioxin in fish from the Pigeon river of Eastern Tennessee: Its toxicity and mutagenicity as revealed by the Ames Salmonella Assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blevins, R.D.

    1990-04-01

    Levels of 2,3,7,8 tetrachlorodibenzodioxin (TCDD)were determined in both striated muscle (fillets) and whole body extracts of fish specimens harvested during a two year period (1987-1989) from the Pigeon River (between Hartford and Newport) of Eastern Tennessee. Whole body (wet weight) fish extract levels as high as 117 {mu}g/kg body weight and composite fish fillet (wet weight) extract levels as high 87 {mu}g/kg fillet weight were observed. Pure TCDD was found to be highly toxic to the Salmonella typhimurium strains TA97, TA98, TA100, TA102 and TA1535 at TCDD dosages which exceeded 825 ng/ml in the top agar of the Ames Salmonellamore » assay. An 825 ng/ml TCDD dosage was not mutagenic to any of the tested Salmonella strains, (both with and without metabolic activation (S9) mix). However, when both acidic and alcohol fish extracts from the Pigeon River were tested for mutagenicity, several of the fish extracts were found to be mutagenic to Salmonella strains TA97, TA98, and TA100 (having mutagenic ratios which greatly exceeded the 2.5 {times} spontaneous ratio). These mutagenic extracts also demonstrated mutagenic dose-response curves. Other chemicals within the extracts as well as synergistic effects may account for the mutagenicity.« less

  2. Nano-materials for use in sensing of salmonella infections: Recent advances.

    PubMed

    Pashazadeh, Paria; Mokhtarzadeh, Ahad; Hasanzadeh, Mohammad; Hejazi, Maryam; Hashemi, Maryam; de la Guardia, Miguel

    2017-01-15

    Salmonella infectious diseases spreading every day through food have become a life-threatening problem for millions of people and growing menace to society. Health expert's estimate that the yearly cost of all the food borne diseases is approximately $5-6 billion. Traditional methodologies for salmonella analysis provide high reliability and very low limits of detection. Among them immunoassays and Nucleic acid-based assays provide results within 24h, but they are expensive, tedious and time consuming. So, there is an urgent need for development of rapid, robust and cost-effective alternative technologies for real-time monitoring of salmonella. Several biosensors have been designed and commercialized for detection of this pathogen in food and water. In this overview, we have updated the literature concerning novel biosensing methods such as various optical and electrochemical biosensors and newly developed nano- and micro-scaled and aptamers based biosensors for detection of salmonella pathogen. Furthermore, attention has been focused on the principal concepts, applications, and examples that have been achieved up to diagnose salmonella. In addition, commercial biosensors and foreseeable future trends for onsite detecting salmonella have been summarized. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Development and evaluation of a reverse transcription loop-mediated isothermal amplification assay for detection of beet necrotic yellow vein virus.

    PubMed

    Almasi, Mohammad Amin; Almasi, Galavizh

    2017-02-01

    Sugar beet can be infected by many different viruses that can reduce yield; beet necrotic yellow vein virus (BNYVV) is one of the most economically important viruses of this crop plant. This report describes a new reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for identification of BNYVV. In addition, a novel immunocapture (IC) RT-LAMP assay for rapid and easy detection (without RNA extraction) of BNYVV was developed here and compared with DAS-ELISA and RT-LAMP assays. Our results show that the IC-RT-LAMP assay is a highly reliable alternative assay for identification of BNYVV.

  4. Prevalence and antimicrobial susceptibility of Salmonella isolated from a variety of raw meat sausages in Gaborone (Botswana) retail stores.

    PubMed

    Samaxa, Ronald Gaelekolwe; Matsheka, Maitshwarelo Ignatius; Mpoloka, Sununguko Wata; Gashe, Berhanu Abegaz

    2012-04-01

    The objective of the study was to provide baseline data on the prevalence and antimicrobial susceptibility of Salmonella in different types of raw meat sausages directly accessible to the consumers in Gaborone, Botswana. A total of 300 raw sausages comprising 79 beef, 78 pork, 72 chicken, and 71 mutton samples were concurrently analyzed for the presence of Salmonella using a conventional culture method and a validated PCR method. The PCR assay results were in full concordance with those of the conventional culture method for the detection of Salmonella. Sixty-five (21.7%) of 300 samples were positive for Salmonella by both the conventional culture method and PCR assay. Even though more chicken samples contained Salmonella than did any other sausage type, the difference in the presence of Salmonella among the four sausages types was not significant. Eleven serotypes were identified, and Salmonella enterica subsp. salamae II was most prevalent in all the sausage types. Beef sausages generally had higher mesophilic bacterial counts than did the other three sausage types. However, higher microbial counts were not reflective of the presence of salmonellae. Susceptibility of the Salmonella enterica serotypes to 20 antimicrobial agents was determined, and Salmonella Muenchen was resistant to the widest array of agents and was mostly isolated from chicken sausages. Regardless of the meat of origin, all 65 Salmonella isolates were resistant to at least four antimicrobial agents: amikacin, gentamicin, cefuroxime, and tombramycin. This resistance profile group was the most common in all four sausage types, comprising 90% of all Salmonella isolates from beef, 71% from pork, 63% from mutton, and 35% from chicken. These results suggest that raw sausages pose a risk of transmitting multidrug-resistant Salmonella isolates to consumers.

  5. Evaluation of Molecular Methods for Identification of Salmonella Serovars

    PubMed Central

    Gurnik, Simone; Ahmad, Aaminah; Blimkie, Travis; Murphy, Stephanie A.; Kropinski, Andrew M.; Nash, John H. E.

    2016-01-01

    Classification by serotyping is the essential first step in the characterization of Salmonella isolates and is important for surveillance, source tracking, and outbreak detection. To improve detection and reduce the burden of salmonellosis, several rapid and high-throughput molecular Salmonella serotyping methods have been developed. The aim of this study was to compare three commercial kits, Salm SeroGen (Salm Sero-Genotyping AS-1 kit), Check&Trace (Check-Points), and xMAP (xMAP Salmonella serotyping assay), to the Salmonella genoserotyping array (SGSA) developed by our laboratory. They were assessed using a panel of 321 isolates that represent commonly reported serovars from human and nonhuman sources globally. The four methods correctly identified 73.8% to 94.7% of the isolates tested. The methods correctly identified 85% and 98% of the clinically important Salmonella serovars Enteritidis and Typhimurium, respectively. The methods correctly identified 75% to 100% of the nontyphoidal, broad host range Salmonella serovars, including Heidelberg, Hadar, Infantis, Kentucky, Montevideo, Newport, and Virchow. The sensitivity and specificity of Salmonella serovars Typhimurium and Enteritidis ranged from 85% to 100% and 99% to 100%, respectively. It is anticipated that whole-genome sequencing will replace serotyping in public health laboratories in the future. However, at present, it is approximately three times more expensive than molecular methods. Until consistent standards and methodologies are deployed for whole-genome sequencing, data analysis and interlaboratory comparability remain a challenge. The use of molecular serotyping will provide a valuable high-throughput alternative to traditional serotyping. This comprehensive analysis provides a detailed comparison of commercial kits available for the molecular serotyping of Salmonella. PMID:27194688

  6. Detection of cell surface hydrophobicity, biofilm and fimbirae genes in salmonella isolated from tunisian clinical and poultry meat.

    PubMed

    Ben Abdallah, Fethi; Lagha, Rihab; Said, Khaled; Kallel, Héla; Gharbi, Jawhar

    2014-04-01

    The aim of this study was to evaluate the ability of 15 serotypes of Salmonella to form biofilm on polystyrene, polyvinyl chloride (PVC) and glass surfaces. . Initially slime production was assessed on CRA agar and hydrophobicity of 20 Salmonella strains isolated from poultry and human and two Salmonella enterica serovar Typhimurium references strains was achieved by microbial adhesion to n-hexadecane. In addition, biofilm formation on polystyrene, PVC and glass surfaces was also investigated by using MTT and XTT colorimetric assay. Further, distribution of Salmonella enterotoxin (stn), Salmonella Enteritidis fimbrial (sef) and plasmid encoded fimbrial (pef) genes among tested strains was achieved by PCR. Salmonella strains developed red and white colonies on CRA and they are considered as hydrophilic with affinity values to n-hexadecane ranged between 0.29% and 29.55%. Quantitative biofilm assays showed that bacteria are able to form biofilm on polystyrene with different degrees and 54.54% of strains produce a strong biofilm on glass. In addition, all the strains form only a moderate (54.54%) and weak (40.91%) biofilm on PVC. PCR detection showed that only S. Enteritidis harbour Sef gene, whereas Pef and stn genes were detected in S. Kentucky, S. Amsterdam, S. Hadar, S. Enteritidis and S. Typhimurium. Salmonella serotypes are able to form biofilm on hydrophobic and hydrophilic industrial surfaces. Biofilm formation of Salmonella on these surfaces has an increased potential to compromise food safety and potentiate public health risk.

  7. Detection of Cell Surface Hydrophobicity, Biofilm and Fimbirae Genes in Salmonella Isolated from Tunisian Clinical and Poultry Meat

    PubMed Central

    BEN ABDALLAH, Fethi; LAGHA, Rihab; SAID, Khaled; KALLEL, Héla; GHARBI, Jawhar

    2014-01-01

    Abstract Background The aim of this study was to evaluate the ability of 15 serotypes of Salmonella to form biofilm on polystyrene, polyvinyl chloride (PVC) and glass surfaces. . Methods Initially slime production was assessed on CRA agar and hydrophobicity of 20 Salmonella strains isolated from poultry and human and two Salmonella enterica serovar Typhimurium references strains was achieved by microbial adhesion to n-hexadecane. In addition, biofilm formation on polystyrene, PVC and glass surfaces was also investigated by using MTT and XTT colorimetric assay. Further, distribution of Salmonella enterotoxin (stn), Salmonella Enteritidis fimbrial (sef) and plasmid encoded fimbrial (pef) genes among tested strains was achieved by PCR. Results Salmonella strains developed red and white colonies on CRA and they are considered as hydrophilic with affinity values to n-hexadecane ranged between 0.29% and 29.55%. Quantitative biofilm assays showed that bacteria are able to form biofilm on polystyrene with different degrees and 54.54% of strains produce a strong biofilm on glass. In addition, all the strains form only a moderate (54.54%) and weak (40.91%) biofilm on PVC. PCR detection showed that only S. Enteritidis harbour Sef gene, whereas Pef and stn genes were detected in S. Kentucky, S. Amsterdam, S. Hadar, S. Enteritidis and S. Typhimurium. Conclusion Salmonella serotypes are able to form biofilm on hydrophobic and hydrophilic industrial surfaces. Biofilm formation of Salmonella on these surfaces has an increased potential to compromise food safety and potentiate public health risk. PMID:26005652

  8. Fluorometric graphene oxide-based detection of Salmonella enteritis using a truncated DNA aptamer.

    PubMed

    Chinnappan, Raja; AlAmer, Saleh; Eissa, Shimaa; Rahamn, Anas Abdel; Abu Salah, Khalid M; Zourob, Mohammed

    2017-12-18

    The work describes a fluorescence-based study for mapping the highest affinity truncated aptamer from the full length sequence and its integration in a graphene oxide platform for the detection of Salmonella enteriditis. To identify the best truncated sequence, molecular beacons and a displacement assay design are applied. In the fluorescence displacement assay, the truncated aptamer was hybridized with fluorescein and quencher-labeled complementary sequences to form a fluorescence/quencher pair. In the presence of S. enteritidis, the aptamer dissociates from the complementary labeled oligonucleotides and thus, the fluorescein/quencher pair becomes physically separated. This leads to an increase in fluorescence intensity. One of the truncated aptamers identified has a 2-fold lower dissociation constant (3.2 nM) compared to its full length aptamer (6.3 nM). The truncated aptamer selected in this process was used to develop a fluorometric graphene oxide (GO) based assay. If fluorescein-labeled aptamer is adsorbed on GO via π stacking interaction, fluorescence is quenched. However, in the presence of target (S. enteriditis), the labeled aptamers is released from surface to form a stable complex with the bacteria and fluorescence is restored, depending on the quantity of bacteria being present. The resulting assay has an unsurpassed detection limit of 25 cfu·mL -1 in the best case. The cross reactivity to Salmonella typhimurium, Staphylococcus aureus and Escherichia coli is negligible. The assay was applied to analyze doped milk samples for and gave good recovery. Thus, we believe that the truncated aptamer/graphene oxide platform is a potential tool for the detection of S. Enteritidis. Graphical abstract Fluorescently labelled aptamer against Salmonella enteritidis was adsorbed on the surface of graphene oxide by π-stacking interaction. This results in quenching of the fluorescence of the label. Addition of Salmonella enteritidis restores fluorescence, and this

  9. Culture- and molecular-based detection of swine-adapted Salmonella shed by avian scavengers.

    PubMed

    Blanco, Guillermo; Díaz de Tuesta, Juan A

    2018-09-01

    Salmonella can play an important role as a disease agent in wildlife, which can then act as carriers and reservoirs of sanitary importance at the livestock-human interface. Transmission from livestock to avian scavengers can occur when these species consume contaminated carcasses and meat remains in supplementary feeding stations and rubbish dumps. We compared the performance of PCR-based detection with conventional culture-based methods to detect Salmonella in the faeces of red kites (Milvus milvus) and griffon vultures (Gyps fulvus) in central Spain. The occurrence of culturable Salmonella was intermediate in red kites (1.9%, n=52) and high in griffon vultures (26.3%, n=99). These proportions were clearly higher with PCR-based detection (13.5% and 40.4%, respectively). Confirmation cultures failed to grow Salmonella in all faecal samples positive by the molecular assay but negative by the initial conventional culture in both scavenger species, indicating the occurrence of false (non-culturable) positives by PCR-based detection. This suggests that the molecular assay is highly sensitive to detecting viable Salmonella in cultures, but also partial genomes and dead or unviable bacteria from past infections or contamination. Thus, the actual occurrence of Salmonella in a particular sampling time period can be underestimated when using only culture detection. The serovars found in the scavenger faeces were among the most frequently isolated in pigs from Spain and other EU countries, especially those generally recognized as swine-adapted monophasic variants of S. Typhimurium. Because the studied species obtain much of their food from pig carcasses, this livestock may be the primary source of Salmonella via direct ingestion of infected carcasses and indirectly via contamination due to the unsanitary conditions found in supplementary feeding stations established for scavenger conservation. Combining culture- and molecular-based detection is encouraged to understand the

  10. Optical immunosensors for detection of Listeria monocytogenes and Salmonella enteritidis from food

    NASA Astrophysics Data System (ADS)

    Bhunia, Arun K.; Geng, Tao; Lathrop, Amanda; Valadez, Angela; Morgan, Mark T.

    2004-03-01

    Listeria monocytogenes and Salmonella are two major foodborne pathogens of significant concern. Two optical evanescent wave immunosensors were evaluated for detection: Antibody-coupled fiber-optic biosensor and a surface plasmon resonant (SPR) immunosensor. In the fiber-optic sensor, polyclonal antibodies for the test organisms were immobilized on polystyrene fiber wave -guides using streptavidin - biotin chemistry. Cyanine 5 -labeled monoclonal antibodies C11E9 (for L. monocytogenes) and SF-11 (for Salmonella Enteritidis) were used to generate a specific fluorescent signal. Signal acquisition was performed by launching a laser-light (635 nm) from an Analyte-2000. This immunosensor was able to detect 103 - 109 cfu/ml of L. monocytogenes or 106-109 cfu/ml of Salmonella Enteritidis and the assays were conducted at near real-time with results obtained within one hour of sampling. The assays were specific and showed signal even in the presence of other microorganisms such as E. coli, Enterococcus faecalis or Salmonella Typhimurium. In the SPR system, IAsys instrument (resonant mirror sensor) was used. Monoclonal antibody-C11E9 was directly immobilized onto a carboxylate cuvette. Whole Listeria cells at various concentrations did not yield any signal while surface protein extracts did. Crude protein extracts from L. monocytogenes and L. innocua had average binding responses of around 150 arc sec (0.25 ng/mm2), which was significantly different from L. grayi, L. ivanovii, or L. welshimeri with average responses of <48 arc sec. Both fiber-optic and SPR sensors show promise in near real-time detection of foodborne L. monocytogenes and Salmonella Enteritidis.

  11. Aptasensors for quantitative detection of Salmonella Typhimurium.

    PubMed

    Ansari, Najmeh; Yazdian-Robati, Rezvan; Shahdordizadeh, Mahin; Wang, Zhouping; Ghazvini, Kiarash

    2017-09-15

    Salmonella is one of the most frequent causes of food borne infectious disease. Among nearly 2500 documented serotypes are reported, Salmonella Typhimurium is the number one serotype associated with salmonellosis worldwide. Many different methods have been developed for the detection and quantification of S. typhimurium. Most of these assays are usually expensive, time consuming and require difficult sample preparation steps. Therefore, it is necessary to develop rapid, robust, cost-effective and sensitive alternative detection methods. In the last years, aptasensors, used for detection of S. typhimurium in different samples. In this review, recent advances and applications of aptasensors for the detection and quantification of S. typhimurium in details have been summarized. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Use of the Microscreen phage-induction assay to assess the genotoxicity of 14 hazardous industrial wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houk, V.S.; DeMarini, D.M.

    1988-01-01

    The Microscreen phage-induction assay, which quantitatively measures the induction of prophage lambda in Escherichia coli WP2s lambda, was used to test 14 crude (unfractionated) hazardous industrial-waste samples for genotoxic activity in the presence and absence of metabolic activation. Eleven of the 14 wastes induced prophage, and induction was observed at concentrations as low as 0.4 picograms per ml. Comparisons between the mutagenicity of these waste samples in Salmonella and their ability to induce prophage lambda indicate that the Microscreen phage-induction assay detected genotoxic activity in all but one of the wastes that were mutagenic in Salmonella. Moreover, the Microscreen assaymore » detected as genotoxic 5 additional wastes that were not detected in the Salmonella assay. The applicability of the Microscreen phage-induction assay for screening hazardous wastes for genotoxic activity is discussed along with some of the problems associated with screening highly toxic wastes containing toxic volatile compounds.« less

  13. One-step reverse transcription loop mediated isothermal amplification assay for detection of Apple chlorotic leaf spot virus

    USDA-ARS?s Scientific Manuscript database

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of Apple chlorotic leaf spot virus (ACLSV) was developed. In this method, a set of four primers was designed based on the conserved regions in the coat protein gene of ACLSV, and was synthesized for the ...

  14. USE OF A MOLECULAR PROBE ASSAY FOR MONITORING SALMONELLA SPP. IN BIOSOLIDS SAMPLES

    EPA Science Inventory

    Current federal regulations (40 CFR 503) require enumeration of fecal coliform or salmonellae prior to land application of biosolids. This regulation specifies use of enumeration methods included in "Standard methods for the Examination of Water and Wastewater 18th Edition," (SM)...

  15. Selected Lactobacillus strains isolated from sugary and milk kefir reduce Salmonella infection of epithelial cells in vitro.

    PubMed

    Zavala, L; Golowczyc, M A; van Hoorde, K; Medrano, M; Huys, G; Vandamme, P; Abraham, A G

    2016-09-01

    The isolation of potentially probiotic strains and the subsequent study of their properties are very important steps to gain insight in the health benefits ascribed to sugary and milk kefir. The aim of the present study was to characterise fifteen Lactobacillus strains isolated from these beverages by determining some surface properties and their ability to antagonise enterocyte cell damage after Salmonella infection in vitro. Lactobacillus surface properties were determined by hydrophobicity, autoaggregation, and coaggregation assays with Salmonella. In addition, lactobacilli adhesion to Caco-2/TC-7 cells and the effect on Salmonella invasion were evaluated. Finally, the disassembly of F-actin cytoskeleton on intestinal epithelial cells was assayed in vitro when Salmonella infection was performed in the presence of selected Lactobacillus strains. Ten out of the 15 strains showed a high adhesion capacity to Caco-2/TC-7 cells. Most of the strains were hydrophilic and non-autoaggregating. Strains isolated from sugary kefir were non-coaggregating with Salmonella, while strains Lactobacillus paracasei CIDCA 83120, 83121, 83123, 83124, 8339, 83102 isolated from milk kefir were able to coaggregate after 1 h. L. paracasei CIDCA 8339 and Lactobacillus kefiri CIDCA 83102 were able to diminish Salmonella invasion to the enterocytes. An antagonistic effect on cytoskeleton disruption elicited by the pathogen was also demonstrated. Our results suggest that both strains isolated from milk kefir could be considered as appropriate probiotic candidates.

  16. Effective characterization of Salmonella Enteritidis by most probable number (MPN) followed by multiplex polymerase chain reaction (PCR) methods.

    PubMed

    Zappelini, Lincohn; Martone-Rocha, Solange; Dropa, Milena; Matté, Maria Helena; Tiba, Monique Ribeiro; Breternitz, Bruna Suellen; Razzolini, Maria Tereza Pepe

    2017-02-01

    Nontyphoidal Salmonella (NTS) is a relevant pathogen involved in gastroenteritis outbreaks worldwide. In this study, we determined the capacity to combine the most probable number (MPN) and multiplex polymerase chain reaction (PCR) methods to characterize the most important Salmonella serotypes in raw sewage. A total of 499 isolates were recovered from 27 raw sewage samples and screened using two previously described multiplex PCR methods. From those, 123 isolates were selected based on PCR banding pattern-identical or similar to Salmonella Enteritidis and Salmonella Typhimurium-and submitted to conventional serotyping. Results showed that both PCR assays correctly serotyped Salmonella Enteritidis, however, they presented ambiguous results for Salmonella Typhimurium identification. These data highlight that MPN and multiplex PCR can be useful methods to describe microbial quality in raw sewage and suggest two new PCR patterns for Salmonella Enteritidis identification.

  17. Value Addition in the Efficacy of Conventional Antibiotics by Nisin against Salmonella

    PubMed Central

    Singh, Aman Preet; Prabha, Vijay; Rishi, Praveen

    2013-01-01

    Frequent and indiscriminate use of existing battery of antibiotics has led to the development of multi drug resistant (MDR) strains of pathogens. As decreasing the concentration of the antibiotic required to treat Salmonellosis might help in combating the development of resistant strains, the present study was designed to assess the synergistic effects, if any, of nisin, in combination with conventional anti-Salmonella antibiotics against Salmonella enterica serovar Typhimurium. Minimum inhibitory concentrations (MICs) of the selected antimicrobial agents were determined by micro and macro broth dilution assays. In-vitro synergy between the agents was evaluated by radial diffusion assay, fractional inhibitory concentration (FIC) index (checkerboard test) and time-kill assay. Scanning electron microscopy (SEM) was also performed to substantiate the effect of the combinations. In-vivo synergistic efficacy of the combinations selected on the basis of in-vitro results was also evaluated in the murine model, in terms of reduction in the number of Salmonellae in liver, spleen and intestine. Nisin-ampicillin and nisin-EDTA combinations were observed to have additive effects, whereas the combinations of nisin-ceftriaxone and nisin-cefotaxime were found to be highly synergistic against serovar Typhimurium as evident by checkerboard test and time-kill assay. SEM results revealed marked changes on the outer membrane of the bacterial cells treated with various combinations. In-vivo synergy was evident from the larger log unit decreases in all the target organs of mice treated with the combinations than in those treated with drugs alone. This study thus highlights that nisin has the potential to act in conjunction with conventional antibiotics at much lower MICs. These observations seem to be significant, as reducing the therapeutic concentrations of antibiotics may be a valuable strategy for avoiding/reducing the development of emerging antibiotic resistance. Value added

  18. Value addition in the efficacy of conventional antibiotics by Nisin against Salmonella.

    PubMed

    Singh, Aman Preet; Prabha, Vijay; Rishi, Praveen

    2013-01-01

    Frequent and indiscriminate use of existing battery of antibiotics has led to the development of multi drug resistant (MDR) strains of pathogens. As decreasing the concentration of the antibiotic required to treat Salmonellosis might help in combating the development of resistant strains, the present study was designed to assess the synergistic effects, if any, of nisin, in combination with conventional anti-Salmonella antibiotics against Salmonella enterica serovar Typhimurium. Minimum inhibitory concentrations (MICs) of the selected antimicrobial agents were determined by micro and macro broth dilution assays. In-vitro synergy between the agents was evaluated by radial diffusion assay, fractional inhibitory concentration (FIC) index (checkerboard test) and time-kill assay. Scanning electron microscopy (SEM) was also performed to substantiate the effect of the combinations. In-vivo synergistic efficacy of the combinations selected on the basis of in-vitro results was also evaluated in the murine model, in terms of reduction in the number of Salmonellae in liver, spleen and intestine. Nisin-ampicillin and nisin-EDTA combinations were observed to have additive effects, whereas the combinations of nisin-ceftriaxone and nisin-cefotaxime were found to be highly synergistic against serovar Typhimurium as evident by checkerboard test and time-kill assay. SEM results revealed marked changes on the outer membrane of the bacterial cells treated with various combinations. In-vivo synergy was evident from the larger log unit decreases in all the target organs of mice treated with the combinations than in those treated with drugs alone. This study thus highlights that nisin has the potential to act in conjunction with conventional antibiotics at much lower MICs. These observations seem to be significant, as reducing the therapeutic concentrations of antibiotics may be a valuable strategy for avoiding/reducing the development of emerging antibiotic resistance. Value added

  19. Antibacterial activity and effects of Colla corii asini on Salmonella typhimurium invasion in vitro and in vivo.

    PubMed

    Park, Kwang-Il; Lee, Mi-Ra; Oh, Tae-Woo; Kim, Kwang-Youn; Ma, Jin-Yeul

    2017-12-04

    Salmonella enterica serovar Typhimurium is a foodborne pathogen that triggers inflammatory responses in the intestines of humans and livestock. Colla corii asini is a traditional medicine used to treat gynecologic and chronic diseases in Korea and China. However, the antibacterial activity of Colla corii asini has been unknown. In this study, we investigated the antibacterial activity and effects of Colla corii asini extract on Salmonella typhimurium invasion. To tested for antibacterial effects of Colla corii asini extracts, we confirmed the agar diffusion using Luria solid broth medium. Also, we determined the MIC (minimum inhibitory concentration) and the MBC (minimum bactericidal concentration) value of the Colla corii asini ethanol extract (CEE) by using two-fold serial dilution methods. We evaluated the expression of salmonella invasion proteins including SipA, SipB and SipC by using Western blot and qPCR at the concentration of CEE without inhibition of bacterial growth. In vitro and vivo, we determined the inhibitory effect of invasion of S. typhimurium on CEE by using gentamicin assay and S. typhimurium-infected mice. CEE significantly inhibited the growth of Salmonella typhimurium in an agar diffuse assay and had an MIC of 0.78 mg/ml and an MBC of 1.56 mg/ml. Additionally, CEE reduced Salmonella typhimurium cell invasion via the inhibition of Salmonella typhimurium invasion proteins, such as SipA, SipB and SipC. Furthermore, CEE significantly suppressed invasion in the small intestines (ilea) of mice injected with Salmonella typhimurium. These findings show that Colla corii asini exerts antibacterial activity and suppresses Salmonella typhimurium invasion in vitro and in vivo. Together, these findings demonstrate that Colla corii asini is a potentially useful therapeutic herbal medicine for treating salmonella-mediated diseases.

  20. Production of recombinant flagellin to develop ELISA-based detection of Salmonella Enteritidis.

    PubMed

    Mirhosseini, Seyed Ali; Fooladi, Abbas Ali Imani; Amani, Jafar; Sedighian, Hamid

    Food-borne diseases, caused by the pathogenic bacteria, are highly prevalent in the world. Salmonella is one of the most important bacterial genera responsible for this. Salmonella Enteritidis (SE) is one of the non-typhoid Salmonellae that can be transmitted to human from poultry products, water, and contaminated food. In recent years, new and rapid detection methods such as enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) have been developed. In this study, recombinant FliC (rFliC) was produced to be used as an antigen. The immunization was conducted in mice with the purified recombinant FliC (rFliC). The mice were subcutaneously immunized with rFliC and elicited significant rFliC specific serum IgG antibodies. An indirect ELISA system was established for the detection of Salmonella Enteritidis. Our results confirmed that the recombinant flagellin can be one of the excellent indicators for the detection of Salmonella Enteritidis. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Interdigitated microelectrode based impedance biosensor for detection of salmonella enteritidis in food samples

    NASA Astrophysics Data System (ADS)

    Kim, G.; Morgan, M.; Hahm, B. K.; Bhunia, A.; Mun, J. H.; Om, A. S.

    2008-03-01

    Salmonella enteritidis outbreaks continue to occur, and S. enteritidis-related outbreaks from various food sources have increased public awareness of this pathogen. Conventional methods for pathogens detection and identification are labor-intensive and take days to complete. Some immunological rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown great potential for the rapid detection of foodborne pathogens. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on avidin-biotin binding on the surface of the IME to form an active sensing layer. To increase the sensitivity of the sensor, three types of sensors that have different electrode gap sizes (2 μm, 5 μm, 10 μm) were fabricated and tested. The impedimetric biosensor could detect 103 CFU/mL of Salmonella in pork meat extract with an incubation time of 5 minutes. This method may provide a simple, rapid and sensitive method to detect foodborne pathogens.

  2. Culture versus PCR for Salmonella Species Identification in Some Dairy Products and Dairy Handlers with Special Concern to Its Zoonotic Importance.

    PubMed

    Gwida, Mayada M; Al-Ashmawy, Maha A M

    2014-01-01

    A total of 200 samples of milk and dairy products as well as 120 samples of dairy handlers were randomly collected from different dairy farms and supermarkets in Dakahlia Governorate, Egypt. The conventional cultural and serotyping methods for detection of Salmonella in dairy products were applied and the results were compared with those obtained by molecular screening assay using (ttr sequence). The obtained results revealed that 21% of milk and dairy products (42/200) were positive for Salmonella species using enrichment culture-based PCR method, while 12% of different dairy samples (24/200) were found to be positive for Salmonella species by using the conventional culture methods. Two stool specimens out of 40 apparently healthy dairy handlers were positive by the PCR method. Serotyping of Salmonella isolates revealed that 58.3% (14/24) from different dairy products were contaminated with Salmonella Typhimurium. We conclude that the enrichment culture-based PCR assay has high sensitivity and specificity for detection of Salmonella species in dairy products and handlers. High incidence of Salmonella Typhimurium in the examined dairy samples highlights the important role played by milk and dairy products as a vehicle in disease prevalence. Great effort should be applied for reducing foodborne risk for consumers.

  3. [Protagonists of innate immunity during in Salmonella infections].

    PubMed

    Salez, Laurent; Malo, Danielle

    2004-12-01

    Salmonella are facultative intracellular Gram-negative bacteria that are found ubiquitously in nature and have the ability to infect a wide range of hosts including humans, domesticated, wild mammals, and birds. The principal clinical manifestations associated with Salmonella infection in humans are enteric fever (typhoid and paratyphoid) and a self-limiting gastroenteritis (salmonellosis). Additionally, silent carriage of this bacterium is frequent and contributes to disease dissemination. Typhoid fever still represents a major public health problem in many developing countries. On the other hand, industrialized countries experience an increased incidence of nontyphoidal Salmonella infections with most cases tracing back to food contamination. Studies using mouse model of infection with a highly virulent Salmonella typhimurium serotype have provided important insight into the complexity of the innate immune response to infection. The players are numerous but emphasis was placed on the genes that were discovered using genetic approaches and in vivo assay with live pathogen and include positional cloning of mouse mutations and manipulation of genes in the context of whole animal either by transgenesis or knockout technologies. Some of the critical genes include those known to play a role in the detection of the bacteria (Cd14, Lbp, Tlr4 and Tlr5) and in microbicidal activity (Slc11a1, Nos2, NADPH oxidase and cryptdins). These discoveries have already initiated the search for the contribution of particular genetic pathways in the innate immune response of humans to infection with Salmonella and other intracellular microorganisms.

  4. Standardisation of polymerase chain reaction for the detection of Salmonella typhi in typhoid fever.

    PubMed Central

    Chaudhry, R; Laxmi, B V; Nisar, N; Ray, K; Kumar, D

    1997-01-01

    To improve the diagnosis of Salmonella typhi infection, a polymerase chain reaction (PCR) assay was developed for the amplification of the dH flagellin gene of S typhi. Primers were designed from dH flagellin gene sequence which will give an amplification product of 486 base pairs. In tests to study the specificity of the assay, no amplification was seen in non-salmonella strains or salmonella strains with flagellar gene other than "d". Sensitivity tests determined that 28 pg of S typhi target DNA or 3 x 10(2) target bacteria could be detected by the PCR assay. Subsequently, the PCR technique was used for detection of S typhi in blood or clot cultures from 84 patients clinically suspected of having typhoid fever, and from 20 healthy control subjects. Twenty five of 84 samples from clinically suspected cases were positive by PCR; four of which were culture negative. No amplification was seen in samples from patients who were culture positive for organisms other than S typhi or from controls. The time taken for each sample for PCR analysis was less than 48 hours compared with three to five days for blood or clot culture. PCR appeared to be a promising diagnostic test for typhoid fever. Images PMID:9215131

  5. Development and evaluation of reverse transcription loop-mediated isothermal amplification assay for the detection of the fathead minnow nidovirus.

    PubMed

    Zhang, Qingli; Standish, Isaac; Winters, Andrew D; Puzach, Corey; Ulferts, Rachel; Ziebuhr, John; Faisal, Mohamed

    2014-06-01

    Fathead minnow nidovirus (FHMNV) is a serious baitfish-pathogenic virus in North America. Studies to trace the spread of the virus and determine its host range are hampered by the absence of reliable diagnostic assays. In this study, a one-step, reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed that targets a region in the FHMNV spike protein gene. The assay was optimized, and the best results were obtained at 8 mM of Mg(2+) with an incubation time of 40 min at 63 °C in the presence of calcein. The analytical sensitivity of the RT-LAMP method was estimated to be as low as 5 viral copies and was 1000-fold more sensitive than the conventional reverse transcription polymerase chain reaction (RT-PCR) method. The diagnostic sensitivity and specificity of the developed RT-LAMP assay versus the RT-PCR assay was 100% and 95.7%, respectively. A quantitative RT-LAMP of FHMNV with a high correlation coefficient (r(2)=0.9926) was also developed and the result of quantitation of viral copies in tissue samples of infected fish showed that the viral loads of the infected fish tissue samples reached up to 4.7×10(10) copies per mg. It is anticipated that the developed RT-LAMP and quantitative RT-LAMP methods will be instrumental for diagnosis and surveillance of FHMNV. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Real-Time PCR Method for Detection of Salmonella spp. in Environmental Samples

    PubMed Central

    Drgon, Tomas

    2017-01-01

    ABSTRACT The methods currently used for detecting Salmonella in environmental samples require 2 days to produce results and have limited sensitivity. Here, we describe the development and validation of a real-time PCR Salmonella screening method that produces results in 18 to 24 h. Primers and probes specific to the gene invA, group D, and Salmonella enterica serovar Enteritidis organisms were designed and evaluated for inclusivity and exclusivity using a panel of 329 Salmonella isolates representing 126 serovars and 22 non-Salmonella organisms. The invA- and group D-specific sets identified all the isolates accurately. The PCR method had 100% inclusivity and detected 1 to 2 copies of Salmonella DNA per reaction. Primers specific for Salmonella-differentiating fragment 1 (Sdf-1) in conjunction with the group D set had 100% inclusivity for 32 S. Enteritidis isolates and 100% exclusivity for the 297 non-Enteritidis Salmonella isolates. Single-laboratory validation performed on 1,741 environmental samples demonstrated that the PCR method detected 55% more positives than the Vitek immunodiagnostic assay system (VIDAS) method. The PCR results correlated well with the culture results, and the method did not report any false-negative results. The receiver operating characteristic (ROC) analysis documented excellent agreement between the results from the culture and PCR methods (area under the curve, 0.90; 95% confidence interval of 0.76 to 1.0) confirming the validity of the PCR method. IMPORTANCE This validated PCR method detects 55% more positives for Salmonella in half the time required for the reference method, VIDAS. The validated PCR method will help to strengthen public health efforts through rapid screening of Salmonella spp. in environmental samples. PMID:28500041

  7. 40 CFR 79.68 - Salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Potency of Extracts of Diesel and Related Environmental Emissions: Study Design, Sample Generation... the present time, TA1535, TA1537, TA98, and TA100 are designated as tester strains. The fifth strain... this study shall be in accordance with good laboratory practice provisions under § 79.60. (1) Direct...

  8. 40 CFR 79.68 - Salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Potency of Extracts of Diesel and Related Environmental Emissions: Study Design, Sample Generation... the present time, TA1535, TA1537, TA98, and TA100 are designated as tester strains. The fifth strain... this study shall be in accordance with good laboratory practice provisions under § 79.60. (1) Direct...

  9. 40 CFR 79.68 - Salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Potency of Extracts of Diesel and Related Environmental Emissions: Study Design, Sample Generation... the present time, TA1535, TA1537, TA98, and TA100 are designated as tester strains. The fifth strain... this study shall be in accordance with good laboratory practice provisions under § 79.60. (1) Direct...

  10. 40 CFR 79.68 - Salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Potency of Extracts of Diesel and Related Environmental Emissions: Study Design, Sample Generation... the present time, TA1535, TA1537, TA98, and TA100 are designated as tester strains. The fifth strain... this study shall be in accordance with good laboratory practice provisions under § 79.60. (1) Direct...

  11. 40 CFR 79.68 - Salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Potency of Extracts of Diesel and Related Environmental Emissions: Study Design, Sample Generation... the present time, TA1535, TA1537, TA98, and TA100 are designated as tester strains. The fifth strain... this study shall be in accordance with good laboratory practice provisions under § 79.60. (1) Direct...

  12. Printing 2-dimentional droplet array for single-cell reverse transcription quantitative PCR assay with a microfluidic robot.

    PubMed

    Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo

    2015-04-01

    This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis.

  13. Printing 2-Dimentional Droplet Array for Single-Cell Reverse Transcription Quantitative PCR Assay with a Microfluidic Robot

    PubMed Central

    Zhu, Ying; Zhang, Yun-Xia; Liu, Wen-Wen; Ma, Yan; Fang, Qun; Yao, Bo

    2015-01-01

    This paper describes a nanoliter droplet array-based single-cell reverse transcription quantitative PCR (RT-qPCR) assay method for quantifying gene expression in individual cells. By sequentially printing nanoliter-scale droplets on microchip using a microfluidic robot, all liquid-handling operations including cell encapsulation, lysis, reverse transcription, and quantitative PCR with real-time fluorescence detection, can be automatically achieved. The inhibition effect of cell suspension buffer on RT-PCR assay was comprehensively studied to achieve high-sensitivity gene quantification. The present system was applied in the quantitative measurement of expression level of mir-122 in single Huh-7 cells. A wide distribution of mir-122 expression in single cells from 3061 copies/cell to 79998 copies/cell was observed, showing a high level of cell heterogeneity. With the advantages of full-automation in liquid-handling, simple system structure, and flexibility in achieving multi-step operations, the present method provides a novel liquid-handling mode for single cell gene expression analysis, and has significant potentials in transcriptional identification and rare cell analysis. PMID:25828383

  14. Development of Rapid Detection and Genetic Characterization of Salmonella in Poultry Breeder Feeds

    PubMed Central

    Jarquin, Robin; Hanning, Irene; Ahn, Soohyoun; Ricke, Steven C.

    2009-01-01

    Salmonella is a leading cause of foodborne illness in the United States, with poultry and poultry products being a primary source of infection to humans. Poultry may carry some Salmonella serovars without any signs or symptoms of disease and without causing any adverse effects to the health of the bird. Salmonella may be introduced to a flock by multiple environmental sources, but poultry feed is suspected to be a leading source. Detecting Salmonella in feed can be challenging because low levels of the bacteria may not be recovered using traditional culturing techniques. Numerous detection methodologies have been examined over the years for quantifying Salmonella in feeds and many have proven to be effective for Salmonella isolation and detection in a variety of feeds. However, given the potential need for increased detection sensitivity, molecular detection technologies may the best candidate for developing rapid sensitive methods for identifying small numbers of Salmonella in the background of large volumes of feed. Several studies have been done using polymerase chain reaction (PCR) assays and commercial kits to detect Salmonella spp. in a wide variety of feed sources. In addition, DNA array technology has recently been utilized to track the dissemination of a specific Salmonella serotype in feed mills. This review will discuss the processing of feeds and potential points in the process that may introduce Salmonella contamination to the feed. Detection methods currently used and the need for advances in these methods also will be discussed. Finally, implementation of rapid detection for optimizing control methods to prevent and remove any Salmonella contamination of feeds will be considered. PMID:22346699

  15. Factors Affecting Detection of Hepatitis E Virus on Canadian Retail Pork Chops and Pork Livers Assayed Using Real-Time RT-PCR.

    PubMed

    Wilhelm, B J; Leblanc, D; Avery, B; Pearl, D L; Houde, A; Rajić, A; McEwen, S A

    2016-03-01

    We collected 599 Canadian retail pork chops and 283 pork livers routinely (usually weekly) from April 2011 to March 2012 using the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) retail sampling platform. Samples were assayed using validated real-time (q) reverse transcriptase polymerase chain reaction (RT-PCR) and nested classical RT-PCR for the detection of hepatitis E virus (HEV), porcine enteric calicivirus (PEC) and rotavirus (RV). The presence of Escherichia coli, Salmonella spp. and Campylobacter spp. was measured on a subset of our samples. Exact logistic regression models were fitted for predictors for HEV detection, for each assay. For both assays, sample type (pork chop versus liver) was a significant predictor for HEV RNA detection. For nested classical RT-PCR but not qRT-PCR, region of sample collection was a significant predictor (P = 0.008) of HEV detection. Odds of HEV detection were greatest in spring relative to other seasons. E. coli was a significant predictor for HEV RNA detection using the qRT-PCR (P = 0.03). Overall, the prevalence of E. coli, Salmonella spp. and Campylobacter spp. was significantly greater than HEV, PEC or RV on our retail pork samples. Our sparse data set for the detection of PEC and RV precluded modelling of risk factors for the detection of these viruses. © 2015 Zoonoses and Public Health © 2015 Her Majesty the Queen in Right of Canada Reproduced with the permission of the Minister of the Public Health Agency of Canada.

  16. Prophage Integrase Typing Is a Useful Indicator of Genomic Diversity in Salmonella enterica

    PubMed Central

    Colavecchio, Anna; D’Souza, Yasmin; Tompkins, Elizabeth; Jeukens, Julie; Freschi, Luca; Emond-Rheault, Jean-Guillaume; Kukavica-Ibrulj, Irena; Boyle, Brian; Bekal, Sadjia; Tamber, Sandeep; Levesque, Roger C.; Goodridge, Lawrence D.

    2017-01-01

    Salmonella enterica is a bacterial species that is a major cause of illness in humans and food-producing animals. S. enterica exhibits considerable inter-serovar diversity, as evidenced by the large number of host adapted serovars that have been identified. The development of methods to assess genome diversity in S. enterica will help to further define the limits of diversity in this foodborne pathogen. Thus, we evaluated a PCR assay, which targets prophage integrase genes, as a rapid method to investigate S. enterica genome diversity. To evaluate the PCR prophage integrase assay, 49 isolates of S. enterica were selected, including 19 clinical isolates from clonal serovars (Enteritidis and Heidelberg) that commonly cause human illness, and 30 isolates from food-associated Salmonella serovars that rarely cause human illness. The number of integrase genes identified by the PCR assay was compared to the number of integrase genes within intact prophages identified by whole genome sequencing and phage finding program PHASTER. The PCR assay identified a total of 147 prophage integrase genes within the 49 S. enterica genomes (79 integrase genes in the food-associated Salmonella isolates, 50 integrase genes in S. Enteritidis, and 18 integrase genes in S. Heidelberg). In comparison, whole genome sequencing and PHASTER identified a total of 75 prophage integrase genes within 102 intact prophages in the 49 S. enterica genomes (44 integrase genes in the food-associated Salmonella isolates, 21 integrase genes in S. Enteritidis, and 9 integrase genes in S. Heidelberg). Collectively, both the PCR assay and PHASTER identified the presence of a large diversity of prophage integrase genes in the food-associated isolates compared to the clinical isolates, thus indicating a high degree of diversity in the food-associated isolates, and confirming the clonal nature of S. Enteritidis and S. Heidelberg. Moreover, PHASTER revealed a diversity of 29 different types of prophages and 23

  17. Prophage Integrase Typing Is a Useful Indicator of Genomic Diversity in Salmonella enterica.

    PubMed

    Colavecchio, Anna; D'Souza, Yasmin; Tompkins, Elizabeth; Jeukens, Julie; Freschi, Luca; Emond-Rheault, Jean-Guillaume; Kukavica-Ibrulj, Irena; Boyle, Brian; Bekal, Sadjia; Tamber, Sandeep; Levesque, Roger C; Goodridge, Lawrence D

    2017-01-01

    Salmonella enterica is a bacterial species that is a major cause of illness in humans and food-producing animals. S. enterica exhibits considerable inter-serovar diversity, as evidenced by the large number of host adapted serovars that have been identified. The development of methods to assess genome diversity in S. enterica will help to further define the limits of diversity in this foodborne pathogen. Thus, we evaluated a PCR assay, which targets prophage integrase genes, as a rapid method to investigate S. enterica genome diversity. To evaluate the PCR prophage integrase assay, 49 isolates of S. enterica were selected, including 19 clinical isolates from clonal serovars (Enteritidis and Heidelberg) that commonly cause human illness, and 30 isolates from food-associated Salmonella serovars that rarely cause human illness. The number of integrase genes identified by the PCR assay was compared to the number of integrase genes within intact prophages identified by whole genome sequencing and phage finding program PHASTER. The PCR assay identified a total of 147 prophage integrase genes within the 49 S. enterica genomes (79 integrase genes in the food-associated Salmonella isolates, 50 integrase genes in S . Enteritidis, and 18 integrase genes in S . Heidelberg). In comparison, whole genome sequencing and PHASTER identified a total of 75 prophage integrase genes within 102 intact prophages in the 49 S. enterica genomes (44 integrase genes in the food-associated Salmonella isolates, 21 integrase genes in S . Enteritidis, and 9 integrase genes in S . Heidelberg). Collectively, both the PCR assay and PHASTER identified the presence of a large diversity of prophage integrase genes in the food-associated isolates compared to the clinical isolates, thus indicating a high degree of diversity in the food-associated isolates, and confirming the clonal nature of S . Enteritidis and S . Heidelberg. Moreover, PHASTER revealed a diversity of 29 different types of prophages and 23

  18. Magnetic focusing immunosensor for the detection of Salmonella typhimurium in foods

    NASA Astrophysics Data System (ADS)

    Pivarnik, Philip E.; Cao, He; Letcher, Stephen V.; Pierson, Arthur H.; Rand, Arthur G.

    1999-01-01

    From 1988 through 1992 Salmonellosis accounted for 27% of the total reported foodborne disease outbreaks and 57% of the outbreaks in which the pathogen was identified. The prevalence of Salmonellosis and the new requirements to monitor the organism as a marker in pathogen reduction programs will drive the need for rapid, on-site testing. A compact fiber optic fluorometer using a red diode laser as an excitation source and fiber probes for analyte detection has been constructed and used to measure Salmonella. The organisms were isolated with anti-Salmonella magnetic beads and were labeled with a secondary antibody conjugated to a red fluorescent dye. The response of the system was proportional to the concentration of Salmonella typhimurium from 3.2 X 105 colony forming units (CFU)/ml to 1.6 X 107 CFU/ml. The system was developed to utilize a fiber-optic magnetic focusing problem that attracted the magnetic microspheres to the surface of a sample chamber directly in front of the excitation and emission fibers. The signal obtained from a homogenous suspension of fluorescent magnetic microspheres was 9 to 10 picowatts. After focusing, the signal from the fluorescent labeled magnetic microspheres increased to 200 picowatts, approximately 20 times greater than the homogeneous suspension. The magnetic focusing assay detected 1.59 X 105 colony forming units/ml of Salmonella typhimurium cultured in growth media. The process of magnetic focusing in front of the fibers has the potential to reduce the background fluorescence from unbound secondary antibodies, eliminating several rinsing steps, resulting in a simple rapid assay.

  19. Genotoxicity assessment of multispecies probiotics using reverse mutation, mammalian chromosomal aberration, and rodent micronucleus tests.

    PubMed

    Chiu, Yi-Jen; Nam, Mun-Kit; Tsai, Yueh-Ting; Huang, Chun-Chi; Tsai, Cheng-Chih

    2013-01-01

    Genotoxicity assessment is carried out on freeze dried powder of cultured probiotics containing Lactobacillus rhamnosus LCR177, Bifidobacterium adolescentis BA286, and Pediococcus acidilactici PA318. Ames tests, in vitro mammalian chromosome aberration assay, and micronucleus tests in mouse peripheral blood are performed. For 5 strains of Salmonella Typhimurium, the Ames tests show no increased reverse mutation upon exposure to the test substance. In CHO cells, the frequency of chromosome aberration does not increase in responding to the treatment of probiotics. Likewise, the frequency of micronucleated reticulocytes in probiotics-fed mice is indistinguishable from that in the negative control group. Taken together, the toxicity assessment studies suggest that the multispecies probiotic mixture does not have mutagenic effects on various organisms.

  20. Development of a Real-Time, TaqMan Reverse Transcription-PCR Assay for Detection and Differentiation of Lyssavirus Genotypes 1, 5, and 6

    PubMed Central

    Wakeley, P. R.; Johnson, N.; McElhinney, L. M.; Marston, D.; Sawyer, J.; Fooks, A. R.

    2005-01-01

    Several reverse transcription-PCR (RT-PCR) methods have been reported for the detection of rabies and rabies-related viruses. These methods invariably involve multiple transfers of nucleic acids between different tubes, with the risk of contamination leading to the production of false-positive results. Here we describe a single, closed-tube, nonnested RT-PCR with TaqMan technology that distinguishes between classical rabies virus (genotype 1) and European bat lyssaviruses 1 and 2 (genotypes 5 and 6) in real time. The TaqMan assay is rapid, sensitive, and specific and allows for the genotyping of unknown isolates concomitant with the RT-PCR. The assay can be applied quantitatively and the use of an internal control enables the quality of the isolated template to be assessed. Despite sequence heterogeneity in the N gene between the different genotypes, a universal forward and reverse primer set has been designed, allowing for the simplification of previously described assays. We propose that within a geographically constrained area, this assay will be a useful tool for the detection and differentiation of members of the Lyssavirus genus. PMID:15956398

  1. Investigations of Salmonella enterica serovar newport infections of oysters by using immunohistochemistry and knockout mutagenesis.

    PubMed

    Morrison, Christopher M; Dial, Sharon M; Day, William A; Joens, Lynn A

    2012-04-01

    The consumption of raw oysters is an important risk factor in the acquisition of food-borne disease, with Salmonella being one of a number of pathogens that have been found in market oysters. Previous work by our lab found that Salmonella was capable of surviving in oysters for over 2 months under laboratory conditions, and this study sought to further investigate Salmonella's tissue affinity and mechanism of persistence within the oysters. Immunohistochemistry was used to show that Salmonella was capable of breaching the epithelial barriers, infecting the deeper connective tissues of the oysters, and evading destruction by the oysters' phagocytic hemocytes. To further investigate the mechanism of these infections, genes vital to the function of Salmonella's two main type III secretion systems were disrupted and the survivability of these knockout mutants within oysters was assayed. When the Salmonella pathogenicity island 1 and 2 mutant strains were exposed to oysters, there were no detectable deficiencies in their abilities to survive, suggesting that Salmonella's long-term infection of oysters does not rely upon these two important pathogenicity islands and must be due to some other, currently unknown, mechanism.

  2. Investigations of Salmonella enterica Serovar Newport Infections of Oysters by Using Immunohistochemistry and Knockout Mutagenesis

    PubMed Central

    Morrison, Christopher M.; Dial, Sharon M.; Day, William A.

    2012-01-01

    The consumption of raw oysters is an important risk factor in the acquisition of food-borne disease, with Salmonella being one of a number of pathogens that have been found in market oysters. Previous work by our lab found that Salmonella was capable of surviving in oysters for over 2 months under laboratory conditions, and this study sought to further investigate Salmonella's tissue affinity and mechanism of persistence within the oysters. Immunohistochemistry was used to show that Salmonella was capable of breaching the epithelial barriers, infecting the deeper connective tissues of the oysters, and evading destruction by the oysters' phagocytic hemocytes. To further investigate the mechanism of these infections, genes vital to the function of Salmonella's two main type III secretion systems were disrupted and the survivability of these knockout mutants within oysters was assayed. When the Salmonella pathogenicity island 1 and 2 mutant strains were exposed to oysters, there were no detectable deficiencies in their abilities to survive, suggesting that Salmonella's long-term infection of oysters does not rely upon these two important pathogenicity islands and must be due to some other, currently unknown, mechanism. PMID:22307286

  3. Structure alerts for carcinogenicity, and the Salmonella assay system: a novel insight through the chemical relational databases technology.

    PubMed

    Benigni, Romualdo; Bossa, Cecilia

    2008-01-01

    In the past decades, chemical carcinogenicity has been the object of mechanistic studies that have been translated into valuable experimental (e.g., the Salmonella assays system) and theoretical (e.g., compilations of structure alerts for chemical carcinogenicity) models. These findings remain the basis of the science and regulation of mutagens and carcinogens. Recent advances in the organization and treatment of large databases consisting of both biological and chemical information nowadays allows for a much easier and more refined view of data. This paper reviews recent analyses on the predictive performance of various lists of structure alerts, including a new compilation of alerts that combines previous work in an optimized form for computer implementation. The revised compilation is part of the Toxtree 1.50 software (freely available from the European Chemicals Bureau website). The use of structural alerts for the chemical biological profiling of a large database of Salmonella mutagenicity results is also reported. Together with being a repository of the science on the chemical biological interactions at the basis of chemical carcinogenicity, the SAs have a crucial role in practical applications for risk assessment, for: (a) description of sets of chemicals; (b) preliminary hazard characterization; (c) formation of categories for e.g., regulatory purposes; (d) generation of subsets of congeneric chemicals to be analyzed subsequently with QSAR methods; (e) priority setting. An important aspect of SAs as predictive toxicity tools is that they derive directly from mechanistic knowledge. The crucial role of mechanistic knowledge in the process of applying (Q)SAR considerations to risk assessment should be strongly emphasized. Mechanistic knowledge provides a ground for interaction and dialogue between model developers, toxicologists and regulators, and permits the integration of the (Q)SAR results into a wider regulatory framework, where different types of

  4. Bacteriophage P22 to challenge Salmonella in foods.

    PubMed

    Zinno, Paola; Devirgiliis, Chiara; Ercolini, Danilo; Ongeng, Duncan; Mauriello, Gianluigi

    2014-11-17

    In this study we considered the influence of phage addition on the fate of Salmonella enterica serovar Typhimurium in different foods. Phage P22 was applied to the following: liquid eggs, energy drinks, whole and skimmed milk, apple juice, chicken breast and chicken mince all spiked with its host, whose growth was monitored for 24 and 48 h at 4 °C. Appreciable host inactivation, generally in the order of 2 log cycles, was achieved compared to phage-free controls in all food matrices when 10(4) UFC/g host inoculum was used. Furthermore, wild food strains belonging to the serotypes Typhimurium, Enteritidis, Derby Give, Newport, Muenchen and Muenster were assayed towards phage P22. Only isolates of Salmonella Typhimurium as well as Salmonella Derby and Salmonella Enteritidis was inhibited by the presence of P22 phage. Additional challenge experiments were carried out by spiking liquid-eggs, chicken breast and chicken mince with mixes of wild Salmonella Typhimurium (at concentration of about 10(4) UFC/g) strains along with their relative phage P22. The results showed a reduction of 2-3 log cycles after 48 h at 4 °C depending on both mix of strains and the specific food. Overall, the results indicate that phages may be useful in the control of food-borne pathogens. The food matrices considered, the liquid more than the solid, do not seem to affect the phage ability of infection compared to similar tests performed in vitro. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A new approach for diagnosis of bovine coronavirus using a reverse transcription recombinase polymerase amplification assay.

    PubMed

    Amer, H M; Abd El Wahed, A; Shalaby, M A; Almajhdi, F N; Hufert, F T; Weidmann, M

    2013-11-01

    Bovine coronavirus (BCoV) is an economically significant cause of calf scours and winter dysentery of adult cattle, and may induce respiratory tract infections in cattle of all ages. Early diagnosis of BCoV helps to diminish its burden on the dairy and beef industry. Real-time RT-PCR assay for the detection of BCoV has been described, but it is relatively expensive, requires well-equipped laboratories and is not suitable for on-site screening. A novel assay, using reverse transcription recombinase polymerase amplification (RT-RPA), for the detection of BCoV is developed. The BCoV RT-RPA was rapid (10-20 min) and has an analytical sensitivity of 19 molecules. No cross-reactivity with other viruses causing bovine gastrointestinal and/or respiratory infections was observed. The assay performance on clinical samples was validated by testing 16 fecal and 14 nasal swab specimens and compared to real-time RT-PCR. Both assays provided comparable results. The RT-RPA assay was significantly more rapid than the real-time RT-PCR assay. The BCoV RT-RPA constitutes a suitable accurate, sensitive and rapid alternative to the common measures used for BCoV diagnosis. In addition, the use of a portable fluorescence reading device extends its application potential to use in the field and point-of-care diagnosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. [Salmonella].

    PubMed

    Amo, Kiyoko

    2012-08-01

    Nontyphoidal salmonella causes infectious gastroenteritis, and sometimes causes bacteremia and meningitis. Gastroenteritis associated with nontyphoidal salmonella, in which fever, diarrhea, vomiting and abdominal cramps, is a common disease. The major way of transmittion is food of animal origin, for example egg. That is the reason why precausion is so important such as wash hands before cooking, avoid eating raw egg and wash the cooking utensils after contact raw foods. In this report, I presented the rare severe case of encephalitis caused by salmonella infection.

  7. Detection of Salmonella invA gene in shrimp enrichment culture by polymerase chain reaction.

    PubMed

    Upadhyay, Bishnu Prasad; Utrarachkij, Fuangfa; Thongshoob, Jarinee; Mahakunkijcharoen, Yuvadee; Wongchinda, Niracha; Suthienkul, Orasa; Khusmith, Srisin

    2010-03-01

    Contamination of seafood with salmonellae is a major public health concern. Detection of Salmonella by standard culture methods is time consuming. In this study, an enrichment culture step prior to polymerase chain reaction (PCR) was applied to detect 284 bp fragment of Salmonella invA in comparison with the conventional culture method in 100 shrimp samples collected from four different shrimp farms and fresh food markets around Bangkok. Samples were pre-enriched in non-selective lactose broth (LB) and selective tetrathionate broth (TTB). PCR detection limit was 10 pg and 10(4) cfu/ml of viable salmonellae with 100% specificity. PCR assay detected 19 different Salmonella serovars belonging to 8 serogroups (B, C1, C2-C3, D1, E1, E4 and K) commonly found in clinical and environmental samples in Thailand. The detection rate of PCR following TTB enrichment (24%) was higher than conventional culture method (19%). PCR following TTB, but not in LB enrichment allowed salmonella detection with 84% sensitivity, 90% specificity and 89% accuracy. Shrimp samples collected from fresh food markets had higher levels of contaminated salmonellae than those from shrimp farms. The results indicated that incorporation of an enrichment step prior to PCR has the potential to be applied for detection of naturally contaminated salmonellae in food, environment and clinical samples.

  8. Mutagenic and genotoxic potential of direct electric current in Escherichia coli and Salmonella thyphimurium strains.

    PubMed

    Gomes, Marina das Neves; Cardoso, Janine Simas; Leitão, Alvaro Costa; Quaresma, Carla Holandino

    2016-05-01

    Direct electric current has several therapeutic uses such as antibacterial and antiprotozoal action, tissues scarring and regeneration, as well as tumor treatment. This method has shown promising results in vivo and in vitro, with significant efficacy and almost no side effects. Considering lack of studies regarding direct electric current mutagenic and/or genotoxic effects, the present work evaluated both aspects by using five different bacterial experimental assays: survival of repair-deficient mutants, Salmonella-histidine reversion mutagenesis (Ames test), forward mutations to rifampicin resistance, phage reactivation, and lysogenic induction. In these experimental conditions, cells were submitted to an approach that allows evaluation of anodic, cathodic, and electro-ionic effects generated by 2 mA of direct electric current, with doses ranging from 0.36 to 3.60 Coulombs. Our results showed these doses did not induce mutagenic or genotoxic effects. © 2016 Wiley Periodicals, Inc.

  9. Real-time reverse transcription-polymerase chain reaction assays for identification of wild poliovirus 1 & 3.

    PubMed

    Sharma, Deepa K; Nalavade, Uma P; Deshpande, Jagadish M

    2015-10-01

    The poliovirus serotype identification and intratypic differentiation by real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay is suitable for serotype mixtures but not for intratypic mixtures of wild and vaccine poliovirus strains. This study was undertaken to develop wild poliovirus 1 and 3 (WPV1 and WPV3) specific rRT-PCR assays for use. Specific primers and probes for rRT-PCR were designed based on VP1 sequences of WPV1 and WPV3 isolated in India since 2000. The specificity of the rRT-PCR assays was evaluated using WPV1 and WPV3 of different genetic lineages, non-polio enteroviruses (NPEVs) and mixtures of wild/wild and wild/Sabin vaccine strains. The sensitivity of the assays was determined by testing serial 10-fold dilutions of wild poliovirus 1 and 3 stock suspensions of known titre. No cross-reactivity with Sabin strains, intertypic wild poliovirus isolates or 27 types of NPEVs across all the four Enterovirus species was found for both the wild poliovirus 1 and 3 rRT-PCR assays. All WPV1 and WPV3 strains isolated since 2000 were successfully amplified. The rRT-PCR assays detected 10 4.40 CCID 50 /ml of WPV1 and 10 4.00 CCID 50 /ml of WPV3, respectively either as single isolate or mixture with Sabin vaccine strains or intertypic wild poliovirus. rRT-PCR assays for WPV1 and WPV3 have been validated to detect all the genetic variations of the WPV1 and WPV3 isolated in India for the last decade. When used in combination with the current rRT-PCR assay testing was complete for confirmation of the presence of wild poliovirus in intratypic mixtures.

  10. [Use of new immunoglobulin isotype-specific ELISA-systems to detect Salmonella infections in pigs].

    PubMed

    Ehlers, Joachim; Alt, Michael; Trepnau, Daniela; Lehmann, Jörg

    2006-01-01

    In Germany, the program for controlling salmonella infections in pigs is based on tests detecting salmonella-lipopolysaccharide (LPS) induced antibodies in meat-juice or blood. These conventional tests which are based on the technology of enzyme-linked immunosorbent assay (ELISA) detect exclusively or mainly immunoglobulin(lg)G antibodies. Meanwhile, novel ELISA systems (WCE-ELISA, 3-Isotype-Screening-ELISA) have been developed, which additionally detect the antibody classes IgM and IgA.This fact enables the registration of fresh salmonella infections (starting with day 5 p.i.) and thus, the distinction between early and older infections. The results show that animals with early salmonella infections appear significantly more often in herds with a high than with a low prevalence. With the newly developed tests this group of animals can be detected much more efficiently and precisely than with the tests used so far. Due to their clearly improved sensitivity the application of the WCE-ELISA and the 3-Isotype-Screening-ELISA in terms of the QS-Salmonella-Monitoring program can therefore significantly improve the selection of farms with potential salmonella excretors. Additionally, the WCE-ELISA can be applied very suitable for the examination of individual animals.

  11. Detection of Shiga toxin-producing Escherichia coli (STEC) O157:H7, O26, O45, O103, O111, O121, and O145, and Salmonella in retail raw ground beef using the DuPont™ BAX® system.

    PubMed

    Wasilenko, Jamie L; Fratamico, Pina M; Sommers, Christopher; DeMarco, Daniel R; Varkey, Stephen; Rhoden, Kyle; Tice, George

    2014-01-01

    Shiga toxin-producing Escherichia coli (STEC) and Salmonella are food-borne pathogens commonly associated with beef, and reliable methods are needed to determine their prevalence in beef and to ensure food safety. Retail ground beef was tested for the presence of E. coli O157:H7, STEC serogroups O26, O45, O103, O111, O121, and O145, and Salmonella using the DuPont™ BAX® system method. Ground beef (325 g) samples were enriched in 1.5 L of TSB with 2 mg/L novobiocin at 42°C for 18 h, and then evaluated using the BAX® System real-time PCR assays for E. coli O157:H7 and STEC suite, and the BAX® System standard PCR assays for E. coli O157:H7 MP and Salmonella. Samples positive for STEC target genes by the BAX® System assays were subjected to immunomagnetic separation (IMS) and plating onto modified Rainbow Agar O157. Enrichments that were PCR positive for Salmonella were inoculated into RV broth, incubated for 18 h at 42°C, and then plated onto XLT-4 agar. Presumptive positive STEC and Salmonella colonies were confirmed using the BAX® System assays. Results of the BAX® System STEC assays showed 20/308 (6.5%) of samples positive for both the Shiga toxin (stx) and intimin (eae) genes; 4 (1.3%) for stx, eae, and O26; 1 (0.3%) for stx, eae, and O45; 3 (1%) for stx, eae, and O103; and 1 (0.3%) for stx, eae, and O145. There were also 3 samples positive for stx, eae, and more than one STEC serogroup. Three (1.0%) of the samples were positive using the BAX® System real-time E. coli O157:H7 assay, and 28 (9.1%) were positive using the BAX® System Salmonella assay. STEC O103 and E. coli O157:H7 were isolated from 2/6 and 2/3 PCR positive samples, respectively. Salmonella isolates were recovered and confirmed from 27 of the 28 Salmonella PCR positive samples, and a portion of the isolates were serotyped and antibiotic resistance profiles determined. Results demonstrate that the BAX® System assays are effective for detecting STEC and Salmonella in beef.

  12. High resolution melting analysis for rapid mutation screening in gyrase and Topoisomerase IV genes in quinolone-resistant Salmonella enterica.

    PubMed

    Ngoi, Soo Tein; Thong, Kwai Lin

    2014-01-01

    The increased Salmonella resistance to quinolones and fluoroquinolones is a public health concern in the Southeast Asian region. The objective of this study is to develop a high resolution melt curve (HRM) assay to rapidly screen for mutations in quinolone-resistant determining region (QRDR) of gyrase and topoisomerase IV genes. DNA sequencing was performed on 62 Salmonella strains to identify mutations in the QRDR of gyrA, gyrB, parC, and parE genes. Mutations were detected in QRDR of gyrA (n = 52; S83F, S83Y, S83I, D87G, D87Y, and D87N) and parE (n = 1; M438I). Salmonella strains with mutations within QRDR of gyrA are generally more resistant to nalidixic acid (MIC 16 > 256 μg/mL). Mutations were uncommon within the QRDR of gyrB, parC, and parE genes. In the HRM assay, mutants can be distinguished from the wild-type strains based on the transition of melt curves, which is more prominent when the profiles are displayed in difference plot. In conclusion, HRM analysis allows for rapid screening for mutations at the QRDRs of gyrase and topoisomerase IV genes in Salmonella. This assay markedly reduced the sequencing effort involved in mutational studies of quinolone-resistance genes.

  13. High Resolution Melting Analysis for Rapid Mutation Screening in Gyrase and Topoisomerase IV Genes in Quinolone-Resistant Salmonella enterica

    PubMed Central

    Thong, Kwai Lin

    2014-01-01

    The increased Salmonella resistance to quinolones and fluoroquinolones is a public health concern in the Southeast Asian region. The objective of this study is to develop a high resolution melt curve (HRM) assay to rapidly screen for mutations in quinolone-resistant determining region (QRDR) of gyrase and topoisomerase IV genes. DNA sequencing was performed on 62 Salmonella strains to identify mutations in the QRDR of gyrA, gyrB, parC, and parE genes. Mutations were detected in QRDR of gyrA (n = 52; S83F, S83Y, S83I, D87G, D87Y, and D87N) and parE (n = 1; M438I). Salmonella strains with mutations within QRDR of gyrA are generally more resistant to nalidixic acid (MIC 16 > 256 μg/mL). Mutations were uncommon within the QRDR of gyrB, parC, and parE genes. In the HRM assay, mutants can be distinguished from the wild-type strains based on the transition of melt curves, which is more prominent when the profiles are displayed in difference plot. In conclusion, HRM analysis allows for rapid screening for mutations at the QRDRs of gyrase and topoisomerase IV genes in Salmonella. This assay markedly reduced the sequencing effort involved in mutational studies of quinolone-resistance genes. PMID:25371903

  14. Genotypic and phenotypic characterization of multidrug resistant Salmonella Typhimurium and Salmonella Kentucky strains recovered from chicken carcasses

    PubMed Central

    Grant, Ar’Quette; Choi, Seon Young; Alam, M. Samiul; Bell, Rebecca; Cavanaugh, Christopher; Balan, Kannan V.; Babu, Uma S.

    2017-01-01

    Abstract Salmonella Typhimurium is the leading cause of human non-typhoidal gastroenteritis in the US. S. Kentucky is one the most commonly recovered serovars from commercially processed poultry carcasses. This study compared the genotypic and phenotypic properties of two Salmonella enterica strains Typhimurium (ST221_31B) and Kentucky (SK222_32B) recovered from commercially processed chicken carcasses using whole genome sequencing, phenotype characterizations and an intracellular killing assay. Illumina MiSeq platform was used for sequencing of two Salmonella genomes. Phylogenetic analysis employing homologous alignment of a 1,185 non-duplicated protein-coding gene in the Salmonella core genome demonstrated fully resolved bifurcating patterns with varying levels of diversity that separated ST221_31B and SK222_32B genomes into distinct monophyletic serovar clades. Single nucleotide polymorphism (SNP) analysis identified 2,432 (ST19) SNPs within 13 Typhimurium genomes including ST221_31B representing Sequence Type ST19 and 650 (ST152) SNPs were detected within 13 Kentucky genomes including SK222_32B representing Sequence Type ST152. In addition to serovar-specific conserved coding sequences, the genomes of ST221_31B and SK222_32B harbor several genomic regions with significant genetic differences. These included phage and phage-like elements, carbon utilization or transport operons, fimbriae operons, putative membrane associated protein-encoding genes, antibiotic resistance genes, siderophore operons, and numerous hypothetical protein-encoding genes. Phenotype microarray results demonstrated that ST221_31B is capable of utilizing certain carbon compounds more efficiently as compared to SK222_3B; namely, 1,2-propanediol, M-inositol, L-threonine, α-D-lactose, D-tagatose, adonitol, formic acid, acetoacetic acid, and L-tartaric acid. ST221_31B survived for 48 h in macrophages, while SK222_32B was mostly eliminated. Further, a 3-fold growth of ST221_31B was observed at

  15. Genotypic and phenotypic characterization of multidrug resistant Salmonella Typhimurium and Salmonella Kentucky strains recovered from chicken carcasses.

    PubMed

    Tasmin, Rizwana; Hasan, Nur A; Grim, Christopher J; Grant, Ar'Quette; Choi, Seon Young; Alam, M Samiul; Bell, Rebecca; Cavanaugh, Christopher; Balan, Kannan V; Babu, Uma S; Parveen, Salina

    2017-01-01

    Salmonella Typhimurium is the leading cause of human non-typhoidal gastroenteritis in the US. S. Kentucky is one the most commonly recovered serovars from commercially processed poultry carcasses. This study compared the genotypic and phenotypic properties of two Salmonella enterica strains Typhimurium (ST221_31B) and Kentucky (SK222_32B) recovered from commercially processed chicken carcasses using whole genome sequencing, phenotype characterizations and an intracellular killing assay. Illumina MiSeq platform was used for sequencing of two Salmonella genomes. Phylogenetic analysis employing homologous alignment of a 1,185 non-duplicated protein-coding gene in the Salmonella core genome demonstrated fully resolved bifurcating patterns with varying levels of diversity that separated ST221_31B and SK222_32B genomes into distinct monophyletic serovar clades. Single nucleotide polymorphism (SNP) analysis identified 2,432 (ST19) SNPs within 13 Typhimurium genomes including ST221_31B representing Sequence Type ST19 and 650 (ST152) SNPs were detected within 13 Kentucky genomes including SK222_32B representing Sequence Type ST152. In addition to serovar-specific conserved coding sequences, the genomes of ST221_31B and SK222_32B harbor several genomic regions with significant genetic differences. These included phage and phage-like elements, carbon utilization or transport operons, fimbriae operons, putative membrane associated protein-encoding genes, antibiotic resistance genes, siderophore operons, and numerous hypothetical protein-encoding genes. Phenotype microarray results demonstrated that ST221_31B is capable of utilizing certain carbon compounds more efficiently as compared to SK222_3B; namely, 1,2-propanediol, M-inositol, L-threonine, α-D-lactose, D-tagatose, adonitol, formic acid, acetoacetic acid, and L-tartaric acid. ST221_31B survived for 48 h in macrophages, while SK222_32B was mostly eliminated. Further, a 3-fold growth of ST221_31B was observed at 24 hours

  16. Inhibition of the virulence, antibiotic resistance, and fecal shedding of multiple antibiotic-resistant Salmonella Typhimurium in broilers fed Original XPC™

    PubMed Central

    Feye, K. M.; Anderson, K. L.; Scott, M. F.; McIntyre, D. R.; Carlson, S. A.

    2016-01-01

    Salmonella carriage is an insidious problem for the poultry industry. While most Salmonella serotypes are avirulent in poultry, these bacteria can contaminate chicken meat during processing, leading to one of the most important food safety hazards. In this study, we examined the anti-Salmonella effects of Diamond V Original XPC™ (XPC) included in the finisher diet fed to commercial broilers. On 3 occasions between day one (D1) and D20, broilers were experimentally infected with multiple antibiotic-resistant Salmonella Typhimurium. After confirming that the chicks were shedding Salmonella in the feces on D21, broiler chicks were fed a diet containing XPC (n = 57 birds; 1.25 kg/MT) or an XPC-free control diet (CON) (n = 57 birds) to D49. Fecal samples were obtained weekly and subjected to selective culture for enumerating and determining the antibiotic resistance of the Salmonella. Salmonella isolates were then subjected to an in vitro virulence assay, which predicts the ability of Salmonella to cause illness in a mammalian host. Broilers were euthanized on D49 and a segment of the large intestine was removed and subjected to the same assays used for the fecal samples. When compared to the birds fed the CON diet, Salmonella fecal shedding, virulence (invasion and invasion gene expression), and antibiotic resistance were significantly decreased in birds fed XPC (5-fold, 7.5-fold, 6-fold, and 5.3-fold decreases, respectively). Birds fed XPC exhibited heavier body weight (BW) and greater BW gains than those fed the CON diet. The decrease in virulence was associated with a decreased expression of a genetic regulator of Salmonella invasion into cells (hilA), while the decrease in antibiotic resistance was due to a loss of an integron (SGI1) from the input strain. This study revealed that Original XPC™ inhibits the shedding, downstream virulence, and antibiotic resistance of Salmonella residing in broilers. PMID:27566726

  17. Comparison of CHROMagar Salmonella Medium and Xylose-Lysine-Desoxycholate and Salmonella-Shigella Agars for Isolation of Salmonella Strains from Stool Samples

    PubMed Central

    Maddocks, Susan; Olma, Tom; Chen, Sharon

    2002-01-01

    The growth and appearance of 115 stock Salmonella isolates on a new formulation of CHROMagar Salmonella (CAS) medium were compared to those on xylose-lysine-desoxycholate agar (XLD), Salmonella-Shigella agar (SS), and Hektoen enteric agar (HEA) media. CAS medium was then compared prospectively to XLD and SS for the detection and presumptive identification of Salmonella strains in 500 consecutive clinical stool samples. All stock Salmonella isolates produced typical mauve colonies on CAS medium. Nine Salmonella strains were isolated from clinical specimens. The sensitivities for the detection of salmonellae after primary plating on CAS medium and the combination of XLD and SS after enrichment were 100%. The specificity for the detection of salmonellae after primary plating on CAS medium (83%) was significantly (P < 0.0001) higher than that after primary plating on the combination of SS and XLD media (55%) (a 28% difference in rates; 95% confidence interval, 23.0 to 34%). Twenty-nine non-Salmonella organisms produced mauve colonies on CAS medium, including 17 Candida spp. (59%) and 8 Pseudomonas spp. (28%). These were easily excluded as salmonellae by colony morphology, microscopic examination of a wet preparation, or oxidase testing. One biochemically inert Escherichia coli isolate required further identification to differentiate it from Salmonella spp. The use of plating on CAS medium demonstrated high levels of sensitivity and specificity and reduced the time to final identification of Salmonella spp., resulting in substantial cost savings. It can be recommended for use for the primary isolation of Salmonella spp. from stool specimens. Other media (e.g., XLD) are required to detect Shigella spp. concurrently. PMID:12149365

  18. Influence of On-farm pig Salmonella status on Salmonella Shedding at Slaughter.

    PubMed

    Casanova-Higes, A; Andrés-Barranco, S; Mainar-Jaime, R C

    2017-08-01

    The risk of Salmonella shedding among pigs at slaughter with regard to their previous on-farm Salmonella status was assessed in a group of pigs from a farm from NE of Spain. A total of 202 pigs that had been serologically monitored monthly during the fattening period and from which mesenteric lymph nodes (MLN) and faecal (SFEC) samples were collected at slaughter for Salmonella isolation were included. A repeated-measures anova was used to assess the relationship between mean OD% values during the fattening period and sampling time and bacteriology on MLN and SFEC. Pigs were also grouped into four groups, that is pigs seronegative during the fattening period and Salmonella negative in MLN (group A; n = 69); pigs seronegative during the fattening period but Salmonella positive in MLN (B; n = 36); pigs seropositive at least once and Salmonella positive in MLN (C; n = 50); and pigs seropositive at least once but Salmonella negative in (D; n = 47). Pigs shedding at slaughter seroconverted much earlier and showed much higher mean OD% values than non-shedders pigs. The proportion of Salmonella shedders in groups A and D was high and similar (26.1% and 29.8%, respectively), but significantly lower than that for groups B and C. The odds of shedding Salmonella for groups B and C were 4.8 (95% CI = 1.5-15.5) and 20.9 (3.7-118) times higher, respectively, when compared to A. It was concluded that a large proportion of Salmonella seronegative pigs may shed Salmonella at slaughter, which would be likely associated to previous exposure with contaminated environments (i.e. transport and lairage). For pigs already infected at farm, the likelihood of shedding Salmonella was much higher and may depend on whether the bacterium has colonized the MLN or not. The odds of shedding Salmonella spp. were always much higher for pigs in which Salmonella was isolated from MLN. © 2016 Blackwell Verlag GmbH.

  19. Inclusivity, exclusivity and limit of detection of commercially available real-time PCR assays for the detection of Salmonella.

    PubMed

    Margot, H; Stephan, R; Guarino, S; Jagadeesan, B; Chilton, D; O'Mahony, E; Iversen, C

    2013-08-01

    The traditional cultural detection of Salmonella spp. is both time- and labour-intensive. Salmonella is often a release criterion for the food industry and time to result is therefore an important factor. Storage of finished products and raw materials can be costly and may adversely impact available shelf-life. The application of real-time PCR for the detection of Salmonella spp. in food samples enables a potential time-saving of up to four days. The advancement of real-time PCR coupled with the development of commercially available systems in different formats has made this technology accessible for laboratories in an industrial environment. Ideally these systems are reliable and rapid as well as easy to use. The current study represents a comparative evaluation of seven commercial real-time PCR systems for the detection of Salmonella. Forty-nine target and twenty-nine non-target strains were included in the study to assess inclusivity and exclusivity. The limit of detection for each of the method was determined in four different food products. All systems evaluated were able to correctly identify the 49 Salmonella strains. Nevertheless, false positive results (Citrobacter spp.) were obtained with four of the seven systems. In milk powder and bouillon powder, the limit of detection was similar for all systems, suggesting a minimal matrix effect with these samples. Conversely, for black tea and cocoa powder some systems were prone to inhibition from matrix components. Up to 100% of the samples were inhibited using the proprietary extracts but inhibition could be reduced considerably by application of a DNA clean-up kit. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. GC-MS characterisation and antibacterial activity evaluation of Nigella sativa oil against diverse strains of Salmonella.

    PubMed

    Sarwar, Arslan; Latif, Zakia

    2015-01-01

    Salmonella resistance is becoming a worldwide serious health issue in these days; therefore, it is an urgent need to develop some alternative approaches to overcome this problem. Twenty bacterial strains were isolated and purified from different environmental sources and confirmed as Salmonella by morphological and biochemical analyses. Further confirmation was done by 16s rRNA sequencing. Antibiotic susceptibility test was performed by well diffusion assay against different concentrations of Ceftriaxone and Ciprofloxacin. The behaviour of both antibiotics was different against diverse strains of Salmonella. Salmonella strains resistant to both antibiotics were analysed for antibacterial activity of natural extracts of Nigella sativa (black seeds). N. sativa oil was found to be more effective against Salmonella species for which even Ceftriaxone and Ciprofloxacin were ineffective. Gas chromatography and mass spectrometry analysis of N. sativa oil was also accomplished, exhibiting 10 compounds including thymoquinone, p-cymene, cis-carveol, thymol, α-phellandrene, α-pinene, β-pinene, trans-anethole, α-longipinene and longifolene.

  1. Assessment of the Mutagenicity of Sediments from Yangtze River Estuary Using Salmonella Typhimurium/Microsome Assay

    PubMed Central

    Liu, Li; Chen, Ling; Floehr, Tilman; Xiao, Hongxia; Bluhm, Kerstin; Hollert, Henner; Wu, Lingling

    2015-01-01

    Sediments in estuaries are of important environmental concern because they may act as pollution sinks and sources to the overlying water body. These sediments can be accumulated by benthic organisms. This study assessed the mutagenic potential of sediment extracts from the Yangtze River estuary by using the Ames fluctuation assay with the Salmonella typhimurium his (−) strain TA98 (frameshift mutagen indicator) and TA100 (baseshift mutagen indicator). Most of the sediment samples were mutagenic to the strain TA98, regardless of the presence or absence of exogenous metabolic activation (S9 induction by β-naphthoflavone/phenobarbital). However, none of the samples were mutagenic to the strain TA100. Thus, the mutagenicity pattern was mainly frameshift mutation, and the responsible toxicants were both direct (without S9 mix) and indirect (with S9 mix) mutagens. The mutagenicity of the sediment extracts increased when S9 was added. Chemical analysis showed a poor correlation between the content of priority polycyclic aromatic hydrocarbons and the detected mutagenicity in each sample. The concept of effect-directed analysis was used to analyze possible compounds responsible for the detected mutagenic effects. With regard to the mutagenicity of sediment fractions, non-polar compounds as well as weakly and moderately polar compounds played a main role. Further investigations should be conducted to identify the responsible components. PMID:26606056

  2. Low-oxygen tensions found in Salmonella-infected gut tissue boost Salmonella replication in macrophages by impairing antimicrobial activity and augmenting Salmonella virulence.

    PubMed

    Jennewein, Jonas; Matuszak, Jasmin; Walter, Steffi; Felmy, Boas; Gendera, Kathrin; Schatz, Valentin; Nowottny, Monika; Liebsch, Gregor; Hensel, Michael; Hardt, Wolf-Dietrich; Gerlach, Roman G; Jantsch, Jonathan

    2015-12-01

    In Salmonella infection, the Salmonella pathogenicity island-2 (SPI-2)-encoded type three secretion system (T3SS2) is of key importance for systemic disease and survival in host cells. For instance, in the streptomycin-pretreated mouse model SPI-2-dependent Salmonella replication in lamina propria CD11c(-)CXCR1(-) monocytic phagocytes/macrophages (MΦ) is required for the development of colitis. In addition, containment of intracellular Salmonella in the gut critically depends on the antimicrobial effects of the phagocyte NADPH oxidase (PHOX), and possibly type 2 nitric oxide synthase (NOS2). For both antimicrobial enzyme complexes, oxygen is an essential substrate. However, the amount of available oxygen upon enteroinvasive Salmonella infection in the gut tissue and its impact on Salmonella-MΦ interactions was unknown. Therefore, we measured the gut tissue oxygen levels in a model of Salmonella enterocolitis using luminescence two-dimensional in vivo oxygen imaging. We found that gut tissue oxygen levels dropped from ∼78 Torr (∼11% O2) to values of ∼16 Torr (∼2% O2) during infection. Because in vivo virulence of Salmonella depends on the Salmonella survival in MΦ, Salmonella-MΦ interaction was analysed under such low oxygen values. These experiments revealed an increased intracellular replication and survival of wild-type and t3ss2 non-expressing Salmonella. These findings were paralleled by blunted nitric oxide and reactive oxygen species (ROS) production and reduced Salmonella ROS perception. In addition, hypoxia enhanced SPI-2 transcription and translocation of SPI-2-encoded virulence protein. Neither pharmacological blockade of PHOX and NOS2 nor impairment of T3SS2 virulence function alone mimicked the effect of hypoxia on Salmonella replication under normoxic conditions. However, if t3ss2 non-expressing Salmonella were used, hypoxia did not further enhance Salmonella recovery in a PHOX and NOS2-deficient situation. Hence, these data suggest that

  3. Interpretations of antibody responses to Salmonella enterica serotype enteritidis gm flagellin in poultry flocks are enhanced by a kinetics-based enzyme-linked immunosorbent assay.

    PubMed

    McDonough, P L; Jacobson, R H; Timoney, J F; Mutalib, A; Kradel, D C; Chang, Y F; Shin, S J; Lein, D H; Trock, S; Wheeler, K

    1998-07-01

    Many regulatory and diagnostic programs for the detection of Salmonella enterica serotype Enteritidis infection in commercial poultry flocks have relied on rapid Pullorum agglutination tests to screen birds because of the shared antigens of S. enterica Enteritidis and S. enterica Pullorum and Gallinarum; however, the use of the enzyme-linked immunosorbent assay (ELISA) format affords better analytical sensitivity than crude agglutination tests. In this study, we adapted our earlier conventional indirect ELISA, using gm flagellin as the antigen, to a kinetics-based, computer-controlled ELISA (KELA). The KELA was used to screen for flagellin antibody from three commercial flocks: (i) a large flock involved in a U.S. Department of Agriculture trace back from a human S. enterica Enteritidis foodborne outbreak (n = 3,209), (ii) a flock infected with the endemic S. enterica Enteritidis serotype but which also had multiple other Salmonella serotypes (n = 65), and (iii) an S. enterica Pullorum-infected flock (n = 12). The first flock (S. enterica Enteritidis prevalence of 2.45% based on culture) provided a field test of the KELA and allowed the calculation of diagnostic sensitivity (D-Sn) and diagnostic specificity (D-Sp). With a cutoff of 10 (used for screening flocks [i.e., high sensitivity]), the KELA has a D-Sn of 95.2% and a D-Sp of 18.5%; with a cutoff of 140 (used in confirmatory flock testing [i.e., high specificity]), the KELA has a D-Sn of 28.0% and a D-Sp of 99.1%. We found that with a cutoff of 60 (D-Sn = 63.1%; D-Sp = 91.6%), we could eliminate reactions in the KELA caused by other non-S. enterica Enteritidis salmonellae. The KELA was also compared to two commercial rapid Pullorum tests, the Solvay (D-Sn = 94.9%; D-Sp = 55.5%) and the Vineland (D-Sn = 62.0%; D-Sp = 75.3%).

  4. High prevalence of Salmonella spp. in wastewater reused for irrigation assessed by molecular methods.

    PubMed

    Santiago, Paula; Jiménez-Belenguer, Ana; García-Hernández, Jorge; Estellés, Rosa Montes; Hernández Pérez, Manuel; Castillo López, M Angeles; Ferrús, María Antonia; Moreno, Yolanda

    2018-01-01

    Salmonella spp. is one of the most important causal agents of food-borne illness in developed countries and its presence in irrigation water poses a risk to public health. Its detection in environmental samples is not easy when culture methods are used, and molecular techniques such as PCR or ribosomal rRNA probe hybridization (Fluorescent in situ Hybridization, FISH) are outstanding alternatives. The aim of this work was to determine the environmental risk due to the presence of Salmonella spp. in wastewater by culture, PCR and FISH. A new specific rDNA probe for Salmonella was designed and its efficiency was compared with the rest of methods Serotype and antibiotic resistance of isolated strains were determined. Forty-five wastewater samples (collected from two secondary wastewater treatment plants) were analysed. Salmonella strains were isolated in 24 wastewater samples (53%), two of them after disinfection treatment. Twenty-three Salmonella strains exhibited resistance to one or more antimicrobial agent. Analysis of wastewater samples yielded PCR positive results for Salmonella in 28 out of the 45 wastewater samples (62%). FISH analysis allowed for the detection of Salmonella in 27 (60%) samples. By using molecular methods, Salmonella was detected in four samples after disinfection treatment. These results show the prevalence of Salmonella in reclaimed wastewater even after U.V. disinfection, what is a matter of public health concern, the high rates of resistance to antibiotics and the adequacy of molecular methods for its rapid detection. FISH method, with SA23 probe developed and assayed in this work provides a tool for detecting Salmonella in water within few hours, with a high rate of effectiveness. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. High resolution melting (HRM) analysis as a new tool for rapid identification of Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum.

    PubMed

    Ren, Xingxing; Fu, Ying; Xu, Chenggang; Feng, Zhou; Li, Miao; Zhang, Lina; Zhang, Jianmin; Liao, Ming

    2017-05-01

    Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum represent the most common causative agents of chicken salmonellosis, which result in high mortality and morbidity throughout the world. It is difficult and laborious to discriminate these diseases based on biochemical or phenotypic methods. Herein, we report the development of a single nucleotide polymorphism (SNP) PCR-high resolution melt (PCR-HRM) assay for the detection and discrimination of both S. Pullorum and S. Gallinarun. The gene rfbS, which encodes a factor involved in the biosynthesis of ADP paratose in serogroup D of Salmonella, has been identified as a robust genetic marker for the identification of S. Pullorum and S. Gallinarun based on polymorphisms at positions 237 and 598. Therefore, PCR-HRM analyses were used to characterize this gene. A total of 15 reference and 33 clinical isolates of Salmonella and related Gram-negative bacteria were detected using 2 sets of primers. Our PCR-HRM assay could distinguish S. Pullorum from S. Gallinarun and other strains using the primer pair SP-237F/237R. Similarly, S. Gallinarun could be distinguished from S. Pullorum and other strains using primer set SG-598F/598R. These 2 assays showed high specificity (100%) for both S. Pullorum and S. Gallinarun; the sensitivity of these 2 assays was at least 100-fold greater than that of the allele-specific PCR assay. This present study demonstrated that HRM analysis represents a potent, simple, and economic tool for the rapid, specific, and sensitive detection of S. Pullorum and S. Gallinarun. Our approach also may aid efforts for purification of Avian Salmonella disease. © 2016 Poultry Science Association Inc.

  6. Transcriptional Characterization of Salmonella TAl00 in Growth and Stationary Phase: Mutagenesis of MX in Both Types of Cells

    EPA Science Inventory

    The Salmonella (Ames) mutagenicity assay can be performed using cells that are in different growth phases. Thus, the plate-incorporation assay involves plating stationary-phase cells with the mutagen, after which the cells undergo a brief lag phase and, consequently, are exposed ...

  7. Bovine salmonellosis in Northeast of Iran: Frequency, genetic fingerprinting and antimicrobial resistance patterns of Salmonella spp.

    PubMed Central

    Halimi, Hessam A.; Seifi, Hesam A.; Rad, Mehrnaz

    2014-01-01

    Objective To evaluate serovar and antimicrobial resistance patterns of Salmonella spp isolated from healthy, diseased and necropsied cows and calves in this observational study. Methods Nineteen isolates recovered from feces and tissues of salmonellosis-affected animals of two commercial farms in north-east of Iran. In second part of the study, the two farms were sampled 4 times with an interval of 2 month. The samples included calves' feces, adult cows' feces, feeds, water, milk filters, and milk fed to calves. Five Salmonella were isolated from 332 fecal samples collected from calves and peri-parturient cows. No Salmonella was recovered from water, feed, milk filers and milk fed to calves. Results Salmonella Typhimurium was the most frequently isolate among all sero-groups. S. Dublin was only accounted for 8% (two out of 24) of isolates. Isolated Salmonella strains were used for the ERIC PCR DNA fingerprinting assay. Our results grouped Salmonella isolates into 3 clusters, suggesting that specific genotypes were responsible for each sero-group of Salmonella. The results also revealed diversity among Salmonella isolates in cluster III (sero-group B). Eighteen out of 19 Salmonella spp. were resistant to oxytetracycline. Five isolates out of 19 showed more than one drug resistance. Multi-drug resistance was seen only among Salmonella Typhimurium isolates. Enrofloxacin was the most susceptible antibiotic against all isolates in this study. Conclusion The emergence of multiple antibiotic-resistant strains of Salmonella Typhimurium should be of great concern to the public. No correlation between ERIC fingerprinting and resistance patterns of Salmonella isolates was found, which indicates resistance to antimicrobial agents was not related to specific genetic background. PMID:24144122

  8. Salmonella detection in poultry samples. Comparison of two commercial real-time PCR systems with culture methods for the detection of Salmonella spp. in environmental and fecal samples of poultry.

    PubMed

    Sommer, D; Enderlein, D; Antakli, A; Schönenbrücher, H; Slaghuis, J; Redmann, T; Lierz, M

    2012-01-01

    The efficiency of two commercial PCR methods based on real-time technology, the foodproof® Salmonella detection system and the BAX® PCR Assay Salmonella system was compared to standardized culture methods (EN ISO 6579:2002 - Annex D) for the detection of Salmonella spp. in poultry samples. Four sample matrices (feed, dust, boot swabs, feces) obtained directly from poultry flocks, as well as artificially spiked samples of the same matrices, were used. All samples were tested for Salmonella spp. using culture methods first as the gold standard. In addition samples spiked with Salmonella Enteridis were tested to evaluate the sensitivity of both PCR methods. Furthermore all methods were evaluated in an annual ring-trial of the National Salmonella Reference Laboratory of Germany. Salmonella detection in the matrices feed, dust and boot swabs were comparable in both PCR systems whereas the results from feces differed markedly. The quality, especially the freshness, of the fecal samples had an influence on the sensitivity of the real-time PCR and the results of the culture methods. In fresh fecal samples an initial spiking level of 100cfu/25g Salmonella Enteritidis was detected. Two-days-dried fecal samples allowed the detection of 14cfu/25g. Both real- time PCR protocols appear to be suitable for the detection of Salmonella spp. in all four matrices. The foodproof® system detected eight samples more to be positive compared to the BAX® system, but had a potential false positive result in one case. In 7-days-dried samples none of the methods was able to detect Salmonella likely through letal cell damage. In general the advantage of PCR analyses over the culture method is the reduction of working time from 4-5 days to only 2 days. However, especially for the analysis of fecal samples official validation should be conducted according to the requirement of EN ISO6579:2002 - Annex D.

  9. Evaluation of a duplex reverse-transcription real-time PCR assay for the detection of encephalomyocarditis virus.

    PubMed

    Qin, Shaomin; Underwood, Darren; Driver, Luke; Kistler, Carol; Diallo, Ibrahim; Kirkland, Peter D

    2018-06-01

    We evaluated a fluorogenic probe-based assay for the detection of encephalomyocarditis virus (EMCV) by comparing a set of published primers and probe to a new set of primers and probe. The published reagents failed to amplify a range of Australian isolates and an Italian reference strain of EMCV. In contrast, an assay based on 2 new sets of primers and probes that were run in a duplex reverse-transcription real-time PCR (RT-rtPCR) worked well, with high amplification efficiency. The analytical sensitivity was ~100-fold higher than virus isolation in cell culture. The intra-assay variation was 0.21-4.90%. No cross-reactivity was observed with a range of other porcine viruses. One hundred and twenty-two clinical specimens were tested simultaneously by RT-rtPCR and virus isolation in cell culture; 72 specimens gave positive results by RT-rtPCR, and 63 of these were also positive by virus isolation. Of 245 archived cell culture isolates of EMCV that were tested in the RT-rtPCR, 242 samples were positive. The new duplex RT-rtPCR assay is a reliable tool for the detection of EMCV in clinical specimens and for use in epidemiologic investigations.

  10. Affinity-reversed-phase liquid chromatography assay to quantitate recombinant antibodies and antibody fragments in fermentation broth.

    PubMed

    Battersby, J E; Snedecor, B; Chen, C; Champion, K M; Riddle, L; Vanderlaan, M

    2001-08-24

    An automated dual-column liquid chromatography assay comprised of affinity and reversed-phase separations that quantifies the majority of antibody-related protein species found in crude cell extracts of recombinant origin is described. Although potentially applicable to any antibody preparation, we here use samples of anti-CD18 (Fab'2LZ) and a full-length antibody, anti-tissue factor (anti-TF), from various stages throughout a biopharmaceutical production process to describe the assay details. The targeted proteins were captured on an affinity column containing an anti-light-chain (kappa) Fab antibody (AME5) immobilized on controlled pore glass. The affinity column was placed in-line with a reversed-phase column and the captured components were transferred by elution with dilute acid and subsequently resolved by eluting the reversed-phase column with a shallow acetonitrile gradient. Characterization of the resolved components showed that most antibody fragment preparations contained a light-chain fragment, free light chain, light-chain dimer and multiple forms of Fab'. Analysis of full-length antibody preparations also resolved these fragments as well as a completely assembled form. Co-eluting with the full-length antibody were high-molecular-mass variants that were missing one or both light chains. Resolved components were quantified by comparison with peak areas of similarly treated standards. By comparing the two-dimensional polyacrylamide gel electrophoresis patterns of an Escherichia coli blank run, a production run and the material affinity captured (AME5) from a production run, it was determined that the AME5 antibody captured isoforms of light chain, light chain covalently attached to heavy chain, and truncated light chain isoforms. These forms comprise the bulk of the soluble product-related fragments found in E. coli cell extracts of recombinantly produced antibody fragments.

  11. Rapid detection of food-borne Salmonella contamination using IMBs-qPCR method based on pagC gene.

    PubMed

    Wang, Jiashun; Li, Yi; Chen, Jia; Hua, Deping; Li, Yi; Deng, Hui; Li, Ying; Liang, Zhixuan; Huang, Jinhai

    Detection of Salmonella is very important to minimize the food safety risk. In this study, the recombinant PagC protein and PagC antibody were prepared and coupled with immunomagnetic beads (IMBs) to capture Salmonella cells from pork and milk samples. And then the SYBR Green qualitative PCR was developed to detect the pathogenic Salmonella. The results showed that the PagC polyclonal antiserum is of good specificity and the capture rate of 0.1mg IMBs for Salmonella tended to be stable at the range of 70-74% corresponding to the concentrations between 10 1 and 10 4 CFU/mL. The method developed demonstrated high specificity for the positive Salmonella samples when compared to non-specific DNA samples, such as Escherichia coli, Staphylococcus aureus, Yersinia enterocolitica, and Yersinia pseudotuberculosis. The limit of detection of this assay was 18CFU/mL. Detection and quantitative enumeration of Salmonella in samples of pork or milk shows good recoveries of 54.34% and 52.07%. In conclusion, the polyclonal antibody of recombinant PagC protein is effective to capture Salmonella from detected samples. The developed pagC antibody IMBs-qPCR method showed efficiency, sensitivity and specificity for 30 Salmonella detection, enabling detection within 10h, which is a promising rapid method to detect Salmonella in emergency. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. Comparison of multilocus sequence typing and pulsed-field gel electrophoresis for Salmonella spp. identification in surface water

    NASA Astrophysics Data System (ADS)

    Kuo, Chun Wei; Hao Huang, Kuan; Hsu, Bing Mu; Tsai, Hsien Lung; Tseng, Shao Feng; Kao, Po Min; Shen, Shu Min; Chou Chiu, Yi; Chen, Jung Sheng

    2013-04-01

    Salmonella is one of the most important pathogens of waterborne diseases with outbreaks from contaminated water reported worldwide. In addition, Salmonella spp. can survive for long periods in aquatic environments. To realize genotypes and serovars of Salmonella in aquatic environments, we isolated the Salmonella strains by selective culture plates to identify the serovars of Salmonella by serological assay, and identify the genotypes by Multilocus sequence typing (MLST) based on the sequence data from University College Cork (UCC), respectively. The results show that 36 stream water samples (30.1%) and 18 drinking water samples (23.3%) were confirmed the existence of Salmonella using culture method combined PCR specific invA gene amplification. In this study, 24 cultured isolates of Salmonella from water samples were classified to fifteen Salmonella enterica serovars. In addition, we construct phylogenetic analysis using phylogenetic tree and Minimum spanning tree (MST) method to analyze the relationship of clinical, environmental, and geographical data. Phylogenetic tree showed that four main clusters and our strains can be distributed in all. The genotypes of isolates from stream water are more biodiversity while comparing the Salmonella strains genotypes from drinking water sources. According to MST data, we can found the positive correlation between serovars and genotypes of Salmonella. Previous studies revealed that the result of Pulsed field gel electrophoresis (PFGE) method can predict the serovars of Salmonella strain. Hence, we used the MLST data combined phylogenetic analysis to identify the serovars of Salmonella strain and achieved effectiveness. While using the geographical data combined phylogenetic analysis, the result showed that the dominant strains were existed in whole stream area in rainy season. Keywords: Salmonella spp., MLST, phylogenetic analysis, PFGE

  13. Validation of a real-time reverse transcriptase-PCR assay for the detection of H7 avian influenza virus

    USGS Publications Warehouse

    Pedersen, J.; Killian, M.L.; Hines, N.; Senne, D.; Panigrahy, B.; Ip, Hon S.; Spackman, Erica

    2010-01-01

    This report describes the validation of an avian influenza virus (AIV) H7 subtype-specific real-time reverse transcriptasePCR (rRT-PCR) assay developed at the Southeast Poultry Research Laboratory (SEPRL) for the detection of H7 AI in North and South American wild aquatic birds and poultry. The validation was a collaborative effort by the SEPRL and the National Veterinary Services Laboratories. The 2008 H7 rRT-PCR assay detects 101 50% embryo infectious doses per reaction, or 103104 copies of transcribed H7 RNA. Diagnostic sensitivity and specificity were estimated to be 97.5% and 82.4%, respectively; the assay was shown to be specific for H7 AI when tested with >270 wild birds and poultry viruses. Following validation, the 2008 H7 rRT-PCR procedure was adopted as an official U.S. Department of Agriculture procedure for the detection of H7 AIV. The 2008 H7 assay replaced the previously used (2002) assay, which does not detect H7 viruses currently circulating in wild birds in North and South America. ?? 2010 American Association of Avian Pathologists.

  14. The Antibiofilm Effect of Ginkgo biloba Extract Against Salmonella and Listeria Isolates from Poultry.

    PubMed

    Wu, Yan; Park, Keun Cheol; Choi, Beom Geun; Park, Jin Hwa; Yoon, Ki Sun

    2016-05-01

    Salmonella spp. and Listeria spp. are common foodborne pathogens in poultry and have caused a large number of outbreaks worldwide. Biofilm formation is common in the food industry and is also a mechanism of antimicrobial resistance. The aim of this work was to investigate the antimicrobial effect and mechanism of Ginkgo biloba extract against the biofilm formation of Salmonella and Listeria isolates from poultry at retail markets. Bacteria detection, isolation, and enumeration were carried out on 27 chicken and 29 ducks at retail markets. The effects of temperature and G. biloba extract against biofilm formation of Salmonella and Listeria isolates were measured using the crystal violet assay and swimming and swarming motilities. The monitoring results of Salmonella and Listeria in 56 poultry carcasses at retail markets in Korea showed that the prevalence of Salmonella spp. in poultry was low (5.4%), but the prevalence of Listeria spp (78.6%) was high. L. innocua was the predominant serotype (80%) in the isolated Listeria species. Temperature, strain, and surface affected the biofilm formation of Salmonella spp. and Listeria spp. L. innocua showed the best biofilm formation ability on a 96-well plate, while Salmonella Enteritidis formed the most biofilm on a glass slide. Biofilm formation abilities of Salmonella spp. and Listeria spp. were increased with the increase of temperature. G. biloba extract at 75 μg/mL significantly inhibited biofilm formation of Salmonella spp. and Listeria spp (p < 0.05). The mechanism of the antibiofilm effect of the G. biloba extract showed that the motility reduction may be one of the mechanisms of G. biloba extract against some serotypes of Salmonella and Listeria, but not L. monocytogenes. The findings of this study provided the basis for the application of G. biloba extract as a food additive to promote the quality and safety of poultry products.

  15. Reversible synthesis of colanic acid and O-antigen polysaccharides in Salmonella Typhimurium enhances induction of cross-immune responses and provides protection against heterologous Salmonella challenge.

    PubMed

    Li, Pei; Liu, Qing; Huang, Chun; Zhao, Xinxin; Roland, Kenneth L; Kong, Qingke

    2017-05-15

    Colanic Acid (CA) and lipopolysaccharide (LPS) are two major mannose-containing extracellular polysaccharides of Salmonella. Their presence on the bacterial surface can mask conserved protective outer membrane proteins (OMPs) from the host immune system. The mannose moiety in these molecules is derived from GDP-mannose, which is synthesized in several steps. The first two steps require the action of phosphomannose isomerase, encoded by pmi (manA), followed by phosphomannomutase, encoded by manB. There are two copies of manB present in the Salmonella chromosome, one located in the cps gene cluster (cpsG) responsible for CA synthesis, and the other in the rfb gene cluster (rfbK) involved in LPS O-antigen synthesis. In this study, it was demonstrated that the products of cpsG and rfbK are isozymes. To evaluate the impact of these genes on O-antigen synthesis, virulence and immunogenicity, single mutations (Δpmi, ΔrfbK or ΔcpsG) and a double mutation (ΔrfbK ΔcpsG) were introduced into both wild-type Salmonella enterica and an attenuated Δcya Δcrp vaccine strain. The Δpmi, ΔrfbK and ΔcpsG ΔrfbK mutants were defective in LPS synthesis and attenuated for virulence. In orally inoculated mice, strain S122 (Δcrp Δcya ΔcpsG ΔrfbK) and its parent S738 (Δcrp Δcya) were both avirulent and colonized internal tissues. Strain S122 elicited higher levels of anti-S. Typhimurium OMP serum IgG than its parent strain. Mice immunized with S122 were completely protected against challenge with wild-type virulent S. Typhimurium and partially protected against challenge with either wild-type virulent S. Choleraesuis or S. Enteritidis. These data indicate that deletions in rfbK and cpsG are useful mutations for inclusion in future attenuated Salmonella vaccine strains to induce cross-protective immunity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Salmonella Infections in Childhood.

    PubMed

    Bula-Rudas, Fernando J; Rathore, Mobeen H; Maraqa, Nizar F

    2015-08-01

    Salmonella are gram-negative bacilli within the family Enterobacteriaceae. They are the cause of significant morbidity and mortality worldwide. Animals (pets) are an important reservoir for nontyphoidal Salmonella, whereas humans are the only natural host and reservoir for Salmonella Typhi. Salmonella infections are a major cause of gastroenteritis worldwide. They account for an estimated 2.8 billion cases of diarrheal disease each year. The transmission of Salmonella is frequently associated with the consumption of contaminated water and food of animal origin, and it is facilitated by conditions of poor hygiene. Nontyphoidal Salmonella infections have a worldwide distribution, whereas most typhoidal Salmonella infections in the United States are acquired abroad. In the United States, Salmonella is a common agent for food-borne–associated infections. Several outbreaks have been identified and are most commonly associated with agricultural products. Nontyphoidal Salmonella infection is usually characterized by a self-limited gastroenteritis in immunocompetent hosts in industrialized countries, but it may also cause invasive disease in vulnerable individuals (eg, children less than 1 year of age, immunocompromised). Antibiotic treatment is not recommended for treatment of mild to moderate gastroenteritis by nontyphoidal Salmonella in immunocompetent adults or children more than 1 year of age. Antibiotic treatment is recommended for nontyphoidal Salmonella infections in infants less than 3 months of age, because they are at higher risk for bacteremia and extraintestinal complications. Typhoid (enteric) fever and its potential complications have a significant impact on children, especially those who live in developing countries. Antibiotic treatment of typhoid fever has become challenging because of the emergence of Salmonella Typhi strains that are resistant to classically used first-line agents: ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol. The

  17. A rapid assay for detection of Rose rosette virus using reverse transcription-recombinase polymerase amplification using multiple gene targets.

    PubMed

    Babu, Binoy; Washburn, Brian K; Miller, Steven H; Poduch, Kristina; Sarigul, Tulin; Knox, Gary W; Ochoa-Corona, Francisco M; Paret, Mathews L

    2017-02-01

    Rose rosette disease caused by Rose rosette virus (RRV; genus Emaravirus) is the most economically relevant disease of Knock Out ® series roses in the U.S. As there are no effective chemical control options for the disease, the most critical disease management strategies include the use of virus free clean plants for propagation and early detection and destruction of infected plants. The current diagnostic techniques for RRV including end-point reverse transcription-polymerase chain reaction (RT-PCR) and real-time PCR (RT-qPCR) are highly sensitive, but limited to diagnostic labs with the equipment and expertise; and is time consuming. To address this limitation, an isothermal reverse transcription-recombinase polymerase amplification (RT-RPA) assay based on multiple gene targets for specific detection of RRV was developed. The assay is highly specific and did not cross react with other viruses belonging to the inclusive and exclusive genus. Dilution assays using the in vitro transcripts showed that the primer sets designed (RPA-267, RPA-131, and RPA-321) are highly sensitive, consistently detecting RRV with a detection limit of 1fg/μL. Testing of the infected plants using the primer sets indicated that the virus could be detected from leaves, stems and petals of roses. The primer pair RPA-267 produced 100% positive detection of the virus from infected leaf tissues, while primer set RPA-131 produced 100% detection from stems and petals. The primer set RPA-321 produced 83%, 87.5% and 75% positive detection from leaves, petals and stem tissues, respectively. In addition, the assay has been efficiently used in the detection of RRV infecting Knock Out ® roses, collected from different states in the U.S. The assay can be completed in 20min as compared to the end-point RT-PCR assay (3-4h) and RT-qPCR (1.5h). The RT-RPA assay is reliable, rapid, highly sensitive, and can be easily used in diagnostic laboratories for detection of RRV with no need for any special

  18. Bovine salmonellosis in northeast of Iran: frequency, genetic fingerprinting and antimicrobial resistance patterns of Salmonella spp.

    PubMed

    Halimi, Hessam A; Seifi, Hesam A; Rad, Mehrnaz

    2014-01-01

    To evaluate serovar and antimicrobial resistance patterns of Salmonella spp isolated from healthy, diseased and necropsied cows and calves in this observational study. Nineteen isolates recovered from feces and tissues of salmonellosis-affected animals of two commercial farms in north-east of Iran. In second part of the study, the two farms were sampled 4 times with an interval of 2 month. The samples included calves' feces, adult cows' feces, feeds, water, milk filters, and milk fed to calves. Five Salmonella were isolated from 332 fecal samples collected from calves and peri-parturient cows. No Salmonella was recovered from water, feed, milk filers and milk fed to calves. Salmonella Typhimurium was the most frequently isolate among all sero-groups. S. Dublin was only accounted for 8% (two out of 24) of isolates. Isolated Salmonella strains were used for the ERIC PCR DNA fingerprinting assay. Our results grouped Salmonella isolates into 3 clusters, suggesting that specific genotypes were responsible for each sero-group of Salmonella. The results also revealed diversity among Salmonella isolates in cluster III (sero-group B). Eighteen out of 19 Salmonella spp. were resistant to oxytetracycline. Five isolates out of 19 showed more than one drug resistance. Multi-drug resistance was seen only among Salmonella Typhimurium isolates. Enrofloxacin was the most susceptible antibiotic against all isolates in this study. The emergence of multiple antibiotic-resistant strains of Salmonella Typhimurium should be of great concern to the public. No correlation between ERIC fingerprinting and resistance patterns of Salmonella isolates was found, which indicates resistance to antimicrobial agents was not related to specific genetic background. Copyright © 2014 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.

  19. Diagnostics for invasive Salmonella infections: current challenges and future directions

    PubMed Central

    Andrews, Jason R.; Ryan, Edward T.

    2015-01-01

    Invasive Salmonellosis caused by Salmonella enterica serotype Typhi or Paratyphi A, B, C, or invasive non-typhoidal Salmonella serotypes, is an immensely important disease cluster for which reliable, rapid diagnostic tests are not available. Blood culture remains the gold standard but is insensitive, slow, and resource-intensive. Existing molecular diagnostics have poor sensitivity due to the low organism burden in bodily fluids. Commercially available serologic tests for typhoidal Salmonella have had limited sensitivity and specificity. In high burden, resource-limited settings, reliance on clinical diagnosis or inaccurate tests often results in frequent, unnecessary treatment, which contributes selective pressure for the emergence of antimicrobial resistance. This practice also results in inadequate therapy for other etiologies of acute febrile illnesses, including leptospirosis and rickettsial infections. A number of novel serologic, molecular, transcriptomic and metabolomic approaches to diagnostics are under development. Target product profiles that outline specific needs may focus development and investment, and establish benchmarks for accuracy, cost, speed, and portability of new diagnostics. Of note, a critical barrier to diagnostic assay rollout will be the low cost and low perceived harm of empiric therapy on behalf of providers and patients, which leaves few perceived incentives to utilize diagnostics. Approaches that align incentives with societal goals of limiting inappropriate antimicrobial use, such as subsidizing diagnostics, may be essential for stimulating development and uptake of such assays in resource-limited settings. New diagnostics for invasive Salmonellosis should be developed and deployed alongside diagnostics for alternative etiologies of acute febrile illnesses to improve targeted use of antibiotics. PMID:25937611

  20. Diagnostics for invasive Salmonella infections: Current challenges and future directions.

    PubMed

    Andrews, Jason R; Ryan, Edward T

    2015-06-19

    Invasive Salmonellosis caused by Salmonella enterica serotype Typhi or Paratyphi A, B, C, or invasive non-typhoidal Salmonella serotypes, is an immensely important disease cluster for which reliable, rapid diagnostic tests are not available. Blood culture remains the gold standard but is insensitive, slow, and resource-intensive. Existing molecular diagnostics have poor sensitivity due to the low organism burden in bodily fluids. Commercially available serologic tests for typhoidal Salmonella have had limited sensitivity and specificity. In high burden, resource-limited settings, reliance on clinical diagnosis or inaccurate tests often results in frequent, unnecessary treatment, which contributes selective pressure for the emergence of antimicrobial resistance. This practice also results in inadequate therapy for other etiologies of acute febrile illnesses, including leptospirosis and rickettsial infections. A number of novel serologic, molecular, transcriptomic and metabolomic approaches to diagnostics are under development. Target product profiles that outline specific needs may focus development and investment, and establish benchmarks for accuracy, cost, speed, and portability of new diagnostics. Of note, a critical barrier to diagnostic assay rollout will be the low cost and low perceived harm of empiric therapy on behalf of providers and patients, which leaves few perceived incentives to utilize diagnostics. Approaches that align incentives with societal goals of limiting inappropriate antimicrobial use, such as subsidizing diagnostics, may be essential for stimulating development and uptake of such assays in resource-limited settings. New diagnostics for invasive Salmonellosis should be developed and deployed alongside diagnostics for alternative etiologies of acute febrile illnesses to improve targeted use of antibiotics. Copyright © 2015. Published by Elsevier Ltd.

  1. Modification of the BAX Salmonella test kit to include a hot start functionality (modification of AOAC Official Method 2003.09).

    PubMed

    Wallace, F Morgan; DiCosimo, Deana; Farnum, Andrew; Tice, George; Andaloro, Bridget; Davis, Eugene; Burns, Frank R

    2011-01-01

    In 2010, the BAX System PCR assay for Salmonella was modified to include a hot start functionality designed to keep the reaction enzyme inactive until PCR begins. To validate the assay's Official Methods of Analysis status to include this procedure modification, an evaluation was conducted on four food types that were simultaneously analyzed with the BAX System and either the U.S. Food and Drug Administration's Bacteriological Analytical Manual or the U.S. Department of Agriculture-Food Safety and Inspection Service Microbiology Laboratory Guidebook reference method for detecting Salmonella. Identical performance between the BAX System method and the reference methods was observed. Additionally, lysates were analyzed using both the BAX System Classic and BAX System Q7 instruments with identical results using both platforms for all samples tested. Of the 100 samples analyzed, 34 samples were positive for both the BAX System and reference methods, and 66 samples were negative by both the BAX System and reference methods, demonstrating 100% correlation. No instrument platform variation was observed. Additional inclusivity and exclusivity testing using the modified test kit demonstrated the test kit to be 100% accurate in evaluation of test panels of 352 Salmonella strains and 46 non-Salmonella strains.

  2. THE MUTAGENICITY OF METALLIZED AND UNMETALLIZED AZO AND FORMAZAN DYES IN THE SALMONELLA MUTAGENICITY ASSAY

    EPA Science Inventory

    The mutagenicity of metallized and unmetallized azo and formazan dyes in the Salmonella mutagenicity
    Laura. C. Edwards', Harold S. Freeman'*, and Larry D. Claxton2

    Abstract
    In previous papers, the synthesis and chemical properties of iron complexed azo and formazan d...

  3. Ultrasensitive HIV-1 p24 Assay Detects Single Infected Cells and Differences in Reservoir Induction by Latency Reversal Agents.

    PubMed

    Passaes, Caroline Pereira Bittencourt; Bruel, Timothée; Decalf, Jérémie; David, Annie; Angin, Mathieu; Monceaux, Valerie; Muller-Trutwin, Michaela; Noel, Nicolas; Bourdic, Katia; Lambotte, Olivier; Albert, Matthew L; Duffy, Darragh; Schwartz, Olivier; Sáez-Cirión, Asier

    2017-03-15

    The existence of HIV reservoirs in infected individuals under combined antiretroviral therapy (cART) represents a major obstacle toward cure. Viral reservoirs are assessed by quantification of HIV nucleic acids, a method which does not discriminate between infectious and defective viruses, or by viral outgrowth assays, which require large numbers of cells and long-term cultures. Here, we used an ultrasensitive p24 digital assay, which we report to be 1,000-fold more sensitive than classical enzyme-linked immunosorbent assays (ELISAs) in the quantification of HIV-1 Gag p24 production in samples from HIV-infected individuals. Results from ultrasensitive p24 assays were compared to those from conventional viral RNA reverse transcription-quantitative PCR (RT-qPCR)-based assays and from outgrowth assay readout by flow cytometry. Using serial dilutions and flow-based single-cell sorting, we show that viral proteins produced by a single infected cell can be detected by the ultrasensitive p24 assay. This unique sensitivity allowed the early (as soon as day 1 in 43% of cases) and more efficient detection and quantification of p24 in phytohemagglutinin-L (PHA)-stimulated CD4 + T cells from individuals under effective cART. When seven different classes of latency reversal agents (LRA) in resting CD4 + T cells from HIV-infected individuals were tested, the ultrasensitive p24 assay revealed differences in the extent of HIV reactivation. Of note, HIV RNA production was infrequently accompanied by p24 protein production (19%). Among the drugs tested, prostratin showed a superior capacity in inducing viral protein production. In summary, the ultrasensitive p24 assay allows the detection and quantification of p24 produced by single infected CD4 + T cells and provides a unique tool to assess early reactivation of infectious virus from reservoirs in HIV-infected individuals. IMPORTANCE The persistence of HIV reservoirs in infected individuals under effective antiretroviral treatment

  4. REVIEW OF THE SALMONELLA TYPHIMURIUM MUTAGENICITY OF BENZIDINE, BENZIDINE ANALOGUES, AND BENZIDINE-BASED DYES

    EPA Science Inventory

    The mutagenicity of benzidine analogues (including benzidine-based dyes) was reviewed with a primary emphasis on evaluating results of the Salmonella/microsome mutagenicity assay. Many of these amines are mutagenic in tester strains TA98 and TA100 but require exogenous mammalian ...

  5. Inactivation of Salmonella Senftenberg, Salmonella Typhimurium and Salmonella Tennessee in peanut butter by 915 MHz microwave heating.

    PubMed

    Song, Won-Jae; Kang, Dong-Hyun

    2016-02-01

    This study evaluated the efficacy of a 915 MHz microwave with 3 different levels to inactivate 3 serovars of Salmonella in peanut butter. Peanut butter inoculated with Salmonella enterica serovar Senftenberg, S. enterica serovar Typhimurium and S. enterica serovar Tennessee were treated with a 915 MHz microwave with 2, 4 and 6 kW and acid and peroxide values and color changes were determined after 5 min of microwave heating. Salmonella populations were reduced with increasing treatment time and treatment power. Six kW 915 MHz microwave treatment for 5 min reduced these three Salmonella serovars by 3.24-4.26 log CFU/g. Four and two kW 915 MHz microwave processing for 5 min reduced these Salmonella serovars by 1.14-1.48 and 0.15-0.42 log CFU/g, respectively. Microwave treatment did not affect acid, peroxide, or color values of peanut butter. These results demonstrate that 915 MHz microwave processing can be used as a control method for reducing Salmonella in peanut butter without producing quality deterioration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The relationship between the numbers of Salmonella Enteritidis, Salmonella Heidelberg, or Salmonella Hadar colonizing reproductive tissues of experimentally infected laying hens and deposition inside eggs.

    PubMed

    Gast, Richard K; Guraya, Rupa; Guard, Jean; Holt, Peter S

    2011-06-01

    Contamination of eggs by Salmonella Enteritidis has been a prominent cause of human illness for several decades and is the focus of a recently implemented national regulatory plan for egg-producing flocks in the United States. Salmonella Heidelberg has also been identified as an egg-transmitted pathogen. The deposition of Salmonella strains inside eggs is a consequence of reproductive tract colonization in infected laying hens, but prior research has not determined the relationship between the numbers of Salmonella that colonize reproductive organs and the associated frequency of egg contamination. In the present study, groups of laying hens in two trials were experimentally infected with large oral doses of strains of Salmonella Enteritidis (phage type 13a), Salmonella Heidelberg, or Salmonella Hadar. Reproductive tissues of selected hens were cultured to detect and enumerate Salmonella at 5 days postinoculation, and the interior contents of eggs laid between 6 and 25 days postinoculation were tested for contamination. Significantly more internally contaminated eggs were laid by hens infected with Salmonella Enteritidis (3.58%) than with strains of either Salmonella Heidelberg (0.47%) or Salmonella Hadar (0%). However, no significant differences were observed between Salmonella strains in either isolation frequency or the number of colony-forming units (CFU) isolated from ovaries or oviducts. Salmonella isolation frequencies ranged from 20.8% to 41.7% for ovaries and from 8.3% to 33.3% for oviducts. Mean Salmonella colonization levels ranged from 0.10 to 0.51 log CFU/g for ovaries and from 0.25 to 0.46 log CFU/g for oviducts. Although parallel rank-orders were observed for Salmonella enumeration (in both ovaries and oviducts) and egg contamination frequency, a statistically significant relationship could not be established between these two parameters of infection.

  7. Impact of litter Salmonella status during feed withdrawal on Salmonella recovery from the broiler crop and ceca.

    PubMed

    Buhr, R J; Bourassa, D V; Hinton, A; Fairchild, B D; Ritz, C W

    2017-12-01

    Research was conducted to evaluate the impact of litter Salmonella status during feed withdrawal on Salmonella recovery from the crop and ceca following feed withdrawal. In 4 experiments, pens of broilers in separate rooms were challenged with marker strains of either Salmonella Montevideo or Salmonella Heidelberg. Three d post challenge, a 12-hour feed withdrawal was initiated, and one pen of broilers was switched between rooms for each Salmonella serotype. In experiments 3 and 4, non-challenged broilers also were added to the Salmonella challenge pens. The litter of each pen was sampled before and after the feed withdrawal period, the broilers euthanized, and the crop and ceca aseptically removed for Salmonella isolation. Results showed that only the challenge Salmonella serotype was recovered from the litter in challenge pens where broilers were not moved, while both Salmonella serotypes were recovered from the litter of the switched pens. Salmonella was recovered from 56/80 crops and from 66/80 ceca of challenged broilers that remained in the challenge pens. The challenge Salmonella serotype was recovered from 50/80 crops and from 60/80 ceca, and the switched pens' litter Salmonella serotype was recovered from 19/80 crops but not from the ceca in broilers challenged with Salmonella and then switched between pens. For experiments 3 and 4, Salmonella was recovered from 19/40 crops and from only 2/40 ceca from the non-challenged broilers placed into the Salmonella challenge pens. The results from broilers that were switched between Salmonella challenge pens indicate that the recovery of Salmonella from the crop of broilers following feed withdrawal (on Salmonella-contaminated litter) appears to depend mainly on the initial challenge Salmonella (62%) and less on the litter Salmonella (24%) status during the feed withdrawal period. In contrast, only the initial challenge Salmonella was recovered from the ceca (79%) from broilers that remained in challenge pens or

  8. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  9. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  10. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  11. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  12. 40 CFR 798.5265 - The salmonella typhimurium reverse mutation assay.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., exogenous glucose 6-phosphate dehydrogenase, NADH and excess of glucose-6-phosphate. (5) Control groups—(i... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798... number of spontaneous revertants in an untreated and/or vehicle control culture. (2) Description. Several...

  13. APPLICATION OF THE MICRO-FORWARD MUTATION ASSAY TO ASSESS MUTAGENICITY OF AIRBORNE PARTICULATES IN INDOOR

    EPA Science Inventory

    Validity test of the micro-forward mutation assay using Salmonella typhimurium strain TM677 was carried out using benzene-ethanol extracts from airborne particulates as test materials. ensitivity of this assay in the presence and absence of 5-9 mix was five to ten times higher th...

  14. Organic acids for control of Salmonella in different feed materials

    PubMed Central

    2013-01-01

    Background Salmonella control in animal feed is important in order to protect animal and public health. Organic acids is one of the control measures used for treatment of Salmonella contaminated feed or feed ingredients. In the present study, the efficacy of formic acid (FA) and different blends of FA, propionic acid (PA) and sodium formate (SF) was investigated. Four Salmonella strains isolated from feed were assayed for their acid tolerance. Also, the effect of lower temperatures (5°C and 15°C) compared to room temperature was investigated in rape seed and soybean meal. Results The efficacy of acid treatments varied significantly between different feed materials. The strongest reduction was seen in pelleted and compound mash feed (2.5 log10 reduction) followed by rapeseed meal (1 log10 reduction) after 5 days exposure. However, in soybean meal the acid effects were limited (less than 0.5 log10 reduction) even after several weeks’ exposure. In all experiments the survival curves showed a concave shape, with a fast initial death phase followed by reduction at a slower rate during the remaining time of the experiment. No difference in Salmonella reduction was observed between FA and a blend of FA and PA, whereas a commercial blend of FA and SF (Amasil) was slightly more efficacious (0.5-1 log10 reduction) than a blend of FA and PA (Luprocid) in compound mash feed. The Salmonella Infantis strain was found to be the most acid tolerant strain followed by, S. Putten, S. Senftenberg and S. Typhimurium. The tolerance of the S. Infantis strain compared with the S. Typhimurium strain was statistically significant (p<0.05). The lethal effect of FA on the S. Typhimurium strain and the S. Infantis strain was lower at 5°C and 15°C compared to room temperatures. Conclusions Acid treatment of Salmonella in feed is a matter of reducing the number of viable bacterial cells rather than eliminating the organism. Recommendations on the use of acids for controlling Salmonella in

  15. Organic acids for control of Salmonella in different feed materials.

    PubMed

    Koyuncu, Sevinc; Andersson, Mats Gunnar; Löfström, Charlotta; Skandamis, Panagiotis N; Gounadaki, Antonia; Zentek, Jürgen; Häggblom, Per

    2013-04-18

    Salmonella control in animal feed is important in order to protect animal and public health. Organic acids is one of the control measures used for treatment of Salmonella contaminated feed or feed ingredients. In the present study, the efficacy of formic acid (FA) and different blends of FA, propionic acid (PA) and sodium formate (SF) was investigated. Four Salmonella strains isolated from feed were assayed for their acid tolerance. Also, the effect of lower temperatures (5°C and 15°C) compared to room temperature was investigated in rape seed and soybean meal. The efficacy of acid treatments varied significantly between different feed materials. The strongest reduction was seen in pelleted and compound mash feed (2.5 log10 reduction) followed by rapeseed meal (1 log10 reduction) after 5 days exposure. However, in soybean meal the acid effects were limited (less than 0.5 log10 reduction) even after several weeks' exposure. In all experiments the survival curves showed a concave shape, with a fast initial death phase followed by reduction at a slower rate during the remaining time of the experiment.No difference in Salmonella reduction was observed between FA and a blend of FA and PA, whereas a commercial blend of FA and SF (Amasil) was slightly more efficacious (0.5-1 log10 reduction) than a blend of FA and PA (Luprocid) in compound mash feed. The Salmonella Infantis strain was found to be the most acid tolerant strain followed by, S. Putten, S. Senftenberg and S. Typhimurium. The tolerance of the S. Infantis strain compared with the S. Typhimurium strain was statistically significant (p<0.05). The lethal effect of FA on the S. Typhimurium strain and the S. Infantis strain was lower at 5°C and 15°C compared to room temperatures. Acid treatment of Salmonella in feed is a matter of reducing the number of viable bacterial cells rather than eliminating the organism. Recommendations on the use of acids for controlling Salmonella in feed should take into account the

  16. Comparative examination and validation of ELISA test systems for Salmonella typhimurium diagnosis of slaughtering pigs.

    PubMed

    Szabó, I; Scherer, K; Roesler, U; Appel, B; Nöckler, K; Hensel, A

    2008-05-10

    The most frequently isolated Salmonella serotype from pork in Germany is S. typhimurium, especially phagetype DT 104. The monitoring programs on Salmonella in swine are based on enzyme-linked immunoadsorbent assay (ELISA) detecting antibodies in serum or meat juice. These serological results are used to classify swine herds in three categories to assess the hygienic status of farm regarding Salmonella infection in pigs. The object of this study was the comparative evaluation of four indirect Salmonella ELISA tests approved in Germany to detect Salmonella typhimurium infection of swine. Three tests (A-C) are based on LPS-antigen and directed against specific IgG-antibodies. The fourth test (D) bases on a whole-cell-lysate antigen and discriminates between Salmonella specific IgA-, IgM- and IgG-antibodies. In a longitudinal study sixteen 6 weeks old weaning pigs were orally infected with S. typhimurium DT 104. During an observation period of 138d clinical and bacteriological parameters were monitored and serum samples obtained at regular intervals as well as meat juice samples taken at slaughter were examined by the respective ELISA systems. Study results reveal that all tested ELISA systems are able to detect S. typhimurium infection in pigs in both sample matrices, blood serum and meat juice whereas test D showed the highest sensitivity to detect Salmonella antibodies in pigs. The sensitivity to detect Salmonella antibodies varied between tests A and C according to the used cut-off (test specific cut-off vs. recommended surveillance cut-off) resulting in a change of seroprevalence and hence may influence the Salmonella status of the farm.

  17. Rapid and Sensitive Detection of Shigella spp. and Salmonella spp. by Multiple Endonuclease Restriction Real-Time Loop-Mediated Isothermal Amplification Technique

    PubMed Central

    Wang, Yi; Wang, Yan; Luo, Lijuan; Liu, Dongxin; Luo, Xia; Xu, Yanmei; Hu, Shoukui; Niu, Lina; Xu, Jianguo; Ye, Changyun

    2015-01-01

    Shigella and Salmonella are frequently isolated from various food samples and can cause human gastroenteritis. Here, a novel multiple endonuclease restriction real-time loop-mediated isothermal amplification technology (MERT-LAMP) were successfully established and validated for simultaneous detection of Shigella strains and Salmonella strains in only a single reaction. Two sets of MERT-LAMP primers for 2 kinds of pathogens were designed from ipaH gene of Shigella spp. and invA gene of Salmonella spp., respectively. Under the constant condition at 63°C, the positive results were yielded in as short as 12 min with the genomic DNA extracted from the 19 Shigella strains and 14 Salmonella strains, and the target pathogens present in a sample could be simultaneously identified based on distinct fluorescence curves in real-time format. Accordingly, the multiplex detection assay significantly reduced effort, materials and reagents used, and amplification and differentiation were conducted at the same time, obviating the use of postdetection procedures. The analytical sensitivity of MERT-LAMP was found to be 62.5 and 125 fg DNA/reaction with genomic templates of Shigella strains and Salmonella strains, which was consist with normal LAMP assay, and at least 10- and 100-fold more sensitive than that of qPCR and conventional PCR approaches. The limit of detection of MERT-LAMP for Shigella strains and Salmonella strains detection in artificially contaminated milk samples was 5.8 and 6.4 CFU per vessel. In conclusion, the MERT-LAMP methodology described here demonstrated a potential and valuable means for simultaneous screening of Shigella and Salmonella in a wide variety of samples. PMID:26697000

  18. The Type VI Secretion System Encoded in Salmonella Pathogenicity Island 19 Is Required for Salmonella enterica Serotype Gallinarum Survival within Infected Macrophages

    PubMed Central

    Blondel, Carlos J.; Jiménez, Juan C.; Leiva, Lorenzo E.; Álvarez, Sergio A.; Pinto, Bernardo I.; Contreras, Francisca; Pezoa, David; Santiviago, Carlos A.

    2013-01-01

    Salmonella enterica serotype Gallinarum is the causative agent of fowl typhoid, a disease characterized by high morbidity and mortality that causes major economic losses in poultry production. We have reported that S. Gallinarum harbors a type VI secretion system (T6SS) encoded in Salmonella pathogenicity island 19 (SPI-19) that is required for efficient colonization of chicks. In the present study, we aimed to characterize the SPI-19 T6SS functionality and to investigate the mechanisms behind the phenotypes previously observed in vivo. Expression analyses revealed that SPI-19 T6SS core components are expressed and produced under in vitro bacterial growth conditions. However, secretion of the structural/secreted components Hcp1, Hcp2, and VgrG to the culture medium could not be determined, suggesting that additional signals are required for T6SS-dependent secretion of these proteins. In vitro bacterial competition assays failed to demonstrate a role for SPI-19 T6SS in interbacterial killing. In contrast, cell culture experiments with murine and avian macrophages (RAW264.7 and HD11, respectively) revealed production of a green fluorescent protein-tagged version of VgrG soon after Salmonella uptake. Furthermore, infection of RAW264.7 and HD11 macrophages with deletion mutants of SPI-19 or strains with genes encoding specific T6SS core components (clpV and vgrG) revealed that SPI-19 T6SS contributes to S. Gallinarum survival within macrophages at 20 h postuptake. SPI-19 T6SS function was not linked to Salmonella-induced cytotoxicity or cell death of infected macrophages, as has been described for other T6SS. Our data indicate that SPI-19 T6SS corresponds to a novel tool used by Salmonella to survive within host cells. PMID:23357385

  19. Coordinated Regulation of Virulence during Systemic Infection of Salmonella enterica serovar Typhimurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Hyunjin; McDermott, Jason E.; Porwollik, Steffen

    Salmonella must respond to a myriad of environmental cues during infection of a mouse and express specific subsets of genes in a temporal and spatial manner to subvert the host defense mechanisms but these regulatory pathways are poorly established. To unravel how micro-environmental signals are processed and integrated into coordinated action, we constructed in-frame non-polar deletions of 84 regulators inferred to play a role in Salmonella typhimurium virulence and tested them in three virulence assays (intraperitoneal (i.p.), and intragastric (i.g.) infection in BALB/c mice, and persistence in SvJ129 mice). Overall 36 regulators were identified that were less virulent in atmore » least one assay, and of those, 15 regulators were required for systemic mouse infection in an acute infection model. As a first step towards understanding the interplay between a pathogen and its host from a systems biology standpoint we focused on these 15 genes. Transcriptional profiles were obtained for each of these 15 regulators from strains grown under four different environmental conditions. These results as well as publicly available transcriptional profiles were analyzed using both network inference and cluster analysis algorithms. The analysis predicts a regulatory network in which all 15 regulators control a specific set of genes necessary for Salmonella to cause systemic infection. We tested the regulatory model by expressing a subset of the regulators in trans and monitoring transcription of 7 known virulence factors located within Salmonella pathogenicity island 2 (SPI-2). These experiments validated the regulatory model and showed that, for these 7 genes, the response regulator SsrB and the marR type regulator SlyA co-regulate in a regulatory cascade by integrating multiple signals.« less

  20. Salmonella Infections (For Parents)

    MedlinePlus

    ... iguanas). Another, rarer form — called Salmonella typhi — causes typhoid fever . What Is Salmonella Infection? Salmonella infection, or salmonellosis , ... More on this topic for: Parents Kids Teens Typhoid Fever E. Coli Stool Test: Bacteria Culture Food Safety ...

  1. Development of reverse transcription-PCR assays specific for detection of equine encephalitis viruses.

    PubMed

    Linssen, B; Kinney, R M; Aguilar, P; Russell, K L; Watts, D M; Kaaden, O R; Pfeffer, M

    2000-04-01

    Specific and sensitive reverse transcription-PCR (RT-PCR) assays were developed for the detection of eastern, western, and Venezuelan equine encephalitis viruses (EEE, WEE, and VEE, respectively). Tests for specificity included all known alphavirus species. The EEE-specific RT-PCR amplified a 464-bp region of the E2 gene exclusively from 10 different EEE strains from South and North America with a sensitivity of about 3,000 RNA molecules. In a subsequent nested PCR, the specificity was confirmed by the amplification of a 262-bp fragment, increasing the sensitivity of this assay to approximately 30 RNA molecules. The RT-PCR for WEE amplified a fragment of 354 bp from as few as 2,000 RNA molecules. Babanki virus, as well as Mucambo and Pixuna viruses (VEE subtypes IIIA and IV), were also amplified. However, the latter viruses showed slightly smaller fragments of about 290 and 310 bp, respectively. A subsequent seminested PCR amplified a 195-bp fragment only from the 10 tested strains of WEE from North and South America, rendering this assay virus specific and increasing its sensitivity to approximately 20 RNA molecules. Because the 12 VEE subtypes showed too much divergence in their 26S RNA nucleotide sequences to detect all of them by the use of nondegenerate primers, this assay was confined to the medically important and closely related VEE subtypes IAB, IC, ID, IE, and II. The RT-PCR-seminested PCR combination specifically amplified 342- and 194-bp fragments of the region covering the 6K gene in VEE. The sensitivity was 20 RNA molecules for subtype IAB virus and 70 RNA molecules for subtype IE virus. In addition to the subtypes mentioned above, three of the enzootic VEE (subtypes IIIB, IIIC, and IV) showed the specific amplicon in the seminested PCR. The practicability of the latter assay was tested with human sera gathered as part of the febrile illness surveillance in the Amazon River Basin of Peru near the city of Iquitos. All of the nine tested VEE

  2. Development and evaluation of a simple and effective RT-qPCR inhibitory assay for detection of the efficacy of compounds towards HIV reverse transcriptase.

    PubMed

    Marino-Merlo, Francesca; Frezza, Caterina; Papaianni, Emanuela; Valletta, Elena; Mastino, Antonio; Macchi, Beatrice

    2017-11-01

    Assessing the actual efficacy of compounds to directly inhibit HIV reverse transcriptase (RT) activity is a main goal in preclinical antiretroviral studies. Our previous studies demonstrated that the effects of inhibitor compounds towards HIV-RT could be efficiently assessed through a simple cell-free assay based on conventional reverse transcription PCR. In the present study, we describe a modified variant of our assay, termed RT real-time quantitative PCR inhibitory assay (RT-qPCR-IA), in which the ability of compounds to restrict the complementary DNA (cDNA) generation by HIV-RT using a specific RNA template is performed by the real-time technique, in order to improve both accuracy and sensitivity of the method. As specific RNA template, RNA extracted from stable transfectants ectopically expressing the herpes simplex virus 1 glycoprotein D gene was utilized. HIV-RT, of both commercial or house-made viral lysate origin, was employed for the assay. To assess the reliability of RT-qPCR-IA, we performed a comparative, quantitative analysis of the dose-dependent effect exerted by known nucleotide and non-nucleotide reverse-transcriptase inhibitors, using the SYBR Green dye chemistry as detection system. The results obtained with RT-qPCR-IA were compared to that obtained using a one-step PicoGreen technology-based commercial kit. The outcome of our study indicates that the development of the novel RT-qPCR-IA will provide rapid and accurate evaluation of the inhibitory efficacy of compounds towards HIV-RT activity. This evaluation could be very useful for large-scale screening of potential new anti-HIV drugs.

  3. Interpretations of Antibody Responses to Salmonella enterica Serotype Enteritidis gm Flagellin in Poultry Flocks Are Enhanced by a Kinetics-Based Enzyme-Linked Immunosorbent Assay

    PubMed Central

    McDonough, Patrick L.; Jacobson, Richard H.; Timoney, John F.; Mutalib, Ahmed; Kradel, David C.; Chang, Yung-fu; Shin, Sang J.; Lein, Donald H.; Trock, Susan; Wheeler, Kaye

    1998-01-01

    Many regulatory and diagnostic programs for the detection of Salmonella enterica serotype Enteritidis infection in commercial poultry flocks have relied on rapid Pullorum agglutination tests to screen birds because of the shared antigens of S. enterica Enteritidis and S. enterica Pullorum and Gallinarum; however, the use of the enzyme-linked immunosorbent assay (ELISA) format affords better analytical sensitivity than crude agglutination tests. In this study, we adapted our earlier conventional indirect ELISA, using gm flagellin as the antigen, to a kinetics-based, computer-controlled ELISA (KELA). The KELA was used to screen for flagellin antibody from three commercial flocks: (i) a large flock involved in a U.S. Department of Agriculture trace back from a human S. enterica Enteritidis foodborne outbreak (n = 3,209), (ii) a flock infected with the endemic S. enterica Enteritidis serotype but which also had multiple other salmonella serotypes (n = 65), and (iii) an S. enterica Pullorum-infected flock (n = 12). The first flock (S. enterica Enteritidis prevalence of 2.45% based on culture) provided a field test of the KELA and allowed the calculation of diagnostic sensitivity (D-Sn) and diagnostic specificity (D-Sp). With a cutoff of 10 (used for screening flocks [i.e., high sensitivity]), the KELA has a D-Sn of 95.2% and a D-Sp of 18.5%; with a cutoff of 140 (used in confirmatory flock testing [i.e., high specificity]), the KELA has a D-Sn of 28.0% and a D-Sp of 99.1%. We found that with a cutoff of 60 (D-Sn = 63.1%; D-Sp = 91.6%), we could eliminate reactions in the KELA caused by other non-S. enterica Enteritidis salmonellae. The KELA was also compared to two commercial rapid Pullorum tests, the Solvay (D-Sn = 94.9%; D-Sp = 55.5%) and the Vineland (D-Sn = 62.0%; D-Sp = 75.3%). PMID:9665965

  4. A novel multiplex PCR for the simultaneous detection of Salmonella enterica and Shigella species.

    PubMed

    Radhika, M; Saugata, Majumder; Murali, H S; Batra, H V

    2014-01-01

    Salmonella enterica and Shigella species are commonly associated with food and water borne infections leading to gastrointestinal diseases. The present work was undertaken to develop a sensitive and reliable PCR based detection system for simultaneous detection of Salmonella enterica and Shigella at species level. For this the conserved regions of specific genes namely ipaH1, ipaH, wbgZ, wzy and invA were targeted for detection of Shigella genus, S. flexneri, S. sonnei, S. boydii and Salmonella enterica respectively along with an internal amplification control (IAC). The results showed that twenty Salmonella and eleven Shigella spp., were accurately identified by the assay without showing non-specificity against closely related other Enterobacteriaceae organisms and also against other pathogens. Further evaluation of multiplex PCR was undertaken on 50 natural samples of chicken, eggs and poultry litter and results compared with conventional culture isolation and identification procedure. The multiplex PCR identified the presence of Salmonella and Shigella strains with a short pre-enrichment step of 5 h in peptone water and the same samples were processed by conventional procedures for comparison. Therefore, this reported multiplex PCR can serve as an alternative to the tedious time-consuming procedure of culture and identification in food safety laboratories.

  5. Development of a rapid diagnostic assay for the detection of tomato chlorotic dwarf viroid based on isothermal reverse-transcription-recombinase polymerase amplification

    USDA-ARS?s Scientific Manuscript database

    A molecular diagnostic assay utilizing reverse transcription-recombinase polymerase amplification (RT-RPA) at an isothermal constant temperature of 39 °C and target-specific primers and probe were developed for the rapid, sensitive, and specific detection of tomato chlorotic dwarf viroid (TCDVd) in ...

  6. Performance of PCR-reverse blot hybridization assay for detection of rifampicin-resistant Mycobacterium leprae.

    PubMed

    Wang, Hye-young; Kim, Hyunjung; Kim, Yeun; Bang, Hyeeun; Kim, Jong-Pill; Hwang, Joo Hwan; Cho, Sang-Nae; Kim, Tae Ue; Lee, Hyeyoung

    2015-10-01

    Drug resistance in Mycobacterium leprae is a significant problem in countries where leprosy is endemic. A sensitive, specific, and high-throughput reverse blot hybridization assay (REBA) for the detection of genotypic resistance to rifampicin (RIF) was designed and evaluated. It has been shown that resistance to RIF in M. leprae involves mutations in the rpoB gene encoding the -subunit of the RNA polymerase. The PCR-REBA simultaneously detects both 6 wild-type regions and 5 different mutations (507 AGC, 513 GTG, 516 TAT, 531 ATG, and 531 TTC) including the most prevalent mutations at positions 507 and 531. Thirty-one clinical isolates provided by Korea Institute of Hansen-s Disease were analyzed by PCR-REBA with RIF resistance of rpoB gene. As a result, missense mutations at codons 507 AGC and 531 ATG with 2-nucleotide substitutions were found in one sample, and a missense mutation at codon 516 TAT and ΔWT6 (deletion of 530-534) was found in another sample. These cases were confirmed by DNA sequence analysis. This rapid, simple, and highly sensitive assay provides a practical alternative to sequencing for genotypic evaluation of RIF resistance in M. leprae.

  7. Development of a rapid diagnostic assay for the detection of tomato chlorotic dwarf viroid based on isothermal reverse-transcription-recombinase polymerase amplification.

    PubMed

    Hammond, Rosemarie W; Zhang, Shulu

    2016-10-01

    A molecular diagnostic assay utilizing reverse transcription-recombinase polymerase amplification (RT-RPA) at an isothermal constant temperature of 39°C and target-specific primers and probe were developed for the rapid, sensitive, and specific detection of tomato chlorotic dwarf viroid (TCDVd) in infected leaf and seed tissues. The performance of the AmplifyRP(®) Acceler8™ RT-RPA diagnostic assay, utilizing a lateral flow strip contained within an amplicon detection chamber, was evaluated and the results were compared with a standard RT-PCR assay. The AmplifyRP(®) Acceler8™ assay was specific for TCDVd in leaf and seed tissues, its sensitivity was comparable to conventional RT-PCR in leaf tissues, and it does not require extensive sample purification, specialized equipment, or technical expertise. This is the first report utilizing an RT-RPA assay to detect viroids and the assay can be used both in the laboratory and in the field for TCDVd detection. Published by Elsevier B.V.

  8. Induction of Abasic Sites by the Drinking-Water Mutagen MX in Salmonella TA100

    EPA Science Inventory

    Mutagen X (MX) is a chlorinated furanone that accounts for more of the mutagenic activity of drinking water than any other disinfection by-product. It is one of the most potent base-substitution mutagens in the Salmonella (Ames) mutagenicity assay, producing primarily GC to TA mu...

  9. Salmonella risk to consumers via pork is related to the Salmonella prevalence in pig feed.

    PubMed

    Rönnqvist, M; Välttilä, V; Ranta, J; Tuominen, P

    2018-05-01

    Pigs are an important source of human infections with Salmonella, one of the most common causes of sporadic gastrointestinal infections and foodborne outbreaks in the European region. Feed has been estimated to be a significant source of Salmonella in piggeries in countries of a low Salmonella prevalence. To estimate Salmonella risk to consumers via the pork production chain, including feed production, a quantitative risk assessment model was constructed. The Salmonella prevalence in feeds and in animals was estimated to be generally low in Finland, but the relative importance of feed as a source of Salmonella in pigs was estimated as potentially high. Discontinuation of the present strict Salmonella control could increase the risk of Salmonella in slaughter pigs and consequent infections in consumers. The increased use of low risk and controlled feed ingredients could result in a consistently lower residual contamination in pigs and help the tracing and control of the sources of infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Prevalence and Characterization of Monophasic Salmonella Serovar 1,4,[5],12:i:- of Food Origin in China.

    PubMed

    Yang, Xiaojuan; Wu, Qingping; Zhang, Jumei; Huang, Jiahui; Guo, Weipeng; Cai, Shuzhen

    2015-01-01

    Salmonella enterica subsp. enterica serovar 1,4,[5],12:i:- is a monophasic variant of Salmonella Typhimurium, which has recently been recognized as an emerging cause of infection worldwide. This bacterium has also ranked among the four most frequent serovars causing human salmonellosis in China. However, there are no reports on its contamination in Chinese food. Serotyping, polymerase chain reaction, antibiotic resistance, virulotyping, and multilocus sequence typing (MLST) assays were used to investigate the prevalence of this serological variant in food products in China, and to determine phenotypic and genotypic difference of monophasic isolates and Salmonella Typhimurium isolated over the same period. Salmonella 1,4,[5],12:i:- was prevalent in various food sources, including beef, pork, chicken, and pigeon. The study also confirmed the high prevalence (53.8%) of resistance to ampicillin, streptomycin, sulfonamides, and tetracycline in Salmonella 1,4,[5],12:i:-, which was higher than that in Salmonella Typhimurium. Moreover, Salmonella 1,4,[5],12:i:- isolates in our study were different from Salmonella Typhimurium isolates by the absence of three plasmid-borne genes (spvC, pefA, and rck) and the presence of gipA in all isolates. All Salmonella 1,4,[5],12:i:- isolates demonstrated MLST pattern ST34. Genomic deletions within the fljBA operon and surrounding genes were only found in Salmonella 1,4,[5],12:i:- isolates, with all isolates containing a deletion of fljB. However, hin and iroB were identified in all Salmonella 1,4,[5],12:i:- isolates. Three different deletion profiles were observed and two of them were different from the reported Salmonella 1,4,[5],12:i:- clones from Spain, America, and Italy, which provided some new evidence on the independent evolution of the multiple successful monophasic clones from Salmonella Typhimurium ancestors. This study is the first report of Salmonella 1,4,[5],12:i:- in food products from China. The data are more

  11. Prevalence and Characterization of Monophasic Salmonella Serovar 1,4,[5],12:i:- of Food Origin in China

    PubMed Central

    Yang, Xiaojuan; Wu, Qingping; Zhang, Jumei; Huang, Jiahui; Guo, Weipeng; Cai, Shuzhen

    2015-01-01

    Salmonella enterica subsp. enterica serovar 1,4,[5],12:i:- is a monophasic variant of Salmonella Typhimurium, which has recently been recognized as an emerging cause of infection worldwide. This bacterium has also ranked among the four most frequent serovars causing human salmonellosis in China. However, there are no reports on its contamination in Chinese food. Serotyping, polymerase chain reaction, antibiotic resistance, virulotyping, and multilocus sequence typing (MLST) assays were used to investigate the prevalence of this serological variant in food products in China, and to determine phenotypic and genotypic difference of monophasic isolates and Salmonella Typhimurium isolated over the same period. Salmonella 1,4,[5],12:i:- was prevalent in various food sources, including beef, pork, chicken, and pigeon. The study also confirmed the high prevalence (53.8%) of resistance to ampicillin, streptomycin, sulfonamides, and tetracycline in Salmonella 1,4,[5],12:i:-, which was higher than that in Salmonella Typhimurium. Moreover, Salmonella 1,4,[5],12:i:- isolates in our study were different from Salmonella Typhimurium isolates by the absence of three plasmid-borne genes (spvC, pefA, and rck) and the presence of gipA in all isolates. All Salmonella 1,4,[5],12:i:- isolates demonstrated MLST pattern ST34. Genomic deletions within the fljBA operon and surrounding genes were only found in Salmonella 1,4,[5],12:i:- isolates, with all isolates containing a deletion of fljB. However, hin and iroB were identified in all Salmonella 1,4,[5],12:i:- isolates. Three different deletion profiles were observed and two of them were different from the reported Salmonella 1,4,[5],12:i:- clones from Spain, America, and Italy, which provided some new evidence on the independent evolution of the multiple successful monophasic clones from Salmonella Typhimurium ancestors. This study is the first report of Salmonella 1,4,[5],12:i:- in food products from China. The data are more

  12. Antimicrobial and antibiofilm effects of selected food preservatives against Salmonella spp. isolated from chicken samples.

    PubMed

    Er, Buket; Demirhan, Burak; Onurdag, Fatma Kaynak; Ozgacar, Selda Özgen; Oktem, Aysel Bayhan

    2014-03-01

    Salmonella spp. are widespread foodborne pathogens that contaminate egg and poultry meats. Attachment, colonization, as well as biofilm formation capacity of Salmonella spp. on food and contact surfaces of food may cause continuous contamination. Biofilm may play a crucial role in the survival of salmonellae under unfavorable environmental conditions, such as in animal slaughterhouses and processing plants. This could serve as a reservoir compromising food safety and human health. Addition of antimicrobial preservatives extends shelf lives of food products, but even when products are supplemented with adequate amounts of preservatives, it is not always possible to inhibit the microorganisms in a biofilm community. In this study, our aims were i) to determine the minimum inhibitory concentrations (MIC) and minimum biofilm inhibitory concentrations (MBIC) of selected preservatives against planktonic and biofilm forms of Salmonella spp. isolated from chicken samples and Salmonella Typhimurium SL1344 standard strain, ii) to show the differences in the susceptibility patterns of same strains versus the planktonic and biofilm forms to the same preservative agent, and iii) to determine and compare antimicrobial and antibiofilm effects of selected food preservatives against Salmonella spp. For this purpose, Salmonella Typhimurium SL1344 standard strain and 4 Salmonella spp. strains isolated from chicken samples were used. Investigation of antimicrobial and antibiofilm effects of selected food preservatives against Salmonella spp. was done according to Clinical and Laboratory Standards Institute M100-S18 guidelines and BioTimer assay, respectively. As preservative agents, pure ciprofloxacin, sodium nitrite, potassium sorbate, sodium benzoate, methyl paraben, and propyl paraben were selected. As a result, it was determined that MBIC values are greater than the MIC values of the preservatives. This result verified the resistance seen in a biofilm community to food

  13. Control of Salmonella enterica serovar Enteritidis in laying hens by inactivated Salmonella Enteritidis vaccines

    PubMed Central

    de Freitas Neto, Oliveiro Caetano; Mesquita, Aline Lopes; de Paiva, Jaqueline Boldrin; Zotesso, Fábio; Berchieri Júnior, Angelo

    2008-01-01

    Salmonella Enteritidis is one of the agents that is responsible for outbreaks of human foodborne salmonellosis caused by Salmonella Enteritidis and is generally associated with the consumption of poultry products. Inactivated Salmonella Enteritidis cell vaccine is one of the available methods to control Salmonella Enteritidis in breeders and laying hens, however results in terms of efficacy vary. This vaccine has never been tested in Brazil, therefore, the present work was carried out to assess three commercial inactivated Salmonella Enteritidis vaccines allowed in Brazil. Four hundred white light variety commercial laying hens were obtained at one-day-of age. At eight weeks old, the birds were divided into four groups with one hundred animals each. Birds from three groups (V1, V2 and V3) received different intramuscular vaccines, followed by a booster dose at 16 weeks of age. Birds from another group (CG) were not vaccinated. When the laying hens were 20, 25 and 31 weeks old, 13 from each group were transferred to another room and were challenged by inoculating 2 mL neat culture of Salmonella Enteritidis. On the second day after each challenge, the caecal contents, spleen, liver and ovary of three birds from each group were analyzed for the presence of Salmonella Enteritidis. Twice a week a cloacal swab of each bird was taken and all eggs laid were examined for the presence of Salmonella Enteritidis. After four consecutive negative cloacal swabs in all the groups, the birds were sacrificed so as to examine the liver, caecal contents and ovaries. Overall, the inactivated vaccine used in group V3 reduced Salmonella Enteritidis in the feces and eggs. A very small amount of Salmonella was found in the spleen, liver, ovary and caeca of the birds in the four groups during the whole experiment. In general, inactivated Salmonella Enteritidis vaccines was able to decrease the presence of Salmonella Enteritidis in the birds and in the eggs as well. Nevertheless, they must

  14. Development of field-based real-time reverse transcription-polymerase chain reaction assays for detection of Chikungunya and O'nyong-nyong viruses in mosquitoes.

    PubMed

    Smith, Darci R; Lee, John S; Jahrling, Jordan; Kulesh, David A; Turell, Michael J; Groebner, Jennifer L; O'Guinn, Monica L

    2009-10-01

    Chikungunya (CHIK) and O'nyong-nyong (ONN) are important emerging arthropod-borne diseases. Molecular diagnosis of these two viruses in mosquitoes has not been evaluated, and the effects of extraneous mosquito tissue on assay performance have not been tested. Additionally, no real-time reverse transcription-polymerase chain reaction (RT-PCR) assay exists for detecting ONN virus (ONNV) RNA. We describe the development of sensitive and specific real-time RT-PCR assays for detecting CHIK and ONN viral RNA in mosquitoes, which have application for field use. In addition, we compared three methods for primer/probe design for assay development by evaluating their sensitivity and specificity. This comparison resulted in development of virus-specific assays that could detect less than one plaque-forming unit equivalent of each of the viruses in mosquitoes. The use of these assays will aid in arthropod-borne disease surveillance and in the control of the associated diseases.

  15. Use of Attenuated but Metabolically Competent Salmonella as a Probiotic To Prevent or Treat Salmonella Infection

    PubMed Central

    Sabag-Daigle, Anice; Blunk, Henry M.; Gonzalez, Juan F.; Steidley, Brandi L.; Boyaka, Prosper N.

    2016-01-01

    Salmonella enterica is among the most burdensome of foodborne disease agents. There are over 2,600 serovars that cause a range of disease manifestations ranging from enterocolitis to typhoid fever. While there are two vaccines in use in humans to protect against typhoid fever, there are none that prevent enterocolitis. If vaccines preventing enterocolitis were to be developed, they would likely protect against only one or a few serovars. In this report, we tested the hypothesis that probiotic organisms could compete for the preferred nutrient sources of Salmonella and thus prevent or treat infection. To this end, we added the fra locus, which encodes a utilization pathway for the Salmonella-specific nutrient source fructose-asparagine (F-Asn), to the probiotic bacterium Escherichia coli Nissle 1917 (Nissle) to increase its ability to compete with Salmonella in mouse models. We also tested a metabolically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its ability to compete with wild-type Salmonella. The modified Nissle strain became more virulent and less able to protect against Salmonella in some instances. On the other hand, the modified Salmonella strain was safe and effective in preventing infection with wild-type Salmonella. While we tested for efficacy only against Salmonella Typhimurium, the modified Salmonella strain may be able to compete metabolically with most, if not all, Salmonella serovars, representing a novel approach to control of this pathogen. PMID:27185789

  16. Two Novel Salmonella Bivalent Vaccines Confer Dual Protection against Two Salmonella Serovars in Mice

    PubMed Central

    Zhao, Xinxin; Dai, Qinlong; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Wang, Mingshu; Chen, Shun; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Cheng, Anchun

    2017-01-01

    Non-typhoidal Salmonella includes thousands of serovars that are leading causes of foodborne diarrheal illness worldwide. In this study, we constructed three bivalent vaccines for preventing both Salmonella Typhimurium and Salmonella Newport infections by using the aspartate semialdehyde dehydrogenase (Asd)-based balanced-lethal vector-host system. The constructed Asd+ plasmid pCZ11 carrying a subset of the Salmonella Newport O-antigen gene cluster including the wzx-wbaR-wbaL-wbaQ-wzy-wbaW-wbaZ genes was introduced into three Salmonella Typhimurium mutants: SLT19 (Δasd) with a smooth LPS phenotype, SLT20 (Δasd ΔrfbN) with a rough LPS phenotype, and SLT22 (Δasd ΔrfbN ΔpagL::T araC PBAD rfbN) with a smooth LPS phenotype when grown with arabinose. Immunoblotting demonstrated that SLT19 harboring pCZ11 [termed SLT19 (pCZ11)] co-expressed the homologous and heterologous O-antigens; SLT20 (pCZ11) exclusively expressed the heterologous O-antigen; and when arabinose was available, SLT22 (pCZ11) expressed both types of O-antigens, while in the absence of arabinose, SLT22 (pCZ11) expressed only the heterologous O-antigen. Exclusive expression of the heterologous O-antigen in Salmonella Typhimurium decreased the swimming ability of the bacterium and its susceptibility to polymyxin B. Next, the crp gene was deleted from the three recombinant strains for attenuation purposes, generating the three bivalent vaccine strains SLT25 (pCZ11), SLT26 (pCZ11), and SLT27 (pCZ11), respectively. Groups of BALB/c mice (12 mice/group) were orally immunized with 109 CFU of each vaccine strain twice at an interval of 4 weeks. Compared with a mock immunization, immunization with all three vaccine strains induced significant serum IgG responses against both Salmonella Typhimurium and Salmonella Newport LPS. The bacterial loads in the mouse tissues were significantly lower in the three vaccine-strain-immunized groups than in the mock group after either Salmonella Typhimurium or Salmonella

  17. Effects of egg shell quality and washing on Salmonella Infantis penetration.

    PubMed

    Samiullah; Chousalkar, K K; Roberts, J R; Sexton, M; May, D; Kiermeier, A

    2013-07-15

    The vast majority of eggs in Australia are washed prior to packing to remove dirt and fecal material and to reduce the microbial contamination of the egg shell. The egg contents can be an ideal growth medium for microorganisms which can result in human illness if eggs are stored improperly and eaten raw or undercooked, and it is estimated that egg-related salmonellosis is costing Australia $44 million per year. Egg shell characteristics such as shell thickness, amount of cuticle present, and thickness of individual egg shell layers can affect the ease with which bacteria can penetrate the egg shell and washing could partially or completely remove the cuticle layer. The current study was conducted to investigate the effects of egg washing on cuticle cover and effects of egg shell quality and cuticle cover on Salmonella Infantis penetration of the egg shell. A higher incidence of unfavorable ultrastructural variables of the mammillary layer such as late fusion, type B bodies, type A bodies, poor cap quality, alignment, depression, erosion and cubics were recorded in Salmonella penetrated areas of egg shells. The influence of egg washing on the ability of Salmonella Infantis on the egg shell surface to enter the egg internal contents was also investigated using culture-based agar egg penetration and real-time qPCR based experiments. The results from the current study indicate that washing affected cuticle cover. There were no significant differences in Salmonella Infantis penetration of washed or unwashed eggs. Egg shell translucency may have effects on Salmonella Infantis penetration of the egg shell. The qPCR assay was more sensitive for detection of Salmonella Infantis from egg shell wash and internal contents than traditional microbiological methods. The agar egg and whole egg inoculation experiments indicated that Salmonella Infantis penetrated the egg shells. Egg washing not only can be highly effective at removing Salmonella Infantis from the egg shell surface

  18. Prevalence and Characterization of Salmonella enterica and Salmonella Bacteriophages Recovered from Beef Cattle Feedlots in South Texas.

    PubMed

    Xie, Yicheng; Savell, Jeffrey W; Arnold, Ashley N; Gehring, Kerri B; Gill, Jason J; Taylor, T Matthew

    2016-08-01

    Asymptomatic Salmonella carriage in beef cattle is a food safety concern, and the beef feedlot environment may function as a reservoir of this pathogen. The goal of this study was to identify and isolate Salmonella and Salmonella bacteriophages from beef cattle feedlot environments in order to better understand the microbial ecology of Salmonella and identify phages that might be useful as anti-Salmonella beef safety interventions. Three feedlots in south Texas were visited, and 27 distinct samples from each source were collected from dropped feces, feed from feed bunks, drinking water from troughs, and soil in cattle pens (n = 108 samples). Preenrichment, selective enrichment, and selective/differential isolation of Salmonella were performed on each sample. A representative subset of presumptive Salmonella isolates was prepared for biochemical identification and serotyping. Samples were pooled by feedlot and sample type to create 36 samples and enriched to recover phages. Recovered phages were tested for host range against two panels of Salmonella hosts. Salmonella bacteria were identified in 20 (18.5%) of 108 samples by biochemical and/or serological testing. The serovars recovered included Salmonella enterica serovars Anatum, Muenchen, Altona, Kralingen, Kentucky, and Montevideo; Salmonella Anatum was the most frequently recovered serotype. Phage-positive samples were distributed evenly over the three feedlots, suggesting that phage prevalence is not strongly correlated with the presence of culturable Salmonella. Phages were found more frequently in soil and feces than in feed and water samples. The recovery of bacteriophages in the Salmonella-free feedlot suggests that phages might play a role in suppressing the Salmonella population in a feedlot environment.

  19. Recognition of Salmonella typhimurium by immobilized phage P22 monolayers

    NASA Astrophysics Data System (ADS)

    Handa, Hitesh; Gurczynski, Stephen; Jackson, Matthew P.; Auner, Gregory; Walker, Jeremy; Mao, Guangzhao

    2008-04-01

    Phages are promising alternatives to antibodies as the biorecognition element in a variety of biosensing applications. In this study, a monolayer of bacteriophage P22 whose tailspike proteins specifically recognize Salmonella serotypes was covalently bound to glass substrates through a bifunctional cross linker 3-aminopropyltrimethoxysilane. The specific binding of Salmonella typhimurium to the phage monolayer was studied by enzyme-linked immunosorbent assay and atomic force microscopy. Escherichia coli and a Gram-positive bacterium Listeria monocytogenes were also studied as control bacteria. The P22 particles show strong binding affinity to S. typhimurium. In addition, the dried P22 monolayer maintained 50% binding capacity to S. typhimurium after a one-week storage time. This is a promising method to prepare phage monolayer coatings on surface plasmon resonance and acoustic biosensor substrates in order to utilize the nascent phage display technology.

  20. Characterization of Salmonella enterica serovar Agona slaughter isolates from the animal arm of the National Antimicrobial Resistance Monitoring System-Enteric Bacteria (NARMS): 1997 through 2003.

    PubMed

    Douris, Aphrodite; Fedorka-Cray, Paula J; Jackson, Charlene R

    2008-03-01

    A total of 499 Salmonella enterica serovar Agona isolates from cattle, swine, chicken, and turkey samples were assayed for antimicrobial susceptibility and subtyped using pulsed-field gel electrophoresis (PFGE). Salmonella Agona isolates exhibited increased resistance to amoxicillin/clavulanic acid, ampicillin, cefoxitin, ceftiofur, cephalothin, and chloramphenicol, and a single isolate was resistant to ceftriaxone. Multiple drug resistance (MDR; resistance >or= 2 antimicrobials) was exhibited in 57% (n=282/499) of the Salmonella Agona isolates and 22% (n=111/499) of these Salmonella Agona isolates were resistant to five or more antimicrobials. PFGE patterns of 482 Salmonella Agona slaughter samples resulted in 165 unique patterns. Cluster analysis indicated that isolates indistinguishable by PFGE appeared to group according to antimicrobial resistance profiles. These data suggest that Salmonella Agona is increasing in prevalence in U.S. cattle presented for slaughter and should be further monitored.

  1. Screening for Salmonella in backyard chickens.

    PubMed

    Manning, Johanna; Gole, Vaibhav; Chousalkar, Kapil

    2015-06-15

    Salmonellosis is a significant zoonotic disease which has a considerable economic impact on the egg layer industry. There is limited information about the prevalence of Salmonella spp. in backyard chickens. The current study was conducted to determine the prevalence of Salmonella in backyard chickens, and the associated virulence of any serovars identified. Hundred and fifteen pooled samples from 30 backyard flocks in South Australia were screened. Four flocks tested positive for Salmonella spp. The overall Salmonella isolation rate in the current study was 10.4%. The estimated prevalence at individual bird level was 0.02% (95% CI 0.025-0.975). The serovars isolated were Salmonella Agona, Salmonella subsp 2 ser 21:z10:z6 (Wandsbek) and Salmonella Bovismorbificans. All Salmonella isolates tested positive for the prgH, orfL and spiC genes. The Salmonella subsp 2 ser 21:z10:z6 (Wandsbek) had the most antibiotic resistance, being resistant to ampicillin and cephalothin and having intermediate resistance to florphenicol. All of the Salmonella Agona had intermediate resistance to the ampicillin, while the Salmonella Bovismorbificans were susceptible to all antibiotics tested. With the increased interest of keeping backyard chickens, the current study highlights the zoonotic risk from Salmonella spp. associated with home flocks. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  2. Mutagenicity testing in the Salmonella typhimurium assay of phenolic compounds and phenolic fractions obtained from smokehouse smoke condensates.

    PubMed

    Pool, B L; Lin, P Z

    1982-08-01

    Smokehouse smoke, which is used for flavouring meat products, was investigated for its mutagenic activity in the Salmonella typhimurium assay. We were chiefly concerned with the fractions free of polycyclic aromatic hydrocarbons but containing phenol compounds, which are responsible for the preservative and aromatizing properties of the smoke. The most abundantly occurring phenol compounds (phenol, cresols, 2,4-dimethylphenol, brenzcatechine, syringol, eugenol, vanilline and guaiacol) gave negative results when they were tested for mutagenicity at five concentrations up to 5000 micrograms/plate, with and without S-9 mix, using five strains of S. typhimurium. Even when phenol was further investigated in a variety of test conditions, no induction of his+ revertants was observed. When smokehouse smoke was condensed and fractionated the majority of the various phenolic fractions also gave negative results when tested at five concentrations using five strains of S. typhimurium. However there was a slight increase in the number of revertants in a few cases. The presence in the phenolic fractions of very small amounts of mutagenic impurities, the nature of which needs further investigation, cannot be excluded. These results support the further development of non-hazardous smoke-aroma preparations, based on the phenolic components of smokehouse smoke.

  3. Prevalence of Salmonella in Australian reptiles.

    PubMed

    Scheelings, T Franciscus; Lightfoot, Dianne; Holz, Peter

    2011-01-01

    From January 2007 until June 2008, 504 reptiles of four families and 57 species were examined for Salmonella by using cloacal or intestinal swabs. Salmonella was identified in 139 (28%) of the 504 animals tested. Of the 504 reptiles examined, 210 were captive and 294 were wild. Ninety-eight (47%) of the captive reptiles were shedding Salmonella at the time of sampling. In contrast, only 41 (14%) of the wild reptiles were shedding Salmonella. The higher prevalence of Salmonella in captive reptiles was statistically significant (P<0.0001). No Salmonella was found in 60 wild, freshwater chelonians or 48 wild southern water skinks (Eulamprus heatwolei). Our results suggest that some species of wild reptiles in Australia are not natural carriers of Salmonella and that diet and captivity may influence Salmonella excretion in other species.

  4. Molecular epidemiology of fluoroquinolone resistant Salmonella in Africa: A systematic review and meta-analysis

    PubMed Central

    Tessema, Tesfaye S.; Beyene, Getenet; Aseffa, Abraham

    2018-01-01

    Background Wide-ranging evidence on the occurrence of fluoroquinolone (FQ) resistance genetic determinants in African Salmonella strains is not available. The main objectives of this study were to assess the heterogeneity, estimate pooled proportions and describe the preponderance of FQ-resistance determinants in typhoidal and non-typhoidal Salmonella (NTS) isolates of Africa. Methods Genetic and phenotypic data on 6103 Salmonella isolates were considered. Meta- and frequency analyses were performed depending on the number of studies by category, number of isolates and risks of bias. A random effects model was used to assess heterogeneity and estimate pooled proportions. Relative and cumulative frequencies were calculated to describe the overall preponderance of FQ-resistance determinants in quinolone resistant isolates. Results The pooled proportion of gyrA mutants (Salmonella enterica serovar Typhi, Salmonella enterica serovar Typhimurium, and Salmonella enterica serovar Enteritidis) was estimated at 5.7% (95% Confidence interval (CI) = 2.6, 9.8; Tau squared (T2) = 0.1105), and was higher in S. Typhi than in S. Typhimurium (odds ratio (OR) = 3.3, 95%CI = 2, 5.7). The proportions of each of gyrB and parC mutants, and strains with Plasmid Mediated Quinolone Resistance genes (qnrA, qnrB and qnrS) were low (≤ 0.3%). Overall, 23 mutant serotypes were identified, and most strains had mutations at codons encoding Ser83 and Asp87 of gyrA (82%, 95%CI = 78, 86). Conclusions Mutations at gyrA appear to account for ciprofloxacin non-susceptibility in most clinical Salmonella strains in Africa. The estimates could be harnessed to develop a mismatch-amplification mutation-assay for the detection of FQ-resistant strains in Africa. PMID:29432492

  5. Molecular epidemiology of fluoroquinolone resistant Salmonella in Africa: A systematic review and meta-analysis.

    PubMed

    Tadesse, Getachew; Tessema, Tesfaye S; Beyene, Getenet; Aseffa, Abraham

    2018-01-01

    Wide-ranging evidence on the occurrence of fluoroquinolone (FQ) resistance genetic determinants in African Salmonella strains is not available. The main objectives of this study were to assess the heterogeneity, estimate pooled proportions and describe the preponderance of FQ-resistance determinants in typhoidal and non-typhoidal Salmonella (NTS) isolates of Africa. Genetic and phenotypic data on 6103 Salmonella isolates were considered. Meta- and frequency analyses were performed depending on the number of studies by category, number of isolates and risks of bias. A random effects model was used to assess heterogeneity and estimate pooled proportions. Relative and cumulative frequencies were calculated to describe the overall preponderance of FQ-resistance determinants in quinolone resistant isolates. The pooled proportion of gyrA mutants (Salmonella enterica serovar Typhi, Salmonella enterica serovar Typhimurium, and Salmonella enterica serovar Enteritidis) was estimated at 5.7% (95% Confidence interval (CI) = 2.6, 9.8; Tau squared (T2) = 0.1105), and was higher in S. Typhi than in S. Typhimurium (odds ratio (OR) = 3.3, 95%CI = 2, 5.7). The proportions of each of gyrB and parC mutants, and strains with Plasmid Mediated Quinolone Resistance genes (qnrA, qnrB and qnrS) were low (≤ 0.3%). Overall, 23 mutant serotypes were identified, and most strains had mutations at codons encoding Ser83 and Asp87 of gyrA (82%, 95%CI = 78, 86). Mutations at gyrA appear to account for ciprofloxacin non-susceptibility in most clinical Salmonella strains in Africa. The estimates could be harnessed to develop a mismatch-amplification mutation-assay for the detection of FQ-resistant strains in Africa.

  6. Oral immunisation of laying hens with the live vaccine strains of TAD Salmonella vac E and TAD Salmonella vac T reduces internal egg contamination with Salmonella Enteritidis.

    PubMed

    Gantois, Inne; Ducatelle, Richard; Timbermont, Leen; Boyen, Filip; Bohez, Lotte; Haesebrouck, Freddy; Pasmans, Frank; van Immerseel, Filip

    2006-09-11

    Eggs are a major source of human infections with Salmonella. Therefore controlling egg contamination in laying hen flocks is one of the main targets for control programmes. A study was carried out to assess the effect of oral vaccination with TAD Salmonella vac E, TAD Salmonella vac T and with both vaccines TAD Salmonella vac E and TAD Salmonella vac T, on colonization of the reproductive tract and internal egg contamination of laying hens with Salmonella Enteritidis. Three groups of 30 laying hens were vaccinated at 1 day, 6 weeks and 16 weeks of age with either one of the vaccine strains, or a combination of both vaccine strains, while a fourth group was left unvaccinated. At 24 weeks of age, the birds were intravenously challenged with 0.5 ml containing 5 x 10(7)cfu Salmonella Enteritidis PT4 S1400/94. The number of oviducts from which Salmonella was isolated, was significantly lower in the vaccinated than in the non-vaccinated hens at 3 weeks post-challenge. Significantly less egg contents were Salmonella positive in the birds vaccinated with TAD Salmonella vac E or TAD Salmonella vac T (12/105 batches of eggs in both groups) than in the unvaccinated birds (28/105 batches of eggs). Internal egg contamination in the hens vaccinated with both TAD Salmonella vac E and TAD Salmonella vac T was even more reduced, as over the whole experiment, only one batch of eggs was positive. In conclusion, these data indicate that vaccination of laying hens with these live vaccines could be considered as a valuable tool in controlling internal egg contamination.

  7. Reconstruction of the temporal signaling network in Salmonella-infected human cells.

    PubMed

    Budak, Gungor; Eren Ozsoy, Oyku; Aydin Son, Yesim; Can, Tolga; Tuncbag, Nurcan

    2015-01-01

    Salmonella enterica is a bacterial pathogen that usually infects its host through food sources. Translocation of the pathogen proteins into the host cells leads to changes in the signaling mechanism either by activating or inhibiting the host proteins. Given that the bacterial infection modifies the response network of the host, a more coherent view of the underlying biological processes and the signaling networks can be obtained by using a network modeling approach based on the reverse engineering principles. In this work, we have used a published temporal phosphoproteomic dataset of Salmonella-infected human cells and reconstructed the temporal signaling network of the human host by integrating the interactome and the phosphoproteomic dataset. We have combined two well-established network modeling frameworks, the Prize-collecting Steiner Forest (PCSF) approach and the Integer Linear Programming (ILP) based edge inference approach. The resulting network conserves the information on temporality, direction of interactions, while revealing hidden entities in the signaling, such as the SNARE binding, mTOR signaling, immune response, cytoskeleton organization, and apoptosis pathways. Targets of the Salmonella effectors in the host cells such as CDC42, RHOA, 14-3-3δ, Syntaxin family, Oxysterol-binding proteins were included in the reconstructed signaling network although they were not present in the initial phosphoproteomic data. We believe that integrated approaches, such as the one presented here, have a high potential for the identification of clinical targets in infectious diseases, especially in the Salmonella infections.

  8. Salmonella spp. contamination in commercial layer hen farms using different types of samples and detection methods.

    PubMed

    Soria, M C; Soria, M A; Bueno, D J; Godano, E I; Gómez, S C; ViaButron, I A; Padin, V M; Rogé, A D

    2017-08-01

    The performance of detection methods (culture methods and polymerase chain reaction assay) and plating media used in the same type of samples were determined as well as the specificity of PCR primers to detected Salmonella spp. contamination in layer hen farms. Also, the association of farm characteristics with Salmonella presence was evaluated. Environmental samples (feces, feed, drinking water, air, boot-swabs) and eggs were taken from 40 layer hen houses. Salmonella spp. was most detected in boot-swabs taken around the houses (30% and 35% by isolation and PCR, respectively) follow by fecal samples (15.2% and 13.6% by isolation and PCR, respectively). Eggs, drinking water, and air samples were negative for Salmonella detection. Salmonella Schwarzengrund and S. Enteritidis were the most isolated serotypes. For plating media, relative specificity was 1, and the relative sensitivity was greater for EF-18 agar than XLDT agar in feed and fecal samples. However, relative sensitivity was greater in XLDT agar than EF-18 agar for boot-swab samples. Agreement was between fair to good depending on the sample, and it was good between isolation and PCR (feces and boot-swabs), without agreement for feed samples. Salmonella spp. PCR was positive for all strains, while S. Typhimurium PCR was negative. Salmonella Enteritidis PCR used was not specific. Based in the multiple logistic regression analyses, categorization by counties was significant for Salmonella spp. presence (P-value = 0.010). This study shows the importance of considering different types of samples, plating media and detection methods during a Salmonella spp. monitoring study. In addition, it is important to incorporate the sampling of floors around the layer hen houses to learn if biosecurity measures should be strengthened to minimize the entry and spread of Salmonella in the houses. Also, the performance of some PCR methods and S. Enteritidis PCR should be improved, and biosecurity measures in hen farms must be

  9. Susceptibility of Salmonella enterica Isolates from Tomato Farm Environments to Fatty Acids Naturally Found on Tomato Fruit.

    PubMed

    Dev Kumar, Govindaraj; Micallef, Shirley A

    2017-05-01

    Salmonella enterica subsp. enterica can colonize tomato fruit as it interacts with fruit surface compounds. The exometabolome of tomato fruit contains a mixture of compounds, including fatty acids, which could affect Salmonella fitness. Fatty acids detected in fruit exudates were investigated for Salmonella inhibition. Pelargonic, lauric, myristic, palmitic, margaric, stearic, and oleic acids were suspended in water dissolved in dimethyl sulfoxide (DMSO) or emulsified in water and quillaja saponin to assess how bioavailability impacted Salmonella growth. The minimum inhibitory concentrations of fatty acids were determined using a resazurin assay. Quillaja saponin emulsion and DMSO solution of pelargonic acid were inhibitory to Salmonella at 31.25 mM. Lauric and myristic acid emulsions inhibited growth at 1 M concentrations in quillaja emulsions and 62.5 mM in DMSO. Lauric and myristic acids significantly affected growth of Salmonella Newport, Javiana, and Typhimurium (p ≤ 0.05). Growth curve analysis using the Baranyi model revealed reduced maxima populations for all treatments (p ≤ 0.001) and shorter lag phase durations for Salmonella Newport with lauric acid (p < 0.01) and Salmonella Javiana with lauric (p < 0.001) and myristic (p < 0.001) acids. Salmonella Newport and Javiana exhibited an accelerated growth rate with lauric acid (p < 0.001) as a result of early stationary phase transition (shorter log phase). In myristic acid-amended media, Salmonella Javiana also displayed a faster growth rate (p < 0.001). Pelargonic acid (31.25 mM) treatment of Salmonella cells resulted in a drop in culturable cells to below detection in an hour. Microscopic analysis with Cyto-dye and propidium iodide of bacterial cells treated with pelargonic acid indicated a mixture of live and dead cells, with cell lysis of some cells. A subset of cells exhibited elongation-possibly indicating filament formation, a known antibiotic stress response

  10. Cytoplasmic Copper Detoxification in Salmonella Can Contribute to SodC Metalation but Is Dispensable during Systemic Infection

    PubMed Central

    Fenlon, Luke A.

    2017-01-01

    ABSTRACT Salmonella enterica serovar Typhimurium is a leading cause of foodborne disease worldwide. Severe infections result from the ability of S. Typhimurium to survive within host immune cells, despite being exposed to various host antimicrobial factors. SodCI, a copper-zinc-cofactored superoxide dismutase, is required to defend against phagocytic superoxide. SodCII, an additional periplasmic superoxide dismutase, although produced during infection, does not function in the host. Previous studies suggested that CueP, a periplasmic copper binding protein, facilitates acquisition of copper by SodCII. CopA and GolT, both inner membrane ATPases that pump copper from the cytoplasm to the periplasm, are a source of copper for CueP. Using in vitro SOD assays, we found that SodCI can also utilize CueP to acquire copper. However, both SodCI and SodCII have a significant fraction of activity independent of CueP and cytoplasmic copper export. We utilized a series of mouse competition assays to address the in vivo role of CueP-mediated SodC activation. A copA golT cueP triple mutant was equally as competitive as the wild type, suggesting that sufficient SodCI is active to defend against phagocytic superoxide independent of CueP and cytoplasmic copper export. We also confirmed that a strain containing a modified SodCII, which is capable of complementing a sodCI deletion, was fully virulent in a copA golT cueP background competed against the wild type. These competitions also address the potential impact of cytoplasmic copper toxicity within the phagosome. Our data suggest that Salmonella does not encounter inhibitory concentrations of copper during systemic infection. IMPORTANCE Salmonella is a leading cause of gastrointestinal disease worldwide. In severe cases, Salmonella can cause life-threatening systemic infections, particularly in very young children, the elderly, or people who are immunocompromised. To cause disease, Salmonella must survive the hostile environment

  11. Cytoplasmic Copper Detoxification in Salmonella Can Contribute to SodC Metalation but Is Dispensable during Systemic Infection.

    PubMed

    Fenlon, Luke A; Slauch, James M

    2017-12-15

    Salmonella enterica serovar Typhimurium is a leading cause of foodborne disease worldwide. Severe infections result from the ability of S Typhimurium to survive within host immune cells, despite being exposed to various host antimicrobial factors. SodCI, a copper-zinc-cofactored superoxide dismutase, is required to defend against phagocytic superoxide. SodCII, an additional periplasmic superoxide dismutase, although produced during infection, does not function in the host. Previous studies suggested that CueP, a periplasmic copper binding protein, facilitates acquisition of copper by SodCII. CopA and GolT, both inner membrane ATPases that pump copper from the cytoplasm to the periplasm, are a source of copper for CueP. Using in vitro SOD assays, we found that SodCI can also utilize CueP to acquire copper. However, both SodCI and SodCII have a significant fraction of activity independent of CueP and cytoplasmic copper export. We utilized a series of mouse competition assays to address the in vivo role of CueP-mediated SodC activation. A copA golT cueP triple mutant was equally as competitive as the wild type, suggesting that sufficient SodCI is active to defend against phagocytic superoxide independent of CueP and cytoplasmic copper export. We also confirmed that a strain containing a modified SodCII, which is capable of complementing a sodCI deletion, was fully virulent in a copA golT cueP background competed against the wild type. These competitions also address the potential impact of cytoplasmic copper toxicity within the phagosome. Our data suggest that Salmonella does not encounter inhibitory concentrations of copper during systemic infection. IMPORTANCE Salmonella is a leading cause of gastrointestinal disease worldwide. In severe cases, Salmonella can cause life-threatening systemic infections, particularly in very young children, the elderly, or people who are immunocompromised. To cause disease, Salmonella must survive the hostile environment inside host

  12. Real-Time Reverse Transcription-PCR Assay for Detection of Mumps Virus RNA in Clinical Specimens▿

    PubMed Central

    Boddicker, Jennifer D.; Rota, Paul A.; Kreman, Trisha; Wangeman, Andrea; Lowe, Louis; Hummel, Kimberly B.; Thompson, Robert; Bellini, William J.; Pentella, Michael; DesJardin, Lucy E.

    2007-01-01

    The mumps virus is a negative-strand RNA virus in the family Paramyxoviridae. Mumps infection results in an acute illness with symptoms including fever, headache, and myalgia, followed by swelling of the salivary glands. Complications of mumps can include meningitis, deafness, pancreatitis, orchitis, and first-trimester abortion. Laboratory confirmation of mumps infection can be made by the detection of immunoglobulin M-specific antibodies to mumps virus in acute-phase serum samples, the isolation of mumps virus in cell culture, or by detection of the RNA of the mumps virus by reverse transcription (RT)-PCR. We developed and validated a multiplex real-time RT-PCR assay for rapid mumps diagnosis in a clinical setting. This assay used oligonucleotide primers and a TaqMan probe targeting the mumps SH gene, as well as primers and a probe that targeted the human RNase P gene to assess the presence of PCR inhibitors and as a measure of specimen quality. The test was specific, since it did not amplify a product from near-neighbor viruses, as well as sensitive and accurate. Real-time RT-PCR results showed 100% correlation with results from viral culture, the gold standard for mumps diagnostic testing. Assay efficiency was over 90% and displayed good precision after performing inter- and intraassay replicates. Thus, we have developed and validated a molecular method for rapidly diagnosing mumps infection that may be used to complement existing techniques. PMID:17652480

  13. Evaluation of the PrimerDesign™ genesig real-time reverse transcription-polymerase chain reaction assay and the INFINITI® Respiratory Viral Panel Plus assay for the detection of human metapneumovirus in Kuwait.

    PubMed

    Al-Turab, Mariam; Chehadeh, Wassim; Al-Mulla, Fahd; Al-Nakib, Widad

    2012-04-01

    Human metapneumovirus (hMPV) is a respiratory pathogen that was discovered in 2001 and is considered a major cause of both upper and lower respiratory tract infections. A sensitive, fast, and high-throughput diagnostic test is needed for the detection of hMPV that may assist in the clinical management as well as in the reduction of inappropriate therapy. Therefore, a comparison assessment was performed in this study between the PrimerDesign™ genesig real-time reverse transcription-polymerase chain reaction (RT-PCR) Assay and the INFINITI(®) Respiratory Viral Panel Plus Assay (RVP-Plus) for the detection of hMPV infection in patients with respiratory tract infections. A total of 200 respiratory samples were collected from 185 hospitalized patients, during the winter season in Kuwait. Of 185 patients, 10 (5.4%) were positive for hMPV RNA by the in-house RT-PCR assay, while 7 (4%) were positive for hMPV RNA by the real-time RT-PCR assay and 9 (5%) were positive for hMPV RNA by the INFINITI(®) RVP-Plus assay. The high incidence rate (60%) of hMPV infection was in January 2011. The sensitivity of the real-time RT-PCR and INFINITI(®) RVP-Plus assays was 70% and 90%, respectively, with specificity of 100% for both assays. hMPV types A and B could be identified in this study; however, discordant genotyping results were found between the direct sequencing method and the INFINITI(®) RVP-Plus assay in 33% of hMPV-positive patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Rapid detection of newly isolated Tembusu-related Flavivirus by reverse-transcription loop-mediated isothermal amplification assay

    PubMed Central

    2011-01-01

    Background From April 2010 to January 2011, a severe new viral disease had devastated most duck-farming regions in China. This disease affected not only laying ducks but also meat ducks, causing huge economic losses for the poultry industry. The objective of this study is to develop a one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of the new virus related to Tembusu-related Flavivirus. Results The RT-LAMP assay is very simple and rapid, and the amplification can be completed within 50 min under isothermal conditions at 63°C by a set of 6 primers targeting the E gene based on the sequences analysis of the newly isolated viruses and other closely related Flavivirus.The monitoring of gene amplification can also be visualized by using SYBR green I fluorescent dye. In addition, the RT-LAMP assay for newly isolated Tembusu-related Flavivirus showed higher sensitivity with an RNA detection-limit of 2 copies/μL compared with 190 copies/μL of the conventional RT-PCR method. The specificity was identified without cross reaction to other common avian pathogens. By screening a panel of clinical samples this method was more feasible in clinical settings and there was higher positive coincidence rate than conventional RT-PCR and virus isolation. Conclusion The RT-LAMP assay for newly isolated Tembusu-related Flavivirus is a valuable tool for the rapid and real-time detection not only in well-equipped laboratories but also in general conditions. PMID:22185513

  15. Generation and selection of anti-flagellin monoclonal antibodies useful for serotyping Salmonella enterica.

    PubMed

    Hiriart, Yanina; Serradell, Maria; Martínez, Araci; Sampaolesi, Sofia; Maciel, Dolores Gonzalez; Chabalgoity, Jose Alejandro; Yim, Lucía; Algorta, Gabriela; Rumbo, Martin

    2013-01-01

    In developing countries, bacterial acute gastroenteritis continues to be an important cause of morbidity and mortality among young children. Salmonellosis constitutes a major cause of infectious enteritis worldwide, most of them associated to the consumption of contaminated food products. Traditionally, Salmonella has been classified in serovars based on varieties of O and H surface antigens. In the present work we generated and characterized a panel of anti-flagellin monoclonal antibodies (MAbs) in order to select antibodies useful for detecting the H surface antigen. Four different MAbs were obtained by somatic hybridization of splenocytes. We found two MAbs that recognised regions of flagellin conserved among different Salmonella serovars. Other two MAbs recognised structures restricted to Salmonella enterica sv. Typhimurium, being one of them suitable for agglutination tests. Using a diverse panel of S. enterica serovars with different H antigen varieties we confirmed that this MAb agglutinates specifically S. Typhimurium (antigenic formula: 4,12:i:1,2) or other serovars expressing flagellar factor i. In conclusion, we generated a valuable immunochemical tool to be used in simple assays for serotyping of epidemiologically relevant strains. The capacity to characterize specific strains and determine the primary sources of Salmonella contamination generate valuable information of the epidemiology of this microorganism, contributing to the improvement of public health.

  16. Pathogenesis of Salmonellosis: Salmonella Exotoxins

    DTIC Science & Technology

    1982-03-08

    Newport; Sal. 9633 - serotype Newport; and Sal. 9186 - serotype Newport. Salmonella enteritidis serotype typhimurium strain 2000 was obtained from...7054 Table 1I CULTURE MEDIA SURVEY Salmonella enteritidis Salmonella typhimurium serotype Javiana #10016 SRlI Culture Media C H 0 Cell Factor C H 0 Cell...C r AD REPORT NUMBER 2 0 Pathogenesis of Salmonellosis: Salmonella Exotoxins Annual Progress Report (9/1/78-9/1/79) Johnny W. Peterson, Ph.D. March 8

  17. ACTIVITY OF 1, 1, 1- AND 1, 1, 3-TRICHLOROACETONES IN A CHROMOSOMAL ABERRATION ASSAY IN CHO CELLS AND THE MICRONUCLEUS AND SPERMHEAD ABNORMALITY ASSAYS IN MICE

    EPA Science Inventory

    1,1,1- and 1,1,3-trichloroacetones (TCA) result from the disinfection of municipal water supplies with chlorine, and are direct-acting mutagens in the Ames/Salmonella assay. The objective of this study was to further investigate the genotoxicity of these compounds in mammalian ce...

  18. Inhibition and inactivation of Salmonella typhimurium biofilms from polystyrene and stainless steel surfaces by essential oils and phenolic constituent carvacrol.

    PubMed

    Soni, Kamlesh A; Oladunjoye, Ademola; Nannapaneni, Ramakrishna; Schilling, M Wes; Silva, Juan L; Mikel, Benjy; Bailey, R Hartford

    2013-02-01

    Persistence of Salmonella biofilms within food processing environments is an important source of Salmonella contamination in the food chain. In this study, essential oils of thyme and oregano and their antimicrobial phenolic constituent carvacrol were evaluated for their ability to inhibit biofilm formation and inactivate preformed Salmonella biofilms. A crystal violet staining assay and CFU measurements were utilized to quantify biofilm cell mass, with evaluating factors such as strain variation, essential oil type, their concentrations, exposure time, as well as biofilm formation surface. Of the three Salmonella strains, Salmonella Typhimurium ATCC 23564 and Salmonella Typhimurium ATCC 19585 produced stronger biofilms than Salmonella Typhimurium ATCC 14028. Biofilm formation by different Salmonella strains was 1.5- to 2-fold higher at 22°C than at 30 or 37°C. The presence of nonbiocidal concentrations of thyme oil, oregano oil, and phenolic carvacrol at 0.006 to 0.012% suppressed Salmonella spp. biofilm formation 2- to 4-fold, but could not completely eliminate biofilm formation. There was high correlation in terms of biofilm inactivation, as determined by the crystal violet-stained optical density (at a 562-nm wavelength) readings and the viable CFU counts. Reduction of biofilm cell mass was dependent on antimicrobial concentration. A minimum concentration of 0.05 to 0.1% of these antimicrobial agents was needed to reduce a 7-log CFU biofilm mass to a nondetectable level on both polystyrene and stainless steel surfaces within 1 h of exposure time.

  19. Salmonella, including antibiotic-resistant Salmonella, from flies captured from cattle farms in Georgia, U.S.A.

    PubMed

    Xu, Yumin; Tao, Sha; Hinkle, Nancy; Harrison, Mark; Chen, Jinru

    2018-03-01

    Flies can be transmission vehicles of Salmonella from cattle to humans. This study determined the prevalence of Salmonella in/on flies captured from 33 cattle farms, including 5 beef and 28 dairy farms, in Georgia, USA, and characterized antibiotic resistance profiles of the isolated Salmonella. Twenty-six out of the 33 cattle farms (79%) and 185 out of the 1650 flies (11%) tested positive for Salmonella in the study. The incidence of Salmonella-positive flies varied from farm to farm, ranging from 0 to 78%. Among the 185 Salmonella isolated from flies, 29% were resistant to ampicillin, 28% to tetracycline, 21% to amoxicillin/clavulanic acid, 20% to cefoxitin, and 12% to streptomycin. Incidences of resistance against other tested antibiotics were low, ranging from 0 to 3%. Furthermore, 28% of the Salmonella isolates were multidrug resistant, demonstrating resistance to 3 or more antibiotics. The minimal inhibitory concentrations of ampicillin, cefoxitin, streptomycin, and tetracycline against the Salmonella isolates ranged from 32 to >2048, 64 to 2048, 128 to 1024, and 32 to 1024μg/mL, respectively. These data suggest that flies could be effective vehicles of transmitting antibiotic resistant Salmonella and disseminating antibiotic resistance genes on cattle farms, posing risks to human and animal health. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Surveillance of Salmonella prevalence in animal feeds and characterization of the Salmonella isolates by serotyping and antimicrobial susceptibility.

    PubMed

    Li, X; Bethune, L A; Jia, Y; Lovell, R A; Proescholdt, T A; Benz, S A; Schell, T C; Kaplan, G; McChesney, D G

    2012-08-01

    This article presents the surveillance data from the Feed Contaminants Program (2002-2009) and Salmonella Assignment (2007-2009) of the U.S. Food and Drug Administration (FDA), which monitor the trend of Salmonella contamination in animal feeds. A total of 2,058 samples were collected from complete animal feeds, feed ingredients, pet foods, pet treats, and supplements for pets in 2002-2009. These samples were tested for the presence of Salmonella. Those that were positive for Salmonella underwent serotyping and testing for antimicrobial susceptibility. Of the 2,058 samples, 257 were positive for Salmonella (12.5%). The results indicate a significant overall Salmonella reduction (p≤0.05) in animal feeds from 18.2% (187 samples tested) in 2002 to 8.0% (584 samples tested) in 2009. Among these samples, feed ingredients and pet foods/treats had the most significant reduction (p≤0.05). Of the 45 Salmonella serotypes identified, Salmonella Senftenberg and Salmonella Montevideo were the top two common serotypes (8.9%). Of the 257 Salmonella isolates obtained, 54 isolates (21%) were resistant to at least one antimicrobial. The findings provide the animal feed industries with Salmonella prevalence information that can be used to address Salmonella contamination problems. Our findings can also be used to educate pet owners when handling pet foods and treats at home to prevent salmonellosis.

  1. Adaptation of red blood cell lysis represents a fundamental breakthrough that improves the sensitivity of Salmonella detection in blood

    PubMed Central

    Boyd, MA; Tennant, SM; Melendez, JH; Toema, D; Galen, JE; Geddes, CD; Levine, MM

    2015-01-01

    Aims Isolation of Salmonella Typhi from blood culture is the standard diagnostic for confirming typhoid fever but it is unavailable in many developing countries. We previously described a Microwave Accelerated Metal Enhanced Fluorescence (MAMEF)-based assay to detect Salmonella in medium. Attempts to detect Salmonella in blood were unsuccessful, presumably due to the interference of erythrocytes. The objective of this study was to evaluate various blood treatment methods that could be used prior to PCR, real-time PCR or MAMEF to increase sensitivity of detection of Salmonella. Methods and Results We tested ammonium chloride and erythrocyte lysis buffer, water, Lymphocyte Separation Medium, BD Vacutainer® CPT™ Tubes and dextran. Erythrocyte lysis buffer was the best isolation method as it is fast, inexpensive and works with either fresh or stored blood. The sensitivity of PCR- and real-time PCR detection of Salmonella in spiked blood was improved when whole blood was first lysed using erythrocyte lysis buffer prior to DNA extraction. Removal of erythrocytes and clotting factors also enabled reproducible lysis of Salmonella and fragmentation of DNA, which are necessary for MAMEF sensing. Conclusions Use of the erythrocyte lysis procedure prior to DNA extraction has enabled improved sensitivity of Salmonella detection by PCR and real-time PCR and has allowed lysis and fragmentation of Salmonella using microwave radiation (for future detection by MAMEF). Significance and Impact of the Study Adaptation of the blood lysis method represents a fundamental breakthrough that improves the sensitivity of DNA-based detection of Salmonella in blood. PMID:25630831

  2. Conjugal Transfer of the Pathogenicity Island ROD21 in Salmonella enterica serovar Enteritidis Depends on Environmental Conditions

    PubMed Central

    Salazar-Echegarai, Francisco J.; Tobar, Hugo E.; Nieto, Pamela A.; Riedel, Claudia A.; Bueno, Susan M.

    2014-01-01

    Unstable pathogenicity islands are chromosomal elements that can be transferred from one bacterium to another. Salmonella enterica serovar Enteritidis (S. Enteritidis) is a pathogenic bacterium containing such unstable pathogenicity islands. One of them, denominated ROD21, is 26.5 kb in size and capable of excising from the chromosome in certain culture conditions, as well as during bacterial infection of phagocytic cells. In this study we have evaluated whether ROD21 can be effectively transferred from one bacterium to another. We generated a donor and several recipient strains of S. Enteritidis to carry out transfer assays in liquid LB medium. These assays showed that ROD21 is effectively transferred from donor to recipient strains of S. Enteritidis and S. Typhimurium. When Escherichia coli was used as the recipient strain, ROD21 transfer failed to be observed. Subsequently, we showed that a conjugative process was required for the transfer of the island and that changes in temperature and pH increased the transfer frequency between Salmonella strains. Our data indicate that ROD21 is an unstable pathogenicity island that can be transferred by conjugation in a species-specific manner between Salmonellae. Further, ROD21 transfer frequency increases in response to environmental changes, such as pH and temperature. PMID:24705125

  3. Reverse transcription loop-mediated isothermal amplification assays for rapid identification of eastern and western strains of bluetongue virus in India.

    PubMed

    Maan, S; Maan, N S; Batra, K; Kumar, A; Gupta, A; Rao, Panduranga P; Hemadri, Divakar; Reddy, Yella Narasimha; Guimera, M; Belaganahalli, M N; Mertens, P P C

    2016-08-01

    Bluetongue virus (BTV) infects all ruminants, including cattle, goats and camelids, causing bluetongue disease (BT) that is often severe in naïve deer and sheep. Reverse-transcription-loop-mediated-isothermal-amplification (RT-LAMP) assays were developed to detect eastern or western topotype of BTV strains circulating in India. Each assay uses four primers recognizing six distinct sequences of BTV genome-segment 1 (Seg-1). The eastern (e)RT-LAMP and western (w)RT-LAMP assay detected BTV RNA in all positive isolates that were tested (n=52, including Indian BTV-1, -2, -3, -5, -9, -10, -16, -21 -23, and -24 strains) with high specificity and efficiency. The analytical sensitivity of the RT-LAMP assays is comparable to real-time RT-PCR, but higher than conventional RT-PCR. The accelerated eRT-LAMP and wRT-LAMP assays generated detectable levels of amplified DNA, down to 0.216 fg of BTV RNA template or 108 fg of BTV RNA template within 60-90min respectively. The assays gave negative results with RNA from foot-and-mouth-disease virus (FMDV), peste des petits ruminants virus (PPRV), or DNA from Capripox viruses and Orf virus (n=10), all of which can cause clinical signs similar to BT. Both RT-LAMP assays did not show any cross-reaction among themselves. The assays are rapid, easy to perform, could be adapted as a 'penside' test making them suitable for 'front-line' diagnosis, helping to identify and contain field outbreaks of BTV. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Application of loop-mediated isothermal amplification with propidium monoazide treatment to detect live Salmonella in chicken carcasses.

    PubMed

    Youn, S Y; Jeong, O M; Choi, B K; Jung, S C; Kang, M S

    2017-02-01

    Raw chicken products are major causes of human foodborne salmonellosis worldwide. In particular, there is a significant risk of human exposure to Salmonella originating from the chicken slaughtering process. Controlling the contamination of chicken carcasses by Salmonella has been a considerable challenge in chicken-slaughtering facilities and involves routine microbiological monitoring using reliable detection methods. Simple and rapid detection methods, particularly those capable of determining cell viability, will significantly facilitate routine monitoring of Salmonella Here, we report an invA-based loop-mediated isothermal amplification method coupled with a simple propidium monoazide treatment (PMA-LAMP) for simple and rapid detection and quantification of viable Salmonella in rinse water of chicken carcasses. In this study, PMA-LAMP consistently gave negative results for isopropanol-killed Salmonella with concentrations up to 8.0 × 10 6 CFU/reaction. The detection limit of PMA-LAMP was 8.0 × 10 1 CFU/reaction with viable Salmonella in both pure culture and rinse water of chicken carcasses, and 10-fold lower than a conventional polymerase chain reaction coupled with PMA (PMA-PCR) targeting invA There was a high correlation (R 2 = 0.99 to 0.976) between LAMP time threshold (T T ) values and viable Salmonella with a quantification range of 1.0 × 10 3 to 1.0 × 10 8 CFU/mL in pure culture and rinse water of chicken carcasses. The PMA-LAMP assay took less than 2 h to detect Salmonella contaminated in test samples. Therefore, this simple and rapid method will be a very useful tool to detect live Salmonella contamination of chicken carcasses without pre-enrichment at the slaughterhouse where sanitizing treatments are commonly used. © 2016 Poultry Science Association Inc.

  5. A modified single-tube one-step product-enhanced reverse transcriptase (mSTOS-PERT) assay with heparin as DNA polymerase inhibitor for specific detection of RTase activity.

    PubMed

    Fan, Xiao-Yong; Lü, Guo-Zhen; Wu, Li-Na; Chen, Jing-Hua; Xu, Wen-Qing; Zhao, Chun-Nü; Guo, Sheng-Qi

    2006-12-01

    Current regulations and recommendations proposed for the production of vaccines in continuous cell lines of any origin demand that these be free of exogenous viruses, particularly retroviruses. Recently, the ultra-sensitive product-enhanced reverse transcriptase (PERT) assay can be used to detect minute of reverse transcriptase (RTase) in single retroviral particle and is 10(6) times more sensitive than the conventional RTase assays. However, coincidental with this increase in sensitivity is an increase in false-positive reactions derived from contaminating cellular DNA polymerases, which are known to have RTase-like activities. To develop a modified single-tube one-step PERT (mSTOS-PERT) assay with improvements on decreasing significantly the level of false-positive reactions, and to evaluate the mSTOS-PERT assay for sensitivity and specificity. Ampliwaxtrade mark was used to compartmentalize the reverse transcription (RT) and PCR step in the same micro-tube with more efficiency and reproducibility, while maintaining the high sensitivity. The DNA amplification products were separated by 2% agarose gel electrophoresis, and then analyzed by non-isotopic Southern blot hybridization. A wide variety of cell lines used in biologicals production were detected to validate the improved mSTOS-PERT assay. The detection limit for the mSTOS-PERT assay was at least 10(-9)U, when using AMV-RTase as a positive control. Furthermore, heparin involvement in the RT step can eliminate completely the false-positive PERT signals which are exhibited by cellular polymerases such as DNA-dependent DNA polymerase alpha, gamma released by cell death. Most mammalian cells (MRC-5, Vero, WISH, 2BS, RK-13, MDCK, etc.) are PERT-negative in cell supernatants. Some PERT-positive signals in cell lysates were found to be introduced by the cellular DNA polymerases and could be inhibited specifically by heparin. Chick cells derived from either chick embryo fibroblasts (CEF) or allantoic fluid from SPF

  6. Salmonella enterica isolates from layer farm environments are able to form biofilm on eggshell surfaces.

    PubMed

    Pande, Vivek V; McWhorter, Andrea R; Chousalkar, Kapil K

    2016-08-01

    This study examined the eggshell biofilm forming ability of Salmonella enterica isolates recovered from egg farms. Multicellular behaviour and biofilm production were examined at 22 and 37°C by Congo red morphology and the crystal violet staining assay. The results indicated that the biofilm forming behaviour of Salmonella isolates was dependent on temperature and associated with serovars. Significantly greater biofilm production was observed at 22°C compared with 37°C. The number of viable biofilm cells attached to eggshells after incubation for 48 h at 22°C was significantly influenced by serovar. Scanning electron microscopic examination revealed firm attachment of bacterial cells to the eggshell surface. The relative expression of csgD and adrA gene was significantly higher in eggshell biofilm cells of S. Mbandaka and S. Oranienburg. These findings demonstrate that Salmonella isolates are capable of forming biofilm on the eggshell surface and that this behaviour is influenced by temperature and serovar.

  7. Evaluation and comparison of rapid methods for the detection of Salmonella in naturally contaminated pine nuts using different pre enrichment media.

    PubMed

    Wang, Hua; Gill, Vikas S; Cheng, Chorng-Ming; Gonzalez-Escalona, Narjol; Irvin, Kari A; Zheng, Jie; Bell, Rebecca L; Jacobson, Andrew P; Hammack, Thomas S

    2015-04-01

    Foodborne outbreaks, involving pine nuts and peanut butter, illustrate the need to rapidly detect Salmonella in low moisture foods. However, the current Bacteriological Analytical Manual (BAM) culture method for Salmonella, using lactose broth (LB) as a pre enrichment medium, has not reliably supported real-time quantitative PCR (qPCR) assays for certain foods. We evaluated two qPCR assays in LB and four other pre enrichment media: buffered peptone water (BPW), modified BPW (mBPW), Universal Pre enrichment broth (UPB), and BAX(®) MP media to detect Salmonella in naturally-contaminated pine nuts (2011 outbreak). A four-way comparison among culture method, Pathatrix(®) Auto, VIDAS(®) Easy SLM, and qPCR was conducted. Automated DNA extraction techniques were compared with manual extraction methods (boiling or InstaGene™). There were no significant differences (P > 0.05) among the five pre enrichment media for pine nuts using the culture method. While both qPCR assays produced significantly (P ≤ 0.05) higher false negatives in 24 h pre enriched LB than in the other four media, they were as sensitive as the culture method in BPW, mBPW, UPB, and BAX media. The VIDAS Easy and qPCR were equivalent; Pathatrix was the least effective method. The Automatic PrepSEQ™ DNA extraction, using 1000 μL of pre enrichment, was as effective as manual extraction methods. Published by Elsevier Ltd.

  8. Highly sensitive reversed-phase high-performance liquid chromatography assay for the detection of Tamm-Horsfall protein in human urine.

    PubMed

    Akimoto, Masaru; Hokazono, Eisaku; Ota, Eri; Tateishi, Takiko; Kayamori, Yuzo

    2016-01-01

    Tamm-Horsfall protein (also known as uromodulin) is the most abundant urinary protein in healthy individuals. Since initially characterized by Tamm and Horsfall, the amount of urinary excretion and structural mutations of Tamm-Horsfall protein is associated with kidney diseases. However, currently available assays for Tamm-Horsfall protein, which are mainly enzyme-linked immunosorbent assay-based, suffer from poor reproducibility and might give false negative results. We developed a novel, quantitative assay for Tamm-Horsfall protein using reversed-phase high-performance liquid chromatography. A precipitation pretreatment avoided urine matrix interference and excessive sample dilution. High-performance liquid chromatography optimization based on polarity allowed excellent separation of Tamm-Horsfall protein from other major urine components. Our method exhibited high precision (based on the relative standard deviations of intraday [≤2.77%] and interday [≤5.35%] repetitions). The Tamm-Horsfall protein recovery rate was 100.0-104.2%. The mean Tamm-Horsfall protein concentration in 25 healthy individuals was 31.6 ± 18.8 mg/g creatinine. There was a strong correlation between data obtained by high-performance liquid chromatography and enzyme-linked immunosorbent assay (r = 0.906), but enzyme-linked immunosorbent assay values tended to be lower than high-performance liquid chromatography values at low Tamm-Horsfall protein concentrations. The high sensitivity and reproducibility of our Tamm-Horsfall protein assay will reduce the number of false negative results of the sample compared with enzyme-linked immunosorbent assay. Moreover, our method is superior to other high-performance liquid chromatography methods, and a simple protocol will facilitate further research on the physiological role of Tamm-Horsfall protein. © The Author(s) 2015.

  9. Prevalence and characterization of Salmonella isolated from chicken meat in Turkey.

    PubMed

    Siriken, Belgin; Türk, Haldun; Yildirim, Tuba; Durupinar, Belma; Erol, Irfan

    2015-05-01

    This study was conducted in a Turkish province to investigate the presence of Salmonella spp. in 150 chicken meat samples using 2 phenotyping techniques: classic culture technique (CCT) and immunomagnetic separation (IMS). For the confirmation of the isolates at molecular levels, invA gene was detected in these isolates. The presence of invA, class 1 (Cls1) integrons, and integrase (Int1) genes was demonstrated by PCR assay; and the resistance of the isolated Salmonella spp. strains to antibiotics was determined by disk diffusion test. All the cultural and PCR results were evaluated together; Salmonella spp. were detected in a total of 64 (42.66%) chicken meat samples. Contamination rate was higher in carcasses (53.33%, n = 75) than in meat pieces (32%, n = 75). When results of standard culture were compared with IMS technique, IMS (n = 54) showed a clear superiority over the CCT (n = 38). A very high resistance rate (≥ 89.28%) to vancomycin, tetracycline, streptomycin, or nalidixic acid was found. Trimethoprim-sulfamethoxazole resistance was present in 32.14%. Relatively lower incidence of resistance (≤ 8.33%) to gentamicin, chloramphenicol, ampicillin, and ceftriaxone was observed. Concurrent resistance to at least 4 antibiotics was detected in 92.85% of the isolates. Cls1 integrons and Int1 were positive in 80.95% and 95.23% of the isolates, respectively. However, Int1 alone was detected in 15.47% (n = 13). In conclusion, the high prevalence of Salmonella spp. in chicken meat may pose a potential public health risk, and the presence of antibiotic-resistant Salmonella spp. isolate together with Cls1 integron and/or integrase might play an important role in horizontal antibiotic gene transfer. © 2015 Institute of Food Technologists®

  10. Recent Trends in Salmonella Outbreaks and Emerging Technology for Biocontrol of Salmonella Using Phages in Foods: A Review.

    PubMed

    Oh, Jun-Hyun; Park, Mi-Kyung

    2017-12-28

    Salmonella is one of the principal causes of foodborne outbreaks. As traditional control methods have shown less efficacy against emerging Salmonella serotypes or antimicrobialresistant Salmonella , new approaches have been attempted. The use of lytic phages for the biocontrol of Salmonella in the food industry has become an attractive method owing to the many advantages offered by the use of phages as biocontrol agents. Phages are natural alternatives to traditional antimicrobial agents; they have proven effective in the control of bacterial pathogens in the food industry, which has led to the development of different phage products. The treatment with specific phages in the food industry can prevent the decay of products and the spread of bacterial diseases, and ultimately promotes safe environments for animal and plant food production, processing, and handling. After an extensive investigation of the current literature, this review focuses predominantly on the efficacy of phages for the successful control of Salmonella spp. in foods. This review also addresses the current knowledge on the pathogenic characteristics of Salmonella , the prevalence of emerging Salmonella outbreaks, the isolation and characterization of Salmonella -specific phages, the effectiveness of Salmonella -specific phages as biocontrol agents, and the prospective use of Salmonella -specific phages in the food industry.

  11. Infection of Mice by Salmonella enterica Serovar Enteritidis Involves Additional Genes That Are Absent in the Genome of Serovar Typhimurium

    PubMed Central

    Silva, Cecilia A.; Blondel, Carlos J.; Quezada, Carolina P.; Porwollik, Steffen; Andrews-Polymenis, Helene L.; Toro, Cecilia S.; Zaldívar, Mercedes; Contreras, Inés

    2012-01-01

    Salmonella enterica serovar Enteritidis causes a systemic, typhoid-like infection in newly hatched poultry and mice. In the present study, a library of 54,000 transposon mutants of S. Enteritidis phage type 4 (PT4) strain P125109 was screened for mutants deficient in the in vivo colonization of the BALB/c mouse model using a microarray-based negative-selection screening. Mutants in genes known to contribute to systemic infection (e.g., Salmonella pathogenicity island 2 [SPI-2], aro, rfa, rfb, phoP, and phoQ) and enteric infection (e.g., SPI-1 and SPI-5) in this and other Salmonella serovars displayed colonization defects in our assay. In addition, a strong attenuation was observed for mutants in genes and genomic islands that are not present in S. Typhimurium or in most other Salmonella serovars. These genes include a type I restriction/modification system (SEN4290 to SEN4292), the peg fimbrial operon (SEN2144A to SEN2145B), a putative pathogenicity island (SEN1970 to SEN1999), and a type VI secretion system remnant SEN1001, encoding a hypothetical protein containing a lysin motif (LysM) domain associated with peptidoglycan binding. Proliferation defects for mutants in these individual genes and in exemplar genes for each of these clusters were confirmed in competitive infections with wild-type S. Enteritidis. A ΔSEN1001 mutant was defective for survival within RAW264.7 murine macrophages in vitro. Complementation assays directly linked the SEN1001 gene to phenotypes observed in vivo and in vitro. The genes identified here may perform novel virulence functions not characterized in previous Salmonella models. PMID:22083712

  12. Development and evaluation of probe based real time loop mediated isothermal amplification for Salmonella: A new tool for DNA quantification.

    PubMed

    Mashooq, Mohmad; Kumar, Deepak; Niranjan, Ankush Kiran; Agarwal, Rajesh Kumar; Rathore, Rajesh

    2016-07-01

    A one step, single tube, accelerated probe based real time loop mediated isothermal amplification (RT LAMP) assay was developed for detecting the invasion gene (InvA) of Salmonella. The probe based RT LAMP is a novel method of gene amplification that amplifies nucleic acid with high specificity and rapidity under isothermal conditions with a set of six primers. The whole procedure is very simple and rapid, and amplification can be obtained in 20min. Detection of gene amplification was accomplished by amplification curve, turbidity and addition of DNA binding dye at the end of the reaction results in colour difference and can be visualized under normal day light and in UV. The sensitivity of developed assay was found 10 fold higher than taqman based qPCR. The specificity of the RT LAMP assay was validated by the absence of any cross reaction with other members of enterobacteriaceae family and other gram negative bacteria. These results indicate that the probe based RT LAMP assay is extremely rapid, cost effective, highly specific and sensitivity and has potential usefulness for rapid Salmonella surveillance. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  13. Spatial distribution of antibodies to Salmonella enterica serovar Typhimurium O antigens in bulk milk from Texas dairy herds.

    PubMed

    Graham, S L; Barling, K S; Waghela, S; Scott, H M; Thompson, J A

    2005-06-10

    Environmental factors that enhance either the survivability or dispersion of Salmonella enterica serovar Typhimurium (S. Typhimurium) could result in a spatial pattern of disease risk. The objectives of this study were to: (1) describe herd status based on antibody response to Salmonella Typhimurium as estimated from bulk tank milk samples and (2) to describe the resulting geographical patterns found among Texas dairy herds. Eight hundred and fifty-two bulk milk samples were collected from georeferenced dairy farms and assayed by an indirect enzyme-linked immunosorbent assay (ELISA) using S. Typhimurium lipopolysaccharide (LPS). ELISA signal-to-noise ratios for each bulk tank milk sample were calculated and used for geostatistical analyses. Best-fit parameters for the exponential theoretical variogram included a range of 438.8 km, partial sill of 0.060 and nugget of 0.106. The partial sill is the classical geostatistical term for the variance that can be explained by the herd's location and the nugget is the spatially random component of the variance. We have identified a spatial process in bulk milk tank titers for S. Typhimurium in Texas dairy herds and present a map of the expected smoothed surface. Areas with higher expected titers should be targeted in further studies on controlling Salmonella infection with environmental modifications.

  14. Efficient and Specific Detection of Salmonella in Food Samples Using a stn-Based Loop-Mediated Isothermal Amplification Method

    PubMed Central

    2015-01-01

    The Salmonella enterotoxin (stn) gene exhibits high homology among S. enterica serovars and S. bongori. A set of 6 specific primers targeting the stn gene were designed for detection of Salmonella spp. using the loop-mediated isothermal amplification (LAMP) method. The primers amplified target sequences in all 102 strains of 87 serovars of Salmonella tested and no products were detected in 57 non-Salmonella strains. The detection limit in pure cultures was 5 fg DNA/reaction when amplified at 65°C for 25 min. The LAMP assay could detect Salmonella in artificially contaminated food samples as low as 220 cells/g of food without a preenrichment step. However, the sensitivity was increased 100-fold (~2 cells/g) following 5 hr preenrichment at 35°C. The LAMP technique, with a preenrichment step for 5 and 16 hr, was shown to give 100% specificity with food samples compared to the reference culture method in which 67 out of 90 food samples gave positive results. Different food matrixes did not interfere with LAMP detection which employed a simple boiling method for DNA template preparation. The results indicate that the LAMP method, targeting the stn gene, has great potential for detection of Salmonella in food samples with both high specificity and high sensitivity. PMID:26543859

  15. Comparison of the Antimicrobial and Sanitizer Resistance of Salmonella Isolates from Chicken Slaughter Processes in Korea.

    PubMed

    Youn, So Youn; Jeong, Ok Mi; Choi, Byung Kook; Jung, Suk Chan; Kang, Min Su

    2017-03-01

    Salmonella is a foodborne pathogen worldwide. Outbreaks of Salmonella are commonly associated with consumption of contaminated foods such as poultry products. Therefore, the objective of this study was to determine the occurrence, biofilm formation, antibiotic resistance, and sanitizer resistance of Salmonella enterica isolated from chicken carcasses. A total of 318 samples were collected from 15 chicken slaughterhouses in 8 provinces of Korea. They were then examined for Salmonella contamination. S. enterica isolates were tested for their susceptibilities to 15 antimicrobials by broth microdilution method. Their biofilm formation ability and resistance to sanitizers were also evaluated. Eighty-two isolates of S. enterica were obtained from the 318 samples. There were 14 serotypes and 2 untypable isolates. Fifty-seven (69.5%) isolates were resistant to at least one antibiotic while 30 (36.6%) isolates were resistant to 5 or more antibiotics. Two S. Senftenberg and 3 S. Montevideo isolates exhibited considerable biofilm formation ability (A 600 >0.2) following incubation in Luria-Bertani (LB) broth for 48 h. Biofilm cell survival and recovery growth assay after sanitization showed that most isolates were highly susceptible to 2.5% lactic acid and 0.1% cetylpyridinium chloride. Therefore, lactic acid and cetylpyridinium chloride might be alternatively or additionally used in addition to chlorine-based sanitizers that are frequently used to reduce Salmonella contamination of chicken carcasses. Our results provide basic information on the distribution of Salmonella serotypes in chicken slaughterhouses. This study also highlights the necessity to improve farming practices and use antimicrobial agents cautiously. This study also suggests that sanitization during the slaughtering process might be necessary to reduce Salmonella contamination of chicken carcasses. © 2017 Institute of Food Technologists®.

  16. PCR method based on the ogdH gene for the detection of Salmonella spp. from chicken meat samples.

    PubMed

    Jin, Un-Ho; Cho, Sung-Hak; Kim, Min-Gon; Ha, Sang-Do; Kim, Keun-Sung; Lee, Kyu-Ho; Kim, Kwang-Yup; Chung, Duck Hwa; Lee, Young-Choon; Kim, Cheorl-Ho

    2004-09-01

    In a previous paper, the ogdH gene that encodes 2-oxoglutarate dehydrogenase was isolated from Salmonella typhimurium. The catalytic N-terminal region in the enzyme was found to be very specific for the Salmonella species. Therefore, the aim of the present study was to detect S. typhimurium in food sources using primers designed for OGDH-1 and OGDH-2 which were based on the salmonella-specific region of the ogdH gene. A simple polymerase chain reaction (PCR) detection method was developed to detect low numbers of S. typhimurium in a chicken meat microbial consortium. Using the ogdH-specific primers under stringent amplification conditions and for gene probe analysis, fewer than 100 colony-forming units (CFUs) were detectable when pure cultures were employed. When the PCR assay was run on S. typhimurium-contaminated meat contents, only the positive meat samples containing as few as 200 CFUs reacted to the assay. The method employed for sample processing is simple and it was determined to provide a sensitive means of detecting trace amounts of S. typhimurium-specific sequences in the presence of mixed meat microbial populations. When compared with six representative intestinal gram-negative bacterial strains in foods, including Vibrio parahaemolyticus, V. vulnificus, Enterobacter cloacae, E. coli O157:H7, Pseudomonas aeruginosa, and Proteus sp., S. typhimurium had a unique and distinct PCR product (796 bp). In conclusion, the two OGDH primers were found to be rapid and sensitive detectors of Salmonella spp for the PCR method. Copyright 2004 The Microbiological Society of Korea

  17. Assessment of attenuated Salmonella vaccine strains in controlling experimental Salmonella Typhimurium infection in chickens

    PubMed Central

    Pei, Yanlong; Parreira, Valeria R.; Roland, Kenneth L.; Curtiss, Roy; Prescott, John F.

    2014-01-01

    Salmonella hold considerable promise as vaccine delivery vectors for heterologous antigens in chickens. Such vaccines have the potential additional benefit of also controlling Salmonella infection in immunized birds. As a way of selecting attenuated strains with optimal immunogenic potential as antigen delivery vectors, this study screened 20 novel Salmonella Typhimurium vaccine strains, differing in mutations associated with delayed antigen synthesis and delayed attenuation, for their efficacy in controlling colonization by virulent Salmonella Typhimurium, as well as for their persistence in the intestine and the spleen. Marked differences were observed between strains in these characteristics, which provide the basis for selection for further study as vaccine vectors. PMID:24396177

  18. Assessment of attenuated Salmonella vaccine strains in controlling experimental Salmonella Typhimurium infection in chickens.

    PubMed

    Pei, Yanlong; Parreira, Valeria R; Roland, Kenneth L; Curtiss, Roy; Prescott, John F

    2014-01-01

    Salmonella hold considerable promise as vaccine delivery vectors for heterologous antigens in chickens. Such vaccines have the potential additional benefit of also controlling Salmonella infection in immunized birds. As a way of selecting attenuated strains with optimal immunogenic potential as antigen delivery vectors, this study screened 20 novel Salmonella Typhimurium vaccine strains, differing in mutations associated with delayed antigen synthesis and delayed attenuation, for their efficacy in controlling colonization by virulent Salmonella Typhimurium, as well as for their persistence in the intestine and the spleen. Marked differences were observed between strains in these characteristics, which provide the basis for selection for further study as vaccine vectors.

  19. CRP-cAMP mediates silencing of Salmonella virulence at the post-transcriptional level

    PubMed Central

    El Mouali, Youssef; Gaviria-Cantin, Tania; Gibert, Marta; Westermann, Alexander J.; Vogel, Jörg

    2018-01-01

    Invasion of epithelial cells by Salmonella enterica requires expression of genes located in the pathogenicity island I (SPI-1). The expression of SPI-1 genes is very tightly regulated and activated only under specific conditions. Most studies have focused on the regulatory pathways that induce SPI-1 expression. Here, we describe a new regulatory circuit involving CRP-cAMP, a widely established metabolic regulator, in silencing of SPI-1 genes under non-permissive conditions. In CRP-cAMP-deficient strains we detected a strong upregulation of SPI-1 genes in the mid-logarithmic growth phase. Genetic analyses revealed that CRP-cAMP modulates the level of HilD, the master regulator of Salmonella invasion. This regulation occurs at the post-transcriptional level and requires the presence of a newly identified regulatory motif within the hilD 3’UTR. We further demonstrate that in Salmonella the Hfq-dependent sRNA Spot 42 is under the transcriptional repression of CRP-cAMP and, when this transcriptional repression is relieved, Spot 42 exerts a positive effect on hilD expression. In vivo and in vitro assays indicate that Spot 42 targets, through its unstructured region III, the 3’UTR of the hilD transcript. Together, our results highlight the biological relevance of the hilD 3’UTR as a hub for post-transcriptional control of Salmonella invasion gene expression. PMID:29879120

  20. Development of real-time and lateral flow strip reverse transcription recombinase polymerase Amplification assays for rapid detection of peste des petits ruminants virus.

    PubMed

    Yang, Yang; Qin, Xiaodong; Song, Yiming; Zhang, Wei; Hu, Gaowei; Dou, Yongxi; Li, Yanmin; Zhang, Zhidong

    2017-02-07

    Peste des petits ruminants (PPR) is an economically important, Office International des Epizooties (OIE) notifiable, transboundary viral disease of small ruminants such as sheep and goat. PPR virus (PPRV), a negative-sense single-stranded RNA virus, is the causal agent of PPR. Therefore, sensitive, specific and rapid diagnostic assay for the detection of PPRV are necessary to accurately and promptly diagnose suspected case of PPR. In this study, reverse transcription recombinase polymerase amplification assays using real-time fluorescent detection (real-time RT-RPA assay) and lateral flow strip detection (LFS RT-RPA assay) were developed targeting the N gene of PPRV. The sensitivity of the developed real-time RT-RPA assay was as low as 100 copies per reaction within 7 min at 40 °C with 95% reliability; while the sensitivity of the developed LFS RT-RPA assay was as low as 150 copies per reaction at 39 °C in less than 25 min. In both assays, there were no cross-reactions with sheep and goat pox viruses, foot-and-mouth disease virus and Orf virus. These features make RPA assay promising candidates either in field use or as a point of care diagnostic technique.

  1. Reverse Transcription Recombinase Polymerase Amplification Assay for the Detection of Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Abd El Wahed, Ahmed; Patel, Pranav; Heidenreich, Doris; Hufert, Frank T.; Weidmann, Manfred

    2013-01-01

    The emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in the eastern Mediterranean and imported cases to Europe has alerted public health authorities. Currently, detection of MERS-CoV in patient samples is done by real-time RT-PCR. Samples collected from suspected cases are sent to highly-equipped centralized laboratories for screening. A rapid point-of-care test is needed to allow more widespread mobile detection of the virus directly from patient material. In this study, we describe the development of a reverse transcription isothermal Recombinase Polymerase Amplification (RT-RPA) assay for the identification of MERS-CoV. A partial nucleocapsid gene RNA molecular standard of MERS-coronavirus was used to determine the assay sensitivity. The isothermal (42°C) MERS-CoV RT-RPA was as sensitive as real-time RT-PCR (10 RNA molecules), rapid (3-7 minutes) and mobile (using tubescanner weighing 1kg). The MERS-CoV RT-RPA showed cross-detection neither of any of the RNAs of several coronaviruses and respiratory viruses affecting humans nor of the human genome. The developed isothermal real-time RT-RPA is ideal for rapid mobile molecular MERS-CoV monitoring in acute patients and may also facilitate the search for the animal reservoir of MERS-CoV. PMID:24459611

  2. PREVALENCE OF SALMONELLA IN CAPTIVE REPTILES FROM CROATIA.

    PubMed

    Lukac, Maja; Pedersen, Karl; Prukner-Radovcic, Estella

    2015-06-01

    Salmonellosis transmitted by pet reptiles is an increasing public health issue worldwide. The aim of this study was to investigate the prevalence of Salmonella strains from captive reptiles in Croatia. From November 2009 to November 2011 a total of 292 skin, pharyngeal, cloacal, and fecal samples from 200 apparently healthy reptiles were tested for Salmonella excretions by bacteriologic culture and serotyping. These 200 individual reptiles included 31 lizards, 79 chelonians, and 90 snakes belonging to private owners or housed at the Zagreb Zoo, Croatia. Salmonella was detected in a total of 13% of the animals, among them 48.4% lizards, 8.9% snakes, and 3.8% turtles. Representatives of five of the six Salmonella enterica subspecies were identified with the following proportions in the total number of isolates: Salmonella enterica enterica 34.6%, Salmonella enterica houtenae 23.1%, Salmonella enterica arizonae 23.1%, Salmonella enterica diarizonae 15.4%, and Salmonella enterica salamae 3.8%. The 14 different serovars isolated included several rarely occurring serovars such as Salmonella Apapa, Salmonella Halle, Salmonella Kisarawe, and Salmonella Potengi. These findings confirm that the prevalence of Salmonella is considerable in captive reptiles in Croatia, indicating that these animals may harbor serovars not commonly seen in veterinary or human microbiologic practice. This should be addressed in the prevention and diagnostics of human reptile-transmitted infections.

  3. Prevalence, risk factors and antimicrobial resistance of Salmonella diarrhoeal infection among children in Thi-Qar Governorate, Iraq.

    PubMed

    Harb, A; O'Dea, M; Hanan, Z K; Abraham, S; Habib, I

    2017-12-01

    We conducted a hospital-based cross-sectional study among children aged <5 years in Thi-Qar Governorate, south-eastern Iraq, in order to examine the prevalence, risk factors and antimicrobial resistance associated with gastroenteritis caused by Salmonella infection. From 320 diarrhoea cases enrolled between March and August 2016, 33 (10·3%, 95% confidence interval (CI) 8·4-12·4) cases were stool culture-positive for non-typhoidal Salmonella enterica. The most commonly identified serovar was Typhimurium (54%). Multivariable logistic regression analysis indicated that the odds of Salmonella infection in children from households supplied by pipe water was 4·7 (95% CI 1·6-13·9) times higher compared with those supplied with reverse osmosis treated water. Similarly, children from households with domestic animals were found to have a higher odds (OR 10·5; 95% CI 3·8-28·4) of being Salmonella stool culture-positive. The likelihood of Salmonella infection was higher (OR 3·9; 95% CI 1·0-6·4) among children belonging to caregiver with primary vs. tertiary education levels. Lower odds (OR 0·4; 95% CI 0·1-0·9) of Salmonella infection were associated with children exclusively breast fed as compared with those exclusively bottle fed. Salmonella infection was three times lower (95% CI 0·1-0·7) in children belonging to caregiver who reported always washing hands after cleaning children following defecation, vs. those belonging to caregivers who did not wash hands. The antimicrobial resistance profile by disc diffusion revealed that non-susceptibility to tetracycline (78·8%), azithromycin (66·7%) and ciprofloxacin (57·6%) were the most commonly seen, and 84·9% of Salmonella isolates were classified as multi-drug resistant. This is the first study on prevalence and antimicrobial resistance of Salmonella infection among children in this setting. This work provides specific epidemiological data which are crucial to understand and combat paediatric diarrhoea in

  4. Farm-level associations with the shedding of Salmonella and antimicrobial-resistant Salmonella in U.S. dairy cattle.

    PubMed

    Habing, Greg G; Lombard, Jason E; Kopral, Christine A; Dargatz, David A; Kaneene, John B

    2012-09-01

    Salmonella enterica is the leading cause of foodborne-related deaths and hospitalizations within the United States. Infections caused by antimicrobial-resistant (AMR) strains are associated with higher hospital costs and case fatality. The objective for this study was to determine the association of management practices with the recovery of Salmonella and AMR Salmonella on dairy herds. Individual adult cow fecal samples and/or composite fecal samples were collected from 265 dairy herds in 17 states. Samples were cultured for Salmonella, and the MIC was determined for 15 antimicrobials. Herds were classified as Salmonella positive if at least one isolate was recovered, and AMR Salmonella positive if at least one resistant isolate was recovered. Questionnaires regarding management practices were administered to herd operators, and a subset of practices was selected based on subject knowledge and prior research. Data on preventive and therapeutic antimicrobial usage were included in the analysis. Logistic regression models were used to determine which practices were significantly (p<0.05) associated with each herd classification. A total of 124 and 25 herds were classified as Salmonella positive and AMR Salmonella positive, respectively. Variables significantly associated with Salmonella-positive herds included using sprinklers or misters for heat abatement (OR=2.8; CI: 1.6-4.9), feeding anionic salts to cows (OR=1.9; CI: 1.1-3.5), and feeding ionophores to cows (OR=2.1; CI: 1.2-3.7). Herds that used a broadcast/solid spread had lower odds (OR=0.26; CI: 0.11-0.63) of being Salmonella positive. Herds with at least one resistant isolate were more likely to have used composted/dried manure for bedding relative to herds with only susceptible isolates (OR=3.6; CI: 1.2-11.0). These results can be useful to focus additional research aimed at decreasing the prevalence of Salmonella and AMR Salmonella on U.S. dairy herds.

  5. IFN-γ release assay conversions and reversions. Challenges with serial testing in U.S. health care workers.

    PubMed

    Joshi, Manish; Monson, Thomas P; Joshi, Anita; Woods, Gail L

    2014-03-01

    IFN-γ release assays (IGRAs) including the QuantiFERON-TB gold in-tube test (QFT-GIT) are increasingly used in place of the tuberculin skin test (TST) in surveillance programs for Mycobacterium tuberculosis infection in the United States. However, data on conversions, reversions, and predictive value of QFT in such programs for health care workers (HCWs) are limited. The purpose of this study is to assess long-term reproducibility and conversion and reversion rates of QFT-GIT among HCWs who underwent serial testing at a tertiary care center in the United States. Retrospective chart review of HCWs at the Central Arkansas Veterans Healthcare System (CAVHS) who underwent serial testing with QFT-GIT as a part of their employee screening between November 1, 2008 and January 31, 2011. A total of 2,303 HCWs had at least 2 QFT-GITs 1 year apart. The initial QFT-GIT was positive for 69 and 2 were indeterminate. Of these 69 HCWs, 31 (45%) reverted on repeat testing, and 25 of 31 (80.6%) HCWs who reverted had a negative look-back TST. Of the 2,232 HCWs with an initial negative QFT-GIT, 71 (3.2%) converted on repeat testing. A third QFT-GIT assay was performed in 41 of the 71 converters and 90% (37 of 41) reverted back to negative. Only two HCWs had TST and QFT-GIT conversion. Poor IGRA reproducibility and a low predictive value of QFT-GIT conversions indicate that QFT-GIT with current interpretation criteria should not be used for serial screening of U.S. HCWs. Negative TSTs have higher reproducibility than QFT-GIT for serial testing of HCWs in low tuberculosis incidence settings.

  6. A Field-Tailored Reverse Transcription Loop-Mediated Isothermal Assay for High Sensitivity Detection of Plasmodium falciparum Infections

    PubMed Central

    Kemleu, Sylvie; Guelig, Dylan; Eboumbou Moukoko, Carole; Essangui, Estelle; Diesburg, Steven; Mouliom, Abas; Melingui, Bernard; Manga, Jeanne; Donkeu, Christiane; Epote, Annie; Texier, Gaëtan; LaBarre, Paul; Burton, Robert

    2016-01-01

    Highly sensitive and field deployable molecular diagnostic tools are critically needed for detecting submicroscopic, yet transmissible levels of malaria parasites prevalent in malaria endemic countries worldwide. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed and evaluated in comparison with thick blood smear microscopy, an antigen-based rapid diagnostic test (RDT), and an in-house RT-PCR targeting the same RT-LAMP transcript. The optimized assay detected Plasmodium falciparum infections in as little as 0.25ng of total parasite RNA, and exhibited a detection limit of 0.08 parasites/ μL when tested directly on infected whole blood lysates, or ~0.0008 parasites/ μL when using RNA extracts. Assay positivity was observed as early as eight minutes from initiation of the RT-LAMP and in most cases the reaction was complete before twenty minutes. Clinical evaluation of the assay on 132 suspected malaria cases resulted in a positivity rate of 90% for RT-LAMP using extracted RNA, and 85% when using whole blood lysates. The positivity rates were 70% for P. falciparum-specific RDT, 83% for RT-PCR, and 74% for thick blood smear microscopy (Mean parasite density = 36,986 parasites/ μL). Concordance rates between the developed RT-LAMP and comparator tests were greater than 75%, the lowest being with light microscopy (78%, McNemar’s test: P = 0.0002), and the highest was with RT-PCR (87%, McNemar’s test: P = 0.0523). Compared to reference RT-PCR, assay sensitivity was 90% for RT-LAMP on whole blood, and 96% for RT-LAMP using corresponding RNA extracts. Electricity-free heaters were further developed and evaluated in comparison with a battery-operated isothermal amplification machine for use with the developed test in resource-limited settings. Taken together, the data highlight the benefits of targeting high abundant RNA transcripts in molecular diagnosis, as well as the potential usefulness of the developed RT-LAMP-assay in

  7. Can HIV reverse transcriptase activity assay be a low-cost alternative for viral load monitoring in resource-limited settings?

    PubMed

    Gupta, Soham; Palchaudhuri, Riya; Neogi, Ujjwal; Srinivasa, Hiresave; Ashorn, Per; De Costa, Ayesha; Källander, Clas; Shet, Anita

    2016-01-27

    To evaluate the performance and cost of an HIV reverse transcriptase-enzyme activity (HIV-RT) assay in comparison to an HIV-1 RNA assay for routine viral load monitoring in resource limited settings. A cohort-based longitudinal study. Two antiretroviral therapy (ART) centres in Karnataka state, South India, providing treatment under the Indian AIDS control programme. A cohort of 327 HIV-1-infected Indian adult patients initiating first-line ART. Performance and cost of an HIV-RT assay (ExaVir Load V3) in comparison to a gold standard HIV-1 RNA assay (Abbott m2000rt) in a cohort of 327 Indian patients before (WK00) and 4 weeks (WK04) after initiation of first-line therapy. Plasma viral load was determined by an HIV-1 RNA assay and an HIV-RT assay in 629 samples (302 paired samples and 25 single time point samples at WK00) obtained from 327 patients. Overall, a strong correlation of r=0.96 was observed, with good correlation at WK00 (r=0.84) and at WK04 (r=0.77). Bland-Altman analysis of all samples showed a good level of agreement with a mean difference (bias) of 0.22 log10copies/mL. The performance of ExaVir Load V3 was not negatively affected by a nevirapine/efavirenz based antiretroviral regimen. The per test cost of measuring plasma viral load by the Abbott m2000rt and ExaVir Load V3 assays in a basic lab setting was $36.4 and $16.8, respectively. The strong correlation between the HIV-RT and HIV-1 RNA assays suggests that the HIV-RT assay can be an affordable alternative option for monitoring patients on antiretroviral therapy in resource-limited settings. ISRCTN79261738. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Detection of Salmonellae in the Environment

    PubMed Central

    Thomason, Berenice M.; Biddle, James W.; Cherry, William B.

    1975-01-01

    The incidence of salmonellae in contrasting environments was compared in this study. Samples collected from or near surface waters in a lush hardwood forest yielded four salmonellae serotypes from six culturally positive samples. A total of 76 samples collected from the top of a granite outcropping over a 3-month period yielded 10 positive samples. Only two salmonellae serotypes were isolated, and one of these was isolated only once. The nature of the sample material had no significant effect on the detection of salmonellae from the two sampling sites. However, the presence or absence of visible moisture in the sample significantly affected the recovery of salmonellae. The results showed that even a harsh environment such as that found on top of Stone Mountain may serve as an ecological niche for the survival and transmission of salmonellae. PMID:1106319

  9. Salmonella Infections - Multiple Languages

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Salmonella Infections URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Salmonella Infections - Multiple Languages To use the sharing features ...

  10. Fecal shedding of Salmonella in exotic felids.

    PubMed

    Clyde, V L; Ramsay, E C; Bemis, D A

    1997-06-01

    Two collections of exotic felids were screened for the presence of Salmonella by selective fecal culture utilizing selenite broth and Hektoen enteric agar. In > 90% of the samples, Salmonella was isolated from a single culture. A commercial horsemeat-based diet was fed in both collections, and one collection also was fed raw chicken. Salmonella was cultured from the raw chicken and the horsemeat diet for both collections. Multiple Salmonella serotypes were identified, with S. typhimurium and S. typhimurium (copenhagen) isolated most frequently. Approximately half of the Salmonella isolates demonstrated multiple antibiotic resistance. The ability to harbor Salmonella as normal nonpathogenic bacteria of the gastrointestinal tract may be a physiological adaptation to carnivory. The high rate of fecal shedding of Salmonella in healthy individuals clouds the interpretation of a positive fecal culture in an ill felid, or one with diarrhea. All zoo employees having contact with cat feces or raw diets have a high rate of occupational exposure to Salmonella and should exercise appropriate hygienic precautions.

  11. Development of a reverse transcription quantitative polymerase chain reaction-based assay for broad coverage detection of African and Asian Zika virus lineages.

    PubMed

    Yang, Yang; Wong, Gary; Ye, Baoguo; Li, Shihua; Li, Shanqin; Zheng, Haixia; Wang, Qiang; Liang, Mifang; Gao, George F; Liu, Lei; Liu, Yingxia; Bi, Yuhai

    2017-06-01

    The Zika virus (ZIKV) is an arbovirus that has spread rapidly worldwide within recent times. There is accumulating evidence that associates ZIKV infections with Guillain-Barré Syndrome (GBS) and microcephaly in humans. The ZIKV is genetically diverse and can be separated into Asian and African lineages. A rapid, sensitive, and specific assay is needed for the detection of ZIKV across various pandemic regions. So far, the available primers and probes do not cover the genetic diversity and geographic distribution of all ZIKV strains. To this end, we have developed a one-step quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay based on conserved sequences in the ZIKV envelope (E) gene. The detection limit of the assay was determined to be five RNA transcript copies and 2.94 × 10 -3 50% tissue culture infectious doses (TCID 50 ) of live ZIKV per reaction. The assay was highly specific and able to detect five different ZIKV strains covering the Asian and African lineages without nonspecific amplification, when tested against other flaviviruses. The assay was also successful in testing for ZIKV in clinical samples. Our assay represents an improvement over the current methods available for the detection ZIKV and would be valuable as a diagnostic tool in various pandemic regions.

  12. Control of Salmonella on sprouting mung bean and alfalfa seeds by using a biocontrol preparation based on antagonistic bacteria and lytic bacteriophages.

    PubMed

    Ye, Jianxiong; Kostrzynska, Magdalaena; Dunfield, Kari; Warriner, Keith

    2010-01-01

    The following reports on the application of a combination of antagonistic bacteria and lytic bacteriophages to control the growth of Salmonella on sprouting mung beans and alfalfa seeds. Antagonistic bacteria were isolated from mung bean sprouts and tomatoes by using the deferred plate assay to assess anti-Salmonella activity. From the isolates screened, an Enterobacter asburiae strain (labeled "JX1") exhibited stable antagonistic activity against a broad range of Salmonella serovars (Agona, Berta, Enteritidis, Hadar, Heidelberg, Javiana, Montevideo, Muenchen, Newport, Saint Paul, and Typhimurium). Lytic bacteriophages against Salmonella were isolated from pig or cattle manure effluent. A bacteriophage cocktail prepared from six isolates was coinoculated with E. asburiae JX1 along with Salmonella in broth culture. The combination of E. asburiae JX1 and bacteriophage cocktail reduced the levels of Salmonella by 5.7 to 6.4 log CFU/ml. Mung beans inoculated with Salmonella and sprouted over a 4-day period attained levels of 6.72 + or - 0.78 log CFU/g. In contrast, levels of Salmonella were reduced to 3.31 + or - 2.48 or 1.16 + or - 2.14 log CFU/g when the pathogen was coinoculated with bacteriophages or E. asburiae JX1, respectively. However, by using a combination of E. asburiae JX1 and bacteriophages, the levels of Salmonella associated with mung bean sprouts were only detected by enrichment. The biocontrol preparation was effective at controlling the growth of Salmonella under a range of sprouting temperatures (20 to 30 degrees Celsius) and was equally effective at suppressing the growth of Salmonella on sprouting alfalfa seeds. The combination of E. asburiae JX1 and bacteriophages represents a promising, chemical-free approach for controlling the growth of Salmonella on sprouting seeds.

  13. Survival of Salmonella Newport in oysters.

    PubMed

    Morrison, Christopher M; Armstrong, Alexandra E; Evans, Sanford; Mild, Rita M; Langdon, Christopher J; Joens, Lynn A

    2011-08-02

    Salmonella enterica is the leading cause of laboratory-confirmed foodborne illness in the United States and raw shellfish consumption is a commonly implicated source of gastrointestinal pathogens. A 2005 epidemiological study done in our laboratory by Brands et al., showed that oysters in the United States are contaminated with Salmonella, and in particular, a specific strain of the Newport serovar. This work sought to further investigate the host-microbe interactions between Salmonella Newport and oysters. A procedure was developed to reliably and repeatedly expose oysters to enteric bacteria and quantify the subsequent levels of bacterial survival. The results show that 10 days after an exposure to Salmonella Newport, an average concentration of 3.7 × 10(3)CFU/g remains within the oyster meat, and even after 60 days there still can be more than 10(2)CFU/g remaining. However, the strain of Newport that predominated in the market survey done by Brands et al. does not survive within oysters or the estuarine environment better than any other strains of Salmonella we tested. Using this same methodology, we compared Salmonella Newport's ability to survive within oysters to a non-pathogenic strain of E. coli and found that after 10 days the concentration of Salmonella was 200-times greater than that of E. coli. We also compared those same strains of Salmonella and E. coli in a depuration process to determine if a constant 120 L/h flux of clean seawater could significantly reduce the concentration of bacteria within oysters and found that after 3 days the oysters retained over 10(4)CFU/g of Salmonella while the oysters exposed to the non-pathogenic strain of E. coli contained 100-times less bacteria. Overall, the results of this study demonstrate that any of the clinically relevant serovars of Salmonella can survive within oysters for significant periods of time after just one exposure event. Based on the drastic differences in survivability between Salmonella and a non

  14. In vitro evaluation of anti-infective activity of a Lactobacillus plantarum strain against Salmonella enterica serovar Enteritidis

    PubMed Central

    2013-01-01

    Background Salmonella enterica serovar Enteritidis infections are known to exhibit worldwide prevalence with increased morbidity and mortality. The conventional strategies like antibiotic therapy and vaccination have not only proved to be of sub-optimal efficacy but also led to the development of multidrug resistant strains of Salmonella. Antimicrobial activities of probiotics against various enteropathogens and other health promoting effects have assumed greater significance in recent years. The present study aims to evaluate the efficacy of a Lactobacillus plantarum strain (KSBT 56, isolated from a traditional food product of India), in preventing Salmonella enterica serovar Enteritidis growth and pathogenicity in vitro. Methods and results The cell free culture supernatant (CFCS) of KSBT 56 strain notably inhibited the growth of Salmonella Enteritidis without affecting the growth of other gram-positive lactic acid bacteria. The isolated KSBT 56 strain produces lactic acid similar to other standard probiotic strains like Lactobacillus plantarum MTCC 1407. The free radical production by KSBT 56 strain was studied by using sodC mutant of S. Enteritidis, which exhibited reduced growth in the presence of CFCS of the KSBT 56 strain, indicating the inhibitory activity of free radicals on the growth of S. Enteritidis. Our results also showed a significant reduction in the biofilm forming ability of Salmonella Enteritidis in the presence of the KSBT 56 strain (2 log cfu/ml, p = 0.01). Further, the anti-infective characteristics of KSBT 56 strain was validated by gentamicin protection assay which revealed 80% reduction in the invasion of Salmonella Enteritidis to HCT-116 cell line (Salmonella Enteritidis and KSBT 56 in a 1:1 ratio) and delayed addition of Salmonella Enteritidis by 1 h. Similarly, the reduced adhesion of Salmonella to the HCT-116 cells was observed along with the down regulation of hilA gene of Salmonella Pathogenicity Island 1 (SPI1) indicating that they

  15. Mutagenicity of automobile workshop soil leachate and tobacco industry wastewater using the Ames Salmonella fluctuation and the SOS chromotests.

    PubMed

    Okunola, Alabi A; Babatunde, Esan E; Chinwe, Duru; Pelumi, Oyedele; Ramatu, Salihu G

    2016-06-01

    Environmental management of industrial solid wastes and wastewater is an important economic and environmental health problem globally. This study evaluated the mutagenic potential of automobile workshop soil-simulated leachate and tobacco wastewater using the SOS chromotest on Escherichia coli PQ37 and the Ames Salmonella fluctuation test on Salmonella typhimurium strains TA98 and TA100 without metabolic activation. Physicochemical parameters of the samples were also analyzed. The result of the Ames test showed mutagenicity of the test samples. However, the TA100 was the more responsive strain for both the simulated leachate and tobacco wastewater in terms of mutagenic index in the absence of metabolic activation. The SOS chromotest results were in agreement with those of the Ames Salmonella fluctuation test. Nevertheless, the E. coli PQ37 system was slightly more sensitive than the Salmonella assay for detecting genotoxins in the tested samples. Iron, cadmium, manganese, copper, nickel, chromium, arsenic, zinc, and lead contents analyzed in the samples were believed to play significant role in the observed mutagenicity in the microbial assays. The results of this study showed that the simulated leachate and tobacco wastewater showed strong indication of a genotoxic risk. Further studies would be required in the analytical field in order to identify and quantify other compounds not analyzed for in this study, some of which could be responsible for the observed genotoxicity. This will be necessary in order to identify the sources of toxicants and thus to take preventive and/or curative measures to limit the toxicity of these types of wastes. © The Author(s) 2014.

  16. Performance of the chromID Salmonella Elite chromogenic agar in comparison with CHROMagar™ Salmonella, Oxoid™ Brilliance™ Salmonella and Hektoen agars for the isolation of Salmonella from stool specimens.

    PubMed

    Martiny, Delphine; Dediste, Anne; Anglade, Claire; Vlaes, Linda; Moens, Catherine; Mohamed, Souad; Vandenberg, Olivier

    2016-10-01

    chromID™ Salmonella Elite is compared with 3 culture media commonly used for Salmonella isolation from stool specimens. As results were equivalent to other chromogenic media (100% sensitivity, 98% specificity), only financial arguments should guide the choice for a medium with respect to another. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Evaluation of VIDAS Salmonella (SLM) easy Salmonella method for the detection of Salmonella in a variety of foods: collaborative study.

    PubMed

    Crowley, Erin; Bird, Patrick; Fisher, Kiel; Goetz, Katherine; Benzinger, M Joseph; Agin, James; Goins, David; Johnson, Ronald L

    2011-01-01

    The VIDAS Salmonella (SLM) Easy Salmonella method is a specific enzyme-linked fluorescent immunoassay performed in the automated VIDAS instrument. The VIDAS Easy Salmonella method is a simple 2-step enrichment procedure, using pre-enrichment followed by selective enrichment in a newly formulated broth, SX2 broth. This new method was compared in a multilaboratory collaborative study to the U.S. Food and Drug Administration's Bacteriological Analytical Manual, Chapter 5 method for five food matrixes (liquid egg, vanilla ice cream, spinach, raw shrimp, and peanut butter) and the U.S. Department of Agriculture's Microbiology Laboratory Guidebook 4.04 method for deli turkey. Each food type was artificially contaminated with Salmonella at three inoculation levels. A total of 15 laboratories representing government, academia, and industry, throughout the United States, participated. In this study, 1583 samples were analyzed, of which 792 were paired replicates and 791 were unpaired replicates. Of the 792 paired replicates, 285 were positive by both the VIDAS and reference methods. Of the 791 unpaired replicates, 341 were positive by the VIDAS method and 325 were positive by the cultural reference method. A Chi-square analysis of each of the six food types was performed at the three inoculation levels tested. For all foods evaluated, the VIDAS Easy SLM method demonstrated results comparable to those of the reference methods for the detection of Salmonella.

  18. Highly specific and cost-efficient detection of Salmonella Paratyphi A combining aptamers with single-walled carbon nanotubes.

    PubMed

    Yang, Ming; Peng, Zhihui; Ning, Yi; Chen, Yongzhe; Zhou, Qin; Deng, Le

    2013-05-22

    In this paper, a panel of single-stranded DNA aptamers with high affinity and specificity against Salmonella Paratyphi A was selected from an enriched oligonucleotide pool by a whole-cell-Systematic Evolution of Ligands by Exponential Enrichment (SELEX) procedure, during which four other Salmonella serovars were used as counter-selection targets. It was determined through a fluorescence assay that the selected aptamers had high binding ability and specificity to this pathogen. The dissociation constant of these aptamers were up to nanomolar range, and aptamer Apt22 with the lowest Kd (47 ± 3 nM) was used in cell imaging experiments. To detect this bacteria with high specificity and cost-efficiently, a novel useful detection method was also constructed based on the noncovalent self-assembly of single-walled carbon nanotubes (SWNTs) and DNAzyme-labeled aptamer detection probes. The amounts of target bacteria could be quantified by exploiting chemoluminescence intensity changes at 420 nm and the detection limit of the method was 103 cfu/mL. This study demonstrated the applicability of Salmonella specific aptamers and their potential for use in the detection of Salmonella in food, clinical and environmental samples.

  19. Vaccines against invasive Salmonella disease

    PubMed Central

    MacLennan, Calman A; Martin, Laura B; Micoli, Francesca

    2014-01-01

    Though primarily enteric pathogens, Salmonellae are responsible for a considerable yet under-appreciated global burden of invasive disease. In South and South-East Asia, this manifests as enteric fever caused by serovars Typhi and Paratyphi A. In sub-Saharan Africa, a similar disease burden results from invasive nontyphoidal Salmonellae, principally serovars Typhimurium and Enteritidis. The existing Ty21a live-attenuated and Vi capsular polysaccharide vaccines target S. Typhi and are not effective in young children where the burden of invasive Salmonella disease is highest. After years of lack of investment in new Salmonella vaccines, recent times have seen increased interest in the area led by emerging-market manufacturers, global health vaccine institutes and academic partners. New glycoconjugate vaccines against S. Typhi are becoming available with similar vaccines against other invasive serovars in development. With other new vaccines under investigation, including live-attenuated, protein-based and GMMA vaccines, now is an exciting time for the Salmonella vaccine field. PMID:24804797

  20. ASSESSMENT OF STANDARD REFERENCE COMPOUNDS FOR COMPARATIVE STUDIES USING THE SALMONELLA TYPHIMURIUM MUTAGENICITY ASSAY: I. WITHOUT EXOGENOUS ACTIVATION

    EPA Science Inventory

    Finney (1978) described a bioassay as an experiment for estimating the nature, constitution, or potency of a material by means of the eaction that follows its application to living matter. n this paper, two independent laboratories tested 10 known Salmonella mutagens in order to ...

  1. Characterizing Salmonella Contamination in Two Rendering Processing Plants.

    PubMed

    Gong, Chao; Jiang, Xiuping

    2017-02-01

    A microbiological investigation on Salmonella contamination was conducted in two U.S. rendering plants to investigate the potential cross-contamination of Salmonella in the rendering processing environment. Sampling locations were predetermined at the areas where Salmonella contamination may potentially occur, including raw materials receiving, crax (rendered materials before grinding process) grinding, and finished meal loading-out areas. Salmonella was either enumerated directly on xylose lysine Tergitol 4 agar plates or enriched in Rappaport-Vassiliadis and tetrathionate broths. The presumptive Salmonella isolates were confirmed using CHROMagar plating and latex agglutination testing and then characterized using pulsed-field gel electrophoresis, serotyping, and biofilm-forming determination. Among 108 samples analyzed, 79 (73%) samples were Salmonella positive after enrichment. Selected Salmonella isolates (n = 65) were assigned to 31 unique pulsed-field gel electrophoresis patterns, with 16 Salmonella serotypes, including Typhimurium and Mbandaka, identified as predominant serotypes and 10 Salmonella strains determined as strong biofilm formers. Our results indicated that the raw materials receiving area was the primary source of Salmonella and that the surfaces surrounding crax grinding and finished meal loading-out areas harbor Salmonella in biofilms that may recontaminate the finished meals. The same Salmonella serotypes found in both raw materials receiving and the finished meal loading-out areas suggested a potential of cross-contamination between different areas in the rendering processing environment.

  2. Pathogenesis of Salmonellosis: Salmonella Exotoxins

    DTIC Science & Technology

    1982-03-08

    of Salmonella enteritidis , which included 9630 serotype newport, 9136 serotype newport, 10016 serotype javiana, and 8832, serotype javiana were also...supplied by Dr. T. Huber. Additionally, four clinical isolates of Salmonella enteritidis , which included 986 serotype typhimurium, 2000 serotype...77Z7I AD _ REPORT NUMBER 3 0 Pathogenesis of Salmonellosis: Salmonella Exotoxins Annual Progress Report (9/1/79-8/31/80) M Johnny W. Peterson, Ph.D

  3. Pathogenesis of Salmonellosis: Salmonella Exotoxins

    DTIC Science & Technology

    1982-03-08

    membrane-as3ociated enterotowin produced by S. enteritidis and by S. typhimurium ; however they could find no similarities between their Salmonella ...AD. . 0 REPORT NUJMBER 1 Pathogenesis of Salmoneiliosis: Salmonella Exotoxins Annual Progress Report (12/1/77-9/1/78) Johnny W. Peterson. Ph.D. March...TYPE OF REPORT & PERIOD COVEREOD",- Uathogenesis of ,Salmonellosils: Salmonella Annual Progress Report Exotoxins 12/T/77 9/1/78 C. PERFORMCNG ORG

  4. Development of a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of Sugarcane mosaic virus and Sorghum mosaic virus in sugarcane

    USDA-ARS?s Scientific Manuscript database

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for detecting Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) in sugarcane. Six sets of four primers corresponding to the conserved coat protein gene were designed for each virus and their succ...

  5. Sub-Inhibitory Concentrations of the Antibiotic Florfenicol Reduces Invasion in Isolates of Multi-Drug Resistant Salmonella Typhimurium DT104

    USDA-ARS?s Scientific Manuscript database

    Virulence can be enhanced in certain bacteria that are exposed to sub-lethal levels of antibiotics. Salmonella enterica serovar Typhimurium DT104 is resistant to five different antibiotics, including florfenicol. Using real-time PCR and a tissue culture invasion assay, we investigated the impact of ...

  6. Use of a Salmonella microsuspension bioassay to detect the mutagenicity of munitions compounds at low concentrations.

    PubMed

    George, S E; Huggins-Clark, G; Brooks, L R

    2001-01-25

    Past production and handling of munitions has resulted in soil contamination at various military facilities. Depending on the concentrations present, these soils pose both a reactivity and toxicity hazard and the potential for groundwater contamination. Many munitions-related chemicals have been examined for mutagenicity in the Ames test, but because the metabolites may be present in low environmental concentrations, a more sensitive method is needed to elucidate the associated mutagenicity. RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), TNT (2,4,6-trinitrotoluene), tetryl (N-methyl-N-2,4,6-tetranitroaniline), TNB (1,3,5-trinitrobenzene) and metabolites were examined for mutagenicity in a microsuspension modification of the Salmonella histidine reversion assay with and without metabolic activation. TNB and tetryl were positive in TA98 (32.5, 5.2revertants/nmole) and TA100 (7.4, 9.5revertants/nmole) without metabolic activation and were more potent than TNT (TA98, 0.3revertants/nmole; TA100, 2.4revertants/nmole). With the exception of the tetranitroazoxytoluene derivatives, TNT metabolites were less mutagenic than TNT. RDX and two metabolites were negative in both strains, however, hexahydro-1,3,5-trinitroso-1,3,5-triazine was positive in TA100 with and without S9. Microsuspension bioassay results tend to correlate well with published Ames test data, however, there are discrepancies among the published data sets and the microsuspension assay results.

  7. Impact of litter salmonella status during feed withdrawal on salmonella recovery from the broiler crop and ceca

    USDA-ARS?s Scientific Manuscript database

    Research was conducted to evaluate the impact of litter Salmonella status during feed withdrawal on Salmonella recovery from the crop and ceca following feed withdrawal. In 4 experiments, pens of broilers in separate rooms were challenged with marker strains of either Salmonella Montevideo or Salmon...

  8. Epidemiology of Babesia, Anaplasma and Trypanosoma species using a new expanded reverse line blot hybridization assay.

    PubMed

    Paoletta, Martina Soledad; López Arias, Ludmila; de la Fournière, Sofía; Guillemi, Eliana Carolina; Luciani, Carlos; Sarmiento, Néstor Fabián; Mosqueda, Juan; Farber, Marisa Diana; Wilkowsky, Silvina Elizabeth

    2018-02-01

    Vector-borne hemoparasitic infections are a major problem that affects livestock industries worldwide, particularly in tropical and subtropical regions. In this work, a reverse line blot (RLB) hybridization assay was developed for the simultaneous detection and identification of Anaplasma, Babesia and bovine trypanosomes, encompassing in this way the most relevant hemoparasites that affect cattle. A total of 186 bovine blood samples collected from two different ecoepidemiological regions of northeast Argentina, with and without tick control, were analyzed with this new RLB. High diversity of parasites, such as Babesia bovis, B. bigemina, Anaplasma marginale and three different Trypanosoma species, was found. High rates of coinfections were also detected, and significant differences were observed not only in the prevalence of parasites but also in the level of coinfections between the two analyzed areas. Regarding the Trypanosoma genus, we provide molecular evidence of the presence of T. vivax and T. theileri for the first time in Argentina. Besides, since the RLB is a prospective tool, it allowed the identification of a yet unknown bovine trypanosome which could not be assigned to any of the bovine species known so far. In the present study we provide new insights on the prevalence of several pathogens that directly impact on livestock production in Argentina. The RLB assay developed here allows to identify simultaneously numerous pathogenic species which can also be easily expanded to detect other blood borne pathogens. These characteristics make the RLB hybridization assay an essential tool for epidemiological survey of all vector-borne pathogens. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Paradigm Diagnostics Salmonella Indicator Broth (PDX-SIB) for detection of Salmonella on selected environmental surfaces.

    PubMed

    Olstein, Alan; Griffith, Leena; Feirtag, Joellen; Pearson, Nicole

    2013-01-01

    The Paradigm Diagnostics Salmonella Indicator Broth (PDX-SIB) is intended as a single-step selective enrichment indicator broth to be used as a simple screening test for the presence of Salmonella spp. in environmental samples. This method permits the end user to avoid multistep sample processing to identify presumptively positive samples, as exemplified by standard U.S. reference methods. PDX-SIB permits the outgrowth of Salmonella while inhibiting the growth of competitive Gram-negative and -positive microflora. Growth of Salmonella-positive cultures results in a visual color change of the medium from purple to yellow when the sample is grown at 37 +/- 1 degree C. Performance of PDX-SIB has been evaluated in five different categories: inclusivity-exclusivity, methods comparison, ruggedness, lot-to-lot variability, and shelf stability. The inclusivity panel included 100 different Salmonella serovars, 98 of which were SIB-positive during the 30 to 48 h incubation period. The exclusivity panel included 33 different non-Salmonella microorganisms, 31 of which were SIB-negative during the incubation period. Methods comparison studies included four different surfaces: S. Newport on plastic, S. Anatum on sealed concrete, S. Abaetetuba on ceramic tile, and S. Typhimurium in the presence of 1 log excess of Citrobacter freundii. Results of the methods comparison studies demonstrated no statistical difference between the SIB method and the U.S. Food and Drug Administration-Bacteriological Analytical Manual reference method, as measured by the Mantel-Haenszel Chi-square test. Ruggedness studies demonstrated little variation in test results when SIB incubation temperatures were varied over a 34-40 degrees C range. Lot-to-lot consistency results suggest no detectable differences in manufactured goods using two reference Salmonella serovars and one non-Salmonella microorganism.

  10. Identification of Salmonella Typhimurium-specific DNA aptamers developed using whole-cell SELEX and FACS analysis.

    PubMed

    Moon, Jihea; Kim, Giyoung; Lee, Sangdae; Park, Saetbyeol

    2013-11-01

    Conventional methods for detection of infective organisms, such as Salmonella, are complicated and require multiple steps, and the need for rapid detection has increased. Biosensors show great potential for rapid detection of pathogens. In turn, aptamers have great potential for biosensor assay development, given their small size, ease of synthesis and labeling, lack of immunogenicity, a lower cost of production than antibodies, and high target specificity. In this study, ssDNA aptamers specific to Salmonella Typhimurium were obtained by a whole bacterium-based systematic evolution of ligands by exponential enrichment (SELEX) procedure and applied to probing S. Typhimurium. After 10 rounds of selection with S. Typhimurium as the target and Salmonella Enteritidis, Escherichia coli and Staphylococcus aureus as counter targets, the highly enriched oligonucleic acid pool was sorted using flow cytometry. In total, 12 aptamer candidates from different families were sequenced and grouped. Fluorescent analysis demonstrated that aptamer C4 had particularly high binding affinity and selectivity; this aptamer was then further characterized. © 2013 Elsevier B.V. All rights reserved.

  11. A Novel Real-Time PCR Assay of microRNAs Using S-Poly(T), a Specific Oligo(dT) Reverse Transcription Primer with Excellent Sensitivity and Specificity

    PubMed Central

    Kang, Kang; Zhang, Xiaoying; Liu, Hongtao; Wang, Zhiwei; Zhong, Jiasheng; Huang, Zhenting; Peng, Xiao; Zeng, Yan; Wang, Yuna; Yang, Yi; Luo, Jun; Gou, Deming

    2012-01-01

    Background MicroRNAs (miRNAs) are small, non-coding RNAs capable of postranscriptionally regulating gene expression. Accurate expression profiling is crucial for understanding the biological roles of miRNAs, and exploring them as biomarkers of diseases. Methodology/Principal Findings A novel, highly sensitive, and reliable miRNA quantification approach,termed S-Poly(T) miRNA assay, is designed. In this assay, miRNAs are subjected to polyadenylation and reverse transcription with a S-Poly(T) primer that contains a universal reverse primer, a universal Taqman probe, an oligo(dT)11 sequence and six miRNA-specific bases. Individual miRNAs are then amplified by a specific forward primer and a universal reverse primer, and the PCR products are detected by a universal Taqman probe. The S-Poly(T) assay showed a minimum of 4-fold increase in sensitivity as compared with the stem-loop or poly(A)-based methods. A remarkable specificity in discriminating among miRNAs with high sequence similarity was also obtained with this approach. Using this method, we profiled miRNAs in human pulmonary arterial smooth muscle cells (HPASMC) and identified 9 differentially expressed miRNAs associated with hypoxia treatment. Due to its outstanding sensitivity, the number of circulating miRNAs from normal human serum was significantly expanded from 368 to 518. Conclusions/Significance With excellent sensitivity, specificity, and high-throughput, the S-Poly(T) method provides a powerful tool for miRNAs quantification and identification of tissue- or disease-specific miRNA biomarkers. PMID:23152780

  12. Zoonoses action plan Salmonella monitoring programme: an investigation of the sampling protocol.

    PubMed

    Snary, E L; Munday, D K; Arnold, M E; Cook, A J C

    2010-03-01

    The Zoonoses Action Plan (ZAP) Salmonella Programme was established by the British Pig Executive to monitor Salmonella prevalence in quality-assured British pigs at slaughter by testing a sample of pigs with a meat juice enzyme-linked immunosorbent assay for antibodies against group B and C(1) Salmonella. Farms were assigned a ZAP level (1 to 3) depending on the monitored prevalence, and ZAP 2 or 3 farms were required to act to reduce the prevalence. The ultimate goal was to reduce the risk of human salmonellosis attributable to British pork. A mathematical model has been developed to describe the ZAP sampling protocol. Results show that the probability of assigning a farm the correct ZAP level was high, except for farms that had a seroprevalence close to the cutoff points between different ZAP levels. Sensitivity analyses identified that the probability of assigning a farm to the correct ZAP level was dependent on the sensitivity and specificity of the test, the number of batches taken to slaughter each quarter, and the number of samples taken per batch. The variability of the predicted seroprevalence was reduced as the number of batches or samples increased and, away from the cutoff points, the probability of being assigned the correct ZAP level increased as the number of batches or samples increased. In summary, the model described here provided invaluable insight into the ZAP sampling protocol. Further work is required to understand the impact of the program for Salmonella infection in British pig farms and therefore on human health.

  13. Meta-analysis of chicken--salmonella infection experiments.

    PubMed

    Te Pas, Marinus F W; Hulsegge, Ina; Schokker, Dirkjan; Smits, Mari A; Fife, Mark; Zoorob, Rima; Endale, Marie-Laure; Rebel, Johanna M J

    2012-04-24

    Chicken meat and eggs can be a source of human zoonotic pathogens, especially Salmonella species. These food items contain a potential hazard for humans. Chickens lines differ in susceptibility for Salmonella and can harbor Salmonella pathogens without showing clinical signs of illness. Many investigations including genomic studies have examined the mechanisms how chickens react to infection. Apart from the innate immune response, many physiological mechanisms and pathways are reported to be involved in the chicken host response to Salmonella infection. The objective of this study was to perform a meta-analysis of diverse experiments to identify general and host specific mechanisms to the Salmonella challenge. Diverse chicken lines differing in susceptibility to Salmonella infection were challenged with different Salmonella serovars at several time points. Various tissues were sampled at different time points post-infection, and resulting host transcriptional differences investigated using different microarray platforms. The meta-analysis was performed with the R-package metaMA to create lists of differentially regulated genes. These gene lists showed many similarities for different chicken breeds and tissues, and also for different Salmonella serovars measured at different times post infection. Functional biological analysis of these differentially expressed gene lists revealed several common mechanisms for the chicken host response to Salmonella infection. The meta-analysis-specific genes (i.e. genes found differentially expressed only in the meta-analysis) confirmed and expanded the biological functional mechanisms. The meta-analysis combination of heterogeneous expression profiling data provided useful insights into the common metabolic pathways and functions of different chicken lines infected with different Salmonella serovars.

  14. 78 FR 42526 - Salmonella

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-D-0254] Salmonella Contamination of Dry Dog Food; Withdrawal of Compliance Policy Guide AGENCY: Food and Drug... entitled ``Sec. 690.700 Salmonella Contamination of Dry Dog Food (CPG 690.700)'' on October 1, 1980. CPG...

  15. Autophagy Facilitates Salmonella Replication in HeLa Cells

    PubMed Central

    Yu, Hong B.; Croxen, Matthew A.; Marchiando, Amanda M.; Ferreira, Rosana B. R.; Cadwell, Ken; Foster, Leonard J.; Finlay, B. Brett

    2014-01-01

    ABSTRACT Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. PMID:24618251

  16. Salmonella Persistence in Tomatoes Requires a Distinct Set of Metabolic Functions Identified by Transposon Insertion Sequencing.

    PubMed

    de Moraes, Marcos H; Desai, Prerak; Porwollik, Steffen; Canals, Rocio; Perez, Daniel R; Chu, Weiping; McClelland, Michael; Teplitski, Max

    2017-03-01

    Human enteric pathogens, such as Salmonella spp. and verotoxigenic Escherichia coli , are increasingly recognized as causes of gastroenteritis outbreaks associated with the consumption of fruits and vegetables. Persistence in plants represents an important part of the life cycle of these pathogens. The identification of the full complement of Salmonella genes involved in the colonization of the model plant (tomato) was carried out using transposon insertion sequencing analysis. With this approach, 230,000 transposon insertions were screened in tomato pericarps to identify loci with reduction in fitness, followed by validation of the screen results using competition assays of the isogenic mutants against the wild type. A comparison with studies in animals revealed a distinct plant-associated set of genes, which only partially overlaps with the genes required to elicit disease in animals. De novo biosynthesis of amino acids was critical to persistence within tomatoes, while amino acid scavenging was prevalent in animal infections. Fitness reduction of the Salmonella amino acid synthesis mutants was generally more severe in the tomato rin mutant, which hyperaccumulates certain amino acids, suggesting that these nutrients remain unavailable to Salmonella spp. within plants. Salmonella lipopolysaccharide (LPS) was required for persistence in both animals and plants, exemplifying some shared pathogenesis-related mechanisms in animal and plant hosts. Similarly to phytopathogens, Salmonella spp. required biosynthesis of amino acids, LPS, and nucleotides to colonize tomatoes. Overall, however, it appears that while Salmonella shares some strategies with phytopathogens and taps into its animal virulence-related functions, colonization of tomatoes represents a distinct strategy, highlighting this pathogen's flexible metabolism. IMPORTANCE Outbreaks of gastroenteritis caused by human pathogens have been increasingly associated with foods of plant origin, with tomatoes being

  17. Salmonella Persistence in Tomatoes Requires a Distinct Set of Metabolic Functions Identified by Transposon Insertion Sequencing

    PubMed Central

    Desai, Prerak; Porwollik, Steffen; Canals, Rocio; Perez, Daniel R.; Chu, Weiping; McClelland, Michael; Teplitski, Max

    2016-01-01

    ABSTRACT Human enteric pathogens, such as Salmonella spp. and verotoxigenic Escherichia coli, are increasingly recognized as causes of gastroenteritis outbreaks associated with the consumption of fruits and vegetables. Persistence in plants represents an important part of the life cycle of these pathogens. The identification of the full complement of Salmonella genes involved in the colonization of the model plant (tomato) was carried out using transposon insertion sequencing analysis. With this approach, 230,000 transposon insertions were screened in tomato pericarps to identify loci with reduction in fitness, followed by validation of the screen results using competition assays of the isogenic mutants against the wild type. A comparison with studies in animals revealed a distinct plant-associated set of genes, which only partially overlaps with the genes required to elicit disease in animals. De novo biosynthesis of amino acids was critical to persistence within tomatoes, while amino acid scavenging was prevalent in animal infections. Fitness reduction of the Salmonella amino acid synthesis mutants was generally more severe in the tomato rin mutant, which hyperaccumulates certain amino acids, suggesting that these nutrients remain unavailable to Salmonella spp. within plants. Salmonella lipopolysaccharide (LPS) was required for persistence in both animals and plants, exemplifying some shared pathogenesis-related mechanisms in animal and plant hosts. Similarly to phytopathogens, Salmonella spp. required biosynthesis of amino acids, LPS, and nucleotides to colonize tomatoes. Overall, however, it appears that while Salmonella shares some strategies with phytopathogens and taps into its animal virulence-related functions, colonization of tomatoes represents a distinct strategy, highlighting this pathogen's flexible metabolism. IMPORTANCE Outbreaks of gastroenteritis caused by human pathogens have been increasingly associated with foods of plant origin, with tomatoes

  18. In vitro studies of chicken egg yolk antibody (IgY) against Salmonella enteritidis and Salmonella typhimurium.

    PubMed

    Lee, E N; Sunwoo, H H; Menninen, K; Sim, J S

    2002-05-01

    Chicken egg yolk antibody (IgY) raised against Salmonella enteritidis or Salmonella typhimurium was found in highly specific activity levels by ELISA. S. enteritidis- and S. typhimurium-specific IgY powder, prepared by freeze-drying the egg yolk water-soluble fraction, contained 15.5 and 10.0% of specific IgY, respectively. Anti-S. enteritidis IgY cross-reacted 55.3% with S. typhimurium. The cross-reactivity of anti-S. typhimurium IgY with S. enteritidis was 42.4%. Salmonella-specific IgY was demonstrated to inhibit Salmonella growth in liquid medium. The growth rate of S. enteritidis incubated with S. enteritidis-specific IgY was fourfold less than that of the control group during a 4-to-6-h incubation. Cell counts of S. typhimurium incubated with S. typhimurium-specific IgY were reduced by 1.6 log cfu/mL in comparison to that of the control group after 6 h of incubation. The specific binding activity of IgY was further evaluated by using immunofluorescence and immunoelectron microscopy. It was found that Salmonella-specific IgY could bind to the antigens expressed on the Salmonella surface, resulting in structural alterations of the bacterial surface.

  19. Characterization of Anti-Salmonella enterica Serotype Typhi Antibody Responses in Bacteremic Bangladeshi Patients Using Immuno-affinity Proteomic-based Technology (IPT)

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serotype Typhi (S. Typhi) is the cause of typhoid fever and a human-restricted pathogen. Currently available typhoid vaccines provide only 50-75% protection for 2-5 years, and available diagnostic assays to identify individuals with typhoid fever lack both sensitivity and specifi...

  20. Salmonella L-forms: formation in human bile in vitro and isolation culture from patients' gallbladder samples by a non-high osmotic isolation technique.

    PubMed

    Wang, D N; Wu, W J; Wang, T; Pan, Y Z; Tang, K L; She, X L; Ding, W J; Wang, H

    2015-05-01

    Bacterial L-forms have always been considered as osmotic-pressure-sensitive cell-wall-deficient bacteria and isolation culture of L-forms must use media with high osmotic pressure. However, isolation culture of stable L-forms formed in humans and animals is very difficult because they have adapted to the physiological osmotic pressure condition of the host. We use a non-high osmotic isolation technique to isolate stable L-forms of Salmonella Typhi and Salmonella Paratyphi A from bile-inducer cultures in vitro and from patients' gallbladder specimens. Multiplex PCR assay for Salmonella-specific genes and nucleotide sequencing are used to identify the Salmonella L-forms in stable L-form isolates. Using this method, we confirmed that Salmonella Paratyphi A and Salmonella Typhi cannot be isolated from bile-inducer cultures cultured for 6 h or 48 h, but the L-forms can be isolated from 1 h to 45 days. In the 524 gallbladder samples, the positive rate for bacterial forms was 19.7% and the positive rate for Salmonella spp. was 0.6% by routine bacteriological methods. The positive rate for bacterial L-forms was 75.4% using non-high osmotic isolation culture. In the L-form isolates, the positive rate of Salmonella invA gene was 3.1%. In these invA-positive L-form isolates, four were positive for the invA and flic-d genes of Salmonella Typhi, and ten were positive for the invA and flic-a genes of Salmonella Paratyphi A. Copyright © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  1. Comparison of a real-time PCR method with a culture method for the detection of Salmonella enterica serotype enteritidis in naturally contaminated environmental samples from integrated poultry houses.

    PubMed

    Lungu, Bwalya; Waltman, W Douglas; Berghaus, Roy D; Hofacre, Charles L

    2012-04-01

    Conventional culture methods have traditionally been considered the "gold standard" for the isolation and identification of foodborne bacterial pathogens. However, culture methods are labor-intensive and time-consuming. A Salmonella enterica serotype Enteritidis-specific real-time PCR assay that recently received interim approval by the National Poultry Improvement Plan for the detection of Salmonella Enteritidis was evaluated against a culture method that had also received interim National Poultry Improvement Plan approval for the analysis of environmental samples from integrated poultry houses. The method was validated with 422 field samples collected by either the boot sock or drag swab method. The samples were cultured by selective enrichment in tetrathionate broth followed by transfer onto a modified semisolid Rappaport-Vassiliadis medium and then plating onto brilliant green with novobiocin and xylose lysine brilliant Tergitol 4 plates. One-milliliter aliquots of the selective enrichment broths from each sample were collected for DNA extraction by the commercial PrepSEQ nucleic acid extraction assay and analysis by the Salmonella Enteritidis-specific real-time PCR assay. The real-time PCR assay detected no significant differences between the boot sock and drag swab samples. In contrast, the culture method detected a significantly higher number of positive samples from boot socks. The diagnostic sensitivity of the real-time PCR assay for the field samples was significantly higher than that of the culture method. The kappa value obtained was 0.46, indicating moderate agreement between the real-time PCR assay and the culture method. In addition, the real-time PCR method had a turnaround time of 2 days compared with 4 to 8 days for the culture method. The higher sensitivity as well as the reduction in time and labor makes this real-time PCR assay an excellent alternative to conventional culture methods for diagnostic purposes, surveillance, and research studies

  2. MUTATIONAL AND TRANSCRIPTIONAL RESPONSE OF SALMONELLA TO MX: CORRELATION OF MUTATIONAL DOSE RESPONSE TO CHANGES IN GENE EXPRESSION

    EPA Science Inventory

    We measured the mutational and transcriptional response of Salmonella TA100 to 3 concentrations of the drinking water mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy2(5H)-furanone (MX). The mutagenicity of MX in strain TA100 was evaluated in a 30min suspension assay, and the mutage...

  3. A novel duplex real-time reverse transcriptase-polymerase chain reaction assay for the detection of hepatitis C viral RNA with armored RNA as internal control

    PubMed Central

    2010-01-01

    Background The hepatitis C virus (HCV) genome is extremely heterogeneous. Several HCV infections can not be detected using currently available commercial assays, probably because of mismatches between the template and primers/probes. By aligning the HCV sequences, we developed a duplex real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay using 2 sets of primers/probes and a specific armored RNA as internal control. The 2 detection probes were labelled with the same fluorophore, namely, 6-carboxyfluorescein (FAM), at the 5' end; these probes could mutually combine, improving the power of the test. Results The limit of detection of the duplex primer/probe assay was 38.99 IU/ml. The sensitivity of the assay improved significantly, while the specificity was not affected. All HCV genotypes in the HCV RNA Genotype Panel for Nucleic Acid Amplification Techniques could be detected. In the testing of 109 serum samples, the performance of the duplex real-time RT-PCR assay was identical to that of the COBAS AmpliPrep (CAP)/COBAS TaqMan (CTM) assay and superior to 2 commercial HCV assay kits. Conclusions The duplex real-time RT-PCR assay is an efficient and effective viral assay. It is comparable with the CAP/CTM assay with regard to the power of the test and is appropriate for blood-donor screening and laboratory diagnosis of HCV infection. PMID:20529244

  4. Effects of Climate Change on Salmonella Infections

    PubMed Central

    Akil, Luma; Reddy, Remata S.

    2014-01-01

    Abstract Background: Climate change and global warming have been reported to increase spread of foodborne pathogens. To understand these effects on Salmonella infections, modeling approaches such as regression analysis and neural network (NN) were used. Methods: Monthly data for Salmonella outbreaks in Mississippi (MS), Tennessee (TN), and Alabama (AL) were analyzed from 2002 to 2011 using analysis of variance and time series analysis. Meteorological data were collected and the correlation with salmonellosis was examined using regression analysis and NN. Results: A seasonal trend in Salmonella infections was observed (p<0.001). Strong positive correlation was found between high temperature and Salmonella infections in MS and for the combined states (MS, TN, AL) models (R2=0.554; R2=0.415, respectively). NN models showed a strong effect of rise in temperature on the Salmonella outbreaks. In this study, an increase of 1°F was shown to result in four cases increase of Salmonella in MS. However, no correlation between monthly average precipitation rate and Salmonella infections was observed. Conclusion: There is consistent evidence that gastrointestinal infection with bacterial pathogens is positively correlated with ambient temperature, as warmer temperatures enable more rapid replication. Warming trends in the United States and specifically in the southern states may increase rates of Salmonella infections. PMID:25496072

  5. Effects of climate change on Salmonella infections.

    PubMed

    Akil, Luma; Ahmad, H Anwar; Reddy, Remata S

    2014-12-01

    Climate change and global warming have been reported to increase spread of foodborne pathogens. To understand these effects on Salmonella infections, modeling approaches such as regression analysis and neural network (NN) were used. Monthly data for Salmonella outbreaks in Mississippi (MS), Tennessee (TN), and Alabama (AL) were analyzed from 2002 to 2011 using analysis of variance and time series analysis. Meteorological data were collected and the correlation with salmonellosis was examined using regression analysis and NN. A seasonal trend in Salmonella infections was observed (p<0.001). Strong positive correlation was found between high temperature and Salmonella infections in MS and for the combined states (MS, TN, AL) models (R(2)=0.554; R(2)=0.415, respectively). NN models showed a strong effect of rise in temperature on the Salmonella outbreaks. In this study, an increase of 1°F was shown to result in four cases increase of Salmonella in MS. However, no correlation between monthly average precipitation rate and Salmonella infections was observed. There is consistent evidence that gastrointestinal infection with bacterial pathogens is positively correlated with ambient temperature, as warmer temperatures enable more rapid replication. Warming trends in the United States and specifically in the southern states may increase rates of Salmonella infections.

  6. Two Novel Real-Time Reverse Transcriptase PCR Assays for Rapid Detection of Bacterial Contamination in Platelet Concentrates

    PubMed Central

    Dreier, Jens; Störmer, Melanie; Kleesiek, Knut

    2004-01-01

    The incidence of platelet bacterial contamination is approximately 1 per 2,000 units and has been acknowledged as the most frequent infectious risk from transfusion. In preliminary studies, the sterility of platelet concentrates (PCs) was tested with an automated bacterial blood culturing system and molecular genetic assays. Two real-time reverse transcriptase PCR (RT-PCR) assays performed in a LightCycler instrument were developed and compared regarding specificity and sensitivity by the use of different templates to detect the majority of the clinically important bacterial species in platelets. Primers and probes specific for the conserved regions of the eubacterial 23S rRNA gene or the groEL gene (encoding the 60-kDa heat shock protein Hsp60) were designed. During the development of the 23S rRNA RT-PCR, problems caused by the contamination of reagents with bacterial DNA were noted. Treatment with 8-methoxypsoralen and UV irradiation reduced the level of contaminating DNA. The sensitivity of the assays was greatly influenced by the enzyme system which was used. With rTth DNA polymerase in a one-enzyme system, we detected 500 CFU of Escherichia coli or Staphylococcus epidermidis/ml. With a two-enzyme system consisting of Moloney murine leukemia virus RT and Taq DNA polymerase, we detected 16 CFU/ml. With groEL mRNA as the target of RT-PCR under optimized conditions, we detected 125 CFU of E. coli/ml, and no problems with false-positive results caused by reagent contamination or a cross-reaction with human nucleic acids were found. Furthermore, the use of mRNA as an indicator of viability was demonstrated. Here we report the application of novel real-time RT-PCR assays for the detection of bacterial contamination of PCs that are appropriate for transfusion services. PMID:15472337

  7. Development of a Real-Time Reverse Transcription-PCR Assay for Global Differentiation of Yellow Fever Virus Vaccine-Related Adverse Events from Natural Infections.

    PubMed

    Hughes, Holly R; Russell, Brandy J; Mossel, Eric C; Kayiwa, John; Lutwama, Julius; Lambert, Amy J

    2018-06-01

    Yellow fever (YF) is a reemerging public health threat, with frequent outbreaks prompting large vaccination campaigns in regions of endemicity in Africa and South America. Specific detection of vaccine-related adverse events is resource-intensive, time-consuming, and difficult to achieve during an outbreak. To address this, we have developed a highly transferable rapid yellow fever virus (YFV) vaccine-specific real-time reverse transcription-PCR (RT-PCR) assay that distinguishes vaccine from wild-type lineages. The assay utilizes a specific hydrolysis probe that includes locked nucleic acids to enhance specific discrimination of the YFV17D vaccine strain genome. Promisingly, sensitivity and specificity analyses reveal this assay to be highly specific to vaccine strain(s) when tested on clinical samples and YFV cell culture isolates of global origin. Taken together, our data suggest the utility of this assay for use in laboratories of varied capacity for the identification and differentiation of vaccine-related adverse events from wild-type infections of both African and South American origin. Copyright © 2018 American Society for Microbiology.

  8. The Bimodal Lifestyle of Intracellular Salmonella in Epithelial Cells: Replication in the Cytosol Obscures Defects in Vacuolar Replication

    PubMed Central

    Steele-Mortimer, Olivia

    2012-01-01

    Salmonella enterica serovar Typhimurium invades and proliferates within epithelial cells. Intracellular bacteria replicate within a membrane bound vacuole known as the Salmonella containing vacuole. However, this bacterium can also replicate efficiently in the cytosol of epithelial cells and net intracellular growth is a product of both vacuolar and cytosolic replication. Here we have used semi-quantitative single-cell analyses to investigate the contribution of each of these replicative niches to intracellular proliferation in cultured epithelial cells. We show that cytosolic replication can account for the majority of net replication even though it occurs in less than 20% of infected cells. Consequently, assays for net growth in a population of infected cells, for example by recovery of colony forming units, are not good indicators of vacuolar proliferation. We also show that the Salmonella Type III Secretion System 2, which is required for SCV biogenesis, is not required for cytosolic replication. Altogether this study illustrates the value of single cell analyses when studying intracellular pathogens. PMID:22719929

  9. Surveillance for human Salmonella infections in the United States.

    PubMed

    Swaminathan, Bala; Barrett, Timothy J; Fields, Patricia

    2006-01-01

    Surveillance for human Salmonella infections plays a critical role in understanding and controlling foodborne illness due to Salmonella. Along with its public health partners, the Centers for Disease Control and Prevention (CDC) has several surveillance systems that collect information on Salmonella infections in the United States. The National Salmonella Surveillance System, begun in 1962, receives reports of laboratory-confirmed Salmonella infections through state public health laboratories. Salmonella outbreaks are reported by state and local health departments through the Foodborne Disease Outbreak Reporting System, which became a Web-based, electronic system (eFORS) in 2001. PulseNet facilitates the detection of clusters of Salmonella infections through standardized molecular subtyping (DNA "fingerprinting") of isolates and maintenance of "fingerprint" databases. The National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS) monitors antimicrobial resistance in Salmonella by susceptibility testing of every 20th Salmonella isolate received by state and local public health laboratories. FootNet is an active surveillance system that monitors Salmonella infections in sentinel areas, providing population-based estimates of infection rates. Efforts are underway to electronically link all of the Salmonella surveillance systems at CDC to facilitate optimum use of available data and minimize duplication.

  10. Development of a reverse transcription recombinase-aided amplification assay for the detection of coxsackievirus A10 and coxsackievirus A6 RNA.

    PubMed

    Yan, Teng-Fei; Li, Xin-Na; Wang, Le; Chen, Chen; Duan, Su-Xia; Qi, Ju-Ju; Li, Li-Xin; Ma, Xue-Jun

    2018-06-01

    Hand, foot and mouth disease (HFMD) is a serious public health problem, and coxsackievirus A6 (CVA6) and coxsackievirus A10 (CVA10) are two of the major causative pathogens, in addition to enterovirus 71 (EV71) and coxsackievirus A16 (CVA16). A simple and rapid reverse transcription recombinase-aided amplification assay (RT-RAA) was developed for the detection of CVA10 and CVA6 in this study. The analytical sensitivity for detection of CVA10 and CVA6 at 95% probability by probit regression analysis was 35 copies per reaction and 38 copies per reaction, respectively, with 100% specificity. Compared with commercial RT-qPCR assays, when testing 455 fecal specimens, the kappa value of the RT-RAA assay for CVA10 and CVA6 was 0.920 (p < 0.001) and 0.952 (p < 0.001), respectively. Moreover, four samples that were positive for CVA10 and five that were positive for CVA6 by RT-RAA but negative by RT-qPCR were further determined to be true positives. These results demonstrate that the proposed RT-RAA assays are very valuable tools for the detection of CVA10 and CVA6 and have potential for use in resource-limited settings.

  11. Testing Feeds for Salmonella.

    USDA-ARS?s Scientific Manuscript database

    Human salmonellosis outbreaks have been linked to contamination of animal feeds. Thus it is crucial to employ sensitive Salmonella detection methods for animal feeds. Based on a review of the literature, Salmonella sustains acid injury at about pH 4.0 to5.0. Low pH can also alter the metabolism of S...

  12. Salmonella-secreted Virulence Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heffron, Fred; Niemann, George; Yoon, Hyunjin

    In this short review we discuss secreted virulence factors of Salmonella, which directly affect Salmonella interaction with its host. Salmonella secretes protein to subvert host defenses but also, as discussed, to reduce virulence thereby permitting the bacteria to persist longer and more successfully disperse. The type III secretion system (TTSS) is the best known and well studied of the mechanisms that enable secretion from the bacterial cytoplasm to the host cell cytoplasm. Other secretion systems include outer membrane vesicles, which are present in all Gram-negative bacteria examined to date, two-partner secretion, and type VI secretion will also be addressed. Excellentmore » reviews of Salmonella secreted effectors have focused on themes such as actin rearrangements, vesicular trafficking, ubiquitination, and the activities of the virulence factors themselves. This short review is based on S. Typhimurium infection of mice because it is a model of typhoid like disease in humans. We have organized effectors in terms of events that happen during the infection cycle and how secreted effectors may be involved.« less

  13. Real-time PCR method combined with immunomagnetic separation for detecting healthy and heat-injured Salmonella Typhimurium on raw duck wings.

    PubMed

    Zheng, Qianwang; Mikš-Krajnik, Marta; Yang, Yishan; Xu, Wang; Yuk, Hyun-Gyun

    2014-09-01

    Conventional culture detection methods are time consuming and labor-intensive. For this reason, an alternative rapid method combining real-time PCR and immunomagnetic separation (IMS) was investigated in this study to detect both healthy and heat-injured Salmonella Typhimurium on raw duck wings. Firstly, the IMS method was optimized by determining the capture efficiency of Dynabeads(®) on Salmonella cells on raw duck wings with different bead incubation (10, 30 and 60 min) and magnetic separation (3, 10 and 30 min) times. Secondly, three Taqman primer sets, Sal, invA and ttr, were evaluated to optimize the real-time PCR protocol by comparing five parameters: inclusivity, exclusivity, PCR efficiency, detection probability and limit of detection (LOD). Thirdly, the optimized real-time PCR, in combination with IMS (PCR-IMS) assay, was compared with a standard ISO and a real-time PCR (PCR) method by analyzing artificially inoculated raw duck wings with healthy and heat-injured Salmonella cells at 10(1) and 10(0) CFU/25 g. Finally, the optimized PCR-IMS assay was validated for Salmonella detection in naturally contaminated raw duck wing samples. Under optimal IMS conditions (30 min bead incubation and 3 min magnetic separation times), approximately 85 and 64% of S. Typhimurium cells were captured by Dynabeads® from pure culture and inoculated raw duck wings, respectively. Although Sal and ttr primers exhibited 100% inclusivity and exclusivity for 16 Salmonella spp. and 36 non-Salmonella strains, the Sal primer showed lower LOD (10(3) CFU/ml) and higher PCR efficiency (94.1%) than the invA and ttr primers. Moreover, for Sal and invA primers, 100% detection probability on raw duck wings suspension was observed at 10(3) and 10(4) CFU/ml with and without IMS, respectively. Thus, the Sal primer was chosen for further experiments. The optimized PCR-IMS method was significantly (P=0.0011) better at detecting healthy Salmonella cells after 7-h enrichment than traditional PCR

  14. Characterization of Anti-Salmonella enterica Serotype Typhi Antibody Responses in Bacteremic Bangladeshi Patients by an Immuno-affinity Proteomic-based Technology (IPT)

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serotype Typhi (S. Typhi) is the cause of typhoid fever and a human-restricted pathogen. Currently available typhoid vaccines provide only 50-75% protection for 2-5 years, and available diagnostic assays to identify individuals with typhoid fever lack both sensitivity and specif...

  15. Comparison of Cultivation and PCR-Hybridization for Detection of Salmonella in Porcine Fecal and Water Samples†

    PubMed Central

    Feder, Ingrid; Nietfeld, Jerome C.; Galland, John; Yeary, Teresa; Sargeant, Jan M.; Oberst, Richard; Tamplin, Mark L.; Luchansky, John B.

    2001-01-01

    Salmonella detection using cultivation without preenrichment and detection by PCR was about 6%; the PCR assay detected 80% (20 of 25) of the 25 positive samples, while Salmonella bacteria were recovered from only 44% (11 of 25) by cultivation. Our results indicate that the PCR-hybridization approach is equivalent to or better than cultivation for detecting Salmonella in swine feces or water samples from swine farms when using the medium combinations evaluated in this study. PMID:11427557

  16. Nitric Oxide as a Biomarker of Intracellular Salmonella Viability and Identification of the Bacteriostatic Activity of Protein Kinase A Inhibitor H-89

    PubMed Central

    He, Haiqi; Genovese, Kenneth J.; Swaggerty, Christina L.; Nisbet, David J.; Kogut, Michael H.

    2013-01-01

    Salmonella enterica serovar Enteritidis is one of the most prevalent Salmonella serovars in poultry and is often associated with human salmonellosis. S. Enteritidis is known to suppress nitric oxide (NO) production in infected chicken macrophage HD11 cells, while dead S. Enteritidis stimulates a high level of NO production, suggesting a bacterial inhibitory effect on NO production. Based on these observations, the present study was conducted to evaluate whether NO production in S. Enteritidis-infected HD11 cells can be used as a biomarker to identify molecules that kill intracellular Salmonella. Since Salmonella are known to manipulate the host cell kinase network to facilitate intracellular survival, we screened a group of pharmaceutical inhibitors of various kinases to test our hypothesis. A protein kinase A inhibitor, H-89, was found to reverse the suppression of NO production in S. Enteritidis-infected HD11 cells. Production of NO in S. Enteritidis-infected HD11 cells increased significantly following treatment with H-89 at or above 20 µM. Inversely, the number of viable intracellular Salmonella decreased significantly in cells treated with H-89 at or above 30 µM. Furthermore, the growth rate of S. Enteritidis in culture was significantly inhibited by H-89 at concentrations from 20 to 100 µM. Our results demonstrate that NO-based screening using S. Enteritidis-infected HD11 cells is a viable tool to identify chemicals with anti-intracellular Salmonella activity. Using this method, we have shown H-89 has bacteriostatic activity against Salmonella, independent of host cell protein kinase A or Akt1 activity. PMID:23554945

  17. Nitric oxide as a biomarker of intracellular Salmonella viability and identification of the bacteriostatic activity of protein kinase A inhibitor H-89.

    PubMed

    He, Haiqi; Genovese, Kenneth J; Swaggerty, Christina L; Nisbet, David J; Kogut, Michael H

    2013-01-01

    Salmonella enterica serovar Enteritidis is one of the most prevalent Salmonella serovars in poultry and is often associated with human salmonellosis. S. Enteritidis is known to suppress nitric oxide (NO) production in infected chicken macrophage HD11 cells, while dead S. Enteritidis stimulates a high level of NO production, suggesting a bacterial inhibitory effect on NO production. Based on these observations, the present study was conducted to evaluate whether NO production in S. Enteritidis-infected HD11 cells can be used as a biomarker to identify molecules that kill intracellular Salmonella. Since Salmonella are known to manipulate the host cell kinase network to facilitate intracellular survival, we screened a group of pharmaceutical inhibitors of various kinases to test our hypothesis. A protein kinase A inhibitor, H-89, was found to reverse the suppression of NO production in S. Enteritidis-infected HD11 cells. Production of NO in S. Enteritidis-infected HD11 cells increased significantly following treatment with H-89 at or above 20 µM. Inversely, the number of viable intracellular Salmonella decreased significantly in cells treated with H-89 at or above 30 µM. Furthermore, the growth rate of S. Enteritidis in culture was significantly inhibited by H-89 at concentrations from 20 to 100 µM. Our results demonstrate that NO-based screening using S. Enteritidis-infected HD11 cells is a viable tool to identify chemicals with anti-intracellular Salmonella activity. Using this method, we have shown H-89 has bacteriostatic activity against Salmonella, independent of host cell protein kinase A or Akt1 activity.

  18. Assessment of Salmonella survival in dry-cured Italian salami.

    PubMed

    Bonardi, S; Bruini, I; Bolzoni, L; Cozzolino, P; Pierantoni, M; Brindani, F; Bellotti, P; Renzi, M; Pongolini, S

    2017-12-04

    The inactivation of Salmonella during curing of Italian traditional pork salami was investigated. A total of 150 batches of ground raw meat (GRM) used for salami manufacturing by four producers were tested for Salmonella by real-time PCR followed by ISO 6579 cultural confirmation and MPN enumeration. Salami produced with Salmonella positive GRMs were re-tested at the end of their curing period. Aw, pH and NaCl content were also measured. Detection of Salmonella was performed testing both 25 and 50g of the samples. By Real-Time PCR 37% of the GRMs resulted positive, but cultural detection of Salmonella was obtained in 14% of the samples only. Salmonella enumeration ranged from 31 MPN/g to <1.3 MPN/g. The difference between testing 50g and 25g of the samples was statistically significant (p value≤0.01). In particular, ISO-50g detected Salmonella in 100% of all positive samples, vs. 62% of ISO-25g. Salami made of the contaminated GRMs were 29% Salmonella-positive, as most batches of salami produced with Salmonella-positive GRMs resulted negative after regular curing (20-48days). Overall, 13% of salami produced with Salmonella-contaminated GRMs were positive. They belonged to six batches, which turned out negative after prolonged curing ranging between 49 and 86days. Salmonella enumeration in salami ranged from 8.7 MPN/g to <1.3 MPN/g. Unlike GRMs, no significant difference was observed between the ISO-50g and the ISO-25g in detecting Salmonella in cured salami (p value: >0.05). The most common Salmonella serovars in GRMs were Derby (52%), Typhimurium monophasic variant 4, (Barbuti et al., 1993), 12:i:- (19%) and Stanley (10%). Salmonella Derby (56%), London, Branderup, Panama (13%, respectively) and Goldcoast (6%) were most frequent in cured salami. The study showed negative correlation between real-time CT values and cultural confirmation of Salmonella, as well as the importance of sample size for Salmonella detection. Among considered factors with possible effect

  19. Differential Attachment of Salmonella enterica and Enterohemorrhagic Escherichia coli to Alfalfa, Fenugreek, Lettuce, and Tomato Seeds

    PubMed Central

    Cui, Yue; Walcott, Ronald

    2017-01-01

    ABSTRACT Vegetable seeds have the potential to disseminate and transmit foodborne bacterial pathogens. This study was undertaken to assess the abilities of selected Salmonella and enterohemorrhagic Escherichia coli (EHEC) strains to attach to fungicide-treated versus untreated, and intact versus mechanically damaged, seeds of alfalfa, fenugreek, lettuce, and tomato. Surface-sanitized seeds (2 g) were exposed to four individual strains of Salmonella or EHEC at 20°C for 5 h. Contaminated seeds were rinsed twice, each with 10 ml of sterilized water, before being soaked overnight in 5 ml of phosphate-buffered saline at 4°C. The seeds were then vortexed vigorously for 1 min, and pathogen populations in seed rinse water and soaking buffer were determined using a standard plate count assay. In general, the Salmonella cells had higher attachment ratios than the EHEC cells. Lettuce seeds by unit weight had the highest numbers of attached Salmonella or EHEC cells, followed by tomato, alfalfa, and fenugreek seeds. In contrast, individual fenugreek seeds had more attached pathogen cells, followed by lettuce, alfalfa, and tomato seeds. Significantly more Salmonella and EHEC cells attached to mechanically damaged seeds than to intact seeds (P < 0.05). Although, on average, significantly more Salmonella and EHEC cells were recovered from untreated than fungicide-treated seeds (P < 0.05), fungicide treatment did not significantly affect the attachment of individual bacterial strains to vegetable seeds (P > 0.05), with a few exceptions. This study fills gaps in the current body of literature and helps explain bacterial interactions with vegetable seeds with differing surface characteristics. IMPORTANCE Vegetable seeds, specifically sprout seeds, have the potential to disseminate and transmit foodborne bacterial pathogens. This study investigated the interaction between two important bacterial pathogens, i.e., Salmonella and EHEC, and vegetable seeds with differing surface

  20. Differential Attachment of Salmonella enterica and Enterohemorrhagic Escherichia coli to Alfalfa, Fenugreek, Lettuce, and Tomato Seeds.

    PubMed

    Cui, Yue; Walcott, Ronald; Chen, Jinru

    2017-04-01

    Vegetable seeds have the potential to disseminate and transmit foodborne bacterial pathogens. This study was undertaken to assess the abilities of selected Salmonella and enterohemorrhagic Escherichia coli (EHEC) strains to attach to fungicide-treated versus untreated, and intact versus mechanically damaged, seeds of alfalfa, fenugreek, lettuce, and tomato. Surface-sanitized seeds (2 g) were exposed to four individual strains of Salmonella or EHEC at 20°C for 5 h. Contaminated seeds were rinsed twice, each with 10 ml of sterilized water, before being soaked overnight in 5 ml of phosphate-buffered saline at 4°C. The seeds were then vortexed vigorously for 1 min, and pathogen populations in seed rinse water and soaking buffer were determined using a standard plate count assay. In general, the Salmonella cells had higher attachment ratios than the EHEC cells. Lettuce seeds by unit weight had the highest numbers of attached Salmonella or EHEC cells, followed by tomato, alfalfa, and fenugreek seeds. In contrast, individual fenugreek seeds had more attached pathogen cells, followed by lettuce, alfalfa, and tomato seeds. Significantly more Salmonella and EHEC cells attached to mechanically damaged seeds than to intact seeds ( P < 0.05). Although, on average, significantly more Salmonella and EHEC cells were recovered from untreated than fungicide-treated seeds ( P < 0.05), fungicide treatment did not significantly affect the attachment of individual bacterial strains to vegetable seeds ( P > 0.05), with a few exceptions. This study fills gaps in the current body of literature and helps explain bacterial interactions with vegetable seeds with differing surface characteristics. IMPORTANCE Vegetable seeds, specifically sprout seeds, have the potential to disseminate and transmit foodborne bacterial pathogens. This study investigated the interaction between two important bacterial pathogens, i.e., Salmonella and EHEC, and vegetable seeds with differing surface

  1. Evaluation of Recombinant Attenuated Salmonella Vaccine Strains for Broad Protection against Extraintestinal Pathogenic Escherichia coli.

    PubMed

    Maddux, Jacob T; Stromberg, Zachary R; Curtiss Iii, Roy; Mellata, Melha

    2017-01-01

    Antibiotic-resistant bacterial infections are difficult to treat, producing a burden on healthcare and the economy. Extraintestinal pathogenic Escherichia coli (ExPEC) strains frequently carry antibiotic resistance genes, cause infections outside of the intestine, and are causative agents of hospital-acquired infections. Developing a prevention strategy against this pathogen is challenging due to its antibiotic resistance and antigenic diversity. E. coli common pilus (ECP) is frequently found in ExPEC strains and may serve as a common antigen to induce protection against several ExPEC serotypes. In addition, live recombinant attenuated Salmonella vaccine (RASV) strains have been used to prevent Salmonella infection and can also be modified to deliver foreign antigens. Thus, the objective of this study was to design a RASV to produce ECP on its surface and assess its ability to provide protection against ExPEC infections. To constitutively display ECP in a RASV strain, we genetically engineered a vector (pYA4428) containing aspartate-β-semialdehyde dehydrogenase and E. coli ecp genes and introduced it into RASV χ9558. RASV χ9558 containing an empty vector (pYA3337) was used as a control to assess protection conferred by the RASV strain without ECP. We assessed vaccine efficacy in in vitro bacterial inhibition assays and mouse models of ExPEC-associated human infections. We found that RASV χ9558(pYA4428) synthesized the major pilin (EcpA) and tip pilus adhesin (EcpD) on the bacterial surface. Mice orally vaccinated with RASV χ9558(pYA3337) without ECP or χ9558(pYA4428) with ECP, produced anti- Salmonella LPS and anti- E. coli EcpA and EcpD IgG and IgA antibodies. RASV strains showed protective potential against some E. coli and Salmonella strains as assessed using in vitro assays. In mouse sepsis and urinary tract infection challenge models, both vaccines had significant protection in some internal organs. Overall, this work showed that RASVs can elicit an

  2. Development and Evaluation of Novel Real-Time Reverse Transcription-PCR Assays with Locked Nucleic Acid Probes Targeting Leader Sequences of Human-Pathogenic Coronaviruses

    PubMed Central

    Chan, Jasper Fuk-Woo; Choi, Garnet Kwan-Yue; Tsang, Alan Ka-Lun; Tee, Kah-Meng; Lam, Ho-Yin; Yip, Cyril Chik-Yan; To, Kelvin Kai-Wang; Cheng, Vincent Chi-Chung; Yeung, Man-Lung; Lau, Susanna Kar-Pui; Woo, Patrick Chiu-Yat; Chan, Kwok-Hung; Tang, Bone Siu-Fai

    2015-01-01

    Based on findings in small RNA-sequencing (Seq) data analysis, we developed highly sensitive and specific real-time reverse transcription (RT)-PCR assays with locked nucleic acid probes targeting the abundantly expressed leader sequences of Middle East respiratory syndrome coronavirus (MERS-CoV) and other human coronaviruses. Analytical and clinical evaluations showed their noninferiority to a commercial multiplex PCR test for the detection of these coronaviruses. PMID:26019210

  3. Salmonella enterica subclinical infection: bacteriological, serological, pulsed-field gel electrophoresis, and antimicrobial resistance profiles--longitudinal study in a three-site farrow-to-finish farm.

    PubMed

    Vigo, German B; Cappuccio, Javier A; Piñeyro, Pablo E; Salve, Angela; Machuca, Mariana A; Quiroga, Maria A; Moredo, Fabiana; Giacoboni, Gabriel; Cancer, Jose L; Caffer, Ines G; Binsztein, Norma; Pichel, Mariana; Perfumo, Carlos J

    2009-10-01

    The aim of this surveillance was to study both Salmonella spp. shedding patterns and the time course of serological response in farrow-to-finish reared pigs from a subclinically infected farm. Antimicrobial resistance profile, molecular subtyping, and the relationship among the isolates were determined by pulsed-field gel electrophoresis (PFGE). A farrow-to-finish farm of 6000 sows, with a history of Salmonella Typhimurium septicemia, was selected. A longitudinal bacteriological and serological study was conducted in 25 sows before farrowing (M/S1) and in 50 offspring at 21 (M/S2), 35 (M/S3), 65 (M/S4), 86 (M/S5), 128 (M/S6), and 165 (M/S7) days of age. Serum antibodies were tested using Herdcheck((R)) Swine Salmonella antibody test kit (Idexx Laboratories, ME). Bacteria were isolated from pooled fecal samples. Suspected isolates were confirmed by conventional biochemical assays, and those identified as Salmonella spp. were serotyped. A variation between seropositive percentages and positive fecal samples was observed. Serologically positive pigs decreased from S1 to S4, and subsequently increased from S4 to S7. The percentages of fecal positive culture increased from M1 to M3, and then declined in M4, increased in M5, and were negative in M6 and M7. In the study three serovars, Salmonella 3,10:e,h:-, Salmonella Muenster, and Salmonella Bovismorbificans, were identified with low pathogenicity for swine. Three multidrug resistance strains (one belonged to Salmonella 3,10:e,h:- and two belonged to Salmonella Muenster) were found. PFGE results showed three different but closely related patterns among the 13 isolates of Salmonella Bovismorbificans, and two patterns for the three Salmonella Muenster and Salmonella 3,10:e,h:- isolates. This longitudinal study established critical points of Salmonella spp. infection in the farm and the production stages, where appropriate control measures must be taken. PFGE showed clonal relationships in each serovar. Antibiotic

  4. Salmonella enterica Subclinical Infection: Bacteriological, Serological, Pulsed-Field Gel Electrophoresis, and Antimicrobial Resistance Profiles—Longitudinal Study in a Three-Site Farrow-to-Finish Farm

    PubMed Central

    Vigo, German B.; Cappuccio, Javier A.; Salve, Angela; Machuca, Mariana A.; Quiroga, Maria A.; Moredo, Fabiana; Giacoboni, Gabriel; Cancer, Jose L.; Caffer, Ines G.; Binsztein, Norma; Pichel, Mariana; Perfumo, Carlos J.

    2009-01-01

    Abstract The aim of this surveillance was to study both Salmonella spp. shedding patterns and the time course of serological response in farrow-to-finish reared pigs from a subclinically infected farm. Antimicrobial resistance profile, molecular subtyping, and the relationship among the isolates were determined by pulsed-field gel electrophoresis (PFGE). A farrow-to-finish farm of 6000 sows, with a history of Salmonella Typhimurium septicemia, was selected. A longitudinal bacteriological and serological study was conducted in 25 sows before farrowing (M/S1) and in 50 offspring at 21 (M/S2), 35 (M/S3), 65 (M/S4), 86 (M/S5), 128 (M/S6), and 165 (M/S7) days of age. Serum antibodies were tested using Herdcheck® Swine Salmonella antibody test kit (Idexx Laboratories, ME). Bacteria were isolated from pooled fecal samples. Suspected isolates were confirmed by conventional biochemical assays, and those identified as Salmonella spp. were serotyped. A variation between seropositive percentages and positive fecal samples was observed. Serologically positive pigs decreased from S1 to S4, and subsequently increased from S4 to S7. The percentages of fecal positive culture increased from M1 to M3, and then declined in M4, increased in M5, and were negative in M6 and M7. In the study three serovars, Salmonella 3,10:e,h:-, Salmonella Muenster, and Salmonella Bovismorbificans, were identified with low pathogenicity for swine. Three multidrug resistance strains (one belonged to Salmonella 3,10:e,h:- and two belonged to Salmonella Muenster) were found. PFGE results showed three different but closely related patterns among the 13 isolates of Salmonella Bovismorbificans, and two patterns for the three Salmonella Muenster and Salmonella 3,10:e,h:- isolates. This longitudinal study established critical points of Salmonella spp. infection in the farm and the production stages, where appropriate control measures must be taken. PFGE showed clonal relationships in each serovar. Antibiotic

  5. Comparison of CHROMagar Salmonella Medium and Hektoen Enteric Agar for Isolation of Salmonellae from Stool Samples

    PubMed Central

    Gaillot, Olivier; Di Camillo, Patrick; Berche, Patrick; Courcol, René; Savage, Colette

    1999-01-01

    CHROMagar Salmonella (CAS), a new chromogenic medium, was retrospectively compared to Hektoen enteric agar (HEA) with 501 Salmonella stock isolates and was then prospectively compared to HEA for the detection and presumptive identification of Salmonella spp. with 508 stool samples before and after enrichment. All stock cultures (100%), including cultures of H2S-negative isolates, yielded typical mauve colonies on CAS, while 497 (99%) isolates produced typical lactose-negative, black-centered colonies on HEA. Following overnight incubation at 37°C, a total of 20 Salmonella strains were isolated from the 508 clinical samples. Sensitivities for primary plating and after enrichment were 95% (19 isolates) and 100% (20 isolates), respectively, for CAS and 80% (16 isolates) and 100% (20 isolates), respectively, for HEA. The specificity of CAS (88.9%) was significantly higher than that of HEA (78.5%; P < 0.0001). On the basis of its good sensitivity and specificity, CAS medium can be recommended for use for primary plating when human stool samples are screened for Salmonella spp. PMID:9986847

  6. A single-tube screen for Salmonella and Shigella.

    PubMed

    Procop, Gary W; Wallace, Jacqueline D; Tuohy, Marion J; Lasalvia, Margret M; Addison, Rachel M; Reller, L Barth

    2008-08-01

    Salmonella and Shigella species are routinely sought in stool specimens submitted for culture. It is a common practice to screen lactose-negative colonies by using triple sugar iron agar, lysine iron agar, and Christensen urea agar to determine if further identification is necessary. We designed and evaluated a novel combination of media, which are layered in a single tube, for screening isolates suspected to possibly represent Salmonella or Shigella. We tested this media combination with 106 Salmonella, 56 Shigella, and 56 other gram-negative bacilli. All Salmonella and Shigella isolates tested were appropriately characterized as possible Salmonella or Shigella by using an algorithm developed for use with this media combination. Similarly, 53 (95%) of 56 other gram-negative bacilli were appropriately screened as non -Salmonella and non -Shigella isolates. This unique media combination provides the most important biochemical reactions needed to screen for Salmonella and Shigella in a single-tube format, which decreases labor by two thirds (ie, 1 tube is inoculated vs 3).

  7. Multiplex PCR for simultaneous identification of E. coli O157:H7, Salmonella spp. and L. monocytogenes in food.

    PubMed

    Nguyen, Thuy Trang; Van Giau, Vo; Vo, Tuong Kha

    2016-12-01

    The rapid detection of pathogens in food is becoming increasingly critical for ensuring the safety of consumers, since the majority of food-borne illnesses and deaths are caused by pathogenic bacteria. Hence, rapid, sensitive, inexpensive and convenient approaches to detect food-borne pathogenic bacteria is essential in controlling food safety. In this study, a multiplex PCR assay for the rapid and simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes was established. The invA, stx and hlyA genes specifically amplified DNA fragments of 284, 404 and 510 bp from Salmonella spp., L. monocytogenes and E. coli O157:H7, respectively. The 16S rRNA gene was targeted as an internal control gene in the presence of bacterial DNA. The specificity and sensitivity of the multiplex PCR were performed by testing different strains. The multiplex PCR assay was able to specifically simultaneously detect ten colony-forming unit/mL of each pathogen in artificially inoculated samples after enrichment for 12 h. The whole process took less than 24 h to complete, indicating that the assay is suitable for reliable and rapid identification of these three food-borne pathogens, which could be suitable in microbial epidemiology investigation.

  8. Meta-analysis of Chicken – Salmonella infection experiments

    PubMed Central

    2012-01-01

    Background Chicken meat and eggs can be a source of human zoonotic pathogens, especially Salmonella species. These food items contain a potential hazard for humans. Chickens lines differ in susceptibility for Salmonella and can harbor Salmonella pathogens without showing clinical signs of illness. Many investigations including genomic studies have examined the mechanisms how chickens react to infection. Apart from the innate immune response, many physiological mechanisms and pathways are reported to be involved in the chicken host response to Salmonella infection. The objective of this study was to perform a meta-analysis of diverse experiments to identify general and host specific mechanisms to the Salmonella challenge. Results Diverse chicken lines differing in susceptibility to Salmonella infection were challenged with different Salmonella serovars at several time points. Various tissues were sampled at different time points post-infection, and resulting host transcriptional differences investigated using different microarray platforms. The meta-analysis was performed with the R-package metaMA to create lists of differentially regulated genes. These gene lists showed many similarities for different chicken breeds and tissues, and also for different Salmonella serovars measured at different times post infection. Functional biological analysis of these differentially expressed gene lists revealed several common mechanisms for the chicken host response to Salmonella infection. The meta-analysis-specific genes (i.e. genes found differentially expressed only in the meta-analysis) confirmed and expanded the biological functional mechanisms. Conclusions The meta-analysis combination of heterogeneous expression profiling data provided useful insights into the common metabolic pathways and functions of different chicken lines infected with different Salmonella serovars. PMID:22531008

  9. A field based detection method for Rose rosette virus using isothermal probe-based Reverse transcription-recombinase polymerase amplification assay.

    PubMed

    Babu, Binoy; Washburn, Brian K; Ertek, Tülin Sarigül; Miller, Steven H; Riddle, Charles B; Knox, Gary W; Ochoa-Corona, Francisco M; Olson, Jennifer; Katırcıoğlu, Yakup Zekai; Paret, Mathews L

    2017-09-01

    Rose rosette disease, caused by Rose rosette virus (RRV; genus Emaravirus) is a major threat to the rose industry in the U.S. The only strategy currently available for disease management is early detection and eradication of the infected plants, thereby limiting its potential spread. Current RT-PCR based diagnostic methods for RRV are time consuming and are inconsistent in detecting the virus from symptomatic plants. Real-time RT-qPCR assay is highly sensitive for detection of RRV, but it is expensive and requires well-equipped laboratories. Both the RT-PCR and RT-qPCR cannot be used in a field-based testing for RRV. Hence a novel probe based, isothermal reverse transcription-recombinase polymerase amplification (RT-exoRPA) assay, using primer/probe designed based on the nucleocapsid gene of the RRV has been developed. The assay is highly specific and did not give a positive reaction to other viruses infecting roses belonging to both inclusive and exclusive genus. Dilution assays using the in vitro transcript showed that the primer/probe set is highly sensitive, with a detection limit of 1 fg/μl. In addition, a rapid technique for the extraction of viral RNA (<5min) has been standardized from RRV infected tissue sources, using PBS-T buffer (pH 7.4), which facilitates the virus adsorption onto the PCR tubes at 4°C for 2min, followed by denaturation to release the RNA. RT-exoRPA analysis of the infected plants using the primer/probe indicated that the virus could be detected from leaves, stems, petals, pollen, primary roots and secondary roots. In addition, the assay was efficiently used in the diagnosis of RRV from different rose varieties, collected from different states in the U.S. The entire process, including the extraction can be completed in 25min, with less sophisticated equipments. The developed assay can be used with high efficiency in large scale field testing for rapid detection of RRV in commercial nurseries and landscapes. Copyright © 2017 Elsevier B

  10. Detection of Rickettsia in Rhipicephalus sanguineus Ticks and Ctenocephalides felis Fleas from Southeastern Tunisia by Reverse Line Blot Assay

    PubMed Central

    Khrouf, Fatma; M'Ghirbi, Youmna; Znazen, Abir; Ben Jemaa, Mounir; Hammami, Adnene

    2014-01-01

    Ticks (n = 663) and fleas (n = 470) collected from domestic animals from southeastern Tunisia were screened for Rickettsia infection using reverse line blot assay. Evidence of spotted fever group Rickettsia was obtained. We detected Rickettsia felis in fleas, Rickettsia massiliae Bar 29 and the Rickettsia conorii Israeli spotted fever strain in ticks, and Rickettsia conorii subsp. conorii and Rickettsia spp. in both arthropods. The sensitivity of the adopted technique allowed the identification of a new association between fleas and R. conorii subsp. conorii species. The presence of these vector-borne Rickettsia infections should be considered when diagnosing this disease in humans in Tunisia. PMID:24226919

  11. Tumor-targeting Salmonella typhimurium A1-R Inhibits Osteosarcoma Angiogenesis in the In Vivo Gelfoam® Assay Visualized by Color-coded Imaging.

    PubMed

    Kiyuna, Tasuku; Tome, Yasunori; Uehara, Fuminari; Murakami, Takashi; Zhang, Yong; Zhao, Ming; Kanaya, Fuminori; Hoffman, Robert M

    2018-01-01

    We previously developed a color-coded imaging model that can quantify the length of nascent blood vessels using Gelfoam® implanted in nestin-driven green fluorescent protein (ND-GFP) nude mice. In this model, nascent blood vessels selectively express GFP. We also previously showed that osteosarcoma cells promote angiogenesis in this assay. We have also previously demonstrated the tumor-targeting bacteria Salmonella typhimurium A1-R (S. typhimurium A1-R) can inhibit or regress all tested tumor types in mouse models. The aim of the present study was to determine if S. typhimurium A1-R could inhibit osteosarcoma angiogenesis in the in vivo Gelfoam® color-coded imaging assay. Gelfoam® was implanted subcutaneously in ND-GFP nude mice. Skin flaps were made 7 days after implantation and 143B-RFP human osteosarcoma cells expressing red fluorescent protein (RFP) were injected into the implanted Gelfoam. After establishment of tumors in the Gelfoam®, control-group mice were treated with phosphate buffered saline via tail-vein injection (iv) and the experimental group was treated with S. typhimurium A1-R iv Skin flaps were made at day 7, 14, 21, and 28 after implantation of the Gelfoam® to allow imaging of vascularization in the Gelfoam® using a variable-magnification small-animal imaging system and confocal fluorescence microscopy. Nascent blood vessels expressing ND-GFP extended into the Gelfoam® over time in both groups. However, the extent of nascent blood-vessel growth was significantly inhibited by S. typhimurium A1-R treatment by day 28. The present results indicate S. typhimurium A1-R has potential for anti-angiogenic targeted therapy of osteosarcoma. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Development and application of novel SNP-based serotyping assays in targeting Salmonella enterica within the poultry production and processing continuum.

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica subsp. enterica serotype Enteriditis (S. Enteriditis) is the leading cause of salmonellosis worldwide. While some S. enterica serotypes are specific to birds, many represent human zoonotic pathogens, thus their presence and survival throughout the continuum of poultry production...

  13. THE MUTATION SPECTRA OF DRINKING WATER SAMPLES USING THE BASE-SPECIFIC TA7000 STRAINS OF SALMONELLA IN THE MICROSUSPENSION ASSAY

    EPA Science Inventory

    Previous studies showed that disinfected drinking water samples gave mutagenic spectra typical of halogenated furanones. In this study, we used the TA7000 base-¿specific Salmonella typhimurium tester strains to characterize water samples from two drinking water treatment plants (...

  14. Field-Deployable Reverse Transcription-Insulated Isothermal PCR (RT-iiPCR) Assay for Rapid and Sensitive Detection of Foot-and-Mouth Disease Virus.

    PubMed

    Ambagala, A; Fisher, M; Goolia, M; Nfon, C; Furukawa-Stoffer, T; Ortega Polo, R; Lung, O

    2017-10-01

    Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals, which can decimate the livestock industry and economy of countries previously free of this disease. Rapid detection of foot-and-mouth disease virus (FMDV) is critical to containing an FMD outbreak. Availability of a rapid, highly sensitive and specific, yet simple and field-deployable assay would support local decision-making during an FMDV outbreak. Here we report validation of a novel reverse transcription-insulated isothermal PCR (RT-iiPCR) assay that can be performed on a commercially available, compact and portable POCKIT ™ analyser that automatically analyses data and displays '+' or '-' results. The FMDV RT-iiPCR assay targets the 3D region of the FMDV genome and was capable of detecting 9 copies of in vitro-transcribed RNA standard with 95% confidence. It accurately identified 63 FMDV strains belonging to all seven serotypes and showed no cross-reactivity with viruses causing similar clinical diseases in cloven-hoofed animals. The assay was able to identify FMDV RNA in multiple sample types including oral, nasal and lesion swabs, epithelial tissue suspensions, vesicular and oral fluid samples, even before the appearance of clinical signs. Clinical sensitivity of the assay was comparable or slightly higher than the laboratory-based real-time RT-PCR assay in use. The assay was able to detect FMDV RNA in vesicular fluid samples without nucleic acid extraction. For RNA extraction from more complex sample types, a commercially available taco ™ mini transportable magnetic bead-based, automated extraction system was used. This assay provides a potentially useful field-deployable diagnostic tool for rapid detection of FMDV in an outbreak in FMD-free countries or for routine diagnostics in endemic countries with less structured laboratory systems. © 2016 Her Majesty the Queen in Right of Canada.

  15. Salmonella: an ecological success story

    USDA-ARS?s Scientific Manuscript database

    Salmonella was first described in 1885 as a secondary pathogen in the infectious disease process. In 1929, a paper published in the Proceedings of the Royal Society of Medicine reported that Salmonella organisms were predominant in food borne outbreaks but acknowledged that the path of infection wa...

  16. Genetically modified "obligate" anaerobic Salmonella typhimurium as a therapeutic strategy for neuroblastoma.

    PubMed

    Guo, Zhu-Ling; Yu, Bin; Ning, Bo-Tao; Chan, Shing; Lin, Qiu-Bin; Li, James Chun-Bong; Huang, Jian-Dong; Chan, Godfrey Chi-Fung

    2015-08-19

    Neuroblastoma currently has poor prognosis, therefore we proposed a new strategy by targeting neuroblastoma with genetically engineered anaerobic Salmonella (Sal-YB1). Nude and nonobese diabetic-severe combined immunodeficiency (NOD-SCID) orthotopic mouse models were used, and Sal-YB1 was administered via tail vein. The therapeutic effectiveness, bio-safety, and mechanisms were studied. No mice died of therapy-related complications. Tumor size reduction was 70 and 30% in nude and NOD-SCID mice, respectively. No Salmonella was detected in the urine; 75% mice had positive stool culture if diaminopimelic acid was added, but all turned negative subsequently. Tumor tissues had more Sal-YB1 infiltration, necrosis, and shrinkage in Sal-YB1-treated mice. Significantly higher expression of TLR4, TNF-stimulated gene 6 protein (TSG6), and cleaved caspase 1, 3, 8, and 9 was found in the tumor masses of the Sal-YB1-treated group with a decrease of interleukin 1 receptor-associated kinase (IRAK) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα). There was a high release of TNFα both in human macrophages and mouse tumor tissues with Sal-YB1 treatment. The antitumor effect of the supernatant derived from macrophages treated with Sal-YB1 could be reversed with TNFα and pan-caspase inhibitors. This new approach in targeting neuroblastoma by bio-engineered Salmonella with the assistance of macrophages indirectly may have a clinical therapeutic impact in the future.

  17. Prevalence, distribution and characterisation of ceftiofur resistance in Salmonella enterica isolated from animals in the USA from 1999 to 2003.

    PubMed

    Frye, Jonathan G; Fedorka-Cray, Paula J

    2007-08-01

    Third-generation cephalosporin (3GC) antimicrobials are the drugs of choice for treatment of salmonellosis in children. Salmonella isolated in the USA are assayed by the National Antimicrobial Resistance Monitoring System (NARMS) for resistance to antimicrobials including first-, second- and third-generation cephalosporins. From 1999 to 2003, 34,411 Salmonella were isolated from animals in the USA, of which 10.9% were found to be resistant to ceftiofur, a 3GC used in animals, whilst only 0.3% were resistant to ceftriaxone, a 3GC used in human medicine. Ceftiofur resistance rose from 4.0% in 1999 to 18.8% in 2003. Isolates from diagnostic laboratories had higher levels of resistance (18.5%), whereas levels in isolates from on-farm (3.4%) and slaughter (7.1%) sources were lower. Animals with a higher than average proportion of resistant Salmonella included cattle (17.6%), horses (19.2%) and dogs (20.8%). Levels in turkeys (6.8%), chickens (7.1%), eggs (3.6%) and swine (4.6%) were lower. Resistance varied between Salmonella serotypes. A few serotypes had significantly high levels, e.g. S. Newport was 70.4% ceftiofur resistant. Resistance was predominantly associated with bla(CMY-2)-encoding plasmids. These data suggest that the acquisition of resistance plasmids and the spread of specific serotypes harbouring these plasmids are driving the observed resistance to ceftiofur in Salmonella animal isolates.

  18. Clinical validation of 3 commercial real-time reverse transcriptase polymerase chain reaction assays for the detection of Middle East respiratory syndrome coronavirus from upper respiratory tract specimens.

    PubMed

    Mohamed, Deqa H; AlHetheel, AbdulKarim F; Mohamud, Hanat S; Aldosari, Kamel; Alzamil, Fahad A; Somily, Ali M

    2017-04-01

    Since discovery of Middle East respiratory syndrome coronavirus (MERS-CoV), a novel betacoronavirus first isolated and characterized in 2012, MERS-CoV real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assays represent one of the most rapidly expanding commercial tests. However, in the absence of extensive evaluations of these assays on positive clinical material of different sources, evaluating their diagnostic effectiveness remains challenging. We describe the diagnostic performance evaluation of 3 common commercial MERS-CoV rRT-PCR assays on a large panel (n = 234) of upper respiratory tract specimens collected during an outbreak episode in Saudi Arabia. Assays were compared to the RealStar® MERS-CoV RT-PCR (Alton Diagnostics, Hamburg, Germany) assay as the gold standard. Results showed i) the TIB MolBiol® LightMix UpE and Orf1a assays (TIB MolBiol, Berlin, Germany) to be the most sensitive, followed by ii) the Anyplex™ Seegene MERS-CoV assay (Seegene, Seoul, Korea), and finally iii) the PrimerDesign™ Genesig® HCoV_2012 assay (PrimerDesign, England, United Kingdom). We also evaluate a modified protocol for the PrimerDesign™ Genesig® HCoV_2012 assay. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Salmonella Levels Associated with Skin of Turkey Parts.

    PubMed

    Peng, Ye; Deng, Xiang Y; Harrison, Mark A; Alali, Walid Q

    2016-05-01

    Turkey skin is used as a source of fat in finished ground turkey products. Salmonella-contaminated skin may potentially disseminate this pathogen to ground turkey. The objective of this study was to determine and compare Salmonella levels (presence and numbers) associated with the skin of turkey parts (i.e., drumstick, thigh, and wing). Over a 10-month period, 20 turkey flocks expected to be highly contaminated with Salmonella based on boot-sock testing data of turkey houses were sampled. A total of 300 samples per type of turkey part were collected postchill and were tested for Salmonella using the most-probable-number (MPN) and enrichment methods. Overall, Salmonella was detected in 13.7, 19.7, and 25.0% of drumstick skin, thigh skin, and wing skin samples, respectively. Salmonella prevalence from wing skin was significantly higher (P < 0.05) than in drumstick skin, but the difference was not significant (P > 0.05) when compared with thigh skin. Salmonella was 2.4 times more likely to be present from thigh skin (odds ratio = 2.4; P < 0.05) when the pathogen was found from wing skin. Salmonella mean numbers from drumstick, thigh, and wing were 1.18, 1.29, and 1.45 log MPN per sample, respectively; these values were not significantly different (P > 0.05). Based on our findings, the high prevalence of Salmonella associated with the skin of turkey parts could be a potential source for ground turkey contamination.

  20. Development of a novel loop-mediated isothermal amplification (LAMP) assay for the detection of Salmonella ser. Enteritidis from egg products

    USDA-ARS?s Scientific Manuscript database

    Salmonella ser. Enteritidis is a major public health concern worldwide. Loop-mediated isothermal amplification (LAMP) is a novel simple, easy-to-operate detection technology that amplifies DNA with high speed, efficiency, and specificity under isothermal conditions. The objective of this study was t...

  1. Salmonella serotype distribution in the Dutch broiler supply chain.

    PubMed

    van Asselt, E D; Thissen, J T N M; van der Fels-Klerx, H J

    2009-12-01

    Salmonella serotype distribution can give insight in contamination routes and persistence along a production chain. Therefore, it is important to determine not only Salmonella prevalence but also to specify the serotypes involved at the different stages of the supply chain. For this purpose, data from a national monitoring program in the Netherlands were used to estimate the serotype distribution and to determine whether this distribution differs for the available sampling points in the broiler supply chain. Data covered the period from 2002 to 2005, all slaughterhouses (n = 22), and the following 6 sampling points: departure from hatchery, arrival at the farm, departure from the farm, arrival at the slaughterhouse, departure from the slaughterhouse, and end of processing. Furthermore, retail data for 2005 were used for comparison with slaughterhouse data. The following serotypes were followed throughout the chain: Salmonella Enteritidis, Salmonella Typhimurium, Salmonella Paratyphi B var. Java (Salmonella Java), Salmonella Infantis, Salmonella Virchow, and Salmonella Mbandaka. Results showed that serotype distribution varied significantly throughout the supply chain (P < 0.05). Main differences were found at the farm and at the slaughterhouse (within one stage), and least differences were found between departure from one stage and arrival at the next stage. The most prominent result was the increase of Salmonella Java at farm level. This serotype remained the most prominent pathogen throughout the broiler supply chain up to the retail phase.

  2. Sources of salmonellae in an uninfected commercially-processed broiler flock.

    PubMed

    Rigby, C E; Pettit, J R; Baker, M F; Bentley, A H; Salomons, M O; Lior, H

    1980-07-01

    Cultural monitoring was used to study the incidence and sources of salmonellae in a 4160 bird broiler flock during the growing period, transport and processing in a commercial plant. No salmonellae were isolated from any of 132 litter samples of 189 chickens cultured during the seven-week growing period, even though nest litter samples from four of the eight parent flocks yielded salmonellae and Salmonella worthington was isolated from the meat meal component of the grower ration. On arrival at the plant, 2/23 birds sampled carried S. infantis on their feathers, although intestinal cultures failed to yield salmonellae. Three of 18 processed carcasses samples yielded salmonellae (S. infantis, S. heidelberg, S. typhimurium var copenhagen). The most likely source of these salmonellae was the plastic transport crates, since 15/107 sampled before the birds were loaded yielded salmonellae (S. infantis, S. typhimurium). The crate washer at the plant did not reduce the incidence of Salmonella-contaminated crates, since 16/116 sampled after washing yielded salmonellae (S. infantis, S. typhimurium, S. heidelberg, S. schwarzengrund, S. albany).

  3. Salmonella: A century old conundrum

    USDA-ARS?s Scientific Manuscript database

    In 1885 a new bacterial species, Salmonella cholerae suis which was thought to cause hog cholera. Interestingly, Salmonella cholerae suis was not the etiologic agent of hog cholera (which is caused by a virus), but it was observed to be a secondary pathogen in the infectious process. In 1929, a pa...

  4. Survival of Salmonella during baking of peanut butter cookies.

    PubMed

    Lathrop, Amanda A; Taylor, Tiffany; Schnepf, James

    2014-04-01

    Peanuts and peanut-based products have been the source of recent Salmonella outbreaks worldwide. Because peanut butter is commonly used as an ingredient in baked goods, such as cookies, the potential risk of Salmonella remaining in these products after baking needs to be assessed. This research examines the potential hazard of Salmonella in peanut butter cookies when it is introduced via the peanut-derived ingredient. The survival of Salmonella during the baking of peanut butter cookies was determined. Commercial, creamy-style peanut butter was artificially inoculated with a five-strain Salmonella cocktail at a target concentration of 10(8) CFU/g. The inoculated peanut butter was then used to prepare peanut butter cookie dough following a standard recipe. Cookies were baked at 350 °F (177 °C) and were sampled after 10, 11, 12, 13, 14, and 15 min. Temperature profiles of the oven and cookies were monitored during baking. The water activity and pH of the inoculated and uninoculated peanut butter, raw dough, and baked cookies were measured. Immediately after baking, cookies were cooled, and the survival of Salmonella was determined by direct plating or enrichment. After baking cookies for 10 min, the minimum reduction of Salmonella observed was 4.8 log. In cookies baked for 13 and 14 min, Salmonella was only detectable by enrichment reflecting a Salmonella reduction in the range of 5.2 to 6.2 log. Cookies baked for 15 min had no detectable Salmonella. Results of this study showed that proper baking will reduce Salmonella in peanut butter cookies by 5 log or more.

  5. Dysregulated humoral immunity to nontyphoidal Salmonella in HIV-infected African adults

    PubMed Central

    MacLennan, Calman A.; Gilchrist, James J.; Gordon, Melita A.; Cunningham, Adam F.; Cobbold, Mark; Goodall, Margaret; Kingsley, Robert A.; van Oosterhout, Joep J. G.; Msefula, Chisomo L.; Mandala, Wilson L.; Leyton, Denisse L.; Marshall, Jennifer L.; Gondwe, Esther N.; Bobat, Saeeda; López-Macías, Constantino; Doffinger, Rainer; Henderson, Ian R.; Zijlstra, Eduard E.; Dougan, Gordon; Drayson, Mark T.; MacLennan, Ian C. M.; Molyneux, Malcolm E.

    2013-01-01

    Nontyphoidal Salmonellae are a major cause of life-threatening bacteremia among HIV-infected individuals. Although cell-mediated immunity controls intracellular infection, antibody protects against Salmonella bacteremia. We report that high titer antibodies specific for Salmonella lipopolysaccharide (LPS) associate with absent Salmonella-killing in HIV-infected African adults. Killing was restored by genetically shortening LPS from target Salmonella, or removing LPS-specific antibodies from serum. Complement-mediated killing of Salmonella by healthy serum is shown to be induced specifically by antibodies against outer membrane proteins. This killing is lost when excess antibody against Salmonella LPS is added. Thus our study indicates impaired immunity against nontyphoidal Salmonella bacteremia in HIV infection results from excess inhibitory antibodies against Salmonella LPS, whilst serum killing of Salmonella is induced by antibodies against outer membrane proteins. PMID:20413503

  6. ASSOCIATION BETWEEN MUTATION SPECTRUM AND PERSISTENT DNA ADDUCT PROFILE IN SALMONELLA FOR BENZO[A]PYRENE AND DIBENZO[A]PYRENE

    EPA Science Inventory

    Dibenzo[a,l]pyrene (DB[a1]P) is less prevalent in the environment but 100-200X more carcinogenic in rodents than benzo[a]pyrene (B[a]P) .B[a]P induces most of its adducts on G, whereas DB[a,1]P produces most its adducts on A. Using the Salmonella mutagenicity assay, we have exami...

  7. Salmonella induces prominent gene expression in the rat colon

    PubMed Central

    Rodenburg, Wendy; Keijer, Jaap; Kramer, Evelien; Roosing, Susanne; Vink, Carolien; Katan, Martijn B; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg MJ

    2007-01-01

    Background Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point). As fructo-oligosaccharides (FOS) affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Results Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase), antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2), inflammation (e.g. calprotectin), oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2) and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9). Furthermore, Salmonella translocation increased serum IFNγ and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap), showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. Conclusion We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in mucosal gene expression

  8. Salmonella induces prominent gene expression in the rat colon.

    PubMed

    Rodenburg, Wendy; Keijer, Jaap; Kramer, Evelien; Roosing, Susanne; Vink, Carolien; Katan, Martijn B; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J

    2007-09-12

    Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point). As fructo-oligosaccharides (FOS) affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase), antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2), inflammation (e.g. calprotectin), oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2) and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9). Furthermore, Salmonella translocation increased serum IFN gamma and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap), showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in mucosal gene expression.

  9. Isolation of Salmonella enterica serovar Enteritidis from houseflies (Musca domestica) found in rooms containing Salmonella serovar Enteritidis-challenged hens.

    PubMed

    Holt, Peter S; Geden, Christopher J; Moore, Randle W; Gast, Richard K

    2007-10-01

    Houseflies (Musca domestica) released into rooms containing hens challenged with Salmonella enterica serovar Enteritidis (Salmonella serovar Enteritidis) rapidly became contaminated with Salmonella serovar Enteritidis. Forty to 50% of the flies were contaminated at 48 h, and the percentage increased to 50 to 70% at 4 and 7 days postexposure and then decreased to 30% at day 15. Initial attempts at recovering surface organisms for culture using an aqueous rinse were largely unsuccessful, while cultures of internal contents readily recovered Salmonella serovar Enteritidis. However, when 0.5% detergent was incorporated into the rinse, high recovery levels of bacteria were observed from both external and internal culture regimens, indicating equal distribution of the organism on and in the fly and a tighter interaction of the organism with the host than previously thought. Salmonella serovar Enteritidis was isolated routinely from the fly gut, on rare occasions from the crop, and never from the salivary gland. Feeding contaminated flies to hens resulted in gut colonization of a third of the birds, but release of contaminated flies in a room containing previously unchallenged hens failed to result in colonization of any of the subject birds. These results indicate that flies exposed to an environment containing Salmonella serovar Enteritidis can become colonized with the organism and might serve as a source for transmission of Salmonella serovar Enteritidis within a flock situation.

  10. Isolation of Salmonella enterica Serovar Enteritidis from Houseflies (Musca domestica) Found in Rooms Containing Salmonella Serovar Enteritidis-Challenged Hens▿

    PubMed Central

    Holt, Peter S.; Geden, Christopher J.; Moore, Randle W.; Gast, Richard K.

    2007-01-01

    Houseflies (Musca domestica) released into rooms containing hens challenged with Salmonella enterica serovar Enteritidis (Salmonella serovar Enteritidis) rapidly became contaminated with Salmonella serovar Enteritidis. Forty to 50% of the flies were contaminated at 48 h, and the percentage increased to 50 to 70% at 4 and 7 days postexposure and then decreased to 30% at day 15. Initial attempts at recovering surface organisms for culture using an aqueous rinse were largely unsuccessful, while cultures of internal contents readily recovered Salmonella serovar Enteritidis. However, when 0.5% detergent was incorporated into the rinse, high recovery levels of bacteria were observed from both external and internal culture regimens, indicating equal distribution of the organism on and in the fly and a tighter interaction of the organism with the host than previously thought. Salmonella serovar Enteritidis was isolated routinely from the fly gut, on rare occasions from the crop, and never from the salivary gland. Feeding contaminated flies to hens resulted in gut colonization of a third of the birds, but release of contaminated flies in a room containing previously unchallenged hens failed to result in colonization of any of the subject birds. These results indicate that flies exposed to an environment containing Salmonella serovar Enteritidis can become colonized with the organism and might serve as a source for transmission of Salmonella serovar Enteritidis within a flock situation. PMID:17675422

  11. The enhanced immune responses induced by Salmonella enteritidis ghosts loaded with Neisseria gonorrhoeae porB against Salmonella in mice.

    PubMed

    Jiao, Hongmei; Yang, Hui; Zhao, Dan; He, Li; Chen, Jin; Li, Guocai

    2016-11-01

    Human health has been seriously endangered by highly prevalent salmonellosis and multidrug-resistant Salmonella strains. Current vaccines suffer from variable immune-protective effects, so more effective ones are needed to control Salmonella infection : Bacterial ghosts have been produced by the expression of lysis gene E from bacteriophage PhiX174 and can be filled with considerable exogenous substances such as DNA or drugs as a novel platform. In this study, Salmonella enteritidis (SE) ghosts were developed and loaded with Neisseria gonorrhoeae porin B (porB) to construct a novel inactive vaccine. Our new studies show that SE ghosts loaded with porB displayed increased production of pro-inflammatory cytokines (IL-1β, IL-6, IL-10 and IL-12p70) in bone marrow-derived dendritic cells (BMDCs), and elicited significantly higher specific systemic and mucosal immune responses to Salmonella than SE ghosts alone. In addition, the novel porB-loaded ghosts conferred higher protective effects on virulent Salmonella challenge. For the first time, we demonstrate that N. gonorrhoeae porB, as a novel adjuvant, can increase the immunogenicity of SE ghosts. Our studies suggested that Salmonella enteritidis ghosts loaded with Neisseria gonorrhoeae porin B might be a useful mucosal Salmonella vaccine candidate for practical use in the future. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Salmonella

    USDA-ARS?s Scientific Manuscript database

    Salmonella are facultative anaerobic Gram-negative non-spore forming rods belonging to the family Enterobacteriaceae. Salmonellosis is a zoonotic and foodborne illness that is usually transmitted by the fecal-oral route estimated to be responsible for 1.4 million cases of human infections in 2009 in...

  13. Thermal inactivation of Salmonella spp. in pork burger patties.

    PubMed

    Gurman, P M; Ross, T; Holds, G L; Jarrett, R G; Kiermeier, A

    2016-02-16

    Predictive models, to estimate the reduction in Escherichia coli O157:H7 concentration in beef burgers, have been developed to inform risk management decisions; no analogous model exists for Salmonella spp. in pork burgers. In this study, "Extra Lean" and "Regular" fat pork minces were inoculated with Salmonella spp. (Salmonella 4,[5],12,i:-, Salmonella Senftenberg and Salmonella Typhimurium) and formed into pork burger patties. Patties were cooked on an electric skillet (to imitate home cooking) to one of seven internal temperatures (46, 49, 52, 55, 58, 61, 64 °C) and Salmonella enumerated. A generalised linear logistic regression model was used to develop a predictive model for the Salmonella concentration based on the internal endpoint temperature. It was estimated that in pork mince with a fat content of 6.1%, Salmonella survival will be decreased by -0.2407log10 CFU/g for a 1 °C increase in internal endpoint temperature, with a 5-log10 reduction in Salmonella concentration estimated to occur when the geometric centre temperature reaches 63 °C. The fat content influenced the rate of Salmonella inactivation (P=0.043), with Salmonella survival increasing as fat content increased, though this effect became negligible as the temperature approached 62 °C. Fat content increased the time required for patties to achieve a specified internal temperature (P=0.0106 and 0.0309 for linear and quadratic terms respectively), indicating that reduced fat pork mince may reduce the risk of salmonellosis from consumption of pork burgers. Salmonella serovar did not significantly affect the model intercepts (P=0.86) or slopes (P=0.10) of the fitted logistic curve. This predictive model can be applied to estimate the reduction in Salmonella in pork burgers after cooking to a specific endpoint temperature and hence to assess food safety risk. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  14. Sugar sulfates are not hydrolyzed by the acid-inducible sulfatase AslA from Salmonella enterica Enteritidis NalR and Kentucky 3795 at pH 5.5.

    PubMed

    Ganguly, Arpeeta; Joerger, Rolf D

    2017-08-01

    The open reading frames SEN0085 and SeKA_A4361, from Salmonella enterica serovar Enteritidis Nal R and serovar Kentucky 3795, respectively, corresponding to the acid-inducible sulfatase gene aslA from Salmonella enterica serovar Typhimurium, were previously suggested by microarray analysis to be differentially expressed under acid conditions. However, growth and enzyme activity tests in the present study demonstrated that both wild-type strains exhibited sulfatase activity with 4-nitrophenyl sulfate and 5-bromo-4-chloro-3 indolyl sulfate at pH 5.5. The acid sulfatase does not appear to be involved in sugar sulfate, tyrosine sulfate, 4-hydroxy-3-methoxyphenylglycol sulfate, heparin sulfate, or chondroitin sulfate hydrolysis at pH 5.5. Adhesion and invasion assays did not reveal differences between the serotypes and their corresponding aslA deletion mutants. Thus, the role and substrate(s) of AslA, a protein unique to salmonella and encoded in all sequenced Salmonella strains, remain elusive.

  15. Subinhibitory concentrations of phloretin repress the virulence of Salmonella typhimurium and protect against Salmonella typhimurium infection.

    PubMed

    Shuai-Cheng, Wu; Ben-Dong, Fu; Xiu-Ling, Chu; Jian-Qing, Su; Yun-Xing, Fu; Zhen-Qiang, Cui; Dao-Xiu, Xu; Zong-Mei, Wu

    2016-11-01

    Phloretin, a natural component of many fruits, exhibits anti-virulence effects and provides a new alternative to counter bacterial infection. The aim of this study was to determine the effect of subinhibitory concentrations of phloretin on the virulence of Salmonella typhimurium. At concentrations where growth of Salmonella was not inhibited, phloretin significantly inhibited bacteria biofilm formation and motility. Subinhibitory concentrations of phloretin repressed eight genes involved in the Salmonella pathogenicity island 1 and 3 genes involved in flagella production. Furthermore, subinhibitory concentrations of phloretin inhibited the adhesion and invasion of Salmonella in IEC-6 cells and reduced the LDH levels of S. typhimurium-infected IEC-6 cells. Additionally, phloretin significantly decreased the cecum bacterial loads of the mice infected with live S. typhimurium containing subinhibitory concentrations of phloretin by gavage. These results suggested that subinhibitory concentrations of phloretin attenuate the virulence of S. typhimurium and protect against S. typhimurium infection.

  16. Incidence of Salmonella contamination in broiler chickens in Saskatchewan.

    PubMed

    Bhargava, K K; O'Neil, J B; Prior, M G; Dunkelgod, K E

    1983-01-01

    The incidence of Salmonella contamination in ten Saskatchewan broiler flocks varying in size from 6 200 to 14 000 was investigated from February, 1977 to April, 1979. Prior to the initial chick placement, brooding equipment, feed, water and fresh litter samples were found to be free of Salmonellae. Samples obtained from the clean and disinfected processing plant equipment before the commencement of daily operation were negative except the isolation for Salmonella anatum from the fingers of the defeathering machine in flock 4. There was no evidence of Salmonella contamination in flocks 5, 6, 8 and 10. The incidence of Salmonella was lower when cloacal swabs were taken from day old chicks fasted for 48 hours than for the same groups of chicks when carcasses were blended in nutrient broth (flocks 7 and 9). The blending of such chicks appears to be a more critical test. The serotypes isolated from eviscerated birds were the same as those isolated from used litter samples. Salmonella saintpaul was isolated from a water sample at 53 days in flock 1 and the same serotype was recovered from the intestinal contents and skin of eviscerated birds. Salmonella typhimurium was recovered from the eviscerated birds and neck samples in flock 3. In flock 4, S. saintpaul and S. anatum were isolated from 13% of the eviscerated birds sampled. Salmonella thompson, Salmonella agona and Salmonella heidelberg were recovered from 61%, 5% and 1%, respectively, of the processed carcasses sampled in flock 7.

  17. Incidence of Salmonella Contamination in Broiler Chickens in Saskatchewan

    PubMed Central

    Bhargava, K.K.; O'Neil, J.B.; Prior, M.G.; Dunkelgod, K.E.

    1983-01-01

    The incidence of Salmonella contamination in ten Saskatchewan broiler flocks varying in size from 6 200 to 14 000 was investigated from February, 1977 to April, 1979. Prior to the initial chick placement, brooding equipment, feed, water and fresh litter samples were found to be free of Salmonellae. Samples obtained from the clean and disinfected processing plant equipment before the commencement of daily operation were negative except the isolation for Salmonella anatum from the fingers of the defeathering machine in flock 4. There was no evidence of Salmonella contamination in flocks 5, 6, 8 and 10. The incidence of Salmonella was lower when cloacal swabs were taken from day old chicks fasted for 48 hours than for the same groups of chicks when carcasses were blended in nutrient broth (flocks 7 and 9). The blending of such chicks appears to be a more critical test. The serotypes isolated from eviscerated birds were the same as those isolated from used litter samples. Salmonella saintpaul was isolated from a water sample at 53 days in flock 1 and the same serotype was recovered from the intestinal contents and skin of eviscerated birds. Salmonella typhimurium was recovered from the eviscerated birds and neck samples in flock 3. In flock 4, S. saintpaul and S. anatum were isolated from 13% of the eviscerated birds sampled. Salmonella thompson, Salmonella agona and Salmonella heidelberg were recovered from 61%, 5% and 1%, respectively, of the processed carcasses sampled in flock 7. PMID:6831304

  18. Noninvasive monitoring of salmonella infections in young mice

    NASA Astrophysics Data System (ADS)

    Olomu, Isoken N.; Reilly-Contag, Pamela; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    A recently developed bioluminescent assay was used to study the influence of age and inoculum size on the acute susceptibility of newborn and juvenile BALB/c mice to Salmonella gastrointestinal infection. Three strains of Salmonella were tagged by expression of the lux operon from Photohabdus luminescenes. Using a range of inoculum sizes varied over 6 orders of magnitude, mice aged 0-6 weeks were infected by oral inoculation. LIght emitted from the tagged bacteria and transmitted through mouse tissues was used to noninvasively monitor disease progression over 7 days. In neonatal mice there was evidence of gastrointestinal infection at 24 hours even with small inocular, and at 4-7 days, the patterns of photon emission and remained and healthy throughout the study period. Inoculation of neonates with tagged LB5000 and BJ66 resulted in severe gastrointestinal infections with low and intermediate sizes of inocula respectively. These strains are known to be of reduced virulence in adult mice. These age-related differences in susceptibility emphasize the need to define virulence in the context of age of the host, and implicate maturation of innate resistance factors in determining disease patterns. Identifying these host-factors and further defining the bacterial determinants of virulence in the neonatal host will be facilitated by this noninvasive study of infection using bioluminenscent methods.

  19. A reversed-phase compatible thin-layer chromatography autography for the detection of acetylcholinesterase inhibitors.

    PubMed

    Ramallo, I Ayelen; García, Paula; Furlan, Ricardo L E

    2015-11-01

    A dual readout autographic assay to detect acetylcholinesterase inhibitors present in complex matrices adsorbed on reversed-phase or normal-phase thin-layer chromatography plates is described. Enzyme gel entrapment with an amphiphilic copolymer was used for assay development. The effects of substrate and enzyme concentrations, pH, incubation time, and incubation temperature on the sensitivity and the detection limit of the assay were evaluated. Experimental design and response surface methodology were used to optimize conditions with a minimum number of experiments. The assay allowed the detection of 0.01% w/w of physostigmine in both a spiked Sonchus oleraceus L. extract chromatographed on normal phase and a spiked Pimenta racemosa (Mill.) J.W. Moore leaf essential oil chromatographed on reversed phase. Finally, the reversed-phase thin-layer chromatography assay was applied to reveal the presence of an inhibitor in the Cymbopogon citratus (DC.) Stapf essential oil. The developed assay is able to detect acetylcholinesterase inhibitors present in complex matrixes that were chromatographed in normal phase or reversed-phase thin-layer chromatography. The detection limit for physostigmine on both normal and reversed phase was of 1×10(-4) μg. The results can be read by a change in color and/or a change in fluorescence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Applications of microscopy in Salmonella research.

    PubMed

    Malt, Layla M; Perrett, Charlotte A; Humphrey, Suzanne; Jepson, Mark A

    2015-01-01

    Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in humans and many other animals. Understanding the mechanisms by which Salmonella induces disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type 3 secretion system. Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second type 3 secretion system initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. Elucidation of the complex and highly dynamic pathogen-host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopy techniques to analyze Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and high-resolution light microscopy techniques such as confocal microscopy can reveal the precise location of Salmonella and its relationship to cellular components. Widefield light microscopy is a simpler approach with which to study the interaction of bacteria with host cells and often has advantages for live cell imaging, enabling detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on some microscopy techniques used routinely in our own research.

  1. Prevalence and antibiotic resistance of Salmonella Enteritidis and Salmonella Typhimurium in raw chicken meat at retail markets in Malaysia.

    PubMed

    Thung, T Y; Mahyudin, N A; Basri, D F; Wan Mohamed Radzi, C W J; Nakaguchi, Y; Nishibuchi, M; Radu, S

    2016-08-01

    Salmonellosis is one of the major food-borne diseases in many countries. This study was carried out to determine the occurrence of Salmonella spp., Salmonella Enteritidis, and Salmonella Typhimurium in raw chicken meat from wet markets and hypermarkets in Selangor, as well as to determine the antibiotic susceptibility profile of S. Enteritidis and S. Typhimurium. The most probable number (MPN) in combination with multiplex polymerase chain reaction (mPCR) method was used to quantify the Salmonella spp., S. Enteritidis, and S. Typhimurium in the samples. The occurrence of Salmonella spp., S. Enteritidis, and S. Typhimurium in 120 chicken meat samples were 20.80%, 6.70%, and 2.50%, respectively with estimated quantity varying from <3 to 15 MPN/g. The antibiogram testing revealed differential multi-drug resistance among S. Enteritidis and S. Typhimurium isolates. All the isolates were resistance to erythromycin, penicillin, and vancomycin whereas sensitivity was recorded for Amoxicillin/Clavulanic acid, Gentamicin, Tetracycline, and Trimethoprim. Our findings demonstrated that the retail chicken meat could be a source of multiple antimicrobial-resistance Salmonella and may constitute a public health concern in Malaysia. © 2016 Poultry Science Association Inc.

  2. Isolation and characterization of Salmonella enterica in day-old ducklings in Egypt

    PubMed Central

    Osman, Kamelia M; Marouf, Sherif H; Zolnikov, Tara R; AlAtfeehy, Nayerah

    2014-01-01

    Importing day-old ducklings (DOD) unknowingly infected with non-typhoid Salmonella (NTS) may be associated with disease risk. Domestic and international trade may enhance this risk. Salmonella enterica serovars, their virulence genes combinations and antibiotic resistance, garner attention for their potentiality to contribute to the adverse health effects on populations throughout the world. The aim of this study was to estimate the risk of imported versus domestic DOD as potential carriers of NTS. The results confirm the prevalence of salmonellosis in imported ducklings was 18.5% (25/135), whereas only 12% (9/75) of cases were determined in the domestic ducklings. Fourteen serovars (Salmonella enteritidis, Salmonella kisii, Salmonella typhimurium, Salmonella gaillac, Salmonella uno, Salmonella eingedi, Salmonella shubra, Salmonella bardo, Salmonella inganda, Salmonella kentucky, Salmonella stanley, Salmonella virchow, Salmonella haifa, and Salmonella anatum) were isolated from the imported ducklings, whereas only S. enteritidis, S. typhimurium, S. virchow, and S. shubra were isolated from the domestic ducklings. The isolated Salmonella serovars were 100% susceptible to only colistin sulphate and 100% resistant to lincomycin. The 14 Salmonella serovars were screened for 11 virulence genes (invA, avrA, ssaQ, mgtC, siiD, sopB, gipA, sodC1, sopE1, spvC, and bcfC) by PCR. The invA, sopB, and bcfC genes were detected in 100% of the Salmonella serovars; alternatively, the gipA gene was absent in all of the isolated Salmonella serovars. The 11 virulent genes were not detected in either of S. stanley or S. haifa serovars. The results confirm an association between antibiotic resistance and virulence of Salmonella in the DOD. This study confirms the need for a country adherence to strict public health and food safety regimes. PMID:24548159

  3. Reorganization of the Endosomal System in Salmonella-Infected Cells: The Ultrastructure of Salmonella-Induced Tubular Compartments

    PubMed Central

    Krieger, Viktoria; Liebl, David; Zhang, Yuying; Rajashekar, Roopa; Chlanda, Petr; Giesker, Katrin; Chikkaballi, Deepak; Hensel, Michael

    2014-01-01

    During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella. PMID:25254663

  4. Salmonella spp. on chicken carcasses in processing plants in Poland.

    PubMed

    Mikołajczyk, Anita; Radkowski, Mieczysław

    2002-09-01

    Chickens at selected points in the slaughter process and after slaughter on the dressing line in poultry plants were sampled and analyzed for Salmonella. These chickens came from the northeast part of Poland. The examinations were carried out in quarters I, II, III, and IV of 1999. All the birds were determined to be healthy by a veterinary inspection. Swab samples were taken from the cloaca after stunning and from the skin surface and body cavity of the whole bird after evisceration, after rinsing at the final rinse station but before chilling in the spin-chiller, and after cooling in the continuous cooling plant at the end of the production day. In 1999, 400 whole chickens were examined. The percentage of these 400 chickens from which Salmonella spp. were isolated was relatively high (23.75%; Salmonella-positive results were observed in 95 cases). Salmonella spp. were found after stunning in 6% of the chickens (6 of 100 samples), after evisceration in 24% (24 of 100), before cooling in 52% (52 of 100), and after cooling in 13% (13 of 100). These results show that Salmonella spp. were found more often at some processing points than at others. The lowest Salmonella spp. contamination rate (6%) for slaughter birds was found after stunning, and the highest contamination rate was found before chilling (52%). The serological types of Salmonella spp. isolated from whole chickens were Salmonella Enteritidis, Salmonella Typhimurium, Salmonella Saintpaul, Salmonella Agona, and Salmonella Infantis. The results of these investigations indicate that Salmonella Enteritidis is the dominant serological type in infections of slaughter chickens, as it is in many countries.

  5. 9 CFR 113.30 - Detection of Salmonella contamination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Detection of Salmonella contamination... REQUIREMENTS Standard Procedures § 113.30 Detection of Salmonella contamination. The test for detection of Salmonella contamination provided in this section shall be conducted when such a test is prescribed in an...

  6. 9 CFR 113.30 - Detection of Salmonella contamination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Detection of Salmonella contamination... REQUIREMENTS Standard Procedures § 113.30 Detection of Salmonella contamination. The test for detection of Salmonella contamination provided in this section shall be conducted when such a test is prescribed in an...

  7. The major sources of Salmonella enteritidis in Thailand.

    PubMed

    Sakai, T; Chalermchaikit, T

    1996-08-01

    The data of Salmonella serotypes during 1989-1993 from the World Health Organisation (WHO) National Salmonella and Shigella Center, Division of Clinical Pathology, Department of Medical Science, Ministry of Health, Thailand was analysed and found that the prevalence of Salmonella enteritidis had been dramatically increased since 1990. The average S. enteritidis isolates from human patient samples was 0.70% +/- 0.41% of the total reported Salmonella isolates during 1972-1989 and increased to 1.33%, 2.98%, 9.54%, and 16.98% in 1990, 1991, 1992, and 1993, respectively. The similar trend of S. enteritidis isolates from chicken meat samples were also observed. However, the conclusive epidemiological relationship between human and chicken S. enteritidis isolates needs to be proved by phage typing or other Salmonella typing methods.

  8. Comparison of Microbial Communities Isolated from Feces of Asymptomatic Salmonella-Shedding and Non-Salmonella Shedding Dairy Cows

    PubMed Central

    Haley, Bradd J.; Pettengill, James; Gorham, Sasha; Ottesen, Andrea; Karns, Jeffrey S.; Van Kessel, Jo Ann S.

    2016-01-01

    In the United States Salmonella enterica subsp. enterica serotypes Kentucky and Cerro are frequently isolated from asymptomatic dairy cows. However, factors that contribute to colonization of the bovine gut by these two serotypes have not been identified. To investigate associations between Salmonella status and bacterial diversity, as well as the diversity of the microbial community in the dairy cow hindgut, the bacterial and archaeal communities of fecal samples from cows on a single dairy farm were determined by high-throughput sequencing of 16S rRNA gene amplicons. Fecal grab samples were collected from two Salmonella-positive cows and two Salmonella-negative cows on five sampling dates (n = 20 cows), and 16S rRNA gene amplicons from these samples were sequenced on the Illumina MiSeq platform. A high level of alpha (within) and beta diversity (between) samples demonstrated that microbial profiles of dairy cow hindguts are quite diverse. To determine whether Salmonella presence, sampling year, or sampling date explained a significant amount of the variation in microbial diversity, we performed constrained ordination analyses (distance based RDA) on the unifrac distance matrix produced with QIIME. Results indicated that there was not a significant difference in the microbial diversity associated with Salmonella presence (P > 0.05), but there were significant differences between sampling dates and years (Pseudo-F = 2.157 to 4.385, P < 0.05). Based on these data, it appears that commensal Salmonella infections with serotypes Cerro and Kentucky in dairy cows have little or no association with changes in the abundance of major bacterial groups in the hindgut. Rather, our results indicated that temporal dynamics and other undescribed parameters associated with them were the most influential drivers of the differences in microbial diversity and community structure in the dairy cow hindgut. PMID:27313565

  9. Interactions of Salmonella with animals and plants.

    PubMed

    Wiedemann, Agnès; Virlogeux-Payant, Isabelle; Chaussé, Anne-Marie; Schikora, Adam; Velge, Philippe

    2014-01-01

    Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.

  10. Prevalence of Salmonella in diverse environmental farm samples.

    PubMed

    Rodriguez, Andres; Pangloli, Philipus; Richards, Harold A; Mount, John R; Draughon, F Ann

    2006-11-01

    The development of suitable intervention strategies to control Salmonella populations at the farm level requires reliable data on the occurrence and prevalence of the pathogen. Previous studies on Salmonella prevalence have focused on acquiring data from specific farm types and/or selected regions. The purpose of this study was to evaluate the distribution of this pathogen across a variety of farm types and regions in order to generate comparative data from a diverse group of environmental samples. Farm samples (n = 2,496) were collected quarterly from 18 different farms across five states (Tennessee, North Carolina, Alabama, California, and Washington) over a 24-month period. The participating farms included beef and dairy cattle operations, swine production and farrowing facilities, and poultry farms (both broiler chicken and turkey). The samples were analyzed for the presence of Salmonella by means of the U.S. Food and Drug Administration's Bacteriological Analytical Manual methods optimized for farm samples. Salmonella isolates were characterized by automated riboprinting. Salmonella serovars were recovered from 4.7% of all samples. The majority of positive findings were isolated from swine farms (57.3%). The occurrence of Salmonella was lower on dairy farms (17.9%), poultry farms (16.2%), and beef cattle farms (8.5%). The most commonly isolated serovar was Salmonella Anatum (48.4%), which was isolated notably more frequently than the next most common Salmonella serovars, Arizonae (12.1%) and Javiana (8.8%). The results of this study suggest that significant reservoirs of Salmonella populations still exist on swine production facilities and to a lesser extent in other animal production facilities. Data showed that the surrounding farm environment could be an important source of contamination.

  11. Salmonella in beef and produce from honduras.

    PubMed

    Maradiaga, Martha; Miller, Mark F; Thompson, Leslie; Pond, Ansen; Gragg, Sara E; Echeverry, Alejandro; Garcia, Lyda G; Loneragan, Guy H; Brashears, Mindy M

    2015-03-01

    Salmonella continues to cause a considerable number of foodborne illnesses worldwide. The sources of outbreaks include contaminated meat and produce. The purpose of this study was to establish an initial investigation of the burden of Salmonella in produce and beef from Honduras by sampling retail markets and abattoirs. Retail produce samples (cantaloupes, cilantro, cucumbers, leafy greens, peppers, and tomatoes; n = 573) were purchased in three major cities of Honduras, and retail whole-muscle beef (n = 555) samples were also purchased in four major cities. Additionally, both hide and beef carcass (n = 141) samples were collected from two Honduran abattoirs. Whole-muscle beef samples were obtained using a sponge hydrated with buffered peptone water, and 10 ml of the buffered peptone water rinsate of each produce sample was collected with a dry sponge and placed in a bag to be transported back to the United States. Salmonella was detected using a commercially available, closeplatform PCR system, and positive samples were subjected to culture on selective media to obtain isolates. Overall, the prevalence of Salmonella-positive samples, based on PCR detection in Honduras (n = 555) retail beef was 10.1% (95% confidence interval = 7.8, 12.9), whereas 7.8% (n = 141) of beef carcass and hides samples were positive in both beef plants. The overall Salmonella prevalence for all produce samples (n = 573) collected was 2.1% (95% confidence interval = 1.2, 3.6). The most common serotypes identified in Honduras were Salmonella Typhimurium followed by Derby. These results provide an indication of Salmonella contamination of beef and produce in Honduras. Developing a Salmonella baseline for Latin America through an initial investigation like the one presented here contributes to a broader global understanding of the potential exposure through food, thus providing insight into the needs for control strategies.

  12. Reverse transcription recombinase polymerase amplification assay for the rapid detection of type 2 porcine reproductive and respiratory syndrome virus.

    PubMed

    Wang, Jian-Chang; Yuan, Wan-Zhe; Han, Qing-An; Wang, Jin-Feng; Liu, Li-Bing

    2017-05-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most important pathogens in pigs, and has tremendous negative economic impact on the swine industry worldwide. PRRSV is classified into the two distinct genotypes: type 1 and type 2, and most of the described PRRSV isolates in China are type 2. Rapid and sensitive detection of PRRSV is of great importance for the disease control and regional eradication programs. Recombinase polymerase amplification (RPA) has emerged as a novel isothermal amplification technology for the molecular diagnosis of infectious diseases. In this study, a fluorescence reverse transcription RPA (RT-RPA) assay was developed to detect the type 2 PRRSV using primers and exo probe specific for the viral nucleocapsid gene. The reaction was performed at 40°C within 20min. The RT-RPA assay could detect both the classical (C-PRRSV) and highly pathogenic PRRSV (HP-PRRSV), but there was no cross-reaction to other pathogens. Using the in vitro transcribed PRRSV RNA as template, the analytical sensitivity of RT-RPA was 690 copies. The assay performance was evaluated by testing 60 field samples and compared to real-time RT-PCR. The detection rate of RT-RPA was 86.6% (52/60), while the detection rate of real-time RT-PCR was 83.3% (50/60). This simple, rapid and reliable method could be potentially applied for rapid detection of PRRSV in point-of-care and rural areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. A Pragmatic Approach to HIV-1 Drug Resistance Determination in Resource-Limited Settings by Use of a Novel Genotyping Assay Targeting the Reverse Transcriptase-Encoding Region Only

    PubMed Central

    Bronze, Michelle; Wallis, Carole L.; Stuyver, Lieven; Steegen, Kim; Balinda, Sheila; Kityo, Cissy; Stevens, Wendy; Rinke de Wit, Tobias F.; Schuurman, Rob

    2013-01-01

    In resource-limited settings (RLS), reverse transcriptase (RT) inhibitors form the backbone of first-line treatment regimens. We have developed a simplified HIV-1 drug resistance genotyping assay targeting the region of RT harboring all major RT inhibitor resistance mutation positions, thus providing all relevant susceptibility data for first-line failures, coupled with minimal cost and labor. The assay comprises a one-step RT-PCR amplification reaction, followed by sequencing using one forward and one reverse primer, generating double-stranded coverage of RT amino acids (aa) 41 to 238. The assay was optimized for all major HIV-1 group M subtypes in plasma and dried blood spot (DBS) samples using a panel of reference viruses for HIV-1 subtypes A to D, F to H, and circulating recombinant form 01_AE (CRF01_AE) and applied to 212 clinical plasma samples and 25 DBS samples from HIV-1-infected individuals from Africa and Europe. The assay was subsequently transferred to Uganda and applied locally on clinical plasma samples. All major HIV-1 subtypes could be detected with an analytical sensitivity of 5.00E+3 RNA copies/ml for plasma and DBS. Application of the assay on 212 clinical samples from African subjects comprising subtypes A to D, F to H (rare), CRF01_AE, and CRF02_AG at a viral load (VL) range of 6.71E+2 to 1.00E+7 (median, 1.48E+5) RNA copies/ml was 94.8% (n = 201) successful. Application on clinical samples in Uganda demonstrated a comparable success rate. Genotyping of clinical DBS samples, all subtype C with a VL range of 1.02E+3 to 4.49E+5 (median, 1.42E+4) RNA copies/ml, was 84.0% successful. The described assay greatly reduces hands-on time and the costs required for genotyping and is ideal for use in RLS, as demonstrated in a reference laboratory in Uganda and its successful application on DBS samples. PMID:23536405

  14. Immunity to Intracellular Salmonella Depends on Surface-associated Antigens

    PubMed Central

    Claudi, Beatrice; Mazé, Alain; Schemmer, Anne K.; Kirchhoff, Dennis; Schmidt, Alexander; Burton, Neil; Bumann, Dirk

    2012-01-01

    Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. PMID:23093937

  15. Salmonella prevalence in bovine lymph nodes differs among feedyards.

    PubMed

    Haneklaus, Ashley N; Harris, Kerri B; Griffin, Davey B; Edrington, Thomas S; Lucia, Lisa M; Savell, Jeffrey W

    2012-06-01

    Lymphatic tissue, specifically lymph nodes, is commonly incorporated into ground beef products as a component of lean trimmings. Salmonella and other pathogenic bacteria have been identified in bovine lymph nodes, which may impact compliance with the Salmonella performance standards for ground beef established by the U.S. Department of Agriculture. Although Salmonella prevalence has been examined among lymph nodes between animals, no data are currently available regarding feedyard origin of the cattle and Salmonella prevalence. Bovine lymph nodes (279 superficial cervical plus 28 iliofemoral = 307) were collected from beef carcasses at a commercial beef harvest and processing plant over a 3-month period and examined for the prevalence of Salmonella. Cattle processed were from seven feedyards (A through G). Salmonella prevalence was exceptionally low (0% of samples were positive ) in cattle from feedyard A and high (88.2%) in cattle from feedyard B. Prevalence in the remaining feedyards ranged widely: 40.0% in feedyard C, 4.0% in feedyard D, 24.0% in feedyard E, 42.9% in feedyard F, and 40.0% in feedyard G. These data indicate the range of differences in Salmonella prevalence among feedyards. Such information may be useful for developing interventions to reduce or eliminate Salmonella from bovine lymph nodes, which would assist in the reduction of Salmonella in ground beef.

  16. Laboratory-based Salmonella surveillance in Fiji, 2004-2005.

    PubMed

    Dunn, John; Pryor, Jan; Saketa, Salanieta; Delai, Wasale; Buadromo, Eka; Kishore, Kamal; Naidu, Shakila; Greene, Sharon; Varma, Jay; Chiller, Tom

    2005-09-01

    Although foodborne diseases are an important public health problem worldwide, the burden of foodborne illness is not well described in most Pacific Island Countries and Territories. Laboratory-based surveillance programs can detect trends and outbreaks, estimate burden of illness, and allow subtyping of enteric pathogens (e.g. Salmonella serotyping), which is critical for linking illness to food vehicles and animal reservoirs. To enhance public health capacity in Fiji for foodborne disease surveillance, we developed the Salmonella Surveillance Project (SSP), a collaboration to pilot laboratory-based surveillance for Salmonella. A network of national and international partners was formed including epidemiologists, microbiologists, and environmental health personnel. Ministry of Health personnel were trained in foodborne disease surveillance and outbreak investigation. Three clinical microbiology laboratories from different parts of the country functioned as sentinel sites, reporting all laboratory-confirmed Salmonella infections using a standardized case report form. Non-Typhi Salmonella isolates were collected for serotyping. In 2004-2005, 86 non-Typhi Salmonella and 275 S. Typhi laboratory-confirmed infections were reported. Salmonella enterica serotype I 3,10: r:- and Salmonella enterica serotype Weltevreden were the most commonly isolated non-Typhi serotypes. In Fiji, the SSP utilized international partnerships to facilitate training, and to enhance laboratory capacity and surveillance for salmonellosis. Incorporating laboratory-based foodborne disease reporting into national disease surveillance will enable public health officials to describe the burden of foodborne illness, identify outbreaks, conduct analytic epidemiology studies, and improve food safety.

  17. Carcinogens induce reversion of the mouse pink-eyed unstable mutation

    PubMed Central

    Schiestl, Robert H.; Aubrecht, Jiri; Khogali, Fathia; Carls, Nicholas

    1997-01-01

    Deletions and other genome rearrangements are associated with carcinogenesis and inheritable diseases. The pink-eyed unstable (pun) mutation in the mouse is caused by duplication of a 70-kb internal fragment of the p gene. Spontaneous reversion events in homozygous pun/pun mice occur through deletion of a duplicated sequence. Reversion events in premelanocytes in the mouse embryo detected as black spots on the gray fur of the offspring were inducible by the carcinogen x-rays, ethyl methanesulfonate, methyl methanesulfonate, ethyl nitrosourea, benzo[a]pyrene, trichloroethylene, benzene, and sodium arsenate. The latter three carcinogens are not detectable with several in vitro or in vivo mutagenesis assays. We studied the molecular mechanism of the carcinogen-induced reversion events by cDNA analysis using reverse transcriptase–PCR method and identified the induced reversion events as deletions. DNA deletion assays may be sensitive indicators for carcinogen exposure. PMID:9114032

  18. Reverse-Bumpy-Ball-Type-Nanoreactor-Loaded Nylon Membranes as Peroxidase-Mimic Membrane Reactors for a Colorimetric Assay for H₂O₂.

    PubMed

    Tong, Ying; Jiao, Xiangyu; Yang, Hankun; Wen, Yongqiang; Su, Lei; Zhang, Xueji

    2016-04-01

    Herein we report for the first time fabrication of reverse bumpy ball (RBB)-type-nanoreactor-based flexible peroxidase-mimic membrane reactors (MRs). The RBB-type nanoreactors with gold nanoparticles embedded in the inner walls of carbon shells were loaded on nylon membranes through a facile filtration approach. The as-prepared flexible catalytic membrane was studied as a peroxidase-mimic MR. It was found that the obtained peroxidase-mimic MR could exhibit several advantages over natural enzymes, such as facile and good recyclability, long-term stability and easy storage. Moreover, the RBB NS-modified nylon MRs as a peroxidase mimic provide a useful colorimetric assay for H₂O₂.

  19. Salmonella Infections

    MedlinePlus

    ... reptiles like snakes, turtles, and lizards. Symptoms include Fever Diarrhea Abdominal cramps Headache Possible nausea, vomiting, and ... be serious. The usual treatment is antibiotics. Typhoid fever, a more serious disease caused by Salmonella, is ...

  20. Salmonella Isolates in the Introduced Asian House Gecko (Hemidactylus frenatus) with Emphasis on Salmonella Weltevreden, in Two Regions in Costa Rica.

    PubMed

    Jiménez, Randall R; Barquero-Calvo, Elías; Abarca, Juan G; Porras, Laura P

    2015-09-01

    The Asian house gecko Hemidactylus frenatus has been widely introduced in Costa Rica and tends to establish in human settlements. Some studies in other invaded countries have suggested that this gecko plays a significant role in the epidemiology of salmonellosis and it is of value to public health. To our knowledge, no studies have examined Salmonella from this species in Costa Rica. Therefore, we collected 115 geckos from houses in two Costa Rican regions. We examined gut contents for Salmonella through microbiological analysis. Presumptive Salmonella spp. were sent to a reference laboratory for serotyping and antimicrobial susceptibility testing. Molecular typing was also conducted with the main Salmonella isolates of zoonotic relevance in Costa Rica. H. frenatus was found in 95% of the houses surveyed. Salmonella was isolated in 4.3% of the samples, and four zoonotic serovars were detected. None of the isolates were resistant to the antibiotics most frequently used for salmonellosis treatment in Costa Rica. All Salmonella isolates from the lower gut of H. frenatus are associated with human salmonellosis. Pulsotypes from Salmonella enterica serotype Weltevreden were identical to the only clone previously reported from human samples in Costa Rica. Molecular typing of Salmonella Weltevreden suggested that H. frenatus harbors a serovar of public health importance in Costa Rica. Results demonstrated that H. frenatus plays a role in the epidemiology of human salmonellosis in two regions of Costa Rica. However, more detailed epidemiological studies are needed to understand better the role of the Asian house gecko with human salmonellosis, especially caused by Salmonella Weltevreden, and to quantify its risk in Costa Rica accurately.

  1. A multiplex reverse transcription PCR and automated electronic microarray assay for detection and differentiation of seven viruses affecting swine.

    PubMed

    Erickson, A; Fisher, M; Furukawa-Stoffer, T; Ambagala, A; Hodko, D; Pasick, J; King, D P; Nfon, C; Ortega Polo, R; Lung, O

    2018-04-01

    Microarray technology can be useful for pathogen detection as it allows simultaneous interrogation of the presence or absence of a large number of genetic signatures. However, most microarray assays are labour-intensive and time-consuming to perform. This study describes the development and initial evaluation of a multiplex reverse transcription (RT)-PCR and novel accompanying automated electronic microarray assay for simultaneous detection and differentiation of seven important viruses that affect swine (foot-and-mouth disease virus [FMDV], swine vesicular disease virus [SVDV], vesicular exanthema of swine virus [VESV], African swine fever virus [ASFV], classical swine fever virus [CSFV], porcine respiratory and reproductive syndrome virus [PRRSV] and porcine circovirus type 2 [PCV2]). The novel electronic microarray assay utilizes a single, user-friendly instrument that integrates and automates capture probe printing, hybridization, washing and reporting on a disposable electronic microarray cartridge with 400 features. This assay accurately detected and identified a total of 68 isolates of the seven targeted virus species including 23 samples of FMDV, representing all seven serotypes, and 10 CSFV strains, representing all three genotypes. The assay successfully detected viruses in clinical samples from the field, experimentally infected animals (as early as 1 day post-infection (dpi) for FMDV and SVDV, 4 dpi for ASFV, 5 dpi for CSFV), as well as in biological material that were spiked with target viruses. The limit of detection was 10 copies/μl for ASFV, PCV2 and PRRSV, 100 copies/μl for SVDV, CSFV, VESV and 1,000 copies/μl for FMDV. The electronic microarray component had reduced analytical sensitivity for several of the target viruses when compared with the multiplex RT-PCR. The integration of capture probe printing allows custom onsite array printing as needed, while electrophoretically driven hybridization generates results faster than conventional

  2. Prevalence of salmonella in neck skin and bone of chickens.

    PubMed

    Wu, Diezhang; Alali, W Q; Harrison, M A; Hofacre, C L

    2014-07-01

    Bone-in and boneless parts, such as drumsticks, are used in ground chicken production. In addition, neck skin is used as a source of fat in ground products. Contaminated chicken neck skin and bones containing internalized Salmonella are potential sources of this pathogen in ground chicken. This study determined the prevalence of Salmonella and serotype distribution in drumstick bones and neck skin of postchill chicken carcasses. One week prior to slaughter, chicken houses (n = 26) at nine farms were tested for the presence of Salmonella, using the boot sock method. Chicken flocks from these houses originated from Salmonella-positive breeders. Eight Salmonella-positive chicken flocks and one flock with undetermined Salmonella status were monitored through processing. Three hundred postchill drumsticks and 299 neck skin samples were analyzed for Salmonella prevalence. Skin samples were rinsed and stomached prior to analysis. Bones were extracted from the drumsticks, external surfaces were sterilized, and bones were crushed for analysis. One Salmonella isolate from each positive sample was serogrouped. Half of the isolates representing different sample types were serotyped. Overall, Salmonella was found in 0.8, 21.4, and 80.1% of bone marrow, neck skin, and farms, respectively. Prevalence of Salmonella on rinsed skin samples (2.3%) and stomached skin samples (20.7%) differed significantly (P ≤ 0.05). Serogroups B, C2, D, and E were found at 23.4, 31.9, 11.7, and 29.8%, respectively. Six Salmonella serotypes were identified: Liverpool (37.9%), Kentucky (27.6%), and Typhimurium (27.6%) were isolated most frequently from neck skin; the two bone isolates were Kentucky; and more than 50% of the farm isolates were Kentucky and Ouakam. Salmonella-contaminated neck skin might be a more significant source of this contamination in ground chicken than Salmonella internalized in bones.

  3. Molecular Epidemiology of Norovirus Outbreaks in Norway during 2000 to 2005 and Comparison of Four Norovirus Real-Time Reverse Transcriptase PCR Assays

    PubMed Central

    Vainio, Kirsti; Myrmel, Mette

    2006-01-01

    During the period from January 2000 to August 2005 a total of 204 outbreaks of norovirus gastroenteritis were diagnosed at the Norwegian Institute of Public Health. A clear increase in the norovirus activity was seen in healthcare institutions during the winter seasons. Polymerase sequence analysis of norovirus strains from 122 outbreaks showed that 112 were caused by GII strains (91.8%). Two norovirus variants seen during the study period—GIIb and GII.4—were predominant between January 2000 and September 2002, whereas GII.4 was predominant from September 2002 onward. The highest norovirus activity was seen during the 2002-2003 and 2004-2005 seasons with the emergence of new GII.4 variants. This study describes the molecular epidemiology of norovirus strains circulating in Norway during the five previous seasons and compares four norovirus real-time reverse transcriptase PCR assays. A suitable assay for routine diagnostics is suggested. PMID:17021099

  4. Activity of Kaempferia pandurata (Roxb.) rhizome ethanol extract against MRSA, MRCNS, MSSA, Bacillus subtilis and Salmonella typhi.

    PubMed

    Sukandar, Elin Yulinah; Sunderam, Nethiyakalyani; Fidrianny, Irda

    2014-01-01

    Temu kunci (Kaempferia pandurata (Roxb.)) has a number of benefits and one of these is antibacterial. The rhizome is said to have antibacterial activity against Streptococcus mutans, Lactocillus sp. and Candida albicans. The aim of the study is to test the antibacterial activity of Kaempferia pandurata (Roxb.) rhizome ethanol extract on methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant coagulase negative Staphylococci (MRCNS), methicillin-sensitive Staphylococcus aureus (MSSA), Bacillus subtilis and Salmonella typhi. Antimicrobial activity of the extract was assayed by the microdilution method using Mueller Hinton Broth with sterilized 96 round-bottomed microwells to determine the Minimum Inhibitory Concentration (MIC) as well as to determine the time-kill activity. The MIC of the extract was 16 ppm for both Bacillus subtilis and MRSA; 8 ppm for both MSSA and Salmonella typhi and 4 ppm for MRCNS. Ethanol extract of Kaempferia pandurata (Roxb.) showed antibacterial activity against all the tested bacteria and was the most potent against MRCNS, with MIC 4 ppm. The killing profile test of the extract displayed bactericidal activity at 8-16 ppm against MRSA, MSSA, Bacillus subtilis and Salmonella typhi and bacteriostatic activity at 4 ppm towards MRCNS.

  5. Development of simple and rapid assay to detect viral RNA of tick-borne encephalitis virus by reverse transcription-loop-mediated isothermal amplification.

    PubMed

    Hayasaka, Daisuke; Aoki, Kotaro; Morita, Kouichi

    2013-03-04

    Tick-borne encephalitis virus (TBEV) is a causative agent of acute central nervous system disease in humans. It has three subtypes, far eastern (FE), Siberian (Sib) and European (Eu) subtypes, which are distributed over a wide area of Europe and Asia. The objective of this study was to develop a simple and rapid assay for the detection of TBEV RNA by using reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP) method that can differentiate the three subtypes of TBEV and can be used for clinical diagnosis and epidemiological study. Primers for TBEV-specific and subtype-specific RT-LAMP assay were designed to target the consensus sequence in NS1 of all subtypes and the consensus sequence in the E gene of each subtype, respectiveluy. In vitro transcribed RNA of Oshima strain that belongs to FE subtype was serially diluted and used to examine the sensitivity of the assay. Cross-reactivity of subtype-specific RT-LAMP assay was tested by using the RNA of Oshima and Sofjin (FE), IR-99 (Sib) and Hochosterwitz (Eu) strains. RNA extracted from the mixtures of TBEV and ticks, and of TBEV and human blood, and the mouse tissues infected with TBEV, were evaluated in the assay. Positive amplification was observed by real-time monitoring of turbidity and by visual detection of color change. The sensitivity of TBEV-specific RT-LAMP assay was 102 copies of target RNA per reaction volume. FE-specific RT-LAMP assay amplified viral genes of Oshima and Sofjin strains but not of IR-99 and Hochosterwitz strains, and of Japanese encephalitis virus. RT-LAMP assay for Sib and for Eu specifically amplified viral genes of IR-99 and Hochosterwitz strains, respectively. We also showed that tick or human blood extract did not inhibit the amplification of viral gene during the assay. Furthermore, we confirmed that the TBEV RT-LAMP could detect virus RNA from peripheral and central nervous system tissues of laboratory mice infected with TBEV. TBEV RT-LAMP assay offers a sensitive

  6. Salmonella-based plague vaccines for bioterrorism.

    PubMed

    Calhoun, Leona Nicole; Kwon, Young-Min

    2006-04-01

    Yersinia pestis, the causative agent of plague, is an emerging threat as a means of bioterrorism. Accordingly, the Working Group on Civilian Biodefense, as well as the Centers for Disease Control and Prevention, has specified Y. pestis as a prime candidate for use in bioterrorism. As the threat of bioterrorism increases, so does the need for an effective vaccine against this potential agent. Experts agree that a stable, non-invasive vaccine would be necessary for the rapid large-scale immunization of a population following a bioterrorism attack. Thus far, live Salmonella-based oral vaccines show the most potential for this purpose. When delivered via a mucosal route, Salmonella-based plague vaccines show the ability to protect against the deadly pneumonic form of plague. Also, mass production, distribution, and administration are easier and less costly for attenuated Salmonella-based plague vaccines than for plague vaccines consisting of purified proteins. Most attenuated Salmonella-based plague vaccines have utilized a plasmid-based expression system to deliver plague antigen(s) to the mucosa. However, these systems are frequently associated with plasmid instability, an increased metabolic burden upon the vaccine strain, and highly undesirable antibiotic resistance genes. The future of Salmonella-based plague vaccines seems to lie in the use of chromosomally encoded plague antigens and the use of in vivo inducible promoters to drive their expression. This method of vaccine development has been proven to greatly increase the retention of foreign genes, and also eliminates the need for antibiotic resistance genes within Salmonella-based vaccines.

  7. Transcriptomic analysis of Salmonella desiccation resistance.

    PubMed

    Li, Haiping; Bhaskara, Anuhya; Megalis, Christina; Tortorello, Mary Lou

    2012-12-01

    The survival of Salmonella in low moisture foods and processing environments remains a great challenge for the food industry and public health. To explore the mechanisms of Salmonella desiccation resistance, we studied the transcriptomic responses in Salmonella Tennessee (Tennessee), using Salmonella Typhimurium LT2 (LT2), a strain weakly resistant to desiccation, as a reference strain. In response to 2 h of air-drying at 11% equilibrated relative humidity, approximately one-fourth of the open reading frames (ORFs) in the Tennessee genome and one-fifth in LT2 were differentially expressed (>2-fold). Among all differentially expressed functional groups (>5-fold) in both strains, the expression fold change associated with fatty acid metabolism was the highest, and constituted 51% and 35% of the total expression fold change in Tennessee and LT2, respectively. Tennessee showed greater changes in expression of genes associated with stress response and envelope modification than LT2, while showing lesser changes in protein biosynthesis expression. Expression of flagella genes was significantly more inhibited in stationary phase cells of Tennessee than LT2 both before and after desiccation. The accumulation of the osmolyte trehalose was significantly induced by desiccation in Tennessee, but no increase was detectable in LT2, which is consistent with the expression patterns of the entire trehalose biosynthesis and degradation pathways in both strains. Results from this study present a global view of the dynamic desiccation responses in Salmonella, which will guide future research efforts to control Salmonella in low moisture environments.

  8. Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay.

    PubMed

    Cronin, Maureen; Pho, Mylan; Dutta, Debjani; Stephans, James C; Shak, Steven; Kiefer, Michael C; Esteban, Jose M; Baker, Joffre B

    2004-01-01

    Throughout the last decade many laboratories have shown that mRNA levels in formalin-fixed and paraffin-embedded (FPE) tissue specimens can be quantified by reverse transcriptase-polymerase chain reaction (RT-PCR) techniques despite the extensive RNA fragmentation that occurs in tissues so preserved. We have developed RT-PCR methods that are sensitive, precise, and that have multianalyte capability for potential wide use in clinical research and diagnostic assays. Here it is shown that the extent of fragmentation of extracted FPE tissue RNA significantly increases with archive storage time. Probe and primer sets for RT-PCR assays based on amplicons that are both short and homogeneous in length enable effective reference gene-based data normalization for cross comparison of specimens that differ substantially in age. A 48-gene assay used to compare gene expression profiles from the same breast cancer tissue that had been either frozen or FPE showed very similar profiles after reference gene-based normalization. A 92-gene assay, using RNA extracted from three 10- micro m FPE sections of archival breast cancer specimens (dating from 1985 to 2001) yielded analyzable data for these genes in all 62 tested specimens. The results were substantially concordant when estrogen receptor, progesterone receptor, and HER2 receptor status determined by RT-PCR was compared with immunohistochemistry assays for these receptors. Furthermore, the results highlight the advantages of RT-PCR over immunohistochemistry with respect to quantitation and dynamic range. These findings support the development of RT-PCR analysis of FPE tissue RNA as a platform for multianalyte clinical diagnostic tests.

  9. Collaborative ring-trial of Dynabeads anti-Salmonella for immunomagnetic separation of stressed Salmonella cells from herbs and spices.

    PubMed

    Mansfield, L; Forsythe, S

    1996-02-01

    Eight laboratories participated in a Salmonella detection ring-trial which compared selective enrichment by conventional broths with immunomagnetic separation (IMS) using Dynabeads Anti-Salmonella. Laboratories analyzed six types of herbs and spices that were spiked with one of six freeze-dried Salmonella species. Each herb and spice analysis comprised of 12 samples (25 g each) which had been spiked at three different levels, plus a negative control and stored for one week prior to testing. Out of a total 468 samples analyzed, 195 (41.7%) were positive by both methods. Eighteen samples were positive only by IMS enrichment, in comparison with 19 positive samples by conventional enrichment broths and not IMS. These results confirm the potential use of IMS as an alternative to enrichment broths for Salmonella isolation.

  10. Effect of Challenge Temperature and Solute Type on Heat Tolerance of Salmonella Serovars at Low Water Activity

    PubMed Central

    Mattick, K. L.; Jørgensen, F.; Wang, P.; Pound, J.; Vandeven, M. H.; Ward, L. R.; Legan, J. D.; Lappin-Scott, H. M.; Humphrey, T. J.

    2001-01-01

    Salmonella spp. are reported to have an increased heat tolerance at low water activity (aw; measured by relative vapor pressure [rvp]), achieved either by drying or by incorporating solutes. Much of the published data, however, cover only a narrow treatment range and have been analyzed by assuming first-order death kinetics. In this study, the death of Salmonella enterica serovar Typhimurium DT104 when exposed to 54 combinations of temperature (55 to 80°C) and aw (rvp 0.65 to 0.90, reduced using glucose-fructose) was investigated. The Weibull model (LogS = −btn) was used to describe microbial inactivation, and surface response models were developed to predict death rates for serovar Typhimurium at all points within the design surface. The models were evaluated with data generated by using six different Salmonella strains in place of serovar Typhimurium DT104 strain 30, two different solutes in place of glucose-fructose to reduce aw, or six low-aw foods artificially contaminated with Salmonella in place of the sugar broths. The data demonstrate that, at temperatures of ≥70°C, Salmonella cells at low aw were more heat tolerant than those at a higher aw but below 65°C the reverse was true. The same patterns were generated when sucrose (rvp 0.80 compared with 0.90) or NaCl (0.75 compared with 0.90) was used to reduce aw, but the extent of the protection afforded varied with solute type. The predictions of thermal death rates in the low-aw foods were usually fail-safe, but the few exceptions highlight the importance of validating models with specific foods that may have additional factors affecting survival. PMID:11526015

  11. Salmonella enterocolitis

    MedlinePlus

    ... you: Eat foods such as turkey, turkey dressing, chicken, or eggs that have not been cooked well or stored properly Are around family members with a recent salmonella infection Have been in or worked in a ...

  12. Oral vaccination with a live Salmonella Enteritidis/Typhimurium bivalent vaccine in layers induces cross-protection against caecal and internal organ colonization by a Salmonella Infantis strain.

    PubMed

    Eeckhaut, Venessa; Haesebrouck, Freddy; Ducatelle, Richard; Van Immerseel, Filip

    2018-05-01

    Salmonella is an important zoonotic agent, and poultry products remain one of the main sources of infection for humans. Salmonella Infantis is an emerging serotype in poultry worldwide, reflected by an increased prevalence in poultry flocks, on broiler meat and in human foodborne illness cases. In the current study, the efficacy of oral administration of a live monovalent Salmonella Enteritidis and a live bivalent Salmonella Enteritidis/Typhimurium vaccine, against a Salmonella Enteritidis and Infantis infection, was determined. Oral administration of the live vaccines to day-old chickens caused a decrease in caecal colonization by Salmonella Enteritidis, but not Infantis, at day 7, when challenged at day 2. Vaccination with the bivalent vaccine at day 1 resulted in a decreased spleen colonization by both Salmonella Infantis and Enteritidis. Twice (at day 1 and week 6) and thrice vaccination (at day 1, week 6 and 16) of laying hens with the bivalent vaccine resulted in a decreased caecal colonization by Salmonella Enteritidis and Infantis, and significantly lower oviduct colonization levels by Salmonella Enteritidis. These data show cross-protection against Salmonella Infantis by oral administration of live vaccine strains belonging to other serogroups. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Ten years experience of Salmonella infections in Cambridge, UK.

    PubMed

    Matheson, Nicholas; Kingsley, Robert A; Sturgess, Katherine; Aliyu, Sani H; Wain, John; Dougan, Gordon; Cooke, Fiona J

    2010-01-01

    Review of all Salmonella infections diagnosed in the Cambridge area over 10 years. All Salmonella enterica isolated in the Clinical Microbiology Laboratory, Addenbrooke's Hospital between 1.1.1999 and 31.12.2008 were included. Patient demographics, serotype and additional relevant details (travel history, resistance-type, phage-type) were recorded. 1003 episodes of Salmonella gastroenteritis were confirmed by stool culture, representing 88 serotypes. Serotypes Enteritidis (59%), Typhimurium (4.7%), Virchow (2.6%), Newport (1.8%) and Braenderup (1.7%) were the 5 most common isolates. There were an additional 37 invasive Salmonella infections (32 blood cultures, 4 tissue samples, 1 CSF). 13/15 patients with Salmonella Typhi or Salmonella Paratyphi isolated from blood or faeces with an available travel history had returned from the Indian subcontinent. 8/10 S. Typhi or Paratyphi isolates tested had reduced susceptibility to fluoroquinolones (MIC > or = 0.125 mg/L). 7/21 patients with non-typhoidal Salmonella bacteraemia were known to be immunosuppressed. This study describes Salmonella serotypes circulating within a defined geographical area over a decade. Prospective molecular analysis of isolates of S. enterica by multi-locus sequence typing (MLST) and single nucleotide polymorphism (SNP) detection will determine the geo-phylogenetic relationship of isolates within our region. 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.

  14. Comparison of the performance in detection of HPV infections between the high-risk HPV genotyping real time PCR and the PCR-reverse dot blot assays.

    PubMed

    Zhang, Lahong; Dai, Yibei; Chen, Jiahuan; Hong, Liquan; Liu, Yuhua; Ke, Qiang; Chen, Yiwen; Cai, Chengsong; Liu, Xia; Chen, Zhaojun

    2018-01-01

    A new multiplex real-time PCR assay, the high-risk HPV genotyping real time PCR assay (HR HPV RT-PCR), has been developed to detect 15 high-risk HPV types with respective viral loads. In this report, a total of 684 cervical specimens from women diagnosed with vaginitis were assessed by the HR HPV RT-PCR and the PCR reaction and reverse dot blot (PCR-RDB) assays, using a PCR-sequencing method as a reference standard. A total coincidence of 97.7% between the HR HPV RT PCR and the PCR-RDB assays was determined with a Kappa value of 0.953. The HR HPV RT PCR assay had sensitivity, specificity, and concordance rates (accuracy) of 99.7%, 99.7%, and 99.7%, respectively, as confirmed by PCR-sequencing, while the PCR-RDB assay had respective rates of 98.8%, 97.1%, and 98.0%. The overall rate of HPV infection, determined by PCR-sequencing, in women diagnosed with vaginitis was 49.85%, including 36.26% of single infection and 13.6% of multiple infections. The most common infections among the 15 high-risk HPV types in women diagnosed with vaginitis were HPV-52, HPV-16, and HPV-58, with a total detection rate of 10.23%, 7.75%, and 5.85%, respectively. We conclude that the HR HPV RT PCR assay exhibits better clinical performance than the PCR-RDB assay, and is an ideal alternative method for HPV genotyping. In addition, the HR HPV RT PCR assay provides HPV DNA viral loads, and could serve as a quantitative marker in the diagnosis and treatment of single and multiple HPV infections. © 2017 Wiley Periodicals, Inc.

  15. Modified telomeric repeat amplification protocol: a quantitative radioactive assay for telomerase without using electrophoresis.

    PubMed

    Szatmari, I; Tókés, S; Dunn, C B; Bardos, T J; Aradi, J

    2000-06-15

    A polymerase chain reaction (PCR)-based radioactive telomerase assay was developed in our laboratory which is quantitative and does not require electrophoretic evaluation (designated as TP-TRAP; it utilizes two reverse primers). The main steps of the assay include (1) extension of a 20-mer oligonucleotide substrate (MTS) by telomerase, (2) amplification of the telomerase products in the presence of [(3)H]dTTP using the substrate oligonucleotide and two reverse primers (RPC3, 38 mer; RP, 20 mer), (3) isolation of the amplified radioactive dsDNA by precipitation and filtration, (4) determination of the radioactivity of the acid-insoluble DNA. The length of the telomerase products does not increase on amplification. This valuable feature of the assay is achieved by utilization of the two reverse primers and a highly specific PCR protocol. The assay is linear, accurate, and suitable for cell-biological studies where slight quantitative differences in telomerase activity must be detected. The assay is also suitable for screening and characterization of telomerase inhibitors, as shown with a chemically modified oligonucleotide reverse transcriptase inhibitor [(s(4)dU)(35)]. Copyright 2000 Academic Press.

  16. Detection of Salmonella enterica Serovar Typhimurium by Using a Rapid, Array-Based Immunosensor

    PubMed Central

    Taitt, Chris Rowe; Shubin, Yura S.; Angel, Roselina; Ligler, Frances S.

    2004-01-01

    The multianalyte array biosensor (MAAB) is a rapid analysis instrument capable of detecting multiple analytes simultaneously. Rapid (15-min), single-analyte sandwich immunoassays were developed for the detection of Salmonella enterica serovar Typhimurium, with a detection limit of 8 × 104 CFU/ml; the limit of detection was improved 10-fold by lengthening the assay protocol to 1 h. S. enterica serovar Typhimurium was also detected in the following spiked foodstuffs, with minimal sample preparation: sausage, cantaloupe, whole liquid egg, alfalfa sprouts, and chicken carcass rinse. Cross-reactivity tests were performed with Escherichia coli and Campylobacter jejuni. To determine whether the MAAB has potential as a screening tool for the diagnosis of asymptomatic Salmonella infection of poultry, chicken excretal samples from a private, noncommercial farm and from university poultry facilities were tested. While the private farm excreta gave rise to signals significantly above the buffer blanks, none of the university samples tested positive for S. enterica serovar Typhimurium without spiking; dose-response curves of spiked excretal samples from university-raised poultry gave limits of detection of 8 × 103 CFU/g. PMID:14711637

  17. Immune Reaction and Survivability of Salmonella Typhimurium and Salmonella Infantis after Infection of Primary Avian Macrophages

    PubMed Central

    Braukmann, Maria; Methner, Ulrich; Berndt, Angela

    2015-01-01

    Salmonella serovars are differentially able to infect chickens. The underlying causes are not yet fully understood. Aim of the present study was to elucidate the importance of Salmonella Pathogenicity Island 1 and 2 (SPI-1 and -2) for the virulence of two non-host-specific, but in-vivo differently invasive, Salmonella serovars in conjunction with the immune reaction of the host. Primary avian splenic macrophages were inoculated with Salmonella enterica sub-species enterica serovar (S.) Typhimurium and S. Infantis. The number and viability of intracellular bacteria and transcription of SPI-1 and -2 genes by the pathogens, as well as transcription of immune-related proteins, surface antigen expression and nitric oxide production by the macrophages, were compared at different times post inoculation. After infection, both of the Salmonella serovars were found inside the primary macrophages. Invasion-associated SPI-1 genes were significantly higher transcribed in S. Infantis- than S. Typhimurium-infected macrophages. The macrophages counteracted the S. Infantis and S. Typhimurium infection with elevated mRNA expression of inducible nitric oxide synthase (iNOS), interleukin (IL)-12, IL-18 and lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF) as well as with an increased synthesis of nitric oxide. Despite these host cell attacks, S. Typhimurium was better able than S. Infantis to survive within the macrophages and transcribed higher rates of the SPI-2 genes spiC, ssaV, sifA, and sseA. The results showed similar immune reactions of primary macrophages after infection with both of the Salmonella strains. The more rapid and stronger transcription of SPI-2-related genes by intracellular S. Typhimurium compared to S. Infantis might be responsible for its better survival in avian primary macrophages. PMID:25811871

  18. Salmonella surrogate reduction using industrial peanut dry roasting parameters

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted to evaluate the effectiveness of industrial peanut dry roasting parameters in Salmonella reduction using a Salmonella surrogate, Enterococcus faecium, which is slightly more heat tolerant than Salmonella. Runner-type peanuts were inoculated with E. faecium and roasted in a lab...

  19. Saccharomyces boulardii prevention of the hepatic injury induced by Salmonella Enteritidis infection.

    PubMed

    Wu, Daichao; Teng, Da; Wang, Xiumin; Dai, Changsong; Wang, Jianhua

    2014-10-01

    Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis) is the predominant cause of serovar-associated food-borne outbreaks in many countries and causes significant clinical symptoms of liver injury, enteritis, and diarrheal diseases. Saccharomyces boulardii is used in clinical application for prophylaxis and the treatment of a variety of diseases caused by bacterial infection. We used a mouse model of Salmonella Enteritidis infection, which included pretreatment with S. boulardii, to reveal the protection mechanisms of S. boulardii against Salmonella Enteritidis infection, including the translocation of Salmonella Enteritidis to the liver 10 days after Salmonella Enteritidis challenge, and the colonisation of Salmonella Enteritidis and the formation of hepatic tissue lesions in mice after Salmonella Enteritidis challenge on the 10th day. Compared with Salmonella Enteritidis infection in mice, S. boulardii decreased Salmonella Enteritidis translocation to the liver by 96%, and 99% of Salmonella Enteritidis colonised the cecum on the 10th day. Saccharomyces boulardii also abated hepatic tissue injury caused by the infiltration of neutrophilic granulocytes, lymphocytes, and plasmocytes by decreasing the translocation of Salmonella to the liver. These findings demonstrated that S. boulardii is an effective agent in the prevention of the hepatic injury induced by Salmonella Enteritidis infection in a mouse model.

  20. Salmonella burden in Lebanon.

    PubMed

    Malaeb, M; Bizri, A R; Ghosn, N; Berry, A; Musharrafieh, U

    2016-06-01

    Salmonellosis is a disease that represents a major public health concern in both developing and developed countries. The aim of this article is to evaluate the public health burden of Salmonella illness in Lebanon. The current scope of the Salmonella infection problem was assessed in relation to disease incidence and distribution with respect to age, gender and district. Factors that provide a better understanding of the magnitude of the problem were explored and highlighted. Data reported to the Epidemiologic Surveillance Department at the Lebanese Ministry of Public Health between 2001 and 2013 was reviewed. Information obtained was compared to information reported regionally and globally. The estimated true incidence was derived using multipliers from the CDC and Jordan. A literature review of all published data from Lebanon about Salmonella susceptibility/resistance patterns and its serious clinical complications was conducted. The estimated incidence was 13·34 cases/100 000 individuals, most cases occurred in the 20-39 years age group with no significant gender variation. Poor and less developed districts of Lebanon had the highest number of cases and the peak incidence was in summer. Reflecting on the projected incidence derived from the use of multipliers indicates a major discrepancy between what is reported and what is estimated. We conclude that data about Salmonella infection in Lebanon and many Middle Eastern and developing countries lack crucial information and are not necessarily representative of the true incidence, prevalence and burden of illness.

  1. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend?

    PubMed

    Michael, G B; Schwarz, S

    2016-12-01

    Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. Reduction of Salmonella in ground chicken using a bacteriophage.

    PubMed

    Grant, Ar'Quette; Parveen, Salina; Schwarz, Jurgen; Hashem, Fawzy; Vimini, Bob

    2017-08-01

    This study's goal was to ascertain the effectiveness of a commercially available Salmonella bacteriophage during ground chicken production focusing on: water source, different Salmonella serovars, and time. Salmonella-free boneless, skinless chicken meat was inoculated with 4.0 Log CFU/cm2 of either a cocktail of 3 Salmonella isolates derived from ground chicken (GC) or a cocktail of 3 Salmonella strains not isolated from ground chicken (non-GC). Bacteriophages were spread onto the chicken using sterile tap or filtered water for 30 min or 8 h. Salmonella was recovered using standard plating method. Greater Salmonella reduction was observed when the bacteriophage was diluted in sterile tap water than in sterile filtered water: 0.39 Log CFU/cm2 and 0.23 Log CFU/cm2 reduction after 30 min, respectively (P < 0.05). The non-GC isolates showed reductions of 0.71 Log CFU/cm2 and 0.90 Log CFU/cm2 after 30 min and 8 h, respectively (P < 0.05). The GC isolates were less sensitive to the bacteriophage: 0.39 Log CFU/cm2 and 0.67 Log CFU/cm2 reductions after 30 min and 8 h, respectively (P < 0.05). In conclusion, bacteriophage reduction was dependent on water used to dilute the bacteriophage, Salmonella's susceptibility to the bacteriophage, and treatment time. © 2017 Poultry Science Association Inc.

  3. Initial contamination of chicken parts with Salmonella at retail and cross-contamination of cooked chicken with Salmonella from raw chicken during meal preparation.

    PubMed

    Oscar, T P

    2013-01-01

    The current study was undertaken to acquire data on contamination of chicken parts with Salmonella at retail and to acquire data on cross-contamination of cooked chicken with Salmonella from raw chicken during meal preparation. Whole raw chickens (n = 31) were obtained from local retail stores and cut into two wings, two breasts without skin or bones, two thighs, and two drumsticks. Data for cross-contamination were obtained by cutting up a sterile, cooked chicken breast with the same board and knife used to cut up the raw chicken. The board, knife, and latex gloves used by the food handler were not rinsed or washed before cutting up the sterile, cooked chicken breast, thus providing a worst-case scenario for cross-contamination. Standard curves for the concentration of Salmonella bacteria in 400 ml of buffered peptone water after 6 h of incubation of chicken parts as a function of the initial log number of Salmonella bacteria inoculated onto chicken parts were developed and used to enumerate Salmonella bacteria. Standard curves were not affected by the type of chicken part but did differ (P < 0.05) among the five isolates of Salmonella examined. Consequently, Salmonella bacteria were enumerated on naturally contaminated chicken parts using a standard curve developed with the serotype of Salmonella that was isolated from the original sample. The prevalence of contamination was 3 % (4 of 132), whereas the incidence of cross-contamination was 1.8 % (1 of 57). The positive chicken parts were a thigh from chicken 4, which contained 3 CFU of Salmonella enterica serotype Kentucky, and both wings, one thigh, and one cooked breast portion from chicken 15, which all contained 1 CFU of serotype 8,20:-:z(6). These results indicated that the poultry industry is providing consumers in the studied area with chicken that has a low prevalence and low number of Salmonella bacteria at retail and that has a low incidence and low level of cross-contamination of cooked chicken with

  4. Detection of bovine central nervous system tissues in rendered animal by-products by one-step real-time reverse transcription PCR assay.

    PubMed

    Andrievskaia, Olga; Tangorra, Erin

    2014-12-01

    Contamination of rendered animal byproducts with central nervous system tissues (CNST) from animals with bovine spongiform encephalopathy is considered one of the vehicles of disease transmission. Removal from the animal feed chain of CNST originated from cattle of a specified age category, species-labeling of rendered meat products, and testing of rendered products for bovine CNST are tasks associated with the epidemiological control of bovine spongiform encephalopathy. A single-step TaqMan real-time reverse transcriptase (RRT) PCR assay was developed and evaluated for specific detection of bovine glial fibrillary acidic protein (GFAP) mRNA, a biomarker of bovine CNST, in rendered animal by-products. An internal amplification control, mammalian b -actin mRNA, was coamplified in the duplex RRT-PCR assay to monitor amplification efficiency, normalize amplification signals, and avoid false-negative results. The functionality of the GFAP mRNA RRT-PCR was assessed through analysis of laboratory-generated binary mixtures of bovine central nervous system (CNS) and muscle tissues treated under various thermal settings imitating industrial conditions. The assay was able to detect as low as 0.05 % (wt/wt) bovine brain tissue in binary mixtures heat treated at 110 to 130°C for 20 to 60 min. Further evaluation of the GFAP mRNA RRT-PCR assay involved samples of industrial rendered products of various species origin and composition obtained from commercial sources and rendering plants. Low amounts of bovine GFAP mRNA were detected in several bovine-rendered products, which was in agreement with declared species composition. An accurate estimation of CNS tissue content in industrial-rendered products was complicated due to a wide range of temperature and time settings in rendering protocols. Nevertheless, the GFAP mRNA RRT-PCR assay may be considered for bovine CNS tissue detection in rendered products in combination with other available tools (for example, animal age

  5. Survival and growth of Salmonella in salsa and related ingredients.

    PubMed

    Ma, Li; Zhang, Guodong; Gerner-Smidt, Peter; Tauxe, Robert V; Doyle, Michael P

    2010-03-01

    A large outbreak of Salmonella Saintpaul associated with raw jalapeño peppers, serrano peppers, and possibly tomatoes was reported in the United States in 2008. During the outbreak, two clusters of illness investigated among restaurant patrons were significantly associated with eating salsa. Experiments were performed to determine the survival and growth characteristics of Salmonella in salsa and related major ingredients, i.e., tomatoes, jalapeño peppers, and cilantro. Intact and chopped vegetables and different formulations of salsas were inoculated with a five-strain mixture of Salmonella and then stored at 4, 12, and 21 degrees C for up to 7 days. Salmonella populations were monitored during storage. Salmonella did not grow, but survived on intact tomatoes and jalapeño peppers, whereas significant growth at 12 and 21 degrees C was observed on intact cilantro. In general, growth of Salmonella occurred in all chopped vegetables when stored at 12 and 21 degrees C, with chopped jalapeño peppers being the most supportive of Salmonella growth. Regardless of differences in salsa formulation, no growth of Salmonella (initial inoculation ca. 3 log CFU/g) was observed in salsa held at 4 degrees C; however, rapid or gradual decreases in Salmonella populations were only observed in formulations that contained both fresh garlic and lime juice. Salmonella grew at 12 and 21 degrees C in salsas, except for those formulations that contained both fresh garlic and lime juice, in which salmonellae were rapidly or gradually inactivated, depending on salsa formulation. These results highlight the importance of preharvest pathogen contamination control of fresh produce and proper formulation and storage of salsa.

  6. Direct feeding of microencapsulated bacteriophages to reduce Salmonella colonization in pigs

    USDA-ARS?s Scientific Manuscript database

    Salmonella shedding often increases in pigs following pre-slaughter transportation and/or lairage. We previously showed that administering anti-Salmonella bacteriophages to pigs by gavage significantly reduced Salmonella colonization when the pigs were exposed to a Salmonella-contaminated pen. In ...

  7. Modeling of Salmonella Contamination in the Pig Slaughterhouse.

    PubMed

    Swart, A N; Evers, E G; Simons, R L L; Swanenburg, M

    2016-03-01

    In this article we present a model for Salmonella contamination of pig carcasses in the slaughterhouse. This model forms part of a larger QMRA (quantitative microbial risk assessment) on Salmonella in slaughter and breeder pigs, which uses a generic model framework that can be parameterized for European member states, to describe the entire chain from farm-to-consumption and the resultant human illness. We focus on model construction, giving mathematical formulae to describe Salmonella concentrations on individual pigs and slaughter equipment at different stages of the slaughter process. Variability among individual pigs and over slaughterhouses is incorporated using statistical distributions, and simulated by Monte Carlo iteration. We present the results over the various slaughter stages and show that such a framework is especially suitable to investigate the effect of various interventions. In this article we present the results of the slaughterhouse module for two case study member states. The model outcome represents an increase in average prevalence of Salmonella contamination and Salmonella numbers at dehairing and a decrease of Salmonella numbers at scalding. These results show good agreement when compared to several other QMRAs and microbiological studies. © 2016 Society for Risk Analysis.

  8. Sources of Salmonellae in broiler chickens in Ontario.

    PubMed Central

    Hacking, W C; Mitchell, W R; Carlson, H C

    1978-01-01

    Sources of Salmonellae infecting broiler chicken flocks in Ontario were investigated from July, 1975 to April, 1976. Three broiler flocks were investigated on each of four farms which received chicks from a common hatchery. Samples of feed and new litter were preenriched in nonselective broth subcultured to Salmonella-selective enrichment broth and plated on Salmonella-selective differential agar.Samples of used litter, water, culled chicks, insects, mice, wild birds and environmental swabs were not cultured initially in the nonselective broth. Fecal samples from principal and occasional flock attendants were examined for Samonellae. Salmonella infection, as judged by contaminated flock litter was detected in six flocks on two of the farms while the flocks on the other farms remained negative. Salmonellae were isolated from 23 of 412 feed samples (nine serotypes), six of 35 new wood shaving samples (four serotypes), one of 29 pools of culled chick viscera (one serotype) and 44 of 267 used litter samples (14 serotypes). These results indicate that broiler chicken flocks were infected with diverse Salmonellae introduced in day old chicks, pelleted feeds, wood shavings and residual contamination from the preceding flock. PMID:743597

  9. Assessment of 2 Salmonella enterica serovar Typhimurium-based vaccines against necrotic enteritis in reducing colonization of chickens by Salmonella serovars of different serogroups.

    PubMed

    Jiang, Yanfen; Kulkarni, Raveendra R; Parreira, Valeria R; Poppe, Cornelius; Roland, Kenneth L; Prescott, John F

    2010-10-01

    This study assessed the protective efficacy of oral vaccination with 2 experimental attenuated Salmonella Typhimurium-vectored vaccines for necrotic enteritis in protecting chickens against intestinal colonization by common serovars of Salmonella belonging to the 4 major serogroups affecting chickens. Birds were vaccinated orally with 1 × 10⁸ colony-forming units (CFU) of 1 of the vaccine strains χ9241 and χ9352, which express a plasmid-encoded partial recombinant hypothetical protein gene (tHP) of Clostridium perfringens, at days 1 and 7 of age, and then were challenged at 14 d of age with 10⁶ CFU of Salmonella serovars Anatum, Enteritidis, Heidelberg, Kentucky, or Typhimurium (representative serovars of serogroups B, C, D, and E). Birds were necropsied at 4 wk of age, and samples were collected to determine reduction in tissue and intestinal colonization. The chickens vaccinated with χ9241-tHP showed reduced colonization by Salmonella Enteritidis (serogroup D) and by Salmonella Heidelberg and Salmonella Typhimurium (serogroup B) compared with the control birds. No reduction in colonization was observed in the chickens vaccinated with χ9352-tHP. There was an association between the efficacy of these vaccine strains in protecting against necrotic enteritis, assessed on an earlier occasion, and their efficacy in protecting against Salmonella colonization. Thus, the choice of an attenuated Salmonella Typhimurium vaccine vector for delivery of heterologous antigens to chickens should be based partly on the vaccine's value in protecting against colonization by serovars within serogroups B and D. Such vectors would have the additional benefit of reducing colonization of important Salmonella serovars.

  10. Assessment of 2 Salmonella enterica serovar Typhimurium-based vaccines against necrotic enteritis in reducing colonization of chickens by Salmonella serovars of different serogroups

    PubMed Central

    Jiang, Yanfen; Kulkarni, Raveendra R.; Parreira, Valeria R.; Poppe, Cornelius; Roland, Kenneth L.; Prescott, John F.

    2010-01-01

    This study assessed the protective efficacy of oral vaccination with 2 experimental attenuated Salmonella Typhimurium-vectored vaccines for necrotic enteritis in protecting chickens against intestinal colonization by common serovars of Salmonella belonging to the 4 major serogroups affecting chickens. Birds were vaccinated orally with 1 × 108 colony-forming units (CFU) of 1 of the vaccine strains χ9241 and χ9352, which express a plasmid-encoded partial recombinant hypothetical protein gene (tHP) of Clostridium perfringens, at days 1 and 7 of age, and then were challenged at 14 d of age with 106 CFU of Salmonella serovars Anatum, Enteritidis, Heidelberg, Kentucky, or Typhimurium (representative serovars of serogroups B, C, D, and E). Birds were necropsied at 4 wk of age, and samples were collected to determine reduction in tissue and intestinal colonization. The chickens vaccinated with χ9241-tHP showed reduced colonization by Salmonella Enteritidis (serogroup D) and by Salmonella Heidelberg and Salmonella Typhimurium (serogroup B) compared with the control birds. No reduction in colonization was observed in the chickens vaccinated with χ9352-tHP. There was an association between the efficacy of these vaccine strains in protecting against necrotic enteritis, assessed on an earlier occasion, and their efficacy in protecting against Salmonella colonization. Thus, the choice of an attenuated Salmonella Typhimurium vaccine vector for delivery of heterologous antigens to chickens should be based partly on the vaccine’s value in protecting against colonization by serovars within serogroups B and D. Such vectors would have the additional benefit of reducing colonization of important Salmonella serovars. PMID:21197226

  11. Coconut and Salmonella Infection

    PubMed Central

    Schaffner, Carl P.; Mosbach, Klaus; Bibit, Venuso C.; Watson, Colin H.

    1967-01-01

    Raw, unprocessed coconut supports the growth of salmonellae as well as that of other enteric bacteria, salmonellae being particularly resistant to subsequent desiccation. Original contamination is not due to carriers or to polluted water supplies, but to contact with bacteria-containing soils followed by dispersion via infected coconut milk and shells. Pasteurization of raw coconut meat in a water bath at 80 C for 8 to 10 min effectively killed such bacteria, did not injure the product, and provided a prophylactic method now widely used by the coconut industry. PMID:5340650

  12. Detection of egg yolk antibodies reflecting Salmonella enteritidis infections using a surface plasmon resonance biosensor.

    PubMed

    Thomas, Ekelijn; Bouma, Annemarie; van Eerden, Ellen; Landman, Wil J M; van Knapen, Frans; Stegeman, Arjan; Bergwerff, Aldert A

    2006-08-31

    A surface plasmon resonance (SPR) biosensor assay was developed on the basis of a lipopolysaccharide antigen of Salmonella enterica serovar enteritidis (S. enterica serovar enteritidis) to detect egg yolk antibodies against S. enterica serovar enteritidis. This biosensor assay was compared to two commercial ELISA kits based on LPS antigen and flagellar antigen. A number of 163 egg yolk and combined egg white and yolk samples from chickens experimentally infected with S. enterica serovar enteritidis and 90 egg yolk and combined egg white and yolk samples from uninfected chickens were analyzed. Receiver operating characteristic analysis of the data calculated a diagnostic sensitivity of 82% and a diagnostic specificity of 100%. The within-day coefficient of variation of a positive internal-control egg yolk was 1%. The SPR biosensor assay was able to detect antibodies in a significantly higher percentage of known positive samples than the commercial ELISA's. The anticipated use of the SPR biosensor assay is to determine the S. enterica serovar enteritidis serostatus of non-vaccinated layer hens.

  13. Salmonella species isolated from animal feed in Iraq.

    PubMed Central

    Al-Hindawi, N; Taha, R R

    1979-01-01

    Of 700 animal feed samples, 32 (4.5%) harbored Salmonella. The highest percentage of contamination was found in sheep feed and local protein. A total of 17 Salmonella serotypes were identified. The most frequent serotypes were Salmonella meleagridis. S. bornum, S. montevideo, and S. drypool. S. bornum was isolated for the first time in Iraq and from both local feed and its ingredients. The common somatic group found was that of Salmonella group C; then came groups E, G, B, and D. Three serotypes (S. enteritidis, S. california, and S. muenchen) seemed to form a link of infection among feed, food, patients, and carriers. PMID:453836

  14. Salmonella Typhimurium pneumonia in a patient with multiple myeloma.

    PubMed

    Khan, Sadia; Kumar, V Anil; Sidharthan, Neeraj; Mehta, Asmita; Backer, Binita; Dinesh, Kavitha R

    2015-04-01

    Pneumonia due to non-typhoidal Salmonella is a rarely reported entity. A fatal case of Salmonella pneumonia is reported here where Salmonella Typhimurium was isolated from the endotracheal aspirate and blood culture. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. Isolation of Salmonella Virchow from a fruit bat (Pteropus giganteus).

    PubMed

    Islam, Ausraful; Mikolon, Andrea; Mikoleit, Matthew; Ahmed, Dilruba; Khan, Salah Udddin; Sharker, M A Yushuf; Hossain, M Jahangir; Islam, Ariful; Epstein, Jonathan H; Zeidner, Nord; Luby, Stephen P

    2013-12-01

    Detection of zoonotic pathogens carried by bats is important both for understanding disease ecology and for developing preventive measures. Pteropus fruit bats have been identified as potential carriers of Salmonella enterica serotype Typhi. A cross-sectional study was conducted to determine the prevalence of Salmonella Typhi and other Salmonella serotypes in Pteropus giganteus fruit bats in Bangladesh. Rectal swabs were collected from 302 bats and cultured for Salmonella species. The bats were trapped in three districts (Faridpur, Rajbari, and Cox's Bazar). Salmonella Typhi was not found but one juvenile female bat from Faridpur district was positive for Salmonella Virchow. Close associations between frugivorous bats, humans, and livestock in rural Bangladesh make it likely that the bat was infected by consuming contaminated water.

  16. Comparing validation of four ELISA-systems for detection of Salmonella derby- and Salmonella infantis-infected pigs.

    PubMed

    Roesler, Uwe; Szabo, Istvan; Matthies, Claudia; Albrecht, Kerstin; Leffler, Martin; Scherer, Kathrin; Nöckler, Karsten; Lehmann, Jörg; Methner, Ulrich; Hensel, Andreas; Truyen, Uwe

    2011-01-01

    The objective of this study was the comparative evaluation of four indirect Salmonella ELISA tests at study time approved in Germany to detect Salmonella infection in pigs.Three tests are based on a LPS-antigen mix and directed against specific IgG antibodies. The fourth test is based on a purified S. Typhimurium whole-cell lysate antigen and discriminates between Salmonella-specific IgM-, IgA-, and IgG- antibodies. In a longitudinal study, two groups of six weeks old hybrid piglets were orally infected with a porcine S. Infantis or S. Derby strain. Clinical and bacteriological parameters were monitored weekly during an observation period of 130 days after infection and serum samples were investigated in parallel with the respective ELISAs. Apparently, the LPS-based ELISA systems used in this study failed to recognize S. Infantis-infected pigs although those animals shed the pathogen in high amounts throughout the study until day 81 post infection (p. i.). In contrast, the isotype-specific Salmonella Typhimurium whole-cell-lysate based ELISA was capable of detecting Salmonella-infected pigs from day ten p. i. at all tested serotypes and revealed the highest sensitivity in detection of S. Infantis-infected pigs. Furthermore, it became apparent that the often used surveillance cut-off value of 40 OD% is not appropriate for intra-vitam detection of S. Infantis- and S. Derby-infected pigs. In contrast, the cut-off values of the ELISAs given by the suppliers result in considerable higher detection rates.

  17. Chasing Salmonella Typhimurium in free range egg production system.

    PubMed

    Chousalkar, Kapil; Gole, Vaibhav; Caraguel, Charles; Rault, Jean-Loup

    2016-08-30

    Free range production systems are becoming a major source of egg production in Australia and worldwide. This study investigated shedding and ecology of Salmonella Typhimurium and Salmonella species in a free range layer flock, wild birds and foxes in the vicinity of the free range farm in different seasons. Shedding of Salmonella was significantly higher in summer. Within the shed, overall, Salmonella prevalence was highest in dust. Corticosterone level in faeces was highest in spring and lowest in winter. There was no direct association between the Salmonella shedding (MPN/gm) and corticosterone levels in faeces. Salmonella Typhimurium MLVA types isolated from fox and wild birds were similar to MLVA types isolated from layer flock and reported during human food borne illness. Wild birds and foxes appear to play an important role in S. Typhimurium ecology and food safety. Environmental factors could play a role in evolution of S. Typhimurium in free range environment. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  18. Examination of predictors of Salmonella enterica contamination in cattle feedlot environments

    USDA-ARS?s Scientific Manuscript database

    Objective: To identify a “predictor” or “environmental marker” that can be used to estimate Salmonella prevalence in a given feedlot environment. Further, to examine the correlation between environmental Salmonella contamination, Salmonella fecal shedding status, and prevalence of Salmonella in per...

  19. Toward Molecular Level of the “Salmonella-Victim” Ecology, Genetics, and Evolution

    PubMed Central

    Rumyantsev, S.N.

    2004-01-01

    Bacteria of the Salmonella genus are polypathogenic agents that can affect both men and animals, causing devastating and fatal illness. Despite considerable immunological, epidemiological, and genetic efforts, and increased understanding of how the Salmonella infection develops, many key questions concerning Salmonella infection remain unanswered. Salmonella can be carried as harmless commensals in some sectors of the population. In some individuals, however, the same microbes cause illness while others display immunity to primary Salmonella infection. Nothing is known about the molecular base of the Salmonella pathogenicity. Even the ability of Salmonella to destroy the victims cells has been the subject of century-long discussions. In this article, some key findings concerning ecology, molecular ecology, and cell level of the Salmonella infection genetics are summarized and interpreted from the viewpoint of evolutionary theory with certitude that this approach can help to decipher the undiscovered secrets of Salmonella infections epidemiology and pathogenesis, as well as the clinical course and severity, and to select ways for fighting against Salmonella. PMID:15105959

  20. Detection of Anaplasma marginale and A. phagocytophilum in Bovine Peripheral Blood Samples by Duplex Real-Time Reverse Transcriptase PCR Assay

    PubMed Central

    Reinbold, James B.; Coetzee, Johann F.; Sirigireddy, Kamesh R.; Ganta, Roman R.

    2010-01-01

    Insufficient diagnostic sensitivity and specificity coupled with the potential for cross-reactivity among closely related Anaplasma species has made the accurate determination of infection status problematic. A method for the development of simplex and duplex real-time quantitative reverse transcriptase PCR (qRT-PCR) assays for the detection of A. marginale and A. phagocytophilum 16S rRNA in plasma-free bovine peripheral blood samples is described. The duplex assay was able to detect as few as 100 copies of 16S rRNA of both A. marginale and A. phagocytophilum in the same reaction. The ratio of 16S rRNA to 16S DNA copies for A. marginale was determined to be 117.9:1 (95% confidence interval [95% CI], 100.7:1, 135.2:1). Therefore, the detection limit is the minimum infective unit of one A. marginale bacterium. The duplex assay detected nonequivalent molar ratios as high as 100-fold. Additionally, the duplex assay and a competitive enzyme-linked immunosorbent assay (cELISA) were used to screen 237 samples collected from herds in which anaplasmosis was endemic. When the cELISA was evaluated by the results of the qRT-PCR, its sensitivity and specificity for the detection of A. marginale infection were found to be 65.2% (95% CI, 55.3%, 75.1%) and 97.3% (95% CI, 94.7%, 99.9%), respectively. A. phagocytophilum infection was not detected in the samples analyzed. One- and two-way receiver operator characteristic curves were constructed in order to recommend the optimum negative cutoff value for the cELISA. Percentages of inhibition of 20 and 15.3% were recommended for the one- and two-way curves, respectively. In conclusion, the duplex real-time qRT-PCR assay is a highly sensitive and specific diagnostic tool for the accurate and precise detection of A. marginale and A. phagocytophilum infections in cattle. PMID:20463162

  1. Salmonella paratyphi spondylitis: a case report.

    PubMed

    Kumar, Pradeep; Mahmoodi, Seyed Mohsen; Kalaparambil Moosa, Nooruddin; Edgar, Michael; Samt, Hussain Al; Hussain, Riyaz Amirali

    2008-05-01

    This is a case report of acute L3/4 vertebral osteomyelitis due to Salmonella paratyphi A confirmed by culture from vertebral needle biopsy. From a review of the literature this is the first reported case with bacteriological confirmation. The rarity of Salmonella paratyphi spondylitis and the options for treatment are discussed.

  2. Isolation of Salmonella mutants resistant to the inhibitory effect of Salicylidene acylhydrazides on flagella-mediated motility.

    PubMed

    Martinez-Argudo, Isabel; Veenendaal, Andreas K J; Liu, Xia; Roehrich, A Dorothea; Ronessen, Maria C; Franzoni, Giulia; van Rietschoten, Katerine N; Morimoto, Yusuke V; Saijo-Hamano, Yumiko; Avison, Matthew B; Studholme, David J; Namba, Keiichi; Minamino, Tohru; Blocker, Ariel J

    2013-01-01

    Salicylidene acylhydrazides identified as inhibitors of virulence-mediating type III secretion systems (T3SSs) potentially target their inner membrane export apparatus. They also lead to inhibition of flagellar T3SS-mediated swimming motility in Salmonella enterica serovar. Typhimurium. We show that INP0404 and INP0405 act by reducing the number of flagella/cell. These molecules still inhibit motility of a Salmonella ΔfliH-fliI-fliJ/flhB((P28T)) strain, which lacks three soluble components of the flagellar T3S apparatus, suggesting that they are not the target of this drug family. We implemented a genetic screen to search for the inhibitors' molecular target(s) using motility assays in the ΔfliH-fliI/flhB((P28T)) background. Both mutants identified were more motile than the background strain in the absence of the drugs, although HM18 was considerably more so. HM18 was more motile than its parent strain in the presence of both drugs while DI15 was only insensitive to INP0405. HM18 was hypermotile due to hyperflagellation, whereas DI15 was not hyperflagellated. HM18 was also resistant to a growth defect induced by high concentrations of the drugs. Whole-genome resequencing of HM18 indicated two alterations within protein coding regions, including one within atpB, which encodes the inner membrane a-subunit of the F(O)F(1)-ATP synthase. Reverse genetics indicated that the alteration in atpB was responsible for all of HM18's phenotypes. Genome sequencing of DI15 uncovered a single A562P mutation within a gene encoding the flagellar inner membrane protein FlhA, the direct role of which in mediating drug insensitivity could not be confirmed. We discuss the implications of these findings in terms of T3SS export apparatus function and drug target identification.

  3. Preexisting Salmonella-specific immunity interferes with the subsequent development of immune responses against the Salmonella strains delivering H9N2 hemagglutinin.

    PubMed

    Hajam, Irshad Ahmed; Lee, John Hwa

    2017-06-01

    Recombinant Salmonella strains expressing foreign heterologous antigens have been extensively studied as promising live vaccine delivery vehicles. In this study, we constructed attenuated smooth (S-HA) and rough (R-HA) Salmonella strains expressing hemagglutinin (HA) of H9N2, a low pathogenic avian influenza A virus. We then investigated the HA-specific immune responses following oral immunization with either S-HA or R-HA strain in chicken model. We further examined the effects of the preexisting anti-Salmonella immunity on the subsequent elicitation of the HA and the Salmonella ompA specific immune responses. Our results showed that primary immunization with either the S-HA or the R-HA strain elicited comparable HA-specific immune responses and the responses were significantly (p<0.05) higher compared to the Salmonella vector control. When chickens were pre-immunized with the smooth Salmonella carrier alone and then vaccinated with either S-HA or R-HA strain 3, 6 and 9 weeks later, respectively, significant reductions were seen for HA-specific immune responses at week 6, a point which corresponded to the peak of the primary Salmonella-specific antibody responses. No reductions were seen at week 3 and 9, albeit, the HA-specific immune responses were boosted at week 9, a point which corresponded to the lowest primary Salmonella-specific antibody responses. The ompA recall responses remain refractory at week 3 and 6 following deliberate immunization with the carrier strain, but were significantly (p<0.05) increased at week 9 post-primary immunization. We conclude that preexisting anti-Salmonella immunity inhibits antigen-specific immune responses and this effect could be avoided by carefully selecting the time point when carrier-specific immune responses are relatively low. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Isolation and characterization of polyvalent bacteriophages infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt.

    PubMed

    Mahmoud, Mayada; Askora, Ahmed; Barakat, Ahmed Barakat; Rabie, Omar El-Farouk; Hassan, Sayed Emam

    2018-02-02

    In this study, we isolated and characterized three phages named as Salmacey1, Salmacey2 and Salmacey3, infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. The most prevalent Salmonella serovars were S. typhimurium, S. enteritidis, and S. kentucky. All these Salmonella serovars were found to be resistant to more than two of the ten antimicrobial agents tested. Only S. kentucky was found to be resistant to seven antimicrobial agents. Examination of these phage particles by transmission electron microscopy (TEM), demonstrated that two phages (Salmacey1, Salmacey2) were found to belong to family Siphoviridae, and Salmacey3 was assigned to the family Myoviridae. The results of host range assay revealed that these bacteriophages were polyvalent and thus capable of infecting four strains of Salmonella serovars and Citrobacter freundii. Moreover, the two phages (Salmacey1, Salmacey2) had a lytic effect on Enterobacter cloacae and Salmacey3 was able to infect E. coli. All phages could not infect S. para Typhi, Staphylococus aureus and Bacillus cereus. One-step growth curves of bacteriophages revealed that siphovirus phages (Salmacey1, Salmacey2) have burst size (80 and 90pfu per infected cell with latent period 35min and 40min respectively), and for the myovirus Salmacey3 had a burst size 110pfu per infected cell with latent period 60min. Molecular analyses indicated that these phages contained double-stranded DNA genomes. The lytic activity of the phages against the most multidrug resistant serovars S. kentucky as host strain was evaluated. The result showed that these bacteriophages were able to completely stop the growth of S. kentucky in vitro. These results suggest that phages have a high potential for phage application to control Salmonella serovars isolated from broilers in Egypt. Copyright © 2017. Published by Elsevier B.V.

  5. Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria

    PubMed Central

    2013-01-01

    Background The main objective of this study was the phytochemical characterization of four indigenous essential oils obtained from spices and their antibacterial activities against the multidrug resistant clinical and soil isolates prevalent in Pakistan, and ATCC reference strains. Methods Chemical composition of essential oils from four Pakistani spices cumin (Cuminum cyminum), cinnamon (Cinnamomum verum), cardamom (Amomum subulatum) and clove (Syzygium aromaticum) were analyzed on GC/MS. Their antibacterial activities were investigated by minimum inhibitory concentration (MIC) and Thin-Layer Chromatography-Bioautographic (TLC-Bioautographic) assays against pathogenic strains Salmonella typhi (D1 Vi-positive), Salmonella typhi (G7 Vi-negative), Salmonella paratyphi A, Escherichia coli (SS1), Staphylococcus aureus, Pseudomonas fluorescens and Bacillus licheniformis (ATCC 14580). The data were statistically analyzed by using Analysis of Variance (ANOVA) and Least Significant Difference (LSD) method to find out significant relationship of essential oils biological activities at p <0.05. Results Among all the tested essential oils, oil from the bark of C. verum showed best antibacterial activities against all selected bacterial strains in the MIC assay, especially with 2.9 mg/ml concentration against S. typhi G7 Vi-negative and P. fluorescens strains. TLC-bioautography confirmed the presence of biologically active anti-microbial components in all tested essential oils. P. fluorescens was found susceptible to C. verum essential oil while E. coli SS1 and S. aureus were resistant to C. verum and A. subulatum essential oils, respectively, as determined in bioautography assay. The GC/MS analysis revealed that essential oils of C. cyminum, C. verum, A. subulatum, and S. aromaticum contain 17.2% cuminaldehyde, 4.3% t-cinnamaldehyde, 5.2% eucalyptol and 0.73% eugenol, respectively. Conclusions Most of the essential oils included in this study possessed good antibacterial

  6. Fate of Salmonella Typhimurium in laboratory-scale drinking water biofilms.

    PubMed

    Schaefer, L M; Brözel, V S; Venter, S N

    2013-12-01

    Investigations were carried out to evaluate and quantify colonization of laboratory-scale drinking water biofilms by a chromosomally green fluorescent protein (gfp)-tagged strain of Salmonella Typhimurium. Gfp encodes the green fluorescent protein and thus allows in situ detection of undisturbed cells and is ideally suited for monitoring Salmonella in biofilms. The fate and persistence of non-typhoidal Salmonella in simulated drinking water biofilms was investigated. The ability of Salmonella to form biofilms in monoculture and the fate and persistence of Salmonella in a mixed aquatic biofilm was examined. In monoculture S. Typhimurium formed loosely structured biofilms. Salmonella colonized established multi-species drinking water biofilms within 24 hours, forming micro-colonies within the biofilm. S. Typhimurium was also released at high levels from the drinking water-associated biofilm into the water passing through the system. This indicated that Salmonella could enter into, survive and grow within, and be released from a drinking water biofilm. The ability of Salmonella to survive and persist in a drinking water biofilm, and be released at high levels into the flow for recolonization elsewhere, indicates the potential for a persistent health risk to consumers once a network becomes contaminated with this bacterium.

  7. The effect of refined functional carbohydrates from enzymatically hydrolyzed yeast on the transmission of environmental Salmonella Senftenberg among broilers and proliferation in broiler housing.

    PubMed

    Walker, G K; Jalukar, S; Brake, J

    2018-04-01

    Hatching eggs collected from resident broiler breeders at 48 wk of age were used to produce male and female chicks that were assigned sex separately to 96 new litter pens and fed either a 0 or 50 g/MT RFC (refined functional carbohydrate feed additive derived from yeast) diet. There were 24 replicate pens of 12 broilers each per diet per sex. Feed intake and BW were determined at 14, 28, and 42 d of age. Litter was sampled by pen using sterile socks at 35 d and tested for Salmonella spp. using an enzyme linked fluorescence assay method. Salmonella spp. was isolated from 7 of 48 control-fed broiler pens but no RFC-fed pens (P ≤ 0.05). Thereafter, 48 males and 48 females were selected based on litter Salmonella presence and RFC treatment. The cecas of these broilers were aseptically excised after feed withdrawal and lairage and tested for presence of Salmonella spp. There were 18 of the 48 control-fed broilers confirmed positive from litter-positive pens but none from litter-negative pens fed RFC. The serovar of litter and cecal Salmonella isolates was Salmonella enterica subsp. enterica serovar Senftenberg (S. Senftenberg). Female broilers that were fed RFC exhibited greater BW at 28 d (P ≤ 0.05) and 42 d (P ≤ 0.05) while RFC-fed males exhibited improved feed efficiency during the 15-28 d period (P = 0.06). These data demonstrated that dietary RFC reduced the prevalence of Salmonella in the litter and ceca of broilers when fed continuously while not being detrimental to broiler live performance.

  8. Listeria monocytogenes and Salmonella enterica affect the expression of nisin gene and its production by Lactococcus lactis.

    PubMed

    Abdollahi, Soosan; Ghahremani, Mohammad Hossein; Setayesh, Neda; Samadi, Nasrin

    2018-06-13

    The Lactococcus lactis is known as a probiotic bacterium and also as a producer of nisin. Nisin has been approved by related legal agencies to be used as an antimicrobial peptide in food preservation. In fact, the L. lactis is present in different food products along with other micro-organisms especially pathogenic bacteria. So, it is important to predict the behavior of nisin-producer strain in contact with other pathogens. In this regard, nisin gene expression and the level of secreted biologically active form of nisin by L. lactis subsp. lactis in modified MRS broth and whey solution in co-culture with Listeria monocytogenes or Salmonella enterica were studied. The nisin concentration was determined by microbiological assay method and the transcription level of nisin gene was assayed through quantitative reverse transcription PCR (RT-qPCR). According to our results, the highest concentration of nisin and its gene transcription level were detected in mono- and co-cultures after 16 h of incubation, concurrent with the end of L. lactis exponential phase of growth. The nisin mRNA copies in co-cultures were higher than mono-cultures only at 16 h of incubation. But, differences between nisin concentrations in mono- and co-cultures were significant at 16, 24 h and at 12, 16, 24 h of incubation in the modified MRS medium and whey solution, respectively. This incompatibility could be related to the low availability of components required for nisin precursor modification, transportation and processing in mono-cultures. Overall, the L. lactis produced more mature and active nisin when it was in contact with pathogenic bacteria. Copyright © 2018. Published by Elsevier Ltd.

  9. Salmonella Infections

    USDA-ARS?s Scientific Manuscript database

    Infections with bacteria of the genus Salmonella are responsible for both acute and chronic poultry diseases. These diseases cause economically significant losses for poultry producers in many nations and absorb large investments of public and private resources in testing and control efforts. Infect...

  10. Salmonella infection and carriage in reptiles in a zoological collection.

    PubMed

    Clancy, Meredith M; Davis, Meghan; Valitutto, Marc T; Nelson, Kenrad; Sykes, John M

    2016-05-01

    OBJECTIVE To identify important subspecies and serovars of Salmonella enterica in a captive reptile population and clinically relevant risk factors for and signs of illness in Salmonella-positive reptiles. DESIGN Retrospective cross-sectional study. ANIMALS 11 crocodilians (4 samples), 78 snakes (91 samples), 59 lizards (57 samples), and 34 chelonians (23 samples) at the Bronx Zoo from 2000 through 2012. PROCEDURES Data pertaining to various types of biological samples obtained from reptiles with positive Salmonella culture results and the reptiles themselves were analyzed to determine period prevalence of and risk factors for various Salmonella-related outcomes. RESULTS Serovar distribution differences were identified for sample type, reptile phylogenetic family, and reptile origin and health. Salmonella enterica subsp enterica was the most common subspecies in Salmonella cultures (78/175 [45%]), identified across all reptilian taxa. Salmonella enterica subsp diarizonae was also common (42/175 [24%]) and was recovered almost exclusively from snakes (n = 33), many of which had been clinically ill (17). Clinically ill reptiles provided 37% (64) of Salmonella cultures. Factors associated with an increased risk of illness in reptiles with a positive culture result were carnivorous diet and prior confiscation. Snakes had a higher risk of illness than other reptile groups, whereas lizards had a lower risk. Bony changes, dermatitis, and anorexia were the most common clinical signs. CONCLUSIONS AND CLINICAL RELEVANCE This study provided new information on Salmonella infection or carriage and associated clinical disease in reptiles. Associations identified between serovars or subspecies and reptile groups or clinical disease can guide management of Salmonella-positive captive reptiles.

  11. Detection of Citrus leprosis virus C using specific primers and TaqMan probe in one-step real-time reverse-transcription polymerase chain reaction assays.

    PubMed

    Choudhary, Nandlal; Wei, G; Govindarajulu, A; Roy, Avijit; Li, Wenbin; Picton, Deric D; Nakhla, M K; Levy, L; Brlansky, R H

    2015-11-01

    Citrus leprosis virus C (CiLV-C), a causal agent of the leprosis disease in citrus, is mostly present in the South and Central America and spreading toward the North America. To enable better diagnosis and inhibit the further spread of this re-emerging virus a quantitative (q) real-time reverse transcription polymerase chain reaction (qRT-PCR) assay is needed for early detection of CiLV-C when the virus is present in low titer in citrus leprosis samples. Using the genomic sequence of CiLV-C, specific primers and probe were designed and synthesized to amplify a 73 nt amplicon from the movement protein (MP) gene. A standard curve of the 73 nt amplicon MP gene was developed using known 10(10)-10(1) copies of in vitro synthesized RNA transcript to estimate the copy number of RNA transcript in the citrus leprosis samples. The one-step qRT-PCR detection assays for CiLV-C were determined to be 1000 times more sensitive when compared to the one-step conventional reverse transcription polymerase chain reaction (RT-PCR) CiLV-C detection method. To evaluate the quality of the total RNA extracts, NADH dehydrogenase gene specific primers (nad5) and probe were included in reactions as an internal control. The one-step qRT-PCR specificity was successfully validated by testing for the presence of CiLV-C in the total RNA extracts of the citrus leprosis samples collected from Belize, Costa Rica, Mexico and Panama. Implementation of the one-step qRT-PCR assays for CiLV-C diagnosis should assist regulatory agencies in surveillance activities to monitor the distribution pattern of CiLV-C in countries where it is present and to prevent further dissemination into citrus growing countries where there is no report of CiLV-C presence. Published by Elsevier B.V.

  12. Variation in Bluetongue virus real-time reverse transcription polymerase chain reaction assay results in blood samples of sheep, cattle, and alpaca.

    PubMed

    Brito, Barbara P; Gardner, Ian A; Hietala, Sharon K; Crossley, Beate M

    2011-07-01

    Bluetongue is a vector-borne viral disease that affects domestic and wild ruminants. The epidemiology of this disease has recently changed, with occurrence in new geographic areas. Various real-time quantitative reverse transcription polymerase chain reaction (real-time qRT-PCR) assays are used to detect Bluetongue virus (BTV); however, the impact of biologic differences between New World camelids and domestic ruminant samples on PCR efficiency, for which the BTV real-time qRT-PCR was initially validated are unknown. New world camelids are known to have important biologic differences in whole blood composition, including hemoglobin concentration, which can alter PCR performance. In the present study, sheep, cattle, and alpaca blood were spiked with BTV serotypes 10, 11, 13, and 17 and analyzed in 10-fold dilutions by real-time qRT-PCR to determine if species affected nucleic acid recovery and assay performance. A separate experiment was performed using spiked alpaca blood subsequently diluted in 10-fold series in sheep blood to assess the influence of alpaca blood on performance efficiency of the BTV real-time qRT-PCR assay. Results showed that BTV-specific nucleic acid detection from alpaca blood was consistently 1-2 logs lower than from sheep and cattle blood, and results were similar for each of the 4 BTV serotypes analyzed.

  13. Molecular characterization of Salmonella Paratyphi B dT+ and Salmonella Heidelberg from poultry and retail chicken meat in Colombia by pulsed-field gel electrophoresis

    USDA-ARS?s Scientific Manuscript database

    Salmonella Paratyphi B dT+ variant (also termed Salmonella Java) and Salmonella Heidelberg are human pathogens frequently isolated from poultry. As a step towards implementing the Colombian Integrated Program for Antimicrobial Resistant Surveillance (COIPARS), this study characterized molecular patt...

  14. Salmonella serotypes in reptiles and humans, French Guiana.

    PubMed

    Gay, Noellie; Le Hello, Simon; Weill, François-Xavier; de Thoisy, Benoit; Berger, Franck

    2014-05-14

    In French Guiana, a French overseas territory located in the South American northern coast, nearly 50% of Salmonella serotypes isolated from human infections belong to serotypes rarely encountered in metropolitan France. A reptilian source of contamination has been investigated. Between April and June 2011, in the area around Cayenne, 151 reptiles were collected: 38 lizards, 37 snakes, 32 turtles, 23 green iguanas and 21 caimans. Cloacal swab samples were collected and cultured. Isolated Salmonella strains were identified biochemically and serotyped. The overall carriage frequency of carriage was 23.2% (95% confidence interval: 16.7-30.4) with 23 serotyped strains. The frequency of Salmonella carriage was significantly higher for wild reptiles. Near two-thirds of the Salmonella serotypes isolated from reptiles were also isolated from patients in French Guiana. Our results highlight the risk associated with the handling and consumption of reptiles and their role in the spread of Salmonella in the environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Development of a Simple, Peripheral-Blood-Based Lateral-Flow Dipstick Assay for Accurate Detection of Patients with Enteric Fever

    PubMed Central

    Khan, Iqbal Hassan; Sayeed, M. Abu; Sultana, Nishat; Islam, Kamrul; Amin, Jakia; Faruk, M. Omar; Khan, Umama; Khanam, Farhana; Ryan, Edward T.

    2016-01-01

    Enteric fever is a systemic infection caused by typhoidal strains of Salmonella enterica and is a significant cause of mortality and morbidity in many parts of the world, especially in resource-limited areas. Unfortunately, currently available diagnostic tests for enteric fever lack sensitivity and/or specificity. No true clinically practical gold standard for diagnosing patients with enteric fever exists. Unfortunately, microbiologic culturing of blood is only 30 to 70% sensitive although 100% specific. Here, we report the development of a lateral-flow immunochromatographic dipstick assay based on the detection of Salmonella enterica serovar Typhi (S. Typhi) lipopolysaccharide (LPS)-specific IgG in lymphocyte culture secretion. We tested the assay using samples from 142 clinically suspected enteric fever patients, 28 healthy individuals residing in a zone where enteric fever is endemic, and 35 patients with other febrile illnesses. In our analysis, the dipstick detected all blood culture-confirmed S. Typhi cases (48/48) and 5 of 6 Salmonella enterica serovar Paratyphi A blood cultured-confirmed cases. The test was negative in all 35 individuals febrile with other illnesses and all 28 healthy controls from the zone of endemicity. The test was positive in 19 of 88 individuals with suspected enteric fever but with negative blood cultures. Thus, the dipstick had a sensitivity of 98% compared to blood culture results and a specificity that ranged from 78 to 100% (95% confidence interval [CI], 70 to 100%), depending on the definition of a true negative. These results suggest that this dipstick assay can be very useful for the detection of enteric fever patients especially in regions of endemicity. PMID:26961857

  16. Salmonella paratyphi spondylitis: a case report

    PubMed Central

    Mahmoodi, Seyed Mohsen; Kalaparambil Moosa, Nooruddin; Edgar, Michael; Samt, Hussain Al; Hussain, Riyaz Amirali

    2007-01-01

    This is a case report of acute L3/4 vertebral osteomyelitis due to Salmonella paratyphi A confirmed by culture from vertebral needle biopsy. From a review of the literature this is the first reported case with bacteriological confirmation. The rarity of Salmonella paratyphi spondylitis and the options for treatment are discussed. PMID:18008092

  17. [Salmonella spp. strains resistant to drugs].

    PubMed

    Białucha, Agata; Kozuszko, Sylwia; Gospodarek, Eugenia

    2010-01-01

    The aim of the study was retrospective analysis of Salmonella spp. strains isolated from patients of State Infectious Diseases Observatory Hospital of T. Browicz in Bydgoszcz (SZAK) and University of dr. A. Jurasz in Bydgoszcz (SU CM UMK) in 2006-2009. The percentages of Salmonella spp. strains resistant to at least one drug were: 19,0% in 2006, 12,5% in 2007, 50,6% in 2008 and 43,8% in the first half of 2009 year. The highest number of Salmonella spp. strains resistant to drugs were isolated from stool (96,7%) and from patients of SZAK (83,3%). Among all isolated Salmonella spp. strains resistant to drugs the highest percentage were S. enterica serovar Enteritidis (56,7%). Among S. enterica bacilli predominated resitant phenotypes to ampicillin, amoxicillin, chloramphenicol and nalidixic acid. The increasing number of strains resistant to ciprofloxacin (0,0 - 26,7%) and high percentage of strains resistant to nalidixic acid (97,3%) were noted. Decreasing resistance to chloramphenicol was observed in our study (54,5 - 14,3%).

  18. Presence of Salmonella Enteritidis and Salmonella Gallinarum in commercial laying hens diagnosed with Fowl Typhoid Disease in Colombia

    USDA-ARS?s Scientific Manuscript database

    : A severe outbreak of salmonellosis in commercial brown table egg layers first occurred in Colombia in 2006. From 2008 to 2012, 35 samples collected from commercial layers farms in the states of Cundinamarca, Santander, Bolivar and San Andres, were positive to Salmonella enterica. Salmonella (S) wa...

  19. Salmonellae Associated with Further-processed Turkey Products1

    PubMed Central

    Bryan, Frank L.; Ayres, John C.; Kraft, Allen A.

    1968-01-01

    “Further-processed” turkey products, prepared from chilled, eviscerated, and thawed carcasses at two commercial turkey-processing plants, were evaluated, for the presence of salmonellae. These organisms were isolated from swab samples from 12% of chilled, eviscerated turkey carcasses, 27% of finished products, and 24% of processing equipment. The same serotypes as those found throughout a plant on any one visit were recovered from 31% of rinse-samples taken from hands and gloves of processing personnel. Salmonellae were found in samples taken on 37 of 48 visits; a greater number of recoveries were made on days when freshly killed turkeys were processed (87%) than when frozen-defrosted carcasses were processed (59%). The predominant serotype isolated from meat and environment usually changed from visit to visit. Salmonella sandiego and Salmonella anatum were the most frequent among 23 serotypes recovered. Most of the isolated serotypes are commonly associated with turkeys and have been incriminated as causative agents of human salmonellosis. The implication is that further-processed turkey products, if inadequately cooked by the consumer and if improperly refrigerated between the time of manufacture and consumption, could directly transmit salmonellae. These same products might also contaminate other foods by introducing salmonellae into food-preparation areas. PMID:5688832

  20. The effect of feeding diets containing avoparcin on the excretion of salmonellas by chickens experimentally infected with natural sources of salmonella organisms.

    PubMed Central

    Barrow, P. A.; Smith, H. W.; Tucker, J. F.

    1984-01-01

    Chickens were readily infected with salmonella organisms when fed diets containing unsterilized bone-meal or provided with drinking water containing a suspension of natural salmonella infected chicken faeces. When fed diets containing avoparcin at concentrations of 10 or 100 mg/kg chickens infected in these ways excreted larger numbers of salmonellas for longer periods than did chickens fed a nonmedicated diet. PMID:6512249

  1. Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds.

    PubMed

    Byappanahalli, Muruleedhara N; Sawdey, Richard; Ishii, Satoshi; Shively, Dawn A; Ferguson, John A; Whitman, Richard L; Sadowsky, Michael J

    2009-02-01

    The bacterial pathogens Shigella, Salmonella, Campylobacter, and shiga toxin-producing E. coli (STEC) were recently found to be associated with Cladophora growing in southern Lake Michigan. Preliminary results indicated that the Salmonella strains associated with Cladophora were genetically identical to each other. However, because of the small sample size (n=37 isolates) and a lack of information on spatial-temporal relationships, the nature of the association between Cladophora and Salmonella remained speculative. In this study, we investigated the population structure and genetic relatedness of a large number of Cladophora-borne Salmonella isolates from Lake Michigan (n=133), as well as those isolated from stream and lake water (n=31), aquatic plants (n=8), and beach sands and sediments (n=8) from adjacent watersheds. Salmonella isolates were collected during 2005-2007 between May and August from Lake Michigan beachsheds in Wisconsin, Illinois, and Indiana. The genetic relatedness of Salmonella isolates was examined by using the horizontal, fluorophore-enhanced rep-PCR (HFERP) DNA fingerprinting technique. While the Salmonella isolates associated with Cladophora exhibited a high degree of genetic relatedness (>or=92% similarity), the isolates were not all genetically identical. Spatial and temporal relationships were evident in the populations examined, with tight clustering of the isolates both by year and location. These findings suggest that the relationship between Salmonella and Cladophora is likely casual and is related to input sources (e.g. wastewater, runoff, birds) and the predominant Salmonella genotype surviving in the environment during a given season. Our studies indicate that Cladophora is likely an important reservoir for Salmonella and other enteric bacterial pathogens in Lake Michigan beachsheds, which in turn may influence nearshore water quality.

  2. Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds

    USGS Publications Warehouse

    Byappanahalli, M.N.; Sawdey, R.; Ishii, S.; Shively, D.A.; Ferguson, J.A.; Whitman, R.L.; Sadowsky, M.J.

    2009-01-01

    The bacterial pathogens Shigella, Salmonella, Campylobacter, and shiga toxin-producing E. coli (STEC) were recently found to be associated with Cladophora growing in southern Lake Michigan. Preliminary results indicated that the Salmonella strains associated with Cladophora were genetically identical to each other. However, because of the small sample size (n = 37 isolates) and a lack of information on spatial-temporal relationships, the nature of the association between Cladophora and Salmonella remained speculative. In this study, we investigated the population structure and genetic relatedness of a large number of Cladophora-borne Salmonella isolates from Lake Michigan (n = 133), as well as those isolated from stream and lake water (n = 31), aquatic plants (n = 8), and beach sands and sediments (n = 8) from adjacent watersheds. Salmonella isolates were collected during 2005-2007 between May and August from Lake Michigan beachsheds in Wisconsin, Illinois, and Indiana. The genetic relatedness of Salmonella isolates was examined by using the horizontal, fluorophore-enhanced rep-PCR (HFERP) DNA fingerprinting technique. While the Salmonella isolates associated with Cladophora exhibited a high degree of genetic relatedness (???92% similarity), the isolates were not all genetically identical. Spatial and temporal relationships were evident in the populations examined, with tight clustering of the isolates both by year and location. These findings suggest that the relationship between Salmonella and Cladophora is likely casual and is related to input sources (e.g. wastewater, runoff, birds) and the predominant Salmonella genotype surviving in the environment during a given season. Our studies indicate that Cladophora is likely an important reservoir for Salmonella and other enteric bacterial pathogens in Lake Michigan beachsheds, which in turn may influence nearshore water quality. ?? 2008 Elsevier Ltd.

  3. Diffuse abdominal gallium-67 citrate uptake in salmonella infections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garty, I.; Koren, A.

    1987-11-01

    Two pediatric patients with salmonella infections (one with typhoid fever and the second with salmonella C2 gastroenteritis), had a diffuse abdominal uptake of Ga-67 citrate. The possible explanation for this finding is discussed. Salmonella infection should be included as a cause in the differential diagnosis of diffuse accumulation of Ga-67 citrate.

  4. Prevention of Salmonella cross-contamination in an oilmeal manufacturing plant.

    PubMed

    Morita, T; Kitazawa, H; Iida, T; Kamata, S

    2006-08-01

    The mechanisms of Salmonella contamination in an oilmeal plant were investigated and the basic data were collected in order to achieve control of Salmonella in oilmeal. Salmonella was detected in all contamination vectors and environmental factors investigated, namely: operators, processing floor, dust in the air and rodents. In particular, high concentrations of Salmonella were detected on the processing floor of the manufacturing area, which has high oil content. Steam was the most effective disinfection method used for the processing floor, as the effects of heat sterilization and disinfection may work in tandem. In addition, restricting the movement of operators of the production chain remarkably reduced Salmonella contamination, even in areas of otherwise high contamination. Within the oilmeal plant, high Salmonella contamination rates for the processing floor represent the greatest risk of contamination of oilmeal via operators, dust in the air and rodents. Therefore, control of the processing floor is the most important means for reducing the oilmeal contamination rate. Specific Salmonella control methods for oilmeal plants have been established.

  5. Recombinant Salmonella Bacteria Vectoring HIV/AIDS Vaccines

    PubMed Central

    Chin’ombe, Nyasha; Ruhanya, Vurayai

    2013-01-01

    HIV/AIDS is an important public health problem globally. An affordable, easy-to-deliver and protective HIV vaccine is therefore required to curb the pandemic from spreading further. Recombinant Salmonella bacteria can be harnessed to vector HIV antigens or DNA vaccines to the immune system for induction of specific protective immunity. These are capable of activating the innate, humoral and cellular immune responses at both mucosal and systemic compartments. Several studies have already demonstrated the utility of live recombinant Salmonella in delivering expressed foreign antigens as well as DNA vaccines to the host immune system. This review gives an overview of the studies in which recombinant Salmonella bacteria were used to vector HIV/AIDS antigens and DNA vaccines. Most of the recombinant Salmonella-based HIV/AIDS vaccines developed so far have only been tested in animals (mainly mice) and are yet to reach human trials. PMID:24478808

  6. The occurrence of Salmonella in airline meals.

    PubMed

    Hatakka, M; Asplund, K

    1993-01-01

    The occurrence of Salmonella in airline meals was studied in 1989-1992. Samples were collected from flight kitchens in 29 countries. The material consisted of 400 cold dishes and 1,288 hot dishes as well as salads, cheese plates and deserts. Total number of samples was 2211. Salmonella spp. were isolated from 6 samples; 1 contaminated sample was a cold dish prepared in Bangkok, 1 was a hot dish prepared in Mombasa and the remaining 4 contaminated samples were hot dishes prepared within one week in Beijing. The isolated serotypes were S. ohio, S. manchester and S. braenderup. The contaminated cold dish prepared by a flight kitchen in Bangkok was found to be connected with a Salmonella outbreak which occurred in Finland in 1990. Cold airline dishes containing food of animal origin seems to be more risky as a source of Salmonella infections among airline passengers.

  7. Salmonella infections

    USDA-ARS?s Scientific Manuscript database

    Infections of poultry with bacteria of the genus Salmonella can cause clinical disease, but are of greater current concern as agents of food-borne transmission of illness to humans. However, two nonmotile organisms, S. Pullorum and S. Gallinarum, are host-specific for avian species. Pullorum disease...

  8. An Inducible and Secreted Eukaryote-Like Serine/Threonine Kinase of Salmonella enterica Serovar Typhi Promotes Intracellular Survival and Pathogenesis

    PubMed Central

    Theeya, Nagaraja; Ta, Atri; Das, Sayan; Mandal, Rahul S.; Chakrabarti, Oishee; Chakrabarti, Saikat; Ghosh, Amar N.

    2014-01-01

    Eukaryote-like serine/threonine kinases (eSTKs) constitute an important family of bacterial virulence factors. Genome analysis had predicted putative eSTKs in Salmonella enterica serovar Typhi, although their functional characterization and the elucidation of their role in pathogenesis are still awaited. We show here that the primary sequence and secondary structure of the t4519 locus of Salmonella Typhi Ty2 have all the signatures of eukaryotic superfamily kinases. t4519 encodes a ∼39-kDa protein (T4519), which shows serine/threonine kinase activities in vitro. Recombinant T4519 (rT4519) is autophosphorylated and phosphorylates the universal substrate myelin basic protein. Infection of macrophages results in decreased viability of the mutant (Ty2Δt4519) strain, which is reversed by gene complementation. Moreover, reactive oxygen species produced by the macrophages signal to the bacteria to induce T4519, which is translocated to the host cell cytoplasm. That T4519 may target a host substrate(s) is further supported by the activation of host cellular signaling pathways and the induction of cytokines/chemokines. Finally, the role of T4519 in the pathogenesis of Salmonella Typhi is underscored by the significantly decreased mortality of mice infected with the Ty2Δt4519 strain and the fact that the competitive index of this strain for causing systemic infection is 0.25% that of the wild-type strain. This study characterizes the first eSTK of Salmonella Typhi and demonstrates its role in promoting phagosomal survival of the bacteria within macrophages, which is a key determinant of pathogenesis. This, to the best of our knowledge, is the first study to describe the essential role of eSTKs in the in vivo pathogenesis of Salmonella spp. PMID:25404028

  9. In vitro mutagenicity assessment of aluminium oxide nanomaterials using the Salmonella/microsome assay.

    PubMed

    Balasubramanyam, A; Sailaja, N; Mahboob, M; Rahman, M F; Hussain, Saber M; Grover, Paramjit

    2010-09-01

    The aim of the current study was to evaluate the potential mutagenicity of aluminium oxide nanomaterials (NMs) (Al(2)O(3)-30 nm and Al(2)O(3)-40 nm). Characterization of the NMs was done before the initiation of the study. The mutagenicity of the NMs was studied by the Ames test with Salmonella typhimurium TA100, TA1535, TA98, TA97a and TA102 strains, in the presence and absence of the S9 mixture. Based on a preliminary cytotoxicity study conducted on the strains, different concentrations of Al(2)O(3)-30 nm, Al(2)O(3)-40 nm and Al(2)O(3)-bulk were selected. At all the concentrations tested, Al(2)O(3)-30 nm and Al(2)O(3)-40 nm did not significantly increase the number of revertant colonies compared to the Al(2)O(3)-bulk and control with or without S9 mixture. Our findings suggest that Al(2)O(3) NMs were devoid of any size and concentration dependent mutagenicity compared to the Al(2)O(3)-bulk and control. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Nutritional strategies to combat Salmonella in mono-gastric food animal production.

    PubMed

    Berge, A C; Wierup, M

    2012-04-01

    Nutritional strategies to minimize Salmonella in food animal production are one of the key components in producing safer food. The current European approach is to use a farm-to-fork strategy, where each sector must implement measures to minimize and reduce Salmonella contamination. In the pre-harvest phase, this means that all available tools need to be used such as implementation of biosecurity measures, control of Salmonella infections in animals at the farm as well as in transport and trade, optimal housing and management including cleaning, disinfection procedures as well as efforts to achieve Salmonella-free feed production. This paper describes some nutritional strategies that could be used in farm control programmes in the major mono-gastric food production animals: poultry and pigs. Initially, it is important to prevent the introduction of Salmonella onto the farm through Salmonella-contaminated feed and this risk is reduced through heat treatment and the use of organic acids and their salts and formaldehyde. Microbiological sampling and monitoring for Salmonella in the feed mills is required to minimize the introduction of Salmonella via feed onto the farm. In addition, feed withdrawal may create a stressful situation in animals, resulting in an increase in Salmonella shedding. Physical feed characteristics such as coarse-ground meal to pigs can delay gastric emptying, thereby increasing the acidity of the gut and thus reducing the possible prevalence of Salmonella. Coarse-ground grains and access to litter have also been shown to decrease Salmonella shedding in poultry. The feed can also modify the gastro-intestinal tract microflora and influence the immune system, which can minimize Salmonella colonization and shedding. Feed additives, such as organic acids, short- and medium-chain fatty acids, probiotics, including competitive exclusion cultures, prebiotics and certain specific carbohydrates, such as mannan-based compounds, egg proteins, essential oils

  11. Hepatitis E Virus (HEV) Detection and Quantification by a Real-Time Reverse Transcription-PCR Assay Calibrated to the World Health Organization Standard for HEV RNA.

    PubMed

    Germer, Jeffrey J; Ankoudinova, Irina; Belousov, Yevgeniy S; Mahoney, Walt; Dong, Chen; Meng, Jihong; Mandrekar, Jayawant N; Yao, Joseph D

    2017-05-01

    Hepatitis E virus (HEV) has emerged as a cause of chronic hepatitis among immunocompromised patients. Molecular assays have become important tools for the diagnosis and management of these chronically infected patients. A real-time reverse transcription-quantitative PCR (RT-qPCR) assay utilizing Pleiades probe chemistry and an RNA internal control for the simultaneous detection and quantification of HEV RNA in human serum was developed based on an adaptation of a previously described and broadly reactive primer set targeting the overlapping open reading frame 2/3 (ORF2/3) nucleotide sequence of HEV. A chimeric bovine viral diarrhea virus construct containing an HEV RNA insert (SynTura HEV) was developed, value assigned with the first World Health Organization (WHO) international standard for HEV RNA (code 6329/10), and used to prepare working assay calibrators and controls, which supported an assay quantification range of 100 to 5,000,000 IU/ml. The analytical sensitivity (95% detection rate) of this assay was 25.2 IU/ml (95% confidence interval [CI], 19.2 to 44.1 IU/ml). The assay successfully amplified 16 different HEV sequences with significant nucleotide mismatching in primer/probe binding regions, while evaluation of a WHO international reference panel for HEV genotypes (code 8578/13) showed viral load results falling within the result ranges generated by WHO collaborative study participants for all panel members (genotypes 1 to 4). Broadly reactive RT-qPCR primers targeting HEV ORF2/3 were successfully adapted for use in an assay based on Pleiades probe chemistry. The availability of secondary standards calibrated to the WHO HEV international standard can improve the standardization and performance of assays for the detection and quantification of HEV RNA. Copyright © 2017 American Society for Microbiology.

  12. Hepatitis E Virus (HEV) Detection and Quantification by a Real-Time Reverse Transcription-PCR Assay Calibrated to the World Health Organization Standard for HEV RNA

    PubMed Central

    Germer, Jeffrey J.; Ankoudinova, Irina; Belousov, Yevgeniy S.; Mahoney, Walt; Dong, Chen; Meng, Jihong; Mandrekar, Jayawant N.

    2017-01-01

    ABSTRACT Hepatitis E virus (HEV) has emerged as a cause of chronic hepatitis among immunocompromised patients. Molecular assays have become important tools for the diagnosis and management of these chronically infected patients. A real-time reverse transcription-quantitative PCR (RT-qPCR) assay utilizing Pleiades probe chemistry and an RNA internal control for the simultaneous detection and quantification of HEV RNA in human serum was developed based on an adaptation of a previously described and broadly reactive primer set targeting the overlapping open reading frame 2/3 (ORF2/3) nucleotide sequence of HEV. A chimeric bovine viral diarrhea virus construct containing an HEV RNA insert (SynTura HEV) was developed, value assigned with the first World Health Organization (WHO) international standard for HEV RNA (code 6329/10), and used to prepare working assay calibrators and controls, which supported an assay quantification range of 100 to 5,000,000 IU/ml. The analytical sensitivity (95% detection rate) of this assay was 25.2 IU/ml (95% confidence interval [CI], 19.2 to 44.1 IU/ml). The assay successfully amplified 16 different HEV sequences with significant nucleotide mismatching in primer/probe binding regions, while evaluation of a WHO international reference panel for HEV genotypes (code 8578/13) showed viral load results falling within the result ranges generated by WHO collaborative study participants for all panel members (genotypes 1 to 4). Broadly reactive RT-qPCR primers targeting HEV ORF2/3 were successfully adapted for use in an assay based on Pleiades probe chemistry. The availability of secondary standards calibrated to the WHO HEV international standard can improve the standardization and performance of assays for the detection and quantification of HEV RNA. PMID:28228493

  13. Three-dimensional organotypic co-culture model of intestinal epithelial cells and macrophages to study Salmonella enterica colonization patterns.

    PubMed

    Barrila, Jennifer; Yang, Jiseon; Crabbé, Aurélie; Sarker, Shameema F; Liu, Yulong; Ott, C Mark; Nelman-Gonzalez, Mayra A; Clemett, Simon J; Nydam, Seth D; Forsyth, Rebecca J; Davis, Richard R; Crucian, Brian E; Quiriarte, Heather; Roland, Kenneth L; Brenneman, Karen; Sams, Clarence; Loscher, Christine; Nickerson, Cheryl A

    2017-01-01

    Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by Salmonella , we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds. HT-29 epithelial cells were then added and the three-dimensional model was cultured in the bioreactor until optimal differentiation was reached, as assessed by immunohistochemical profiling and bead uptake assays. The new co-culture model exhibited in vivo-like structural and phenotypic characteristics, including three-dimensional architecture, apical-basolateral polarity, well-formed tight/adherens junctions, mucin, multiple epithelial cell types, and functional macrophages. Phagocytic activity of macrophages was confirmed by uptake of inert, bacteria-sized beads. Contribution of macrophages to infection was assessed by colonization studies of Salmonella pathovars with different host adaptations and disease phenotypes (Typhimurium ST19 strain SL1344 and ST313 strain D23580; Typhi Ty2). In addition, Salmonella were cultured aerobically or microaerobically, recapitulating environments encountered prior to and during intestinal infection, respectively. All Salmonella strains exhibited decreased colonization in co-culture (HT-29-U937) relative to epithelial (HT-29) models, indicating antimicrobial function of macrophages. Interestingly, D23580 exhibited enhanced replication/survival in both models following invasion. Pathovar-specific differences in colonization and intracellular co-localization patterns were observed

  14. Salmonella contamination risk points in broiler carcasses during slaughter line processing.

    PubMed

    Rivera-Pérez, Walter; Barquero-Calvo, Elías; Zamora-Sanabria, Rebeca

    2014-12-01

    Salmonella is one of the foodborne pathogens most commonly associated with poultry products. The aim of this work was to identify and analyze key sampling points creating risk of Salmonella contamination in a chicken processing plant in Costa Rica and perform a salmonellosis risk analysis. Accordingly, the following examinations were performed: (i) qualitative testing (presence or absence of Salmonella), (ii) quantitative testing (Salmonella CFU counts), and (iii) salmonellosis risk analysis, assuming consumption of contaminated meat from the processing plant selected. Salmonella was isolated in 26% of the carcasses selected, indicating 60% positive in the flocks sampled. The highest Salmonella counts were observed after bleeding (6.1 log CFU per carcass), followed by a gradual decrease during the subsequent control steps. An increase in the percentage of contamination (10 to 40%) was observed during evisceration and spray washing (after evisceration), with Salmonella counts increasing from 3.9 to 5.1 log CFU per carcass. According to the prevalence of Salmonella -contaminated carcasses released to trade (20%), we estimated a risk of 272 cases of salmonellosis per year as a result of the consumption of contaminated chicken. Our study suggests that the processes of evisceration and spray washing represent a risk of Salmonella cross-contamination and/ or recontamination in broilers during slaughter line processing.

  15. Serial detection of circulating tumour cells by reverse transcriptase-polymerase chain reaction assays is a marker for poor outcome in patients with malignant melanoma

    PubMed Central

    Palmieri, Giuseppe; Satriano, Sabrina MR; Budroni, Mario; Cossu, Antonio; Tanda, Francesco; Canzanella, Sergio; Caracò, Corrado; Simeone, Ester; Daponte, Antonio; Mozzillo, Nicola; Comella, Giuseppe; Castello, Giuseppe; Ascierto, Paolo A

    2006-01-01

    Background Detection of circulating malignant cells (CMCs) through a reverse transcriptase-polymerase chain reaction (RT-PCR) assay seems to be a demonstration of systemic disease. We here evaluated the prognostic role of RT-PCR assays in serially-taken peripheral blood samples from patients with malignant melanoma (MM). Methods One hundred forty-nine melanoma patients with disease stage ranging from I to III were consecutively collected in 1997. A multi-marker RT-PCR assay was used on peripheral blood samples obtained at time of diagnosis and every 6 months during the first two years of follow-up (total: 5 samples). Univariate and multivariate analyses were performed after 83 months of median follow-up. Results Detection of at least one circulating mRNA marker was considered a signal of the presence of CMC (referred to as PCR-positive assay). A significant correlation was found between the rate of recurrences and the increasing number of PCR-positive assays (P = 0.007). Presence of CMC in a high number (≥2) of analysed blood samples was significantly correlated with a poor clinical outcome (disease-free survival: P = 0.019; overall survival: P = 0.034). Multivariate analysis revealed that presence of a PCR-positive status does play a role as independent prognostic factors for overall survival in melanoma patients, adding precision to the predictive power of the disease stage. Conclusion Our findings indicated that serial RT-PCR assay may identify a high risk subset of melanoma patients with occult cancer cells constantly detected in blood circulation. Prolonged presence of CMCs seems to act as a surrogate marker of disease progression or a sign of more aggressive disease. PMID:17107608

  16. Serial detection of circulating tumour cells by reverse transcriptase-polymerase chain reaction assays is a marker for poor outcome in patients with malignant melanoma.

    PubMed

    Palmieri, Giuseppe; Satriano, Sabrina M R; Budroni, Mario; Cossu, Antonio; Tanda, Francesco; Canzanella, Sergio; Caracò, Corrado; Simeone, Ester; Daponte, Antonio; Mozzillo, Nicola; Comella, Giuseppe; Castello, Giuseppe; Ascierto, Paolo A

    2006-11-15

    Detection of circulating malignant cells (CMCs) through a reverse transcriptase-polymerase chain reaction (RT-PCR) assay seems to be a demonstration of systemic disease. We here evaluated the prognostic role of RT-PCR assays in serially-taken peripheral blood samples from patients with malignant melanoma (MM). One hundred forty-nine melanoma patients with disease stage ranging from I to III were consecutively collected in 1997. A multi-marker RT-PCR assay was used on peripheral blood samples obtained at time of diagnosis and every 6 months during the first two years of follow-up (total: 5 samples). Univariate and multivariate analyses were performed after 83 months of median follow-up. Detection of at least one circulating mRNA marker was considered a signal of the presence of CMC (referred to as PCR-positive assay). A significant correlation was found between the rate of recurrences and the increasing number of PCR-positive assays (P = 0.007). Presence of CMC in a high number (> or =2) of analysed blood samples was significantly correlated with a poor clinical outcome (disease-free survival: P = 0.019; overall survival: P = 0.034). Multivariate analysis revealed that presence of a PCR-positive status does play a role as independent prognostic factors for overall survival in melanoma patients, adding precision to the predictive power of the disease stage. Our findings indicated that serial RT-PCR assay may identify a high risk subset of melanoma patients with occult cancer cells constantly detected in blood circulation. Prolonged presence of CMCs seems to act as a surrogate marker of disease progression or a sign of more aggressive disease.

  17. MALDI-TOF mass spectrometry provides high accuracy in identification of Salmonella at species level but is limited to type or subtype Salmonella serovars.

    PubMed

    Kang, Lin; Li, Nan; Li, Ping; Zhou, Yang; Gao, Shan; Gao, Hongwei; Xin, Wenwen; Wang, Jinglin

    2017-04-01

    Salmonella can cause global foodborne illnesses in humans and many animals. The current diagnostic gold standard used for detecting Salmonella infection is microbiological culture followed by serological confirmation tests. However, these methods are complicated and time-consuming. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis offers some advantages in rapid identification, for example, simple and fast sample preparation, fast and automated measurement, and robust and reliable identification up to genus and species levels, possibly even to the strain level. In this study, we established a reference database for species identification using whole-cell MALDI-TOF MS; the database consisted of 12 obtained main spectra of the Salmonella culture collection strains belonged to seven serotypes. Eighty-two clinical isolates of Salmonella were identified using established database, and partial 16S rDNA gene sequencing and serological method were used as comparison. We found that MALDI-TOF mass spectrometry provided high accuracy in identification of Salmonella at species level but was limited to type or subtype Salmonella serovars. We also tried to find serovar-specific biomarkers and failed. Our study demonstrated that (a) MALDI-TOF MS was suitable for identification of Salmonella at species level with high accuracy and (b) that MALDI-TOF MS method presented in this study was not useful for serovar assignment of Salmonella currently, because of its low matching with serological method and (c) MALDI-TOF MS method presented in this study was not suitable to subtype S. typhimurium because of its low discriminatory ability.

  18. THE ANTIMUTAGENIC EFFECT OF VANILLIN AND CINNAMALDEHYDE ON SPONTANEOUS MUTATION IN SALMONELLA TA104 IS DUE TO A REDUCTION IN MUTATIONS AT GC BUT NOT AT SITES

    EPA Science Inventory

    Abstract
    Vanillin (VAN) and cinnamaldehyde (CIN) are dietary antimutagens that, when added to assay plates, reduced the spontaneous mutant frequency in Salmonella typhimurium strain TA104 (hisG428, rfa, uvrB, pKM101) by 50%. To date, no study has demonstrated whether or not...

  19. A Novel Chromogenic Ester Agar Medium for Detection of Salmonellae

    PubMed Central

    Cooke, Venitia M.; Miles, R. J.; Price, R. G.; Richardson, A. C.

    1999-01-01

    A novel agar medium, chromogenic Salmonella esterase (CSE) agar, for the differentiation of salmonellae is described. The agar contains peptones and nutrient extracts together with the following (grams per liter unless otherwise specified): 4-[2-(4-octanoyloxy-3,5-dimethoxyphenyl)-vinyl]-quinolinium-1-(propan-3-yl carboxylic acid) bromide (SLPA-octanoate; bromide form), 0.3223; lactose, 14.65; trisodium citrate dihydrate, 0.5; Tween 20, 3.0; ethyl 4-dimethylaminobenzoate, 0.035% (wt/vol), novobiocin, 70 mg liter−1. The key component of the medium is SLPA-octanoate, a newly synthesized ester formed from a C8 fatty acid and a phenolic chromophore. In CSE agar, the ester is hydrolyzed by Salmonella spp. to yield a brightly colored phenol which remains tightly bound within colonies. After 24 h of incubation at 37 or 42°C, colonies of typical Salmonella spp. were burgundy colored on a transparent yellow background, whereas non-Salmonella spp. were white, cream, yellow or transparent. CSE agar was evaluated by using a panel of strains including a high proportion of Salmonella and non-Salmonella strains giving atypical reactions on other differential agars. The sensitivity (93.1%) of CSE agar for non-typhi salmonellae compared favorably with those of Rambach (82.8%), xylose-lysine-deoxycholate (XLD; 91.4%), Hektoen-enteric (89.7%), and SM ID (91.4%) agars. The specificity (93.9%) was also comparable to those of other Salmonella media (SM ID agar, 95.9%; Rambach agar, 91.8%; XLD agar, 91.8%; Hektoen-enteric agar, 87.8%). Strains of Citrobacter freundii and Proteus spp. giving false-positive reactions with other media gave a negative color reaction on CSE agar. CSE agar enabled the detection of >30 Salmonella serotypes, including agona, anatum, enteritidis, hadar, heidelberg, infantis, montevideo, thompson, typhimurium, and virchow, which accounted for 91.8% of the salmonella isolates recorded by the Public Health Laboratory Service (Colindale, London, England) for 1997

  20. Cross contamination of turkey carcasses by Salmonella species during defeathering.

    PubMed

    Nde, C W; McEvoy, J M; Sherwood, J S; Logue, C M

    2007-01-01

    Salmonella present on the feathers of live birds could be a source of contamination to carcass skin during defeathering. In this study, the possibility of transfer of Salmonella from the feathers of live turkeys to carcass tissue during the defeathering process at a commercial turkey processing plant was investigated. The contribution of scald water and the fingers of the picker machines to cross contamination were also examined. Over 4 visits, swab samples were collected from 174 randomly selected tagged birds before and after defeathering. Two swab samples from the fingers of the picker machines and a sample of scald water were also collected during each visit. Detection of Salmonella was carried out following standard cultural and identification methods. The DNA fingerprints obtained from pulsed field gel electrophoresis of Salmonella serotypes isolated before and after defeathering, from scald water, and from the fingers of the picker machines were compared to trace cross contamination routes. Salmonella prevalence was similar before and after defeathering during visits 2 and 3 and significantly increased after defeathering during visits 1 and 4. Over the 4 visits, all Salmonella subtypes obtained after defeathering were also isolated before defeathering. The results of this study suggest that Salmonella was transferred from the feathers to carcass skin during each visit. On each visit, the Salmonella subtypes isolated from the fingers of the picker machines were similar to subtypes isolated before and after defeathering, indicating that the fingers facilitate carcass cross contamination during defeathering. Salmonella isolated from scald water during visit 4 was related to isolates obtained before and after defeathering, suggesting that scald water is also a vehicle for cross contamination during defeathering. By using molecular subtyping, this study demonstrated the relationship between Salmonella present on the feathers of live turkeys and carcass skin after

  1. Fate of Salmonella throughout Production and Refrigerated Storage of Tahini.

    PubMed

    Zhang, Yangjunna; Keller, Susanne E; Grasso-Kelley, Elizabeth M

    2017-06-01

    Tahini, a low-moisture food that is made from sesame seeds, has been implicated in outbreaks of salmonellosis. In this study, the fate of Salmonella was determined through an entire process for the manufacture of tahini, including a 24-h seed soaking period before roasting, subsequent grinding, and storage at refrigeration temperature. Salmonella populations increased by more than 3 log CFU/g during a 24-h soaking period, reaching more than 7 log CFU/g. Survival of Salmonella during roasting at three temperatures, 95, 110, and 130°C, was assessed using seeds on which Salmonella was grown. Salmonella survival was impacted both by temperature and the water activity (a w ) at the beginning of the roasting period. When roasted at 130°C with a high initial a w (≥0.90) and starting Salmonella populations of ∼8.5 log CFU/g, populations quickly decreased below detection limits within the first 10 min. However, when the seeds were reduced to an a w of 0.45 before roasting at the same temperature, 3.5 log CFU/g remained on the seeds after 60 min. In subsequent storage studies, seeds were roasted at 130°C for 15 min before processing into tahini. For the storage studies, tahini was inoculated using two methods. The first method used seeds on which Salmonella was first grown before roasting. In the second method, Salmonella was inoculated into the tahini after manufacture. All tahini was stored for 119 days at 4°C. No change in Salmonella populations was recorded for tahini throughout the entire 119 days regardless of the inoculation method used. These combined results indicate the critical importance of a w during a roasting step during tahini manufacture. Salmonella that survive roasting will likely remain viable throughout the normal shelf life of tahini.

  2. Evaluation of the broad-spectrum lytic capability of bacteriophage cocktails against various Salmonella serovars and their effects on weaned pigs infected with Salmonella Typhimurium.

    PubMed

    Seo, Byoung-Joo; Song, Eu-Tteum; Lee, Kichan; Kim, Jong-Won; Jeong, Chang-Gi; Moon, Sung-Hyun; Son, Jee Soo; Kang, Sang Hyeon; Cho, Ho-Seong; Jung, Byeong Yeal; Kim, Won-Il

    2018-06-06

    The broad-spectrum lytic capability of Salmonella bacteriophages against various Salmonella species was evaluated to determine their potential as an alternative for antibiotics, and the safety and preventive effects of the bacteriophages were assessed on mice and pigs. Four bacteriophage cocktails were prepared using 13 bacteriophages, and the lytic capability of the four bacteriophage cocktails was tested using Salmonella reference strains and field isolates. Bacteriophage cocktail C (SEP-1, SGP-1, STP-1, SS3eP-1, STP-2, SChP-1, SAP-1, SAP-2; ≥10 9 pfu/ml) showed the best lytic activity against the Salmonella reference strains (100% of 34) and field isolates (92.5% of 107). Fifty mice were then orally inoculated with bacteriophage cocktail C to determine the distribution of bacteriophages in various organs, blood and feces. The effects of bacteriophages on Salmonella infection in weaned pigs (n=15) were also evaluated through an experimental challenge with Salmonella Typhimurium after treatment with bacteriophage cocktail C. All mice exhibited distribution of the bacteriophages in all organs, blood and feces until 15 days post infection (dpi). After 35 dpi, bacteriophages were not detected in any of these specimens. As demonstrated in a pig challenge study, treatment with bacteriophage cocktail C reduced the level of Salmonella shedding in feces. The metagenomic analyses of these pig feces also revealed that bacteriophage treatment decreased the number of species of the Enterobacteriaceae family without significant disturbance to the normal fecal flora. This study showed that bacteriophages effectively controlled Salmonella in a pig challenge model and could be a good alternative for antibiotics to control Salmonella infection.

  3. Biofilm Formation and Morphotypes of Salmonella enterica subsp.arizonae Differs from Those of Other Salmonella enterica Subspecies in Isolates from Poultry Houses.

    PubMed

    Lamas, A; Fernandez-No, I C; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M

    2016-07-01

    Salmonella serovars are responsible for foodborne diseases around the world. The ability to form biofilms allows microorganisms to survive in the environment. In this study, 73 Salmonella strains, belonging to four different subspecies, were isolated from poultry houses and foodstuffs and tested. Biofilm formation was measured at four different temperatures and two nutrient concentrations. Morphotypes and cellulose production were evaluated at three different temperatures. The presence of several genes related to biofilm production was also examined. All strains and subspecies of Salmonella had the ability to form biofilms, and 46.57% of strains produced biofilms under all conditions tested. Biofilm formation was strain dependent and varied according to the conditions. This is the first study to analyze biofilm formation in a wide number of Salmonella enterica subsp. arizonae strains, and no direct relationship between the high prevalence of Salmonella enterica subsp. arizonae strains and their ability to form biofilm was established. Morphotypes and cellulose production varied as the temperature changed, with 20°C being the optimum temperature for expression of the red, dry, and rough morphotype and cellulose. Salmonella enterica subsp. arizonae, whose morphotype is poorly studied, only showed a smooth and white morphotype and lacked the csgD and gcpA genes that are implicated in biofilm production. Thus, Salmonella biofilm formation under different environmental conditions is a public health problem because it can survive and advance through the food chain to reach the consumer.

  4. Survey of Salmonella contamination in chicken layer farms in three Caribbean countries.

    PubMed

    Adesiyun, Abiodun; Webb, Lloyd; Musai, Lisa; Louison, Bowen; Joseph, George; Stewart-Johnson, Alva; Samlal, Sannandan; Rodrigo, Shelly

    2014-09-01

    This study was conducted to investigate the demography, management, and production practices on layer chicken farms in Trinidad and Tobago, Grenada, and St. Lucia and the frequency of risk factors for Salmonella infection. The frequency of isolation of Salmonella from the layer farm environment, eggs, feeds, hatchery, and imported day-old chicks was determined using standard methods. Of the eight risk factors (farm size, age group of layers, source of day-old chicks, vaccination, sanitation practices, biosecurity measures, presence of pests, and previous disease outbreaks) for Salmonella infection investigated, farm size was the only risk factor significantly associated (P = 0.031) with the prevalence of Salmonella; 77.8% of large farms were positive for this pathogen compared with 33.3 and 26.1% of medium and small farms, respectively. The overall isolation rate of Salmonella from 35 layer farms was 40.0%. Salmonella was isolated at a significantly higher rate (P < 0.05) from farm environments than from the cloacae. Only in Trinidad and Tobago did feeds (6.5% of samples) and pooled egg contents (12.5% of samples) yield Salmonella; however, all egg samples from hotels, hatcheries, and airports in this country were negative. Salmonella Anatum, Salmonella group C, and Salmonella Kentucky were the predominant serotypes in Trinidad and Tobago, Grenada, and St. Lucia, respectively. Although Salmonella infections were found in layer birds sampled, table eggs appear to pose minimal risk to consumers. However, the detection of Salmonella -contaminated farm environments and feeds cannot be ignored. Only 2.9% of the isolates belonged to Salmonella Enteritidis, a finding that may reflect the impact of changes in farm management and poultry production in the region.

  5. The development of a real-time reverse transcription-polymerase chain reaction (rRT-PCR) assay using TaqMan technology for the pan detection of bluetongue virus (BTV).

    PubMed

    Mulholland, Catherine; McMenamy, Michael J; Hoffmann, Bernd; Earley, Bernadette; Markey, Bryan; Cassidy, Joseph; Allan, Gordon; Welsh, Michael D; McKillen, John

    2017-07-01

    Bluetongue virus (BTV) is an infectious, non-contagious viral disease of domestic and wild ruminants that is transmitted by adult females of certain Culicoides species. Since 2006, several serotypes including BTV-1, 2, 4, 6, 8, 9 and 16, have spread from the Mediterranean basin into Northern Europe for the first time. BTV-8 in particular, caused a major epidemic in northern Europe. As a result, it is evident that most European countries are at risk of BTV infection. The objective of this study was to develop and validate a real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) assay based on TaqMan technology for the detection of representative strains of all BTV serotypes. Primers and probes were based on genome segment 10 of the virus, the NS3 gene. The assay was tested for sensitivity, and specificity. The analytical sensitivity of the rRT-PCR assay was 200 copies of RNA per reaction. The assay did not amplify the closely related orbivirus epizootic hemorrhagic disease virus (EHDV) but successfully detected all BTV reference strains including clinical samples from animals experimentally infected with BTV-8. This real time RT-PCR assay offers a sensitive, specific and rapid alternative assay for the pan detection of BTV that could be used as part of a panel of diagnostic assays for the detection of all serotypes of BTV. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  6. Salmonella DIVA vaccine reduces disease, colonization and shedding due to virulent S. Typhimurium infection in swine

    PubMed Central

    Bearson, Shawn M. D; Brunelle, Brian W; Bayles, Darrell O; Lee, In Soo; Kich, Jalusa D

    2017-01-01

    Purpose Non-host-adapted Salmonella serovars, including the common human food-borne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), are opportunistic pathogens that can colonize food-producing animals without causing overt disease. Interventions against Salmonella are needed to enhance food safety, protect animal health and allow the differentiation of infected from vaccinated animals (DIVA). Methodology An attenuated S. Typhimurium DIVA vaccine (BBS 866) was characterized for the protection of pigs following challenge with virulent S. Typhimurium. The porcine transcriptional response to BBS 866 vaccination was evaluated. RNA-Seq analysis was used to compare gene expression between BBS 866 and its parent; phenotypic assays were performed to confirm transcriptional differences observed between the strains. Results Vaccination significantly reduced fever and interferon-gamma (IFNγ) levels in swine challenged with virulent S. Typhimurium compared to mock-vaccinated pigs. Salmonella faecal shedding and gastrointestinal tissue colonization were significantly lower in vaccinated swine. RNA-Seq analysis comparing BBS 866 to its parental S. Typhimurium strain demonstrated reduced expression of the genes involved in cellular invasion and bacterial motility; decreased invasion of porcine-derived IPEC-J2 cells and swimming motility for the vaccine strain was consistent with the RNA-Seq analysis. Numerous membrane proteins were differentially expressed, which was an anticipated gene expression pattern due to the targeted deletion of several regulatory genes in the vaccine strain. RNA-Seq analysis indicated that genes involved in the porcine immune and inflammatory response were differentially regulated at 2 days post-vaccination compared to pre-vaccination. Conclusion Evaluation of the S. Typhimurium DIVA vaccine indicates that vaccination will provide both swine health and food safety benefits. PMID:28516860

  7. Rapid and Specific Detection of Salmonella spp. in Animal Feed Samples by PCR after Culture Enrichment

    PubMed Central

    Löfström, Charlotta; Knutsson, Rickard; Axelsson, Charlotta Engdahl; Rådström, Peter

    2004-01-01

    A PCR procedure has been developed for routine analysis of viable Salmonella spp. in feed samples. The objective was to develop a simple PCR-compatible enrichment procedure to enable DNA amplification without any sample pretreatment such as DNA extraction or cell lysis. PCR inhibition by 14 different feed samples and natural background flora was circumvented by the use of the DNA polymerase Tth. This DNA polymerase was found to exhibit a high level of resistance to PCR inhibitors present in these feed samples compared to DyNAzyme II, FastStart Taq, Platinum Taq, Pwo, rTth, Taq, and Tfl. The specificity of the Tth assay was confirmed by testing 101 Salmonella and 43 non-Salmonella strains isolated from feed and food samples. A sample preparation method based on culture enrichment in buffered peptone water and DNA amplification with Tth DNA polymerase was developed. The probability of detecting small numbers of salmonellae in feed, in the presence of natural background flora, was accurately determined and found to follow a logistic regression model. From this model, the probability of detecting 1 CFU per 25 g of feed in artificially contaminated soy samples was calculated and found to be 0.81. The PCR protocol was evaluated on 155 naturally contaminated feed samples and compared to an established culture-based method, NMKL-71. Eight percent of the samples were positive by PCR, compared with 3% with the conventional method. The reasons for the differences in sensitivity are discussed. Use of this method in the routine analysis of animal feed samples would improve safety in the food chain. PMID:14711627

  8. Development and Validation of a Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Three Papaya Viruses

    PubMed Central

    Tuo, Decai; Shen, Wentao; Yang, Yong; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2014-01-01

    Papaya ringspot virus (PRSV), Papaya leaf distortion mosaic virus (PLDMV), and Papaya mosaic virus (PapMV) produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay’s specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%), 93/341 (27.3%), and 3/341 (0.9%), for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3%) of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya. PMID:25337891

  9. SKLB060 Reversibly Binds to Colchicine Site of Tubulin and Possesses Efficacy in Multidrug-Resistant Cell Lines.

    PubMed

    Yan, Wei; Yang, Tao; Yang, Jianhong; Wang, Taijin; Yu, Yamei; Wang, Yuxi; Chen, Qiang; Bai, Peng; Li, Dan; Ye, Haoyu; Qiu, Qiang; Zhou, Yongzhao; Hu, Yiguo; Yang, Shengyong; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2018-05-22

    Many tubulin inhibitors are in clinical use as anti-cancer drugs. In our previous study, a novel series of 4-substituted coumarins derivatives were identified as novel tubulin inhibitors. Here, we report the anti-cancer activity and underlying mechanism of one of the 4-substituted coumarins derivatives (SKLB060). The anti-cancer activity of SKLB060 was tested on 13 different cancer cell lines and four xenograft cancer models. Immunofluorescence staining, cell cycle analysis, and tubulin polymerization assay were employed to study the inhibition of tubulin. N, N '-Ethylenebis(iodoacetamide) assay was used to measure binding to the colchicine site. Wound-healing migration and tube formation assays were performed on human umbilical vascular endothelial cells to study anti-vascular activity (the ability to inhibit blood vessel growth). Mitotic block reversibility and structural biology assays were used to investigate the SKLB060-tubulin bound model. SKLB060 inhibited tubulin polymerization and subsequently induced G2/M cell cycle arrest and apoptosis in cancer cells. SKLB060 bound to the colchicine site of β-tubulin and showed antivascular activity in vitro. Moreover, SKLB060 induced reversible cell cycle arrest and reversible inhibition of tubulin polymerization. A mitotic block reversibility assay showed that the effects of SKLB060 have greater reversibility than those of colcemid (a reversible tubulin inhibitor), indicating that SKLB060 binds to tubulin in a totally reversible manner. The crystal structures of SKLB060-tubulin complexes confirmed that SKLB060 binds to the colchicine site, and the natural coumarin ring in SKLB060 enables reversible binding. These results reveal that SKLB060 is a powerful and reversible microtubule inhibitor that binds to the colchicine site and is effective in multidrug-resistant cell lines. © 2018 The Author(s). Published by S. Karger AG, Basel.

  10. Development and customization of a color-coded microbeads-based assay for drug resistance in HIV-1 reverse transcriptase.

    PubMed

    Gu, Lijun; Kawana-Tachikawa, Ai; Shiino, Teiichiro; Nakamura, Hitomi; Koga, Michiko; Kikuchi, Tadashi; Adachi, Eisuke; Koibuchi, Tomohiko; Ishida, Takaomi; Gao, George F; Matsushita, Masaki; Sugiura, Wataru; Iwamoto, Aikichi; Hosoya, Noriaki

    2014-01-01

    Drug resistance (DR) of HIV-1 can be examined genotypically or phenotypically. Although sequencing is the gold standard of the genotypic resistance testing (GRT), high-throughput GRT targeted to the codons responsible for DR may be more appropriate for epidemiological studies and public health research. We used a Japanese database to design and synthesize sequence-specific oligonucleotide probes (SSOP) for the detection of wild-type sequences and 6 DR mutations in the clade B HIV-1 reverse transcriptase region. We coupled SSOP to microbeads of the Luminex 100 xMAP system and developed a GRT based on the polymerase chain reaction (PCR)-SSOP-Luminex method. Sixteen oligoprobes for discriminating DR mutations from wild-type sequences at 6 loci were designed and synthesized, and their sensitivity and specificity were confirmed using isogenic plasmids. The PCR-SSOP-Luminex DR assay was then compared to direct sequencing using 74 plasma specimens from treatment-naïve patients or those on failing treatment. In the majority of specimens, the results of the PCR-SSOP-Luminex DR assay were concordant with sequencing results: 62/74 (83.8%) for M41, 43/74 (58.1%) for K65, 70/74 (94.6%) for K70, 55/73 (75.3%) for K103, 63/73 (86.3%) for M184 and 68/73 (93.2%) for T215. There were a number of specimens without any positive signals, especially for K65. The nucleotide position of A2723G, A2747G and C2750T were frequent polymorphisms for the wild-type amino acids K65, K66 and D67, respectively, and 14 specimens had the D67N mutation encoded by G2748A. We synthesized 14 additional oligoprobes for K65, and the sensitivity for K65 loci improved from 43/74 (58.1%) to 68/74 (91.9%). We developed a rapid high-throughput assay for clade B HIV-1 DR mutations, which could be customized by synthesizing oligoprobes suitable for the circulating viruses. The assay could be a useful tool especially for public health research in both resource-rich and resource-limited settings.

  11. From Exit to Entry: Long-term Survival and Transmission of Salmonella

    PubMed Central

    Waldner, Landon L.; MacKenzie, Keith D.; Köster,, Wolfgang; White, Aaron P.

    2012-01-01

    Salmonella spp. are a leading cause of human infectious disease worldwide and pose a serious health concern. While we have an improving understanding of pathogenesis and the host-pathogen interactions underlying the infection process, comparatively little is known about the survival of pathogenic Salmonella outside their hosts. This review focuses on three areas: (1) in vitro evidence that Salmonella spp. can survive for long periods of time under harsh conditions; (2) observations and conclusions about Salmonella persistence obtained from human outbreaks; and (3) new information revealed by genomic- and population-based studies of Salmonella and related enteric pathogens. We highlight the mechanisms of Salmonella persistence and transmission as an essential part of their lifecycle and a prerequisite for their evolutionary success as human pathogens. PMID:25436767

  12. Development and Validation of a Microtiter Plate-Based Assay for Determination of Bacteriophage Host Range and Virulence.

    PubMed

    Xie, Yicheng; Wahab, Laith; Gill, Jason J

    2018-04-12

    Bacteriophages, which are the natural predators of bacteria, have re-emerged as an attractive alternative to combat antibiotic resistant bacteria. Phages are highly specific at the species and strain level and measurement of the phage host range plays an important role in utilizing the phage as antimicrobials. The most common method for phage host range determination has been to spot phage lysates on soft agar overlays and observe plaque formation. In this study, a liquid culture-based assay was developed in a 96-well microtiter plate format to measure the phage host range and virulence for a collection of 15 Salmonella phages against a panel of 20 Salmonella strains representing 11 serovars. This method was compared to a traditional spot method. The majority of the host range results from two methods were in agreement including in cases where a bacterial strain was insensitive to the phage. Each method produced a false-negative result in 19/300 (6%) of the measured phage-host combinations when compared to the other method. The spot method tended to indicate greater phage sensitivity than the microtiter assay even though direct comparisons of the response magnitude between the two methods is difficult since they operate on different mechanisms. The microtiter plate assay was able to provide data on both the phage host range and virulence in greater resolution in a high-throughput format.

  13. Development and Validation of a Microtiter Plate-Based Assay for Determination of Bacteriophage Host Range and Virulence

    PubMed Central

    Xie, Yicheng; Wahab, Laith

    2018-01-01

    Bacteriophages, which are the natural predators of bacteria, have re-emerged as an attractive alternative to combat antibiotic resistant bacteria. Phages are highly specific at the species and strain level and measurement of the phage host range plays an important role in utilizing the phage as antimicrobials. The most common method for phage host range determination has been to spot phage lysates on soft agar overlays and observe plaque formation. In this study, a liquid culture-based assay was developed in a 96-well microtiter plate format to measure the phage host range and virulence for a collection of 15 Salmonella phages against a panel of 20 Salmonella strains representing 11 serovars. This method was compared to a traditional spot method. The majority of the host range results from two methods were in agreement including in cases where a bacterial strain was insensitive to the phage. Each method produced a false-negative result in 19/300 (6%) of the measured phage-host combinations when compared to the other method. The spot method tended to indicate greater phage sensitivity than the microtiter assay even though direct comparisons of the response magnitude between the two methods is difficult since they operate on different mechanisms. The microtiter plate assay was able to provide data on both the phage host range and virulence in greater resolution in a high-throughput format. PMID:29649135

  14. In vitro selection of RNA aptamer specific to Salmonella typhimurium.

    PubMed

    Han, Seung Ryul; Lee, Seong-Wook

    2013-06-28

    Salmonella is a major foodborne pathogen that causes a variety of human diseases. Development of ligands directly and specifically binding to the Salmonella will be crucial for the rapid detection of, and thus for efficient protection from, the virulent bacteria. In this study, we identified a RNA aptamer-based ligand that can specifically recognize Salmonella Typhimurium through SELEX technology. To this end, we isolated and characterized an RNase-resistant RNA aptamer that bound to the OmpC protein of Salmonella Typhimurium with high specificity and affinity (Kd ~ 20 nM). Of note, the selected aptamer was found to specifically bind to Salmonella Typhimurium, but neither to Gram-positive bacteria (Staphylococcus aureus) nor to other Gram-negative bacteria (Escherichia coli O157:H7). This was evinced by aptamer-immobilized ELISA and aptamer-linked precipitation experiments. This Salmonella species-specific aptamer could be useful as a diagnostic ligand against pathogen-caused foodborne sickness.

  15. Administration of a Salmonella Enteritidis ΔhilAssrAfliG strain by coarse spray to newly hatched broilers reduces colonization and shedding of a Salmonella Enteritidis challenge strain.

    PubMed

    De Cort, W; Haesebrouck, F; Ducatelle, R; van Immerseel, F

    2015-01-01

    Consumption of contaminated poultry meat is still an important cause of Salmonella infections in humans. Colonization inhibition (CI) occurs when a live Salmonella strain is administered to chickens and subsequently protects against challenge with another Salmonella strain belonging to the same serotype. A Salmonella Enteritidis hilAssrAfliG deletion mutant has previously been proven to reduce colonization and shedding of a wild-type Salmonella Enteritidis strain in newly hatched broilers after experimental infection. In this study, we compared two administration routes for this strain. Administering the Salmonella Enteritidis ΔhilAssrAfliG strain through drinking water on the first day of life resulted in decreased fecal shedding and cecal colonization of a wild-type Salmonella Enteritidis challenge strain administered 24 h later using a seeder-bird model. When administering the CI strain by coarse spray on newly hatched broiler chicks, an even more pronounced reduction of cecal colonization was observed, and fecal shedding of the Salmonella Enteritidis challenge strain ceased during the course of the experiment. These data suggest that administering a Salmonella Enteritidis ΔhilAssrAfliG strain to newly hatched chicks using a coarse spray is a useful and effective method that reduces colonization and shedding of a wild-type Salmonella Enteritidis strain after early challenge. © 2014 Poultry Science Association Inc.

  16. Prevalence and antimicrobial susceptibility of salmonellae isolates from reptiles in Taiwan.

    PubMed

    Chen, Chun-Yu; Chen, Wan-Ching; Chin, Shih-Chien; Lai, Yen-Hsueh; Tung, Kwong-Chung; Chiou, Chien-Shun; Hsu, Yuan-Man; Chang, Chao-Chin

    2010-01-01

    Pets, including reptiles, have been shown to be a source of Salmonella infection in humans. Due to increasing popularity and variety of exotic reptiles as pets in recent years, more human clinical cases of reptile-associated Salmonella infection have been identified. However, limited information is available with regard to serotypes in different reptiles (turtles, snakes, and lizards) and antimicrobial resistance of Salmonella in pet reptiles. The current study was thus conducted to determine the prevalence of Salmonella colonization in pet reptiles. Salmonella organisms were isolated from 30.9% of 476 reptiles investigated. The isolation prevalences were 69.7% (23/33), 62.8% (27/43), and 24.3% (97/400) in snakes, lizards, and turtles, respectively. A total of 44 different Salmonella serovars were identified. Compared with S. Heron, Bredeney, Treforest, and 4,[5],12:i:-, S. Typhimurium isolates were resistant to many antimicrobials tested, and notably 61.1% of the isolates were resistant to cephalothin. The results indicated that raising reptiles as pets could be a possible source of Salmonella infection in humans, particularly zoonotic Salmonella serovars such as S. Typhimurium that may be resistant to antimicrobials.

  17. Survival and Filamentation of Salmonella enterica Serovar Enteritidis PT4 and Salmonella enterica Serovar Typhimurium DT104 at Low Water Activity

    PubMed Central

    Mattick, K. L.; Jørgensen, F.; Legan, J. D.; Cole, M. B.; Porter, J.; Lappin-Scott, H. M.; Humphrey, T. J.

    2000-01-01

    In this study we investigated the long-term survival of and morphological changes in Salmonella strains at low water activity (aw). Salmonella enterica serovar Enteritidis PT4 and Salmonella enterica serovar Typhimurium DT104 survived at low aw for long periods, but minimum humectant concentrations of 8% NaCl (aw, 0.95), 96% sucrose (aw, 0.94), and 32% glycerol (aw, 0.92) were bactericidal under most conditions. Salmonella rpoS mutants were usually more sensitive to bactericidal levels of NaCl, sucrose, and glycerol. At a lethal aw, incubation at 37°C resulted in more rapid loss of viability than incubation at 21°C. At aw values of 0.93 to 0.98, strains of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium formed filaments, some of which were at least 200 μm long. Filamentation was independent of rpoS expression. When the preparations were returned to high-aw conditions, the filaments formed septa, and division was complete within approximately 2 to 3 h. The variable survival of Salmonella strains at low aw highlights the importance of strain choice when researchers produce modelling data to simulate worst-case scenarios or conduct risk assessments based on laboratory data. The continued increase in Salmonella biomass at low aw (without a concomitant increase in microbial count) would not have been detected by traditional microbiological enumeration tests if the tests had been performed immediately after low-aw storage. If Salmonella strains form filaments in food products that have low aw values (0.92 to 0.98), there are significant implications for public health and for designing methods for microbiological monitoring. PMID:10742199

  18. Maternal vaccination as a Salmonella Typhimurium reduction strategy on pig farms.

    PubMed

    Smith, R P; Andres, V; Martelli, F; Gosling, B; Marco-Jimenez, F; Vaughan, K; Tchorzewska, M; Davies, R

    2018-01-01

    The control of Salmonella in pig production is necessary for public and animal health, and vaccination was evaluated as a strategy to decrease pig prevalence. The study examined the efficacy of a live Salmonella Typhimurium vaccine, administered to sows on eight commercial farrow-to-finish herds experiencing clinical salmonellosis or Salmonella carriage associated with S. Typhimurium or its monophasic variants. Results of longitudinal Salmonella sampling were compared against eight similarly selected and studied control farms. At the last visit (~14 months after the start of vaccination), when all finishing stock had been born to vaccinated sows, both faecal shedding and environmental prevalence of Salmonella substantially declined on the majority of vaccinated farms in comparison to the controls. A higher proportion of vaccine farms resolved clinical salmonellosis than controls. However, Salmonella counts in positive faeces samples were similar between nonvaccinated and vaccinated herds. The results suggest that maternal vaccination is a suitable option for a Salmonella Typhimurium reduction strategy in farrow-to-finish pig herds. Salmonella vaccines have the potential to reduce the prevalence of Salmonella in pigs and result in a reduction of human cases attributed to pork. © 2017 Crown copyright. Journal of Applied Microbiology © 2017 The Society for Applied Microbiology. This article is published with the permission of the Controller of HMSO and the Queen’s Printer for Scotland.

  19. Detection, differentiation, and VP1 sequencing of duck hepatitis A virus type 1 and type 3 by a 1-step duplex reverse-transcription PCR assay.

    PubMed

    Wen, X J; Cheng, A C; Wang, M S; Jia, R Y; Zhu, D K; Chen, S; Liu, M F; Liu, F; Chen, X Y

    2014-09-01

    Duck hepatitis A virus (DHAV) is an infectious pathogen causing fatal duck viral hepatitis in ducklings. Although both the inactivated vaccines and live attenuated vaccines have been used to protect ducklings, DHAV-1 and DHAV-3 still cause significant serious damage to the duck industry in China and South Korea. For rapid detection, differentiation, and epidemic investigation of DHAV in China, a genotype-specific 1-step duplex reverse-transcription (RT) PCR assay was established in this study. The sensitivity and specificity of the developed RT-PCR assay was evaluated with nucleic acids extracted from 2 DHAV reference strains, and 9 other infectious viruses and bacteria. The genotype-specific primers amplified different size DNA fragments encompassing the complete VP1 gene of the DHAV-1 or DHAV-3. The assay detected the liver samples collected from experimentally infected ducklings and dead ducklings collected from different regions of China. Sequence analysis of these DNA fragments indicated that VP1 sequences of DHAV-1 can be used to distinguish wild type and vaccine strains. The phylogenetic analysis of VP1 sequences indicated that the developed RT-PCR assay can be used for epidemic investigation of DHAV-1 and DHAV-3. The developed RT-PCR assay can be used as a specific molecular tool for simultaneous detection, differentiation, and sequencing the VP1 gene of DHAV-1 and DHAV-3, which can be used for understanding the epidemiology and evolution of DHAV. © 2014 Poultry Science Association Inc.

  20. Multiplex PCR assay for the detection and quantification of Campylobacter spp., Escherichia coli O157:H7, and Salmonella serotypes in water samples

    USDA-ARS?s Scientific Manuscript database

    Three pathogens, Campylobacter, Salmonella, and Shiga toxin producing Escherichia coli (STEC), are leading causes of bacterial gastroenteritis in the United States and worldwide. For example, Campylobacter species are responsible for 17% of all hospitalizations related to illness, and although Campy...