Al-Emran, Hassan M.; Eibach, Daniel; Krumkamp, Ralf; Ali, Mohammad; Baker, Stephen; Biggs, Holly M.; Bjerregaard-Andersen, Morten; Breiman, Robert F.; Clemens, John D.; Crump, John A.; Cruz Espinoza, Ligia Maria; Deerin, Jessica; Dekker, Denise Myriam; Gassama Sow, Amy; Hertz, Julian T.; Im, Justin; Ibrango, Samuel; von Kalckreuth, Vera; Kabore, Leon Parfait; Konings, Frank; Løfberg, Sandra Valborg; Meyer, Christian G.; Mintz, Eric D.; Montgomery, Joel M.; Olack, Beatrice; Pak, Gi Deok; Panzner, Ursula; Park, Se Eun; Razafindrabe, Jean Luco Tsiriniaina; Rabezanahary, Henintsoa; Rakotondrainiarivelo, Jean Philibert; Rakotozandrindrainy, Raphaël; Raminosoa, Tiana Mirana; Schütt-Gerowitt, Heidi; Sampo, Emmanuel; Soura, Abdramane Bassiahi; Tall, Adama; Warren, Michelle; Wierzba, Thomas F.; May, Jürgen; Marks, Florian
2016-01-01
Background. Salmonella enterica serovar Typhi is a predominant cause of bloodstream infections in sub-Saharan Africa (SSA). Increasing numbers of S. Typhi with resistance to ciprofloxacin have been reported from different parts of the world. However, data from SSA are limited. In this study, we aimed to measure the ciprofloxacin susceptibility of S. Typhi isolated from patients with febrile illness in SSA. Methods. Febrile patients from 9 sites within 6 countries in SSA with a body temperature of ≥38.0°C were enrolled in this study. Blood samples were obtained for bacterial culture, and Salmonella isolates were identified biochemically and confirmed by multiplex polymerase chain reaction (PCR). Antimicrobial susceptibility of all Salmonella isolates was performed by disk diffusion test, and minimum inhibitory concentrations (MICs) against ciprofloxacin were measured by Etest. All Salmonella isolates with reduced susceptibility to ciprofloxacin (MIC > 0.06 µg/mL) were screened for mutations in quinolone resistance-determining regions in target genes, and the presence of plasmid-mediated quinolone resistance (PMQR) genes was assessed by PCR. Results. A total of 8161 blood cultures were performed, and 100 (1.2%) S. Typhi, 2 (<0.1%) Salmonella enterica serovar Paratyphi A, and 27 (0.3%) nontyphoid Salmonella (NTS) were isolated. Multidrug-resistant S. Typhi were isolated in Kenya (79% [n = 38]) and Tanzania (89% [n = 8]) only. Reduced ciprofloxacin-susceptible (22% [n = 11]) S. Typhi were isolated only in Kenya. Among those 11 isolates, all had a Glu133Gly mutation in the gyrA gene combined with either a gyrA (Ser83Phe) or gyrB mutation (Ser464Phe). One Salmonella Paratyphi A isolate with reduced susceptibility to ciprofloxacin was found in Senegal, with 1 mutation in gyrA (Ser83Phe) and a second mutation in parC (Ser57Phe). Mutations in the parE gene and PMQR genes were not detected in any isolate. Conclusions. Salmonella Typhi with reduced susceptibility to ciprofloxacin was not distributed homogenously throughout SSA. Its prevalence was very high in Kenya, and was not observed in other study countries. Continuous monitoring of antimicrobial susceptibility is required to follow the potential spread of antimicrobial-resistant isolates throughout SSA. PMID:26933020
Lejon, Veerle; Horna, Gertrudis; Astocondor, Lizeth; Vanhoof, Raymond; Bertrand, Sophie; Jacobs, Jan
2014-01-01
Thirty-three Salmonella enterica serovar Typhi blood isolates from Lima, Peru (2008 to 2012), were fully susceptible to trimethoprim-sulfamethoxazole, chloramphenicol, ceftriaxone, and tetracycline; 8/33 (24.2%) showed intermediate susceptibility to ciprofloxacin carrying mutations in the quinolone resistance-determining region of the gyrA gene (Ser83-Phe and Asp87-Asn) and in the gyrB gene (Ser464-Phe). PMID:24371234
ESBL-Producing Salmonella enterica Serovar Typhi in Traveler Returning from Guatemala to Spain
Piedra-Carrasco, Nuria; Salvador, Fernando; Rodríguez, Virginia; Sánchez-Montalvá, Adrián; Planes, Anna M.; Molina, Israel; Larrosa, M. Nieves
2014-01-01
We report a case of typhoid fever in a traveler returning to Spain from Guatemala that was caused by Salmonella enterica serovar Typhi which produced an extended-spectrum β-lactamase (ESBL). This finding demonstrates the presence of ESBL-producing S. enterica ser. Typhi strains in the Americas. Enhanced surveillance is necessary to prevent further spread. PMID:25340972
Pocock, J M; Khun, P A; Moore, C E; Vuthy, S; Stoesser, N; Parry, C M
2014-08-01
Septic arthritis is a rare complication of typhoid fever. A 12-year-old boy without pre-existing disease attended a paediatric hospital in Cambodia with fever and left hip pain. A hip synovial fluid aspirate grew multidrug-resistant Salmonella enterica ser. Typhi with intermediate susceptibility to ciprofloxacin. Arthrotomy, 2 weeks of intravenous ceftriaxone and 4 weeks of oral azithromycin led to resolution of symptoms. The optimum management of septic arthritis in drug-resistant typhoid is undefined.
Limpitikul, Wannee; Henpraserttae, Narong; Saksawad, Rachanee; Laoprasopwattana, Kamolwish
2014-01-01
To determine the clinical manifestations and outcomes, the reliability of Salmonella enterica serotype Typhi (S ser. Typhi) IgM and IgG rapid tests, and the susceptibility patterns and the response to treatment during the 2009-2011 typhoid outbreak in Songkhla province in Thailand. The medical records of children aged <15 years with S ser. Typhi bacteremia were analysed. The efficacy of the typhoid IgM and IgG rapid tests and susceptibility of the S ser. Typhi to the current main antibiotics used for typhoid (amoxicillin, ampicillin, cefotaxime, ceftriaxone, co-trimoxazole, and ciprofloxacin), were evaluated. S ser. Typhi bacteremia was found in 368 patients, and all isolated strains were susceptible to all 6 antimicrobials tested. Most of the patients were treated with ciprofloxacin for 7-14 days. The median time (IQR) of fever before treatment and duration of fever after treatment were 5 (4, 7) days and 4 (3, 5) days, respectively. Complications of ascites, lower respiratory symptoms, anemia (Hct <30%), and ileal perforation were found in 7, 7, 22, and 1 patients, respectively. None of the patients had recurrent infection or died. The sensitivities of the typhoid IgM and IgG tests were 58.3% and 25.6% respectively, and specificities were 74.1% and 50.5%, respectively. Most of the patients were diagnosed at an early stage and treated with a good outcome. All S ser. Typhi strains were susceptible to standard first line antibiotic typhoid treatment. The typhoid IgM and IgG rapid tests had low sensitivity and moderate specificity.
Nüesch-Inderbinen, Magdalena; Abgottspon, Helga; Sägesser, Grethe; Cernela, Nicole; Stephan, Roger
2015-05-12
Typhoid fever is an acute, invasive, and potentially fatal systemic infection caused by Salmonella enterica subspecies enterica serotype Typhi (S. Typhi). Drug resistance to antimicrobials such as ciprofloxacin is emerging in developing countries, threatening the efficacy of treatment of patients in endemic regions as well as of travellers returning from these countries. We compared the antimicrobial resistance profiles of 192 S. Typhi isolated from patients over a time span of twelve years. Susceptibility testing was done by the disk diffusion method. A representative selection of isolates (n = 41) was screened by PCR for mutations in the quinolone resistance-determining regions (QRDRs) of the gyrA and parC genes and all 192 isolates were screened for plasmid-mediated quinolone resistance (PMQR) genes. Multilocus sequence typing (MLST) was used to investigate the sequence type of isolates from patients with a known history of international travel. Resistance rates for nalidixic acid increased from 20 % to 66.7 % between 2002 and 2013. Resistance to ciprofloxacin was detected in 55.6 % of the isolates by 2013. Ciprofloxacin resistance was predominantly associated with the triple substitutions Ser83 → Phe and Asp87 → Asn in GyrA and Ser80 → Ile in ParC. The plasmid-mediated resistance gene qnrS1 was detected in two isolates. Sequence type ST1 was associated with the Indian subcontinent, while ST2 was distributed internationally. Multidrug resistance was noted for 11.5 % of the isolates. Fluoroquinolone resistant S. Typhi constitute a serious public health concern in endemic areas as well as in industrialized countries. Increased surveillance of global patterns of antimicrobial resistance is necessary and the control of resistant strains is of the utmost importance to maintain treatment options.
Song, Yajun; Roumagnac, Philippe; Weill, François-Xavier; Wain, John; Dolecek, Christiane; Mazzoni, Camila J.; Holt, Kathryn E.; Achtman, Mark
2010-01-01
Objectives Decreased susceptibility to fluoroquinolones has become a major problem for the successful therapy of human infections caused by Salmonella enterica, especially the life-threatening typhoid and paratyphoid fevers. Methods By using Luminex xTAG beads, we developed a rapid, reliable and cost-effective multiplexed genotyping assay for simultaneously detecting 11 mutations in gyrA, gyrB and parE of S. enterica serovars Typhi and Paratyphi A that result in nalidixic acid resistance (NalR) and/or decreased susceptibility to fluoroquinolones. Results This assay yielded unambiguous single nucleotide polymorphism calls on extracted DNA from 292 isolates of Salmonella Typhi (NalR = 223 and NalS = 69) and 106 isolates of Salmonella Paratyphi A (NalR = 24 and NalS = 82). All of the 247 NalR Salmonella Typhi and Salmonella Paratyphi A isolates were found to harbour at least one of the target mutations, with GyrA Phe-83 as the most common one (143/223 for Salmonella Typhi and 18/24 for Salmonella Paratyphi A). We also identified three GyrB mutations in eight NalS Salmonella Typhi isolates (six for GyrB Phe-464, one for GyrB Leu-465 and one for GyrB Asp-466), and mutations GyrB Phe-464 and GyrB Asp-466 seem to be related to the decreased ciprofloxacin susceptibility phenotype in Salmonella Typhi. This assay can also be used directly on boiled single colonies. Conclusions The assay presented here would be useful for clinical and reference laboratories to rapidly screen quinolone-resistant isolates of Salmonella Typhi and Salmonella Paratyphi A, and decipher the underlying genetic changes for epidemiological purposes. PMID:20511368
Francisco, Moisés; Costa, Sofia Santos; Belas, Adriana; Ramos, Jorge; Couto, Isabel; Pomba, Constança; Viveiros, Miguel
2018-02-09
Typhoid fever is a common infection in Africa and in spite of scarce surveillance reports, its incidence is commonly considered high by the Angolan Health system. Drug-resistant Salmonella enterica serotype Typhi has emerged, turning antimicrobial susceptibility testing essential to provide clinical guidance. This is the first report analyzing antimicrobial resistance patterns and population structure of the few S. enterica ser. Typhi isolated from patients with Typhoid fever in Luanda, Angola. Isolates were collected by the National Institute of Public Health of Angola, between September 2013 and May 2014. A total of 10 isolates were identified by API20E system and serotyping, and the genus confirmed by PCR. All isolates were tested for antibiotic susceptibility and the presence of resistance genes (blaCTX-M, blaSHV, blaTEM, blaOXA-1, several plasmid-borne genes encoding AmpC β-lactamases, sul and qnr genes, dfrIa, dfrA12, aac(6')- Ib, cmlA and floR) screened by PCR. Isolates were typed by PFGE and MLST. Several isolates were identified with resistance to trimethoprim-sulfamethoxazole (n=6), beta-lactams (n=5), chloramphenicol (n=1) and reduced susceptibility to ciprofloxacin (n=2). PFGE revealed eight closely related restriction patterns and MLST grouped these in three sequence types: ST1, ST2 and ST8, with ST2 being predominant. This first epidemiological report provides a preliminary portray of the S. enterica ser. Typhi strains that circulate in Luanda, Angola and emphasizes the demand for a continuous monitoring of this pathogen to provide information to implement better epidemiological strategies for the control of Typhoid fever in Angola. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
Chau, Tran Thuy; Campbell, James Ian; Galindo, Claudia M.; Van Minh Hoang, Nguyen; Diep, To Song; Nga, Tran Thu Thi; Van Vinh Chau, Nguyen; Tuan, Phung Quoc; Page, Anne Laure; Ochiai, R. Leon; Schultsz, Constance; Wain, John; Bhutta, Zulfiqar A.; Parry, Christopher M.; Bhattacharya, Sujit K.; Dutta, Shanta; Agtini, Magdarina; Dong, Baiqing; Honghui, Yang; Anh, Dang Duc; Canh, Do Gia; Naheed, Aliya; Albert, M. John; Phetsouvanh, Rattanaphone; Newton, Paul N.; Basnyat, Buddha; Arjyal, Amit; La, Tran Thi Phi; Rang, Nguyen Ngoc; Phuong, Le Thi; Van Be Bay, Phan; von Seidlein, Lorenz; Dougan, Gordon; Clemens, John D.; Vinh, Ha; Hien, Tran Tinh; Chinh, Nguyen Tran; Acosta, Camilo J.; Farrar, Jeremy; Dolecek, Christiane
2007-01-01
This study describes the pattern and extent of drug resistance in 1,774 strains of Salmonella enterica serovar Typhi isolated across Asia between 1993 and 2005 and characterizes the molecular mechanisms underlying the reduced susceptibilities to fluoroquinolones of these strains. For 1,393 serovar Typhi strains collected in southern Vietnam, the proportion of multidrug resistance has remained high since 1993 (50% in 2004) and there was a dramatic increase in nalidixic acid resistance between 1993 (4%) and 2005 (97%). In a cross-sectional sample of 381 serovar Typhi strains from 8 Asian countries, Bangladesh, China, India, Indonesia, Laos, Nepal, Pakistan, and central Vietnam, collected in 2002 to 2004, various rates of multidrug resistance (16 to 37%) and nalidixic acid resistance (5 to 51%) were found. The eight Asian countries involved in this study are home to approximately 80% of the world's typhoid fever cases. These results document the scale of drug resistance across Asia. The Ser83→Phe substitution in GyrA was the predominant alteration in serovar Typhi strains from Vietnam (117/127 isolates; 92.1%). No mutations in gyrB, parC, or parE were detected in 55 of these strains. In vitro time-kill experiments showed a reduction in the efficacy of ofloxacin against strains harboring a single-amino-acid substitution at codon 83 or 87 of GyrA; this effect was more marked against a strain with a double substitution. The 8-methoxy fluoroquinolone gatifloxacin showed rapid killing of serovar Typhi harboring both the single- and double-amino-acid substitutions. PMID:17908946
Pratap, Chandra Bhan; Kumar, Gopal; Patel, Saurabh Kumar; Shukla, Vijay K; Kumar, Kailash; Singh, Tej Bali
2014-01-01
Introduction: Enteric fever is a systemic disease caused by Salmonella organism such as serotypes Typhi and ParaTyphi A, B, C. Salmonella ParaTyphi A contributes more than 50% of all the enteric fever cases and it has recently been projected as an emerging pathogen. Materials and Methods: The present study was aimed to detect Salmonella Typhi and ParaTyphi A in urine, blood and stool specimens collected from cases of enteric fever (110), chronic typhoid carriers (46) and healthy controls (75) to explore the possibility of mixed infection by nested PCR. A new nested PCR primer was designed targeting putative fimbrial protein (stkG) gene which is one of the fimbrial gene families to Salmonella ParaTyphi A and for S. Typhi already reported primers targeting flagellin (fliC) gene. Results: Large volume of urine specimens (15 ml) was found to be the best for detection of Salmonella serotypes. The urine sample was found to have mixed-infection by both the serotypes in 40.9% of the cases but lower in blood (27.3%) and stool (13.6%). Conclusion: The present study concludes that occurrence of mixed infection may be quite frequent in typhoid and chronic typhoid carriers’ individuals, although the reported recent rise in ParaTyphi A incidence may not be real. PMID:25584217
Chau, Tran Thuy; Duy, Pham Thanh; La, Tran Thi Phi; Hoang, Nguyen Van Minh; Nga, Tran Vu Thieu; Campbell, James I.; Manh, Bui Huu; Vinh Chau, Nguyen Van; Hien, Tran Tinh; Farrar, Jeremy; Dougan, Gordon; Baker, Stephen
2011-01-01
Background Typhoid fever remains a public health problem in Vietnam, with a significant burden in the Mekong River delta region. Typhoid fever is caused by the bacterial pathogen Salmonella enterica serovar Typhi (S. Typhi), which is frequently multidrug resistant with reduced susceptibility to fluoroquinolone-based drugs, the first choice for the treatment of typhoid fever. We used a GoldenGate (Illumina) assay to type 1,500 single nucleotide polymorphisms (SNPs) and analyse the genetic variation of S. Typhi isolated from 267 typhoid fever patients in the Mekong delta region participating in a randomized trial conducted between 2004 and 2005. Principal Findings The population of S. Typhi circulating during the study was highly clonal, with 91% of isolates belonging to a single clonal complex of the S. Typhi H58 haplogroup. The patterns of disease were consistent with the presence of an endemic haplotype H58-C and a localised outbreak of S. Typhi haplotype H58-E2 in 2004. H58-E2-associated typhoid fever cases exhibited evidence of significant geo-spatial clustering along the Sông H u branch of the Mekong River. Multidrug resistance was common in the established clone H58-C but not in the outbreak clone H58-E2, however all H58 S. Typhi were nalidixic acid resistant and carried a Ser83Phe amino acid substitution in the gyrA gene. Significance The H58 haplogroup dominates S. Typhi populations in other endemic areas, but the population described here was more homogeneous than previously examined populations, and the dominant clonal complex (H58-C, -E1, -E2) observed in this study has not been detected outside Vietnam. IncHI1 plasmid-bearing S. Typhi H58-C was endemic during the study period whilst H58-E2, which rarely carried the plasmid, was only transient, suggesting a selective advantage for the plasmid. These data add insight into the outbreak dynamics and local molecular epidemiology of S. Typhi in southern Vietnam. PMID:21245916
Plasmid-mediated quinolone resistance in non-Typhi serotypes of Salmonella enterica.
Gay, Kathryn; Robicsek, Ari; Strahilevitz, Jacob; Park, Chi Hye; Jacoby, George; Barrett, Timothy J; Medalla, Felicita; Chiller, Tom M; Hooper, David C
2006-08-01
Serious infections with Salmonella species are often treated with fluoroquinolones or extended-spectrum beta-lactams. Increasingly recognized in Enterobacteriaceae, plasmid-mediated quinolone resistance is encoded by qnr genes. Here, we report the presence of qnr variants in human isolates of non-Typhi serotypes of Salmonella enterica (hereafter referred to as non-Typhi Salmonella) from the United States National Antimicrobial Resistance Monitoring System for Enteric Bacteria. All non-Typhi Salmonella specimens from the United States National Antimicrobial Resistance Monitoring System for Enteric Bacteria collected from 1996 to 2003 with ciprofloxacin minimum inhibitory concentrations > or = 0.06 microg/mL (233 specimens) and a subset with minimum inhibitory concentrations < or = 0.03 microg/mL (102 specimens) were screened for all known qnr genes (A, B, and S) by polymerase chain reaction. For isolates with positive results, qnr and quinolone resistance-determining region sequences were determined. Plasmids containing qnr genes were characterized by conjugation or transformation. Conjugative plasmids harboring qnrB variants were detected in 7 Salmonella enterica serotype Berta isolates and 1 Salmonella enterica serotype Mbandaka isolate. The S. Mbandaka plasmid also had an extended-spectrum beta -lactamase. Variants of qnrS on nonconjugative plasmids were detected in isolates of Salmonella enterica serotype Anatum and Salmonella enterica serotype Bovismorbificans. Plasmid-mediated quinolone resistance appears to be widely distributed, though it is still uncommon in non-Typhi Salmonella isolates from the United States, including strains that are quinolone susceptible by the criteria of the Clinical and Laboratory Standards Institute (formerly the National Committee for Clinical Laboratory Standards). The presence of this gene in non-Typhi Salmonella that causes infection in humans suggests potential for spread through the food supply, which is a public health concern.
Non-typhi Salmonella infection in patients with rheumatic diseases on TNF-alpha antagonist therapy.
Peña-Sagredo, J L; Fariñas, M C; Perez-Zafrilla, B; Cruz-Valenciano, A; Crespo, M; Joven-Ibañez, B; Riera, E; Manero-Ruiz, F J; Chalmeta, I; Hernández, M V; Rodríguez-Gómez, M; Maíz, O; López, R; Cobo, T; Pita, J; Carmona, L; Gonzalez-Gay, M A
2009-01-01
The morbidity and mortality of patients with rheumatic diseases has improved considerably following the use of biologic therapies. However, an increase in the frequency of bacterial infections has been observed in patients receiving these drugs. In the present study we aimed to establish the incidence and clinical manifestations of non-typhi Salmonella infection in a large cohort of patients with rheumatic diseases undergoing TNF-alpha antagonist therapy due to severe rheumatic diseases refractory to conventional therapies. The rate of non-typhi Salmonella infection found in the Spanish Registry of Adverse Events of Biological Therapies in Rheumatic Diseases (BIOBADASER) was compared with that observed in a cohort of rheumatoid arthritis (RA) patients from the EMECAR (Morbidity and Clinical Expression of Rheumatoid Arthritis) Study, who were not treated with TNF-alpha antagonists. The rate found in the BIOBADASER registry was also compared with that available in a non-RA historic control cohort reported in a population from Huesca (Northern Spain). Seventeen cases of non-typhi Salmonella infection were observed in the series of patients exposed to anti-TNF-alpha therapies. The incidence rate of non-typhi Salmonella in BIOBADASER was 0.73 per 1000 patient-years (95% confidence interval [CI]: 0.45-1.17). The incidence rate in the EMECAR cohort was 0.44 per 1000 patient-years. The relative risk for non-typhi salmonellosis in RA patients exposed to TNF-alpha inhibitors compared to those not treated with biological therapies was 2.07 (95% CI: 0.27-15.73) (p=0.480) whereas the relative risk of non-typhi Salmonella infections in patients with rheumatic diseases undergoing TNF-alpha antagonist therapy compared with the non-RA Spanish control cohort was 0.63 (95% CI: 0.38-1.04) (p=0.07). Nine of the 17 patients with non-typhi salmonellosis presented a severe systemic infection. Incidence of non-typhi Salmonella infection is not increased significantly in rheumatic patients undergoing anti-TNF-alpha therapy when compared with RA patients undergoing conventional DMARD therapy or with the general population. Nevertheless, at least 50% of patients on TNF-alpha have severe complications once they develop non-typhi Salmonella infection. This fact suggests that anti-TNF-alpha therapies may predispose to salmonella dissemination rather than to infection.
... Resistant Salmonella Serotype Typhi Salmonella serotype Typhi causes typhoid fever, a potentially life-threatening disease. People with typhoid fever usually have a high fever, abdominal pain, and ...
Isolation of Salmonella Virchow from a fruit bat (Pteropus giganteus).
Islam, Ausraful; Mikolon, Andrea; Mikoleit, Matthew; Ahmed, Dilruba; Khan, Salah Udddin; Sharker, M A Yushuf; Hossain, M Jahangir; Islam, Ariful; Epstein, Jonathan H; Zeidner, Nord; Luby, Stephen P
2013-12-01
Detection of zoonotic pathogens carried by bats is important both for understanding disease ecology and for developing preventive measures. Pteropus fruit bats have been identified as potential carriers of Salmonella enterica serotype Typhi. A cross-sectional study was conducted to determine the prevalence of Salmonella Typhi and other Salmonella serotypes in Pteropus giganteus fruit bats in Bangladesh. Rectal swabs were collected from 302 bats and cultured for Salmonella species. The bats were trapped in three districts (Faridpur, Rajbari, and Cox's Bazar). Salmonella Typhi was not found but one juvenile female bat from Faridpur district was positive for Salmonella Virchow. Close associations between frugivorous bats, humans, and livestock in rural Bangladesh make it likely that the bat was infected by consuming contaminated water.
The clinical and microbiological characteristics of enteric fever in Cambodia, 2008-2015
Phe, Thong; Veng, Chhun H.; Lim, Kruy; Ieng, Sovann; Kham, Chun; Fawal, Nizar; Fabre, Laetitia; Le Hello, Simon; Vlieghe, Erika; Weill, François-Xavier; Jacobs, Jan; Peetermans, Willy E.
2017-01-01
Background Enteric fever remains a major public health problem in low resource settings and antibiotic resistance is increasing. In Asia, an increasing proportion of infections is caused by Salmonella enterica serovar Paratyphi A, which for a long time was assumed to cause a milder clinical syndrome compared to Salmonella enterica serovar Typhi. Methodology A retrospective chart review study was conducted of 254 unique cases of blood culture confirmed enteric fever who presented at a referral adult hospital in Phnom Penh, Cambodia between 2008 and 2015. Demographic, clinical and laboratory data were collected from clinical charts and antibiotic susceptibility testing was performed. Whole genome sequence analysis was performed on a subset of 121 isolates. Results One-hundred-and-ninety unique patients were diagnosed with Salmonella Paratyphi A and 64 with Salmonella Typhi. In the period 2008–2012, Salmonella Paratyphi A comprised 25.5% of 47 enteric fever cases compared to 86.0% of 207 cases during 2013–2015. Presenting symptoms were identical for both serovars but higher median leukocyte counts (6.8 x 109/L vs. 6.3 x 109/L; p = 0.035) and C-reactive protein (CRP) values (47.0 mg/L vs. 36 mg/L; p = 0.034) were observed for Salmonella Typhi infections. All but one of the Salmonella Typhi isolates belonged to haplotype H58 associated with multidrug resistance (MDR) (i.e. resistance to ampicillin, chloramphenicol and co-trimoxazole).;42.9% actually displayed MDR compared to none of the Salmonella Paratyphi A isolates. Decreased ciprofloxacin susceptibility (DCS) was observed in 96.9% (62/64) of Salmonella Typhi isolates versus 11.5% (21/183) of Salmonella Paratyphi A isolates (all but one from 2015). All isolates were susceptible to azithromycin and ceftriaxone. Conclusions In Phnom Penh, Cambodia, Salmonella Paratyphi A now causes the majority of enteric fever cases and decreased susceptibility against ciprofloxacin is increasing. Overall, Salmonella Typhi was significantly more associated with MDR and DCS compared to Salmonella Paratyphi A. PMID:28931025
Typhoid toxin provides a window into typhoid fever and the biology of Salmonella Typhi.
Galán, Jorge E
2016-06-07
Salmonella Typhi is the cause of typhoid fever, a disease that has challenged humans throughout history and continues to be a major public health concern. Unlike infections with most other Salmonellae, which result in self-limiting gastroenteritis, typhoid fever is a life-threatening systemic disease. Furthermore, in contrast to most Salmonellae, which can infect a broad range of hosts, S. Typhi is a strict human pathogen. The unique features of S. Typhi pathogenesis and its stringent host specificity have been a long-standing puzzle. The discovery of typhoid toxin not only has provided major insight into these questions but also has offered unique opportunities to develop novel therapeutic and prevention strategies to combat typhoid fever.
Typhoid toxin provides a window into typhoid fever and the biology of Salmonella Typhi
Galán, Jorge E.
2016-01-01
Salmonella Typhi is the cause of typhoid fever, a disease that has challenged humans throughout history and continues to be a major public health concern. Unlike infections with most other Salmonellae, which result in self-limiting gastroenteritis, typhoid fever is a life-threatening systemic disease. Furthermore, in contrast to most Salmonellae, which can infect a broad range of hosts, S. Typhi is a strict human pathogen. The unique features of S. Typhi pathogenesis and its stringent host specificity have been a long-standing puzzle. The discovery of typhoid toxin not only has provided major insight into these questions but also has offered unique opportunities to develop novel therapeutic and prevention strategies to combat typhoid fever. PMID:27222578
Tadesse, Getachew; Tessema, Tesfaye S; Beyene, Getenet; Aseffa, Abraham
2018-01-01
Wide-ranging evidence on the occurrence of fluoroquinolone (FQ) resistance genetic determinants in African Salmonella strains is not available. The main objectives of this study were to assess the heterogeneity, estimate pooled proportions and describe the preponderance of FQ-resistance determinants in typhoidal and non-typhoidal Salmonella (NTS) isolates of Africa. Genetic and phenotypic data on 6103 Salmonella isolates were considered. Meta- and frequency analyses were performed depending on the number of studies by category, number of isolates and risks of bias. A random effects model was used to assess heterogeneity and estimate pooled proportions. Relative and cumulative frequencies were calculated to describe the overall preponderance of FQ-resistance determinants in quinolone resistant isolates. The pooled proportion of gyrA mutants (Salmonella enterica serovar Typhi, Salmonella enterica serovar Typhimurium, and Salmonella enterica serovar Enteritidis) was estimated at 5.7% (95% Confidence interval (CI) = 2.6, 9.8; Tau squared (T2) = 0.1105), and was higher in S. Typhi than in S. Typhimurium (odds ratio (OR) = 3.3, 95%CI = 2, 5.7). The proportions of each of gyrB and parC mutants, and strains with Plasmid Mediated Quinolone Resistance genes (qnrA, qnrB and qnrS) were low (≤ 0.3%). Overall, 23 mutant serotypes were identified, and most strains had mutations at codons encoding Ser83 and Asp87 of gyrA (82%, 95%CI = 78, 86). Mutations at gyrA appear to account for ciprofloxacin non-susceptibility in most clinical Salmonella strains in Africa. The estimates could be harnessed to develop a mismatch-amplification mutation-assay for the detection of FQ-resistant strains in Africa.
Tessema, Tesfaye S.; Beyene, Getenet; Aseffa, Abraham
2018-01-01
Background Wide-ranging evidence on the occurrence of fluoroquinolone (FQ) resistance genetic determinants in African Salmonella strains is not available. The main objectives of this study were to assess the heterogeneity, estimate pooled proportions and describe the preponderance of FQ-resistance determinants in typhoidal and non-typhoidal Salmonella (NTS) isolates of Africa. Methods Genetic and phenotypic data on 6103 Salmonella isolates were considered. Meta- and frequency analyses were performed depending on the number of studies by category, number of isolates and risks of bias. A random effects model was used to assess heterogeneity and estimate pooled proportions. Relative and cumulative frequencies were calculated to describe the overall preponderance of FQ-resistance determinants in quinolone resistant isolates. Results The pooled proportion of gyrA mutants (Salmonella enterica serovar Typhi, Salmonella enterica serovar Typhimurium, and Salmonella enterica serovar Enteritidis) was estimated at 5.7% (95% Confidence interval (CI) = 2.6, 9.8; Tau squared (T2) = 0.1105), and was higher in S. Typhi than in S. Typhimurium (odds ratio (OR) = 3.3, 95%CI = 2, 5.7). The proportions of each of gyrB and parC mutants, and strains with Plasmid Mediated Quinolone Resistance genes (qnrA, qnrB and qnrS) were low (≤ 0.3%). Overall, 23 mutant serotypes were identified, and most strains had mutations at codons encoding Ser83 and Asp87 of gyrA (82%, 95%CI = 78, 86). Conclusions Mutations at gyrA appear to account for ciprofloxacin non-susceptibility in most clinical Salmonella strains in Africa. The estimates could be harnessed to develop a mismatch-amplification mutation-assay for the detection of FQ-resistant strains in Africa. PMID:29432492
The Role of Typhoid Toxin in Salmonella Typhi Virulence
Chong, Alexander; Lee, Sohyoung; Yang, Yi-An; Song, Jeongmin
2017-01-01
Unlike many of the nontyphoidal Salmonella serovars such as S. Typhimurium that cause restricted gastroenteritis, Salmonella Typhi is unique in that it causes life-threatening typhoid fever in humans. Despite the vast difference in disease outcomes that S. Typhi and S. Typhimurium cause in humans, there are few genomic regions that are unique to S. Typhi. Of these regions, the most notable is the small locus encoding typhoid toxin, an AB toxin that has several distinct characteristics that contribute to S. Typhi’s pathogenicity. As a result, typhoid toxin and its role in S. Typhi virulence have been studied in an effort to gain insight into potential treatment and prevention strategies. Given the rise of multidrug-resistant strains, research in this area has become increasingly important. This article discusses the current understanding of typhoid toxin and potential directions for future research endeavors in order to better understand the contribution of typhoid toxin to S. Typhi virulence. PMID:28656014
USDA-ARS?s Scientific Manuscript database
Salmonella enterica serotype Typhi (S. Typhi) is the cause of typhoid fever and a human-restricted pathogen. Currently available typhoid vaccines provide only 50-75% protection for 2-5 years, and available diagnostic assays to identify individuals with typhoid fever lack both sensitivity and specifi...
USDA-ARS?s Scientific Manuscript database
Salmonella enterica serotype Typhi (S. Typhi) is the cause of typhoid fever and a human-restricted pathogen. Currently available typhoid vaccines provide only 50-75% protection for 2-5 years, and available diagnostic assays to identify individuals with typhoid fever lack both sensitivity and specif...
Gold nanoparticles as efficient antimicrobial agents for Escherichia coli and Salmonella typhi
2013-01-01
Background It is imperative to eliminate bacteria present in water in order to avoid problems in healthy. Escherichia coli and Salmonella typhi bacteria are two common pollutants and they are developing resistance to some of the most used bactericide. Therefore new biocide materials are being tested. Thus, gold nanoparticles are proposed to inhibit the growth of these two microorganisms. Results Gold nanoparticles were supported onto clinoptilolite, mordenite and faujasite zeolites. Content of gold in materials varied between 2.3 and 2.8 wt%. The size, dispersion and roughness of gold nanoparticles were highly dependent of the zeolite support. The faujasite support was the support where the 5 nm nanoparticles were highly dispersed. The efficiency of gold-zeolites as bactericides of Escherichia coli and Salmonella typhi was determined by the zeolite support. Conclusions Gold nanoparticles dispersed on zeolites eliminate Escherichia coli and Salmonella typhi at short times. The biocidal properties of gold nanoparticles are influenced by the type of support which, indeed, drives key parameters as the size and roughness of nanoparticles. The more actives materials were pointed out Au-faujasite. These materials contained particles sized 5 nm at surface and eliminate 90–95% of Escherichia coli and Salmonella typhi colonies. PMID:23331621
González, Juan F; Alberts, Halley; Lee, Joel; Doolittle, Lauren; Gunn, John S
2018-01-09
Typhoid fever is caused by the human-restricted pathogen Salmonella enterica sv. Typhi. Approximately 5% of people that resolve the disease become chronic carriers, with the gallbladder as the main reservoir of the bacteria. Of these, about 90% present with gallstones, on which Salmonella form biofilms. Because S. Typhi is a human-restricted pathogen, these carriers are the main source of dissemination of the disease; unfortunately, antibiotic treatment has shown to be an ineffective therapy. This is believed to be caused by the inherent antibiotic resistance conferred by Salmonella biofilms growing on gallstones. The gallstone mouse model with S. Typhimurium has proven to be an excellent surrogate for S. Typhi chronic infection. In this study, we test the hypothesis that the biofilm state confers Salmonella with the increased resistance to antibiotics observed in cases of chronic carriage. We found that, in the biofilm state, Salmonella is significantly more resistant to ciprofloxacin, a common antibiotic used for the treatment of Salmonella, both in vitro (p < 0.001 for both S. Typhi and S. Typhimurium with respect to planktonic cells) and in vivo (p = 0.0035 with respect to control mice).
Fan, Fenxia; Yan, Meiying; Du, Pengcheng; Chen, Chen; Kan, Biao
2015-09-01
Typhoid fever caused by Salmonella enterica serovar Typhi remains a significant public health problem in developing countries. Although the main method for diagnosing typhoid fever is blood culture, the test is time consuming and not always able to detect infections. Thus, it is very difficult to distinguish typhoid from other infections in patients with nonspecific symptoms. A simple and sensitive laboratory detection method remains necessary. The purpose of this study is to establish and evaluate a rapid and sensitive reverse transcription-based loop-mediated isothermal amplification (RT-LAMP) method to detect Salmonella Typhi infection. In this study, a new specific gene marker, STY1607, was selected to develop a STY1607-RT-LAMP assay; this is the first report of specific RT-LAMP detection assay for typhoid. Human-simulated and clinical blood/stool samples were used to evaluate the performance of STY1607-RT-LAMP for RNA detection; this method was compared with STY1607-LAMP, reverse transcription real-time polymerase chain reaction (rRT-PCR), and bacterial culture methods for Salmonella Typhi detection. Using mRNA as the template, STY1607-RT-LAMP exhibited 50-fold greater sensitivity than STY1607-LAMP for DNA detection. The STY1607-RT-LAMP detection limit is 3 colony-forming units (CFU)/mL for both the pure Salmonella Typhi samples and Salmonella Typhi-simulated blood samples and was 30 CFU/g for the simulated stool samples, all of which were 10-fold more sensitive than the rRT-PCR method. RT-LAMP exhibited improved Salmonella Typhi detection sensitivity compared to culture methods and to rRT-PCR of clinical blood and stool specimens from suspected typhoid fever patients. Because it can be performed without sophisticated equipment or skilled personnel, RT-LAMP is a valuable tool for clinical laboratories in developing countries. This method can be applied in the clinical diagnosis and care of typhoid fever patients as well as for a quick public health response.
Salmonella Typhi genomics: envisaging the future of typhoid eradication.
Yap, Kien-Pong; Thong, Kwai Lin
2017-08-01
Next-generation whole-genome sequencing has revolutionised the study of infectious diseases in recent years. The availability of genome sequences and its understanding have transformed the field of molecular microbiology, epidemiology, infection treatments and vaccine developments. We review the key findings of the publicly accessible genomes of Salmonella enterica serovar Typhi since the first complete genome to the most recent release of thousands of Salmonella Typhi genomes, which remarkably shape the genomic research of S. Typhi and other pathogens. Important new insights acquired from the genome sequencing of S. Typhi, pertaining to genomic variations, evolution, population structure, antibiotic resistance, virulence, pathogenesis, disease surveillance/investigation and disease control are discussed. As the numbers of sequenced genomes are increasing at an unprecedented rate, fine variations in the gene pool of S. Typhi are captured in high resolution, allowing deeper understanding of the pathogen's evolutionary trends and its pathogenesis, paving the way to bringing us closer to eradication of typhoid through effective vaccine/treatment development. © 2017 John Wiley & Sons Ltd.
Baddam, Ramani; Kumar, Narender; Thong, Kwai-Lin; Ngoi, Soo-Tein; Teh, Cindy Shuan Ju; Yap, Kien-Pong; Chai, Lay-Ching; Avasthi, Tiruvayipati Suma
2012-01-01
Among enteric pathogens, Salmonella enterica serovar Typhi is responsible for the largest number of food-borne outbreaks and fatalities. The ability of the pathogen to cause systemic infection for extended durations leads to a high cost of disease control. Chronic carriers play important roles in the evolution of Salmonella Typhi; therefore, identification and in-depth characterization of isolates from clinical cases and carriers, especially those from zones of endemicity where the pathogen has not been extensively studied, are necessary. Here, we describe the genome sequence of the highly virulent Salmonella Typhi strain BL196/05 isolated during the outbreak of typhoid in Kelantan, Malaysia, in 2005. The whole-genome sequence and comparative genomics of this strain should enable us to understand the virulence mechanisms and evolutionary dynamics of this pathogen in Malaysia and elsewhere. PMID:22689247
USDA-ARS?s Scientific Manuscript database
Non-Typhi Salmonella cause over 1.7 million cases of gastroenteritis in North America each year, and food-animal products are commonly implicated in human infections. For invasive infections, antimicrobial therapy is implicated. In North America, the antimicrobial susceptibility of Salmonella is m...
A mouse model of Salmonella typhi infection
Mathur, Ramkumar; Oh, Hyunju; Zhang, Dekai; Park, Sung-Gyoo; Seo, Jin; Koblansky, Alicia; Hayden, Matthew S.; Ghosh, Sankar
2012-01-01
Salmonella spp. are gram-negative flagellated bacteria that can cause food and water-borne gastroenteritis and typhoid fever in humans. We now report that flagellin from Salmonella spp. is recognized in mouse intestine by Toll-like receptor 11 (TLR11). Absence of TLR11 renders mice more susceptible to infection by S. typhimurium, with increased dissemination of the bacteria and enhanced lethality. Unlike S. typhimurium, S. typhi, a human obligatory pathogen that causes typhoid fever, is normally unable to infect mice. TLR11 is expressed in mice but not in humans, and remarkably, we find that tlr11−/− mice are efficiently infected with orally-administered S. typhi. We also find that tlr11−/− mice can be immunized against S. typhi. Therefore, tlr11−/− mice represent the first small animal model for the study of the immune response to S. typhi, and for the development of vaccines against this important human pathogen. PMID:23101627
Laboratory-based Salmonella surveillance in Fiji, 2004-2005.
Dunn, John; Pryor, Jan; Saketa, Salanieta; Delai, Wasale; Buadromo, Eka; Kishore, Kamal; Naidu, Shakila; Greene, Sharon; Varma, Jay; Chiller, Tom
2005-09-01
Although foodborne diseases are an important public health problem worldwide, the burden of foodborne illness is not well described in most Pacific Island Countries and Territories. Laboratory-based surveillance programs can detect trends and outbreaks, estimate burden of illness, and allow subtyping of enteric pathogens (e.g. Salmonella serotyping), which is critical for linking illness to food vehicles and animal reservoirs. To enhance public health capacity in Fiji for foodborne disease surveillance, we developed the Salmonella Surveillance Project (SSP), a collaboration to pilot laboratory-based surveillance for Salmonella. A network of national and international partners was formed including epidemiologists, microbiologists, and environmental health personnel. Ministry of Health personnel were trained in foodborne disease surveillance and outbreak investigation. Three clinical microbiology laboratories from different parts of the country functioned as sentinel sites, reporting all laboratory-confirmed Salmonella infections using a standardized case report form. Non-Typhi Salmonella isolates were collected for serotyping. In 2004-2005, 86 non-Typhi Salmonella and 275 S. Typhi laboratory-confirmed infections were reported. Salmonella enterica serotype I 3,10: r:- and Salmonella enterica serotype Weltevreden were the most commonly isolated non-Typhi serotypes. In Fiji, the SSP utilized international partnerships to facilitate training, and to enhance laboratory capacity and surveillance for salmonellosis. Incorporating laboratory-based foodborne disease reporting into national disease surveillance will enable public health officials to describe the burden of foodborne illness, identify outbreaks, conduct analytic epidemiology studies, and improve food safety.
Ancient typhoid epidemic reveals possible ancestral strain of Salmonella enterica serovar Typhi.
Papagrigorakis, Manolis J; Synodinos, Philippos N; Yapijakis, Christos
2007-01-01
In contrast to other serotypes of Salmonella enterica, S. Typhi is exclusively adapted to human hosts. Recently, S. Typhi was identified in ancient skeletal material, thereby incriminating typhoid fever for the Plague of Athens. Since, according to Thucydides' report, animals were also affected by the disease, a working hypothesis is constituted that the causative agent of the Plague might be the anticipated original strain of S. Typhi, purportedly capable of infecting animals as well as humans. Possible future sequencing of the discovered ancient strain of S. Typhi may help towards identifying its genomic differences responsible for its modern specification to humans.
Vaccines against invasive Salmonella disease
MacLennan, Calman A; Martin, Laura B; Micoli, Francesca
2014-01-01
Though primarily enteric pathogens, Salmonellae are responsible for a considerable yet under-appreciated global burden of invasive disease. In South and South-East Asia, this manifests as enteric fever caused by serovars Typhi and Paratyphi A. In sub-Saharan Africa, a similar disease burden results from invasive nontyphoidal Salmonellae, principally serovars Typhimurium and Enteritidis. The existing Ty21a live-attenuated and Vi capsular polysaccharide vaccines target S. Typhi and are not effective in young children where the burden of invasive Salmonella disease is highest. After years of lack of investment in new Salmonella vaccines, recent times have seen increased interest in the area led by emerging-market manufacturers, global health vaccine institutes and academic partners. New glycoconjugate vaccines against S. Typhi are becoming available with similar vaccines against other invasive serovars in development. With other new vaccines under investigation, including live-attenuated, protein-based and GMMA vaccines, now is an exciting time for the Salmonella vaccine field. PMID:24804797
Standardisation of polymerase chain reaction for the detection of Salmonella typhi in typhoid fever.
Chaudhry, R; Laxmi, B V; Nisar, N; Ray, K; Kumar, D
1997-01-01
To improve the diagnosis of Salmonella typhi infection, a polymerase chain reaction (PCR) assay was developed for the amplification of the dH flagellin gene of S typhi. Primers were designed from dH flagellin gene sequence which will give an amplification product of 486 base pairs. In tests to study the specificity of the assay, no amplification was seen in non-salmonella strains or salmonella strains with flagellar gene other than "d". Sensitivity tests determined that 28 pg of S typhi target DNA or 3 x 10(2) target bacteria could be detected by the PCR assay. Subsequently, the PCR technique was used for detection of S typhi in blood or clot cultures from 84 patients clinically suspected of having typhoid fever, and from 20 healthy control subjects. Twenty five of 84 samples from clinically suspected cases were positive by PCR; four of which were culture negative. No amplification was seen in samples from patients who were culture positive for organisms other than S typhi or from controls. The time taken for each sample for PCR analysis was less than 48 hours compared with three to five days for blood or clot culture. PCR appeared to be a promising diagnostic test for typhoid fever. Images PMID:9215131
Espinoza, Rodrigo A; Silva-Valenzuela, Cecilia A; Amaya, Fernando A; Urrutia, Ítalo M; Contreras, Inés; Santiviago, Carlos A
2017-02-15
Salmonella pathogenicity island (SPI)-13 is conserved in many serovars of S. enterica, including S. Enteritidis, S. Typhimurium and S. Gallinarum. However, it is absent in typhoid serovars such as S. Typhi and Paratyphi A, which carry SPI-8 at the same genomic location. Because the interaction with macrophages is a critical step in Salmonella pathogenicity, in this study we investigated the role played by SPI-13 and SPI-8 in the interaction of S. Enteritidis and S. Typhi with cultured murine (RAW264.7) and human (THP-1) macrophages. Our results showed that SPI-13 was required for internalization of S. Enteritidis in murine but not human macrophages. On the other hand, SPI-8 was not required for the interaction of S. Typhi with human or murine macrophages. Of note, the presence of an intact copy of SPI-13 in a S. Typhi mutant carrying a deletion of SPI-8 did not improve its ability to be internalized by, or survive in human or murine macrophages. Altogether, our results point out to different roles for SPI-13 and SPI-8 during Salmonella infection. While SPI-13 contributes to the interaction of S. Enteritidis with murine macrophages, SPI-8 is not required in the interaction of S. Typhi with murine or human macrophages. We hypothesized that typhoid serovars have lost SPI-13 and maintained SPI-8 to improve their fitness during another phase of human infection.
Levy, Haim; Diallo, Souleymane; Tennant, Sharon M.; Livio, Sofie; Sow, Samba O.; Tapia, Milagritos; Fields, Patricia I.; Mikoleit, Matthew; Tamboura, Boubou; Kotloff, Karen L.; Lagos, Rosanna; Nataro, James P.; Galen, James E.; Levine, Myron M.
2008-01-01
PCR methodology was developed to identify Salmonella enterica serovars Typhi, Paratyphi A, and Paratyphi B. One multiplex PCR identifies serogroup D, A, and B and Vi-positive strains; another confirms flagellar antigen “d,” “a,” or “b.” Blinded testing of 664 Malian and Chilean Salmonella blood isolates demonstrated 100% sensitivity and specificity. PMID:18367574
Sjölund-Karlsson, Maria; Joyce, Kevin; Blickenstaff, Karen; Ball, Takiyah; Haro, Jovita; Medalla, Felicita M.; Fedorka-Cray, Paula; Zhao, Shaohua; Crump, John A.; Whichard, Jean M.
2011-01-01
Due to emerging resistance to traditional antimicrobial agents, such as ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol, azithromycin is increasingly used for the treatment of invasive Salmonella infections. In the present study, 696 isolates of non-Typhi Salmonella collected from humans, food animals, and retail meats in the United States were investigated for antimicrobial susceptibility to azithromycin. Seventy-two Salmonella enterica serotype Typhi isolates from humans were also tested. For each isolate, MICs of azithromycin and 15 other antimicrobial agents were determined by broth microdilution. Among the non-Typhi Salmonella isolates, azithromycin MICs among human isolates ranged from 1 to 32 μg/ml, whereas the MICs among the animal and retail meat isolates ranged from 2 to 16 μg/ml and 4 to 16 μg/ml, respectively. Among Salmonella serotype Typhi isolates, the azithromycin MICs ranged from 4 to 16 μg/ml. The highest MIC observed in the present study was 32 μg/ml, and it was detected in three human isolates belonging to serotypes Kentucky, Montevideo, and Paratyphi A. Based on our findings, we propose an epidemiological cutoff value (ECOFF) for wild-type Salmonella of ≤16 μg/ml of azithromycin. The susceptibility data provided could be used in combination with clinical outcome data to determine tentative clinical breakpoints for azithromycin and Salmonella enterica. PMID:21690279
Walawalkar, Yogesh D; Vaidya, Yatindra; Nayak, Vijayashree
2016-11-01
Salmonella Typhi can chronically persist within the gallbladder of patients suffering from gallbladder diseases. This study, intended to improve our understanding of bacterial mechanisms underlying bile adaptation, revealed that bile, which is a bactericidal agent, led to the generation of reactive oxygen species in S Typhi. Salmonella Typhi in response showed a significant increase in the production of anti-oxidative enzymes, namely superoxide dismutase and catalase. The work reports that the quorum-sensing (QS) system of S Typhi regulates the level of these enzymes during oxidative stress. In support of these observations, the quorum-sensing mutant of S Typhi was found to be sensitive to bile with significantly lower levels of anti-oxidant enzymes compared to other clinical isolates. Furthermore the addition of exogenous cell-free extracts (CFEs) of S Typhi containing the quorum-sensing signalling molecule significantly increased the levels of these enzymes within the mutant. Interestingly the CFE addition did not significantly restore the biofilm-forming ability of the mutant strain when compared with the wild-type. In the presence of ciprofloxacin and ampicillin, S Typhi formed persister cells which increased >3-fold in the presence of bile. Thus the QS-system of S Typhi aids in oxidative stress management, and enhanced persister cell populations could assist chronic bacterial persistence within the gallbladder. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Smith, Anthony Marius; Smouse, Shannon Lucrecia; Tau, Nomsa Pauline; Bamford, Colleen; Moodley, Vineshree Mischka; Jacobs, Charlene; McCarthy, Kerrigan Mary; Lourens, Adré; Keddy, Karen Helena
2017-09-29
Workers in clinical microbiology laboratories are exposed to a variety of pathogenic microorganisms. Salmonella species is among the most commonly reported bacterial causes of laboratory-acquired infections. We report on three cases of laboratory-acquired Salmonella enterica serotype Typhi (Salmonella Typhi) infection which occurred over the period 2012 to 2016 in South Africa. Laboratory investigation included phenotypic and genotypic characterization of isolates. Phenotypic analysis included standard microbiological identification techniques, serotyping and antimicrobial susceptibility testing. Genotypic analysis included the molecular subtyping methodologies of pulsed-field gel electrophoresis analysis, multilocus sequence typing and whole-genome sequencing (WGS); with WGS data analysis including phylogenetic analysis based upon comparison of single nucleotide polymorphism profiles of isolates. All cases of laboratory-acquired infection were most likely the result of lapses in good laboratory practice and laboratory safety. The following critical issues were highlighted. There was misdiagnosis and misreporting of Salmonella Typhi as nontyphoidal Salmonella by a diagnostic laboratory, with associated public health implications. We highlight issues concerning the importance of accurate fluoroquinolone susceptibility testing and interpretation of results according to updated guidelines. We describe potential shortcomings of a single disk susceptibility screening test for fluoroquinolone susceptibility and suggest that confirmatory minimum inhibitory concentration testing should always be performed in cases of invasive Salmonella infections. These antimicrobial susceptibility testing issues resulted in inappropriate ciprofloxacin therapy which may have been responsible for failure in clearance of pathogen from patients. Salmonella Typhi capsular polysaccharide vaccine was not protective in one case, possibly secondarily to a faulty vaccine. Molecular subtyping of isolates proved effective to investigate the genetic relatedness of isolates. Molecular subtyping data interpreted together with epidemiological data allowed us to pinpoint the most likely sources for our cases of laboratory-acquired infection.
Salmonella Typhi sense host neuroendocrine stress hormones and release the toxin haemolysin E
Karavolos, Michail H; Bulmer, David M; Spencer, Hannah; Rampioni, Giordano; Schmalen, Ira; Baker, Stephen; Pickard, Derek; Gray, Joe; Fookes, Maria; Winzer, Klaus; Ivens, Alasdair; Dougan, Gordon; Williams, Paul; Khan, C M Anjam
2011-01-01
Salmonella enterica serovar Typhi (S. typhi) causes typhoid fever. We show that exposure of S. typhi to neuroendocrine stress hormones results in haemolysis, which is associated with the release of haemolysin E in membrane vesicles. This effect is attributed to increased expression of the small RNA micA and RNA chaperone Hfq, with concomitant downregulation of outer membrane protein A. Deletion of micA or the two-component signal-transduction system, CpxAR, abolishes the phenotype. The hormone response is inhibited by the β-blocker propranolol. We provide mechanistic insights into the basis of neuroendocrine hormone-mediated haemolysis by S. typhi, increasing our understanding of inter-kingdom signalling. PMID:21331094
Goay, Yuan Xin; Chin, Kai Ling; Tan, Clarissa Ling Ling; Yeoh, Chiann Ying; Ja'afar, Ja'afar Nuhu; Zaidah, Abdul Rahman; Chinni, Suresh Venkata; Phua, Kia Kien
2016-01-01
Salmonella Typhi ( S . Typhi) causes typhoid fever which is a disease characterised by high mortality and morbidity worldwide. In order to curtail the transmission of this highly infectious disease, identification of new markers that can detect the pathogen is needed for development of sensitive and specific diagnostic tests. In this study, genomic comparison of S . Typhi with other enteric pathogens was performed, and 6 S . Typhi genes, that is, STY0201, STY0307, STY0322, STY0326, STY2020, and STY2021, were found to be specific in silico . Six PCR assays each targeting a unique gene were developed to test the specificity of these genes in vitro . The diagnostic sensitivities and specificities of each assay were determined using 39 S . Typhi, 62 non-Typhi Salmonella , and 10 non- Salmonella clinical isolates. The results showed that 5 of these genes, that is, STY0307, STY0322, STY0326, STY2020, and STY2021, demonstrated 100% sensitivity (39/39) and 100% specificity (0/72). The detection limit of the 5 PCR assays was 32 pg for STY0322, 6.4 pg for STY0326, STY2020, and STY2021, and 1.28 pg for STY0307. In conclusion, 5 PCR assays using STY0307, STY0322, STY0326, STY2020, and STY2021 were developed and found to be highly specific at single-gene target resolution for diagnosis of typhoid fever.
de Alwis, Ruklanthi; Watson, Conall; Nikolay, Birgit; Lowry, John H; Thieu, Nga Tran Vu; Van, Tan Trinh; Ngoc, Dung Tran Thi; Rawalai, Kitione; Taufa, Mere; Coriakula, Jerimaia; Lau, Colleen L; Nilles, Eric J; Edmunds, W John; Kama, Mike; Baker, Stephen; Cano, Jorge
2018-02-01
Fiji recently experienced a sharp increase in reported typhoid fever cases. To investigate geographic distribution and environmental risk factors associated with Salmonella enterica serovar Typhi infection, we conducted a cross-sectional cluster survey with associated serologic testing for Vi capsular antigen-specific antibodies (a marker for exposure to Salmonella Typhi in Fiji in 2013. Hotspots with high seroprevalence of Vi-specific antibodies were identified in northeastern mainland Fiji. Risk for Vi seropositivity increased with increased annual rainfall (odds ratio [OR] 1.26/quintile increase, 95% CI 1.12-1.42), and decreased with increased distance from major rivers and creeks (OR 0.89/km increase, 95% CI 0.80-0.99) and distance to modeled flood-risk areas (OR 0.80/quintile increase, 95% CI 0.69-0.92) after being adjusted for age, typhoid fever vaccination, and home toilet type. Risk for exposure to Salmonella Typhi and its spatial distribution in Fiji are driven by environmental factors. Our findings can directly affect typhoid fever control efforts in Fiji.
[Severe cases of Salmonella non typhi infections on sickle cell patients in Réunion Island].
Vandroux, D; Jabot, J; Angue, M; Belcour, D; Galliot, R; Allyn, J; Gaüzère, B-A
2014-12-01
We report two cases of septic shocks due to Salmonella non typhi infection on sickle cell patients admitted to an intensive care unit. Such patients should enforce food hygiene measures, especially under tropical settings, to avoid potentially deadly severe infections.
[Breast abscess with Salmonella typhi and review of the literature].
Delori, M; Abgueguen, P; Chennebault, J-M; Pichard, E; Fanello, S
2007-11-01
We report the case of a 54-year-old woman who presented with breast abscess, which appeared through a common alimentary toxi-infection with Salmonella Typhi, infection, which implied twelve patients having attended the same restaurant. With around hundred native cases a year in France, typhoid fever is not a very frequent toxi-infection. Among the known extra-intestinal manifestations of Salmonella infections, the breast abscess remains rare and the literature revealed less than ten published cases, including some revealed the disease. In our observation, the imputability of S. Typhi was retained based on the chronology of the clinical signs, specific treatments, and the successful outcome under antibiotherapy, in spite of the negativity of the breast abscess bacteriological samples. We also analyze rare cases of breast abscess due to S. Typhi found in the literature.
Shakespeare, William A.; Davie, Daniel; Tonnerre, Claude; Rubin, Michael A.; Strong, Michael; Petti, Cathy A.
2005-01-01
We report an unusual case of Salmonella enterica serotype Typhi presenting as a primary psoas abscess. The isolate tested susceptible to ciprofloxacin but resistant to nalidixic acid in vitro, a pattern associated with fluoroquinolone therapeutic failures. We review the literature for serovar Typhi psoas abscess in the absence of bacteremia and discuss the importance of identifying isolates with reduced susceptibility to fluoroquinolones. PMID:15695728
Antagonistic Activity of Lactobacillus Isolates against Salmonella typhi In Vitro
Abdel-Daim, Amira; Hassouna, Nadia; Hafez, Mohamed; Ashor, Mohamed Seif Aldeen; Aboulwafa, Mohammad M.
2013-01-01
Background. Enteric fever is a global health problem, and rapidly developing resistance to various drugs makes the situation more alarming. The potential use of Lactobacillus to control typhoid fever represents a promising approach, as it may exert protective actions through various mechanisms. Methods. In this study, the probiotic potential and antagonistic activities of 32 Lactobacillus isolates against Salmonella typhi were evaluated. The antimicrobial activity of cell free supernatants of Lactobacillus isolates, interference of Lactobacillus isolates with the Salmonella adherence and invasion, cytoprotective effect of Lactobacillus isolates, and possibility of concurrent use of tested Lactobacillus isolates and antibiotics were evaluated by testing their susceptibilities to antimicrobial agents, and their oxygen tolerance was also examined. Results. The results revealed that twelve Lactobacillus isolates could protect against Salmonella typhi infection through interference with both its growth and its virulence properties, such as adherence, invasion, and cytotoxicity. These Lactobacillus isolates exhibited MIC values for ciprofloxacin higher than those of Salmonella typhi and oxygen tolerance and were identified as Lactobacillus plantarum. Conclusion. The tested Lactobacillus plantarum isolates can be introduced as potential novel candidates that have to be subjected for in vivo and application studies for treatment and control of typhoid fever. PMID:24191248
Connerton, Phillippa; Wain, John; Hien, Tran T.; Ali, Tahir; Parry, Christopher; Chinh, Nguyen T.; Vinh, Ha; Ho, Vo A.; Diep, To S.; Day, Nicholas P. J.; White, Nicholas J.; Dougan, Gordon; Farrar, Jeremy J.
2000-01-01
Multidrug-resistant Salmonella enterica serotype Typhi isolates from four outbreaks of typhoid fever in southern Vietnam between 1993 and 1997 were compared. Pulsed-field gel electrophoresis, bacteriophage and plasmid typing, and antibiotic susceptibilities showed that independent outbreaks of multidrug-resistant typhoid fever in southern Vietnam are caused by single bacterial strains. However, different outbreaks do not derive from the clonal expansion of a single multidrug-resistant serotype Typhi strain. PMID:10655411
Le, Thi Anh Hong; Lejay-Collin, Monique; Grimont, Patrick A. D.; Hoang, Thuy Long; Nguyen, Thi Vinh; Grimont, Francine; Scavizzi, Maurice R.
2004-01-01
Salmonella enterica serovar Typhi strains resistant to ampicillin, chloramphenicol, tetracyclines, streptomycin, and cotrimoxazole, isolated from sporadic cases and minor outbreaks in Vietnam between 1995 and 2002, were typed and compared. Plasmid fingerprinting, Vi bacteriophage typing, XbaI pulsed-field gel electrophoresis, and PstI ribotyping showed that endemic, epidemic multidrug-resistant typhoid fever was due, for at least 74.1% of the isolates, to one or two clones of serovar Typhi harboring a single resistance plasmid. PstI ribotyping was used as a basic technique to ensure that a serovar Typhi expansion was clonal. PMID:15243066
Prabagaran, Solai Ramatchandirane; Kalaiselvi, Vellingiri; Chandramouleeswaran, Naganathan; Deepthi, Krishnan Nair Geetha; Brahmadathan, Kootallur Narayanan; Mani, Mariappa
2017-08-01
A nested multiplex polymerase chain reaction (PCR) based diagnosis was developed for the detection of virulent Salmonella typhi in the blood specimens from patients suspected for typhoid fever. After the Widal test, two pairs of primers were used for the detection of flagellin gene (fliC) of S. typhi. Among them, those positive for fliC alone were subjected to identification of genes in Via B operon of Salmonella Pathogenesity Island (SPI-7) where four primer pairs were used to detect tviA and tviB genes. Among 250 blood samples tested, 115 were positive by fliC PCR; 22 of these were negative for tviA and tviB. Hence, the method described here can be used to diagnose the incidence of Vi-negative serovar typhi especially in endemic regions where the Vi vaccine is administered. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The licensed oral, live-attenuated bacterial vaccine for typhoid fever, Salmonella Typhi strain Ty21a, has also been utilized as a vaccine delivery platform for expression of diverse foreign antigens that stimulate protection against shigellosis, anthrax, plague, or human papilloma virus. However, T...
Näsström, Elin; Vu Thieu, Nga Tran; Dongol, Sabina; Karkey, Abhilasha; Voong Vinh, Phat; Ha Thanh, Tuyen; Johansson, Anders; Arjyal, Amit; Thwaites, Guy; Dolecek, Christiane; Basnyat, Buddha; Baker, Stephen; Antti, Henrik
2014-01-01
The host–pathogen interactions induced by Salmonella Typhi and Salmonella Paratyphi A during enteric fever are poorly understood. This knowledge gap, and the human restricted nature of these bacteria, limit our understanding of the disease and impede the development of new diagnostic approaches. To investigate metabolite signals associated with enteric fever we performed two dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC/TOFMS) on plasma from patients with S. Typhi and S. Paratyphi A infections and asymptomatic controls, identifying 695 individual metabolite peaks. Applying supervised pattern recognition, we found highly significant and reproducible metabolite profiles separating S. Typhi cases, S. Paratyphi A cases, and controls, calculating that a combination of six metabolites could accurately define the etiological agent. For the first time we show that reproducible and serovar specific systemic biomarkers can be detected during enteric fever. Our work defines several biologically plausible metabolites that can be used to detect enteric fever, and unlocks the potential of this method in diagnosing other systemic bacterial infections. DOI: http://dx.doi.org/10.7554/eLife.03100.001 PMID:24902583
Watson, Conall; Nikolay, Birgit; Lowry, John H.; Thieu, Nga Tran Vu; Van, Tan Trinh; Ngoc, Dung Tran Thi; Rawalai, Kitione; Taufa, Mere; Coriakula, Jerimaia; Lau, Colleen L.; Nilles, Eric J.; Edmunds, W. John; Kama, Mike; Baker, Stephen; Cano, Jorge
2018-01-01
Fiji recently experienced a sharp increase in reported typhoid fever cases. To investigate geographic distribution and environmental risk factors associated with Salmonella enterica serovar Typhi infection, we conducted a cross-sectional cluster survey with associated serologic testing for Vi capsular antigen–specific antibodies (a marker for exposure to Salmonella Typhi in Fiji in 2013. Hotspots with high seroprevalence of Vi-specific antibodies were identified in northeastern mainland Fiji. Risk for Vi seropositivity increased with increased annual rainfall (odds ratio [OR] 1.26/quintile increase, 95% CI 1.12–1.42), and decreased with increased distance from major rivers and creeks (OR 0.89/km increase, 95% CI 0.80–0.99) and distance to modeled flood-risk areas (OR 0.80/quintile increase, 95% CI 0.69–0.92) after being adjusted for age, typhoid fever vaccination, and home toilet type. Risk for exposure to Salmonella Typhi and its spatial distribution in Fiji are driven by environmental factors. Our findings can directly affect typhoid fever control efforts in Fiji. PMID:29350150
Elshayeb, Ayman A; Ahmed, Abdelazim A; El Siddig, Marmar A; El Hussien, Adil A
2017-11-14
Enteric fever has persistence of great impact in Sudanese public health especially during rainy season when the causative agent Salmonella enterica serovar Typhi possesses pan endemic patterns in most regions of Sudan - Khartoum. The present study aims to assess the recent state of antibiotics susceptibility of Salmonella Typhi with special concern to multidrug resistance strains and predict the emergence of new resistant patterns and outbreaks. Salmonella Typhi strains were isolated and identified according to the guidelines of the International Standardization Organization and the World Health Organization. The antibiotics susceptibilities were tested using the recommendations of the Clinical Laboratories Standards Institute. Predictions of emerging resistant bacteria patterns and outbreaks in Sudan were done using logistic regression, forecasting linear equations and in silico simulations models. A total of 124 antibiotics resistant Salmonella Typhi strains categorized in 12 average groups were isolated, different patterns of resistance statistically calculated by (y = ax - b). Minimum bactericidal concentration's predication of resistance was given the exponential trend (y = n e x ) and the predictive coefficient R 2 > 0 < 1 are approximately alike. It was assumed that resistant bacteria occurred with a constant rate of antibiotic doses during the whole experimental period. Thus, the number of sensitive bacteria decreases at the same rate as resistant occur following term to the modified predictive model which solved computationally. This study assesses the prediction of multi-drug resistance among S. Typhi isolates by applying low cost materials and simple statistical methods suitable for the most frequently used antibiotics as typhoid empirical therapy. Therefore, bacterial surveillance systems should be implemented to present data on the aetiology and current antimicrobial drug resistance patterns of community-acquired agents causing outbreaks.
Mirza, S H; Beeching, N J; Hart, C A
1995-10-01
Between January and July 1994, a prospective study of bacteraemia in 692 patients with fever without localizing signs was undertaken at the Quetta Military Hospital in Baluchistan, Pakistan. Salmonella spp. were isolated from 76 (11%) of the patients; 62 had S. typhi and 14 had S. paratyphi A. Significantly more isolations of S. typhi were made in the hot dry months of May and June than in the earlier months. Although multi-drug resistance (to chloramphenicol ampicillin and cotrimoxazole) was detected in 43 (69%) of the S. typhi isolates, it was not found in any of the S. paratyphi A. Defervescence of patients with chloramphenicol-sensitive S. typhi took 7-10 days of chloramphenicol therapy. In contrast, most (91%) of the patients infected with multi-drug resistant S. typhi who were treated with fluoroquinolones achieved defervescence in 1-3 days; the remainder took 4-6 days.
Baker, Stephen; Duy, Pham Thanh; Nga, Tran Vu Thieu; Dung, Tran Thi Ngoc; Phat, Voong Vinh; Chau, Tran Thuy; Turner, A Keith; Farrar, Jeremy; Boni, Maciej F
2013-01-01
Fluoroquinolones (FQ) are the recommended antimicrobial treatment for typhoid, a severe systemic infection caused by the bacterium Salmonella enterica serovar Typhi. FQ-resistance mutations in S. Typhi have become common, hindering treatment and control efforts. Using in vitro competition experiments, we assayed the fitness of eleven isogenic S. Typhi strains with resistance mutations in the FQ target genes, gyrA and parC. In the absence of antimicrobial pressure, 6 out of 11 mutants carried a selective advantage over the antimicrobial-sensitive parent strain, indicating that FQ resistance in S. Typhi is not typically associated with fitness costs. Double-mutants exhibited higher than expected fitness as a result of synergistic epistasis, signifying that epistasis may be a critical factor in the evolution and molecular epidemiology of S. Typhi. Our findings have important implications for the management of drug-resistant S. Typhi, suggesting that FQ-resistant strains would be naturally maintained even if fluoroquinolone use were reduced. DOI: http://dx.doi.org/10.7554/eLife.01229.001 PMID:24327559
Wangdi, Tamding; Lee, Cheng-Yuk; Spees, Alanna M.; Yu, Chenzhou; Kingsbury, Dawn D.; Winter, Sebastian E.; Hastey, Christine J.; Wilson, R. Paul
2014-01-01
Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a disseminated infection, while the closely related pathogen S. enterica serovar Typhimurium (S. Typhimurium) is associated with a localized gastroenteritis in humans. Here we investigated whether both pathogens differ in the chemotactic response they induce in neutrophils using a single-cell experimental approach. Surprisingly, neutrophils extended chemotactic pseudopodia toward Escherichia coli and S. Typhimurium, but not toward S. Typhi. Bacterial-guided chemotaxis was dependent on the presence of complement component 5a (C5a) and C5a receptor (C5aR). Deletion of S. Typhi capsule biosynthesis genes markedly enhanced the chemotactic response of neutrophils in vitro. Furthermore, deletion of capsule biosynthesis genes heightened the association of S. Typhi with neutrophils in vivo through a C5aR-dependent mechanism. Collectively, these data suggest that expression of the virulence-associated (Vi) capsular polysaccharide of S. Typhi obstructs bacterial-guided neutrophil chemotaxis. PMID:25101794
Johnson, Rebecca; Ravenhall, Matt; Pickard, Derek; Dougan, Gordon; Byrne, Alexander
2017-01-01
ABSTRACT Salmonella enterica serovars Typhi and Typhimurium cause typhoid fever and gastroenteritis, respectively. A unique feature of typhoid infection is asymptomatic carriage within the gallbladder, which is linked with S. Typhi transmission. Despite this, S. Typhi responses to bile have been poorly studied. Transcriptome sequencing (RNA-Seq) of S. Typhi Ty2 and a clinical S. Typhi isolate belonging to the globally dominant H58 lineage (strain 129-0238), as well as S. Typhimurium 14028, revealed that 249, 389, and 453 genes, respectively, were differentially expressed in the presence of 3% bile compared to control cultures lacking bile. fad genes, the actP-acs operon, and putative sialic acid uptake and metabolism genes (t1787 to t1790) were upregulated in all strains following bile exposure, which may represent adaptation to the small intestine environment. Genes within the Salmonella pathogenicity island 1 (SPI-1), those encoding a type IIII secretion system (T3SS), and motility genes were significantly upregulated in both S. Typhi strains in bile but downregulated in S. Typhimurium. Western blots of the SPI-1 proteins SipC, SipD, SopB, and SopE validated the gene expression data. Consistent with this, bile significantly increased S. Typhi HeLa cell invasion, while S. Typhimurium invasion was significantly repressed. Protein stability assays demonstrated that in S. Typhi the half-life of HilD, the dominant regulator of SPI-1, is three times longer in the presence of bile; this increase in stability was independent of the acetyltransferase Pat. Overall, we found that S. Typhi exhibits a specific response to bile, especially with regard to virulence gene expression, which could impact pathogenesis and transmission. PMID:29229736
Theeya, Nagaraja; Ta, Atri; Das, Sayan; Mandal, Rahul S.; Chakrabarti, Oishee; Chakrabarti, Saikat; Ghosh, Amar N.
2014-01-01
Eukaryote-like serine/threonine kinases (eSTKs) constitute an important family of bacterial virulence factors. Genome analysis had predicted putative eSTKs in Salmonella enterica serovar Typhi, although their functional characterization and the elucidation of their role in pathogenesis are still awaited. We show here that the primary sequence and secondary structure of the t4519 locus of Salmonella Typhi Ty2 have all the signatures of eukaryotic superfamily kinases. t4519 encodes a ∼39-kDa protein (T4519), which shows serine/threonine kinase activities in vitro. Recombinant T4519 (rT4519) is autophosphorylated and phosphorylates the universal substrate myelin basic protein. Infection of macrophages results in decreased viability of the mutant (Ty2Δt4519) strain, which is reversed by gene complementation. Moreover, reactive oxygen species produced by the macrophages signal to the bacteria to induce T4519, which is translocated to the host cell cytoplasm. That T4519 may target a host substrate(s) is further supported by the activation of host cellular signaling pathways and the induction of cytokines/chemokines. Finally, the role of T4519 in the pathogenesis of Salmonella Typhi is underscored by the significantly decreased mortality of mice infected with the Ty2Δt4519 strain and the fact that the competitive index of this strain for causing systemic infection is 0.25% that of the wild-type strain. This study characterizes the first eSTK of Salmonella Typhi and demonstrates its role in promoting phagosomal survival of the bacteria within macrophages, which is a key determinant of pathogenesis. This, to the best of our knowledge, is the first study to describe the essential role of eSTKs in the in vivo pathogenesis of Salmonella spp. PMID:25404028
Ciprofloxacin-resistant Salmonella enterica Serotype Typhi, United States, 1999-2008.
Medalla, Felicita; Sjölund-Karlsson, Maria; Shin, Sanghyuk; Harvey, Emily; Joyce, Kevin; Theobald, Lisa; Nygren, Benjamin N; Pecic, Gary; Gay, Kathryn; Austin, Jana; Stuart, Andrew; Blanton, Elizabeth; Mintz, Eric D; Whichard, Jean M; Barzilay, Esra J
2011-06-01
We report 9 ciprofloxacin-resistant Salmonella enterica serotype Typhi isolates submitted to the US National Antimicrobial Resistance Monitoring System during 1999-2008. The first 2 had indistinguishable pulsed-field gel electrophoresis patterns and identical gyrA and parC mutations. Eight of the 9 patients had traveled to India within 30 days before illness onset.
A mouse model for the human pathogen Salmonella Typhi
Song, Jeongmin; Willinger, Tim; Rongvaux, Anthony; Eynon, Elizabeth E.; Stevens, Sean; Manz, Markus G.; Flavell, Richard A.; Galán, Jorge E.
2010-01-01
SUMMARY Salmonella enterica serovar Typhi (S. Typhi) is the cause of typhoid fever, a life-threatening disease of humans. The lack of an animal model due to S. typhi's strict human host specificity has been a significant obstacle in the understanding of its pathogenesis and the development of a safe and effective vaccine against typhoid fever. We report here the development of a mouse model for S. Typhi infection. We showed that immunodeficient Rag2 -/- γc -/- mice engrafted with human fetal liver hematopoietic stem and progenitor cells were able to support S. Typhi replication and persistent infection. A S. Typhi strain carrying a mutation in a gene required for its virulence in humans was not able to replicate in these humanized mice. In contrast, another mutant strain unable to produce the recently identified typhoid toxin, exhibited increased replication suggesting a potential role for this toxin in the establishment of persistent infection. Furthermore, infected animals mounted a human innate and adaptive immune response to S. Typhi resulting in the production of cytokines and pathogen-specific antibodies. These results therefore indicate that this animal model can be used to study S. Typhi pathogenesis and to evaluate potential vaccine candidates against typhoid fever. PMID:20951970
Liu, Yichun; Lee, May-Ann; Ooi, Eng-Eong; Mavis, Yeo; Tan, Ai-Ling; Quek, Hung-Hiang
2003-09-01
A multiplex PCR method incorporating primers flanking three variable-number tandem repeat (VNTR) loci (arbitrarily labeled TR1, TR2, and TR3) in the CT18 strain of Salmonella enterica serovar Typhi has been developed for molecular typing of S. enterica serovar Typhi clinical isolates from several Asian countries, including Singapore, Indonesia, India, Bangladesh, Malaysia, and Nepal. We have demonstrated that the multiplex PCR could be performed on crude cell lysates and that the VNTR banding profiles produced could be easily analyzed by visual inspection after conventional agarose gel electrophoresis. The assay was highly discriminative in identifying 49 distinct VNTR profiles among 59 individual isolates. A high level of VNTR profile heterogeneity was observed in isolates from within the same country and among countries. These VNTR profiles remained stable after the strains were passaged extensively under routine laboratory culture conditions. In contrast to the S. enterica serovar Typhi isolates, an absence of TR3 amplicons and a lack of length polymorphisms in TR1 and TR2 amplicons were observed for other S. enterica serovars, such as Salmonella enterica serovar Typhimurium, Salmonella enterica serovar Enteritidis, and Salmonella enterica serovar Paratyphi A, B, and C. DNA sequencing of the amplified VNTR regions substantiated these results, suggesting the high stability of the multiplex PCR assay. The multiplex-PCR-based VNTR profiling developed in this study provides a simple, rapid, reproducible, and high-resolution molecular tool for the epidemiological analysis of S. enterica serovar Typhi strains.
Farrell, John J; Doyle, Laura J; Addison, Rachel M; Reller, L Barth; Hall, Geraldine S; Procop, Gary W
2005-03-01
We describe broad-range salmonellae (ie, Salmonella) and Salmonella serotype Typhi-specific LightCycler (Roche Diagnostics, Indianapolis, IN) real-time polymerase chain reaction assays. We validated these with a battery of 280 bacteria, 108 of which were salmonellae representing 20 serotypes. In addition, 298 isolates from 170 clinical specimens that were suspected to possibly represent Salmonella were tested with the pan- Salmonella assay. Finally, the pan-Salmonella assay also was used to test DNA extracts from 101 archived, frozen stool specimens, 55 of which were culture-positive for salmonellae. Both assays were 100% sensitive and specific when cultured isolates of the battery were tested. The pan- Salmonella assay also characterized correctly all salmonellae on the primary isolation agar and was 96% sensitive (53/55) and 96% specific (49/51) when nucleic acid extracts from direct stool specimens were tested. These assays represent potential tools the clinical microbiologist could use to screen suspect isolates or stool specimens for Salmonella.
Nithya, Ravichantar; Ahmed, Siti Aminah; Hoe, Chee-Hock; Gopinath, Subash C B; Citartan, Marimuthu; Chinni, Suresh V; Lee, Li Pin; Rozhdestvensky, Timofey S; Tang, Thean-Hock
2015-01-01
Salmonellosis, a communicable disease caused by members of the Salmonella species, transmitted to humans through contaminated food or water. It is of paramount importance, to generate accurate detection methods for discriminating the various Salmonella species that cause severe infection in humans, including S. Typhi and S. Paratyphi A. Here, we formulated a strategy of detection and differentiation of salmonellosis by a multiplex polymerase chain reaction assay using S. Typhi non-protein coding RNA (sRNA) genes. With the designed sequences that specifically detect sRNA genes from S. Typhi and S. Paratyphi A, a detection limit of up to 10 pg was achieved. Moreover, in a stool-seeding experiment with S. Typhi and S. Paratyphi A, we have attained a respective detection limit of 15 and 1.5 CFU/mL. The designed strategy using sRNA genes shown here is comparatively sensitive and specific, suitable for clinical diagnosis and disease surveillance, and sRNAs represent an excellent molecular target for infectious disease.
Ciprofloxacin-Resistant Salmonella enterica Serotype Typhi, United States, 1999–2008
Sjölund-Karlsson, Maria; Shin, Sanghyuk; Harvey, Emily; Joyce, Kevin; Theobald, Lisa; Nygren, Benjamin L.; Pecic, Gary; Gay, Kathryn; Austin, Jana; Stuart, Andrew; Blanton, Elizabeth; Mintz, Eric D.; Whichard, Jean M.; Barzilay, Ezra J.
2011-01-01
We report 9 ciprofloxacin-resistant Salmonella enterica serotype Typhi isolates submitted to the US National Antimicrobial Resistance Monitoring System during 1999–2008. The first 2 had indistinguishable pulsed-field gel electrophoresis patterns and identical gyrA and parC mutations. Eight of the 9 patients had traveled to India within 30 days before illness onset. PMID:21749779
Sukandar, Elin Yulinah; Sunderam, Nethiyakalyani; Fidrianny, Irda
2014-01-01
Temu kunci (Kaempferia pandurata (Roxb.)) has a number of benefits and one of these is antibacterial. The rhizome is said to have antibacterial activity against Streptococcus mutans, Lactocillus sp. and Candida albicans. The aim of the study is to test the antibacterial activity of Kaempferia pandurata (Roxb.) rhizome ethanol extract on methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant coagulase negative Staphylococci (MRCNS), methicillin-sensitive Staphylococcus aureus (MSSA), Bacillus subtilis and Salmonella typhi. Antimicrobial activity of the extract was assayed by the microdilution method using Mueller Hinton Broth with sterilized 96 round-bottomed microwells to determine the Minimum Inhibitory Concentration (MIC) as well as to determine the time-kill activity. The MIC of the extract was 16 ppm for both Bacillus subtilis and MRSA; 8 ppm for both MSSA and Salmonella typhi and 4 ppm for MRCNS. Ethanol extract of Kaempferia pandurata (Roxb.) showed antibacterial activity against all the tested bacteria and was the most potent against MRCNS, with MIC 4 ppm. The killing profile test of the extract displayed bactericidal activity at 8-16 ppm against MRSA, MSSA, Bacillus subtilis and Salmonella typhi and bacteriostatic activity at 4 ppm towards MRCNS.
An extended genotyping framework for Salmonella enterica serovar Typhi, the cause of human typhoid
Wong, Vanessa K.; Baker, Stephen; Connor, Thomas R.; Pickard, Derek; Page, Andrew J.; Dave, Jayshree; Murphy, Niamh; Holliman, Richard; Sefton, Armine; Millar, Michael; Dyson, Zoe A.; Dougan, Gordon; Holt, Kathryn E.; Parkhill, Julian; Feasey, Nicholas A.; Kingsley, Robert A.; Thomson, Nicholas R.; Keane, Jacqueline A.; Weill, François- Xavier; Le Hello, Simon; Hawkey, Jane; Edwards, David J.; Harris, Simon R.; Cain, Amy K.; Hadfield, James; Hart, Peter J.; Thieu, Nga Tran Vu; Klemm, Elizabeth J.; Breiman, Robert F.; Watson, Conall H.; Edmunds, W. John; Kariuki, Samuel; Gordon, Melita A.; Heyderman, Robert S.; Okoro, Chinyere; Jacobs, Jan; Lunguya, Octavie; Msefula, Chisomo; Chabalgoity, Jose A.; Kama, Mike; Jenkins, Kylie; Dutta, Shanta; Marks, Florian; Campos, Josefina; Thompson, Corinne; Obaro, Stephen; MacLennan, Calman A.; Dolecek, Christiane; Keddy, Karen H.; Smith, Anthony M.; Parry, Christopher M.; Karkey, Abhilasha; Dongol, Sabina; Basnyat, Buddha; Arjyal, Amit; Mulholland, E. Kim; Campbell, James I.; Dufour, Muriel; Bandaranayake, Don; Toleafoa, Take N.; Singh, Shalini Pravin; Hatta, Mochammad; Newton, Paul N.; Dance, David; Davong, Viengmon; Onsare, Robert S.; Isaia, Lupeoletalalelei; Thwaites, Guy; Wijedoru, Lalith; Crump, John A.; De Pinna, Elizabeth; Nair, Satheesh; Nilles, Eric J.; Thanh, Duy Pham; Turner, Paul; Soeng, Sona; Valcanis, Mary; Powling, Joan; Dimovski, Karolina; Hogg, Geoff; Farrar, Jeremy; Mather, Alison E.; Amos, Ben
2016-01-01
The population of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, exhibits limited DNA sequence variation, which complicates efforts to rationally discriminate individual isolates. Here we utilize data from whole-genome sequences (WGS) of nearly 2,000 isolates sourced from over 60 countries to generate a robust genotyping scheme that is phylogenetically informative and compatible with a range of assays. These data show that, with the exception of the rapidly disseminating H58 subclade (now designated genotype 4.3.1), the global S. Typhi population is highly structured and includes dozens of subclades that display geographical restriction. The genotyping approach presented here can be used to interrogate local S. Typhi populations and help identify recent introductions of S. Typhi into new or previously endemic locations, providing information on their likely geographical source. This approach can be used to classify clinical isolates and provides a universal framework for further experimental investigations. PMID:27703135
Salmonella Infections (For Parents)
... iguanas). Another, rarer form — called Salmonella typhi — causes typhoid fever . What Is Salmonella Infection? Salmonella infection, or salmonellosis , ... More on this topic for: Parents Kids Teens Typhoid Fever E. Coli Stool Test: Bacteria Culture Food Safety ...
Shoeb, S; Khalifa, I; el Daly, O; Heiba, A; Farmer, J; Brenner, F; el Batawi, Y
1989-01-01
In this work a total of 82 strains of Salmonella typhi were isolated from Egyptian patients diagnosed as quiry enteric fever. These cases were from Ismalia, Suez and port Said Areas. The strains fell in 16 phage types. Phage types N, 40, E1, and degraded Vi were the commonest phage type in Ismailia, while phage types degraded Vi and C1 were the commonest in Port Said. Phage types Di-N, degraded Vi, A and C1 were the commonest in Suez. Chemotyping of Salmonella typhi showed that the majority of the strains belonged to chemotype I (82%), and the rest belonged to chemotype II (18%). Colicin production was negative and all the strains were susceptible to the currently used antibiotics.
McClelland, Michael; Sanderson, Kenneth E; Clifton, Sandra W; Latreille, Phil; Porwollik, Steffen; Sabo, Aniko; Meyer, Rekha; Bieri, Tamberlyn; Ozersky, Phil; McLellan, Michael; Harkins, C Richard; Wang, Chunyan; Nguyen, Christine; Berghoff, Amy; Elliott, Glendoria; Kohlberg, Sara; Strong, Cindy; Du, Feiyu; Carter, Jason; Kremizki, Colin; Layman, Dan; Leonard, Shawn; Sun, Hui; Fulton, Lucinda; Nash, William; Miner, Tracie; Minx, Patrick; Delehaunty, Kim; Fronick, Catrina; Magrini, Vincent; Nhan, Michael; Warren, Wesley; Florea, Liliana; Spieth, John; Wilson, Richard K
2004-12-01
Salmonella enterica serovars often have a broad host range, and some cause both gastrointestinal and systemic disease. But the serovars Paratyphi A and Typhi are restricted to humans and cause only systemic disease. It has been estimated that Typhi arose in the last few thousand years. The sequence and microarray analysis of the Paratyphi A genome indicates that it is similar to the Typhi genome but suggests that it has a more recent evolutionary origin. Both genomes have independently accumulated many pseudogenes among their approximately 4,400 protein coding sequences: 173 in Paratyphi A and approximately 210 in Typhi. The recent convergence of these two similar genomes on a similar phenotype is subtly reflected in their genotypes: only 30 genes are degraded in both serovars. Nevertheless, these 30 genes include three known to be important in gastroenteritis, which does not occur in these serovars, and four for Salmonella-translocated effectors, which are normally secreted into host cells to subvert host functions. Loss of function also occurs by mutation in different genes in the same pathway (e.g., in chemotaxis and in the production of fimbriae).
Datta, Naomi; Olarte, J.
1974-01-01
All 17 Salmonella typhi strains tested from the epidemic in Mexico carried R factors of compatibility group H, conferring resistance to chloramphenicol, streptomycin, tetracycline, and sulfonamides. Some S. typhi strains carried, in addition, non-conjugative, ampicillin resistance plasmids and R factors of the I or A–C complex. All 20 Shigella dysenteriae 1 strains tested of epidemic origin carried O-group R factors. Ampicillin resistance in S. dysenteriae 1 was not proved to be plasmid borne. R factors of group H were not identified in any of the tested Mexican isolates other than S. typhi, but R factors of group O were identified in Escherichia coli, Shigella flexneri, and one strain of S. typhi, as well as in the epidemic S. dysenteriae. An R factor was identified which seemed to have two compatibility specificities, groups Iω and O. PMID:4599123
Typhoid fever in the United States, 1999-2006.
Lynch, Michael F; Blanton, Elizabeth M; Bulens, Sandra; Polyak, Christina; Vojdani, Jazmin; Stevenson, Jennifer; Medalla, Felicia; Barzilay, Ezra; Joyce, Kevin; Barrett, Timothy; Mintz, Eric Daniel
2009-08-26
Typhoid fever in the United States has increasingly been due to infection with antimicrobial-resistant Salmonella ser Typhi. National surveillance for typhoid fever can inform prevention and treatment recommendations. To assess trends in infections with antimicrobial-resistant S. Typhi. Cross-sectional, laboratory-based surveillance study. We reviewed data from 1999-2006 for 1902 persons with typhoid fever who had epidemiologic information submitted to the Centers for Disease Control and Prevention (CDC) and 2016 S. Typhi isolates sent by participating public health laboratories to the National Antimicrobial Resistance Monitoring System Laboratory at the CDC for antimicrobial susceptibility testing. Proportion of S. Typhi isolates demonstrating resistance to 14 antimicrobial agents and patient risk factors for antimicrobial-resistant infections. Patient median age was 22 years (range, <1-90 years); 1295 (73%) were hospitalized and 3 (0.2%) died. Foreign travel within 30 days of illness was reported by 1439 (79%). Only 58 travelers (5%) had received typhoid vaccine. Two hundred seventy-two (13%) of 2016 isolates tested were resistant to ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole (multidrug-resistant S. Typhi [MDRST]); 758 (38%) were resistant to nalidixic acid (nalidixic acid-resistant S. Typhi [NARST]) and 734 NARST isolates (97%) had decreased susceptibility to ciprofloxacin. The proportion of NARST increased from 19% in 1999 to 54% in 2006. Five ciprofloxacin-resistant isolates were identified. Patients with resistant infections were more likely to report travel to the Indian subcontinent: 85% of patients infected with MDRST and 94% with NARST traveled to the Indian subcontinent, while 44% of those with susceptible infections did (MDRST odds ratio, 7.5; 95% confidence interval, 4.1-13.8; NARST odds ratio, 20.4; 95% confidence interval, 12.4-33.9). Infection with antimicrobial-resistant S. Typhi strains among US patients with typhoid fever is associated with travel to the Indian subcontinent, and an increasing proportion of these infections are due to S. Typhi strains with decreased susceptibility to fluoroquinolones.
Zhang, Haifang; Zhang, Xiaolei; Yan, Meiying; Pang, Bo; Kan, Biao; Xu, Huaxi; Huang, Xinxiang
2011-12-15
To determine the genotype of Salmonella enterica serovar Typhi (S. Typhi) strains in China and analyze their genetic diversity. We collected S. Typhi strains from 1959 to 2006 in five highly endemic Chinese provinces and chose 40 representative strains. Multilocus sequence typing was used to determine the genotypes or sequence types (ST) and microarray-based comparative genomic hybridization (M-CGH) to investigate the differences in gene content among these strains. Forty representative S. Typhi strains belonged to 4 sequence types (ST1, ST2, ST890, and ST892). The predominant S. Typhi genotype (31/40) was ST2 and it had a diverse geographic distribution. We discovered two novel STs - ST890 and ST892. M-CGH showed that 69 genes in these two novel STs were divergent from S. Typhi Ty2, which belongs to ST1. In addition, 5 representative Typhi strains of ST2 isolated from Guizhou province showed differences in divergent genes. We determined two novel sequence types, ST890 and ST892, and found that ST2 was the most prevalent genotype of S. Typhi in China. Genetic diversity was present even within a highly clonal bacterial population.
Sheikh, Alaullah; Charles, Richelle C; Sharmeen, Nusrat; Rollins, Sean M; Harris, Jason B; Bhuiyan, Md Saruar; Arifuzzaman, Mohammad; Khanam, Farhana; Bukka, Archana; Kalsy, Anuj; Porwollik, Steffen; Leung, Daniel T; Brooks, W Abdullah; LaRocque, Regina C; Hohmann, Elizabeth L; Cravioto, Alejandro; Logvinenko, Tanya; Calderwood, Stephen B; McClelland, Michael; Graham, James E; Qadri, Firdausi; Ryan, Edward T
2011-12-01
Salmonella enterica serotype Typhi is the cause of typhoid fever. It is a human-restricted pathogen, and few data exist on S. Typhi gene expression in humans. We applied an RNA capture and amplification technique, Selective Capture of Transcribed Sequences (SCOTS), and microarray hybridization to identify S. Typhi transcripts expressed in the blood of five humans infected with S. Typhi in Bangladesh. In total, we detected the expression of mRNAs for 2,046 S. Typhi genes (44% of the S. Typhi genome) in human blood; expression of 912 genes was detected in all 5 patients, and expression of 1,100 genes was detected in 4 or more patients. Identified transcripts were associated with the virulence-associated PhoP regulon, Salmonella pathogenicity islands, the use of alternative carbon and energy sources, synthesis and transport of iron, thiamine, and biotin, and resistance to antimicrobial peptides and oxidative stress. The most highly represented group were genes currently annotated as encoding proteins designated as hypothetical, unknown, or unclassified. Of the 2,046 detected transcripts, 1,320 (29% of the S. Typhi genome) had significantly different levels of detection in human blood compared to in vitro cultures; detection of 141 transcripts was significantly different in all 5 patients, and detection of 331 transcripts varied in at least 4 patients. These mRNAs encode proteins of unknown function, those involved in energy metabolism, transport and binding, cell envelope, cellular processes, and pathogenesis. We confirmed increased expression of a subset of identified mRNAs by quantitative-PCR. We report the first characterization of bacterial transcriptional profiles in the blood of patients with typhoid fever. S. Typhi is an important global pathogen whose restricted host range has greatly inhibited laboratory studies. Our results suggest that S. Typhi uses a largely uncharacterized genetic repertoire to survive within cells and utilize alternate energy sources during infection.
Alvarez, Monica I; Glover, Luke C; Luo, Peter; Wang, Liuyang; Theusch, Elizabeth; Oehlers, Stefan H; Walton, Eric M; Tram, Trinh Thi Bich; Kuang, Yu-Lin; Rotter, Jerome I; McClean, Colleen M; Chinh, Nguyen Tran; Medina, Marisa W; Tobin, David M; Dunstan, Sarah J; Ko, Dennis C
2017-09-12
Risk, severity, and outcome of infection depend on the interplay of pathogen virulence and host susceptibility. Systematic identification of genetic susceptibility to infection is being undertaken through genome-wide association studies, but how to expeditiously move from genetic differences to functional mechanisms is unclear. Here, we use genetic association of molecular, cellular, and human disease traits and experimental validation to demonstrate that genetic variation affects expression of VAC14, a phosphoinositide-regulating protein, to influence susceptibility to Salmonella enterica serovar Typhi ( S Typhi) infection. Decreased VAC14 expression increased plasma membrane cholesterol, facilitating Salmonella docking and invasion. This increased susceptibility at the cellular level manifests as increased susceptibility to typhoid fever in a Vietnamese population. Furthermore, treating zebrafish with a cholesterol-lowering agent, ezetimibe, reduced susceptibility to S Typhi. Thus, coupling multiple genetic association studies with mechanistic dissection revealed how VAC14 regulates Salmonella invasion and typhoid fever susceptibility and may open doors to new prophylactic/therapeutic approaches.
Alvarez, Monica I.; Glover, Luke C.; Luo, Peter; Wang, Liuyang; Theusch, Elizabeth; Oehlers, Stefan H.; Walton, Eric M.; Tram, Trinh Thi Bich; Kuang, Yu-Lin; Rotter, Jerome I.; McClean, Colleen M.; Chinh, Nguyen Tran; Medina, Marisa W.; Dunstan, Sarah J.
2017-01-01
Risk, severity, and outcome of infection depend on the interplay of pathogen virulence and host susceptibility. Systematic identification of genetic susceptibility to infection is being undertaken through genome-wide association studies, but how to expeditiously move from genetic differences to functional mechanisms is unclear. Here, we use genetic association of molecular, cellular, and human disease traits and experimental validation to demonstrate that genetic variation affects expression of VAC14, a phosphoinositide-regulating protein, to influence susceptibility to Salmonella enterica serovar Typhi (S. Typhi) infection. Decreased VAC14 expression increased plasma membrane cholesterol, facilitating Salmonella docking and invasion. This increased susceptibility at the cellular level manifests as increased susceptibility to typhoid fever in a Vietnamese population. Furthermore, treating zebrafish with a cholesterol-lowering agent, ezetimibe, reduced susceptibility to S. Typhi. Thus, coupling multiple genetic association studies with mechanistic dissection revealed how VAC14 regulates Salmonella invasion and typhoid fever susceptibility and may open doors to new prophylactic/therapeutic approaches. PMID:28827342
Toapanta, Franklin R; Bernal, Paula J; Fresnay, Stephanie; Magder, Laurence S; Darton, Thomas C; Jones, Claire; Waddington, Claire S; Blohmke, Christoph J; Angus, Brian; Levine, Myron M; Pollard, Andrew J; Sztein, Marcelo B
2016-06-01
A novel human oral challenge model with wild-type Salmonella Typhi (S. Typhi) was recently established by the Oxford Vaccine Group. In this model, 104 CFU of Salmonella resulted in 65% of participants developing typhoid fever (referred here as typhoid diagnosis -TD-) 6-9 days post-challenge. TD was diagnosed in participants meeting clinical (oral temperature ≥38°C for ≥12h) and/or microbiological (S. Typhi bacteremia) endpoints. Changes in B cell subpopulations following S. Typhi challenge remain undefined. To address this issue, a subset of volunteers (6 TD and 4 who did not develop TD -NoTD-) was evaluated. Notable changes included reduction in the frequency of B cells (cells/ml) of TD volunteers during disease days and increase in plasmablasts (PB) during the recovery phase (>day 14). Additionally, a portion of PB of TD volunteers showed a significant increase in activation (CD40, CD21) and gut homing (integrin α4β7) molecules. Furthermore, all BM subsets of TD volunteers showed changes induced by S. Typhi infections such as a decrease in CD21 in switched memory (Sm) CD27+ and Sm CD27- cells as well as upregulation of CD40 in unswitched memory (Um) and Naïve cells. Furthermore, changes in the signaling profile of some BM subsets were identified after S. Typhi-LPS stimulation around time of disease. Notably, naïve cells of TD (compared to NoTD) volunteers showed a higher percentage of cells phosphorylating Akt suggesting enhanced survival of these cells. Interestingly, most these changes were temporally associated with disease onset. This is the first study to describe differences in B cell subsets directly related to clinical outcome following oral challenge with wild-type S. Typhi in humans.
Multidrug-Resistant Salmonella enterica Serotype Typhi, Gulf of Guinea Region, Africa
Baltazar, Murielle; Ngandjio, Antoinette; Holt, Kathryn Elizabeth; Lepillet, Elodie; Pardos de la Gandara, Maria; Collard, Jean-Marc; Bercion, Raymond; Nzouankeu, Ariane; Le Hello, Simon; Dougan, Gordon; Fonkoua, Marie-Christine
2015-01-01
We identified 3 lineages among multidrug-resistant (MDR) Salmonella enterica serotype Typhi isolates in the Gulf of Guinea region in Africa during the 2000s. However, the MDR H58 haplotype, which predominates in southern Asia and Kenya, was not identified. MDR quinolone-susceptible isolates contained a 190-kb incHI1 pST2 plasmid or a 50-kb incN pST3 plasmid. PMID:25811307
Biofilm Producing Salmonella Typhi: Chronic Colonization and Development of Gallbladder Cancer
Cavallo, Ilaria; Pontone, Martina; Toma, Luigi; Ensoli, Fabrizio
2017-01-01
Salmonella enterica subspecies enterica serovar Typhi is the aetiological agent of typhoid or enteric fever. In a subset of individuals, S. Typhi colonizes the gallbladder causing an asymptomatic chronic infection. Nonetheless, these asymptomatic carriers provide a reservoir for further spreading of the disease. Epidemiological studies performed in regions where S. Typhi is endemic, revealed that the majority of chronically infected carriers also harbour gallstones, which in turn, have been indicated as a primary predisposing factor for the onset of gallbladder cancer (GC). It is now well recognised, that S. Typhi produces a typhoid toxin with a carcinogenic potential, that induces DNA damage and cell cycle alterations in intoxicated cells. In addition, biofilm production by S. Typhi may represent a key factor for the promotion of a persistent infection in the gallbladder, thus sustaining a chronic local inflammatory response and exposing the epithelium to repeated damage caused by carcinogenic toxins. This review aims to highlight the putative connection between the chronic colonization by highly pathogenic strains of S. Typhi capable of combining biofilm and toxin production and the onset of GC. Considering the high risk of GC associated with the asymptomatic carrier status, the rapid identification and profiling of biofilm production by S. Typhi strains would be key for effective therapeutic management and cancer prevention. PMID:28858232
Characterization of the type I dehydroquinase from Salmonella typhi.
Moore, J D; Hawkins, A R; Charles, I G; Deka, R; Coggins, J R; Cooper, A; Kelly, S M; Price, N C
1993-01-01
The type I dehydroquinase from the human pathogen Salmonella typhi was overexpressed in an Escherichia coli host and purified to homogeneity. The S. typhi enzyme was characterized in terms of its kinetic parameters, important active-site residues, thermal stability and c.d. and fluorescence properties. In all important respects, the enzyme from S. typhi behaves in a very similar fashion to the well-characterized enzyme from E. coli, including the remarkable conformational stabilization observed on reduction of the substrate/product mixture by NaBH4. This gives confidence that the information from X-ray studies on the S. typhi enzyme [Boys, Fawcett, Sawyer, Moore, Charles, Hawkins, Deka, Kleanthous and Coggins (1992) J. Mol. Biol. 227, 352-355] can be applied to other type I dehydroquinases. Studies of the quenching of fluorescence of the S. typhi enzyme by succinimide show that NaBH4 reduction of the substrate/product imine complex involves a dramatic decrease in the flexibility of the enzyme, with only very minor changes in the overall secondary and tertiary structure. Images Figure 1 PMID:8216229
Xiong, Changyan; Li, Xuejiao; Liu, Juanli; Zhao, Xin; Xu, Shungao; Huang, Xinxiang
2018-01-01
Antisense RNAs from complementary strands of protein coding genes regulate the expression of genes involved in many cellular processes. Using deep sequencing analysis of the Salmonella enterica serovar Typhi ( S. Typhi) transcriptome, a novel antisense RNA encoded on the strand complementary to the rpoH gene was revealed. In this study, the molecular features of this antisense RNA were assessed using northern blotting and rapid amplification of cDNA ends. The 3,508 nt sequence of RNA was identified as the antisense RNA of the rpoH gene and was named ArpH. ArpH was found to attenuate the invasion of HeLa cells by S. Typhi by regulating the expression of SPI-1 genes. In an rpoH mutant strain, the invasive capacity of S. Typhi was increased, whereas overexpression of ArpH positively regulates rpoH mRNA levels. Results of this study suggest that the cis -encoded antisense RNA ArpH is likely to affect the invasive capacity of S. Typhi by regulating the expression of rpoH .
Le, Thi Anh Hong; Fabre, Laëtitia; Roumagnac, Philippe; Grimont, Patrick A. D.; Scavizzi, Maurice R.; Weill, François-Xavier
2007-01-01
Salmonella enterica serotype Typhi clinical isolates (n = 91) resistant to nalidixic acid (Nalr) were collected from sporadic cases and minor outbreaks throughout Vietnam between 1996 and 2004. These isolates were typed and compared by four methods: Vi phage typing, PstI ribotyping, XbaI and SpeI pulsed-field gel electrophoresis (PFGE), and single-nucleotide polymorphism (SNP) analysis. The results indicated that 65% of the isolates were not typeable by Vi phage typing. In contrast, the ribotyping and, with more accuracy, the SNP analysis methods indicated that all Nalr isolates belonged to a single clone (ribotype 3a, haplotype H58) that was found previously and that largely consisted of plasmid-encoded multidrug-resistant serotype Typhi isolates. PFGE demonstrated the occurrence of microevolution within this clone. We identified two major combined PFGE profiles: X1-S1 and X3-S6. X3-S6 predominated between 1996 and 2002 but was replaced by X1-S1 after 2002. Nevertheless, PFGE, with a Simpson's index of 0.78, was not considered an optimal discriminatory method for investigating typhoid fever outbreaks in Vietnam. The rate of quinolone resistance increased and the rate of multidrug resistance decreased during the study period. From 2002 to 2004, 80.6% of the isolates from South Vietnam were resistant only to Nal. The mechanism of Nal resistance in most of the isolates (94%) was a mutation in the quinolone resistance-determining chromosomal region of gyrA that led to the amino acid substitution Ser83Phe. No plasmid-located qnrA, qnrB, or qnrS was detected. PMID:17728470
Jangampalli Adi, Pradeepkiran; Naidu, Jagadish R; Matcha, Bhaskar
2017-09-01
Escherichia coli (E. coli), Salmonella typhi and Vibrio cholera harmful pathogens, which causes various diseases in humans. Rapid diagnosis of bacterial infection is an important for patient management and appropriate therapy during the early phase of the bacterial infected diseases. Among the existing techniques for identifying pathogens were less sensitive and time-consuming processes. In the present study total, 48 clinical 31 blood and 17 urine samples of patients suspected with the infections were collected from SVRR Hospital and used to detect the pathogens. Multiplex polymerase chain reaction (PCR) assay was set to design for the identification of Escherichia coli, Salmonella typhi and Vibrio cholera from the different clinical samples. Rapid diagnosis of Escherichia coli (E. coli), Salmonella and Vibrio cholera pathogens can be done with simultaneously in a single multiplex PCR assay by using specific primers with adjusted PCR conditions. Through this approach, the results represented with out of 31 blood samples 1-15 shows the positive with E. coli and remaining 14 only 11 were correlated with multiplex results of Vibrio cholera, remaining the urine samples all are positive with 17 samples correlate with the Salmonella typhi. Through the high specificity benefits of excellent sensitivity, with high resolution and reproducibility. This method of results proved and illustrates the best potential system for diagnosing the infectious disease with modern trendy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aziah, Ismail; Ravichandran, Manickam; Ismail, Asma
2007-12-01
Conventional polymerase chain reaction (PCR) testing requires many pipetting steps and has to be transported and stored in cold chain. To overcome these limitations, we designed a ready-to-use PCR test for Salmonella typhi using PCR reagents, primers against the ST50 gene of S. typhi, a built-in internal amplification control (IAC), and gel loading dye mixed and freeze-dried in a single tube. The 2-step dry-reagent-based assay was used to amplify a 1238-bp target gene and an 810-bp IAC gene from 73 BACTEC blood culture broths (33 true positives for S. typhi and 40 true negatives for non-S. typhi). The sensitivity, specificity, positive predictive value, and negative predictive value of the PCR assay were 87.9%, 100%, 100%, and 90.9%, respectively. We suggest that this rapid 2-step PCR test could be used for the rapid diagnosis of typhoid fever.
CTX-M-producing non-Typhi Salmonella spp. isolated from humans, United States.
Sjölund-Karlsson, Maria; Howie, Rebecca; Krueger, Amy; Rickert, Regan; Pecic, Gary; Lupoli, Kathryn; Folster, Jason P; Whichard, Jean M
2011-01-01
CTX-M-type beta-lactamases are increasing among US Enterobacteriaceae isolates. Of 2,165 non-Typhi Salmonella isolates submitted in 2007 to the National Antimicrobial Resistance Monitoring System, 100 (4.6%) displayed elevated MICs (≥2 mg/L) of ceftriaxone or ceftiofur. Three isolates (serotypes Typhimurium, Concord, and I 4,5,12:i:-) contained bla(CTX-M-5), bla(CTX-M-15), and bla(CTX-M-55/57), respectively.
CTX-M–producing Non-Typhi Salmonella spp. Isolated from Humans, United States
Howie, Rebecca; Krueger, Amy; Rickert, Regan; Pecic, Gary; Lupoli, Kathryn; Folster, Jason P.; Whichard, Jean M.
2011-01-01
CTX-M–type β-lactamases are increasing among US Enterobacteriaceae isolates. Of 2,165 non-Typhi Salmonella isolates submitted in 2007 to the National Antimicrobial Resistance Monitoring System, 100 (4.6%) displayed elevated MICs (>2 mg/L) of ceftriaxone or ceftiofur. Three isolates (serotypes Typhimurium, Concord, and I 4,5,12:i:–) contained blaCTX-M-5, blaCTX-M-15, and blaCTX-M-55/57, respectively. PMID:21192864
False positive malaria rapid diagnostic test in returning traveler with typhoid fever.
Meatherall, Bonnie; Preston, Keith; Pillai, Dylan R
2014-07-09
Rapid diagnostic tests play a pivotal role in the early diagnosis of malaria where microscopy or polymerase chain reaction are not immediately available. We report the case of a 39 year old traveler to Canada who presented with fever, headache, and abdominal pain after visiting friends and relatives in India. While in India, the individual was not ill and had no signs or symptoms of malaria. Laboratory testing upon his return to Canada identified a false positive malaria rapid diagnostic (BinaxNOW® malaria) result for P. falciparum with coincident Salmonella Typhi bacteraemia without rheumatoid or autoimmune factors. Rapid diagnostic test false positivity for malaria coincided with the presence or absence of Salmonella Typhi in the blood. Clinicians should be aware that Salmonella Typhi infection may result in a false positive malaria rapid diagnostic test. The mechanism of this cross-reactivity is not clear.
Wang, D N; Wu, W J; Wang, T; Pan, Y Z; Tang, K L; She, X L; Ding, W J; Wang, H
2015-05-01
Bacterial L-forms have always been considered as osmotic-pressure-sensitive cell-wall-deficient bacteria and isolation culture of L-forms must use media with high osmotic pressure. However, isolation culture of stable L-forms formed in humans and animals is very difficult because they have adapted to the physiological osmotic pressure condition of the host. We use a non-high osmotic isolation technique to isolate stable L-forms of Salmonella Typhi and Salmonella Paratyphi A from bile-inducer cultures in vitro and from patients' gallbladder specimens. Multiplex PCR assay for Salmonella-specific genes and nucleotide sequencing are used to identify the Salmonella L-forms in stable L-form isolates. Using this method, we confirmed that Salmonella Paratyphi A and Salmonella Typhi cannot be isolated from bile-inducer cultures cultured for 6 h or 48 h, but the L-forms can be isolated from 1 h to 45 days. In the 524 gallbladder samples, the positive rate for bacterial forms was 19.7% and the positive rate for Salmonella spp. was 0.6% by routine bacteriological methods. The positive rate for bacterial L-forms was 75.4% using non-high osmotic isolation culture. In the L-form isolates, the positive rate of Salmonella invA gene was 3.1%. In these invA-positive L-form isolates, four were positive for the invA and flic-d genes of Salmonella Typhi, and ten were positive for the invA and flic-a genes of Salmonella Paratyphi A. Copyright © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Characterization of the RpoS Status of Clinical Isolates of Salmonella enterica
Robbe-Saule, Véronique; Algorta, Gabriela; Rouilhac, Isabelle; Norel, Françoise
2003-01-01
The stationary-phase-inducible sigma factor, σS (RpoS), is the master regulator of the general stress response in Salmonella and is required for virulence in mice. rpoS mutants can frequently be isolated from highly passaged laboratory strains of Salmonella. We examined the rpoS status of 116 human clinical isolates of Salmonella, including 41 Salmonella enterica serotype Typhi strains isolated from blood, 38 S. enterica serotype Typhimurium strains isolated from blood, and 37 Salmonella serotype Typhimurium strains isolated from feces. We examined the abilities of these strains to produce the σS protein, to express RpoS-dependent catalase activity, and to resist to oxidative stress in the stationary phase of growth. We also carried out complementation experiments with a cloned wild-type rpoS gene. Our results showed that 15 of the 41 Salmonella serotype Typhi isolates were defective in RpoS. We sequenced the rpoS allele of 12 strains. This led to identification of small insertions, deletions, and point mutations resulting in premature stop codons or affecting regions 1 and 2 of σS, showing that the rpoS mutations are not clonal. Thus, mutant rpoS alleles can be found in freshly isolated clinical strains of Salmonella serotype Typhi, and they may affect virulence properties. Interestingly however, no rpoS mutants were found among the 75 Salmonella serotype Typhimurium isolates. Strains that differed in catalase activity and resistance to hydrogen peroxide were found, but the differences were not linked to the rpoS status. This suggests that Salmonella serotype Typhimurium rpoS mutants are counterselected because rpoS plays a role in the pathogenesis of Salmonella serotype Typhimurium in humans or in the transmission cycle of the disease. PMID:12902215
The inhibitory effect of natural bioactives on the growth of pathogenic bacteria
Kim, Ji-Sun
2007-01-01
The objective of this study was to evaluate the inhibitory activity of natural products, against growth of Escherichia coli (ATCC 25922) and Salmonella typhimurium (KCCM 11862). Chitosan, epigallocatechin gallate (EGCG), and garlic were used as natural bioactives for antibacterial activity. The testing method was carried out according to the disk diffusion method. All of chitosan, EGCG, and garlic showed inhibitory effect against the growth of E. coli and Salmonella typhi. To evaluate the antibacterial activity of natural products during storage, chicken skins were inoculated with 106 of E. coli or Salmonella typhi. The inoculated chicken skins, treated with 0.5, 1, or 2% natural bioactives, were stored during 8 day at 4℃. The numbers of microorganisms were measured at 8 day. Both chitosan and EGCG showed significant decrease in the number of E. coli and Salmonella typhi in dose dependent manner (P < 0.05). These results suggest that natural bioactives such as chitosan, EGCG may be possible to be used as antimicrobial agents for the improvement of food safety. PMID:20368950
CRISPRs: Molecular Markers for Tracking Antibiotic Resistant Strains of Salmonella Enterica
2014-01-01
S.Paratyphi A, B and C) are confined to human hosts and cause typhoid and paratyphoid (enteric) fevers . These are spread from human to human—often shed by...poisoning) with symptoms of diarrhea, fever , and abdominal cramps that run 5-7 days. In contrast, non- typhoidal salmonellosis in sub-Saharan Africa... typhoid fever , due to Salmonella Typhi, is an important cause of illness and death. Most serotype Typhi infections in the United States are acquired
Proteomics Analysis of the Causative Agent of Typhoid Fever
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ansong, Charles; Yoon, Hyunjin; Norbeck, Angela D.
2008-02-01
Typhoid fever is a potentially fatal disease caused by the bacterial pathogen Salmonella enterica serovar Typhi (S. typhi). S. typhi infection is a complex process that involves numerous bacterially-encoded virulence determinants, and these are thought to confer both stringent human host specificity and a high mortality rate. In the present study we used a liquid chromatography-mass spectrometry (LC-MS) based proteomics strategy to investigate the proteome of logarithmic, stationary phase, and low pH/low magnesium (MgM) S. typhi cultures. This represents the first large scale comprehensive characterization of the S. typhi proteome. Our analysis identified a total of 2066 S. typhi proteins.more » In an effort to identify putative S. typhi-specific virulence factors, we then compared our S. typhi results to those obtained in a previously published study of the S. typhimurium proteome under similar conditions (Adkins J.N. et al (2006) Mol Cell Prot). Comparative proteomic analysis of S. typhi (strain Ty2) and S. typhimurium (strains LT2 and 14028) revealed a subset of highly expressed proteins unique to S. typhi that were exclusively detected under conditions that mimic the infective state in macrophage cells. These proteins included CdtB, HlyE, and a conserved protein encoded by t1476. The differential expression of selected proteins was confirmed by Western blot analysis. Taken together with the current literature, our observations suggest that this subset of proteins may play a role in S. typhi pathogenesis and human host specificity. In addition, we observed products of the biotin (bio) operon displayed a higher abundance in the more virulent strains S. typhi-Ty2 and S. typhimurium-14028 compared to the virulence attenuated S. typhimurium strain LT2, suggesting bio proteins may contribute to Salmonella pathogenesis.« less
Manna, Byomkesh; Bhattacharya, Sujit K.; Bhaduri, Barnali; Pickard, Derek J.; Ochiai, R. Leon; Ali, Mohammad; Clemens, John D.; Dougan, Gordon
2012-01-01
Background Typhoid fever, caused by Salmonella enterica serovar Typhi (S. Typhi), is a major health problem especially in developing countries. Vaccines against typhoid are commonly used by travelers but less so by residents of endemic areas. Methodology We used single nucleotide polymorphism (SNP) typing to investigate the population structure of 372 S. Typhi isolated during a typhoid disease burden study and Vi vaccine trial in Kolkata, India. Approximately sixty thousand people were enrolled for fever surveillance for 19 months prior to, and 24 months following, Vi vaccination of one third of the study population (May 2003–December 2006, vaccinations given December 2004). Principal Findings A diverse S. Typhi population was detected, including 21 haplotypes. The most common were of the H58 haplogroup (69%), which included all multidrug resistant isolates (defined as resistance to chloramphenicol, ampicillin and co-trimoxazole). Quinolone resistance was particularly high among H58-G isolates (97% Nalidixic acid resistant, 30% with reduced susceptibility to ciprofloxacin). Multiple typhoid fever episodes were detected in 22 households, however household clustering was not associated with specific S. Typhi haplotypes. Conclusions Typhoid fever in Kolkata is caused by a diverse population of S. Typhi, however H58 haplotypes dominate and are associated with multidrug and quinolone resistance. Vi vaccination did not obviously impact on the haplotype population structure of the S. Typhi circulating during the study period. PMID:22303491
NASA Astrophysics Data System (ADS)
Lacroix, M.; Chiasson, F.
2004-09-01
The efficiency of carvacrol, thymol, trans-cinnamaldehyde (Tc) and tetrasodium pyrophosphate (Tp) on the radiosensitization of Escherichia coli and Salmonella typhi in chicken breast was determined. Chicken breast were dipped in a bath of working cultures of E. coli or S. typhi (5×10 7 CFU/ml). Active compounds were added at the concentration corresponding to {1}/{30} of the minimal inhibitory concentration. Samples were packed under air and gamma irradiation was done at doses from 0.1 to 0.7 kGy. The efficiencies of the active compounds against E. coli were 32%, 10%, 3% and 0% for thymol, Tp and carvacrol, respectively. For S. typhi, the efficiencies in the chicken breast were 47%, 19%, 17% and 11% for Tc, Tp, carvacrol and thymol, respectively. Without active compounds, D10 values were 0.145 kGy for E. coli and 0.64 kGy for S. typhi as compared to 0.098 kGy for E. coli and 0.341 kGy for S. typhi in presence of Tc. Under modified atmospheric packaging condition and in presence of Tc, D10 values were reduced to 0.046 for E. coli and to 0.110 for S. typhi.
Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, Maria J; Romero, Fernando; Gil, Angel
2013-01-01
Dendritic cells (DCs) constitute the first point of contact between gut commensals and our immune system. Despite growing evidence of the immunomodulatory effects of probiotics, the interactions between the cells of the intestinal immune system and bacteria remain largely unknown. Indeed,, the aim of this work was to determine whether the probiotic Bifidobacterium breve CNCM I-4035 and its cell-free culture supernatant (CFS) have immunomodulatory effects in human intestinal-like dendritic cells (DCs) and how they respond to the pathogenic bacterium Salmonella enterica serovar Typhi, and also to elucidate the molecular mechanisms involved in these interactions. Human DCs were directly challenged with B. breve/CFS, S. typhi or a combination of these stimuli for 4 h. The expression pattern of genes involved in Toll-like receptor (TLR) signaling pathway and cytokine secretion was analyzed. CFS decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with S. typhi. In contrast, the B. breve CNCM I-4035 probiotic strain was a potent inducer of the pro-inflammatory cytokines and chemokines tested, i.e., TNF-α, IL-8 and RANTES, as well as anti-inflammatory cytokines including IL-10. CFS restored TGF-β levels in the presence of Salmonella. Live B.breve and its supernatant enhanced innate immune responses by the activation of TLR signaling pathway. These treatments upregulated TLR9 gene transcription. In addition, CFS was a more potent inducer of TLR9 expression than the probiotic bacteria in the presence of S. typhi. Expression levels of CASP8 and IRAK4 were also increased by CFS, and both treatments induced TOLLIP gene expression. Our results indicate that the probiotic strain B. breve CNCM I-4035 affects the intestinal immune response, whereas its supernatant exerts anti-inflammatory effects mediated by DCs. This supernatant may protect immune system from highly infectious agents such as Salmonella typhi and can down-regulate pro-inflammatory pathways.
Bermudez-Brito, Miriam; Muñoz-Quezada, Sergio; Gomez-Llorente, Carolina; Matencio, Esther; Bernal, Maria J.; Romero, Fernando; Gil, Angel
2013-01-01
Dendritic cells (DCs) constitute the first point of contact between gut commensals and our immune system. Despite growing evidence of the immunomodulatory effects of probiotics, the interactions between the cells of the intestinal immune system and bacteria remain largely unknown. Indeed,, the aim of this work was to determine whether the probiotic Bifidobacterium breve CNCM I-4035 and its cell-free culture supernatant (CFS) have immunomodulatory effects in human intestinal-like dendritic cells (DCs) and how they respond to the pathogenic bacterium Salmonella enterica serovar Typhi, and also to elucidate the molecular mechanisms involved in these interactions. Human DCs were directly challenged with B. breve/CFS, S. typhi or a combination of these stimuli for 4 h. The expression pattern of genes involved in Toll-like receptor (TLR) signaling pathway and cytokine secretion was analyzed. CFS decreased pro-inflammatory cytokines and chemokines in human intestinal DCs challenged with S. typhi. In contrast, the B. breve CNCM I-4035 probiotic strain was a potent inducer of the pro-inflammatory cytokines and chemokines tested, i.e., TNF-α, IL-8 and RANTES, as well as anti-inflammatory cytokines including IL-10. CFS restored TGF-β levels in the presence of Salmonella. Live B.breve and its supernatant enhanced innate immune responses by the activation of TLR signaling pathway. These treatments upregulated TLR9 gene transcription. In addition, CFS was a more potent inducer of TLR9 expression than the probiotic bacteria in the presence of S. typhi. Expression levels of CASP8 and IRAK4 were also increased by CFS, and both treatments induced TOLLIP gene expression. Our results indicate that the probiotic strain B. breve CNCM I-4035 affects the intestinal immune response, whereas its supernatant exerts anti-inflammatory effects mediated by DCs. This supernatant may protect immune system from highly infectious agents such as Salmonella typhi and can down-regulate pro-inflammatory pathways. PMID:23555025
Lack of efflux mediated quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi A
Baucheron, Sylvie; Monchaux, Isabelle; Le Hello, Simon; Weill, François-Xavier; Cloeckaert, Axel
2014-01-01
Salmonella enterica serovars Typhi and Paratyphi A isolates from human patients in France displaying different levels of resistance to quinolones or fluoroquinolones were studied for resistance mechanisms to these antimicrobial agents. All resistant isolates carried either single or multiple target gene mutations (i.e., in gyrA, gyrB, or parC) correlating with the resistance levels observed. Active efflux, through upregulation of multipartite efflux systems, has also been previously reported as contributing mechanism for other serovars. Therefore, we investigated also the occurrence of non-target gene mutations in regulatory regions affecting efflux pump expression. However, no mutation was detected in these regions in both Typhi and Paratyphi isolates of this study. Besides, no overexpression of the major efflux systems was observed for these isolates. Nevertheless, a large deletion of 2334 bp was identified in the acrS-acrE region of all S. Typhi strains but which did not affect the resistance phenotype. As being specific to S. Typhi, this deletion could be used for specific molecular detection purposes. In conclusion, the different levels of quinolone or FQ resistance in both S. Typhi and S. Paratyphi A seem to rely only on target modifications. PMID:24478769
Toapanta, Franklin R; Bernal, Paula J; Fresnay, Stephanie; Darton, Thomas C; Jones, Claire; Waddington, Claire S; Blohmke, Christoph J; Dougan, Gordon; Angus, Brian; Levine, Myron M; Pollard, Andrew J; Sztein, Marcelo B
2015-06-01
A new human oral challenge model with wild-type Salmonella Typhi (S. Typhi) was recently developed. In this model, ingestion of 104 CFU of Salmonella resulted in 65% of subjects developing typhoid fever (referred here as typhoid diagnosis -TD-) 5-10 days post-challenge. TD criteria included meeting clinical (oral temperature ≥38°C for ≥12 h) and/or microbiological (S. Typhi bacteremia) endpoints. One of the first lines of defense against pathogens are the cells of the innate immune system (e.g., monocytes, dendritic cells -DCs-). Various changes in circulating monocytes and DCs have been described in the murine S. Typhimurium model; however, whether similar changes are present in humans remains to be explored. To address these questions, a subset of volunteers (5 TD and 3 who did not develop typhoid despite oral challenge -NoTD-) were evaluated for changes in circulating monocytes and DCs. Expression of CD38 and CD40 were upregulated in monocytes and DCs in TD volunteers during the disease days (TD-0h to TD-96h). Moreover, integrin α4β7, a gut homing molecule, was upregulated on monocytes but not DCs. CD21 upregulation was only identified in DCs. These changes were not observed among NoTD volunteers despite the same oral challenge. Moreover, monocytes and DCs from NoTD volunteers showed increased binding to S. Typhi one day after challenge. These monocytes showed phosphorylation of p38MAPK, NFkB and Erk1/2 upon stimulation with S. Typhi-LPS-QDot micelles. In contrast, monocytes from TD volunteers showed only a moderate increase in S. Typhi binding 48 h and 96 h post-TD, and only Erk1/2 phosphorylation. This is the first study to describe different activation and migration profiles, as well as differential signaling patterns, in monocytes and DCs which relate directly to the clinical outcome following oral challenge with wild type S. Typhi.
Wu, Hong-Yan; Zhang, Xiao-Lian; Pan, Qin; Wu, Jianguo
2005-11-01
Salmonella enterica serovar Typhi (S. Typhi) is an important pathogen which infects humans exclusively and causes typhoid or enteric fever. Recently it has been discovered that type IVB pili, encoded by the S. Typhi pil operon located in the major pathogenicity island, may be important in the pathogenesis of epidemic enteric fever. To further investigate the roles of type IVB pili of S. Typhi, a 12-mer peptide (RQERSSLSKPVV), binding to the structural protein PilS of the type IVB pili of S. Typhi, was isolated with a ribosome display system. This peptide was designated as peptide R. We found that peptide R inhibited adhesion to/invasion of human monocytic THP-1 cells by piliated S. Typhi bacteria, but had no effects on nonpiliated S. Typhi bacteria. A random 12-mer peptide, of size and solubility equal to peptide R, served as a control on the specificity of peptide R. The specific interaction and binding equilibrium between the 12-mer peptide R and PilS protein was determined by isothermal titration calorimetry (ITC) and a binding constant Ka determined to be between 0.4 x 10(5) and 2.2 x 10(5)L mol(-1). Our findings suggest that the type IV pili-binding peptide R holds potential as an antibacterial peptide effective against S. Typhi infections, both in terms of prevention and therapeutic treatment. The data further provide insights into the understanding of the pathogenic roles of the type IVB pili of S. Typhi.
McArthur, Monica A; Fresnay, Stephanie; Magder, Laurence S; Darton, Thomas C; Jones, Claire; Waddington, Claire S; Blohmke, Christoph J; Dougan, Gordon; Angus, Brian; Levine, Myron M; Pollard, Andrew J; Sztein, Marcelo B
2015-05-01
Salmonella Typhi (S. Typhi), the causative agent of typhoid fever, causes significant morbidity and mortality worldwide. Currently available vaccines are moderately efficacious, and identification of immunological responses associated with protection or disease will facilitate the development of improved vaccines. We investigated S. Typhi-specific modulation of activation and homing potential of circulating regulatory T cells (Treg) by flow and mass cytometry using specimens obtained from a human challenge study. Peripheral blood mononuclear cells were obtained from volunteers pre- and at multiple time-points post-challenge with wild-type S. Typhi. We identified differing patterns of S. Typhi-specific modulation of the homing potential of circulating Treg between volunteers diagnosed with typhoid (TD) and those who were not (No TD). TD volunteers demonstrated up-regulation of the gut homing molecule integrin α4ß7 pre-challenge, followed by a significant down-regulation post-challenge consistent with Treg homing to the gut. Additionally, S. Typhi-specific Treg from TD volunteers exhibited up-regulation of activation molecules post-challenge (e.g., HLA-DR, LFA-1). We further demonstrate that depletion of Treg results in increased S. Typhi-specific cytokine production by CD8+ TEM in vitro. These results suggest that the tissue distribution of activated Treg, their characteristics and activation status may play a pivotal role in typhoid fever, possibly through suppression of S. Typhi-specific effector T cell responses. These studies provide important novel insights into the regulation of immune responses that are likely to be critical in protection against typhoid and other enteric infectious diseases.
Fadel, M A; Mohamed, S A; Abdelbacki, A M; El-Sharkawy, A H
2014-08-01
Typhoid is a serious disease difficult to be treated with conventional drugs. The aim of this study was to demonstrate a new method for the control of Salmonella typhi growth, through the interference with the bioelectric signals generated from the microbe during cell division by extremely low frequency electromagnetic waves (ELF-EMW-ELF-EM) at resonance frequency. Isolated Salmonella typhi was subjected to square amplitude modulated waves (QAMW) with different modulation frequencies from two generators with constant carrier frequency of 10 MHz, amplitude of 10 Vpp, modulating depth ± 2 Vpp and constant field strength of 200 V m(-1) at 37°C. Both the control and exposed samples were incubated at the same conditions during the experiment. The results showed that there was highly significant inhibition effect for Salm. typhi exposed to 0·8 Hz QAMW for a single exposure for 75 min. Dielectric relaxation, TEM and DNA results indicated highly significant changes in the molecular structure of the DNA and cellular membrane resulting from the exposure to the inhibiting EM waves. It was concluded that finding out the inhibiting resonance frequency of ELF-EM waves that deteriorates Salm. typhi growth will be promising method for the treatment of Salm. typhi infection either in vivo or in vitro. This new non-invasive technique for treatment of bacterial infections is of considerable interest for the use in medical and biotechnological applications. © 2014 The Society for Applied Microbiology.
... enteritis E coli enteritis Food poisoning Radiation enteritis Salmonella enteritis Shigella enteritis Staph aureus food poisoning Symptoms ... store food that needs to stay chilled. Images Salmonella typhi organism Yersinia enterocolitica organism Campylobacter jejuni organism ...
Xiong, Kun; Zhu, Chunyue; Chen, Zhijin; Zheng, Chunping; Tan, Yong; Rao, Xiancai; Cong, Yanguang
2017-01-01
Enteric fever is predominantly caused by Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A, and accounts for an annual global incidence of 26.9 millions. In recent years, the rate of S. Paratyphi A infection has progressively increased. Currently licensed vaccines for typhoid fever, live Ty21a vaccine, Vi subunit vaccine, and Vi-conjugate vaccine, confer inadequate cross immunoprotection against enteric fever caused by S. Paratyphi A. Therefore, development of bivalent vaccines against enteric fever is urgently required. The immunogenic Vi capsular polysaccharide is characteristically produced in S. Typhi, but it is absent in S. Paratyphi A. We propose that engineering synthesis of Vi in S. Paratyphi A live-attenuated vaccine may expand its protection range to cover S. Typhi. In this study, we cloned the viaB locus, which contains 10 genes responsible for Vi biosynthesis, and integrated into the chromosome of S. Paratyphi A CMCC 50093. Two virulence loci, htrA and phoPQ, were subsequently deleted to achieve a Vi-producing attenuated vaccine candidate. Our data showed that, despite more than 200 passages, the viaB locus was stably maintained in the chromosome of S. Paratyphi A and produced the Vi polysaccharide. Nasal immunization of the vaccine candidate stimulated high levels of Vi-specific and S. Paratyphi A-specific antibodies in mice sera as well as total sIgA in intestinal contents, and showed significant protection against wild-type challenge of S. Paratyphi A or S. Typhi. Our study show that the Vi-producing attenuated S. Paratyphi A is a promising bivalent vaccine candidate for the prevention of enteric fever. PMID:28484685
Rattanachaikunsopon, Pongsak; Phumkhachorn, Parichat
2010-01-01
Foods contaminated with Salmonella enterica serovar Typhi are a major cause of typhoid fever, leading to public health problems and economic losses worldwide. Nisin and rho-cymene were tested in this study for their antimicrobial activity against S. Typhi at 4 degrees C and 37 degrees C. Nisin and rho-cymene, when used separately, did not inhibit the bacterium at either temperature. A synergistic antimicrobial effect between both compounds was observed when they were used simultaneously. This synergism was greater at 37 degrees C than at 4 degrees C. The lowest concentrations of nisin and rho-cymene required for complete inhibition of S. Typhi at 37 degrees C were 0.3 ppm and 1.5 ppm, respectively, and 0.3 ppm and 2.5 ppm at 4 degrees C. The potential of nisin and rho-cymene to control an S. Typhi population on ready-to-eat Thai-style pork sausage was also examined. The compounds were able to eliminate the contaminating bacterium with concentrations depending on the bacterial cell number on the food.
Host adaptation of a bacterial toxin from the human pathogen Salmonella Typhi
Deng, Lingquan; Song, Jeongmin; Gao, Xiang; Wang, Jiawei; Yu, Hai; Chen, Xi; Varki, Nissi; Naito-Matsui, Yuko; Galán, Jorge E.; Varki, Ajit
2014-01-01
Salmonella Typhi is an exclusive human pathogen that causes typhoid fever. Typhoid toxin is a S. Typhi virulence factor that can reproduce most of the typhoid fever symptoms in experimental animals. Toxicity depends on toxin binding to terminally sialylated glycans on surface glycoproteins. Human glycans are unusual because of the lack of CMAH, which in other mammals converts N-acetylneuraminic acid (Neu5Ac) to N-glycolylneuraminic acid (Neu5Gc). Here we report that typhoid toxin binds to and is toxic towards cells expressing glycans terminated in Neu5Ac (expressed by humans) over glycans terminated in Neu5Gc (expressed by other mammals). Mice constitutively expressing CMAH thus displaying Neu5Gc in all tissues are resistant to typhoid toxin. The atomic structure of typhoid toxin bound to Neu5Ac reveals the structural bases for its binding specificity. These findings provide insight into the molecular bases for Salmonella Typhi’s host specificity and may help the development of therapies for typhoid fever. PMID:25480294
Epidemiology and risk factors for endemic typhoid fever in Uzbekistan.
Srikantiah, Padmini; Vafokulov, Sagdullo; Luby, Stephen P; Ishmail, Tharwat; Earhart, Kenneth; Khodjaev, Ne'mat; Jennings, Gregory; Crump, John A; Mahoney, Frank J
2007-07-01
To investigate the risk factors for infection with endemic typhoid fever in the Samarkand region of Uzbekistan. Case-control study of culture-confirmed bloodstream infection with Salmonella Typhi. Patients were compared to age-matched community controls. Salmonella Typhi isolates were tested for antimicrobial susceptibility. We enrolled 97 patients and 192 controls. The median age of patients was 19 years. In a conditional regression model, consumption of unboiled surface water outside the home [adjusted odds ratio (aOR)=3.0, 95% confidence interval (CI)=1.1-8.2], use of antimicrobials in the 2 weeks preceding onset of symptoms (aOR=12.2, 95% CI 4.0-37.0), and being a student (aOR=4.0, 95% CI 1.4-11.3) were independently associated with typhoid fever. Routinely washing vegetables (aOR 0.06, 95% CI 0.02-0.2) and dining at a tea-house (aOR 0.4, 95% CI 0.2-1.0) were associated with protection against illness. Salmonella Typhi resistant to ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole was identified in 6 (15%) of 41 isolates tested. Endemic typhoid fever in Uzbekistan is transmitted by contaminated water. Recent use of antimicrobials also increased risk of infection. Targeted efforts at improving drinking water quality, especially for students and young adults, are likely to decrease transmission of typhoid fever. Measures to decrease the unnecessary use of antimicrobials would be expected to reduce the risk of typhoid fever and decrease the spread of multiple drug-resistant Salmonella Typhi.
Baillie, Leslie W J; Rodriguez, Ana L; Moore, Stephen; Atkins, Helen S; Feng, Chiguang; Nataro, James P; Pasetti, Marcela F
2008-11-11
We previously demonstrated the ability of an orally administered attenuated Salmonella enterica serovar Typhimurium strain expressing the protective antigen (PA) of Bacillus anthracis to confer protection against lethal anthrax aerosol spore challenge [Stokes MG, Titball RW, Neeson BN, et al. Oral administration of a Salmonella enterica-based vaccine expressing Bacillus anthracis protective antigen confers protection against aerosolized B. anthracis. Infect Immun 2007;75(April (4)):1827-34]. To extend the utility of this approach to humans we constructed variants of S. enterica serovar Typhi Ty21a, an attenuated typhoid vaccine strain licensed for human use, which expressed and exported PA via two distinct plasmid-based transport systems: the Escherichia coli HlyA haemolysin and the S. Typhi ClyA export apparatus. Murine immunogenicity studies confirmed the ability of these constructs, especially Ty21a expressing the ClyA-PA fusion protein, to stimulate strong PA-specific immune responses following intranasal immunization. These responses were further enhanced by a subsequent boost with either parenterally delivered recombinant PA or the licensed US human alum-adsorbed anthrax vaccine (AVA). Anthrax toxin neutralizing antibody responses using this prime-boost regimen were rapid, vigorous and broad in nature. The results of this study demonstrate the feasibility of employing a mucosal prime with a licensed Salmonella Typhi vaccine strain followed by a parenteral protein boost to stimulate rapid protective immunity against anthrax.
Preechakasedkit, Pattarachaya; Pinwattana, Kulwadee; Dungchai, Wijitar; Siangproh, Weena; Chaicumpa, Wanpen; Tongtawe, Pongsri; Chailapakul, Orawon
2012-01-15
An immunochromatographic strip test using gold nanoparticles was developed for the rapid detection of Salmonella typhi (S. typhi) in human serum. The strip test based on the principle of sandwich immunoassay by the specific binding of antigens from S. typhi O901 and antibody of S. typhi O901 on a nitrocellulose membrane. Antibody-gold nanoparticle conjugate was used as the label and was coated onto a glass fiber membrane, which was used as a conjugate pad. To create a test and control zone, antibody of S. typhi O901 and an anti-IgG were dotted on the nitrocellulose membrane, respectively. Positive samples were displayed as red dots at the test and control zones of the nitrocellulose membrane, while negative samples resulted in a red dot only in the control zone. The limit of detection (LOD) was found to be 1.14×10(5) cfu mL(-1), which could be visually detected by the naked eye within 15 min. This strip test provided a lower detection limit and analysis time than a dot blot immunoassay (8.88×10(6) cfu mL(-1) for LOD and 110 min for reaction time). In addition, our immunochromatographic strip test was employed to detect S. typhi in human serum effectively, with high accuracy. This strip test offers great promise for a rapid, simple and low-cost analysis of S. typhi. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhao, Xin; Liu, Rui; Tang, Hao; Osei-Adjei, George; Xu, Shungao; Zhang, Ying; Huang, Xinxiang
2018-05-08
Bacterial non-coding RNAs (ncRNAs) are widely studied and found to play important roles in regulating various cellular processes. Recently, many ncRNAs have been discovered to be transcribed or processed from 3' untranslated regions (3' UTRs). Here we reported a novel 3' UTR-derived ncRNA, RibS, which could influence biofilm formation of Salmonella enterica serovar Typhi (S. Typhi). RibS was confirmed to be a ∼700 nt processed product produced by RNase III-catalyzed cleavage from the 3' UTR of riboflavin synthase subunit alpha mRNA, RibE. Overexpression of RibS increased the expression of the cyclopropane fatty acid synthase gene, cfa, which was located at the antisense strand. Biofilm formation of S. Typhi was enhanced by overexpressing RibS both in the wild type strain and cfa deletion mutant. Deletion of cfa attenuated biofilm formation of S. Typhi, while complementation of cfa partly restored the phenotype. Moreover, overexpressing cfa enhanced the biofilm formation of S. Typhi. In summary, RibS has been identified as a novel ncRNA derived from the 3' UTR of RibE that promotes biofilm formation of S. Typhi, and it appears to do so, at least in part, by increasing the expression of cfa. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Fresnay, Stephanie; McArthur, Monica A; Magder, Laurence; Darton, Thomas C; Jones, Claire; Waddington, Claire S; Blohmke, Christoph J; Angus, Brian; Levine, Myron M; Pollard, Andrew J; Sztein, Marcelo B
2016-03-01
Typhoid fever, caused by the human-restricted organism Salmonella Typhi (S. Typhi), is a major public health problem worldwide. Development of novel vaccines remains imperative, but is hampered by an incomplete understanding of the immune responses that correlate with protection. Recently, a controlled human infection model was re-established in which volunteers received ~10(3) cfu wild-type S. Typhi (Quailes strain) orally. Twenty-one volunteers were evaluated for their cell-mediated immune (CMI) responses. Ex vivo PBMC isolated before and up to 1 year after challenge were exposed to three S. Typhi-infected targets, i.e., autologous B lymphoblastoid cell-lines (B-LCL), autologous blasts and HLA-E restricted AEH B-LCL cells. CMI responses were evaluated using 14-color multiparametric flow cytometry to detect simultaneously five intracellular cytokines/chemokines (i.e., IL-17A, IL-2, IFN-g, TNF-a and MIP-1b) and a marker of degranulation/cytotoxic activity (CD107a). Herein we provide the first evidence that S. Typhi-specific CD8+ responses correlate with clinical outcome in humans challenged with wild-type S. Typhi. Higher multifunctional S. Typhi-specific CD8+ baseline responses were associated with protection against typhoid and delayed disease onset. Moreover, following challenge, development of typhoid fever was accompanied by decreases in circulating S. Typhi-specific CD8+ T effector/memory (TEM) with gut homing potential, suggesting migration to the site(s) of infection. In contrast, protection against disease was associated with low or no changes in circulating S. Typhi-specific TEM. These studies provide novel insights into the protective immune responses against typhoid disease that will aid in selection and development of new vaccine candidates.
Hannan, Abdul; Asghar, Samra; Naeem, Tahir; Ikram Ullah, Muhammad; Ahmed, Ijaz; Aneela, Syeda; Hussain, Shabbir
2013-07-01
Alternative herbal medicine has been used to treat various infections from centuries. Natural plants contain phytoconstituents having similar chemical properties as of synthetic antibiotics. Typhoid fever is a serious infection and failure of its treatment emerged multi-drug resistant (MDR) bugs of Salmonella typhi. Due to multiple and repeated issues with antibiotics efficacy, it became essential to evaluate biological properties of plants from different geographical origins. Mango leaves have been Reported for various medicinal effects like antioxidant, antimicrobial, antihelminthic, antidiabetic and antiallergic etc. Objective of present study was to investigate anti-typhoid properties of acetone mango leaf extract (AMLE) against antibiotic sensitive and MDR S. typhi isolates. A total of 50 isolates of S. typhi including MDR (n=30) and antibiotic sensitive (n=20) were investigated. Staphylococcus aureus (ATCC 25923) and Salmonella typhimurium (ATCC14028) were used as quality control strains. AMLE was prepared and its antibacterial activity was evaluated by agar well diffusion screening method and minimum inhibitory concentration (MIC), by agar dilution technique. Zone of inhibition (mm) of AMLE against MDR and antibiotic sensitive isolates was 18±1.5mm (Mean±S.D). Zone of S. aureus (ATCC 25923) and S. typhimurium (ATCC14028) was 20±1.5mm (Mean±S.D). MIC of AMLE was Reported in range from 10-50 mg/ml. The present study described the inhibitory effects of mango leaves against S. typhi.
Tran Vu Thieu, Nga; Dongol, Sabina; Le Thi Phuong, Tu; Voong Vinh, Phat; Arjyal, Amit; Martin, Laura B.; Rondini, Simona; Farrar, Jeremy J.; Dolecek, Christiane; Basnyat, Buddha; Baker, Stephen
2013-01-01
Background Enteric fever, a systemic infection caused by the bacteria Salmonella Typhi and Salmonella Paratyphi A, is endemic in Kathmandu, Nepal. Previous work identified proximity to poor quality water sources as a community-level risk for infection. Here, we sought to examine individual-level risk factors related to hygiene and sanitation to improve our understanding of the epidemiology of enteric fever in this setting. Methodology and principal findings A matched case-control analysis was performed through enrollment of 103 blood culture positive enteric fever patients and 294 afebrile community-based age and gender-matched controls. A detailed questionnaire was administered to both cases and controls and the association between enteric fever infection and potential exposures were examined through conditional logistic regression. Several behavioral practices were identified as protective against infection with enteric fever, including water storage and hygienic habits. Additionally, we found that exposures related to poor water and socioeconomic status are more influential in the risk of infection with S. Typhi, whereas food consumption habits and migration play more of a role in risk of S. Paratyphi A infection. Conclusions and significance Our work suggests that S. Typhi and S. Paratyphi A follow different routes of infection in this highly endemic setting and that sustained exposure to both serovars probably leads to the development of passive immunity. In the absence of a polyvalent vaccine against S. Typhi and S. Paratyphi A, we advocate better systems for water treatment and storage, improvements in the quality of street food, and vaccination with currently available S. Typhi vaccines. PMID:23991240
Baillie, Leslie W.J.; Rodriguez, Ana L.; Moore, Stephen; Atkins, Helen S.; Feng, Chiguang; Nataro, James P.; Pasetti, Marcela F.
2008-01-01
We previously demonstrated the ability of an orally administered attenuated Salmonella enterica serovar Typhimurium strain expressing the protective antigen (PA) of Bacillus anthracis to confer protection against lethal anthrax aerosol spore challenge [1]. To extend the utility of this approach to humans we constructed variants of S. enterica serovar Typhi Ty21a, an attenuated typhoid vaccine strain licensed for human use, which expressed and exported PA via two distinct plasmid-based transport systems: the Escherichia coli HlyA haemolysin and the S. Typhi ClyA export apparatus. Murine immunogenicity studies confirmed the ability of these constructs, especially Ty21a expressing the ClyA-PA fusion protein, to stimulate strong PA-specific immune responses following intranasal immunization. These responses were further enhanced by a subsequent boost with either parenterally delivered recombinant PA or the licensed US human alum-adsorbed anthrax vaccine (AVA). Anthrax toxin neutralizing antibody responses using this prime-boost regimen were rapid, vigorous and broad in nature. The results of this study demonstrate the feasibility of employing a mucosal prime with a licensed Salmonella Typhi vaccine strain followed by a parenteral protein boost to stimulate rapid protective immunity against anthrax. PMID:18805452
Echeita, M. A.; Usera, M. A.
1998-01-01
Salmonella enterica serotype Typhi strains belonging to eight different outbreaks of typhoid fever that occurred in Spain between 1989 and 1994 were analyzed by ribotyping and pulsed-field gel electrophoresis. For three outbreaks, two different patterns were detected for each outbreak. The partial digestion analysis by the intron-encoded endonuclease I-CeuI of the two different strains from each outbreak provided an excellent tool for examining the organization of the genomes of epidemiologically related strains. S. enterica serotype Typhi seems to be more susceptible than other serotypes to genetic rearrangements produced by homologous recombinations between rrn operons; these rearrangements do not substantially alter the stability or survival of the bacterium. We conclude that genetic rearrangements can occur during the emergence of an outbreak. PMID:9650981
Murphy, J R; Wasserman, S S; Baqar, S; Schlesinger, L; Ferreccio, C; Lindberg, A A; Levine, M M
1989-01-01
Experiments were performed in Baltimore, Maryland and in Santiago, Chile, to determine the level of Salmonella typhi antigen-driven in vitro lymphocyte replication response which signifies specific acquired immunity to this bacterium and to determine the best method of data analysis and form of data presentation. Lymphocyte replication was measured as incorporation of 3H-thymidine into desoxyribonucleic acid. Data (ct/min/culture) were analyzed in raw form and following log transformation, by non-parametric and parametric statistical procedures. A preference was developed for log-transformed data and discriminant analysis. Discriminant analysis of log-transformed data revealed 3H-thymidine incorporation rates greater than 3,433 for particulate S. typhi, Ty2 antigen stimulated cultures signified acquired immunity at a sensitivity and specificity of 82.7; for soluble S. typhi O polysaccharide antigen-stimulated cultures, ct/min/culture values of greater than 1,237 signified immunity (sensitivity and specificity 70.5%). PMID:2702777
Kanj, Souha S; Kanafani, Zeina A; Shehab, Marwa; Sidani, Nisreen; Baban, Tania; Baltajian, Kedak; Dakdouki, Ghenwa K; Zaatari, Mohamad; Araj, George F; Wakim, Rima Hanna; Dbaibo, Ghassan; Matar, Ghassan M
2015-06-01
The objective of this study was to examine the epidemiology and the clinical manifestations of typhoid fever as well as the susceptibility and strain relatedness of Salmonella typhi isolates in Lebanon from 2006 to 2007. A total of 120 patients with typhoid fever were initially identified from various areas of the country based on positive culture results for S. typhi from blood, urine, stools, bone marrow and/or positive serology. Clinical, microbiological and molecular analysis was performed on cases with complete data available. These results indicated that drinking water was an unlikely mode of transmission of the infection. Despite increasing reports of antimicrobial resistance among S. typhi isolates, the vast majority of these isolates were susceptible to various antibiotic agents, including ampicillin, cephalosporins, quinolones, and trimethoprim/sulfamethoxazole. Molecular analysis of the isolates revealed a predominance of one single genotype with no variation in distribution across the geographical regions. Copyright © 2014 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.
Levina, G A; Prozorovskiĭ, S V; Iagud, S L; Grumman, M I; Gorelov, A L
1981-07-01
The possibility of the induction and persistence of S. typhi L-forms in the process of experimental typhoid infection and carriership has been studied in rabbits. This study has revealed that the process of L-transformation leading to the appearance of the imbalanced growth forms and unstable L-forms of S. typhi in the organism of the animals infected with S. typhi culture may occur under the conditions of carriership. Such changed forms can be detected in the organism of the animals 18 months after the primary infection.
The emergence and outbreak of multidrug-resistant typhoid fever in China.
Yan, Meiying; Li, Xinlan; Liao, Qiaohong; Li, Fang; Zhang, Jing; Kan, Biao
2016-06-22
Typhoid fever remains a severe public health problem in developing countries. The emergence of resistant typhoid, particularly multidrug-resistant typhoid infections, highlights the necessity of monitoring the resistance characteristics of this invasive pathogen. In this study, we report a typhoid fever outbreak caused by multidrug-resistant Salmonella enterica serovar Typhi strains with an ACSSxtT pattern. Resistance genes conferring these phenotypes were harbored by a large conjugative plasmid, which increases the threat of Salmonella Typhi and thus requires close surveillance for dissemination of strains containing such genes.
The emergence and outbreak of multidrug-resistant typhoid fever in China
Yan, Meiying; Li, Xinlan; Liao, Qiaohong; Li, Fang; Zhang, Jing; Kan, Biao
2016-01-01
Typhoid fever remains a severe public health problem in developing countries. The emergence of resistant typhoid, particularly multidrug-resistant typhoid infections, highlights the necessity of monitoring the resistance characteristics of this invasive pathogen. In this study, we report a typhoid fever outbreak caused by multidrug-resistant Salmonella enterica serovar Typhi strains with an ACSSxtT pattern. Resistance genes conferring these phenotypes were harbored by a large conjugative plasmid, which increases the threat of Salmonella Typhi and thus requires close surveillance for dissemination of strains containing such genes. PMID:27329848
Effect of the Antimutagens Vanillin and Cinnamaldehyde on the / Spontaneous Mutation Spectra of Salmonella TAlO4
Vanillin (VAN) and cinnamaldehyde (CIN) are dietary antimutagens that, when added to assay plates, reduced the spontaneous mutant frequency in Salmonella typhi...
Abera, Bayeh; Yitayew, Gashaw; Amare, Hiwot
2016-02-28
Food handlers play a major role in the transmission of Salmonella serotype Typhi (S. Typhi), Shigella, and intestinal parasites. This study was conducted to determine the prevalence of S. Typhi, Shigella, and intestinal parasites among food handlers at Bahir Dar University, Ethiopia. A cross-sectional study was conducted in June 2014. Stool samples from 410 food handlers were examined for bacterial pathogens and parasites. Pearson's Chi-square test, Fisher's exact test, and bivariate and multivariate logistic regression analyses were used where appropriate. The prevalence of S. Typhi, Shigella, and intestinal parasites among food handlers was 11 (2.7%), 5 (1.2%), and 53 (12.9%), respectively. Among eight intestinal parasites identified, the two most prevalent intestinal parasites were hookworm 26 (6.3%) and G. lamblia 13 (3.1%). Male food handlers were more likely to be positive than were female food handlers for S. Typhi and intestinal parasites. Furthermore, food handlers who had a history of regular medical checkups were less infected with intestinal parasites. Being male (AOR: 2.1, 95% CI: 1.2, 4.4) and not attending medical checkups (AOR: 2.9, 95% CI: 1.4, 6.1) were independent predictors of intestinal parasitic infection in food handlers. Male food handlers were reluctant to have regular parasitological examinations. There was a high proportion of food handlers with S. Typhi, Shigella, and intestinal parasites in their faces. Special emphasis should be placed on S. Typhicarriers and male food handlers. Education and periodical medical checkups for intestinal parasites and S. Typhi should be considered as intervention measures.
Neil, Karen P; Sodha, Samir V; Lukwago, Luswa; O-Tipo, Shikanga; Mikoleit, Matthew; Simington, Sherricka D; Mukobi, Peter; Balinandi, Stephen; Majalija, Samuel; Ayers, Joseph; Kagirita, Atek; Wefula, Edward; Asiimwe, Frank; Kweyamba, Vianney; Talkington, Deborah; Shieh, Wun-Ju; Adem, Patricia; Batten, Brigid C; Zaki, Sherif R; Mintz, Eric
2012-04-01
Salmonella enterica serovar Typhi (Salmonella Typhi) causes an estimated 22 million typhoid fever cases and 216 000 deaths annually worldwide. In Africa, the lack of laboratory diagnostic capacity limits the ability to recognize endemic typhoid fever and to detect outbreaks. We report a large laboratory-confirmed outbreak of typhoid fever in Uganda with a high proportion of intestinal perforations (IPs). A suspected case of typhoid fever was defined as fever and abdominal pain in a person with either vomiting, diarrhea, constipation, headache, weakness, arthralgia, poor response to antimalarial medications, or IP. From March 4, 2009 to April 17, 2009, specimens for blood and stool cultures and serology were collected from suspected cases. Antimicrobial susceptibility testing and pulsed-field gel electrophoresis (PFGE) were performed on Salmonella Typhi isolates. Surgical specimens from patients with IP were examined. A community survey was conducted to characterize the extent of the outbreak. From December 27, 2007 to July 30, 2009, 577 cases, 289 hospitalizations, 249 IPs, and 47 deaths from typhoid fever occurred; Salmonella Typhi was isolated from 27 (33%) of 81 patients. Isolates demonstrated multiple PFGE patterns and uniform susceptibility to ciprofloxacin. Surgical specimens from 30 patients were consistent with typhoid fever. Estimated typhoid fever incidence in the community survey was 8092 cases per 100 000 persons. This typhoid fever outbreak was detected because of an elevated number of IPs. Underreporting of milder illnesses and delayed and inadequate antimicrobial treatment contributed to the high perforation rate. Enhancing laboratory capacity for detection is critical to improving typhoid fever control.
Dufresne, Karine; Saulnier-Bellemare, Julie; Daigle, France
2018-01-01
The human-specific pathogen Salmonella enterica serovar Typhi causes typhoid, a major public health issue in developing countries. Several aspects of its pathogenesis are still poorly understood. S . Typhi possesses 14 fimbrial gene clusters including 12 chaperone-usher fimbriae ( stg, sth, bcf , fim, saf , sef , sta, stb, stc, std, ste , and tcf ). These fimbriae are weakly expressed in laboratory conditions and only a few are actually characterized. In this study, expression of all S . Typhi chaperone-usher fimbriae and their potential roles in pathogenesis such as interaction with host cells, motility, or biofilm formation were assessed. All S . Typhi fimbriae were better expressed in minimal broth. Each system was overexpressed and only the fimbrial gene clusters without pseudogenes demonstrated a putative major subunits of about 17 kDa on SDS-PAGE. Six of these (Fim, Saf, Sta, Stb, Std, and Tcf) also show extracellular structure by electron microscopy. The impact of fimbrial deletion in a wild-type strain or addition of each individual fimbrial system to an S . Typhi afimbrial strain were tested for interactions with host cells, biofilm formation and motility. Several fimbriae modified bacterial interactions with human cells (THP-1 and INT-407) and biofilm formation. However, only Fim fimbriae had a deleterious effect on motility when overexpressed. Overall, chaperone-usher fimbriae seem to be an important part of the balance between the different steps (motility, adhesion, host invasion and persistence) of S . Typhi pathogenesis.
Hindle, Zoë; Chatfield, Steven N.; Phillimore, Jo; Bentley, Matthew; Johnson, Julie; Cosgrove, Catherine A.; Ghaem-Maghami, Marjan; Sexton, Amy; Khan, Mohammad; Brennan, Frank R.; Everest, Paul; Wu, Tao; Pickard, Derek; Holden, David W.; Dougan, Gordon; Griffin, George E.; House, Deborah; Santangelo, Joseph D.; Khan, Shahid A.; Shea, Jaqueline E.; Feldman, Robert G.; Lewis, David J. M.
2002-01-01
The attenuation and immunogenicity of two novel Salmonella vaccine strains, Salmonella enterica serovar Typhi (Ty2 ΔaroC ΔssaV, designated ZH9) and S. enterica serovar Typhimurium (TML ΔaroC ΔssaV, designated WT05), were evaluated after their oral administration to volunteers as single escalating doses of 107, 108, or 109 CFU. ZH9 was well tolerated, not detected in blood, nor persistently excreted in stool. Six of nine volunteers elicited anti-serovar Typhi lipopolysaccharide (LPS) immunoglobulin A (IgA) antibody-secreting cell (ASC) responses, with three of three vaccinees receiving 108 and two of three receiving 109 CFU which elicited high-titer LPS-specific serum IgG. WT05 was also well tolerated with no diarrhea, although the administration of 108 and 109 CFU resulted in shedding in stools for up to 23 days. Only volunteers immunized with 109 CFU of WT05 mounted detectable serovar Typhimurium LPS-specific ASC responses and serum antibody responses were variable. These data indicate that mutations in type III secretion systems may provide a route to the development of live vaccines in humans and highlight significant differences in the potential use of serovars Typhimurium and Typhi. PMID:12065485
Sundara Baalaji, N; Mathew, M K; Krishnaswamy, S
2006-10-01
The immunodominant trimeric beta-barrel outer membrane protein OmpC from Salmonella typhi, the causative agent of typhoid, has been functionally characterized here. The activity in the vesicle environment was studied in vitro using OmpC reconstituted into proteoliposomes. Passage of polysaccharides and polyethyleneglycols through OmpC has been examined to determine the permeability properties. The relative rate of neutral solute flux yields a radius of 1.1 nm for the S. typhi OmpC pore. This is almost double the pore size of Escherichia coli. This provides an example of large pore size present in the porins that form trimers as in the general bacterial porin family. The method used in this study provides a good membrane model for functional studies of porins.
Klemm, Elizabeth J; Shakoor, Sadia; Page, Andrew J; Qamar, Farah Naz; Judge, Kim; Saeed, Dania K; Wong, Vanessa K; Dallman, Timothy J; Nair, Satheesh; Baker, Stephen; Shaheen, Ghazala; Qureshi, Shahida; Yousafzai, Mohammad Tahir; Saleem, Muhammad Khalid; Hasan, Zahra; Dougan, Gordon; Hasan, Rumina
2018-02-20
Antibiotic resistance is a major problem in Salmonella enterica serovar Typhi, the causative agent of typhoid. Multidrug-resistant (MDR) isolates are prevalent in parts of Asia and Africa and are often associated with the dominant H58 haplotype. Reduced susceptibility to fluoroquinolones is also widespread, and sporadic cases of resistance to third-generation cephalosporins or azithromycin have also been reported. Here, we report the first large-scale emergence and spread of a novel S Typhi clone harboring resistance to three first-line drugs (chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole) as well as fluoroquinolones and third-generation cephalosporins in Sindh, Pakistan, which we classify as extensively drug resistant (XDR). Over 300 XDR typhoid cases have emerged in Sindh, Pakistan, since November 2016. Additionally, a single case of travel-associated XDR typhoid has recently been identified in the United Kingdom. Whole-genome sequencing of over 80 of the XDR isolates revealed remarkable genetic clonality and sequence conservation, identified a large number of resistance determinants, and showed that these isolates were of haplotype H58. The XDR S Typhi clone encodes a chromosomally located resistance region and harbors a plasmid encoding additional resistance elements, including the bla CTX-M-15 extended-spectrum β-lactamase, and carrying the qnrS fluoroquinolone resistance gene. This antibiotic resistance-associated IncY plasmid exhibited high sequence identity to plasmids found in other enteric bacteria isolated from widely distributed geographic locations. This study highlights three concerning problems: the receding antibiotic arsenal for typhoid treatment, the ability of S Typhi to transform from MDR to XDR in a single step by acquisition of a plasmid, and the ability of XDR clones to spread globally. IMPORTANCE Typhoid fever is a severe disease caused by the Gram-negative bacterium Salmonella enterica serovar Typhi. Antibiotic-resistant S Typhi strains have become increasingly common. Here, we report the first large-scale emergence and spread of a novel extensively drug-resistant (XDR) S Typhi clone in Sindh, Pakistan. The XDR S Typhi is resistant to the majority of drugs available for the treatment of typhoid fever. This study highlights the evolving threat of antibiotic resistance in S Typhi and the value of antibiotic susceptibility testing and whole-genome sequencing in understanding emerging infectious diseases. We genetically characterized the XDR S Typhi to investigate the phylogenetic relationship between these isolates and a global collection of S Typhi isolates and to identify multiple genes linked to antibiotic resistance. This S Typhi clone harbored a promiscuous antibiotic resistance plasmid previously identified in other enteric bacteria. The increasing antibiotic resistance in S Typhi observed here adds urgency to the need for typhoid prevention measures. Copyright © 2018 Klemm et al.
Ten years experience of Salmonella infections in Cambridge, UK.
Matheson, Nicholas; Kingsley, Robert A; Sturgess, Katherine; Aliyu, Sani H; Wain, John; Dougan, Gordon; Cooke, Fiona J
2010-01-01
Review of all Salmonella infections diagnosed in the Cambridge area over 10 years. All Salmonella enterica isolated in the Clinical Microbiology Laboratory, Addenbrooke's Hospital between 1.1.1999 and 31.12.2008 were included. Patient demographics, serotype and additional relevant details (travel history, resistance-type, phage-type) were recorded. 1003 episodes of Salmonella gastroenteritis were confirmed by stool culture, representing 88 serotypes. Serotypes Enteritidis (59%), Typhimurium (4.7%), Virchow (2.6%), Newport (1.8%) and Braenderup (1.7%) were the 5 most common isolates. There were an additional 37 invasive Salmonella infections (32 blood cultures, 4 tissue samples, 1 CSF). 13/15 patients with Salmonella Typhi or Salmonella Paratyphi isolated from blood or faeces with an available travel history had returned from the Indian subcontinent. 8/10 S. Typhi or Paratyphi isolates tested had reduced susceptibility to fluoroquinolones (MIC > or = 0.125 mg/L). 7/21 patients with non-typhoidal Salmonella bacteraemia were known to be immunosuppressed. This study describes Salmonella serotypes circulating within a defined geographical area over a decade. Prospective molecular analysis of isolates of S. enterica by multi-locus sequence typing (MLST) and single nucleotide polymorphism (SNP) detection will determine the geo-phylogenetic relationship of isolates within our region. 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
Kobayashi, Tetsuro; Kutsuna, Satoshi; Hayakawa, Kayoko; Kato, Yasuyuki; Ohmagari, Norio; Uryu, Hideko; Yamada, Ritsuko; Kashiwa, Naoyuki; Nei, Takahito; Ehara, Akihito; Takei, Reiko; Mori, Nobuaki; Yamada, Yasuhiro; Hayasaka, Tomomi; Kagawa, Narito; Sugawara, Momoko; Suzaki, Ai; Takahashi, Yuno; Nishiyama, Hiroyuki; Morita, Masatomo; Izumiya, Hidemasa; Ohnishi, Makoto
2016-01-01
For the first time in 16 years, a food-borne outbreak of typhoid fever due to Salmonella enterica serotype Typhi was reported in Japan. Seven patients consumed food in an Indian buffet at a restaurant in the center of Tokyo, while one was a Nepali chef in the restaurant, an asymptomatic carrier and the implicated source of this outbreak. The multiple-locus variable-number tandem repeat analysis showed 100% consistency in the genomic sequence for five of the eight cases. PMID:26621565
Salmonella Infections in Childhood.
Bula-Rudas, Fernando J; Rathore, Mobeen H; Maraqa, Nizar F
2015-08-01
Salmonella are gram-negative bacilli within the family Enterobacteriaceae. They are the cause of significant morbidity and mortality worldwide. Animals (pets) are an important reservoir for nontyphoidal Salmonella, whereas humans are the only natural host and reservoir for Salmonella Typhi. Salmonella infections are a major cause of gastroenteritis worldwide. They account for an estimated 2.8 billion cases of diarrheal disease each year. The transmission of Salmonella is frequently associated with the consumption of contaminated water and food of animal origin, and it is facilitated by conditions of poor hygiene. Nontyphoidal Salmonella infections have a worldwide distribution, whereas most typhoidal Salmonella infections in the United States are acquired abroad. In the United States, Salmonella is a common agent for food-borne–associated infections. Several outbreaks have been identified and are most commonly associated with agricultural products. Nontyphoidal Salmonella infection is usually characterized by a self-limited gastroenteritis in immunocompetent hosts in industrialized countries, but it may also cause invasive disease in vulnerable individuals (eg, children less than 1 year of age, immunocompromised). Antibiotic treatment is not recommended for treatment of mild to moderate gastroenteritis by nontyphoidal Salmonella in immunocompetent adults or children more than 1 year of age. Antibiotic treatment is recommended for nontyphoidal Salmonella infections in infants less than 3 months of age, because they are at higher risk for bacteremia and extraintestinal complications. Typhoid (enteric) fever and its potential complications have a significant impact on children, especially those who live in developing countries. Antibiotic treatment of typhoid fever has become challenging because of the emergence of Salmonella Typhi strains that are resistant to classically used first-line agents: ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol. The choice of antibiotics for the management of typhoid fever should be guided by the local resistance pattern. Recommendations include using an extended spectrum cephalosporin, azithromycin, or a fluoroquinolone. Fecal carriage of Salmonella is an important factor in the spread of the organism to healthy individuals. The most important measures to prevent the spread and outbreaks of Salmonella infections and typhoid fever are adequate sanitation protocols for food processing and handling as well as hand hygiene. In the United States, 2 vaccines are commercially available against Salmonella Typhi. The WHO recommends the use of these vaccines in endemic areas and for outbreak control.
Kohbata, S; Takahashi, M; Yabuuchi, E
1983-01-01
Two lactose-fermenting Salmonella typhi strains were isolated from bile and blood specimens of a typhoid fever patient who underwent a cholecystectomy due to cholelithiasis. One lactose-fermenting S. typhi strain was also isolated from a pus specimen which was obtained at the tip of the T-shaped tube withdrawn from the operative wound of the common bile duct of the patient. These three lactose-fermenting isolates: GIFU 11924 from bile, GIFU 11926 from pus, and GIFU 11927 from blood, were phenotypically identical to the type strain (GIFU 11801 = ATCC 19430 = NCTC 8385) of S. typhi, except that the three strains fermented lactose and failed to blacken the butt of Kligler iron agar or triple sugar iron agar medium. All three lactose-fermenting strains were resistant to chloramphenicol, ampicillin, sulfomethoxazole, trimethoprim, gentamicin, cephaloridine, and four other antimicrobial agents. The type strain was uniformly susceptible to these 10 drugs. The strain GIFU 11925, a lactose-negative dissociant from strain GIFU 11926, was also susceptible to these drugs, with the sole exception of chloramphenicol (minimal inhibitory concentration, 100 micrograms/ml). PMID:6630471
Ortiz, V; Isibasi, A; García-Ortigoza, E; Kumate, J
1989-01-01
The studies reported here were undertaken to assess the ability of the outer membrane proteins (OMPs) of Salmonella typhi to induce a humoral immune response in humans with typhoid fever. OMPs were isolated with the nonionic detergent Triton X-100 and were found to be contaminated with approximately 4% lipopolysaccharide. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns showed protein bands with molecular size ranges from 17 to 70 kilodaltons; the major groups of proteins were those that correspond to the porins and OmpA of gram-negative bacteria. Rabbit antiserum to OMPs or to S. typhi recognized OMPs after absorption with lipopolysaccharide. Sera from patients with typhoid fever contained immunoglobulin M antibodies which reacted with a protein of 28 kilodaltons and immunoglobulin G antibodies which reacted mainly with the porins, as determined by immunoblotting. These results indicate that the porins are the major immunogenic OMPs from S. typhi and that the immune response induced in the infection could be related to the protective status. Images PMID:2768450
Dynamic Modularity of Host Protein Interaction Networks in Salmonella Typhi Infection
Dhal, Paltu Kumar; Barman, Ranjan Kumar; Saha, Sudipto; Das, Santasabuj
2014-01-01
Background Salmonella Typhi is a human-restricted pathogen, which causes typhoid fever and remains a global health problem in the developing countries. Although previously reported host expression datasets had identified putative biomarkers and therapeutic targets of typhoid fever, the underlying molecular mechanism of pathogenesis remains incompletely understood. Methods We used five gene expression datasets of human peripheral blood from patients suffering from S. Typhi or other bacteremic infections or non-infectious disease like leukemia. The expression datasets were merged into human protein interaction network (PIN) and the expression correlation between the hubs and their interacting proteins was measured by calculating Pearson Correlation Coefficient (PCC) values. The differences in the average PCC for each hub between the disease states and their respective controls were calculated for studied datasets. The individual hubs and their interactors with expression, PCC and average PCC values were treated as dynamic subnetworks. The hubs that showed unique trends of alterations specific to S. Typhi infection were identified. Results We identified S. Typhi infection-specific dynamic subnetworks of the host, which involve 81 hubs and 1343 interactions. The major enriched GO biological process terms in the identified subnetworks were regulation of apoptosis and biological adhesions, while the enriched pathways include cytokine signalling in the immune system and downstream TCR signalling. The dynamic nature of the hubs CCR1, IRS2 and PRKCA with their interactors was studied in detail. The difference in the dynamics of the subnetworks specific to S. Typhi infection suggests a potential molecular model of typhoid fever. Conclusions Hubs and their interactors of the S. Typhi infection-specific dynamic subnetworks carrying distinct PCC values compared with the non-typhoid and other disease conditions reveal new insight into the pathogenesis of S. Typhi. PMID:25144185
Sabbagh, Sébastien C.; Lepage, Christine; McClelland, Michael; Daigle, France
2012-01-01
The human-adapted Salmonella enterica serovar Typhi (S. Typhi) causes a systemic infection known as typhoid fever. This disease relies on the ability of the bacterium to survive within macrophages. In order to identify genes involved during interaction with macrophages, a pool of approximately 105 transposon mutants of S. Typhi was subjected to three serial passages of 24 hours through human macrophages. Mutants recovered from infected macrophages (output) were compared to the initial pool (input) and those significantly underrepresented resulted in the identification of 130 genes encoding for cell membrane components, fimbriae, flagella, regulatory processes, pathogenesis, and many genes of unknown function. Defined deletions in 28 genes or gene clusters were created and mutants were evaluated in competitive and individual infection assays for uptake and intracellular survival during interaction with human macrophages. Overall, 26 mutants had defects in the competitive assay and 14 mutants had defects in the individual assay. Twelve mutants had defects in both assays, including acrA, exbDB, flhCD, fliC, gppA, mlc, pgtE, typA, waaQGP, SPI-4, STY1867-68, and STY2346. The complementation of several mutants by expression of plasmid-borne wild-type genes or gene clusters reversed defects, confirming that the phenotypic impairments within macrophages were gene-specific. In this study, 35 novel phenotypes of either uptake or intracellular survival in macrophages were associated with Salmonella genes. Moreover, these results reveal several genes encoding molecular mechanisms not previously known to be involved in systemic infection by human-adapted typhoidal Salmonella that will need to be elucidated. PMID:22574205
Sharma, Priyanka; Dahiya, Sushila; Manral, Neelam; Kumari, Bhavana; Kumar, Sambuddha; Pandey, Sangeeta; Sood, Seema; Das, Bimal Kumar; Kapil, Arti
2018-01-01
The present study was undertaken to analyse the trend in prevalence of culture-positive typhoid fever during the last decade and to determine antimicrobial susceptibility profile of Salmonella Typhi and Salmonella Paratyphi A isolated from patients of enteric fever presenting to our hospital. All the culture-positive enteric fever cases during 2005-2016 presenting to our Hospital were included in the study. Antimicrobial susceptibility was done against chloramphenicol, amoxicillin, co-trimoxazole, ciprofloxacin, ofloxacin, levofloxacin, pefloxacin, ceftriaxone and azithromycin as per corresponding CLSI guidelines for each year. We also analysed the proportion of culture positivity during 1993-2016 in light of the antibiotic consumption data from published literature. A total of 1066 strains-S. Typhi (772) and S. Paratyphi A (294) were isolated from the blood cultures during the study. A maximum number of cases were found in July-September. Antimicrobial susceptibility for chloramphenicol, amoxicillin and co-trimoxazole was found to be 87.9%, 75.5%, 87.3% for S. Typhi and 94.2%, 90.1% and 94.2% for S. Paratyphi A, respectively. Ciprofloxacin, ofloxacin and levofloxacin susceptibility were 71.3%, 70.8% and 70.9% for S. Typhi and 58.1%, 57.4% and 57.1% for S. Paratyphi A, respectively. Azithromycin susceptibility was 98.9% in S. Typhi. Although susceptibility to ceftriaxone and cefixime was 100% in our isolates, there is a continuous increase in ceftriaxone minimum inhibitory concentration (MIC) 50 and MIC 90 values over the time. The proportion of blood culture-positive cases during 1993-2016 ranged from a minimum of 0.0006 in 2014 to a maximum of 0.0087 in 1999. We found that the most common etiological agent of enteric fever is S. Typhi causing the majority of cases from July to October in our region. MIC to ceftriaxone in typhoidal salmonellae is creeping towards resistance and more data are needed to understand the azithromycin susceptibility.
Franco, A; Gonzalez, C; Levine, O S; Lagos, R; Hall, R H; Hoffman, S L; Moechtar, M A; Gotuzzo, E; Levine, M M; Hone, D M
1992-01-01
We examined envelope protein profiles, chromosomal restriction endonuclease digest patterns, and immune responses to envelope proteins for collections of Salmonella typhi strains isolated in Peru and Indonesia. Only minor differences in envelope protein patterns were apparent among strains. Strains from 7 of 20 Indonesian patients had a distinct chromosomal digest pattern compared with patterns of Peruvian and other Indonesian strains. Strains with this pattern carried the gene for the j flagellar antigen (H1-j); differences in response to envelope proteins of j and d strains were noted on immunoblot analysis. Our data suggest that there are genotypic and phenotypic differences among S. typhi strains. The clinical importance of these differences remains to be fully evaluated; however, in this study it was not possible to show a clear correlation between strain characteristics and disease severity. Images PMID:1500532
Bacteria and cancer: cause, coincidence or cure? A review
Mager, DL
2006-01-01
Research has found that certain bacteria are associated with human cancers. Their role, however, is still unclear. Convincing evidence links some species to carcinogenesis while others appear promising in the diagnosis, prevention or treatment of cancers. The complex relationship between bacteria and humans is demonstrated by Helicobacter pylori and Salmonella typhi infections. Research has shown that H. pylori can cause gastric cancer or MALT lymphoma in some individuals. In contrast, exposure to H. pylori appears to reduce the risk of esophageal cancer in others. Salmonella typhi infection has been associated with the development of gallbladder cancer; however S. typhi is a promising carrier of therapeutic agents for melanoma, colon and bladder cancers. Thus bacterial species and their roles in particular cancers appear to differ among different individuals. Many species, however, share an important characteristic: highly site-specific colonization. This critical factor may lead to the development of non-invasive diagnostic tests, innovative treatments and cancer vaccines. PMID:16566840
Variable Number of Tandem Repeats in Salmonella enterica subsp. enterica for Typing Purposes
Ramisse, Vincent; Houssu, Perrine; Hernandez, Eric; Denoeud, France; Hilaire, Valérie; Lisanti, Olivier; Ramisse, Françoise; Cavallo, Jean-Didier; Vergnaud, Gilles
2004-01-01
The genomic sequences of Salmonella enterica subsp. enterica strains CT18, Ty2 (serovar Typhi), and LT2 (serovar Typhimurium) were analyzed for potential variable number tandem repeats (VNTRs). A multiple-locus VNTR analysis (MLVA) of 99 strains of S. enterica supsp. enterica based on 10 VNTRs distinguished 52 genotypes and placed them into four groups. All strains tested were independent human isolates from France and did not reflect isolates from outbreak episodes. Of these 10 VNTRs, 7 showed variability within serovar Typhi, whereas 1 showed variability within serovar Typhimurium. Four VNTRs showed high Nei's diversity indices (DIs) of 0.81 to 0.87 within serovar Typhi (n = 27). Additionally, three of these more variable VNTRs showed DIs of 0.18 to 0.58 within serovar Paratyphi A (n = 10). The VNTR polymorphic site within multidrug-resistant (MDR) serovar Typhimurium isolates (n = 39; resistance to ampicillin, chloramphenicol, spectinomycin, sulfonamides, and tetracycline) showed a DI of 0.81. Cluster analysis not only identified three genetically distinct groups consistent with the present serovar classification of salmonellae (serovars Typhi, Paratyphi A, and Typhimurium) but also discriminated 25 subtypes (93%) within serovar Typhi isolates. The analysis discriminated only eight subtypes within serovar Typhimurium isolates resistant to ampicillin, chloramphenicol, spectinomycin, sulfonamides, and tetracycline, possibly reflecting the emergence in the mid-1990s of the DT104 phage type, which often displays such an MDR spectrum. Coupled with the ongoing improvements in automated procedures offered by capillary electrophoresis, use of these markers is proposed in further investigations of the potential of MLVA in outbreaks of salmonellosis, especially outbreaks of typhoid fever. PMID:15583305
Safari Foroshani, Nargess; Karami, Ali; Pourali, Fatemeh
2013-01-01
Background Salmonella typhi, Bacillus anthracis, and Yersinia pestis are some serious human pathogens, which their early diagnosis is of great importance. Salmonella typhi, Bacillus anthracis, and Yersinia pestis cause typhoid fever, anthrax, and plague respectively. These bacteria can be used to make biologic weapons. Objectives In this study, we designed a new and rapid diagnostic method based on Uniplex and Multiplex PCR method. Materials and Methods Uniplex and multiplex Polymerase Chain Reaction (PCR) were conducted on virulent genes of hp and invA of Salmonella typhimurium, Pa and chr of Bacillus anthracis, and pla of Yersinia pestis. A genome from other bacteria was used to study the specificity of the primer and the PCR test. Results Standard strains used in this study showed that primers were specific. As for sensitivity, it was shown that this method can diagnose 1-10 copies of the genome, or 1-10 Colony Forming Units (CFU) for each of the bacteria. All pieces except anthrax were sequenced in PCR to validate the product. DNA fragment resulted from Bacillus anthracis was confirmed by restriction enzyme digestions. Conclusion The designed methods are accurate, rapid, and inexpensive to find and differentiate these bacteria from similar bacteria. They can be applied for rapid diagnosis of these agents in different specimens, and bioterrorism cases. PMID:24719692
Arricau, N; Hermant, D; Waxin, H; Popoff, M Y
1997-01-01
Analysis of the nucleotide sequence of a 4-kb DNA fragment located between the sip and iag loci on Salmonella typhi chromosome revealed three open reading frames, termed sipF, ctpA and stpA. The 82-amino-acid (aa) sipF product showed extensive similarity to the lacP protein from S. typhimurium. The StpA protein (535 aa) exhibited significant similarity to both Yersinia enterocolitica YopE cytotoxin and YopH tyrosine phosphatase. The CtpA polypeptide (130 aa) might be the molecular chaperone of the StpA protein.
Chowdhury, Fahmida; Chisti, Mohammod J; Khan, Ahmadul H; Chowdhury, Mohammad A; Pietroni, Mark A C
2010-10-01
A 12-year old girl from Uttar Badda, Dhaka, Bangladesh, was admitted to the Dhaka Hospital of ICDDR,B, with a 23-day history of fever and diarrhoea. After admission, she was treated for culture-proven Salmonella Typhi-associated infection and was discovered to be heterozygous for haemoglobin E. Despite treatment with appropriate antibiotics, the patient's condition did not improve, prompting further investigation, which revealed malaria due to Plasmodium falciparum. Dhaka is considered a malaria-free zone, and the patient denied recent travel outside Dhaka. Subsequently, the patient recovered fully on antimalarial therapy.
Bilateral breast abscess: a rare complication of enteric fever.
Singh, S; Pandya, Y; Rathod, J; Trivedi, S
2009-01-01
Breast abscess is usually caused by Staphylococcus aureus in pregnant or lactating females. Salmonella spp. is occasionally associated with abscess formation in various organs, but breast abscess is a very rare complication. In enteric fever dissemination to multiple organ systems following bacteraemia can lead to localized abscess. We report a case of bilateral breast abscess due to Salmonella Typhi in an unmarried 35-year-old female without any predisposing conditions. She presented with fever and painful swelling of both the breasts. S. typhi was isolated from both breasts. Such rare cause must be suspected in females without any evident predisposing factors for effective management.
Typhoid fever & vaccine development: a partially answered question.
Marathe, Sandhya A; Lahiri, Amit; Negi, Vidya Devi; Chakravortty, Dipshikha
2012-01-01
Typhoid fever is a systemic disease caused by the human specific Gram-negative pathogen Salmonella enterica serovar Typhi (S. Typhi). The extra-intestinal infections caused by Salmonella are very fatal. The incidence of typhoid fever remains very high in impoverished areas and the emergence of multidrug resistance has made the situation worse. To combat and to reduce the morbidity and mortality caused by typhoid fever, many preventive measures and strategies have been employed, the most important being vaccination. In recent years, many Salmonella vaccines have been developed including live attenuated as well as DNA vaccines and their clinical trials have shown encouraging results. But with the increasing antibiotic resistance, the development of potent vaccine candidate for typhoid fever is a need of the hour. This review discusses the latest trends in the typhoid vaccine development and the clinical trials which are underway.
Fica, A E; Prat-Miranda, S; Fernandez-Ricci, A; D'Ottone, K; Cabello, F C
1996-07-01
From 1977 to 1986, Chile experienced an important typhoid fever epidemic, despite statistics that indicated apparently improving levels of sanitation of drinking water and sewage disposal. The lack of antibiotic resistance among the Salmonella typhi strains isolated during this period, the mild clinical presentation of the disease, and the initially low level of efficacy of the S. typhi Ty21a vaccine in the population exposed to the epidemic suggested that this epidemic might have resulted from the dissemination of S. typhi strains with unique characteristics. To investigate this hypothesis, we used conventional methods (bacteriophage typing and biotyping) and molecular methods (restriction fragment length polymorphism analysis, ribotyping, IS200 typing, and PCR amplification of the fliC-d gene) to study a population of 149 S. typhi isolates during 1977, 1981, and 1990, the years that included periods with low (when the disease was endemic) and high (when the disease was epidemic) morbidities. Our results indicate that these S. typhi isolates in Chile represent a number of highly diverse variants of the clone of S. typhi with a worldwide distribution described by Selander et al. (R. K. Selander, P. Beltran, N.H. Smith, R. Helmuth, F.A. Rubin, D.J. Kopecko, K. Ferris, B.D. Tall, A. Cravioto, and J.M. Musser, Infect. Immun. 58:2262-2275, 1990). For example, we detected 26 PstI and 10 ClaI ribotypes among 47 and 16 S. typhi strains belonging to this clone, respectively. These results suggest that the Chilean epidemic was probably produced by multiple sources of infection because of deficient sanitary conditions. These findings illustrate the usefulness of molecular methods for characterizing the potential causes of the typhoid epidemics and the possible routes of transmission of S. typhi strains in typhoid epidemics.
Fica, A E; Prat-Miranda, S; Fernandez-Ricci, A; D'Ottone, K; Cabello, F C
1996-01-01
From 1977 to 1986, Chile experienced an important typhoid fever epidemic, despite statistics that indicated apparently improving levels of sanitation of drinking water and sewage disposal. The lack of antibiotic resistance among the Salmonella typhi strains isolated during this period, the mild clinical presentation of the disease, and the initially low level of efficacy of the S. typhi Ty21a vaccine in the population exposed to the epidemic suggested that this epidemic might have resulted from the dissemination of S. typhi strains with unique characteristics. To investigate this hypothesis, we used conventional methods (bacteriophage typing and biotyping) and molecular methods (restriction fragment length polymorphism analysis, ribotyping, IS200 typing, and PCR amplification of the fliC-d gene) to study a population of 149 S. typhi isolates during 1977, 1981, and 1990, the years that included periods with low (when the disease was endemic) and high (when the disease was epidemic) morbidities. Our results indicate that these S. typhi isolates in Chile represent a number of highly diverse variants of the clone of S. typhi with a worldwide distribution described by Selander et al. (R. K. Selander, P. Beltran, N.H. Smith, R. Helmuth, F.A. Rubin, D.J. Kopecko, K. Ferris, B.D. Tall, A. Cravioto, and J.M. Musser, Infect. Immun. 58:2262-2275, 1990). For example, we detected 26 PstI and 10 ClaI ribotypes among 47 and 16 S. typhi strains belonging to this clone, respectively. These results suggest that the Chilean epidemic was probably produced by multiple sources of infection because of deficient sanitary conditions. These findings illustrate the usefulness of molecular methods for characterizing the potential causes of the typhoid epidemics and the possible routes of transmission of S. typhi strains in typhoid epidemics. PMID:8784573
Yap, Kien-Pong; Ho, Wing S; Gan, Han M; Chai, Lay C; Thong, Kwai L
2016-01-01
Typhoid fever, caused by Salmonella enterica serovar Typhi, remains an important public health burden in Southeast Asia and other endemic countries. Various genotyping methods have been applied to study the genetic variations of this human-restricted pathogen. Multilocus sequence typing (MLST) is one of the widely accepted methods, and recently, there is a growing interest in the re-application of MLST in the post-genomic era. In this study, we provide the global MLST distribution of S. Typhi utilizing both publicly available 1,826 S. Typhi genome sequences in addition to performing conventional MLST on S. Typhi strains isolated from various endemic regions spanning over a century. Our global MLST analysis confirms the predominance of two sequence types (ST1 and ST2) co-existing in the endemic regions. Interestingly, S. Typhi strains with ST8 are currently confined within the African continent. Comparative genomic analyses of ST8 and other rare STs with genomes of ST1/ST2 revealed unique mutations in important virulence genes such as flhB, sipC, and tviD that may explain the variations that differentiate between seemingly successful (widespread) and unsuccessful (poor dissemination) S. Typhi populations. Large scale whole-genome phylogeny demonstrated evidence of phylogeographical structuring and showed that ST8 may have diverged from the earlier ancestral population of ST1 and ST2, which later lost some of its fitness advantages, leading to poor worldwide dissemination. In response to the unprecedented increase in genomic data, this study demonstrates and highlights the utility of large-scale genome-based MLST as a quick and effective approach to narrow the scope of in-depth comparative genomic analysis and consequently provide new insights into the fine scale of pathogen evolution and population structure.
Lou, David; Steiner, Stephanie; Rezwanul, Tasmia; Guo, Qin; Picking, William D.; Nene, Vishvanath; Sztein, Marcelo B.
2017-01-01
Salmonella enterica serovar Typhi (S. Typhi), the causative agent of the typhoid fever, is a pathogen of great public health importance. Typhoid vaccines have the potential to be cost-effective measures towards combating this disease, yet the antigens triggering host protective immune responses are largely unknown. Given the key role of cellular-mediated immunity in S. Typhi protection, it is crucial to identify S. Typhi proteins involved in T-cell responses. Here, cells from individuals immunized with Ty21a typhoid vaccine were collected before and after immunization and used as effectors. We also used an innovative antigen expressing system based on the infection of B-cells with recombinant Escherichia coli (E. coli) expressing one of four S. Typhi gene products (i.e., SifA, OmpC, FliC, GroEL) as targets. Using flow cytometry, we found that the pattern of response to specific S. Typhi proteins was variable. Some individuals responded to all four proteins while others responded to only one or two proteins. We next evaluated whether T-cells responding to recombinant E. coli also possess the ability to respond to purified proteins. We observed that CD4+ cell responses, but not CD8+ cell responses, to recombinant E. coli were significantly associated with the responses to purified proteins. Thus, our results demonstrate the feasibility of using an E. coli expressing system to uncover the antigen specificity of T-cells and highlight its applicability to vaccine studies. These results also emphasize the importance of selecting the stimuli appropriately when evaluating CD4+ and CD8+ cell responses. PMID:28873442
2011-04-01
American Type Culture Collection (ATCC), including Salmonella typhi (causes typhoid fever), Fancisella tularensis (causes tularemia ), Salmonella...incident, the Rajneesh cult obtained the agents on which it experimented, and Iraq obtained some of its lethal strains of anthrax, tularemia and
A sulfhydryl-rich IgM protein with multiple serological specificities.
Merlini, G; Zettervall, O; Forsgren, A; Galliano, M; Lindberg, A A; Svenson, S B; Pavesi, F; Turesson, I
1987-01-01
A monoclonal IgM lambda protein from a patient (E.T.) suffering from a lymphocytic lymphoma agglutinated Salmonella typhi bacteria and uncoated acryl particles. The antigenic determinant on Salmonella typhi bacteria was found to be 0-12 (alpha-D-Galp-(1-2)-alpha-D-Manp) while the structure on acryl particles recognized by IgM ET has not been defined. Both binding sites for bacteria and acryl particle determinants are localized on the same IgM molecule. The uncommon affinity of this IgM protein for some divalent heavy metal ions led to the finding of an unusually high content of sulfhydryl groups in the Fab portion of the molecule. PMID:2443287
Thanh, Duy Pham; Bodhidatta, Ladaporn; Mason, Carl Jeffries; Srijan, Apichai; Rabaa, Maia A.; Vinh, Phat Voong; Thanh, Tuyen Ha; Thwaites, Guy E.; Baker, Stephen; Holt, Kathryn E.
2017-01-01
Vaccines against Salmonella Typhi, the causative agent of typhoid fever, are commonly used by travellers, however, there are few examples of national immunization programs in endemic areas. There is therefore a paucity of data on the impact of typhoid immunization programs on localised populations of S. Typhi. Here we have used whole genome sequencing (WGS) to characterise 44 historical bacterial isolates collected before and after a national typhoid immunization program that was implemented in Thailand in 1977 in response to a large outbreak; the program was highly effective in reducing typhoid case numbers. Thai isolates were highly diverse, including 10 distinct phylogenetic lineages or genotypes. Novel prophage and plasmids were also detected, including examples that were previously only reported in Shigella sonnei and Escherichia coli. The majority of S. Typhi genotypes observed prior to the immunization program were not observed following it. Post-vaccine era isolates were more closely related to S. Typhi isolated from neighbouring countries than to earlier Thai isolates, providing no evidence for the local persistence of endemic S. Typhi following the national immunization program. Rather, later cases of typhoid appeared to be caused by the occasional importation of common genotypes from neighbouring Vietnam, Laos, and Cambodia. These data show the value of WGS in understanding the impacts of vaccination on pathogen populations and provide support for the proposal that large-scale typhoid immunization programs in endemic areas could result in lasting local disease elimination, although larger prospective studies are needed to test this directly. PMID:28060810
Zhang, Yan; Brady, Arthur; Jones, Cheron; Song, Yang; Darton, Thomas C.; Jones, Claire; Blohmke, Christoph J.; Pollard, Andrew J.; Magder, Laurence S.; Fasano, Alessio; Sztein, Marcelo B.
2018-01-01
ABSTRACT Insights into disease susceptibility as well as the efficacy of vaccines against typhoid and other enteric pathogens may be informed by better understanding the relationship between the effector immune response and the gut microbiota. In the present study, we characterized the composition (16S rRNA gene profiling) and function (RNA sequencing [RNA-seq]) of the gut microbiota following immunization and subsequent exposure to wild-type Salmonella enterica serovar Typhi in a human challenge model to further investigate the central hypothesis that clinical outcomes may be linked to the gut microbiota. Metatranscriptome analysis of longitudinal stool samples collected from study subjects revealed two stable patterns of gene expression for the human gut microbiota, dominated by transcripts from either Methanobrevibacter or a diverse representation of genera in the Firmicutes phylum. Immunization with one of two live oral attenuated vaccines against S. Typhi had minimal effects on the composition or function of the gut microbiota. It was observed that subjects harboring the methanogen-dominated transcriptome community at baseline displayed a lower risk of developing symptoms of typhoid following challenge with wild-type S. Typhi. Furthermore, genes encoding antioxidant proteins, metal homeostasis and transport proteins, and heat shock proteins were expressed at a higher level at baseline or after challenge with S. Typhi in subjects who did not develop symptoms of typhoid. These data suggest that functional differences relating to redox potential and ion homeostasis in the gut microbiota may impact clinical outcomes following exposure to wild-type S. Typhi. PMID:29739901
Khan, M Imran; Soofi, Sajid Bashir; Ochiai, R Leon; Khan, Mohammad Jawed; Sahito, Shah Muhammad; Habib, Mohammad Atif; Puri, Mahesh K; Von Seidlein, Lorenz; Park, Jin Kyung; You, Young Ae; Ali, Mohammad; Nizami, S Qamarudding; Acosta, Camilo J; Sack, R Bradley; Clemens, John D; Bhutta, Zulfiqar A
2012-10-19
Enteric fever remains a major public health problem in Asia. Planning appropriate preventive measures such as immunization requires a clear understanding of disease burden. We conducted a community-based surveillance for Salmonella Typhi infection in children in Karachi, Pakistan. A de jure household census was conducted at baseline in the study setting to enumerate all individuals. A health-care facility-based passive surveillance system was used to capture episodes of fever lasting three or more 3 days in children 2 to 16 years old. A total of 7,401 blood samples were collected for microbiological confirmation, out of which 189 S. Typhi and 32 S. Paratyphi A isolates were identified with estimated annual incidences of 451/100,000 (95% CI: 446 - 457) and 76/100,000 (95% CI: 74 - 78) respectively. At the time of presentation, after adjusting for age, there was an association between the duration of fever and temperature at presentation, and being infected with multidrug-resistant S. Typhi. Of 189 isolates 83 were found to be resistant to first-line antimicrobial therapy. There was no statistically significant difference in clinical presentation of blood culture sensitive and resistant S. Typhi isolates. Incidence of S. Typhi in children is high in urban squatter settlements of Karachi, Pakistan. Findings from this study identified duration of fever and temperature at the time of presentation as important symptoms associated with blood culture-confirmed typhoid fever. Preventive strategies such as immunization and improvements in water and sanitation conditions should be the focus of typhoid control in urban settlements of Pakistan.
Vi-CRM 197 as a new conjugate vaccine against Salmonella Typhi.
Micoli, F; Rondini, S; Pisoni, I; Proietti, D; Berti, F; Costantino, P; Rappuoli, R; Szu, S; Saul, A; Martin, L B
2011-01-17
An efficacious, low cost vaccine against typhoid fever, especially for young children, would make a major impact on disease burden in developing countries. The virulence capsular polysaccharide of Salmonella Typhi (Vi) coupled to recombinant mutant Pseudomonas aeruginosa exoprotein A (Vi-rEPA) has been shown to be highly efficacious. We investigated the use of carrier proteins included in infant vaccines, standardized the conjugation process and developed key assays required for routine lot release at production scale. Vi from a BSL1 organism, Citrobacter freundii, strain WR7011, was used as an alternative to Vi from S. Typhi. We showed that Vi conjugated to CRM(197), a non-toxic mutant of diphtheria toxin, widely used in commercial vaccines, was produced at high yield. Vi-CRM(197) proved immunogenic in animal studies, even without adjuvant. Thus, Vi-CRM(197) appears to be a suitable candidate for the development of a commercially viable, effective typhoid vaccine for developing countries. Copyright © 2010 Elsevier Ltd. All rights reserved.
Demczuk, W H B; Finley, R; Nadon, C; Spencer, A; Gilmour, M; Ng, L-K
2010-10-01
Isolation rates in Canada of Salmonella enterica serovar Typhi increased from 0.29 to 0.55 isolations/100,000 population during 2000-2006. Although no ciprofloxacin resistance was detected, nalidixic acid resistance increased from 41% to 80%. Multidrug-resistant S. Typhi represented 18% of the strains tested. Pulsed-field gel electrophoresis (PFGE) analysis of 222 isolates resulted in 91 distinct patterns clustering into four major genetic similarity groups. The five most frequently occurring PFGE patterns accounted for 46% of the isolates. Drug-resistant isolates predominantly occurred in one PFGE similarity group. There were 39 phage types identified in 826 isolates analysed with 60% described by five phage types; 134 were untypable. The phage types associated with multidrug resistance were phage types 53, B1, D1, E1, E9, G3 and M1. Improved integration of epidemiological and laboratory case data will facilitate the protection of public health in Canada during an era of increasing travel and globalization.
Jeong, Arong; Lim, H B
2018-02-01
In this work, a magnetophoretic separation ICP-MS immunoassay using newly synthesized multicore magnetic nanoparticles (MMNPs) was developed for the determination of salmonella typhimurium (typhi). The uniqueness of this method was the use of MMNPs doped with Cs for both separation and detection, which enable us to achieve fast analysis, high sensitivity, and good reliability. For demonstration, heat-killed typhi in a phosphate buffer solution was determined by ICP-MS after the MMNP-typhi reaction product was separated from unreacted MMNPs in a micropipette tip filled with 25% polyethylene glycol through magnetophoretic separation. The calibration curve obtained by plotting 133 Cs intensity vs. the number of synthetic standard, showed a coefficient of determination (R 2 ) of 0.94 with a limit of detection (LOD) of 102 cells/mL without cell culturing. Excellent recoveries, between 98-100%, were obtained from four replicates and compared with a sandwich-type ICP-MS immunoassay for further confirmation. Copyright © 2017 Elsevier B.V. All rights reserved.
Wong, Vanessa K; Baker, Stephen; Pickard, Derek J; Parkhill, Julian; Page, Andrew J; Feasey, Nicholas A; Kingsley, Robert A; Thomson, Nicholas R; Keane, Jacqueline A; Weill, François-Xavier; Edwards, David J; Hawkey, Jane; Harris, Simon R; Mather, Alison E; Cain, Amy K; Hadfield, James; Hart, Peter J; Thieu, Nga Tran Vu; Klemm, Elizabeth J; Glinos, Dafni A; Breiman, Robert F; Watson, Conall H; Kariuki, Samuel; Gordon, Melita A; Heyderman, Robert S; Okoro, Chinyere; Jacobs, Jan; Lunguya, Octavie; Edmunds, W John; Msefula, Chisomo; Chabalgoity, Jose A; Kama, Mike; Jenkins, Kylie; Dutta, Shanta; Marks, Florian; Campos, Josefina; Thompson, Corinne; Obaro, Stephen; MacLennan, Calman A; Dolecek, Christiane; Keddy, Karen H; Smith, Anthony M; Parry, Christopher M; Karkey, Abhilasha; Mulholland, E Kim; Campbell, James I; Dongol, Sabina; Basnyat, Buddha; Dufour, Muriel; Bandaranayake, Don; Naseri, Take Toleafoa; Singh, Shalini Pravin; Hatta, Mochammad; Newton, Paul; Onsare, Robert S; Isaia, Lupeoletalalei; Dance, David; Davong, Viengmon; Thwaites, Guy; Wijedoru, Lalith; Crump, John A; De Pinna, Elizabeth; Nair, Satheesh; Nilles, Eric J; Thanh, Duy Pham; Turner, Paul; Soeng, Sona; Valcanis, Mary; Powling, Joan; Dimovski, Karolina; Hogg, Geoff; Farrar, Jeremy; Holt, Kathryn E; Dougan, Gordon
2015-06-01
The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species.
Wong, Vanessa K; Baker, Stephen; Pickard, Derek J; Parkhill, Julian; Page, Andrew J; Feasey, Nicholas A; Kingsley, Robert A; Thomson, Nicholas R; Keane, Jacqueline A; Weill, François-Xavier; Edwards, David J; Hawkey, Jane; Harris, Simon R; Mather, Alison E; Cain, Amy K; Hadfield, James; Hart, Peter J; Thieu, Nga Tran Vu; Klemm, Elizabeth J; Glinos, Dafni A; Breiman, Robert F; Watson, Conall H; Kariuki, Samuel; Gordon, Melita A; Heyderman, Robert S; Okoro, Chinyere; Jacobs, Jan; Lunguya, Octavie; Edmunds, W John; Msefula, Chisomo; Chabalgoity, Jose A; Kama, Mike; Jenkins, Kylie; Dutta, Shanta; Marks, Florian; Campos, Josefina; Thompson, Corinne; Obaro, Stephen; MacLennan, Calman A; Dolecek, Christiane; Keddy, Karen H; Smith, Anthony M; Parry, Christopher M; Karkey, Abhilasha; Mulholland, E Kim; Campbell, James I; Dongol, Sabina; Basnyat, Buddha; Dufour, Muriel; Bandaranayake, Don; Naseri, Take Toleafoa; Singh, Shalini Pravin; Hatta, Mochammad; Newton, Paul; Onsare, Robert S; Isaia, Lupeoletalalei; Dance, David; Davong, Viengmon; Thwaites, Guy; Wijedoru, Lalith; Crump, John A; De Pinna, Elizabeth; Nair, Satheesh; Nilles, Eric J; Thanh, Duy Pham; Turner, Paul; Soeng, Sona; Valcanis, Mary; Powling, Joan; Dimovski, Karolina; Hogg, Geoff; Farrar, Jeremy; Holt, Kathryn E; Dougan, Gordon
2016-01-01
The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species. PMID:25961941
Patro, Sunita; Maiti, Soumitra; Panda, Santosh Kumar; Dey, Nrisingha
2015-04-01
We describe the use of plant-made β-defensins as effective antimicrobial substances for controlling salmonellosis, a deadly infection caused by Salmonella typhimurium (referred to further as S. typhi). Human β-defensin-1 (hBD-1) and -2 (hBD-2) were expressed under the control of strong constitutive promoters in tobacco plants, and bio-active β-defensins were successfully extracted. In the in vitro studies, enriched recombinant plant-derived human β-defensin-1 (phBD-1) and -2 (phBD-2) obtained from both T1 and T2 transgenic plants showed significant antimicrobial activity against Escherichia coli and S. typhi when used individually and in various combinations. The 2:1 peptide combination of phBD-1:phBD-2 with peptides isolated from T1-and T2-generation plants reduced the growth of S. typhi by 96 and 85 %, respectively. In vivo studies employing the mouse model (Balb/c) of Salmonella infection clearly demonstrated that the administration of plant-derived defensins individually and in different combinations enhanced the mean survival time of Salmonella-infected animals. When treatment consisted of the 2:1 phBD-1:phBD-2 combination, approximately 50 % of the infected mice were still alive at 206 h post-inoculation; the lowest number of viable S. typhi was observed in the liver and spleen of infected animals. We conclude that plant-made recombinant β-defensins (phBD-1 and phBD-2) are promising antimicrobial substances and have the potential to become additional tools against salmonellosis, particularly when used in combination.
Siourimè, Somda Namwin; Isidore, Bonkoungou Ouindgueta Juste; Oumar, Traoré; Nestor, Bassolé Ismael Henri; Yves, Traoré; Nicolas, Barro; Aly, Savadogo
2017-01-01
Background: In Burkina Faso dirty water in particular those of the stoppings and the gutter ones are used for vegetables irrigation in the gardens. The aim of this study was to determine the prevalence and antibiotic susceptibility of Salmonella serotypes from humans and lettuce samples inBurkina Faso. Materials and Methods:Salmonella strains isolated from patients in 2009 to 2015 and lettuce samples in 2014 in Burkina Faso were serotyped using specific antisera. All strains were subjected to a set of 14 antibiotics to study their antibiogram by using Baeur–Kirby disk diffusion method. Results: Out of 154 Salmonella isolated, 60 were from human and 94 from lettuce samples. Serotyping revealed four different serotypes and 39% (60) untypeable strains from human and lettuce (14 and 46 strains). Salmonella serotypes from human and lettuce samples were: Paratyphi A (10% and 22%), Paratyphi B (34% and 8%), Paratyphi C (14% and 18%) and Typhi (21% and 1%). A high resistance of Salmonella Paratyphi B and Salmonella spp to tetracycline were 70% from human and 35 % from lettuce samples. Multiresistance was observed to tetracycline, chloramphenicol and amoxicillin/clavulanic-acid or ampicillin with Salmonella ParatyphiB 35% and Salmonella Typhi 33% from human samples and Salmonella spp 4% from lettuce samples. Conclusion: This study showed the diversity of Salmonella serotypes from both clinical and environmental samples and emergence of multiresistant Salmonella to antibiotics in Burkina Faso. A lettuce is a potential source of transmission of Salmonella causing diarrhea among human in Burkina Faso. List of non-standard Abbreviations : HDB: Hôpital du District de Bogodogo, LNSP: Laboratoire National de Santé Publique, DSG : District Sanitaire de Gourcy, DSB : District Sanitaire de Boromo PMID:28670637
Invasive Salmonella Infections in Areas of High and Low Malaria Transmission Intensity in Tanzania
Biggs, Holly M.; Lester, Rebecca; Nadjm, Behzad; Mtove, George; Todd, Jim E.; Kinabo, Grace D.; Philemon, Rune; Amos, Ben; Morrissey, Anne B.; Reyburn, Hugh; Crump, John A.
2014-01-01
Background. The epidemiology of Salmonella Typhi and invasive nontyphoidal Salmonella (NTS) differs, and prevalence of these pathogens among children in sub-Saharan Africa may vary in relation to malaria transmission intensity. Methods. We compared the prevalence of bacteremia among febrile pediatric inpatients aged 2 months to 13 years recruited at sites of high and low malaria endemicity in Tanzania. Enrollment at Teule Hospital, the high malaria transmission site, was from June 2006 through May 2007, and at Kilimanjaro Christian Medical Centre (KCMC), the low malaria transmission site, from September 2007 through August 2008. Automated blood culture, malaria microscopy with Giemsa-stained blood films, and human immunodeficiency virus testing were performed. Results. At Teule, 3639 children were enrolled compared to 467 at KCMC. Smear-positive malaria was detected in 2195 of 3639 (60.3%) children at Teule and 11 of 460 (2.4%) at KCMC (P < .001). Bacteremia was present in 336 of 3639 (9.2%) children at Teule and 20 of 463 (4.3%) at KCMC (P < .001). NTS was isolated in 162 of 3639 (4.5%) children at Teule and 1 of 463 (0.2%) at KCMC (P < .001). Salmonella Typhi was isolated from 11 (0.3%) children at Teule and 6 (1.3%) at KCMC (P = .008). With NTS excluded, the prevalence of bacteremia at Teule was 5.0% and at KCMC 4.1% (P = .391). Conclusions. Where malaria transmission was intense, invasive NTS was common and Salmonella Typhi was uncommon, whereas the inverse was observed at a low malaria transmission site. The relationship between these pathogens, the environment, and the host is a compelling area for further research. PMID:24336909
Typhoid Fever in South Africa in an Endemic HIV Setting
Keddy, Karen H.; Sooka, Arvinda; Smith, Anthony M.; Musekiwa, Alfred; Tau, Nomsa P.; Klugman, Keith P.; Angulo, Frederick J.
2016-01-01
Background Typhoid fever remains an important disease in Africa, associated with outbreaks and the emerging multidrug resistant Salmonella enterica serotype Typhi (Salmonella Typhi) haplotype, H58. This study describes the incidence of, and factors associated with mortality due to, typhoid fever in South Africa, where HIV prevalence is high. Methods and Findings Nationwide active laboratory-based surveillance for culture-confirmed typhoid fever was undertaken from 2003–2013. At selected institutions, additional clinical data from patients were collected including age, sex, HIV status, disease severity and outcome. HIV prevalence among typhoid fever patients was compared to national HIV seroprevalence estimates. The national reference laboratory tested Salmonella Typhi isolates for antimicrobial susceptibility and haplotype. Unadjusted and adjusted logistic regression analyses were conducted determining factors associated with typhoid fever mortality. We identified 855 typhoid fever cases: annual incidence ranged from 0.11 to 0.39 per 100,000 population. Additional clinical data were available for 369 (46.8%) cases presenting to the selected sites. Among typhoid fever patients with known HIV status, 19.3% (29/150) were HIV-infected. In adult females, HIV prevalence in typhoid fever patients was 43.2% (19/44) versus 15.7% national HIV seroprevalence (P < .001); in adult males, 16.3% (7/43) versus 12.3% national HIV seroprevalence (P = .2). H58 represented 11.9% (22/185) of Salmonella Typhi isolates tested. Increased mortality was associated with HIV infection (AOR 10.7; 95% CI 2.3–50.3) and disease severity (AOR 9.8; 95% CI 1.6–60.0) on multivariate analysis. Conclusions Typhoid fever incidence in South Africa was largely unchanged from 2003–2013. Typhoid fever mortality was associated disease severity. HIV infection may be a contributing factor. Interventions mandate improved health care access, including to HIV management programmes as well as patient education. Further studies are necessary to clarify relationships between HIV infection and typhoid fever in adults. PMID:27780232
Typhoid Fever in South Africa in an Endemic HIV Setting.
Keddy, Karen H; Sooka, Arvinda; Smith, Anthony M; Musekiwa, Alfred; Tau, Nomsa P; Klugman, Keith P; Angulo, Frederick J
2016-01-01
Typhoid fever remains an important disease in Africa, associated with outbreaks and the emerging multidrug resistant Salmonella enterica serotype Typhi (Salmonella Typhi) haplotype, H58. This study describes the incidence of, and factors associated with mortality due to, typhoid fever in South Africa, where HIV prevalence is high. Nationwide active laboratory-based surveillance for culture-confirmed typhoid fever was undertaken from 2003-2013. At selected institutions, additional clinical data from patients were collected including age, sex, HIV status, disease severity and outcome. HIV prevalence among typhoid fever patients was compared to national HIV seroprevalence estimates. The national reference laboratory tested Salmonella Typhi isolates for antimicrobial susceptibility and haplotype. Unadjusted and adjusted logistic regression analyses were conducted determining factors associated with typhoid fever mortality. We identified 855 typhoid fever cases: annual incidence ranged from 0.11 to 0.39 per 100,000 population. Additional clinical data were available for 369 (46.8%) cases presenting to the selected sites. Among typhoid fever patients with known HIV status, 19.3% (29/150) were HIV-infected. In adult females, HIV prevalence in typhoid fever patients was 43.2% (19/44) versus 15.7% national HIV seroprevalence (P < .001); in adult males, 16.3% (7/43) versus 12.3% national HIV seroprevalence (P = .2). H58 represented 11.9% (22/185) of Salmonella Typhi isolates tested. Increased mortality was associated with HIV infection (AOR 10.7; 95% CI 2.3-50.3) and disease severity (AOR 9.8; 95% CI 1.6-60.0) on multivariate analysis. Typhoid fever incidence in South Africa was largely unchanged from 2003-2013. Typhoid fever mortality was associated disease severity. HIV infection may be a contributing factor. Interventions mandate improved health care access, including to HIV management programmes as well as patient education. Further studies are necessary to clarify relationships between HIV infection and typhoid fever in adults.
Tran Vu Thieu, Nga; Trinh Van, Tan; Tran Tuan, Anh; Klemm, Elizabeth J; Nguyen Ngoc Minh, Chau; Voong Vinh, Phat; Pham Thanh, Duy; Ho Ngoc Dan, Thanh; Pham Duc, Trung; Langat, Pinky; Martin, Laura B; Galan, Jorge; Liang, Li; Felgner, Philip L; Davies, D Huw; de Jong, Hanna K; Maude, Rapeephan R; Fukushima, Masako; Wijedoru, Lalith; Ghose, Aniruddha; Samad, Rasheda; Dondorp, Arjen M; Faiz, Abul; Darton, Thomas C; Pollard, Andrew J; Thwaites, Guy E; Dougan, Gordon; Parry, Christopher M; Baker, Stephen
2017-08-01
The diagnosis of typhoid fever is a challenge. Aiming to develop a typhoid diagnostic we measured antibody responses against Salmonella Typhi (S. Typhi) protein antigens and the Vi polysaccharide in a cohort of Bangladeshi febrile patients. IgM against 12 purified antigens and the Vi polysaccharide was measured by ELISA in plasma from patients with confirmed typhoid fever (n = 32), other confirmed infections (n = 17), and healthy controls (n = 40). ELISAs with the most specific antigens were performed on plasma from 243 patients with undiagnosed febrile disease. IgM against the S. Typhi protein antigens correlated with each other (rho > 0.8), but not against Vi (rho < 0.6). Typhoid patients exhibited higher IgM against 11/12 protein antigens and Vi than healthy controls and those with other infections. Vi, PilL, and CdtB exhibited the greatest sensitivity and specificity. Specificity and sensitivity was improved when Vi was combined with a protein antigen, generating sensitivities and specificities of 0.80 and >0.85, respectively. Applying a dynamic cut-off to patients with undiagnosed febrile disease suggested that 34-58% had an IgM response indicative of typhoid. We evaluated the diagnostic potential of several S. Typhi antigens; our assays give good sensitivity and specificity, but require further assessment in differing patient populations. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Salman, M; St Michael, F; Ali, A; Jabbar, A; Cairns, C; Hayes, A C; Rahman, M; Iqbal, M; Haque, A; Cox, A D
2017-11-01
Efficacious typhoid vaccines for young children will significantly reduce the disease burden in developing world. The Vi polysaccharide based conjugate vaccines (Vi-rEPA) against Salmonella Typhi Vi positive strains has shown high efficacy but may be ineffective against Vi negative S. Typhi. In this study, for the first time, we report the synthesis and evaluation of polysaccharide-protein conjugates of Vi negative S. Typhi as potential vaccine candidates. Four different conjugates were synthesized using recombinant exoprotein A of Pseudomonas aeruginosa (rEPA) and human serum albumin (HSA) as the carrier proteins, using either direct reductive amination or an intermediate linker molecule, adipic acid dihydrazide (ADH). Upon injection into mice, a significantly higher antibody titer was observed in mice administrated with conjugate-1 (OSP-HSA) (P=0.0001) and conjugate 2 (OSP-rEPA) (P≤0.0001) as compared to OSP alone. In contrast, the antibody titer elicited by conjugate 3 (OSP ADH -HSA) and conjugate 4 (OSP ADH -rEPA) were insignificant (P=0.1684 and P=0.3794, respectively). We conclude that reductive amination is the superior method to prepare the S. Typhi OSP glycoconjugate. Moreover, rEPA was a better carrier protein than HSA. Thus OSP-rEPA conjugate seems to be efficacious typhoid vaccines candidate, it may be evaluated further and recommended for the clinical trials. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Beta-lactam resistance and Enterobacteriaceae, United States.
Whichard, Jean M; Joyce, Kevin; Fey, Paul D; Nelson, Jennifer M; Angulo, Frederick J; Barrett, Timothy J
2005-09-01
Extended-spectrum cephalosporins (ESC) are an important drug class for treating severe Salmonella infections. We screened the human collection from the National Antimicrobial Resistance Monitoring System 2000 for ESC resistance mechanisms. Of non-Typhi Salmonella tested, 3.2% (44/1,378) contained blaCMY genes. Novel findings included blaCMY-positive Escherichia coli O157:H7 and a blaSHV-positive Salmonella isolate. CMY-positive isolates showed a ceftriaxone MIC > or =2 microg/mL.
NASA Astrophysics Data System (ADS)
Suryapratiwi, Windha Novita; Paat, Vlagia Indira; Gaffar, Shabarni; Hartati, Yeni Wahyuni
2017-05-01
Electrochemical biosensors are currently being developed in order to handle various clinical problems in diagnosing infectious diseases caused by pathogenic bacteria, or viruses. On this research, voltammetric DNA biosensor using gold electrode modified by thiols with self-assembled monolayers had been developed to detect a certain sequence of Salmonella typhi DNA from blood sample of typhoid fever patient. Thiol groups of cysteamines (Cys) and aldehyde groups from glutaraldehydes (Glu) were used as a link to increase the performance of gold electrode in detecting guanine oxidation signal of hybridized S. typhi DNA and ssDNA probe. Standard calibration method was used to determine analytical parameters from the measurements. The result shown that, the detection of S. typhi DNA from blood sample of typhoid fever patient can be carried out by voltammetry using gold electrode modified by self-assembled monolayers of thiols. A characteristic oxidation potential of guanine using Au/Cys/Gluwas obtained at +0.17 until +0.20 V. Limit of detection and limit of quantification from this measurements were 1.91μg mL-1 and 6.35 μg mL-1. The concentration of complement DNA from sample was 6.96 μg mL-1.
Anti-biofilm efficacy of 100 MeV gold ion irradiated polycarbonate against Salmonella typhi
NASA Astrophysics Data System (ADS)
Joshi, R. P.; Hareesh, K.; Bankar, A.; Sanjeev, G.; Asokan, K.; Kanjilal, D.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D.
2017-12-01
Polycarbonate (PC) films were irradiated by 100 MeV gold (Au7+) ions and characterized to study changes in its optical, chemical, surface morphology and thermal properties. UV-Visible spectroscopic results revealed the decrease in the optical band gap of PC after ion irradiation due to chain scission mainly at the carbonyl group which is corroborated by Fourier Transform Infrared spectroscopic results. X-ray diffractogram study showed decrease in crystallinity of PC film after irradiation. Scanning electron microscopic results showed the micropores formation in PC which results in surface roughening. Differential scanning calorimetric results revealed decrease in glass transition temperature indicating the decrease in molecular weight of PC corroborated by rheometric studies. PC films irradiated by 100 MeV Au7+ ions showed increased anti-biofilm activity against the human pathogen, Salmonella typhi (S. typhi). Morphology of S. typhi was changed due to stress of Au7+ irradiated PC. Cells length was increased with increasing fluences. The average cell length, cell volume and surface area was increased significantly (P<0.05) with increasing ion fluences. Biofilm formation was inhibited ≈ 20% at lower fluence and 96% at higher fluence, which observed to be enhanced anti-biofilm activity in Au7+ irradiated PC.
Waddington, Claire S.; Darton, Thomas C.; Jones, Claire; Haworth, Kathryn; Peters, Anna; John, Tessa; Thompson, Ben A. V.; Kerridge, Simon A.; Kingsley, Robert A.; Zhou, Liqing; Holt, Kathryn E.; Yu, Ly-Mee; Lockhart, Stephen; Farrar, Jeremy J.; Sztein, Marcelo B.; Dougan, Gordon; Angus, Brian; Levine, Myron M.; Pollard, Andrew J.
2014-01-01
Background. Typhoid fever is a major global health problem, the control of which is hindered by lack of a suitable animal model in which to study Salmonella Typhi infection. Until 1974, a human challenge model advanced understanding of typhoid and was used in vaccine development. We set out to establish a new human challenge model and ascertain the S. Typhi (Quailes strain) inoculum required for an attack rate of 60%–75% in typhoid-naive volunteers when ingested with sodium bicarbonate solution. Methods. Groups of healthy consenting adults ingested escalating dose levels of S. Typhi and were closely monitored in an outpatient setting for 2 weeks. Antibiotic treatment was initiated if typhoid diagnosis occurred (temperature ≥38°C sustained ≥12 hours or bacteremia) or at day 14 in those remaining untreated. Results. Two dose levels (103 or 104 colony-forming units) were required to achieve the primary objective, resulting in attack rates of 55% (11/20) or 65% (13/20), respectively. Challenge was well tolerated; 4 of 40 participants fulfilled prespecified criteria for severe infection. Most diagnoses (87.5%) were confirmed by blood culture, and asymptomatic bacteremia and stool shedding of S. Typhi was also observed. Participants who developed typhoid infection demonstrated serological responses to flagellin and lipopolysaccharide antigens by day 14; however, no anti-Vi antibody responses were detected. Conclusions. Human challenge with a small inoculum of virulent S. Typhi administered in bicarbonate solution can be performed safely using an ambulant-model design to advance understanding of host–pathogen interactions and immunity. This model should expedite development of diagnostics, vaccines, and therapeutics for typhoid control. PMID:24519873
Padmanaban, V D; Mittal, K R
1979-01-01
Mice were immunized with live vaccines and with live vaccines with complete adjuvant incorporating Salmonella enteritidis, Salmonella typhi-murium, Salmonella gallinarum or Salmonella pullorum. On the 21st day after vacination, the hypersensitivity reactions elicited by the mice to extracts of the challenge organism (S. enteritidis 5694 SMR) were assessed. The degree of delayed hypersensitivity reaction was compared with the level of protection induced by the vaccine. The role in protection of delayed hypersensitivity is discussed. Clearance of the challenge organism from the liver of previously vaccinated and unvaccinated mice was assessed quantitatively.
USDA-ARS?s Scientific Manuscript database
Background Non-Typhi Salmonella (NTS) is a leading cause of bacterial gastroenteritis in the United States. Although most infections are self-limited, antibiotic treatment is essential for severe illness. Use of antimicrobial agents in food animals contributes to resistance in NTS. Multidrug resis...
Fabre, Laetitia; Le Hello, Simon; Roux, Chrystelle; Issenhuth-Jeanjean, Sylvie; Weill, François-Xavier
2014-01-01
Background Serotype-specific PCR assays targeting Salmonella enterica serotypes Typhi and Paratyphi A, the causal agents of typhoid and paratyphoid fevers, are required to accelerate formal diagnosis and to overcome the lack of typing sera and, in some situations, the need for culture. However, the sensitivity and specificity of such assays must be demonstrated on large collections of strains representative of the targeted serotypes and all other bacterial populations producing similar clinical symptoms. Methodology Using a new family of repeated DNA sequences, CRISPR (clustered regularly interspaced short palindromic repeats), as a serotype-specific target, we developed a conventional multiplex PCR assay for the detection and differentiation of serotypes Typhi and Paratyphi A from cultured isolates. We also developed EvaGreen-based real-time singleplex PCR assays with the same two sets of primers. Principal findings We achieved 100% sensitivity and specificity for each protocol after validation of the assays on 188 serotype Typhi and 74 serotype Paratyphi A strains from diverse genetic groups, geographic origins and time periods and on 70 strains of bacteria frequently encountered in bloodstream infections, including 29 other Salmonella serotypes and 42 strains from 38 other bacterial species. Conclusions The performance and convenience of our serotype-specific PCR assays should facilitate the rapid and accurate identification of these two major serotypes in a large range of clinical and public health laboratories with access to PCR technology. These assays were developed for use with DNA from cultured isolates, but with modifications to the assay, the CRISPR targets could be used in the development of assays for use with clinical and other samples. PMID:24498453
Vaccination of active component US military personnel against Salmonella Typhi.
Porter, Chad K; Sorrell, Tia; Mitra, Indrani; Riddle, Mark S
2017-03-27
Vaccination against Salmonella Typhi is one of the leading public health interventions reducing the risk of typhoid fever. There are two available licensed vaccines, Vivotif, oral live-attenuated, and Typhim Vi, intramuscular Vi capsular polysaccharide. The US military is a high risk travel population commonly vaccinated for S. Typhi. We describe the use of S. Typhi vaccination in this population and the acute reactogenicity profile of these vaccines. Data were obtained from the Defense Medical Surveillance System and vaccination identified between 1998 and 2011 from vaccination codes. Clinical outcomes were assessed for four weeks post vaccination. Adverse event rates and odds ratios were estimated across the two vaccine types. A total of 1.9million predominately male military personnel received 3.6 million S. Typhi vaccinations with 94.3% of vaccinees receiving the Vi capsule vaccine though variability in the vaccine administered was observed. Receipt of other vaccinations in the 6months surrounding the S. Typhi vaccine was common. Rates of nausea (195 per 100,000 vaccinations), headache (13 per 100,000 vaccinations) and fever (40 per 100,000 vaccinations) were significantly higher following Vi capsule vaccination compared to receipt of Vivotif (130, 2, 10 per 100,000 vaccinations, respectively). In contrast the rates of rash and non-infectious diarrhea (186 and 426 per 100,000 vaccinations, respectively) were increased in those receiving Vivotif compared to the Vi capsule vaccine. The US military is a major consumer of S. Typhi vaccines. The parenterally administered vaccine appears to be more amenable, though we were limited in our ability to assess the reasons for its higher usage. While we observed a higher rate of several adverse events in subjects receiving the intramuscular vaccination, the overall rate of these events was low. Future studies assessing more long-term health outcomes are warranted. Published by Elsevier Ltd.
Pandya, Kalgi D; Palomo-Caturla, Isabel; Walker, Justin A; K Sandilya, Vijay; Zhong, Zhijiu; Alugupalli, Kishore R
2018-06-15
T cell-dependent B cell responses typically develop in germinal centers. Abs generated during such responses are isotype switched and have a high affinity to the Ag because of somatic hypermutation of Ab genes. B cell responses to purified polysaccharides are T cell independent and do not result in the formation of bona fide germinal centers, and the dominant Ab isotype produced during such responses is IgM with very few or no somatic mutations. Activation-induced cytidine deaminase (AID) is required for both somatic hypermutation and Ig isotype switching in humans and mice. To test the extent to which unmutated polysaccharide-specific IgM confers protective immunity, we immunized wildtype and AID -/- mice with either heat-killed Salmonella enterica serovar Typhi ( S. Typhi) or purified Vi polysaccharide (ViPS). We found that wildtype and AID -/- mice immunized with heat-killed S. Typhi generated similar anti-ViPS IgM responses. As expected, wildtype, but not AID -/- mice generated ViPS-specific IgG. However, the differences in the Ab-dependent killing of S. Typhi mediated by the classical pathway of complement activation were not statistically significant. In ViPS-immunized wildtype and AID -/- mice, the ViPS-specific IgM levels and S. Typhi bactericidal Ab titers at 7 but not at 28 d postimmunization were also comparable. To test the protective immunity conferred by these immunizations, mice were challenged with a chimeric S. Typhimurium strain expressing ViPS. Compared with their naive counterparts, immunized wildtype and AID -/- mice exhibited significantly reduced bacterial burden regardless of the route of infection. These data indicate that an unmutated IgM response to ViPS contributes to protective immunity to S. Typhi. Copyright © 2018 by The American Association of Immunologists, Inc.
Thieu, Nga Tran Vu; Dolecek, Christiane; Karkey, Abhilasha; Gupta, Ruchi; Turner, Paul; Dance, David; Maude, Rapeephan R.; Ha, Vinh; Tran, Chinh Nguyen; Thi, Phuong Le; Be, Bay Pham Van; Phi, La Tran Thi; Ngoc, Rang Nguyen; Ghose, Aniruddha; Dongol, Sabina; Campbell, James I.; Thanh, Duy Pham; Thanh, Tuyen Ha; Moore, Catrin E.; Sona, Soeng; Gaind, Rajni; Deb, Monorama; Anh, Ho Van; Van, Sach Nguyen; Tinh, Hien Tran; Day, Nicholas P. J.; Dondorp, Arjen; Thwaites, Guy; Faiz, Mohamed Abul; Phetsouvanh, Rattanaphone; Newton, Paul; Basnyat, Buddha; Farrar, Jeremy J.; Baker, Stephen
2015-01-01
Azithromycin is an effective treatment for uncomplicated infections with Salmonella enterica serovar Typhi and serovar Paratyphi A (enteric fever), but there are no clinically validated MIC and disk zone size interpretative guidelines. We studied individual patient data from three randomized controlled trials (RCTs) of antimicrobial treatment in enteric fever in Vietnam, with azithromycin used in one treatment arm, to determine the relationship between azithromycin treatment response and the azithromycin MIC of the infecting isolate. We additionally compared the azithromycin MIC and the disk susceptibility zone sizes of 1,640 S. Typhi and S. Paratyphi A clinical isolates collected from seven Asian countries. In the RCTs, 214 patients who were treated with azithromycin at a dose of 10 to 20 mg/ml for 5 to 7 days were analyzed. Treatment was successful in 195 of 214 (91%) patients, with no significant difference in response (cure rate, fever clearance time) with MICs ranging from 4 to 16 μg/ml. The proportion of Asian enteric fever isolates with an MIC of ≤16 μg/ml was 1,452/1,460 (99.5%; 95% confidence interval [CI], 98.9 to 99.7) for S. Typhi and 207/240 (86.3%; 95% CI, 81.2 to 90.3) (P < 0.001) for S. Paratyphi A. A zone size of ≥13 mm to a 5-μg azithromycin disk identified S. Typhi isolates with an MIC of ≤16 μg/ml with a sensitivity of 99.7%. An azithromycin MIC of ≤16 μg/ml or disk inhibition zone size of ≥13 mm enabled the detection of susceptible S. Typhi isolates that respond to azithromycin treatment. Further work is needed to define the response to treatment in S. Typhi isolates with an azithromycin MIC of >16 μg/ml and to determine MIC and disk breakpoints for S. Paratyphi A. PMID:25733500
β-Lactam Resistance and Enterobacteriaceae, United States
Joyce, Kevin; Fey, Paul D.; Nelson, Jennifer M.; Angulo, Frederick J.; Barrett, Timothy J.
2005-01-01
Extended-spectrum cephalosporins (ESC) are an important drug class for treating severe Salmonella infections. We screened the human collection from the National Antimicrobial Resistance Monitoring System 2000 for ESC resistance mechanisms. Of non-Typhi Salmonella tested, 3.2% (44/1,378) contained blaCMY genes. Novel findings included blaCMY-positive Escherichia coli O157:H7 and a blaSHV-positive Salmonella isolate. CMY-positive isolates showed a ceftriaxone MIC >2 µg/mL. PMID:16229784
What Have We Learned From the Typhoid Fever Surveillance in Africa Program?
Baker, Stephen; Hombach, Joachim; Marks, Florian
2016-03-15
The Typhoid Fever Surveillance in Africa Program (TSAP) was established in 2009 to fill the data void concerning invasive Salmonella disease in sub-Saharan Africa, and to specifically estimate the burden of bloodstream infections caused by the key pathogen, Salmonella enterica serovar Typhi. TSAP has achieved this ambitious target, finding high incidences of typhoid fever in both rural and urban populations in several countries in sub-Saharan Africa. The results of TSAP will undoubtedly dictate the direction of future typhoid fever research in Africa, and at last provides a key piece of the disease burden jigsaw puzzle. With the dawn of new Vi conjugate vaccines against Salmonella Typhi, the next priority for the typhoid community must be providing the required data on these vaccines so they can be licensed and provided to those in high-risk groups and locations across sub-Saharan Africa. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.
Patki, Rucha; Lilani, Sunil; Lanjewar, Dhaneshwar
2017-01-01
The aim of this study was to establish a baseline titre for the population of Mumbai, Maharashtra, India. Four hundred healthy blood donors, attending blood donation camps, were screened using a survey questionnaire. Widal tube agglutination test was performed on the diluted sera (with 0.9% normal saline) of blood donors, with final dilution ranging from 1 : 40 to 1 : 320. Out of 400 individuals providing samples, 78 (19.5%) individuals showed antibody titres ≥ 1 : 40 for at least one antigen and 322 (80.5%) showed no agglutination. The baseline antibody titres against O antigen and H antigen of Salmonella enterica serotype Typhi were found to be 1 : 40 and 1 : 80, respectively. Similarly, the baseline antibody titres for the H antigen of Salmonella enterica serotypes Paratyphi A and Paratyphi B were found to be 1 : 40 and 1 : 80, respectively. Thus, it was noted that the diagnostically significant cutoff of antibody titre from acute phase sample was ≥ 1 : 80 for S. Typhi O antigen and titre of ≥ 1 : 160 for both S. Typhi H antigen and S. Paratyphi BH antigen. Antibody titre of ≥ 1 : 80 can be considered significant for S. Paratyphi AH antigen.
Lilani, Sunil; Lanjewar, Dhaneshwar
2017-01-01
Objective The aim of this study was to establish a baseline titre for the population of Mumbai, Maharashtra, India. Method Four hundred healthy blood donors, attending blood donation camps, were screened using a survey questionnaire. Widal tube agglutination test was performed on the diluted sera (with 0.9% normal saline) of blood donors, with final dilution ranging from 1 : 40 to 1 : 320. Results Out of 400 individuals providing samples, 78 (19.5%) individuals showed antibody titres ≥ 1 : 40 for at least one antigen and 322 (80.5%) showed no agglutination. The baseline antibody titres against O antigen and H antigen of Salmonella enterica serotype Typhi were found to be 1 : 40 and 1 : 80, respectively. Similarly, the baseline antibody titres for the H antigen of Salmonella enterica serotypes Paratyphi A and Paratyphi B were found to be 1 : 40 and 1 : 80, respectively. Conclusion Thus, it was noted that the diagnostically significant cutoff of antibody titre from acute phase sample was ≥ 1 : 80 for S. Typhi O antigen and titre of ≥ 1 : 160 for both S. Typhi H antigen and S. Paratyphi BH antigen. Antibody titre of ≥ 1 : 80 can be considered significant for S. Paratyphi AH antigen. PMID:29081804
Khan, S; Miah, M R; Khatun, S
2015-12-01
A nested polymerase chain reaction (PCR) specific for Salmonella enterica subspecies enteric serovar Typhi was used for the detection of the pathogen, in blood. This study was done during the period of March 2013 to February 2014. A total of 80 clinically suspected cases of typhoid fever were included in the study. Blood was collected from all participating individuals. Nested PCR targeting the flagellin gene (fliC) of Salmonella Typhi & blood culture were done for each of the cases. The positivity rate of PCR & blood culture was 70%& 20% respectively. The positivity rate of PCR was significantly higher than blood culture (P< 0.05). With the nested PCR, S. Typhi DNAs were detected from blood specimens of 67.2% (43/64) patients among the suspected typhoid fever cases on the basis of clinical features but with negative cultures. We conclude that the PCR technique could be used as a novel diagnostic method of typhoid fever, particularly in culture-negative cases in an endemic country like Bangladesh.
The Gathering Storm: Is Untreatable Typhoid Fever on the Way?
Simon, Raphael
2018-01-01
ABSTRACT Klemm et al. (mBio 9:e00105-18, 2018, https://doi.org/10.1128/mBio.00105-18) present comprehensive antibiotic sensitivity patterns and genomic sequence data on Salmonella enterica serovar Typhi blood culture isolates from typhoid fever cases during an epidemic in Pakistan. Microbiologic and genomic data pinpoint the identities and locations of the antimicrobial resistance genes and the outbreak strain’s lineage. They propose that Salmonella enterica serovar Typhi be added to the list of bacterial pathogens of public health importance that have become extensively drug resistant (XDR). This paper portends possible dire scenarios for typhoid fever control if XDR strains disseminate globally. Since the outbreak strain is of the H58 haplotype, known for its ability to spread worldwide and displace endemic S. Typhi, this concern is well-founded. The report of Klemm et al. forewarns the global community to address control of typhoid fever more aggressively through prevention, should therapeutic options disappear. This Commentary frames the Klemm et al. findings within a historic perspective. PMID:29559573
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakrishna, A.; Saxena, A; Mok, H
2009-01-01
The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein (PilS), which makes the pilus, was determined at 1.9 A resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of PilS and a target CFTR peptide, determined at 1.8 A, confirms that residues 113-117more » (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakrishna, A.; Saxena, A; Mok, H
2009-01-01
The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein (PilS), which makes the pilus, was determined at 1.9 A resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of PilS and a target CFTR peptide, determined at 1.8 A, confirms that residues 113-117more » (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.« less
Survival potential of wild type cellulose deficient Salmonella from the feed industry.
Vestby, Lene K; Møretrø, Trond; Ballance, Simon; Langsrud, Solveig; Nesse, Live L
2009-11-23
Biofilm has been shown to be one way for Salmonella to persist in the feed factory environment. Matrix components, such as fimbriae and cellulose, have been suggested to play an important role in the survival of Salmonella in the environment. Multicellular behaviour by Salmonella is often categorized according to colony morphology into rdar (red, dry and rough) expressing curli fimbriae and cellulose, bdar (brown, dry and rough) expressing curli fimbriae and pdar (pink, dry and rough) expressing cellulose. The aim of the study was to look into the distribution of morphotypes among feed and fish meal factory strains of Salmonella, with emphasis on potential differences between morphotypes with regards to survival in the feed factory environment. When screening a total of 148 Salmonella ser. Agona, Salmonella ser. Montevideo, Salmonella ser. Senftenberg and Salmonella ser. Typhimurium strains of feed factory, human clinical and reference collection origin, as many as 99% were able to express rough morphology (rdar or bdar). The dominant morphotype was rdar (74%), however as many as 55% of Salmonella ser. Agona and 19% of Salmonella ser. Senftenberg displayed the bdar morphology. Inconsistency in Calcofluor binding, indicating expression of cellulose, was found among 25% of all the strains tested, however Salmonella ser. Agona showed to be highly consistent in Calcofluor binding (98%). In biofilm, Salmonella ser. Agona strains with bdar mophology was found to be equally tolerant to disinfection treatment as strains with rdar morphotype. However, rdar morphology appeared to be favourable in long term survival in biofilm in a very dry environment. Chemical analysis showed no major differences in polysaccharide content between bdar and rdar strains. Our results indicate that cellulose is not a major component of the Salmonella biofilm matrix. The bdar morphotype is common among Salmonella ser. Agona strains isolated from the factory environment. The rdar and the bdar strains were found to be equally tolerant to disinfectants, while the rdar strain was found to be more tolerant to long-term desiccation and nutrient depletion in biofilm than the bdar strain. Cellulose does not appear to be a major component of the Salmonella biofilm matrix.
Rahman, B A; Wasfy, M O; Maksoud, M A; Hanna, N; Dueger, E; House, B
2014-07-01
Typhoid fever is common in developing countries, with an estimated 120 million infections and 700 000 annual deaths, worldwide. Fluoroquinolones have been the treatment of choice for infection with multidrug-resistant (MDR) Salmonella enterica serovar Typhi (S. Typhi). However, alarming reports of fluoroquinolone-resistance and failure of typhoid fever treatment have recently been published. To determine the proportion of S. Typhi isolates with reduced susceptibility to ciprofloxacin (RSC) from six countries in the Middle East and Central Asia, 968 S. Typhi isolates collected between 2002 and 2007 from Egypt, Uzbekistan, Pakistan, Qatar, Jordan and Iraq were tested for antibiotic susceptibility to five antibiotics using the disc-diffusion method. MDR was defined as resistance to amicillin, chloramphenicol and trimethoprim-sulfamethoxazole. The E-test was employed to determine the MIC of ciprofloxacin only. Nalidixic acid resistance was evaluated as a marker for RSC. Interpretations were made according to CLSI guidelines. MDR strains were considerably more prevalent in Iraq (83%) and Pakistan (52%) compared with the other countries studied (13-52%). Nearly all isolates were susceptible (99.7%) to ceftriaxone. RSC was detected in a total of 218 isolates (22%), mostly from Iraq (54/59, 92%), Uzbekistan (98/123, 80%), Qatar (23/43, 54%) and Pakistan (31/65, 47%). Many of these (21%) were also MDR. Use of nalidixic acid resistance as an indicator for RSC was 99% sensitive and 98% specific. This study reinforces the need for routine antimicrobial susceptibility surveillance of enteric fever isolates and close review of current therapeutic policies in the region.
Medina-Aparicio, L.; Rebollar-Flores, J. E.; Gallego-Hernández, A. L.; Vázquez, A.; Olvera, L.; Gutiérrez-Ríos, R. M.; Calva, E.; Hernández-Lucas, I.
2011-01-01
Prokaryotes have developed multiple strategies to survive phage attack and invasive DNA. Recently, a novel genetic program denominated the CRISPR/Cas system was demonstrated to have a role in these biological processes providing genetic immunity. This defense mechanism is widespread in the Archaea and Bacteria, suggesting an ancient origin. In the last few years, progress has been made regarding the functionality of the CRISPR/Cas system; however, many basic aspects of the system remain unknown. For instance, there are few studies about the conditions and regulators involved in its transcriptional control. In this work, we analyzed the transcriptional organization of the CRISPR/Cas system as well as the positive and negative regulators involved in its genetic expression in Salmonella enterica serovar Typhi. The results obtained show that in S. Typhi the CRISPR/Cas system is a LeuO-dependent operon silenced by the global regulator LRP, in addition to the previously known nucleoid-associated protein H-NS; both LRP and H-NS bind upstream and downstream of the transcriptional start site of casA. In this study, relevant nucleotides of the casA regulatory region that mediate its LeuO transcriptional activation were identified. Interestingly, specific growth conditions (N-minimal medium) were found for the LeuO-independent expression of the CRISPR/Cas system in S. Typhi. Thus, our work provides evidence that there are multiple modulators involved in the genetic expression of this immune system in S. Typhi IMSS-1. PMID:21398529
A case of Salmonella enterica serotype typhi in a patient without a history of international travel.
Byers, David K; Petersen, Kyle
2009-01-01
Typhoid fever, endemic in the developing world, is associated with international travel in developed nations. We present a case of Salmonella enterica infection in a patient without a history of international travel acquired from his traveling ex-wife. History of overseas travel in family members should be investigated when evaluating suspected cases.
Prasad, K J; Oberoi, J K; Goel, N; Wattal, C
2015-01-01
Enteric fever is a major public health problem in developing countries like India. An early and accurate diagnosis is necessary for a prompt and effective treatment. We have evaluated the diagnostic accuracy of two Rapid Salmonella-IgM tests (Typhidot-IgM and Enteroscreen-IgM) as compared to blood culture in rapid and early diagnosis of enteric fever. A total of 2,699 patients' serum samples were tested by Rapid Salmonella-IgM tests and blood culture. Patients were divided into two groups. Test group - patients with enteric fever and blood culture positives for Salmonella Typhi; and three types of Controls, i.e. patients with non-enteric fever illnesses, normal healthy controls and patients positive for S. Paratyphi- A. In addition to this we have also evaluated the significance of positive Salmonella-IgM tests among blood culture-negative cases. The overall sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the Typhidot-IgM test and Enteroscreen-IgM test considering blood culture as gold standard were 97.29% and 88.13%, 97.40% and 87.83%, 98.18% and 92.03%, 96.15% and 82.27%, respectively. Typhidot-IgM test was found to be significantly more sensitive and specific as compared to Enteroscreen-IgM. Among blood culture-negative patients, Rapid Salmonella-IgM tests detected 72.25% additional cases of enteric fever. Although the Rapid Salmonella-IgM tests are meant to diagnose S. Typhi only, but these tests detect S. Paratyphi- A also. Thirty-eight patients who were blood culture-positive for S. Paratyphi- A were also positive by Rapid Salmonella-IgM tests. Rapid Salmonella-IgM tests offer an advantage of increased sensitivity, rapidity, early diagnosis and simplicity over blood culture.
Chemical closet treatment of typhoid carrier faeces.
Harvey, R W; Price, T H
1972-09-01
An investigation to test the efficiency of chemical closets in treating excreta from typhoid carriers is described. The use of these closets kept a stream, which had in the past frequently contained Salmonella typhi, typhoid free for 24 months. Selenite broth as made in this laboratory, containing a final concentration of 0.8% sodium hydrogen selenite when inoculated with the water sample, was significantly better than commercial selenite brilliant green enrichment broth for the recovery of S. typhi.
NASA Astrophysics Data System (ADS)
Bozorgmehr, Ali; Yazdanparast, Razieh; Mollasalehi, Hamidreza
2016-12-01
In this study, we developed a non-crosslinking gold nanoprobe loop-mediated isothermal amplification (LAMP) method for nanodiagnosis of bacterial typhoid fever source, Salmonella typhi. Therefore, a unique region in the S. typhi genomic DNA was targeted for LAMP amplification using a specific set of four precisely designed primers. Also, for specific colorimetric visualization of the amplicons, a thiolated oligonucleotide probe, complementary to the single-stranded loop region of the amplicons between F2 and F1C segments, was designed. The probe was bound to the surface of gold nanoparticles via covalent bonds. Increasing the salt concentration in the detection reaction medium led to aggregation of nanoprobes in the blank and the negative vessels in a time-dependent form. That was followed by a change in the surface plasmon resonance (SPR) leading to blue/black color that was observable by the naked eyes after about 5 min. Meanwhile, the original pink/red color was retained in the positive sample due to the large interparticle spaces and the stability against the ionic strength elevation which persisted for about 30 min. The whole process of DNA extraction, amplification, and detection took less than 2 h with a sensitivity of 20 CFU/ml. The developed gold nanoprobe-LAMP could serve as a simple, rapid, and cost-effective method for nanodiagnosis of S. typhi in point-of-need applications.
Schroll, Casper; Christensen, Jens P; Christensen, Henrik; Pors, Susanne E; Thorndahl, Lotte; Jensen, Peter R; Olsen, John E; Jelsbak, Lotte
2014-05-14
Serovars of Salmonella enterica exhibit different host-specificities where some have broad host-ranges and others, like S. Gallinarum and S. Typhi, are host-specific for poultry and humans, respectively. With the recent availability of whole genome sequences it has been reported that host-specificity coincides with accumulation of pseudogenes, indicating adaptation of host-restricted serovars to their narrow niches. Polyamines are small cationic amines and in Salmonella they can be synthesized through two alternative pathways directly from l-ornithine to putrescine and from l-arginine via agmatine to putrescine. The first pathway is not active in S. Gallinarum and S. Typhi, and this prompted us to investigate the importance of polyamines for virulence in S. Gallinarum. Bioinformatic analysis of all sequenced genomes of Salmonella revealed that pseudogene formation of the speC gene was exclusive for S. Typhi and S. Gallinarum and happened through independent events. The remaining polyamine biosynthesis pathway was found to be essential for oral infection with S. Gallinarum since single and double mutants in speB and speE, encoding the pathways from agmatine to putrescine and from putrescine to spermidine, were attenuated. In contrast, speB was dispensable after intraperitoneal challenge, suggesting that putrescine was less important for the systemic phase of the disease. In support of this hypothesis, a ΔspeE;ΔpotCD mutant, unable to synthesize and import spermidine, but with retained ability to import and synthesize putrescine, was attenuated after intraperitoneal infection. We therefore conclude that polyamines are essential for virulence of S. Gallinarum. Furthermore, our results point to distinct roles for putrescine and spermidine during systemic infection. Copyright © 2014 Elsevier B.V. All rights reserved.
Kintz, Erica; Heiss, Christian; Black, Ian; ...
2017-02-06
Salmonella enterica serovar Typhi is a human-restricted Gram-negative bacterial pathogen responsible for causing an estimated 27 million cases of typhoid fever annually, leading to 217,000 deaths, and current vaccines do not offer full protection. The O-antigen side chain of the lipopolysaccharide is an immunodominant antigen, can define host-pathogen interactions, and is under consideration as a vaccine target for some Gram-negative species. The composition of the O-antigen can be modified by the activity of glycosyltransferase (gtr) operons acquired by horizontal gene transfer. Here we investigate the role of two gtr operons that we identified in the S. Typhi genome. Strains weremore » engineered to express specific gtr operons. Full chemical analysis of the O-antigens of these strains identified gtr-dependent glucosylation and acetylation. The glucosylated form of the O-antigen mediated enhanced survival in human serum and decreased complement binding. A single nucleotide deviation from an epigenetic phase variation signature sequence rendered the expression of this glucosylating gtr operon uniform in the population. In contrast, the expression of the acetylating gtrC gene is controlled by epigenetic phase variation. Acetylation did not affect serum survival, but phase variation can be an immune evasion mechanism, and thus, this modification may contribute to persistence in a host. In murine immunization studies, both O-antigen modifications were generally immunodominant. Our results emphasize that natural O-antigen modifications should be taken into consideration when assessing responses to vaccines, especially O-antigen-based vaccines, and that the Salmonella gtr repertoire may confound the protective efficacy of broad-ranging Salmonella lipopolysaccharide conjugate vaccines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kintz, Erica; Heiss, Christian; Black, Ian
Salmonella enterica serovar Typhi is a human-restricted Gram-negative bacterial pathogen responsible for causing an estimated 27 million cases of typhoid fever annually, leading to 217,000 deaths, and current vaccines do not offer full protection. The O-antigen side chain of the lipopolysaccharide is an immunodominant antigen, can define host-pathogen interactions, and is under consideration as a vaccine target for some Gram-negative species. The composition of the O-antigen can be modified by the activity of glycosyltransferase (gtr) operons acquired by horizontal gene transfer. Here we investigate the role of two gtr operons that we identified in the S. Typhi genome. Strains weremore » engineered to express specific gtr operons. Full chemical analysis of the O-antigens of these strains identified gtr-dependent glucosylation and acetylation. The glucosylated form of the O-antigen mediated enhanced survival in human serum and decreased complement binding. A single nucleotide deviation from an epigenetic phase variation signature sequence rendered the expression of this glucosylating gtr operon uniform in the population. In contrast, the expression of the acetylating gtrC gene is controlled by epigenetic phase variation. Acetylation did not affect serum survival, but phase variation can be an immune evasion mechanism, and thus, this modification may contribute to persistence in a host. In murine immunization studies, both O-antigen modifications were generally immunodominant. Our results emphasize that natural O-antigen modifications should be taken into consideration when assessing responses to vaccines, especially O-antigen-based vaccines, and that the Salmonella gtr repertoire may confound the protective efficacy of broad-ranging Salmonella lipopolysaccharide conjugate vaccines.« less
Kobayashi, Tetsuro; Hayakawa, Kayoko; Mawatari, Momoko; Mezaki, Kazuhisa; Takeshita, Nozomi; Kutsuna, Satoshi; Fujiya, Yoshihiro; Kanagawa, Shuzo; Ohmagari, Norio; Kato, Yasuyuki; Morita, Masatomo
2014-07-20
Limited information is available regarding the clinical efficacy of azithromycin for the treatment of enteric fever due to fluoroquinolone-resistant Salmonella Typhi and Salmonella Paratyphi among travelers returning to their home countries. We report a case of a 52-year-old Japanese man who returned from India, who developed a fever of 39°C with no accompanying symptoms 10 days after returning to Japan from a 1-month business trip to Delhi, India. His blood culture results were positive for Salmonella Paratyphi A. He was treated with 14 days of ceftriaxone, after which he remained afebrile for 18 days before his body temperature again rose to 39°C with no apparent symptoms. He was then empirically given 500 mg of azithromycin, but experienced clinical and microbiological failure of azithromycin treatment for enteric fever due to Salmonella Paratyphi A. However, the minimum inhibitory concentration (MIC) of azithromycin was not elevated (8 mg/L). He was again given ceftriaxone for 14 days with no signs of recurrence during the follow-up. There are limited data available for the treatment of enteric fever using azithromycin in travelers from developed countries who are not immune to the disease, and thus, careful follow-up is necessary. In our case, the low azithromycin dose might have contributed the treatment failure. Additional clinical data are needed to determine the rate of success, MIC, and contributing factors for success and/or failure of azithromycin treatment for both Salmonella Typhi and Salmonella Paratyphi infections.
Occurrence of small Hsd plasmids in Salmonella typhi, Shigella boydii, and Escherichia coli.
Yoshida, Y; Mise, K
1986-01-01
The natural occurrence of small Hsd (host specificity for DNA) plasmids was demonstrated in restriction endonuclease-producing strains of Salmonella typhi, Shigella boydii, and Escherichia coli. The five Hsd plasmids isolated were between 5.0 and 12.2 kilobases long. The copy number of all the Hsd plasmids was high (more than 10 copies per cell). Introduction of these small plasmids into E. coli strain 0 drastically lowered the efficiency of plating of the lambda.0 phages (the efficiency of plating was less than 5 X 10(-5) PFU-1). High restriction endonuclease activities were detected in the Hsd plasmid-positive strains because of the elevated copy numbers of the hsdR+ gene. The advantages of using E. coli strains containing the small Hsd plasmids for purification of type II restriction endonucleases are discussed. Images PMID:3003023
Israr, Fozia; Hassan, Fouzia; Naqvi, Baqir Shyum; Azhar, Iqbal; Jabeen, Sabahat; Hasan, S M Farid
2012-07-01
Ethanolic extracts of eight medicinal plants commonly used in folk medicine were tested for their antibacterial activity against four Gram positive strains (Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis and, Streptococcus pneumoniae) and six Gram negative strains (Escherichia coli, Proteus vulgaris, Proteus mirabilis. Salmonella typhi para A, Salmonella typhi para B and Shigella dysenteriae) that were obtained from different pathological laboratories located in Karachi, Pakistan. Disc diffusion method was used to analyze antibacterial activity. Out of eight, five medicinal plants showed antibacterial activity against two or more than two microbial species. The most effective antimicrobial plant found to be Punica granatum followed by Curcuma zedoaria Rosc, Grewia asiatica L and Carissa carandas L, Curcuma caesia Roxb respectively. From these results, it is evident that medicinal plants could be used as a potential source of new antibacterial agents.
Enteric Fever in a Tertiary Paediatric Hospital: A Retrospective Six-Year Review.
Ahmad Hatib, Nur Adila; Chong, Chia Yin; Thoon, Koh Cheng; Tee, Nancy Ws; Krishnamoorthy, Subramania S; Tan, Natalie Wh
2016-07-01
Enteric fever is a multisystemic infection which largely affects children. This study aimed to analyse the epidemiology, clinical presentation, treatment and outcome of paediatric enteric fever in Singapore. A retrospective review of children diagnosed with enteric fever in a tertiary paediatric hospital in Singapore was conducted from January 2006 to January 2012. Patients with positive blood cultures for Salmonella typhi or paratyphi were identified from the microbiology laboratory information system. Data was extracted from their case records. Of 50 enteric fever cases, 86% were due to Salmonella typhi, with 16.3% being multidrug resistant (MDR) strains. Sixty-two percent of S. typhi isolates were of decreased ciprofloxacin susceptibility (DCS). Five cases were both MDR and DCS. The remaining 14% were Salmonella paratyphi A. There were only 3 indigenous cases. Ninety-four percent had travelled to typhoid-endemic countries, 70.2% to the Indian subcontinent and the rest to Indonesia and Malaysia. All patients infected with MDR strains had travelled to the Indian subcontinent. Anaemia was a significant finding in children with typhoid, as compared to paratyphoid fever (P = 0.04). Although all children were previously well, 14% suffered severe complications including shock, pericardial effusion and enterocolitis. None had typhoid vaccination prior to their travel to developing countries. Enteric fever is largely an imported disease in Singapore and has contributed to significant morbidity in children. The use of typhoid vaccine, as well as education on food and water hygiene to children travelling to developing countries, needs to be emphasised.
Revised Ciprofloxacin Breakpoints for Salmonella: Is it Time to Write an Obituary?
Girish, Revathy; Kumar, Anil; Khan, Sadia; Dinesh, Kavitha R; Karim, Shamsul
2013-11-01
To determine the minimum inhibitory concentration of ciprofloxacin among 50 blood stream isolates of Salmonella enterica. A total of 50 consecutive isolates of Salmonella enterica were tested for susceptibility to antimicrobials using the Kirby Bauer disk diffusion method. Minimum inhibitory concentrations were determined using Hi-Comb strips. All results were interpreted according to the CLSI guidelines. Of the 50 isolates 70%were Salmonella Typhi, 4% Salmonella paratyphi A, 2% Salmonella paratyphi B and the remaining 10% were identified only as Salmonella species. Using the CLSI 2011 breakpoints for disc diffusion, 86% (43/50) were resistant to nalidixic acid(NA), 22% (11/50) to ciprofloxacin, 12% to azithromycin, 6% to cotrimoxazole, 4% to ampicillin and 1% to chloramphenicol. The MIC50 and MIC90 of ciprofloxacin for S.Typhi were 0.181 μg/mL and 5.06 μg/mL respectively. While the same for S. paratyphi A was 0.212μg/mL and 0.228μg/mL respectively. None of the isolates were multi drug resistant and all were susceptible to ceftriaxone. Using the CLSI 2012 revised ciprofloxacin breakpoints for disc diffusion (>31mm) & MIC (<0.06 μg/mL), 90% (45/50) of these isolates were found to be resistant. MIC's of ciprofloxacin should be reported for all salmonella isolates and should be used to guide treatment. Blindly following western guidelines for a disease which is highly endemic in the subcontinent will spell the death knell of a cheap and effective drug in our armamentarium. Therefore it will be too premature to declare that "the concept of using ciprofloxacin in typhoid fever is dead!"
Parry, Christopher M.; Vinh, Ha; Chinh, Nguyen Tran; Wain, John; Campbell, James I.; Hien, Tran Tinh; Farrar, Jeremy J.; Baker, Stephen
2011-01-01
Background Infection with Salmonella enterica serovar Typhi (S. Typhi) with reduced susceptibility to fluoroquinolones has been associated with fluoroquinolone treatment failure. We studied the relationship between ofloxacin treatment response and the ofloxacin minimum inhibitory concentration (MIC) of the infecting isolate. Individual patient data from seven randomised controlled trials of antimicrobial treatment in enteric fever conducted in Vietnam in which ofloxacin was used in at least one of the treatment arms was studied. Data from 540 patients randomised to ofloxacin treatment was analysed to identify an MIC of the infecting organism associated with treatment failure. Principal Findings The proportion of patients failing ofloxacin treatment was significantly higher in patients infected with S. Typhi isolates with an MIC≥0.25 µg/mL compared with those infections with an MIC of ≤0.125 µg/mL (p<0.001). Treatment success was 96% when the ofloxacin MIC was ≤0.125 µg/mL, 73% when the MIC was between 0.25 and 0.50 µg/mL and 53% when the MIC was 1.00 µg/mL. This was despite a longer duration of treatment at a higher dosage in patients infected with isolates with an MIC≥0.25 µg/mL compared with those infections with an MIC of ≤0.125 µg/mL. Significance There is a clear relationship between ofloxacin susceptibility and clinical outcome in ofloxacin treated patients with enteric fever. An ofloxacin MIC of ≥0.25 µg/mL, or the presence of nalidixic acid resistance, can be used to define S. Typhi infections in which the response to ofloxacin may be impaired. PMID:21713025
Wain, John; Hendriksen, Rene S; Mikoleit, Matthew L; Keddy, Karen H; Ochiai, R Leon
2015-03-21
Control of typhoid fever relies on clinical information, diagnosis, and an understanding for the epidemiology of the disease. Despite the breadth of work done so far, much is not known about the biology of this human-adapted bacterial pathogen and the complexity of the disease in endemic areas, especially those in Africa. The main barriers to control are vaccines that are not immunogenic in very young children and the development of multidrug resistance, which threatens efficacy of antimicrobial chemotherapy. Clinicians, microbiologists, and epidemiologists worldwide need to be familiar with shifting trends in enteric fever. This knowledge is crucial, both to control the disease and to manage cases. Additionally, salmonella serovars that cause human infection can change over time and location. In areas of Asia, multidrug-resistant Salmonella enterica serovar Typhi (S Typhi) has been the main cause of enteric fever, but now S Typhi is being displaced by infections with drug-resistant S enterica serovar Paratyphi A. New conjugate vaccines are imminent and new treatments have been promised, but the engagement of local medical and public health institutions in endemic areas is needed to allow surveillance and to implement control measures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Khan, S; Harish, B N; Menezes, G A; Acharya, N S; Parija, S C
2012-11-01
Typhoid fever caused by Salmonella Typhi continues to be a major health problem in spite of the use of antibiotics and the development of newer antibacterial drugs. Inability to make an early laboratory diagnosis and resort to empirical therapy, often lead to increased morbidity and mortality in cases of typhoid fever. This study was aimed to optimize a nested PCR for early diagnosis of typhoid fever and using it as a diagnostic tool in culture negative cases of suspected typhoid fever. Eighty patients with clinical diagnosis of typhoid fever and 40 controls were included in the study. The blood samples collected were subjected to culture, Widal and nested PCR targeting the flagellin gene of S. Typhi. The sensitivity of PCR on blood was found to be 100 per cent whereas the specificity was 76.9 per cent. The positive predictive value (PPV) of PCR was calculated to be 76.9 per cent with an accuracy of 86 per cent. None of the 40 control samples gave a positive PCR. Due to its high sensitivity and specificity nested PCR can be used as a useful tool to diagnose clinically suspected, culture negative cases of typhoid fever.
Novel Structure and Function of Typhoid Toxin
... the reasons why Salmonella typhi , the cause of typhoid fever, is so dangerous. The findings could help guide ... A few people, known as carriers, recover from typhoid fever but continue to carry the bacteria. Perhaps the ...
Clare, Simon; Goulding, David; Holt, Kathryn E.; Grant, Andrew J.; Mastroeni, Piero; Dougan, Gordon; Kingsley, Robert A.
2011-01-01
The Vi capsular polysaccharide is a virulence-associated factor expressed by Salmonella enterica serotype Typhi but absent from virtually all other Salmonella serotypes. In order to study this determinant in vivo, we characterised a Vi-positive S. Typhimurium (C5.507 Vi+), harbouring the Salmonella pathogenicity island (SPI)-7, which encodes the Vi locus. S. Typhimurium C5.507 Vi+ colonised and persisted in mice at similar levels compared to the parent strain, S. Typhimurium C5. However, the innate immune response to infection with C5.507 Vi+ and SGB1, an isogenic derivative not expressing Vi, differed markedly. Infection with C5.507 Vi+ resulted in a significant reduction in cellular trafficking of innate immune cells, including PMN and NK cells, compared to SGB1 Vi− infected animals. C5.507 Vi+ infection stimulated reduced numbers of TNF-α, MIP-2 and perforin producing cells compared to SGB1 Vi−. The modulating effect associated with Vi was not observed in MyD88−/− and was reduced in TLR4−/− mice. The presence of the Vi capsule also correlated with induction of the anti-inflammatory cytokine IL-10 in vivo, a factor that impacted on chemotaxis and the activation of immune cells in vitro. PMID:21829346
Community Acquired Bacteremia in Young Children from Central Nigeria- A Pilot Study
2011-01-01
Background Reports of the etiology of bacteremia in children from Nigeria are sparse and have been confounded by wide spread non-prescription antibiotic use and suboptimal laboratory culture techniques. We aimed to determine causative agents and underlying predisposing conditions of bacteremia in Nigerian children using data arising during the introduction of an automated blood culture system accessed by 7 hospitals and clinics in the Abuja area. Methods Between September 2008 and November 2009, we enrolled children with clinically suspected bacteremia at rural and urban clinical facilities in Abuja or within the Federal Capital Territory of Nigeria. Blood was cultured using an automated system with antibiotic removing device. We documented clinical features in all children and tested for prior antibiotic use in a random sample of sera from children from each site. Results 969 children aged 2 months-5 years were evaluated. Mean age was 21 ± 15.2 months. All children were not systematically screened but there were 59 (6%) children with established diagnosis of sickle cell disease and 42 (4.3%) with HIV infection. Overall, 212 (20.7%) had a positive blood culture but in only 105 (10.8%) were these considered to be clinically significant. Three agents, Staphylococcus aureus (20.9%), Salmonella typhi (20.9%) and Acinetobacter (12.3%) accounted for over half of the positive cultures. Streptococcus pneumoniae and non-typhi Salmonellae each accounted for 7.6%. Although not the leading cause of bacteremia, Streptococcus pneumoniae was the single leading cause of all deaths that occurred during hospitalization and after hospital discharge. Conclusion S. typhi is a significant cause of vaccine-preventable morbidity while S. pneumoniae may be a leading cause of mortality in this setting. This observation contrasts with reports from most other African countries where non-typhi Salmonellae are predominant in young children. Expanded surveillance is required to confirm the preliminary observations from this pilot study to inform implementation of appropriate public health control measures. PMID:21595963
Zhang, Yan; Brady, Arthur; Jones, Cheron; Song, Yang; Darton, Thomas C; Jones, Claire; Blohmke, Christoph J; Pollard, Andrew J; Magder, Laurence S; Fasano, Alessio; Sztein, Marcelo B; Fraser, Claire M
2018-05-08
Insights into disease susceptibility as well as the efficacy of vaccines against typhoid and other enteric pathogens may be informed by better understanding the relationship between the effector immune response and the gut microbiota. In the present study, we characterized the composition (16S rRNA gene profiling) and function (RNA sequencing [RNA-seq]) of the gut microbiota following immunization and subsequent exposure to wild-type Salmonella enterica serovar Typhi in a human challenge model to further investigate the central hypothesis that clinical outcomes may be linked to the gut microbiota. Metatranscriptome analysis of longitudinal stool samples collected from study subjects revealed two stable patterns of gene expression for the human gut microbiota, dominated by transcripts from either Methanobrevibacter or a diverse representation of genera in the Firmicutes phylum. Immunization with one of two live oral attenuated vaccines against S. Typhi had minimal effects on the composition or function of the gut microbiota. It was observed that subjects harboring the methanogen-dominated transcriptome community at baseline displayed a lower risk of developing symptoms of typhoid following challenge with wild-type S. Typhi. Furthermore, genes encoding antioxidant proteins, metal homeostasis and transport proteins, and heat shock proteins were expressed at a higher level at baseline or after challenge with S. Typhi in subjects who did not develop symptoms of typhoid. These data suggest that functional differences relating to redox potential and ion homeostasis in the gut microbiota may impact clinical outcomes following exposure to wild-type S. Typhi. IMPORTANCE S. Typhi is a significant cause of systemic febrile morbidity in settings with poor sanitation and limited access to clean water. It has been demonstrated that the human gut microbiota can influence mucosal immune responses, but there is little information available on the impact of the human gut microbiota on clinical outcomes following exposure to enteric pathogens. Here, we describe differences in the composition and function of the gut microbiota in healthy adult volunteers enrolled in a typhoid vaccine trial and report that these differences are associated with host susceptibility to or protection from typhoid after challenge with wild-type S Typhi. Our observations have important implications in interpreting the efficacy of oral attenuated vaccines against enteric pathogens in diverse populations. Copyright © 2018 Zhang et al.
Yap, Kien-Pong; Gan, Han Ming; Teh, Cindy Shuan Ju; Chai, Lay Ching; Thong, Kwai Lin
2014-11-20
Typhoid fever is an infectious disease of global importance that is caused by Salmonella enterica subsp. enterica serovar Typhi (S. Typhi). This disease causes an estimated 200,000 deaths per year and remains a serious global health threat. S. Typhi is strictly a human pathogen, and some recovered individuals become long-term carriers who continue to shed the bacteria in their faeces, thus becoming main reservoirs of infection. A comparative genomics analysis combined with a phylogenomic analysis revealed that the strains from the outbreak and carrier were closely related with microvariations and possibly derived from a common ancestor. Additionally, the comparative genomics analysis with all of the other completely sequenced S. Typhi genomes revealed that strains BL196 and CR0044 exhibit unusual genomic variations despite S. Typhi being generally regarded as highly clonal. The two genomes shared distinct chromosomal architectures and uncommon genome features; notably, the presence of a ~10 kb novel genomic island containing uncharacterised virulence-related genes, and zot in particular. Variations were also detected in the T6SS system and genes that were related to SPI-10, insertion sequences, CRISPRs and nsSNPs among the studied genomes. Interestingly, the carrier strain CR0044 harboured far more genetic polymorphisms (83% mutant nsSNPs) compared with the closely related BL196 outbreak strain. Notably, the two highly related virulence-determinant genes, rpoS and tviE, were mutated in strains BL196 and CR0044, respectively, which revealed that the mutation in rpoS is stabilising, while that in tviE is destabilising. These microvariations provide novel insight into the optimisation of genes by the pathogens. However, the sporadic strain was found to be far more conserved compared with the others. The uncommon genomic variations in the two closely related BL196 and CR0044 strains suggests that S. Typhi is more diverse than previously thought. Our study has demonstrated that the pathogen is continually acquiring new genes through horizontal gene transfer in the process of host adaptation, providing novel insight into its unusual genomic dynamics. The understanding of these strains and virulence factors, and particularly the strain that is associated with the large outbreak and the less studied asymptomatic Typhi carrier in the population, will have important impact on disease control.
Marks, Florian; von Kalckreuth, Vera; Aaby, Peter; Adu-Sarkodie, Yaw; El Tayeb, Muna Ahmed; Ali, Mohammad; Aseffa, Abraham; Baker, Stephen; Biggs, Holly M; Bjerregaard-Andersen, Morten; Breiman, Robert F; Campbell, James I; Cosmas, Leonard; Crump, John A; Espinoza, Ligia Maria Cruz; Deerin, Jessica Fung; Dekker, Denise Myriam; Fields, Barry S; Gasmelseed, Nagla; Hertz, Julian T; Van Minh Hoang, Nguyen; Im, Justin; Jaeger, Anna; Jeon, Hyon Jin; Kabore, Leon Parfait; Keddy, Karen H; Konings, Frank; Krumkamp, Ralf; Ley, Benedikt; Løfberg, Sandra Valborg; May, Jürgen; Meyer, Christian G; Mintz, Eric D; Montgomery, Joel M; Niang, Aissatou Ahmet; Nichols, Chelsea; Olack, Beatrice; Pak, Gi Deok; Panzner, Ursula; Park, Jin Kyung; Park, Se Eun; Rabezanahary, Henintsoa; Rakotozandrindrainy, Raphaël; Raminosoa, Tiana Mirana; Razafindrabe, Tsiriniaina Jean Luco; Sampo, Emmanuel; Schütt-Gerowitt, Heidi; Sow, Amy Gassama; Sarpong, Nimako; Seo, Hye Jin; Sooka, Arvinda; Soura, Abdramane Bassiahi; Tall, Adama; Teferi, Mekonnen; Thriemer, Kamala; Warren, Michelle R; Yeshitela, Biruk; Clemens, John D; Wierzba, Thomas F
2017-03-01
Available incidence data for invasive salmonella disease in sub-Saharan Africa are scarce. Standardised, multicountry data are required to better understand the nature and burden of disease in Africa. We aimed to measure the adjusted incidence estimates of typhoid fever and invasive non-typhoidal salmonella (iNTS) disease in sub-Saharan Africa, and the antimicrobial susceptibility profiles of the causative agents. We established a systematic, standardised surveillance of blood culture-based febrile illness in 13 African sentinel sites with previous reports of typhoid fever: Burkina Faso (two sites), Ethiopia, Ghana, Guinea-Bissau, Kenya, Madagascar (two sites), Senegal, South Africa, Sudan, and Tanzania (two sites). We used census data and health-care records to define study catchment areas and populations. Eligible participants were either inpatients or outpatients who resided within the catchment area and presented with tympanic (≥38·0°C) or axillary temperature (≥37·5°C). Inpatients with a reported history of fever for 72 h or longer were excluded. We also implemented a health-care utilisation survey in a sample of households randomly selected from each study area to investigate health-seeking behaviour in cases of self-reported fever lasting less than 3 days. Typhoid fever and iNTS disease incidences were corrected for health-care-seeking behaviour and recruitment. Between March 1, 2010, and Jan 31, 2014, 135 Salmonella enterica serotype Typhi (S Typhi) and 94 iNTS isolates were cultured from the blood of 13 431 febrile patients. Salmonella spp accounted for 33% or more of all bacterial pathogens at nine sites. The adjusted incidence rate (AIR) of S Typhi per 100 000 person-years of observation ranged from 0 (95% CI 0-0) in Sudan to 383 (274-535) at one site in Burkina Faso; the AIR of iNTS ranged from 0 in Sudan, Ethiopia, Madagascar (Isotry site), and South Africa to 237 (178-316) at the second site in Burkina Faso. The AIR of iNTS and typhoid fever in individuals younger than 15 years old was typically higher than in those aged 15 years or older. Multidrug-resistant S Typhi was isolated in Ghana, Kenya, and Tanzania (both sites combined), and multidrug-resistant iNTS was isolated in Burkina Faso (both sites combined), Ghana, Kenya, and Guinea-Bissau. Typhoid fever and iNTS disease are major causes of invasive bacterial febrile illness in the sampled locations, most commonly affecting children in both low and high population density settings. The development of iNTS vaccines and the introduction of S Typhi conjugate vaccines should be considered for high-incidence settings, such as those identified in this study. Bill & Melinda Gates Foundation. Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license. Published by Elsevier Ltd.. All rights reserved.
Huedo, Pol; Gori, Maria; Zolin, Anna; Amato, Ettore; Ciceri, Giulia; Bossi, Anna; Pontello, Mirella
2017-03-01
Salmonella enterica serotype Napoli (S. Napoli) is currently emerging in Europe and particularly in Italy, where in 2014 it caused a large outbreak associated with elevated rates of bacteremia. However, no study has yet investigated its invasive ability and phylogenetic classification. Here, we show that between 2010 and 2014, S. Napoli was the first cause of invasive salmonellosis affecting 40 cases out of 687 (invasive index: 5.8%), which is significantly higher than the invasive index of all the other nontyphoidal serotypes (2.0%, p < 0.05). Genomic and phylogenetic analyses of an invasive isolate revealed that S. Napoli belongs to Typhi subclade in clade A, Paratyphi A being the most related serotype and carrying almost identical pattern of typhoid-associated genes. This work presents evidence of invasive capacity of S. Napoli and argues for reconsideration of its nontyphoidal category.
Antimicrobial resistance problems in typhoid fever
NASA Astrophysics Data System (ADS)
Saragih, R. H.; Purba, G. C. F.
2018-03-01
Typhoid fever (enteric fever) remains a burden in developing countries and a major health problem in Southern and Southeastern Asia. Salmonella typhi (S. typhi), the causative agent of typhoid fever, is a gram-negative, motile, rod-shaped, facultative anaerobe and solely a human pathogen with no animal reservoir. Infection of S. typhi can cause fever, abdominal pain and many worsenonspecific symptoms, including gastrointestinal symptoms suchas nausea, vomiting, constipation, and diarrhea. Chloramphenicol, ampicillin,and cotrimoxazole were the first-recommended antibiotics in treating typhoid fever. In the last two decades though, these three traditional drugs started to show resistance and developed multidrug resistance (MDR) S. typhi strains. In many parts of the world, the changing modes ofpresentation and the development of MDR have made typhoid fever increasingly difficult to treat.The use of first-line antimicrobials had been recommended to be fluoroquinolone as a replacement. However, this wassoonfollowedbyreportsof isolates ofS. typhi showing resistancetofluoroquinolones as well. These antimicrobial resistance problems in typhoid fever have been an alarming situation ever since and need to be taken seriously or else typhoid fever will no longer be taken care completely by administering antibiotics.
Gómez-Duarte, Oscar G.; Pasetti, Marcela F.; Santiago, Araceli; Sztein, Marcelo B.; Hoffman, Stephen L.; Levine, Myron M.
2001-01-01
Deleting transmembrane α-helix motifs from Plasmodium falciparum sporozoite surface protein (SSP-2) allowed its secretion from Salmonella enterica serovar Typhimurium SL3261 and S. enterica serovar Typhi CVD 908-htrA by the Hly type I secretion system. In mice immunized intranasally, serovar Typhimurium constructs secreting SSP-2 stimulated greater gamma interferon splenocyte responses than did nonsecreting constructs (P = 0.04). PMID:11160021
De Jong, Hanna K; Achouiti, Ahmed; Koh, Gavin C K W; Parry, Christopher M; Baker, Stephen; Faiz, Mohammed Abul; van Dissel, Jaap T; Vollaard, Albert M; van Leeuwen, Ester M M; Roelofs, Joris J T H; de Vos, Alex F; Roth, Johannes; van der Poll, Tom; Vogl, Thomas; Wiersinga, Willem Joost
2015-04-01
Typhoid fever, caused by the Gram-negative bacterium Salmonella enterica serovar Typhi, is a major cause of community-acquired bacteremia and death worldwide. S100A8 (MRP8) and S100A9 (MRP14) form bioactive antimicrobial heterodimers (calprotectin) that can activate Toll-like receptor 4, promoting lethal, endotoxin-induced shock and multi-organ failure. We aimed to characterize the expression and function of S100A8/A9 in patients with typhoid fever and in a murine invasive Salmonella model. S100A8/A9 protein levels were determined in acute phase plasma or feces from 28 Bangladeshi patients, and convalescent phase plasma from 60 Indonesian patients with blood culture or PCR-confirmed typhoid fever, and compared to 98 healthy control subjects. To functionally characterize the role of S100A8/A9, we challenged wildtype (WT) and S100A9-/- mice with S. Typhimurium and determined bacterial loads and inflammation 2- and 5- days post infection. We further assessed the antimicrobial function of recombinant S100A8/A9 on S. Typhimurium and S. Typhi replication in vitro. Typhoid fever patients demonstrated a marked increase of S100A8/A9 in acute phase plasma and feces and this increases correlated with duration of fever prior to admission. S100A8/A9 directly inhibited the growth of S. Typhimurium and S. Typhi in vitro in a dose and time dependent fashion. WT mice inoculated with S. Typhimurium showed increased levels of S100A8/A9 in both the liver and the systemic compartment but S100A9-/- mice were indistinguishable from WT mice with respect to bacterial growth, survival, and inflammatory responses, as determined by cytokine release, histopathology and organ injury. S100A8/A9 is markedly elevated in human typhoid, correlates with duration of fever prior to admission and directly inhibits the growth of S. Typhimurium and S. Typhi in vitro. Despite elevated levels in the murine invasive Salmonella model, S100A8/A9 does not contribute to an effective host response against S. Typhimurium in mice.
De Jong, Hanna K.; Achouiti, Ahmed; Koh, Gavin C. K. W.; Parry, Christopher M.; Baker, Stephen; Faiz, Mohammed Abul; van Dissel, Jaap T.; Vollaard, Albert M.; van Leeuwen, Ester M. M.; Roelofs, Joris J. T. H.; de Vos, Alex F.; Roth, Johannes; van der Poll, Tom; Vogl, Thomas; Wiersinga, Willem Joost
2015-01-01
Background Typhoid fever, caused by the Gram-negative bacterium Salmonella enterica serovar Typhi, is a major cause of community-acquired bacteremia and death worldwide. S100A8 (MRP8) and S100A9 (MRP14) form bioactive antimicrobial heterodimers (calprotectin) that can activate Toll-like receptor 4, promoting lethal, endotoxin-induced shock and multi-organ failure. We aimed to characterize the expression and function of S100A8/A9 in patients with typhoid fever and in a murine invasive Salmonella model. Methods and principal findings S100A8/A9 protein levels were determined in acute phase plasma or feces from 28 Bangladeshi patients, and convalescent phase plasma from 60 Indonesian patients with blood culture or PCR-confirmed typhoid fever, and compared to 98 healthy control subjects. To functionally characterize the role of S100A8/A9, we challenged wildtype (WT) and S100A9-/- mice with S. Typhimurium and determined bacterial loads and inflammation 2- and 5- days post infection. We further assessed the antimicrobial function of recombinant S100A8/A9 on S. Typhimurium and S. Typhi replication in vitro. Typhoid fever patients demonstrated a marked increase of S100A8/A9 in acute phase plasma and feces and this increases correlated with duration of fever prior to admission. S100A8/A9 directly inhibited the growth of S. Typhimurium and S. Typhi in vitro in a dose and time dependent fashion. WT mice inoculated with S. Typhimurium showed increased levels of S100A8/A9 in both the liver and the systemic compartment but S100A9-/- mice were indistinguishable from WT mice with respect to bacterial growth, survival, and inflammatory responses, as determined by cytokine release, histopathology and organ injury. Conclusion S100A8/A9 is markedly elevated in human typhoid, correlates with duration of fever prior to admission and directly inhibits the growth of S. Typhimurium and S. Typhi in vitro. Despite elevated levels in the murine invasive Salmonella model, S100A8/A9 does not contribute to an effective host response against S. Typhimurium in mice. PMID:25860480
Kirkpatrick, B D; McKenzie, Robin; O'Neill, J Patrick; Larsson, Catherine J; Bourgeois, A Louis; Shimko, Janet; Bentley, Matthew; Makin, Jill; Chatfield, Steve; Hindle, Zoë; Fidler, Christine; Robinson, Brad E; Ventrone, Cassandra H; Bansal, Nivedita; Carpenter, Colleen M; Kutzko, Deborah; Hamlet, Sandra; LaPointe, Casey; Taylor, David N
2006-01-12
Salmonella enterica serovar Typhi strains with mutations in the Salmonella pathogenicity island-2 (SPI-2) may represent an effective strategy for human vaccine development, and a vectoring system for heterologous antigens. S. Typhi (Ty2 aroC-ssaV-) M01ZH09 is an attenuated, live, oral typhoid vaccine harboring defined deletion mutations in ssaV, which encodes an integral component in the SPI-2 type III secretion system (TTSS), as well as a mutation in an aromatic biosynthetic pathway needed for bacterial growth in vivo (aroC). SPI-2 mutant vaccines have yet to be evaluated in a large, randomized human trial. A simplified or single-oral dose oral typhoid vaccine using the SPI-2 strategy would offer significant advantages over the currently licensed typhoid vaccines. We performed a double-blinded, placebo-controlled, dose-escalating clinical trial in 60 healthy adult volunteers to determine the tolerability and immunogenicity of a single dose of M01ZH09. Three groups of 20 healthy adult volunteers were enrolled; 16 in each group received a single oral dose of the freeze-dried vaccine at 5 x 10(7), 5 x 10(8) or 5 x 10(9)CFU in a bicarbonate buffer. Four volunteers in each cohort received placebo in the same buffer. Adverse events were infrequent and not statistically different between vaccine and placebo recipients, although two subjects in the mid-range dose and three subjects in the highest dose had temperature measurements >37.5 degrees C. No blood or urine cultures were positive for M01ZH09, and fecal shedding was brief. The immune response was dose-related; the highest vaccine dose (5 x 10(9)CFU) was the most immunogenic. All tested subjects receiving the highest dose had a significant ASC response (mean 118 spots/10(6) cells). A >or=4-fold increase in antibody titer for S. Typhi LPS or flagellin was detected in 75% of volunteers in the highest-dose cohort by day 28. The SPI-2 mutant vaccine, M01ZH09, is a promising typhoid vaccine candidate and deserves further study as a vectoring system for heterologous vaccine antigens.
Sjölund-Karlsson, Maria; Howie, Rebecca L; Blickenstaff, Karen; Boerlin, Patrick; Ball, Takiyah; Chalmers, Gabhan; Duval, Brea; Haro, Jovita; Rickert, Regan; Zhao, Shaohua; Fedorka-Cray, Paula J; Whichard, Jean M
2013-06-01
Non-Typhi Salmonella cause over 1.7 million cases of gastroenteritis in North America each year, and food-animal products are commonly implicated in human infections. For invasive infections, antimicrobial therapy is indicated. In North America, the antimicrobial susceptibility of Salmonella is monitored by the U.S. National Antimicrobial Resistance Monitoring System (NARMS) and The Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS). In this study, we determined the susceptibility to cephalosporins by broth microdilution among 5,041 non-Typhi Salmonella enterica isolated from food animals, retail meats, and humans. In the United States, 109 (4.6%) of isolates collected from humans, 77 (15.7%) from retail meat, and 140 (10.6%) from food animals displayed decreased susceptibility to cephalosporins (DSC). Among the Canadian retail meat and food animal isolates, 52 (13.0%) and 42 (9.4%) displayed DSC. All isolates displaying DSC were screened for β-lactamase genes (bla(TEM), bla(SHV), bla(CMY), bla(CTX-M), and bla(OXA-1)) by polymerase chain reaction. At least one β-lactamase gene was detected in 74/109 (67.9%) isolates collected from humans, and the bla(CMY) genes were most prevalent (69/109; 63.3%). Similarly, the bla(CMY) genes predominated among the β-lactamase-producing isolates collected from retail meats and food animals. Three isolates from humans harbored a bla(CTX-M-15) gene. No animal or retail meat isolates harbored a bla(CTX-M) or bla(OXA-1) gene. A bla(TEM) gene was found in 5 human, 9 retail meat, and 17 animal isolates. Although serotype distributions varied among human, retail meat, and animal sources, overlap in bla(CMY)-positive serotypes across sample sources supports meat and food-animal sources as reservoirs for human infection.
Andrews, Jason R; Prajapati, Krishna G; Eypper, Elizabeth; Shrestha, Poojan; Shakya, Mila; Pathak, Kamal R; Joshi, Niva; Tiwari, Priyanka; Risal, Manisha; Koirala, Samir; Karkey, Abhilasha; Dongol, Sabina; Wen, Shawn; Smith, Amy B; Maru, Duncan; Basnyat, Buddha; Baker, Stephen; Farrar, Jeremy; Ryan, Edward T; Hohmann, Elizabeth; Arjyal, Amit
2013-01-01
In many rural areas at risk for enteric fever, there are few data on Salmonella enterica serotypes Typhi (S. Typhi) and Paratyphi (S. Paratyphi) incidence, due to limited laboratory capacity for microbiologic culture. Here, we describe an approach that permits recovery of the causative agents of enteric fever in such settings. This approach involves the use of an electricity-free incubator based upon use of phase-change materials. We compared this against conventional blood culture for detection of typhoidal Salmonella. Three hundred and four patients with undifferentiated fever attending the outpatient and emergency departments of a public hospital in the Kathmandu Valley of Nepal were recruited. Conventional blood culture was compared against an electricity-free culture approach. Blood from 66 (21.7%) patients tested positive for a Gram-negative bacterium by at least one of the two methods. Sixty-five (21.4%) patients tested blood culture positive for S. Typhi (30; 9.9%) or S. Paratyphi A (35; 11.5%). From the 65 individuals with culture-confirmed enteric fever, 55 (84.6%) were identified by the conventional blood culture and 60 (92.3%) were identified by the experimental method. Median time-to-positivity was 2 days for both procedures. The experimental approach was falsely positive due to probable skin contaminants in 2 of 239 individuals (0.8%). The percentages of positive and negative agreement for diagnosis of enteric fever were 90.9% (95% CI: 80.0%-97.0%) and 96.0% (92.7%-98.1%), respectively. After initial incubation, Salmonella isolates could be readily recovered from blood culture bottles maintained at room temperature for six months. A simple culture approach based upon a phase-change incubator can be used to isolate agents of enteric fever. This approach could be used as a surveillance tool to assess incidence and drug resistance of the etiologic agents of enteric fever in settings without reliable local access to electricity or local diagnostic microbiology laboratories.
Bharti, Veni; Vasudeva, Neeru; Sharma, Sunil; Duhan, Joginder Singh
2013-01-01
Background: Typhoid fever continues to remain a major public health problem especially in the areas where there is problem of sanitation and hygiene. The emergence of multidrug resistance of Salmonella typhi, the bacteria responsible for Typhoid to ampicillin, chloramphenicol, and cotrimoxazole has further complicated the treatment and management of enteric fever. One strategy for the treatment of the multidrug resistant bacteria is to use herbs in combination with conventional drugs. The present study was done to find out the interaction effect of phenolic, nonphenolic fractions, and volatile oil of Origanum vulgare with ciprofloxacin. Materials and Methods: The minimum inhibitory concentration (MIC) by microdilution method for individual phytoconstituents and in combination with ciprofloxacin was compared for clinically isolated bacteria from patients infected with S. typhi. Fractional inhibitory concentration (FIC) and Fractional inhibitory concentration index (FICI) were also calculated. Results: The MIC declined to a significant level indicating synergistic relationship between ciprofloxacin and phenolic, nonphenolic fractions and volatile oil in vitro. The FICI exhibits synergistic effect for all the three samples while indifferent and antagonistic for samples and for phenolic and nonphenolic fractions. Conclusions: Present study shows that not only the formulation using O. vulgare and ciprofloxacin can overcome multidrug resistance but also will reduce the toxic effects of ciprofloxacin. PMID:24991069
Formation and resuscitation of viable but nonculturable Salmonella typhi.
Zeng, Bin; Zhao, Guozhong; Cao, Xiaohong; Yang, Zhen; Wang, Chunling; Hou, Lihua
2013-01-01
Salmonella typhi is a pathogen that causes the human disease of typhoid fever. The aim of this study was to investigate the viable but nonculturable (VBNC) state of S. typhi. Some samples were stimulated at 4°C or -20°C, while others were induced by different concentrations of CuSO4. Total cell counts remained constant throughout several days by acridine orange direct counting; however, plate counts declined to undetectable levels within 48 hours by plate counting at -20°C. The direct viable counts remained fairly constant at this level by direct viable counting. Carbon and nitrogen materials slowly decreased which indicated that a large population of cells existed in the VBNC state and entered the VBNC state in response to exposure to 0.01 or 0.015 mmol/L CuSO4 for more than 14 or 12 days, respectively. Adding 3% Tween 20 or 1% catalase enabled cells to become culturable again, with resuscitation times of 48 h and 24 h, respectively. The atomic force microscope results showed that cells gradually changed in shape from short rods to coccoids, and decreased in size when they entered the VBNC state. Further animal experiments suggested that resuscitated cells might regain pathogenicity.
Salmonella typhi infection in a tertiary institution in Nasarawa State, Nigeria.
Ishaleku, D; Sar, T T; Houmsou, R S
2011-02-01
To evaluate the prevalence of Sabmonella typhi (S.typhi) among subjects attending College of Education Health Clinic, Akwanga, Nasarawa state from the year. 2005 to 2007 and to recommend some preventive measures to the populace. Blood samples were tested for infection using the widal test. Out of the 793 patients examined, 579(73.0%) were positive with 174 (30.05%), 254(43.86%) and 151(26.07%) for the years 2005, 2006 and 2007 respectively. The age range with the highest prevalence of infection for the period was 21-30 with 207(35.75%) followed by 31-40 year group with 133 (22.97%). Chi-square analysis showed no significant difference in infection between males and females (P>0.05). The results of this study provide a useful guide in the formulation of S. typhi control measures in tertiary institutions in the State and also help to check the spread of the pathogen in the general population. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Microbiological Detection Systems for Molecular Analysis of Environmental Water and Soil Samples
Multiple detection systems are being targeted to track various species and genotypes of pathogens found in environmental samples with the overreaching goal of developing analytical separation and detection techniques for Salmonella enterica Serovars Typhi, Cryptosporidium parvum,...
2004-06-23
Vibrio cholerae ) + — — — + Unknown Salmonella Typhimurium + — + — — Unknown Typhoid fever (Salmonella Typhi) + O — — — Unknown Source: This...disseminated by contamination of food or drink. Cholera bb ( Vibrio cholerae ) Cholera occurs in many of the developing countries of Africa and Asia...diseaseinfo/cholera_g.htm]; the Health Canada Material Safety Data Sheet - Infectious Substances for Vibrio cholerae , found online at [http://www.hc-sc.gc.ca
Salmonella Bacteremia Among Children in Central and Northwest Nigeria, 2008–2015
Obaro, Stephen K.; Hassan-Hanga, Fatimah; Olateju, Eyinade K.; Umoru, Dominic; Lawson, Lovett; Olanipekun, Grace; Ibrahim, Sadeeq; Munir, Huda; Ihesiolor, Gabriel; Maduekwe, Augustine; Ohiaeri, Chinatu; Adetola, Anthony; Shetima, Denis; Jibir, Binta W.; Nakaura, Hafsat; Kocmich, Nicholas; Ajose, Therasa; Idiong, David; Masokano, Kabir; Ifabiyi, Adeyemi; Ihebuzor, Nnenna; Chen, Baojiang; Meza, Jane; Akindele, Adebayo; Rezac-Elgohary, Amy; Olaosebikan, Rasaq; Suwaid, Salman; Gambo, Mahmoud; Alter, Roxanne; Davies, Herbert D.; Fey, Paul D.
2015-01-01
Background. Etiologic agents of childhood bacteremia remain poorly defined in Nigeria. The absence of such data promotes indiscriminate use of antibiotics and delays implementation of appropriate preventive strategies. Methods. We established diagnostic laboratories for bacteremia surveillance at regional sites in central and northwest Nigeria. Acutely ill children aged <5 years with clinically suspected bacteremia were evaluated at rural and urban clinical facilities in the Federal Capital Territory, central region and in Kano, northwest Nigeria. Blood was cultured using the automated Bactec incubator system. Results. Between September 2008 and April 2015, we screened 10 133 children. Clinically significant bacteremia was detected in 609 of 4051 (15%) in the northwest and 457 of 6082 (7.5%) in the central region. Across both regions, Salmonella species account for 24%–59.8% of bacteremias and are the commonest cause of childhood bacteremia, with a predominance of Salmonella enterica serovar Typhi. The prevalence of resistance to ampicillin, chloramphenicol, and cotrimoxazole was 38.11%, with regional differences in susceptibility to different antibiotics but high prevalence of resistance to readily available oral antibiotics. Conclusions. Salmonella Typhi is the leading cause of childhood bacteremia in central Nigeria. Expanded surveillance is planned to define the dynamics of transmission. The high prevalence of multidrug-resistant strains calls for improvement in environmental sanitation in the long term and vaccination in the short term. PMID:26449948
Edel, W; van Schothorst, M; Kampelmacher, E H
1976-08-01
During a certain period various materials (pigs, foods, insects, seagull droppings, chopping-block scrapings from butcher's shops, effluents of sewage treatment plants and stools of patients) were examined for the presence of Salmonella at the same time in a relatively small area (Walcheren). Certain types of Salmonella (S. typhi murium type II 505, S. panama, S. infantis and S. brandenburg) were frequently isolated from almost all materials examined. This may indicate the existence of Salmonella contamination cycles: one may think of the cycle: slaughter animal (infected from the environment and/or by meal) - meat - consumer - patient or healthy carrier - effluent and surface water - insects, birds and rodents - slaughter animal or meat and possibly other foods - consumer.
Zhang, Haifang; Zhu, Yunxia; Xie, Xiaofang; Wang, Min; Du, Hong; Xu, Shungao; Zhang, Ying; Gong, Mingyu; Ni, Bin; Xu, Huaxi; Huang, Xinxiang
2016-01-01
The linear plasmid pBSSB1 mediates the flagellar phase variation in H:z66 positive Salmonella enterica serovar Typhi (S. Typhi). The gene named stp17 (S. Typhi plasmid number 17 gene) is located on pBSSB1 and encodes the protein STP17. The expression pattern at the protein-level and function of STP17 remains unknown. In this study, the recombinant protein STP17His6 was expressed, purified and used to prepare the polyclonal anti-STP17 antibody. We detected protein-level expression of stp17 in S. Typhi and further investigated the protein expression characteristics of stp17 in different growth phases by western blot analysis. The effects of STP17 on bacterial growth and motility were analyzed. In addition, the structure of STP17 was predicted and the active site of STP17 was identified by site-directed mutagenesis. The results showed that STP17 was expressed stably in the wild type strain of S. Typhi. STP17 expression at the protein level peaks when cultures reach an OD600 value of 1.2. The growth rate and motility of the Δstp17 strain were significantly decreased compared with the wild type strain (P < 0.05) and this phenotype was restored in the stp17 complementary strain. Moreover, the growth rate and motility of the stp17 over-expression strain was greater than the wild type strain. STP17 contains nine Helix segments, six Stand segments and some Coil segments in the secondary structural level. The top-ranked 3-D structure of STP17 predicted by I-TASSER contains a putative ATPase domain and the amino acid residues of GLY16, GLY19, LYS20, ASN133, LYS157, and LYS158 may be the active site residues of STP17. Finally, STP17 was able to catalyze the ATP to ADP reaction, suggesting that STP17 may be an ATPase. To our knowledge, this is the first report describing the protein expression characteristics of STP17 in S. Typhi, showing that STP17 promotes bacterial growth and motility, which may be associated with its potential ATPase activity. PMID:27761429
Evans, C; Bateman, E; Steven, R; Ponsford, M; Cullinane, A; Shenton, C; Duthie, G; Conlon, C; Jolles, S; Huissoon, A P; Longhurst, H J; Rahman, T; Scott, C; Wallis, G; Harding, S; Parker, A R; Ferry, B L
2018-01-29
Vaccine-specific antibody responses are essential in the diagnosis of antibody deficiencies. Responses to Pneumovax II are used to assess the response to polysaccharide antigens, but interpretation may be complicated. Typhim Vi ® , a polysaccharide vaccine for Salmonella typhoid fever, may be an additional option for assessing humoral responses in patients suspected of having an immunodeficiency. Here we report a UK multi-centre study describing the analytical and clinical performance of a Typhi Vi immunoglobulin (Ig)G enzyme-linked immunosorbent assay (ELISA) calibrated to an affinity-purified Typhi Vi IgG preparation. Intra- and interassay imprecision was low and the assay was linear, between 7·4 and 574 U/ml (slope = 0·99-1·00; R 2 > 0·99); 71% of blood donors had undetectable Typhi Vi IgG antibody concentrations. Of those with antibody concentrations > 7·4 U/ml, the concentration range was 7·7-167 U/ml. In antibody-deficient patients receiving antibody replacement therapy the median Typhi Vi IgG antibody concentrations were < 25 U/ml. In vaccinated normal healthy volunteers, the median concentration post-vaccination was 107 U/ml (range 31-542 U/ml). Eight of eight patients (100%) had post-vaccination concentration increases of at least threefold and six of eight (75%) of at least 10-fold. In an antibody-deficient population (n = 23), only 30% had post-vaccination concentration increases of at least threefold and 10% of at least 10-fold. The antibody responses to Pneumovax II and Typhim Vi ® correlated. We conclude that IgG responses to Typhim Vi ® vaccination can be measured using the VaccZyme Salmonella typhi Vi IgG ELISA, and that measurement of these antibodies maybe a useful additional test to accompany Pneumovax II responses for the assessment of antibody deficiencies. © 2018 The Authors. Clinical & Experimental Immunology published by John Wiley & Sons Ltd on behalf of British Society for Immunology.
Lee, Choon Weng; Ng, Angie Yee Fang; Bong, Chui Wei; Narayanan, Kumaran; Sim, Edmund Ui Hang; Ng, Ching Ching
2011-02-01
Using the size fractionation method, we measured the decay rates of Escherichia coli, Salmonella Typhi and Vibrio parahaemolyticus in the coastal waters of Peninsular Malaysia. The size fractions were total or unfiltered, <250 μm, <20 μm, <2 μm, <0.7 μm, <0.2 μm and <0.02 μm. We also carried out abiotic (inorganic nutrients) and biotic (bacterial abundance, production and protistan bacterivory) measurements at Port Dickson, Klang and Kuantan. Klang had highest nutrient concentrations whereas both bacterial production and protistan bacterivory rates were highest at Kuantan. We observed signs of protist-bacteria coupling via the following correlations: Protistan bacterivory-Bacterial Production: r = 0.773, df = 11, p < 0.01; Protist-Bacteria: r = 0.586, df = 12, p < 0.05. However none of the bacterial decay rates were correlated with the biotic variables measured. E. coli and Salmonella decay rates were generally higher in the larger fraction (>0.7 μm) than in the smaller fraction (<0.7 μm) suggesting the more important role played by protists. E. coli and Salmonella also decreased in the <0.02 μm fraction and suggested that these non-halophilic bacteria did not survive well in seawater. In contrast, Vibrio grew well in seawater. There was usually an increase in Vibrio after one day incubation. Our results confirmed that decay or loss rates of E. coli did not match that of Vibrio, and also did not correlate with Salmonella decay rates. However E. coli showed persistence where its decay rates were generally lower than Salmonella. © 2010 Elsevier Ltd. All rights reserved.
Jang, Mi Seon; Sahastrabuddhe, Sushant; Yun, Cheol-Heui; Han, Seung Hyun; Yang, Jae Seung
2016-08-01
Typhoid fever, mainly caused by Salmonella enterica serovar Typhi (S. Typhi), is a life-threatening disease, mostly in developing countries. Enzyme-linked immunosorbent assay (ELISA) is widely used to quantify antibodies against S. Typhi in serum but does not provide information about functional antibody titers. Although the serum bactericidal assay (SBA) using an agar plate is often used to measure functional antibody titers against various bacterial pathogens in clinical specimens, it has rarely been used for typhoid vaccines because it is time-consuming and labor-intensive. In the present study, we established an improved SBA against S. Typhi using a semi-automated colony-counting system with a square agar plate harboring 24 samples. The semi-automated SBA efficiently measured bactericidal titers of sera from individuals immunized with S. Typhi Vi polysaccharide vaccines. The assay specifically responded to S. Typhi Ty2 but not to other irrelevant enteric bacteria including Vibrio cholerae and Shigella flexneri. Baby rabbit complement was more appropriate source for the SBA against S. Typhi than complements from adult rabbit, guinea pig, and human. We also examined the correlation between SBA and ELISA for measuring antibody responses against S. Typhi using pre- and post-vaccination sera from 18 human volunteers. The SBA titer showed a good correlation with anti-Vi IgG quantity in the serum as determined by Spearman correlation coefficient of 0.737 (P < 0.001). Taken together, the semi-automated SBA might be efficient, accurate, sensitive, and specific enough to measure functional antibody titers against S. Typhi in sera from human subjects immunized with typhoid vaccines. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Khan, Iqbal Hassan; Sayeed, M. Abu; Sultana, Nishat; Islam, Kamrul; Amin, Jakia; Faruk, M. Omar; Khan, Umama; Khanam, Farhana; Ryan, Edward T.
2016-01-01
Enteric fever is a systemic infection caused by typhoidal strains of Salmonella enterica and is a significant cause of mortality and morbidity in many parts of the world, especially in resource-limited areas. Unfortunately, currently available diagnostic tests for enteric fever lack sensitivity and/or specificity. No true clinically practical gold standard for diagnosing patients with enteric fever exists. Unfortunately, microbiologic culturing of blood is only 30 to 70% sensitive although 100% specific. Here, we report the development of a lateral-flow immunochromatographic dipstick assay based on the detection of Salmonella enterica serovar Typhi (S. Typhi) lipopolysaccharide (LPS)-specific IgG in lymphocyte culture secretion. We tested the assay using samples from 142 clinically suspected enteric fever patients, 28 healthy individuals residing in a zone where enteric fever is endemic, and 35 patients with other febrile illnesses. In our analysis, the dipstick detected all blood culture-confirmed S. Typhi cases (48/48) and 5 of 6 Salmonella enterica serovar Paratyphi A blood cultured-confirmed cases. The test was negative in all 35 individuals febrile with other illnesses and all 28 healthy controls from the zone of endemicity. The test was positive in 19 of 88 individuals with suspected enteric fever but with negative blood cultures. Thus, the dipstick had a sensitivity of 98% compared to blood culture results and a specificity that ranged from 78 to 100% (95% confidence interval [CI], 70 to 100%), depending on the definition of a true negative. These results suggest that this dipstick assay can be very useful for the detection of enteric fever patients especially in regions of endemicity. PMID:26961857
Al-aqeedi, Rafid Fayadh; Kamha, Ahmed; Al-aani, Fuad K; Al-ani, Ahmed A
2009-12-01
The mortality and morbidity of salmonella infections is seriously underestimated. Salmonella myocarditis is an unusual complication of salmonella sepsis in adults. Cases that do occur may be associated with high morbidity and mortality. We present a rare case of salmonella myocarditis with multi-organ failure in a previously healthy young adult man who was brought to the emergency room with fever, diarrhea, shortness of breath, and altered sensorium, discovered to have acute pulmonary edema and respiratory compromise for which he was assisted with mechanical ventilation for 8 days. Blood culture grew Salmonella typhi. Biochemically he exhibited myocardial, hepatic, and muscular enzymatic surge with renal failure, features of rhabdomyolysis, and disseminated intravascular coagulation. The patient showed a progressive improvement on treatment with ceftriaxone for 2 weeks in addition to decongestive therapy. He was discharged in good condition afterward.
2004-05-20
Unknown Cholera ( Vibrio cholerae ) + — — — + Unknown Salmonella Typhimurium + — + — — Unknown Typhoid fever (Salmonella Typhi) + O — — — Unknown... Cholera bb ( Vibrio cholerae ) Cholera occurs in many of the developing countries of Africa and Asia, especially where sanitary conditions are not optimal...Safety Data Sheet - Infectious Substances for Vibrio cholerae , found online at [http://www.hc-sc.gc.ca/pphb-dgspsp/msds-ftss/msds164e.html]; D. Hank
Nath, Gopal; Singh, Yogesh Kumar; Kumar, Kailash; Gulati, Anil Kumar; Shukla, Vijay Kumar; Khanna, Ajay Kumar; Tripathi, Sunil Kumar; Jain, Ashok Kumar; Kumar, Mohan; Singh, Tej Bali
2008-08-30
Although well studied the association between chronic typhoid carrier state and carcinoma of the gallbladder (CaGB) remains unproven. The study was performed at a tertiary care medical center in North India and involved 52 patients with CaGB, 223 patients with benign gallbladder diseases, 508 healthy individuals and, 424 corpses. For the detection of Salmonella enterica serovar Typhi, hepatobiliary specimens were subjected to DNA extraction for specific nested- PCR amplification of the S. Typhi flagellin gene. Anti-Vi S. Typhi antibodies were detected in serum samples from patients by indirect haemagglutination. Thirty five of the 52 (67.3%) CaGB patients were PCR-positive for the S. Typhi flagellin gene; significantly higher than for patients with benign gallbladder diseases (95/223, 42.6%; p<0.01) and corpses (35/424, 8.2%; p<0.001). The numbers of individuals that had significant anti-Vi antibody titres (> or = 160) in their serum were 20/52 (38.5%) for CaGB patients, 31/223 (13.9%) for patients with benign gallbladder diseases, and 47/508 (9.2%) for healthy individuals. Specific nested-PCR amplification of the S. Typhi flagellin gene in hepato-biliary specimens was more sensitive for detection of S. Typhi carriage than anti-Vi antibody titres in serum. The results demonstrate an association between typhoid carriage and gallbladder diseases, both CaGB and benign. S. Typhi specific immunosuppression is also suggested in patients with gallbladder diseases.
78 FR 9399 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-08
... introduced into the licensed typhoid vaccine strain, Salmonella enterica serovar Typhi strain Ty21a, and was... combination typhoid-shigellosis oral vaccine. For collaboration opportunities, please contact Dr. Dennis J... gene region into a bacterial chromosome. Bacillary dysentery and enteric fevers continue to be...
Salmonella enterica serovar-specific transcriptional reprogramming of infected cells.
Hannemann, Sebastian; Galán, Jorge E
2017-07-01
Despite their high degree of genomic similarity, different Salmonella enterica serovars are often associated with very different clinical presentations. In humans, for example, the typhoidal S. enterica serovar Typhi causes typhoid fever, a life-threatening systemic disease. In contrast, the non-typhoidal S. enterica serovar Typhimurium causes self-limiting gastroenteritis. The molecular bases for these different clinical presentations are incompletely understood. The ability to re-program gene expression in host cells is an essential virulence factor for typhoidal and non-typhoidal S. enterica serovars. Here, we have compared the transcriptional profile of cultured epithelial cells infected with S. Typhimurium or S. Typhi. We found that both serovars stimulated distinct transcriptional responses in infected cells that are associated with the stimulation of specific signal transduction pathways. These specific responses were associated with the presence of a distinct repertoire of type III secretion effector proteins. These observations provide major insight into the molecular bases for potential differences in the pathogenic mechanisms of typhoidal and non-typhoidal S. enterica serovars.
NASA Astrophysics Data System (ADS)
Barman, Ranjan Kumar; Mukhopadhyay, Anirban; Das, Santasabuj
2017-04-01
Bacterial small non-coding RNAs (sRNAs) are not translated into proteins, but act as functional RNAs. They are involved in diverse biological processes like virulence, stress response and quorum sensing. Several high-throughput techniques have enabled identification of sRNAs in bacteria, but experimental detection remains a challenge and grossly incomplete for most species. Thus, there is a need to develop computational tools to predict bacterial sRNAs. Here, we propose a computational method to identify sRNAs in bacteria using support vector machine (SVM) classifier. The primary sequence and secondary structure features of experimentally-validated sRNAs of Salmonella Typhimurium LT2 (SLT2) was used to build the optimal SVM model. We found that a tri-nucleotide composition feature of sRNAs achieved an accuracy of 88.35% for SLT2. We validated the SVM model also on the experimentally-detected sRNAs of E. coli and Salmonella Typhi. The proposed model had robustly attained an accuracy of 81.25% and 88.82% for E. coli K-12 and S. Typhi Ty2, respectively. We confirmed that this method significantly improved the identification of sRNAs in bacteria. Furthermore, we used a sliding window-based method and identified sRNAs from complete genomes of SLT2, S. Typhi Ty2 and E. coli K-12 with sensitivities of 89.09%, 83.33% and 67.39%, respectively.
Another typhoid patient from Japan.
Thapa, Rachana; Banskota, Nalin; Pokharel, Jhapindra; Subedi, Bishnu H; Basnyat, Buddha
2010-01-01
Typhoid treatment was empirically started in a Japanese patient with undifferentiated fever in Nepal since Japanese tourists, unlike most Americans and Europeans to South Asia, are unable to obtain typhoid vaccination in Japan even for travel to this area of high endemicity. Subsequently, his blood culture grew out Salmonella typhi.
Label-free SERS detection of Salmonella Typhimurium on DNA aptamer modified AgNR substrates
USDA-ARS?s Scientific Manuscript database
A straightforward label-free method based on aptamer binding and surface enhanced Raman specstroscopy (SERS) has been developed for the detection of Salmonella Typhimurium, an important foodborne pathogen that causes gastroenteritis in both humans and animals. Surface of the SERS-active silver nanor...
Brossmann, D
1977-01-01
The carriers of salmonella typhi and paratyphi B are the central figures of the epidemiology of typhoid illnesses. The files available at the medical authorities' office of the Hansestadt Lübeck, with regards to all 543 carriers registered up to 1972, have been analysed, and 102 of 108 carriers who were inhabitants of Lübeck on 31.10.72, have been interviewed in their lodgings.--Following results are mentionable: 1. 55 carriers have been traced during a hospital stay, 22 of them were under hospital treatment because of cholecystectomy. 2. The circle of persons to be obligated for medical examination as per $ 17 of the Federal Republic of Germany's law of epidemics has proved as too small. For instance two female carriers--known since years--did their job without any hindering as plates washer or waitress in restaurants. 3. 21 persons=4% of the patients excreted salmonellae in urine only. 4. 10% of the carriers of salmonella typhi and 16% of the carriers of salmonella paratypi B had in their faeces as least 5-years intervals of non-excretion. 5. The precentage of carriers with at least 5-years intervals of non-excretion in urine was significantly larger than the corresponding percentage in faeces. 6. Falling ill of 280 persons out of the environs of the carriers have been lead back to the latters. 73% of these infections were placed by the carriers before their detection through the medical authorities' office. 7. For 10 patients whose health was recreated excretion did not cease promptly after the cholecystecystectomy. Salmonellae had been found in the faeces for several months more, at two persons even two years after the operation. 8. For 8 carriers a final decision with regards to the success of cholecystectomy is impossible because they denied a duodenal soundation. 9. 123 persons of 23% of total 543 carriers had--before their ascertation--professions not allowed for those persons. Efforts for a successful job arrangement, possibly combined with a change in profession, always met to obstacles. 10. More than 80% of the carriers who were interviewed ignored the directions about personal hygiene. 11. Difficulties arose during a stay in sanatories, hospitals and old age homes. 12. While 60 of the carriers contemplate their situation with indifference other 42 patients are psychically influenced. 5 of them suffer from a psychical trauma. 13. The environment often tends to overrate the danger resulting from carriers. 14. Information of the carriers must be improved.
USDA-ARS?s Scientific Manuscript database
Background: The National Antimicrobial Resistance Monitoring System (NARMS) is a collaboration among the Food and Drug Administration (FDA), U.S. Department of Agriculture (USDA), and the Centers for Disease Control and Prevention (CDC). Here we report on decreased susceptibility to cephalosporins ...
Mogasale, Vittal; Ramani, Enusa; Mogasale, Vijayalaxmi V; Park, JuYeon
2016-05-17
Blood culture is often used in definitive diagnosis of typhoid fever while, bone marrow culture has a greater sensitivity and considered reference standard. The sensitivity of blood culture measured against bone marrow culture results in measurement bias because both tests are not fully sensitive. Here we propose a combination of the two cultures as a reference to define true positive S. Typhi cases. Based on a systematic literature review, we identified ten papers that had performed blood and bone marrow culture for S. Typhi in same subjects. We estimated the weighted mean of proportion of cases detected by culture measured against true S. Typhi positive cases using a random effects model. Of 529 true positive S. Typhi cases, 61 % (95 % CI 52-70 %) and 96 % (95 % CI 93-99 %) were detected by blood and bone marrow cultures respectively. Blood culture sensitivity was 66 % (95 % CI 56-75 %) when compared with bone marrow culture results. The use of blood culture sensitivity as a proxy measure to estimate the proportion of typhoid fever cases detected by blood culture is likely to be an underestimate. As blood culture sensitivity is used as a correction factor in estimating typhoid disease burden, epidemiologists and policy makers should account for the underestimation.
Molecular Surveillance Identifies Multiple Transmissions of Typhoid in West Africa
Wong, Vanessa K.; Holt, Kathryn E.; Okoro, Chinyere; Baker, Stephen; Pickard, Derek J.; Marks, Florian; Page, Andrew J.; Olanipekun, Grace; Munir, Huda; Alter, Roxanne; Fey, Paul D.; Feasey, Nicholas A.; Weill, Francois-Xavier; Le Hello, Simon; Hart, Peter J.; Kariuki, Samuel; Breiman, Robert F.; Gordon, Melita A.; Heyderman, Robert S.; Jacobs, Jan; Lunguya, Octavie; Msefula, Chisomo; MacLennan, Calman A.; Keddy, Karen H.; Smith, Anthony M.; Onsare, Robert S.; De Pinna, Elizabeth; Nair, Satheesh; Amos, Ben; Dougan, Gordon; Obaro, Stephen
2016-01-01
Background The burden of typhoid in sub-Saharan African (SSA) countries has been difficult to estimate, in part, due to suboptimal laboratory diagnostics. However, surveillance blood cultures at two sites in Nigeria have identified typhoid associated with Salmonella enterica serovar Typhi (S. Typhi) as an important cause of bacteremia in children. Methods A total of 128 S. Typhi isolates from these studies in Nigeria were whole-genome sequenced, and the resulting data was used to place these Nigerian isolates into a worldwide context based on their phylogeny and carriage of molecular determinants of antibiotic resistance. Results Several distinct S. Typhi genotypes were identified in Nigeria that were related to other clusters of S. Typhi isolates from north, west and central regions of Africa. The rapidly expanding S. Typhi clade 4.3.1 (H58) previously associated with multiple antimicrobial resistances in Asia and in east, central and southern Africa, was not detected in this study. However, antimicrobial resistance was common amongst the Nigerian isolates and was associated with several plasmids, including the IncHI1 plasmid commonly associated with S. Typhi. Conclusions These data indicate that typhoid in Nigeria was established through multiple independent introductions into the country, with evidence of regional spread. MDR typhoid appears to be evolving independently of the haplotype H58 found in other typhoid endemic countries. This study highlights an urgent need for routine surveillance to monitor the epidemiology of typhoid and evolution of antimicrobial resistance within the bacterial population as a means to facilitate public health interventions to reduce the substantial morbidity and mortality of typhoid. PMID:27657909
Animal Models for Salmonellosis: Applications in Vaccine Research
Higginson, Ellen E.; Simon, Raphael
2016-01-01
Salmonellosis remains an important cause of human disease worldwide. While there are several licensed vaccines for Salmonella enterica serovar Typhi, these vaccines are generally ineffective against other Salmonella serovars. Vaccines that target paratyphoid and nontyphoidal Salmonella serovars are very much in need. Preclinical evaluation of candidate vaccines is highly dependent on the availability of appropriate scientific tools, particularly animal models. Many different animal models exist for various Salmonella serovars, from whole-animal models to smaller models, such as those recently established in insects. Here, we discuss various mouse, rat, rabbit, calf, primate, and insect models for Salmonella infection, all of which have their place in research. However, choosing the right model is imperative in selecting the best vaccine candidates for further clinical testing. In this minireview, we summarize the various animal models that are used to assess salmonellosis, highlight some of the advantages and disadvantages of each, and discuss their value in vaccine development. PMID:27413068
2013-01-01
Background The main objective of this study was the phytochemical characterization of four indigenous essential oils obtained from spices and their antibacterial activities against the multidrug resistant clinical and soil isolates prevalent in Pakistan, and ATCC reference strains. Methods Chemical composition of essential oils from four Pakistani spices cumin (Cuminum cyminum), cinnamon (Cinnamomum verum), cardamom (Amomum subulatum) and clove (Syzygium aromaticum) were analyzed on GC/MS. Their antibacterial activities were investigated by minimum inhibitory concentration (MIC) and Thin-Layer Chromatography-Bioautographic (TLC-Bioautographic) assays against pathogenic strains Salmonella typhi (D1 Vi-positive), Salmonella typhi (G7 Vi-negative), Salmonella paratyphi A, Escherichia coli (SS1), Staphylococcus aureus, Pseudomonas fluorescens and Bacillus licheniformis (ATCC 14580). The data were statistically analyzed by using Analysis of Variance (ANOVA) and Least Significant Difference (LSD) method to find out significant relationship of essential oils biological activities at p <0.05. Results Among all the tested essential oils, oil from the bark of C. verum showed best antibacterial activities against all selected bacterial strains in the MIC assay, especially with 2.9 mg/ml concentration against S. typhi G7 Vi-negative and P. fluorescens strains. TLC-bioautography confirmed the presence of biologically active anti-microbial components in all tested essential oils. P. fluorescens was found susceptible to C. verum essential oil while E. coli SS1 and S. aureus were resistant to C. verum and A. subulatum essential oils, respectively, as determined in bioautography assay. The GC/MS analysis revealed that essential oils of C. cyminum, C. verum, A. subulatum, and S. aromaticum contain 17.2% cuminaldehyde, 4.3% t-cinnamaldehyde, 5.2% eucalyptol and 0.73% eugenol, respectively. Conclusions Most of the essential oils included in this study possessed good antibacterial activities against selected multi drug resistant clinical and soil bacterial strains. Cinnamaldehyde was identified as the most active antimicrobial component present in the cinnamon essential oil which acted as a strong inhibitory agent in MIC assay against the tested bacteria. The results indicate that essential oils from Pakistani spices can be pursued against multidrug resistant bacteria. PMID:24119438
Andrews, Jason R.; Prajapati, Krishna G.; Eypper, Elizabeth; Shrestha, Poojan; Shakya, Mila; Pathak, Kamal R.; Joshi, Niva; Tiwari, Priyanka; Risal, Manisha; Koirala, Samir; Karkey, Abhilasha; Dongol, Sabina; Wen, Shawn; Smith, Amy B.; Maru, Duncan; Basnyat, Buddha; Baker, Stephen; Farrar, Jeremy; Ryan, Edward T.; Hohmann, Elizabeth; Arjyal, Amit
2013-01-01
Background In many rural areas at risk for enteric fever, there are few data on Salmonella enterica serotypes Typhi (S. Typhi) and Paratyphi (S. Paratyphi) incidence, due to limited laboratory capacity for microbiologic culture. Here, we describe an approach that permits recovery of the causative agents of enteric fever in such settings. This approach involves the use of an electricity-free incubator based upon use of phase-change materials. We compared this against conventional blood culture for detection of typhoidal Salmonella. Methodology/Principal Findings Three hundred and four patients with undifferentiated fever attending the outpatient and emergency departments of a public hospital in the Kathmandu Valley of Nepal were recruited. Conventional blood culture was compared against an electricity-free culture approach. Blood from 66 (21.7%) patients tested positive for a Gram-negative bacterium by at least one of the two methods. Sixty-five (21.4%) patients tested blood culture positive for S. Typhi (30; 9.9%) or S. Paratyphi A (35; 11.5%). From the 65 individuals with culture-confirmed enteric fever, 55 (84.6%) were identified by the conventional blood culture and 60 (92.3%) were identified by the experimental method. Median time-to-positivity was 2 days for both procedures. The experimental approach was falsely positive due to probable skin contaminants in 2 of 239 individuals (0.8%). The percentages of positive and negative agreement for diagnosis of enteric fever were 90.9% (95% CI: 80.0%–97.0%) and 96.0% (92.7%–98.1%), respectively. After initial incubation, Salmonella isolates could be readily recovered from blood culture bottles maintained at room temperature for six months. Conclusions/Significance A simple culture approach based upon a phase-change incubator can be used to isolate agents of enteric fever. This approach could be used as a surveillance tool to assess incidence and drug resistance of the etiologic agents of enteric fever in settings without reliable local access to electricity or local diagnostic microbiology laboratories. PMID:23853696
Glynn, J. R.; Bradley, D. J.
1992-01-01
The relationship between size of the infecting dose and severity of the resulting disease has been investigated for salmonella infections by reanalysis of data within epidemics for 32 outbreaks, and comparing data between outbreaks for 68 typhoid epidemics and 49 food-poisoning outbreaks due to salmonellas. Attack rate, incubation period, amount of infected food consumed and type of vehicle are used as proxy measures of infecting dose, while case fatality rates for typhoid and case hospitalization rates for food poisoning salmonellas were used to assess severity. Limitations of the data are discussed. Both unweighted and logit analysis models are used. There is no evidence for a dose-severity relationship for Salmonella typhi, but evidence of a correlation between dose and severity is available from within-epidemic or between-epidemic analysis, or both, for Salmonella typhimurium, S. enteritidis, S. infantis, S. newport, and S. thompson. The presence of such a relationship affects the way in which control interventions should be assessed. PMID:1468522
ERIC Educational Resources Information Center
Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang
2014-01-01
Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about "Salmonella enterica" serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation,…
Typhoid Fever Complicated by Hemophagocytic Lymphohistiocytosis and Rhabdomyolysis.
Non, Lemuel R; Patel, Rupa; Esmaeeli, Amir; Despotovic, Vladimir
2015-11-01
Hemophagocytic lymphohistiocytosis (HLH) and rhabdomyolysis are rare complications of typhoid fever from Salmonella enterica serovar Typhi. Herein, we describe the clinical features in a 21-year-old female from India who presented to the intensive care unit with fever, severe pancytopenia, and rhabdomyolysis. © The American Society of Tropical Medicine and Hygiene.
Molecular typing of Salmonella enterica serovar typhi.
Navarro, F; Llovet, T; Echeita, M A; Coll, P; Aladueña, A; Usera, M A; Prats, G
1996-01-01
The efficiencies of different tests for epidemiological markers--phage typing, ribotyping, IS200 typing, and pulsed-field gel electrophoresis (PFGE)--were evaluated for strains from sporadic cases of typhoid fever and a well-defined outbreak. Ribotyping and PFGE proved to be the most discriminating. Both detected two different patterns among outbreak-associated strains. PMID:8897193
A Bacterial Pathogen Targets a Host Rab-Family GTPase Defense Pathway with a GAP.
Spanò, Stefania; Gao, Xiang; Hannemann, Sebastian; Lara-Tejero, María; Galán, Jorge E
2016-02-10
Cell-autonomous defense mechanisms are potent strategies that protect individual cells against intracellular pathogens. The Rab-family GTPase Rab32 was previously shown to restrict the intracellular human pathogen Salmonella Typhi, but its potential broader role in antimicrobial defense remains unknown. We show that Rab32 represents a general cell-autonomous, antimicrobial defense that is counteracted by two Salmonella effectors. Mice lacking Rab-32 or its nucleotide exchange factor BLOC-3 are permissive to S. Typhi infection and exhibit increased susceptibility to S. Typhimurium. S. Typhimurium counters this defense pathway by delivering two type III secretion effectors, SopD2, a Rab32 GAP, and GtgE, a specific Rab32 protease. An S. Typhimurium mutant strain lacking these two effectors exhibits markedly reduced virulence, which is fully restored in BLOC-3-deficient mice. These results demonstrate that a cell-autonomous, Rab32-dependent host defense pathway plays a central role in the defense against vacuolar pathogens and describe a mechanism evolved by a bacterial pathogen to counter it. Copyright © 2016 Elsevier Inc. All rights reserved.
Conferring Virulence: Structure and Function of the chimeric A2B5 Typhoid Toxin
Song, Jeongmin; Gao, Xiang; Galán, Jorge E.
2013-01-01
Salmonella Typhi differs from most other salmonellae in that it causes a life-threatening systemic infection known as typhoid fever1. The molecular bases for its unique clinical presentation are unknown2. Here we found that in an animal model, the systemic administration of typhoid toxin, a unique virulence factor of S. Typhi, reproduces many of the acute symptoms of typhoid fever. We identified specific carbohydrate moieties on specific surface glycoproteins that serve as receptors for typhoid toxin, which explains its broad cell target specificity. We present the atomic structure of typhoid toxin, which shows an unprecedented A2B5 organization with two covalently-linked A subunits non-covalently-associated to a pentameric B subunit. The structure provides insight into the toxin’s receptor-binding specificity and delivery mechanisms and reveals how the activities of two powerful toxins have been coopted into a single, unique toxin that can induce many of the symptoms characteristic of typhoid fever. These findings may lead to the development of potentially life-saving therapeutics against typhoid fever. PMID:23842500
Blohmke, Christoph J; Darton, Thomas C; Jones, Claire; Suarez, Nicolas M; Waddington, Claire S; Angus, Brian; Zhou, Liqing; Hill, Jennifer; Clare, Simon; Kane, Leanne; Mukhopadhyay, Subhankar; Schreiber, Fernanda; Duque-Correa, Maria A; Wright, James C; Roumeliotis, Theodoros I; Yu, Lu; Choudhary, Jyoti S; Mejias, Asuncion; Ramilo, Octavio; Shanyinde, Milensu; Sztein, Marcelo B; Kingsley, Robert A; Lockhart, Stephen; Levine, Myron M; Lynn, David J; Dougan, Gordon; Pollard, Andrew J
2016-05-30
Enteric fever, caused by Salmonella enterica serovar Typhi, is an important public health problem in resource-limited settings and, despite decades of research, human responses to the infection are poorly understood. In 41 healthy adults experimentally infected with wild-type S. Typhi, we detected significant cytokine responses within 12 h of bacterial ingestion. These early responses did not correlate with subsequent clinical disease outcomes and likely indicate initial host-pathogen interactions in the gut mucosa. In participants developing enteric fever after oral infection, marked transcriptional and cytokine responses during acute disease reflected dominant type I/II interferon signatures, which were significantly associated with bacteremia. Using a murine and macrophage infection model, we validated the pivotal role of this response in the expression of proteins of the host tryptophan metabolism during Salmonella infection. Corresponding alterations in tryptophan catabolites with immunomodulatory properties in serum of participants with typhoid fever confirmed the activity of this pathway, and implicate a central role of host tryptophan metabolism in the pathogenesis of typhoid fever. © 2016 Blohmke et al.
Jones, Claire; Waddington, Claire S.; Zhou, Liqing; Hill, Jennifer; Clare, Simon; Mukhopadhyay, Subhankar; Schreiber, Fernanda; Roumeliotis, Theodoros I.; Yu, Lu; Ramilo, Octavio; Sztein, Marcelo B.; Kingsley, Robert A.; Levine, Myron M.
2016-01-01
Enteric fever, caused by Salmonella enterica serovar Typhi, is an important public health problem in resource-limited settings and, despite decades of research, human responses to the infection are poorly understood. In 41 healthy adults experimentally infected with wild-type S. Typhi, we detected significant cytokine responses within 12 h of bacterial ingestion. These early responses did not correlate with subsequent clinical disease outcomes and likely indicate initial host–pathogen interactions in the gut mucosa. In participants developing enteric fever after oral infection, marked transcriptional and cytokine responses during acute disease reflected dominant type I/II interferon signatures, which were significantly associated with bacteremia. Using a murine and macrophage infection model, we validated the pivotal role of this response in the expression of proteins of the host tryptophan metabolism during Salmonella infection. Corresponding alterations in tryptophan catabolites with immunomodulatory properties in serum of participants with typhoid fever confirmed the activity of this pathway, and implicate a central role of host tryptophan metabolism in the pathogenesis of typhoid fever. PMID:27217537
Restaurant-associated outbreak of Salmonella typhi in Nauru: an epidemiological and cost analysis.
Olsen, S. J.; Kafoa, B.; Win, N. S.; Jose, M.; Bibb, W.; Luby, S.; Waidubu, G.; O'Leary, M.; Mintz, E.
2001-01-01
Typhoid fever is endemic in the South Pacific. We investigated an outbreak in Nauru. Through interviews and medical records, we identified 50 persons with onset between 1 October 1998 and 10 May 1999, of fever lasting > or = 3 days and one other symptom. Salmonella Typhi was isolated from 19 (38%) cases. Thirty-two (64%) patients were school-aged children, and 17 (34%) were in four households. Case-control studies of (a) culture-confirmed cases and age- and neighbourhood-matched controls; and (b) household index cases and randomly selected age-matched controls implicated two restaurants: Restaurant M (matched OR [MOR] = 11, 95% confidence interval [CI] = 1.3-96) and Restaurant I (MOR = 5.8, 95% CI = 1.2-29). Food-handlers at both restaurants had elevated anti-Vi antibody titres indicative of carrier state. The annual incidence was 5.0/1000 persons. Outbreak-associated costs were $46,000. Routine or emergency immunization campaigns targeting school-aged children may help prevent or control outbreaks of typhoid fever in endemic disease areas. PMID:11811872
Antibacterial properties of the skin mucus of the freshwater fishes, Rita rita and Channa punctatus.
Kumari, U; Nigam, A K; Mitial, S; Mitial, A K
2011-07-01
The skin mucus of Rita rita and Channa punctatus was investigated to explore the possibilities of its antibacterial properties. Skin mucus was extracted in acidic solvents (0.1% trifluoroacetic acid and 3% acetic acid) and in triple distilled water (aqueous medium). The antibacterial activity of the mucus extracts was analyzed, using disc diffusion method, against five strains of bacteria--the Gram-positive Staphylococcus aureus and Micrococcus luteus; and the Gram negative Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi. In both Rita rita and Channa punctatus, the skin mucus extracted in acidic solvents as well as in aqueous medium show antibacterial activity against Staphylococcus aureus and Micrococcus luteus. Nevertheless, the activity is higher in acidic solvents than that in aqueous medium. The acidic mucus extracts of Rita rita, show antibacterial activity against Salmonella typhi as well. The results suggest that fish skin mucus have bactericidal properties and thus play important role in the protection of fish against the invasion of pathogens. Fish skin mucus could thus be regarded as a potential source of novel antibacterial components.
Dadzie, Isaac; Xu, Shungao; Ni, Bin; Zhang, Xiaolei; Zhang, Haifang; Sheng, Xiumei; Xu, Huaxi; Huang, Xinxiang
2013-01-01
Antisense RNAs that originate from the complementary strand of protein coding genes are involved in the regulation of gene expression in all domains of life. In bacteria, some of these antisense RNAs are transcriptional noise whiles others play a vital role to adapt the cell to changing environmental conditions. By deep sequencing analysis of transcriptome of Salmonella enterica serovar Typhi, a partial RNA sequence encoded in-cis to the dnaA gene was revealed. Northern blot and RACE analysis confirmed the transcription of this antisense RNA which was expressed mostly in the stationary phase of the bacterial growth and also under iron limitation and osmotic stress. Pulse expression analysis showed that overexpression of the antisense RNA resulted in a significant increase in the mRNA levels of dnaA, which will ultimately enhance their translation. Our findings have revealed that antisense RNA of dnaA is indeed transcribed not merely as a by-product of the cell's transcription machinery but plays a vital role as far as stability of dnaA mRNA is concerned. PMID:23637809
Bowles, Cayley C.; Grenfell, Bryan T.; Basnyat, Buddha; Arjyal, Amit; Dongol, Sabina; Karkey, Abhilasha; Baker, Stephen; Pitzer, Virginia E.
2017-01-01
Background A substantial proportion of the global burden of typhoid fever occurs in South Asia. Kathmandu, Nepal experienced a substantial increase in the number of typhoid fever cases (caused by Salmonella Typhi) between 2000 and 2003, which subsequently declined but to a higher endemic level than in 2000. This epidemic of S. Typhi coincided with an increase in organisms with reduced susceptibility against fluoroquinolones, the emergence of S. Typhi H58, and an increase in the migratory population in Kathmandu. Methods We devised a mathematical model to investigate the potential epidemic drivers of typhoid in Kathmandu and fit this model to weekly data of S. Typhi cases between April 1997 and June 2011 and the age distribution of S. Typhi cases. We used this model to determine if the typhoid epidemic in Kathmandu was driven by heightened migration, the emergence of organisms with reduced susceptibility against fluoroquinolones or a combination of these factors. Results Models allowing for the migration of susceptible individuals into Kathmandu alone or in combination with the emergence of S. Typhi with reduced susceptibility against fluoroquinolones provided a good fit for the data. The emergence of organisms with reduced susceptibility against fluoroquinolones organisms alone, either through an increase in disease duration or increased transmission, did not fully explain the pattern of S. Typhi infections. Conclusions Our analysis is consistent with the hypothesis that the increase in typhoid fever in Kathmandu was associated with the migration of susceptible individuals into the city and aided by the emergence of reduced susceptibility against fluoroquinolones. These data support identifying and targeting migrant populations with typhoid immunization programmes to prevent transmission and disease. PMID:28475605
Saad, Neil J; Bowles, Cayley C; Grenfell, Bryan T; Basnyat, Buddha; Arjyal, Amit; Dongol, Sabina; Karkey, Abhilasha; Baker, Stephen; Pitzer, Virginia E
2017-05-01
A substantial proportion of the global burden of typhoid fever occurs in South Asia. Kathmandu, Nepal experienced a substantial increase in the number of typhoid fever cases (caused by Salmonella Typhi) between 2000 and 2003, which subsequently declined but to a higher endemic level than in 2000. This epidemic of S. Typhi coincided with an increase in organisms with reduced susceptibility against fluoroquinolones, the emergence of S. Typhi H58, and an increase in the migratory population in Kathmandu. We devised a mathematical model to investigate the potential epidemic drivers of typhoid in Kathmandu and fit this model to weekly data of S. Typhi cases between April 1997 and June 2011 and the age distribution of S. Typhi cases. We used this model to determine if the typhoid epidemic in Kathmandu was driven by heightened migration, the emergence of organisms with reduced susceptibility against fluoroquinolones or a combination of these factors. Models allowing for the migration of susceptible individuals into Kathmandu alone or in combination with the emergence of S. Typhi with reduced susceptibility against fluoroquinolones provided a good fit for the data. The emergence of organisms with reduced susceptibility against fluoroquinolones organisms alone, either through an increase in disease duration or increased transmission, did not fully explain the pattern of S. Typhi infections. Our analysis is consistent with the hypothesis that the increase in typhoid fever in Kathmandu was associated with the migration of susceptible individuals into the city and aided by the emergence of reduced susceptibility against fluoroquinolones. These data support identifying and targeting migrant populations with typhoid immunization programmes to prevent transmission and disease.
Tsuchiya, Yasuo; Loza, Ernest; Villa-Gomez, Guido; Trujillo, Carlos C; Baez, Sergio; Asai, Takao; Ikoma, Toshikazu; Endoh, Kazuo; Nakamura, Kazutoshi
2018-04-25
Salmonella typhi and Helicobacter infections have been shown to increase risk of gallbladder cancer (GBC), but findings have been inconsistent. Other bacterial infections may also be associated with GBC. However, information on microbial pathogens in gallbladder bile of GBC patients is scarce. We aimed to investigate the microbial communities in gallbladder bile of patients with GBC and cholelithiasis (CL). Seven GBC patients and 30 CL patients were enrolled in this study. Genomic DNA was extracted from bile and the V3-V4 region of 16S rRNA was amplified. The sequencing results were compared with the 16S database, and the bacteria were identified by homology searches and phylogenetic analysis. DNA was detected in the bile of three GBC (42.9%; Bolivia, 1; Chile, 2) and four CL patients (13.3%; Bolivia, 1; Chile, 3). Of the 37 patients, 30 (81.1%) were negative and unable to analyze. Salmonella typhi and Helicobacter sp. were not detected in bile from any GBC patients. As the predominant species, Fusobacterium nucleatum, Escherichia coli, and Enetrobacter sp. were detected in bile from GBC patients. Those in bile from CL patients were Escherichia coli, Salmonella sp., and Enerococcus gallinarum. Escherichia coli was detected in bile samples from both GBC and CL patients. Whether the bacteria detected in bile from GBC patients would associated with the development of GBC warrant further investigation. Creative Commons Attribution License
Betancor, Laura; García, Coralith; Astocondor, Lizeth; Hinostroza, Noemí; Bisio, Julieta; Rivera, Javier; Perezgasga, Lucía; Pérez Escanda, Victoria; Yim, Lucía; Jacobs, Jan; García-del Portillo, Francisco; Chabalgoity, José A.; Puente, José L.
2017-01-01
In this study, different molecular typing tools were applied to characterize 95 Salmonella enterica blood isolates collected between 2008 and 2013 from patients at nine public hospitals in Lima, Peru. Combined results of multiplex PCR serotyping, two- and seven-loci multilocus sequence typing (MLST) schemes, serotyping, IS200 amplification and RAPD fingerprints, showed that these infections were caused by eight different serovars: Enteritidis, Typhimurium, Typhi, Choleraesuis, Dublin, Paratyphi A, Paratyphi B and Infantis. Among these, Enteritidis, Typhimurium and Typhi were the most prevalent, representing 45, 36 and 11% of the isolates, respectively. Most isolates (74%) were not resistant to ten primarily used antimicrobial drugs; however, 37% of the strains showed intermediate susceptibility to ciprofloxacin (ISC). Antimicrobial resistance integrons were carried by one Dublin (dfra1 and aadA1) and two Infantis (aadA1) isolates. The two Infantis isolates were multidrug resistant and harbored a large megaplasmid. Amplification of spvC and spvRA regions showed that all Enteritidis (n = 42), Typhimurium (n = 34), Choleraesuis (n = 3) and Dublin (n = 1) isolates carried the Salmonella virulence plasmid (pSV). We conclude that the classic serotyping method can be substituted by the multiplex PCR and, when necessary, sequencing of only one or two loci of the MLST scheme is a valuable tool to confirm the results. The effectiveness and feasibility of different typing tools is discussed. PMID:29267322
A magneto-DNA nanoparticle system for the rapid and sensitive diagnosis of enteric fever
Park, Ki Soo; Chung, Hyun Jung; Khanam, Farhana; Lee, Hakho; Rashu, Rasheduzzaman; Bhuiyan, Md. Taufiqur; Berger, Amanda; Harris, Jason B.; Calderwood, Stephen B.; Ryan, Edward T.; Qadri, Firdausi; Weissleder, Ralph; Charles, Richelle C.
2016-01-01
There is currently no widely available optimal assay for diagnosing patients with enteric fever. Here we present a novel assay designed to detect amplified Salmonella nucleic acid (mRNA) using magneto-DNA probes and a miniaturized nuclear magnetic resonance device. We designed primers for genes specific to S. Typhi, S. Paratyphi A, and genes conserved among Salmonella enterica spp. and utilized strongly magnetized nanoparticles to enhance the detection signal. Blood samples spiked with in vitro grown S. Typhi, S. Paratyphi A, S. Typhimurium, and E. coli were used to confirm the specificity of each probe-set, and serial 10-fold dilutions were used to determine the limit of the detection of the assay, 0.01–1.0 CFU/ml. For proof of principle, we applied our assay to 0.5 mL blood samples from 5 patients with culture-confirmed enteric fever from Bangladesh in comparison to 3 healthy controls. We were able to detect amplified target cDNA in all 5 cases of enteric fever; no detectable signal was seen in the healthy controls. Our results suggest that a magneto-DNA nanoparticle system, with an assay time from blood collection of 3.5 hours, may be a promising platform for the rapid and culture-free diagnosis of enteric fever and non-typhoidal Salmonella bacteremia. PMID:27605393
Development of ELISAs for diagnosis of acute typhoid fever in Nigerian children
Felgner, Jiin; Jain, Aarti; Nakajima, Rie; Liang, Li; Jasinskas, Algis; Gotuzzo, Eduardo; Vinetz, Joseph M.; Miyajima, Fabio; Pirmohamed, Munir; Hassan-Hanga, Fatimah; Umoru, Dominic; Jibir, Binta Wudil; Gambo, Safiya; Olateju, Kudirat; Felgner, Philip L.
2017-01-01
Improved serodiagnostic tests for typhoid fever (TF) are needed for surveillance, to facilitate patient management, curb antibiotic resistance, and inform public health programs. To address this need, IgA, IgM and IgG ELISAs using Salmonella enterica serovar Typhi (S. Typhi) lipopolysaccharide (LPS) and hemolysin E (t1477) protein were conducted on 86 Nigerian pediatric TF and 29 non-typhoidal Salmonella (NTS) cases, 178 culture-negative febrile cases, 28 “other” (i.e., non-Salmonella) pediatric infections, and 48 healthy Nigerian children. The best discrimination was achieved between TF and healthy children. LPS-specific IgA and IgM provided receiver operator characteristic areas under the curve (ROC AUC) values of 0.963 and 0.968, respectively, and 0.978 for IgA+M combined. Similar performance was achieved with t1477-specific IgA and IgM (0.968 and 0.968, respectively; 0.976 combined). IgG against LPS and t1477 was less accurate for discriminating these groups, possibly as a consequence of previous exposure, although ROC AUC values were still high (0.928 and 0.932, respectively). Importantly, discrimination between TF and children with other infections was maintained by LPS-specific IgA and IgM (AUC = 0.903 and 0.934, respectively; 0.938 combined), and slightly reduced for IgG (0.909), while t1477-specific IgG performed best (0.914). A similar pattern was seen when comparing TF with other infections from outside Nigeria. The t1477 may be recognized by cross-reactive antibodies from other acute infections, although a robust IgG response may provide some diagnostic utility in populations where incidence of other infections is low, such as in children. The data are consistent with IgA and IgM against S. Typhi LPS being specific markers of acute TF. PMID:28640809
Typhoid fever: misuse of Widal test in Libya.
Zorgani, Abdulaziz; Ziglam, Hisham
2014-06-11
The worldwide gold standard of diagnosing of enteric fever depends on the isolation of Salmonella enterica serovar Typhi from a patient's bone marrow and/or blood culture. In Libya clinicians are heavily dependent on the Widal test for diagnosis of enteric fever which has been used without determining the locally appropriate threshold titer, because the laboratories lack the skilled, experienced personnel and appropriate facilities to detect and serotype Salmonella isolates. To improve the diagnosis process, clinical management and reliability of public health measures, there is an urgent need for the effective training of laboratory technicians and to provide resources to culture Salmonella species according to published guidelines. Clinicians should understand the limitations of Widal test and recognize that it cannot be expected to give a reliable diagnosis.
Identification of Human Intestinal Bacteria that Promote or Inhibit Inflammation
2012-11-01
Lactobacillus "acidophilus" Lactobacillus " plantarum " ProvidenCa"sp." Enterobacter"aerogenes" Lactobacillus "paraalimentarius" Salmonella"typhi...8217 indica3ve’of’the’poten3al’of’these’microbes’to’induce’intes3nal’inflamma3on.’ 0" 5" 10" 15" 20" 25" 30" 35" 40" 45" 50" no"bacteria" Lactobacillus "brevis" Escherichea"coli"(DH5a)" Klebsiella"pneumonia" Salmonella...only
Salmonella typhimurium gyrA mutations associated with fluoroquinolone resistance.
Reyna, F; Huesca, M; González, V; Fuchs, L Y
1995-01-01
Spontaneous quinolone-resistant mutants obtained from Salmonella typhimurium Su694 were screened for mutations by direct DNA sequencing of an amplified PCR gyrA fragment. Substitutions Ser-83-->Phe (Ser83Phe), Ser83Tyr, Asp87Tyr, and Asp87Asn and double mutation Ala67Pro-Gly81Ser, which resulted in decreased sensitivities to ciprofloxacin, enoxacin, pefloxacin, norfloxacin, ofloxacin, and nalidixic acid, were found. The levels of resistance to quinolones for each mutant were determined. PMID:7492118
Waddington, Claire S; Darton, Thomas C; Woodward, William E; Angus, Brian; Levine, Myron M; Pollard, Andrew J
2014-05-01
Typhoid infection causes considerable morbidity and mortality worldwide, particularly in settings where lack of clean water and inadequate sanitation facilitate disease spread through faecal-oral transmission. Improved understanding of the pathogenesis, immune control and microbiology of Salmonella Typhi infection can help accelerate the development of improved vaccines and diagnostic tests necessary for disease control. S. Typhi is a human-restricted pathogen; therefore animal models are limited in their relevance to human infection. During the latter half of the 20th century, induced human infection ("challenge") studies with S. Typhi were used effectively to assess quantitatively the human host response to challenge and to measure directly the efficacy of typhoid vaccines in preventing clinical illness. Here, the findings of these historic challenge studies are reviewed, highlighting the pivotal role that challenge studies have had in improving our understanding of the host-pathogen interaction, and illustrating issues relevant to modern typhoid challenge model design. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
A bioactive triterpene from Lantana camara.
Barre, J T; Bowden, B F; Coll, J C; DeJesus, J; De La Fuente, V E; Janairo, G C; Ragasa, C Y
1997-05-01
Lantana camara afforded a novel triterpene 22 beta-acetoxylantic acid and the known triterpenes, lantic acid, 22 beta-dimethylacryloyloxylantonolic acid, a mixture of 22 beta-dimethylacryloyloxy lantanolic acid and 22 beta-angeloyloxylantanolic acid and lantanolic acid. 22 beta-Acetoxylantic acid showed antimicrobial activity against Staphylococcus aureus and Salmonella typhi. This compound and 22 beta-dimethylacryloyloxy lantanolic acid also showed antimutagenic activity.
Bullas, L R; Colson, C; Neufeld, B
1980-01-01
With the use of four different phages, Salmonella strains representing 85 different serotypes were examined to determine their restriction-modification phenotype. They fell into one of three groups on this basis: group 1, those which lacked the common LT system; group 2, those in which only the LT system could be recognized; and group 3. those which possessed the LT system and at least one other system shown with some serotypes to be closely linked to serB. The specificity of the serB-linked restriction-modification system was unique for each serotype, but different strains of the same serotype expressed the same specificity. Two of the systems were shown to behave in genetic crosses as functional alleles of the S. typhimurium SB system. It is possible that these serB-linked restriction-modification systems constitute a large multiallelic series of genes extending throughout the Salmonella genus and Escherichia coli. We suggest that the division of the Salmonella into the three restriction-modification groups may be significant in defining a "biological grouping" of the different serotypes within the genus which may ultimately be useful in describing the Salmonella species. From the genetic relatedness between the genes of some of the Salmonella restriction-modification systems with those of the E. coli systems, we deduce that the restriction endonuclases produced by the Salmonella serB-linked systems are of type 1. Determination of the nucleotide sequences of the recognition sites of the restriction endonucleases of selected Salmonella systems should further our understanding of specificity with these enzymes. PMID:6243623
Pitzer, Virginia E; Feasey, Nicholas A; Msefula, Chisomo; Mallewa, Jane; Kennedy, Neil; Dube, Queen; Denis, Brigitte; Gordon, Melita A; Heyderman, Robert S
2015-11-01
Multiyear epidemics of Salmonella enterica serovar Typhi have been reported from countries across eastern and southern Africa in recent years. In Blantyre, Malawi, a dramatic increase in typhoid fever cases has recently occurred, and may be linked to the emergence of the H58 haplotype. Strains belonging to the H58 haplotype often exhibit multidrug resistance and may have a fitness advantage relative to other Salmonella Typhi strains. To explore hypotheses for the increased number of typhoid fever cases in Blantyre, we fit a mathematical model to culture-confirmed cases of Salmonella enterica infections at Queen Elizabeth Central Hospital, Blantyre. We explored 4 hypotheses: (1) an increase in the basic reproductive number (R0) in response to increasing population density; (2) a decrease in the incidence of cross-immunizing infection with Salmonella Enteritidis; (3) an increase in the duration of infectiousness due to failure to respond to first-line antibiotics; and (4) an increase in the transmission rate following the emergence of the H58 haplotype. Increasing population density or decreasing cross-immunity could not fully explain the observed pattern of typhoid emergence in Blantyre, whereas models allowing for an increase in the duration of infectiousness and/or the transmission rate of typhoid following the emergence of the H58 haplotype provided a good fit to the data. Our results suggest that an increase in the transmissibility of typhoid due to the emergence of drug resistance associated with the H58 haplotype may help to explain recent outbreaks of typhoid in Malawi and similar settings in Africa. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.
Epidemiological investigation of an outbreak of typhoid fever in Jorhat town of Assam, India.
Roy, Jashbeer Singh; Saikia, Lahari; Medhi, Mithu; Tassa, Dipak
2016-10-01
Typhoid fever is a global health problem and is also endemic in India. An outbreak of fever occurred in January 2014 in Jorhat Town in Assam, India. Here we report the results of an investigation done to find out the aetiology and source of the outbreak. The affected areas were visited on January 23, 2014 by a team of Jorhat district Integrated Disease Surveillance Project personnel. A total of 13 blood samples from patients with fever as first symptom and six water samples were collected from the affected areas. The blood samples were cultured and isolates were identified using standard biochemical tests. Isolates were also tested for antimicrobial sensitivity. Widal test was performed on 10 of the 13 blood samples collected. Sanitary survey was carried out to find any leakage in the water supply and also the sewage system of the Jorhat town. Blood culture yielded Salmonella enterica serovar Typhi in six (46.15%) patients whereas Widal test was positive in 10 (76.9%) of 13 patients. Water culture showed presumptive coliform count of >180/100 ml in two out of the six samples tested. Salmonella Typhi was also isolated from water culture of these two samples. Sanitary survey carried out in the affected places showed that the water supply pipes of urban water supply were in close proximity to the sewage drainage system and there were few leakages. The outbreak occurred due to S. Typhi contaminating the water supply. Sanitation and immunization are the two most important components to be stressed to prevent such outbreaks.
Walker, Alan W.; Thompson, Corinne N.; Torres, Andres; Dongol, Sabina; Tran Vu Thieu, Nga; Pham Thanh, Duy; Tran Thi Ngoc, Dung; Voong Vinh, Phat; Singer, Andrew C.; Parkhill, Julian; Thwaites, Guy; Basnyat, Buddha; Ferguson, Neil; Baker, Stephen
2016-01-01
One of the UN sustainable development goals is to achieve universal access to safe and affordable drinking water by 2030. It is locations like Kathmandu, Nepal, a densely populated city in South Asia with endemic typhoid fever, where this goal is most pertinent. Aiming to understand the public health implications of water quality in Kathmandu we subjected weekly water samples from 10 sources for one year to a range of chemical and bacteriological analyses. We additionally aimed to detect the etiological agents of typhoid fever and longitudinally assess microbial diversity by 16S rRNA gene surveying. We found that the majority of water sources exhibited chemical and bacterial contamination exceeding WHO guidelines. Further analysis of the chemical and bacterial data indicated site-specific pollution, symptomatic of highly localized fecal contamination. Rainfall was found to be a key driver of this fecal contamination, correlating with nitrates and evidence of S. Typhi and S. Paratyphi A, for which DNA was detectable in 333 (77%) and 303 (70%) of 432 water samples, respectively. 16S rRNA gene surveying outlined a spectrum of fecal bacteria in the contaminated water, forming complex communities again displaying location-specific temporal signatures. Our data signify that the municipal water in Kathmandu is a predominant vehicle for the transmission of S. Typhi and S. Paratyphi A. This study represents the first extensive spatiotemporal investigation of water pollution in an endemic typhoid fever setting and implicates highly localized human waste as the major contributor to poor water quality in the Kathmandu Valley. PMID:26735696
Molecular typing and resistance analysis of travel-associated Salmonella enterica serotype Typhi.
Tatavarthy, A; Sanderson, R; Peak, K; Scilabro, G; Davenhill, P; Cannons, A; Amuso, P
2012-08-01
Salmonella enterica serotype Typhi is a human pathogen causing 12 to 30% mortality and requiring antibiotic therapy to control the severity of the infection. Typhoid fever in United States is often associated with foreign travel to areas of endemicity. Increasing resistance to multiple drugs, including quinolones, is associated with decreased susceptibility to ciprofloxacin (DCS). We investigated 31 clinical strains isolated in Florida from 2007 to 2010, associated with travel to six countries, to examine the clonal distribution of the organism and apparent nalidixic acid (NAL) resistance. The strains were isolated from blood or stool of patients aged 2 to 68 years. The isolates were subtyped by ribotyping and pulsed-field gel electrophoresis. Susceptibilities to 15 antimicrobials were determined, and the isolates were screened for integrons and gyrase A gene mutations. Both typing techniques effectively segregated the strains. Identical clones were associated with different countries, while diverse types coexisted in the same geographic location. Fifty-one percent of the strains were resistant to at least one antimicrobial, and five were resistant to three or more drugs (multidrug resistant [MDR]). All 12 isolates from the Indian subcontinent were resistant to at least one drug, and 83% of those were resistant to NAL. Three of the MDR strains harbored a 750-bp integron containing the dfr7 gene. Ninety-three percent of the resistant strains showed a DCS profile. All the NAL-resistant strains contained point mutations in the quinolone resistance-determining region of gyrA. This study affirms the global clonal distribution, concomitant genetic heterogeneity, and increased NAL resistance of S. enterica serovar Typhi.
Karkey, Abhilasha; Jombart, Thibaut; Walker, Alan W; Thompson, Corinne N; Torres, Andres; Dongol, Sabina; Tran Vu Thieu, Nga; Pham Thanh, Duy; Tran Thi Ngoc, Dung; Voong Vinh, Phat; Singer, Andrew C; Parkhill, Julian; Thwaites, Guy; Basnyat, Buddha; Ferguson, Neil; Baker, Stephen
2016-01-01
One of the UN sustainable development goals is to achieve universal access to safe and affordable drinking water by 2030. It is locations like Kathmandu, Nepal, a densely populated city in South Asia with endemic typhoid fever, where this goal is most pertinent. Aiming to understand the public health implications of water quality in Kathmandu we subjected weekly water samples from 10 sources for one year to a range of chemical and bacteriological analyses. We additionally aimed to detect the etiological agents of typhoid fever and longitudinally assess microbial diversity by 16S rRNA gene surveying. We found that the majority of water sources exhibited chemical and bacterial contamination exceeding WHO guidelines. Further analysis of the chemical and bacterial data indicated site-specific pollution, symptomatic of highly localized fecal contamination. Rainfall was found to be a key driver of this fecal contamination, correlating with nitrates and evidence of S. Typhi and S. Paratyphi A, for which DNA was detectable in 333 (77%) and 303 (70%) of 432 water samples, respectively. 16S rRNA gene surveying outlined a spectrum of fecal bacteria in the contaminated water, forming complex communities again displaying location-specific temporal signatures. Our data signify that the municipal water in Kathmandu is a predominant vehicle for the transmission of S. Typhi and S. Paratyphi A. This study represents the first extensive spatiotemporal investigation of water pollution in an endemic typhoid fever setting and implicates highly localized human waste as the major contributor to poor water quality in the Kathmandu Valley.
Epidemiological investigation of an outbreak of typhoid fever in Jorhat town of Assam, India
Roy, Jashbeer Singh; Saikia, Lahari; Medhi, Mithu; Tassa, Dipak
2016-01-01
Background & objectives: Typhoid fever is a global health problem and is also endemic in India. An outbreak of fever occurred in January 2014 in Jorhat Town in Assam, India. Here we report the results of an investigation done to find out the aetiology and source of the outbreak. Methods: The affected areas were visited on January 23, 2014 by a team of Jorhat district Integrated Disease Surveillance Project personnel. A total of 13 blood samples from patients with fever as first symptom and six water samples were collected from the affected areas. The blood samples were cultured and isolates were identified using standard biochemical tests. Isolates were also tested for antimicrobial sensitivity. Widal test was performed on 10 of the 13 blood samples collected. Sanitary survey was carried out to find any leakage in the water supply and also the sewage system of the Jorhat town. Results: Blood culture yielded Salmonella enterica serovar Typhi in six (46.15%) patients whereas Widal test was positive in 10 (76.9%) of 13 patients. Water culture showed presumptive coliform count of >180/100 ml in two out of the six samples tested. Salmonella Typhi was also isolated from water culture of these two samples. Sanitary survey carried out in the affected places showed that the water supply pipes of urban water supply were in close proximity to the sewage drainage system and there were few leakages. Interpretation & conclusions: The outbreak occurred due to S. Typhi contaminating the water supply. Sanitation and immunization are the two most important components to be stressed to prevent such outbreaks. PMID:28256469
Screening of antibacterial potentials of some medicinal plants from Melghat forest in India.
Tambekar, D H; Khante, B S; Chandak, B R; Titare, A S; Boralkar, S S; Aghadte, S N
2009-05-07
Cyperus rotundus, Caesalpinia bonducella, Tinospora cordifolia, Gardenia gummifera, Ailanthus excelsa, Acacia arabica, Embelia ribes and Ventilago maderspatana from Melghat forest were screened for their antibacterial potential against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Proteus vulgaris, Salmonella typhi, Shigella flexneri, Salmonella paratyphi, Salmonella typhimurium, Pseudomonas aeruginosa, Enterobacter aerogenes by disc diffusion method. Out of these medicinal plants Caesalpinia bonducella, Gardenia gummifera and Acacia arabica showed remarkable antibacterial potential. The phytochemical analysis had showed the presence of Cardiac glycosides in all extracts (aqueous, acetone, ethanol and methanol) of Acacia arabica, Gardenia gummifera and ethanol, methanol extracts of Caesalpinia bonducella. Flavonoids were present in Gardenia gummifera, Ailanthus excelsa and acetone, methanol extracts of Acacia Arabica. Tannins and phenolic were present in Cyperus rotundus, Embelia ribes, and organic extracts of Ventilago maderspatana.
Rapid detection of salmonella using SERS with silver nano-substrate
NASA Astrophysics Data System (ADS)
Sundaram, J.; Park, B.; Hinton, A., Jr.; Windham, W. R.; Yoon, S. C.; Lawrence, K. C.
2011-06-01
Surface Enhanced Raman Scattering (SERS) can detect the pathogen in rapid and accurate. In SERS weak Raman scattering signals are enhanced by many orders of magnitude. In this study silver metal with biopolymer was used. Silver encapsulated biopolymer polyvinyl alcohol nano-colloid was prepared and deposited on stainless steel plate. This was used as metal substrate for SERS. Salmonella typhimurium a common food pathogen was selected for this study. Salmonella typhimurium bacteria cells were prepared in different concentrations in cfu/mL. Small amount of these cells were loaded on the metal substrate individually, scanned and spectra were recorded using confocal Raman microscope. The cells were exposed to laser diode at 785 nm excitation and object 50x was used to focus the laser light on the sample. Raman shifts were obtained from 400 to 2400 cm-1. Multivariate data analysis was carried to predict the concentration of unknown sample using its spectra. Concentration prediction gave an R2 of 0.93 and standard error of prediction of 0.21. The results showed that it could be possible to find out the Salmonella cells present in a low concentration in food samples using SERS.
Characterization of a ViI-like phage specific to Escherichia coli O157:H7
USDA-ARS?s Scientific Manuscript database
Phage vB_EcoM_CBA120 (CBA120) isolated against Escherichia coli O157:H7 from a cattle feedlot is morphologically very similar to the classic phage ViI of Salmonella enterica serovar Typhi. Until recently, little was known genetically or physiologically about the ViI-like phages, and non targeting E...
Fiorino, Fabio; Ciabattini, Annalisa; Rondini, Simona; Pozzi, Gianni; Martin, Laura B; Medaglini, Donata
2012-09-21
Typhoid fever is a public health problem, especially among young children in developing countries. To address this need, a glycoconjugate vaccine Vi-CRM₁₉₇, composed of the polysaccharide antigen Vi covalently conjugated to the non-toxic mutant of diphtheria toxin CRM₁₉₇, is under development. Here, we assessed the antibody and cellular responses, both local and systemic, following subcutaneous injection of Vi-CRM₁₉₇. The glycoconjugate elicited Vi-specific serum IgG titers significantly higher than unconjugated Vi, with prevalence of IgG1 that persisted for at least 60 days after immunization. Vi-specific IgG, but not IgA, were present in intestinal washes. Lymphocytes proliferation after restimulation with Vi-CRM₁₉₇ was observed in spleen and mesenteric lymph nodes. These data confirm the immunogenicity of Vi-CRM₁₉₇ and demonstrate that the vaccine-specific antibody and cellular immune responses are present also in the intestinal tract, thus strengthening the suitability of Vi-CRM₁₉₇ as a promising candidate vaccine against Salmonella Typhi. Copyright © 2012 Elsevier Ltd. All rights reserved.
Das, Ritu; Sharma, Mukesh K; Rao, Vepa K; Bhattacharya, B K; Garg, Iti; Venkatesh, V; Upadhyay, Sanjay
2014-10-20
In this work, we fabricated a system of integrated self-assembled layer of organosilane 3-mercaptopropyltrimethoxy silane (MPTS) on the screen printed electrode (SPE) and electrochemically deposited gold nanoparticle for Salmonella typhi detection employing Vi gene as a molecular marker. Thiolated DNA probe was immobilized on a gold nanoparticle (AuNP) modified SPE for DNA hybridization assay using methylene blue as redox (electroactive) hybridization indicator, and signal was monitored by differential pulse voltammetry (DPV) method. The modified SPE was characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM) method. The DNA biosensor showed excellent performances with high sensitivity and good selectivity. The current response was linear with the target sequence concentrations ranging from 1.0 × 10(-11) to 0.5 × 10(-8)M and the detection limit was found to be 50 (± 2.1)pM. The DNA biosensor showed good discrimination ability to the one-base, two-base and three-base mismatched sequences. The fabricated genosensor could also be regenerated easily and reused for three to four times for further hybridization studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Typhoid fever cases in the U.S. military.
Sorrell, Tia; Selig, Daniel J; Riddle, Mark S; Porter, Chad K
2015-10-14
Salmonella enterica, serovar Typhi (S. Typhi), a causative agent of enteric fever (typhoid fever), predominately affects populations in developing regions with poor access to clean food and water. In addition, travelers to these regions are at risk of exposure. We report the epidemiological characteristics of S. Typhi cases among active duty United States military personnel from 1998 to 2011 using data obtained from the Defense Medical Surveillance System. Cases were identified based on International Classification for Disease Ninth Edition - Clinical Modification codes. We identified a total of 205 cases S. Typhi for an incidence of 1.09 per 100,000 person-years. Cases were on average 31.7 years old, predominately married (n = 129, 62.9 %), Caucasian (n = 142, 69.3 %), male (n = 176, 85.9 %), and had a high school education (n = 101, 49.3 %). Of the identified cases, 122 had received a Typhoid vaccination within 4 years of diagnosis. This study provides an overview of enteric fever in the United States military. The incidence was similar to the general U.S. population except for increased incidence from 1998 to 2000, perhaps attributable to operational deployments in that period. Given that vaccination is an effective primary prevention measure against typhoid fever, active monitoring of pre-deployment vaccine history is warranted.
USDA-ARS?s Scientific Manuscript database
Salmonella ser. Enteritidis is a major public health concern worldwide. Loop-mediated isothermal amplification (LAMP) is a novel simple, easy-to-operate detection technology that amplifies DNA with high speed, efficiency, and specificity under isothermal conditions. The objective of this study was t...
Wolday, D; Erge, W
1998-07-01
A retrospective analysis of all cases of Salmonella infections occurring between 1991 and 1995 was undertaken in order to evaluate the antimicrobial sensitivity pattern of the isolates from both human immunodeficiency virus (HIV) infected and uninfected Ethiopian patients. During the 5-year study period, we identified 147 cases of Salmonella infections. Only in 49 cases was the HIV serostatus known; 22 (44.9%) of the infections were in HIV seronegative patients while 27 (55.9%) were in HIV seropositive patients. The strains were isolated from blood (71.4%), urine (18.4%) and stool (8.2%). Salmonella infection was found to be more frequent (55.15% versus 44.9%) among HIV positive than HIV-negative patients. Moreover, Salmonella isolates recovered from HIV-seropositive patients were significantly resistant to many of the antibiotics tested when compared to the isolates from HIV-seronegative patients. The only chloramphenicol resistant Salmonella typhi occurred in a patient who was seropositive for HIV. According to these results, Ethiopian patients infected with HIV may be at risk of acquiring infections, especially non-typhoidal salmonellas, that are multi-drug resistant (MDR) strains than HIV-uninfected subjects. The emergence of MDR Salmonella infection among HIV-positive patients requires reassessment of chemotherapeutic approaches in this patient population, and warrants continued laboratory surveillance.
Water-borne typhoid fever caused by an unusual Vi-phage type in Edinburgh
Conn, Nancy K.; Heymann, C. S.; Jamieson, A.; McWilliam, Joan M.; Scott, T. G.
1972-01-01
Investigation of a small series of cases of typhoid fever infected in a river between 1963 and 1970 revealed that all were caused by a single source, a carrier of a rare phage type of Salmonella typhi. The contamination of the river resulted from an incorrect sewage connexion with a surface water drain outfall into the river. ImagesPlate 1 PMID:4555889
Pasetti, Marcela F; Barry, Eileen M; Losonsky, Genevieve; Singh, Mahender; Medina-Moreno, Sandra M; Polo, John M; Ulmer, Jeffrey; Robinson, Harriet; Sztein, Marcelo B; Levine, Myron M
2003-05-01
Measles remains a leading cause of child mortality in developing countries. Residual maternal measles antibodies and immunologic immaturity dampen immunogenicity of the current vaccine in young infants. Because cotton rat respiratory tract is susceptible to measles virus (MV) replication after intranasal (i.n.) challenge, this model can be used to assess the efficacy of MV vaccines. Pursuing a new measles vaccine strategy that might be effective in young infants, we used attenuated Salmonella enterica serovar Typhi CVD 908-htrA and Shigella flexneri 2a CVD 1208 vaccines to deliver mucosally to cotton rats eukaryotic expression plasmid pGA3-mH and Sindbis virus-based DNA replicon pMSIN-H encoding MV hemagglutinin (H). The initial i.n. dose-response with bacterial vectors alone identified a well-tolerated dosage (1 x 10(9) to 7 x 10(9) CFU) and a volume (20 micro l) that elicited strong antivector immune responses. Animals immunized i.n. on days 0, 28, and 76 with bacterial vectors carrying DNA plasmids encoding MV H or immunized parenterally with these naked DNA vaccine plasmids developed MV plaque reduction neutralizing antibodies and proliferative responses against MV antigens. In a subsequent experiment of identical design, cotton rats were challenged with wild-type MV 1 month after the third dose of vaccine or placebo. MV titers were significantly reduced in lung tissue of animals immunized with MV DNA vaccines delivered either via bacterial live vectors or parenterally. Since attenuated serovar Typhi and S. flexneri can deliver measles DNA vaccines mucosally in cotton rats, inducing measles immune responses (including neutralizing antibodies) and protection, boosting strategies can now be evaluated in animals primed with MV DNA vaccines.
Yassien, M A M; Elfaky, M A
2015-11-01
A spontaneous fluoroquinolone-resistant mutant (STM1) was isolated from its parent Salmonella enterica serovar Typhi (S. Typhi) clinical isolate. Unlike its parent isolate, this mutant has selective resistance to fluoroquinolones without any change in its sensitivity to various other antibiotics. DNA gyrase assays revealed that the fluoroquinolone resistance phenotype of the STM1 mutant did not result from alteration of the fluoroquinolone sensitivity of the DNA gyrase isolated from it. To study the mechanism of fluoroquinolone resistance, a genomic library from the STM1 mutant was constructed in Escherichia coli DH5α and two recombinant plasmids were obtained. Only one of these plasmids (STM1-A) conferred the selective fluoroquinolone resistance phenotype to E. coli DH5α. The chromosomal insert from STM1-A, digested with EcoRI and HindIII restriction endonucleases, produced two DNA fragments and these were cloned separately into pUC19 thereby generating two new plasmids, STM1-A1 and STM1-A2. Only STM1-A1 conferred the selective fluoroquinolone resistance phenotype to E. coli DH5α. Sequence and subcloning analyses of STM1-A1 showed the presence of an intact RecA open reading frame. Unlike that of the wild-type E. coli DH5α, protein analysis of a crude STM1-A1 extract showed overexpression of a 40 kDa protein. Western blotting confirmed the 40 kDa protein band to be RecA. When a RecA PCR product was cloned into pGEM-T and introduced into E. coli DH5α, the STM1-A11 subclone retained fluoroquinolone resistance. These results suggest that overexpression of RecA causes selective fluoroquinolone resistance in E. coli DH5α.
Sjölund-Karlsson, Maria; Gordon, Melita A.; Parry, Christopher M.
2015-01-01
SUMMARY Salmonella enterica infections are common causes of bloodstream infection in low-resource areas, where they may be difficult to distinguish from other febrile illnesses and may be associated with a high case fatality ratio. Microbiologic culture of blood or bone marrow remains the mainstay of laboratory diagnosis. Antimicrobial resistance has emerged in Salmonella enterica, initially to the traditional first-line drugs chloramphenicol, ampicillin, and trimethoprim-sulfamethoxazole. Decreased fluoroquinolone susceptibility and then fluoroquinolone resistance have developed in association with chromosomal mutations in the quinolone resistance-determining region of genes encoding DNA gyrase and topoisomerase IV and also by plasmid-mediated resistance mechanisms. Resistance to extended-spectrum cephalosporins has occurred more often in nontyphoidal than in typhoidal Salmonella strains. Azithromycin is effective for the management of uncomplicated typhoid fever and may serve as an alternative oral drug in areas where fluoroquinolone resistance is common. In 2013, CLSI lowered the ciprofloxacin susceptibility breakpoints to account for accumulating clinical, microbiologic, and pharmacokinetic-pharmacodynamic data suggesting that revision was needed for contemporary invasive Salmonella infections. Newly established CLSI guidelines for azithromycin and Salmonella enterica serovar Typhi were published in CLSI document M100 in 2015. PMID:26180063
Screening for Salmonella in backyard chickens.
Manning, Johanna; Gole, Vaibhav; Chousalkar, Kapil
2015-06-15
Salmonellosis is a significant zoonotic disease which has a considerable economic impact on the egg layer industry. There is limited information about the prevalence of Salmonella spp. in backyard chickens. The current study was conducted to determine the prevalence of Salmonella in backyard chickens, and the associated virulence of any serovars identified. Hundred and fifteen pooled samples from 30 backyard flocks in South Australia were screened. Four flocks tested positive for Salmonella spp. The overall Salmonella isolation rate in the current study was 10.4%. The estimated prevalence at individual bird level was 0.02% (95% CI 0.025-0.975). The serovars isolated were Salmonella Agona, Salmonella subsp 2 ser 21:z10:z6 (Wandsbek) and Salmonella Bovismorbificans. All Salmonella isolates tested positive for the prgH, orfL and spiC genes. The Salmonella subsp 2 ser 21:z10:z6 (Wandsbek) had the most antibiotic resistance, being resistant to ampicillin and cephalothin and having intermediate resistance to florphenicol. All of the Salmonella Agona had intermediate resistance to the ampicillin, while the Salmonella Bovismorbificans were susceptible to all antibiotics tested. With the increased interest of keeping backyard chickens, the current study highlights the zoonotic risk from Salmonella spp. associated with home flocks. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
Zhang, Guodong; Thau, Eve; Brown, Eric W; Hammack, Thomas S
2013-12-01
The current FDA Bacteriological Analytical Manual (BAM) method for the detection of Salmonella in eggs requires 2 wk to complete. The objective of this project was to improve the BAM method for the detection and isolation of Salmonella in whole shell eggs. A novel protocol, using 1,000 g of liquid eggs for direct preenrichment with 2 L of tryptic soy broth (TSB) followed by enrichment using Rappaport-Vassiliadis and Tetrathionate broths, was compared with the standard BAM method, which requires 96 h room temperature incubation of whole shell egg samples followed by preenrichment in TSB supplemented with FeSO4. Four Salmonella ser. Enteritidis (4 phage types) and one Salmonella ser. Heidelberg isolates were used in the study. Bulk inoculated pooled liquid eggs, weighing 52 or 56 kg (approximately 1,100 eggs) were used in each trial. Twenty 1,000-g test portions were withdrawn from the pooled eggs for both the alternative and the reference methods. Test portions were inoculated with Salmonella at 1 to 5 cfu/1,000 g eggs. Two replicates were performed for each isolate. In the 8 trials conducted with Salmonella ser. Enteritidis, the alternative method was significantly (P < 0.05) more productive than the reference method in 3 trials, and significantly (P < 0.05) less productive than the reference method in 1 trial. There were no significant (P < 0.05) differences between the 2 methods for the other 4 trials. For Salmonella ser. Heidelberg, combined data from 2 trials showed the alternative method was significantly (P < 0.05) more efficient than the BAM method. We have concluded that the alternative method, described herein, has the potential to replace the current BAM culture method for detection and isolation of Salmonella from shell eggs based on the following factors: 1) the alternative method is 4 d shorter than the reference method; 2) it uses regular TSB instead of the more complicated TSB supplemented with FeSO4; and 3) it was equivalent or superior to the reference method in 9 out of 10 trials for the detection of Salmonella in shell eggs.
[Report of Relapse Typhoid Fever Cases from Kolkata, India: Recrudescence or Reinfection?
Samajpati, Sriparna; Das, Surojit; Ray, Ujjwayini; Dutta, Shanta
2018-05-24
Three relapse cases were reported out of 107 hospital-attending typhoid cases within a period of 2 years (2014-2016) from Apollo Gleneagles Hospital, Kolkata, India. During the first episode of typhoid fever, 2 of the 3 cases were treated with ceftriaxone (CRO) for 7 days, and 1 was treated for 14 days. Six Salmonella Typhi (S. Typhi) isolates, obtained from the 3 patients during both typhoid episodes, were subjected to antimicrobial susceptibility testing, detection of quinolone resistance-determining region (QRDR) mutation and molecular subtyping by pulsed-field gel electrophoresis (PFGE), multiple-locus variable number tandem repeat analysis (MLVA), multilocus sequence typing (MLST), clustered regularly interspaced short palindromic repeats (CRISPR), and H58 haplotyping. Pairs of the S. Typhi strains isolated from two of the patients during the 1st and 2nd episodes were similar with respect to the antimicrobial resistance (AMR) profiles, QRDR mutations, and molecular subtypes; whereas, the S. Typhi strain pair isolated from the 3rd patient were different in their AMR profiles, QRDR mutations, and MLVA profiles. From these observations, it may be concluded that in spite of treating typhoid cases with CRO for 7-14 days, relapse of typhoid fever might occur. The article also showed the advantage of MLVA typing over PFGE, MLST, and CRISPR typing for the discrimination of strains isolated from the same patient in case of relapse of typhoid fever.
Fakruddin, Md; Hossain, Md Nur; Ahmed, Monzur Morshed
2017-08-29
Improved methods with better separation and concentration ability for detection of foodborne pathogens are in constant need. The aim of this study was to evaluate microplate immunocapture (IC) method for detection of Salmonella Typhi, Shigella flexneri and Vibrio cholerae from food samples to provide a better alternative to conventional culture based methods. The IC method was optimized for incubation time, bacterial concentration, and capture efficiency. 6 h incubation and log 6 CFU/ml cell concentration provided optimal results. The method was shown to be highly specific for the pathogens concerned. Capture efficiency (CE) was around 100% of the target pathogens, whereas CE was either zero or very low for non-target pathogens. The IC method also showed better pathogen detection ability at different concentrations of cells from artificially contaminated food samples in comparison with culture based methods. Performance parameter of the method was also comparable (Detection limit- 25 CFU/25 g; sensitivity 100%; specificity-96.8%; Accuracy-96.7%), even better than culture based methods (Detection limit- 125 CFU/25 g; sensitivity 95.9%; specificity-97%; Accuracy-96.2%). The IC method poses to be the potential to be used as a method of choice for detection of foodborne pathogens in routine laboratory practice after proper validation.
Huw Davies, D.; Jain, Aarti; Nakajima, Rie; Liang, Li; Jasinskis, Algis; Supnet, Medalyn; Felgner, Philip L.; Teng, Andy; Pablo, Jozelyn; Molina, Douglas M.; Obaro, Stephen K.
2016-01-01
Inexpensive, easy-to-use, and highly sensitive diagnostic tests are currently unavailable for typhoid fever. To identify candidate serodiagnostic markers, we have probed microarrays displaying the full Salmonella enterica serovar Typhi (S. Typhi) proteome of 4,352 different proteins + lipopolysaccharides (LPSs), with sera from Nigerian pediatric typhoid and other febrile cases, Nigerian healthy controls, and healthy U.S. adults. Nigerian antibody profiles were broad (∼500 seropositive antigens) and mainly low level, with a small number of stronger “hits,” whereas the profile in U.S. adults was < 1/5 as broad, consistent with endemic exposure in Nigeria. Nigerian profiles were largely unaffected by clinical diagnosis, although the response against t1477 (hemolysin E) consistently emerged as stronger in typhoid cases. The response to LPS was also a strong discriminator of healthy controls and typhoid, although LPS did not discriminate between typhoid and nontyphoidal Salmonella (NTS) disease. As a first step toward the development of a point-of-care diagnostic, t1477 and LPS were evaluated on immunostrips. Both provided good discrimination between healthy controls and typhoid/NTS disease. Such a test could provide a useful screen for salmonellosis (typhoid and NTS disease) in suspected pediatric cases that present with undefined febrile disease. PMID:27215295
Mondal, Manas; Chakrabarti, Jaydeb; Ghosh, Mahua
2018-03-01
We perform molecular dynamics simulation studies on interaction between bacterial proteins: an outer-membrane protein STY3179 and a yfdX protein STY3178 of Salmonella Typhi. STY3179 has been found to be involved in bacterial adhesion and invasion. STY3178 is recently biophysically characterized. It is a soluble protein having antibiotic binding and chaperon activity capabilities. These two proteins co-occur and are from neighboring gene in Salmonella Typhi-occurrence of homologs of both STY3178 and STY3179 are identified in many Gram-negative bacteria. We show using homology modeling, docking followed by molecular dynamics simulation that they can form a stable complex. STY3178 belongs to aqueous phase, while the beta barrel portion of STY3179 remains buried in DPPC bilayer with extra-cellular loops exposed to water. To understand the molecular basis of interaction between STY3178 and STY3179, we compute the conformational thermodynamics which indicate that these two proteins interact through polar and acidic residues belonging to their interfacial region. Conformational thermodynamics results further reveal instability of certain residues in extra-cellular loops of STY3179 upon complexation with STY3178 which is an indication for binding with host cell protein laminin. © 2017 Wiley Periodicals, Inc.
The Wisconsin State Laboratory of Hygiene and emerging enteric pathogens.
Warshauer, David; Monson, Tim; Kurzynski, Terry
2003-01-01
At the turn of the 20th century, typhoid fever was common in Wisconsin, and was a major impetus for the establishment of the Wisconsin State Laboratory of Hygiene (WSLH) in 1903. By the 1940s, typhoid was virtually eliminated in the United States due to public health measures such as disinfection of drinking water, sewage treatment, pasteurization, and shellfish bed sanitation. However, new food and waterborne pathogens have emerged to take the place of Salmonella Typhi. Infections with non-typhoidal Salmonella strains in the United States have increased almost 10-fold since the 1950s. In the last 20 years, the emergence of foodborne pathogens, such as Escherichia coli O157:H7, Cyclospora cayetanensis, Noroviruses (Norwalk-like viruses), Cryptosporidium parvum, Campylobacter jejuni, Yersinia enterocolitica, and multi-drug-resistant Salmonella, has identified a need for accurate laboratory diagnosis of enteric disease and outbreaks.
Anukampa; Shagufta, Bi; Sivakumar, M; Kumar, Surender; Agarwal, Rajesh Kumar; Bhilegaonkar, Kiran Narayan; Kumar, Ashok; Dubal, Zunjar Baburao
2017-07-01
The present study was carried out to find out the occurrence and types of Salmonella present in street vended foods and associated environment, and their resistance pattern against various antibiotics. About 1075 street vended food and associated environment samples were processed for isolation and confirmation of different Salmonella spp. by targeting gene specific inv A gene and serotype specific Sdf I, Via B and Spy genes by PCR. Selected Salmonella isolates were screened for antibiotic resistance by using Baeur-Kirby disk diffusion test. Out of 1075 samples, only 31 (2.88%) isolates could be amplified the inv A gene of which 19 could be recovered from meat vendors; 8 from egg vendors while remaining 4 from milk vendors. Though, majority of Salmonella recovered from raw foods the ready-to-eat food like chicken gravy and rasmalai also showed its presence which pose a serious public health threat. Overall, 19, 6 and 1 isolates of S. Typhimurium, S. Enteritidis and S. Typhi could be detected by PCR while remaining 5 isolates could not be amplified suggesting other type of Salmonella. Selected Salmonella isolates were completely resistance to Oxacillin (100%) followed by Cefoxitin (30.43%) and Ampicillin (26.10%). Thus, it is observed that the street vended foods of animal origin and associated environment play an important role in transmission of food borne pathogens including Salmonella .
Leekitcharoenphon, Pimlapas; Lukjancenko, Oksana; Lukwesa-Musyani, Chileshe; Tambatamba, Bushimbwa; Mwaba, John; Kalonda, Annie; Nakazwe, Ruth; Kwenda, Geoffrey; Jensen, Jacob Dyring; Svendsen, Christina A.; Dittmann, Karen K.; Kaas, Rolf S.; Cavaco, Lina M.; Aarestrup, Frank M.; Hasman, Henrik; Mwansa, James C. L.
2014-01-01
Retrospectively, we investigated the epidemiology of a massive Salmonella enterica serovar Typhi outbreak in Zambia during 2010 to 2012. Ninety-four isolates were susceptibility tested by MIC determinations. Whole-genome sequence typing (WGST) of 33 isolates and bioinformatic analysis identified the multilocus sequence type (MLST), haplotype, plasmid replicon, antimicrobial resistance genes, and genetic relatedness by single nucleotide polymorphism (SNP) analysis and genomic deletions. The outbreak affected 2,040 patients, with a fatality rate of 0.5%. Most (83.0%) isolates were multidrug resistant (MDR). The isolates belonged to MLST ST1 and a new variant of the haplotype, H58B. Most isolates contained a chromosomally translocated region containing seven antimicrobial resistance genes, catA1, blaTEM-1, dfrA7, sul1, sul2, strA, and strB, and fragments of the incompatibility group Q1 (IncQ1) plasmid replicon, the class 1 integron, and the mer operon. The genomic analysis revealed 415 SNP differences overall and 35 deletions among 33 of the isolates subjected to whole-genome sequencing. In comparison with other genomes of H58, the Zambian isolates separated from genomes from Central Africa and India by 34 and 52 SNPs, respectively. The phylogenetic analysis indicates that 32 of the 33 isolates sequenced belonged to a tight clonal group distinct from other H58 genomes included in the study. The small numbers of SNPs identified within this group are consistent with the short-term transmission that can be expected over a period of 2 years. The phylogenetic analysis and deletions suggest that a single MDR clone was responsible for the outbreak, during which occasional other S. Typhi lineages, including sensitive ones, continued to cocirculate. The common view is that the emerging global S. Typhi haplotype, H58B, containing the MDR IncHI1 plasmid is responsible for the majority of typhoid infections in Asia and sub-Saharan Africa; we found that a new variant of the haplotype harboring a chromosomally translocated region containing the MDR islands of IncHI1 plasmid has emerged in Zambia. This could change the perception of the term “classical MDR typhoid” currently being solely associated with the IncHI1 plasmid. It might be more common than presently thought that S. Typhi haplotype H58B harbors the IncHI1 plasmid or a chromosomally translocated MDR region or both. PMID:25392358
[Serotype and phage type distribution of human Salmonella strains isolated in Spain, 1997-2001].
Echeita, María Aurora; Aladueña, Ana María; Díez, Rosa; Arroyo, Margarita; Cerdán, Francisca; Gutiérrez, Rafaela; de la Fuente, Manuela; González-Sanz, Rubén; Herrera-León, Silvia; Usera, Miguel Angel
2005-03-01
Salmonellosis is one of the most frequent causes of gastroenteritis in Spain. Serotyping is the gold standard epidemiological marker for subdividing Salmonella spp. strains. A small number of serotypes are very frequently isolated, reducing the discriminatory power of serotyping. Thus, to increase our knowledge of Salmonella spp. epidemiology, additional epidemiological markers, such as phage typing, should be used for this purpose. Salmonella spp. strains of human origin sent to the Laboratorio Nacional de Referencia de Salmonella y Shigella (LNRSSE, Spanish Reference Laboratory for Salmonella and Shigella) between 1997 and 2001 were serotyped using conventional agglutination methods, and Enteritidis, Typhimurium, Hadar, Virchow and Typhi serotypes were additionally phage typed according to internationally-developed schemes. A total of 30,856 Salmonella spp. strains, isolated in the majority of Spanish Autonomous Communities, were analyzed. Enteritidis (51%) and Typhimurium (24%) were the most frequently isolated serotypes. The following were the most frequent serotype/phage type combinations: Enteritidis/PT1 (18%), Enteritidis/PT4 (15%), Enteritidis/PT6a (5%), Typhimurium/DT104 (5%) and Enteritidis/PT6 (3%). The serotype Enteritidis/PT1 showed the greatest increase over the period studied, from 11.61% in 1997 to 24.74% in 2001. A hierarchical typing approach for Salmonella spp., using serotyping coupled with phage typing allowed a higher level of discrimination among Salmonella serotypes. Application of this approach in epidemiological studies could be highly useful for early characterization of related strains.
Maude, Rapeephan R; de Jong, Hanna K; Wijedoru, Lalith; Fukushima, Masako; Ghose, Aniruddha; Samad, Rasheda; Hossain, Mohammed Amir; Karim, Mohammed Rezaul; Faiz, Mohammed Abul; Parry, Christopher M
2015-10-01
To determine the diagnostic accuracy of three rapid diagnostic tests (RDTs) for typhoid fever in febrile hospitalised patients in Bangladesh. Febrile adults and children admitted to Chittagong Medical College Hospital, Bangladesh, were investigated with Bact/Alert(®) blood cultures and real-time PCR to detect Salmonella enterica Typhi and Paratyphi A and assays for Rickettsia, leptospirosis and dengue fever. Acute serum samples were examined with the LifeAssay (LA) Test-it™ Typhoid IgM lateral flow assay detecting IgM antibodies against S. Typhi O antigen, CTKBiotech Onsite Typhoid IgG/IgM Combo Rapid-test cassette lateral flow assay detecting IgG and IgM antibodies against S. Typhi O and H antigens and SD Bioline line assay for IgG and IgM antibodies against S. Typhi proteins. In 300 malaria smear-negative febrile patients [median (IQR) age of 13.5 (5-31) years], 34 (11.3%) had confirmed typhoid fever: 19 positive by blood culture for S. Typhi (three blood PCR positive) and 15 blood culture negative but PCR positive for S. Typhi in blood. The respective sensitivity and specificity of the three RDTs in patients using a composite reference standard of blood culture and/or PCR-confirmed typhoid fever were 59% and 61% for LifeAssay, 59% and 74% for the CTK IgM and/or IgG, and 24% and 96% for the SD Bioline RDT IgM and/or IgG. The LifeAssay RDT had a sensitivity of 63% and a specificity of 91% when modified with a positive cut-off of ≥2+ and analysed using a Bayesian latent class model. These typhoid RDTs demonstrated moderate diagnostic accuracies, and better tests are needed. © 2015 The Authors. Tropical Medicine & International Health Published by John Wiley & Sons Ltd.
Serology of Typhoid Fever in an Area of Endemicity and Its Relevance to Diagnosis
House, Deborah; Wain, John; Ho, Vo A.; Diep, To S.; Chinh, Nguyen T.; Bay, Phan V.; Vinh, Ha; Duc, Minh; Parry, Christopher M.; Dougan, Gordon; White, Nicholas J.; Hien, Tran Tinh; Farrar, Jeremy J.
2001-01-01
Currently, the laboratory diagnosis of typhoid fever is dependent upon either the isolation of Salmonella enterica subsp. enterica serotype Typhi from a clinical sample or the detection of raised titers of agglutinating serum antibodies against the lipopolysaccharide (LPS) (O) or flagellum (H) antigens of serotype Typhi (the Widal test). In this study, the serum antibody responses to the LPS and flagellum antigens of serotype Typhi were investigated with individuals from a region of Vietnam in which typhoid is endemic, and their usefulness for the diagnosis of typhoid fever was evaluated. The antibody responses to both antigens were highly variable among individuals infected with serotype Typhi, and elevated antibody titers were also detected in a high proportion of serum samples from healthy subjects from the community. In-house enzyme-linked immunosorbent assays (ELISAs) for the detection of specific classes of anti-LPS and antiflagellum antibodies were compared with other serologically based tests for the diagnosis of typhoid fever (Widal TO and TH, anti-serotype Typhi immunoglobulin M [IgM] dipstick, and IDeaL TUBEX). At a specificity of ≥0.93, the sensitivities of the different tests were 0.75, 0.55, and 0.52 for the anti-LPS IgM, IgG, and IgA ELISAs, respectively; 0.28 for the antiflagellum IgG ELISA; 0.47 and 0.32 for the Widal TO and TH tests, respectively; and 0.77 for the anti-serotype Typhi IgM dipstick assay. The specificity of the IDeaL TUBEX was below 0.90 (sensitivity, 0.87; specificity, 0.76). The serological assays based on the detection of IgM antibodies against either serotype Typhi LPS (ELISA) or whole bacteria (dipstick) had a significantly higher sensitivity than the Widal TO test when used with a single acute-phase serum sample (P ≤ 0.007). These tests could be of use for the diagnosis of typhoid fever in patients who have clinical typhoid fever but are culture negative or in regions where bacterial culturing facilities are not available. PMID:11230418
NASA Astrophysics Data System (ADS)
Ali, Talib Hassan; Saleh, Dhuha Saad
2014-03-01
Bacteria-specific uptake rates of three different protozoan taxa on a pure and mixed bacterial community was studied by means of a simplified and functionally reproducible experimental model. The bacterial species Shigella flexneri, Escherichia coli and Salmonella typhi were isolated and classified from stool samples of patients suffering from diarrhea. Paramecium caudatum, Tetrahymena pyriformis and Halteria grandinella, free living ciliate Protozoans, were isolated and identified from Tigris river water. Pure and mixed ( E. coli + S. typhi), ( E. coli + Sh. flexneri) bacterial cultures were used with each ciliate genera to evaluate the following: predator duplication rate, prey reduction rate, clearance rate and net grazing rate. We used selective lactose fermentation phenomena of enteric bacteria on MacConkey medium for the quantification of bacteria cultural characteristics. The final bacteria concentration was reduced by growing protozoa of 98-99.9 % compared to protozoa-free controls. It showed that Tetrahymena pyriformis had the highest duplication rate (4.13 time/day) in both types of cultures (pure and mixed), followed by Paramecium caudatum and Halteria grandinella, respectively. Paramecium caudatum had the highest rate of ingestion in both types of cultures (26 × 103 bacteria/organism/hr) and yielded the longest time required for 90 % bacterial reduction in a pure suspension of S. typhi (166 h). Clearance rates of pathogenic bacteria by ciliates ranged between 106 nanoliter/organism/h by P. caudatum to S. typhi and 1.92 nanoliter/organism/h seen in T. pyriformis in ( E. coli + S. typhi) mixed culture. We used aquatic experimental microcosms under controlled conditions to explore bacteria-dependent ciliate growth and examined whether these ciliates could discriminate between equally sized bacterial preys in a mixture.
Global Genomic Analysis of Prostate, Breast and Pancreatic Cancer
2012-10-01
fever virus (Lauck et al. 2011). The success of transposon-based genomic library construction for genomic analyses suggests that it should be possible...2011. Novel, divergent simian hemorrhagic Fever viruses in a wild ugandan red colobus Gertz et al. 140 Genome Research www.genome.org Cold Spring...2009. A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi. PLoS Genet 5: e1000569. doi: 10.1371
Stokes, Margaret G M; Titball, Richard W; Neeson, Brendan N; Galen, James E; Walker, Nicola J; Stagg, Anthony J; Jenner, Dominic C; Thwaite, Joanne E; Nataro, James P; Baillie, Leslie W J; Atkins, Helen S
2007-04-01
Bacillus anthracis is the causative agent of anthrax, a disease that affects wildlife, livestock, and humans. Protection against anthrax is primarily afforded by immunity to the B. anthracis protective antigen (PA), particularly PA domains 4 and 1. To further the development of an orally delivered human vaccine for mass vaccination against anthrax, we produced Salmonella enterica serovar Typhimurium expressing full-length PA, PA domains 1 and 4, or PA domain 4 using codon-optimized PA DNA fused to the S. enterica serovar Typhi ClyA and under the control of the ompC promoter. Oral immunization of A/J mice with Salmonella expressing full-length PA protected five of six mice against a challenge with 10(5) CFU of aerosolized B. anthracis STI spores, whereas Salmonella expressing PA domains 1 and 4 provided only 25% protection (two of eight mice), and Salmonella expressing PA domain 4 or a Salmonella-only control afforded no measurable protection. However, a purified recombinant fusion protein of domains 1 and 4 provided 100% protection, and purified recombinant 4 provided protection in three of eight immunized mice. Thus, we demonstrate for the first time the efficacy of an oral S. enterica-based vaccine against aerosolized B. anthracis spores.
Customizable PCR-microplate array for differential identification of multiple pathogens.
Woubit, Abdela; Yehualaeshet, Teshome; Roberts, Sherrelle; Graham, Martha; Kim, Moonil; Samuel, Temesgen
2013-11-01
Customizable PCR-microplate arrays were developed for the rapid identification of Salmonella Typhimurium, Salmonella Saintpaul, Salmonella Typhi, Shigella dysenteriae, Escherichia coli O157:H7, Francisella tularensis subsp. tularensis, Francisella tularensis subsp. novicida, Vibrio cholerae, Vibrio parahaemolyticus, Yersinia pestis, and Yersinia pseudotuberculosis. Previously, we identified highly specific primers targeting each of these pathogens. Here, we report the development of customizable PCR-microplate arrays for simultaneous identification of the pathogens using the primers identified. A mixed aliquot of genomic DNA from 38 strains was used to validate three PCR-microplate array formats. Identical PCR conditions were used to run all the samples on the three formats. Specific amplifications were obtained on all three custom plates. In preliminary tests performed to evaluate the sensitivity of these assays in samples inoculated in the laboratory with Salmonella Typhimurium, amplifications were obtained from 1 g of beef hot dog inoculated at as low as 9 CFU/ml or from milk inoculated at as low as 78 CFU/ml. Such microplate arrays could be valuable tools for initial identification or secondary confirmation of contamination by these pathogens.
Jeon, Hyon Jin; Pak, Gi Deok; Im, Justin; Owusu-Dabo, Ellis; Adu-Sarkodie, Yaw; Gassama Sow, Amy; Bassiahi, Abdramane Soura; Gasmelseed, Nagla; Keddy, Karen H; Bjerregaard-Andersen, Morten; Konings, Frank; Aseffa, Abraham; Crump, John A; Chon, Yun; Breiman, Robert F; Park, Se Eun; Cruz Espinoza, Ligia Maria; Seo, Hye Jin; May, Jürgen; Meyer, Christian G; Andrews, Jason R; Panzner, Ursula; von Kalckreuth, Vera; Wierzba, Thomas F; Rakotozandrindrainy, Raphaël; Dougan, Gordon; Levine, Myron M; Hombach, Joachim; Kim, Jerome H; Clemens, John D; Baker, Stephen; Marks, Florian
2018-05-09
The WHO recently prequalified a typhoid conjugate vaccine (TCV), recommending its use in persons aged ≥6 months to 45 years residing in typhoid fever (TF)-endemic areas. We now need to consider how TCVs can have the greatest impact in the most vulnerable populations in Africa. The Typhoid Fever Surveillance in Africa Program (TSAP) in 10 sub-Saharan African countries included blood culture-based surveillance in febrile people presenting at healthcare-facilities originating from defined catchment areas. The TF/invasive non-typhoidal Salmonella (iNTS) disease incidences were estimated for 0-10 year-old children in yearly increments. Salmonella Typhi and iNTS were the most frequently isolated pathogens, 135 and 94 cases were identified, respectively. Isolates (12 and 4, respectively) from Ethiopia, Senegal and South Africa were excluded due to person-years of observation (PYO) data absence. 37/123 (30.1%) TF and 71/90 (78.9%) iNTS disease cases occurred among individuals aged <5 years. No TF and 8/90 (8.9%) iNTS-infections were observed in children aged <9 months. The TF incidences (/100,000 PYO) for children aged <1 year and 1-<2 years were 5 and 39, respectively; the highest incidence was 304/100,000 PYO in 4-<5 year-old children. The iNTS incidence in the defined age groups ranged between 81 and 233/100,000 PYO, with the highest incidence in 1-<2 year-old children. Higher TF/iNTS disease incidences were observed in West Africa. The high TF burden observed in TSAP merits TCV introductions. Considering the additional iNTS disease burden, a trivalent vaccine targeting S. Typhi, S. Typhimurium, and S. Enteritidis may be a future solution.
[Fluoroquinolone resistance mutations in topoisomerase genes of Salmonella typhimurium isolates].
Guo, Yunchang; Pei, Xiaoyan; Liu, Xiumei
2004-09-01
Mutations in topoisomerase genes were main cause of the resistence of Salmonella typhimurium to fluoroquinolone. The MICs of three Salmonella typhimurium isolates X2, X7, X11 to ciprofloxacin were above 32 microg/ml, 0.38 microg/ml and 0.023 microg/ml, respectively. The genetic alterations in four topoisomerase genes, gyrA, gyrB, parC, and parE were detected by multiplex PCR amplimer conformation analysis in these three strains. X2 isolate showed both gyrA mutations (Ser83-->Phe, Asp87-->Asn) and parC mutation (Ser80-->Arg). X7 isolate showed a single gyrA mutation (Ser83-->Phe) and X11 isolate had no changes in all of the four quinolone resistance genes, gyrA, gyrB, parC, and parE. X7 isolate with a single gyrA mutation was less resistant to ciprofloxacin than X2 with double gyrA mutations and an additional parC mutation. GyrA and parC genes play important role of the resistance of Salmonella typhimurium to ciprofloxacin.
Albino, Luiz A A; Rostagno, Marcos H; Húngaro, Humberto M; Mendonça, Regina C S
2014-08-01
Foodborne illness due to Salmonella-contaminated pork products is an important public health problem, causing significant economic losses worldwide. The use of bacteriophages is a potential intervention tool that has attracted interest for the control of foodborne pathogens. The objective of this study was to detect the presence of Salmonella in commercial pig farms and to isolate specific autochthonous bacteriophages against Salmonella Typhimurium, to characterize them and to evaluate their lytic capacity against Salmonella Typhimurium in vivo and in vitro. Salmonella was isolated on 50% (4/8) of the farms, with serotype Typhimurium being the most prevalent, detected in 48.2% of samples (13/27). The isolated Salmonella Typhimurium bacteriophages belong to the Podoviridae family, were active against serotypes Abony, Enteritidis, Typhi, and Typhimurium, but not against serotypes Arizonae, Cholerasuis, Gallinarum, and Pullorum. In in vitro tests, bacteriophage at 10(7) PFU/mL and 10(9) PFU/mL significantly reduced (p<0.05) Salmonella Typhimurium counts in 1.6 and 2.5 log10 colony-forming units (CFU)/mL, respectively, after 24 h. Before the in vivo treatment with bacteriophages, Salmonella was identified in 93.3% (28/30) of the fecal samples from the pigs inoculated with 10(6) CFU/mL, and only in 56.6% (17/30) after the treatment consisting of oral administration of the pool of the bacteriophages after the fasting period, simulating a common preslaughter practice. These results indicate that the pool of bacteriophages administered was capable of reducing the colonization of Salmonella in pigs.
Johnson, Laura R; Gould, L Hannah; Dunn, John R; Berkelman, Ruth; Mahon, Barbara E
2011-09-01
Salmonella species cause an estimated 1.2 million infections per year in the United States, making it one of the most commonly reported enteric pathogens. In addition, Salmonella is an important cause of travel-associated diarrhea and enteric fever, a systemic illness commonly associated with Salmonella serotypes Typhi and Paratyphi A. We reviewed cases of Salmonella infection reported to the Centers for Disease Control and Prevention's (CDC) Foodborne Diseases Active Surveillance Network (FoodNet), a sentinel surveillance network, from 2004 to 2008. We compared travelers with Salmonella infection to nontravelers with Salmonella infection with respect to demographics, clinical characteristics, and serotypes. Among 23,712 case-patients with known travel status, 11% had traveled internationally in the 7 days before illness. Travelers with Salmonella infection tended to be older (median age, 30 years) than nontravelers (median age, 24 years; p<0.0001), but were similar with respect to gender. The most common destinations reported were Mexico (38% of travel-associated infections), India (9%), Jamaica (7%), the Dominican Republic (4%), China (3%), and the Bahamas (2%). The proportions of travelers with Salmonella infection hospitalized and with invasive disease were inversely related to the income level of the destination (p<0.0001). The most commonly reported serotypes, regardless of travel status, were Enteritidis (19% of cases), Typhimurium (14%), Newport (9%), and Javiana (5%). Among infections caused by these four serotypes, 22%, 6%, 5%, and 4%, respectively, were associated with travel. A high index of clinical suspicion for Salmonella infection is appropriate when evaluating recent travelers, especially those who visited Africa, Asia, or Latin America.
Boyd, MA; Tennant, SM; Melendez, JH; Toema, D; Galen, JE; Geddes, CD; Levine, MM
2015-01-01
Aims Isolation of Salmonella Typhi from blood culture is the standard diagnostic for confirming typhoid fever but it is unavailable in many developing countries. We previously described a Microwave Accelerated Metal Enhanced Fluorescence (MAMEF)-based assay to detect Salmonella in medium. Attempts to detect Salmonella in blood were unsuccessful, presumably due to the interference of erythrocytes. The objective of this study was to evaluate various blood treatment methods that could be used prior to PCR, real-time PCR or MAMEF to increase sensitivity of detection of Salmonella. Methods and Results We tested ammonium chloride and erythrocyte lysis buffer, water, Lymphocyte Separation Medium, BD Vacutainer® CPT™ Tubes and dextran. Erythrocyte lysis buffer was the best isolation method as it is fast, inexpensive and works with either fresh or stored blood. The sensitivity of PCR- and real-time PCR detection of Salmonella in spiked blood was improved when whole blood was first lysed using erythrocyte lysis buffer prior to DNA extraction. Removal of erythrocytes and clotting factors also enabled reproducible lysis of Salmonella and fragmentation of DNA, which are necessary for MAMEF sensing. Conclusions Use of the erythrocyte lysis procedure prior to DNA extraction has enabled improved sensitivity of Salmonella detection by PCR and real-time PCR and has allowed lysis and fragmentation of Salmonella using microwave radiation (for future detection by MAMEF). Significance and Impact of the Study Adaptation of the blood lysis method represents a fundamental breakthrough that improves the sensitivity of DNA-based detection of Salmonella in blood. PMID:25630831
Charles, Richelle C; Liang, Li; Khanam, Farhana; Sayeed, M Abu; Hung, Chris; Leung, Daniel T; Baker, Stephen; Ludwig, Albrecht; Harris, Jason B; Larocque, Regina C; Calderwood, Stephen B; Qadri, Firdausi; Felgner, Philip L; Ryan, Edward T
2014-03-01
We have previously shown that an assay based on detection of anti-Salmonella enterica serotype Typhi antibodies in supernatant of lymphocytes harvested from patients presenting with typhoid fever (antibody in lymphocyte supernatant [ALS] assay) can identify 100% of patients with blood culture-confirmed typhoid fever in Bangladesh. In order to define immunodominant proteins within the S. Typhi membrane preparation used as antigen in these prior studies and to identify potential biomarkers unique to S. Typhi bacteremic patients, we probed microarrays containing 2,724 S. Typhi proteins with ALS collected at the time of clinical presentation from 10 Bangladeshis with acute typhoid fever. We identified 62 immunoreactive antigens when evaluating both the IgG and IgA responses. Immune responses to 10 of these antigens discriminated between individuals with acute typhoid infection and healthy control individuals from areas where typhoid infection is endemic, as well as Bangladeshi patients presenting with fever who were subsequently confirmed to have a nontyphoid illness. Using an ALS enzyme-linked immunosorbent assay (ELISA) format and purified antigen, we then confirmed that immune responses against the antigen with the highest immunoreactivity (hemolysin E [HlyE]) correctly identified individuals with acute typhoid or paratyphoid fever in Dhaka, Bangladesh. These observations suggest that purified antigens could be used with ALS and corresponding acute-phase activated B lymphocytes in diagnostic platforms to identify acutely infected patients, even in areas where enteric fever is endemic.
Rastawicki, Waldemar; Kałużewski, Stanisław
2015-01-01
The laboratory diagnosis of typhoid fever is dependent upon either isolation of S. Typhi from a clinical sample or the detection of raised titers of serum antibodies in the Widal test or the passive hemagglutination assay (PHA). In this study we evaluated the usefulness of ELISA for detection of antibodies to S. Typhi lipopolysaccharide O and capsular polysaccharide Vi antigens in the sera of persons from outbreak of typhoid fever. Fifteen serum samples from patients with laboratory confirmed typhoid fever and 140 sera from persons suspected for contact with typhoid fever patients from outbreak in 1974/75 in Poland were tested by ELISA. Additionally, as the control group, we tested 115 sera from blood donors for the presence of S. Typhi anti-LPS and anti-Vi antibodies. Anti-LPS and anti-Vi antibodies were detected in 80% and 53.3% of sera obtained from patients with laboratory confirmed typhoid fever, respectively. The high percentages of positive results in ELISA were also noted in the group of persons suspected for contact with typhoid fever patients (51.4% and 45%) but not in the group of blood donors (7.8% and 6.1%, respectively). The ELISA could be a useful tool for the serological diagnosis of typhoid fever in patients who have clinical symptoms but are culture negative, especially during massive outbreaks of typhoid fever.
USDA-ARS?s Scientific Manuscript database
Strains of Salmonella enterica can be subdivided into clades that differ in their composition of genes, including those that influence microbial ecology and bacterial transmission. Salmonella serovar Montevideo strains 1110 and 304, representatives of two different clades, were used throughout this ...
Photocatalytic Antibacterial Performance of Glass Fibers Thin Film Coated with N-Doped SnO 2 /TiO 2
Sikong, Lek; Niyomwas, Sutham; Rachpech, Vishnu
2014-01-01
Both N-doped and undoped thin films of 3SnO2/TiO2 composite were prepared, by sol-gel and dip-coating methods, and then calcined at 600°C for 2 hours. The films were characterized by FTIR, XRD, UV-Vis, SEM, and XPS, and their photocatalytic activities to degrade methylene blue in solution were determined, expecting these activities to correlate with the inactivation of bacteria, which was confirmed. The doped and undoped films were tested for activities against Gram-negative Escherichia coli (E. coli) and Salmonella typhi (S. typhi), and Gram-positive Staphylococcus aureus (S. aureus). The effects of doping on these composite films included reduced energy band gap, high crystallinity of anatase phase, and small crystallite size as well as increased photocatalytic activity and water disinfection efficiency. PMID:24693250
Biological properties of the Chilean native moss Sphagnum magellanicum.
Montenegro, Gloria; Portaluppi, Mariana C; Salas, Francisco A; Díaz, María F
2009-01-01
An ethanol extract prepared from the gametophyte Chilean native moss Sphagnum magellanicum was dried out, weighed and dissolved in distilled water. This extract was then assayed for its antibacterial activity against the G(-) bacteria Azotobacter vinelandii, Erwinia carotovora subsp. carotovora, Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Vibrio cholerae, and the G(+) bacteria Staphylococcus aureus subsp. aureus, and Streptococcus type beta. The growth of the cultures of E. carotovora subsp. carotovora, and V. cholerae was inhibited at a concentration of 581 microg/ml of extract, while the cultures of E. coli, S. typhi and Streptococcus type beta were inhibited at a concentration of 1.16 microg/mL of extract. The concentration of phenolic compounds was 4.294 mg/mL; the presence of vanillic, chlorogenic, syringic, caffeic, gallic, 3-4 hydrozybenzoic, p-coumaric and salicylic acids was identified using RP- High Pressure Liquid Chromatography.
Galen, James E.; Geddes, Chris D.; Levine, Myron M.
2011-01-01
Certain serovars of Salmonella enterica subsp. enterica cause invasive disease (e.g., enteric fever, bacteremia, septicemia, meningitis, etc.) in humans and constitute a global public health problem. A rapid, sensitive diagnostic test is needed to allow prompt initiation of therapy in individual patients and for measuring disease burden at the population level. An innovative and promising new rapid diagnostic technique is microwave-accelerated metal-enhanced fluorescence (MAMEF). We have adapted this assay platform to detect the chromosomal oriC locus common to all Salmonella enterica subsp. enterica serovars. We have shown efficient lysis of biologically relevant concentrations of Salmonella spp. suspended in bacteriological media using microwave-induced lysis. Following lysis and DNA release, as little as 1 CFU of Salmonella in 1 ml of medium can be detected in <30 seconds. Furthermore the assay is sensitive and specific: it can detect oriC from Salmonella serovars Typhi, Paratyphi A, Paratyphi B, Paratyphi C, Typhimurium, Enteritidis and Choleraesuis but does not detect Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pneumoniae, Haemophilus influenzae or Acinetobacter baumanii. We have also performed preliminary experiments using a synthetic Salmonella oriC oligonucleotide suspended in whole human blood and observed rapid detection when the sample was diluted 1∶1 with PBS. These pre-clinical data encourage progress to the next step to detect Salmonella in blood (and other ordinarily sterile, clinically relevant body fluids). PMID:21494634
Rhabdomyolysis Complicating Typhoid Fever in A Child and Review of the Literature.
Snelling, Peter James; Moriarty, Paul; Vaska, Vikram L; Levitt, David; Nourse, Clare
2017-09-01
Typhoid fever is an important cause of morbidity and mortality in the developing world, particularly in children, but is infrequently observed in the developed world and can occur in patients without a significant travel history. Rhabdomyolysis as a complication has rarely been reported, and never in a child. A child with Salmonella enterica serovar Typhi septicemia, complicated by rhabdomyolysis, encephalopathy and pancreatitis is described and all 15 reported cases to date are summarized.
2005-08-25
tests currently available are the same as BTA with the inclusion of Vibrio cholerae O1. The detection limits of bacteria are 10 cfu/mL and for...spp., Burkholderia spp., Campylobacter spp., Clostridium perfringens, E. coli O157:H7, Francisella tularensis, Salmonella typhi, Shigella spp., Vibrio ... cholerae O1, Yersinia pestis, Y. enterocolitica Viruses Caliciviruses, Enteroviruses, Hepatitis A/E, Variola, Venezuelan equine encephalitis virus
Antimicrobial effect of Cu(II) complexes containing oxime ligands.
Donde, K J; Patil, V R; Malve, S P
2004-01-01
The antibacterial, antifungal and antitubercular activity of Cu(II) complexes was studied. All the complexes have been screened against Staphylococcus aureus, Salmonella typhi, Candida albican, Aspergillus niger, Saccharomyces cerevisiae and H37Rv and found to be more toxic than the parent ligand. The activity increased in the order Cu(5-methyl-2,3-hexanedione dioxime)2 < Cu(5-methyl-3-oximino-hexan-2-o-ne-hydrazone)2 < Cu(5-methyl-3-oximino-hexan-2-one-phenylhydrazone)2.
1990-06-01
inactive piacebo, children in the control group received viable Lactobacillus acidophilus because some experimental data suggest that L. acidophilus may...was the enteric-coating used to make the capsules acid-resistant. Such capsules, each containing 1-3 x 109 viable vaccine (or Lactobacillus ) organisms...formulation of vaccine (or of the Lactobacillus control preparation) consisted of two aluminum foil packets, one containing lyophilized vaccine (or
Davies, D Huw; Jain, Aarti; Nakajima, Rie; Liang, Li; Jasinskis, Algis; Supnet, Medalyn; Felgner, Philip L; Teng, Andy; Pablo, Jozelyn; Molina, Douglas M; Obaro, Stephen K
2016-08-03
Inexpensive, easy-to-use, and highly sensitive diagnostic tests are currently unavailable for typhoid fever. To identify candidate serodiagnostic markers, we have probed microarrays displaying the full Salmonella enterica serovar Typhi (S. Typhi) proteome of 4,352 different proteins + lipopolysaccharides (LPSs), with sera from Nigerian pediatric typhoid and other febrile cases, Nigerian healthy controls, and healthy U.S. adults. Nigerian antibody profiles were broad (∼500 seropositive antigens) and mainly low level, with a small number of stronger "hits," whereas the profile in U.S. adults was < 1/5 as broad, consistent with endemic exposure in Nigeria. Nigerian profiles were largely unaffected by clinical diagnosis, although the response against t1477 (hemolysin E) consistently emerged as stronger in typhoid cases. The response to LPS was also a strong discriminator of healthy controls and typhoid, although LPS did not discriminate between typhoid and nontyphoidal Salmonella (NTS) disease. As a first step toward the development of a point-of-care diagnostic, t1477 and LPS were evaluated on immunostrips. Both provided good discrimination between healthy controls and typhoid/NTS disease. Such a test could provide a useful screen for salmonellosis (typhoid and NTS disease) in suspected pediatric cases that present with undefined febrile disease. © The American Society of Tropical Medicine and Hygiene.
Typhoid fever as a triggering factor in acute and intractable bronchial asthma attack.
Wardhana; Surachmanto, Eko E; Datau, E A
2013-10-01
Typhoid fever is an enteric infection caused by Salmonella typhi. In Indonesia, typhoid fever is endemic with high incidence of the disease. In daily practice we frequently have patients with bronchial asthma, and it is becoming worse when these patients get typhoid fever. After oral ingestion, Salmonella typhi invades the the intestine mucosa after conducted by microbial binding to epithelial cells, destroying the microfold cells (M cell) then passed through the lamina propria and detected by dendritic cells (DC) which express a variety of pathogen recognition receptors on the surfaces, including Toll-Like Receptor (TLR). expressed on macrophages and on intestinal epithelial cells inducing degradation of IB, and translocation of NF-B (Nuclear Factor-Kappa Beta). This process initiates the induction of pro-inflammatory gene expression profile adhesion molecules, chemokines, adhesion molecules, and other proteins that induce and perpetuate the inflammation in host cells then will induce acute ant intractable attack of bronchial asthma. The role of typhoid fever in bronchial asthma, especially in persons with acute attack of bronchial asthma, is not well understood. In this article, we will discuss the role of typhoid fever in the bronchial asthma patients which may cause bronchial asthma significantly become more severe even triggering the acute and intractable attack of bronchial asthma. This fact makes an important point, to treat completely the typhoid fever in patients with bronchial asthma.
Guan, Hong-Hsiang; Yoshimura, Masato; Chuankhayan, Phimonphan; Lin, Chien-Chih; Chen, Nai-Chi; Yang, Ming-Chi; Ismail, Asma; Fun, Hoong-Kun; Chen, Chun-Jung
2015-11-13
ST50, an outer-membrane component of the multi-drug efflux system from Salmonella enterica serovar Typhi, is an obligatory diagnostic antigen for typhoid fever. ST50 is an excellent and unique diagnostic antigen with 95% specificity and 90% sensitivity and is used in the commercial diagnosis test kit (TYPHIDOT(TM)). The crystal structure of ST50 at a resolution of 2.98 Å reveals a trimer that forms an α-helical tunnel and a β-barrel transmembrane channel traversing the periplasmic space and outer membrane. Structural investigations suggest significant conformational variations in the extracellular loop regions, especially extracellular loop 2. This is the location of the most plausible antibody-binding domain that could be used to target the design of new antigenic epitopes for the development of better diagnostics or drugs for the treatment of typhoid fever. A molecule of the detergent n-octyl-β-D-glucoside is observed in the D-cage, which comprises three sets of Asp361 and Asp371 residues at the periplasmic entrance. These structural insights suggest a possible substrate transport mechanism in which the substrate first binds at the periplasmic entrance of ST50 and subsequently, via iris-like structural movements to open the periplasmic end, penetrates the periplasmic domain for efflux pumping of molecules, including poisonous metabolites or xenobiotics, for excretion outside the pathogen.
Leong, Siew Wen; Lim, Theam Soon; Ismail, Asma; Choong, Yee Siew
2018-05-01
With the development of de novo binders for protein targets from non-related scaffolds, many possibilities for therapeutics and diagnostics have been created. In this study, we described the use of de novo design approach to create single-chain fragment variable (scFv) for Salmonella enterica subspecies enterica serovar Typhi TolC protein. Typhoid fever is a global health concern in developing and underdeveloped countries. Rapid typhoid diagnostics will improve disease management and therapy. In this work, molecular dynamics simulation was first performed on a homology model of TolC protein in POPE membrane bilayer to obtain the central structure that was subsequently used as the target for scFv design. Potential hotspot residues capable of anchoring the binders to the target were identified by docking "disembodied" amino acid residues against TolC surface. Next, scFv scaffolds were selected from Protein Data Bank to harbor the computed hotspot residues. The hotspot residues were then incorporated into the scFv scaffold complementarity determining regions. The designs recapitulated binding energy, shape complementarity, and interface surface area of natural protein-antibody interfaces. This approach has yielded 5 designs with high binding affinity against TolC that may be beneficial for the future development of antigen-based detection agents for typhoid diagnostics. Copyright © 2017 John Wiley & Sons, Ltd.
Gutiérrez-Alcántara, E J; Rangel-Vargas, E; Gómez-Aldapa, C A; Falfan-Cortes, R N; Rodríguez-Marín, M L; Godínez-Oviedo, A; Cortes-López, H; Castro-Rosas, J
2016-02-01
Antibiotic-resistant Salmonella strains were isolated from saladette and red round type tomatoes, and an analysis done of the antibacterial activity of roselle calyx extracts against any of the identified strains. One hundred saladette tomato samples and 100 red round tomato samples were collected from public markets. Each sample consisted of four whole tomatoes. Salmonella was isolated from the samples by conventional culture procedure. Susceptibility to 16 antibiotics was tested for the isolated Salmonella strains by standard test. The antibacterial effect of four roselle calyx extracts (water, methanol, acetone and ethyl acetate), sodium hypochlorite and acetic acid against antibiotic-resistant Salmonella isolates was evaluated on contaminated tomatoes. Twenty-four Salmonella strains were isolated from 12% of each tomato type. Identified Salmonella serotypes were Typhimurium and Typhi. All isolated strains exhibited resistance to at least three antibiotics and some to as many as 12. Over contaminated tomatoes, the roselle calyx extracts produced a greater reduction (2-2·6 log) in antibiotic-resistant Salmonella strain concentration than sodium hypochlorite and acetic acid. The presence of multidrug-resistant Salmonella in vegetables is a significant public health concern. Multidrug-resistant Salmonella strains were isolated from raw tomatoes purchased in public markets in Mexico and challenged with roselle Hibiscus sabdariffa calyx extracts, sodium hypochlorite and acetic acid. On tomatoes, the extracts caused a greater reduction in the concentration of antibiotic-resistant Salmonella strains than sodium hypochlorite and acetic acid. Roselle calyx extracts are a potentially useful addition to disinfection procedures of raw tomatoes in the field, processing plants, restaurants and homes. © 2015 The Society for Applied Microbiology.
Wang, Mingliu; Kan, Biao; Yang, Jin; Lin, Mei; Yan, Meiying; Zeng, Jun; Quan, Yi; Liao, Hezhuang; Zhou, Lingyun; Jiang, Zhenling; Huang, Dehui
2014-08-01
Through analyzing the typhoid epidemics and to determine and monitor regional resistance characteristics of the shift of drug resistant profile on Salmonella (S.) Typhi, to understand the related epidemiological characteristics of typhoid fever and to provide evidence for the development of strategies, in Guangxi. Data of typhoid fever from surveillance and reporting system between 1994 to 2013 was collected and statistically analyzed epidemiologically. The susceptibility of 475 S. Typhi isolates from patients on ten antibiotics was tested by broth micro-dilution method and minimum inhibition concentration was obtained and interpreted based on the CLSI standard. From 1994 to 2013, a total of 57 928 cases of typhoid fever were reported in Guangxi province with an annual incidence of 6.29/100 000 and mortality as 0.03%. The higher incidence was observed in the population under 20 years of age. There was no significant difference on incidence between male and female, but farmers and students were among the hardest hit groups. More cases were seen from the northern part of the province. Cases appeared all year round with the peak from May to October. A total of 13 major outbreaks during 2001 to 2013 were reported and the main transmission route was water-borne. All the strains were sensitive to third generation cephalosporins cefotaxime and fluoroquinolones norfloxacin. The susceptibility rates to tetracycline, chloramphenicol, ampicillin and gentamicin was around 98% but relative lower susceptible rate to ciprofloxacin was seen as 89.89% . The lowest susceptibility was found for streptomycin and sulfamethoxazole agents, with the rates as 67.73% and 65.89% , respectively. One strain was found to have been resistant to ciprofloxacin and another 47 isolates with reduced susceptibility to ciprofloxacin. Twenty eight isolates were found to be resistant to multiple antibiotics and one displayed ampicillin, chloramphenicol, streptomycin, sulfamethoxazole tetracycline and nalidixic acid (ACSSxT-NAL) resistance profile. This was the first report in China. Multi-drug resistant strains were frequently isolated from small scale outbreaks of typhoid fever. The incidence of typhoid fever in Guangxi was still high and some strains showed multi-drug resistance and reduced susceptibility to ciprofloxacin, indicating that the surveillance and monitor programs on drug resistance of S. Typhi should be strengthened, to prevent large scale outbreaks of typhoid fever in this province.
Osorio, Manuel; Takeda, Kazuyo; Stibitz, Scott; Kopecko, Dennis J.
2017-01-01
ABSTRACT We have been exploring the use of the live attenuated Salmonella enterica serovar Typhi Ty21a vaccine strain as a versatile oral vaccine vector for the expression and delivery of multiple foreign antigens, including Shigella O-antigens. In this study, we separately cloned genes necessary for the biosynthesis of the Shigella flexneri serotype 2a and 3a O-antigens, which have been shown to provide broad cross-protection to multiple disease-predominant S. flexneri serotypes. The cloned S. flexneri 2a rfb operon, along with bgt and gtrII, contained on the SfII bacteriophage, was sufficient in Ty21a to express the heterologous S. flexneri 2a O-antigen containing the 3,4 antigenic determinants. Further, this rfb operon, along with gtrA, gtrB, and gtrX contained on the Sfx bacteriophage and oac contained on the Sf6 bacteriophage, was sufficient to express S. flexneri 3a O-antigen containing the 6, 7, and 8 antigenic determinants. Ty21a, with these plasmid-carried or chromosomally inserted genes, demonstrated simultaneous and stable expression of homologous S. Typhi O-antigen plus the heterologous S. flexneri O-antigen. Candidate Ty21a vaccine strains expressing heterologous S. flexneri 2a or 3a lipopolysaccharide (LPS) elicited significant serum antibody responses against both homologous S. Typhi and heterologous Shigella LPS and protected mice against virulent S. flexneri 2a or 3a challenges. These new S. flexneri 2a and 3a O-antigen-expressing Ty21a vaccine strains, together with our previously constructed Ty21a strains expressing Shigella sonnei or Shigella dysenteriae 1 O-antigens, have the potential to be used together for simultaneous protection against the predominant causes of shigellosis worldwide as well as against typhoid fever. PMID:29046309
Roggelin, Louise; Vinnemeier, Christof D; Fischer-Herr, Johanna; Johnson-Weaver, Brandi T; Rolling, Thierry; Burchard, Gerd D; Staats, Herman F; Cramer, Jakob P
2015-08-07
An injectable Vi-capsular polysaccharide vaccine against typhoid fever is available but vaccine-induced immunity tends to wane over time. The phenomenon of immunotolerance or hyporesponsiveness has earlier been described for polysaccharide vaccines such as pneumococcal capsular polysaccharide vaccine and some publications also suggest a possible immunotolerance after revaccination with Vi-capsular polysaccharide vaccines. In this study, post-immunisation antibody concentrations in adult travellers first vaccinated with a Salmonella typhi Vi-capsular polysaccharide vaccine (primary vaccination group) were compared with those having received one or more vaccinations previously (multiple vaccinations group). Vaccines administered were Typherix(®) (GlaxoSmithKline), Typhim Vi(®) (Sanofi Pasteur MSD) or Hepatyrix(®) (GlaxoSmithKline). Blood samples were obtained prior to vaccination (day 0) and on day 28 (-1/+14) after vaccination. Serum Vi-Antigen IgG concentrations were measured by ELISA. Of the 85 subjects included in the per protocol data set, 45 (53%) belonged to the multiple vaccinations group. In both groups, geometric mean antibody concentrations (GMCs) were significantly higher after vaccination than before vaccination. Pre-vaccination GMCs were lower in the primary vaccination group than in the multiple vaccinations group (3.40 μg/ml versus 6.13 μg/ml, P=0.005), while there was no significant difference in the post vaccination GMCs between groups (11.34 μg/ml versus 14.58 μg/ml, P=0.4). In the multiple vaccinations group, vaccination was performed 18 to 57 months after the last vaccination (median 38 months) and there was a negative correlation between time since last vaccination and antibody concentration on day 0. In conclusion, we were not able to demonstrate a relevant immunotolerance after multiple versus primary vaccination with S. typhi Vi-capsular polysaccharide vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fan, Zhen; Senapati, Dulal; Khan, Sadia Afrin; Singh, Anant Kumar; Hamme, Ashton; Yust, Brian; Sardar, Dhiraj; Ray, Paresh Chandra
2013-02-18
Over the last few years, one of the most important and complex problems facing our society is treating infectious diseases caused by multidrug-resistant bacteria (MDRB), by using current market-existing antibiotics. Driven by this need, we report for the first time the development of the multifunctional popcorn-shaped iron magnetic core-gold plasmonic shell nanotechnology-driven approach for targeted magnetic separation and enrichment, label-free surface-enhanced Raman spectroscopy (SERS) detection, and the selective photothermal destruction of MDR Salmonella DT104. Due to the presence of the "lightning-rod effect", the core-shell popcorn-shaped gold-nanoparticle tips provided a huge field of SERS enhancement. The experimental data show that the M3038 antibody-conjugated nanoparticles can be used for targeted separation and SERS imaging of MDR Salmonella DT104. A targeted photothermal-lysis experiment, by using 670 nm light at 1.5 W cm(-2) for 10 min, results in selective and irreparable cellular-damage to MDR Salmonella. We discuss the possible mechanism and operating principle for the targeted separation, label-free SERS imaging, and photothermal destruction of MDRB by using the popcorn-shaped magnetic/plasmonic nanotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SERS Technique for Rapid Bacterial Screening
USDA-ARS?s Scientific Manuscript database
This study reports the feasibility of citrate-reduced colloidal silver SERS for differentiating E. coli, Listeria, and Salmonella. FT-Raman and SERS spectra of both silver colloids and colloid-K3PO4 mixtures were collected and analyzed to evaluate the reproducibility and stability of silver colloids...
Customizable PCR-microplate array for differential identification of multiple pathogens
Woubit, Abdela; Yehualaeshet, Teshome; Roberts, Sherrelle; Graham, Martha; Kim, Moonil; Samuel, Temesgen
2014-01-01
Customizable PCR-microplate arrays were developed for the rapid identification of Francisella tularensis subsp. tularensis, Salmonella Typhi, Shigella dysenteriae, Yersinia pestis, Vibrio cholerae Escherichia coli O157:H7, Salmonella Typhimurium, Salmonella Saintpaul, Francisella tularensis subsp. novicida, Vibrio parahaemolyticus, and Yersinia pseudotuberculosis. Previously, we identified highly specific primers targeting each of the pathogens above. Here, we report the development of customizable PCR-microplate arrays for simultaneous identification of the pathogens using the primers. A mixed aliquot of genomic DNA from 38 different strains was used to validate three PCR-microplate array formats. Identical PCR conditions were used to run all the samples on the three formats. Results show specific amplifications on all the three custom plates. In a preliminary test to evaluate the sensitivity of these assays in laboratory-inoculated samples, detection limits as low as 9 cfu/g/ml S. Typhimurium were obtained from beef hot dog, and 78 cfu/ml from milk. Such microplate arrays could serve as valuable tools for initial identification or secondary confirmation of these pathogens. PMID:24215700
Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens.
Venkatasubbu, G Devanand; Baskar, R; Anusuya, T; Seshan, C Arun; Chelliah, Ramachandran
2016-12-01
Food preservation is an important field of research. It extends the shelf life of major food products. Our current study is based on food preservation through TiO 2 and ZnO nanoparticles. TiO 2 and ZnO are biocompatible nanomaterial. The biocompatibility of the materials were established through toxicity studies on cell lines. Titanium dioxide and Zinc Oxide nanoparticle were synthesized by wet chemical process. They are characterized by X-Ray diffraction and TEM. The antibacterial activities of both the materials were analysed to ensure their effectiveness as food preservative against Salmonella typhi, Klebsiella pneumoniae and Shigella flexneri. The results indicates that TiO 2 and ZnO nanoparticle inhibits Salmonella, Klebsiella and Shigella. The mode of action is by the generation of ROS in cases of Salmonella, Klebsiella. Mode of action in Shigella is still unclear. It was also proved that TiO 2 and ZnO nanoparticle are biocompatible materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Elhadad, Dana; McClelland, Michael; Rahav, Galia; Gal-Mor, Ohad
2015-07-01
Human infection with typhoidal Salmonella serovars causes a febrile systemic disease, termed enteric fever. Here we establish that in response to a temperature equivalent to fever (39 °C-42 °C) Salmonella enterica serovars Typhi, Paratyphi A, and Sendai significantly attenuate their motility, epithelial cell invasion, and uptake by macrophages. Under these feverlike conditions, the residual epithelial cell invasion of S. Paratyphi A occurs in a type III secretion system (T3SS) 1-independent manner and results in restrained disruption of epithelium integrity. The impaired motility and invasion are associated with down-regulation of T3SS-1 genes and class II and III (but not I) of the flagella-chemotaxis regulon. In contrast, we demonstrate up-regulation of particular Salmonella pathogenicity island 2 genes (especially spiC) and increased intraepithelial growth in a T3SS-2-dependent manner. These results indicate that elevated physiological temperature is a novel cue controlling virulence phenotypes in typhoidal serovars, which is likely to play a role in the distinct clinical manifestations elicited by typhoidal and nontyphoidal salmonellae. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
[Antibacterial antibodies in human immunoglobulins and sera: past and present].
Romanov, V A; Kulibin, A Iu; Zaĭtseva, I P
2010-01-01
To measure levels of several types of antibacterial antibodies in preparations of normal human immunoglobulin as well as in samples of donor sera obtained in 1965 and 2009. Five batches of human normal immunoglobulin manufactured in 1965 and five batches manufactured in 2009 as well as 77 and 28 blood serum samples respectively were tested by agglutination assay for the presence of antibodies to enterobacteria, Brucella species, tularemia agent, Rickettsia burnetii, Rickettsia prowazekii, and several species of opportunistic bacteria. Higher antibody titers to Salmonella typhi, Salmonella paratyphi A and B, Salmonella enteritidis, Salmonella typhimurium, Shigella flexneri and Shigella sonnei were revealed in immunoglobulin preparations and donor sera obtained in 1965 compared to that obtained in 2009. There was no difference in antibody titers to Shigella boydii, Salmonella choleraesuis, Escherichia coli O-55, Pseudomonas aeruginosa, Proteus vulgaris, Serratia marcescens and E. coli. Antibodies to Brucella species, tularemia agent, R. burnetii, R. prowazekii were not detected in normal human immunoglobulin. Decrease of antibody levels to several pathogenic enterobacteria in human immunoglobulin preparations as well as in sera of donors for 40 years could be linked with decrease of number of immunized persons, changes in circulation of pathogenic bacteria, decrease of rate of asymptomatic infections. Stability of antibody titers to opportunistic bacteria is a rationale to use them for assessment of humoral immunity function.
Wu, Yun; Chakravarty, Sumana; Li, Minglin; Wai, Tint T; Hoffman, Stephen L; Sim, B Kim Lee
2017-01-15
Shigella sonnei and Salmonella Typhi cause significant morbidity and mortality. We exploited the safety record of the oral, attenuated S. Typhi vaccine (Ty21a) by using it as a vector to develop a bivalent oral vaccine to protect against S. sonnei shigellosis and typhoid fever. We recombineered the S. sonnei form I O-antigen gene cluster into the Ty21a chromosome to create Ty21a-Ss, which stably expresses S. sonnei form I O antigen. To enhance survivability in the acid environment of the stomach, we created an acid-resistant strain, Ty21a-AR-Ss, by inserting Shigella glutaminase-glutamate decarboxylase systems coexpressed with S. sonnei form I O-antigen gene. Mice immunized intranasally with Ty21a-AR-Ss produced antibodies against S. sonnei and S. Typhi, and survived lethal intranasal S. sonnei challenge. This paves the way for proposed good manufacturing practices manufacture and clinical trials intended to test the clinical effectiveness of Ty21a-AR-Ss in protecting against S. sonnei shigellosis and typhoid fever, as compared with the current Ty21a vaccine. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Lin, F Y; Becke, J M; Groves, C; Lim, B P; Israel, E; Becker, E F; Helfrich, R M; Swetter, D S; Cramton, T; Robbins, J B
1988-01-01
Ten cases of typhoid fever occurred between 24 August and 1 September 1986 in the vicinity of Silver Spring, Md. Shrimp salad served in a fast-food restaurant was implicated as the source of infection. Stool cultures were obtained from 104 employees, and serum Vi antibodies were assayed in 97 of the employees. Salmonella typhi was isolated from stool cultures of an 18-year-old asymptomatic female employee, who was a food handler. A high level of Vi antibodies (79.0 micrograms/ml), measured by radioimmunoassay, was found in her serum. She had emigrated from an endemic area at the age of 14 years and had visited that endemic area 2 years previously. The causal relation between the carrier and the 10 cases of typhoid fever was confirmed by a common bacteriophage type, denoted "degraded Vi resembling O," in the S. typhi isolates. This phage type is rare in the western hemisphere but common in the endemic area from which the carrier had emigrated. The high level of Vi antibody in the asymptomatic carrier, in contrast to the lower levels in the convalescent- and postimmunization-phase sera, facilitated the identification of the source infection in this outbreak. This radioimmunoassay offers a rapid and standardized method for identifying carriers of S. typhi. PMID:3384930
Encephalitis in a traveller with typhoid fever: efficacy of corticosteroids.
Mellon, Guillaume; Eme, Anne-Line; Rohaut, Benjamin; Brossier, Florence; Epelboin, Loïc; Caumes, Eric
2017-09-01
Typhoid fever is a bacterial infection caused by Salmonella typhi or S. paratyphi, recognized as a classical cause of fever in returning travellers. However, neuropsychiatric presentations are rarely reported in travellers diagnosed in western countries, whereas they are more commonly described in patients treated in endemic areas. We describe such a case and discuss the pathophysiologic mechanisms of this complication. © International Society of Travel Medicine, 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Udhayakumar, V; Muthukkaruppan, V R
1987-01-01
The porin, an outer membrane protein of Salmonella typhimurium, was found to be a suitable antigen for eliciting delayed-type hypersensitivity in mouse salmonellosis. Histological examination of the reaction site revealed that the porin was superior to other antigenic preparations in eliciting a typical delayed-type hypersensitivity reaction consisting of mononuclear cell infiltration without polymorphonuclear cell contamination. This study indicates the importance of using a suitable protein antigen from S. typhi for human application. Images PMID:3028963
Rasool, Muhammad H; Siddique, Abu B; Saqalein, Muhammad; Asghar, Muhammad J; Zahoor, Muhammad A; Aslam, Bilal; Shafiq, Humerah B; Nisar, Muhammad A
2016-03-01
To determine the occurrence of bacterial pathogens responsible for diarrhea and to engender information regarding the effectiveness of commonly used antibiotic against diarrhea. This cross-sectional study was conducted between April and July 2014. Samples were collected from the Divisional Headquarter and Allied Hospital, Faisalabad, Pakistan. The differential and selective media were used to isolate bacterial pathogens, which were identified through cultural characteristics, microscopy, and biochemical tests. Disc diffusion assay was carried out using Muller Hinton agar medium, and minimum inhibitory concentration was determined using broth dilution method against isolated pathogens. One hundred and forty-one (100%) samples were positive for some bacteria. Frequency of occurrence was Bacillus cereus (B. cereus) (66%), Escherichia coli (E.coli) (48.5%), Salmonella typhi (S. Typhi) (27.7%), Pseudomonas aeruginosa (P. aeruginosa) (8.5%), and Staphylococcus aureus (S. aureus) (4.3%). Single pathogen was detected in 20 (14.2%) samples whereas combinations were found in 121 (85.8%) samples. Bacillus cereus and E.coli were the most frequently detected pathogens followed by the S. Typhi, P. aeruginosa, and Staph. aureus. The percentage occurrence of isolated pathogens was 31% in B. cereus, 31% in E. coli, 18% in S. Typhi, 5% in P. aeruginosa, and 3% in Staph. aureus. Pseudomonas aeruginosa showed resistance against Amoxicillin and Cefotaxime, whereas S. aureus was found resistant against Cefotaxime. Statistical analysis using one way Analysis of Variance revealed that Ofloxacin and Gentamicin had significant (p less than 0.05) differences against all isolates as compared with other antibiotics used in this study.
Seth-Smith, Helena M B; Fookes, Maria C; Okoro, Chinyere K; Baker, Stephen; Harris, Simon R; Scott, Paul; Pickard, Derek; Quail, Michael A; Churcher, Carol; Sanders, Mandy; Harmse, Johan; Dougan, Gordon; Parkhill, Julian; Thomson, Nicholas R
2012-03-01
Integrative and conjugative elements (ICEs) are self-mobile genetic elements found in the genomes of some bacteria. These elements may confer a fitness advantage upon their host bacteria through the cargo genes that they carry. Salmonella pathogenicity island 7 (SPI-7), found within some pathogenic strains of Salmonella enterica, possesses features indicative of an ICE and carries genes implicated in virulence. We aimed to identify and fully analyze ICEs related to SPI-7 within the genus Salmonella and other Enterobacteriaceae. We report the sequence of two novel SPI-7-like elements, found within strains of Salmonella bongori, which share 97% nucleotide identity over conserved regions with SPI-7 and with each other. Although SPI-7 within Salmonella enterica serovar Typhi appears to be fixed within the chromosome, we present evidence that these novel elements are capable of excision and self-mobility. Phylogenetic analyses show that these Salmonella mobile elements share an ancestor which existed approximately 3.6 to 15.8 million years ago. Additionally, we identified more distantly related ICEs, with distinct cargo regions, within other strains of Salmonella as well as within Citrobacter, Erwinia, Escherichia, Photorhabdus, and Yersinia species. In total, we report on a collection of 17 SPI-7 related ICEs within enterobacterial species, of which six are novel. Using comparative and mutational studies, we have defined a core of 27 genes essential for conjugation. We present a growing family of SPI-7-related ICEs whose mobility, abundance, and cargo variability indicate that these elements may have had a large impact on the evolution of the Enterobacteriaceae.
Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract.
Umer, Shemsu; Tekewe, Alemu; Kebede, Nigatu
2013-01-28
In Ethiopia, Calpurnia aurea is used for the treatment of syphilis, malaria, rabies, diabetes, hypertension, diarrhoea, leishmaniasis, trachoma, elephantiasis, fungal diseases and different swellings. However, despite its traditional usage as an antidiarrhoeal and antimicrobial agent, there is limited or no information regarding its effectiveness and mode of action in diarrhoea which may be caused by Shigella flexneri, Staphylococcus aureus, Escherichia coli and Salmonella typhi. Hence, we evaluated the 80% methanol (MeOH) extract of dried and powdered leaves of C. aurea for its antidiarrhoeal and antimicrobial activities. Swiss albino mice of either sex were divided into five groups (five/group): Group I served as control and received vehicle (1% Tween 80) at a dose of 10 ml/kg orally; Group II served as standard and received loperamide at the dose of 3 mg/kg orally; Groups III, IV and V served as test groups and received the 80% MeOH leaf extract of C. aurea at doses of 100, 200 and 400 mg/kg orally, respectively. Diarrhoea was induced by oral administration of 0.5 ml castor oil to each mouse, 1 h after the above treatments. During an observation period of 4 h, time of onset of diarrhea, total number of faecal output (frequency of defecation) and weight of faeces excreted by the animals were recorded. Data were analyzed using one way analysis of variance followed by Tukey post test. Antimicrobial activity test was conducted using agar well diffusion assay. Clinical isolates tested were Salmonella typhi, Salmonella paratyphi, Salmonella typhimurium, Shigella species, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. In castor oil induced diarrhea model, the 80% methanol leaf extract of C. aurea at 100, 200 and 400 mg/kg and the standard drug loperamide (3 mg/kg) significantly reduced the time of onset of diarrhea, the frequency of defecation (total number of faecal output) and weight of faeces. C. aurea leaf extract also showed good antimicrobial activity against all tested organisms. C. aurea possesses good antidiarrhoeal and antimicrobial activity which support the traditional use of the plant in the treatment of diarrhea in Ethiopia.
Antidiarrhoeal and antimicrobial activity of Calpurnia aurea leaf extract
2013-01-01
Background In Ethiopia, Calpurnia aurea is used for the treatment of syphilis, malaria, rabies, diabetes, hypertension, diarrhoea, leishmaniasis, trachoma, elephantiasis, fungal diseases and different swellings. However, despite its traditional usage as an antidiarrhoeal and antimicrobial agent, there is limited or no information regarding its effectiveness and mode of action in diarrhoea which may be caused by Shigella flexneri, Staphylococcus aureus, Escherichia coli and Salmonella typhi. Hence, we evaluated the 80% methanol (MeOH) extract of dried and powdered leaves of C. aurea for its antidiarrhoeal and antimicrobial activities. Methods Swiss albino mice of either sex were divided into five groups (five/group): Group I served as control and received vehicle (1% Tween 80) at a dose of 10 ml/kg orally; Group II served as standard and received loperamide at the dose of 3 mg/kg orally; Groups III, IV and V served as test groups and received the 80% MeOH leaf extract of C. aurea at doses of 100, 200 and 400 mg/kg orally, respectively. Diarrhoea was induced by oral administration of 0.5 ml castor oil to each mouse, 1 h after the above treatments. During an observation period of 4 h, time of onset of diarrhea, total number of faecal output (frequency of defecation) and weight of faeces excreted by the animals were recorded. Data were analyzed using one way analysis of variance followed by Tukey post test. Antimicrobial activity test was conducted using agar well diffusion assay. Clinical isolates tested were Salmonella typhi, Salmonella paratyphi, Salmonella typhimurium, Shigella species, Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli. Results In castor oil induced diarrhea model, the 80% methanol leaf extract of C. aurea at 100, 200 and 400 mg/kg and the standard drug loperamide (3 mg/kg) significantly reduced the time of onset of diarrhea, the frequency of defecation (total number of faecal output) and weight of faeces. C. aurea leaf extract also showed good antimicrobial activity against all tested organisms. Conclusions C. aurea possesses good antidiarrhoeal and antimicrobial activity which support the traditional use of the plant in the treatment of diarrhea in Ethiopia. PMID:23351272
A cross-sectional seroepidemiological survey of typhoid fever in Fiji
Baker, Stephen; Lau, Colleen L.; Rawalai, Kitione; Taufa, Mere; Coriakula, Jerimaia; Thieu, Nga Tran Vu; Van, Tan Trinh; Ngoc, Dung Tran Thi; Hens, Niel; Lowry, John H.; de Alwis, Ruklanthi; Cano, Jorge; Jenkins, Kylie; Mulholland, E. Kim; Nilles, Eric J.; Kama, Mike; Edmunds, W. John
2017-01-01
Fiji, an upper-middle income state in the Pacific Ocean, has experienced an increase in confirmed case notifications of enteric fever caused by Salmonella enterica serovar Typhi (S. Typhi). To characterize the epidemiology of typhoid exposure, we conducted a cross-sectional sero-epidemiological survey measuring IgG against the Vi antigen of S. Typhi to estimate the effect of age, ethnicity, and other variables on seroprevalence. Epidemiologically relevant cut-off titres were established using a mixed model analysis of data from recovering culture-confirmed typhoid cases. We enrolled and assayed plasma of 1787 participants for anti-Vi IgG; 1,531 of these were resident in mainland areas that had not been previously vaccinated against S. Typhi (seropositivity 32.3% (95%CI 28.2 to 36.3%)), 256 were resident on Taveuni island, which had been previously vaccinated (seropositivity 71.5% (95%CI 62.1 to 80.9%)). The seroprevalence on the Fijian mainland is one to two orders of magnitude higher than expected from confirmed case surveillance incidence, suggesting substantial subclinical or otherwise unreported typhoid. We found no significant differences in seropositivity prevalences by ethnicity, which is in contrast to disease surveillance data in which the indigenous iTaukei Fijian population are disproportionately affected. Using multivariable logistic regression, seropositivity was associated with increased age (odds ratio 1.3 (95% CI 1.2 to 1.4) per 10 years), the presence of a pit latrine (OR 1.6, 95%CI 1.1 to 2.3) as opposed to a septic tank or piped sewer, and residence in settlements rather than residential housing or villages (OR 1.6, 95% CI 1.0 to 2.7). Increasing seropositivity with age is suggestive of low-level endemic transmission in Fiji. Improved sanitation where pit latrines are used and addressing potential transmission routes in settlements may reduce exposure to S. Typhi. Widespread unreported infection suggests there may be a role for typhoid vaccination in Fiji, in addition to public health management of cases and outbreaks. PMID:28727726
A cross-sectional seroepidemiological survey of typhoid fever in Fiji.
Watson, Conall H; Baker, Stephen; Lau, Colleen L; Rawalai, Kitione; Taufa, Mere; Coriakula, Jerimaia; Thieu, Nga Tran Vu; Van, Tan Trinh; Ngoc, Dung Tran Thi; Hens, Niel; Lowry, John H; de Alwis, Ruklanthi; Cano, Jorge; Jenkins, Kylie; Mulholland, E Kim; Nilles, Eric J; Kama, Mike; Edmunds, W John
2017-07-01
Fiji, an upper-middle income state in the Pacific Ocean, has experienced an increase in confirmed case notifications of enteric fever caused by Salmonella enterica serovar Typhi (S. Typhi). To characterize the epidemiology of typhoid exposure, we conducted a cross-sectional sero-epidemiological survey measuring IgG against the Vi antigen of S. Typhi to estimate the effect of age, ethnicity, and other variables on seroprevalence. Epidemiologically relevant cut-off titres were established using a mixed model analysis of data from recovering culture-confirmed typhoid cases. We enrolled and assayed plasma of 1787 participants for anti-Vi IgG; 1,531 of these were resident in mainland areas that had not been previously vaccinated against S. Typhi (seropositivity 32.3% (95%CI 28.2 to 36.3%)), 256 were resident on Taveuni island, which had been previously vaccinated (seropositivity 71.5% (95%CI 62.1 to 80.9%)). The seroprevalence on the Fijian mainland is one to two orders of magnitude higher than expected from confirmed case surveillance incidence, suggesting substantial subclinical or otherwise unreported typhoid. We found no significant differences in seropositivity prevalences by ethnicity, which is in contrast to disease surveillance data in which the indigenous iTaukei Fijian population are disproportionately affected. Using multivariable logistic regression, seropositivity was associated with increased age (odds ratio 1.3 (95% CI 1.2 to 1.4) per 10 years), the presence of a pit latrine (OR 1.6, 95%CI 1.1 to 2.3) as opposed to a septic tank or piped sewer, and residence in settlements rather than residential housing or villages (OR 1.6, 95% CI 1.0 to 2.7). Increasing seropositivity with age is suggestive of low-level endemic transmission in Fiji. Improved sanitation where pit latrines are used and addressing potential transmission routes in settlements may reduce exposure to S. Typhi. Widespread unreported infection suggests there may be a role for typhoid vaccination in Fiji, in addition to public health management of cases and outbreaks.
Karkey, Abhilasha; Arjyal, Amit; Anders, Katherine L; Boni, Maciej F; Dongol, Sabina; Koirala, Samir; My, Phan Vu Tra; Nga, Tran Vu Thieu; Clements, Archie C A; Holt, Kathryn E; Duy, Pham Thanh; Day, Jeremy N; Campbell, James I; Dougan, Gordon; Dolecek, Christiane; Farrar, Jeremy; Basnyat, Buddha; Baker, Stephen
2010-11-15
Enteric fever, caused by Salmonella enterica serovars Typhi and Paratyphi A (S. Typhi and S. Paratyphi A) remains a major public health problem in many settings. The disease is limited to locations with poor sanitation which facilitates the transmission of the infecting organisms. Efficacious and inexpensive vaccines are available for S. Typhi, yet are not commonly deployed to control the disease. Lack of vaccination is due partly to uncertainty of the disease burden arising from a paucity of epidemiological information in key locations. We have collected and analyzed data from 3,898 cases of blood culture-confirmed enteric fever from Patan Hospital in Lalitpur Sub-Metropolitan City (LSMC), between June 2005 and May 2009. Demographic data was available for a subset of these patients (n = 527) that were resident in LSMC and who were enrolled in trials. We show a considerable burden of enteric fever caused by S. Typhi (2,672; 68.5%) and S. Paratyphi A (1,226; 31.5%) at this Hospital over a four year period, which correlate with seasonal fluctuations in rainfall. We found that local population density was not related to incidence and we identified a focus of infections in the east of LSMC. With data from patients resident in LSMC we found that the median age of those with S. Typhi (16 years) was significantly less than S. Paratyphi A (20 years) and that males aged 15 to 25 were disproportionately infected. Our findings provide a snapshot into the epidemiological patterns of enteric fever in Kathmandu. The uneven distribution of enteric fever patients within the population suggests local variation in risk factors, such as contaminated drinking water. These findings are important for initiating a vaccination scheme and improvements in sanitation. We suggest any such intervention should be implemented throughout the LSMC area.
A Novel Chromogenic Ester Agar Medium for Detection of Salmonellae
Cooke, Venitia M.; Miles, R. J.; Price, R. G.; Richardson, A. C.
1999-01-01
A novel agar medium, chromogenic Salmonella esterase (CSE) agar, for the differentiation of salmonellae is described. The agar contains peptones and nutrient extracts together with the following (grams per liter unless otherwise specified): 4-[2-(4-octanoyloxy-3,5-dimethoxyphenyl)-vinyl]-quinolinium-1-(propan-3-yl carboxylic acid) bromide (SLPA-octanoate; bromide form), 0.3223; lactose, 14.65; trisodium citrate dihydrate, 0.5; Tween 20, 3.0; ethyl 4-dimethylaminobenzoate, 0.035% (wt/vol), novobiocin, 70 mg liter−1. The key component of the medium is SLPA-octanoate, a newly synthesized ester formed from a C8 fatty acid and a phenolic chromophore. In CSE agar, the ester is hydrolyzed by Salmonella spp. to yield a brightly colored phenol which remains tightly bound within colonies. After 24 h of incubation at 37 or 42°C, colonies of typical Salmonella spp. were burgundy colored on a transparent yellow background, whereas non-Salmonella spp. were white, cream, yellow or transparent. CSE agar was evaluated by using a panel of strains including a high proportion of Salmonella and non-Salmonella strains giving atypical reactions on other differential agars. The sensitivity (93.1%) of CSE agar for non-typhi salmonellae compared favorably with those of Rambach (82.8%), xylose-lysine-deoxycholate (XLD; 91.4%), Hektoen-enteric (89.7%), and SM ID (91.4%) agars. The specificity (93.9%) was also comparable to those of other Salmonella media (SM ID agar, 95.9%; Rambach agar, 91.8%; XLD agar, 91.8%; Hektoen-enteric agar, 87.8%). Strains of Citrobacter freundii and Proteus spp. giving false-positive reactions with other media gave a negative color reaction on CSE agar. CSE agar enabled the detection of >30 Salmonella serotypes, including agona, anatum, enteritidis, hadar, heidelberg, infantis, montevideo, thompson, typhimurium, and virchow, which accounted for 91.8% of the salmonella isolates recorded by the Public Health Laboratory Service (Colindale, London, England) for 1997. PMID:9925620
Arcuri, M.; Di Benedetto, R.; Cunningham, A. F.; Saul, A.; MacLennan, C. A.
2017-01-01
In recent years there have been major efforts to develop glycoconjugate vaccines based on the Vi polysaccharide that will protect against Salmonella enterica Typhi infections, particularly typhoid fever, which remains a major public health concern in low-income countries. The design of glycoconjugate vaccines influences the immune responses they elicit. Here we systematically test the response in mice to Vi glycoconjugates that differ in Vi chain length (full-length and fragmented), carrier protein, conjugation chemistry, saccharide to protein ratio and size. We show that the length of Vi chains, but not the ultimate size of the conjugate, has an impact on the anti-Vi IgG immune response induced. Full-length Vi conjugates, independent of the carrier protein, induce peak IgG responses rapidly after just one immunization, and secondary immunization does not enhance the magnitude of these responses. Fragmented Vi linked to CRM197 and diphtheria toxoid, but not to tetanus toxoid, gives lower anti-Vi antibody responses after the first immunization than full-length Vi conjugates, but antibody titres are similar to those induced by full-length Vi conjugates following a second dose. The chemistry to conjugate Vi to the carrier protein, the linker used, and the saccharide to protein ratio do not significantly alter the response. We conclude that Vi length and carrier protein are the variables that influence the anti-Vi IgG response to immunization the most, while other parameters are of lesser importance. PMID:29287062
Resistance Patterns of Typhoid Fever in Children: A Longitudinal Community-Based Study.
Vala, Snehal; Shah, Urvesh; Ahmad, Syed Amir; Scolnik, Dennis; Glatstein, Miguel
2016-01-01
Salmonella typhi and S. paratyphi are important causes of bacteremia in children, especially those from the developing world. There is a lack of standardized treatment protocols for such patients in the literature, and there are also reports of therapeutic failure related to resistance to commonly used antibiotics. We analyzed the epidemiological, clinical, and antimicrobiological sensitivity patterns of disease in patients diagnosed with blood culture-positive typhoid fever over a 6-month period in a tertiary-care pediatric hospital in western India. Data were retrospectively analyzed for all patients with Salmonella isolates on blood culture between January 1 and June 30, 2011 at the Synergy Neonatal and Pediatric Hospital. Susceptibility of isolates to antimicrobials and minimum inhibitory concentrations were determined. Demographic data, symptoms and signs, basic laboratory results, treatment courses, and clinical outcomes were collected from clinical charts. All of the 61 isolates of S. typhi were sensitive to cefepime (fourth-generation cephalosporin), 96% to third-generation cephalosporins, and 95% to quinolones. There was intermediate sensitivity to ampicillin (92%) and chloramphenicol (80%). Notably, azithromycin resistance was observed in 63% of isolates. All patients ultimately made full recoveries. There is an urgent need for large scale, community-based clinical trials to evaluate the effectiveness of different antibiotics in enteric fever. Our antimicrobial susceptibility data suggest that quinolones and third-generation cephalosporins should be used as first-line antimicrobials in enteric fever. Although fourth-generation cephalosporins are useful, we feel their use should be restricted to complicated or resistant cases.
Multidrug-resistant typhoid fever with neurologic findings on the Malawi-Mozambique border.
Lutterloh, Emily; Likaka, Andrew; Sejvar, James; Manda, Robert; Naiene, Jeremias; Monroe, Stephan S; Khaila, Tadala; Chilima, Benson; Mallewa, Macpherson; Kampondeni, Sam D; Lowther, Sara A; Capewell, Linda; Date, Kashmira; Townes, David; Redwood, Yanique; Schier, Joshua G; Nygren, Benjamin; Tippett Barr, Beth; Demby, Austin; Phiri, Abel; Lungu, Rudia; Kaphiyo, James; Humphrys, Michael; Talkington, Deborah; Joyce, Kevin; Stockman, Lauren J; Armstrong, Gregory L; Mintz, Eric
2012-04-01
Salmonella enterica serovar Typhi causes an estimated 22 million cases of typhoid fever and 216 000 deaths annually worldwide. We investigated an outbreak of unexplained febrile illnesses with neurologic findings, determined to be typhoid fever, along the Malawi-Mozambique border. The investigation included active surveillance, interviews, examinations of ill and convalescent persons, medical chart reviews, and laboratory testing. Classification as a suspected case required fever and ≥1 other finding (eg, headache or abdominal pain); a probable case required fever and a positive rapid immunoglobulin M antibody test for typhoid (TUBEX TF); a confirmed case required isolation of Salmonella Typhi from blood or stool. Isolates underwent antimicrobial susceptibility testing and subtyping by pulsed-field gel electrophoresis (PFGE). We identified 303 cases from 18 villages with onset during March-November 2009; 214 were suspected, 43 were probable, and 46 were confirmed cases. Forty patients presented with focal neurologic abnormalities, including a constellation of upper motor neuron signs (n = 19), ataxia (n = 22), and parkinsonism (n = 8). Eleven patients died. All 42 isolates tested were resistant to ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole; 4 were also resistant to nalidixic acid. Thirty-five of 42 isolates were indistinguishable by PFGE. The unusual neurologic manifestations posed a diagnostic challenge that was resolved through rapid typhoid antibody testing in the field and subsequent blood culture confirmation in the Malawi national reference laboratory. Extending laboratory diagnostic capacity, including blood culture, to populations at risk for typhoid fever in Africa will improve outbreak detection, response, and clinical treatment.
Ohtake, Satoshi; Martin, Russell; Saxena, Atul; Pham, Binh; Chiueh, Gary; Osorio, Manuel; Kopecko, Dennis; Xu, DeQi; Lechuga-Ballesteros, David; Truong-Le, Vu
2011-01-01
Foam drying, a modified freeze drying process, was utilized to produce a heat-stable, live attenuated Salmonella Typhi ‘Ty21a’ bacterial vaccine. Ty21a vaccine was formulated with pharmaceutically approved stabilizers, including sugars, plasticizers, amino acids, and proteins. Growth media and harvesting conditions of the bacteria were also studied to enhance resistance to desiccation stress encountered during processing as well as subsequent storage at elevated temperatures. The optimized Ty21a vaccine, formulated with trehalose, methionine, and gelatin, demonstrated stability for approximately 12 weeks at 37°C (i.e., time required for the vaccine to decrease in potency by 1log10 CFU) and no loss in titer at 4 and 25°C following storage for the same duration. Furthermore, the foam dried Ty21a elicited a similar immunogenic response in mice as well as protection in challenge studies compared to Vivotif™, the commercial Ty21a vaccine. The enhanced heat stability of the Ty21a oral vaccine, or Ty21a derivatives expressing foreign antigens (e.g. anthrax), could mitigate risks of vaccine potency loss during long term storage, shipping, delivery to geographical areas with warmer climates or during emergency distribution following a bioterrorist attack. Because the foam drying process is conducted using conventional freeze dryers and can be readily implemented at any freeze drying manufacturing facility, this technology appears ready and appropriate for large scale processing of foam dried vaccines. PMID:21300096
Kaljee, Linda M.; Pach, Alfred; Thriemer, Kamala; Ley, Benedikt; Ali, Said M.; Jiddawi, Mohamed; Puri, Mahesh; von Seidlein, Lorenz; Deen, Jacqueline; Ochiai, Leon; Wierzba, Thomas; Clemens, John
2013-01-01
Salmonella enterica serotype Typhi (S. Typhi) was estimated to cause over 200,000 deaths and more than 21 million illnesses worldwide, including over 400,000 illnesses in Africa. The current study was conducted in four villages on Pemba Island, Zanzibar, in 2010. We present data on policy makers', health administrators', and village residents' and leaders' perceptions of typhoid fever, and hypothetical and actual health care use among village residents for typhoid fever. Qualitative data provided descriptions of home-based treatment practices and use of western pharmaceuticals, and actual healthcare use for culture-confirmed typhoid fever. Survey data indicate health facility use was associated with gender, education, residency, and perceptions of severity for symptoms associated with typhoid fever. Data have implications for education of policy makers and health administrators, design and implementation of surveillance studies, and community-based interventions to prevent disease outbreaks, decrease risks of complications, and provide information about disease recognition, diagnosis, and treatment. PMID:23208887
Goel, Meenal; Verma, Abhishek; Gupta, Shalini
2018-07-15
Microarray technology to isolate living cells using external fields is a facile way to do phenotypic analysis at the cellular level. We have used alternating current dielectrophoresis (AC-DEP) to drive the assembly of live pathogenic Salmonella typhi (S.typhi) and Escherichia coli (E.coli) bacteria into miniaturized single cell microarrays. The effects of voltage and frequency were optimized to identify the conditions for maximum cell capture which gave an entrapment efficiency of 90% in 60 min. The chip was used for calibration-free estimation of cellular loads in binary mixtures and further applied for rapid and enhanced testing of cell viability in the presence of drug via impedance spectroscopy. Our results using a model antimicrobial sushi peptide showed that the cell viability could be tested down to 5 μg/mL drug concentration under an hour, thus establishing the utility of our system for ultrafast and sensitive detection. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balakrishna, A.M.; Saxena, A.; Mok, H. Y.-K.
The type IVb pilus of the enteropathogenic bacteria Salmonella typhi is a major adhesion factor during the entry of this pathogen into gastrointestinal epithelial cells. Its target of adhesion is a stretch of 10 residues from the first extracellular domain of cystic fibrosis transmembrane conductance regulator (CFTR). The crystal structure of the N-terminal 25 amino acid deleted S. typhi native PilS protein ({Delta}PilS), which makes the pilus, was determined at 1.9 {angstrom} resolution by the multiwavelength anomalous dispersion method. Also, the structure of the complex of {Delta}PilS and a target CFTR peptide, determined at 1.8 {angstrom}, confirms that residues 113-117more » (NKEER) of CFTR are involved in binding with the pilin protein and gives us insight on the amino acids that are essential for binding. Furthermore, we have also explored the role of a conserved disulfide bridge in pilus formation. The subunit structure and assembly architecture are crucial for understanding pilus functions and designing suitable therapeutics against typhoid.« less
Seiffert, Salome N; Perreten, Vincent; Johannes, Sönke; Droz, Sara; Bodmer, Thomas; Endimiani, Andrea
2014-01-01
Here, we report a case of OXA-48-producing Salmonella enterica serovar Kentucky of sequence type 198 (ST198) from perianal screening cultures of a patient transferred from Libya to Switzerland. The blaOXA-48 gene was carried by Tn1999.2 and located on an ∼60-kb IncL/M plasmid. This Salmonella strain also possessed the blaVEB-8, aac(6)-Ib, tet(A), sul1, and mphA resistance genes and substitutions in GyrA (Ser83Phe and Asp87Asn) and ParC (Ser80Ile). This finding emphasizes that prompt screening strategies are essential to prevent the dissemination of carbapenemase producers imported from countries where they are endemic.
Salmonella Extracellular Matrix Components Influence Biofilm Formation and Gallbladder Colonization.
Adcox, Haley E; Vasicek, Erin M; Dwivedi, Varun; Hoang, Ky V; Turner, Joanne; Gunn, John S
2016-11-01
Salmonella enterica serovar Typhi, the causative agent of typhoid fever in humans, forms biofilms encapsulated by an extracellular matrix (ECM). Biofilms facilitate colonization and persistent infection in gallbladders of humans and mouse models of chronic carriage. Individual roles of matrix components have not been completely elucidated in vitro or in vivo To examine individual functions, strains of Salmonella enterica serovar Typhimurium, the murine model of S Typhi, in which various ECM genes were deleted or added, were created to examine biofilm formation, colonization, and persistence in the gallbladder. Studies show that curli contributes most significantly to biofilm formation. Expression of Vi antigen decreased biofilm formation in vitro and virulence and bacterial survival in vivo without altering the examined gallbladder pro- or anti-inflammatory cytokines. Oppositely, loss of all ECM components (ΔwcaM ΔcsgA ΔyihO ΔbcsE) increased virulence and bacterial survival in vivo and reduced gallbladder interleukin-10 (IL-10) levels. Colanic acid and curli mutants had the largest defects in biofilm-forming ability and contributed most significantly to the virulence increase of the ΔwcaM ΔcsgA ΔyihO ΔbcsE mutant strain. While the ΔwcaM ΔcsgA ΔyihO ΔbcsE mutant was not altered in resistance to complement or growth in macrophages, it attached and invaded macrophages better than the wild-type (WT) strain. These data suggest that ECM components have various levels of importance in biofilm formation and gallbladder colonization and that the ECM diminishes disseminated disease in our model, perhaps by reducing cell attachment/invasion and dampening inflammation by maintaining/inducing IL-10 production. Understanding how ECM components aid acute disease and persistence could lead to improvements in therapeutic treatment of typhoid fever patients. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Coulliette, Angela D; Enger, Kyle S; Weir, Mark H; Rose, Joan B
2013-06-01
Unsafe drinking water continues to burden developing countries despite improvements in clean water delivery and sanitation, in response to Millennium Development Goal 7. Salmonella serotype Typhi and Vibrio cholerae bacteria can contaminate drinking water, causing waterborne typhoid fever and cholera, respectively. Household water treatment (HWT) systems are widely promoted to consumers in developing countries but it is difficult to establish their benefits to the population for specific disease reduction. This research uses a laboratory assessment of halogenated chlorine beads treating contaminated water to inform a quantitative microbial risk assessment (QMRA) of S. Typhi and V. cholerae disease in a developing country community of 1000 people. Laboratory challenges using seeded well water resulted in log10 reductions of 5.44 (± 0.98 standard error (SE)) and 6.07 (± 0.09 SE) for Salmonella serotype Typhimurium and V. cholerae, respectively. In well water with 10% sewage and seeded bacteria, the log10 reductions were 6.06 (± 0.62 SE) and 7.78 (± 0.11 SE) for S. Typhimurium and V. cholerae, respectively. When one infected individual was contributing to the water contamination through fecal material leaking into the water source, the risk of disease associated with drinking untreated water was high according to a Monte Carlo analysis: a median of 0.20 (interquartile range [IQR] 0.017-0.54) for typhoid fever and a median of 0.11 (IQR 0.039-0.20) for cholera. If water was treated, risk greatly decreased, to a median of 4.1 × 10(-7) (IQR 1.6 × 10(-8) to 1.1 × 10(-5)) for typhoid fever and a median of 3.5 × 10(-9) (IQR 8.0 × 10(-10) to 1.3 × 10(-8)) for cholera. Insights on risk management policies and strategies for public health workers were gained using a simple QMRA scenario informed by laboratory assessment of HWT. Copyright © 2012 Elsevier GmbH. All rights reserved.
Chigayo, K; Mojapelo, P E L; Bessong, P; Gumbo, J R
2014-01-01
Most communities in developing countries rely on traditional medicines for the treatment of diseases. In South Africa, the Limpopo province, within the Lebowakgomo district, uses tuberous roots of Kirkia wilmsii, after infusion in water for the treatment of a wide range of diseases by Sotho communities. The main objective of the study was to assess the anti-microbial activity of separated aqueous components of the Kirkia wilmsii tuberous roots. The clear aqueous extracts that were obtained after a 0.45 µm membrane filtration (Millipore Millex-HV Hydrophillic PVDF filter), were then injected into a preparative high performance liquid chromatography instrument in which pure components, as shown by peaks, were collected and evaluated for anti-microbial activity against a range of microorganisms. The eight separated components were obtained, out of which four components showed anti-microbial activity (AMA). The freeze dried components were re-dissolved in deionised water and then evaluated for AMA against Vibrio cholerae, Shigella dysenteriae, Aeromonas hydrophilia, Salmonella typhi Proteus mirabilis, Escherichia coli, Staphylococcus aureus, Candida albicans and Enterobacter aerogenes. Component one exhibited antimicrobial activity against Shigella dysenteriae, Aeromonas hydrophilia, Salmonella typhi, Proteus mirabilis, Escherichia coli and Staphylococcus aureus with a minimum inhibitory concentration (MIC), of 3.445 mg/ml. Component five was only active against Proteus mirabilis with a MIC of 0.08 mg/ml. Component 7, was active against Shigella dysenteriae, Staphylococcus aureus and Escherichia coli with a MIC of 0.365 mg/ml against both Shigella dysenteriae and Staphylococcus aureus and 0.091 mg/ml against Escherichia coli. Component 8, was active against Shigella, Aeromonas hydrophilia, Salmonella, Proteus mirabilis, Escherichia coli with a MIC of 155 mg/ml. Only four out of eight aqueous extracts showed AMA against both gram negative and positive bacteria and showed no AMA against Candida albicans, Enterobacter aerogenes and Vibrio cholerae. Therefore the Kirkia wilmsii plant root may be used as a broad spectrum antibiotic.
The Molecular and Spatial Epidemiology of Typhoid Fever in Rural Cambodia.
Pham Thanh, Duy; Thompson, Corinne N; Rabaa, Maia A; Sona, Soeng; Sopheary, Sun; Kumar, Varun; Moore, Catrin; Tran Vu Thieu, Nga; Wijedoru, Lalith; Holt, Kathryn E; Wong, Vanessa; Pickard, Derek; Thwaites, Guy E; Day, Nicholas; Dougan, Gordon; Turner, Paul; Parry, Christopher M; Baker, Stephen
2016-06-01
Typhoid fever, caused by the bacterium Salmonella Typhi, is an endemic cause of febrile disease in Cambodia. The aim of this study was to better understand the epidemiology of pediatric typhoid fever in Cambodia. We accessed routine blood culture data from Angkor Hospital for Children (AHC) in Siem Reap province between 2007 and 2014, and performed whole genome sequencing (WGS) on the isolated bacteria to characterize the S. Typhi population. The resulting phylogenetic information was combined with conventional epidemiological approaches to investigate the spatiotemporal distribution of S. Typhi and population-level risk factors for reported disease. During the study period, there were 262 cases of typhoid within a 100 km radius of AHC, with a median patient age of 8.2 years (IQR: 5.1-11.5 years). The majority of infections occurred during the rainy season, and commune incidences as high as 11.36/1,000 in children aged <15 years were observed over the study period. A population-based risk factor analysis found that access to water within households and increasing distance from Tonle Sap Lake were protective. Spatial mapping and WGS provided additional resolution for these findings, and confirmed that proximity to the lake was associated with discrete spatiotemporal disease clusters. We confirmed the dominance of MDR H58 S. Typhi in this population, and found substantial evidence of diversification (at least seven sublineages) within this single lineage. We conclude that there is a substantial burden of pediatric typhoid fever in rural communes in Cambodia. Our data provide a platform for additional population-based typhoid fever studies in this location, and suggest that this would be a suitable setting in which to introduce a school-based vaccination programme with Vi conjugate vaccines.
The Molecular and Spatial Epidemiology of Typhoid Fever in Rural Cambodia
Rabaa, Maia A; Sona, Soeng; Sopheary, Sun; Kumar, Varun; Moore, Catrin; Tran Vu Thieu, Nga; Wijedoru, Lalith; Holt, Kathryn E.; Wong, Vanessa; Pickard, Derek; Thwaites, Guy E.; Day, Nicholas; Dougan, Gordon; Turner, Paul; Parry, Christopher M.; Baker, Stephen
2016-01-01
Typhoid fever, caused by the bacterium Salmonella Typhi, is an endemic cause of febrile disease in Cambodia. The aim of this study was to better understand the epidemiology of pediatric typhoid fever in Cambodia. We accessed routine blood culture data from Angkor Hospital for Children (AHC) in Siem Reap province between 2007 and 2014, and performed whole genome sequencing (WGS) on the isolated bacteria to characterize the S. Typhi population. The resulting phylogenetic information was combined with conventional epidemiological approaches to investigate the spatiotemporal distribution of S. Typhi and population-level risk factors for reported disease. During the study period, there were 262 cases of typhoid within a 100 km radius of AHC, with a median patient age of 8.2 years (IQR: 5.1–11.5 years). The majority of infections occurred during the rainy season, and commune incidences as high as 11.36/1,000 in children aged <15 years were observed over the study period. A population-based risk factor analysis found that access to water within households and increasing distance from Tonle Sap Lake were protective. Spatial mapping and WGS provided additional resolution for these findings, and confirmed that proximity to the lake was associated with discrete spatiotemporal disease clusters. We confirmed the dominance of MDR H58 S. Typhi in this population, and found substantial evidence of diversification (at least seven sublineages) within this single lineage. We conclude that there is a substantial burden of pediatric typhoid fever in rural communes in Cambodia. Our data provide a platform for additional population-based typhoid fever studies in this location, and suggest that this would be a suitable setting in which to introduce a school-based vaccination programme with Vi conjugate vaccines. PMID:27331909
2012-01-01
Background Withania somnifera, also known as ashwagandha, is an important herb in ayurvedic and indigenous medical systems. The present study was designed to evaluate the antioxidant and antibacterial activities of an 80% aqueous methanolic extract of W. somnifera roots (WSREt), fruits (WSFEt) and leaves (WSLEt). Methods Several assays were performed to determine the antioxidant properties of this herb including 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activity, ferric reducing antioxidant power (FRAP), ferrous chelation and inhibition of β-carotene bleaching. Results The values for DPPH, FRAP, ferrous chelation and inhibition of β carotene bleaching for the three types of extracts ranged from 101.73-801.93 μg/ml, 2.26-3.29 mM Fe/kg, 0.22-0.65 mg/ml and 69.87-79.67%, respectively, indicating that W. somnifera, particularly the leaves, possesses significant antioxidant properties. The mean ascorbic acid content was 20.60-62.60 mg/100 g, and the mean anthocyanin content was 2.86-12.50 mg/100 g. Antibacterial activities were measured using the agar well diffusion method and five pathogenic Gram-negative bacteria: Escherichia coli, Salmonella typhi, Citrobacter freundii, Pseudomonas aeruginosa and Klebsiella pneumoniae. The leaf extracts displayed the highest activity against S. typhi (32.00 ± 0.75 mm zone of inhibition), whereas the lowest activity was against K. pneumoniae (19.00 ± 1.48 mm zone of inhibition). The lowest minimum inhibitory concentration value was 6.25 mg/ml, which was against S. typhi, followed by 12.5 mg/ml against E. coli. Conclusion In addition to its antioxidant properties, W. somnifera exhibited significant antibacterial activities against Gram-negative bacteria, particularly S. typhi. PMID:23039061
Cantaloupe facilitates transmission of Salmonella typhimurium between adult house flies
USDA-ARS?s Scientific Manuscript database
Salmonella enterica ser. Typhimurium (S. Typhimurium) is a pathogen harbored by livestock that can contaminate fresh produce, such as cantaloupe, and cause food-borne illnesses. We previously demonstrated that house flies acquire and harbor S. Typhimurium after exposure to inoculated cattle manure. ...
Ignat'eva, G A; Maksiutov, A Z; L'vov, V L; Kolobov, A A; Ignat'ev, T I
2011-01-01
The short multiepitopic synthetic peptides from the sequences of hypervariable area of V3-loope of gp120 of HIV don't induce anti-peptides antibodies production in mice themselves. We prepared the potent immunogen by noncovalent conjugations of the multitude peptides with pure peptidoglycans from cell wall of Salmonella typhi. The sera from immunized mice have the anti-peptides antibody titers (3-5) x 10(5) in ELISA, as high as Freund's adjuvant is of use.
Repression of Salmonella enterica phoP Expression by Small Molecules from Physiological Bile
Antunes, L. Caetano M.; Wang, Melody; Andersen, Sarah K.; Ferreira, Rosana B. R.; Kappelhoff, Reinhild; Han, Jun; Borchers, Christoph H.
2012-01-01
Infection with Salmonella enterica serovar Typhi in humans causes the life-threatening disease typhoid fever. In the laboratory, typhoid fever can be modeled through the inoculation of susceptible mice with Salmonella enterica serovar Typhimurium. Using this murine model, we previously characterized the interactions between Salmonella Typhimurium and host cells in the gallbladder and showed that this pathogen can successfully invade gallbladder epithelial cells and proliferate. Additionally, we showed that Salmonella Typhimurium can use bile phospholipids to grow at high rates. These abilities are likely important for quick colonization of the gallbladder during typhoid fever and further pathogen dissemination through fecal shedding. To further characterize the interactions between Salmonella and the gallbladder environment, we compared the transcriptomes of Salmonella cultures grown in LB broth or physiological murine bile. Our data showed that many genes involved in bacterial central metabolism are affected by bile, with the citric acid cycle being repressed and alternative respiratory systems being activated. Additionally, our study revealed a new aspect of Salmonella interactions with bile through the identification of the global regulator phoP as a bile-responsive gene. Repression of phoP expression could also be achieved using physiological, but not commercial, bovine bile. The biological activity does not involve PhoPQ sensing of a bile component and is not caused by bile acids, the most abundant organic components of bile. Bioactivity-guided purification allowed the identification of a subset of small molecules from bile that can elicit full activity; however, a single compound with phoP inhibitory activity could not be isolated, suggesting that multiple molecules may act in synergy to achieve this effect. Due to the critical role of phoP in Salmonella virulence, further studies in this area will likely reveal aspects of the interaction between Salmonella and bile that are relevant to disease. PMID:22366421
Overview of the development of quinolone resistance in Salmonella species in China, 2005–2016
Song, Qifa; Xu, Zhaojun; Gao, Hong; Zhang, Danyang
2018-01-01
Purpose Several factors contribute to the complexity of quinolone resistance in Salmonella, including >2000 different Salmonella serotypes, a variety of hosts for Salmonella, and wide use of quinolones in human beings and animals. We thus aimed to obtain an overview of the development of quinolone resistance and relevant molecular mechanisms of such a resistance in Salmonella species. Materials and methods A total of 1,776 Salmonella isolates were collected in Ningbo, China, between 2005 and 2016. Antimicrobial susceptibility to quinolone and relevant genetic mechanisms in these isolates were retrospectively analyzed. Results The ratio for ciprofloxacin (CIP) resistant:reduced CIP susceptible:CIP susceptible was 26:522:1,228. CIP resistance was found in nine of 51 serotypes: Derby, London, Kentucky, Indiana, Corvallis, Rissen, Hadar, Typhimurium, and Agona. Of 26 CIP-resistant isolates, all were concurrently resistant to ampicillin and 21 were also concurrently resistant to cefotaxime and produced extended-spectrum β-lactamase (ESBL). The minimal inhibitory concentration values were at three levels: 2–4 μg/mL (serotypes except for Kentucky and Indiana), 16 μg/mL (one Kentucky isolate), and >32 μg/mL (Indiana isolates). As with the three most common serotypes, Salmonella Typhi showed quickly increased prevalence of reduced CIP susceptibility in recent years, Salmonella Enteritidis remained at a high prevalence of reduced CIP susceptibility throughout the study period, and several isolates of Salmonella Typhimurium were resistant to CIP. Transferable plasmid-mediated quinolone resistance gene qnrB was only found in all CIP-resistant isolates. In contrast, gyrA mutations were often found in reduced CIP-susceptible isolates and were not necessarily found in all CIP-resistant isolates. Conclusion We conclude that in Salmonella, there exists a high prevalence of reduced CIP susceptibility and a low prevalence of CIP resistance, which focuses on several serotypes. Our study also demonstrates that, rather than gyrA mutations, qnrB is the most common indicator for CIP resistance. PMID:29520157
Sippel, J; Bukhtiari, N; Awan, M B; Krieg, R; Duncan, J F; Karamat, K A; Malik, I A; Igbal, L M; Legters, L
1989-06-01
Sera from 339 adult febrile patients in Pakistan were tested for antibodies to Salmonella typhi lipopolysaccharide by indirect immunoglobulin G (IgG) and IgM enzyme-linked immunosorbent assay (ELISA) and IgM capture ELISA. A total of 55 patients had S. typhi cultured from their blood, 20 had S. typhi cultured from their stool, 24 were blood or stool culture positive for S. paratyphi A, 41 were culture negative but clinically diagnosed as having enteric fever, 41 had gastrointestinal or urinary tract infections, 41 were clinically diagnosed as having malaria, 20 were smear-positive patients with malaria, 58 had respiratory infections, and the remaining 39 individuals were placed in a miscellaneous group who did not have Salmonella infection. The sensitivities of the indirect IgG ELISA, indirect IgM ELISA, and IgM capture ELISA determined with specimens obtained from the blood culture-positive patients with typhoid fever (positive controls) were 80, 64, and 62%, respectively. The specificities of the assays determined with sera from the patients with respiratory infections (negative controls) were 95, 95, and 97%, respectively. The percentage of smear-positive patients with malaria who were positive by these assays was lower than that in the negative control group. The percentages of individuals in the other patient categories who were positive by these tests were between those obtained with the positive and negative controls. Of the positive controls, 26 were positive by both IgM assays, 9 were IgM positive only by indirect ELISA, and 8 were IgM positive only by IgM capture ELISA. A total of 70% of the positive control patients who were tested for O agglutinins by the Widal tube agglutination assay were positive; however, 29% of the negative control patients were also positive. The indirect IgG ELISA was the single most effective test for the serodiagnosis of typhoid fever in this population.
Sippel, J; Bukhtiari, N; Awan, M B; Krieg, R; Duncan, J F; Karamat, K A; Malik, I A; Igbal, L M; Legters, L
1989-01-01
Sera from 339 adult febrile patients in Pakistan were tested for antibodies to Salmonella typhi lipopolysaccharide by indirect immunoglobulin G (IgG) and IgM enzyme-linked immunosorbent assay (ELISA) and IgM capture ELISA. A total of 55 patients had S. typhi cultured from their blood, 20 had S. typhi cultured from their stool, 24 were blood or stool culture positive for S. paratyphi A, 41 were culture negative but clinically diagnosed as having enteric fever, 41 had gastrointestinal or urinary tract infections, 41 were clinically diagnosed as having malaria, 20 were smear-positive patients with malaria, 58 had respiratory infections, and the remaining 39 individuals were placed in a miscellaneous group who did not have Salmonella infection. The sensitivities of the indirect IgG ELISA, indirect IgM ELISA, and IgM capture ELISA determined with specimens obtained from the blood culture-positive patients with typhoid fever (positive controls) were 80, 64, and 62%, respectively. The specificities of the assays determined with sera from the patients with respiratory infections (negative controls) were 95, 95, and 97%, respectively. The percentage of smear-positive patients with malaria who were positive by these assays was lower than that in the negative control group. The percentages of individuals in the other patient categories who were positive by these tests were between those obtained with the positive and negative controls. Of the positive controls, 26 were positive by both IgM assays, 9 were IgM positive only by indirect ELISA, and 8 were IgM positive only by IgM capture ELISA. A total of 70% of the positive control patients who were tested for O agglutinins by the Widal tube agglutination assay were positive; however, 29% of the negative control patients were also positive. The indirect IgG ELISA was the single most effective test for the serodiagnosis of typhoid fever in this population. PMID:2754002
Sankar, Sathish; Kuppanan, Suresh; Nandagopal, Balaji; Sridharan, Gopalan
2013-08-01
Typhoid fever is endemic in India, and a seasonal increase of cases is observed annually. In spite of effective therapies and the availability of vaccines, morbidity is widespread owing to the circulation of multiple genetic variants, frequent migration of asymptomatic carriers, unhygienic food practices and the emergence of multidrug resistance and thus continues to be a major public health problem in developing countries, particularly in India. Classical methods of strain typing such as pulsed-field gel electrophoresis, ribotyping, random amplification of polymorphic DNA and amplified fragment length polymorphism are either laborious and technically complicated or less discriminatory. We investigated the molecular diversity of Indian strains of Salmonella enterica serovar Typhi (S. Typhi) isolated from humans from different parts of India to establish the molecular epidemiology of the organism using the variable number tandem repeat (VNTR)-PCR analysis. The electrophoretic band pattern was analysed using the GelCompar II software program. Of the 94 strains tested for three VNTRs loci, 75 VNTR genotypes were obtained. Of the three VNTRs tested in this study, VNTR1 was amplified in all the strains except one and found to be predominant. VNTR2 was amplified only in 57 strains with a Simpson diversity index of 0.93 indicating the high variability of this region within the strains. VNTR3 was amplified in 90 strains. The discriminatory power of this typing tool has been greatly enhanced by this VNTR2 region as the other two regions could not discriminate strains significantly. In our study, about 55 % of the strains amplified all three VNTR regions and 39 % of the strains lacked the VNTR2 region. Among the three VNTR regions tested, the majority of the strains produced similar banding pattern for any two regions grouped into a cluster. The strains grouped as a genotype were from the same geographical location. Strains collected from each geographical region were also highly heterogeneous. Such analysis is important to identify the genetic clones of the pathogen associated with sporadic infections and disease outbreak to identify the common source and implement public health measures.
Hussain, Muhammad Barkaat; Hannan, Abdul; Akhtar, Naeem; Fayyaz, Ghulam Qadir; Imran, Muhammad; Saleem, Sidrah; Qureshi, Imtiaz Ahmed
2015-02-26
The development of resistance to conventional anti-typhoid drugs and the recent emergence of fluoroquinolone resistance have made it very difficult and expensive to treat typhoid fever. As the therapeutic strategies become even more limited, it is imperative to investigate non-conventional modalities. In this context, honey is a potential candidate for combating antimicrobial resistance because it contains a broad repertoire of antibacterial compounds which act synergistically at multiple sites, thus making it less likely that the bacteria will become resistant. The in vitro antibacterial activity of 100 unifloral honey samples against a blood culture isolate of multi-drug resistant (MDR) Salmonella typhi were investigated. All honey samples were evaluated for both total (acidity, osmolarity, hydrogen peroxide and non-peroxide activity) and plant derived non-peroxide antibacterial activity by agar well diffusion assay at 50% and 25% dilution in sterile distilled water and 25% in catalase solution. Manuka (Unique Manuka Factor-21) honey was used for comparison. The phenol equivalence of each honey sample from 2% to 7% (w/v) phenol was obtained from regression analysis. The antibacterial potential of each honey sample was expressed as its equivalent phenol concentration. The honey samples which showed antibacterial activity equivalent to or greater than manuka honey were considered therapeutically active honeys. Nineteen honey samples (19%) displayed higher hydrogen peroxide related antibacterial activity (16-20% phenol), which is more than that of manuka honey (21-UMF). A total of 30% of the honey samples demonstrated antibacterial activity between 11 and 15% phenol similar to that of manuka honey while 51% of the honey samples did not exhibit any zone of inhibition against MDR-S. typhi at 50% (w/v) dilution. None of the indigenous honey samples displayed non-peroxide antibacterial activity. Only manuka honey showed non-peroxide antibacterial activity at 25% dilution (w/v) in catalase solution. The honey samples which displayed antibacterial activity equal to or greater than manuka honey may be useful in the clinical conditions where higher hydrogen peroxide related antibacterial activity is required. Manuka honey, which is known to possess non-peroxide antibacterial activity, warrants further evaluation in a suitable typhoid animal model.
Jin, Celina; Gibani, Malick M; Moore, Maria; Juel, Helene B; Jones, Elizabeth; Meiring, James; Harris, Victoria; Gardner, Jonathan; Nebykova, Anna; Kerridge, Simon A; Hill, Jennifer; Thomaides-Brears, Helena; Blohmke, Christoph J; Yu, Ly-Mee; Angus, Brian; Pollard, Andrew J
2017-12-02
Salmonella enterica serovar Typhi (S Typhi) is responsible for an estimated 20 million infections and 200 000 deaths each year in resource poor regions of the world. Capsular Vi-polysaccharide-protein conjugate vaccines (Vi-conjugate vaccines) are immunogenic and can be used from infancy but there are no efficacy data for the leading candidate vaccine being considered for widespread use. To address this knowledge gap, we assessed the efficacy of a Vi-tetanus toxoid conjugate vaccine using an established human infection model of S Typhi. In this single-centre, randomised controlled, phase 2b study, using an established outpatient-based human typhoid infection model, we recruited healthy adult volunteers aged between 18 and 60 years, with no previous history of typhoid vaccination, infection, or prolonged residency in a typhoid-endemic region. Participants were randomly assigned (1:1:1) to receive a single dose of Vi-conjugate (Vi-TT), Vi-polysaccharide (Vi-PS), or control meningococcal vaccine with a computer-generated randomisation schedule (block size 6). Investigators and participants were masked to treatment allocation, and an unmasked team of nurses administered the vaccines. Following oral ingestion of S Typhi, participants were assessed with daily blood culture over a 2-week period and diagnosed with typhoid infection when meeting pre-defined criteria. The primary endpoint was the proportion of participants diagnosed with typhoid infection (ie, attack rate), defined as persistent fever of 38°C or higher for 12 h or longer or S Typhi bacteraemia, following oral challenge administered 1 month after Vi-vaccination (Vi-TT or Vi-PS) compared with control vaccination. Analysis was per protocol. This trial is registered with ClinicalTrials.gov, number NCT02324751, and is ongoing. Between Aug 18, 2015, and Nov 4, 2016, 112 participants were enrolled and randomly assigned; 34 to the control group, 37 to the Vi-PS group, and 41 to the Vi-TT group. 103 participants completed challenge (31 in the control group, 35 in the Vi-PS group, and 37 in the Vi-TT group) and were included in the per-protocol population. The composite criteria for typhoid diagnosis was met in 24 (77%) of 31 participants in the control group, 13 (35%) of 37 participants in the Vi-TT group, and 13 (35%) of 35 participants in the Vi-PS group to give vaccine efficacies of 54·6% (95% CI 26·8-71·8) for Vi-TT and 52·0% (23·2-70·0) for Vi-PS. Seroconversion was 100% in Vi-TT and 88·6% in Vi-PS participants, with significantly higher geometric mean titres detected 1-month post-vaccination in Vi-TT vaccinees. Four serious adverse events were reported during the conduct of the study, none of which were related to vaccination (one in the Vi-TT group and three in the Vi-PS group). Vi-TT is a highly immunogenic vaccine that significantly reduces typhoid fever cases when assessed using a stringent controlled model of typhoid infection. Vi-TT use has the potential to reduce both the burden of typhoid fever and associated health inequality. The Bill & Melinda Gates Foundation and the European Commission FP7 grant, Advanced Immunization Technologies (ADITEC). Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
Draz, Mohamed Shehata; Lu, Xiaonan
2016-01-01
As a major foodborne pathogen, Salmonella enterica serotype Enteritidis is increasingly rising as a global health concern. Here, we developed an integrated assay that combines loop mediated isothermal amplification (LAMP) and surface enhanced Raman spectroscopy (SERS) for DNA detection of S. Enteritidis using specifically designed Raman active Au-nanoprobes. The target DNA was amplified by LAMP and then labeled with Au-nanoprobes comprised of gold nanoparticle-modified with specific cy5/DNA probes to allow the detection by SERS. The sensitivity of the developed LAMP-SERS detection assay (66 CFU/mL) was ~100-fold higher than the conventional polymerase chain reaction (PCR) method. Significantly, this technique allowed highly specific detection of the target DNA of S. Enteritidis and could differentiate it from the DNA of closely related bacterial species or non-specific contamination, making it more accurate and reliable than the standard LAMP technique. The applicability of detection of S. Enteritidis in milk samples using LAMP-SERS assay was validated as well. In sum, the developed LAMP-SERS assay is highly specific and sensitive, and has the potential to be applied for rapid detection of different foodborne pathogens and other microbial contaminants.
Contreras, R; Ferreccio, C; Sotomayor, V; Astroza, L; Berríos, G; Ortiz, E; Palomino, C; Prenzel, I; Pinto, M E; Levine, M
1992-02-01
The clinical course of infection by Salmonellae was compared between patients who had been vaccinated against typhoid fever using the Ty21a vaccine and those who had not. Of 2566 bacteriological confirmed cases 84% were infected with S typhi, 14% with S paratyphi B and 2% with S paratyphi A. Among patients with typhoid fever, 34% were treated in hospital, 3.5% had relapses, 5.4% developed complications and 1 patient died (0.05%). Among patients with paratyphoid fever, 18% were treated in hospital, 0.6% had relapses, 1.4% developed complications and there were no deaths. These figures were similar among vaccinated and non-vaccinated cases. A slightly greater proportion of vaccinated cases were treated in hospital (38 vs 30%). Thus, use of oral vaccination against typhoid fever does not alter the clinical course of infection with Salmonellae.
Antibacterial activity of Citrus limonum fruit juice extract.
Okeke, Malachy Ifeanyi; Okoli, Arinze Stanley; Eze, Edith Nneka; Ekwume, Grace Chinwe; Okosa, Evangelin Uchena; Iroegbu, Christian Ukwuoma
2015-09-01
The fruit juice extract of Citrus limonum was investigated for antibacterial activity. The antibacterial activity of the extract on ten strains of bacteria was determined by both agar well diffusion and macro-broth dilution methods. The extract was variously bacteriostatic and bactericidal against Bacillussubtilis ATCC 6051, Staphylococcus aureus ATCC 12600, Escherichia coli ATCC 11775, Pseudomonas aeruginosa ATCC 10145 as well as locally isolated clinical strains of the above bacteria and Salmonella kintambo (Human: 13, 23: mt:-), Salmonella typhi and Proteus sp. The MICs ranged from 0.78 mg/ml to 50mg/ml; MBCs, 25.0mg/ml to >100mg/ml and MBC/MIC ratios 2.0 to >16.0. These results provide scientific justification for the medicinal use of Citrus limonum fruit juice by Nigerian herbalists in the treatment of diseases in which strains of the test organisms have been implicated as etiologic agents.
Blood invasiveness of Salmonella enterica as a function of age and serotype.
Weinberger, M.; Andorn, N.; Agmon, V.; Cohen, D.; Shohat, T.; Pitlik, S. D.
2004-01-01
We explored the dual influence of the patient's age and the infecting serotype on the blood invasiveness patterns of non-Typhi Salmonella enterica (NTS). Blood invasiveness ratio (BIR) was calculated as the ratio between the number of blood and blood + stool isolates. Analysis of 14,951 NTS isolates showed that the BIR increased drastically above the age of 60 years, reaching levels 3.5-7 times higher compared to age group < 2 years. Different patterns of age-related invasiveness were observed for the five most common NTS serotypes (Enteritidis, Typhimurium, Virchow, Hadar, Infantis). Among children < 2 years, the BIR was highest for serotype Virchow and lowest for serotype Hadar, while in persons > or = 60 years it was highest for serotypes Enteritidis and lowest for serotype Infantis. The tendency of NTS serotypes to invade the bloodstream was significantly influenced by the patient's age, however the impact of age differed for various NTS serotypes. PMID:15635958
Rapid screening and species identification of E. coli, Listeria, and Salmonella by SERS technique
NASA Astrophysics Data System (ADS)
Liu, Yongliang; Chao, Kuanglin; Kim, Moon S.; Nou, Xiangwu
2008-04-01
Techniques for routine and rapid screening of the presence of foodborne bacteria are needed, and this study reports the feasibility of citrate-reduced silver colloidal SERS for identifying E. coli, Listeria, and Salmonella. Relative standard deviation (RSD) of SERS spectra from silver colloidal suspensions and ratios of P-O SERS peaks from small molecule (K3PO4) were used to assess the reproducibility, stability, and binding effectiveness of citrate-reduced silver colloids over batch and storage process. The results suggested the reproducibility of silver colloids over batch process and also stability and consistent binding effectiveness over 60-day storage period. Notably, although silver colloidal nanoparticles were stable for at least 90 days, their binding effectiveness began to decrease slightly after 60-day storage, with a binding reduction of about 12% at 90th day. Colloidal silver SERS, as demonstrated here, could be an important alternative technique in the rapid and simultaneous screening of the presence of three most outbreak bacteria due to the exclusive biomarkers, label-free and easy sampling attribute.
Label-free SERS detection of Salmonella Typhimurium on DNA aptamer modified AgNR substrates
USDA-ARS?s Scientific Manuscript database
Salmonella Typhimurium is an important foodborne pathogen which causes gastroenteritis in both humans and animals. Currently available rapid methods have relied on antibodies to offer specific recognition of the pathogen from the background. As a substitute of antibodies, nucleic acid aptamers offer...
Surface enhanced raman spectroscopy technique in rapid detection of live and dead salmonella cells
USDA-ARS?s Scientific Manuscript database
Many research proved that Surface Enhanced Raman Spectroscopy (SERS) can detect pathogens rapidly and accurately. In this study, a silver metal substrate was used for the selected common food pathogen Salmonella typhimurium bacteria. Nano silver rods were deposited on a thin titanium coating over t...
Nahimana, Marie-Rosette; Ngoc, Candide Tran; Olu, Olushayo; Nyamusore, Jose; Isiaka, Ayodeji; Ndahindwa, Vedaste; Dassanayake, Lakruwan; Rusanganwa, André
2017-01-01
Introduction A Salmonella typhi outbreak was reported in a Burundian refugee camp in Rwanda in October 2015. Transmission persisted despite increased hygiene promotion activities and hand-washing facilities instituted to prevent and control the outbreak. A knowledge, attitude and practice (KAP) study was carried out to assess the effectiveness of ongoing typhoid fever preventive interventions. Methods A cross-sectional survey was conducted in Mahama Refugee Camp of Kirehe District, Rwanda from January to February 2016. Data were obtained through administration of a structured KAP questionnaire. Descriptive, bivariate and multivariate analysis was performed using STATA software. Results A total of 671 respondents comprising 264 (39.3%) males and 407 (60.7%) females were enrolled in the study. A comparison of hand washing practices before and after institution of prevention and control measures showed a 37% increase in the proportion of respondents who washed their hands before eating and after using the toilet (p < 0.001). About 52.8% of participants reported having heard about typhoid fever, however 25.9% had received health education. Only 34.6% and 38.6% of the respondents respectively knew how typhoid fever spreads and is prevented. Most respondents (98.2%) used pit latrines for disposal of feces. Long duration of stay in the camp, age over 35 years and being unemployed were statistically associated with poor hand washing practices. Conclusion The findings of this study underline the need for bolstering up health education and hygiene promotion activities in Mahama and other refugee camp settings. PMID:29184606
Keitel, W A; Bond, N L; Zahradnik, J M; Cramton, T A; Robbins, J B
1994-01-01
Clinical and serum antibody responses following intramuscular injection of two formulations of Salmonella typhi Vi capsular polysaccharide (Vi) were assessed in a double-blind evaluation. Healthy adults were randomly assigned to receive a 25 micrograms dose of liquid (Vi-Liq; n = 182) or freeze-dried Vi vaccine (Vi-Lyoph; n = 55), or placebo (n = 86). Erythema and/or induration > or = 1 cm in diameter at the injection site developed in 13/182 (7%) of Vi-Liq and 3/55 (5%) of Vi-Lyoph recipients (not significant, n.s.). Fever (oral temperature > or = 100 degrees F (37.8 degrees C)) occurred in < 2% of vaccinees. The frequencies of rises of fourfold or greater and of maximal Vi antibody levels were similar in the two vaccine groups. Fourfold or greater rises in serum Vi antibody levels (RIA) developed in 53% of Vi-Lyoph and 60% of Vi-Liq recipients by 1 week (n.s.), and 98 and 93%, respectively, by 1 month (n.s.). The frequencies of adverse reactions and mean Vi antibody levels following booster immunization with Vi-Liq 27 to 34 months after primary immunization (n = 55) were similar to those observed following primary immunization, although subjects given a booster dose were more likely to develop local reactions > or = 1 cm in diameter than those given a first dose (10/55 versus 13/182, p = 0.013 by the chi 2 test). Primary and booster immunizations with the Vi vaccines are well tolerated in healthy adults; mean Vi antibody levels remain significantly elevated for up to 34 months after primary immunization.
Howlader, Debaki Ranjan; Koley, Hemanta; Maiti, Suhrid; Bhaumik, Ushasi; Mukherjee, Priyadarshini; Dutta, Shanta
2017-11-07
Enteric fever has been one of the leading causes of severe illness and deaths worldwide. S. Typhi and S. Paratyphi A, B and C are important enteric fever-causing organisms globally. This infection causes about 21 million cases among which 222,000 typhoid related deaths occurred in 2015. These estimates do not reflect the ultimate and real status of the disease due to the lack of unified diagnostic and proper reporting system from typhoid endemic and other regions. Current control strategies have become increasingly ineffective due to the emergence of multi-drug resistance among the strains. This situation worsens the disease-burden in developing as well as in developed countries. Moreover the emergence of S. Paratyphi A as a major enteric fever-causing organism in several Asian countries, demands a prophylactic measure at this hour. Other than two licensed vaccines of S. Typhi, there are no exsisting vaccines for S. Paratyphi A. Moreover, travelers returning from endemic regions are becoming more susceptible to have these infections. In this situation, a need for bivalent approach is required where a single immunogen (consisting from each organism) will be effective against the disease. In this review, we have focused on the general information about typhoidal fever, its spread and epidemiology in brief and the present status of typhoidal vaccines and its future. This review highlights existing gaps in the typhoidal salmonellae research with a special emphasis on the status of present typhoidal salmonellae vaccine research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nahimana, Marie-Rosette; Ngoc, Candide Tran; Olu, Olushayo; Nyamusore, Jose; Isiaka, Ayodeji; Ndahindwa, Vedaste; Dassanayake, Lakruwan; Rusanganwa, André
2017-01-01
A Salmonella typhi outbreak was reported in a Burundian refugee camp in Rwanda in October 2015. Transmission persisted despite increased hygiene promotion activities and hand-washing facilities instituted to prevent and control the outbreak. A knowledge, attitude and practice (KAP) study was carried out to assess the effectiveness of ongoing typhoid fever preventive interventions. A cross-sectional survey was conducted in Mahama Refugee Camp of Kirehe District, Rwanda from January to February 2016. Data were obtained through administration of a structured KAP questionnaire. Descriptive, bivariate and multivariate analysis was performed using STATA software. A total of 671 respondents comprising 264 (39.3%) males and 407 (60.7%) females were enrolled in the study. A comparison of hand washing practices before and after institution of prevention and control measures showed a 37% increase in the proportion of respondents who washed their hands before eating and after using the toilet (p < 0.001). About 52.8% of participants reported having heard about typhoid fever, however 25.9% had received health education. Only 34.6% and 38.6% of the respondents respectively knew how typhoid fever spreads and is prevented. Most respondents (98.2%) used pit latrines for disposal of feces. Long duration of stay in the camp, age over 35 years and being unemployed were statistically associated with poor hand washing practices. The findings of this study underline the need for bolstering up health education and hygiene promotion activities in Mahama and other refugee camp settings.
Antimicrobial resistance and management of invasive Salmonella disease.
Kariuki, Samuel; Gordon, Melita A; Feasey, Nicholas; Parry, Christopher M
2015-06-19
Invasive Salmonella infections (typhoidal and non-typhoidal) cause a huge burden of illness estimated at nearly 3.4 million cases and over 600,000 deaths annually especially in resource-limited settings. Invasive non-typhoidal Salmonella (iNTS) infections are particularly important in immunosuppressed populations especially in sub-Saharan Africa, causing a mortality of 20-30% in vulnerable children below 5 years of age. In these settings, where routine surveillance for antimicrobial resistance is rare or non-existent, reports of 50-75% multidrug resistance (MDR) in NTS are common, including strains of NTS also resistant to flouroquinolones and 3rd generation cephalosporins. Typhoid (enteric) fever caused by Salmonella Typhi and Salmonella Paratyphi A remains a major public health problem in many parts of Asia and Africa. Currently over a third of isolates in many endemic areas are MDR, and diminished susceptibility or resistance to fluoroquinolones, the drugs of choice for MDR cases over the last decade is an increasing problem. The situation is particularly worrying in resource-limited settings where the few remaining effective antimicrobials are either unavailable or altogether too expensive to be afforded by either the general public or by public health services. Although the prudent use of effective antimicrobials, improved hygiene and sanitation and the discovery of new antimicrobial agents may offer hope for the management of invasive salmonella infections, it is essential to consider other interventions including the wider use of WHO recommended typhoid vaccines and the acceleration of trials for novel iNTS vaccines. The main objective of this review is to describe existing data on the prevalence and epidemiology of antimicrobial resistant invasive Salmonella infections and how this affects the management of these infections, especially in endemic developing countries. Copyright © 2015. Published by Elsevier Ltd.
Antimicrobial resistance and management of invasive Salmonella disease
Kariuki, Samuel; Gordon, Melita A.; Feasey, Nicholas; Parry, Christopher M
2015-01-01
Invasive Salmonella infections (typhoidal and non-typhoidal) cause a huge burden of illness estimated at nearly 3.4 million cases and over 600,000 deaths annually especially in resource-limited settings. Invasive non-typhoidal Salmonella (iNTS) infections are particularly important in immunosuppressed populations especially in sub-Saharan Africa, causing a mortality of 20–30% in vulnerable children below 5 years of age. In these settings, where routine surveillance for antimicrobial resistance is rare or non-existent, reports of 50–75% multidrug resistance (MDR) in NTS are common, including strains of NTS also resistant to flouroquinolones and 3rd generation cephalosporins. Typhoid (enteric) fever caused by Salmonella Typhi and Salmonella Paratyphi A remains a major public health problem in many parts of Asia and Africa. Currently over a third of isolates in many endemic areas are MDR, and diminished susceptibility or resistance to fluoroquinolones, the drugs of choice for MDR cases over the last decade is an increasing problem. The situation is particularly worrying in resource-limited settings where the few remaining effective antimicrobials are either unavailable or altogether too expensive to be afforded by either the general public or by public health services. Although the prudent use of effective antimicrobials, improved hygiene and sanitation and the discovery of new antimicrobial agents may offer hope for the management of invasive salmonella infections, it is essential to consider other interventions including the wider use of WHO recommended typhoid vaccines and the acceleration of trials for novel iNTS vaccines. The main objective of this review is to describe existing data on the prevalence and epidemiology of antimicrobial resistant invasive Salmonella infections and how this affects the management of these infections, especially in endemic developing countries. PMID:25912288
Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin
Kisiela, Dagmara I.; Chattopadhyay, Sujay; Libby, Stephen J.; Karlinsey, Joyce E.; Fang, Ferric C.; Tchesnokova, Veronika; Kramer, Jeremy J.; Beskhlebnaya, Viktoriya; Samadpour, Mansour; Grzymajlo, Krzysztof; Ugorski, Maciej; Lankau, Emily W.; Mackie, Roderick I.; Clegg, Steven; Sokurenko, Evgeni V.
2012-01-01
Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella. PMID:22685400
Functional Activity of Antibodies Directed towards Flagellin Proteins of Non-Typhoidal Salmonella
Boyd, Mary A.; Wang, Jin Y.; Tulapurkar, Mohan E.; Pasetti, Marcela F.; Levine, Myron M.; Simon, Raphael
2016-01-01
Non-typhoidal Salmonella (NTS) serovars Typhimurium and Enteritidis are major causes of invasive bacterial infections in children under 5 years old in sub-Saharan Africa, with case fatality rates of ~20%. There are no licensed NTS vaccines for humans. Vaccines that induce antibodies against a Salmonella Typhi surface antigen, Vi polysaccharide, significantly protect humans against typhoid fever, establishing that immune responses to Salmonella surface antigens can be protective. Flagella proteins, abundant surface antigens in Salmonella serovars that cause human disease, are also powerful immunogens, but the functional capacity of elicited anti-flagellar antibodies and their role in facilitating bacterial clearance has been unclear. We examined the ability of anti-flagellar antibodies to mediate microbial killing by immune system components in-vitro and assessed their role in protecting mice against invasive Salmonella infection. Polyclonal (hyperimmune sera) and monoclonal antibodies raised against phase 1 flagellin proteins of S. Enteritidis and S. Typhimurium facilitated bacterial uptake and killing of the homologous serovar pathogen by phagocytes. Polyclonal anti-flagellar antibodies accompanied by complement also achieved direct bacterial killing. Serum bactericidal activity was restricted to Salmonella serovars expressing the same flagellin used as immunogen. Notably, individual anti-flagellin monoclonal antibodies with complement were not bactericidal, but this biological activity was restored when different monoclonal anti-flagellin antibodies were combined. Passive transfer immunization with a monoclonal IgG antibody specific for phase 1 flagellin from S. Typhimurium protected mice against lethal challenge with a representative African invasive S. Typhimurium strain. These findings have relevance for the use of flagellin proteins in NTS vaccines, and confirm the role of anti-flagellin antibodies as mediators of protective immunity. PMID:26998925
Surface-enhanced Raman scattering spectroscopy for rapid bacterial screening
USDA-ARS?s Scientific Manuscript database
This study reports the feasibility of citrate-reduced colloidal silver SERS for differentiating three important foodborne pathogens, E. coli, Listeria, and Salmonella. FT-Rama and SERS spectra of both silver colloids and silver colloids mixed with tripotassium phosphate were collected and analyzed t...
USDA-ARS?s Scientific Manuscript database
A biopolymer encapsulated with silver nanoparticles was prepared using polyvinyl alcohol (PVA) solution, silver nitrate, and trisodium citrate. Biopolymer based nanosubstrates were deposited on a mica sheet for SERS. Fresh cultures of Salmonella Typhimurium, Escherichia coli, Staphylococcus aureus a...
USDA-ARS?s Scientific Manuscript database
In March 2011, a multi-state outbreak of Salmonella enterica ser. Heidelberg infections was investigated. Pulsed-field gel electrophoresis (PFGE) analysis of isolates from suspected cases and an epidemiologic investigation identified 136 case patients from 34 states from February to September. Two...
Chua, Ang Lim; Aziah, Ismail; Balaram, Prabha; Bhuvanendran, Saatheeyavaane; Anthony, Amy Amilda; Mohmad, Siti Norazura; Nasir, Norhafiza M; Hassan, Haslizai; Naim, Rochman; Meran, Lila P; Hussin, Hani M; Ismail, Asma
2015-03-01
Chronic carriers of Salmonella Typhi act as reservoirs for the organism and become the agents of typhoid outbreaks in a community. In this study, chronic carriers in Kelantan, Malaysia were first identified using the culture and polymerase chain reaction method. Then, a novel serological tool, designated Typhidot-C, was evaluated in retrospect using the detected individuals as control positives. Chronic carriage positive by the culture and polymerase chain reaction method was recorded at 3.6% (4 out of 110) among individuals who previously had acute typhoid fever and a 9.4% (10 out of 106) carriage rate was observed among food handlers screened during outbreaks. The Typhidot-C assay was able to detect all these positive carriers showing its potential as a viable carrier screening tool and can be used for efficient detection of typhoid carriers in an endemic area. These findings were used to establish the first carrier registry for S Typhi carriers in Malaysia. © 2012 APJPH.
1992-04-30
8217 diarrhea in Mexico . A prospective study of physicians and family members attending a congress. N Eng J Med 1976; 294:1299-1305. 14 18. Black RE...Schoolnik GK, Riley LW. Diffuse-adhering Escherichia coli (DAEC) as a putatuve cause of diarrhea in Mayan children in mexico . J Infect Dis 1991; 164...diarrhea and show that Shi- land village in Guatemala (3), and a village geIla has a propensity to cause severe diar- in Mexico (12). Only the rural
An international point source outbreak of typhoid fever: a European collaborative investigation*
Stanwell-Smith, R. E.; Ward, L. R.
1986-01-01
A point source outbreak of Salmonella typhi, degraded Vi-strain 22, affecting 32 British visitors to Kos, Greece, in 1983 was attributed by a case—control study to the consumption of a salad at one hotel. This represents the first major outbreak of typhoid fever in which a salad has been identified as the vehicle. The source of the infection was probably a carrier in the hotel staff. The investigation demonstrates the importance of national surveillance, international cooperation, and epidemiological methods in the investigation and control of major outbreaks of infection. PMID:3488842
1989-03-01
and absolute efficacy of three doses of Ty2la vaccine given in enteric-coated capsule or liquid formulation. Intensive clinical and bacteriologic...TABLES Table 1. Evaluation of the efficacy of three doses of the enteric-coated capsule formulation of Ty2la live oral vaccine given within one week in...November, 1986 thzough February, 1989 of a field trial in Area Sur Oriente and Area Norte assessing the efficacy of Ty21a vaccine in liquid or enteric
1988-05-18
trial was initiated in Area Sur Oriente and Area Norte, Santiago, Chile,. to compare the relative and absolute’ efficacy of three doses of Ty2la vaccine ...neighboirhood of Area Oriente, Santiago with the broad objective of pr3paring a field area uhere the efficacy of vaccines against Shigella...The high incidence rates of Shisella, ETEC, and EPEC infection make Santa Julia a suitable place for testing the efficacy of vaccines against these
Synthesis of Silver Nanoparticles Using Bombyxmori Silk Fibroin and Their Antibacterial Activity
NASA Astrophysics Data System (ADS)
Shivananda, C. S.; Lakshmeesha Rao, B.; Pasha, Azmath; Sangappa, Y.
2016-09-01
Present work describes the synthesis of colloidal silver nanoparticles using Bombyx mori silk fibroin under white light environment at room temperature. The bio reduction of silver ions showed the unique surface plasmon resonance (SPR) band at 420 nm which was confirmed by UV-visible spectroscopy. Transmission electron microscopy (TEM) showed the synthesized AgNPs are spherical in shape with the average particle size of 35-40 nm. X-ray diffraction (XRD) pattren evidenced the crystalline nature of the AgNPs with FCC structure. The biosynthesized AgNPs showed effective antibacterial activity against bacterial stains Bacillus subtilis, and Salmonella typhi.
Darton, Thomas C; Jones, Claire; Blohmke, Christoph J; Waddington, Claire S; Zhou, Liqing; Peters, Anna; Haworth, Kathryn; Sie, Rebecca; Green, Christopher A; Jeppesen, Catherine A; Moore, Maria; Thompson, Ben A V; John, Tessa; Kingsley, Robert A; Yu, Ly-Mee; Voysey, Merryn; Hindle, Zoe; Lockhart, Stephen; Sztein, Marcelo B; Dougan, Gordon; Angus, Brian; Levine, Myron M; Pollard, Andrew J
2016-08-01
Typhoid persists as a major cause of global morbidity. While several licensed vaccines to prevent typhoid are available, they are of only moderate efficacy and unsuitable for use in children less than two years of age. Development of new efficacious vaccines is complicated by the human host-restriction of Salmonella enterica serovar Typhi (S. Typhi) and lack of clear correlates of protection. In this study, we aimed to evaluate the protective efficacy of a single dose of the oral vaccine candidate, M01ZH09, in susceptible volunteers by direct typhoid challenge. We performed a randomised, double-blind, placebo-controlled trial in healthy adult participants at a single centre in Oxford (UK). Participants were allocated to receive one dose of double-blinded M01ZH09 or placebo or 3-doses of open-label Ty21a. Twenty-eight days after vaccination, participants were challenged with 104CFU S. Typhi Quailes strain. The efficacy of M01ZH09 compared with placebo (primary outcome) was assessed as the percentage of participants reaching pre-defined endpoints constituting typhoid diagnosis (fever and/or bacteraemia) during the 14 days after challenge. Ninety-nine participants were randomised to receive M01ZH09 (n = 33), placebo (n = 33) or 3-doses of Ty21a (n = 33). After challenge, typhoid was diagnosed in 18/31 (58.1% [95% CI 39.1 to 75.5]) M01ZH09, 20/30 (66.7% [47.2 to 87.2]) placebo, and 13/30 (43.3% [25.5 to 62.6]) Ty21a vaccine recipients. Vaccine efficacy (VE) for one dose of M01ZH09 was 13% [95% CI -29 to 41] and 35% [-5 to 60] for 3-doses of Ty21a. Retrospective multivariable analyses demonstrated that pre-existing anti-Vi antibody significantly reduced susceptibility to infection after challenge; a 1 log increase in anti-Vi IgG resulting in a 71% decrease in the hazard ratio of typhoid diagnosis ([95% CI 30 to 88%], p = 0.006) during the 14 day challenge period. Limitations to the study included the requirement to limit the challenge period prior to treatment to 2 weeks, the intensity of the study procedures and the high challenge dose used resulting in a stringent model. Despite successfully demonstrating the use of a human challenge study to directly evaluate vaccine efficacy, a single-dose M01ZH09 failed to demonstrate significant protection after challenge with virulent Salmonella Typhi in this model. Anti-Vi antibody detected prior to vaccination played a major role in outcome after challenge. ClinicalTrials.gov (NCT01405521) and EudraCT (number 2011-000381-35).
Himsworth, Chelsea G; Zabek, Erin; Desruisseau, Andrea; Parmley, E Jane; Reid-Smith, Richard; Jardine, Claire M; Tang, Patrick; Patrick, David M
2015-07-01
Although rat feces are widely suspected to be a source of pathogenic bacteria, few investigators have studied fecal pathogens in rats. We investigated the prevalence and characteristics of Escherichia coli and Salmonella spp. in Norway and black rats (Rattus norvegicus and Rattus rattus, respectively) from an urban neighborhood of Vancouver, Canada, collected September 2011-August 2012. Colon content was cultured for E. coli and Salmonella spp. and screened for the seven most-common enteropathogenic Shiga toxin-producing E. coli (STEC) serotypes by PCR. Isolates were tested for antimicrobial resistance and Salmonella isolates were serotyped. We detected E. coli in 397/633 (62.7%) urban rats. Forty-one of 397 (6.5%) E. coli isolates were resistant to ≥ 1 antimicrobial while 17 (4.3%) were multidrug resistant (including two isolates demonstrating extended-spectrum β-lactamase resistance). Ten of 633 (1.6%) urban rats were carrying STEC serotypes including O145, O103, O26, and O45. Norway rats were more likely to be carrying E. coli compared to black rats, and there was geographic clustering of specific resistance patterns and STEC serotypes. Salmonella spp. were detected in 3/633 (0.5%) rats including serotypes Derby, Indiana, and Enteritidis. In contrast to zoonotic pathogens for which rats are the natural reservoir (e.g., Leptospira interrogans, Rickettsia typhi, Seoul virus), rats likely acquired E. coli and Salmonella spp. from their environment. The ability of rats to be a 'sponge' for environmental pathogens has received little consideration, and the ecology and public health significance of these organisms in rats requires further investigation.
MacKenzie, Keith D.; Palmer, Melissa B.; Köster, Wolfgang L.; White, Aaron P.
2017-01-01
Salmonella are important pathogens worldwide and a predominant number of human infections are zoonotic in nature. The ability of strains to form biofilms, which is a multicellular behavior characterized by the aggregation of cells, is predicted to be a conserved strategy for increased persistence and survival. It may also contribute to the increasing number of infections caused by ingestion of contaminated fruits and vegetables. There is a correlation between biofilm formation and the ability of strains to colonize and replicate within the intestines of multiple host species. These strains predominantly cause localized gastroenteritis infections in humans. In contrast, there are salmonellae that cause systemic, disseminated infections in a select few host species; these “invasive” strains have a narrowed host range, and most are unable to form biofilms. This includes host-restricted Salmonella serovar Typhi, which are only able to infect humans, and atypical gastroenteritis strains associated with the opportunistic infection of immunocompromised patients. From the perspective of transmission, biofilm formation is advantageous for ensuring pathogen survival in the environment. However, from an infection point of view, biofilm formation may be an anti-virulence trait. We do not know if the capacity to form biofilms prevents a strain from accessing the systemic compartments within the host or if loss of the biofilm phenotype reflects a change in a strain’s interaction with the host. In this review, we examine the connections between biofilm formation, Salmonella disease states, degrees of host adaptation, and how this might relate to different transmission patterns. A better understanding of the dynamic lifecycle of Salmonella will allow us to reduce the burden of livestock and human infections caused by these important pathogens. PMID:29159172
Li, Pei; Liu, Qing; Luo, Hongyan; Liang, Kang; Yi, Jie; Luo, Ying; Hu, Yunlong; Han, Yue; Kong, Qingke
2017-01-01
Salmonella infections remain a big problem worldwide, causing enteric fever by Salmonella Typhi (or Paratyphi) or self-limiting gastroenteritis by non-typhoidal Salmonella (NTS) in healthy individuals. NTS may become invasive and cause septicemia in elderly or immuno-compromised individuals, leading to high mortality and morbidity. No vaccines are currently available for preventing NTS infection in human. As these invasive NTS are restricted to several O-antigen serogroups including B1, D1, C1, and C2, O-antigen polysaccharide is believed to be a good target for vaccine development. In this study, a strategy of O-serotype conversion was investigated to develop live attenuated S . Typhimurium vaccines against the major serovars of NTS infections. The immunodominant O4 serotype of S . Typhimurium was converted into O9, O7, and O8 serotypes through unmarked chromosomal deletion-insertion mutations. O-serotype conversion was confirmed by LPS silver staining and western blotting. All O-serotype conversion mutations were successfully introduced into the live attenuated S . Typhimurium vaccine S738 (Δ crp Δ cya ) to evaluate their immunogenicity in mice model. The vaccine candidates induced high amounts of heterologous O-polysaccharide-specific functional IgG responses. Vaccinated mice survived a challenge of 100 times the 50% lethality dose (LD 50 ) of wild-type S . Typhimurium. Protective efficacy against heterologous virulent Salmonella challenges was highly O-serotype related. Furthermore, broad-spectrum protection against S . Typhimurium, S . Enteritidis, and S . Choleraesuis was observed by co-vaccination of O9 and O7 O-serotype-converted vaccine candidates. This study highlights the strategy of expressing heterologous O-polysaccharides via genetic engineering in developing live attenuated S . Typhimurium vaccines against NTS infections.
East London Experience with Enteric Fever 2007-2012
Dave, Jayshree; Millar, Michael; Maxeiner, Horst; Freedman, Joanne; Meade, Rachel; Rosmarin, Caryn; Jordan, Matthew; Andrews, Nick; Holliman, Richard; Sefton, Armine
2015-01-01
Purpose The clinical presentation and epidemiology for patients with enteric fever at two hospitals in East London during 2007–2012 is described with the aim to identify preventive opportunities and to reduce the cost of treatment. Methods A retrospective analysis of case notes from patients admitted with enteric fever during 2007 to 2012 with a microbiologically confirmed diagnosis was undertaken. Details on clinical presentation, travel history, demographic data, laboratory parameters, treatment, patient outcome and vaccination status were collected. Results Clinical case notes were available for 98/129 (76%) patients including 69 Salmonella enterica serovar Typhi (S. Typhi) and 29 Salmonella enterica serovar Paratyphi (S. Paratyphi). Thirty-four patients (35%) were discharged from emergency medicine without a diagnosis of enteric fever and then readmitted after positive blood cultures. Seventy-one of the 98 patients (72%) were UK residents who had travelled abroad, 23 (23%) were foreign visitors/new entrants to the UK and four (4%) had not travelled abroad. Enteric fever was not considered in the initial differential diagnosis for 48/98 (49%) cases. The median length of hospital stay was 7 days (range 0–57 days). The total cost of bed days for managing enteric fever was £454,000 in the two hospitals (mean £75,666/year). Median time to clinical resolution was five days (range 1–20). Seven of 98 (7%) patients were readmitted with relapsed or continued infection. Six of the 71 (8%) patients had received typhoid vaccination, 34 (48%) patients had not received vaccination, and for 31 cases (44%) vaccination status was unknown. Conclusions Further interventions regarding education and vaccination of travellers and recognition of the condition by emergency medicine clinicians in travellers to South Asia is required. PMID:25790017
Investigation of a community outbreak of typhoid fever associated with drinking water
2009-01-01
Background This report is about the investigation of an outbreak of typhoid fever claimed three human lives and left more than 300 people suffered within one week. The aim of this report is to draw the attention of global health community towards the areas that are still far from basic human essentialities. Methods A total of 250 suspected cases of typhoid fever were interviewed, out of which 100 were selected for sample collection on the basis of criteria included temperature > 38°C since the onset of outbreak, abdominal discomfort, diarrhea, vomiting and weakness. Food and water samples were also collected and analyzed microbiologically. Results Inhabitants of village lived in poor and unhygienic conditions with no proper water supply or sewage disposal facilities and other basic necessities of life. They consumed water from a nearby well which was the only available source of drinking water. Epidemiological evidences revealed the gross contamination of well with dead and decaying animal bodies, their fecal material and garbage. Microbiological analysis of household and well water samples revealed the presence of heavy bacterial load with an average total aerobic count 106-109 CFU/ml. A number of Gram positive and Gram negative bacteria including Escherichia coli, Klebsiella, Bacillus species, Staphylococcus species, Enterobacter species, and Pseudomonas aeruginosa were isolated. Lab investigations confirmed the presence of multidrug resistant strain of Salmonella enterica serovar Typhi in 100% well water, 65% household water samples and 2% food items. 22% of clinical stool samples were tested positive with Salmonella enterica serover Typhi Conclusions This study indicated the possible involvement of well water in outbreaks. In order to avoid such outbreaks in future, we contacted the local health authorities and urged them to immediately make arrangements for safe drinking water supply. PMID:20021691
Typhoid outbreak investigation in Dzivaresekwa, suburb of Harare City, Zimbabwe, 2011.
Muti, Monica; Gombe, Notion; Tshimanga, Mufuta; Takundwa, Lucia; Bangure, Donewell; Mungofa, Stanley; Chonzi, Prosper
2014-01-01
Typhoid fever is a systemic infection caused by a Gram negative bacterium, Salmonella typhi. Harare City reported 1078 cases of suspected typhoid fever cases from October 2011 to January 2012. We initiated an investigation to identify possible source of transmission so as to institute control measures. An unmatched 1:1 case-control study was conducted. A questionnaire was administered to study participants to identify risk factors for contracting typhoid. A case was a resident of Dzivaresekwa who presented with signs and symptoms of typhoid between October and December 2011. Water samples were collected for microbiological analysis. 115 cases and 115 controls were enrolled. Drinking water from a well (OR=6.2 95% CI (2.01-18.7)), attending a gathering (OR=11.3 95% CI (4.3-29.95)), boiling drinking water (OR=0.21 95% CI (0.06-0.76)) and burst sewer pipe at home (OR=1.19 95% CI (0.67-2.14)) were factors associated with contracting typhoid. Independent risk factors for contracting typhoid were drinking water from a well (AOR=5.8; 95% CI (1.90-17.78)), and burst sewer pipe at home (AOR=1.20; 95% CI (1.10-2.19)). Faecal coli forms and E. coli were isolated from 8/8 well water samples. Stool, urine and blood specimens were cultured and serotyped for Salmonella typhi and 24 cases were confirmed positive. Shigella, Giardia and E coli were also isolated. Ciprofloxacin, X-pen and Rocephin were used for case management. No complications were reported. Contaminated water from unprotected water sources was the probable source of the outbreak. Harare City Engineer must invest in repairing water and sewage reticulation systems in the city.
Monteil, Véronique; Kolb, Annie; Mayer, Claudine; Hoos, Sylviane; England, Patrick; Norel, Françoise
2010-12-01
The RpoS sigma factor (σ(S)) is the master regulator of the bacterial response to a variety of stresses. Mutants in rpoS arise in bacterial populations in the absence of stress, probably as a consequence of a subtle balance between self-preservation and nutritional competence. We characterized here one natural rpoS mutant of Salmonella enterica serovar Typhi (Ty19). We show that the rpoS allele of Ty19 (rpoS(Ty19)) led to the synthesis of a σ(S)(Ty19) protein carrying a single glycine-to-valine substitution at position 282 in σ(S) domain 4, which was much more dependent than the wild-type σ(S) protein on activation by Crl, a chaperone-like protein that increases the affinity of σ(S) for the RNA polymerase core enzyme (E). We used the bacterial adenylate cyclase two-hybrid system to demonstrate that Crl bound to residues 72 to 167 of σ(S) domain 2 and that G282V substitution did not directly affect Crl binding. However, this substitution drastically reduced the ability of σ(S)(Ty19) to bind E in a surface plasmon resonance assay, a defect partially rescued by Crl. The modeled structure of the Eσ(S) holoenzyme suggested that substitution G282V could directly disrupt a favorable interaction between σ(S) and E. The rpoS(Ty19) allele conferred a competitive fitness when the bacterial population was wild type for crl but was outcompeted in Δcrl populations. Thus, these results indicate that the competitive advantage of the rpoS(Ty19) mutant is dependent on Crl and suggest that crl plays a role in the appearance of rpoS mutants in bacterial populations.
González-Bello, Concepción; Tizón, Lorena; Lence, Emilio; Otero, José M; van Raaij, Mark J; Martinez-Guitian, Marta; Beceiro, Alejandro; Thompson, Paul; Hawkins, Alastair R
2015-07-29
The first example of an ammonium derivative that causes a specific modification of the active site of type I dehydroquinase (DHQ1), a dehydratase enzyme that is a promising target for antivirulence drug discovery, is described. The resolution at 1.35 Å of the crystal structure of DHQ1 from Salmonella typhi chemically modified by this ammonium derivative revealed that the ligand is covalently attached to the essential Lys170 through the formation of an amine. The detection by mass spectroscopy of the reaction intermediates, in conjunction with the results of molecular dynamics simulations, allowed us to explain the inhibition mechanism and the experimentally observed differences between S. typhi and Staphylococcus aureus enzymes. The results presented here reveal that the replacement of Phe225 in St-DHQ1 by Tyr214 in Sa-DHQ1 and its hydrogen bonding interaction with the conserved water molecule observed in several crystal structures protects the amino adduct against further dehydration/aromatization reactions. In contrast, for the St-DHQ1 enzyme, the carboxylate group of Asp114, with the assistance of this water molecule, would trigger the formation of a Schiff base that can undergo further dehydration reactions until full aromatization of the cyclohexane ring is achieved. Moreover, in vitro antivirulence studies showed that the reported compound is able to reduce the ability of Salmonella Enteritidis to kill A459 respiratory cells. These studies have identified a good scaffold for the design of irreversible inhibitors that can be used as drugs and has opened up new opportunities for the development of novel antivirulence agents by targeting the DHQ1 enzyme.
Choong, Yee Siew; Lim, Theam Soon; Chew, Ai Lan; Aziah, Ismail; Ismail, Asma
2011-04-01
The high typhoid incidence rate in developing and under-developed countries emphasizes the need for a rapid, affordable and accessible diagnostic test for effective therapy and disease management. TYPHIDOT®, a rapid dot enzyme immunoassay test for typhoid, was developed from the discovery of a ∼50 kDa protein specific for Salmonella enterica serovar Typhi. However, the structure of this antigen remains unknown till today. Studies on the structure of this antigen are important to elucidate its function, which will in turn increase the efficiency of the development and improvement of the typhoid detection test. This paper described the predictive structure and function of the antigenically specific protein. The homology modeling approach was employed to construct the three-dimensional structure of the antigen. The built structure possesses the features of TolC-like outer membrane protein. Molecular docking simulation was also performed to further probe the functionality of the antigen. Docking results showed that hexamminecobalt, Co(NH(3))(6)(3+), as an inhibitor of TolC protein, formed favorable hydrogen bonds with D368 and D371 of the antigen. The single point (D368A, D371A) and double point (D368A and D371A) mutations of the antigen showed a decrease (single point mutation) and loss (double point mutations) of binding affinity towards hexamminecobalt. The architecture features of the built model and the docking simulation reinforced and supported that this antigen is indeed the variant of outer membrane protein, TolC. As channel proteins are important for the virulence and survival of bacteria, therefore this ∼50 kDa channel protein is a good specific target for typhoid detection test. Copyright © 2011 Elsevier Inc. All rights reserved.
Khanam, Farhana; Sayeed, Md Abu; Choudhury, Feroza Kaneez; Sheikh, Alaullah; Ahmed, Dilruba; Goswami, Doli; Hossain, Md Lokman; Brooks, Abdullah; Calderwood, Stephen B; Charles, Richelle C; Cravioto, Alejandro; Ryan, Edward T; Qadri, Firdausi
2015-04-01
Children bear a large burden of typhoid fever caused by Salmonella enterica serotype Typhi (S. Typhi) in endemic areas. However, immune responses and clinical findings in children are not well defined. Here, we describe clinical and immunological characteristics of young children with S. Typhi bacteremia, and antimicrobial susceptibility patterns of isolated strains. As a marker of recent infection, we have previously characterized antibody-in-lymphocyte secretion (TPTest) during acute typhoid fever in adults. We similarly assessed membrane preparation (MP) IgA responses in young children at clinical presentation, and then 7-10 days and 21-28 days later. We also assessed plasma IgA, IgG and IgM responses and T cell proliferation responses to MP at these time points. We compared responses in young children (1-5 years) with those seen in older children (6-17 years), adults (18-59 years), and age-matched healthy controls. We found that, compared to age-matched controls patients in all age cohorts had significantly more MP-IgA responses in lymphocyte secretion at clinical presentation, and the values fell in all groups by late convalescence. Similarly, plasma IgA responses in patients were elevated at presentation compared to controls, with acute and convalescent IgA and IgG responses being highest in adults. T cell proliferative responses increased in all age cohorts by late convalescence. Clinical characteristics were similar in all age cohorts, although younger children were more likely to present with loss of appetite, less likely to complain of headache compared to older cohorts, and adults were more likely to have ingested antibiotics. Multi-drug resistant strains were present in approximately 15% of each age cohort, and 97% strains had resistance to nalidixic acid. This study demonstrates that S. Typhi bacteremia is associated with comparable clinical courses, immunologic responses in various age cohorts, including in young children, and that TPTest can be used as marker of recent typhoid fever, even in young children.
Rangel-Vargas, Esmeralda; Gómez-Aldapa, Carlos A; Falfan-Cortes, Reyna N; Rodríguez-Marín, María L; Godínez-Oviedo, Angélica; Acevedo-Sandoval, Otilio A; Castro-Rosas, Javier
2017-03-01
Chili peppers are a very important crop in Mexico. However, these peppers have been associated with Salmonella infection outbreaks in the United States, and Salmonella and diarrheagenic Escherichia coli pathotypes have been isolated from jalapeño and serrano peppers in Mexico. To decrease microbial contamination of fruits and vegetables, chemical agents are commonly used; however, chemical agents used to eliminate pathogenic bacteria on vegetables have a limited antimicrobial effect. Roselle ( Hibiscus sabdariffa ) calyces have been reported to have an antimicrobial effect on pathogenic bacteria. In the present study, the antibacterial effect of four roselle calyx extracts (water, methanol, acetone, and ethyl acetate), sodium hypochlorite, colloidal silver, and acetic acid against foodborne bacteria was evaluated on contaminated jalapeño and serrano peppers. The 13 types of foodborne bacteria evaluated were Listeria monocytogenes , Shigella flexneri , Salmonella Typhimurium, Salmonella Typhi, Salmonella Montevideo, Staphylococcus aureus , E. coli O157:H7, five E. coli pathotypes (Shiga toxin producing, enteropathogenic, enterotoxigenic, enteroinvasive, and enteroaggregative), and Vibrio cholerae O1. All 13 types attached to both pepper types, with no significant differences in attachment between jalapeño and serrano peppers. Roselle calyx extract treatment resulted in a greater reduction in levels of all foodborne bacteria than did treatment with sodium hypochlorite, colloidal silver, and acetic acid on both pepper types. Roselle calyx extracts may be a useful for disinfection of chili peppers in the field, processing plants, restaurants, and homes.
O:2-CRM(197) conjugates against Salmonella Paratyphi A.
Micoli, Francesca; Rondini, Simona; Gavini, Massimiliano; Lanzilao, Luisa; Medaglini, Donata; Saul, Allan; Martin, Laura B
2012-01-01
Enteric fevers remain a common and serious disease, affecting mainly children and adolescents in developing countries. Salmonella enterica serovar Typhi was believed to cause most enteric fever episodes, but several recent reports have shown an increasing incidence of S. Paratyphi A, encouraging the development of a bivalent vaccine to protect against both serovars, especially considering that at present there is no vaccine against S. Paratyphi A. The O-specific polysaccharide (O:2) of S. Paratyphi A is a protective antigen and clinical data have previously demonstrated the potential of using O:2 conjugate vaccines. Here we describe a new conjugation chemistry to link O:2 and the carrier protein CRM(197), using the terminus 3-deoxy-D-manno-octulosonic acid (KDO), thus leaving the O:2 chain unmodified. The new conjugates were tested in mice and compared with other O:2-antigen conjugates, synthesized adopting previously described methods that use CRM(197) as carrier protein. The newly developed conjugation chemistry yielded immunogenic conjugates with strong serum bactericidal activity against S. Paratyphi A.
Oke, A J; Olaolorun, D A; Meier, D E; Tarpley, J L
2011-06-01
Sixty-eight (68) patients with serious upper extremity suppurative infections, presenting within a period of fifteen (15) months, were prospectively studied clinically, Gram stain of aspirates/pus were performed, specimen cultured, planted, and where indicated glucose levels and haemoglobin genotype determined. Half of the patients had hand infections. Staphylococcus aureus was isolated from thirty-nine (39) patients. Gram Negative bacilli, including Salmonella were more isolated from patients with diabetes mellitus or Hgb SS or SC. The Gram stain results correlated with the culture result 90%. When Gram Positive cocci were demonstrated in the primary microscopic examination, cultures were not mandatory. When no organism was demonstrated on primary Gram stain or the patient was diabetic or a sickler, cultures of the specimens were done. The Gram stain, well performed, remains a useful, inexpensive, technologically appropriate laboratory test for abetting decision making in patients with upper extremity suppurative infections. Organisms encountered in this study included: Staphylococcus aureus, Streptococcus pyogenes, Salmonella typhi, Proteus mirabilis, Pseudomonas aeruginosa, and Coliforms.
Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang
2014-01-01
Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about Salmonella enterica serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation, antibody agglutination test, and PCR analysis. Phase variation was observed by baterial motility assay and identified by antibody agglutination test and PCR analysis. This comprehensive experiment can be performed to help students improve their ability to use the knowledge acquired in Biochemistry and Molecular Biology. Copyright © 2014 by The International Union of Biochemistry and Molecular Biology.
Mary Mallon (1869-1938) and the history of typhoid fever
Marineli, Filio; Tsoucalas, Gregory; Karamanou, Marianna; Androutsos, George
2013-01-01
Mary Mallon was born in 1869 in Ireland and emigrated to the US in 1884. She had worked in a variety of domestic positions for wealthy families prior to settling into her career as a cook. As a healthy carrier of Salmonella typhi her nickname of “Typhoid Mary” had become synonymous with the spread of disease, as many were infected due to her denial of being ill. She was forced into quarantine on two separate occasions on North Brother Island for a total of 26 years and died alone without friends, having evidently found consolation in her religion to which she gave her faith and loyalty. PMID:24714738
Typhoid outbreak in Kingston, Ont: experience with high-dose oral ampicillin.
Hardy, G.; Padfield, C. J.; Chadwick, P.; Partington, M. W.
1977-01-01
Twenty-four children contracted typhoid fever at a summer camp near Kingston, Ont. Six were treated with chloramphenicol alone and 15 with high doses of ampicillin (300 mg/kg-d) by mouth. Ampicillin in this dosage was well tolerated except in three children in whom severe urticarial rashes developed and two who had significant diarrhea. However, high-dose oral ampicillin therapy had no advantage over that with lower doses or over chloramphenicol as judged by the rate of defervescence after the start of treatment, the rate of clinical relapse and the frequency of excretion of Salmonella typhi during convalescence. PMID:849559
Massive Lower Gastrointestinal Bleed caused by Typhoid Ulcer: Conservative Management.
Goel, Apoorv; Bansal, Roli
2017-01-01
Typhoid fever is caused by gram-negative organism Salmonella typhi. The usual presentation is high-grade fever, but complications like gastrointestinal (GI) hemorrhage and perforation are also seen frequently. With the advent of antibiotics, these complications are rarely seen now. We present a case of a young female who was admitted with a diagnosis of typhoid fever presented with a massive GI bleed from ulcers in the terminal ileum and was managed conservatively without endotherapy and surgery. How to cite this article: Goel A, Bansal R. Massive Lower Gastrointestinal Bleed caused by Typhoid Ulcer: Conservative Management. Euroasian J Hepato-Gastroenterol 2017;7(2):176-177.
NASA Astrophysics Data System (ADS)
Wu, Xiaomeng; Han, Caiqin; Chen, Jing; Huang, Yao-Wen; Zhao, Yiping
2016-04-01
The detection of Salmonella Poona from cantaloupe cubes and E. coli O157:H7 from lettuce has been explored by using a filtration method and surface-enhanced Raman spectroscopy (SERS) based on vancomycin-functionalized silver nanorod array substrates. It is found that with a two-step filtration process, the limit of detection (LOD) of Salmonella Poona from cantaloupe cubes can be as low as 100 CFU/mL in less than 4 h, whereas the chlorophyll in the lettuce causes severe SERS spectral interference. To improve the LOD of lettuce, a three-step filtration method with a hydrophobic filter is proposed. The hydrophobic filter can effectively eliminate the interferences from chlorophyll and achieve a LOD of 1000 CFU/mL detection of E. coli O157:H7 from lettuce samples within 5 h. With the low LODs and rapid detection time, the SERS biosensing platform has demonstrated its potential as a rapid, simple, and inexpensive means for pathogenic bacteria detection from fresh produce.
Comparison between DOT EIA IgM and Widal Test as early diagnosis of typhoid fever.
Begum, Z; Hossain, M A; Musa, A K; Shamsuzzaman, A K; Mahmud, M C; Ahsan, M M; Sumona, A A; Ahmed, S; Jahan, N A; Alam, M; Begum, A
2009-01-01
A recently developed DOT enzyme immunoassay known as "Typhidot" for detecting IgM antibody against 50 KDa OMP antigen of Salmonella typhi, was evaluated on 100 clinically suspected typhoid fever cases and 40 age-sex matched controls, in the Department of Microbiology, Mymensingh Medical College during, the period from June 2006 to July 2007. Blood culture, Widal test, and DOT EIA for IgM test were performed in all patients. Among 100 clinically suspected typhoid fever cases, 35 were subsequently confirmed on the basis of positive blood culture for S. typhi and/or significant rising titre of Widal test. The DOT EIA IgM test could produce results within 1 hour. The result of the DOT EIA IgM test showed a good diagnostic value for typhoid fever. The sensitivity, specificity, positive and negative predictive value of the test was found as 91.42%, 90.00%, 88.88% and 92.30% respectively. On the other hand corresponding values for Widal test were of 42.85%, 85.00%, 71.42% and 62.96% respectively. Thus, The DOT EIA IgM seems to be a practical alternative to Widal test for early diagnosis of typhoid fever.
Biomagnetic Pair Therapy and Typhoid Fever: A Pilot Study.
Frank, Bryan L
2017-10-01
Objective: This pilot study examined the laboratory responses of patients with laboratory-documented typhoid fever who were treated with Biomagnetic Pair Therapy (BPT; medical biomagnetism), a specific application of pairs of magnets for various ailments that are infectious and otherwise. Materials and Methods: This study was an assessment of patients' response to treatment with only BPT for Salmonella typhi infections (typhoid fever) using standard conventional laboratory techniques. The research was conducted in an outpatient village clinic in Kenya. There were 52 participants who were evaluated for possible systemic illness, including typhoid fever, from an open-label study. Participants who felt sick and requested testing for possible typhoid fever were tested with a standard Widal test by a certified laboratory technician. Participants who tested positive (13 patients) were then treated with BPT (a "First Aid" approach) only. These participants then returned for follow-up laboratory and clinical evaluations after 2 days. Results: Most of the participants (10 of 13) retested as negative, and all patients reported symptomatic clinical improvement. Conclusions: As a significant majority of participants demonstrated clearing of their S. typhi after BPT, this technique should be studied further in larger trials for its efficacy in treating typhoid fever.
Evaluation of microbial globin promoters for oxygen-limited processes using Escherichia coli.
Lara, Alvaro R; Jaén, Karim E; Sigala, Juan-Carlos; Regestein, Lars; Büchs, Jochen
2017-01-01
Oxygen-responsive promoters can be useful for synthetic biology applications, however, information on their characteristics is still limited. Here, we characterized a group of heterologous microaerobic globin promoters in Escherichia coli . Globin promoters from Bacillus subtilis , Campylobacter jejuni , Deinococcus radiodurans , Streptomyces coelicolor , Salmonella typhi and Vitreoscilla stercoraria were used to express the FMN-binding fluorescent protein (FbFP), which is a non-oxygen dependent marker. FbFP fluorescence was monitored online in cultures at maximum oxygen transfer capacities (OTR max ) of 7 and 11 mmol L -1 h -1 . Different FbFP fluorescence intensities were observed and the OTR max affected the induction level and specific fluorescence emission rate (the product of the specific fluorescence intensity multiplied by the specific growth rate) of all promoters. The promoter from S. typhi displayed the highest fluorescence emission yields (the quotient of the fluorescence intensity divided by the scattered light intensity at every time-point) and rate, and together with the promoters from D. radiodurans and S. coelicolor , the highest induction ratios. These results show the potential of diverse heterologous globin promoters for oxygen-limited processes using E. coli .
Valenzuela, J R; Sethi, A K; Aulik, N A; Poulsen, K P
2017-02-01
Salmonellosis on the dairy continues to have a significant effect on animal health and productivity and in the United States. Additionally, Salmonella enterica ssp. enterica causes an estimated 1.2 million cases of human illness annually. Contributing to the morbidity and mortality in both human and domestic animal species is emergence of antimicrobial resistance by Salmonella species and increased incidence of multidrug-resistant isolates. This study describes serotype distribution and the antimicrobial resistance patterns for various Salmonella serotypes isolated from bovine samples submitted to the Wisconsin Veterinary Diagnostic Laboratory (WVDL) over the past 10 yr. Salmonella serotyping and antimicrobial susceptibility testing data were obtained from the laboratory information management system at WVDL. Data from accessions were limited to bovine samples submitted to the WVDL between January 2006 and June 2015 and those that had both a definitive serotype and complete results for antimicrobial susceptibility testing. A total of 4,976 isolates were identified. Salmonella enterica ser. Dublin was the most prevalent serotype identified among bovine samples submitted to the WVDL, accounting for a total of 1,153 isolates (23% of total isolates) over the study period. Along with Dublin, Salmonella enterica ser. Cerro (795, 16%), Newport (720, 14%), Montevideo (421, 8%), Kentucky (419, 8%), and Typhimurium (202, 4%) comprised the top 6 most commonly isolated serotypes during that time. Overall, resistance of bovine Salmonella isolates in the study population remained stable, although decreases in resistance were noted for gentamicin, neomycin, and trimethoprim sulfamethoxazole during the study period. All isolates remained susceptible to enrofloxacin. These data show that antimicrobial susceptibility for bovine Salmonella has changed in the population served by WVDL in the past 10 yr. This information is important for understanding Salmonella disease ecology in Wisconsin. Our findings are also relevant for animal and public health by improving informed antimicrobial use, new drug development, and regulation of their use in food animals. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Love, W J; Zawack, K A; Booth, J G; Gröhn, Y T; Lanzas, C
2018-06-01
Antimicrobials play a critical role in treating cases of invasive non-typhoidal salmonellosis (iNTS) and other diseases, but efficacy is hindered by resistant pathogens. Selection for phenotypical resistance may occur via several mechanisms. The current study aims to identify correlations that would allow indirect selection of increased resistance to ceftriaxone, ciprofloxacin and azithromycin to improve antimicrobial stewardship. These are medically important antibiotics for treating iNTS, but these resistances persist in non-Typhi Salmonella serotypes even though they are not licensed for use in US food animals. A set of 2875 Salmonella enterica isolates collected from animal sources by the National Antimicrobial Resistance Monitoring System were stratified in to 10 subpopulations based on serotype and host species. Collateral resistances in each subpopulation were estimated as network models of minimum inhibitory concentration partial correlations. Ceftriaxone sensitivity was correlated with other β-lactam resistances, and less commonly resistances to tetracycline, trimethoprim-sulfamethoxazole or kanamycin. Azithromycin resistance was frequently correlated with chloramphenicol resistance. Indirect selection for ciprofloxacin resistance via collateral selection appears unlikely. Density of the ACSSuT subgraph resistance aligned well with the phenotypical frequency. The current study identifies several important resistances in iNTS serotypes and further research is needed to identify the causative genetic correlations.
Jones, Claire; Blohmke, Christoph J.; Waddington, Claire S.; Zhou, Liqing; Peters, Anna; Haworth, Kathryn; Sie, Rebecca; Green, Christopher A.; Jeppesen, Catherine A.; Moore, Maria; Thompson, Ben A. V.; John, Tessa; Kingsley, Robert A.; Yu, Ly-Mee; Voysey, Merryn; Hindle, Zoe; Lockhart, Stephen; Sztein, Marcelo B.; Dougan, Gordon; Angus, Brian; Levine, Myron M.; Pollard, Andrew J.
2016-01-01
Background Typhoid persists as a major cause of global morbidity. While several licensed vaccines to prevent typhoid are available, they are of only moderate efficacy and unsuitable for use in children less than two years of age. Development of new efficacious vaccines is complicated by the human host-restriction of Salmonella enterica serovar Typhi (S. Typhi) and lack of clear correlates of protection. In this study, we aimed to evaluate the protective efficacy of a single dose of the oral vaccine candidate, M01ZH09, in susceptible volunteers by direct typhoid challenge. Methods and Findings We performed a randomised, double-blind, placebo-controlled trial in healthy adult participants at a single centre in Oxford (UK). Participants were allocated to receive one dose of double-blinded M01ZH09 or placebo or 3-doses of open-label Ty21a. Twenty-eight days after vaccination, participants were challenged with 104CFU S. Typhi Quailes strain. The efficacy of M01ZH09 compared with placebo (primary outcome) was assessed as the percentage of participants reaching pre-defined endpoints constituting typhoid diagnosis (fever and/or bacteraemia) during the 14 days after challenge. Ninety-nine participants were randomised to receive M01ZH09 (n = 33), placebo (n = 33) or 3-doses of Ty21a (n = 33). After challenge, typhoid was diagnosed in 18/31 (58.1% [95% CI 39.1 to 75.5]) M01ZH09, 20/30 (66.7% [47.2 to 87.2]) placebo, and 13/30 (43.3% [25.5 to 62.6]) Ty21a vaccine recipients. Vaccine efficacy (VE) for one dose of M01ZH09 was 13% [95% CI -29 to 41] and 35% [-5 to 60] for 3-doses of Ty21a. Retrospective multivariable analyses demonstrated that pre-existing anti-Vi antibody significantly reduced susceptibility to infection after challenge; a 1 log increase in anti-Vi IgG resulting in a 71% decrease in the hazard ratio of typhoid diagnosis ([95% CI 30 to 88%], p = 0.006) during the 14 day challenge period. Limitations to the study included the requirement to limit the challenge period prior to treatment to 2 weeks, the intensity of the study procedures and the high challenge dose used resulting in a stringent model. Conclusions Despite successfully demonstrating the use of a human challenge study to directly evaluate vaccine efficacy, a single-dose M01ZH09 failed to demonstrate significant protection after challenge with virulent Salmonella Typhi in this model. Anti-Vi antibody detected prior to vaccination played a major role in outcome after challenge. Trial registration ClinicalTrials.gov (NCT01405521) and EudraCT (number 2011-000381-35). PMID:27533046
Emerging insights into the biology of typhoid toxin
Fowler, Casey C.; Chang, Shu-Jung; Gao, Xiang; Geiger, Tobias; Stack, Gabrielle; Galán, Jorge E.
2017-01-01
Typhoid toxin is a unique A2B5 exotoxin and an important virulence factor for Salmonella Typhi, the cause of typhoid fever. In the decade since its initial discovery, great strides have been made in deciphering the unusual biological program of this toxin, which is fundamentally different from related toxins in many ways. Purified typhoid toxin administered to laboratory animals causes many of the symptoms of typhoid fever, suggesting that typhoid toxin is a central factor in this disease. Further advances in understanding the biology of this toxin will help guide the development of badly needed diagnostics and therapeutic interventions that target this toxin to detect, prevent or treat typhoid fever. PMID:28213043
Mora, Flor D; Araque, María; Rojas, Luis B; Ramirez, Rosslyn; Silva, Bladimiro; Usubillaga, Alfredo
2009-07-01
Chemical constituents of the essential oil from the leaves of Minthostachys mollis (Kunth) Griseb Vaught var. mollis collected in January 2008 at Tuñame, Trujillo State, Venezuela, were separated and identified by GC-MS analysis. The essential oil was obtained by hydrodistillation and thirteen components (98.5% of the sample) were identified by comparison with the Wiley GC-MS library data base. The two major components were pulegone (55.2%) and trans-menthone (31.5%). The essential oil showed a significant inhibitory effect against Gram-positive and Gram-negative bacteria, especially Bacillus subtilis and Salmonella typhi (4 microg/mL).
Darton, Thomas C.; Blohmke, Christoph J.; Giannoulatou, Eleni; Waddington, Claire S.; Jones, Claire; Sturges, Pamela; Webster, Craig; Drakesmith, Hal; Pollard, Andrew J.; Armitage, Andrew E.
2015-01-01
Background Iron is a key pathogenic determinant of many infectious diseases. Hepcidin, the hormone responsible for governing systemic iron homeostasis, is widely hypothesized to represent a key component of nutritional immunity through regulating the accessibility of iron to invading microorganisms during infection. However, the deployment of hepcidin in human bacterial infections remains poorly characterized. Typhoid fever is a globally significant, human-restricted bacterial infection, but understanding of its pathogenesis, especially during the critical early phases, likewise is poorly understood. Here, we investigate alterations in hepcidin and iron/inflammatory indices following experimental human typhoid challenge. Methodology/Principal Findings Fifty study participants were challenged with Salmonella enterica serovar Typhi and monitored for evidence of typhoid fever. Serum hepcidin, ferritin, serum iron parameters, C-reactive protein (CRP), and plasma IL-6 and TNF-alpha concentrations were measured during the 14 days following challenge. We found that hepcidin concentrations were markedly higher during acute typhoid infection than at baseline. Hepcidin elevations mirrored the kinetics of fever, and were accompanied by profound hypoferremia, increased CRP and ferritin, despite only modest elevations in IL-6 and TNF-alpha in some individuals. During inflammation, the extent of hepcidin upregulation associated with the degree of hypoferremia. Conclusions/Significance We demonstrate that strong hepcidin upregulation and hypoferremia, coincident with fever and systemic inflammation, are hallmarks of the early innate response to acute typhoid infection. We hypothesize that hepcidin-mediated iron redistribution into macrophages may contribute to S. Typhi pathogenesis by increasing iron availability for macrophage-tropic bacteria, and that targeting macrophage iron retention may represent a strategy for limiting infections with macrophage-tropic pathogens such as S. Typhi. PMID:26394303
Date, Kashmira A.; Newton, Anna E.; Medalla, Felicita; Blackstock, Anna; Richardson, LaTonia; McCullough, Andre; Mintz, Eric D.; Mahon, Barbara E.
2016-01-01
Background Enteric fever in the United States has been primarily associated with travel and with worrisome changes in global patterns of antimicrobial resistance. We present the first comprehensive report of National Typhoid and Paratyphoid Fever Surveillance System (NTPFS) data for a 5-year period (2008–2012). Methods We reviewed data on laboratory-confirmed cases reported to NTPFS, and related antimicrobial susceptibility results of Salmonella Typhi and Paratyphi A isolates sent for testing by participating public health laboratories to the Centers for Disease Control and Prevention’s National Antimicrobial Resistance Monitoring System laboratory. Results During 2008–2012, 2341 enteric fever cases were reported, 80% typhoid and 20% paratyphoid A. The proportion caused by paratyphoid A increased from 16% (2008) to 22% (2012). Foreign travel within 30 days preceding illness onset was reported by 1961 (86%) patients (86% typhoid and 92% paratyphoid A). Travel to southern Asia was common (82% for typhoid, 97% for paratyphoid A). Among 1091 (58%) typhoid and 262 (56%) paratyphoid A isolates tested for antimicrobial susceptibility, the proportion resistant to nalidixic acid (NAL-R) increased from 2008 to 2012 (Typhi, 60% to 68%; Paratyphi A, 91% to 94%). Almost all NAL-R isolates were resistant or showed decreased susceptibility to ciprofloxacin. Resistance to at least ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole (multidrug resistant [MDR]) was limited to Typhi isolates, primarily acquired in southern Asia (13%). Most MDR isolates were also NAL-R. Conclusions Enteric fever in the United States is primarily associated with travel to southern Asia, and increasing resistance is adding to treatment challenges. A bivalent typhoid and paratyphoid vaccine is needed. PMID:27090993
Date, Kashmira A; Newton, Anna E; Medalla, Felicita; Blackstock, Anna; Richardson, LaTonia; McCullough, Andre; Mintz, Eric D; Mahon, Barbara E
2016-08-01
Enteric fever in the United States has been primarily associated with travel and with worrisome changes in global patterns of antimicrobial resistance. We present the first comprehensive report of National Typhoid and Paratyphoid Fever Surveillance System (NTPFS) data for a 5-year period (2008-2012). We reviewed data on laboratory-confirmed cases reported to NTPFS, and related antimicrobial susceptibility results of Salmonella Typhi and Paratyphi A isolates sent for testing by participating public health laboratories to the Centers for Disease Control and Prevention's National Antimicrobial Resistance Monitoring System laboratory. During 2008-2012, 2341 enteric fever cases were reported, 80% typhoid and 20% paratyphoid A. The proportion caused by paratyphoid A increased from 16% (2008) to 22% (2012). Foreign travel within 30 days preceding illness onset was reported by 1961 (86%) patients (86% typhoid and 92% paratyphoid A). Travel to southern Asia was common (82% for typhoid, 97% for paratyphoid A). Among 1091 (58%) typhoid and 262 (56%) paratyphoid A isolates tested for antimicrobial susceptibility, the proportion resistant to nalidixic acid (NAL-R) increased from 2008 to 2012 (Typhi, 60% to 68%; Paratyphi A, 91% to 94%). Almost all NAL-R isolates were resistant or showed decreased susceptibility to ciprofloxacin. Resistance to at least ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole (multidrug resistant [MDR]) was limited to Typhi isolates, primarily acquired in southern Asia (13%). Most MDR isolates were also NAL-R. Enteric fever in the United States is primarily associated with travel to southern Asia, and increasing resistance is adding to treatment challenges. A bivalent typhoid and paratyphoid vaccine is needed. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Ahmad, Nisar; Mahmood, Fazal; Khalil, Shahid Akbar; Zamir, Roshan; Fazal, Hina; Abbasi, Bilal Haider
2014-10-01
Edible mushrooms (EMs) are nutritionally rich source of proteins and essential amino acids. In the present study, the antioxidant activity via 1,1-diphenyl-2-picrylhydrazyl (DPPH) and antimicrobial potential in EMs (Pleurotus ostreatus, Morchella esculenta, P. ostreatus (Black), P. ostreatus (Yellow) and Pleurotus sajor-caju) were investigated. The DPPH radical scavenging activity revealed that the significantly higher activity (66.47%) was observed in Morchella esculenta at a maximum concentration. Similarly, the dose-dependent concentrations (200, 400, 600, 800 and 1000 µg) were also used for other four EMs. Pleurotus ostreatus exhibited 36.13% activity, P. ostreatus (Black (B)) exhibited 30.64%, P. ostreatus (Yellow (Y)) exhibited 40.75% and Pleurotus sajor-caju exhibited 47.39% activity at higher concentrations. Furthermore, the antimicrobial potential were investigated for its toxicity against gram-negative bacterial strains (Escherichia coli, Pseudomonas aeroginosa, Salmonella typhi, Klebsiella pneumonia, Erwinia carotovora and Agrobacterium tumifaciens), gram-positive bacterial strains (Bacillus subtilis, Bacillus atrophaeus and Staphylococcus aureus) and a fungal strain (Candida albicans) in comparison with standard antibiotics. Antimicrobial screening revealed that the ethanol extract of P. ostreatus was active against all microorganism tested except E. coli. Maximum zone of inhibition (13 mm) was observed against fungus and A. tumifaciens. P. sajor-caju showed best activities (12.5 mm) against B. subtilis, B. atrophaeus and K. pneumonia. P. ostreatus (Y) showed best activities against P. aeroginosa (21.83 mm), B. atrophaeus (20 mm) and C. albicans (21 mm). P. ostreatus (B) exhibited best activities against C. albicans (16 mm) and slightly lower activities against all other microbes except S. typhi. M. esculenta possess maximum activities in terms of inhibition zone against all microorganisms tested except S. typhi. © The Author(s) 2012.
Barrila, Jennifer; Yang, Jiseon; Crabbé, Aurélie; Sarker, Shameema F; Liu, Yulong; Ott, C Mark; Nelman-Gonzalez, Mayra A; Clemett, Simon J; Nydam, Seth D; Forsyth, Rebecca J; Davis, Richard R; Crucian, Brian E; Quiriarte, Heather; Roland, Kenneth L; Brenneman, Karen; Sams, Clarence; Loscher, Christine; Nickerson, Cheryl A
2017-01-01
Three-dimensional models of human intestinal epithelium mimic the differentiated form and function of parental tissues often not exhibited by two-dimensional monolayers and respond to Salmonella in key ways that reflect in vivo infections. To further enhance the physiological relevance of three-dimensional models to more closely approximate in vivo intestinal microenvironments encountered by Salmonella , we developed and validated a novel three-dimensional co-culture infection model of colonic epithelial cells and macrophages using the NASA Rotating Wall Vessel bioreactor. First, U937 cells were activated upon collagen-coated scaffolds. HT-29 epithelial cells were then added and the three-dimensional model was cultured in the bioreactor until optimal differentiation was reached, as assessed by immunohistochemical profiling and bead uptake assays. The new co-culture model exhibited in vivo-like structural and phenotypic characteristics, including three-dimensional architecture, apical-basolateral polarity, well-formed tight/adherens junctions, mucin, multiple epithelial cell types, and functional macrophages. Phagocytic activity of macrophages was confirmed by uptake of inert, bacteria-sized beads. Contribution of macrophages to infection was assessed by colonization studies of Salmonella pathovars with different host adaptations and disease phenotypes (Typhimurium ST19 strain SL1344 and ST313 strain D23580; Typhi Ty2). In addition, Salmonella were cultured aerobically or microaerobically, recapitulating environments encountered prior to and during intestinal infection, respectively. All Salmonella strains exhibited decreased colonization in co-culture (HT-29-U937) relative to epithelial (HT-29) models, indicating antimicrobial function of macrophages. Interestingly, D23580 exhibited enhanced replication/survival in both models following invasion. Pathovar-specific differences in colonization and intracellular co-localization patterns were observed. These findings emphasize the power of incorporating a series of related three-dimensional models within a study to identify microenvironmental factors important for regulating infection.
Mahmoud, Mayada; Askora, Ahmed; Barakat, Ahmed Barakat; Rabie, Omar El-Farouk; Hassan, Sayed Emam
2018-02-02
In this study, we isolated and characterized three phages named as Salmacey1, Salmacey2 and Salmacey3, infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. The most prevalent Salmonella serovars were S. typhimurium, S. enteritidis, and S. kentucky. All these Salmonella serovars were found to be resistant to more than two of the ten antimicrobial agents tested. Only S. kentucky was found to be resistant to seven antimicrobial agents. Examination of these phage particles by transmission electron microscopy (TEM), demonstrated that two phages (Salmacey1, Salmacey2) were found to belong to family Siphoviridae, and Salmacey3 was assigned to the family Myoviridae. The results of host range assay revealed that these bacteriophages were polyvalent and thus capable of infecting four strains of Salmonella serovars and Citrobacter freundii. Moreover, the two phages (Salmacey1, Salmacey2) had a lytic effect on Enterobacter cloacae and Salmacey3 was able to infect E. coli. All phages could not infect S. para Typhi, Staphylococus aureus and Bacillus cereus. One-step growth curves of bacteriophages revealed that siphovirus phages (Salmacey1, Salmacey2) have burst size (80 and 90pfu per infected cell with latent period 35min and 40min respectively), and for the myovirus Salmacey3 had a burst size 110pfu per infected cell with latent period 60min. Molecular analyses indicated that these phages contained double-stranded DNA genomes. The lytic activity of the phages against the most multidrug resistant serovars S. kentucky as host strain was evaluated. The result showed that these bacteriophages were able to completely stop the growth of S. kentucky in vitro. These results suggest that phages have a high potential for phage application to control Salmonella serovars isolated from broilers in Egypt. Copyright © 2017. Published by Elsevier B.V.
Selander, R K; Beltran, P; Smith, N H; Helmuth, R; Rubin, F A; Kopecko, D J; Ferris, K; Tall, B D; Cravioto, A; Musser, J M
1990-01-01
Multilocus enzyme electrophoresis was employed to measure chromosomal genotypic diversity and evolutionary relationships among 761 isolates of the serovars Salmonella typhi, S. paratyphi A, S. paratyphi B, S. paratyphi C, and S. sendai, which are human-adapted agents of enteric fever, and S. miami and S. java, which are serotypically similar to S. sendai and S. paratyphi B, respectively, but cause gastroenteritis in both humans and animals. To determine the phylogenetic positions of the clones of these forms within the context of the salmonellae of subspecies I, comparative data for 22 other common serovars were utilized. Except for S. paratyphi A and S. sendai, the analysis revealed no close phylogenetic relationships among clones of different human-adapted serovars, which implies convergence in host adaptation and virulence factors. Clones of S. miami are not allied with those of S. sendai or S. paratyphi A, being, instead, closely related to strains of S. panama. Clones of S. paratyphi B and S. java belong to a large phylogenetic complex that includes clones of S. typhimurium, S. heidelberg, S. saintpaul, and S. muenchen. Most strains of S. paratyphi B belong to a globally distributed clone that is highly polymorphic in biotype, bacteriophage type, and several other characters, whereas strains of S. java represent seven diverse lineages. The flagellar monophasic forms of S. java are genotypically more similar to clones of S. typhimurium than to other clones of S. java or S. paratyphi B. Clones of S. paratyphi C are related to those of S. choleraesuis. DNA probing with a segment of the viaB region specific for the Vi capsular antigen genes indicated that the frequent failure of isolates of S. paratyphi C to express Vi antigen is almost entirely attributable to regulatory processes rather than to an absence of the structural determinant genes themselves. Two clones of S. typhisuis are related to those of S. choleraesuis and S. paratyphi C, but a third clone is not. Although the clones of S. decatur and S. choleraesuis are serologically and biochemically similar, they are genotypically very distinct. Two clones of S. typhi were distinguished, one globally distributed and another apparently confined to Africa; both clones are distantly related to those of all other serovars studied. Images PMID:1973153
Whichard, Jean M; Gay, Kathryn; Stevenson, Jennifer E; Joyce, Kevin J; Cooper, Kara L; Omondi, Michael; Medalla, Felicita; Jacoby, George A; Barrett, Timothy J
2007-11-01
The National Antimicrobial Resistance Monitoring System monitors susceptibility among Enterobacteriaceae in humans in the United States. We studied isolates exhibiting decreased susceptibility to quinolones (nalidixic acid MIC >32 microg/mL or ciprofloxacin MIC > or =0.12 microg/mL) and extended-spectrum cephalosporins (ceftiofur or ceftriaxone MIC > or =2 microg/mL) during 1996-2004. Of non-Typhi Salmonella, 0.19% (27/14,043) met these criteria: 11 Senftenberg; 6 Typhimurium; 3 Newport; 2 Enteridis; and 1 each Agona, Haifa, Mbandaka, Saintpaul, and Uganda. Twenty-six isolates had gyrA mutations (11 at codon 83 only, 3 at codon 87 only, 12 at both). All Senftenberg isolates had parC mutations (S801 and T57S); 6 others had the T57S mutation. The Mbandaka isolate contained qnrB2. Eight isolates contained bla(CMY-2); 1 Senftenberg contained bla(CMY-23). One Senftenberg and 1 Typhimurium isolate contained bla(SHV-12); the Mbandaka isolate contained bla(SHV-30). Nine Senftenberg isolates contained bla(OXA-1) contained bla(OXA-9). Further studies should address patient outcomes, risk factors, and resistance dissemination prevention strategies.
Vosik, Dorothy; Tewari, Deepanker; Dettinger, Lisa; M'ikanatha, Nkuchia M; Shariat, Nikki W
2018-02-01
Although infrequently associated with reported salmonellosis in humans, Salmonella enterica, subsp. enterica serovar Kentucky (ser. Kentucky) is the most common nonclinical, nonhuman serovar reported in the United States. The goal of this study was to use Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-multi-virulence-locus sequence typing (MVLST) to subtype a collection of human clinical isolates of ser. Kentucky submitted to the Pennsylvania Department of Health and to determine the extent of antibiotic resistance in these strains. This analysis highlighted the polyphyletic nature of ser. Kentucky, and separated our isolates into two groups, Group I and Group II, which were equally represented in our collection. Furthermore, antimicrobial susceptibility testing on all isolates using a National Antimicrobial Resistance Monitoring System (NARMS) panel of antibiotics demonstrated that resistance profiles could be divided into two groups. Group I isolates were resistant to cephems and penicillins, whereas Group II isolates were resistant to quinolones, gentamicin, and sulfisoxazole. Collectively, 50% of isolates were resistant to three or more classes of antibiotics and 30% were resistant to five or more classes. The correlation of antibiotic resistance with the two different lineages may reflect adaptation within two distinct reservoirs of ser. Kentucky, with differential exposure to antimicrobials.
Diagnostics for invasive Salmonella infections: current challenges and future directions
Andrews, Jason R.; Ryan, Edward T.
2015-01-01
Invasive Salmonellosis caused by Salmonella enterica serotype Typhi or Paratyphi A, B, C, or invasive non-typhoidal Salmonella serotypes, is an immensely important disease cluster for which reliable, rapid diagnostic tests are not available. Blood culture remains the gold standard but is insensitive, slow, and resource-intensive. Existing molecular diagnostics have poor sensitivity due to the low organism burden in bodily fluids. Commercially available serologic tests for typhoidal Salmonella have had limited sensitivity and specificity. In high burden, resource-limited settings, reliance on clinical diagnosis or inaccurate tests often results in frequent, unnecessary treatment, which contributes selective pressure for the emergence of antimicrobial resistance. This practice also results in inadequate therapy for other etiologies of acute febrile illnesses, including leptospirosis and rickettsial infections. A number of novel serologic, molecular, transcriptomic and metabolomic approaches to diagnostics are under development. Target product profiles that outline specific needs may focus development and investment, and establish benchmarks for accuracy, cost, speed, and portability of new diagnostics. Of note, a critical barrier to diagnostic assay rollout will be the low cost and low perceived harm of empiric therapy on behalf of providers and patients, which leaves few perceived incentives to utilize diagnostics. Approaches that align incentives with societal goals of limiting inappropriate antimicrobial use, such as subsidizing diagnostics, may be essential for stimulating development and uptake of such assays in resource-limited settings. New diagnostics for invasive Salmonellosis should be developed and deployed alongside diagnostics for alternative etiologies of acute febrile illnesses to improve targeted use of antibiotics. PMID:25937611
Marshall, Joanna M; Flechtner, Alan D; La Perle, Krista M; Gunn, John S
2014-01-01
Chronic carriage of Salmonella Typhi is mediated primarily through the formation of bacterial biofilms on the surface of cholesterol gallstones. Biofilms, by definition, involve the formation of a bacterial community encased within a protective macromolecular matrix. Previous work has demonstrated the composition of the biofilm matrix to be complex and highly variable in response to altered environmental conditions. Although known to play an important role in bacterial persistence in a variety of contexts, the Salmonella biofilm matrix remains largely uncharacterized under physiological conditions. Initial attempts to study matrix components and architecture of the biofilm matrix on gallstone surfaces were hindered by the auto-fluorescence of cholesterol. In this work we describe a method for sectioning and direct visualization of extracellular matrix components of the Salmonella biofilm on the surface of human cholesterol gallstones and provide a description of the major matrix components observed therein. Confocal micrographs revealed robust biofilm formation, characterized by abundant but highly heterogeneous expression of polysaccharides such as LPS, Vi and O-antigen capsule. CsgA was not observed in the biofilm matrix and flagellar expression was tightly restricted to the biofilm-cholesterol interface. Images also revealed the presence of preexisting Enterobacteriaceae encased within the structure of the gallstone. These results demonstrate the use and feasibility of this method while highlighting the importance of studying the native architecture of the gallstone biofilm. A better understanding of the contribution of individual matrix components to the overall biofilm structure will facilitate the development of more effective and specific methods to disrupt these bacterial communities.
Diagnostics for invasive Salmonella infections: Current challenges and future directions.
Andrews, Jason R; Ryan, Edward T
2015-06-19
Invasive Salmonellosis caused by Salmonella enterica serotype Typhi or Paratyphi A, B, C, or invasive non-typhoidal Salmonella serotypes, is an immensely important disease cluster for which reliable, rapid diagnostic tests are not available. Blood culture remains the gold standard but is insensitive, slow, and resource-intensive. Existing molecular diagnostics have poor sensitivity due to the low organism burden in bodily fluids. Commercially available serologic tests for typhoidal Salmonella have had limited sensitivity and specificity. In high burden, resource-limited settings, reliance on clinical diagnosis or inaccurate tests often results in frequent, unnecessary treatment, which contributes selective pressure for the emergence of antimicrobial resistance. This practice also results in inadequate therapy for other etiologies of acute febrile illnesses, including leptospirosis and rickettsial infections. A number of novel serologic, molecular, transcriptomic and metabolomic approaches to diagnostics are under development. Target product profiles that outline specific needs may focus development and investment, and establish benchmarks for accuracy, cost, speed, and portability of new diagnostics. Of note, a critical barrier to diagnostic assay rollout will be the low cost and low perceived harm of empiric therapy on behalf of providers and patients, which leaves few perceived incentives to utilize diagnostics. Approaches that align incentives with societal goals of limiting inappropriate antimicrobial use, such as subsidizing diagnostics, may be essential for stimulating development and uptake of such assays in resource-limited settings. New diagnostics for invasive Salmonellosis should be developed and deployed alongside diagnostics for alternative etiologies of acute febrile illnesses to improve targeted use of antibiotics. Copyright © 2015. Published by Elsevier Ltd.
Chaiwong, T; Srivoramas, T; Sueabsamran, P; Sukontason, K; Sanford, M R; Sukontason, K L
2014-06-01
The Oriental latrine fly, Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) and the house fly, Musca domestica L., (Diptera: Muscidae) are synanthropic flies which are adapted to live in close association with human habitations, thereby making them likely mechanical vectors of several pathogens to humans. There were two main aims of this study. The first aim was to determine the prevalence of these two fly species from five types of human habitations including: fresh-food markets, garbage piles, restaurants, school cafeterias and paddy fields, in the Muang Ubon Ratchathani and Warinchamrap districts of Ubon Ratchathani province of Northeast Thailand. Flies collection were conducted monthly from September 2010-October 2011 using a reconstructable funnel trap, containing 1 day-tainted beef offal as bait. A total of 7 750 flies (6 401 C. megacephala and 1 349 M.domestica) were collected. The second aim was to examine the potential of these flies to carry pathogenic bacteria. Bacteria were isolated from 994 individual flies collected using a sweep net (555 C. megacephala and 439 M. domestica). A total of 15 bacterial genera were isolated from the external surfaces, comprising ten genera of gram-negative bacteria and five gram-positive bacteria. The most common bacteria isolated from both species were coagulase-negative staphylococci, followed by Streptococcus group D non-enterococci. Human pathogenic enteric bacteria isolated were Salmonella sp., Shigella sp., Escherichia coli O157:H7, Salmonella typhi, Bacillus sp., and Enterococcus sp., of which S. typhi is the first report of isolation from these fly species. Other human pathogens included Staphylococcus aureus and Pseudomonas aeruginosa. Not only were the number of C. megacephala positive for bacteria significantly higher than for M. domestica, but they were also carrying ~11-12 times greater bacterial load than M. domestica. These data suggest that both fly species should be considered potential mechanical vectors of bacterial pathogens associated with human habitations year-round in this region of Northeast Thailand.
Khan, Mohammad Imran; Sahito, Shah Muhammad; Khan, Mohammad Javed; Wassan, Shafi Mohammad; Shaikh, Abdul Wahab; Maheshwari, Ashok Kumar; Acosta, Camilo J.; Galindo, Claudia M.; Ochiai, Rion Leon; Rasool, Shahid; Peerwani, Sheeraz; Puri, Mahesh K.; Ali, Mohammad; Zafar, Afia; Hassan, Rumina; von Seidlein, Lorenz; Clemens, John D.; Nizami, Shaikh Qamaruddin; Bhutta, Zulfiqar A.
2006-01-01
INTRODUCTION: In research projects such as vaccine trials, accurate and complete surveillance of all outcomes of interest is critical. In less developed countries where the private sector is the major health-care provider, the private sector must be included in surveillance systems in order to capture all disease of interest. This, however, poses enormous challenges in practice. The process and outcome of recruiting private practice clinics for surveillance in a vaccine trial are described. METHODS: The project started in January 2002 in two urban squatter settlements of Karachi, Pakistan. At the suggestion of private practitioners, a phlebotomy team was formed to provide support for disease surveillance. Children who had a reported history of fever for more than three days were enrolled for a diagnosis. RESULTS: Between May 2003 and April 2004, 5540 children younger than 16 years with fever for three days or more were enrolled in the study. Of the children, 1312 (24%) were seen first by private practitioners; the remainder presented directly to study centres. In total, 5329 blood samples were obtained for microbiology. The annual incidence of Salmonella typhi diagnosed by blood culture was 407 (95% confidence interval (95% CI), 368-448) per 100 000/year and for Salmonella paratyphi A was 198 (95% CI, 171-227) per 100 000/year. Without the contribution of private practitioners, the rates would have been 240 per 100 000/year (95% CI, 211-271) for S. typhi and 114 (95% CI, 94-136) per 100 000/year for S. paratyphi A. CONCLUSION: The private sector plays a major health-care role in Pakistan. Our experience from a surveillance and burden estimation study in Pakistan indicates that this objective is possible to achieve but requires considerable effort and confidence building. Nonetheless, it is essential to include private health care providers when attempting to accurately estimate the burden of disease in such settings. PMID:16501718
Dharmasena, Madushini N; Feuille, Catherine M; Starke, Carly Elizabeth C; Bhagwat, Arvind A; Stibitz, Scott; Kopecko, Dennis J
The licensed oral, live-attenuated bacterial vaccine for typhoid fever, Salmonella enterica serovar Typhi strain Ty21a, has also been utilized as a vaccine delivery platform for expression of diverse foreign antigens that stimulate protection against shigellosis, anthrax, plague, or human papilloma virus. However, Ty21a is acid-labile and, for effective oral immunization, stomach acidity has to be either neutralized with buffer or by-passed with Ty21a in an enteric-coated capsule (ECC). Several studies have shown that efficacy is reduced when Ty21a is administered in an ECC versus as a buffered liquid formulation, the former limiting exposure to GI tract lymphoid tissues. However, the ECC was selected as a more practical delivery format for both packaging/shipping and vaccine administration ease. We have sought to increase Ty21a acid-resistance to allow for removal from the ECC and immune enhancement. To improve Ty21a acid-resistance, glutamate-dependent acid resistance genes (GAD; responsible for Shigella spp. survival at very low pH) were cloned on a multi-copy plasmid (pGad) under a controllable arabinose-inducible promoter. pGad enhanced acid survival of Ty21a by 5 logs after 3 hours at pH 2.5, when cells were pre-grown in arabinose and under conditions that promote an acid-tolerance response (ATR). For genetically 100% stable expression, we inserted the gad genes into the Ty21a chromosome, using a method that allowed for subsequent removal of a selectable antibiotic resistance marker. Further, both bacterial growth curves and survival assays in cultured human monocytes/macrophages suggest that neither the genetic methods employed nor the resulting acid-resistance conferred by expression of the Gad proteins in Ty21a had any effect on the existing attenuation of this vaccine strain.
Microbiological determinations of some vegetables from the Xochimilco zone in Mexico City, Mexico.
García-Gómez, Rolando; Chávez-Espinosa, José; Mejía-Chávez, Adriana; Duránde-Bazúa, Carmen
2002-01-01
Vegetables intake is widely recommended because of its high content of vitamins, minerals and fiber. However, the irrigation of these vegetables, using wastewaters that have received inadequate treatment often carries unseen microbial pollution that becomes a high risk potential for humans. In the present research, two of the most consumed fresh vegetables cultivated in Mexico City were analyzed, lettuce (Lactuca sativa) and Mexican coriander (Eryngium foetidum). These vegetables are commonly consumed raw. The vegetable choice and the disinfection's method were carried out by the application of two tests to two hundred people in an aleatory form. Similarly, vegetable sampling was carried out by means of a random sampling from the cultivated areas in a chosen "chinampa" (from Náhuatl or Aztec, chinamitl, bulrush or cattail stalks lattice for hydroponics cultivation). Vegetable samples were transferred, in dark plastic bags and in cool boxes at 4 +/- 1.5 degrees C, to the laboratory. Microbiological analysis for Salmonella typhi, mesophilic microorganisms, and fecal coliforms were done according to the "NOM-093SSA1-1994" (Mexico). Results obtained demonstrated that samples treated with the most preferred disinfectant, a colloidal silver based one, had a partial elimination of pathogenic microorganisms found in both vegetables lettuce (Lactuca sativa) and coriander (Eryngium foetidum) samples (mesophyllic microorganisms from 200,000 to 96,500 UFC/g and from 175,000 to 125,000 UFC/g and fecal coliforms from 75 to 0.43 NMP/g and from 150 to 2.10 NMP/g, respectively). Salmonella typhi for all samples gave a positive result. Therefore, it was recommended to the cultivators of the Xochimilco (Náhuatl or Aztec name that means "place where flowers bloom") zone, either stop using contaminated water for irrigation or to use more efficient methods in order to eliminate pathogenic microorganisms, such as diluted chlorine solutions made with commercial cotton clothing bleachers.
Fahim, Hira; Dasti, Javid Iqbal; Ali, Ihsan; Ahmed, Safia; Nadeem, Muhammad
2014-01-01
Objective To evaluate physico-chemical properties and antimicrobial potential of indigenous honey samples against different reference strains including Escherichia coli ATCC 8739, Enterobacter aerogenes ATCC 13048, Pseudomonas aeroginosa ATCC 9027, Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Klebsiella pneumonia ATCC 13883, Aspergillus niger ATCC 16404, Rhizopus oligosporus PCSIR1, Candida albicans ATCC 14053 and Candida utilis ATCC 9950. Methods By using standard methods samples were evaluated for their antimicrobial properties including additive effect of starch and non-peroxidase activity, antioxidative properties (phenol contents, flavonoid contents, 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity). Prior to this evaluation, complete physico-chemical properties including pH, color, ash contents, protein contents, moisture contents, hydroxymethyl furfural contents, total sugar contents, reducing sugar and non-reducing sugar contents were analyzed. Results Relatively higher ash contents were found in the Siddar honey i.e. (0.590 0±0.033 6)% and small honey showed relatively higher protein contents i.e. (777.598±9.880) mg/kg. The moisture contents of tested honey samples ranged between 13.8%-16.6%, total sugar contents from 61.672%-72.420% and non-reducing sugar contents from 1.95%-3.93%. Presences of phenolic contents indicate higher antioxidant potential of these honey samples. All bacteria showed clear inhibition zones in response to tested honey samples whereas fungi and yeast showed inhibition at higher concentrations of these honey samples. For Escherichia coli, Bacillus subtilis, Salmonella typhi, Pseudomonas aeroginosa and Aspergillus niger, overall the small honey showed the higher activity than other honey samples. Conclusion Physico-chemical analysis of honey samples confirmed good quality of honey according to the standards set by European Union Commission and Codex Alimentarius Commission. Evaluation of these honey samples confirms antimicrobial potential of particular types of honeys indigenous to Pakistan. PMID:25183333
Keddy, Karen H; Sooka, Arvinda; Letsoalo, Maupi E; Hoyland, Greta; Chaignat, Claire Lise; Morrissey, Anne B; Crump, John A
2011-01-01
Abstract Objective To evaluate three commercial typhoid rapid antibody tests for Salmonella Typhi antibodies in patients suspected of having typhoid fever in Mpumalanga, South Africa, and Moshi, United Republic of Tanzania. Methods The diagnostic accuracy of Cromotest® (semiquantitative slide agglutination and single tube Widal test), TUBEX® and Typhidot® was assessed against that of blood culture. Performance was modelled for scenarios with pretest probabilities of 5% and 50%. Findings In total 92 patients enrolled: 53 (57.6%) from South Africa and 39 (42.4%) from the United Republic of Tanzania. Salmonella Typhi was isolated from the blood of 28 (30.4%) patients. The semiquantitative slide agglutination and single-tube Widal tests had positive predictive values (PPVs) of 25.0% (95% confidence interval, CI: 0.6–80.6) and 20.0% (95% CI: 2.5–55.6), respectively. The newer typhoid rapid antibody tests had comparable PPVs: TUBEX®, 54.1% (95% CI: 36.9–70.5); Typhidot® IgM, 56.7% (95% CI: 37.4–74.5); and Typhidot® IgG, 54.3% (95% CI: 36.6–71.2). For a pretest probability of 5%, PPVs were: TUBEX®, 11.0% (95% CI: 6.6–17.9); Typhidot® IgM, 9.1% (95% CI: 5.8–14.0); and Typhidot® IgG, 11.0% (6.3–18.4). For a pretest probability of 50%, PPVs were: TUBEX®, 70.2% (95% CI: 57.3–80.5); Typhidot® IgM, 65.6% (95% CI: 54.0–75.6); and Typhidot® IgG, 70.0% (95% CI: 56.0–81.1). Conclusion Semiquantitative slide agglutination and single-tube Widal tests performed poorly. TUBEX® and Typhidot® may be suitable when pretest probability is high and blood cultures are unavailable, but their performance does not justify deployment in routine care settings in sub-Saharan Africa. PMID:21897484
Hassing, R-J; Goessens, W H F; Mevius, D J; van Pelt, W; Mouton, J W; Verbon, A; van Genderen, P J
2013-10-01
The emergence of decreased ciprofloxacin susceptibility (DCS) in Salmonella enterica serovar Typhi and serovar Paratyphi A, B or C limits treatment options. We studied the impact of DCS isolates on the fate of travellers returning with enteric fever and possible alternative treatment options. We evaluated the clinical features, susceptibility data and efficacy of empirical treatment in patients with positive blood cultures of a DCS isolate compared to patients infected with a ciprofloxacin-susceptible (CS) isolate in the period from January 2002 to August 2008. In addition, the pharmacokinetic and pharmacodynamic parameters of ciprofloxacin, levofloxacin and gatifloxacin were determined to assess if increasing the dose would result in adequate unbound fraction of the drug 24-h area under the concentration-time curve/minimum inhibitory concentration (ƒAUC(0-24)/MIC) ratio. Patients with DCS more often returned from the Indian subcontinent and had a longer fever clearance time and length of hospital stay compared to patients in whom the initial empirical therapy was adequate. The mean ƒAUC(0-24)/MIC was 41.3 ± 18.8 in the patients with DCS and 585.4 ± 219 in patients with a CS isolate. For DCS isolates, the mean ƒAUC0-24/MIC for levofloxacin was 60.5 ± 28.7 and for gatifloxacin, it was 97.9 ± 28.0. Increasing the dose to an adequate ƒAUC(0-24)/MIC ratio will lead to conceivably toxic drug levels in 50% of the patients treated with ciprofloxacin. Emerging DCS isolates has led to the failure of empirical treatment in ill-returned travellers. We demonstrated that, in some cases, an adequate ƒAUC(0-24)/MIC ratio could be achieved by increasing the dose of ciprofloxacin or by the use of alternative fluoroquinolones.
IroN, a Novel Outer Membrane Siderophore Receptor Characteristic of Salmonella enterica
Bäumler, Andreas J.; Norris, Tracy L.; Lasco, Todd; Voigt, Wolfgang; Reissbrodt, Rolf; Rabsch, Wolfgang; Heffron, Fred
1998-01-01
Speciation in enterobacteria involved horizontal gene transfer. Therefore, analysis of genes acquired by horizontal transfer that are present in one species but not its close relatives is expected to give insights into how new bacterial species were formed. In this study we characterize iroN, a gene located downstream of the iroBC operon in the iroA locus of Salmonella enterica serotype Typhi. Like iroBC, the iroN gene is present in all phylogenetic lineages of S. enterica but is absent from closely related species such as Salmonella bongori or Escherichia coli. Comparison of the deduced amino acid sequence of iroN with other proteins suggested that this gene encodes an outer membrane siderophore receptor protein. Mutational analysis in S. enterica and expression in E. coli identified a 78-kDa outer membrane protein as the iroN gene product. When introduced into an E. coli fepA cir fiu aroB mutant on a cosmid, iroN mediated utilization of structurally related catecholate siderophores, including N-(2,3-dihydroxybenzoyl)-l-serine, myxochelin A, benzaldehyde-2,3-dihydroxybenzhydrazone, 2-N,6-N-bis(2,3-dihydroxybenzoyl)-l-lysine, 2-N,6-N-bis(2,3-dihydroxybenzoyl)-l-lysine amide, and enterochelin. These results suggest that the iroA locus functions in iron acquisition in S. enterica. PMID:9515912
Diagnosis of imported Ugandan typhoid fever based on local outbreak information: A case report.
Ota, Shinichiro; Maki, Yohei; Mori, Kazuma; Hamamoto, Takaaki; Kurokawa, Atsushi; Ishihara, Masashi; Yamamoto, Takayuki; Imai, Kazuo; Misawa, Kazuhisa; Yuki, Atsushi; Fujikura, Yuji; Maeda, Takuya; Kawana, Akihiko
2016-11-01
Re-emerging multidrug-resistant typhoid fever is becoming a worldwide threat, especially in East Africa. At the beginning of 2015, an outbreak of typhoid fever started in the capital city of Uganda, and 1940 suspected cases were reported by 5 March 2015. In this report, we describe a case of typhoid fever caused by a MDR strain with HIV infection and hemoglobin S-syndrome thalassemia in an Ugandan from Kampala City. It is essential to consider MDR strains of Salmonella enterica serovar Typhi infections, including fluoroquinolone-resistant strains, in patients from Africa and Southeast Asia. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Manjunath, M.; Kulkarni, Ajaykumar D.; Bagihalli, Gangadhar B.; Malladi, Shridhar; Patil, Sangamesh A.
2017-01-01
Spectroscopic (IR, NMR, UV-vis, ESR, ESI-mass), magnetic and TGA studies suggests octahedral geometry for all the CoII, NiII and CuII complexes of the Schiff bases, derived from 4-aminoantipyrine and 8-formyl-7-Hydroxy-4-methylcoumarin/5-formyl-6-hydroxycoumarin, coordinated through ONO donor sites. Antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi), antifungal (Aspergillus niger, Aspergillus flavus and Cladosporium) and DNA cleavage properties of the metal complexes are investigated. The results suggested that some of the synthesized compounds are potential antimicrobials. The synthesized compounds tested for their anthelmintic activities and it was found that CoII and NiII complexes exhibited good anthelmintic properties.
Antimicrobial activity of spices.
Arora, D S; Kaur, J
1999-08-01
Spices have been shown to possess medicinal value, in particular, antimicrobial activity. This study compares the sensitivity of some human pathogenic bacteria and yeasts to various spice extracts and commonly employed chemotherapeutic substances. Of the different spices tested only garlic and clove were found to possess antimicrobial activity. The bactericidal effect of garlic extract was apparent within 1 h of incubation and 93% killing of Staphylococcus epidermidis and Salmonella typhi was achieved within 3 h. Yeasts were totally killed in 1 h by garlic extract but in 5 h with clove. Some bacteria showing resistance to certain antibiotics were sensitive to extracts of both garlic and clove. Greater anti-candidal activity was shown by garlic than by nystatin. Spices might have a great potential to be used as antimicrobial agents.
Rodríguez, Francisco I; Procura, Francisco; Bueno, Dante J
2018-06-26
The present work compared 7 different culture methods and 3 selective-differential plating media for Salmonella ser. Enteritidis (SE) and S. ser. Typhimurium (ST) isolation using artificially contaminated poultry feces. The sensitivity (Se) and accuracy (AC) values increased when Modified Semisolid Rappaport Vassiliadis (MSRV) methods were used in place of the Tetrathionate (TT) or Tetrathionate Hajna broth (TTH) method in the enrichment step. However, there was no significant difference between the pre-enrichment incubation at 4 to 6 and 18 to 24 h for MSRV5 and MSRV24 methods, respectively. All Salmonella strains were recovered in the lowest dilutions tested for MSRV24 and 3 out of 4 for MSRV5 methods (2 to 10 cfu/25 g). The TT and TTH methods showed a detection limit between 2.2 × 101 and 1.0 × 106 cfu/25 g of fecal sample. The agreement was variable between the methods. However, there was a very good agreement between the MSRV5 and MSRV24 methods, and between tetrathionate direct (TTD, no pre-enrichment media used) and buffered peptone water 18 to 24 h Tetrathionate broth combination (TT24 method) for Salmonella strains. The 3 selective-differential plating media showed an agreement between fair and excellent. They performed a high Se and AC in the MSRV methods for Salmonella strains. There was a significant difference between center and periphery for MSRV methods, and there was a fair agreement between them for all strains. The MSRV methods are better than TT/TTH methods for the isolation of different strains of SE and ST in poultry fecal samples. The MSRV5 method can be used to reduce the time for the detection of SE and ST in these samples. Furthermore, a loopful of the periphery of the growth should be streaked onto differential-selective plating media, even in the absence of halo, to decrease the number of false negative results.
Gal-Mor, Ohad; Suez, Jotham; Elhadad, Dana; Porwollik, Steffen; Leshem, Eyal; Valinsky, Lea; McClelland, Michael; Schwartz, Eliezer; Rahav, Galia
2012-02-01
Enteric fever is an invasive life-threatening systemic disease caused by the Salmonella enterica human-adapted serovars Typhi and Paratyphi. Increasing incidence of infections with Salmonella enterica serovar Paratyphi A and the spreading of its antibiotic-resistant derivates pose a significant health concern in some areas of the world. Herein, we describe a molecular and phenotypic characterization of an S. Paratyphi A strain accounted for a recent paratyphoid outbreak in Nepal that affected at least 37 travelers. Pulsed-field gel electrophoresis analysis of the outbreak isolates revealed one genetic clone (pulsotype), confirming a single infecting source. Genetic profiling of the outbreak strain demonstrated the contribution of specific bacteriophages as a prime source of genetic diversity among clinical isolates of S. Paratyphi A. Phenotypic characterization in comparison with the S. Paratyphi A ATCC 9150 reference sequenced strain showed differences in flagellar morphology and increased abilities of the outbreak strain with respect to its motility, invasion into nonphagocytic cells, intracellular multiplication, survival within macrophages, and higher induction of interleukin-8 (IL-8) secreted by host cells. Collectively, these differences suggest an enhanced virulence potential of this strain and demonstrate an interesting phenotypic variation among S. Paratyphi A isolates. In vivo profiling of 16 inflammatory cytokines in patients infected with the outbreak strain revealed a common profile of a remarkable gamma interferon (IFN-γ) induction together with elevated concentrations of tumor necrosis factor alpha (TNF-α), IL-6, IL-8, IL-10, and IL-15, but not IL-12, which was previously demonstrated as elevated in nontyphoidal Salmonella infections. This apparent profile implies a distinct immune response to paratyphoid infections.
Woubit, Abdela; Yehualaeshet, Teshome; Habtemariam, Tsegaye; Samuel, Temesgen
2012-04-01
The bacterial genera Escherichia, Salmonella, Shigella, Vibrio, Yersinia, and Francisella include important food safety and biothreat agents. By extensive mining of the whole genome and protein databases of diverse, closely and distantly related bacterial species and strains, we have identified novel genome regions, which we utilized to develop a rapid detection platform for these pathogens. The specific genomic targets we have identified to design the primers in Francisella tularensis subsp. tularensis, F. tularensis subsp. novicida, Shigella dysenteriae, Salmonella enterica serovar Typhimurium, Vibrio cholerae, Yersinia pestis, and Yersinia pseudotuberculosis contained either known genes or putative proteins. Primer sets were designed from the target regions for use in real-time PCR assays to detect specific biothreat pathogens at species or strain levels. The primer sets were first tested by in silico PCR against whole-genome sequences of different species, subspecies, or strains and then by in vitro PCR against genomic DNA preparations from 23 strains representing six biothreat agents (Escherichia coli O157:H7 strain EDL 933, Shigella dysenteriae, S. enterica serovar Typhi, F. tularensis subsp. tularensis, V. cholerae, and Y. pestis) and six foodborne pathogens (Salmonella Typhimurium, Salmonella Saintpaul, Shigella sonnei, F. tularensis subsp. novicida, Vibrio parahaemolyticus, and Y. pseudotuberculosis). Each pathogen was specifically identifiable at the genus and species levels. Sensitivity assays performed with purified DNA showed the lowest detection limit of 128 fg of DNA/μl for F. tularensis subsp. tularensis. A preliminary test to detect Shigella organisms in a milk matrix also enabled the detection of 6 to 60 CFU/ml. These new tools could ultimately be used to develop platforms to simultaneously detect these pathogens.
Witkowska, Evelin; Korsak, Dorota; Kowalska, Aneta; Księżopolska-Gocalska, Monika; Niedziółka-Jönsson, Joanna; Roźniecka, Ewa; Michałowicz, Weronika; Albrycht, Paweł; Podrażka, Marta; Hołyst, Robert; Waluk, Jacek; Kamińska, Agnieszka
2017-02-01
We show that surface-enhanced Raman spectroscopy (SERS) coupled with principal component analysis (PCA) can serve as a fast, reliable, and easy method for detection and identification of food-borne bacteria, namely Salmonella spp., Listeria monocytogenes, and Cronobacter spp., in different types of food matrices (salmon, eggs, powdered infant formula milk, mixed herbs, respectively). The main aim of this work was to introduce the SERS technique into three ISO (6579:2002; 11290-1:1996/A1:2004; 22964:2006) standard procedures required for detection of these bacteria in food. Our study demonstrates that the SERS technique is effective in distinguishing very closely related bacteria within a genus grown on solid and liquid media. The advantages of the proposed ISO-SERS method for bacteria identification include simplicity and reduced time of analysis, from almost 144 h required by standard methods to 48 h for the SERS-based approach. Additionally, PCA allows one to perform statistical classification of studied bacteria and to identify the spectrum of an unknown sample. Calculated first and second principal components (PC-1, PC-2) account for 96, 98, and 90% of total variance in the spectra and enable one to identify the Salmonella spp., L. monocytogenes, and Cronobacter spp., respectively. Moreover, the presented study demonstrates the excellent possibility for simultaneous detection of analyzed food-borne bacteria in one sample test (98% of PC-1 and PC-2) with a goal of splitting the data set into three separated clusters corresponding to the three studied bacteria species. The studies described in this paper suggest that SERS represents an alternative to standard microorganism diagnostic procedures. Graphical Abstract New approach of the SERS strategy for detection and identification of food-borne bacteria, namely S. enterica, L. monocytogenes, and C. sakazakii in selected food matrices.
Report of data on children with non-typhi Salmonella gastroenteritis in a three-year period.
Küçük, Öznur; Biçer, Suat; Ugraş, Meltem; Çöl, Defne; Giray, Tuba; Çiler Erdag, Gülay; Gürol, Yeşim; Yilmaz, Gülden; Yalvaç, Zerrin; Vitrinel, Ayça; Kaspar, Çigdem
2016-09-01
The purpose of this study was to evaluate the clinical and laboratory data of children with acute gastroenteritis caused by non-typhoid Salmonella spp. infections. Clinical (demographic data, symptoms and findings) and laboratory data (stool microscopy, rapid antigen tests, culture, multiplex polymerase chain reaction and blood test results) of children with acute gastroenteritis caused by non-typhoid Salmonella spp. between January 2010 and October 2012 were evaluated. Differences between the groups for categorical variables were estimated with a chi-square or Fisher exact test; for continuous variables with two independent samples a t test was used. P values < 0.05 were considered statistically significant. Sixty-seven children, 39 (58.2%) males and 28 (41.8%) females aged between 1 - 16 years (mean ± SD: 4.64 ± 2.91), were diagnosed with acute bacterial gastroenteritis caused by non-typhoid Salmonella spp. The main serotypes are Salmonella enteritidis (85%) and Salmonella typhimurium (7.5%). The presenting symptoms were diarrhoea (95.5%), fever (61.1%), vomiting (34.3%), abdominal pain (32.8%), loss of appetite (7.4%) and malaise (7.4%). Fever and dehydration (moderate and/or severe) were detected in 11 (16.4%) patients. The mean leukocyte count was 10.930/μL [95% confidence interval (CI), SD: ± 5.710/μL], neutrophil count was 7.880/μL (95% CI, SD: ± 4.960/μL), CRP was 64.16 mg/L (95% CI, SD: ± 76.24 mg/L), and erythrocyte sedimentation rate was 34.72 mm/hour (95% CI, SD: ± 13.64 mm/h). Stool microscopy was positive for leukocytes in 18 patients (26.8%). The definitive diagnosis was made with positive stool culture (n = 65) and/or PCR test (n = 4). Viral antigen positivity was detected in 10 patients (14.9%), evaluated as viral co-infection and false positive results. Antibiotic therapy and hospitalization were required in 26 (38.8%) and 23 (34.3%) patients, respectively. Salmonella carriage was detected in one patient (1.5%). Bloody diarrhoea, leukocytes in stool with an increased erythrocyte sedimentation rate and a CRP level without overt leukocytosis may indicate Salmonella infection. Viral antigens may cause false positive results in fast antigen tests in cases where clinical and laboratory findings indicate bacterial aetiology. Stool culture is a reference method in diagnosis whereas some agents may be detected via molecular techniques (polymerase chain reaction) in spite of negative culture. Multiplex polymerase chain reaction may be used to detect Salmonella spp. and may reveal false positivity for viruses as well as the detection of other bacteria.
Gay, Kathryn; Stevenson, Jennifer E.; Joyce, Kevin J.; Cooper, Kara L.; Omondi, Michael; Medalla, Felicita; Jacoby, George A.; Barrett, Timothy J.
2007-01-01
The National Antimicrobial Resistance Monitoring System monitors susceptibility among Enterobacteriaceae in humans in the United States. We studied isolates exhibiting decreased susceptibility to quinolones (nalidixic acid MIC >32 µg/mL or ciprofloxacin MIC >0.12 µg/mL) and extended-spectrum cephalosporins (ceftiofur or ceftriaxone MIC >2 µg/mL) during 1996–2004. Of non-Typhi Salmonella, 0.19% (27/14,043) met these criteria: 11 Senftenberg; 6 Typhimurium; 3 Newport; 2 Enteridis; and 1 each Agona, Haifa, Mbandaka, Saintpaul, and Uganda. Twenty-six isolates had gyrA mutations (11 at codon 83 only, 3 at codon 87 only, 12 at both). All Senftenberg isolates had parC mutations (S80I and T57S); 6 others had the T57S mutation. The Mbandaka isolate contained qnrB2. Eight isolates contained blaCMY-2; 1 Senftenberg contained blaCMY-23. One Senftenberg and 1Typhimurium isolate contained blaSHV-12; the Mbandaka isolate contained blaSHV-30. Nine Senftenberg isolates contained blaOXA-1; 1 contained blaOXA-9. Further studies should address patient outcomes, risk factors, and resistance dissemination prevention strategies. PMID:18217551
Enteric fever in Mumbai--clinical profile, sensitivity patterns and response to antimicrobials.
Jog, S; Soman, R; Singhal, T; Rodrigues, C; Mehta, A; Dastur, F D
2008-04-01
Enteric fever is endemic in Mumbai and its diagnosis poses several problems. Our main aim was to study the clinical profile, haematological features of culture proven typhoid cases, the antimicrobial susceptibility pattern of the isolates and the time to defervescence with the treatment received. This was a retospective chart review of all cases of culture proven enteric fever carried out at a tertiary care private hospital in Mumbai over the period January 2003 to September 2005. Culture positivity in our study was 52.6%. Sixty one percent of the isolates were Salmonella typhi while 39% were Salmonella paratyphi A. An absolute eosinopenia was seen in 76.9% of the patients. Before being admitted to the hospital, 46.2% received antibiotics. The mean time to defervescence in patients who received prior antibiotics was 4.5 days while that in those who did not receive prior antibiotics was 5.1 days. A high culture positivity despite prior or ongoing antibiotic treatment was seen. Absolute eosinophil count of 0% could be an important marker of typhoid. High prevalence of nalidixic acid resistance, a marker of resistance to fluoroquinolones was observed. Combination treatment was not found to be superior to treatment with a single antibiotic.
Martín-Pozo, Angeles; Arana, David M; Fuentes, Miriam; Alós, Juan-Ignacio
2014-01-01
Azithromycin represents an alternative option to treat bacterial diarrhea when the antibiotic therapy is indicated. Little is known regarding the susceptibility to azithromycin in enteropathogens in Spain. The MICs of azithromycin were determined by E-test against Salmonella non-typhi (SNT), Shigella and Yersinia isolates collected over the last three years (2010-2012). In addition, the susceptibility to other antibiotics usually used to treat gastrointestinal diseases was determined in these isolates by using a microdilution method. A total of 139 strains of SNT, Shigella and Yersinia were studied. All of them, except one strain, had a MIC≤16mg/L of azithromycin. In the adult population, 14.7% and 40.6% of SNT and Shigella isolates, respectively, were resistant to at least 2 of following antibiotics: amoxicillin, trimethoprim-sulfamethoxazole and ciprofloxacin. In the pediatric population, 10% of SNT clinical isolates and 28.6% (2/7) of Shigella isolates were resistant to amoxicillin and trimethoprim-sulfamethoxazole. In our experience, azithromycin would be a useful antibiotic alternative to treat bacterial diarrhea. Copyright © 2013 Elsevier España, S.L. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Ravenscroft, N; Cescutti, P; Gavini, M; Stefanetti, G; MacLennan, C A; Martin, L B; Micoli, F
2015-03-02
Salmonella paratyphi A is increasingly recognized as a common cause of enteric fever cases and there are no licensed vaccines against this infection. Antibodies directed against the O-polysaccharide of the lipopolysaccharide of Salmonella are protective and conjugation of the O-polysaccharide to a carrier protein represents a promising strategy for vaccine development. O-Acetylation of S. paratyphi A O-polysaccharide is considered important for the immunogenicity of S. paratyphi A conjugate vaccines. Here, as part of a programme to produce a bivalent conjugate vaccine against both S. typhi and S. paratyphi A diseases, we have fully elucidated the O-polysaccharide structure of S. paratyphi A by use of HPLC-SEC, HPAEC-PAD/CD, GLC, GLC-MS, 1D and 2D-NMR spectroscopy. In particular, chemical and NMR studies identified the presence of O-acetyl groups on C-2 and C-3 of rhamnose in the lipopolysaccharide repeating unit, at variance with previous reports of O-acetylation at a single position. Moreover HR-MAS NMR analysis performed directly on bacterial pellets from several strains of S. paratyphi A also showed O-acetylation on C-2 and C-3 of rhamnose, thus this pattern is common and not an artefact from O-polysaccharide purification. Conjugation of the O-polysaccharide to the carrier protein had little impact on O-acetylation and therefore should not adversely affect the immunogenicity of the vaccine. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Storing Drinking-water in Copper pots Kills Contaminating Diarrhoeagenic Bacteria
Sudha, V.B. Preethi; Ganesan, Sheeba; Pazhani, G.P.; Ramamurthy, T.; Nair, G.B.
2012-01-01
Microbially-unsafe water is still a major concern in most developing countries. Although many water-purification methods exist, these are expensive and beyond the reach of many people, especially in rural areas. Ayurveda recommends the use of copper for storing drinking-water. Therefore, the objective of this study was to evaluate the effect of copper pot on microbially-contaminated drinking-water. The antibacterial effect of copper pot against important diarrhoeagenic bacteria, including Vibrio cholerae O1, Shigella flexneri 2a, enterotoxigenic Escherichia coli, enteropathogenic E. coli, Salmonella enterica Typhi, and Salmonella Paratyphi is reported. When drinking-water (pH 7.83±0.4; source: ground) was contaminated with 500 CFU/mL of the above bacteria and stored in copper pots for 16 hours at room temperature, no bacteria could be recovered on the culture medium. Recovery failed even after resuscitation in enrichment broth, followed by plating on selective media, indicating loss of culturability. This is the first report on the effect of copper on S. flexneri 2a, enteropathogenic E. coli, and Salmonella Paratyphi. After 16 hours, there was a slight increase in the pH of water from 7.83 to 7.93 in the copper pots while the other physicochemical parameters remained unchanged. Copper content (177±16 ppb) in water stored in copper pots was well within the permissible limits of the World Health Organization. Copper holds promise as a point-of-use solution for microbial purification of drinking-water, especially in developing countries. PMID:22524115
Storing drinking-water in copper pots kills contaminating diarrhoeagenic bacteria.
Sudha, V B Preethi; Ganesan, Sheeba; Pazhani, G P; Ramamurthy, T; Nair, G B; Venkatasubramanian, Padma
2012-03-01
Microbially-unsafe water is still a major concern in most developing countries. Although many water-purification methods exist, these are expensive and beyond the reach of many people, especially in rural areas. Ayurveda recommends the use of copper for storing drinking-water. Therefore, the objective of this study was to evaluate the effect of copper pot on microbially-contaminated drinking-water. The antibacterial effect of copper pot against important diarrhoeagenic bacteria, including Vibrio cholerae O1, Shigella flexneri 2a, enterotoxigenic Escherichia coli, enteropathogenic E. coli, Salmonella enterica Typhi, and Salmonella Paratyphi is reported. When drinking-water (pH 7.83 +/- 0.4; source: ground) was contaminated with 500 CFU/mL of the above bacteria and stored in copper pots for 16 hours at room temperature, no bacteria could be recovered on the culture medium. Recovery failed even after resuscitation in enrichment broth, followed by plating on selective media, indicating loss of culturability. This is the first report on the effect of copper on S. flexneri 2a, enteropathogenic E. coli, and Salmonella Paratyphi. After 16 hours, there was a slight increase in the pH of water from 7.83 to 7.93 in the copper pots while the other physicochemical parameters remained unchanged. Copper content (177 +/- 16 ppb) in water stored in copper pots was well within the permissible limits of the World Health Organization. Copper holds promise as a point-of-use solution for microbial purification of drinking-water, especially in developing countries.
Differential antibacterial response of chicken granulosa cells to invasion by Salmonella serovars.
Babu, Uma S; Harrison, Lisa M; Patel, Isha R; Ramirez, Gerardo A; Williams, Kristina M; Pereira, Marion; Balan, Kannan V
2016-06-01
In the United States, Salmonella enterica ser. Enteritidis (SE) is among the leading bacterial cause of foodborne illness via consumption of raw or undercooked eggs. The top Salmonella serovars implicated in U.S. foodborne outbreaks associated with chicken consumption include SE, Typhimurium (ST), Heidelberg (SH), Montevideo, Mbandka, Braenderup, and Newport. While enforcement actions target the eradication of SE from layer hens, there is a growing concern that other serovars could occupy this niche and be a cause of egg-transmitted human salmonellosis. Therefore, we tested the invasion and survival of SE, SH, ST, and Salmonella enterica ser. Hadar (S. Hadar) at 4 and 20 h post infection (hpi) in chicken ovarian granulosa cells (cGC); a cellular layer which surrounds the previtelline layer and central yolk in egg-forming follicles. We also evaluated cGC transcriptional changes, using an antibacterial response PCR array, to assess host response to intracellular SalmonellaWe observed that invasion of cGC by SE, SH, and ST was significantly higher than invasion by S. Hadar, with ST showing the highest level of invasion. The Bacterial Survival Index, defined as the ratio of intracellular bacteria at 20 and 4 h, were 18.94, 7.35, and 15.27 for SE, SH, and ST, respectively, with no significant difference in survival between SE or ST compared to SH. Evaluation of cGC anti-Salmonella gene responses indicated that at 4 hpi there was a significant decrease in Toll-like receptor (TLR)-4 mRNA in cGC infected with SE, whereas TLR5 and myeloid differentiation primary response gene 88 were significantly down regulated across all serovars. At 4 hpi, invasion by Salmonella serovars resulted in significant upregulation of several antimicrobial genes, and proinflammatory cytokines and chemokines (PICs). At 20 hpi, all the serovars induced PICs with SH being the strongest inducer. Additionally, SE, SH and ST differentially induced signal transduction pathways. Although only a single strain from each serovar was tested, cGC presents a useful ex vivo cell culture model to assess the virulence potential of Salmonella serovars. Published by Oxford University Press on behalf of Poultry Science Association 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Aman, Abu Tholib; Gasem, Muhammad Hussein; Tjitra, Emiliana; Alisjahbana, Bachti; Kosasih, Herman; Merati, Ketut Tuti; Arif, Mansyur; Karyana, Muhammad; Sudarmono, Pratiwi; Suharto, Suharto; Lisdawati, Vivi; Neal, Aaron; Siddiqui, Sophia
2017-01-01
Abstract Background Acute febrile illness is a common reason for hospitalization in many developing countries, including Indonesia. While patients can often be categorized and managed based on clinical presentations, diagnostic capacity in these countries remains limited, leading to poor patient outcomes. For patients with central nervous system (CNS) infections, identifying the underlying etiologies is particularly important to prevent lifelong neurological complications and death. Methods As part of a study conducted at 8 top-referral hospitals across Indonesia from 2013 to 2016, 114 of 1,486 enrolled subjects presented with an acute fever and a CNS syndrome. To identify the etiologies and clinical manifestations of these infections, as well as the management of febrile patients at the hospitals, demographic and clinical data were collected at enrollment, and blood samples were collected for diagnostic testing at enrollment, once during days 14–28, and at 3 months after enrollment. Results Subject ages ranged from 1 to 63.2 years old (median of 4.9 years old), and underlying diseases were reported in 35 (30.7%) subjects. Standard-of-care, molecular, and serological testing identified pathogens in 56 (49.1%) cases, as detailed in the table. Of the 19 subjects who died, 18 presented with decreased consciousness and 5 were infected with Rickettsia typhi, which was clinically misdiagnosed in each case. Conclusion The findings from this study will improve the diagnosis and treatment of patients presenting with CNS syndromes in Indonesia. Additionally, the discovery of misdiagnosed, fatal etiologies highlights the general need for greater diagnostic testing capacity to aid clinicians and inform public health policy makers. Acute febrile patients with neurological signs and symptoms Consciousness status (n) Normal (61) Decreased (53) Mortality (%) 1.6 34 End-of-study status (n) Discharged (60) Died (1) Discharged (35) Died (18) Etiology (n) Unknown (32) Unknown (1) Unknown (16) Unknown (9) HHV-6 (9) Dengue (5) R. typhi (5) Dengue (8) HHV-6 (3) Dengue (1) Chikungunya (5) Influenza (2) Influenza (1) Influenza (3) E. faecalis (2) Salmonella spp. (1) K. pneumoniae (1) Chikungunya (1) S. pneumoniae (1) Amoeba (1) Leptospira spp. (1) S. Typhi (1) E. coli (1) S. Aureus (1) Seoul Virus (1) S.Typhi (1) RSV (1) Disclosures All authors: No reported disclosures.
Francy, D.S.; Bushon, R.N.; Brady, A.M.G.; Bertke, E.E.; Kephart, C.M.; Likirdopulos, C.A.; Mailot, B.E.; Schaefer, F. W.; Lindquist, H.D. Alan
2009-01-01
Aims: To compare the performance of traditional methods to quantitative polymerase chain reaction (qPCR) for detecting five biological agents in large-volume drinking-water samples concentrated by ultrafiltration (UF). Methods and Results: Drinking-water samples (100 l) were seeded with Bacillus anthracis, Cryptospordium parvum, Francisella tularensis, Salmonella Typhi, and Vibrio cholerae and concentrated by UF. Recoveries by traditional methods were variable between samples and between some replicates; recoveries were not determined by qPCR. Francisella tularensis and V. cholerae were detected in all 14 samples after UF, B. anthracis was detected in 13, and C. parvum was detected in 9 out of 14 samples. Numbers found by qPCR after UF were significantly or nearly related to those found by traditional methods for all organisms except for C. parvum. A qPCR assay for S. Typhi was not available. Conclusions: qPCR can be used to rapidly detect biological agents after UF as well as traditional methods, but additional work is needed to improve qPCR assays for several biological agents, determine recoveries by qPCR, and expand the study to other areas. Significance and Impact of the Study: To our knowledge, this is the first study to compare the use of traditional and qPCR methods to detect biological agents in large-volume drinking-water samples. ?? 2009 The Society for Applied Microbiology.
Issa, Aseel; Ibrahim, Salam A.; Tahergorabi, Reza
2017-01-01
Salmonella Typhimurium (S. Typhi) and Escherichia coli (E. coli) have been responsible for an increasing number of outbreaks linked to fresh produce, such as baby spinach leaves, in the last two decades. More recently, antimicrobial biodegradable packaging systems have been attracting much attention in the food packaging industry as eco-friendly alternatives to conventional plastic packaging. The objective of this study was to evaluate the effect of antibacterial nanocomposite films on inoculated spinach leaves and on the sensory properties of these leaves during eight days of refrigerated storage. In this study, an antibacterial film comprised of sweet potato starch (SPS), montmorillonite (MMT) nanoclays and thyme essential oil (TEO) as a natural antimicrobial agent was developed. Our results showed that the incorporation of TEO in the film significantly (p < 0.05) reduced the population of E. coli and S. Typhi on fresh baby spinach leaves to below detectable levels within five days, whereas the control samples without essential oil maintained approximately 4.5 Log colony forming unit (CFU)/g. The sensory scores for spinach samples wrapped in films containing TEO were higher than those of the control. This study thus suggests that TEO has the potential to be directly incorporated into a SPS film to prepare antimicrobial nanocomposite films for food packaging applications. PMID:28587199
López-Gálvez, Francisco; Gil, Maria Isabel; Allende, Ana
2018-04-01
The effects of relative humidity (RH), fluctuating climate conditions, inoculum size and carrier on the survival of Salmonella enterica serovar Typhimurium on baby lettuce in environmental test chambers were studied. Buffered peptone water (BPW), distilled water (DW), and irrigation water (IW) were compared as inoculum carriers. Additionally, survival of Salmonella in suspensions prepared using filtered and unfiltered IW was assessed. Salmonella Typhimurium survived better on baby lettuce plants at high RH independently of the inoculum size. When lettuce plants were grown under fluctuating environmental conditions, Salmonella survival was similar under both RH conditions. Regarding the inoculum carrier, the inoculated microorganism survived better on lettuce plants when BPW was used as carrier both at high and low RH. Survival rate of Salmonella in IW was affected by the presence of native microbiota. Native microbiota present in IW did not affect survival of Salmonella or the levels of mesophilic bacteria on the baby lettuce leaves. The information obtained in the present study contributes to the knowledge on the effect of environmental conditions on pathogenic bacteria survival on growing edible plants. These results are useful when selecting the methodology to carry out experimental studies on the survival of microbial pathogens under different pre-harvest conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Karimaei, Samira; Sadeghi, Javad; Asadian, Mahla; Esghaei, Maryam; Pourshafie, Mohammad Reza; Talebi, Malihe
2016-07-01
Enterococci have a widespread attendance in the circumference and belongs to the enteric commensal microbiota. Most of them produce the antimicrobial compounds and have an inhibition effect on pathogenic microorganisms. The objective of this study was to characterize the enterococcal strains isolated from human normal flora and assess their antibacterial activity. Enterococcal isolates were obtained from the feces of eighteen healthy humans. All enterococcal species were identified by biochemical and species-specific polymerase chain reaction (PCR). These isolates were investigated further to examine their ability to inhibit growth of Salmonella typhi, Shigella flexneri and Escherichia coli by well diffusion assay. Furthermore, antibiotic susceptibility test was performed and genetic relatedness of all isolates was evaluated by Pulse Field Gel Electrophoresis (PFGE). In all, 432 isolates were obtained from fecal samples. All of the isolates identified as Enterococcus faecium by biochemical and molecular (PCR) methods. Using repetitive element palindromic (REP)-PCR method 54 patterns have been obtained and were selected for further evaluation. The results indicated that 66%, 38% and 24% of our isolates had antimicrobial effect against S. typhi, S flexneri and enteroaggregative Escherichia coli (EAEC), respectively. On the other hand, there was no significant inhibition effect against enteropathogenic E. coli (EPEC) and enterotoxigenic E. coli (ETEC). All isolates were sensitive to vancomycin, teicoplanin, linezolid, ampicillin, chloramphenicol and gentamicin. On the other hand, the resistance rates for erythromycin, tetracycline and ciprofloxacin were 20%, 22%, and 1.8% respectively. In addition, the analysis of PFGE showed forty patterns with eight (40.7%) common types (CT) and thirty two (59.2%) single types (ST). Among eight common types, only one common type (CT5) had similar antimicrobial effect. These results suggested that enterococcal isolates obtained from human normal flora have potential antibacterial effect against S. typhi, S. flexneri and E. coli. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alam, Mohammad Sayed; Nam, Young-Joo; Lee, Dong-Ung
2013-11-01
In the present study, a series of (Z)-2,3-diphenylacrylonitrile analogs were synthesized and then evaluated in terms of their cytotoxic activities against four human cancer cell lines, e.g. lung cancer (A549), ovarian cancer (SK-OV-3), skin cancer (SK-MEL-2), and colon cancer (HCT15), as well as anti-microbial activities against three microbes, e.g. Staphylococcus aureus, Salmonella typhi, and Aspergillus niger. The title compounds were synthesized by Knoevenagel condensation reaction of benzyl cyanide or p-nitrobenzyl cyanide with substituted benzaldehydes in good yields. Most of the compounds exhibited significant suppressive activities against the growth of all cancer cell lines. Compound 3c was most active in inhibiting the growth of A549, SK-OV-3, SK-MEL-2, and HCT15 cells lines with IC50 values of 0.57, 0.14, 0.65, and 0.34 mg/mL, respectively, followed by compounds 3f, 3i, and 3h. Compound 3c exhibited 2.4 times greater cytotoxic activity against HCT15 cells, whereas it showed similar potency against SK-OV-3 cells to that of the standard anti-cancer agent doxorubicin. Structure-activity relationship study revealed that electron-donating groups at the para-position of phenyl ring B were more favorable for improved cytotoxic activity, whereas the presence of electron-withdrawing groups was unfavorable compare to unsubstituted acrylonitrile. An optimal electron density on phenyl ring A of (Z)-2,3-diphenylacrylonitrile analogs was crucial for their cytotoxic activities against human cancer cell lines used in the present study. Qualitative structure-cytotoxic activity relationships were studied using physicochemical parameters; a good correlation between calculated polar surface area (PSA), a lipophobic parameter, and cytotoxic activity was found. Moreover, all compounds showed significant anti-bacterial activities against S. typhi, whereas compound 3k showed potent inhibition against both S. aureus and S. typhi bacterial strains. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Rashid, Md Mamun Or; Akhter, Kazi Nahid; Chowdhury, Jakir Ahmed; Hossen, Foysal; Hussain, Md Saddam; Hossain, Md Tanvir
2017-06-26
Our present study was conducted to characterize the phytoconstituents present in the aqueous extract of Momordica charantia and evaluate the antimicrobial efficacy of silver-extract nanoparticles (Ag-Extract-NPs). Silver nanoparticles (AgNPs) were prepared by reducing AgNO 3; and NaBH 4 served as reducing agent. After screening of phytochemicals; AgNPs and aqueous extract were mixed thoroughly and then coated by polyaniline. These NPs were characterized by using Visual inspection, UV spectroscopy, FTIR, SEM and TEM techniques. Antimicrobial activities were assessed against Staphylococcus aureus, Salmonella typhi, Escherichia coli and Pseudomonas aeruginosa. Aqueous extract of M. charantia fruits contain alkaloid, phenol, saponin etc. UV-Vis spectrum showed strong absorption peak around 408 nm. The presence of -CH, -NH, -COOH etc. stretching in FTIR spectrum of Ag-Extract-NPs endorsed that AgNPs were successfully capped by bio-compounds. SEM and TEM result revealed that synthesized NPs had particle size 78.5-220 nm. Ag-Extract-NPs showed 34.6 ± 0.8 mm zone of inhibition against E. coli compared to 25.6 ± 0.5 mm for ciprofloxacin. Maximum zone of inhibition for Ag-Extract-NPs were 24.8 ± 0.7 mm, 26.4 ± 0.4 mm, 7.4 ± 0.4 mm for S. aureus, P. aeruginosa and S. typhi. We found that Ag-Extract-NPs have much better antibacterial efficacy than AgNPs and M. charantia extract has individually. It is also noticed that gram negative bacteria (except S. typhi) are more susceptible to Ag-Extract-NPs than gram positive bacteria. Ag-Extract-NPs showed strong antibacterial activity. In order to make a reliable stand for mankind, further study is needed to consider determining the actual biochemical pathway by which AgNPs-extracts exert their antimicrobial effect.
Association between specific plasmids and relapse in typhoid fever.
Gotuzzo, E; Morris, J G; Benavente, L; Wood, P K; Levine, O; Black, R E; Levine, M M
1987-01-01
We studied isolates from 73 patients hospitalized with typhoid fever in Lima, Peru. Of these 73 patients, 11 (15%) suffered a clinical relapse, with fever and positive blood cultures, within 3 months of their original illness. Using plasmids as epidemiologic markers, we found that three patients who subsequently relapsed were initially infected with more than one strain of Salmonella typhi. There was a highly significant association between relapse and isolation of a strain containing either a 24- or a 38-kilobase plasmid at the time of the original infection; however, we were unable to show any evidence of homology between these two plasmids. Our data indicate that infection with multiple strains is not uncommon in this endemic area and suggest that relapse may be partly strain dependent. Images PMID:2821064
Chohan, Zahid H; Sumrra, Sajjad H
2012-04-01
A new series of biologically active thienyl derived triazole Schiff bases and their oxovanadium(IV) complexes have been synthesized and characterized on the basis of physical (m.p., magnetic susceptibility and conductivity), spectral (IR, ¹H and ¹³C NMR, electronic and mass spectrometry) and microanalytical data. All the Schiff base ligands and their oxovanadium(IV) complexes have been subjected to in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella enterica serover typhi) and two Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacterial strains and, for in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glabrata. Brine shrimp bioassay was also carried out to check the cytotoxic nature of these compounds.
NASA Astrophysics Data System (ADS)
Selvi, Canan; Nartop, Dilek
2012-09-01
New polymer-bound Schiff bases and Cr(III) complexes have been synthesized by the reaction of 4-benzyloxybenzaldehyde, polymer-bound with 2-aminophenol, 2-amino-4-chlorophenol and 2-amino-4-methylphenol. The structure of polymeric-Schiff bases and their Cr(III) complexes have been characterized by elemental analyses, magnetic measurements, IR, UV-Vis, TG-DTA and 1H-NMR. All these compounds have also been investigated for antibacterial activity by the well-diffusion method against Staphylococcus aureus (RSKK-07035), Shigella dysenteria type 10 (RSKK 1036), Listeria monocytogenes 4b(ATCC 19115, Escherichia coli (ATCC 1230), Salmonella typhi H (NCTC 901.8394), Staphylococcus epidermis (ATCC 12228), Brucella abortus (RSKK-03026), Micrococcs luteus (ATCC 93419, Bacillus cereus sp., Pseudomonas putida sp. and for antifungal activity against Candida albicans (Y-1200-NIH).
Corona-Castañeda, Berenice; Pereda-Miranda, Rogelio
2012-01-01
Twenty-six microbiologically inactive (MIC > 512 µg/mL) convolvulaceous resin glycosides ( 1- 26) were tested for resistance modulatory activity in vitro against Escherichia coli Rosetta-gami and two nosocomial pathogens, Salmonella typhi and Shigella flexneri. These compounds exerted a potentiation effect of the clinically useful antibiotics tetracycline, kanamycin, and chloramphenicol against the tested gram-negative bacteria by increasing antibiotic susceptibility up to 32-fold at concentrations of 25 µg/mL. Therefore, the oligosaccharides from the morning glory family (Convolvulaceae) represent metabolites that reverse microbial resistance mechanisms, favoring an increase in the strength and effectiveness of current antibiotics that are not effective in the treatment of refractive infections caused by multidrug-resistant strains. © Georg Thieme Verlag KG Stuttgart · New York.
[Two cases of typhoid fever with reduced susceptibility to fluoroquinolones].
Adachi, T; Masuda, G; Imamura, A; Ajisawa, A; Negishi, M; Takayama, N; Takinaga, K; Takano, S
2001-01-01
Two separate febrile Indian patients who reside in Japan and had recently returned from their country were diagnosed as suffering from typhoid fever. Fluoroquinolone therapy was clinically ineffective and the addition of a third-generation cephalosporin was required in each case. Each strain of Salmonella Typhi was resistant to nalidixic acid in vitro and also showed higher minimal inhibitory concentration to other quinolones than usual susceptible strains. Similar cases of typhoid fever responding poorly to quinolone treatment have been observed in the Indian subcontinent, south-east Asia and central Asia since the early 1990s, and potential spread by travelers into Japan is of serious concern. Although quinolones still remain the drugs of choice for treatment of typhoid fever, physicians should be aware of the possibility and implications of clinical treatment failure.
Tabu, Collins; Breiman, Robert F.; Ochieng, Benjamin; Aura, Barrack; Cosmas, Leonard; Audi, Allan; Olack, Beatrice; Bigogo, Godfrey; Ongus, Juliette R.; Fields, Patricia; Mintz, Eric; Burton, Deron; Oundo, Joe; Feikin, Daniel R.
2012-01-01
Background The epidemiology of non-Typhi Salmonella (NTS) bacteremia in Africa will likely evolve as potential co-factors, such as HIV, malaria, and urbanization, also change. Methods As part of population-based surveillance among 55,000 persons in malaria-endemic, rural and malaria-nonendemic, urban Kenya from 2006–2009, blood cultures were obtained from patients presenting to referral clinics with fever ≥38.0°C or severe acute respiratory infection. Incidence rates were adjusted based on persons with compatible illnesses, but whose blood was not cultured. Results NTS accounted for 60/155 (39%) of blood culture isolates in the rural and 7/230 (3%) in the urban sites. The adjusted incidence in the rural site was 568/100,000 person-years, and the urban site was 51/100,000 person-years. In both sites, the incidence was highest in children <5 years old. The NTS-to-typhoid bacteremia ratio in the rural site was 4.6 and in the urban site was 0.05. S. Typhimurium represented >85% of blood NTS isolates in both sites, but only 21% (urban) and 64% (rural) of stool NTS isolates. Overall, 76% of S. Typhimurium blood isolates were multi-drug resistant, most of which had an identical profile in Pulse Field Gel Electrophoresis. In the rural site, the incidence of NTS bacteremia increased during the study period, concomitant with rising malaria prevalence (monthly correlation of malaria positive blood smears and NTS bacteremia cases, Spearman's correlation, p = 0.018 for children, p = 0.16 adults). In the rural site, 80% of adults with NTS bacteremia were HIV-infected. Six of 7 deaths within 90 days of NTS bacteremia had HIV/AIDS as the primary cause of death assigned on verbal autopsy. Conclusions NTS caused the majority of bacteremias in rural Kenya, but typhoid predominated in urban Kenya, which most likely reflects differences in malaria endemicity. Control measures for malaria, as well as HIV, will likely decrease the burden of NTS bacteremia in Africa. PMID:22363591
Environmental Survey of Drinking Water Sources in Kampala, Uganda, during a Typhoid Fever Outbreak
Kahler, A. M.; Nansubuga, I.; Nanyunja, E. M.; Kaplan, B.; Jothikumar, N.; Routh, J.; Gómez, G. A.; Mintz, E. D.; Hill, V. R.
2017-01-01
ABSTRACT In 2015, a typhoid fever outbreak began in downtown Kampala, Uganda, and spread into adjacent districts. In response, an environmental survey of drinking water source types was conducted in areas of the city with high case numbers. A total of 122 samples was collected from 12 source types and tested for Escherichia coli, free chlorine, and conductivity. An additional 37 grab samples from seven source types and 16 paired large volume (20 liter) samples from wells and springs were also collected and tested for the presence of Salmonella enterica serovar Typhi. Escherichia coli was detected in 60% of kaveras (drinking water sold in plastic bags) and 80% of refilled water bottles; free chlorine was not detected in either source type. Most jerry cans (68%) contained E. coli and had free chlorine residuals below the WHO-recommended level of 0.5 mg/liter during outbreaks. Elevated conductivity readings for kaveras, refilled water bottles, and jerry cans (compared to treated surface water supplied by the water utility) suggested that they likely contained untreated groundwater. All unprotected springs and wells and more than 60% of protected springs contained E. coli. Water samples collected from the water utility were found to have acceptable free chlorine levels and no detectable E. coli. While S. Typhi was not detected in water samples, Salmonella spp. were detected in samples from two unprotected springs, one protected spring, and one refilled water bottle. These data provided clear evidence that unregulated vended water and groundwater represented a risk for typhoid transmission. IMPORTANCE Despite the high incidence of typhoid fever globally, relatively few outbreak investigations incorporate drinking water testing. During waterborne disease outbreaks, measurement of physical-chemical parameters, such as free chlorine residual and electrical conductivity, and of microbiological parameters, such as the presence of E. coli or the implicated etiologic agent, in drinking water samples can identify contaminated sources. This investigation indicated that unregulated vended water and groundwater sources were contaminated and were therefore a risk to consumers during the 2015 typhoid fever outbreak in Kampala. Identification of contaminated drinking water sources and sources that do not contain adequate disinfectant levels can lead to rapid targeted interventions. PMID:28970225
Palomo, Gonzalo; Campos, Maria Jorge; Ugarte, María; Porrero, María Concepción; Alonso, Juan Manuel; Borge, Carmen; Vadillo, Santiago; Domínguez, Lucas; Quesada, Alberto; Píriz, Segundo
2013-02-01
Non-typhoidal salmonellosis is an important zoonotic disease caused by Salmonella enterica. This work focuses on the identification of Salmonella enterica clonal strains which, presenting a wide distribution potential, express resistance determinants that compromise effectiveness of the antimicrobial therapy. The screening was performed on 506 Salmonella enterica isolates from animals and humans, which were characterized by serovar and phage typing, genome macrorestriction and pulsed-field gel electrophoresis, and detection of phenotypic and genotypic traits for antimicrobial resistance. A Salmonella Enteritidis strain with strong quinolone resistance is spread on three host environments carrying one of the four variants found for the GyrA protein: (1) Asp87Tyr, the major polymorphism found in 39 Salmonella isolates from human origin and six from poultry; (2) Ser83Phe, with four isolates from human origin and one from white stork (Ciconia ciconia); and (3) Asp87Asn or (4) Asp87Gly, with two isolates each from human origins. Several Salmonella Typhimurium strains that presented int1 elements and the classically associated pentaresistance (ACSSuT) phenotype were found distributed between two host environments: domestic animals and humans, domestics and wild animals, or wild fauna plus humans. This study points out the importance of monitoring gut microbiota and its antimicrobial resistance from wildlife, in parallel to livestock animals and humans, especially for animal species that are in close contact with people.
Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars
Johnson, Timothy J.; Ricke, Steven C.; Nayak, Rajesh; Danzeisen, Jessica
2013-01-01
SUMMARY Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today. PMID:24296573
Typhoid fever: case report and literature review.
Sanhueza Palma, Natalia Carolina; Farías Molina, Solange; Calzadilla Riveras, Jeannette; Hermoso, Amalia
2016-06-21
Typhoid fever remains a major health problem worldwide, in contrast to Chile, where this disease is an isolated finding. Clinical presentation is varied, mainly presenting with fever, malaise, abdominal discomfort, and nonspecific symptoms often confused with other causes of febrile syndrome. We report a six-year-old, male patient presenting with fever of two weeks associated with gastrointestinal symptoms, malaise, hepatomegaly and elevated liver enzymes. Differential diagnoses were considered and a Widal reaction and two blood cultures were requested; both came back positive, confirming the diagnosis of typhoid fever caused by Salmonella typhi. Prior to diagnosis confirmation, empirical treatment was initiated with ceftriaxone and metronidazole, with partial response; then drug therapy was adjusted according to ciprofloxacin susceptibility testing with a favorable clinical response. We discuss diagnostic methods and treatment of enteric fever with special emphasis on typhoid fever.
Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity.
Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S
2015-01-05
Green synthesis of silver nanoparticles has been achieved using environmentally acceptable plant extract. It is observed that Abutilon indicum leaf extract can reduce silver ions into silver nanoparticles within 15 min of reaction time. The formation and stability of the reduced silver nanoparticles in the colloidal solution were monitored by UV-Vis spectrophotometer analysis. The mean particle diameter of silver nanoparticles was calculated from the XRD pattern. FT-IR spectra of the leaf extract after the development of nanoparticles are determined to allow identification of possible functional groups responsible for the conversion of metal ions to metal nanoparticles. The AgNPs thus obtained showed highly potent antibacterial activity toward Gram-positive (Staphyloccocus aureus and Bacillus subtilis) and Gram-negative (Salmonella typhi and Escherichia coli) microorganisms. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sahani, M. K.; Pandey, S. K.; Pandey, O. P.; Sengupta, S. K.
2014-09-01
Oxovanadium(IV) complexes have been synthesized by reacting vanadyl sulfate with Schiff bases derived from 4-amino-5-(substitutedphenoxyacetic acid)-1,2,4-triazole-3-thiol and benzil. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non-electrolytes and characterized by elemental analysis, spectral techniques (UV-Vis, IR, EPR and XRD) and magnetic moment measurements. The EPR spectra indicate that the free electron is in dxy orbital. In vitro antifungal activity of ligands and synthesized compounds was determined against fungi Aspergillus niger, Colletotrichum falcatum and Colletotrichum pallescence and in vitro antibacterial activity was determined by screening the compounds against Gram-negative (Escherichia coli and Salmonella typhi) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacterial strains. The antimicrobial activities have shown that the activity increases upon complexation.
Determination of free polysaccharide in Vi glycoconjugate vaccine against typhoid fever.
Giannelli, C; Cappelletti, E; Di Benedetto, R; Pippi, F; Arcuri, M; Di Cioccio, V; Martin, L B; Saul, A; Micoli, F
2017-05-30
Glycoconjugate vaccines based on the Vi capsular polysaccharide directed against Salmonella enterica serovar Typhi are licensed or in development against typhoid fever, an important cause of morbidity and mortality in developing countries. Quantification of free polysaccharide in conjugate vaccines is an important quality control for release, to monitor vaccine stability and to ensure appropriate immune response. However, we found that existing separation methods based on size are not appropriate as free Vi non-specifically binds to unconjugated and conjugated protein. We developed a method based on free Vi separation by Capto Adhere resin and quantification by HPAEC-PAD. The method has been tested for conjugates of Vi derived from Citrobacter freundii with different carrier proteins such as CRM 197 , Tetanus Toxoid and Diphtheria Toxoid. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Mangasuli, Sumitra N; Hosamani, Kallappa M; Devarajegowda, Hirihalli C; Kurjogi, Mahantesh M; Joshi, Shrinivas D
2018-02-25
A series of novel coumarin-theophylline hybrids were synthesized and examined for their anti-tubercular activity in vitro against Mycobacterium tuberculosis H 37 Rv, anti-microbial activity in vitro against gram-positive bacteria (Staphylococcus aureus) and gram-negative bacterias (Escherichia coli, Salmonella typhi) as well as fungi (Candida albicans). The compound (3a) has shown excellent anti-tubercular activity with MIC of 0.12 μg/mL. Electron donating compounds (3a, 3f) have displayed significant anti-microbial activity. The compounds have also been precisely elucidated using single crystal X-ray diffraction techniques. Molecular docking study has been performed against 4DQU enzyme of Mycobacterium tuberculosis showed good binding interactions and is in agreement with the in vitro results. Copyright © 2018. Published by Elsevier Masson SAS.
UV inactivation of pathogenic and indicator microorganisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, J.C.; Ossoff, S.F.; Lobe, D.C.
1985-06-01
Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4more » times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.« less
Typhoid fever: A report on a point-source outbreak of 69 cases in Cape Town.
Popkiss, M E
1980-03-01
In 1978, after a party in a Cape Town suburb attended by several hundred people, 69 persons were treated for typhoid fever. The precise source of the infection could not be traced, although it is reasonable to suppose that food eaten at the party had been contaminated by the main caterer. All 57 cultures of Salmonella typhi phage-typed were of phage type 46, including that obtained from the stool of the main caterer, who was asymptomatic. An epidemiological profile of the cases and an account of the management of the outbreak is given. There were no deaths and no patient became a carrier. Although the outbreak was contained, certain problems relating thereto are aired, including in particular the potential hazard of food-borne disease wherever housing and environmental standards are low.
Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.
Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T; Soniya, E V; Mathew, Jyothis; Radhakrishnan, E K
2014-01-01
Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.
Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp
Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T.; Soniya, E.V.; Mathew, Jyothis; Radhakrishnan, E.K.
2014-01-01
Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm – 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus. PMID:25763025
Mirski, Tomasz; Bartoszcze, Michał; Bielawska-Drózd, Agata; Gryko, Romuald; Kocik, Janusz; Niemcewicz, Marcin; Chomiczewski, Krzysztof
2016-01-01
Both the known biological agents that cause infectious diseases, as well as modified (ABF-Advanced Biological Factors) or new, emerging agents pose a significant diagnostic problem using previously applied methods, both classical, as well as based on molecular biology methods. The latter, such as PCR and real-time PCR, have significant limitations, both quantitative (low capacity), and qualitative (limited number of targets). The article discusses the results of studies on using the microarray method for the identification of viruses (e.g. Orthopoxvirus group, noroviruses, influenza A and B viruses, rhino- and enteroviruses responsible for the FRI (Febrile Respiratory Illness), European bunyaviruses, and SARS-causing viruses), and bacteria (Mycobacterium spp., Yersinia spp., Campylobacter spp., Streptococcus pneumoniae, Salmonella typhi, Salmonella enterica, Staphylococcus aureus, Neisseria meningitidis, Clostridium difficile , Helicobacter pylori), including multiple antibiotic-resistant strains. The method allows for the serotyping and genotyping of bacteria, and is useful in the diagnosis of genetically modified agents. It allows the testing of thousands of genes in one experiment. In addition to diagnosis, it is applicable for gene expression studies, analysis of the function of genes, microorganisms virulence, and allows the detection of even single mutations. The possibility of its operational application in epidemiological surveillance, and in the detection of disease outbreak agents is demonstrated.
Song, Qifa; Yang, Yuanbin; Lin, Wenping; Yi, Bo; Xu, Guozhang
2017-09-25
We aimed to describe the molecular epidemiological characteristics and clinical treatment outcome of typhoid fever in Ningbo, China during 2005-2014. Eighty-eight Salmonella Typhi isolates were obtained from 307 hospitalized patients. Three prevalent pulsed-field gel electrophoresis (PFGE) patterns of 54 isolates from 3 outbreaks were identified. Overall, there were 64 (72.7%) isolates from clustered cases and 24 (27.3%) isolates from sporadic cases. Resistance to nalidixic acid (NAL) (n = 47; 53.4%) and ampicillin (AMP) (n = 40; 45.4%) and rare resistance to tetracycline (TET) (n = 2; 2.3%) and gentamicin (GEN) (n = 2; 2.3%) were observed. No isolates resistant to cefotaxime (CTX), chloramphenicol (CL), ciprofloxacin (CIP), and trimethoprim-sulfamethoxazole (SXT) were found. The occurrence of reduced sensitivity to CIP was 52.3% (n = 46). The medians of fever clearance time in cases with and without complications were 7 (interquartile range (IQR): 4-10) and 5 (IQR: 3-7) days (P = 0.001), respectively, when patients were treated with CIP or levofloxacin (LEV) and/or third-generation cephalosporins (CEP). Rates of serious complications were at low levels: peritonitis (2.3%), intestinal hemorrhage (6.8%), and intestinal perforation (1.1%). The present study revealed a long-term clustering trend with respect to PFGE patterns, occasional outbreaks, and the rapid spread of AMP resistance and decreased CIP susceptibility among S. Typhi isolates in recent years.
[Comparative studies of methods of salmonella enrichment (author's transl)].
Pietzsch, O; Kretschmer, F J; Bulling, E
1975-07-01
Eight different methods of salmonella enrichment were compared in two series of experiments involving 100 samples of whole-egg powder and 80 samples of frozen whole liquid egg, respectively. 66 out of a total of 100 samples of whole-egg powder had been artificially infected with varying numbers of S. typhi-murium; 60 out of 80 samples of frozen whole liquid egg were found to be naturally infected with various salmonella species. 3 of the 8 methods (Table 1) were compared within an international collaborative study with 14 laboratories in 11 countries participating. A reduction of the pre-enrichment period from 18 to 6 hours and of volumes used in pre-enrichment and selective enrichment from 10 and 100 ml, respectively to 1 and 10 ml, respectively were found to have adverse influence upon the result of isolations, in particular in the case of weakly infected samples. In contrast, extended incubation over 48 hours as well as preparation of two sub-cultures on solid selective media following incubation of enrichment cultures over 18-24 hours and 42-48 hours, respectively always resulted in a certain increase of salmonella yield which, however, exhibited gradual differences for the individual methods examined. Preparation of a 2nd sub-culture meant, in particular, a decisive improvement of the result of isolations from artificially infected samples if selenite-cystine enrichment volumes were 10 and 100 ml, respectively. The best results could be obtained by means of the following methods of enrichment: Pre-enrichment of material in buffered peptone water at 37 degrees C over 18 hours; pipetting of 10 ml inoculated and incubated pre-enriched material into 100 ml selenite-cystine or tetrathionate enrichment medium according to MULLER-KAUFFMANN; onward incubation of the enrichment culture at 43 degrees C over 48 hours; and preparation of sub-cultures on solid selective media after 24 and 48 hours. The method using tetrathionate enrichment medium was found to be most expensive, results, however, were the most consistent ones.
Ma, T; Xu, L; Wang, H; Guo, X; Li, Z; Wan, F; Chen, J; Liu, L; Liu, X; Chang, G; Chen, G
2017-06-01
Salmonella enterica ser. Pullorum is one of the most easily re-infecting pathogens in poultry production because of its mechanism of escaping from immune elimination. We used the transcriptome method to investigate the variation in gene expression in chicken spleen resulting from the interaction between hosts and S. Pullorum in the survival process. The expression of various genes related to the maturation and activation of B cells was activated before S. Pullorum was eliminated, which might help S. Pullorum escape from the elimination process. The suppression of some genes involved in the fusion of autophagosomes and lysosomes, such as MYO6, was identified and may be regulated by the secretion systems of S. Pullorum. In addition, a large proportion of these differentially expressed genes could be localized in the identified quantitative trait loci regions associated with the antibody response to bacteria. Collectively, these identified genes provided an outline for further understanding the interaction between chicken immune cells and S. Pullorum in chicken spleen. © 2017 Stichting International Foundation for Animal Genetics.
Rapid analysis of foodborne pathogens by surface-enhanced Raman spectroscopy
NASA Astrophysics Data System (ADS)
Sengupta, Atanu; Shende, Chetan; Huang, Hermes; Farquharson, Stuart; Inscore, Frank
2012-05-01
Foodborne diseases resulting from Campylobacter, Escherichia, Listeria, Salmonella, Shigella and Vibrio species affect as many as 76 million persons in the United States each year, resulting in 325,000 hospitalizations and 5,000 deaths. The challenge to preventing distribution and consumption of contaminated foods lies in the fact that just a few bacterial cells can rapidly multiply to millions, reaching infectious doses within a few days. Unfortunately, current methods used to detect these few cells rely on lengthy growth enrichment steps that take a similar amount of time (1 to 4 days). Consequently, there is a critical need for an analyzer that can rapidly extract and detect foodborne pathogens in 1-2 hours (not days), at 100 colony forming units per gram of food, and with a specificity that differentiates from indigenous microflora, so that false alarms are eliminated. In an effort to meet this need, we have been developing a sample system that extracts such pathogens from food, selectively binds these pathogens, and produces surface-enhanced Raman spectra (SERS). Here we present preliminary SERS measurements of Listeria and Salmonella.
Ribas, A; Poonlaphdecha, S
2017-03-01
The role of amphibians as Salmonella reservoirs has not been as well studied as in reptiles, where the literature is abundant. Recent outbreaks of salmonellosis associated with exotic pet frogs have occurred in United States. Frog farming and wild frog harvesting have increased the international trade in these species. This necessitates a better understanding of the risk of salmonellosis transmission from amphibians to humans. We explored the presence of Salmonella in amphibians (frogs and toads) in Thailand, where farmed and wild frogs as well as toads are present. These live animals are easily found in the local markets and are used as food. Exportation of frog meat from Thailand is common. During March-June 2014, ninety-seven frogs were collected from several habitats, including frog farms, urban areas and protected natural areas. The collected amphibians were tested for the presence of Salmonella. The overall prevalence of Salmonella was 69.07% (90.00% in farm animals, 0% in urban area animals and 44.83% in protected area animals). Eight serovars of Salmonella were isolated: subsp. diarizonae ser. 50:k:z, Hvittingfoss, Muenchen, Newport, Stanley, Thompson, Panama and Wandsworth. Six of the identified serovars, Hvittingfoss, Newport, Panama, Stanley, Thompson and Wandsworth, have been detected in humans in Thailand. According to our results, amphibians are reservoirs of Salmonella and can be a public health concern when used as a source of protein for humans. © 2016 Blackwell Verlag GmbH.
Aptamer based SERS detection of Salmonella typhimurium using DNA-assembled gold nanodimers.
Xu, Xumin; Ma, Xiaoyuan; Wang, Haitao; Wang, Zhouping
2018-06-12
The authors describe a surface-enhanced Raman scattering (SERS) based aptasensor for Salmonella typhimurium (S. typhimurium). Gold nanoparticles (AuNPs; 35 nm i.d.) were functionalized with the aptamer (ssDNA 1) and used as the capture probe, while smaller (15 nm) AuNPs were modified with a Cy3-labeled complementary sequence (ssDNA 2) and used as the signalling probe. The asymmetric gold nanodimers (AuNDs) were assemblied with the Raman signal probe and the capture probe via hybridization of the complementary ssDNAs. The gap between two nanoparticles is a "hot spot" in which the Raman reporter Cy3 is localized. It experiences a strong enhancement of the electromagnetic field around the particle. After addition of S. typhimurium, it will be bound by the aptamer which therefore is partially dehybridized from its complementary sequence. Hence, Raman intensity drops. Under the optimal experimental conditions, the SERS signal at 1203 cm -1 increases linearly with the logarithm of the number of colonies in the 10 2 to 10 7 cfu·mL -1 concentration range, and the limit of detection is 35 cfu·mL -1 . The method can be performed within 1 h and was successfully applied to the analysis of spiked milk samples and performed very well and with high specificity. Graphical abstract DNA-assembled asymmetric gold nanodimers (AuNDs) were synthesized and appllied in a SERS-based aptasensor for S. typhimurium. Capture probe was preferentially combined with S. typhimurium and the structure of the AuNDs was destroyed. The "hot spot" vanished partly, this resulting in the decreased Raman intensity of Cy3.
Capeding, Maria Rosario; Chua, Mary Noreen; Hadinegoro, Sri Rezeki; Hussain, Ismail I. H. M.; Nallusamy, Revathy; Pitisuttithum, Punnee; Rusmil, Kusnandi; Thisyakorn, Usa; Thomas, Stephen J.; Huu Tran, Ngoc; Wirawan, Dewa Nyoman; Yoon, In-Kyu; Bouckenooghe, Alain; Hutagalung, Yanee; Laot, Thelma; Wartel, Tram Anh
2013-01-01
Background Common causes of acute febrile illness in tropical countries have similar symptoms, which often mimic those of dengue. Accurate clinical diagnosis can be difficult without laboratory confirmation and disease burden is generally under-reported. Accurate, population-based, laboratory-confirmed incidence data on dengue and other causes of acute fever in dengue-endemic Asian countries are needed. Methods and principal findings This prospective, multicenter, active fever surveillance, cohort study was conducted in selected centers in Indonesia, Malaysia, Philippines, Thailand and Vietnam to determine the incidence density of acute febrile episodes (≥38°C for ≥2 days) in 1,500 healthy children aged 2–14 years, followed for a mean 237 days. Causes of fever were assessed by testing acute and convalescent sera from febrile participants for dengue, chikungunya, hepatitis A, influenza A, leptospirosis, rickettsia, and Salmonella Typhi. Overall, 289 participants had acute fever, an incidence density of 33.6 per 100 person-years (95% CI: 30.0; 37.8); 57% were IgM-positive for at least one of these diseases. The most common causes of fever by IgM ELISA were chikungunya (in 35.0% of in febrile participants) and S. Typhi (in 29.4%). The overall incidence density of dengue per 100 person-years was 3.4 by nonstructural protein 1 (NS1) antigen positivity (95% CI: 2.4; 4.8) and 7.3 (95% CI: 5.7; 9.2) by serology. Dengue was diagnosed in 11.4% (95% CI: 8.0; 15.7) and 23.9% (95% CI: 19.1; 29.2) of febrile participants by NS1 positivity and serology, respectively. Of the febrile episodes not clinically diagnosed as dengue, 5.3% were dengue-positive by NS1 antigen testing and 16.0% were dengue-positive by serology. Conclusions During the study period, the most common identified causes of pediatric acute febrile illness among the seven tested for were chikungunya, S. Typhi and dengue. Not all dengue cases were clinically diagnosed; laboratory confirmation is essential to refine disease burden estimates. PMID:23936565
Latex agglutination test (LAT) for the diagnosis of typhoid fever.
Sahni, Gopal Shankar
2013-06-01
The efficacy of latex agglutination test in the rapid diagnosis of typhoid fever was studied and the result compared with that of blood culture. This study included 80 children suffering from typhoid fever, among which 40 were confirmed by blood culture isolation and 40 had possible typhoid fever based on high Widal's titre (a four-fold rise in the titre of antibody to typhi "O" and "H" antigen was considered as a positive Widal's test result). Eighty children, 40 with febrile illness confirmed to be other than typhoid and 40 normal healthy children were used as negative controls. The various groups were: (i) Study group ie, group I had 40 children confirmed by culture isolation of Salmonella typhi(confirmed typhoid cases). (ii) Control groups ie, (a) group II with 40 febrile controls selected from paediatrics ward where cause other than S typhi has been established, (b) group III with 40 afebrile healthy controls that were siblings of the children admitted in paediatric ward for any reason with no history of fever and TAB vaccination in the last one year, and (c) group IV with 40 children with high Widal's titre in paired sera sample. Widal's test with paired sera with a one week interval between collections were done in all 40 patients. Latex aggtutination test which could detect 900 ng/ml of antigen as observed in checker board titration, was positive in all 40 children from group I who had positive blood culture and in 30 children from group IV who had culture negative and had high Widal's titre positive. Latex agglutination test was positive in 4 children in group II and none in group III. Using blood culture positive cases as true positive and children in groups II and III as true negative, the test had a sensitivity of 100% and specificity of 96%. Latex agglutination test was found to be significantly sensitive (100%) and specific (96%) and could detect 75% more cases in group IV (possible typhoid cases). Thus latex agglutination test can be used for rapid diagnosis of typhoid fever though it cannot replace conventional blood culture required for isolation of organism to report the antibiotic sensitivity.
Chinh, Nguyen Tran; Parry, Christopher M.; Ly, Nguyen Thi; Ha, Huynh Duy; Thong, Mai Xuan; Diep, To Song; Wain, John; White, Nicholas J.; Farrar, Jeremy J.
2000-01-01
To examine the efficacy and safety of short courses of azithromycin and ofloxacin for treating multidrug-resistant (MDR, i.e., resistant to chloramphenicol, ampicillin, and cotrimoxazole) and nalidixic acid-resistant enteric fever, azithromycin (1 g once daily for 5 days at 20 mg/kg/day) and ofloxacin (200 mg orally twice a day for 5 days at 8 mg/kg/day) were compared in an open randomized study in adults admitted to a hospital with uncomplicated enteric fever. A total of 88 blood culture-confirmed patients were enrolled in the study (86 with Salmonella enterica serovar Typhi and 2 with S. enterica serovar Paratyphi A). Of these, 44 received azithromycin and 44 ofloxacin. A total of 68 of 87 (78%) isolates were MDR serovar Typhi, and 46 of 87 (53%) were nalidixic acid resistant. The MIC90 (range) of azithromycin was 8 (4 to 16) μg/ml for the isolates. The MIC90 (range) of ofloxacin for the nalidixic acid-sensitive isolates was 0.03 (0.015 to 0.06) μg/ml and for the nalidixic acid-resistant isolates it was 0.5 (0.25 to 1.0) μg/ml. There was no significant difference in the overall clinical cure rate with ofloxacin and azithromycin (38 of 44 [86.4%] versus 42 of 44 [95.5%]; P = 0.27) or in the patients infected with nalidixic acid-resistant typhoid (17 of 21 [81.0%] versus 24 of 25 [96.0%]; P = 0.16). However, patients with nalidixic acid-resistant typhoid treated with ofloxacin had a longer fever clearance time compared with those treated with azithromycin (174 [60 to 264] versus 135 [72 to 186] h; P = 0.004) and had positive fecal cultures after the end of treatment (7 of 17 [41%] versus 0 of 19 [0%]; P = 0.002). Both antibiotics were well tolerated. A 5-day course of azithromycin was effective for the treatment of enteric fever due to MDR and nalidixic-acid-resistant serovar Typhi, whereas the ofloxacin regimen chosen was less satisfactory for these strains. PMID:10858343
Maude, Rapeephan R; Ghose, Aniruddha; Samad, Rasheda; de Jong, Hanna K; Fukushima, Masako; Wijedoru, Lalith; Hassan, Mahtab Uddin; Hossain, Md Amir; Karim, Md Rezaul; Sayeed, Abdullah Abu; van den Ende, Stannie; Pal, Sujat; Zahed, A S M; Rahman, Wahid; Karnain, Rifat; Islam, Rezina; Tran, Dung Thi Ngoc; Ha, Tuyen Thanh; Pham, Anh Hong; Campbell, James I; van Doorn, H Rogier; Maude, Richard J; van der Poll, Tom; Wiersinga, W Joost; Day, Nicholas P J; Baker, Stephen; Dondorp, Arjen M; Parry, Christopher M; Faiz, Md Abul
2016-10-13
Fever is a common cause of hospital admission in Bangladesh but causative agents, other than malaria, are not routinely investigated. Enteric fever is thought to be common. Adults and children admitted to Chittagong Medical College Hospital with a temperature of ≥38.0 °C were investigated using a blood smear for malaria, a blood culture, real-time PCR to detect Salmonella Typhi, S. Paratyphi A and other pathogens in blood and CSF and an NS1 antigen dengue ELISA. We enrolled 300 febrile patients with a negative malaria smear between January and June 2012: 156 children (aged ≤15 years) and 144 adults with a median (interquartile range) age of 13 (5-31) years and median (IQR) illness duration before admission of five (2-8) days. Clinical enteric fever was diagnosed in 52 patients (17.3 %), lower respiratory tract infection in 48 (16.0 %), non-specific febrile illness in 48 (16.0 %), a CNS infection in 37 patients (12.3 %), urinary sepsis in 23 patients (7.7 %), an upper respiratory tract infection in 21 patients (7.0 %), and diarrhea or dysentery in 21 patients (7.0 %). Malaria was still suspected in seven patients despite a negative microscopy test. S. Typhi was detected in blood by culture or PCR in 34 (11.3 %) of patients. Of note Rickettsia typhi and Orientia tsutsugamushi were detected by PCR in two and one patient respectively. Twenty-nine (9 %) patients died during their hospital admission (15/160 (9.4 %) of children and 14/144 (9.7 %) adults). Two of 52 (3.8 %) patients with enteric fever, 5/48 (10.4 %) patients with lower respiratory tract infections, and 12/37 (32.4 %) patients with CNS infection died. Enteric fever was confirmed in 11.3 % of patients admitted to this hospital in Bangladesh with non-malaria fever. Lower respiratory tract and CNS infections were also common. CNS infections in this location merit more detailed study due to the high mortality.
Antibacterial Activity of Mother Tinctures of Cholistan Desert Plants in Pakistan
Ahmad, M.; Ghafoor, Nazia; Aamir, M. N.
2012-01-01
The mother tinctures of desert were screened for antibacterial activity against bacterial strains of Gram-positive and Gram-negative bacteria. Mother tinctures were prepared by maceration process and antibacterial activity of different plants was evaluated and compared by measuring their zones of inhibition. The results indicated that Boerrhavia diffusa mother tincture had excellent activity only against Escherichia coli. Mother tincture of Chorozophora plicata showed highly effective results against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa whereas Echinops echinatus mother tincture showed highly effectiveness only against Salmonella typhi. Heliotropium europaeum mother tincture exhibited highly effective results against Bacillus subtilis in all concentrations. Tamrix aphylla presented maximum activity only against Bacillus subtilis in all three concentrations. Among the selected species Heliotropium europaeum, Chorozophora plicata and Tamrix aphylla were more effective plants against many microorganisms. However, Boerrhavia diffusa and Echinops echinatus were less effective plants against tested pathogenic bacteria. PMID:23716878
Gallbladder perforation complicating typhoid fever: report of two cases.
Gali, B M; Ali, N; Agbese, G O; Duna, V D; Dawha, S D; Ismai, G I; Mohammed, M
2011-01-01
Gallbladder perforation (GBP) is rare and as a complication of typhoid fever is extremely rare. We present two consecutive patients with GBP diagnosed incidentally at laparotomy. Information on the management of two patients with gallbladder perforation seen at Federal Medical Centre Azare in June and October 2008 was extracted from their case records. The two patients were both males aged 13 years and 16 years. They both presented with high fever of more than 2 weeks duration; and abdominal pain and distension. Both patients had features of generalised peritonitis. Pre-operative diagnoses of typhoid enteric perforation were made based on a positive Widal test. Intra-operative findings however, were that of bile peritonitis and gallbladder perforation. Both had cholecystectomy. Culture of the bile aspirate yielded Salmonella typhi. Gallbladder perforation secondary to typhoid fever should be considered as a differential diagnosis in patients with suspected typhoid enteric perforation in typhoid fever endemic region.
The unrecognized burden of typhoid fever.
Obaro, Stephen K; Iroh Tam, Pui-Ying; Mintz, Eric Daniel
2017-03-01
Typhoid fever (TF), caused by Salmonella enterica serovar Typhi, is the most common cause of enteric fever, responsible for an estimated 129,000 deaths and more than 11 million cases annually. Although several reviews have provided global and regional TF disease burden estimates, major gaps in our understanding of TF epidemiology remain. Areas covered: We provide an overview of the gaps in current estimates of TF disease burden and offer suggestions for addressing them, so that affected communities can receive the full potential of disease prevention offered by vaccination and water, sanitation, and hygiene interventions. Expert commentary: Current disease burden estimates for TF do not capture cases from certain host populations, nor those with atypical presentations of TF, which may lead to substantial underestimation of TF cases and deaths. These knowledge gaps pose major obstacles to the informed use of current and new generation typhoid vaccines.
Reproducible diagnostic metabolites in plasma from typhoid fever patients in Asia and Africa.
Näsström, Elin; Parry, Christopher M; Vu Thieu, Nga Tran; Maude, Rapeephan R; de Jong, Hanna K; Fukushima, Masako; Rzhepishevska, Olena; Marks, Florian; Panzner, Ursula; Im, Justin; Jeon, Hyonjin; Park, Seeun; Chaudhury, Zabeen; Ghose, Aniruddha; Samad, Rasheda; Van, Tan Trinh; Johansson, Anders; Dondorp, Arjen M; Thwaites, Guy E; Faiz, Abul; Antti, Henrik; Baker, Stephen
2017-05-09
Salmonella Typhi is the causative agent of typhoid. Typhoid is diagnosed by blood culture, a method that lacks sensitivity, portability and speed. We have previously shown that specific metabolomic profiles can be detected in the blood of typhoid patients from Nepal (Näsström et al., 2014). Here, we performed mass spectrometry on plasma from Bangladeshi and Senegalese patients with culture confirmed typhoid fever, clinically suspected typhoid, and other febrile diseases including malaria. After applying supervised pattern recognition modelling, we could significantly distinguish metabolite profiles in plasma from the culture confirmed typhoid patients. After comparing the direction of change and degree of multivariate significance, we identified 24 metabolites that were consistently up- or down regulated in a further Bangladeshi/Senegalese validation cohort, and the Nepali cohort from our previous work. We have identified and validated a metabolite panel that can distinguish typhoid from other febrile diseases, providing a new approach for typhoid diagnostics.
Identifying Etiological Agents Causing Diarrhea in Low Income Ecuadorian Communities
Vasco, Gabriela; Trueba, Gabriel; Atherton, Richard; Calvopiña, Manuel; Cevallos, William; Andrade, Thamara; Eguiguren, Martha; Eisenberg, Joseph N. S.
2014-01-01
Continued success in decreasing diarrheal disease burden requires targeted interventions. To develop such interventions, it is crucial to understand which pathogens cause diarrhea. Using a case-control design we tested stool samples, collected in both rural and urban Ecuador, for 15 pathogenic microorganisms. Pathogens were present in 51% of case and 27% of control samples from the urban community, and 62% of case and 18% of control samples collected from the rural community. Rotavirus and Shigellae were associated with diarrhea in the urban community; co-infections were more pathogenic than single infection; Campylobacter and Entamoeba histolytica were found in large numbers in cases and controls; and non-typhi Salmonella and enteropathogenic Escherichia coli were not found in any samples. Consistent with the Global Enteric Multicenter Study, focused in south Asia and sub-Saharan Africa, we found that in Ecuador a small group of pathogens accounted for a significant amount of the diarrheal disease burden. PMID:25048373
Synthesis, spectral, and anti-microbial studies of thioiminium iodides and amine hydrochlorides.
Britto, Sebastian; Renaud, Philippe; Nallu, Maruthai
2014-01-01
To avoid the undesired deprotonation during the addition of organolithium and organomagnesium reagents to ketones, the thioiminium salts, easily prepared from lactams and amides are converted into 2,2-disubstituted and 2-monosubstituted amines by reaction with simple nucleophiles such as organocerium and organocopper reagents. The reaction of thioiminium iodides with organocerium reagents derived by transmetalation of corresponding lithium reagents with anhydrous cerium(III) chloride has been investigated. These thioiminium iodides act as good electrophiles and accept alkylceriums towards bisaddition. The newly synthesized amines have been characterized by 1H and 13C NMR, IR and mass spectra. The amines have been converted into their hydrochlorides and characterized by COSY. These hydrochlorides have been subjected to antimicrobial screening with clinically isolated microorganisms, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi and Candida albicans. The hydrochlorides show quite good activity against these bacteria and fungus. Copyright © 2013 Elsevier B.V. All rights reserved.
Sudha, V B Preethi; Singh, K Ojit; Prasad, S R; Venkatasubramanian, Padma
2009-08-01
Water inoculated with 500-1000 colony forming units/ml of Escherichia coli, Salmonella Typhi and Vibrio cholerae was stored overnight at room temperature in copper pots or in glass bottles containing a copper coil devised by us. The organisms were no longer recoverable when cultured on conventional media, by contrast with water stored in control glass bottles under similar conditions. The amount of copper leached into the water after overnight storage in a copper pot or a glass bottle with a copper device was less than 475 parts per billion, which is well within the safety limits prescribed by the WHO. The device is inexpensive, reusable, easy to maintain, durable, does not need energy to run and appears to be safe. It has the potential to be used as a household water purification method for removing enteric bacteria, especially in developing countries.
Infections in British clinical laboratories, 1986-87.
Grist, N R; Emslie, J A
1989-07-01
During 1986-87 this continuing survey showed 15 specific infections in the staff of 235 laboratories, representing 28,524 person years of exposure. The community was the probable source of four of the five cases of tuberculosis and one of the five cases of salmonellosis. Occupational exposure was the probable cause of four infections by Shigella flexneri, three by Salmonella typhimurium, and one by S typhi, all affecting medical laboratory scientific officers (MLSOs) in microbiology. Occupational exposure was also the probable cause of one case of tuberculosis in a mortuary technician and one of probable non-A, non-B hepatitis in a medical laboratory scientific officer haematology worker. The overall incidence of reported infections was 52.6/100,000 person years (35/100,000 for infections of probable occupational origin). The highest rates of laboratory acquired infections related to MLSO microbiology workers and mortuary technicians. No additional infections were seen as a result of extending the survey to forensic laboratories.
Multidrug-resistant pathogens in the food supply.
Doyle, Marjorie E
2015-04-01
Antimicrobial resistance, including multidrug resistance (MDR), is an increasing problem globally. MDR bacteria are frequently detected in humans and animals from both more- and less-developed countries and pose a serious concern for human health. Infections caused by MDR microbes may increase morbidity and mortality and require use of expensive drugs and prolonged hospitalization. Humans may be exposed to MDR pathogens through exposure to environments at health-care facilities and farms, livestock and companion animals, human food, and exposure to other individuals carrying MDR microbes. The Centers for Disease Control and Prevention classifies drug-resistant foodborne bacteria, including Campylobacter, Salmonella Typhi, nontyphoidal salmonellae, and Shigella, as serious threats. MDR bacteria have been detected in both meat and fresh produce. Salmonellae carrying genes coding for resistance to multiple antibiotics have caused numerous foodborne MDR outbreaks. While there is some level of resistance to antimicrobials in environmental bacteria, the widespread use of antibiotics in medicine and agriculture has driven the selection of a great variety of microbes with resistance to multiple antimicrobials. MDR bacteria on meat may have originated in veterinary health-care settings or on farms where animals are given antibiotics in feed or to treat infections. Fresh produce may be contaminated by irrigation or wash water containing MDR bacteria. Livestock, fruits, and vegetables may also be contaminated by food handlers, farmers, and animal caretakers who carry MDR bacteria. All potential sources of MDR bacteria should be considered and strategies devised to reduce their presence in foods. Surveillance studies have documented increasing trends in MDR in many pathogens, although there are a few reports of the decline of certain multidrug pathogens. Better coordination of surveillance programs and strategies for controlling use of antimicrobials need to be implemented in both human and animal medicine and agriculture and in countries around the world.
Liang, Zhanbei; Keeley, Ann
2011-01-01
Extraction of high-quality mRNA from Cryptosporidium parvum is a key step in PCR detection of viable oocysts in environmental samples. Current methods for monitoring oocysts are limited to water samples; therefore, the goal of this study was to develop a rapid and sensitive procedure for Cryptosporidium detection in soil samples. The efficiencies of five RNA extraction methods were compared (mRNA extraction with the Dynabeads mRNA Direct kit after chemical and physical sample treatments, and total RNA extraction methods using the FastRNA Pro Soil-Direct, PowerSoil Total RNA, E.Z.N.A. soil RNA, and Norgen soil RNA purification kits) for the direct detection of Cryptosporidium with oocyst-spiked sandy, loamy, and clay soils by using TaqMan reverse transcription-PCR. The study also evaluated the presence of inhibitors by synthesis and incorporation of an internal positive control (IPC) RNA into reverse transcription amplifications, used different facilitators (bovine serum albumin, yeast RNA, salmon DNA, skim milk powder, casein, polyvinylpyrrolidone, sodium hexametaphosphate, and Salmonella enterica serovar Typhi) to mitigate RNA binding on soil components, and applied various treatments (β-mercaptoethanol and bead beating) to inactivate RNase and ensure the complete lysis of oocysts. The results of spiking studies showed that Salmonella cells most efficiently relieved binding of RNA. With the inclusion of Salmonella during extraction, the most efficient mRNA method was Dynabeads, with a detection limit of 6 × 102 oocysts g−1 of sandy soil. The most efficient total RNA method was PowerSoil, with detection limits of 1.5 × 102, 1.5 × 103, and 1.5 × 104 C. parvum oocysts g−1 soil for sandy, loamy, and clay samples, respectively. PMID:21803904
Lin, Yunfeng
2015-01-01
Bacteria such as Salmonella and E. coli present a great challenge in public health care in today’s society. Protection of public safety against bacterial contamination and rapid diagnosis of infection require simple and fast assays for the detection and elimination of bacterial pathogens. After utilizing Salmonella DT104 as an example bacterial strain for our investigation, we report a rapid and sensitive assay for the qualitative and quantitative detection of bacteria by using antibody affinity binding, popcorn shaped gold nanoparticle (GNPOPs) labeling, surfance enchanced Raman spectroscopy (SERS), and inductively coupled plasma mass spectrometry (ICP-MS) detection. For qualitative analysis, our assay can detect Salmonella within 10 min by Raman spectroscopy; for quantitative analysis, our assay has the ability to measure as few as 100 Salmonella DT104 in a 1 mL sample (100 CFU/mL) within 40 min. Based on the quantitative detection, we investigated the quantitative destruction of Salmonella DT104, and the assay’s photothermal efficiency in order to reduce the amount of GNPOPs in the assay to ultimately to eliminate any potential side effects/toxicity to the surrounding cells in vivo. Results suggest that our assay may serve as a promising candidate for qualitative and quantitative detection and elimination of a variety of bacterial pathogens. PMID:26417447
Rapid diagnostic tests for typhoid and paratyphoid (enteric) fever
Wijedoru, Lalith; Mallett, Sue; Parry, Christopher M
2017-01-01
Background Differentiating both typhoid (Salmonella Typhi) and paratyphoid (Salmonella Paratyphi A) infection from other causes of fever in endemic areas is a diagnostic challenge. Although commercial point-of-care rapid diagnostic tests (RDTs) for enteric fever are available as alternatives to the current reference standard test of blood or bone marrow culture, or to the widely used Widal Test, their diagnostic accuracy is unclear. If accurate, they could potentially replace blood culture as the World Health Organization (WHO)-recommended main diagnostic test for enteric fever. Objectives To assess the diagnostic accuracy of commercially available rapid diagnostic tests (RDTs) and prototypes for detecting Salmonella Typhi or Paratyphi A infection in symptomatic persons living in endemic areas. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register, MEDLINE, Embase, Science Citation Index, IndMED, African Index Medicus, LILACS, ClinicalTrials.gov, and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) up to 4 March 2016. We manually searched WHO reports, and papers from international conferences on Salmonella infections. We also contacted test manufacturers to identify studies. Selection criteria We included diagnostic accuracy studies of enteric fever RDTs in patients with fever or with symptoms suggestive of enteric fever living in endemic areas. We classified the reference standard used as either Grade 1 (result from a blood culture and a bone marrow culture) or Grade 2 (result from blood culture and blood polymerase chain reaction, or from blood culture alone). Data collection and analysis Two review authors independently extracted the test result data. We used a modified QUADAS-2 extraction form to assess methodological quality. We performed a meta-analysis when there were sufficient studies for the test and heterogeneity was reasonable. Main results Thirty-seven studies met the inclusion criteria and included a total of 5080 participants (range 50 to 1732). Enteric fever prevalence rates in the study populations ranged from 1% to 75% (median prevalence 24%, interquartile range (IQR) 11% to 46%). The included studies evaluated 16 different RDTs, and 16 studies compared two or more different RDTs. Only three studies used the Grade 1 reference standard, and only 11 studies recruited unselected febrile patients. Most included studies were from Asia, with five studies from sub-Saharan Africa. All of the RDTs were designed to detect S.Typhi infection only. Most studies evaluated three RDTs and their variants: TUBEX in 14 studies; Typhidot (Typhidot, Typhidot-M, and TyphiRapid-Tr02) in 22 studies; and the Test-It Typhoid immunochromatographic lateral flow assay, and its earlier prototypes (dipstick, latex agglutination) developed by the Royal Tropical Institute, Amsterdam (KIT) in nine studies. Meta-analyses showed an average sensitivity of 78% (95% confidence interval (CI) 71% to 85%) and specificity of 87% (95% CI 82% to 91%) for TUBEX; and an average sensitivity of 69% (95% CI 59% to 78%) and specificity of 90% (95% CI 78% to 93%) for all Test-It Typhoid and prototype tests (KIT). Across all forms of the Typhidot test, the average sensitivity was 84% (95% CI 73% to 91%) and specificity was 79% (95% CI 70% to 87%). When we based the analysis on the 13 studies of the Typhidot test that either reported indeterminate test results or where the test format means there are no indeterminate results, the average sensitivity was 78% (95% CI 65% to 87%) and specificity was 77% (95% CI 66% to 86%). We did not identify any difference in either sensitivity or specificity between TUBEX, Typhidot, and Test-it Typhoid tests when based on comparison to the 13 Typhidot studies where indeterminate results are either reported or not applicable. If TUBEX and Test-it Typhoid are compared to all Typhidot studies, the sensitivity of Typhidot was higher than Test-it Typhoid (15% (95% CI 2% to 28%), but other comparisons did not show a difference at the 95% level of CIs. In a hypothetical cohort of 1000 patients presenting with fever where 30% (300 patients) have enteric fever, on average Typhidot tests reporting indeterminate results or where tests do not produce indeterminate results will miss the diagnosis in 66 patients with enteric fever, TUBEX will miss 66, and Test-It Typhoid and prototype (KIT) tests will miss 93. In the 700 people without enteric fever, the number of people incorrectly diagnosed with enteric fever would be 161 with Typhidot tests, 91 with TUBEX, and 70 with Test-It Typhoid and prototype (KIT) tests. The CIs around these estimates were wide, with no difference in false positive results shown between tests. The quality of the data for each study was evaluated using a standardized checklist called QUADAS-2. Overall, the certainty of the evidence in the studies that evaluated enteric fever RDTs was low. Authors' conclusions In 37 studies that evaluated the diagnostic accuracy of RDTs for enteric fever, few studies were at a low risk of bias. The three main RDT tests and variants had moderate diagnostic accuracy. There was no evidence of a difference between the average sensitivity and specificity of the three main RDT tests. More robust evaluations of alternative RDTs for enteric fever are needed. The accuracy of rapid diagnostic tests for detecting typhoid and paratyphoid (enteric) fever Cochrane researchers assessed the accuracy of commercially-available rapid diagnostic tests and their prototypes (including TUBEX, Typhidot, Typhidot-M, Test-it Typhoid, and other tests) for detecting typhoid and paratyphoid (enteric) fever in people living in countries where the estimated number of individuals with the disease at any one time is greater than 10 per 100,000 population. If accurate, they could replace the current World Health Organization (WHO)-recommended diagnostic test: culture (growing the bacteria that causes the infection from a patient’s blood or bone marrow). Background Typhoid fever and paratyphoid fever are infections caused by the bacteria Salmonella Typhi and Salmonella Paratyphi A respectively. The term ‘enteric fever’ is used to describe both infections. Enteric fever can be difficult to diagnose as the signs and symptoms are similar to those of other infectious diseases that cause fever such as malaria. The recommended test to confirm if a person has enteric fever is to grow the Salmonella from their blood. It takes at least 48 hours to give a result, so cannot help healthcare workers make a diagnosis the same day the blood culture is taken. Blood cultures may give a negative result even though a person has enteric fever. The test also requires a laboratory and trained staff, which are often unavailable in communities where enteric fever is common. Rapid diagnostic tests (RDTs) are designed to be easy to use, and to deliver a quick result without the need for a blood culture laboratory. The cost of an enteric fever RDT would be significantly less than a blood culture, and requires less training to perform. Study characteristics Cochrane researchers searched the available literature up to 4 March 2016 and included 37 studies. Most studies recruited participants from South Asia. Most participants were adults, with 22 studies including children. All of the RDTs evaluated detected Salmonella Typhi (typhoid fever) only. Quality of the evidence The Cochrane researchers evaluated the quality of the data for each study using a standardized checklist called QUADAS-2. High quality studies that compared different types of RDT in the same patients were few in number. Two-thirds of the included studies did not evaluate the RDTs in the context of patients who are typically tested for the disease. Many studies utilized a particular study design (a case control study) which risks overestimating RDT accuracy. In the studies evaluating the Typhidot RDT, it was often unclear how many test results were indeterminate, when the test cannot distinguish a current episode of infection from a previous disease episode. Overall, the certainty of the evidence in the studies that evaluated enteric fever RDTs was low. Key results Sensitivity indicates the percentage of patients with a positive test result who are correctly diagnosed with disease. Specificity indicates the percentage of patients who are correctly identified as not having disease. TUBEX showed an average sensitivity of 78% and specificity of 87%. Typhidot studies, grouped together to include Typhidot, Typhidot-M, and TyphiRapid-Tr02, showed an average sensitivity of 84% and specificity of 79%. When Typhidot studies with clear reporting of indeterminate results are considered, the average sensitivity and specificity of Typhidot was 78% and 77% respectively. Test-It Typhoid and prototypes (KIT) showed an average sensitivity of 69% and specificity of 90%. Based on these results, in 1000 patients with fever where 30% (300 patients) have enteric fever, we would expect Typhidot tests reporting indeterminate results or where tests do not produce indeterminate results to, on average, miss the diagnosis (give a false negative result) in 66 patients with enteric fever, TUBEX to miss 66, and Test-It Typhoid and prototypes (KIT) to miss 93. In the 700 people without enteric fever, the number of people incorrectly given a diagnosis of enteric fever (a false positive result) would be on average 161 with these Typhidot tests, 91 with TUBEX, and 70 with the Test-It Typhoid and prototypes (KIT). These differences in the number of false negative and false positive results in patients from the different tests are not statistically important. The RDTs evaluated are not sufficiently accurate to replace blood culture as a diagnostic test for enteric fever. PMID:28545155
Expression of intra- and extracellular granzymes in patients with typhoid fever.
de Jong, Hanna K; Garcia-Laorden, Maria Isabel; Hoogendijk, Arie J; Parry, Christopher M; Maude, Rapeephan R; Dondorp, Arjen M; Faiz, Mohammed Abul; van der Poll, Tom; Wiersinga, Willem Joost
2017-07-01
Typhoid fever, caused by the intracellular pathogen Salmonella (S.) enterica serovar Typhi, remains a major cause of morbidity and mortality worldwide. Granzymes are serine proteases promoting cytotoxic lymphocytes mediated eradication of intracellular pathogens via the induction of cell death and which can also play a role in inflammation. We aimed to characterize the expression of extracellular and intracellular granzymes in patients with typhoid fever and whether the extracellular levels of granzyme correlated with IFN-γ release. We analyzed soluble protein levels of extracellular granzyme A and B in healthy volunteers and patients with confirmed S. Typhi infection on admission and day of discharge, and investigated whether this correlated with interferon (IFN)-γ release, a cytokine significantly expressed in typhoid fever. The intracellular expression of granzyme A, B and K in subsets of lymphocytic cells was determined using flow cytometry. Patients demonstrated a marked increase of extracellular granzyme A and B in acute phase plasma and a correlation of both granzymes with IFN-γ release. In patients, lower plasma levels of granzyme B, but not granzyme A, were found at day of discharge compared to admission, indicating an association of granzyme B with stage of disease. Peripheral blood mononuclear cells of typhoid fever patients had a higher percentage of lymphocytic cells expressing intracellular granzyme A and granzyme B, but not granzyme K, compared to controls. The marked increase observed in extra- and intracellular levels of granzyme expression in patients with typhoid fever, and the correlation with stage of disease, suggests a role for granzymes in the host response to this disease.
Expression of intra- and extracellular granzymes in patients with typhoid fever
Garcia-Laorden, Maria Isabel; Hoogendijk, Arie J.; Parry, Christopher M.; Maude, Rapeephan R.; Dondorp, Arjen M.; Faiz, Mohammed Abul; van der Poll, Tom; Wiersinga, Willem Joost
2017-01-01
Background Typhoid fever, caused by the intracellular pathogen Salmonella (S.) enterica serovar Typhi, remains a major cause of morbidity and mortality worldwide. Granzymes are serine proteases promoting cytotoxic lymphocytes mediated eradication of intracellular pathogens via the induction of cell death and which can also play a role in inflammation. We aimed to characterize the expression of extracellular and intracellular granzymes in patients with typhoid fever and whether the extracellular levels of granzyme correlated with IFN-γ release. Methods and principal findings We analyzed soluble protein levels of extracellular granzyme A and B in healthy volunteers and patients with confirmed S. Typhi infection on admission and day of discharge, and investigated whether this correlated with interferon (IFN)-γ release, a cytokine significantly expressed in typhoid fever. The intracellular expression of granzyme A, B and K in subsets of lymphocytic cells was determined using flow cytometry. Patients demonstrated a marked increase of extracellular granzyme A and B in acute phase plasma and a correlation of both granzymes with IFN-γ release. In patients, lower plasma levels of granzyme B, but not granzyme A, were found at day of discharge compared to admission, indicating an association of granzyme B with stage of disease. Peripheral blood mononuclear cells of typhoid fever patients had a higher percentage of lymphocytic cells expressing intracellular granzyme A and granzyme B, but not granzyme K, compared to controls. Conclusion The marked increase observed in extra- and intracellular levels of granzyme expression in patients with typhoid fever, and the correlation with stage of disease, suggests a role for granzymes in the host response to this disease. PMID:28749963
Enteric Fever in Children in Western Sydney, Australia, 2003-2015.
Khatami, Ameneh; Khan, Fouzia; Macartney, Kristine K
2017-12-01
Enteric fever is a vaccine-preventable disease with cases in Australia predominantly acquired overseas. The aim of this study was to define the burden of enteric fever in children presenting to a pediatric hospital in Western Sydney between 2003 and 2015. Cases between January 2003 and December 2013 were ascertained through medical records using International Classification of Disease-coded discharge diagnoses, cross-referenced with microbiology laboratory data for all isolates of Salmonella enterica serovar typhi and S. enterica serovar paratyphi. Prospective cases from January 2014 to April 2015 were additionally captured through records maintained by the infectious diseases team. Seventy-one cases of enteric fever were identified in 12.3 years with an average of 4 cases per year between 2003 and 2008 and 7 cases per year between 2009 and 2014. Two were visitors to Australia, 8 were recent migrants, and 59 were Australian residents returning from overseas travel. Two children had no history of overseas travel. Countries of travel predominantly included the Indian subcontinent (60/69) and Southeast Asia (7/69). Of 30 children with information available on pretravel medical consultation, 1 was offered and received typhoid vaccine. Ninety-four percent of children (67) required admission for 1-28 days (median: 5 days). Three children required readmission, with 1 case of presumed relapse. Ninety percent (64) were diagnosed by blood or stool culture with S. enterica serovar typhi the predominant organism (54/64). In Australia, hospitalizations for pediatric enteric fever appear to be increasing; predominantly occurring in Australian-resident children. Greater awareness and education are required for parents and clinicians regarding travel health risks and prevention strategies.
Risk factors for typhoid outbreak in Sungai Congkak Recreational Park, Selangor 2009.
Anita, S; Amir, K M; Fadzilah, K; Ahamad, J; Noorhaida, U; Marina, K; Paid, M Y; Hanif, Z
2012-02-01
Typhoid fever continues to pose public health problems in Selangor where cases are found sporadically with occasional outbreaks reported. In February 2009, Hospital Tengku Ampuan Rahimah (HTAR) reported a cluster of typhoid fever among four children in the pediatric ward. We investigated the source of the outbreak, risk factors for the infection to propose control measures. We conducted a case-control study to identify the risk factors for the outbreak. A case was defined as a person with S. typhi isolated from blood, urine or stool and had visited Sungai Congkak recreational park on 27th January 2010. Controls were healthy household members of cases who have similar exposure but no isolation of S. typhi in blood, urine or stool. Cases were identified from routine surveillance system, medical record searching from the nearest clinic and contact tracing other than family members including food handlers and construction workers in the recreational park. Immediate control measures were initiated and followed up. Twelve (12) cases were identified from routine surveillance with 75 household controls. The Case-control study showed cases were 17 times more likely to be 12 years or younger (95% CI: 2.10, 137.86) and 13 times more likely to have ingested river water accidentally during swimming (95% CI: 3.07, 58.71). River water was found contaminated with sewage disposal from two public toilets which effluent grew salmonella spp. The typhoid outbreak in Sungai Congkak recreational park resulted from contaminated river water due to poor sanitation. Children who accidentally ingested river water were highly susceptible. Immediate closure and upgrading of public toilet has stopped the outbreak.
Sridharan, Makuteswaran; Prasad, K J Rajendra; Madhumitha, G; Al-Dhabi, Naif Abdullah; Arasu, Mariadhas Valan
2016-09-01
A conventional approach has been used to synthesis Indole fused acridine, 4a-e. In this paper to achieve the target molecule, 4 the reaction was performed via two steps. In step 1, there was a reaction between Carbazolone, 1 and benzophenone, 2 to get dihydroindoloacridine, 3. In step 2, compound, 3 was treated with 5% Palladium/Carbon in the presence of diphenyl ether for 5h to give a dark brown product, 4. The column chromatography was used to purify final product, 4. All the synthesized compounds such as 3 and 4 were characterized by melting point, FTIR, (1)H NMR, and Mass spectra. Further to check the purity of the compounds it was subjected to CHN analyzer. The target molecules such as 3 and 4 were screened for antimicrobial studies against bacteria such as Bacillus subtilis (B. subtilis), Staphylococcus aureus (S. aureus), Klebsiella pneumonia (K. pneumonia), Salmonella typhi (S. typhi); and fungi like Aspergillus niger (A. niger), Aspergillus fumigatus (A. fumigatus). The obtained results clearly proves that the target molecules shown reasonable activity against K. pneumonia and A. niger. Further the compounds were screened for free radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH). The free radical scavenging property was performed using UV-Visible spectroscopy. The results were compared with the standard BHT (Butylated Hydroxy Toluene). Compounds, 4a and 4e were shown higher percentage of inhibition when compare to the standard. The result confirms that further research on indoloacridine will leads effective drug to the market. Copyright © 2016 Elsevier B.V. All rights reserved.
Commercial Disinfectants During Disinfection Process Validation: More Failures than Success.
Chatterjee, Shiv Sekhar; Chumber, Sushil Kumar; Khanduri, Uma
2016-08-01
Disinfection process validation is mandatory before introduction of a new disinfectant in hospital services. Commercial disinfection brands often question existing hospital policy claiming greater efficacy and lack of toxicity of their products. Inadvertent inadequate disinfection leads to morbidity, patient's economic burden, and the risk of mortality. To evaluate commercial disinfectants for high, intermediate and low-level disinfection so as to identify utility for our routine situations. This laboratory based experiment was conducted at St Stephen Hospital, Delhi during July-September 2013. Twelve commercial disinfectants: Sanidex®, Sanocid®, Cidex®, SekuSept Aktiv®, BIB Forte®, Alprojet W®, Desnet®, Sanihygiene®, Incidin®, D125®, Lonzagard®, and Glutishield® were tested. Time-kill assay (suspension test) was performed against six indicator bacteria (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella Typhi, Bacillus cereus, and Mycobacterium fortuitum). Low and high inoculum (final concentrations 1.5X10(6) and 9X10(6) cfu/ml) of the first five bacteria while only low level of M. fortuitum was tested. Cidex® (2.4% Glutaraldehyde) performed best as high level disinfectant while newer quarternary ammonium compounds (QACs) (Incidin®, D125®, and Lonzagard®) were good at low level disinfection. Sanidex® (0.55% Ortho-pthalaldehyde) though mycobactericidal took 10 minutes for sporicidal activity. Older QAC containing BIB Forte® and Desnet® took 20 minutes to fully inhibit P. aeruginosa. All disinfectants effectively reduced S. Typhi to zero counts within 5 minutes. Cidex® is a good high-level disinfectant while newer QACs (Incidin®, D125®, and Lonzagard®) were capable low-level disinfectants.