Sample records for salmonella serovar thompson

  1. Complete genome sequence of salmonella enterica subsp. enterica Serovar Thompson Strain RM6836

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica subsp. enterica serovar Thompson (S. Thompson) strain RM6836 was isolated from lettuce in 2002. We report the complete sequence and annotation of the genome of S. Thompson strain RM6836. This is the first reported complete genome sequence for S. Thompson and will provide a point ...

  2. A temporal study of Salmonella serovars in animals in Alberta between 1990 and 2001

    PubMed Central

    2005-01-01

    Abstract Passive laboratory-based surveillance data from Alberta Agriculture Food and Rural Development were analyzed for common Salmonella serovars, prevalences, trends, and for the presence of temporal clusters. There were 1767 isolates between October 1990 and December 2001 comprising 63 different serovars, including 961 isolates from chickens, 418 from cattle, 108 from pigs, 102 from turkeys, and 178 from all other species combined. Salmonella Typhimurium, Heidelberg, Hadar, Kentucky, and Thompson were the 5 most frequently isolated serovars. Approximately 60% of the S. Typhimurium were isolated from cattle, whereas over 90% of the S. Heidelberg, Hadar, Kentucky, and Thompson were isolated from chickens. Salmonella Enteritidis was rarely isolated. There was an increasing trend in isolates from chickens, cattle, and pigs, and a decreasing trend in isolates from turkeys. Temporal clusters were observed in 11 of 15 serovars examined in chickens (S. Anatum, Heidelberg, Infantis, Kentucky, Mbandaka, Montevideo, Nienstedten, Oranienburg, Thompson, Typhimurium, and Typhimurium var. Copenhagen), 5 of 5 serovars in cattle (S. Dublin, Montevideo, Muenster, Typhimurium, and Typhimurium var. Copenhagen), and 1 of 3 serovars in pigs (S. Typhimurium). Short-duration clusters may imply point source infections, whereas long-duration clusters may indicate an increase in the prevalence of the serovar, farm-to-farm transmission, or a wide-spread common source. A higher concentration of clusters in the winter months may reflect greater confinement, reduced ventilation, stressors, or increased exposure to wildlife vectors that are sharing housing during the winter. Detection of large clusters of Salmonella may have public health implications in addition to animal health concerns. PMID:15971672

  3. Viable-but-Nonculturable Listeria monocytogenes and Salmonella enterica Serovar Thompson Induced by Chlorine Stress Remain Infectious.

    PubMed

    Highmore, Callum J; Warner, Jennifer C; Rothwell, Steve D; Wilks, Sandra A; Keevil, C William

    2018-04-17

    The microbiological safety of fresh produce is monitored almost exclusively by culture-based detection methods. However, bacterial food-borne pathogens are known to enter a viable-but-nonculturable (VBNC) state in response to environmental stresses such as chlorine, which is commonly used for fresh produce decontamination. Here, complete VBNC induction of green fluorescent protein-tagged Listeria monocytogenes and Salmonella enterica serovar Thompson was achieved by exposure to 12 and 3 ppm chlorine, respectively. The pathogens were subjected to chlorine washing following incubation on spinach leaves. Culture data revealed that total viable L. monocytogenes and Salmonella Thompson populations became VBNC by 50 and 100 ppm chlorine, respectively, while enumeration by direct viable counting found that chlorine caused a <1-log reduction in viability. The pathogenicity of chlorine-induced VBNC L. monocytogenes and Salmonella Thompson was assessed by using Caenorhabditis elegans Ingestion of VBNC pathogens by C. elegans resulted in a significant life span reduction ( P = 0.0064 and P < 0.0001), and no significant difference between the life span reductions caused by the VBNC and culturable L. monocytogenes treatments was observed. L. monocytogenes was visualized beyond the nematode intestinal lumen, indicating resuscitation and cell invasion. These data emphasize the risk that VBNC food-borne pathogens could pose to public health should they continue to go undetected. IMPORTANCE Many bacteria are known to enter a viable-but-nonculturable (VBNC) state in response to environmental stresses. VBNC cells cannot be detected by standard laboratory culture techniques, presenting a problem for the food industry, which uses these techniques to detect pathogen contaminants. This study found that chlorine, a sanitizer commonly used for fresh produce, induces a VBNC state in the food-borne pathogens Listeria monocytogenes and Salmonella enterica It was also found that

  4. Prevalence of Salmonella spp., and serovars isolated from captive exotic reptiles in New Zealand.

    PubMed

    Kikillus, K H; Gartrell, B D; Motion, E

    2011-07-01

    To investigate the prevalence of Salmonella spp. in captive exotic reptile species in New Zealand, and identify the serovars isolated from this population. Cloacal swabs were obtained from 378 captive exotic reptiles, representing 24 species, residing in 25 collections throughout New Zealand between 2008 and 2009. Samples were cultured for Salmonella spp., and suspected colonies were serotyped by the Institute of Environmental Science and Research (ESR). Forty-three of the 378 (11.4%) reptiles sampled tested positive for Salmonella spp., with 95% CI for the estimated true prevalence being 12-25% in exotic reptiles in this study population. Lizards tested positive for Salmonella spp. more often than chelonians. Agamid lizards tested positive more often than any other family group, with 95% CI for the estimated true prevalence being 56-100%.. Six Salmonella serovars from subspecies I and two from subspecies II were isolated. The serovar most commonly isolated was S. Onderstepoort (30.2%), followed by S. Thompson (20.9%), S. Potsdam (14%), S. Wangata (14%), S. Infantis (11.6%) and S. Eastbourne (2.3%). All of the subspecies I serovars have been previously reported in both reptiles and humans in New Zealand, and include serovars previously associated with disease in humans. This study showed that Salmonella spp. were commonly carried by exotic reptiles in the study population in New Zealand. Several serovars of Salmonella spp. with known pathogenicity to humans were isolated, including S. Infantis, which is one of the most common serovars isolated from both humans and non-human sources in New Zealand. The limitations of this study included the bias engendered by the need for voluntary involvement in the study, and the non-random sampling design. Based on the serovars identified in this and previous studies, it is recommended native and exotic reptiles be segregated within collections, especially when native reptiles may be used for biodiversity restoration

  5. Isolation of Salmonella enterica serovar Enteritidis from houseflies (Musca domestica) found in rooms containing Salmonella serovar Enteritidis-challenged hens.

    PubMed

    Holt, Peter S; Geden, Christopher J; Moore, Randle W; Gast, Richard K

    2007-10-01

    Houseflies (Musca domestica) released into rooms containing hens challenged with Salmonella enterica serovar Enteritidis (Salmonella serovar Enteritidis) rapidly became contaminated with Salmonella serovar Enteritidis. Forty to 50% of the flies were contaminated at 48 h, and the percentage increased to 50 to 70% at 4 and 7 days postexposure and then decreased to 30% at day 15. Initial attempts at recovering surface organisms for culture using an aqueous rinse were largely unsuccessful, while cultures of internal contents readily recovered Salmonella serovar Enteritidis. However, when 0.5% detergent was incorporated into the rinse, high recovery levels of bacteria were observed from both external and internal culture regimens, indicating equal distribution of the organism on and in the fly and a tighter interaction of the organism with the host than previously thought. Salmonella serovar Enteritidis was isolated routinely from the fly gut, on rare occasions from the crop, and never from the salivary gland. Feeding contaminated flies to hens resulted in gut colonization of a third of the birds, but release of contaminated flies in a room containing previously unchallenged hens failed to result in colonization of any of the subject birds. These results indicate that flies exposed to an environment containing Salmonella serovar Enteritidis can become colonized with the organism and might serve as a source for transmission of Salmonella serovar Enteritidis within a flock situation.

  6. Isolation of Salmonella enterica Serovar Enteritidis from Houseflies (Musca domestica) Found in Rooms Containing Salmonella Serovar Enteritidis-Challenged Hens▿

    PubMed Central

    Holt, Peter S.; Geden, Christopher J.; Moore, Randle W.; Gast, Richard K.

    2007-01-01

    Houseflies (Musca domestica) released into rooms containing hens challenged with Salmonella enterica serovar Enteritidis (Salmonella serovar Enteritidis) rapidly became contaminated with Salmonella serovar Enteritidis. Forty to 50% of the flies were contaminated at 48 h, and the percentage increased to 50 to 70% at 4 and 7 days postexposure and then decreased to 30% at day 15. Initial attempts at recovering surface organisms for culture using an aqueous rinse were largely unsuccessful, while cultures of internal contents readily recovered Salmonella serovar Enteritidis. However, when 0.5% detergent was incorporated into the rinse, high recovery levels of bacteria were observed from both external and internal culture regimens, indicating equal distribution of the organism on and in the fly and a tighter interaction of the organism with the host than previously thought. Salmonella serovar Enteritidis was isolated routinely from the fly gut, on rare occasions from the crop, and never from the salivary gland. Feeding contaminated flies to hens resulted in gut colonization of a third of the birds, but release of contaminated flies in a room containing previously unchallenged hens failed to result in colonization of any of the subject birds. These results indicate that flies exposed to an environment containing Salmonella serovar Enteritidis can become colonized with the organism and might serve as a source for transmission of Salmonella serovar Enteritidis within a flock situation. PMID:17675422

  7. Salmonella enterica: Survival, Colonization, and Virulence Differences among Serovars

    PubMed Central

    Andino, A.; Hanning, I.

    2015-01-01

    Data indicate that prevalence of specific serovars of Salmonella enterica in human foodborne illness is not correlated with their prevalence in feed. Given that feed is a suboptimal environment for S. enterica, it appears that survival in poultry feed may be an independent factor unrelated to virulence of specific serovars of Salmonella. Additionally, S. enterica serovars appear to have different host specificity and the ability to cause disease in those hosts is also serovar dependent. These differences among the serovars may be related to gene presence or absence and expression levels of those genes. With a better understanding of serovar specificity, mitigation methods can be implemented to control Salmonella at preharvest and postharvest levels. PMID:25664339

  8. Prevalence of antimicrobial resistance of non-typhoidal Salmonella serovars in retail aquaculture products.

    PubMed

    Zhang, Jianmin; Yang, Xiaowei; Kuang, Dai; Shi, Xianming; Xiao, Wenjia; Zhang, Jing; Gu, Zhen; Xu, Xuebin; Meng, Jianghong

    2015-10-01

    Aquaculture products can become sources of Salmonella by exposure to contaminated water or through processing practices, thus representing a public health hazard. A study was conducted on Salmonella contamination in aquaculture products sampled from marketplaces and retailers in Shanghai, China. A total of 730 samples (including fish, shellfish, bullfrog, clam, shrimp and others) were obtained from 2006 to 2011. Among them, 217 (29.7%) were positive for Salmonella. Thirty-eight serovars were identified in the 217 Salmonella isolates. The most prevalent were Salmonella Aberdeen (18.4%), S. Wandsworth (12.0%), S. Thompson (9.2%), S. Singapore (5.5%), S. Stanley (4.6%), S. Schwarzengrund (4.6%), S. Hvittingfoss (4.1%) and S. Typhimurium (4.1%). Many resistant isolates were detected, with 69.6% resistant to at least one antimicrobial drug. We observed high resistance to sulfonamides (56.5%), tetracycline (34.1%), streptomycin (28.6%), ampicillin (23.5%) and nalidixic acid (21.2%). Lower levels of resistance were found for gentamicin (3.2%), ciprofloxacin (2.3%), ceftiofur (1.3%), cefotaxime (0.9%), ceftazidime (0.5%) and cefepime (0.5%). A total of 43.3% of the Salmonella isolates were multidrug-resistant and 44 different resistance patterns were found. This study provided data on the prevalence, serovars and antimicrobial resistance of Salmonella from retail aquaculture products in Shanghai, and indicated the need for monitoring programs for microbiologic safety in such projects and for more prudent drug use in aquaculture production in order to reduce the risk of development and spread of antimicrobial resistance. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Camel as a transboundary vector for emerging exotic Salmonella serovars.

    PubMed

    Ghoneim, Nahed H; Abdel-Moein, Khaled A; Zaher, Hala

    2017-05-01

    The current study was conducted to shed light on the role of imported camels as a transboundary vector for emerging exotic Salmonella serovars. Fecal samples were collected from 206 camels directly after slaughtering including 25 local camels and 181 imported ones as well as stool specimens were obtained from 50 slaughterhouse workers at the same abattoir. The obtained samples were cultured while Salmonella serovars were identified through Gram's stain films, biochemical tests and serotyping with antisera kit. Moreover, the obtained Salmonella serovars were examined by PCR for the presence of invA and stn genes. The overall prevalence of Salmonella serovars among the examined camels was 8.3%. Stn gene was detected in the vast majority of exotic strains (11/14) 78.6% including emerging serovars such as Salmonella Saintpaul, S. Chester, S. Typhimurium whereas only one isolate from local camels carried stn gene (1/3) 33.3%. On the other hand, none of the examined humans yielded positive result. Our findings highlight the potential role of imported camels as a transboundary vector for exotic emerging Salomenella serovars.

  10. Assessment of 2 Salmonella enterica serovar Typhimurium-based vaccines against necrotic enteritis in reducing colonization of chickens by Salmonella serovars of different serogroups.

    PubMed

    Jiang, Yanfen; Kulkarni, Raveendra R; Parreira, Valeria R; Poppe, Cornelius; Roland, Kenneth L; Prescott, John F

    2010-10-01

    This study assessed the protective efficacy of oral vaccination with 2 experimental attenuated Salmonella Typhimurium-vectored vaccines for necrotic enteritis in protecting chickens against intestinal colonization by common serovars of Salmonella belonging to the 4 major serogroups affecting chickens. Birds were vaccinated orally with 1 × 10⁸ colony-forming units (CFU) of 1 of the vaccine strains χ9241 and χ9352, which express a plasmid-encoded partial recombinant hypothetical protein gene (tHP) of Clostridium perfringens, at days 1 and 7 of age, and then were challenged at 14 d of age with 10⁶ CFU of Salmonella serovars Anatum, Enteritidis, Heidelberg, Kentucky, or Typhimurium (representative serovars of serogroups B, C, D, and E). Birds were necropsied at 4 wk of age, and samples were collected to determine reduction in tissue and intestinal colonization. The chickens vaccinated with χ9241-tHP showed reduced colonization by Salmonella Enteritidis (serogroup D) and by Salmonella Heidelberg and Salmonella Typhimurium (serogroup B) compared with the control birds. No reduction in colonization was observed in the chickens vaccinated with χ9352-tHP. There was an association between the efficacy of these vaccine strains in protecting against necrotic enteritis, assessed on an earlier occasion, and their efficacy in protecting against Salmonella colonization. Thus, the choice of an attenuated Salmonella Typhimurium vaccine vector for delivery of heterologous antigens to chickens should be based partly on the vaccine's value in protecting against colonization by serovars within serogroups B and D. Such vectors would have the additional benefit of reducing colonization of important Salmonella serovars.

  11. Assessment of 2 Salmonella enterica serovar Typhimurium-based vaccines against necrotic enteritis in reducing colonization of chickens by Salmonella serovars of different serogroups

    PubMed Central

    Jiang, Yanfen; Kulkarni, Raveendra R.; Parreira, Valeria R.; Poppe, Cornelius; Roland, Kenneth L.; Prescott, John F.

    2010-01-01

    This study assessed the protective efficacy of oral vaccination with 2 experimental attenuated Salmonella Typhimurium-vectored vaccines for necrotic enteritis in protecting chickens against intestinal colonization by common serovars of Salmonella belonging to the 4 major serogroups affecting chickens. Birds were vaccinated orally with 1 × 108 colony-forming units (CFU) of 1 of the vaccine strains χ9241 and χ9352, which express a plasmid-encoded partial recombinant hypothetical protein gene (tHP) of Clostridium perfringens, at days 1 and 7 of age, and then were challenged at 14 d of age with 106 CFU of Salmonella serovars Anatum, Enteritidis, Heidelberg, Kentucky, or Typhimurium (representative serovars of serogroups B, C, D, and E). Birds were necropsied at 4 wk of age, and samples were collected to determine reduction in tissue and intestinal colonization. The chickens vaccinated with χ9241-tHP showed reduced colonization by Salmonella Enteritidis (serogroup D) and by Salmonella Heidelberg and Salmonella Typhimurium (serogroup B) compared with the control birds. No reduction in colonization was observed in the chickens vaccinated with χ9352-tHP. There was an association between the efficacy of these vaccine strains in protecting against necrotic enteritis, assessed on an earlier occasion, and their efficacy in protecting against Salmonella colonization. Thus, the choice of an attenuated Salmonella Typhimurium vaccine vector for delivery of heterologous antigens to chickens should be based partly on the vaccine’s value in protecting against colonization by serovars within serogroups B and D. Such vectors would have the additional benefit of reducing colonization of important Salmonella serovars. PMID:21197226

  12. Salmonella Serovars from Humans and Other Sources in Thailand, 1993–2002

    PubMed Central

    Bangtrakulnonth, Aroon; Pornreongwong, Srirat; Pulsrikarn, Chaiwat; Sawanpanyalert, Pathom; Hendriksen, Rene S.; Wong, Danilo M. A. Lo Fo

    2004-01-01

    We serotyped 44,087 Salmonella isolates from humans and 26,148 from other sources from 1993 through 2002. The most common serovar causing human salmonellosis in Thailand was Salmonella enterica Weltevreden. Serovars causing human infections in Thailand differ from those in other countries and seem to be related to Salmonella serovars in different food products and reservoirs. PMID:15078609

  13. Transcriptional response of turkeys to MDR Salmonella enterica serovar heidelberg

    USDA-ARS?s Scientific Manuscript database

    Food-producing animals such as swine, cattle and poultry are a major reservoir of the human foodborne pathogen Salmonella. While some Salmonella serovars can cause disease in food-producing animals, most serovars colonize these animals asymptomatically, resulting in the hosts becoming carriers and ...

  14. Survival and Filamentation of Salmonella enterica Serovar Enteritidis PT4 and Salmonella enterica Serovar Typhimurium DT104 at Low Water Activity

    PubMed Central

    Mattick, K. L.; Jørgensen, F.; Legan, J. D.; Cole, M. B.; Porter, J.; Lappin-Scott, H. M.; Humphrey, T. J.

    2000-01-01

    In this study we investigated the long-term survival of and morphological changes in Salmonella strains at low water activity (aw). Salmonella enterica serovar Enteritidis PT4 and Salmonella enterica serovar Typhimurium DT104 survived at low aw for long periods, but minimum humectant concentrations of 8% NaCl (aw, 0.95), 96% sucrose (aw, 0.94), and 32% glycerol (aw, 0.92) were bactericidal under most conditions. Salmonella rpoS mutants were usually more sensitive to bactericidal levels of NaCl, sucrose, and glycerol. At a lethal aw, incubation at 37°C resulted in more rapid loss of viability than incubation at 21°C. At aw values of 0.93 to 0.98, strains of S. enterica serovar Enteritidis and S. enterica serovar Typhimurium formed filaments, some of which were at least 200 μm long. Filamentation was independent of rpoS expression. When the preparations were returned to high-aw conditions, the filaments formed septa, and division was complete within approximately 2 to 3 h. The variable survival of Salmonella strains at low aw highlights the importance of strain choice when researchers produce modelling data to simulate worst-case scenarios or conduct risk assessments based on laboratory data. The continued increase in Salmonella biomass at low aw (without a concomitant increase in microbial count) would not have been detected by traditional microbiological enumeration tests if the tests had been performed immediately after low-aw storage. If Salmonella strains form filaments in food products that have low aw values (0.92 to 0.98), there are significant implications for public health and for designing methods for microbiological monitoring. PMID:10742199

  15. Evaluation of Molecular Methods for Identification of Salmonella Serovars

    PubMed Central

    Gurnik, Simone; Ahmad, Aaminah; Blimkie, Travis; Murphy, Stephanie A.; Kropinski, Andrew M.; Nash, John H. E.

    2016-01-01

    Classification by serotyping is the essential first step in the characterization of Salmonella isolates and is important for surveillance, source tracking, and outbreak detection. To improve detection and reduce the burden of salmonellosis, several rapid and high-throughput molecular Salmonella serotyping methods have been developed. The aim of this study was to compare three commercial kits, Salm SeroGen (Salm Sero-Genotyping AS-1 kit), Check&Trace (Check-Points), and xMAP (xMAP Salmonella serotyping assay), to the Salmonella genoserotyping array (SGSA) developed by our laboratory. They were assessed using a panel of 321 isolates that represent commonly reported serovars from human and nonhuman sources globally. The four methods correctly identified 73.8% to 94.7% of the isolates tested. The methods correctly identified 85% and 98% of the clinically important Salmonella serovars Enteritidis and Typhimurium, respectively. The methods correctly identified 75% to 100% of the nontyphoidal, broad host range Salmonella serovars, including Heidelberg, Hadar, Infantis, Kentucky, Montevideo, Newport, and Virchow. The sensitivity and specificity of Salmonella serovars Typhimurium and Enteritidis ranged from 85% to 100% and 99% to 100%, respectively. It is anticipated that whole-genome sequencing will replace serotyping in public health laboratories in the future. However, at present, it is approximately three times more expensive than molecular methods. Until consistent standards and methodologies are deployed for whole-genome sequencing, data analysis and interlaboratory comparability remain a challenge. The use of molecular serotyping will provide a valuable high-throughput alternative to traditional serotyping. This comprehensive analysis provides a detailed comparison of commercial kits available for the molecular serotyping of Salmonella. PMID:27194688

  16. Multidrug-resistant Salmonella enterica serovar Infantis, Israel.

    PubMed

    Gal-Mor, Ohad; Valinsky, Lea; Weinberger, Miriam; Guy, Sara; Jaffe, Joseph; Schorr, Yosef Ilan; Raisfeld, Abraham; Agmon, Vered; Nissan, Israel

    2010-11-01

    To determine whether rapid emergence of Salmonella enterica serovar Infantis in Israel resulted from an increase in different biotypes or spread of 1 clone, we characterized 87 serovar Infantis isolates on the genotypic and phenotypic levels. The emerging strain comprised 1 genetic clone with a distinct pulsed-field gel electrophoresis profile and a common antimicrobial drug resistance pattern.

  17. Multidrug-Resistant Salmonella enterica Serovar Infantis, Israel

    PubMed Central

    Valinsky, Lea; Weinberger, Miriam; Guy, Sara; Jaffe, Joseph; Schorr, Yosef Ilan; Raisfeld, Abraham; Agmon, Vered; Nissan, Israel

    2010-01-01

    To determine whether rapid emergence of Salmonella enterica serovar Infantis in Israel resulted from an increase in different biotypes or spread of 1 clone, we characterized 87 serovar Infantis isolates on the genotypic and phenotypic levels. The emerging strain comprised 1 genetic clone with a distinct pulsed-field gel electrophoresis profile and a common antimicrobial drug resistance pattern. PMID:21029536

  18. Porcine response to a multidrug-resistant Salmonella enterica serovar I 4,[5],12:i:- outbreak isolate

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar I 4,[5],12:i:- has emerged as a common nontyphoidal Salmonella serovar to cause human foodborne illness. An interesting trait of serovar I 4,[5],12:i:- is it only expresses the fliC gene for bacterial motility (i.e. monophasic), while most Salmonella strains alternately e...

  19. Differential antibacterial response of chicken granulosa cells to invasion by Salmonella serovars.

    PubMed

    Babu, Uma S; Harrison, Lisa M; Patel, Isha R; Ramirez, Gerardo A; Williams, Kristina M; Pereira, Marion; Balan, Kannan V

    2016-06-01

    In the United States, Salmonella enterica ser. Enteritidis (SE) is among the leading bacterial cause of foodborne illness via consumption of raw or undercooked eggs. The top Salmonella serovars implicated in U.S. foodborne outbreaks associated with chicken consumption include SE, Typhimurium (ST), Heidelberg (SH), Montevideo, Mbandka, Braenderup, and Newport. While enforcement actions target the eradication of SE from layer hens, there is a growing concern that other serovars could occupy this niche and be a cause of egg-transmitted human salmonellosis. Therefore, we tested the invasion and survival of SE, SH, ST, and Salmonella enterica ser. Hadar (S. Hadar) at 4 and 20 h post infection (hpi) in chicken ovarian granulosa cells (cGC); a cellular layer which surrounds the previtelline layer and central yolk in egg-forming follicles. We also evaluated cGC transcriptional changes, using an antibacterial response PCR array, to assess host response to intracellular SalmonellaWe observed that invasion of cGC by SE, SH, and ST was significantly higher than invasion by S. Hadar, with ST showing the highest level of invasion. The Bacterial Survival Index, defined as the ratio of intracellular bacteria at 20 and 4 h, were 18.94, 7.35, and 15.27 for SE, SH, and ST, respectively, with no significant difference in survival between SE or ST compared to SH. Evaluation of cGC anti-Salmonella gene responses indicated that at 4 hpi there was a significant decrease in Toll-like receptor (TLR)-4 mRNA in cGC infected with SE, whereas TLR5 and myeloid differentiation primary response gene 88 were significantly down regulated across all serovars. At 4 hpi, invasion by Salmonella serovars resulted in significant upregulation of several antimicrobial genes, and proinflammatory cytokines and chemokines (PICs). At 20 hpi, all the serovars induced PICs with SH being the strongest inducer. Additionally, SE, SH and ST differentially induced signal transduction pathways. Although only a single

  20. Influence of Environmental Factors and Human Activity on the Presence of Salmonella Serovars in a Marine Environment

    PubMed Central

    Martinez-Urtaza, Jaime; Saco, Montserrat; de Novoa, Jacobo; Perez-Piñeiro, Pelayo; Peiteado, Jesus; Lozano-Leon, Antonio; Garcia-Martin, Oscar

    2004-01-01

    The temporal and spatial distribution of Salmonella contamination in the coastal waters of Galicia (northwestern Spain) relative to contamination events with different environmental factors (temperature, wind, hours of sunlight, rainfall, and river flow) were investigated over a 4-year period. Salmonellae were isolated from 127 of 5,384 samples of molluscs and seawater (2.4%), and no significant differences (P < 0.05) between isolates obtained in different years were observed. The incidence of salmonellae was significantly higher in water column samples (2.9%) than in those taken from the marine benthos (0.7%). Of the 127 strains of Salmonella isolated, 20 different serovars were identified. Salmonella enterica serovar Senftenberg was the predominant serovar, being represented by 54 isolates (42.5%), followed by serovar Typhimurium (19 isolates [15%]) and serovar Agona (12 isolates [9.4%]). Serovar Senftenberg was detected at specific points on the coast and could not be related to any of the environmental parameters analyzed. All serovars except Salmonella serovar Senftenberg were found principally in the southern coastal areas close to the mouths of rivers, and their incidence was associated with high southwestern wind and rainfall. Using multiple logistic regression analysis models, the prevalence of salmonellae was best explained by environmental parameters on the day prior to sampling. Understanding this relationship may be useful for the control of molluscan shellfish harvests, with wind and rainfall serving as triggers for closure. PMID:15066800

  1. Diversity and antimicrobial resistance of Salmonella enterica isolates from surface water in Southeastern United States.

    PubMed

    Li, Baoguang; Vellidis, George; Liu, Huanli; Jay-Russell, Michele; Zhao, Shaohua; Hu, Zonglin; Wright, Anita; Elkins, Christopher A

    2014-10-01

    A study of prevalence, diversity, and antimicrobial resistance of Salmonella enterica in surface water in the southeastern United States was conducted. A new scheme was developed for recovery of Salmonella from irrigation pond water and compared with the FDA's Bacteriological Analytical Manual (8th ed., 2014) (BAM) method. Fifty-one isolates were recovered from 10 irrigation ponds in produce farms over a 2-year period; nine Salmonella serovars were identified by pulsed-field gel electrophoresis analysis, and the major serovar was Salmonella enterica serovar Newport (S. Newport, n = 29), followed by S. enterica serovar Enteritidis (n = 6), S. enterica serovar Muenchen (n = 4), S. enterica serovar Javiana (n = 3), S. enterica serovar Thompson (n = 2), and other serovars. It is noteworthy that the PulseNet patterns of some of the isolates were identical to those of the strains that were associated with the S. Thompson outbreaks in 2010, 2012, and 2013, S. Enteritidis outbreaks in 2011 and 2013, and an S. Javiana outbreak in 2012. Antimicrobial susceptibility testing confirmed 16 S. Newport isolates of the multidrug resistant-AmpC (MDR-AmpC) phenotype, which exhibited resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (ACSSuT), and to the 1st, 2nd, and 3rd generations of cephalosporins (cephalothin, amoxicillin-clavulanic acid, and ceftriaxone). Moreover, the S. Newport MDR-AmpC isolates had a PFGE pattern indistinguishable from the patterns of the isolates from clinical settings. These findings suggest that the irrigation water may be a potential source of contamination of Salmonella in fresh produce. The new Salmonella isolation scheme significantly increased recovery efficiency from 21.2 (36/170) to 29.4% (50/170) (P = 0.0002) and streamlined the turnaround time from 5 to 9 days with the BAM method to 4 days and thus may facilitate microbiological analysis of environmental water. Copyright © 2014, American Society for

  2. Salmonella serovar-specific interaction with jejunal epithelial cells.

    PubMed

    Razzuoli, Elisabetta; Amadori, Massimo; Lazzara, Fabrizio; Bilato, Dania; Ferraris, Monica; Vito, Guendalina; Ferrari, Angelo

    2017-08-01

    Gut is often a receptacle for many different pathogens in feed and/or the environment, such as Salmonella spp. The current knowledge about pathogenicity of Salmonella is restricted to few serotypes, whereas other important ones like S. Coeln, S. Thompson, S. Veneziana, have not been investigated yet in human and animal models. Therefore, the aim of our work was to verify the ability of widespread environmental Salmonella strains to penetrate and modulate innate immunity in pig intestinal IPEC-J2 cells. Our results outline the different ability of Salmonella strains to modulate innate immunity; the expression of the IFN-β gene was increased by S. Typhimurium, S. Ablogame and S. Diarizonae 2, that also caused an inflammatory response in terms of Interleukin (IL)-1β and/or IL-8 gene espression. In particular, IL-8 gene expression and protein release were significantly modulated by 5 Salmonella strains out of 7. Interestingly, S. Typhimurium, S. Coeln and S. Thompson strains, characterized by a peculiar ability to penetrate into IPEC-J2 cells, up-regulated both IL-8 and TNF-α gene expression. Accordingly, blocking IL-8 was shown to decrease the penetration of S. Typhimurium. On the contrary, S. Diarizonae strain 1, showing lesser invasion of IPEC-J2 cells, down-regulated the p38-MAPK pathway, and it did not induce an inflammatory response. Our results confirm that IPEC-J2 cells are a useful model to evaluate host-gut pathogen interaction and indicate IL-8 and TNF-α as possible predictive markers of invasiveness of Salmonella strains in enterocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Salmonella enterica serovar-specific transcriptional reprogramming of infected cells.

    PubMed

    Hannemann, Sebastian; Galán, Jorge E

    2017-07-01

    Despite their high degree of genomic similarity, different Salmonella enterica serovars are often associated with very different clinical presentations. In humans, for example, the typhoidal S. enterica serovar Typhi causes typhoid fever, a life-threatening systemic disease. In contrast, the non-typhoidal S. enterica serovar Typhimurium causes self-limiting gastroenteritis. The molecular bases for these different clinical presentations are incompletely understood. The ability to re-program gene expression in host cells is an essential virulence factor for typhoidal and non-typhoidal S. enterica serovars. Here, we have compared the transcriptional profile of cultured epithelial cells infected with S. Typhimurium or S. Typhi. We found that both serovars stimulated distinct transcriptional responses in infected cells that are associated with the stimulation of specific signal transduction pathways. These specific responses were associated with the presence of a distinct repertoire of type III secretion effector proteins. These observations provide major insight into the molecular bases for potential differences in the pathogenic mechanisms of typhoidal and non-typhoidal S. enterica serovars.

  4. Salmonella enterica serovar Kentucky flagella are required for broiler skin adhesion and Caco-2 cell invasion

    USDA-ARS?s Scientific Manuscript database

    Nontyphoidal Salmonella strains are the main source of pathogenic bacterial contamination in the poultry industry. Recently, Salmonella enterica serovar Kentucky has been recognized as the most prominent serovar on carcasses in poultry-processing plants. Previous studies showed that flagella are one...

  5. Salmonella enterica Serovar Kentucky Flagella are Required for Broiler Skin Adhesion and Caco-2 Cell Invasion

    USDA-ARS?s Scientific Manuscript database

    Non-typhoidal Salmonella are the main source of pathogenic bacterial contamination in the poultry industry. Recently, Salmonella enterica serovar Kentucky has been recognized as the most prominent serovar on carcasses in poultry processing plants. Previous studies showed that flagella are one of the...

  6. Prevalence and characterization of Salmonella serovars isolated from oysters served raw in restaurants.

    PubMed

    Brillhart, Crystal D; Joens, Lynn A

    2011-06-01

    To determine if Salmonella-contaminated oysters are reaching consumer tables, a survey of raw oysters served in eight Tucson restaurants was performed from October 2007 to September 2008. Salmonella spp. were isolated during 7 of the 8 months surveyed and were present in 1.2% of 2,281 oysters tested. This observed prevalence is lower than that seen in a previous study in which U.S. market oysters were purchased from producers at bays where oysters are harvested. To test whether the process of refrigerating oysters in restaurants for several days reduces Salmonella levels, oysters were artificially infected with Salmonella and kept at 4°C for up to 13 days. Direct plate counts of oyster homogenate showed that Salmonella levels within oysters did not decrease during refrigeration. Six different serovars of Salmonella enterica were found in the restaurant oysters, indicating multiple incidences of Salmonella contamination of U.S. oyster stocks. Of the 28 contaminated oysters, 12 (43%) contained a strain of S. enterica serovar Newport that matched by pulsed-field gel electrophoresis a serovar Newport strain seen predominantly in the study of bay oysters performed in 2002. The repeated occurrence of this strain in oyster surveys is concerning, since the strain was resistant to seven antimicrobials tested and thus presents a possible health risk to consumers of raw oysters.

  7. Refined Live Attenuated Salmonella enterica Serovar Typhimurium and Enteritidis Vaccines Mediate Homologous and Heterologous Serogroup Protection in Mice

    PubMed Central

    Schmidlein, Patrick; Simon, Raphael; Pasetti, Marcela F.; Galen, James E.; Levine, Myron M.

    2015-01-01

    Invasive nontyphoidal Salmonella (NTS) infections constitute a major health problem among infants and toddlers in sub-Saharan Africa; these infections also occur in infants and the elderly in developed countries. We genetically engineered a Salmonella enterica serovar Typhimurium strain of multilocus sequence type 313, the predominant genotype circulating in sub-Saharan Africa. We evaluated the capacities of S. Typhimurium and Salmonella enterica serovar Enteritidis ΔguaBA ΔclpX live oral vaccines to protect mice against a highly lethal challenge dose of the homologous serovar and determined protection against other group B and D serovars circulating in sub-Saharan Africa. The vaccines S. Typhimurium CVD 1931 and S. Enteritidis CVD 1944 were immunogenic and protected BALB/c mice against 10,000 50% lethal doses (LD50) of S. Typhimurium or S. Enteritidis, respectively. S. Typhimurium CVD 1931 protected mice against the group B serovar Salmonella enterica serovar Stanleyville (91% vaccine efficacy), and S. Enteritidis CVD 1944 protected mice against the group D serovar Salmonella enterica serovar Dublin (85% vaccine efficacy). High rates of survival were observed when mice were infected 12 weeks postimmunization, indicating that the vaccines elicited long-lived protective immunity. Whereas CVD 1931 did not protect against S. Enteritidis R11, CVD 1944 did mediate protection against S. Typhimurium D65 (81% efficacy). These findings suggest that a bivalent (S. Typhimurium and S. Enteritidis) vaccine would provide broad protection against the majority of invasive NTS infections in sub-Saharan Africa. PMID:26351285

  8. Arginine-Dependent Acid Resistance in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Kieboom, Jasper; Abee, Tjakko

    2006-01-01

    Salmonella enterica serovar Typhimurium does not survive a pH 2.5 acid challenge under conditions similar to those used for Escherichia coli (J. W. Foster, Nat. Rev. Microbiol. 2:898-907, 2004). Here, we provide evidence that S. enterica serovar Typhimurium can display arginine-dependent acid resistance (AR) provided the cells are grown under anoxic conditions and not under the microaerobic conditions used for assessment of AR in E. coli. The role of the arginine decarboxylase pathway in Salmonella AR was shown by the loss of AR in mutants lacking adiA, which encodes arginine decarboxylase; adiC, which encodes the arginine-agmatine antiporter; or adiY, which encodes an AraC-like regulator. Transcription of adiA and adiC was found to be dependent on AdiY, anaerobiosis, and acidic pH. PMID:16855258

  9. Immunogenicity of Salmonella enterica serovar Enteritidis virulence protein, InvH, and cross-reactivity of its antisera with Salmonella strains.

    PubMed

    Dehghani, Behzad; Rasooli, Iraj; Gargari, Seyed Latif Mousavi; Nadooshan, Mohammad Reza Jalali; Owlia, Parviz; Nazarian, Shahram

    2013-02-22

    Acellular vaccines containing bacterial immunodominant components such as surface proteins may be potent alternatives to live attenuated vaccines in order to reduce salmonellosis risk to human health. invH gene, an important part of needle complex in type three secretion system (TTSS) plays important role in efficient bacterial adherence and entry into epithelial cells. In this work we hypothesize that use of a 15 kDa recombinant InvH as Salmonella enterica serovar Enteritidis surface protein could provoke antibody production in mouse and would help us study feasibility of its potential for diagnosis and/or a recombinant vaccine. The purified InvH provoked significant rise of IgG in mice. Active protection induced by immunization with InvH against variable doses of S. enterica serovar Enteritidis, indicated that the immunized mice were completely protected against challenge with 10(4) LD(50). The immunoreaction of sera from immunized mice with other Salmonella strains or cross reaction with sera of Salmonella strains inoculated mice is indicative of possessing by Salmonella strains of the surface protein, InvH, that can be employed in both prophylactic and diagnostic measures against S. enterica. Bacteria free spleen and ileum of the immunized mice in this study indicate that the invH gene affects bacterial invasion. Efficacy of the virulence protein, InvH, in shuttling into host cells in injectisome of S. enterica serovar Enteritidis and inhibition of this phenomenon by active immunization was shown in this study. In conclusion immunization with InvH protein can develop protection against S. enterica serovar Enteritidis infections. InvH in Salmonella strains can be exploited in protective measures as well as a diagnostic tool in Salmonella infections. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. Molecular identification of common Salmonella serovars using multiplex DNA sensor-based suspension array.

    PubMed

    Aydin, Muhsin; Carter-Conger, Jacqueline; Gao, Ning; Gilmore, David F; Ricke, Steven C; Ahn, Soohyoun

    2018-04-01

    Salmonella is one of major foodborne pathogens and the leading cause of foodborne illness-related hospitalizations and deaths. It is critical to develop a sensitive and rapid detection assay that can identify Salmonella to ensure food safety. In this study, a DNA sensor-based suspension array system of high multiplexing ability was developed to identify eight Salmonella serovars commonly associated with foodborne outbreaks to the serotype level. Each DNA sensor was prepared by activating pre-encoded microspheres with oligonucleotide probes that are targeting virulence genes and serovar-specific regions. The mixture of 12 different types of DNA sensors were loaded into a 96-well microplate and used as a 12-plex DNA sensor array platform. DNA isolated from Salmonella was amplified by multiplex polymerase chain reaction (mPCR), and the presence of Salmonella was determined by reading fluorescent signals from hybridization between probes on DNA sensors and fluorescently labeled target DNA using the Bio-Plex® system. The developed multiplex array was able to detect synthetic DNA at the concentration as low as 100 fM and various Salmonella serovars as low as 100 CFU/mL within 1 h post-PCR. Sensitivity of this assay was further improved to 1 CFU/mL with 6-h enrichment. The array system also correctly and specifically identified serotype of tested Salmonella strains without any cross-reactivity with other common foodborne pathogens. Our results indicate the developed DNA sensor suspension array can be a rapid and reliable high-throughput method for simultaneous detection and molecular identification of common Salmonella serotypes.

  11. Prevalence and characterization of multi-drug resistant Salmonella Enterica serovar Gallinarum biovar Pullorum and Gallinarum from chicken

    PubMed Central

    Parvej, Md. Shafiullah; Nazir, K. H. M. Nazmul Hussain; Rahman, M. Bahanur; Jahan, Mueena; Khan, Mohammad Ferdousur Rahman; Rahman, Marzia

    2016-01-01

    Aim: Salmonella is an important zoonotic pathogen responsible for animal and human diseases. The aim of the present study was to determine the prevalence and stereotyping of Salmonella isolates isolated from apparently healthy poultry. Furthermore, the clonal relatedness among the isolated Salmonella serovars was assessed. Materials and Methods: A total of 150 cloacal swab samples from apparently healthy chickens were collected, and were subjected for the isolation and identification of associated Salmonella organisms. The isolated colonies were identified and characterized on the basis of morphology, cultural characters, biochemical tests, slide agglutination test, polymerase chain reaction, and pulsed-field gel electrophoresis (PFGE). Antibiotic sensitivity patterns were also investigated using commonly used antibiotics. Results: Of the 150 samples, 11 (7.33%) produced characteristics pink colony with black center on XLD agar medium, and all were culturally and biochemically confirmed to be Salmonella. All possessed serovar-specific gene SpeF and reacted uniformly with group D antisera, suggesting that all of the isolates were Salmonella Enterica serovar Gallinarum, biovar Pullorum and/or Gallinarum. Antimicrobial susceptibility testing revealed that 54.54% of the isolated Salmonella Enterica serovars were highly sensitive to ciprofloxacin, whereas the 81.81% isolates were resistant to amoxycillin, doxycycline, kanamycin, gentamycin, and tetracycline. Pulsed-field gel electrophoresis of the XbaI-digested genomic DNA exhibited identical banding patterns, suggesting that the multidrug resistant Salmonella Enterica serovars occurring in commercial layers are highly clonal in Bangladesh. Conclusion: The present study was conducted to find out the prevalence of poultry Salmonella in layer chicken and to find out the clonal relationship among them. The data in this study suggest the prevalence of Salmonella Enterica, which is multidrug resistant and highly clonal for

  12. Refined live attenuated Salmonella enterica serovar Typhimurium and Enteritidis vaccines mediate homologous and heterologous serogroup protection in mice.

    PubMed

    Tennant, Sharon M; Schmidlein, Patrick; Simon, Raphael; Pasetti, Marcela F; Galen, James E; Levine, Myron M

    2015-12-01

    Invasive nontyphoidal Salmonella (NTS) infections constitute a major health problem among infants and toddlers in sub-Saharan Africa; these infections also occur in infants and the elderly in developed countries. We genetically engineered a Salmonella enterica serovar Typhimurium strain of multilocus sequence type 313, the predominant genotype circulating in sub-Saharan Africa. We evaluated the capacities of S. Typhimurium and Salmonella enterica serovar Enteritidis ΔguaBA ΔclpX live oral vaccines to protect mice against a highly lethal challenge dose of the homologous serovar and determined protection against other group B and D serovars circulating in sub-Saharan Africa. The vaccines S. Typhimurium CVD 1931 and S. Enteritidis CVD 1944 were immunogenic and protected BALB/c mice against 10,000 50% lethal doses (LD50) of S. Typhimurium or S. Enteritidis, respectively. S. Typhimurium CVD 1931 protected mice against the group B serovar Salmonella enterica serovar Stanleyville (91% vaccine efficacy), and S. Enteritidis CVD 1944 protected mice against the group D serovar Salmonella enterica serovar Dublin (85% vaccine efficacy). High rates of survival were observed when mice were infected 12 weeks postimmunization, indicating that the vaccines elicited long-lived protective immunity. Whereas CVD 1931 did not protect against S. Enteritidis R11, CVD 1944 did mediate protection against S. Typhimurium D65 (81% efficacy). These findings suggest that a bivalent (S. Typhimurium and S. Enteritidis) vaccine would provide broad protection against the majority of invasive NTS infections in sub-Saharan Africa. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Molecular Characterization of Multiresistant d-Tartrate-Positive Salmonella enterica Serovar Paratyphi B Isolates

    PubMed Central

    Miko, Angelika; Guerra, Beatriz; Schroeter, Andreas; Dorn, Christina; Helmuth, Reiner

    2002-01-01

    Since 1996, the National Salmonella Reference Laboratory of Germany has received an increasing number of Salmonella enterica subsp. enterica serovar Paratyphi B isolates. Nearly all of these belonged to the dextrorotatory tartrate-positive variant (S. enterica subsp. enterica serovar Paratyphi B dT+), formerly called S. enterica subsp. enterica serovar Java. A total of 55 selected contemporary and older S. enterica subsp. enterica serovar Paratyphi B dT+ isolates were analyzed by plasmid profiling, antimicrobial resistance testing, pulsed-field gel electrophoresis, IS200 profiling, and PCR-based detection of integrons. The results showed a high genetic heterogeneity among 10 old strains obtained from 1960 to 1993. In the following years, however, new distinct multiresistant S. enterica subsp. enterica serovar Paratyphi B dT+ clones emerged, and one clonal lineage successfully displaced the older ones. Since 1994, 88% of the isolates investigated were multiple drug resistant. Today, a particular clone predominates in some German poultry production lines, poultry products, and various other sources. It was also detected in contemporary isolates from two neighboring countries as well. PMID:12202551

  14. Distribution of Salmonella serovars and phage types on 80 Ontario swine farms in 2004

    PubMed Central

    Farzan, Abdolvahab; Friendship, Robert M.; Dewey, Catherine E.; Muckle, Anne C.; Gray, Jeff T.; Funk, Julie

    2008-01-01

    The objective of this study was to describe the distribution of Salmonella spp. on Ontario grower–finisher pig farms. Eighty swine farms were visited from January through July 2004. On each farm, fecal samples were collected from 5 pens, 2 rectal samples and 1 pooled sample from fresh manure on the floor per pen. Salmonella was isolated from 91 (11%) of the 800 rectal samples and 73 (18%) of the 397 pooled samples. Overall, Salmonella was recovered from 37 (46%) of the 80 farms. On each positive farm, Salmonella was cultured from 1 to 7 pigs or 1 to 5 pens. Of the 37 farms, 18, 13, 5, and 1 yielded 1, 2, 3, and 4 serovars, respectively. The most common serovars were S. Typhimurium var. Copenhagen, S. Infantis, S. Typhimurium, S. Derby, S. Agona, S. Havana, and S. enterica subsp. I:Rough-O. The 3 most frequent phage types were PT 104, PT 104a, and PT 104b. There was a statistically fair agreement between samples collected directly from pigs and pooled pen samples in determining the Salmonella status at the pen and farm level (κ = 0.6, P < 0.0001). However, in 62 pens, Salmonella status, serovars, or phage types differed between the pig and pooled pen samples. The distribution of Salmonella on the swine farms in this study indicates that, in developing an intervention strategy, priority should be given to farms positive for S. Typhimurium var. Copenhagen. Also, the variation in Salmonella status between pig and pooled pen samples deserves consideration in a sampling strategy. PMID:18214155

  15. Serovar distribution, antimicrobial resistance profiles, and PFGE typing of Salmonella enterica strains isolated from 2007–2012 in Guangdong, China

    PubMed Central

    2014-01-01

    Background Salmonella enterica includes the major serovars associated with human salmonellosis. In this study, 1764 clinical Salmonella enterica isolates from diarrhea outpatients were collected from fifteen cities in Guangdong province, China, between 2007 and 2012. These isolates represent all of the Salmonella isolates collected from the province during that period. Methods The isolates were characterized by serovar determination, antimicrobial susceptibility tests and PFGE fingerprint typing. Results The serovar distribution results demonstrated that Salmonella Typhimurium (n = 523, 29.65%) and Salmonella 4,5,12:i:- (n = 244, 13.83%) are the most common serovars causing infant salmonellosis, whereas Salmonella Enteritidis (n = 257, 14.57%) mainly causes human salmonellosis in adults. The serovar shift from Salmonella Enteritidis to Salmonella Typhimurium occurred in 2008. Antimicrobial susceptibility data showed a high burden of multidrug resistance (MDR) (n = 1128, 56.58%), and a 20%-30% increase in the number of isolates resistant to ciprofloxacin (n = 142, 8.05%) and third-generation cephalosporins (n = 88, 4.99%) from 2007–2012. Only 9.97% of isolates (n = 176) were fully susceptible to all agents tested. A high burden of MDR was observed in Salmonella Typhimurium and Salmonella 4,5,12:i:- for all age groups, and a reduced susceptibility to third-generation cephalosporins and quinolones occurred particularly in infants (≤6 years). The dominant PFGE patterns were JPXX01.GD0004, JEGX01.GD0006-7 and JNGX01.GD0006-7. ACSSuT was the predominant MDR profile in the Salmonella Typhimurium & 4,5,12:i:- complexes, while ASSuT-Nal and ASSu-Nal were the major MDR profiles in Salmonella Enteritidis. The predominant PFGE patterns of the Salmonella Typhimurium & 4,5,12:i:- complexes and Salmonella Stanley were most prevalent in infants (≤6 years). However, no obvious relationship was observed between these PFGE profiles and geographic

  16. Streptomycin Induced Stress Response in Salmonella enterica Serovar Typhimurium Shows Distinct Colony Scatter Signature

    PubMed Central

    Singh, Atul K.; Drolia, Rishi; Bai, Xingjian; Bhunia, Arun K.

    2015-01-01

    We investigated the streptomycin-induced stress response in Salmonella enterica serovars with a laser optical sensor, BARDOT (bacterial rapid detection using optical scattering technology). Initially, the top 20 S. enterica serovars were screened for their response to streptomycin at 100 μg/mL. All, but four S. enterica serovars were resistant to streptomycin. The MIC of streptomycin-sensitive serovars (Enteritidis, Muenchen, Mississippi, and Schwarzengrund) varied from 12.5 to 50 μg/mL, while streptomycin-resistant serovar (Typhimurium) from 125–250 μg/mL. Two streptomycin-sensitive serovars (Enteritidis and Mississippi) were grown on brain heart infusion (BHI) agar plates containing sub-inhibitory concentration of streptomycin (1.25–5 μg/mL) and a streptomycin-resistant serovar (Typhimurium) was grown on BHI containing 25–50 μg/mL of streptomycin and the colonies (1.2 ± 0.1 mm diameter) were scanned using BARDOT. Data show substantial qualitative and quantitative differences in the colony scatter patterns of Salmonella grown in the presence of streptomycin than the colonies grown in absence of antibiotic. Mass-spectrometry identified overexpression of chaperonin GroEL, which possibly contributed to the observed differences in the colony scatter patterns. Quantitative RT-PCR and immunoassay confirmed streptomycin-induced GroEL expression while, aminoglycoside adenylyltransferase (aadA), aminoglycoside efflux pump (aep), multidrug resistance subunit acrA, and ribosomal protein S12 (rpsL), involved in streptomycin resistance, were unaltered. The study highlights suitability of the BARDOT as a non-invasive, label-free tool for investigating stress response in Salmonella in conjunction with the molecular and immunoassay methods. PMID:26252374

  17. Genomic comparison of the closely-related Salmonella enterica serovars enteritidis, dublin and gallinarum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, T. David; Schmieder, Robert; Silva, Genivaldo G. Z.

    The Salmonella enterica serovars Enteritidis, Dublin, and Gallinarum are closely related but differ in virulence and host range. To identify the genetic elements responsible for these differences and to better understand how these serovars are evolving, we sequenced the genomes of Enteritidis strain LK5 and Dublin strain SARB12 and compared these genomes to the publicly available Enteritidis P125109, Dublin CT 02021853 and Dublin SD3246 genome sequences. We also compared the publicly available Gallinarum genome sequences from biotype Gallinarum 287/91 and Pullorum RKS5078. Using bioinformatic approaches, we identified single nucleotide polymorphisms, insertions, deletions, and differences in prophage and pseudogene content betweenmore » strains belonging to the same serovar. Through our analysis we also identified several prophage cargo genes and pseudogenes that affect virulence and may contribute to a host-specific, systemic lifestyle. These results strongly argue that the Enteritidis, Dublin and Gallinarum serovars of Salmonella enterica evolve by acquiring new genes through horizontal gene transfer, followed by the formation of pseudogenes. As a result, the loss of genes necessary for a gastrointestinal lifestyle ultimately leads to a systemic lifestyle and niche exclusion in the host-specific serovars.« less

  18. Genomic comparison of the closely-related Salmonella enterica serovars enteritidis, dublin and gallinarum

    DOE PAGES

    Matthews, T. David; Schmieder, Robert; Silva, Genivaldo G. Z.; ...

    2015-06-03

    The Salmonella enterica serovars Enteritidis, Dublin, and Gallinarum are closely related but differ in virulence and host range. To identify the genetic elements responsible for these differences and to better understand how these serovars are evolving, we sequenced the genomes of Enteritidis strain LK5 and Dublin strain SARB12 and compared these genomes to the publicly available Enteritidis P125109, Dublin CT 02021853 and Dublin SD3246 genome sequences. We also compared the publicly available Gallinarum genome sequences from biotype Gallinarum 287/91 and Pullorum RKS5078. Using bioinformatic approaches, we identified single nucleotide polymorphisms, insertions, deletions, and differences in prophage and pseudogene content betweenmore » strains belonging to the same serovar. Through our analysis we also identified several prophage cargo genes and pseudogenes that affect virulence and may contribute to a host-specific, systemic lifestyle. These results strongly argue that the Enteritidis, Dublin and Gallinarum serovars of Salmonella enterica evolve by acquiring new genes through horizontal gene transfer, followed by the formation of pseudogenes. As a result, the loss of genes necessary for a gastrointestinal lifestyle ultimately leads to a systemic lifestyle and niche exclusion in the host-specific serovars.« less

  19. Genomic Comparison of the Closely-Related Salmonella enterica Serovars Enteritidis, Dublin and Gallinarum

    PubMed Central

    Matthews, T. David; Schmieder, Robert; Silva, Genivaldo G. Z.; Busch, Julia; Cassman, Noriko; Dutilh, Bas E.; Green, Dawn; Matlock, Brian; Heffernan, Brian; Olsen, Gary J.; Farris Hanna, Leigh; Schifferli, Dieter M.; Maloy, Stanley; Dinsdale, Elizabeth A.; Edwards, Robert A.

    2015-01-01

    The Salmonella enterica serovars Enteritidis, Dublin, and Gallinarum are closely related but differ in virulence and host range. To identify the genetic elements responsible for these differences and to better understand how these serovars are evolving, we sequenced the genomes of Enteritidis strain LK5 and Dublin strain SARB12 and compared these genomes to the publicly available Enteritidis P125109, Dublin CT 02021853 and Dublin SD3246 genome sequences. We also compared the publicly available Gallinarum genome sequences from biotype Gallinarum 287/91 and Pullorum RKS5078. Using bioinformatic approaches, we identified single nucleotide polymorphisms, insertions, deletions, and differences in prophage and pseudogene content between strains belonging to the same serovar. Through our analysis we also identified several prophage cargo genes and pseudogenes that affect virulence and may contribute to a host-specific, systemic lifestyle. These results strongly argue that the Enteritidis, Dublin and Gallinarum serovars of Salmonella enterica evolve by acquiring new genes through horizontal gene transfer, followed by the formation of pseudogenes. The loss of genes necessary for a gastrointestinal lifestyle ultimately leads to a systemic lifestyle and niche exclusion in the host-specific serovars. PMID:26039056

  20. Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007.

    PubMed

    Hendriksen, Rene S; Vieira, Antonio R; Karlsmose, Susanne; Lo Fo Wong, Danilo M A; Jensen, Arne B; Wegener, Henrik C; Aarestrup, Frank M

    2011-08-01

    Salmonella enterica is commonly acquired from contaminated food and is an important cause of illness worldwide. Interventions are needed to control Salmonella; subtyping Salmonella by serotyping is useful for targeting such interventions. We, therefore, analyzed the global distribution of the 15 most frequently identified serovars of Salmonella isolated from humans from 2001 to 2007 in laboratories from 37 countries that participated in World Health Organization Global Foodborne Infections Network and demonstrated serotyping proficiency in the Global Foodborne Infections Network External Quality Assurance System. In all regions throughout the study period, with the exception of the Oceania and North American regions, Salmonella serovars Enteritidis and Typhimurium ranked as the most common and second most common serovar, respectively. In the North American and Oceania (Australia and New Zealand) regions, Salmonella serovar Typhimurium was the most common serovar reported, and Salmonella serovar Enteritidis was the second most common serovar. During the study period, the proportion of Salmonella isolates reported from humans that were Salmonella serovar Enteritidis was 43.5% (range: 40.6% [2007] to 44.9% [2003]), and Salmonella serovar Typhimurium was 17.1% (range: 15% [2007] to 18.9% [2001]). Salmonella serovars Newport (mainly observed in Latin and North American and European countries), Infantis (dominating in all regions), Virchow (mainly observed in Asian, European, and Oceanic countries), Hadar (profound in European countries), and Agona (intense in Latin and North American and European countries) were also frequently isolated with an overall proportion of 3.5%, 1.8%, 1.5%, 1.5%, and 0.8%, respectively. There were large differences in the most commonly isolated serovars between regions, but lesser differences between countries within the same region. The results also highlight the complexity of the global epidemiology of Salmonella and the need and importance

  1. Survival of Salmonella enterica serovar infantis on and within stored table eggs.

    PubMed

    Lublin, Avishai; Maler, Ilana; Mechani, Sara; Pinto, Riky; Sela-Saldinger, Shlomo

    2015-02-01

    Contaminated table eggs are considered a primary source of foodborne salmonellosis globally. Recently, a single clone of Salmonella enterica serovar Infantis emerged in Israel and became the predominant serovar isolated in poultry. This clone is currently the most prevalent strain in poultry and is the leading cause of salmonellosis in humans. Because little is known regarding the potential transmission of this strain from contaminated eggs to humans, the objective of this study was to evaluate the ability of Salmonella Infantis to survive on the eggshell or within the egg during cold storage or at room temperature. Salmonella cells (5.7 log CFU per egg) were inoculated on the surface of 120 intact eggs or injected into the egg yolk (3.7 log CFU per egg) of another 120 eggs. Half of the eggs were stored at 5.5 ± 0.3°C and half at room temperature (25.5 ± 0.1°C) for up to 10 weeks. At both temperatures, the number of Salmonella cells on the shell declined by 2 log up to 4 weeks and remained constant thereafter. Yolk-inoculated Salmonella counts at cold storage declined by 1 log up to 4 weeks and remained constant, while room-temperature storage supported the growth of the pathogen to a level of 8 log CFU/ml of total egg content, as early as 4 weeks postinoculation. Examination of egg content following surface inoculation revealed the presence of Salmonella in a portion of the eggs at both temperatures up to 10 weeks, suggesting that this strain can also penetrate through the shell and survive within the egg. These findings imply that Salmonella enterica serovar Infantis is capable of survival both on the exterior and interior of table eggs and even multiply inside the egg at room temperature. Our findings support the need for prompt refrigeration to prevent Salmonella multiplication during storage of eggs at room temperature.

  2. Human migration is important in the international spread of exotic Salmonella serovars in animal and human populations.

    PubMed

    Iveson, J B; Bradshaw, S D; How, R A; Smith, D W

    2014-11-01

    The exposure of indigenous humans and native fauna in Australia and the Wallacea zoogeographical region of Indonesia to exotic Salmonella serovars commenced during the colonial period and has accelerated with urbanization and international travel. In this study, the distribution and prevalence of exotic Salmonella serovars are mapped to assess the extent to which introduced infections are invading native wildlife in areas of high natural biodiversity under threat from expanding human activity. The major exotic Salmonella serovars, Bovismorbificans, Derby, Javiana, Newport, Panama, Saintpaul and Typhimurium, isolated from wildlife on populated coastal islands in southern temperate areas of Western Australia, were mostly absent from reptiles and native mammals in less populated tropical areas of the state. They were also not recorded on the uninhabited Mitchell Plateau or islands of the Bonaparte Archipelago, adjacent to south-eastern Indonesia. Exotic serovars were, however, isolated in wildlife on 14/17 islands sampled in the Wallacea region of Indonesia and several islands off the west coast of Perth. Increases in international tourism, involving islands such as Bali, have resulted in the isolation of a high proportion of exotic serovar infections suggesting that densely populated island resorts in the Asian region are acting as staging posts for the interchange of Salmonella infections between tropical and temperate regions.

  3. Complete Genome Sequence of a Multidrug-Resistant Salmonella enterica Serovar Typhimurium var. 5- Strain Isolated from Chicken Breast.

    PubMed

    Hoffmann, Maria; Muruvanda, Tim; Allard, Marc W; Korlach, Jonas; Roberts, Richard J; Timme, Ruth; Payne, Justin; McDermott, Patrick F; Evans, Peter; Meng, Jianghong; Brown, Eric W; Zhao, Shaohua

    2013-12-19

    Salmonella enterica subsp. enterica serovar Typhimurium is a leading cause of salmonellosis. Here, we report a closed genome sequence, including sequences of 3 plasmids, of Salmonella serovar Typhimurium var. 5- CFSAN001921 (National Antimicrobial Resistance Monitoring System [NARMS] strain ID N30688), which was isolated from chicken breast meat and shows resistance to 10 different antimicrobials. Whole-genome and plasmid sequence analyses of this isolate will help enhance our understanding of this pathogenic multidrug-resistant serovar.

  4. ssrA (tmRNA) Plays a Role in Salmonella enterica Serovar Typhimurium Pathogenesis

    PubMed Central

    Julio, Steven M.; Heithoff, Douglas M.; Mahan, Michael J.

    2000-01-01

    Escherichia coli ssrA encodes a small stable RNA molecule, tmRNA, that has many diverse functions, including tagging abnormal proteins for degradation, supporting phage growth, and modulating the activity of DNA binding proteins. Here we show that ssrA plays a role in Salmonella enterica serovar Typhimurium pathogenesis and in the expression of several genes known to be induced during infection. Moreover, the phage-like attachment site, attL, encoded within ssrA, serves as the site of integration of a region of Salmonella-specific sequence; adjacent to the 5′ end of ssrA is another region of Salmonella-specific sequence with extensive homology to predicted proteins encoded within the unlinked Salmonella pathogenicity island SPI4. S. enterica serovar Typhimurium ssrA mutants fail to support the growth of phage P22 and are delayed in their ability to form viable phage particles following induction of a phage P22 lysogen. These data indicate that ssrA plays a role in the pathogenesis of Salmonella, serves as an attachment site for Salmonella-specific sequences, and is required for the growth of phage P22. PMID:10692360

  5. Two Novel Salmonella Bivalent Vaccines Confer Dual Protection against Two Salmonella Serovars in Mice

    PubMed Central

    Zhao, Xinxin; Dai, Qinlong; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Wang, Mingshu; Chen, Shun; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Cheng, Anchun

    2017-01-01

    Non-typhoidal Salmonella includes thousands of serovars that are leading causes of foodborne diarrheal illness worldwide. In this study, we constructed three bivalent vaccines for preventing both Salmonella Typhimurium and Salmonella Newport infections by using the aspartate semialdehyde dehydrogenase (Asd)-based balanced-lethal vector-host system. The constructed Asd+ plasmid pCZ11 carrying a subset of the Salmonella Newport O-antigen gene cluster including the wzx-wbaR-wbaL-wbaQ-wzy-wbaW-wbaZ genes was introduced into three Salmonella Typhimurium mutants: SLT19 (Δasd) with a smooth LPS phenotype, SLT20 (Δasd ΔrfbN) with a rough LPS phenotype, and SLT22 (Δasd ΔrfbN ΔpagL::T araC PBAD rfbN) with a smooth LPS phenotype when grown with arabinose. Immunoblotting demonstrated that SLT19 harboring pCZ11 [termed SLT19 (pCZ11)] co-expressed the homologous and heterologous O-antigens; SLT20 (pCZ11) exclusively expressed the heterologous O-antigen; and when arabinose was available, SLT22 (pCZ11) expressed both types of O-antigens, while in the absence of arabinose, SLT22 (pCZ11) expressed only the heterologous O-antigen. Exclusive expression of the heterologous O-antigen in Salmonella Typhimurium decreased the swimming ability of the bacterium and its susceptibility to polymyxin B. Next, the crp gene was deleted from the three recombinant strains for attenuation purposes, generating the three bivalent vaccine strains SLT25 (pCZ11), SLT26 (pCZ11), and SLT27 (pCZ11), respectively. Groups of BALB/c mice (12 mice/group) were orally immunized with 109 CFU of each vaccine strain twice at an interval of 4 weeks. Compared with a mock immunization, immunization with all three vaccine strains induced significant serum IgG responses against both Salmonella Typhimurium and Salmonella Newport LPS. The bacterial loads in the mouse tissues were significantly lower in the three vaccine-strain-immunized groups than in the mock group after either Salmonella Typhimurium or Salmonella

  6. Infection of Mice by Salmonella enterica Serovar Enteritidis Involves Additional Genes That Are Absent in the Genome of Serovar Typhimurium

    PubMed Central

    Silva, Cecilia A.; Blondel, Carlos J.; Quezada, Carolina P.; Porwollik, Steffen; Andrews-Polymenis, Helene L.; Toro, Cecilia S.; Zaldívar, Mercedes; Contreras, Inés

    2012-01-01

    Salmonella enterica serovar Enteritidis causes a systemic, typhoid-like infection in newly hatched poultry and mice. In the present study, a library of 54,000 transposon mutants of S. Enteritidis phage type 4 (PT4) strain P125109 was screened for mutants deficient in the in vivo colonization of the BALB/c mouse model using a microarray-based negative-selection screening. Mutants in genes known to contribute to systemic infection (e.g., Salmonella pathogenicity island 2 [SPI-2], aro, rfa, rfb, phoP, and phoQ) and enteric infection (e.g., SPI-1 and SPI-5) in this and other Salmonella serovars displayed colonization defects in our assay. In addition, a strong attenuation was observed for mutants in genes and genomic islands that are not present in S. Typhimurium or in most other Salmonella serovars. These genes include a type I restriction/modification system (SEN4290 to SEN4292), the peg fimbrial operon (SEN2144A to SEN2145B), a putative pathogenicity island (SEN1970 to SEN1999), and a type VI secretion system remnant SEN1001, encoding a hypothetical protein containing a lysin motif (LysM) domain associated with peptidoglycan binding. Proliferation defects for mutants in these individual genes and in exemplar genes for each of these clusters were confirmed in competitive infections with wild-type S. Enteritidis. A ΔSEN1001 mutant was defective for survival within RAW264.7 murine macrophages in vitro. Complementation assays directly linked the SEN1001 gene to phenotypes observed in vivo and in vitro. The genes identified here may perform novel virulence functions not characterized in previous Salmonella models. PMID:22083712

  7. Salmonella Pathogenicity and Host Adaptation in Chicken-Associated Serovars

    PubMed Central

    Johnson, Timothy J.; Ricke, Steven C.; Nayak, Rajesh; Danzeisen, Jessica

    2013-01-01

    SUMMARY Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today. PMID:24296573

  8. Method for the detection of Salmonella enterica serovar Enteritidis

    DOEpatents

    Agron, Peter G.; Andersen, Gary L.; Walker, Richard L.

    2008-10-28

    Described herein is the identification of a novel Salmonella enterica serovar Enteritidis locus that serves as a marker for DNA-based identification of this bacterium. In addition, three primer pairs derived from this locus that may be used in a nucleotide detection method to detect the presence of the bacterium are also disclosed herein.

  9. Salmonella serovars and their distribution in Nigerian commercial chicken layer farms

    PubMed Central

    Fagbamila, Idowu Oluwabunmi; Barco, Lisa; Mancin, Marzia; Kwaga, Jacob; Ngulukun, Sati Samuel; Zavagnin, Paola; Lettini, Antonia Anna; Lorenzetto, Monica; Abdu, Paul Ayuba; Kabir, Junaidu; Umoh, Jarlath; Ricci, Antonia; Muhammad, Maryam

    2017-01-01

    Commercial poultry farms (n° 523), located in all the six regions of Nigeria were sampled with a view to generate baseline information about the distribution of Salmonella serovars in this country. Five different matrices (litter, dust, faeces, feed and water) were collected from each visited farm. Salmonella was isolated from at least one of the five matrices in 228 farms, with a farm prevalence of 43.6% (CI95[39.7–48.3%]). Altogether, 370 of 2615 samples collected (14.1%, CI95[12.8; 15.5%]) contained Salmonella. Considering the number of positive farms and the number of positive samples, it was evident that for the majority of the sampled farms, few samples were positive for Salmonella. With regard to the matrices, there was no difference in Salmonella prevalence among the five matrices considered. Of the 370 isolates serotyped, eighty-two different serotypes were identified and Salmonella Kentucky was identified as having the highest isolation rate in all the matrices sampled (16.2%), followed by S. Poona and S. Elisabethville. S. Kentucky was distributed across the country, whereas the other less frequent serovars had a more circumscribed diffusion. This is one of few comprehensive studies on the occurrence and distribution of Salmonella in commercial chicken layer farms from all the six regions of Nigeria. The relatively high prevalence rate documented in this study may be attributed to the generally poor infrastructure and low biosecurity measures in controlling stray animals, rodents and humans. Data collected could be valuable for instituting effective intervention strategies for Salmonella control in Nigeria and also in other developing countries with a similar poultry industry structure, with the final aim of reducing Salmonella spread in animals and ultimately in humans. PMID:28278292

  10. Salmonella serovars and their distribution in Nigerian commercial chicken layer farms.

    PubMed

    Fagbamila, Idowu Oluwabunmi; Barco, Lisa; Mancin, Marzia; Kwaga, Jacob; Ngulukun, Sati Samuel; Zavagnin, Paola; Lettini, Antonia Anna; Lorenzetto, Monica; Abdu, Paul Ayuba; Kabir, Junaidu; Umoh, Jarlath; Ricci, Antonia; Muhammad, Maryam

    2017-01-01

    Commercial poultry farms (n° 523), located in all the six regions of Nigeria were sampled with a view to generate baseline information about the distribution of Salmonella serovars in this country. Five different matrices (litter, dust, faeces, feed and water) were collected from each visited farm. Salmonella was isolated from at least one of the five matrices in 228 farms, with a farm prevalence of 43.6% (CI95[39.7-48.3%]). Altogether, 370 of 2615 samples collected (14.1%, CI95[12.8; 15.5%]) contained Salmonella. Considering the number of positive farms and the number of positive samples, it was evident that for the majority of the sampled farms, few samples were positive for Salmonella. With regard to the matrices, there was no difference in Salmonella prevalence among the five matrices considered. Of the 370 isolates serotyped, eighty-two different serotypes were identified and Salmonella Kentucky was identified as having the highest isolation rate in all the matrices sampled (16.2%), followed by S. Poona and S. Elisabethville. S. Kentucky was distributed across the country, whereas the other less frequent serovars had a more circumscribed diffusion. This is one of few comprehensive studies on the occurrence and distribution of Salmonella in commercial chicken layer farms from all the six regions of Nigeria. The relatively high prevalence rate documented in this study may be attributed to the generally poor infrastructure and low biosecurity measures in controlling stray animals, rodents and humans. Data collected could be valuable for instituting effective intervention strategies for Salmonella control in Nigeria and also in other developing countries with a similar poultry industry structure, with the final aim of reducing Salmonella spread in animals and ultimately in humans.

  11. Isolation and characterization of polyvalent bacteriophages infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt.

    PubMed

    Mahmoud, Mayada; Askora, Ahmed; Barakat, Ahmed Barakat; Rabie, Omar El-Farouk; Hassan, Sayed Emam

    2018-02-02

    In this study, we isolated and characterized three phages named as Salmacey1, Salmacey2 and Salmacey3, infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. The most prevalent Salmonella serovars were S. typhimurium, S. enteritidis, and S. kentucky. All these Salmonella serovars were found to be resistant to more than two of the ten antimicrobial agents tested. Only S. kentucky was found to be resistant to seven antimicrobial agents. Examination of these phage particles by transmission electron microscopy (TEM), demonstrated that two phages (Salmacey1, Salmacey2) were found to belong to family Siphoviridae, and Salmacey3 was assigned to the family Myoviridae. The results of host range assay revealed that these bacteriophages were polyvalent and thus capable of infecting four strains of Salmonella serovars and Citrobacter freundii. Moreover, the two phages (Salmacey1, Salmacey2) had a lytic effect on Enterobacter cloacae and Salmacey3 was able to infect E. coli. All phages could not infect S. para Typhi, Staphylococus aureus and Bacillus cereus. One-step growth curves of bacteriophages revealed that siphovirus phages (Salmacey1, Salmacey2) have burst size (80 and 90pfu per infected cell with latent period 35min and 40min respectively), and for the myovirus Salmacey3 had a burst size 110pfu per infected cell with latent period 60min. Molecular analyses indicated that these phages contained double-stranded DNA genomes. The lytic activity of the phages against the most multidrug resistant serovars S. kentucky as host strain was evaluated. The result showed that these bacteriophages were able to completely stop the growth of S. kentucky in vitro. These results suggest that phages have a high potential for phage application to control Salmonella serovars isolated from broilers in Egypt. Copyright © 2017. Published by Elsevier B.V.

  12. Prevalence, Virulence Genes and Antimicrobial Resistance Profiles of Salmonella Serovars from Retail Beef in Selangor, Malaysia

    PubMed Central

    Thung, Tze Y.; Radu, Son; Mahyudin, Nor A.; Rukayadi, Yaya; Zakaria, Zunita; Mazlan, Nurzafirah; Tan, Boon H.; Lee, Epeng; Yeoh, Soo L.; Chin, Yih Z.; Tan, Chia W.; Kuan, Chee H.; Basri, Dayang F.; Wan Mohamed Radzi, Che W. J.

    2018-01-01

    The aim of the present study was to investigate the prevalence of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in retail beef from different retail markets of Selangor area, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 240 retail beef meat samples (chuck = 60; rib = 60; round = 60; sirloin = 60) were randomly collected. The multiplex polymerase chain reaction (mPCR) in combination with the most probable number (MPN) method was employed to detect Salmonella spp., S. Enteritidis and S. Typhimurium in the meat samples. The prevalence of Salmonella spp., S. Enteritidis and S. Typhimurium in 240 beef meat samples were 7.50, 1.25, and 0.83%, respectively. The microbial loads of total Salmonella was found in the range of <3 to 15 MPN/g. Eight different serovars of Salmonella were identified among the 23 isolates, and S. Agona was the predominant serovar (26.09%). Interestingly, all the Salmonella isolates were resistant to penicillin, erythromycin and vancomycin, but the sensitivity was observed for tetracycline, gentamicin and amoxicillin/clavulanic acid. All 23 isolates were resistant to at least three antibiotics. Two S. Typhimurium isolates (8.70%) exhibited the highest multiple antibiotic resistance (MAR) index value of 0.56 which shown resistance to nine antibiotics. PCR analysis of virulence genes showed that all Salmonella isolates (100%) were positive for the invA gene. Meanwhile, pefA was only identified in S. Enteritidis and S. Typhimurium. The findings in this study indicate that retail beef products tested were widely contaminated with multi-drug resistant (MDR) Salmonella and various virulence genes are present among the isolated Salmonella serovars. PMID:29379488

  13. Prevalence, Virulence Genes and Antimicrobial Resistance Profiles of Salmonella Serovars from Retail Beef in Selangor, Malaysia.

    PubMed

    Thung, Tze Y; Radu, Son; Mahyudin, Nor A; Rukayadi, Yaya; Zakaria, Zunita; Mazlan, Nurzafirah; Tan, Boon H; Lee, Epeng; Yeoh, Soo L; Chin, Yih Z; Tan, Chia W; Kuan, Chee H; Basri, Dayang F; Wan Mohamed Radzi, Che W J

    2017-01-01

    The aim of the present study was to investigate the prevalence of Salmonella spp., Salmonella Enteritidis and Salmonella Typhimurium in retail beef from different retail markets of Selangor area, as well as, to assess their pathogenic potential and antimicrobial resistance. A total of 240 retail beef meat samples (chuck = 60; rib = 60; round = 60; sirloin = 60) were randomly collected. The multiplex polymerase chain reaction (mPCR) in combination with the most probable number (MPN) method was employed to detect Salmonella spp., S . Enteritidis and S . Typhimurium in the meat samples. The prevalence of Salmonella spp., S . Enteritidis and S . Typhimurium in 240 beef meat samples were 7.50, 1.25, and 0.83%, respectively. The microbial loads of total Salmonella was found in the range of <3 to 15 MPN/g. Eight different serovars of Salmonella were identified among the 23 isolates, and S . Agona was the predominant serovar (26.09%). Interestingly, all the Salmonella isolates were resistant to penicillin, erythromycin and vancomycin, but the sensitivity was observed for tetracycline, gentamicin and amoxicillin/clavulanic acid. All 23 isolates were resistant to at least three antibiotics. Two S . Typhimurium isolates (8.70%) exhibited the highest multiple antibiotic resistance (MAR) index value of 0.56 which shown resistance to nine antibiotics. PCR analysis of virulence genes showed that all Salmonella isolates (100%) were positive for the invA gene. Meanwhile, pefA was only identified in S . Enteritidis and S . Typhimurium. The findings in this study indicate that retail beef products tested were widely contaminated with multi-drug resistant (MDR) Salmonella and various virulence genes are present among the isolated Salmonella serovars.

  14. Complete Genome Sequence of a Multidrug-Resistant Salmonella enterica Serovar Typhimurium var. 5− Strain Isolated from Chicken Breast

    PubMed Central

    Muruvanda, Tim; Allard, Marc W.; Korlach, Jonas; Roberts, Richard J.; Timme, Ruth; Payne, Justin; McDermott, Patrick F.; Evans, Peter; Meng, Jianghong; Brown, Eric W.; Zhao, Shaohua

    2013-01-01

    Salmonella enterica subsp. enterica serovar Typhimurium is a leading cause of salmonellosis. Here, we report a closed genome sequence, including sequences of 3 plasmids, of Salmonella serovar Typhimurium var. 5− CFSAN001921 (National Antimicrobial Resistance Monitoring System [NARMS] strain ID N30688), which was isolated from chicken breast meat and shows resistance to 10 different antimicrobials. Whole-genome and plasmid sequence analyses of this isolate will help enhance our understanding of this pathogenic multidrug-resistant serovar. PMID:24356834

  15. MALDI-TOF mass spectrometry provides high accuracy in identification of Salmonella at species level but is limited to type or subtype Salmonella serovars.

    PubMed

    Kang, Lin; Li, Nan; Li, Ping; Zhou, Yang; Gao, Shan; Gao, Hongwei; Xin, Wenwen; Wang, Jinglin

    2017-04-01

    Salmonella can cause global foodborne illnesses in humans and many animals. The current diagnostic gold standard used for detecting Salmonella infection is microbiological culture followed by serological confirmation tests. However, these methods are complicated and time-consuming. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis offers some advantages in rapid identification, for example, simple and fast sample preparation, fast and automated measurement, and robust and reliable identification up to genus and species levels, possibly even to the strain level. In this study, we established a reference database for species identification using whole-cell MALDI-TOF MS; the database consisted of 12 obtained main spectra of the Salmonella culture collection strains belonged to seven serotypes. Eighty-two clinical isolates of Salmonella were identified using established database, and partial 16S rDNA gene sequencing and serological method were used as comparison. We found that MALDI-TOF mass spectrometry provided high accuracy in identification of Salmonella at species level but was limited to type or subtype Salmonella serovars. We also tried to find serovar-specific biomarkers and failed. Our study demonstrated that (a) MALDI-TOF MS was suitable for identification of Salmonella at species level with high accuracy and (b) that MALDI-TOF MS method presented in this study was not useful for serovar assignment of Salmonella currently, because of its low matching with serological method and (c) MALDI-TOF MS method presented in this study was not suitable to subtype S. typhimurium because of its low discriminatory ability.

  16. Diversity of Salmonella serovars in feedyard and nonfeedyard playas of the Southern High Plains in the summer and winter.

    PubMed

    Purdy, Charles W; Straus, David C; Clark, R Nolan

    2004-01-01

    To compare Salmonella isolates cultured from feedyard and nonfeedyard (control) playas (ie, temporary shallow lakes) of the Southern High Plains. Water and muck (sediment) samples were obtained from 7 feedyard playas and 3 nonfeedyard playas in the winter and summer. Each water and muck sample was enriched with sulfur-brilliant-green broth and incubated in a shaker at 37 degrees C for 24 hours. A sample (100 mL) of the incubated bacterial-enriched broth was then mixed with 100 mL of fresh sulfur-brilliant-green enrichment broth and incubated in a shaker at 37 degrees C for 24 hours. After the second incubation, a swab sample was streaked on differential media. Suspect Salmonella isolates were further identified by use of biochemical tests, and Salmonella isolates were confirmed and serovar determinations made. Salmonella isolates were not recovered from the 3 control playas. Seven Salmonella enterica serovars were isolated from 5 of 7 feedyard playas in the summer, and 13 S. enterica serovars were isolated from 7 of 7 feedyard playas in the winter. In the summer, 296 isolates were cultured, and 47 were Salmonella organisms. In the winter, 288 isolates were cultured, and 171 were Salmonella organisms. Results indicated that feedyard playas are frequently contaminated with many Salmonella serovars. These pathogens should be considered whenever feedyard managers contemplate the use of water from these playas. Water from feedyard playas should not be used to cool cattle in the summer or for dust abatement.

  17. Complete Whole-Genome Sequence of Salmonella enterica subsp. enterica Serovar Java NCTC5706.

    PubMed

    Fazal, Mohammed-Abbas; Alexander, Sarah; Burnett, Edward; Deheer-Graham, Ana; Oliver, Karen; Holroyd, Nancy; Parkhill, Julian; Russell, Julie E

    2016-11-03

    Salmonellae are a significant cause of morbidity and mortality globally. Here, we report the first complete genome sequence for Salmonella enterica subsp. enterica serovar Java strain NCTC5706. This strain is of historical significance, having been isolated in the pre-antibiotic era and was deposited into the National Collection of Type Cultures in 1939. © Crown copyright 2016.

  18. Attachment of Salmonella serovars and Listeria monocytogenes to stainless steel and plastic conveyor belts.

    PubMed

    Veluz, G A; Pitchiah, S; Alvarado, C Z

    2012-08-01

    In poultry industry, cross-contamination due to processing equipment and contact surfaces is very common. This study examined the extent of bacterial attachment to 6 different types and design of conveyor belts: stainless steel-single loop, stainless steel-balance weave, polyurethane with mono-polyester fabric, acetal, polypropylene mesh top, and polypropylene. Clean conveyor belts were immersed separately in either a cocktail of Salmonella serovars (Salmonella Typhimurium and Salmonella Enteritidis) or Listeria monocytogenes strains (Scott A, Brie 1, ATCC 6744) for 1 h at room temperature. Soiled conveyor chips were dipped in poultry rinses contaminated with Salmonella or Listeria cocktail and incubated at 10°C for 48 h. The polyurethane with mono-polyester fabric conveyor belt and chip exhibited a higher (P<0.05) mean number of attached Salmonella serovars (clean: 1.6 to 3.6 cfu/cm2; soiled: 0.8 to 2.4 cfu/cm2) and L. monocytogenes (clean: 4.0 to 4.3 cfu/cm2; soiled: 0.3 to 2.1 cfu/cm2) in both clean and soiled conditions. The stainless steel conveyor belt attached a lower (P<0.05) number of Salmonella serovars (clean: 0 to 2.6 cfu/cm2; soiled: 0.4 to 1.3 cfu/cm2) and L. monocytogenes (clean: 0.4 to 2.9 cfu/cm2; soiled: 0 to 0.7 cfu/cm2) than the polymeric materials, indicating weaker adhesion properties. Plastic conveyor belts exhibited stronger bacterial adhesion compared with stainless steel. The result suggests the importance of selecting the design and finishes of conveyor belt materials that are most resistant to bacterial attachment.

  19. Persistence and clearance of different Salmonella serovars in buildings housing laying hens.

    PubMed

    Carrique-Mas, J J; Breslin, M; Snow, L; McLaren, I; Sayers, A R; Davies, R H

    2009-06-01

    We investigated factors associated with persistence of different Salmonella serovars in buildings housing laying hens in Great Britain using survival analysis. A total of 264 incidents of Salmonella detection occurring between July 1998 and August 2007 in 152 houses were recorded. For incidents involving Salmonella Enteritidis (SE), both the rodent score of the house and the type of house were positively associated with persistence. For non-SE serovars, only the type of house was associated with persistence. Persistence of SE in the houses was longest (>15 months) in step-cage and cage-scraper houses when high levels of rodents were present, and lowest in non-cage and cage-belt houses. We estimated that 42% (95% CI 23.3-63.1) of SE incidents may be cleared during the lay period, and this was related to elimination of rodents from the houses. From January 2009, EU legislation will ban the sale of fresh eggs from SE-positive and S. Typhimurium-positive flocks over their remaining lifespan. If infection is eliminated from such flocks, they would cease to represent a public health risk.

  20. Distribution and Antimicrobial Susceptibility of Foodborne Salmonella Serovars in Eight Provinces in China from 2007 to 2012 (Except 2009).

    PubMed

    Wang, Yin; Cao, Chenyang; Alali, Walid Q; Cui, Shenghui; Li, Fengqin; Zhu, Jianghui; Wang, Xin; Meng, Jianghong; Yang, Baowei

    2017-07-01

    One thousand four hundred ninety-one Salmonella isolates recovered from retail foods including chicken, beef, fish, pork, dumplings, and cold dishes in China in 2007, 2008, 2010, 2011, and 2012 were analyzed for distribution of serotype and antimicrobial susceptibility. A total of 129 Salmonella serotypes were detected among 1491 isolates. Salmonella Enteritidis (21.5%), Typhimurium (11.0%), Indiana (10.8%), Thompson (5.4%), Derby (5.1%), Agona (3.8%), and Shubra (3.0%) were the seven most important serotypes in 1491 isolates. For antibiotic susceptibility, except 16 (1.1%) isolates were susceptible to all tested antibiotics, 131 (8.8%) resisted 1-2 and 1344 (90.1%) resisted three or more antibiotics. One thousand forty-six (70.2%) of 1491 Salmonella isolates were identified as multidrug-resistant (MDR) isolates, which could resist three or more categories of antibiotics. Resistance to sulfisoxazole (78.1%) was most common among the tested Salmonella, followed by tetracycline (70.6%), trimethoprim/sulfamethoxazole (68.0%), and nalidixic acid (63.4%). Resistances to amikacin (20.0%), levofloxacin (18.7%), gatifloxacin (17.9%), ceftriaxone (17.7%), and cefoxitin (13.2%) were less frequently detected. Resistance to fluoroquinolones was most common among Salmonella Shubra and Indiana isolates, while resistance to cephalosporins was frequently detected among Salmonella Thompson isolates. The results highlighted the diversity of Salmonella serotypes and the high prevalence of Salmonella MDR isolates in China. Compared with Salmonella Enteritidis and Typhimurium isolates, the higher fluoroquinolones and cephalosporins resistance rates of some individual serotypes (Salmonella Shubra, Indiana, and Thompson) also provided more information for further study related to fluoroquinolones or cephalosporin-resistant Salmonella.

  1. Effect of farm type on within-herd Salmonella prevalence, serovar distribution, and antimicrobial resistance.

    PubMed

    Rasschaert, G; Michiels, J; Arijs, D; Wildemauwe, C; De Smet, S; Heyndrickx, M

    2012-05-01

    Salmonella represents a major challenge to the pig industry, as pork presents a risk for human salmonellosis. In this study, we have examined the effect of farm type on the prevalence of fattening pigs shedding Salmonella on 12 farms at risk for harboring Salmonella. On six open (grow-to-finish) and six closed (farrow-to-finish) farms, the prevalence of pigs shedding Salmonella was determined on two occasions approximately 2 months apart. The serovar, phage type, and antimicrobial resistance of the obtained Salmonella isolates were determined. On all farms, pigs shedding Salmonella were detected on at least one of the two sampling days. The mean within-herd prevalence was 7.8%. Closed farms were two times less likely to have pigs shedding Salmonella than open farms. On open farms, the odds of finding Salmonella shedding in pigs were 1.9 times higher when sampling was performed at slaughter age than when samples were taken halfway through the fattening period. Salmonella enterica serovar Typhimurium was the most predominant serotype, with a prevalence of 62 to 63% on both farm types. Of all the Salmonella Typhimurium isolates, 65% had the tetraresistant profile ASSuT (ampicillin, streptomycin, sulfonamide, and tetracycline) with or without additional resistance to trimethoprim-sulfonamide. Phage type DT120 seemed to be especially associated with this antimicrobial-resistant profile. The prevalence of Salmonella Typhimurium isolates showing resistance to ampicillin, streptomycin, tetracycline, sulfonamide, trimethoprim-sulfonamide, and lincomycin hydrochloride and spectinomycin sulfate tetrahydrate was significantly higher on open farms than on closed farms.

  2. Whole-genome sequencing of Salmonella enterica subsp. enterica serovar Cubana strains isolated from agricultural sources

    USDA-ARS?s Scientific Manuscript database

    We report draft genomes of Salmonella enterica subsp. enterica Serovar Cubana strain CVM42234 isolated from chick feed in 2012 and Salmonella Cubana strain 76814 isolated from swine in 2004. The genome sizes are 4,975,046 and 4,936,251 base pairs, respectively....

  3. Characterization of Isolates of Salmonella enterica Serovar Stanley, a Serovar Endemic to Asia and Associated with Travel

    PubMed Central

    Le Hello, Simon; Bortolaia, Valeria; Pulsrikarn, Chaiwat; Nielsen, Eva Møller; Pornruangmong, Srirat; Chaichana, Phattharaporn; Svendsen, Christina Aaby; Weill, François-Xavier; Aarestrup, Frank M.

    2012-01-01

    Salmonella enterica serovar Stanley (S. Stanley) is a common serovar in Southeast Asia and was the second most common serovar implicated in human salmonellosis in Thailand in the years 2002 to 2007. In contrast, this serovar is relatively uncommon in Europe. The objective of this study was to characterize a collection of S. Stanley strains isolated from Thai (n = 62), Danish (n = 39), and French (n = 24) patients to gain a broader understanding of the genetic diversity, population dynamics, and susceptibility to antimicrobials. All isolates were characterized by pulsed-field gel electrophoresis and antimicrobial susceptibility testing. The molecular mechanisms of resistance to extended-spectrum cephalosporins and plasmid-mediated resistance to quinolones were characterized by PCR and sequencing. Plasmid profiling, replicon typing, and microarray analysis were used to characterize the genetic mechanisms of antimicrobial resistance in 10 extended-spectrum cephalosporinase-producing isolates. Considerable genetic diversity was observed among the isolates characterized with 91 unique XbaI pulsed-field gel electrophoresis (PFGE) patterns, including 17 distinct clusters consisting of two to seven indistinguishable isolates. We found some of the S. Stanley isolates isolated from patients in Europe were acquired during travel to Southeast Asia, including Thailand. The presence of multiple plasmid lineages carrying the extended-spectrum cephalosporinase-encoding blaCMY-2 gene in S. Stanley isolates from the central part of Thailand was confirmed. Our results emphasize that Thai authorities, as well as authorities in other countries lacking prudent use of antimicrobials, should improve the ongoing efforts to regulate antimicrobial use in agriculture and in clinical settings to limit the spread of multidrug-resistant Salmonella isolates and plasmids among humans and pigs in Thailand and abroad. PMID:22205822

  4. Characterization of isolates of Salmonella enterica serovar Stanley, a serovar endemic to Asia and associated with travel.

    PubMed

    Hendriksen, Rene S; Le Hello, Simon; Bortolaia, Valeria; Pulsrikarn, Chaiwat; Nielsen, Eva Møller; Pornruangmong, Srirat; Chaichana, Phattharaporn; Svendsen, Christina Aaby; Weill, François-Xavier; Aarestrup, Frank M

    2012-03-01

    Salmonella enterica serovar Stanley (S. Stanley) is a common serovar in Southeast Asia and was the second most common serovar implicated in human salmonellosis in Thailand in the years 2002 to 2007. In contrast, this serovar is relatively uncommon in Europe. The objective of this study was to characterize a collection of S. Stanley strains isolated from Thai (n = 62), Danish (n = 39), and French (n = 24) patients to gain a broader understanding of the genetic diversity, population dynamics, and susceptibility to antimicrobials. All isolates were characterized by pulsed-field gel electrophoresis and antimicrobial susceptibility testing. The molecular mechanisms of resistance to extended-spectrum cephalosporins and plasmid-mediated resistance to quinolones were characterized by PCR and sequencing. Plasmid profiling, replicon typing, and microarray analysis were used to characterize the genetic mechanisms of antimicrobial resistance in 10 extended-spectrum cephalosporinase-producing isolates. Considerable genetic diversity was observed among the isolates characterized with 91 unique XbaI pulsed-field gel electrophoresis (PFGE) patterns, including 17 distinct clusters consisting of two to seven indistinguishable isolates. We found some of the S. Stanley isolates isolated from patients in Europe were acquired during travel to Southeast Asia, including Thailand. The presence of multiple plasmid lineages carrying the extended-spectrum cephalosporinase-encoding bla(CMY-2) gene in S. Stanley isolates from the central part of Thailand was confirmed. Our results emphasize that Thai authorities, as well as authorities in other countries lacking prudent use of antimicrobials, should improve the ongoing efforts to regulate antimicrobial use in agriculture and in clinical settings to limit the spread of multidrug-resistant Salmonella isolates and plasmids among humans and pigs in Thailand and abroad.

  5. Counts, serovars, and antimicrobial resistance phenotypes of Salmonella on raw chicken meat at retail in Colombia.

    PubMed

    Donado-Godoy, Pilar; Clavijo, Viviana; León, Maribel; Arevalo, Alejandra; Castellanos, Ricardo; Bernal, Johan; Tafur, Mc Allister; Ovalle, Maria Victoria; Alali, Walid Q; Hume, Michael; Romero-Zuñiga, Juan Jose; Walls, Isabel; Doyle, Michael P

    2014-02-01

    The objective of this study was to determine Salmonella counts, serovars, and antimicrobial-resistant phenotypes on retail raw chicken carcasses in Colombia. A total of 301 chicken carcasses were collected from six departments (one city per department) in Colombia. Samples were analyzed for Salmonella counts using the most-probable-number method as recommended by the U.S. Department of Agriculture, Food Safety Inspection Service protocol. A total of 378 isolates (268 from our previous study) were serotyped and tested for antimicrobial susceptibility. The overall Salmonella count (mean log most probable number per carcass ± 95% confidence interval) and prevalence were 2.1 (2.0 to 2.3) and 37%, respectively. There were significant differences (P < 0.05) by Salmonella levels (i.e., counts and prevalence) by storage temperature (i.e., frozen, chilled, or ambient), retail store type (wet markets, supermarkets, and independent markets), and poultry company (chicken produced by integrated or nonintegrated company). Frozen chicken had the lowest Salmonella levels compared with chicken stored at other temperatures, chickens from wet markets had higher levels than those from other retail store types, and chicken produced by integrated companies had lower levels than nonintegrated companies. Thirty-one Salmonella serovars were identified among 378 isolates, with Salmonella Paratyphi B tartrate-positive (i.e., Salmonella Paratyphi B dT+) the most prevalent (44.7%), followed by Heidelberg (19%), Enteritidis (17.7%), Typhimurium (5.3%), and Anatum (2.1%). Of all the Salmonella isolates, 35.2% were resistant to 1 to 5 antimicrobial agents, 24.6% to 6 to 10, and 33.9% to 11 to 15. Among all the serovars obtained, Salmonella Paratyphi B dT+ and Salmonella Heidelberg were the most antimicrobial resistant. Salmonella prevalence was determined to be high, whereas cell numbers were relatively low. These data can be used in developing risk assessment models for preventing the

  6. Horizontal gene transfer of a ColV plasmid has resulted in a dominant avian clonal type of Salmonella enterica serovar Kentucky.

    PubMed

    Johnson, Timothy J; Thorsness, Jessica L; Anderson, Cole P; Lynne, Aaron M; Foley, Steven L; Han, Jing; Fricke, W Florian; McDermott, Patrick F; White, David G; Khatri, Mahesh; Stell, Adam L; Flores, Cristian; Singer, Randall S

    2010-12-22

    Salmonella enterica continues to be a significant cause of foodborne gastrointestinal illness in humans. A wide variety of Salmonella serovars have been isolated from production birds and from retail poultry meat. Recently, though, S. enterica subsp. enterica serovar Kentucky has emerged as one of the prominent Salmonella serovars isolated from broiler chickens. Recent work suggests that its emergence apparently coincides with its acquisition of a ColV virulence plasmid. In the present study, we examined 902 Salmonella isolates belonging to 59 different serovars for the presence of this plasmid. Of the serovars examined, the ColV plasmid was found only among isolates belonging to the serovars Kentucky (72.9%), Typhimurium (15.0%) and Heidelberg (1.7%). We demonstrated that a single PFGE clonal type of S. Kentucky harbors this plasmid, and acquisition of this plasmid by S. Kentucky significantly increased its ability to colonize the chicken cecum and cause extraintestinal disease. Comparison of the completed sequences of three ColV plasmids from S. Kentucky isolated from different geographical locales, timepoints and sources revealed a nearly identical genetic structure with few single nucleotide changes or insertions/deletions. Overall, it appears that the ColV plasmid was recently acquired by a single clonal type S. Kentucky and confers to its host enhanced colonization and fitness capabilities. Thus, the potential for horizontal gene transfer of virulence and fitness factors to Salmonella from other enteric bacteria exists in poultry, representing a potential human health hazard.

  7. Horizontal Gene Transfer of a ColV Plasmid Has Resulted in a Dominant Avian Clonal Type of Salmonella enterica Serovar Kentucky

    PubMed Central

    Johnson, Timothy J.; Thorsness, Jessica L.; Anderson, Cole P.; Lynne, Aaron M.; Foley, Steven L.; Han, Jing; Fricke, W. Florian; McDermott, Patrick F.; White, David G.; Khatri, Mahesh; Stell, Adam L.; Flores, Cristian; Singer, Randall S.

    2010-01-01

    Salmonella enterica continues to be a significant cause of foodborne gastrointestinal illness in humans. A wide variety of Salmonella serovars have been isolated from production birds and from retail poultry meat. Recently, though, S. enterica subsp. enterica serovar Kentucky has emerged as one of the prominent Salmonella serovars isolated from broiler chickens. Recent work suggests that its emergence apparently coincides with its acquisition of a ColV virulence plasmid. In the present study, we examined 902 Salmonella isolates belonging to 59 different serovars for the presence of this plasmid. Of the serovars examined, the ColV plasmid was found only among isolates belonging to the serovars Kentucky (72.9%), Typhimurium (15.0%) and Heidelberg (1.7%). We demonstrated that a single PFGE clonal type of S. Kentucky harbors this plasmid, and acquisition of this plasmid by S. Kentucky significantly increased its ability to colonize the chicken cecum and cause extraintestinal disease. Comparison of the completed sequences of three ColV plasmids from S. Kentucky isolated from different geographical locales, timepoints and sources revealed a nearly identical genetic structure with few single nucleotide changes or insertions/deletions. Overall, it appears that the ColV plasmid was recently acquired by a single clonal type S. Kentucky and confers to its host enhanced colonization and fitness capabilities. Thus, the potential for horizontal gene transfer of virulence and fitness factors to Salmonella from other enteric bacteria exists in poultry, representing a potential human health hazard. PMID:21203520

  8. Wild-Caught and Farm-Reared Amphibians are Important Reservoirs of Salmonella, A Study in North-East Thailand.

    PubMed

    Ribas, A; Poonlaphdecha, S

    2017-03-01

    The role of amphibians as Salmonella reservoirs has not been as well studied as in reptiles, where the literature is abundant. Recent outbreaks of salmonellosis associated with exotic pet frogs have occurred in United States. Frog farming and wild frog harvesting have increased the international trade in these species. This necessitates a better understanding of the risk of salmonellosis transmission from amphibians to humans. We explored the presence of Salmonella in amphibians (frogs and toads) in Thailand, where farmed and wild frogs as well as toads are present. These live animals are easily found in the local markets and are used as food. Exportation of frog meat from Thailand is common. During March-June 2014, ninety-seven frogs were collected from several habitats, including frog farms, urban areas and protected natural areas. The collected amphibians were tested for the presence of Salmonella. The overall prevalence of Salmonella was 69.07% (90.00% in farm animals, 0% in urban area animals and 44.83% in protected area animals). Eight serovars of Salmonella were isolated: subsp. diarizonae ser. 50:k:z, Hvittingfoss, Muenchen, Newport, Stanley, Thompson, Panama and Wandsworth. Six of the identified serovars, Hvittingfoss, Newport, Panama, Stanley, Thompson and Wandsworth, have been detected in humans in Thailand. According to our results, amphibians are reservoirs of Salmonella and can be a public health concern when used as a source of protein for humans. © 2016 Blackwell Verlag GmbH.

  9. Research note: Molecular subtyping of Salmonella enterica serovar Tshiongwe recently isolated in Malaysia during 2001-2002.

    PubMed

    Thong, Kwai Lin; Bakeri, Shamsilawani Ahmad; Lai, Kin Seng; Koh, Yin Tee; Taib, Mohd Zainuldin; Lim, V K E; Yasin, Rohani Md

    2004-03-01

    Pulsed field gel electrophoresis (PFGE) and antimicrobial susceptibility analysis were undertaken on twenty-three strains of Salmonella enterica serovar Tshiongwe, an unusual serovar, which recently emerged in Malaysia. Antimicrobial susceptibility analysis showed that all the strains were sensitive to ampicilin, chloramphenicol, cotrimoxazole, and kanamycin. Twenty (87%) and 8 (3.5%) strains had resistance to tetracycline and streptomycin respectively. PFGE analysis subtyped 23 strains into 10 profiles (Dice coefficient of similarity, F = 0.7-1.0). The predominant profile, X1 was found in both clinical and environmental isolates and was widely distributed in different parts of Malaysia during the study period. In addition, isolates recovered from food, a hand-towel, apron and the surface of a table-top in one particular location had unique, indistinguishable profiles (X4/4a) and identical antibiograms. Similarly, isolates from cooked meat and a chopping board had PFGE profiles similar to some human isolates. These probably indicated cross-contamination and poor hygiene in food practices, hence contributing to Salmonellosis. Factors causing the emergence of this rare Salmonella serovar being responsible for food poisoning episodes during the study period remained unclear. The study reiterated the usefulness and versatility of PFGE in the molecular subtyping of this rare Salmonella serovar in Malaysia.

  10. Detection of Salmonella enterica Serovar Typhimurium by Using a Rapid, Array-Based Immunosensor

    PubMed Central

    Taitt, Chris Rowe; Shubin, Yura S.; Angel, Roselina; Ligler, Frances S.

    2004-01-01

    The multianalyte array biosensor (MAAB) is a rapid analysis instrument capable of detecting multiple analytes simultaneously. Rapid (15-min), single-analyte sandwich immunoassays were developed for the detection of Salmonella enterica serovar Typhimurium, with a detection limit of 8 × 104 CFU/ml; the limit of detection was improved 10-fold by lengthening the assay protocol to 1 h. S. enterica serovar Typhimurium was also detected in the following spiked foodstuffs, with minimal sample preparation: sausage, cantaloupe, whole liquid egg, alfalfa sprouts, and chicken carcass rinse. Cross-reactivity tests were performed with Escherichia coli and Campylobacter jejuni. To determine whether the MAAB has potential as a screening tool for the diagnosis of asymptomatic Salmonella infection of poultry, chicken excretal samples from a private, noncommercial farm and from university poultry facilities were tested. While the private farm excreta gave rise to signals significantly above the buffer blanks, none of the university samples tested positive for S. enterica serovar Typhimurium without spiking; dose-response curves of spiked excretal samples from university-raised poultry gave limits of detection of 8 × 103 CFU/g. PMID:14711637

  11. Whole genome sequencing of multidrug-resistant Salmonella enterica serovar Typhimurium isolated from humans and poultry in Burkina Faso

    USDA-ARS?s Scientific Manuscript database

    Background. Multidrug-resistant Salmonella is an important cause of morbidity and mortality in developing countries. The aim of this study was to characterize and compare multidrug-resistant Salmonella enterica serovar Typhimurium isolates from patients and poultry feces. Methods. Salmonella strains...

  12. Changes in the prevalence of Salmonella serovars associated swine production and correlations of avian, bovine and swine-associated serovars with human-associated serovars in the United States (1997-2015).

    PubMed

    Yuan, C; Krull, A; Wang, C; Erdman, M; Fedorka-Cray, P J; Logue, C M; O'Connor, A M

    2018-04-23

    As Salmonella enterica is an important pathogen of food animals, surveillance programmes for S. enterica serovars have existed for many years in the United States. Surveillance programmes serve many purposes, one of which is to evaluate alterations in the prevalence of serovars that may signal changes in the ecology of the target organism. The primary aim of this study was to evaluate changes in the proportion of S. enterica serovars isolated from swine over a near 20-year observation period (1997-2015) using four longitudinal data sets from different food animal species. The secondary aim was to evaluate correlations between changes in S. enterica serovars frequently recovered from food animals and changes in S. enterica serovars associated with disease in humans. We found decreasing proportions of S. enterica serovar Typhimurium, serovar Derby and serovar Heidelberg and increasing proportions of S. enterica serovar 4,[5],12:i:-, serovar Infantis and serovar Johannesburg in swine over time. We also found positive correlations for the yearly changes in S. enterica serovar 4,[5],12:i:-, serovar Anatum and serovar Johannesburg between swine and human data; in S. enterica Worthington between avian and human data; and in S. enterica serovar 4,[5],12:i:- between bovine and human data. We found negative correlations for the yearly changes in S. enterica serovar 4,[5],12:i:- and serovar Johannesburg between avian and human data. © 2018 Blackwell Verlag GmbH.

  13. Prevalence of nontyphoidal Salmonella and Salmonella strains with conjugative antimicrobial-resistant serovars contaminating animal feed in Texas

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to characterize 365 nontyphoidal Salmonella enterica isolates from animal feed. Among the 365 isolates, 78 serovars were identified. Twenty-four isolates (7.0%) were recovered from three of six medicated feed types. Three of these isolates derived from the medicate...

  14. Emergence and serovar profiling of non-typhoidal Salmonellae (NTS) isolated from gastroenteritis cases-A study from South India.

    PubMed

    Ballal, Mamatha; Devadas, Suganthi Martena; Shetty, Vignesh; Bangera, Sohan Rodney; Ramamurthy, Thandavarayan; Sarkar, Anirban

    2016-01-01

    Human infection with non-typhoidal Salmonella (NTS) serovars is often a neglected and undiagnosed infection in the developing world. Invasive NTS is now being established as having a new and emerging pathogenic role. There is not sufficient data on the prevalence of NTS serovars and their antibiotic susceptibility pattern from India. Faecal specimens collected from patients with acute gastroenteritis were processed to isolate Salmonella according to the standard protocol for a period from January 2011-December 2014. Salmonella isolates were serotyped and tested for antibiotic susceptibility. Of the total 320 (10.04%) bacterial enteric pathogens isolated, 64 (20%) were non-typhoidal Salmonella. Among the serogroup, O:4 (B) (n = 26; 40.6%) was found to be the commonest followed by O:7 (C1) (n = 11; 17.1%) and O:3,10 (E1) (n = 11; 17.1%). NTS infection in cancer patients could also be termed as nosocomial NTS diarrhoea due to primary community infection with prolonged incubation periods, consumption of contaminated food during hospital stay or Nosocomially acquired infection. Serovar Oslo has been predominant (9/17) in NTS isolates from cancer patients, whereas serovars Bovismorbificans, Wangata and Schleissheim have been reported for the first time in the country. The isolates were mostly susceptible to antibiotics except Salmonella ser Kentucky, which showed resistance to ciprofloxacin is reported for the first time in the country. Continuous surveillance is required to monitor resistance of NTS isolates.

  15. SEROVARS AND ANTIMICROBIAL RESISTANCE OF Salmonella spp. ISOLATED FROM TURKEY AND BROILER CARCASSES IN SOUTHERN BRAZIL BETWEEN 2004 AND 2006

    PubMed Central

    PALMEIRA, Andre; dos SANTOS, Luciana Ruschel; BORSOI, Anderlise; RODRIGUES, Laura Beatriz; CALASANS, Max; do NASCIMENTO, Vladimir Pinheiro

    2016-01-01

    Salmonella spp. causes diseases in fowls, when species-specific serovars (Salmonella Pullorum and S.Gallinarum) are present in flocks, and public health problems, when non-typhoid serovars are isolated, as well as possible bacterial resistance induced by the preventive and therapeutic use of antimicrobials in animal production. This study describes the serovars and bacterial resistance of 280Salmonella spp. strains isolated from turkey and broiler carcasses in Southern Brazil between 2004 and 2006. SalmonellaEnteritidis was the most prevalent serovar (55.7%), followed by Heidelberg (5.0%), Agona (4.3%), Bredeney (3.9%), Hadar (3.2%), and Typhimurium (2.9%). Tennessee and S. Enterica subspecies enterica(O: 4.5) were isolated only in turkeys, and Hadar (18.6%) was the most prevalent serovar in this species. Antimicrobial susceptibility tests were performed in 178 isolates (43 from turkeys and 135 from broilers). All isolates were sensitive to amoxicillin + clavulanic acid, polymyxin B, ciprofloxacin, and norfloxacin, and were resistant to bacitracin and penicillin. Broiler carcass isolates showed resistance to nalidixic acid (48.9%), nitrofurantoin (34.3%), neomycin (9.6%), tetracycline (5.2%), and kanamycin (8.9%); and turkey carcass isolates were resistant to nalidixic acid (62.8%), tetracycline (34.9%), and neomycin (30.2%), with a significant difference in turkeys when compared to broiler carcass isolates. These results indicate the need for judicious use of antimicrobials in livestock production, given that the serovars identified are potential causes of food poisoning. PMID:27007562

  16. Prevalence of Salmonella serovars and antimicrobial resistance profiles in poultry of Savar area, Bangladesh.

    PubMed

    Mahmud, Md Showkat; Bari, Md Latiful; Hossain, M Anwar

    2011-10-01

    Salmonellosis is one of the major concerns in the poultry industry and some serovars of Salmonella involve in zoonosis. This study determines the seroprevalence of Salmonella in poultry and their drug-resistant patterns, variability in infectivity and mortality rate of birds, and predilection of some serovars to cause zoonoses. The average seroprevalance of Salmonella in three different age groups was found to be 37.9%. A total of 503 samples were examined over a period of 1 year from five different poultry farms of a semiurban area of Savar, Dhaka, Bangladesh. The prevalence of Salmonella was recorded to be 21.1%. Salmonella was found high in dead birds (31.2%) than live birds (18.1%). Salmonella infection was higher (23.6%) in summer than in winter (12.9%) season. Among the 106 isolates, 46 belong to serogroup B (43%) and 60 isolates to serogroup D (57%). The highest Salmonella infection was recorded as 47.9% on the 30-35-week-old birds. A total of 106 Salmonella isolates were used for antimicrobial susceptibility test against 10 common antibiotics and 17 multiple drug resistance patterns were found. Among the isolates, 69 (65%) harbored plasmids 1-4 with size variation between >1.63 and >40 kb and rest 37 (35%) isolates were plasmid free but showed resistance against 5-10 antibiotics. The results of the present investigation suggested that multiple drug resistance is common among the Salmonella isolates of poultry and some of these isolates may have zoonotic implications.

  17. Repeated isolation of Salmonella enterica Goverdhan, a very rare serovar, from Danish poultry surveillance samples.

    PubMed

    Pedersen, Karl; Sørensen, Gitte; Szabo, Istvan; Hächler, Herbert; Le Hello, Simon

    2014-12-05

    We report here the appearance of a very rare serovar of Salmonella, S. enterica subsp. enterica serovar Goverdhan, in routine Salmonella surveillance samples from Danish poultry production. S. Goverdhan was found on nine occasions: in one broiler breeder farm in October 2010, four broiler farms and one broiler breeder farm in June-September 2012, two broiler breeder flocks simultaneously in June 2013, and one layer flock in July 2013. The five isolates from 2012 and the three isolates from 2013 had identical pulsed-field gel electrophoresis profiles, whereas the profile of the isolate from 2010 deviated in a single band. It is the first time this serovar has been described in samples from poultry. The origin of the bacterium is still unknown, but it is suggested that it may have been a pseudo-outbreak caused by contaminated sampling material. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Genomic Comparison of Non-Typhoidal Salmonella enterica Serovars Typhimurium, Enteritidis, Heidelberg, Hadar and Kentucky Isolates from Broiler Chickens

    PubMed Central

    Dhanani, Akhilesh S.; Block, Glenn; Dewar, Ken; Forgetta, Vincenzo; Topp, Edward; Beiko, Robert G.; Diarra, Moussa S.

    2015-01-01

    Background Non-typhoidal Salmonella enterica serovars, associated with different foods including poultry products, are important causes of bacterial gastroenteritis worldwide. The colonization of the chicken gut by S. enterica could result in the contamination of the environment and food chain. The aim of this study was to compare the genomes of 25 S. enterica serovars isolated from broiler chicken farms to assess their intra- and inter-genetic variability, with a focus on virulence and antibiotic resistance characteristics. Methodology/Principal Finding The genomes of 25 S. enterica isolates covering five serovars (ten Typhimurium including three monophasic 4,[5],12:i:, four Enteritidis, three Hadar, four Heidelberg and four Kentucky) were sequenced. Most serovars were clustered in strongly supported phylogenetic clades, except for isolates of serovar Enteritidis that were scattered throughout the tree. Plasmids of varying sizes were detected in several isolates independently of serovars. Genes associated with the IncF plasmid and the IncI1 plasmid were identified in twelve and four isolates, respectively, while genes associated with the IncQ plasmid were found in one isolate. The presence of numerous genes associated with Salmonella pathogenicity islands (SPIs) was also confirmed. Components of the type III and IV secretion systems (T3SS and T4SS) varied in different isolates, which could explain in part, differences of their pathogenicity in humans and/or persistence in broilers. Conserved clusters of genes in the T3SS were detected that could be used in designing effective strategies (diagnostic, vaccination or treatments) to combat Salmonella. Antibiotic resistance genes (CMY, aadA, ampC, florR, sul1, sulI, tetAB, and srtA) and class I integrons were detected in resistant isolates while all isolates carried multidrug efflux pump systems regardless of their antibiotic susceptibility profile. Conclusions/Significance This study showed that the predominant

  19. Genomic Comparison of Non-Typhoidal Salmonella enterica Serovars Typhimurium, Enteritidis, Heidelberg, Hadar and Kentucky Isolates from Broiler Chickens.

    PubMed

    Dhanani, Akhilesh S; Block, Glenn; Dewar, Ken; Forgetta, Vincenzo; Topp, Edward; Beiko, Robert G; Diarra, Moussa S

    2015-01-01

    Non-typhoidal Salmonella enterica serovars, associated with different foods including poultry products, are important causes of bacterial gastroenteritis worldwide. The colonization of the chicken gut by S. enterica could result in the contamination of the environment and food chain. The aim of this study was to compare the genomes of 25 S. enterica serovars isolated from broiler chicken farms to assess their intra- and inter-genetic variability, with a focus on virulence and antibiotic resistance characteristics. The genomes of 25 S. enterica isolates covering five serovars (ten Typhimurium including three monophasic 4,[5],12:i:, four Enteritidis, three Hadar, four Heidelberg and four Kentucky) were sequenced. Most serovars were clustered in strongly supported phylogenetic clades, except for isolates of serovar Enteritidis that were scattered throughout the tree. Plasmids of varying sizes were detected in several isolates independently of serovars. Genes associated with the IncF plasmid and the IncI1 plasmid were identified in twelve and four isolates, respectively, while genes associated with the IncQ plasmid were found in one isolate. The presence of numerous genes associated with Salmonella pathogenicity islands (SPIs) was also confirmed. Components of the type III and IV secretion systems (T3SS and T4SS) varied in different isolates, which could explain in part, differences of their pathogenicity in humans and/or persistence in broilers. Conserved clusters of genes in the T3SS were detected that could be used in designing effective strategies (diagnostic, vaccination or treatments) to combat Salmonella. Antibiotic resistance genes (CMY, aadA, ampC, florR, sul1, sulI, tetAB, and srtA) and class I integrons were detected in resistant isolates while all isolates carried multidrug efflux pump systems regardless of their antibiotic susceptibility profile. This study showed that the predominant Salmonella serovars in broiler chickens harbor genes encoding adhesins

  20. The Early Innate Response of Chickens to Salmonella enterica Is Dependent on the Presence of O-Antigen but Not on Serovar Classification

    PubMed Central

    Varmuzova, Karolina; Matulova, Marta Elsheimer; Sebkova, Alena; Sekelova, Zuzana; Havlickova, Hana; Sisak, Frantisek; Babak, Vladimir; Rychlik, Ivan

    2014-01-01

    Salmonella vaccines used in poultry in the EU are based on attenuated strains of either Salmonella serovar Enteritidis or Typhimurium which results in a decrease in S. Enteritidis and S. Typhimurium but may allow other Salmonella serovars to fill an empty ecological niche. In this study we were therefore interested in the early interactions of chicken immune system with S. Infantis compared to S. Enteritidis and S. Typhimurium, and a role of O-antigen in these interactions. To reach this aim, we orally infected newly hatched chickens with 7 wild type strains of Salmonella serovars Enteritidis, Typhimurium and Infantis as well as with their rfaL mutants and characterized the early Salmonella-chicken interactions. Inflammation was characterized in the cecum 4 days post-infection by measuring expression of 43 different genes. All wild type strains stimulated a greater inflammatory response than any of the rfaL mutants. However, there were large differences in chicken responses to different wild type strains not reflecting their serovar classification. The initial interaction between newly-hatched chickens and Salmonella was found to be dependent on the presence of O-antigen but not on its structure, i.e. not on serovar classification. In addition, we observed that the expression of calbindin or aquaporin 8 in the cecum did not change if inflammatory gene expression remained within a 10 fold fluctuation, indicating the buffering capacity of the cecum, preserving normal gut functions even in the presence of minor inflammatory stimuli. PMID:24763249

  1. Evaluation of a Multiplex PCR Assay for the Identification of Salmonella Serovars Enteritidis and Typhimurium Using Retail and Abattoir Samples.

    PubMed

    Ogunremi, Dele; Nadin-Davis, Susan; Dupras, Andrée Ann; Márquez, Imelda Gálvan; Omidi, Katayoun; Pope, Louise; Devenish, John; Burke, Teresa; Allain, Ray; Leclair, Daniel

    2017-02-01

    A multiplex PCR was developed to identify the two most common serovars of Salmonella causing foodborne illness in Canada, namely, serovars Enteritidis and Typhimurium. The PCR was designed to amplify DNA fragments from four Salmonella genes, namely, invA gene (211-bp fragment), iroB gene (309-bp fragment), Typhimurium STM 4497 (523-bp fragment), and Enteritidis SE147228 (612-bp fragment). In addition, a 1,026-bp ribosomal DNA (rDNA) fragment universally present in bacterial species was included in the assay as an internal control fragment. The detection rate of the PCR was 100% among Salmonella Enteritidis (n = 92) and Salmonella Typhimurium (n = 33) isolates. All tested Salmonella isolates (n = 194) were successfully identified based on the amplification of at least one Salmonella -specific DNA fragment. None of the four Salmonella DNA amplicons were detected in any of the non- Salmonella isolates (n = 126), indicating an exclusivity rate of 100%. When applied to crude extracts of 2,001 field isolates of Salmonella obtained during the course of a national microbiological baseline study in broiler chickens and chicken products sampled from abattoir and retail outlets, 163 isolates, or 8.1%, tested positive for Salmonella Enteritidis and another 80 isolates, or 4.0%, tested as Salmonella Typhimurium. All isolates identified by serological testing as Salmonella Enteritidis in the microbiological study were also identified by using the multiplex PCR. The new test can be used to identify or confirm pure isolates of the two serovars and is also amenable for integration into existing culture procedures for accurate detection of Salmonella colonies.

  2. Molecular typing of Salmonella enterica serovar typhi isolates from various countries in Asia by a multiplex PCR assay on variable-number tandem repeats.

    PubMed

    Liu, Yichun; Lee, May-Ann; Ooi, Eng-Eong; Mavis, Yeo; Tan, Ai-Ling; Quek, Hung-Hiang

    2003-09-01

    A multiplex PCR method incorporating primers flanking three variable-number tandem repeat (VNTR) loci (arbitrarily labeled TR1, TR2, and TR3) in the CT18 strain of Salmonella enterica serovar Typhi has been developed for molecular typing of S. enterica serovar Typhi clinical isolates from several Asian countries, including Singapore, Indonesia, India, Bangladesh, Malaysia, and Nepal. We have demonstrated that the multiplex PCR could be performed on crude cell lysates and that the VNTR banding profiles produced could be easily analyzed by visual inspection after conventional agarose gel electrophoresis. The assay was highly discriminative in identifying 49 distinct VNTR profiles among 59 individual isolates. A high level of VNTR profile heterogeneity was observed in isolates from within the same country and among countries. These VNTR profiles remained stable after the strains were passaged extensively under routine laboratory culture conditions. In contrast to the S. enterica serovar Typhi isolates, an absence of TR3 amplicons and a lack of length polymorphisms in TR1 and TR2 amplicons were observed for other S. enterica serovars, such as Salmonella enterica serovar Typhimurium, Salmonella enterica serovar Enteritidis, and Salmonella enterica serovar Paratyphi A, B, and C. DNA sequencing of the amplified VNTR regions substantiated these results, suggesting the high stability of the multiplex PCR assay. The multiplex-PCR-based VNTR profiling developed in this study provides a simple, rapid, reproducible, and high-resolution molecular tool for the epidemiological analysis of S. enterica serovar Typhi strains.

  3. Physiological and molecular responses of Lactuca sativa to colonization by Salmonella enterica serovar Dublin.

    PubMed

    Klerks, M M; van Gent-Pelzer, M; Franz, E; Zijlstra, C; van Bruggen, A H C

    2007-08-01

    This paper describes the physiological and molecular interactions between the human-pathogenic organism Salmonella enterica serovar Dublin and the commercially available mini Roman lettuce cv. Tamburo. The association of S. enterica serovar Dublin with lettuce plants was first determined, which indicated the presence of significant populations outside and inside the plants. The latter was evidenced from significant residual concentrations after highly efficient surface disinfection (99.81%) and fluorescence microscopy of S. enterica serovar Dublin in cross sections of lettuce at the root-shoot transition region. The plant biomass was reduced significantly compared to that of noncolonized plants upon colonization with S. enterica serovar Dublin. In addition to the physiological response, transcriptome analysis by cDNA amplified fragment length polymorphism analysis also provided clear differential gene expression profiles between noncolonized and colonized lettuce plants. From these, generally and differentially expressed genes were selected and identified by sequence analysis, followed by reverse transcription-PCR displaying the specific gene expression profiles in time. Functional grouping of the expressed genes indicated a correlation between colonization of the plants and an increase in expressed pathogenicity-related genes. This study indicates that lettuce plants respond to the presence of S. enterica serovar Dublin at physiological and molecular levels, as shown by the reduction in growth and the concurrent expression of pathogenicity-related genes. In addition, it was confirmed that Salmonella spp. can colonize the interior of lettuce plants, thus potentially imposing a human health risk when processed and consumed.

  4. Complete Genome Sequences of Salmonella enterica Serovars Anatum and Anatum var. 15+, Isolated from Retail Ground Turkey

    PubMed Central

    Marasini, Daya; Abo-Shama, Usama H.

    2016-01-01

    The complete genome sequences of two isolates of Salmonella enterica serovars Anatum and Anatum var. 15+ revealed the presence of two plasmids of 112 kb and 3 kb in size in each. The chromosome of Salmonella Anatum (4.83 Mb) was slightly smaller than that of Salmonella Anatum var. 15+ (4.88 Mb). PMID:26798111

  5. Prevalence, serovars, phage types, and antibiotic susceptibilities of Salmonella strains isolated from animals in the United Arab Emirates from 1996 to 2009.

    PubMed

    Münch, Sebastian; Braun, Peggy; Wernery, Ulrich; Kinne, Jörg; Pees, Michael; Flieger, Antje; Tietze, Erhard; Rabsch, Wolfgang

    2012-10-01

    The aim of this study was to give some insights into the prevalence, serovars, phage types, and antibiotic resistances of Salmonella from animal origin in the United Arab Emirates. Data on diagnostic samples from animals (n = 20,871) examined for Salmonella between 1996 and 2009 were extracted from the databases of the Central Veterinary Research Laboratory in Dubai and from typed strains (n = 1052) from the Robert Koch Institute, Wernigerode Branch in Germany and analyzed for general and animal-specific trends. Salmonella was isolated from 1,928 (9 %) of the 20,871 samples examined. Among the 1,052 typed strains, most were from camels (n = 232), falcons (n = 166), bustards (n = 101), antelopes (n = 66), and horses (n = 63). The predominant serovars were Salmonella Typhimurium (25 %), Salmonella Kentucky (8 %), followed by Salmonella Frintrop (7 %), and Salmonella Hindmarsh (5 %). When analyzed by animal species, the most frequent serovars in camels were Salmonella Frintrop (28 %) and Salmonella Hindmarsh (21 %), in falcons Salmonella Typhimurium (32 %), in bustards Salmonella Kentucky (19 %), in antelopes Salmonella Typhimurium (9 %), and in horses Salmonella Typhimurium (17 %) and S. Kentucky (16 %). Resistance of all typed Salmonella strains (n = 1052) was most often seen to tetracycline (23 %), streptomycin (22 %), nalidixic acid (18 %), and ampicillin (15 %). These data show trends in the epidemiology of Salmonella in different animal species which can be used as a base for future prevention, control, and therapy strategies.

  6. Chlortetracycline and florfenicol induce expression of genes associated with pathogenicity in multidrug-resistant Salmonella enterica serovar Typhimurium

    USDA-ARS?s Scientific Manuscript database

    Background Multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium (S. Typhimurium) is a serious public health threat as infections caused by these strains are more difficult and expensive to treat. Livestock serve as a reservoir for MDR Salmonella, and the antibiotics chlortetracycline an...

  7. Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Strain YU15 (Sequence Type 19) Harboring the Salmonella Genomic Island 1 and Virulence Plasmid pSTV

    PubMed Central

    Calva, Edmundo; Puente, José L.; Zaidi, Mussaret B.

    2016-01-01

    The complete genome of Salmonella enterica subsp. enterica serovar Typhimurium sequence type 19 (ST19) strain YU15, isolated in Yucatán, Mexico, from a human baby stool culture, was determined using PacBio technology. The chromosome contains five intact prophages and the Salmonella genomic island 1 (SGI1). This strain carries the Salmonella virulence plasmid pSTV. PMID:27081132

  8. A comparative study on invasion, survival, modulation of oxidative burst, and nitric oxide responses of macrophages (HD11), and systemic infection in chickens by prevalent poultry Salmonella serovars

    USDA-ARS?s Scientific Manuscript database

    Poultry is a major reservoir for foodborne Salmonella serovars. Salmonella Typhimurium, S. Enteritidis, S. Heidelberg, S. Kentucky, and S. Senftenberg are the most prevalent serovars in poultry. Information concerning the interactions between different Salmonella species and host cells in poultry i...

  9. Longitudinal Study of Distributions of Similar Antimicrobial-Resistant Salmonella Serovars in Pigs and Their Environment in Two Distinct Swine Production Systems

    PubMed Central

    Keelara, Shivaramu; Scott, H. Morgan; Morrow, William M.; Gebreyes, Wondwossen A.; Correa, Maria; Nayak, Rajesh; Stefanova, Rossina

    2013-01-01

    The aim of this longitudinal study was to determine and compare the prevalences and genotypic profiles of antimicrobial-resistant (AR) Salmonella isolates from pigs reared in antimicrobial-free (ABF) and conventional production systems at farm, at slaughter, and in their environment. We collected 2,889 pig fecal and 2,122 environmental (feed, water, soil, lagoon, truck, and floor swabs) samples from 10 conventional and eight ABF longitudinal cohorts at different stages of production (farrowing, nursery, finishing) and slaughter (postevisceration, postchill, and mesenteric lymph nodes [MLN]). In addition, we collected 1,363 carcass swabs and 205 lairage and truck samples at slaughter. A total of 1,090 Salmonella isolates were recovered from the samples; these were isolated with a significantly higher prevalence in conventionally reared pigs (4.0%; n = 66) and their environment (11.7%; n = 156) than in ABF pigs (0.2%; n = 2) and their environment (0.6%; n = 5) (P < 0.001). Salmonella was isolated from all stages at slaughter, including the postchill step, in the two production systems. Salmonella prevalence was significantly higher in MLN extracted from conventional carcasses than those extracted from ABF carcasses (P < 0.001). We identified a total of 24 different serotypes, with Salmonella enterica serovar Typhimurium, Salmonella enterica serovar Anatum, Salmonella enterica serovar Infantis, and Salmonella enterica serovar Derby being predominant. The highest frequencies of antimicrobial resistance (AR) were exhibited to tetracycline (71%), sulfisoxazole (42%), and streptomycin (17%). Multidrug resistance (resistance to ≥3 antimicrobials; MDR) was detected in 27% (n = 254) of the Salmonella isolates from the conventional system. Our study reports a low prevalence of Salmonella in both production systems in pigs on farms, while a higher prevalence was detected among the carcasses at slaughter. The dynamics of Salmonella prevalence in pigs and carcasses were

  10. Polynucleotide phosphorlyase (PNPase) is required for Salmonella enterica serovar Typhimurium colonization in swine

    USDA-ARS?s Scientific Manuscript database

    The pnp gene encodes polynucleotide phosphorylase, an exoribonuclease involved in RNA degradation. A mutation in the pnp gene was previously identified by our group in a signature-tagged mutagenesis screen designed to search for Salmonella enterica serovar Typhimurium genes required for survival in...

  11. Salmonella enterica serovar Kentucky isolates from dairy cows and poultry demonstrate different evolutionary histories and host-specific polymorphisms

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica subsp. enterica serovar Kentucky is commonly isolated from dairy cows and poultry in the United States. Although it is not among the most frequently isolated serovars from cases of human salmonellosis, its high prevalence in livestock and poultry indicate it is a potential public...

  12. Inactivation of Salmonella serovars by Pseudomonas chlororaphis and Pseudomonas fluorescens strains on tomatoes

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica and its serovars have been associated with pathogen contamination of tomatoes and numerous outbreaks of Salmonellisis. To improve food safety, pathogen control is of immediate concern. The aim of this reserach was to: 1) Assess the populations of natural microflora (aerobic meso...

  13. Role of anionic charges of osmoregulated periplasmic glucans of Salmonella enterica Serovar Typhimurium SL1344 in mice virulence

    USDA-ARS?s Scientific Manuscript database

    Osmoregulated periplasmic glucans (OPGs) are important periplasmic constituents of Salmonella spp. and are required for optimal growth in hypoosmotic environments such as irrigation and vegetable wash waters as well as for mice virulence. opgB gene of Salmonella enterica serovar Typhimurium was ide...

  14. Development of Real Time PCR Using Novel Genomic Target for Detection of Multiple Salmonella Serovars from Milk and Chickens

    USDA-ARS?s Scientific Manuscript database

    Background: A highly sensitive and specific novel genomic and plasmid target-based PCR platform was developed to detect multiple Salmonella serovars (S. Heidelberg, S. Dublin, S. Hadar, S. Kentucky and S. Enteritidis). Through extensive genome mining of protein databases of these serovars and compar...

  15. Vi Capsular Polysaccharide Produced by Recombinant Salmonella enterica Serovar Paratyphi A Confers Immunoprotection against Infection by Salmonella enterica Serovar Typhi

    PubMed Central

    Xiong, Kun; Zhu, Chunyue; Chen, Zhijin; Zheng, Chunping; Tan, Yong; Rao, Xiancai; Cong, Yanguang

    2017-01-01

    Enteric fever is predominantly caused by Salmonella enterica serovar Typhi and Salmonella enterica serovar Paratyphi A, and accounts for an annual global incidence of 26.9 millions. In recent years, the rate of S. Paratyphi A infection has progressively increased. Currently licensed vaccines for typhoid fever, live Ty21a vaccine, Vi subunit vaccine, and Vi-conjugate vaccine, confer inadequate cross immunoprotection against enteric fever caused by S. Paratyphi A. Therefore, development of bivalent vaccines against enteric fever is urgently required. The immunogenic Vi capsular polysaccharide is characteristically produced in S. Typhi, but it is absent in S. Paratyphi A. We propose that engineering synthesis of Vi in S. Paratyphi A live-attenuated vaccine may expand its protection range to cover S. Typhi. In this study, we cloned the viaB locus, which contains 10 genes responsible for Vi biosynthesis, and integrated into the chromosome of S. Paratyphi A CMCC 50093. Two virulence loci, htrA and phoPQ, were subsequently deleted to achieve a Vi-producing attenuated vaccine candidate. Our data showed that, despite more than 200 passages, the viaB locus was stably maintained in the chromosome of S. Paratyphi A and produced the Vi polysaccharide. Nasal immunization of the vaccine candidate stimulated high levels of Vi-specific and S. Paratyphi A-specific antibodies in mice sera as well as total sIgA in intestinal contents, and showed significant protection against wild-type challenge of S. Paratyphi A or S. Typhi. Our study show that the Vi-producing attenuated S. Paratyphi A is a promising bivalent vaccine candidate for the prevention of enteric fever. PMID:28484685

  16. Influence of Temperature and Predation on Survival of Salmonella enterica Serovar Typhimurium and Expression of invA in Soil and Manure-Amended Soil▿

    PubMed Central

    García, R.; Bælum, J.; Fredslund, L.; Santorum, P.; Jacobsen, C. S.

    2010-01-01

    The effects of three temperatures (5, 15, and 25°C) on the survival of Salmonella enterica serovar Typhimurium in topsoil were investigated in small microcosms by three different techniques: plate counting, invA gene quantification, and invA mRNA quantification. Differences in survival were related to the effect of protozoan predation. Tetracycline-resistant Salmonella serovar Typhimurium was inoculated into soil and manure-amended soil at 1.5 × 108 cells g soil−1. Population densities were determined by plate counting and by molecular methods and monitored for 42 days. Simultaneous extraction of RNA and DNA, followed by quantitative PCR, was used to investigate invA gene levels and expression. Analysis by these three techniques showed that Salmonella serovar Typhimurium survived better at 5°C. Comparing DNA and CFU levels, significantly higher values were determined by DNA-based techniques. invA mRNA levels showed a fast decrease in activity, with no detectable mRNA after an incubation period of less than 4 days in any of the soil scenarios. A negative correlation was found between Salmonella serovar Typhimurium CFU levels and protozoan most probable numbers, and we propose the role of the predator-prey interaction as a factor to explain the die-off of the introduced strain by both culture- and DNA quantification-based methods. The results indicate that temperature, manure, and protozoan predation are important factors influencing the survival of Salmonella serovar Typhimurium in soil. PMID:20562283

  17. Salmonella on Raw Poultry in Retail Markets in Guatemala: Levels, Antibiotic Susceptibility, and Serovar Distribution.

    PubMed

    Jarquin, Claudia; Alvarez, Danilo; Morales, Oneida; Morales, Ana Judith; López, Beatriz; Donado, Pilar; Valencia, Maria F; Arévalo, Alejandra; Muñoz, Fredy; Walls, Isabel; Doyle, Michael P; Alali, Walid Q

    2015-09-01

    The objective of this study was to determine Salmonella numbers on retail raw chicken carcasses in Guatemala and to phenotypically characterize the isolates (serotyping and antibiotic susceptibility). In total, 300 chicken carcasses were collected from seven departments in Guatemala. Salmonella numbers were determined using the most-probable-number method following the U. S. Department of Agriculture's Food Safety and Inspection Service protocol. In total, 103 isolates were obtained, all of which were tested for antibiotic susceptibility, whereas 46 isolates were serotyped. Overall, Salmonella prevalence and mean number (mean log most probable number per carcass) was 34.3% and 2.3 (95% confidence interval: 2.1 to 2.5), respectively. Significant differences (P < 0.05) in Salmonella prevalence were found by storage condition (refrigerated or ambient temperature), market type (wet markets, supermarkets, and independent poultry stores), chicken production system (integrated or nonintegrated production company), and chicken skin color (white or yellow). Chickens produced by integrated companies had lower Salmonella numbers (P < 0.05) than nonintegrated companies, and white-skin carcasses had lower numbers (P < 0.05) than yellow-skin carcasses. Among 13 different Salmonella serovars identified, Paratyphi B (34.8%) was most prevalent, followed by Heidelberg (16.3%) and Derby (11.6%). Of all the Salmonella isolates, 59.2% were resistant to one to three antibiotics and 13.6% to four or more antibiotics. Among all the serovars obtained, Salmonella Paratyphi B and Heidelberg were the most resistant to the antibiotics tested. Salmonella levels and antibiotic resistant profiles among isolates from raw poultry at the retail market level were high relative to other reports from North and South America. These data can be used by Guatemalan stakeholders to develop risk assessment models and support further research opportunities to control transmission of Salmonella spp. and

  18. Influence of the treatment of Listeria monocytogenes and Salmonella enterica serovar Typhimurium with citral on the efficacy of various antibiotics.

    PubMed

    Zanini, Surama F; Silva-Angulo, Angela B; Rosenthal, Amauri; Aliaga, Dolores Rodrigo; Martínez, Antonio

    2014-04-01

    The main goal of this work was to study the bacterial adaptive responses to antibiotics induced by sublethal concentration of citral on first-and second-generation cells of Listeria monocytogenes serovar 4b (CECT 4032) and Salmonella enterica serovar Typhimurium (CECT 443). The first-generation cells were not pretreated with citral, while the second-generation cells were obtained from cells previously exposed to citral during 5 h. The trials were conducted at 37°C. The presence of citral in the culture medium and the antibiotic strips resulted in a reduced minimum inhibitory concentration (MIC) for the first-generation cells of Listeria monocytogenes serovar 4b and Salmonella Typhimurium. This result was observed for almost all the antibiotics, compared with the same microorganisms of the control group (without citral), which could represent an additive effect. For Listeria serovar 4b, the second-generation cells of the test group maintained the same susceptibility to antibiotics compared with cells in the control group and in the test group of the first generation. The second-generation cells of the control group indicated that the Salmonella Typhimurium maintained the same sensitivity to the antibiotics tested compared with the first generation of this group, except in the case of erythromycin, which exhibited an increased MIC value. With respect to the second-generation cells of Salmonella Typhimurium, the presence of citral determined a decrease in the antibiotic susceptibility for almost all of the antibiotics, except colistin, compared with the first-generation of the test group, which can be seen by increase of MIC values. In conclusion, the presence of citral in the culture medium of Listeria 4b and Salmonella Typhimurium increased the antibiotic susceptibility of the first generations, while we observed an increase in antibiotic resistance in the second generation of Salmonella Typhimurium.

  19. Characterization of a T7-like lytic bacteriophage (phiSG-JL2) of Salmonella enterica serovar gallinarum biovar gallinarum.

    PubMed

    Kwon, Hyuk-Joon; Cho, Sun-Hee; Kim, Tae-Eun; Won, Yong-Jin; Jeong, Jihye; Park, Se Chang; Kim, Jae-Hong; Yoo, Han-Sang; Park, Yong-Ho; Kim, Sun-Joong

    2008-11-01

    PhiSG-JL2 is a newly discovered lytic bacteriophage infecting Salmonella enterica serovar Gallinarum biovar Gallinarum but is nonlytic to a rough vaccine strain of serovar Gallinarum biovar Gallinarum (SG-9R), S. enterica serovar Enteritidis, S. enterica serovar Typhimurium, and S. enterica serovar Gallinarum biovar Pullorum. The phiSG-JL2 genome is 38,815 bp in length (GC content, 50.9%; 230-bp-long direct terminal repeats), and 55 putative genes may be transcribed from the same strand. Functions were assigned to 30 genes based on high amino acid similarity to known proteins. Most of the expected proteins except tail fiber (31.9%) and the overall organization of the genomes were similar to those of yersiniophage phiYeO3-12. phiSG-JL2 could be classified as a new T7-like virus and represents the first serovar Gallinarum biovar Gallinarum phage genome to be sequenced. On the basis of intraspecific ratios of nonsynonymous to synonymous nucleotide changes (Pi[a]/Pi[s]), gene 2 encoding the host RNA polymerase inhibitor displayed Darwinian positive selection. Pretreatment of chickens with phiSG-JL2 before intratracheal challenge with wild-type serovar Gallinarum biovar Gallinarum protected most birds from fowl typhoid. Therefore, phiSG-JL2 may be useful for the differentiation of serovar Gallinarum biovar Gallinarum from other Salmonella serotypes, prophylactic application in fowl typhoid control, and understanding of the vertical evolution of T7-like viruses.

  20. Microfluidic Chip-Based Detection and Intraspecies Strain Discrimination of Salmonella Serovars Derived from Whole Blood of Septic Mice

    PubMed Central

    Patterson, Adriana S.; Heithoff, Douglas M.; Ferguson, Brian S.; Soh, H. Tom; Mahan, Michael J.

    2013-01-01

    Salmonella is a zoonotic pathogen that poses a considerable public health and economic burden in the United States and worldwide. Resultant human diseases range from enterocolitis to bacteremia to sepsis and are acutely dependent on the particular serovar of Salmonella enterica subsp. enterica, which comprises over 99% of human-pathogenic S. enterica isolates. Point-of-care methods for detection and strain discrimination of Salmonella serovars would thus have considerable benefit to medical, veterinary, and field applications that safeguard public health and reduce industry-associated losses. Here we describe a single, disposable microfluidic chip that supports isothermal amplification and sequence-specific detection and discrimination of Salmonella serovars derived from whole blood of septic mice. The integrated microfluidic electrochemical DNA (IMED) chip consists of an amplification chamber that supports loop-mediated isothermal amplification (LAMP), a rapid, single-temperature amplification method as an alternative to PCR that offers advantages in terms of sensitivity, reaction speed, and amplicon yield. The amplification chamber is connected via a microchannel to a detection chamber containing a reagentless, multiplexed (here biplex) sensing array for sequence-specific electrochemical DNA (E-DNA) detection of the LAMP products. Validation of the IMED device was assessed by the detection and discrimination of S. enterica subsp. enterica serovars Typhimurium and Choleraesuis, the causative agents of enterocolitis and sepsis in humans, respectively. IMED chips conferred rapid (under 2 h) detection and discrimination of these strains at clinically relevant levels (<1,000 CFU/ml) from whole, unprocessed blood collected from septic animals. The IMED-based chip assay shows considerable promise as a rapid, inexpensive, and portable point-of-care diagnostic platform for the detection and strain-specific discrimination of microbial pathogens. PMID:23354710

  1. PCR Method To Identify Salmonella enterica Serovars Typhi, Paratyphi A, and Paratyphi B among Salmonella Isolates from the Blood of Patients with Clinical Enteric Fever▿

    PubMed Central

    Levy, Haim; Diallo, Souleymane; Tennant, Sharon M.; Livio, Sofie; Sow, Samba O.; Tapia, Milagritos; Fields, Patricia I.; Mikoleit, Matthew; Tamboura, Boubou; Kotloff, Karen L.; Lagos, Rosanna; Nataro, James P.; Galen, James E.; Levine, Myron M.

    2008-01-01

    PCR methodology was developed to identify Salmonella enterica serovars Typhi, Paratyphi A, and Paratyphi B. One multiplex PCR identifies serogroup D, A, and B and Vi-positive strains; another confirms flagellar antigen “d,” “a,” or “b.” Blinded testing of 664 Malian and Chilean Salmonella blood isolates demonstrated 100% sensitivity and specificity. PMID:18367574

  2. Inactivation of Salmonella Senftenberg, Salmonella Typhimurium and Salmonella Tennessee in peanut butter by 915 MHz microwave heating.

    PubMed

    Song, Won-Jae; Kang, Dong-Hyun

    2016-02-01

    This study evaluated the efficacy of a 915 MHz microwave with 3 different levels to inactivate 3 serovars of Salmonella in peanut butter. Peanut butter inoculated with Salmonella enterica serovar Senftenberg, S. enterica serovar Typhimurium and S. enterica serovar Tennessee were treated with a 915 MHz microwave with 2, 4 and 6 kW and acid and peroxide values and color changes were determined after 5 min of microwave heating. Salmonella populations were reduced with increasing treatment time and treatment power. Six kW 915 MHz microwave treatment for 5 min reduced these three Salmonella serovars by 3.24-4.26 log CFU/g. Four and two kW 915 MHz microwave processing for 5 min reduced these Salmonella serovars by 1.14-1.48 and 0.15-0.42 log CFU/g, respectively. Microwave treatment did not affect acid, peroxide, or color values of peanut butter. These results demonstrate that 915 MHz microwave processing can be used as a control method for reducing Salmonella in peanut butter without producing quality deterioration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A defective mutant of Salmonella enterica Serovar Gallinarum in cobalamin biosynthesis is avirulent in chickens

    PubMed Central

    de Paiva, Jacqueline Boldrin; Penha Filho, Rafael Antonio Casarin; Arguello, Yuli Melisa Sierra; Berchieri Junior, Ângelo; Lemos, Manuel Victor Franco; Barrow, Paul A.

    2009-01-01

    Salmonella enterica serovar Gallinarum (SG) is a fowl typhoid agent in chickens and is a severe disease with worldwide economic impact as its mortality may reach up to 80%. It is one of a small group of serovars that typically produces typhoid-like infections in a narrow range of host species and which therefore represents a good model for human typhoid. The survival mechanisms are not considered to be virulent mechanisms but are essential for the life of the bacterium. Mutants of Salmonella Gallinarum containing defective genes, related to cobalamin biosynthesis and which Salmonella spp. has to be produced to survive when it is in an anaerobic environment, were produced in this study. Salmonella Gallinarum is an intracellular parasite. Therefore, this study could provide information about whether vitamin B12 biosynthesis might be essential to its survival in the host. The results showed that the singular deletion in cbiA or cobS genes did not interfere in the life of Salmonella Gallinarum in the host, perhaps because single deletion is not enough to impede vitamin B12 biosynthesis. It was noticed that diluted SG mutants with single deletion produced higher mortality than the wild strain of SG. When double mutation was carried out, the Salmonella Gallinarum mutant was unable to provoke mortality in susceptible chickens. This work showed that B12 biosynthesis is a very important step in the metabolism of Salmonella Gallinarum during the infection of the chickens. Further research on bacterium physiology should be carried out to elucidate the events described in this research and to assess the mutant as a vaccine strain. PMID:24031393

  4. Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence

    NASA Technical Reports Server (NTRS)

    Nickerson, C. A.; Ott, C. M.; Mister, S. J.; Morrow, B. J.; Burns-Keliher, L.; Pierson, D. L.

    2000-01-01

    The effects of spaceflight on the infectious disease process have only been studied at the level of the host immune response and indicate a blunting of the immune mechanism in humans and animals. Accordingly, it is necessary to assess potential changes in microbial virulence associated with spaceflight which may impact the probability of in-flight infectious disease. In this study, we investigated the effect of altered gravitational vectors on Salmonella virulence in mice. Salmonella enterica serovar Typhimurium grown under modeled microgravity (MMG) were more virulent and were recovered in higher numbers from the murine spleen and liver following oral infection compared to organisms grown under normal gravity. Furthermore, MMG-grown salmonellae were more resistant to acid stress and macrophage killing and exhibited significant differences in protein synthesis than did normal-gravity-grown cells. Our results indicate that the environment created by simulated microgravity represents a novel environmental regulatory factor of Salmonella virulence.

  5. Draft Genome Sequences of 20 Salmonella enterica subsp. enterica Serovar Typhimurium Strains Isolated from Swine in Santa Catarina, Brazil.

    PubMed

    Seribelli, Amanda Aparecida; Frazão, Miliane Rodrigues; Gonzales, Júlia Cunha; Cao, Guojie; Leon, Maria Sanchez; Kich, Jalusa Deon; Allard, Marc William; Falcão, Juliana Pfrimer

    2018-04-19

    Salmonellosis is a disease with a high incidence worldwide, and Salmonella enterica subsp. enterica serovar Typhimurium is one of the most clinically important serovars. We report here the draft genome sequences of 20 S. Typhimurium strains isolated from swine in Santa Catarina, Brazil. These draft genomes will improve our understanding of S. Typhimurium in Brazil.

  6. Quantification, serovars, and antibiotic resistance of salmonella isolated from retail raw chicken meat in Vietnam.

    PubMed

    Ta, Yen T; Nguyen, Trung Thanh; To, Phuong Bich; Pham, Da Xuan; Le, Hao Thi Hong; Thi, Giang Nguyen; Alali, Walid Q; Walls, Isabel; Doyle, Michael P

    2014-01-01

    The objectives of this study were to quantify Salmonella counts on retail raw poultry meat in Vietnam and to phenotypically characterize (serovars and antibiotic resistance) the isolates. A total of 300 chicken carcasses were collected from two cities and two provinces in Vietnam. Salmonella counts on the samples were determined according to the most-probable-number (MPN) method of the U.S. Department of Agriculture, Food Safety and Inspection Service (USDA-FSIS). A total of 457 isolates were serotyped and tested for antibiotic susceptibility. Overall, 48.7% of chicken samples were Salmonella positive with a count of 2.0 log MPN per carcass. There were no significant differences (P > 0.05) in log MPN per carcass by the study variables (market type, storage condition, and chicken production system). There was a significant difference (P < 0.05) in Salmonella-positive prevalence by chicken production system. Among the 22 Salmonella serovars identified, Albany was the most frequent (34.1%), followed by Agona (15.5%) and Dabou (8.8%). Resistance to at least one antibiotic was common (i.e., 73.3%), with high resistance to tetracycline (59.1%) and ampicillin (41.6%). Resistance to three antibiotics was the most frequently found multidrug resistance profile (17.7%, n = 81); the profile that was resistant to the highest number of drugs was resistant to nine antibiotics (0.7%, n = 3). Only Salmonella Albany posed phenotypic resistance to ceftriaxone (a drug of choice to treat severe cases of salmonellosis). The data revealed that, whereas Salmonella prevalence on raw poultry was high (48.7%), counts were low, which suggests that the exposure risk to Salmonella is low. However, improper storage of raw chicken meat and cross-contamination may increase Salmonella cell counts and pose a greater risk for infection. These data may be helpful in developing risk assessment models and preventing the transmission of foodborne Salmonella from poultry to humans in Vietnam.

  7. The Inositol Phosphatase SHIP Controls Salmonella enterica Serovar Typhimurium Infection In Vivo▿

    PubMed Central

    Bishop, Jennifer L.; Sly, Laura M.; Krystal, Gerald; Finlay, B. Brett

    2008-01-01

    The SH2 domain-containing inositol 5′-phosphatase, SHIP, negatively regulates various hematopoietic cell functions and is critical for maintaining immune homeostasis. However, whether SHIP plays a role in controlling bacterial infections in vivo remains unknown. Salmonella enterica causes human salmonellosis, a disease that ranges in severity from mild gastroenteritis to severe systemic illness, resulting in significant morbidity and mortality worldwide. The susceptibility of ship+/+and ship−/− mice and bone marrow-derived macrophages to S. enterica serovar Typhimurium infection was compared. ship−/− mice displayed an increased susceptibility to both oral and intraperitoneal serovar Typhimurium infection and had significantly higher bacterial loads in intestinal and systemic sites than ship+/+mice, indicating a role for SHIP in the gut-associated and systemic pathogenesis of serovar Typhimurium in vivo. Cytokine analysis of serum from orally infected mice showed that ship−/− mice produce lower levels of Th1 cytokines than do ship+/+ animals at 2 days postinfection, and in vitro analysis of supernatants taken from infected bone marrow-derived macrophages derived to mimic the in vivo ship−/− alternatively activated (M2) macrophage phenotype correlated with these data. M2 macrophages were the predominant population in vivo in both oral and intraperitoneal infections, since tissue macrophages within the small intestine and peritoneal macrophages from ship−/− mice showed elevated levels of the M2 macrophage markers Ym1 and Arginase 1 compared to ship+/+ cells. Based on these data, we propose that M2 macrophage skewing in ship−/− mice contributes to ineffective clearance of Salmonella in vivo. PMID:18426884

  8. ESBL-Producing Salmonella enterica Serovar Typhi in Traveler Returning from Guatemala to Spain

    PubMed Central

    Piedra-Carrasco, Nuria; Salvador, Fernando; Rodríguez, Virginia; Sánchez-Montalvá, Adrián; Planes, Anna M.; Molina, Israel; Larrosa, M. Nieves

    2014-01-01

    We report a case of typhoid fever in a traveler returning to Spain from Guatemala that was caused by Salmonella enterica serovar Typhi which produced an extended-spectrum β-lactamase (ESBL). This finding demonstrates the presence of ESBL-producing S. enterica ser. Typhi strains in the Americas. Enhanced surveillance is necessary to prevent further spread. PMID:25340972

  9. A multiplex real-time PCR assay for the identification and differentiation of Salmonella enterica serovar Typhimurium and monophasic serovar 4,[5],12:i:-.

    PubMed

    Prendergast, Deirdre M; Hand, Darren; Nί Ghallchóir, Eadaoin; McCabe, Evonne; Fanning, Seamus; Griffin, Margaret; Egan, John; Gutierrez, Montserrat

    2013-08-16

    Salmonella enterica subsp. enterica serovar 4,[5],12:i:- is considered to be a monophasic variant of Salmonella Typhimurium and is increasingly associated with human infections. The use of PCR for the unequivocal identification of strains identified by conventional serotyping as 4,[5],12:i:- has been recommended by the European Food Safety Authority (EFSA), in particular the conventional multiplex PCR developed by Tennant et al. (2010). An alternative protocol for the identification and differentiation of S. Typhimurium and S. Typhimurium-like strains, including its monophasic variants, based on a multiplex real-time PCR assay was developed in our laboratory. A panel of 206 Salmonella strains was used to validate our multiplex real-time PCR against the conventional multiplex PCR recommended by EFSA, i.e. 43 Salmonella strains of serovars other than Typhimurium and 163 routine isolates determined by slide agglutination serotyping to have an incomplete antigenic formula compatible with the S. Typhimurium formula 4,[5],12:i:1,2. Both methods correctly identified the 43 Salmonella strains as non S. Typhimurium. Among the 163 isolates of undetermined serovar by conventional serotyping, both PCR protocols identified 54 isolates as S. Typhimurium, 101 as monophasic S. Typhimurium and 8 as non-S. Typhimurium. Twenty isolates phenotypically lacking the phase-2 H antigen were positive for the fljB.1,2 gene. These strains have been recently described in the literature by other workers and have been referred to as "inconsistent" variants of S. Typhimurium. Antimicrobial resistance and phage typing were also performed on the S. Typhimurium isolates, including monophasic variants, and approximately half of the isolates identified as monophasic S. Typhimurium by our multiplex real-time PCR protocol were DT193 with the resistance pattern ASSuT. There was 100% concordance between the conventional PCR and the multiplex real-time PCR method developed in this study which proved that

  10. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid.

    PubMed

    McClelland, Michael; Sanderson, Kenneth E; Clifton, Sandra W; Latreille, Phil; Porwollik, Steffen; Sabo, Aniko; Meyer, Rekha; Bieri, Tamberlyn; Ozersky, Phil; McLellan, Michael; Harkins, C Richard; Wang, Chunyan; Nguyen, Christine; Berghoff, Amy; Elliott, Glendoria; Kohlberg, Sara; Strong, Cindy; Du, Feiyu; Carter, Jason; Kremizki, Colin; Layman, Dan; Leonard, Shawn; Sun, Hui; Fulton, Lucinda; Nash, William; Miner, Tracie; Minx, Patrick; Delehaunty, Kim; Fronick, Catrina; Magrini, Vincent; Nhan, Michael; Warren, Wesley; Florea, Liliana; Spieth, John; Wilson, Richard K

    2004-12-01

    Salmonella enterica serovars often have a broad host range, and some cause both gastrointestinal and systemic disease. But the serovars Paratyphi A and Typhi are restricted to humans and cause only systemic disease. It has been estimated that Typhi arose in the last few thousand years. The sequence and microarray analysis of the Paratyphi A genome indicates that it is similar to the Typhi genome but suggests that it has a more recent evolutionary origin. Both genomes have independently accumulated many pseudogenes among their approximately 4,400 protein coding sequences: 173 in Paratyphi A and approximately 210 in Typhi. The recent convergence of these two similar genomes on a similar phenotype is subtly reflected in their genotypes: only 30 genes are degraded in both serovars. Nevertheless, these 30 genes include three known to be important in gastroenteritis, which does not occur in these serovars, and four for Salmonella-translocated effectors, which are normally secreted into host cells to subvert host functions. Loss of function also occurs by mutation in different genes in the same pathway (e.g., in chemotaxis and in the production of fimbriae).

  11. The economic burden of a Salmonella Thompson outbreak caused by smoked salmon in the Netherlands, 2012-2013.

    PubMed

    Suijkerbuijk, Anita W M; Bouwknegt, Martijn; Mangen, Marie-Josee J; de Wit, G Ardine; van Pelt, Wilfrid; Bijkerk, Paul; Friesema, Ingrid H M

    2017-04-01

    In 2012, the Netherlands experienced the most extensive food-related outbreak of Salmonella ever recorded. It was caused by smoked salmon contaminated with Salmonella Thompson during processing. In total, 1149 cases of salmonellosis were laboratory confirmed and reported to RIVM. Twenty percent of cases was hospitalised and four cases were reported to be fatal. The purpose of this study was to estimate total costs of the Salmonella Thompson outbreak. Data from a case-control study were used to estimate the cost-of-illness of reported cases (i.e. healthcare costs, patient costs and production losses). Outbreak control costs were estimated based on interviews with staff from health authorities. Using the Dutch foodborne disease burden and cost-of-illness model, we estimated the number of underestimated cases and the associated cost-of-illness. The estimated number of cases, including reported and underestimated cases was 21 123. Adjusted for underestimation, the total cost-of-illness would be €6.8 million (95% CI €2.5-€16.7 million) with productivity losses being the main cost driver. Adding outbreak control costs, the total outbreak costs are estimated at €7.5 million. In the Netherlands, measures are taken to reduce salmonella concentrations in food, but detection of contamination during food processing remains difficult. As shown, Salmonella outbreaks have the potential for a relatively high disease and economic burden for society. Early warning and close cooperation between the industry, health authorities and laboratories is essential for rapid detection, control of outbreaks, and to reduce disease and economic burden. © The Author 2016. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  12. Loop-Mediated Isothermal Amplification of the sefA Gene for Rapid Detection of Salmonella Enteritidis and Salmonella Gallinarum in Chickens.

    PubMed

    Gong, Jiansen; Zhuang, Linlin; Zhu, Chunhong; Shi, Shourong; Zhang, Di; Zhang, Linji; Yu, Yan; Dou, Xinhong; Xu, Bu; Wang, Chengming

    2016-04-01

    Salmonella spp. pose a threat to both human and animal health, with more than 2600 serovars having been reported to date. Salmonella serovars are usually identified by slide agglutination tests, which are labor intensive and time consuming. In an attempt to develop a more rapid screening method for the major poultry Salmonella serovars, we developed a loop-mediated isothermal amplification (LAMP) assay, which directly detected the sefA gene, a fimbrial operon gene existing in several specific serovars of Salmonella enterica including the major poultry serovars, namely Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) and Salmonella enterica serovar Gallinarum (Salmonella Gallinarum). With the 177 bacterial strains we tested, positive reactions were only observed with 85 strains of serovar Salmonella Enteritidis and Salmonella Gallinarum. The detection limit of the LAMP assay was 4 CFU/reaction with genomic DNAs of Salmonella Enteritidis (ATCC 13076) from pure culture and 400 CFU/ reaction with DNA extracted from spiked chicken feces. The LAMP assay was more sensitive than conventional culture, especially without enrichment, in detecting Salmonella Enteritidis (CMCC 50041) in the spiked fecal samples. The results show the sefA LAMP method is a rapid, sensitive, specific, and practical method for directly detection of Salmonella Enteritidis and Salmonella Gallinarum in chickens. The sefA LAMP assay can potentially serve as new on-site diagnostics in the poultry industry.

  13. Outer membrane protein a of Salmonella enterica serovar Typhimurium activates dendritic cells and enhances Th1 polarization

    PubMed Central

    2010-01-01

    Background Typhoid, which is caused by Salmonella enterica serovar Typhimurium, remains a major health concern worldwide. Multidrug-resistant strains of Salmonella have emerged which exhibit increased survivability and virulence, thus leading to increased morbidity. However, little is known about the protective immune response against this microorganism. The outer membrane protein (Omp)A of bacteria plays an important role in pathogenesis. Results We purified OmpA from S. enterica serovar Typhimurium (OmpA-sal) and characterized the role of OmpA-sal in promoting adaptive and innate immune responses. OmpA-sal functionally activated bone marrow-derived dendritic cells by augmenting expression of CD80, CD86, and major histocompatibility complex classes I and II. Interestingly, OmpA-sal induced production of interferon-γ from T cells in mixed lymphocyte reactions, thus indicating Th1-polarizing capacity. The expression of surface markers and cytokine production in dendritic cells was mediated by the TLR4 signaling pathway in a TLR4 Knock-out system. Conclusions Our findings suggest that OmpA-sal modulates the adaptive immune responses to S. enterica serovar Typhimurium by activating dendritic cells and driving Th1 polarization, which are important properties to consider in the development of effective S. enterica serovar Typhimurium vaccines and immunotherapy adjuvant. PMID:20950448

  14. Effect of Challenge Temperature and Solute Type on Heat Tolerance of Salmonella Serovars at Low Water Activity

    PubMed Central

    Mattick, K. L.; Jørgensen, F.; Wang, P.; Pound, J.; Vandeven, M. H.; Ward, L. R.; Legan, J. D.; Lappin-Scott, H. M.; Humphrey, T. J.

    2001-01-01

    Salmonella spp. are reported to have an increased heat tolerance at low water activity (aw; measured by relative vapor pressure [rvp]), achieved either by drying or by incorporating solutes. Much of the published data, however, cover only a narrow treatment range and have been analyzed by assuming first-order death kinetics. In this study, the death of Salmonella enterica serovar Typhimurium DT104 when exposed to 54 combinations of temperature (55 to 80°C) and aw (rvp 0.65 to 0.90, reduced using glucose-fructose) was investigated. The Weibull model (LogS = −btn) was used to describe microbial inactivation, and surface response models were developed to predict death rates for serovar Typhimurium at all points within the design surface. The models were evaluated with data generated by using six different Salmonella strains in place of serovar Typhimurium DT104 strain 30, two different solutes in place of glucose-fructose to reduce aw, or six low-aw foods artificially contaminated with Salmonella in place of the sugar broths. The data demonstrate that, at temperatures of ≥70°C, Salmonella cells at low aw were more heat tolerant than those at a higher aw but below 65°C the reverse was true. The same patterns were generated when sucrose (rvp 0.80 compared with 0.90) or NaCl (0.75 compared with 0.90) was used to reduce aw, but the extent of the protection afforded varied with solute type. The predictions of thermal death rates in the low-aw foods were usually fail-safe, but the few exceptions highlight the importance of validating models with specific foods that may have additional factors affecting survival. PMID:11526015

  15. Identification of genes associated with survival of salmonellaenterica serovar enteridis in chicken egg albumen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clavijo, Raul I.; Loui, Cindy; Andersen, Gary L.

    Salmonella enterica consists of over 2,000 serovars that aremajor causes of morbidity and mortality associated with contaminatedfood. Despite similarities among serovars of Salmonella enterica, manydemonstrate unique host specificities, epidemiological characteristics,and clinical manifestations. One of the unique epidemiologicalcharacteristics of the serovar Enteritidis is that it is the onlybacterium routinely transmitted to humans through intact chicken eggs.Therefore, Salmonella enterica serovar Enteritidis must be able topersist inside chicken eggs to be transmitted to humans, and its survivalin egg is important for its transmission to the human population. Theability of Salmonella enterica serovar Enteritidis to survive in andtransmit through eggs may have contributed tomore » its drastically increasedprevalence in the 1980s and 1990s. In the present study, usingtransposon-mediated mutagenesis, we have identified genes important forthe association of Salmonella enterica serovar Enteritidis with chickeneggs. Our results indicate that genes involved in cell wall structuraland functional integrity, and nucleic acid and amino acid metabolism areimportant for Salmonella enterica serovar Enteritidis to persist in eggalbumen. Two regions unique toSalmonella enterica serovar Enteritidiswere also identified, one of which enhanced the survival of a Salmonellaenterica serovar Typhimurium isolate in egg albumen. The implication ofour results to the serovar specificity of Salmonella enterica is alsoexplored in the present study.« less

  16. rpoS-Regulated Core Genes Involved in the Competitive Fitness of Salmonella enterica Serovar Kentucky in the Intestines of Chickens

    PubMed Central

    Cheng, Ying; Pedroso, Adriana Ayres; Porwollik, Steffen; McClelland, Michael; Lee, Margie D.; Kwan, Tiffany; Zamperini, Katherine; Soni, Vivek; Sellers, Holly S.; Russell, Scott M.

    2014-01-01

    Salmonella enterica serovar Kentucky has become the most frequently isolated serovar from poultry in the United States over the past decade. Despite its prevalence in poultry, it causes few human illnesses in the United States. The dominance of S. Kentucky in poultry does not appear to be due to single introduction of a clonal strain, and its reduced virulence appears to correlate with the absence of virulence genes grvA, sseI, sopE, and sodC1. S. Kentucky's prevalence in poultry is possibly attributable to its metabolic adaptation to the chicken cecum. While there were no difference in the growth rate of S. Kentucky and S. Typhimurium grown microaerophilically in cecal contents, S. Kentucky persisted longer when chickens were coinfected with S. Typhimurium. The in vivo advantage that S. Kentucky has over S. Typhimurium appears to be due to differential regulation of core Salmonella genes via the stationary-phase sigma factor rpoS. Microarray analysis of Salmonella grown in cecal contents in vitro identified several metabolic genes and motility and adherence genes that are differentially activated in S. Kentucky. The contributions of four of these operons (mgl, prp, nar, and csg) to Salmonella colonization in chickens were assessed. Deletion of mgl and csg reduced S. Kentucky persistence in competition studies in chickens infected with wild-type or mutant strains. Subtle mutations affecting differential regulation of core Salmonella genes appear to be important in Salmonella's adaptation to its animal host and especially for S. Kentucky's emergence as the dominant serovar in poultry. PMID:25362062

  17. Effect of Water Activity on the Thermal Tolerance and Survival of Salmonella enterica Serovars Tennessee and Senftenberg in Goat's Milk Caramel.

    PubMed

    Acosta, Oscar; Usaga, Jessie; Churey, John J; Worobo, Randy W; Padilla-Zakour, Olga I

    2017-06-01

    The low thermal tolerance of Salmonella enterica in foods with intermediate moisture levels, such as caramel sauces, ensures that mild heat treatment is sufficient to achieve 5-log reductions of this pathogen. This treatment mitigates the risk posed by salmonellae in raw materials; however, recontamination might occur because of survival of the pathogen in products that are not heated before consumption. This study was conducted to evaluate the effect of water activity (a w ) on the thermal tolerance and survival of S. enterica serovars Tennessee and Senftenberg. The D-values at 76, 78, and 80°C, z-values, and survival at 20.0 ± 0.5°C for 32 weeks of these two serovars were determined in goat's milk caramel at three a w values (0.85, 0.90, and 0.93). The highest thermal tolerance was observed at a w = 0.85 for Salmonella Senftenberg (D 76°C = 2.9 ± 0.3 min), and the lowest was at a w = 0.93 for Salmonella Tennessee (D 80°C = 0.131 ± 0.007 min). After a logarithmic transformation of the z-values, a significant interaction between serovar and a w was found (P < 0.0001), but no consistent trends were observed at the three evaluated a w levels for either serovar. Survival response was modeled using two sigmoidal three-parameter models. A significant interaction was found between nominal variables a w and serovar when comparing inflection points of the resulting curves: P < 0.0016 for the logistic model (R 2 = 0.91) and P < 0.0014 for the Gompertz model (R 2 = 0.92). Although a >8-log reduction was observed at week 20 of storage, regardless of the product's a w and the serovar, low levels of salmonellae were found in the product up to week 32 of storage. Our findings may assist the food industry with the establishment of critical limits for the safe thermal treatment of milk- and sugar-based foods with intermediate moisture levels. The survival data presented here highlight the relevance of implementing and effectively maintaining good sanitation and hygiene

  18. Swarm and swim motilities of Salmonella enterica serovar Typhimurium and role of osmoregulated periplasmic glucans

    USDA-ARS?s Scientific Manuscript database

    Background: Salmonella enterica serovar Typhimurium strains synthesize osmoregulated periplasmic glucans (OPGs) under low osmolarity conditions (< 70 mos mol l-1). OPG synthesis is not observed when cells are grown in iso- or hyper-osmotic media (> 400 mos mol l-1). Mutation in OPG structural gene...

  19. Rapid multiplex PCR and Real-Time TaqMan PCR assays for detection of Salmonella enterica and the highly virulent serovars Choleraesuis and Paratyphi C

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica is a human pathogen with over 2,500 serovars characterized. S. enterica serovars Choleraesuis (Cs) and Paratyphi C (Pc) are two globally distributed serovars. We have developed a rapid molecular typing method to detect Cs and Pc in food samples by using a comparative genomics ap...

  20. Complete Genome Sequences of 17 Canadian Isolates of Salmonella enterica subsp. enterica Serovar Heidelberg from Human, Animal, and Food Sources

    PubMed Central

    Labbé, Geneviève; Ziebell, Kim; Bekal, Sadjia; Parmley, E. Jane; Agunos, Agnes; Desruisseau, Andrea; Daignault, Danielle; Slavic, Durda; Hoang, Linda; Ramsay, Danielle; Pollari, Frank; Robertson, James; Nash, John H. E.

    2016-01-01

    Salmonella enterica subsp. enterica serovar Heidelberg is a highly clonal serovar frequently associated with foodborne illness. To facilitate subtyping efforts, we report fully assembled genome sequences of 17 Canadian S. Heidelberg isolates including six pairs of epidemiologically related strains. The plasmid sequences of eight isolates contain several drug resistance genes. PMID:27635008

  1. Expression of hilA in response to mild acid stress in Salmonella enterica is serovar and strain dependent.

    PubMed

    González-Gil, Francisco; Le Bolloch, Alexandre; Pendleton, Sean; Zhang, Nan; Wallis, Audra; Hanning, Irene

    2012-05-01

    Salmonella enterica is the leading cause of foodborne illness with poultry and poultry products being primary sources of infection. The 2 most common S. enterica serovars associated with human infection are Typhimurium and Enteritidis. However, Kentucky and Heidelburg and the 2 most prevalent serovars isolated from poultry environments. Given the prevalence of other serovars in poultry products and environments, research is needed to understand virulence modulation in response to stress in serovars other than Typhimurium and Enteritidis. Thus, the objective of this research was to compare hilA gene expression (a master regulator of the virulence pathogenicity island) in response to acid stress among different strains and serovars of Salmonella. A total of 11 serovars consisting of 15 strains of S. enterica were utilized for these experiments. Cultures were suspended in tryptic soy broth (TSB) adjusted to pH 7.2, 6.2, or 5.5 with HCl or acetic acid. Total RNA was extracted from cultures at specific time points (0, 2, 4, and 24 h). Gene expression of hilA was measured with quantitative reverse transcriptase real time PCR (qRT-PCR). Growth and pH were measured throughout the 24 h time frame. Regulation of hilA in response to acid stress varied by serovar and strain and type of acid. The results of these experiments indicate that hilA regulation may have some impact on virulence and colonization of S. enterica. However, these results warrant further research to more fully understand the significance of hilA regulation in response to mild acid stress in S. enterica. © 2012 Institute of Food Technologists®

  2. Prevalence and Characterization of Monophasic Salmonella Serovar 1,4,[5],12:i:- of Food Origin in China.

    PubMed

    Yang, Xiaojuan; Wu, Qingping; Zhang, Jumei; Huang, Jiahui; Guo, Weipeng; Cai, Shuzhen

    2015-01-01

    Salmonella enterica subsp. enterica serovar 1,4,[5],12:i:- is a monophasic variant of Salmonella Typhimurium, which has recently been recognized as an emerging cause of infection worldwide. This bacterium has also ranked among the four most frequent serovars causing human salmonellosis in China. However, there are no reports on its contamination in Chinese food. Serotyping, polymerase chain reaction, antibiotic resistance, virulotyping, and multilocus sequence typing (MLST) assays were used to investigate the prevalence of this serological variant in food products in China, and to determine phenotypic and genotypic difference of monophasic isolates and Salmonella Typhimurium isolated over the same period. Salmonella 1,4,[5],12:i:- was prevalent in various food sources, including beef, pork, chicken, and pigeon. The study also confirmed the high prevalence (53.8%) of resistance to ampicillin, streptomycin, sulfonamides, and tetracycline in Salmonella 1,4,[5],12:i:-, which was higher than that in Salmonella Typhimurium. Moreover, Salmonella 1,4,[5],12:i:- isolates in our study were different from Salmonella Typhimurium isolates by the absence of three plasmid-borne genes (spvC, pefA, and rck) and the presence of gipA in all isolates. All Salmonella 1,4,[5],12:i:- isolates demonstrated MLST pattern ST34. Genomic deletions within the fljBA operon and surrounding genes were only found in Salmonella 1,4,[5],12:i:- isolates, with all isolates containing a deletion of fljB. However, hin and iroB were identified in all Salmonella 1,4,[5],12:i:- isolates. Three different deletion profiles were observed and two of them were different from the reported Salmonella 1,4,[5],12:i:- clones from Spain, America, and Italy, which provided some new evidence on the independent evolution of the multiple successful monophasic clones from Salmonella Typhimurium ancestors. This study is the first report of Salmonella 1,4,[5],12:i:- in food products from China. The data are more

  3. Prevalence and Characterization of Monophasic Salmonella Serovar 1,4,[5],12:i:- of Food Origin in China

    PubMed Central

    Yang, Xiaojuan; Wu, Qingping; Zhang, Jumei; Huang, Jiahui; Guo, Weipeng; Cai, Shuzhen

    2015-01-01

    Salmonella enterica subsp. enterica serovar 1,4,[5],12:i:- is a monophasic variant of Salmonella Typhimurium, which has recently been recognized as an emerging cause of infection worldwide. This bacterium has also ranked among the four most frequent serovars causing human salmonellosis in China. However, there are no reports on its contamination in Chinese food. Serotyping, polymerase chain reaction, antibiotic resistance, virulotyping, and multilocus sequence typing (MLST) assays were used to investigate the prevalence of this serological variant in food products in China, and to determine phenotypic and genotypic difference of monophasic isolates and Salmonella Typhimurium isolated over the same period. Salmonella 1,4,[5],12:i:- was prevalent in various food sources, including beef, pork, chicken, and pigeon. The study also confirmed the high prevalence (53.8%) of resistance to ampicillin, streptomycin, sulfonamides, and tetracycline in Salmonella 1,4,[5],12:i:-, which was higher than that in Salmonella Typhimurium. Moreover, Salmonella 1,4,[5],12:i:- isolates in our study were different from Salmonella Typhimurium isolates by the absence of three plasmid-borne genes (spvC, pefA, and rck) and the presence of gipA in all isolates. All Salmonella 1,4,[5],12:i:- isolates demonstrated MLST pattern ST34. Genomic deletions within the fljBA operon and surrounding genes were only found in Salmonella 1,4,[5],12:i:- isolates, with all isolates containing a deletion of fljB. However, hin and iroB were identified in all Salmonella 1,4,[5],12:i:- isolates. Three different deletion profiles were observed and two of them were different from the reported Salmonella 1,4,[5],12:i:- clones from Spain, America, and Italy, which provided some new evidence on the independent evolution of the multiple successful monophasic clones from Salmonella Typhimurium ancestors. This study is the first report of Salmonella 1,4,[5],12:i:- in food products from China. The data are more

  4. Large outbreak of Salmonella Thompson related to smoked salmon in the Netherlands, August to December 2012.

    PubMed

    Friesema, I; de Jong, A; Hofhuis, A; Heck, M; van den Kerkhof, H; de Jonge, R; Hameryck, D; Nagel, K; van Vilsteren, G; van Beek, P; Notermans, D; van Pelt, W

    2014-10-02

    On 15 August 2012, an increase in the number of Salmonella Thompson cases was noticed by the Salmonella surveillance in the Netherlands. A case–control study was performed, followed by a food investigation. In total 1,149 cases were laboratory-confirmed between August and December 2012 of which four elderly (76–91 years) were reported to have died due to the infection. The cause of the outbreak was smoked salmon processed at a single site. The smoked salmon had been continuously contaminated in the processing lines through reusable dishes, which turned out to be porous and had become loaded with bacteria. This is the largest outbreak of salmonellosis ever recorded in the Netherlands. The temporary closure of the processing site and recall of the smoked salmon stopped the outbreak. An estimated four to six million Dutch residents were possibly exposed to the contaminated smoked salmon and an estimated 23,000 persons would have had acute gastroenteritis with S. Thompson during this outbreak. This outbreak showed that close collaboration between diagnostic laboratories, regional public health services, the national institute for public health and the food safety authorities is essential in outbreak investigations.

  5. Complete Genome Sequences of 17 Canadian Isolates of Salmonella enterica subsp. enterica Serovar Heidelberg from Human, Animal, and Food Sources.

    PubMed

    Labbé, Geneviève; Ziebell, Kim; Bekal, Sadjia; Macdonald, Kimberley A; Parmley, E Jane; Agunos, Agnes; Desruisseau, Andrea; Daignault, Danielle; Slavic, Durda; Hoang, Linda; Ramsay, Danielle; Pollari, Frank; Robertson, James; Nash, John H E; Johnson, Roger P

    2016-09-15

    Salmonella enterica subsp. enterica serovar Heidelberg is a highly clonal serovar frequently associated with foodborne illness. To facilitate subtyping efforts, we report fully assembled genome sequences of 17 Canadian S Heidelberg isolates including six pairs of epidemiologically related strains. The plasmid sequences of eight isolates contain several drug resistance genes. © Crown copyright 2016.

  6. Salmonella enterica serovar Typhimurium in Mauritius linked to consumption of marlin mousse.

    PubMed

    Issack, Mohammad I; Hendriksen, Rene S; Lun, Phimy Lan Keng; Lutchun, Ram K S; Aarestrup, Frank M

    2009-01-01

    We report the first outbreak of salmonellosis caused by consumption of contaminated marlin mousse. Between 29 October and 5 November 2008, at least 53 persons developed diarrheal illness, all with a history of eating marlin mousse. Salmonella spp. that did not produce gas from glucose was isolated from stools of 26 affected patients and blood culture from one patient. Salmonella sp. isolates with the same phenotype were isolated in three samples of marlin mousse manufactured on 27 October 2008. The constituents of the mousse were smoked marlin, raw eggs, bovine gelatin, oil, and cream. A laboratory investigation of one sample of marlin mousse manufactured 3 days later, and the individual ingredients sampled a week after production of the contaminated batch were all negative for Salmonella. Serotyping and minimum inhibitory concentration determination were performed on 12 patient isolates related to the outbreak and two mousse isolates. All isolates belonged to Salmonella serovar Typhimurium and were pansusceptible to all antimicrobials tested. Pulsed-field gel electrophoresis revealed that all the isolates were indistinguishable, thus implicating the mousse as the vehicle of the outbreak.

  7. The agricultural antibiotic carbadox induces prophage and antibiotic resistance gene transfer in multidrug-resistant salmonella enterica serovar typhimurium DT104

    USDA-ARS?s Scientific Manuscript database

    Non-typhoidal Salmonella strains cause ~1 million cases of foodborne disease each year in the U.S. and are a leading cause of food-related deaths. The prevalence of multidrug-resistant (MDR) Salmonella serovars has increased over the last few decades, and infection with these strains has an increase...

  8. SALMONELLA ENTERICA SEROVAR ENTERITIDIS INFECTION MODULATES DIVERSE FUNCTIONAL PROCESSES OF CHICKEN MACROPHAGE AT THE TRANSCRIPTIONAL LEVEL

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar Enteritidis (SE) is a major etiologic agent of non-typhoid salmonellosis. The organisms colonize adult chicken hosts without causing overt clinical signs. The immunological mechanisms underlying the silent and persistent infection of chickens by SE are not clearly underst...

  9. Development and Evaluation of a Multiplex Real-Time Polymerase Chain Reaction Procedure to Clinically Type Prevalent Salmonella enterica Serovars

    PubMed Central

    Muñoz, Nélida; Diaz-Osorio, Miguel; Moreno, Jaime; Sánchez-Jiménez, Miryan; Cardona-Castro, Nora

    2010-01-01

    A multiplex real-time polymerase chain reaction procedure was developed to identify the most prevalent clinical isolates of Salmonella enterica subsp. enterica. Genes from the rfb, fliC, fljB, and viaB groups that encode the O, H, and Vi antigens were used to design 15 primer pairs and TaqMan probes specific for the genes rfbJ, wzx, fliC, fljB, wcdB, the sdf-l sequence, and invA, which was used as an internal amplification control. The primers and probes were variously combined into six sets. The first round of reactions used two of these sets to detect Salmonella O:4, O:9, O:7, O:8, and O:3,10 serogroups. Once the serogroups were identified, the results of a second round of reactions that used primers and probes for the flagellar antigen l genes, 1,2; e,h; g,m; d; e,n,x; and z10, and the Vi gene were used to identify individual serovars. The procedure was standardized using 18 Salmonella reference strains and other enterobacteria. The procedure's reliability and sensitivity was evaluated using 267 randomly chosen serotyped Salmonella clinical isolates. The procedure had a sensitivity of 95.5% and was 100% specific. Thus, our technique is a quick, sensitive, reliable, and specific means of identifying S. enterica serovars and can be used in conjunction with traditional serotyping. Other primer and probe combinations could be used to increase the number of identifiable serovars. PMID:20110454

  10. Intermediate Susceptibility to Ciprofloxacin among Salmonella enterica Serovar Typhi Isolates in Lima, Peru

    PubMed Central

    Lejon, Veerle; Horna, Gertrudis; Astocondor, Lizeth; Vanhoof, Raymond; Bertrand, Sophie; Jacobs, Jan

    2014-01-01

    Thirty-three Salmonella enterica serovar Typhi blood isolates from Lima, Peru (2008 to 2012), were fully susceptible to trimethoprim-sulfamethoxazole, chloramphenicol, ceftriaxone, and tetracycline; 8/33 (24.2%) showed intermediate susceptibility to ciprofloxacin carrying mutations in the quinolone resistance-determining region of the gyrA gene (Ser83-Phe and Asp87-Asn) and in the gyrB gene (Ser464-Phe). PMID:24371234

  11. Prevalence of ColE1-like plasmids and kanamycin resistance genes in Salmonella enterica serovars.

    PubMed

    Chen, Chin-Yi; Lindsey, Rebecca L; Strobaugh, Terence P; Frye, Jonathan G; Meinersmann, Richard J

    2010-10-01

    Multi-antimicrobial-resistant Salmonella enterica strains frequently carry resistance genes on plasmids. Recent studies focus heavily on large conjugative plasmids, and the role that small plasmids play in resistance gene transfer is largely unknown. To expand our previous studies in assessing the prevalence of the isolates harboring ColE1-like plasmids carrying the aph gene responsible for kanamycin resistance (Kan(r)) phenotypes, 102 Kan(r) Salmonella isolates collected through the National Antimicrobial Resistance Monitoring System (NARMS) in 2005 were screened by PCR using ColE1 primer sets. Thirty isolates were found to be positive for ColE1-like replicon. Plasmids from 23 isolates were able to propagate in Escherichia coli and were subjected to further characterization. Restriction mapping revealed three major plasmid groups found in three or more isolates, with each group consisting of two to three subtypes. The aph genes from the Kan(r) Salmonella isolates were amplified by PCR, sequenced, and showed four different aph(3')-I genes. The distribution of the ColE1 plasmid groups in association with the aph gene, Salmonella serovar, and isolate source demonstrated a strong linkage of the plasmid with S. enterica serovar Typhimurium DT104. Due to their high copy number and mobility, the ColE1-like plasmids may play a critical role in transmission of antibiotic resistance genes among enteric pathogens, and these findings warrant a close monitoring of this plasmid incompatibility group.

  12. Resistance to essential oils affects survival of Salmonella enterica serovars in growing and harvested basil.

    PubMed

    Kisluk, Guy; Kalily, Emmanuel; Yaron, Sima

    2013-10-01

    The number of outbreaks of food-borne illness associated with consumption of fresh products has increased. A recent and noteworthy outbreak occurred in 2007. Basil contaminated with Salmonella enterica serovar Senftenberg was the source of this outbreak. Since basil produces high levels of antibacterial compounds the aim of this study was to investigate if the emerging outbreak reflects ecological changes that occurred as a result of development of resistance to ingredients of the basil oil. We irrigated basil plants with contaminated water containing two Salmonella serovars, Typhimurium and Senftenberg, and showed that Salmonella can survive on the basil plants for at least 100 days. S. Senftenberg counts in the phyllosphere were significantly higher than S. Typhimurium, moreover, S. Senftenberg was able to grow on stored harvested basil leaves. Susceptibility experiments demonstrated that S. Senftenberg is more resistant to basil oil and to its antimicrobial constituents: linalool, estragole and eugenol. This may indicate that S. Senftenberg had adapted to the basil environment by developing resistance to the basil oil. The emergence of resistant pathogens has a significant potential to change the ecology, and opens the way for pathogens to survive in new niches in the environment such as basil and other plants. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  13. ramR mutations affecting fluoroquinolone susceptibility in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198

    PubMed Central

    Baucheron, Sylvie; Le Hello, Simon; Doublet, Benoît; Giraud, Etienne; Weill, François-Xavier; Cloeckaert, Axel

    2013-01-01

    A screening for non-target mutations affecting fluoroquinolone susceptibility was conducted in epidemic multidrug-resistant Salmonella enterica serovar Kentucky ST198. Among a panel of representative isolates (n = 27), covering the epidemic, only three showed distinct mutations in ramR resulting in enhanced expression of genes encoding the AcrAB-TolC efflux system and low increase in ciprofloxacin MIC. No mutations were detected in other regulatory regions of this efflux system. Ciprofloxacin resistance in serovar Kentucky ST198 is thus currently mainly due to multiple target gene mutations. PMID:23914184

  14. Effect of selective growth media on the differentiation of Salmonella enterica serovars by Fourier-Transform Mid-Infrared Spectroscopy.

    PubMed

    Baldauf, Nathan A; Rodriguez-Romo, Luis A; Männig, Annegret; Yousef, Ahmed E; Rodriguez-Saona, Luis E

    2007-01-01

    Salmonella enterica serovars are prevalent foodborne pathogens responsible for high numbers of salmonellosis each year. Complex Fourier-transform infrared (FTIR) spectra offer unique biochemical fingerprints of bacteria with bands due to major cellular components. Growth media effects on discrimination of Salmonella serovars by FTIR spectroscopy were investigated and a novel sample preparation technique was developed. S. enterica strains from six serovars were grown on xylose lysine desoxycholate (XLD), Miller-Mallinson (MM), and plate count (PCA) agar as a control (37 degrees C, 24 h). Isolated colonies were suspended in 50% acetonitrile and centrifuged; the remaining pellet was placed on an AMTIR (attenuated total reflectance) crystal and dried under vacuum. Classification models (Soft Independent Modeling of Class Analogy, SIMCA), generated from derivatized infrared spectra (1300-900 cm-1 or 1200-900 cm-1), successfully discriminated among Salmonella strains with major discrimination from 1000-970 cm-1 associated to stretching modes of O-specific polysaccharide chains of lipopolysaccharides. Sample treatment with acetonitrile enhanced safe handling of the bacteria, removed interfering signals and improved the discriminating ability of SIMCA. All media were able to discriminate the S. enterica strains studied, varying in discriminating peaks and class distances in SIMCA classification. This methodology, with the production of large libraries of pathogenic bacteria, could be applied for the rapid monitoring of bacterial contamination in food with minimal sample manipulation.

  15. Transposon Mutagenesis of Salmonella enterica Serovar Enteritidis Identifies Genes That Contribute to Invasiveness in Human and Chicken Cells and Survival in Egg Albumen

    PubMed Central

    Zhou, Xiaohui; Kim, Hye-Young; Call, Douglas R.; Guard, Jean

    2012-01-01

    Salmonella enterica serovar Enteritidis is an important food-borne pathogen, and chickens are a primary reservoir of human infection. While most knowledge about Salmonella pathogenesis is based on research conducted on Salmonella enterica serovar Typhimurium, S. Enteritidis is known to have pathobiology specific to chickens that impacts epidemiology in humans. Therefore, more information is needed about S. Enteritidis pathobiology in comparison to that of S. Typhimurium. We used transposon mutagenesis to identify S. Enteritidis virulence genes by assay of invasiveness in human intestinal epithelial (Caco-2) cells and chicken liver (LMH) cells and survival within chicken (HD-11) macrophages as a surrogate marker for virulence. A total of 4,330 transposon insertion mutants of an invasive G1 Nalr strain were screened using Caco-2 cells. This led to the identification of attenuating mutations in a total of 33 different loci, many of which include genes previously known to contribute to enteric infection (e.g., Salmonella pathogenicity island 1 [SPI-1], SPI-4, SPI-5, CS54, fliH, fljB, csgB, spvR, and rfbMN) in S. Enteritidis and other Salmonella serovars. Several genes or genomic islands that have not been reported previously (e.g., SPI-14, ksgA, SEN0034, SEN2278, and SEN3503) or that are absent in S. Typhimurium or in most other Salmonella serovars (e.g., pegD, SEN1152, SEN1393, and SEN1966) were also identified. Most mutants with reduced Caco-2 cell invasiveness also showed significantly reduced invasiveness in chicken liver cells and impaired survival in chicken macrophages and in egg albumen. Consequently, these genes may play an important role during infection of the chicken host and also contribute to successful egg contamination by S. Enteritidis. PMID:22988017

  16. Salmonella serovars and antimicrobial resistance in strains isolated from wild animals in captivity in Sinaloa, Mexico.

    PubMed

    Silva-Hidalgo, Gabriela; López-Valenzuela, Martin; Juárez-Barranco, Felipe; Montiel-Vázquez, Edith; Valenzuela-Sánchez, Beatriz

    2014-08-01

    The aim of the present study was to evaluate the frequency of antibiotic resistance in Salmonella spp. strains from wild animals in captivity at the Culiacan Zoo and the Mazatlan Aquarium in Sinaloa, Mexico. We identified 17 different Salmonella enterica serovars at a prevalence of 19.90% (Culiacan Zoo) and 6.25% (Mazatlan Aquarium). Antibiotic sensitivity tests revealed that, of the 83 strains studied, 100% were multidrug resistant (MDR). The drugs against which the greatest resistance was observed were: penicillin, erythromycin, dicloxacillin, ampicillin, cephalothin, and chloramphenicol. We therefore conclude that MDR is common among Salmonella isolates originating from wild animals in captivity in Sinaloa.

  17. Genetic Relatedness of Salmonella Serovars Isolated from Catfish (Clarias gariepinus) and Tilapia (Tilapia mossambica) Obtained from Wet Markets and Ponds in Penang, Malaysia.

    PubMed

    Budiati, Titik; Rusul, Gulam; Wan-Abdullah, Wan Nadiah; Chuah, Li-Oon; Ahmad, Rosma; Thong, Kwai Lin

    2016-04-01

    A total of 43 Salmonella enterica isolates belonging to different serovars (Salmonella Albany, Salmonella Agona, Salmonella Corvallis, Salmonella Stanley, Salmonella Typhimurium, Salmonella Mikawasima, and Salmonella Bovismorbificans) were isolated from catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from nine wet markets and eight ponds in Penang, Malaysia. Thirteen, 19, and 11 isolates were isolated from 9 of 32 catfish, 14 of 32 tilapia, and 11 of 44 water samples, respectively. Fish reared in ponds were fed chicken offal, spoiled eggs, and commercial fish feed. The genetic relatedness of these Salmonella isolates was determined by random amplified polymorphic DNA PCR (RAPD-PCR) using primer OPC2, repetitive extragenic palindromic PCR (REP-PCR), and pulsed-field gel electrophoresis (PFGE). Composite analysis of the RAPD-PCR, REP-PCR, and PFGE results showed that the Salmonella serovars could be differentiated into six clusters and 15 singletons. RAPD-PCR differentiated the Salmonella isolates into 11 clusters and 10 singletons, while REP-PCR differentiated them into 4 clusters and 1 singleton. PFGE differentiated the Salmonella isolates into seven clusters and seven singletons. The close genetic relationship of Salmonella isolates from catfish or tilapia obtained from different ponds, irrespective of the type of feed given, may be caused by several factors, such as the quality of the water, density of fish, and size of ponds.

  18. mcr-1−Harboring Salmonella enterica Serovar Typhimurium Sequence Type 34 in Pigs, China

    PubMed Central

    Yi, Linxian; Wang, Jing; Gao, Yanling; Liu, Yiyun; Doi, Yohei; Wu, Renjie; Zeng, Zhenling; Liang, Zisen

    2017-01-01

    We detected the mcr-1 gene in 21 (14.8%) Salmonella isolates from pigs at slaughter; 19 were serovar Typhimurium sequence type 34. The gene was located on IncHI2-like plasmids that also harbored IncF replicons and lacked a conjugative transfer region. These findings highlight the need to prevent further spread of colistin resistance in animals and humans. PMID:28098547

  19. Aggregation via the Red, Dry, and Rough Morphotype Is Not a Virulence Adaptation in Salmonella enterica Serovar Typhimurium▿

    PubMed Central

    White, A. P.; Gibson, D. L.; Grassl, G. A.; Kay, W. W.; Finlay, B. B.; Vallance, B. A.; Surette, M. G.

    2008-01-01

    The Salmonella rdar (red, dry, and rough) morphotype is an aggregative and resistant physiology that has been linked to survival in nutrient-limited environments. Growth of Salmonella enterica serovar Typhimurium was analyzed in a variety of nutrient-limiting conditions to determine whether aggregation would occur at low cell densities and whether the rdar morphotype was involved in this process. The resulting cultures consisted of two populations of cells, aggregated and nonaggregated, with the aggregated cells preferentially displaying rdar morphotype gene expression. The two groups of cells could be separated based on the principle that aggregated cells were producing greater amounts of thin aggregative fimbriae (Tafi or curli). In addition, the aggregated cells retained some physiological characteristics of the rdar morphotype, such as increased resistance to sodium hypochlorite. Competitive infection experiments in mice showed that nonaggregative ΔagfA cells outcompeted rdar-positive wild-type cells in all tissues analyzed, indicating that aggregation via the rdar morphotype was not a virulence adaptation in Salmonella enterica serovar Typhimurium. Furthermore, in vivo imaging experiments showed that Tafi genes were not expressed during infection but were expressed once Salmonella was passed out of the mice into the feces. We hypothesize that the primary role of the rdar morphotype is to enhance Salmonella survival outside the host, thereby aiding in transmission. PMID:18195033

  20. Distribution of Salmonella Serovars and Antimicrobial Susceptibility from Poultry and Swine Farms in Central Vietnam.

    PubMed

    Lettini, A A; Vo Than, T; Marafin, E; Longo, A; Antonello, K; Zavagnin, P; Barco, L; Mancin, M; Cibin, V; Morini, M; Dang Thi Sao, M; Nguyen Thi, T; Pham Trung, H; Le, L; Nguyen Duc, T; Ricci, A

    2016-11-01

    This study was conducted to estimate the prevalence of Salmonella spp. and their antimicrobial susceptibilities on poultry and swine farms, sampled in 2 regions in Central Vietnam. A total of 67 poultry farms and 46 swine farms were sampled in a period of 5 months (from September 2012 to January 2013). Salmonella spp. was prevalent in 46.3% and 71.7% of poultry and swine farms, respectively. Altogether, 99 non-typhoidal Salmonella were isolated and the most common serovars were Salmonella Weltevreden (19%), followed by Salmonella Typhimurium (12%) and Salmonella 4,[5],12:i:- (11%). Overall, 71 of 99 (72%) Salmonella isolates were resistant to at least one of the 14 antimicrobial agents tested. Both in poultry and swine farms, high levels of resistance were observed for ampicillin, chloramphenicol, ciprofloxacin, sulphamethoxazole and tetracycline. The presence of Salmonella isolates from poultry and swine farms which were resistant to different classes of antimicrobials suggests that alternative control measures to antimicrobials should be implemented. Moreover, an effective policy should be promoted to encourage a prudent use of these agents in animal farming in Vietnam. © 2016 Blackwell Verlag GmbH.

  1. Resuscitation by Ferrioxamine E of Stressed Salmonella enterica Serovar Typhimurium from Soil and Water Microcosms

    PubMed Central

    Reissbrodt, R.; Heier, H.; Tschäpe, H.; Kingsley, R. A.; Williams, P. H.

    2000-01-01

    Storage of Salmonella enterica serovar Typhimurium strains in soil and water microcosms resulted in loss of culturability on standard plating media. Prior incubation in buffered peptone water supplemented with ferrioxamine E markedly extended the time that bacteria were recoverable by plating, except in the case of mutants deficient in ferrioxamine E uptake. PMID:10966440

  2. Transcriptomic analysis of swarm motility phenotype of Salmonella enterica serovar Typhimurium mutant defective in periplasmic glucan synthesis

    USDA-ARS?s Scientific Manuscript database

    Movement of food-borne pathogens on moist surfaces enables them to migrate towards more favorable niches and facilitate their survival for extended periods of time. Salmonella enterica serovar Typhimurium mutants defective in OPG synthesis are unable to exhibit motility on moist surfaces (swarming) ...

  3. Prevalence and antimicrobial resistance of Listeria, Salmonella, and Yersinia species isolates in ducks and geese.

    PubMed

    Jamali, Hossein; Radmehr, Behrad; Ismail, Salmah

    2014-04-01

    The aims of this study were to determine the prevalence and antimicrobial resistance of Listeria, Salmonella, and Yersinia spp. isolated from duck and goose intestinal contents. A total of 471 samples, including 291 duck and 180 goose intestinal contents, were purchased from wet markets between November 2008 and July 2010. Listeria, Salmonella, and Yersinia spp. were isolated from 58 (12.3%), 107 (22.7%), and 80 (17%) of the samples, respectively. It was concluded that Listeria ivanovii, Salmonella Thompson, and Yersinia enterocolitica were the predominant serovars among Listeria, Salmonella, and Yersinia spp., respectively. Moreover, resistance to tetracycline was common in Listeria (48.3%) and Salmonella spp. (63.6%), whereas 51.3% of the Yersinia spp. isolates were resistant to cephalothin. Therefore, continued surveillance of the prevalence of the pathogens and also of emerging antibiotic resistance is needed to render possible the recognition of foods that may represent risks and also ensure the effective treatment of listeriosis, salmonellosis, and yersiniosis.

  4. Genome and transcriptome adaptation accompanying emergence of the definitive type 2 host-restricted Salmonella enterica serovar Typhimurium pathovar.

    PubMed

    Kingsley, Robert A; Kay, Sally; Connor, Thomas; Barquist, Lars; Sait, Leanne; Holt, Kathryn E; Sivaraman, Karthi; Wileman, Thomas; Goulding, David; Clare, Simon; Hale, Christine; Seshasayee, Aswin; Harris, Simon; Thomson, Nicholas R; Gardner, Paul; Rabsch, Wolfgang; Wigley, Paul; Humphrey, Tom; Parkhill, Julian; Dougan, Gordon

    2013-08-27

    Salmonella enterica serovar Typhimurium definitive type 2 (DT2) is host restricted to Columba livia (rock or feral pigeon) but is also closely related to S. Typhimurium isolates that circulate in livestock and cause a zoonosis characterized by gastroenteritis in humans. DT2 isolates formed a distinct phylogenetic cluster within S. Typhimurium based on whole-genome-sequence polymorphisms. Comparative genome analysis of DT2 94-213 and S. Typhimurium SL1344, DT104, and D23580 identified few differences in gene content with the exception of variations within prophages. However, DT2 94-213 harbored 22 pseudogenes that were intact in other closely related S. Typhimurium strains. We report a novel in silico approach to identify single amino acid substitutions in proteins that have a high probability of a functional impact. One polymorphism identified using this method, a single-residue deletion in the Tar protein, abrogated chemotaxis to aspartate in vitro. DT2 94-213 also exhibited an altered transcriptional profile in response to culture at 42°C compared to that of SL1344. Such differentially regulated genes included a number involved in flagellum biosynthesis and motility. IMPORTANCE Whereas Salmonella enterica serovar Typhimurium can infect a wide range of animal species, some variants within this serovar exhibit a more limited host range and altered disease potential. Phylogenetic analysis based on whole-genome sequences can identify lineages associated with specific virulence traits, including host adaptation. This study represents one of the first to link pathogen-specific genetic signatures, including coding capacity, genome degradation, and transcriptional responses to host adaptation within a Salmonella serovar. We performed comparative genome analysis of reference and pigeon-adapted definitive type 2 (DT2) S. Typhimurium isolates alongside phenotypic and transcriptome analyses, to identify genetic signatures linked to host adaptation within the DT2 lineage.

  5. Prevalence of ColE1-Like Plasmids and Kanamycin Resistance Genes in Salmonella enterica Serovars

    PubMed Central

    Chen, Chin-Yi; Lindsey, Rebecca L.; Strobaugh, Terence P.; Frye, Jonathan G.; Meinersmann, Richard J.

    2010-01-01

    Multi-antimicrobial-resistant Salmonella enterica strains frequently carry resistance genes on plasmids. Recent studies focus heavily on large conjugative plasmids, and the role that small plasmids play in resistance gene transfer is largely unknown. To expand our previous studies in assessing the prevalence of the isolates harboring ColE1-like plasmids carrying the aph gene responsible for kanamycin resistance (Kanr) phenotypes, 102 Kanr Salmonella isolates collected through the National Antimicrobial Resistance Monitoring System (NARMS) in 2005 were screened by PCR using ColE1 primer sets. Thirty isolates were found to be positive for ColE1-like replicon. Plasmids from 23 isolates were able to propagate in Escherichia coli and were subjected to further characterization. Restriction mapping revealed three major plasmid groups found in three or more isolates, with each group consisting of two to three subtypes. The aph genes from the Kanr Salmonella isolates were amplified by PCR, sequenced, and showed four different aph(3′)-I genes. The distribution of the ColE1 plasmid groups in association with the aph gene, Salmonella serovar, and isolate source demonstrated a strong linkage of the plasmid with S. enterica serovar Typhimurium DT104. Due to their high copy number and mobility, the ColE1-like plasmids may play a critical role in transmission of antibiotic resistance genes among enteric pathogens, and these findings warrant a close monitoring of this plasmid incompatibility group. PMID:20693446

  6. Validation of Baking To Control Salmonella Serovars in Hamburger Bun Manufacturing, and Evaluation of Enterococcus faecium ATCC 8459 and Saccharomyces cerevisiae as Nonpathogenic Surrogate Indicators.

    PubMed

    Channaiah, Lakshmikantha H; Holmgren, Elizabeth S; Michael, Minto; Sevart, Nicholas J; Milke, Donka; Schwan, Carla L; Krug, Matthew; Wilder, Amanda; Phebus, Randall K; Thippareddi, Harshavardhan; Milliken, George

    2016-04-01

    This study was conducted to validate a simulated commercial baking process for hamburger buns to destroy Salmonella serovars and to determine the appropriateness of using nonpathogenic surrogates (Enterococcus faecium ATCC 8459 or Saccharomyces cerevisiae) for in-plant process validation studies. Wheat flour was inoculated (∼6 log CFU/g) with three Salmonella serovars (Typhimurium, Newport, or Senftenberg 775W) or with E. faecium. Dough was formed, proofed, and baked to mimic commercial manufacturing conditions. Buns were baked for up to 13 min in a conventional oven (218.3°C), with internal crumb temperature increasing to ∼100°C during the first 8 min of baking and remaining at this temperature until removal from the oven. Salmonella and E. faecium populations were undetectable by enrichment (>6-log CFU/g reductions) after 9.0 and 11.5 min of baking, respectively, and ≥5-log-cycle reductions were achieved by 6.0 and 7.75 min, respectively. D-values of Salmonella (three-serovar cocktail) and E. faecium 8459 in dough were 28.64 and 133.33, 7.61 and 55.67, and 3.14 and 14.72 min at 55, 58, and 61°C, respectively, whereas D-values of S. cerevisiae were 18.73, 5.67, and 1.03 min at 52, 55, and 58°C, respectivly. The z-values of Salmonella, E. faecium, and S. cerevisiae were 6.58, 6.25, and 4.74°C, respectively. A high level of thermal lethality was observed for baking of typical hamburger bun dough, resulting in rapid elimination of high levels of the three-strain Salmonella cocktail; however, the lethality and microbial destruction kinetics should not be extrapolated to other bakery products without further research. E. faecium demonstrated greater thermal resistance compared with Salmonella during bun baking and could serve as a conservative surrogate to validate thermal process lethality in commercial bun baking operations. Low thermal tolerance of S. cerevisiae relative to Salmonella serovars limits its usefulness as a surrogate for process validations.

  7. Assessment of contamination potential of lettuce by Salmonella enterica serovar Newport added to the plant growing medium.

    PubMed

    Bernstein, Nirit; Sela, Shlomo; Neder-Lavon, Sarit

    2007-07-01

    The capacity of Salmonella enterica serovar Newport to contaminate Romaine lettuce (Lactuca sativa L. cv. Nogal) via the root system was evaluated in 17-, 20-, and 33-day-old plants. Apparent internalization of Salmonella via the root to the above-ground parts was identified in 33- but not 17- or 20-day-old plants and was stimulated by root decapitation. Leaves of lettuce plants with intact and damaged roots harbored Salmonella at 500 +/- 120 and 5,130 +/- 440 CFU/g of leaf, respectively, at 2 days postinoculation but not 5 days later. These findings are first to suggest that Salmonella Newport can translocate from contaminated roots to the aerial parts of lettuce seedlings and propose that the process is dependent on the developmental stage of the plant.

  8. Colonization of internal organs by Salmonella serovars Heidelberg and Typhimurium in experimentally infected laying hens housed in enriched colony cages at different stocking densities

    USDA-ARS?s Scientific Manuscript database

    Contaminated eggs produced by infected commercial laying flocks are often implicated as sources of human infections with Salmonella Enteritidis, but Salmonella serovars Heidelberg and Typhimurium have also been significantly associated with egg-transmitted illness. Contamination of the edible conten...

  9. Draft Genome Sequences of 18 Salmonella enterica subsp. enterica Serovar Oranienburg Strains Isolated from Rivers in Northwestern Mexico

    PubMed Central

    Casteñeda-Ruelas, Gloria M.; Carreón-Gaxiola, César; Castelán-Sánchez, Hugo G.; Acatzi-Silva, Abraham; Romero-Martínez, Salvador; García-Molina, Alejandra

    2017-01-01

    ABSTRACT Salmonella enterica subsp. enterica serovar Oranienburg is recognized as a foodborne pathogen widely distributed in the environment. Here, we report 18 draft genomes of S. Oranienburg strains isolated from rivers in the northwestern region of Mexico. PMID:28280020

  10. Endemic, Epidemic Clone of Salmonella enterica Serovar Typhi Harboring a Single Multidrug-Resistant Plasmid in Vietnam between 1995 and 2002

    PubMed Central

    Le, Thi Anh Hong; Lejay-Collin, Monique; Grimont, Patrick A. D.; Hoang, Thuy Long; Nguyen, Thi Vinh; Grimont, Francine; Scavizzi, Maurice R.

    2004-01-01

    Salmonella enterica serovar Typhi strains resistant to ampicillin, chloramphenicol, tetracyclines, streptomycin, and cotrimoxazole, isolated from sporadic cases and minor outbreaks in Vietnam between 1995 and 2002, were typed and compared. Plasmid fingerprinting, Vi bacteriophage typing, XbaI pulsed-field gel electrophoresis, and PstI ribotyping showed that endemic, epidemic multidrug-resistant typhoid fever was due, for at least 74.1% of the isolates, to one or two clones of serovar Typhi harboring a single resistance plasmid. PstI ribotyping was used as a basic technique to ensure that a serovar Typhi expansion was clonal. PMID:15243066

  11. In vitro evaluation of anti-infective activity of a Lactobacillus plantarum strain against Salmonella enterica serovar Enteritidis

    PubMed Central

    2013-01-01

    Background Salmonella enterica serovar Enteritidis infections are known to exhibit worldwide prevalence with increased morbidity and mortality. The conventional strategies like antibiotic therapy and vaccination have not only proved to be of sub-optimal efficacy but also led to the development of multidrug resistant strains of Salmonella. Antimicrobial activities of probiotics against various enteropathogens and other health promoting effects have assumed greater significance in recent years. The present study aims to evaluate the efficacy of a Lactobacillus plantarum strain (KSBT 56, isolated from a traditional food product of India), in preventing Salmonella enterica serovar Enteritidis growth and pathogenicity in vitro. Methods and results The cell free culture supernatant (CFCS) of KSBT 56 strain notably inhibited the growth of Salmonella Enteritidis without affecting the growth of other gram-positive lactic acid bacteria. The isolated KSBT 56 strain produces lactic acid similar to other standard probiotic strains like Lactobacillus plantarum MTCC 1407. The free radical production by KSBT 56 strain was studied by using sodC mutant of S. Enteritidis, which exhibited reduced growth in the presence of CFCS of the KSBT 56 strain, indicating the inhibitory activity of free radicals on the growth of S. Enteritidis. Our results also showed a significant reduction in the biofilm forming ability of Salmonella Enteritidis in the presence of the KSBT 56 strain (2 log cfu/ml, p = 0.01). Further, the anti-infective characteristics of KSBT 56 strain was validated by gentamicin protection assay which revealed 80% reduction in the invasion of Salmonella Enteritidis to HCT-116 cell line (Salmonella Enteritidis and KSBT 56 in a 1:1 ratio) and delayed addition of Salmonella Enteritidis by 1 h. Similarly, the reduced adhesion of Salmonella to the HCT-116 cells was observed along with the down regulation of hilA gene of Salmonella Pathogenicity Island 1 (SPI1) indicating that they

  12. Colonization of internal organs by Salmonella serovars Heidelberg and Typhimurium in experimentally infected laying hens housed in enriched colony cages at different stocking densities

    USDA-ARS?s Scientific Manuscript database

    Contaminated eggs produced by infected commercial laying flocks are often implicated as sources of human infections with Salmonella Enteritidis, but Salmonella serovars Heidelberg and Typhimurium have also been associated with egg-transmitted illness. Contamination of the edible contents of eggs is ...

  13. A scalable method for O-antigen purification applied to various Salmonella serovars

    PubMed Central

    Micoli, F.; Rondini, S.; Gavini, M.; Pisoni, I.; Lanzilao, L.; Colucci, A.M.; Giannelli, C.; Pippi, F.; Sollai, L.; Pinto, V.; Berti, F.; MacLennan, C.A.; Martin, L.B.; Saul, A.

    2014-01-01

    The surface lipopolysaccharide of gram-negative bacteria is both a virulence factor and a B cell antigen. Antibodies against O-antigen of lipopolysaccharide may confer protection against infection, and O-antigen conjugates have been designed against multiple pathogens. Here, we describe a simplified methodology for extraction and purification of the O-antigen core portion of Salmonella lipopolysaccharide, suitable for large-scale production. Lipopolysaccharide extraction and delipidation are performed by acetic acid hydrolysis of whole bacterial culture and can take place directly in a bioreactor, without previous isolation and inactivation of bacteria. Further O-antigen core purification consists of rapid filtration and precipitation steps, without using enzymes or hazardous chemicals. The process was successfully applied to various Salmonella enterica serovars (Paratyphi A, Typhimurium, and Enteritidis), obtaining good yields of high-quality material, suitable for conjugate vaccine preparations. PMID:23142430

  14. Dietary rice bran promotes resistance to Salmonella enterica serovar Typhimurium colonization in mice.

    PubMed

    Kumar, Ajay; Henderson, Angela; Forster, Genevieve M; Goodyear, Andrew W; Weir, Tiffany L; Leach, Jan E; Dow, Steven W; Ryan, Elizabeth P

    2012-07-04

    Dietary rice bran consists of many bioactive components with disease fighting properties; including the capacity to modulate the gut microbiota. Studies point to the important roles of the gut microbiota and the mucosal epithelium in the establishment of protection against enteric pathogens, such as Salmonella. The ability of rice bran to reduce the susceptibility of mice to a Salmonella infection has not been previously investigated. Therefore, we hypothesized that the incorporation of rice bran into the diet would inhibit the colonization of Salmonella in mice through the induction of protective mucosal responses. Mice were fed diets containing 0%, 10% and 20% rice bran for one week prior to being orally infected with Salmonella enterica serovar Typhimurium. We found that mice consuming the 10 and 20% rice bran diets exhibited a reduction in Salmonella fecal shedding for up to nine days post-infection as compared to control diet fed animals (p < 0.05). In addition, we observed decreased concentrations of the pro-inflammatory cytokines, TNF-alpha, IFN-gamma, and IL-12 (p < 0.05) as well as increased colonization of native Lactobacillus spp. in rice bran fed mice (p < 0.05). Furthermore, in vitro experiments revealed the ability of rice bran extracts to reduce Salmonella entry into mouse small intestinal epithelial cells. Increasing rice bran consumption represents a novel dietary means for reducing susceptibility to enteric infection with Salmonella and potentially via induction of native Lactobacillus spp.

  15. Dietary rice bran promotes resistance to Salmonella enterica serovar Typhimurium colonization in mice

    PubMed Central

    2012-01-01

    Background Dietary rice bran consists of many bioactive components with disease fighting properties; including the capacity to modulate the gut microbiota. Studies point to the important roles of the gut microbiota and the mucosal epithelium in the establishment of protection against enteric pathogens, such as Salmonella. The ability of rice bran to reduce the susceptibility of mice to a Salmonella infection has not been previously investigated. Therefore, we hypothesized that the incorporation of rice bran into the diet would inhibit the colonization of Salmonella in mice through the induction of protective mucosal responses. Results Mice were fed diets containing 0%, 10% and 20% rice bran for one week prior to being orally infected with Salmonella enterica serovar Typhimurium. We found that mice consuming the 10 and 20% rice bran diets exhibited a reduction in Salmonella fecal shedding for up to nine days post-infection as compared to control diet fed animals (p < 0.05). In addition, we observed decreased concentrations of the pro-inflammatory cytokines, TNF-alpha, IFN-gamma, and IL-12 (p < 0.05) as well as increased colonization of native Lactobacillus spp. in rice bran fed mice (p < 0.05). Furthermore, in vitro experiments revealed the ability of rice bran extracts to reduce Salmonella entry into mouse small intestinal epithelial cells. Conclusions Increasing rice bran consumption represents a novel dietary means for reducing susceptibility to enteric infection with Salmonella and potentially via induction of native Lactobacillus spp. PMID:22583915

  16. Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis.

    PubMed

    Golowczyc, M A; Mobili, P; Garrote, G L; Abraham, A G; De Antoni, G L

    2007-09-30

    Eight Lactobacillus kefir strains isolated from different kefir grains were tested for their ability to antagonize Salmonella enterica serovar Enteritidis (Salmonella enteritidis) interaction with epithelial cells. L. kefir surface properties such as autoaggregation and coaggregation with Salmonella and adhesion to Caco-2/TC-7 cells were evaluated. L. kefir strains showed significantly different adhesion capacities, six strains were able to autoaggregate and four strains coaggregated with Salmonella. Coincubation of Salmonella with coaggregating L. kefir strains significantly decreased its capacity to adhere to and to invade Caco-2/TC-7 cells. This was not observed with non coaggregating L. kefir strains. Spent culture supernatants of L. kefir contain significant amounts of S-layer proteins. Salmonella pretreated with spent culture supernatants (pH 4.5-4.7) from all tested L. kefir strains showed a significant decrease in association and invasion to Caco-2/TC-7 cells. Artificially acidified MRS containing lactic acid to a final concentration and pH equivalent to lactobacilli spent culture supernatants did not show any protective action. Pretreatment of this pathogen with spent culture supernatants reduced microvilli disorganization produced by Salmonella. In addition, Salmonella pretreated with S-layer proteins extracted from coaggregating and non coaggregating L. kefir strains were unable to invade Caco-2/TC-7 cells. After treatment, L. kefir S-layer protein was detected associated with Salmonella, suggesting a protective role of this protein on association and invasion.

  17. The Homolog of the Gene bstA of the BTP1 Phage from Salmonella enterica Serovar Typhimurium ST313 Is an Antivirulence Gene in Salmonella enterica Serovar Dublin.

    PubMed

    Herrero-Fresno, Ana; Espinel, Irene Cartas; Spiegelhauer, Malene Roed; Guerra, Priscila Regina; Andersen, Karsten Wiber; Olsen, John Elmerdahl

    2018-01-01

    In a previous study, a novel virulence gene, bstA , identified in a Salmonella enterica serovar Typhimurium sequence type 313 (ST313) strain was found to be conserved in all published Salmonella enterica serovar Dublin genomes. In order to analyze the role of this gene in the host-pathogen interaction in S Dublin, a mutant where this gene was deleted ( S Dublin Δ bstA ) and a mutant which was further genetically complemented with bstA ( S Dublin 3246-C) were constructed and tested in models of in vitro and in vivo infection as well as during growth competition assays in M9 medium, Luria-Bertani broth, and cattle blood. In contrast to the results obtained for a strain of S Typhimurium ST313, the lack of bstA was found to be associated with increased virulence in S Dublin. Thus, S Dublin Δ bstA showed higher levels of uptake than the wild-type strain during infection of mouse and cattle macrophages and higher net replication within human THP-1 cells. Furthermore, during mouse infections, S Dublin Δ bstA was more virulent than the wild type following a single intraperitoneal infection and showed an increased competitive index during competitive infection assays. Deletion of bstA did not affect either the amount of cytokines released by THP-1 macrophages or the cytotoxicity toward these cells. The histology of the livers and spleens of mice infected with the wild-type strain and the S Dublin Δ bstA mutant revealed similar levels of inflammation between the two groups. The gene was not important for adherence to or invasion of human epithelial cells and did not influence bacterial growth in rich medium, minimal medium, or cattle blood. In conclusion, a lack of bstA affects the pathogenicity of S Dublin by decreasing its virulence. Therefore, it might be regarded as an antivirulence gene in this serovar. Copyright © 2017 American Society for Microbiology.

  18. Microarray-based detection of Salmonella enterica serovar Enteritidis genes involved in chicken reproductive tract colonization.

    PubMed

    Raspoet, R; Appia-Ayme, C; Shearer, N; Martel, A; Pasmans, F; Haesebrouck, F; Ducatelle, R; Thompson, A; Van Immerseel, F

    2014-12-01

    Salmonella enterica serovar Enteritidis has developed the potential to contaminate table eggs internally, by colonization of the chicken reproductive tract and internalization in the forming egg. The serotype Enteritidis has developed mechanisms to colonize the chicken oviduct more successfully than other serotypes. Until now, the strategies exploited by Salmonella Enteritidis to do so have remained largely unknown. For that reason, a microarray-based transposon library screen was used to identify genes that are essential for the persistence of Salmonella Enteritidis inside primary chicken oviduct gland cells in vitro and inside the reproductive tract in vivo. A total of 81 genes with a potential role in persistence in both the oviduct cells and the oviduct tissue were identified. Major groups of importance include the Salmonella pathogenicity islands 1 and 2, genes involved in stress responses, cell wall, and lipopolysaccharide structure, and the region-of-difference genomic islands 9, 21, and 40. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. The relationship between the immune response and susceptibility to Salmonella enterica serovar Enteritidis infection in the laying hen

    USDA-ARS?s Scientific Manuscript database

    Chicken eggs are one of the main sources of human salmonellosis, with Salmonella enterica serovar Enteritidis the most frequent cause of human non-typhoid salmonellosis. Laying hens colonized with S. Enteritidis generally do not show clinical signs. The bacteria colonize and invade the intestinal ...

  20. Draft Genome Sequences of 18 Salmonella enterica subsp. enterica Serovar Oranienburg Strains Isolated from Rivers in Northwestern Mexico.

    PubMed

    Casteñeda-Ruelas, Gloria M; Carreón-Gaxiola, César; Castelán-Sánchez, Hugo G; Acatzi-Silva, Abraham; Romero-Martínez, Salvador; García-Molina, Alejandra; Jiménez-Edeza, Maribel

    2017-03-09

    Salmonella enterica subsp. enterica serovar Oranienburg is recognized as a foodborne pathogen widely distributed in the environment. Here, we report 18 draft genomes of S  Oranienburg strains isolated from rivers in the northwestern region of Mexico. Copyright © 2017 Casteñeda-Ruelas et al.

  1. Adhesion and growth inhibitory effect of chicken egg yolk antibody (IgY) on Salmonella enterica serovars Enteritidis and Typhimurium in vitro.

    PubMed

    Chalghoumi, Raja; Théwis, André; Beckers, Yves; Marcq, Christopher; Portetelle, Daniel; Schneider, Yves-Jacques

    2009-06-01

    The protective effects of powder preparation of egg yolk immunoglobulin Y (IgY), specific to Salmonella Enteritidis and Salmonella Typhimurium outer membrane proteins (OMP), against these two Salmonella sp. serovars were investigated in vitro in two different assays: adhesion-prevention and growth-inhibition. The adhesion-prevention assay was conducted using polarized monolayers of the human intestinal epithelial Caco-2 cell line. First, the conditions of Salmonella adherence to Caco-2 cells were optimized, and interferences of bacteria with the transepithelial electrical resistance (TER) of fully differentiated Caco-2 cell monolayers and the lactate dehydrogenase release upon exposure of the cells to Salmonella were evaluated. Both Salmonella sp. serovars were able to adhere to Caco-2 cells and decreased TER. Results from the adhesion-prevention assay demonstrated that specific IgY reduced the decrease in TER of the infected Caco-2 cell monolayers and blocked the Salmonella sp. adhesion in a concentration-dependent manner (p < 0.05). Nonspecific IgY also exhibited an inhibitory effect on these two parameters, but to a lesser extent than that of the specific IgY (p < 0.05). The protective effect of nonspecific IgY could be attributed to the low-density lipoprotein component of the water-soluble fraction of egg yolks that may not have been eliminated during ultrafiltration. The growth-inhibition assay revealed that specific IgY had an inhibitory effect on the bacterial growth, markedly during the late exponential phase, whereas nonspecific IgY failed to do so. Taken together, these results suggest that the in vitro growth inhibitory effect of specific IgY on Salmonella spp. resulted from the specific binding activity of these IgY to Salmonella sp. OMP. Passive immunization with Salmonella sp. OMP-specific IgY could thus be useful to prevent Salmonella colonization in broiler chickens and the subsequent carcass contamination during processing.

  2. Infection of the reproductive tract and eggs with Salmonella enterica serovar pullorum in the chicken is associated with suppression of cellular immunity at sexual maturity.

    PubMed

    Wigley, Paul; Hulme, Scott D; Powers, Claire; Beal, Richard K; Berchieri, Angelo; Smith, Adrian; Barrow, Paul

    2005-05-01

    Salmonella enterica serovar Pullorum causes persistent infections in laying hens. Splenic macrophages are the main site of persistence. At sexual maturity, numbers of bacteria increase and spread to the reproductive tract, which may result in vertical transmission to eggs or chicks. In this study we demonstrate that both male and female chickens may develop a carrier state following infection but that the increases in bacterial numbers and spread to the reproductive tract are phenomena restricted to hens, indicating that such changes are likely to be related to the onset of egg laying. The immunological responses during the carrier state and through the onset of laying in hens were determined. These indicate that chickens produce both humoral and T-cell responses to infection, but at the onset of laying both the T-cell response to Salmonella and nonspecific responses to mitogenic stimulation fall sharply in both infected and noninfected birds. The fall in T-cell responsiveness coincided with the increase in numbers of Salmonella serovar Pullorum and its spread to the reproductive tract. Three weeks after the onset of egg laying, T-cell responsiveness began to increase and bacterial numbers declined. Specific antibody levels changed little at the onset of laying but increased following the rise in bacterial numbers in a manner reminiscent of a secondary antibody response to rechallenge. These findings indicate that a nonspecific suppression of cellular responses occurs at the onset of laying and plays a major role the ability of Salmonella serovar Pullorum to infect the reproductive tract, leading to transmission to eggs. The loss of T-cell activity at the point of laying also has implications for Salmonella enterica serovar Enteritidis infection and transmission to eggs, along with its control by vaccination offering a "window of opportunity" in which infection may occur.

  3. Emergence of Salmonella enterica serovar Indiana and California isolates with concurrent resistance to cefotaxime, amikacin and ciprofloxacin from chickens in China.

    PubMed

    Wang, Yongxiang; Zhang, Anyun; Yang, Yongqiang; Lei, Changwei; Jiang, Wei; Liu, Bihui; Shi, Hongping; Kong, Linghan; Cheng, Guangyang; Zhang, Xiuzhong; Yang, Xin; Wang, Hongning

    2017-12-04

    The aim of this study was to investigate the prevalence and characterization of Salmonella concerning the poultry industry in China. A total of 170 non-duplicate Salmonella isolates were recovered from the 1540 chicken samples. Among the Salmonella isolates from chickens, the predominant serovars were S. enterica serovar Enteritidis (S. Enteritidis) (49/170, 28.8%), S. enterica serovar Indiana (S. Indiana) (37/170, 21.8%) and S. enterica serovar California (S. California) (34/170, 20.0%). High antimicrobial resistance was observed for ciprofloxacin (68.2%), amikacin (48.2%) and cefotaxime (44.7%). Of particular concerns were the 18 S. Indiana and 17 S. California isolates, which were concurrently resistant to cefotaxime, amikacin and ciprofloxacin. The bla CTX-M genes, 16S rRNA methylase genes (armA, rmtD or rmtC) and five plasmid-mediated quinolone resistance (PMQR) determinants (aac(6')-Ib-cr, oqxAB, qnrB, qepA and qnrD) were identified in 18 S. Indiana and 17 S. California isolates. To clarify their genetic correlation, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were further conducted. PFGE profiles showed that the majority of S. Indiana and S. California isolates were clonally unrelated with a standard cut-off of 85%. The results of MLST demonstrated that ST17 and ST40 were the most common ST types in S. Indiana and S. California isolates, respectively. Our findings indicated that the multiple antibiotic resistant S. Indiana and S. California isolates were widespread in chicken in China and might pose a potential threat to public health. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Use of Attenuated but Metabolically Competent Salmonella as a Probiotic To Prevent or Treat Salmonella Infection

    PubMed Central

    Sabag-Daigle, Anice; Blunk, Henry M.; Gonzalez, Juan F.; Steidley, Brandi L.; Boyaka, Prosper N.

    2016-01-01

    Salmonella enterica is among the most burdensome of foodborne disease agents. There are over 2,600 serovars that cause a range of disease manifestations ranging from enterocolitis to typhoid fever. While there are two vaccines in use in humans to protect against typhoid fever, there are none that prevent enterocolitis. If vaccines preventing enterocolitis were to be developed, they would likely protect against only one or a few serovars. In this report, we tested the hypothesis that probiotic organisms could compete for the preferred nutrient sources of Salmonella and thus prevent or treat infection. To this end, we added the fra locus, which encodes a utilization pathway for the Salmonella-specific nutrient source fructose-asparagine (F-Asn), to the probiotic bacterium Escherichia coli Nissle 1917 (Nissle) to increase its ability to compete with Salmonella in mouse models. We also tested a metabolically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its ability to compete with wild-type Salmonella. The modified Nissle strain became more virulent and less able to protect against Salmonella in some instances. On the other hand, the modified Salmonella strain was safe and effective in preventing infection with wild-type Salmonella. While we tested for efficacy only against Salmonella Typhimurium, the modified Salmonella strain may be able to compete metabolically with most, if not all, Salmonella serovars, representing a novel approach to control of this pathogen. PMID:27185789

  5. Management practices as risk factors for the presence of bulk milk antibodies to Salmonella, Neospora caninum and Leptospira interrogans serovar hardjo in Irish dairy herds.

    PubMed

    O' Doherty, E; Berry, D P; O' Grady, L; Sayers, R

    2014-06-01

    A survey of management practices in 309 Irish dairy herds was used to identify risk factors for the presence of antibodies to Salmonella, Neospora caninum and Leptospira interrogans serovar hardjo in extensively managed unvaccinated dairy herds. A previous study documented a herd-level seroprevalence in bulk milk of 49%, 19% and 86% for Salmonella, Neospora caninum and leptospira interrogans serovar hardjo, respectively in the unvaccinated proportion of these 309 herds in 2009. Association analyses in the present study were carried out using multiple logistic regression models. Herds where cattle were purchased or introduced had a greater likelihood of being positive to leptospira interrogans serovar hardjo (P<0.01) and Salmonella (P<0.01). Larger herds had a greater likelihood of recording a positive bulk milk antibody result to leptospira interrogans serovar hardjo (P<0.05). Herds that practiced year round calving were more likely to be positive to Neospora caninum (P<0.05) compared to herds with a spring-calving season, with no difference in risk between herds that practiced split calving compared to herds that practiced spring calving. No association was found between presence of dogs on farms and prevalence of Neospora caninum possibly due to limited access of dogs to infected materials including afterbirths. The information from this study will assist in the design of suitable control programmes for the diseases under investigation in pasture-based livestock systems.

  6. Occurrence of plasmid-mediated quinolone resistance determinants and rmtB gene in Salmonella enterica serovar enteritidis and Typhimurium isolated from food-animal products in Tunisia.

    PubMed

    Al-Gallas, Nazek; Abbassi, Mohamed Salah; Gharbi, Becher; Manai, Molka; Ben Fayala, Mohamed N; Bichihi, Raghda; Al-Gallas, Amna; Ben Aissa, Ridha

    2013-09-01

    Four hundred and thirty Salmonella isolates, recovered from various food-animal products, were tested for nalidixic acid resistance, plasmid-mediated quinolone resistance, and genetic relationship. One hundred fifteen isolates (113 Salmonella serovar Enteritidis and two Salmonella serovar Typhimurium isolates) of 430 (26.7%) Salmonella isolates exhibited nalidixic acid resistance. Polymerase chain reaction screening for qnrA, qnrB, qnrS, qepA (encoding fluoroquinolones resistance) and rmtB (encoding aminoglycosides resistance) showed that 5 (1.16%) isolates were positive for qnr- and qepA-type genes, and the aac(6')-Ib-cr gene was observed in two (1.7%) Enteritidis isolates concomitantly with qnrA or qnrB. The co-occurrence of qepA and rmtB in one Typhimurium isolate is noteworthy. Pulsed-field gel electrophoresis revealed a high genetic homogeneity of nalidixic-resistant isolates and the persistence of clonal clusters over 4 years in different regions in Tunisia and from various food-animal products. To the best of our knowledge, this is the first report of co-occurrence of qepA and rmtB in a Salmonella strain.

  7. Genome Sequences of Multidrug-Resistant Salmonella enterica subsp. enterica Serovar Infantis Strains from Broiler Chicks in Hungary

    PubMed Central

    Wilk, Tímea; Szabó, Móni; Szmolka, Ama; Kiss, János; Barta, Endre; Nagy, Tibor

    2016-01-01

    Three strains of Salmonella enterica serovar Infantis isolated from healthy broiler chickens from 2012 to 2013 have been sequenced. Comparison of these and previously published S. Infantis genome sequences of broiler origin in 1996 and 2004 will provide new insight into the genome evolution and recent spread of S. Infantis in poultry. PMID:27979950

  8. Analysis of antimicrobial resistance genes detected in multidrug-resistant Salmonella enterica serovar Typhimurium isolated from food animals.

    PubMed

    Glenn, LaShanda M; Lindsey, Rebecca L; Frank, Joseph F; Meinersmann, Richard J; Englen, Mark D; Fedorka-Cray, Paula J; Frye, Jonathan G

    2011-09-01

    Multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium is the most prevalent penta-resistant serovar isolated from animals by the U.S. National Antimicrobial Resistance Monitoring System. Penta-resistant isolates are often resistant to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline. To investigate MDR in Salmonella Typhimurium (including variant 5-), one isolate each from cattle, poultry, and swine with at least the ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline phenotype were selected for each year from 1997 to 2007 (n = 33) for microarray analysis of antimicrobial resistance, incompatibility IncA/C, and HI1 plasmid genes. Cluster analysis based on these data separated 31 of the isolates into two groups A and B (15 and 16 isolates, respectively). Isolates in group A were phage type DT104 or U302 and were mostly swine isolates (7/15). Genes detected included intI1, bla(PSE-1), floR, aadA, sulI, tet(G), and tetR, which are often found in Salmonella Genomic Island I. Isolates in group B had numerous IncA/C plasmid genes detected and were mostly cattle isolates (9/16). Genes detected included bla(CMY-2), floR, aac(3), aadA, aphA1, strA, strB, sulI, sulII, dfrA, dhf, tet(A)(B)(C)(D), and tetR, which are often found on MDR-AmpC IncA/C plasmids. The IncA/C replicon was also detected in all group B isolates. The two remaining isolates did not cluster with any others and both had many HI1 plasmid genes detected. Linkage disequilibrium analysis detected significant associations between plasmid replicon type, phage type, and animal source. These data suggest that MDR in Salmonella Typhimurium is associated with DT104/Salmonella Genomic Island I or IncA/C MDR-AmpC encoding plasmids and these genetic elements have persisted throughout the study period.

  9. Influence of ethanol adaptation on Salmonella enterica serovar Enteritidis survival in acidic environments and expression of acid tolerance-related genes

    USDA-ARS?s Scientific Manuscript database

    Aims: Salmonella enterica serovar Enteritidis (S. Enteritidis) can encounter mild ethanol stress during its life cycle. However, adaptation to a stressful condition may affect bacterial resistance to subsequent stresses. Hence, this work was undertaken to investigate the influences of ethanol adapta...

  10. Epidemiology of a Salmonella enterica subsp. Enterica serovar Typhimurium strain associated with a songbird outbreak.

    USGS Publications Warehouse

    Blehert, David S.; Hernandez, Sonia M.; Keel, Kevin; Sanchez, Susan; Trees, Eija; ,

    2012-01-01

    Salmonella enterica subsp. enterica serovar Typhimurium is responsible for the majority of salmonellosis cases worldwide. This Salmonella serovar is also responsible for die-offs in songbird populations. In 2009, there was an S. Typhimurium epizootic reported in pine siskins in the eastern United States. At the time, there was also a human outbreak with this serovar that was associated with contaminated peanuts. As peanuts are also used in wild-bird food, it was hypothesized that the pine siskin epizootic was related to this human outbreak. A comparison of songbird and human S. Typhimurium pulsed-field gel electrophoresis (PFGE) patterns revealed that the epizootic was attributed not to the peanut-associated strain but, rather, to a songbird strain first characterized from an American goldfinch in 1998. This same S. Typhimurium strain (PFGE type A3) was also identified in the PulseNet USA database, accounting for 137 of 77,941 total S. Typhimurium PFGE entries. A second molecular typing method, multiple-locus variable-number tandem-repeat analysis (MLVA), confirmed that the same strain was responsible for the pine siskin epizootic in the eastern United States but was distinct from a genetically related strain isolated from pine siskins in Minnesota. The pine siskin A3 strain was first encountered in May 2008 in an American goldfinch and later in a northern cardinal at the start of the pine siskin epizootic. MLVA also confirmed the clonal nature of S. Typhimurium in songbirds and established that the pine siskin epizootic strain was unique to the finch family. For 2009, the distribution of PFGE type A3 in passerines and humans mirrored the highest population density of pine siskins for the East Coast.

  11. Replication of Salmonella enterica Serovar Typhimurium in Human Monocyte-Derived Macrophages

    PubMed Central

    Lathrop, Stephanie K.; Binder, Kelsey A.; Starr, Tregei; Cooper, Kendal G.; Chong, Audrey; Carmody, Aaron B.

    2015-01-01

    Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to assess the ability of Salmonella Typhimurium to replicate in human macrophages, we infected primary monocyte-derived macrophages (MDM) that had been differentiated under conditions known to generate different phenotypes. We found that replication in MDM depends greatly upon the phenotype of the cells, as M1-skewed macrophages did not allow replication, while M2a macrophages and macrophages differentiated with macrophage colony-stimulating factor (M-CSF) alone (termed M0) did. We describe how additional conditions that alter the macrophage phenotype or the gene expression of the bacteria affect the outcome of infection. In M0 MDM, the temporal expression of representative genes from Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) and the importance of the PhoP/Q two-component regulatory system are similar to what has been shown in mouse macrophages. However, in contrast to mouse macrophages, where replication is SPI2 dependent, we observed early SPI2-independent replication in addition to later SPI2-dependent replication in M0 macrophages. Only SPI2-dependent replication was associated with death of the host cell at later time points. Altogether, our results reveal a very nuanced interaction between Salmonella and human macrophages. PMID:25895967

  12. Genetic and Phenotypic Characterization of a Salmonella enterica serovar Enteritidis Emerging Strain with Superior Intra-macrophage Replication Phenotype

    PubMed Central

    Shomer, Inna; Avisar, Alon; Desai, Prerak; Azriel, Shalhevet; Smollan, Gill; Belausov, Natasha; Keller, Nathan; Glikman, Daniel; Maor, Yasmin; Peretz, Avi; McClelland, Michael; Rahav, Galia; Gal-Mor, Ohad

    2016-01-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is one of the ubiquitous Salmonella serovars worldwide and a major cause of food-born outbreaks, which are often associated with poultry and poultry derivatives. Here we report a nation-wide S. Enteritidis clonal outbreak that occurred in Israel during the last third of 2015. Pulsed field gel electrophoresis and whole genome sequencing identified genetically related strains that were circulating in Israel as early as 2008. Global comparison linked this outbreak strain to several clinical and marine environmental isolates that were previously isolated in California and Canada, indicating that similar strains are prevalent outside of Israel. Phenotypic comparison between the 2015 outbreak strain and other clinical and reference S. Enteritidis strains showed only limited intra-serovar phenotypic variation in growth in rich medium, invasion into Caco-2 cells, uptake by J774.1A macrophages, and host cell cytotoxicity. In contrast, significant phenotypic variation was shown among different S. Enteritidis isolates when biofilm-formation, motility, invasion into HeLa cells and uptake by THP-1 human macrophages were studied. Interestingly, the 2015 outbreak clone was found to possess superior intra-macrophage replication ability within both murine and human macrophages in comparison to the other S. Enteritidis strains studied. This phenotype is likely to play a role in the virulence and host-pathogen interactions of this emerging clone. PMID:27695450

  13. Isolation and characterization of Salmonella enterica in day-old ducklings in Egypt

    PubMed Central

    Osman, Kamelia M; Marouf, Sherif H; Zolnikov, Tara R; AlAtfeehy, Nayerah

    2014-01-01

    Importing day-old ducklings (DOD) unknowingly infected with non-typhoid Salmonella (NTS) may be associated with disease risk. Domestic and international trade may enhance this risk. Salmonella enterica serovars, their virulence genes combinations and antibiotic resistance, garner attention for their potentiality to contribute to the adverse health effects on populations throughout the world. The aim of this study was to estimate the risk of imported versus domestic DOD as potential carriers of NTS. The results confirm the prevalence of salmonellosis in imported ducklings was 18.5% (25/135), whereas only 12% (9/75) of cases were determined in the domestic ducklings. Fourteen serovars (Salmonella enteritidis, Salmonella kisii, Salmonella typhimurium, Salmonella gaillac, Salmonella uno, Salmonella eingedi, Salmonella shubra, Salmonella bardo, Salmonella inganda, Salmonella kentucky, Salmonella stanley, Salmonella virchow, Salmonella haifa, and Salmonella anatum) were isolated from the imported ducklings, whereas only S. enteritidis, S. typhimurium, S. virchow, and S. shubra were isolated from the domestic ducklings. The isolated Salmonella serovars were 100% susceptible to only colistin sulphate and 100% resistant to lincomycin. The 14 Salmonella serovars were screened for 11 virulence genes (invA, avrA, ssaQ, mgtC, siiD, sopB, gipA, sodC1, sopE1, spvC, and bcfC) by PCR. The invA, sopB, and bcfC genes were detected in 100% of the Salmonella serovars; alternatively, the gipA gene was absent in all of the isolated Salmonella serovars. The 11 virulent genes were not detected in either of S. stanley or S. haifa serovars. The results confirm an association between antibiotic resistance and virulence of Salmonella in the DOD. This study confirms the need for a country adherence to strict public health and food safety regimes. PMID:24548159

  14. Molecular epidemiological characteristics of Salmonella enterica serovars Enteritidis, Typhimurium and Livingstone strains isolated in a Tunisian university hospital.

    PubMed

    Ktari, Sonia; Ksibi, Boutheina; Gharsallah, Houda; Mnif, Basma; Maalej, Sonda; Rhimi, Fouzia; Hammami, Adnene

    2016-03-01

    Enteritidis, Typhimurium and Livingstone are the main Salmonella enterica serovars recovered in Tunisia. Here, we aimed to assess the genetic diversity of fifty-seven Salmonella enterica strains from different sampling periods, origins and settings using pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST) and multi-locus variable-number tandem repeat analysis (MLVA). Salmonella Enteritidis, isolated from human and food sources from two regions in Sfax in 2007, were grouped into one cluster using PFGE. However, using MLVA these strains were divided into two clusters. Salmonella Typhimurium strains, recovered in 2012 and represent sporadic cases of human clinical isolates, were included in one PFGE cluster. Nevertheless, the MLVA technique, divided Salmonella Typhimurium isolates into six clusters with diversity index reaching (DI = 0.757). For Salmonella Livingstone which was responsible of two nosocomial outbreaks during 2000-2003, the PFGE and MLVA methods showed that these strains were genetically closely related. Salmonella Enteritidis and Salmonella Livingstone populations showed a single ST lineage ST11 and ST543 respectively. For Salmonella Typhimurium, two MLST sequence types ST19 and ST328 were defined. Salmonella Enteritidis and Salmonella Typhimurium strains were clearly differentiated by MLVA which was not the case using PFGE. © 2015 APMIS. Published by John Wiley & Sons Ltd.

  15. Distribution of Salmonella serovars in breeding, nursery, and grow-to-finish pigs, and risk factors for shedding in ten farrow-to-finish swine farms in Alberta and Saskatchewan.

    PubMed

    Wilkins, Wendy; Rajić, Andrijana; Waldner, Cheryl; McFall, Margaret; Chow, Eva; Muckle, Anne; Rosengren, Leigh

    2010-04-01

    The study objectives were to investigate Salmonella prevalence, serovar distribution, and risk factors for shedding in 10 purposively selected farrow-to-finish farms in Saskatchewan and Alberta. Pooled fecal samples from the breeding and grow-finish phases and individual fecal samples from breeding, nursery, and grow-finish pigs were cultured for Salmonella; serotyping of isolates was performed. Pig and pen characteristics were recorded for each pig and pen sampled.Overall, 407/1143 (36%) of samples were Salmonella positive; within-farm prevalence ranged from 1% to 79%. Sows, nursery, and grow-finish pigs accounted for 43%, 29%, and 28% of positive samples, respectively. More Salmonella were detected in pooled pen than individual pig samples (P < 0.001). Among 418 Salmonella isolates, there were 19 distinct serovars; the most common were S. Derby (28.5%), S. Typhimurium, var. Copenhagen (19.1%), S. Putten (11.8%), S. Infantis (6.8%), and S. Mbandaka (6.1%). Sows were more likely to shed Salmonella than nursery or grow-finisher (OR 2.9, P < 0.001) pigs. Pelleted feed (OR 8.2, P < 0.001) and nose-to-nose pig contact through pens (OR 2.2, P = 0.005) were associated with increased Salmonella prevalence. Significant differences in serovar distribution were detected among production phases. The use of pooled pen samples is recommended as a more efficient means for accurate evaluation of Salmonella status in different phases of pig production. The breeding herd might be an important source of Salmonella persistence within farrow-to-finish farms and should be targeted in control efforts. The latter might also apply to the use of pelleted feed, which remains the most consistently reported significant risk factor for Salmonella shedding in pigs.

  16. Differences in Pathogenesis for Salmonella enterica serovar Typhimurium in the Mouse Versus the Swine Model Identify Bacterial Gene Products Required for Systemic but not Gastrointestinal Disease

    USDA-ARS?s Scientific Manuscript database

    Over the last several decades, the mouse model of Typhoid fever has been an extremely productive model to investigate Salmonella enterica serovar Typhimurium pathogenesis. The mouse is the paradigm for investigating systemic disease due to infection by Salmonella; however, the swine model of gastro...

  17. Molecular differentiation between Salmonella enterica subsp enterica serovar Pullorum and Salmonella enterica subsp enterica serovar Gallinarum

    PubMed Central

    Ribeiro, Simone Alves Mendes; de Paiva, Jaqueline Boldrin; Zotesso, Fábio; Lemos, Manoel Victor Franco; Berchieri Jánior, Ângelo

    2009-01-01

    S. Pullorum (SP) and S. Gallinarum (SG) are very similar. They are the agents of pullorum disease and fowl typhoid, respectively, and the two diseases are responsible for economic losses in poultry production. Although SP and SG are difficult to be differentiated in routine laboratory procedures, the ability to metabolize ornithine is a biochemical test that may be used to achieve this aim. While SP is able to decarboxylate this amino acid, SG is not. However, the isolation of strains showing atypical biochemical behavior has made this differentiation difficult. One of the genes associated with the metabolization of the amino acid ornithine is called speC, and is found in both serovars. The analysis of 21 SP and 15 SG strains by means of PCR did not enable the differentiation of the two serovars, because fragments produced were identical. However, after enzymatic treatment with restriction enzyme Eco RI, the band pattern of each serovar showed to be different, even in samples of atypical biochemical behavior. This fact enabled the standardization of the technique for a quick and safe differentiation of serovars Pullorum and Gallinarum. PMID:24031341

  18. Characterization of a multidrug-resistant Salmonella enterica serovar Heidelberg outbreak strain in commercial turkeys: Colonization, transmission, and host transcriptional response

    USDA-ARS?s Scientific Manuscript database

    In recent years, multidrug-resistant (MDR) Salmonella enterica serovar Heidelberg has been associated with numerous human foodborne illness outbreaks due to consumption of poultry. For example, in 2011, an MDR S. Heidelberg outbreak associated with ground turkey sickened 136 individuals and resulted...

  19. Public health significance of major genotypes of Salmonella enterica serovar Enteritidis present in both human and chicken isolates in Korea.

    PubMed

    Kang, Min-Su; Oh, Jae-Young; Kwon, Yong-Kuk; Lee, Deog-Yong; Jeong, Ok-Mi; Choi, Byung-Kook; Youn, So-Youn; Jeon, Byung-Woo; Lee, Hye-Jin; Lee, Hee-Soo

    2017-06-01

    Salmonella enterica serovar Enteritidis is one of the most common serotypes implicated in Salmonella infections in both humans and poultry worldwide. It has been reported that human salmonellosis is mainly associated with the consumption of poultry products contaminated with serovar Enteritidis. The present study was to extensively analyze the public health risk of serovar Enteritidis isolates from chickens in Korea. A total of 127 chicken isolates were collected from clinical cases, on-farm feces, and chicken meat between 1998 and 2012 and 20 human clinical isolates were obtained from patients with diarrhea between 2000 and 2006 in Korea. To characterize the isolates from chickens and humans, we compared the pulsed-field gel electrophoresis (PFGE) patterns and multilocus variable-number tandem-repeat analysis (MLVA) profiles of the isolates. We further characterized representative isolates of different genotypes using a DNA microarray. PFGE revealed 28 patterns and MLVA identified 16 allelic profiles. The DNA microarray showed high genetic variability in plasmid regions and other fimbrial subunits of the isolates although the virulence gene contents of isolates from the same source and/or of the same genotype were unrelated. PFGE and MLVA showed that major genotypes were present in both human and chicken isolates. This result suggests that chickens in Korea pose a significant risk to public health as a source of serovar Enteritidis as has been noted in other countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leekitcharoenphon, Pimlapas; Hendriksen, Rene S.; Le Hello, Simon

    It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. In this paper, we used whole-genome sequencing (WGS) and temporally structured sequence analysis within a Bayesian framework to reconstruct temporal and spatial phylogenetic trees and estimate the rates of mutation and divergence times of 315 S. Typhimurium DT104 isolates sampled from 1969 to 2012 from 21 countries on six continents. DT104 was estimated to have emerged initially as antimicrobial susceptible in ~1948 (95% credible interval [CI], 1934more » to 1962) and later became MDR DT104 in ~1972 (95% CI, 1972 to 1988) through horizontal transfer of the 13-kb Salmonella genomic island 1 (SGI1) MDR region into susceptible strains already containing SGI1. This was followed by multiple transmission events, initially from central Europe and later between several European countries. An independent transmission to the United States and another to Japan occurred, and from there MDR DT104 was probably transmitted to Taiwan and Canada. An independent acquisition of resistance genes took place in Thailand in ~1975 (95% CI, 1975 to 1990). In Denmark, WGS analysis provided evidence for transmission of the organism between herds of animals. Interestingly, the demographic history of Danish MDR DT104 provided evidence for the success of the program to eradicate Salmonella from pig herds in Denmark from 1996 to 2000. Finally, the results from this study refute several hypotheses on the evolution of DT104 and suggest that WGS may be useful in monitoring emerging clones and devising strategies for prevention of Salmonella infections.« less

  1. Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104

    PubMed Central

    Hendriksen, Rene S.; Le Hello, Simon; Weill, François-Xavier; Baggesen, Dorte Lau; Jun, Se-Ran; Lund, Ole; Crook, Derrick W.; Wilson, Daniel J.; Aarestrup, Frank M.

    2016-01-01

    It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. We used whole-genome sequencing (WGS) and temporally structured sequence analysis within a Bayesian framework to reconstruct temporal and spatial phylogenetic trees and estimate the rates of mutation and divergence times of 315 S. Typhimurium DT104 isolates sampled from 1969 to 2012 from 21 countries on six continents. DT104 was estimated to have emerged initially as antimicrobial susceptible in ∼1948 (95% credible interval [CI], 1934 to 1962) and later became MDR DT104 in ∼1972 (95% CI, 1972 to 1988) through horizontal transfer of the 13-kb Salmonella genomic island 1 (SGI1) MDR region into susceptible strains already containing SGI1. This was followed by multiple transmission events, initially from central Europe and later between several European countries. An independent transmission to the United States and another to Japan occurred, and from there MDR DT104 was probably transmitted to Taiwan and Canada. An independent acquisition of resistance genes took place in Thailand in ∼1975 (95% CI, 1975 to 1990). In Denmark, WGS analysis provided evidence for transmission of the organism between herds of animals. Interestingly, the demographic history of Danish MDR DT104 provided evidence for the success of the program to eradicate Salmonella from pig herds in Denmark from 1996 to 2000. The results from this study refute several hypotheses on the evolution of DT104 and suggest that WGS may be useful in monitoring emerging clones and devising strategies for prevention of Salmonella infections. PMID:26944846

  2. Global Genomic Epidemiology of Salmonella enterica Serovar Typhimurium DT104

    DOE PAGES

    Leekitcharoenphon, Pimlapas; Hendriksen, Rene S.; Le Hello, Simon; ...

    2016-03-04

    It has been 30 years since the initial emergence and subsequent rapid global spread of multidrug-resistant Salmonella enterica serovar Typhimurium DT104 (MDR DT104). Nonetheless, its origin and transmission route have never been revealed. In this paper, we used whole-genome sequencing (WGS) and temporally structured sequence analysis within a Bayesian framework to reconstruct temporal and spatial phylogenetic trees and estimate the rates of mutation and divergence times of 315 S. Typhimurium DT104 isolates sampled from 1969 to 2012 from 21 countries on six continents. DT104 was estimated to have emerged initially as antimicrobial susceptible in ~1948 (95% credible interval [CI], 1934more » to 1962) and later became MDR DT104 in ~1972 (95% CI, 1972 to 1988) through horizontal transfer of the 13-kb Salmonella genomic island 1 (SGI1) MDR region into susceptible strains already containing SGI1. This was followed by multiple transmission events, initially from central Europe and later between several European countries. An independent transmission to the United States and another to Japan occurred, and from there MDR DT104 was probably transmitted to Taiwan and Canada. An independent acquisition of resistance genes took place in Thailand in ~1975 (95% CI, 1975 to 1990). In Denmark, WGS analysis provided evidence for transmission of the organism between herds of animals. Interestingly, the demographic history of Danish MDR DT104 provided evidence for the success of the program to eradicate Salmonella from pig herds in Denmark from 1996 to 2000. Finally, the results from this study refute several hypotheses on the evolution of DT104 and suggest that WGS may be useful in monitoring emerging clones and devising strategies for prevention of Salmonella infections.« less

  3. A novel prophage identified in strains from Salmonella enterica serovar Enteritidis is a phylogenetic signature of the lineage ST-1974

    PubMed Central

    D'Alessandro, Bruno; Pérez Escanda, Victoria; Balestrazzi, Lucía; Iriarte, Andrés; Pickard, Derek; Yim, Lucía; Chabalgoity, José Alejandro; Betancor, Laura

    2018-01-01

    Salmonella enterica serovar Enteritidis is a major agent of foodborne diseases worldwide. In Uruguay, this serovar was almost negligible until the mid 1990s but since then it has become the most prevalent. Previously, we characterized a collection of strains isolated from 1988 to 2005 and found that the two oldest strains were the most genetically divergent. In order to further characterize these strains, we sequenced and annotated eight genomes including those of the two oldest isolates. We report on the identification and characterization of a novel 44 kbp Salmonella prophage found exclusively in these two genomes. Sequence analysis reveals that the prophage is a mosaic, with homologous regions in different Salmonella prophages. It contains 60 coding sequences, including two genes, gogB and sseK3, involved in virulence and modulation of host immune response. Analysis of serovar Enteritidis genomes available in public databases confirmed that this prophage is absent in most of them, with the exception of a group of 154 genomes. All 154 strains carrying this prophage belong to the same sequence type (ST-1974), suggesting that its acquisition occurred in a common ancestor. We tested this by phylogenetic analysis of 203 genomes representative of the intraserovar diversity. The ST-1974 forms a distinctive monophyletic lineage, and the newly described prophage is a phylogenetic signature of this lineage that could be used as a molecular marker. The phylogenetic analysis also shows that the major ST (ST-11) is polyphyletic and might have given rise to almost all other STs, including ST-1974. PMID:29509137

  4. Complete genome sequence of the thermotolerant foodborne pathogen Salmonella enterica serovar Senftenberg ATCC 43845 and phylogenetic analysis of loci encoding thermotolerance

    USDA-ARS?s Scientific Manuscript database

    Introduction: Previous studies in Cronobacter sakazakii, Klebsiella spp., and Escherichia coli have identified a genomic island that confers thermotolerance to its hosts. This island has recently been identified in Salmonella enterica serovar Senfentenberg ATCC 43845, a historically important, heat ...

  5. Role of Environmental Factors in Shaping Spatial Distribution of Salmonella enterica Serovar Typhi, Fiji.

    PubMed

    de Alwis, Ruklanthi; Watson, Conall; Nikolay, Birgit; Lowry, John H; Thieu, Nga Tran Vu; Van, Tan Trinh; Ngoc, Dung Tran Thi; Rawalai, Kitione; Taufa, Mere; Coriakula, Jerimaia; Lau, Colleen L; Nilles, Eric J; Edmunds, W John; Kama, Mike; Baker, Stephen; Cano, Jorge

    2018-02-01

    Fiji recently experienced a sharp increase in reported typhoid fever cases. To investigate geographic distribution and environmental risk factors associated with Salmonella enterica serovar Typhi infection, we conducted a cross-sectional cluster survey with associated serologic testing for Vi capsular antigen-specific antibodies (a marker for exposure to Salmonella Typhi in Fiji in 2013. Hotspots with high seroprevalence of Vi-specific antibodies were identified in northeastern mainland Fiji. Risk for Vi seropositivity increased with increased annual rainfall (odds ratio [OR] 1.26/quintile increase, 95% CI 1.12-1.42), and decreased with increased distance from major rivers and creeks (OR 0.89/km increase, 95% CI 0.80-0.99) and distance to modeled flood-risk areas (OR 0.80/quintile increase, 95% CI 0.69-0.92) after being adjusted for age, typhoid fever vaccination, and home toilet type. Risk for exposure to Salmonella Typhi and its spatial distribution in Fiji are driven by environmental factors. Our findings can directly affect typhoid fever control efforts in Fiji.

  6. Role of Environmental Factors in Shaping Spatial Distribution of Salmonella enterica Serovar Typhi, Fiji

    PubMed Central

    Watson, Conall; Nikolay, Birgit; Lowry, John H.; Thieu, Nga Tran Vu; Van, Tan Trinh; Ngoc, Dung Tran Thi; Rawalai, Kitione; Taufa, Mere; Coriakula, Jerimaia; Lau, Colleen L.; Nilles, Eric J.; Edmunds, W. John; Kama, Mike; Baker, Stephen; Cano, Jorge

    2018-01-01

    Fiji recently experienced a sharp increase in reported typhoid fever cases. To investigate geographic distribution and environmental risk factors associated with Salmonella enterica serovar Typhi infection, we conducted a cross-sectional cluster survey with associated serologic testing for Vi capsular antigen–specific antibodies (a marker for exposure to Salmonella Typhi in Fiji in 2013. Hotspots with high seroprevalence of Vi-specific antibodies were identified in northeastern mainland Fiji. Risk for Vi seropositivity increased with increased annual rainfall (odds ratio [OR] 1.26/quintile increase, 95% CI 1.12–1.42), and decreased with increased distance from major rivers and creeks (OR 0.89/km increase, 95% CI 0.80–0.99) and distance to modeled flood-risk areas (OR 0.80/quintile increase, 95% CI 0.69–0.92) after being adjusted for age, typhoid fever vaccination, and home toilet type. Risk for exposure to Salmonella Typhi and its spatial distribution in Fiji are driven by environmental factors. Our findings can directly affect typhoid fever control efforts in Fiji. PMID:29350150

  7. A rapid method to identify Salmonella enterica serovar Gallinarum biovar Pullorum using a specific target gene ipaJ.

    PubMed

    Xu, Lijuan; Liu, Zijian; Li, Yang; Yin, Chao; Hu, Yachen; Xie, Xiaolei; Li, Qiuchun; Jiao, Xinan

    2018-06-01

    Salmonella enterica serovar Gallinarum biovar Pullorum (S. Pullorum) is the pathogen of pullorum disease, which leads to severe economic losses in many developing countries. Traditional methods to identify S. enterica have relied on biochemical reactions and serotyping, which are time-consuming with accurate identification if properly carried out. In this study, we developed a rapid polymerase chain reaction (PCR) method targeting the specific gene ipaJ to detect S. Pullorum. Among the 650 S. Pullorum strains isolated from 1962 to 2016 all over China, 644 strains were identified to harbour ipaJ gene in the plasmid pSPI12, accounting for a detection rate of 99.08%. Six strains were ipaJ negative because pSPI12 was not found in these strains according to whole genome sequencing results. There was no cross-reaction with other Salmonella serotypes, including Salmonella enterica serovar Gallinarum biovar Gallinarum (S. Gallinarum), which show a close genetic relationship with S. Pullorum. This shows that the PCR method could distinguish S. Gallinarum from S. Pullorum in one-step PCR without complicated biochemical identification. The limit of detection of this PCR method was as low as 90 fg/μl or 10 2 CFU, which shows a high sensitivity. Moreover, this method was applied to identify Salmonella isolated from the chicken farm and the results were consistent with what we obtained from biochemical reactions and serotyping. Together, all the results demonstrated that this one-step PCR method is simple and feasible to efficiently identify S. Pullorum.

  8. Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Infantis Strain SPE101, Isolated from a Chronic Human Infection

    PubMed Central

    Iriarte, Andrés; Giner-Lamia, Joaquín; Betancor, Laura; Astocondor, Lizeth; Cestero, Juan J.; Ochoa, Theresa; García, Coralith; Puente, José L.; Chabalgoity, José A.

    2017-01-01

    ABSTRACT We report a 4.99-Mb draft genome sequence of Salmonella enterica subsp. enterica serovar Infantis strain SPE101, isolated from feces of a 5-month-old breast-fed female showing diarrhea associated with severe dehydration and malnutrition. The infection prolonged for 6 months despite antibiotic treatment. PMID:28729277

  9. A Multicountry Molecular Analysis of Salmonella enterica Serovar Typhi With Reduced Susceptibility to Ciprofloxacin in Sub-Saharan Africa

    PubMed Central

    Al-Emran, Hassan M.; Eibach, Daniel; Krumkamp, Ralf; Ali, Mohammad; Baker, Stephen; Biggs, Holly M.; Bjerregaard-Andersen, Morten; Breiman, Robert F.; Clemens, John D.; Crump, John A.; Cruz Espinoza, Ligia Maria; Deerin, Jessica; Dekker, Denise Myriam; Gassama Sow, Amy; Hertz, Julian T.; Im, Justin; Ibrango, Samuel; von Kalckreuth, Vera; Kabore, Leon Parfait; Konings, Frank; Løfberg, Sandra Valborg; Meyer, Christian G.; Mintz, Eric D.; Montgomery, Joel M.; Olack, Beatrice; Pak, Gi Deok; Panzner, Ursula; Park, Se Eun; Razafindrabe, Jean Luco Tsiriniaina; Rabezanahary, Henintsoa; Rakotondrainiarivelo, Jean Philibert; Rakotozandrindrainy, Raphaël; Raminosoa, Tiana Mirana; Schütt-Gerowitt, Heidi; Sampo, Emmanuel; Soura, Abdramane Bassiahi; Tall, Adama; Warren, Michelle; Wierzba, Thomas F.; May, Jürgen; Marks, Florian

    2016-01-01

    Background. Salmonella enterica serovar Typhi is a predominant cause of bloodstream infections in sub-Saharan Africa (SSA). Increasing numbers of S. Typhi with resistance to ciprofloxacin have been reported from different parts of the world. However, data from SSA are limited. In this study, we aimed to measure the ciprofloxacin susceptibility of S. Typhi isolated from patients with febrile illness in SSA. Methods. Febrile patients from 9 sites within 6 countries in SSA with a body temperature of ≥38.0°C were enrolled in this study. Blood samples were obtained for bacterial culture, and Salmonella isolates were identified biochemically and confirmed by multiplex polymerase chain reaction (PCR). Antimicrobial susceptibility of all Salmonella isolates was performed by disk diffusion test, and minimum inhibitory concentrations (MICs) against ciprofloxacin were measured by Etest. All Salmonella isolates with reduced susceptibility to ciprofloxacin (MIC > 0.06 µg/mL) were screened for mutations in quinolone resistance-determining regions in target genes, and the presence of plasmid-mediated quinolone resistance (PMQR) genes was assessed by PCR. Results. A total of 8161 blood cultures were performed, and 100 (1.2%) S. Typhi, 2 (<0.1%) Salmonella enterica serovar Paratyphi A, and 27 (0.3%) nontyphoid Salmonella (NTS) were isolated. Multidrug-resistant S. Typhi were isolated in Kenya (79% [n = 38]) and Tanzania (89% [n = 8]) only. Reduced ciprofloxacin-susceptible (22% [n = 11]) S. Typhi were isolated only in Kenya. Among those 11 isolates, all had a Glu133Gly mutation in the gyrA gene combined with either a gyrA (Ser83Phe) or gyrB mutation (Ser464Phe). One Salmonella Paratyphi A isolate with reduced susceptibility to ciprofloxacin was found in Senegal, with 1 mutation in gyrA (Ser83Phe) and a second mutation in parC (Ser57Phe). Mutations in the parE gene and PMQR genes were not detected in any isolate. Conclusions. Salmonella Typhi with reduced susceptibility

  10. Replication of Salmonella enterica Serovar Typhimurium in Human Monocyte-Derived Macrophages.

    PubMed

    Lathrop, Stephanie K; Binder, Kelsey A; Starr, Tregei; Cooper, Kendal G; Chong, Audrey; Carmody, Aaron B; Steele-Mortimer, Olivia

    2015-07-01

    Salmonella enterica serovar Typhimurium is a common cause of food-borne gastrointestinal illness, but additionally it causes potentially fatal bacteremia in some immunocompromised patients. In mice, systemic spread and replication of the bacteria depend upon infection of and replication within macrophages, but replication in human macrophages is not widely reported or well studied. In order to assess the ability of Salmonella Typhimurium to replicate in human macrophages, we infected primary monocyte-derived macrophages (MDM) that had been differentiated under conditions known to generate different phenotypes. We found that replication in MDM depends greatly upon the phenotype of the cells, as M1-skewed macrophages did not allow replication, while M2a macrophages and macrophages differentiated with macrophage colony-stimulating factor (M-CSF) alone (termed M0) did. We describe how additional conditions that alter the macrophage phenotype or the gene expression of the bacteria affect the outcome of infection. In M0 MDM, the temporal expression of representative genes from Salmonella pathogenicity islands 1 and 2 (SPI1 and SPI2) and the importance of the PhoP/Q two-component regulatory system are similar to what has been shown in mouse macrophages. However, in contrast to mouse macrophages, where replication is SPI2 dependent, we observed early SPI2-independent replication in addition to later SPI2-dependent replication in M0 macrophages. Only SPI2-dependent replication was associated with death of the host cell at later time points. Altogether, our results reveal a very nuanced interaction between Salmonella and human macrophages. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Cross-Contamination and Biofilm Formation by Salmonella enterica Serovar Enteritidis on Various Cutting Boards.

    PubMed

    Dantas, Stéfani T A; Rossi, Bruna F; Bonsaglia, Erika C R; Castilho, Ivana G; Hernandes, Rodrigo T; Fernandes, Ary; Rall, Vera L M

    2018-02-01

    Cross-contamination is one of the main factors related to foodborne outbreaks. This study aimed to analyze the cross-contamination process of Salmonella enterica serovar Enteritidis from poultry to cucumbers, on various cutting board surfaces (plastic, wood, and glass) before and after washing and in the presence and absence of biofilm. Thus, 10 strains of Salmonella Enteritidis were used to test cross-contamination from poultry to the cutting boards and from thereon to cucumbers. Moreover, these strains were evaluated as to their capacity to form biofilm on hydrophobic (wood and plastic) and hydrophilic materials (glass). We recovered the 10 isolates from all unwashed boards and from all cucumbers that had contacted them. After washing, the recovery ranged from 10% to 100%, depending on the board material. In the presence of biofilm, the recovery of salmonellae was 100%, even after washing. Biofilm formation occurred more on wood (60%) and plastic (40%) than glass (10%) boards, demonstrating that bacteria adhered more to a hydrophobic material. It was concluded that the cutting boards represent a critical point in cross-contamination, particularly in the presence of biofilm. Salmonella Enteritidis was able to form a biofilm on these three types of cutting boards but glass showed the least formation.

  12. Salmonella enterica Serovar Typhimurium Exploits Inflammation to Modify Swine Intestinal Microbiota.

    PubMed

    Drumo, Rosanna; Pesciaroli, Michele; Ruggeri, Jessica; Tarantino, Michela; Chirullo, Barbara; Pistoia, Claudia; Petrucci, Paola; Martinelli, Nicola; Moscati, Livia; Manuali, Elisabetta; Pavone, Silvia; Picciolini, Matteo; Ammendola, Serena; Gabai, Gianfranco; Battistoni, Andrea; Pezzotti, Giovanni; Alborali, Giovanni L; Napolioni, Valerio; Pasquali, Paolo; Magistrali, Chiara F

    2015-01-01

    Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria) normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.

  13. Salmonella enterica Serovar Typhimurium Exploits Inflammation to Modify Swine Intestinal Microbiota

    PubMed Central

    Drumo, Rosanna; Pesciaroli, Michele; Ruggeri, Jessica; Tarantino, Michela; Chirullo, Barbara; Pistoia, Claudia; Petrucci, Paola; Martinelli, Nicola; Moscati, Livia; Manuali, Elisabetta; Pavone, Silvia; Picciolini, Matteo; Ammendola, Serena; Gabai, Gianfranco; Battistoni, Andrea; Pezzotti, Giovanni; Alborali, Giovanni L.; Napolioni, Valerio; Pasquali, Paolo; Magistrali, Chiara F.

    2016-01-01

    Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria) normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota. PMID:26835435

  14. Free-Living Turtles Are a Reservoir for Salmonella but Not for Campylobacter

    PubMed Central

    Marin, Clara; Ingresa-Capaccioni, Sofia; González-Bodi, Sara; Marco-Jiménez, Francisco; Vega, Santiago

    2013-01-01

    Different studies have reported the prevalence of Salmonella in turtles and its role in reptile-associated salmonellosis in humans, but there is a lack of scientific literature related with the epidemiology of Campylobacter in turtles. The aim of this study was to evaluate the prevalence of Campylobacter and Salmonella in free-living native (Emys orbicularis, n=83) and exotic ( Trachemys scripta elegans, n=117) turtles from 11 natural ponds in Eastern Spain. In addition, different types of samples (cloacal swabs, intestinal content and water from Turtle containers) were compared. Regardless of the turtle species, natural ponds where individuals were captured and the type of sample taken, Campylobacter was not detected. Salmonella was isolated in similar proportions in native (8.0±3.1%) and exotic (15.0±3.3%) turtles (p=0.189). The prevalence of Salmonella positive turtles was associated with the natural ponds where animals were captured. Captured turtles from 8 of the 11 natural ponds were positive, ranged between 3.0±3.1% and 60.0±11.0%. Serotyping revealed 8 different serovars among four Salmonella enterica subspecies: S. enterica subsp. enterica (n = 21), S. enterica subsp. salamae (n = 2), S. enterica subsp. diarizonae (n = 3), and S. enterica subsp. houtenae (n = 1). Two serovars were predominant: S. Thompson (n=16) and S . typhimurium (n=3). In addition, there was an effect of sample type on Salmonella detection. The highest isolation of Salmonella was obtained from intestinal content samples (12.0±3.0%), while lower percentages were found for water from the containers and cloacal swabs (8.0±2.5% and 3.0±1.5%, respectively). Our results imply that free-living turtles are a risk factor for Salmonella transmission, but do not seem to be a reservoir for Campylobacter . We therefore rule out turtles as a risk factor for human campylobacteriosis. Nevertheless, further studies should be undertaken in other countries to confirm these results. PMID:23951312

  15. Development of a Novel, Rapid Multiplex Polymerase Chain Reaction Assay for the Detection and Differentiation of Salmonella enterica Serovars Enteritidis and Typhimurium Using Ultra-Fast Convection Polymerase Chain Reaction.

    PubMed

    Kim, Tae-Hoon; Hwang, Hyun Jin; Kim, Jeong Hee

    2017-10-01

    Salmonella enterica serovars Enteritidis and Typhimurium are the most common causative agents of human nontyphoidal salmonellosis. The rapid detection and timely treatment of salmonellosis are important to increase the curative ratio and prevent spreading of the disease. In this study, we developed a rapid multiplex convection polymerase chain reaction (PCR) method to detect Salmonella spp. and differentiate Salmonella Enteritidis and Salmonella Typhimurium. We used the invA gene for Salmonella spp. detection. Salmonella Enteritidis-specific primers and Salmonella Typhimurium-specific primers were designed using the insertion element (IE) and spy genes, respectively. The primer set for Salmonella spp. detection clearly detected both Salmonella Enteritidis and Salmonella Typhimurium after a 21-min amplification reaction. Serovar-specific primer sets for Salmonella Enteritidis and Salmonella Typhimurium specifically detected each target species in a 21-min amplification reaction. We were able to detect Salmonella spp. at a single copy level in the singleplex mode. The limits of detection for Salmonella Enteritidis and Salmonella Typhimurium were 30 copies in both the singleplex and multiplex modes. The PCR run time could be reduced to 10.5 min/15 cycles. The multiplex convection PCR method developed in this study could detect the Salmonella spp. Salmonella Enteritidis and Salmonella Typhimurium in artificially contaminated milk with as few as 10 0 colony-forming unit/mL after 4-h enrichment. The PCR assay developed in this study provides a rapid, specific, and sensitive method for the detection of Salmonella spp. and the differentiation of Salmonella Enteritidis and Salmonella Typhimurium.

  16. Vaccines against invasive Salmonella disease

    PubMed Central

    MacLennan, Calman A; Martin, Laura B; Micoli, Francesca

    2014-01-01

    Though primarily enteric pathogens, Salmonellae are responsible for a considerable yet under-appreciated global burden of invasive disease. In South and South-East Asia, this manifests as enteric fever caused by serovars Typhi and Paratyphi A. In sub-Saharan Africa, a similar disease burden results from invasive nontyphoidal Salmonellae, principally serovars Typhimurium and Enteritidis. The existing Ty21a live-attenuated and Vi capsular polysaccharide vaccines target S. Typhi and are not effective in young children where the burden of invasive Salmonella disease is highest. After years of lack of investment in new Salmonella vaccines, recent times have seen increased interest in the area led by emerging-market manufacturers, global health vaccine institutes and academic partners. New glycoconjugate vaccines against S. Typhi are becoming available with similar vaccines against other invasive serovars in development. With other new vaccines under investigation, including live-attenuated, protein-based and GMMA vaccines, now is an exciting time for the Salmonella vaccine field. PMID:24804797

  17. Expression of Toll-like receptors, interleukin 8, macrophage migration inhibitory factor, and osteopontin in tissues from pigs challenged with Salmonella enterica serovar Typhimurium or serovar Choleraesuis.

    PubMed

    Burkey, T E; Skjolaas, K A; Dritz, S S; Minton, J E

    2007-02-15

    Two serovars of Salmonella enterica, namely serovar Typhimurium (ST) and serovar Choleraesuis (SC) account for the vast majority of clinical cases of swine salmonellosis worldwide. These serovars are thought to be transmitted among pigs in production settings mainly through fecal-oral routes. Yet, few studies have evaluated effects of these serovars on expression of innate immune targets when presented to pigs via repeated oral dosing in an attempt to model transmission in production settings. Thus, a primary objective of the current experiments was to evaluate expression of Toll-like receptors (TLR) and selected chemoattractive mediators (interleukin 8, IL8; macrophage migration inhibitory factor, MIF; osteopontin, OPN) in tissues from pigs exposed to ST or SC that had been transformed with kanamycin resistance and green (STG) or red (SCR) fluorescent protein to facilitate isolation from pen fecal samples. In vitro studies confirmed that STG and SCR largely (though not completely) retained their ability to upregulate IL8 and CC chemokine ligand 20 (CCL20) in cultured swine jejunal epithelial cells. Transformed bacteria were then fed to pigs in an in vivo study to determine tissue specific effects on mRNA relative expression. Pigs were fed cookie dough inoculated with bacteria on days 0, 3, 7, and 10 with 10(8)CFU STG (n=8) or SCR (n=8), while control (CTL) pigs (n=8) received dough without bacteria. Animals were sacrificed 14 days from the initial bacterial challenge and samples of tonsil, jejunum, ileum, colon, mesenteric lymph node (MLN), spleen, and liver were removed for subsequent RNA isolation. Expression of mRNA in tissues was determined using real-time quantitative PCR and expressed relative to 18S rRNA. Within CTL pigs, when expressed relative to the content in liver, mRNA for all targets demonstrated substantial tissue effects (P<0.001 for all TLR; MIF, and OPN; P<0.05 for IL8). Feeding STG and SCR resulted in significant (P

  18. Draft Genome Sequence of Salmonella enterica subsp. enterica Serovar Infantis Strain SPE101, Isolated from a Chronic Human Infection.

    PubMed

    Iriarte, Andrés; Giner-Lamia, Joaquín; Silva, Claudia; Betancor, Laura; Astocondor, Lizeth; Cestero, Juan J; Ochoa, Theresa; García, Coralith; Puente, José L; Chabalgoity, José A; García-Del Portillo, Francisco

    2017-07-20

    We report a 4.99-Mb draft genome sequence of Salmonella enterica subsp. enterica serovar Infantis strain SPE101, isolated from feces of a 5-month-old breast-fed female showing diarrhea associated with severe dehydration and malnutrition. The infection prolonged for 6 months despite antibiotic treatment. Copyright © 2017 Iriarte et al.

  19. Interactions of Salmonella enterica Serovar Typhimurium and Pectobacterium carotovorum within a Tomato Soft Rot.

    PubMed

    George, Andrée S; Cox, Clayton E; Desai, Prerak; Porwollik, Steffen; Chu, Weiping; de Moraes, Marcos H; McClelland, Michael; Brandl, Maria T; Teplitski, Max

    2018-03-01

    Salmonella spp. are remarkably adaptable pathogens, and this adaptability allows these bacteria to thrive in a variety of environments and hosts. The mechanisms with which these pathogens establish within a niche amid the native microbiota remain poorly understood. Here, we aimed to uncover the mechanisms that enable Salmonella enterica serovar Typhimurium strain ATCC 14028 to benefit from the degradation of plant tissue by a soft rot plant pathogen, Pectobacterium carotovorum The hypothesis that in the soft rot, the liberation of starch (not utilized by P. carotovorum ) makes this polymer available to Salmonella spp., thus allowing it to colonize soft rots, was tested first and proven null. To identify the functions involved in Salmonella soft rot colonization, we carried out transposon insertion sequencing coupled with the phenotypic characterization of the mutants. The data indicate that Salmonella spp. experience a metabolic shift in response to the changes in the environment brought on by Pectobacterium spp. and likely coordinated by the csrBC small regulatory RNA. While csrBC and flhD appear to be of importance in the soft rot, the global two-component system encoded by barA sirA (which controls csrBC and flhDC under laboratory conditions) does not appear to be necessary for the observed phenotype. Motility and the synthesis of nucleotides and amino acids play critical roles in the growth of Salmonella spp. in the soft rot. IMPORTANCE Outbreaks of produce-associated illness continue to be a food safety concern. Earlier studies demonstrated that the presence of phytopathogens on produce was a significant risk factor associated with increased Salmonella carriage on fruits and vegetables. Here, we genetically characterize some of the requirements for interactions between Salmonella and phytobacteria that allow Salmonella spp. to establish a niche within an alternate host (tomato). Pathways necessary for nucleotide synthesis, amino acid synthesis, and motility

  20. Interactions of Salmonella enterica Serovar Typhimurium and Pectobacterium carotovorum within a Tomato Soft Rot

    PubMed Central

    Cox, Clayton E.; Desai, Prerak; Porwollik, Steffen; Chu, Weiping; de Moraes, Marcos H.; McClelland, Michael; Brandl, Maria T.; Teplitski, Max

    2017-01-01

    ABSTRACT Salmonella spp. are remarkably adaptable pathogens, and this adaptability allows these bacteria to thrive in a variety of environments and hosts. The mechanisms with which these pathogens establish within a niche amid the native microbiota remain poorly understood. Here, we aimed to uncover the mechanisms that enable Salmonella enterica serovar Typhimurium strain ATCC 14028 to benefit from the degradation of plant tissue by a soft rot plant pathogen, Pectobacterium carotovorum. The hypothesis that in the soft rot, the liberation of starch (not utilized by P. carotovorum) makes this polymer available to Salmonella spp., thus allowing it to colonize soft rots, was tested first and proven null. To identify the functions involved in Salmonella soft rot colonization, we carried out transposon insertion sequencing coupled with the phenotypic characterization of the mutants. The data indicate that Salmonella spp. experience a metabolic shift in response to the changes in the environment brought on by Pectobacterium spp. and likely coordinated by the csrBC small regulatory RNA. While csrBC and flhD appear to be of importance in the soft rot, the global two-component system encoded by barA sirA (which controls csrBC and flhDC under laboratory conditions) does not appear to be necessary for the observed phenotype. Motility and the synthesis of nucleotides and amino acids play critical roles in the growth of Salmonella spp. in the soft rot. IMPORTANCE Outbreaks of produce-associated illness continue to be a food safety concern. Earlier studies demonstrated that the presence of phytopathogens on produce was a significant risk factor associated with increased Salmonella carriage on fruits and vegetables. Here, we genetically characterize some of the requirements for interactions between Salmonella and phytobacteria that allow Salmonella spp. to establish a niche within an alternate host (tomato). Pathways necessary for nucleotide synthesis, amino acid synthesis, and

  1. Receptor Diversity and Host Interaction of Bacteriophages Infecting Salmonella enterica Serovar Typhimurium

    PubMed Central

    Kim, Hyeryen; Choi, Younho; Heu, Sunggi; Ryu, Sangryeol

    2012-01-01

    Background Salmonella enterica subspecies enterica serovar Typhimurium is a Gram-negative pathogen causing salmonellosis. Salmonella Typhimurium-targeting bacteriophages have been proposed as an alternative biocontrol agent to antibiotics. To further understand infection and interaction mechanisms between the host strains and the bacteriophages, the receptor diversity of these phages needs to be elucidated. Methodology/Principal Findings Twenty-five Salmonella phages were isolated and their receptors were identified by screening a Tn5 random mutant library of S. Typhimurium SL1344. Among them, three types of receptors were identified flagella (11 phages), vitamin B12 uptake outer membrane protein, BtuB (7 phages) and lipopolysaccharide-related O-antigen (7 phages). TEM observation revealed that the phages using flagella (group F) or BtuB (group B) as a receptor belong to Siphoviridae family, and the phages using O-antigen of LPS as a receptor (group L) belong to Podoviridae family. Interestingly, while some of group F phages (F-I) target FliC host receptor, others (F-II) target both FliC and FljB receptors, suggesting that two subgroups are present in group F phages. Cross-resistance assay of group B and L revealed that group L phages could not infect group B phage-resistant strains and reversely group B phages could not infect group L SPN9TCW-resistant strain. Conclusions/Significance In this report, three receptor groups of 25 newly isolated S. Typhimurium-targeting phages were determined. Among them, two subgroups of group F phages interact with their host receptors in different manner. In addition, the host receptors of group B or group L SPN9TCW phages hinder other group phage infection, probably due to interaction between receptors of their groups. This study provides novel insights into phage-host receptor interaction for Salmonella phages and will inform development of optimal phage therapy for protection against Salmonella. PMID:22927964

  2. Prevalence and characterization of multidrug-resistant (type ACSSuT) Salmonella enterica serovar Typhimurium strains in isolates from four gosling farms and a hatchery farm.

    PubMed

    Yu, Chang-You; Chou, Shih-Jen; Yeh, Chia-Ming; Chao, Maw-Rong; Huang, Kwo-Ching; Chang, Yung-Fu; Chiou, Chien-Shun; Weill, Francois-Xavier; Chiu, Cheng-Hsun; Chu, Chi-Hong; Chu, Chishih

    2008-02-01

    Salmonella enterica serovar Typhimurium strains of phage types DT104 and U302 are often resistant to ampicillin, chloramphenicol, streptomycin, sulfonamides, and tetracycline (the ACSSuT resistance type) and are major zoonotic pathogens. Increased consumption of goose meat may enhance the risk of transferring S. enterica serovar Typhimurium and other enteric pathogens from geese to human due to the consumption of meats from infected geese or improper preparation of meats. Therefore, we characterized S. enterica serovar Typhimurium strains isolated from four goose farms (farms A, B, C, and D) and one hatchery farm (farm E) to determine the epidemic and genetic differences among them. Antibiotic susceptibility tests and multiplex PCR confirmed that 77.6% (52/67) of strains were ACSSuT strains isolated from farms A, C, and E. Antibiotic-susceptible strains were isolated mostly from farm B, and no strain was observed in farm D. All ACSSuT strains harbored a 94.7-kb virulence plasmid and contained one 1.1-kb conserved segment identical to that of Salmonella genomic island 1. Four genotypes were determined among these S. enterica serovar Typhimurium isolates by pulsed-field gel electrophoresis analysis of XbaI-digested DNA fragments. Most isolates (85.29%; 29/34) of major genotype Ib were ACSSuT strains isolated mainly from goslings of farm C and egg membranes of farm E, a hatchery farm, suggesting that S. enterica serovar Typhimurium strains in isolates from goslings might originate from its hatchery, from the egg membranes to the gosling fluff after hatching. Multiple phage types, types 8, 12, U283, DT104, and U302, were identified. In conclusion, geese were a reservoir of diverse multidrug-resistant (type ACSSuT) S. enterica serovar Typhimurium strains, and each farm was colonized with genetically closely related S. enterica serovar Typhimurium strains.

  3. Relationship of Triamine-Biocide Tolerance of Salmonella enterica Serovar Senftenberg to Antimicrobial Susceptibility, Serum Resistance and Outer Membrane Proteins.

    PubMed

    Futoma-Kołoch, Bożena; Dudek, Bartłomiej; Kapczyńska, Katarzyna; Krzyżewska, Eva; Wańczyk, Martyna; Korzekwa, Kamila; Rybka, Jacek; Klausa, Elżbieta; Bugla-Płoskońska, Gabriela

    2017-07-11

    A new emerging phenomenon is the association between the incorrect use of biocides in the process of disinfection in farms and the emergence of cross-resistance in Salmonella populations. Adaptation of the microorganisms to the sub-inhibitory concentrations of the disinfectants is not clear, but may result in an increase of sensitivity or resistance to antibiotics, depending on the biocide used and the challenged Salmonella serovar. Exposure of five Salmonella enterica subsp. enterica serovar Senftenberg ( S. Senftenberg) strains to triamine-containing disinfectant did not result in variants with resistance to antibiotics, but has changed their susceptibility to normal human serum (NHS). Three biocide variants developed reduced sensitivity to NHS in comparison to the sensitive parental strains, while two isolates lost their resistance to serum. For S. Senftenberg, which exhibited the highest triamine tolerance (6 × MIC) and intrinsic sensitivity to 22.5% and 45% NHS, a downregulation of flagellin and enolase has been demonstrated, which might suggest a lower adhesion and virulence of the bacteria. This is the first report demonstrating the influence of biocide tolerance on NHS resistance. In conclusion, there was a potential in S. Senftenberg to adjust to the conditions, where the biocide containing triamine was present. However, the adaptation did not result in the increase of antibiotic resistance, but manifested in changes within outer membrane proteins' patterns. The strategy of bacterial membrane proteins' analysis provides an opportunity to adjust the ways of infection treatments, especially when it is connected to the life-threating bacteremia caused by Salmonella species.

  4. Relationship of Triamine-Biocide Tolerance of Salmonella enterica Serovar Senftenberg to Antimicrobial Susceptibility, Serum Resistance and Outer Membrane Proteins

    PubMed Central

    Futoma-Kołoch, Bożena; Dudek, Bartłomiej; Kapczyńska, Katarzyna; Wańczyk, Martyna; Korzekwa, Kamila; Rybka, Jacek; Klausa, Elżbieta; Bugla-Płoskońska, Gabriela

    2017-01-01

    A new emerging phenomenon is the association between the incorrect use of biocides in the process of disinfection in farms and the emergence of cross-resistance in Salmonella populations. Adaptation of the microorganisms to the sub-inhibitory concentrations of the disinfectants is not clear, but may result in an increase of sensitivity or resistance to antibiotics, depending on the biocide used and the challenged Salmonella serovar. Exposure of five Salmonella enterica subsp. enterica serovar Senftenberg (S. Senftenberg) strains to triamine-containing disinfectant did not result in variants with resistance to antibiotics, but has changed their susceptibility to normal human serum (NHS). Three biocide variants developed reduced sensitivity to NHS in comparison to the sensitive parental strains, while two isolates lost their resistance to serum. For S. Senftenberg, which exhibited the highest triamine tolerance (6 × MIC) and intrinsic sensitivity to 22.5% and 45% NHS, a downregulation of flagellin and enolase has been demonstrated, which might suggest a lower adhesion and virulence of the bacteria. This is the first report demonstrating the influence of biocide tolerance on NHS resistance. In conclusion, there was a potential in S. Senftenberg to adjust to the conditions, where the biocide containing triamine was present. However, the adaptation did not result in the increase of antibiotic resistance, but manifested in changes within outer membrane proteins’ patterns. The strategy of bacterial membrane proteins’ analysis provides an opportunity to adjust the ways of infection treatments, especially when it is connected to the life-threating bacteremia caused by Salmonella species. PMID:28696348

  5. Identification and Characterization of Outer Membrane Vesicle-Associated Proteins in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Bai, Jaewoo; Kim, Seul I; Ryu, Sangryeol

    2014-01-01

    Salmonella enterica serovar Typhimurium is a primary cause of enteric diseases and has acquired a variety of virulence factors during its evolution into a pathogen. Secreted virulence factors interact with commensal flora and host cells and enable Salmonella to survive and thrive in hostile environments. Outer membrane vesicles (OMVs) released from many Gram-negative bacteria function as a mechanism for the secretion of complex mixtures, including virulence factors. We performed a proteomic analysis of OMVs that were isolated under standard laboratory and acidic minimal medium conditions and identified 14 OMV-associated proteins that were observed in the OMV fraction isolated only under the acidic minimal medium conditions, which reproduced the nutrient-deficient intracellular milieu. The inferred roles of these 14 proteins were diverse, including transporter, enzyme, and transcriptional regulator. The absence of these proteins influenced Salmonella survival inside murine macrophages. Eleven of these proteins were predicted to possess secretion signal sequences at their N termini, and three (HupA, GlnH, and PhoN) of the proteins were found to be translocated into the cytoplasm of host cells. The comparative proteomic profiling of OMVs performed in this study revealed different protein compositions in the OMVs isolated under the two different conditions, which indicates that the OMV cargo depends on the growth conditions and provides a deeper insight into how Salmonella utilizes OMVs to adapt to environmental changes. PMID:24935973

  6. A comparison of transmission characteristics of Salmonella enterica serovar Enteritidis between pair-housed and group-housed laying hens.

    PubMed

    Thomas, Ekelijn; Bouma, Annemarie; Klinkenberg, Don

    2011-02-23

    Human cases of bacterial gastro-enteritis are often caused by the consumption of eggs contaminated with Salmonella species, mainly Salmonella enterica serovar Enteriditis (Salmonella Enteritidis). To reduce human exposure, in several countries worldwide surveillance programmes are implemented to detect colonized layer flocks. The sampling schemes are based on the within-flock prevalence, and, as this changes over time, knowledge of the within-flock dynamics of Salmonella Enteritidis is required. Transmission of Salmonella Enteritidis has been quantified in pairs of layers, but the question is whether the dynamics in pairs is comparable to transmission in large groups, which are more representative for commercial layer flocks. The aim of this study was to compare results of transmission experiments between pairs and groups of laying hens. Experimental groups of either 2 or 200 hens were housed at similar densities, and 1 or 4 hens were inoculated with Salmonella Enteritidis, respectively. Excretion was monitored by regularly testing of fecal samples for the presence of Salmonella Enteritidis. Using mathematical modeling, the group experiments were simulated with transmission parameter estimates from the pairwise experiments. Transmission of the bacteria did not differ significantly between pairs or groups. This finding suggests that the transmission parameter estimates from small-scale experiments might be extrapolated to the field situation.

  7. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend?

    PubMed

    Michael, G B; Schwarz, S

    2016-12-01

    Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. The Vi Capsular Polysaccharide Enables Salmonella enterica Serovar Typhi to Evade Microbe-Guided Neutrophil Chemotaxis

    PubMed Central

    Wangdi, Tamding; Lee, Cheng-Yuk; Spees, Alanna M.; Yu, Chenzhou; Kingsbury, Dawn D.; Winter, Sebastian E.; Hastey, Christine J.; Wilson, R. Paul

    2014-01-01

    Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a disseminated infection, while the closely related pathogen S. enterica serovar Typhimurium (S. Typhimurium) is associated with a localized gastroenteritis in humans. Here we investigated whether both pathogens differ in the chemotactic response they induce in neutrophils using a single-cell experimental approach. Surprisingly, neutrophils extended chemotactic pseudopodia toward Escherichia coli and S. Typhimurium, but not toward S. Typhi. Bacterial-guided chemotaxis was dependent on the presence of complement component 5a (C5a) and C5a receptor (C5aR). Deletion of S. Typhi capsule biosynthesis genes markedly enhanced the chemotactic response of neutrophils in vitro. Furthermore, deletion of capsule biosynthesis genes heightened the association of S. Typhi with neutrophils in vivo through a C5aR-dependent mechanism. Collectively, these data suggest that expression of the virulence-associated (Vi) capsular polysaccharide of S. Typhi obstructs bacterial-guided neutrophil chemotaxis. PMID:25101794

  9. Clinical and veterinary isolates of Salmonella enterica serovar Enteritidis defective in lipopolysaccharide O-chain polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guard-Petter, J.; Parker, C.T.; Asokan, K.

    1999-05-01

    Twelve human and chicken isolates of Salmonella enterica serovar Enteritidis belonging to phage types 4, 8, 13a, and 23 were characterized for variability in lipopolysaccharide (LPS) composition. Isolates were differentiated into two groups, i.e., those that lacked immunoreactive O-chain, termed rough isolates, and those that had immunoreactive O-chain, termed smooth isolates. Isolates within these groups could be further differentiated by LPS compositional differences as detected by gel electrophoresis and gas liquid chromatography of samples extracted with water, which yielded significantly more LPS in comparison to phenol-chloroform extraction. The rough isolates were of two types, the O-antigen synthesis mutants and themore » O-antigen polymerization (wzy) mutants. Smooth isolates were also of two types, one producing low-molecular-weight (LMW) LPS and the other producing high-molecular-weight (HMW) LPS. To determine the genetic basis for the O-chain variability of the smooth isolates, the authors analyzed the effects of a null mutation in the O-chain length determinant gene, wzz (cld) of serovar Typhimurium. This mutation results in a loss of HMW LPS; however, the LMW LPS of this mutant was longer and more glucosylated than that from clinical isolates of serovar Enteritidis. Cluster analysis of these data and of those from two previously characterized isogenic strains of serovar Enteritidis that had different virulence attributes indicated that glucosylation of HMW LPS (via oafR function) is variable and results in two types of HMW structures, one that is highly glucosylated and one that is minimally glucosylated. These results strongly indicate that naturally occurring variability in wzy, wzz, and oafR function can be used to subtype isolates of serovar Enteritidis during epidemiological investigations.« less

  10. Salmonella enterica Serovar Enteritidis, England and Wales, 1945–2011

    PubMed Central

    Lane, Christopher R.; LeBaigue, Susan; Esan, Oluwaseun B.; Awofisyo, Adedoyin A.; Adams, Natalie L.; Fisher, Ian S.T.; Grant, Kathie A.; Peters, Tansy M.; Larkin, Lesley; Davies, Robert H.

    2014-01-01

    In England and Wales, the emergence of Salmonella enterica serovar Enteritidis resulted in the largest and most persistent epidemic of foodborne infection attributable to a single subtype of any pathogen since systematic national microbiological surveillance was established. We reviewed 67 years of surveillance data to examine the features, underlying causes, and overall effects of S. enterica ser. Enteritidis. The epidemic was associated with the consumption of contaminated chicken meat and eggs, and a decline in the number of infections began after the adoption of vaccination and other measures in production and distribution of chicken meat and eggs. We estimate that >525,000 persons became ill during the course of the epidemic, which caused a total of 6,750,000 days of illness, 27,000 hospitalizations, and 2,000 deaths. Measures undertaken to control the epidemic have resulted in a major reduction in foodborne disease in England and Wales. PMID:24960614

  11. Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers.

    PubMed Central

    Selander, R K; Beltran, P; Smith, N H; Helmuth, R; Rubin, F A; Kopecko, D J; Ferris, K; Tall, B D; Cravioto, A; Musser, J M

    1990-01-01

    Multilocus enzyme electrophoresis was employed to measure chromosomal genotypic diversity and evolutionary relationships among 761 isolates of the serovars Salmonella typhi, S. paratyphi A, S. paratyphi B, S. paratyphi C, and S. sendai, which are human-adapted agents of enteric fever, and S. miami and S. java, which are serotypically similar to S. sendai and S. paratyphi B, respectively, but cause gastroenteritis in both humans and animals. To determine the phylogenetic positions of the clones of these forms within the context of the salmonellae of subspecies I, comparative data for 22 other common serovars were utilized. Except for S. paratyphi A and S. sendai, the analysis revealed no close phylogenetic relationships among clones of different human-adapted serovars, which implies convergence in host adaptation and virulence factors. Clones of S. miami are not allied with those of S. sendai or S. paratyphi A, being, instead, closely related to strains of S. panama. Clones of S. paratyphi B and S. java belong to a large phylogenetic complex that includes clones of S. typhimurium, S. heidelberg, S. saintpaul, and S. muenchen. Most strains of S. paratyphi B belong to a globally distributed clone that is highly polymorphic in biotype, bacteriophage type, and several other characters, whereas strains of S. java represent seven diverse lineages. The flagellar monophasic forms of S. java are genotypically more similar to clones of S. typhimurium than to other clones of S. java or S. paratyphi B. Clones of S. paratyphi C are related to those of S. choleraesuis. DNA probing with a segment of the viaB region specific for the Vi capsular antigen genes indicated that the frequent failure of isolates of S. paratyphi C to express Vi antigen is almost entirely attributable to regulatory processes rather than to an absence of the structural determinant genes themselves. Two clones of S. typhisuis are related to those of S. choleraesuis and S. paratyphi C, but a third clone is not

  12. Direct ROS scavenging activity of CueP from Salmonella enterica serovar Typhimurium.

    PubMed

    Yoon, Bo-Young; Yeom, Ji-Hyun; Kim, Jin-Sik; Um, Si-Hyeon; Jo, Inseong; Lee, Kangseok; Kim, Yong-Hak; Ha, Nam-Chul

    2014-02-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that has evolved to survive in the phagosome of macrophages. The periplasmic copper-binding protein CueP was initially known to confer copper resistance to S. Typhimurium. Crystal structure and biochemical studies on CueP revealed a putative copper binding site surrounded by the conserved cysteine and histidine residues. A recent study reported that CueP supplies copper ions to periplasmic Cu, Zn-superoxide dismutase (SodCII) at a low copper concentration and thus enables the sustained SodCII activity in the periplasm. In this study, we investigated the role of CueP in copper resistance at a high copper concentration. We observed that the survival of a cueP-deleted strain of Salmonella in macrophage phagosome was significantly reduced. Subsequent biochemical experiments revealed that CueP specifically mediates the reduction of copper ion using electrons released during the formation of the disulfide bond. We observed that the copper ion-mediated Fenton reaction in the presence of hydrogen peroxide was blocked by CueP. This study provides insight into how CueP confers copper resistance to S. Typhimurium in copper-rich environments such as the phagosome of macrophages.

  13. A Phylogenetic and Phenotypic Analysis of Salmonella enterica Serovar Weltevreden, an Emerging Agent of Diarrheal Disease in Tropical Regions

    PubMed Central

    Makendi, Carine; Page, Andrew J.; Wren, Brendan W.; Le Thi Phuong, Tu; Clare, Simon; Hale, Christine; Goulding, David; Klemm, Elizabeth J.; Pickard, Derek; Okoro, Chinyere; Hunt, Martin; Thompson, Corinne N.; Phu Huong Lan, Nguyen; Tran Do Hoang, Nhu; Thwaites, Guy E.; Le Hello, Simon; Brisabois, Anne; Weill, François-Xavier; Baker, Stephen; Dougan, Gordon

    2016-01-01

    Salmonella enterica serovar Weltevreden (S. Weltevreden) is an emerging cause of diarrheal and invasive disease in humans residing in tropical regions. Despite the regional and international emergence of this Salmonella serovar, relatively little is known about its genetic diversity, genomics or virulence potential in model systems. Here we used whole genome sequencing and bioinformatics analyses to define the phylogenetic structure of a diverse global selection of S. Weltevreden. Phylogenetic analysis of more than 100 isolates demonstrated that the population of S. Weltevreden can be segregated into two main phylogenetic clusters, one associated predominantly with continental Southeast Asia and the other more internationally dispersed. Subcluster analysis suggested the local evolution of S. Weltevreden within specific geographical regions. Four of the isolates were sequenced using long read sequencing to produce high quality reference genomes. Phenotypic analysis in Hep-2 cells and in a murine infection model indicated that S. Weltevreden were significantly attenuated in these models compared to the classical S. Typhimurium reference strain SL1344. Our work outlines novel insights into this important emerging pathogen and provides a baseline understanding for future research studies. PMID:26867150

  14. Efficacy of Pulsed-Field Gel Electrophoresis and Repetitive Element Sequence-Based PCR in Typing of Salmonella Isolates from Assam, India.

    PubMed

    Gogoi, Purnima; Borah, Probodh; Hussain, Iftikar; Das, Leena; Hazarika, Girin; Tamuly, Shantanu; Barkalita, Luit Moni

    2018-05-01

    A total of 12 Salmonella isolates belonging to different serovars, viz , Salmonella enterica serovar Enteritidis ( n = 4), Salmonella enterica serovar Weltevreden ( n = 4), Salmonella enterica serovar Newport ( n = 1), Salmonella enterica serovar Litchifield ( n = 1), and untypeable strains ( n = 2) were isolated from 332 diarrheic fecal samples collected from animals, birds, and humans. Of the two molecular typing methods applied, viz , repetitive element sequence-based PCR (REP-PCR) and pulsed-field gel electrophoresis (PFGE), PFGE could clearly differentiate the strains belonging to different serovars as well as differentiate between strains of the same serovar with respect to their source of isolation, whereas REP-PCR could not differentiate between strains of the same serovar. Thus, it can be suggested that PFGE is more useful and appropriate for molecular typing of Salmonella isolates during epidemiological investigations than REP-PCR. Copyright © 2018 American Society for Microbiology.

  15. Respiratory Hydrogen Use by Salmonella enterica Serovar Typhimurium Is Essential for Virulence

    PubMed Central

    Maier, R. J.; Olczak, A.; Maier, S.; Soni, S.; Gunn, J.

    2004-01-01

    Based on available annotated gene sequence information, the enteric pathogen salmonella, like other enteric bacteria, contains three putative membrane-associated H2-using hydrogenase enzymes. These enzymes split molecular H2, releasing low-potential electrons that are used to reduce quinone or heme-containing components of the respiratory chain. Here we show that each of the three distinct membrane-associated hydrogenases of Salmonella enterica serovar Typhimurium is coupled to a respiratory pathway that uses oxygen as the terminal electron acceptor. Cells grown in a blood-based medium expressed four times the amount of hydrogenase (H2 oxidation) activity that cells grown on Luria Bertani medium did. Cells suspended in phosphate-buffered saline consumed 2 mol of H2 per mol of O2 used in the H2-O2 respiratory pathway, and the activity was inhibited by the respiration inhibitor cyanide. Molecular hydrogen levels averaging over 40 μM were measured in organs (i.e., livers and spleens) of live mice, and levels within the intestinal tract (the presumed origin of the gas) were four times greater than this. The half-saturation affinity of S. enterica serovar Typhimurium for H2 is only 2.1 μM, so it is expected that H2-utilizing hydrogenase enzymes are saturated with the reducing substrate in vivo. All three hydrogenase enzymes contribute to the virulence of the bacterium in a typhoid fever-mouse model, based on results from strains with mutations in each of the three hydrogenase genes. The introduced mutations are nonpolar, and growth of the mutant strains was like that of the parent strain. The combined removal of all three hydrogenases resulted in a strain that is avirulent and (in contrast to the parent strain) one that is unable to invade liver or spleen tissue. The introduction of one of the hydrogenase genes into the triple mutant strain on a low-copy-number plasmid resulted in a strain that was able to both oxidize H2 and cause morbidity in mice within 11 days of

  16. Respiratory hydrogen use by Salmonella enterica serovar Typhimurium is essential for virulence.

    PubMed

    Maier, R J; Olczak, A; Maier, S; Soni, S; Gunn, J

    2004-11-01

    Based on available annotated gene sequence information, the enteric pathogen salmonella, like other enteric bacteria, contains three putative membrane-associated H2-using hydrogenase enzymes. These enzymes split molecular H2, releasing low-potential electrons that are used to reduce quinone or heme-containing components of the respiratory chain. Here we show that each of the three distinct membrane-associated hydrogenases of Salmonella enterica serovar Typhimurium is coupled to a respiratory pathway that uses oxygen as the terminal electron acceptor. Cells grown in a blood-based medium expressed four times the amount of hydrogenase (H2 oxidation) activity that cells grown on Luria Bertani medium did. Cells suspended in phosphate-buffered saline consumed 2 mol of H2 per mol of O2 used in the H2-O2 respiratory pathway, and the activity was inhibited by the respiration inhibitor cyanide. Molecular hydrogen levels averaging over 40 microM were measured in organs (i.e., livers and spleens) of live mice, and levels within the intestinal tract (the presumed origin of the gas) were four times greater than this. The half-saturation affinity of S. enterica serovar Typhimurium for H2 is only 2.1 microM, so it is expected that H2-utilizing hydrogenase enzymes are saturated with the reducing substrate in vivo. All three hydrogenase enzymes contribute to the virulence of the bacterium in a typhoid fever-mouse model, based on results from strains with mutations in each of the three hydrogenase genes. The introduced mutations are nonpolar, and growth of the mutant strains was like that of the parent strain. The combined removal of all three hydrogenases resulted in a strain that is avirulent and (in contrast to the parent strain) one that is unable to invade liver or spleen tissue. The introduction of one of the hydrogenase genes into the triple mutant strain on a low-copy-number plasmid resulted in a strain that was able to both oxidize H2 and cause morbidity in mice within 11

  17. Polyamines are essential for virulence in Salmonella enterica serovar Gallinarum despite evolutionary decay of polyamine biosynthesis genes.

    PubMed

    Schroll, Casper; Christensen, Jens P; Christensen, Henrik; Pors, Susanne E; Thorndahl, Lotte; Jensen, Peter R; Olsen, John E; Jelsbak, Lotte

    2014-05-14

    Serovars of Salmonella enterica exhibit different host-specificities where some have broad host-ranges and others, like S. Gallinarum and S. Typhi, are host-specific for poultry and humans, respectively. With the recent availability of whole genome sequences it has been reported that host-specificity coincides with accumulation of pseudogenes, indicating adaptation of host-restricted serovars to their narrow niches. Polyamines are small cationic amines and in Salmonella they can be synthesized through two alternative pathways directly from l-ornithine to putrescine and from l-arginine via agmatine to putrescine. The first pathway is not active in S. Gallinarum and S. Typhi, and this prompted us to investigate the importance of polyamines for virulence in S. Gallinarum. Bioinformatic analysis of all sequenced genomes of Salmonella revealed that pseudogene formation of the speC gene was exclusive for S. Typhi and S. Gallinarum and happened through independent events. The remaining polyamine biosynthesis pathway was found to be essential for oral infection with S. Gallinarum since single and double mutants in speB and speE, encoding the pathways from agmatine to putrescine and from putrescine to spermidine, were attenuated. In contrast, speB was dispensable after intraperitoneal challenge, suggesting that putrescine was less important for the systemic phase of the disease. In support of this hypothesis, a ΔspeE;ΔpotCD mutant, unable to synthesize and import spermidine, but with retained ability to import and synthesize putrescine, was attenuated after intraperitoneal infection. We therefore conclude that polyamines are essential for virulence of S. Gallinarum. Furthermore, our results point to distinct roles for putrescine and spermidine during systemic infection. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Multi-laboratory validation study of multilocus variable-number tandem repeat analysis (MLVA) for Salmonella enterica serovar Enteritidis, 2015

    PubMed Central

    Peters, Tansy; Bertrand, Sophie; Björkman, Jonas T; Brandal, Lin T; Brown, Derek J; Erdõsi, Tímea; Heck, Max; Ibrahem, Salha; Johansson, Karin; Kornschober, Christian; Kotila, Saara M; Le Hello, Simon; Lienemann, Taru; Mattheus, Wesley; Nielsen, Eva Møller; Ragimbeau, Catherine; Rumore, Jillian; Sabol, Ashley; Torpdahl, Mia; Trees, Eija; Tuohy, Alma; de Pinna, Elizabeth

    2017-01-01

    Multilocus variable-number tandem repeat analysis (MLVA) is a rapid and reproducible typing method that is an important tool for investigation, as well as detection, of national and multinational outbreaks of a range of food-borne pathogens. Salmonella enterica serovar Enteritidis is the most common Salmonella serovar associated with human salmonellosis in the European Union/European Economic Area and North America. Fourteen laboratories from 13 countries in Europe and North America participated in a validation study for MLVA of S. Enteritidis targeting five loci. Following normalisation of fragment sizes using a set of reference strains, a blinded set of 24 strains with known allele sizes was analysed by each participant. The S. Enteritidis 5-loci MLVA protocol was shown to produce internationally comparable results as more than 90% of the participants reported less than 5% discrepant MLVA profiles. All 14 participating laboratories performed well, even those where experience with this typing method was limited. The raw fragment length data were consistent throughout, and the inter-laboratory validation helped to standardise the conversion of raw data to repeat numbers with at least two countries updating their internal procedures. However, differences in assigned MLVA profiles remain between well-established protocols and should be taken into account when exchanging data. PMID:28277220

  19. Multi-laboratory validation study of multilocus variable-number tandem repeat analysis (MLVA) for Salmonella enterica serovar Enteritidis, 2015.

    PubMed

    Peters, Tansy; Bertrand, Sophie; Björkman, Jonas T; Brandal, Lin T; Brown, Derek J; Erdõsi, Tímea; Heck, Max; Ibrahem, Salha; Johansson, Karin; Kornschober, Christian; Kotila, Saara M; Le Hello, Simon; Lienemann, Taru; Mattheus, Wesley; Nielsen, Eva Møller; Ragimbeau, Catherine; Rumore, Jillian; Sabol, Ashley; Torpdahl, Mia; Trees, Eija; Tuohy, Alma; de Pinna, Elizabeth

    2017-03-02

    Multilocus variable-number tandem repeat analysis (MLVA) is a rapid and reproducible typing method that is an important tool for investigation, as well as detection, of national and multinational outbreaks of a range of food-borne pathogens. Salmonella enterica serovar Enteritidis is the most common Salmonella serovar associated with human salmonellosis in the European Union/European Economic Area and North America. Fourteen laboratories from 13 countries in Europe and North America participated in a validation study for MLVA of S. Enteritidis targeting five loci. Following normalisation of fragment sizes using a set of reference strains, a blinded set of 24 strains with known allele sizes was analysed by each participant. The S. Enteritidis 5-loci MLVA protocol was shown to produce internationally comparable results as more than 90% of the participants reported less than 5% discrepant MLVA profiles. All 14 participating laboratories performed well, even those where experience with this typing method was limited. The raw fragment length data were consistent throughout, and the inter-laboratory validation helped to standardise the conversion of raw data to repeat numbers with at least two countries updating their internal procedures. However, differences in assigned MLVA profiles remain between well-established protocols and should be taken into account when exchanging data. This article is copyright of The Authors, 2017.

  20. Diversity of pulsed-field gel electrophoresis pulsotypes, serovars, and antibiotic resistance among Salmonella isolates from wild amphibians and reptiles in the California Central Coast.

    PubMed

    Gorski, Lisa; Jay-Russell, Michele T; Liang, Anita S; Walker, Samarpita; Bengson, Yingjia; Govoni, Jessica; Mandrell, Robert E

    2013-06-01

    A survey of cold-blooded vertebrates and associated surface waters in a produce-growing region on the Central California Coast was done between May and September 2011 to determine the diversity of Salmonella. Samples from 460 amphibians and reptiles and 119 water samples were collected and cultured for Salmonella. Animals sampled were frogs (n=331), lizards (n=59), newts (n=5), salamanders (n=6), snakes (n=39), and toads (n=20). Salmonella was isolated from 37 individual animals, including frogs, lizards, snakes, and toads. Snakes were the most likely to contain Salmonella, with 59% testing positive followed by 15.3% of lizards, 5% of toads, and 1.2% of frogs. Fifteen water samples (12.6%) were positive. Twenty-two different serovars were identified, and the majority of isolates were S. enterica subsp. IIIb, with subsp. I, II, and IIIa also found. The serovar isolated most frequently was S. enterica subsp. IIIb 16:z₁₀:e,n,x,z₁₅, from snakes and frogs in five different locations. S. enterica subsp. I serovar Typhimurium and the monophasic I 6,8:d:- were isolated from water, and subspecies I Duisburg and its variants were found in animals and water. Some samples contained more than one type of Salmonella. Analysis of pulsed-field gel electrophoresis pulsotypes indicated that some strains persisted in animals and water collected from the same location. Sixty-six isolates displayed antibiotic resistance, with 27 isolates resistant to more than one antibiotic, including a subspecies IIIb isolate from snake having resistance to five different antibiotics. Twenty-three isolates were resistant to more than one class of antibiotic, and six isolates were resistant to three classes. While these subspecies of IIIa and IIIb cause fewer instances of human illness, they may serve as reservoirs of antibiotic resistance, determinants in the environment, and be sources of contamination of leafy greens associated with product recalls.

  1. [Study on simultaneous contamination of Salmonella and Campylobacter in retail chicken carcasses in Beijing].

    PubMed

    Hu, Yujie; Wang, Yeru; Li, Fengqin

    2015-01-01

    To elucidate the simultaneous contamination of Salmonella and Campylobacter in retail chicken carcasses in Beijing and to carry out the serological typing of all Salmonella isolates as well as the identification of Campylobacter at the species level. A total of 33 chicken carcasses were collected from Beijing supermarkets and farm's trade markets from May to July. All samples were enumerated for Salmonella and Campylobacter. All Salmonella isolates obtained were further serotyped and Campylobacter were identified at the species level. Totally, 19 samples (19/33, 57.6%) and 5 samples (5/33, 15.2%) were positive for Salmonella with the mean level of 119.4 MPN/100g and Campylobacter with the mean level of 58.6 CFU/g, respectively. In terms of Salmonella, 166 isolates with 14 serotypes were obtained. Salmonella Enteritidis was the most common serovar detected followed by S. Indiana. Serovar diversity was very high in all Salmonella isolates and various Salmonella serovars were detected in the same chicken carcass. A total of 11 serovar distribution spectrums were found and S. Enteritidis in combination with S. Indiana was the predominant. The retail chicken carcasses in Beijing collected from May to July were heavily contaminated by Salmonella with high serovar diversity.

  2. PREVALENCE OF SALMONELLA IN CAPTIVE REPTILES FROM CROATIA.

    PubMed

    Lukac, Maja; Pedersen, Karl; Prukner-Radovcic, Estella

    2015-06-01

    Salmonellosis transmitted by pet reptiles is an increasing public health issue worldwide. The aim of this study was to investigate the prevalence of Salmonella strains from captive reptiles in Croatia. From November 2009 to November 2011 a total of 292 skin, pharyngeal, cloacal, and fecal samples from 200 apparently healthy reptiles were tested for Salmonella excretions by bacteriologic culture and serotyping. These 200 individual reptiles included 31 lizards, 79 chelonians, and 90 snakes belonging to private owners or housed at the Zagreb Zoo, Croatia. Salmonella was detected in a total of 13% of the animals, among them 48.4% lizards, 8.9% snakes, and 3.8% turtles. Representatives of five of the six Salmonella enterica subspecies were identified with the following proportions in the total number of isolates: Salmonella enterica enterica 34.6%, Salmonella enterica houtenae 23.1%, Salmonella enterica arizonae 23.1%, Salmonella enterica diarizonae 15.4%, and Salmonella enterica salamae 3.8%. The 14 different serovars isolated included several rarely occurring serovars such as Salmonella Apapa, Salmonella Halle, Salmonella Kisarawe, and Salmonella Potengi. These findings confirm that the prevalence of Salmonella is considerable in captive reptiles in Croatia, indicating that these animals may harbor serovars not commonly seen in veterinary or human microbiologic practice. This should be addressed in the prevention and diagnostics of human reptile-transmitted infections.

  3. Isolation of Salmonella spp. in cattle egrets (Bubulcus ibis) from Fernando de Noronha Archipelago, Brazil.

    PubMed

    Silva, Marcio A; Fernandes, Érika F S T; Santana, Sandra C; Marvulo, Maria Fernanda V; Barros, Mércia R; Vilela, Sineide M O; Reis, Eliane M F; Mota, Rinaldo A; Silva, Jean C R

    2018-03-03

    The growth of the population of cattle egrets (Bubulcus ibis) in the archipelago of Fernando de Noronha constitutes a threat to public health and biological diversity because of their competition with and predation on native species and the possibility of transmission of pathogens to human beings, livestock and native wildlife. The aim here was to search for, isolate and identify serovars of Salmonella in clinically healthy local cattle egrets. Cloacal swabs were obtained from 456 clinically healthy cattle egrets of both sexes and a variety of ages. The swabs were divided into 51 pools. Six of these (11.7%) presented four serovars of Salmonella enterica subspecies enterica: Salmonella serovar Typhimurium; Salmonella serovar Newport; Salmonella serovar Duisburg; and Salmonella serovar Zega. One sample was identified as S. enterica subspecies enterica O16:y:-. Results in this study suggest that cattle egrets may be reservoirs of this agent on Fernando de Noronha and represent a risk to public health and biological diversity. Copyright © 2018. Published by Elsevier Editora Ltda.

  4. Serovars, bacteriophage types and antimicrobial sensitivities associated with salmonellosis in dogs in the UK (1954-2012).

    PubMed

    Philbey, A W; Mather, H A; Gibbons, J F; Thompson, H; Taylor, D J; Coia, J E

    2014-01-25

    Serovars and bacteriophage (phage) types were determined for 442 isolates of Salmonella enterica from dogs in the UK submitted to the Scottish Salmonella Reference Laboratory from 1954 to 2012. The most frequent serovars were Salmonella Typhimurium (196 isolates; 44.3 per cent), Dublin (40 isolates; 9.0 per cent), Enteritidis (28 isolates; 6.3 per cent), Montevideo (19 isolates; 4.3 per cent), Virchow (10 isolates; 2.3 per cent), Heidelberg (8 isolates; 1.8 per cent) and Derby (8 isolates; 1.8 per cent), along with 55 other recognised serovars among 127 other isolates, and six incompletely classified isolates. Serovars were frequently represented by strains commonly associated with poultry, cattle or pigs and their products. Among 196 Salmonella Typhimurium isolates from dogs, the most frequent phage types (definitive types) were the multiple antimicrobial-resistant strains DT104 (62 isolates), DT204c (18 isolates) and DT193 (8 isolates), along with antimicrobial sensitive wild finch strains DT40 (13 isolates) and DT56 variant (8 isolates). Eleven of 28 isolates of Salmonella Enteritidis were phage type 4. S enterica was frequently recovered from faecal or intestinal samples of dogs with diarrhoea, although many dogs had concurrent infection with other enteric pathogens. Salmonella Dublin was recovered from the brain and/or cerebrospinal fluid of two dogs with meningoencephalitis. Salmonella Kedougou was isolated from the joint fluid of a dog with septic arthritis. Salmonella Typhimurium and Salmonella Dublin were each recovered from the vaginas of bitches that had aborted. Isolates of Salmonella Enteritidis phage types 1, 4 and 8, Salmonella Typhimurium DT104, Salmonella Dublin and Salmonella Indiana were isolated from clinically healthy dogs in households where the same strains were recovered from human beings with diarrhoea. The pattern ampicillin-chloramphenicol-spectinomycin-streptomycin-sulfamethoxazole-tetracycline (ACSpSSuT) was the most frequent resistance

  5. Comparison of Salmonella enterica Serovars Typhi and Typhimurium Reveals Typhoidal Serovar-Specific Responses to Bile

    PubMed Central

    Johnson, Rebecca; Ravenhall, Matt; Pickard, Derek; Dougan, Gordon; Byrne, Alexander

    2017-01-01

    ABSTRACT Salmonella enterica serovars Typhi and Typhimurium cause typhoid fever and gastroenteritis, respectively. A unique feature of typhoid infection is asymptomatic carriage within the gallbladder, which is linked with S. Typhi transmission. Despite this, S. Typhi responses to bile have been poorly studied. Transcriptome sequencing (RNA-Seq) of S. Typhi Ty2 and a clinical S. Typhi isolate belonging to the globally dominant H58 lineage (strain 129-0238), as well as S. Typhimurium 14028, revealed that 249, 389, and 453 genes, respectively, were differentially expressed in the presence of 3% bile compared to control cultures lacking bile. fad genes, the actP-acs operon, and putative sialic acid uptake and metabolism genes (t1787 to t1790) were upregulated in all strains following bile exposure, which may represent adaptation to the small intestine environment. Genes within the Salmonella pathogenicity island 1 (SPI-1), those encoding a type IIII secretion system (T3SS), and motility genes were significantly upregulated in both S. Typhi strains in bile but downregulated in S. Typhimurium. Western blots of the SPI-1 proteins SipC, SipD, SopB, and SopE validated the gene expression data. Consistent with this, bile significantly increased S. Typhi HeLa cell invasion, while S. Typhimurium invasion was significantly repressed. Protein stability assays demonstrated that in S. Typhi the half-life of HilD, the dominant regulator of SPI-1, is three times longer in the presence of bile; this increase in stability was independent of the acetyltransferase Pat. Overall, we found that S. Typhi exhibits a specific response to bile, especially with regard to virulence gene expression, which could impact pathogenesis and transmission. PMID:29229736

  6. A pulsed field gel electrophoresis (PFGE) study that suggests a major world-wide clone of Salmonella enterica serovar Enteritidis.

    PubMed

    Pang, Jen-Chieh; Chiu, Tsai-Hsin; Helmuth, Reiner; Schroeter, Andreas; Guerra, Beatriz; Tsen, Hau-Yang

    2007-05-30

    Since human infections by Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) have been increasing world-wide over the past years and epidemiological studies have implicated the consumption of meat, poultry, eggs and egg products, elucidation of the predominant subtypes for this Salmonella spp. is important. In this study, 107 poultry and food isolates of Salmonella Enteritidis obtained from Germany were analyzed by pulsed field gel electrophoresis (PFGE), and the subtypes were compared with those of the 124 human isolates obtained in Taiwan. Results showed that for these 107 poultry and food isolates, when XbaI, SpeI and NotI were used for chromosomal DNA digestion followed by PFGE analysis, a total of 19, 20 and 19 PFGE patterns, respectively, were identified. Of them, 51 (47.7%), 52 (48.6%) and 42 (39.3%) strains belong to a single pattern of X3, S3 and N3, respectively, and 34 strains belong to a pattern combination of X3S3N3, which was the major subtype. When PFGE patterns of these 107 German isolates were compared with those of the 124 human isolates obtained in Taiwan, pattern combination of X3S3N3 was found as the most common pattern shared by isolates from both areas. PT4 is a major phage type for German and Taiwan isolates. Although most of the X3S3N3 strains are of this phage type, some strains of other PFGE patterns are also of this phage type. Since strains used in this study were unrelated, i.e., they were isolated from different origins in areas geographically far apart from each other, the PFGE study suggests a major world-wide clone of S. enterica serovar Enteritidis.

  7. SadA, a trimeric autotransporter from Salmonella enterica serovar Typhimurium, can promote biofilm formation and provides limited protection against infection.

    PubMed

    Raghunathan, Dhaarini; Wells, Timothy J; Morris, Faye C; Shaw, Robert K; Bobat, Saeeda; Peters, Sarah E; Paterson, Gavin K; Jensen, Karina Tveen; Leyton, Denisse L; Blair, Jessica M A; Browning, Douglas F; Pravin, John; Flores-Langarica, Adriana; Hitchcock, Jessica R; Moraes, Claudia T P; Piazza, Roxane M F; Maskell, Duncan J; Webber, Mark A; May, Robin C; MacLennan, Calman A; Piddock, Laura J; Cunningham, Adam F; Henderson, Ian R

    2011-11-01

    Salmonella enterica is a major cause of morbidity worldwide and mortality in children and immunocompromised individuals in sub-Saharan Africa. Outer membrane proteins of Salmonella are of significance because they are at the interface between the pathogen and the host, they can contribute to adherence, colonization, and virulence, and they are frequently targets of antibody-mediated immunity. In this study, the properties of SadA, a purported trimeric autotransporter adhesin of Salmonella enterica serovar Typhimurium, were examined. We demonstrated that SadA is exposed on the Salmonella cell surface in vitro and in vivo during infection of mice. Expression of SadA resulted in cell aggregation, biofilm formation, and increased adhesion to human intestinal Caco-2 epithelial cells. Immunization of mice with folded, full-length, purified SadA elicited an IgG response which provided limited protection against bacterial challenge. When anti-SadA IgG titers were enhanced by administering alum-precipitated protein, a modest additional protection was afforded. Therefore, despite SadA having pleiotropic functions, it is not a dominant, protective antigen for antibody-mediated protection against Salmonella.

  8. Identification of Salmonella enterica Serovar Typhimurium Genes Regulated during Biofilm Formation on Cholesterol Gallstone Surfaces

    PubMed Central

    Gonzalez-Escobedo, Geoffrey

    2013-01-01

    Salmonella spp. are able to form biofilms on abiotic and biotic surfaces. In vivo studies in our laboratory have shown that Salmonella can form biofilms on the surfaces of cholesterol gallstones in the gallbladders of mice and human carriers. Biofilm formation on gallstones has been demonstrated to be a mechanism of persistence. The purpose of this work was to identify and evaluate Salmonella sp. cholesterol-dependent biofilm factors. Differential gene expression analysis between biofilms on glass or cholesterol-coated surfaces and subsequent quantitative real-time PCR (qRT-PCR) revealed that type 1 fimbria structural genes and a gene encoding a putative outer membrane protein (ycfR) were specifically upregulated in Salmonella enterica serovar Typhimurium biofilms grown on cholesterol-coated surfaces. Spatiotemporal expression of ycfR and FimA verified their regulation during biofilm development on cholesterol-coated surfaces. Surprisingly, confocal and scanning electron microscopy demonstrated that a mutant of type 1 fimbria structural genes (ΔfimAICDHF) and a ycfR mutant showed increased biofilm formation on cholesterol-coated surfaces. In vivo experiments using Nramp1+/+ mice harboring gallstones showed that only the ΔycfR mutant formed extensive biofilms on mouse gallstones at 7 and 21 days postinfection; ΔfimAICDHF was not observed on gallstone surfaces after the 7-day-postinfection time point. These data suggest that in Salmonella spp., wild-type type 1 fimbriae are important for attachment to and/or persistence on gallstones at later points of chronic infection, whereas YcfR may represent a specific potential natural inhibitor of initial biofilm formation on gallstones. PMID:23897604

  9. The Salmonella enterica serovar Typhimurium QseB Response Regulator Negatively Regulates Bacterial Motility and Swine Colonization in the Absence of the QseC Sensor Kinase

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar Typhimurium (S. Typhimurium) responds to the catecholamine, norepinephrine by increasing bacterial growth and enhancing motility. In this study, iron with or without the siderophore, ferrioxamine E also enhanced bacterial motility. Iron-enhanced motility was growth-rate ...

  10. The Use of a Combined Bioinformatics Approach to Locate Antibiotic Resistance Genes on Plasmids From Whole Genome Sequences of Salmonella enterica Serovars From Humans in Ghana.

    PubMed

    Kudirkiene, Egle; Andoh, Linda A; Ahmed, Shahana; Herrero-Fresno, Ana; Dalsgaard, Anders; Obiri-Danso, Kwasi; Olsen, John E

    2018-01-01

    In the current study, we identified plasmids carrying antimicrobial resistance genes in draft whole genome sequences of 16 selected Salmonella enterica isolates representing six different serovars from humans in Ghana. The plasmids and the location of resistance genes in the genomes were predicted using a combination of PlasmidFinder, ResFinder, plasmidSPAdes and BLAST genomic analysis tools. Subsequently, S1-PFGE was employed for analysis of plasmid profiles. Whole genome sequencing confirmed the presence of antimicrobial resistance genes in Salmonella isolates showing multidrug resistance phenotypically. ESBL, either bla TEM52-B or bla CTX-M15 were present in two cephalosporin resistant isolates of S . Virchow and S . Poona, respectively. The systematic genome analysis revealed the presence of different plasmids in different serovars, with or without insertion of antimicrobial resistance genes. In S . Enteritidis, resistance genes were carried predominantly on plasmids of IncN type, in S . Typhimurium on plasmids of IncFII(S)/IncFIB(S)/IncQ1 type. In S . Virchow and in S . Poona, resistance genes were detected on plasmids of IncX1 and TrfA/IncHI2/IncHI2A type, respectively. The latter two plasmids were described for the first time in these serovars. The combination of genomic analytical tools allowed nearly full mapping of the resistance plasmids in all Salmonella strains analyzed. The results suggest that the improved analytical approach used in the current study may be used to identify plasmids that are specifically associated with resistance phenotypes in whole genome sequences. Such knowledge would allow the development of rapid multidrug resistance tracking tools in Salmonella populations using WGS.

  11. Novel insertion sequence- and transposon-mediated genetic rearrangements in genomic island SGI1 of Salmonella enterica serovar Kentucky.

    PubMed

    Doublet, Benoît; Praud, Karine; Bertrand, Sophie; Collard, Jean-Marc; Weill, François-Xavier; Cloeckaert, Axel

    2008-10-01

    Salmonella genomic island 1 (SGI1) is an integrative mobilizable element that harbors a multidrug resistance (MDR) gene cluster. Since its identification in epidemic Salmonella enterica serovar Typhimurium DT104 strains, variant SGI1 MDR gene clusters conferring different MDR phenotypes have been identified in several S. enterica serovars and classified as SGI1-A to -O. A study was undertaken to characterize SGI1 from serovar Kentucky strains isolated from travelers returning from Africa. Several strains tested were found to contain the partially characterized variant SGI1-K, recently described in a serovar Kentucky strain isolated in Australia. This variant contained only one cassette array, aac(3)-Id-aadA7, and an adjacent mercury resistance module. Here, the uncharacterized part of SGI1-K was sequenced. Downstream of the mer module similar to that found in Tn21, a mosaic genetic structure was found, comprising (i) part of Tn1721 containing the tetracycline resistance genes tetR and tet(A); (ii) part of Tn5393 containing the streptomycin resistance genes strAB, IS1133, and a truncated tnpR gene; and (iii) a Tn3-like region containing the tnpR gene and the beta-lactamase bla(TEM-1) gene flanked by two IS26 elements in opposite orientations. The rightmost IS26 element was shown to be inserted into the S044 open reading frame of the SGI1 backbone. This variant MDR region was named SGI1-K1 according to the previously described variant SGI1-K. Other SGI1-K MDR regions due to different IS26 locations, inversion, and partial deletions were characterized and named SGI1-K2 to -K5. Two new SGI1 variants named SGI1-P1 and -P2 contained only the Tn3-like region comprising the beta-lactamase bla(TEM-1) gene flanked by the two IS26 elements inserted into the SGI1 backbone. Three other new variants harbored only one IS26 element inserted in place of the MDR region of SGI1 and were named SGI1-Q1 to -Q3. Thus, in serovar Kentucky, the SGI1 MDR region undergoes recombinational and

  12. TolC is important for bacterial survival and oxidative stress response in Salmonella enterica serovar Choleraesuis in an acidic environment.

    PubMed

    Lee, Jen-Jie; Wu, Ying-Chen; Kuo, Chih-Jung; Hsuan, Shih-Ling; Chen, Ter-Hsin

    2016-09-25

    The outer membrane protein TolC, which is one of the key components of several multidrug efflux pumps, is thought to be involved in various independent systems in Enterobacteriaceae. Since the acidic environment of the stomach is an important protection barrier against foodborne pathogen infections in hosts, we evaluated whether TolC played a role in the acid tolerance of Salmonella enterica serovar Choleraesuis. Comparison of the acid tolerance of the tolC mutant and the parental wild-type strain showed that the absence of TolC limits the ability of Salmonella to sustain life under extreme acidic conditions. Additionally, the mutant exhibited morphological changes during growth in an acidic medium, leading to the conflicting results of cell viability measured by spectrophotometry and colony-forming unit counting. Reverse-transcriptional-PCR analysis indicated that acid-related molecules, apparatus, or enzymes and oxidation-induced factors were significantly affected by the acidic environment in the null-tolC mutant. The elongated cellular morphology was restored by adding antioxidants to the culture medium. Furthermore, we found that increased cellular antioxidative activity provides an overlapping protection against acid killing, demonstrating the complexity of the bacterial acid stress response. Our findings reinforce the multifunctional characteristics of TolC in acid tolerance or oxidative stress resistance and support the correlative protection mechanism between oxygen- and acid-mediated stress responses in Salmonella enterica serovar Choleraesuis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Lack of efflux mediated quinolone resistance in Salmonella enterica serovars Typhi and Paratyphi A

    PubMed Central

    Baucheron, Sylvie; Monchaux, Isabelle; Le Hello, Simon; Weill, François-Xavier; Cloeckaert, Axel

    2014-01-01

    Salmonella enterica serovars Typhi and Paratyphi A isolates from human patients in France displaying different levels of resistance to quinolones or fluoroquinolones were studied for resistance mechanisms to these antimicrobial agents. All resistant isolates carried either single or multiple target gene mutations (i.e., in gyrA, gyrB, or parC) correlating with the resistance levels observed. Active efflux, through upregulation of multipartite efflux systems, has also been previously reported as contributing mechanism for other serovars. Therefore, we investigated also the occurrence of non-target gene mutations in regulatory regions affecting efflux pump expression. However, no mutation was detected in these regions in both Typhi and Paratyphi isolates of this study. Besides, no overexpression of the major efflux systems was observed for these isolates. Nevertheless, a large deletion of 2334 bp was identified in the acrS-acrE region of all S. Typhi strains but which did not affect the resistance phenotype. As being specific to S. Typhi, this deletion could be used for specific molecular detection purposes. In conclusion, the different levels of quinolone or FQ resistance in both S. Typhi and S. Paratyphi A seem to rely only on target modifications. PMID:24478769

  14. Prevalence and antimicrobial resistance pattern of Salmonella in animal feed produced in Namibia.

    PubMed

    Shilangale, Renatus P; Di Giannatale, Elisabetta; Chimwamurombe, Percy M; Kaaya, Godwin P

    2012-01-01

    The occurrence of Salmonella is a global challenge in the public health and food production sectors. Our study investigated the prevalence, serovar and antimicrobial susceptibility of strains of Salmonella serovars isolated from animal feed (meat-and-bone and blood meal) samples from two commercial abattoirs in Namibia. A total of 650 samples (n=650) were examined for the presence of Salmonella. Results showed that 10.9% (n=71) were positive for Salmonella. Of the Salmonella serovars isolated, S. Chester was the most commonly isolated serovar (19.7%), followed by S. Schwarzengrund at 12.7%. From the Salmonella isolates, 19.7% (n=14) were resistant to one or more of the antimicrobials (nalidixic acid, trimethoprim-sulfamethoxazole, sulfisoxazole, streptomycin and/or tetracycline), whereas 80.3% (n=57) were susceptible to all 16 antimicrobials tested. Resistance to sulfisoxazole and the trimethroprimsuflamethoxazole combination were the most common. The resistant isolates belonged to ten different Salmonella serovars. The susceptibility of most of the Salmonella isolated to the antimicrobials tested indicates that anti-microbial resistance is not as common and extensive in Namibia as has been reported in many other countries. It also appears that there is a range of antimicrobials available that are effective in managing Salmonella infections in Namibia. However, there is some evidence that resistance is developing and this will need further monitoring to ensure it does not become a problem.

  15. Clonality and antimicrobial resistance gene profiles of multidrug- resistant Salmonella enterica serovar infantis isolates from four public hospitals in Rio de Janeiro, Brazil.

    PubMed

    Fonseca, E L; Mykytczuk, O L; Asensi, M D; Reis, E M F; Ferraz, L R; Paula, F L; Ng, L K; Rodrigues, D P

    2006-08-01

    In Brazil, Salmonella enterica serovar Infantis resistant to various antimicrobials, including cephalosporins, has been identified as an etiological agent of severe gastroenteritis in hospitalized children since 1994. In this study, 35 serovar Infantis strains, isolated from children admitted to four different Rio de Janeiro, Brazil, hospitals between 1996 and 2001, were characterized by pulsed-field gel electrophoresis (PFGE) and antimicrobial susceptibility testing in order to determine their genetic relatedness and antimicrobial resistance profiles. Thirty-four serovar Infantis strains were resistant to at least two antibiotic classes, and all 35 strains were susceptible to fluoroquinolones, cephamycin, and carbapenem. Extended-spectrum beta-lactamase (ESBL) screening by double-disk diffusion indicated that 32 serovar Infantis strains (91.4%) produced beta-lactamases that were inhibited by clavulanic acid. Antimicrobial resistance gene profiles were determined by PCR for a subset of 11 multidrug-resistant serovar Infantis strains, and putative ESBLs were detected by isoelectric focusing. Ten serovar Infantis strains carried bla(TEM), catI, ant(3")Ia and/or ant(3")Ib, sulI and/or sulII, and tet(D) genes as well as an integron-associated aac(6')-Iq cassette. Eight strains possessed at least four different beta-lactamases with pI profiles that confirmed the presence of both ESBLs and non-ESBLs. Our PFGE profiles indicated that 33 serovar Infantis strains isolated from Rio de Janeiro hospitals came from the same genetic lineage.

  16. Increased efficacy of inactivated vaccine candidates prepared with Salmonella enterica serovar Typhimurium strains of predominant genotypes in ducks.

    PubMed

    Youn, S Y; Kwon, Y K; Song, C S; Lee, H J; Jeong, O M; Choi, B K; Jung, S C; Kang, M S

    2016-08-01

    Salmonella enterica serovar Typhimurium has been a major causative agent of food-borne human disease, mainly due to consumption of contaminated food animal products. In particular, ducks serve as a reservoir of serovar Typhimurium, and are one of the common sources of human infection. To prevent infection of ducks, and therefore minimize human infection, it is critical to control the persistent epidemic strains in ducks. Here, we analyzed the genetic diversity and virulence of serovar Typhimurium isolates from ducks in Korea to identify the predominant strains that might be used as efficient vaccine candidates for ducks. Among the isolates, 2 representative isolates (ST26 and ST76) of predominant genotypes were selected as vaccine strains on the basis of genotypic analysis by pulsed-field gel electrophoresis and DNA microarrays. Two-week-old ducks were then injected intramuscularly with inactivated vaccine candidates prepared using ST26 or ST76 (10(8) cfu/0.5 mL/duck or 10(9) cfu/0.5 mL/duck), and oral challenge with a highly virulent serovar Typhimurium strain (10(9) cfu/0.5 mL/duck) was carried out 2 wk later. Shedding of the challenge strain was significantly decreased in group 2 after vaccination. The antibody levels by enzyme-linked immunosorbent assay in all vaccinated groups were enhanced significantly (P < 0.05) compared to the unvaccinated control group. Overall, vaccination with ST26 or ST76 reduced bacterial shedding and colonization in internal organs, and induced elevated antibody response. In particular, serovar Typhimurium ST26 (10(8) cfu/0.5 mL/duck) was the most effective vaccine candidate, which can provide efficient protection against serovar Typhimurium in ducks with higher effectiveness compared to a commercial vaccine currently used worldwide. © 2016 Poultry Science Association Inc.

  17. Characterization of Salmonella enterica serovar Agona slaughter isolates from the animal arm of the National Antimicrobial Resistance Monitoring System-Enteric Bacteria (NARMS): 1997 through 2003.

    PubMed

    Douris, Aphrodite; Fedorka-Cray, Paula J; Jackson, Charlene R

    2008-03-01

    A total of 499 Salmonella enterica serovar Agona isolates from cattle, swine, chicken, and turkey samples were assayed for antimicrobial susceptibility and subtyped using pulsed-field gel electrophoresis (PFGE). Salmonella Agona isolates exhibited increased resistance to amoxicillin/clavulanic acid, ampicillin, cefoxitin, ceftiofur, cephalothin, and chloramphenicol, and a single isolate was resistant to ceftriaxone. Multiple drug resistance (MDR; resistance >or= 2 antimicrobials) was exhibited in 57% (n=282/499) of the Salmonella Agona isolates and 22% (n=111/499) of these Salmonella Agona isolates were resistant to five or more antimicrobials. PFGE patterns of 482 Salmonella Agona slaughter samples resulted in 165 unique patterns. Cluster analysis indicated that isolates indistinguishable by PFGE appeared to group according to antimicrobial resistance profiles. These data suggest that Salmonella Agona is increasing in prevalence in U.S. cattle presented for slaughter and should be further monitored.

  18. FUNCTIONS EXERTED BY THE VIRULENCE ASSOCIATED TYPE THREE SECRETION SYSTEMS DURING SALMONELLA ENTERICA SEROVAR ENTERITIDIS INFECTION OF CHICKEN OVIDUCT EPITHELIAL CELLS AND MACROPHAGES

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar, Enteritidis (SE) infection of chicken is a major contributing factor to non-typhoidal salmonellosis. The roles of the type three secretion systems (T3SS-1 and T3SS-2) in the pathogenesis of SE infection of chickens are poorly understood. In this study, the functions exer...

  19. Three-dimensional tissue assemblies: novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis

    NASA Technical Reports Server (NTRS)

    Nickerson, C. A.; Goodwin, T. J.; Terlonge, J.; Ott, C. M.; Buchanan, K. L.; Uicker, W. C.; Emami, K.; LeBlanc, C. L.; Ramamurthy, R.; Clarke, M. S.; hide

    2001-01-01

    The lack of readily available experimental systems has limited knowledge pertaining to the development of Salmonella-induced gastroenteritis and diarrheal disease in humans. We used a novel low-shear stress cell culture system developed at the National Aeronautics and Space Administration in conjunction with cultivation of three-dimensional (3-D) aggregates of human intestinal tissue to study the infectivity of Salmonella enterica serovar Typhimurium for human intestinal epithelium. Immunohistochemical characterization and microscopic analysis of 3-D aggregates of the human intestinal epithelial cell line Int-407 revealed that the 3-D cells more accurately modeled human in vivo differentiated tissues than did conventional monolayer cultures of the same cells. Results from infectivity studies showed that Salmonella established infection of the 3-D cells in a much different manner than that observed for monolayers. Following the same time course of infection with Salmonella, 3-D Int-407 cells displayed minimal loss of structural integrity compared to that of Int-407 monolayers. Furthermore, Salmonella exhibited significantly lower abilities to adhere to, invade, and induce apoptosis of 3-D Int-407 cells than it did for infected Int-407 monolayers. Analysis of cytokine expression profiles of 3-D Int-407 cells and monolayers following infection with Salmonella revealed significant differences in expression of interleukin 1alpha (IL-1alpha), IL-1beta, IL-6, IL-1Ra, and tumor necrosis factor alpha mRNAs between the two cultures. In addition, uninfected 3-D Int-407 cells constitutively expressed higher levels of transforming growth factor beta1 mRNA and prostaglandin E2 than did uninfected Int-407 monolayers. By more accurately modeling many aspects of human in vivo tissues, the 3-D intestinal cell model generated in this study offers a novel approach for studying microbial infectivity from the perspective of the host-pathogen interaction.

  20. Three-Dimensional Tissue Assemblies: Novel Models for the Study of Salmonella enterica Serovar Typhimurium Pathogenesis

    PubMed Central

    Nickerson, Cheryl A.; Goodwin, Thomas J.; Terlonge, Jacqueline; Ott, C. Mark; Buchanan, Kent L.; Uicker, William C.; Emami, Kamal; LeBlanc, Carly L.; Ramamurthy, Rajee; Clarke, Mark S.; Vanderburg, Charles R.; Hammond, Timothy; Pierson, Duane L.

    2001-01-01

    The lack of readily available experimental systems has limited knowledge pertaining to the development of Salmonella-induced gastroenteritis and diarrheal disease in humans. We used a novel low-shear stress cell culture system developed at the National Aeronautics and Space Administration in conjunction with cultivation of three-dimensional (3-D) aggregates of human intestinal tissue to study the infectivity of Salmonella enterica serovar Typhimurium for human intestinal epithelium. Immunohistochemical characterization and microscopic analysis of 3-D aggregates of the human intestinal epithelial cell line Int-407 revealed that the 3-D cells more accurately modeled human in vivo differentiated tissues than did conventional monolayer cultures of the same cells. Results from infectivity studies showed that Salmonella established infection of the 3-D cells in a much different manner than that observed for monolayers. Following the same time course of infection with Salmonella, 3-D Int-407 cells displayed minimal loss of structural integrity compared to that of Int-407 monolayers. Furthermore, Salmonella exhibited significantly lower abilities to adhere to, invade, and induce apoptosis of 3-D Int-407 cells than it did for infected Int-407 monolayers. Analysis of cytokine expression profiles of 3-D Int-407 cells and monolayers following infection with Salmonella revealed significant differences in expression of interleukin 1α (IL-1α), IL-1β, IL-6, IL-1Ra, and tumor necrosis factor alpha mRNAs between the two cultures. In addition, uninfected 3-D Int-407 cells constitutively expressed higher levels of transforming growth factor β1 mRNA and prostaglandin E2 than did uninfected Int-407 monolayers. By more accurately modeling many aspects of human in vivo tissues, the 3-D intestinal cell model generated in this study offers a novel approach for studying microbial infectivity from the perspective of the host-pathogen interaction. PMID:11598087

  1. aroA-Deficient Salmonella enterica Serovar Typhimurium Is More Than a Metabolically Attenuated Mutant

    PubMed Central

    Frahm, Michael; Kocijancic, Dino; Rohde, Manfred; Eckweiler, Denitsa; Bielecka, Agata; Bueno, Emilio; Cava, Felipe; Abraham, Wolf-Rainer; Curtiss, Roy; Häussler, Susanne; Erhardt, Marc; Weiss, Siegfried

    2016-01-01

    ABSTRACT Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB. Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine. PMID:27601574

  2. Multiplex real-time PCR and culture methods for detection of Shiga toxin-producing Escherichia coli and Salmonella Thompson in strawberries, a lettuce mix and basil.

    PubMed

    Delbeke, S; Ceuppens, S; Holvoet, K; Samuels, E; Sampers, I; Uyttendaele, M

    2015-01-16

    An appropriate approach of high throughput multi-screening was verified for Shiga toxin-producing Escherichia coli (STEC) and Salmonella spp. in strawberries, lettuce and basil. Sample replicates were inoculated with STEC O157 or O26 and Salmonella Thompson (ca. 10-70, 100-700 and 1000-7000 cfu/25 g) and analysed after 1 and 5 days of storage (strawberries and lettuce at 7 °C and basil at 10 °C). After 18-24 h of enrichment at 37 °C in buffered peptone water, detection was performed using the GeneDisc multiplex PCR (stx1, stx2, eae and iroB genes) and selective culture media for isolation of STEC (with immunomagnetic separation (IMS)) and Salmonella spp. in parallel. After 1 day, the pathogenic strains were recovered from all samples for all inoculum levels, whereas reduced detection rates of STEC O157 and S. Thompson were observed after 5 days of storage in case of strawberries, in particular for the lowest inoculums level, suggesting superior survival potential for STEC O26. Overall, this study indicates the ability of PCR based screening methods for reproducible multi-detection of low numbers (10-70 cfu/25 g) of STEC and Salmonella in this type of foods. However, for the basil samples, PCR needed twofold dilution of the DNA extract to overcome inhibition. It was noted that on several occasions growth of competitive microbiota obstructed finding presumptive colonies on the selective agar media, whereas the use of an additional agar medium such as CHROMagar STEC (without IMS) improved recovery rate of STEC. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Complete Genome Sequencing of a Multidrug-Resistant and Human-Invasive Salmonella enterica Serovar Typhimurium Strain of the Emerging Sequence Type 213 Genotype

    PubMed Central

    Calva, Edmundo; Zaidi, Mussaret B.; Sanchez-Flores, Alejandro; Estrada, Karel; Silva, Genivaldo G. Z.; Soto-Jiménez, Luz M.; Wiesner, Magdalena; Fernández-Mora, Marcos; Edwards, Robert A.

    2015-01-01

    Salmonella enterica subsp. enterica serovar Typhimurium strain YU39 was isolated in 2005 in the state of Yucatán, Mexico, from a human systemic infection. The YU39 strain is representative of the multidrug-resistant emergent sequence type 213 (ST213) genotype. The YU39 complete genome is composed of a chromosome and seven plasmids. PMID:26089426

  4. Complete genome sequencing of a multidrug-resistant and human-invasive Salmonella enterica serovar Typhimurium strain of the emerging sequence type 213 genotype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calva, Edmundo; Silva, Claudia; Zaidi, Mussaret B.

    Salmonella enterica subsp. enterica serovar Typhimurium strain YU39 was isolated in 2005 in the state of Yucatán, Mexico, from a human systemic infection. The YU39 strain is representative of the multidrug-resistant emergent sequence type 213 (ST213) genotype. The YU39 complete genome is composed of a chromosome and seven plasmids.

  5. Complete genome sequencing of a multidrug-resistant and human-invasive Salmonella enterica serovar Typhimurium strain of the emerging sequence type 213 genotype

    DOE PAGES

    Calva, Edmundo; Silva, Claudia; Zaidi, Mussaret B.; ...

    2015-06-18

    Salmonella enterica subsp. enterica serovar Typhimurium strain YU39 was isolated in 2005 in the state of Yucatán, Mexico, from a human systemic infection. The YU39 strain is representative of the multidrug-resistant emergent sequence type 213 (ST213) genotype. The YU39 complete genome is composed of a chromosome and seven plasmids.

  6. Salmonella DNA Adenine Methylase Mutants Confer Cross-Protective Immunity

    PubMed Central

    Heithoff, Douglas M.; Enioutina, Elena Y.; Daynes, Raymond A.; Sinsheimer, Robert L.; Low, David A.; Mahan, Michael J.

    2001-01-01

    Salmonella isolates that lack or overproduce DNA adenine methylase (Dam) elicited a cross-protective immune response to different Salmonella serovars. The protection afforded by the Salmonella enterica serovar Typhimurium Dam vaccine was greater than that elicited in mice that survived a virulent infection. S. enterica serovar Typhimurium Dam mutant strains exhibited enhanced sensitivity to mediators of innate immunity such as antimicrobial peptides, bile salts, and hydrogen peroxide. Also, S. enterica serovar Typhimurium Dam− vaccines were not immunosuppressive; unlike wild-type vaccines, they failed to induce increased nitric oxide levels and permitted a subsequent robust humoral response to diptheria toxoid antigen in infected mice. Dam mutant strains exhibited a low-grade persistence which, coupled with the nonimmunosuppression and the ectopic protein expression caused by altered levels of Dam, may provide an expanded source of potential antigens in vaccinated hosts. PMID:11598044

  7. Development of multiplex PCR assay for simultaneous detection of Salmonella genus, Salmonella subspecies I, Salm. Enteritidis, Salm. Heidelberg and Salm. Typhimurium.

    PubMed

    Park, S H; Ricke, S C

    2015-01-01

    The aim of this research was to develop multiplex PCR assay that could simultaneously detect Salmonella genus, Salmonella subsp. I, Salm. Enteritidis, Heidelberg and Typhimurium because these Salmonella serovars are the most common isolates associated with poultry products. Five primers were utilized to establish multiplex PCR and applied to Salmonella isolates from chickens and farm environments. These isolates were identified as Salmonella subsp. I and 16 of 66 isolates were classified as Salm. Enteritidis, while Heidelberg or Typhimurium was not detected. We also spiked three Salmonella strains on chicken breast meat to evaluate the specificity and sensitivity of multiplex PCR as well as qPCR to optimize quantification of Salmonella in these samples. The optimized multiplex PCR and qPCR could detect approx. 2·2 CFU of Salmonella per gram after 18 h enrichment. The multiplex PCR and qPCR would provide rapid and consistent results. Also, these techniques would be useful for the detection and quantification of Salmonella in contaminated poultry, foods and environmental samples. The strategy for the rapid detection of Salmonella serovars in poultry is needed to further reduce the incidence of salmonellosis in humans. The optimized multiplex PCR will be useful to detect prevalent Salmonella serovars in poultry products. © 2014 The Society for Applied Microbiology.

  8. The molecular adjuvant mC3d enhances the immunogenicity of FimA from type I fimbriae of Salmonella enterica serovar Enteritidis.

    PubMed

    Musa, Hassan-Hussein; Zhang, Wei-Juan; Lv, Jing; Duan, Xiao-Li; Yang, Yang; Zhu, Chun-Hong; Li, Hui-Fang; Chen, Kuan-Wei; Meng, Xia; Zhu, Guo-Qiang

    2014-02-01

    The fimbriae of Salmonella enterica serovar Enteritidis are used for colonization and invasion into host cells, and have drawn considerable interest because fimbriae can serve as potential immunogens against many pathogenic bacteria that colonize on epithelial surfaces. The purpose of the study is to use a molecular adjuvant, C3d, to enhance the immunogenicity of FimA proteins against Salmonella enterica serovar Enteritidis. FimA of type I fimbriae from Salmonella enteritidis and FimA with one copy of mC3d, two copies of mC3d2 and three copies of mC3d3 were cloned into the expression vector pCold-TF. Soluble fusion proteins of FimA with different copy of mC3d were induced by IPTG and expressed into Escherichia coli BL21 (DE3). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that the recombinant proteins from pCold-TF-fimA, TF-fimA-mC3d, TF-fimA-mC3d2, TF-fimA-mC3d3 were 70 kDa, 100 kDa, 130 kDa and 160 kDa, respectively. The fusion protein was recognized by rabbit anti-fimbriae polyclonal antibodies, and then visualized by goat anti-rabbit polyclonal antibodies with a chrome appearance by enzyme-subtract interaction. The recombinant proteins were purified by Ni-TED (tris-carboxymethyl ethylene diamine), immobilized metal ion affinity chromatography (IMAC). Balb/c mice were subcutaneously immunized with the purified proteins and the immune response was monitored by an enzyme-linked immunosorbent assay (ELISA) for FimA-specific antibody. The immunized mice were challenged with a 10-fold LD50 dose (i.e., 100 CFU) of Salmonella enterica serovar Enteritidis standard strain (SD-2) 1 week after the second immunization. The immunized mice with the fusion proteins FimA-mC3d2 and FimA-mC3d3 had increased levels of ELISA titer of antibody that were 2 and 4 logs, respectively, more immunogenic than the TF-FimA protein alone. The challenge results showed that immune protection rate in the mice immunized with 10 μg of FimA, FimA-mC3d2, and FimA-mC3d3

  9. Higher Storage Temperature Causes Greater Salmonella enterica Serovar Typhimurium Internal Penetration of Artificially Contaminated, Commercially Available, Washed Free Range Eggs.

    PubMed

    Whiley, Alice; Fallowfield, Howard; Ross, Kirstin; McEvoy, Vanessa; Whiley, Harriet

    2016-07-01

    Foodborne salmonellosis is a major public health concern, with contaminated eggs identified as a significant source of infection. In Australia, the most prevalent cause of salmonellosis from eggs is Salmonella enterica subsp. enterica serovar Typhimurium. This study explored the effect of temperature after 1, 7, 14, 21, and 28 days of storage on commercially available washed free range eggs, artificially contaminated with Salmonella Typhimurium on the external surface. At each time point, the external surface of the egg, the crushed eggshell, and the internal egg yolk and albumen were analyzed for Salmonella. After 28 days of storage, 25% of eggs stored at 4°C, 50% of eggs stored at 14°C, and 100% of eggs stored at 23 and 35°C were internally contaminated with Salmonella. After 1 day of storage, more than 50% of all eggs had Salmonella present in the crushed shell after the external surface had been disinfected with ethanol. This is the first study to demonstrate that refrigeration reduced the potential for Salmonella Typhimurium to penetrate the eggshell membrane and internally contaminate table eggs commercially available in Australia. It also suggests that the processes of cracking eggs may be a source of cross-contamination within the kitchen.

  10. Salmonella DIVA vaccine reduces disease, colonization and shedding due to virulent S. Typhimurium infection in swine

    USDA-ARS?s Scientific Manuscript database

    Non-host adapted Salmonella serovars are opportunistic pathogens that can colonize food-producing animals without causing overt disease, including the frequent foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). Interventions against Salmonella need to both enhance food safe...

  11. Role of outer membrane lipopolysaccharides in the protection of Salmonella enterica serovar Typhimurium from desiccation damage.

    PubMed

    Garmiri, Penelope; Coles, Karen E; Humphrey, Tom J; Cogan, Tristan A

    2008-04-01

    The ability to survive desiccation between hosts is often essential to the success of pathogenic bacteria. The bacterial outer membrane is both the cellular interface with hostile environments and the focus of much of the drying-induced damage. This study examined the contribution of outer membrane-associated polysaccharides to the survival of Salmonella enterica serovar Typhimurium in air-dried blood droplets following growth in high and low osmolarity medium and under conditions known to induce expression of these polysaccharides. Strains lacking the O polysaccharide (OPS) element of the outer membrane lipopolysaccharide were more sensitive to desiccation. Lipopolysaccharide core mutation further to OPS loss did not result in increased susceptibility to drying. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed lipopolysaccharide profiles that supported the hypothesis that OPS expression is required for optimal drying resistance in S. Typhimurium. The role of O antigen in Salmonella spp. in maintaining a hydrated layer around the dried cell or in slowing the rate of dehydration and rehydration is discussed.

  12. Antimicrobial Drug Resistance of Salmonella enterica Serovar Typhi in Asia and Molecular Mechanism of Reduced Susceptibility to the Fluoroquinolones▿

    PubMed Central

    Chau, Tran Thuy; Campbell, James Ian; Galindo, Claudia M.; Van Minh Hoang, Nguyen; Diep, To Song; Nga, Tran Thu Thi; Van Vinh Chau, Nguyen; Tuan, Phung Quoc; Page, Anne Laure; Ochiai, R. Leon; Schultsz, Constance; Wain, John; Bhutta, Zulfiqar A.; Parry, Christopher M.; Bhattacharya, Sujit K.; Dutta, Shanta; Agtini, Magdarina; Dong, Baiqing; Honghui, Yang; Anh, Dang Duc; Canh, Do Gia; Naheed, Aliya; Albert, M. John; Phetsouvanh, Rattanaphone; Newton, Paul N.; Basnyat, Buddha; Arjyal, Amit; La, Tran Thi Phi; Rang, Nguyen Ngoc; Phuong, Le Thi; Van Be Bay, Phan; von Seidlein, Lorenz; Dougan, Gordon; Clemens, John D.; Vinh, Ha; Hien, Tran Tinh; Chinh, Nguyen Tran; Acosta, Camilo J.; Farrar, Jeremy; Dolecek, Christiane

    2007-01-01

    This study describes the pattern and extent of drug resistance in 1,774 strains of Salmonella enterica serovar Typhi isolated across Asia between 1993 and 2005 and characterizes the molecular mechanisms underlying the reduced susceptibilities to fluoroquinolones of these strains. For 1,393 serovar Typhi strains collected in southern Vietnam, the proportion of multidrug resistance has remained high since 1993 (50% in 2004) and there was a dramatic increase in nalidixic acid resistance between 1993 (4%) and 2005 (97%). In a cross-sectional sample of 381 serovar Typhi strains from 8 Asian countries, Bangladesh, China, India, Indonesia, Laos, Nepal, Pakistan, and central Vietnam, collected in 2002 to 2004, various rates of multidrug resistance (16 to 37%) and nalidixic acid resistance (5 to 51%) were found. The eight Asian countries involved in this study are home to approximately 80% of the world's typhoid fever cases. These results document the scale of drug resistance across Asia. The Ser83→Phe substitution in GyrA was the predominant alteration in serovar Typhi strains from Vietnam (117/127 isolates; 92.1%). No mutations in gyrB, parC, or parE were detected in 55 of these strains. In vitro time-kill experiments showed a reduction in the efficacy of ofloxacin against strains harboring a single-amino-acid substitution at codon 83 or 87 of GyrA; this effect was more marked against a strain with a double substitution. The 8-methoxy fluoroquinolone gatifloxacin showed rapid killing of serovar Typhi harboring both the single- and double-amino-acid substitutions. PMID:17908946

  13. Effect of drinking-water administration of experimental chlorate ion preparations on Salmonella enterica serovar Typhimurium colonization in weaned and finished pigs.

    PubMed

    Anderson, R C; Hume, M E; Genovese, K J; Callaway, T R; Jung, Y S; Edrington, T S; Poole, T L; Harvey, R B; Bischoff, K M; Nisbet, D J

    2004-04-01

    Foodborne disease caused by Salmonella is of public health and economic significance. In order to assess the practical effectiveness of a new intervention strategy, experimental chlorate preparations (ECP) were administered via the drinking water to weaned and finished pigs that had been orally challenged the previous day with 10(9)-10(10) colony-forming units of Salmonella serovar Typhimurium. After 24 or 36 h ad libitum access to 0X, 1X or 2X ECP treatment (where X is the concentration estimated to deliver a minimal daily effective dose), the pigs were euthanized and gut contents and lymph tissue collected at necropsy were cultured for the challenge Salmonella. Drinking water administration of ECP effectively reduced (p < 0.05) caecal Salmonella concentrations and, with the weaned pigs, tended (p < or = 0.10) to reduce rectal Salmonella concentrations. No negative effects of ECP treatment on water intake and animal wellbeing were observed and only marginal effects on gut fermentation characteristics occurred. The bactericidal effect of administering ECP in drinking water was relatively rapid, with reductions in caecal Salmonella concentrations occurring within 24 h. These results suggest that ECP administered to pigs just days before slaughter may reduce gut concentrations of Salmonella; however, the impacts of such reductions on slaughter hygiene have yet to be determined.

  14. One Health and Food-Borne Disease: Salmonella Transmission between Humans, Animals, and Plants.

    PubMed

    Silva, Claudia; Calva, Edmundo; Maloy, Stanley

    2014-02-01

    There are >2,600 recognized serovars of Salmonella enterica. Many of these Salmonella serovars have a broad host range and can infect a wide variety of animals, including mammals, birds, reptiles, amphibians, fish, and insects. In addition, Salmonella can grow in plants and can survive in protozoa, soil, and water. Hence, broad-host-range Salmonella can be transmitted via feces from wild animals, farm animals, and pets or by consumption of a wide variety of common foods: poultry, beef, pork, eggs, milk, fruit, vegetables, spices, and nuts. Broad-host-range Salmonella pathogens typically cause gastroenteritis in humans. Some Salmonella serovars have a more restricted host range that is associated with changes in the virulence plasmid pSV, accumulation of pseudogenes, and chromosome rearrangements. These changes in host-restricted Salmonella alter pathogen-host interactions such that host-restricted Salmonella organisms commonly cause systemic infections and are transmitted between host populations by asymptomatic carriers. The secondary consequences of efforts to eliminate host-restricted Salmonella serovars demonstrate that basic ecological principles govern the environmental niches occupied by these pathogens, making it impossible to thwart Salmonella infections without a clear understanding of the human, animal, and environmental reservoirs of these pathogens. Thus, transmission of S. enterica provides a compelling example of the One Health paradigm because reducing human infections will require the reduction of Salmonella in animals and limitation of transmission from the environment.

  15. Comparison of multilocus sequence typing and pulsed-field gel electrophoresis for Salmonella spp. identification in surface water

    NASA Astrophysics Data System (ADS)

    Kuo, Chun Wei; Hao Huang, Kuan; Hsu, Bing Mu; Tsai, Hsien Lung; Tseng, Shao Feng; Kao, Po Min; Shen, Shu Min; Chou Chiu, Yi; Chen, Jung Sheng

    2013-04-01

    Salmonella is one of the most important pathogens of waterborne diseases with outbreaks from contaminated water reported worldwide. In addition, Salmonella spp. can survive for long periods in aquatic environments. To realize genotypes and serovars of Salmonella in aquatic environments, we isolated the Salmonella strains by selective culture plates to identify the serovars of Salmonella by serological assay, and identify the genotypes by Multilocus sequence typing (MLST) based on the sequence data from University College Cork (UCC), respectively. The results show that 36 stream water samples (30.1%) and 18 drinking water samples (23.3%) were confirmed the existence of Salmonella using culture method combined PCR specific invA gene amplification. In this study, 24 cultured isolates of Salmonella from water samples were classified to fifteen Salmonella enterica serovars. In addition, we construct phylogenetic analysis using phylogenetic tree and Minimum spanning tree (MST) method to analyze the relationship of clinical, environmental, and geographical data. Phylogenetic tree showed that four main clusters and our strains can be distributed in all. The genotypes of isolates from stream water are more biodiversity while comparing the Salmonella strains genotypes from drinking water sources. According to MST data, we can found the positive correlation between serovars and genotypes of Salmonella. Previous studies revealed that the result of Pulsed field gel electrophoresis (PFGE) method can predict the serovars of Salmonella strain. Hence, we used the MLST data combined phylogenetic analysis to identify the serovars of Salmonella strain and achieved effectiveness. While using the geographical data combined phylogenetic analysis, the result showed that the dominant strains were existed in whole stream area in rainy season. Keywords: Salmonella spp., MLST, phylogenetic analysis, PFGE

  16. Proteolytic Inhibition of Salmonella enterica Serovar Typhimurium-Induced Activation of the Mitogen-Activated Protein Kinases ERK and JNK in Cultured Human Intestinal Cells

    PubMed Central

    Mynott, Tracey L.; Crossett, Ben; Prathalingam, S. Radhika

    2002-01-01

    Bromelain, a mixture of cysteine proteases from pineapple stems, blocks signaling by the mitogen-activated protein (MAP) kinases extracellular regulated kinase 1 (ERK-1) and ERK-2, inhibits inflammation, and protects against enterotoxigenic Escherichia coli infection. In this study, we examined the effect of bromelain on Salmonella enterica serovar Typhimurium infection, since an important feature of its pathogenesis is its ability to induce activation of ERK-1 and ERK-2, which leads to internalization of bacteria and induction of inflammatory responses. Our results show that bromelain dose dependently blocks serovar Typhimurium-induced ERK-1, ERK-2, and c-Jun NH2-terminal kinase (JNK) activation in Caco-2 cells. Bromelain also blocked signaling induced by carbachol and anisomycin, pharmacological MAP kinase agonists. Despite bromelain inhibition of serovar Typhimurium-induced MAP kinase signaling, it did not prevent subsequent invasion of the Caco-2 cells by serovar Typhimurium or alter serovar Typhimurium -induced decreases in resistance across Caco-2 monolayers. Surprisingly, bromelain also did not block serovar Typhimurium-induced interleukin-8 (IL-8) secretion but synergized with serovar Typhimurium to enhance IL-8 production. We also found that serovar Typhimurium does not induce ERK phosphorylation in Caco-2 cells in the absence of serum but that serovar Typhimurium-induced invasion and decreases in monolayer resistance are unaffected. Collectively, these data indicate that serovar Typhimurium-induced invasion of Caco-2 cells, changes in the resistance of epithelial cell monolayers, and IL-8 production can occur independently of the ERK and JNK signaling pathways. Data also confirm that bromelain is a novel inhibitor of MAP kinase signaling pathways and suggest a novel role for proteases as inhibitors of signal transduction pathways in intestinal epithelial cells. PMID:11748167

  17. Genetic Fine Structure of a Salmonella enterica Serovar Typhi Strain Associated with the 2005 Outbreak of Typhoid Fever in Kelantan, Malaysia

    PubMed Central

    Baddam, Ramani; Kumar, Narender; Thong, Kwai-Lin; Ngoi, Soo-Tein; Teh, Cindy Shuan Ju; Yap, Kien-Pong; Chai, Lay-Ching; Avasthi, Tiruvayipati Suma

    2012-01-01

    Among enteric pathogens, Salmonella enterica serovar Typhi is responsible for the largest number of food-borne outbreaks and fatalities. The ability of the pathogen to cause systemic infection for extended durations leads to a high cost of disease control. Chronic carriers play important roles in the evolution of Salmonella Typhi; therefore, identification and in-depth characterization of isolates from clinical cases and carriers, especially those from zones of endemicity where the pathogen has not been extensively studied, are necessary. Here, we describe the genome sequence of the highly virulent Salmonella Typhi strain BL196/05 isolated during the outbreak of typhoid in Kelantan, Malaysia, in 2005. The whole-genome sequence and comparative genomics of this strain should enable us to understand the virulence mechanisms and evolutionary dynamics of this pathogen in Malaysia and elsewhere. PMID:22689247

  18. Salmonella enterica serovar Typhimurium mutants unable to convert malate to pyruvate and oxaloacetate are avirulent and immunogenic in BALB/c mice.

    PubMed

    Mercado-Lubo, Regino; Leatham, Mary P; Conway, Tyrrell; Cohen, Paul S

    2009-04-01

    Previously, we showed that the Salmonella enterica serovar Typhimurium SR-11 tricarboxylic acid (TCA) cycle must operate as a complete cycle for full virulence after oral infection of BALB/c mice (M. Tchawa Yimga, M. P. Leatham, J. H. Allen, D. C. Laux, T. Conway, and P. S. Cohen, Infect. Immun. 74:1130-1140, 2006). In the same study, we showed that for full virulence, malate must be converted to both oxaloacetate and pyruvate. Moreover, it was recently demonstrated that blocking conversion of succinyl-coenzyme A to succinate attenuates serovar Typhimurium SR-11 but does not make it avirulent; however, blocking conversion of succinate to fumarate renders it completely avirulent and protective against subsequent oral infection with the virulent serovar Typhimurium SR-11 wild-type strain (R. Mercado-Lubo, E. J. Gauger, M. P. Leatham, T. Conway, and P. S. Cohen, Infect. Immun. 76:1128-1134, 2008). Furthermore, the ability to convert succinate to fumarate appeared to be required only after serovar Typhimurium SR-11 became systemic. In the present study, evidence is presented that serovar Typhimurium SR-11 mutants that cannot convert fumarate to malate or that cannot convert malate to both oxaloacetate and pyruvate are also avirulent and protective in BALB/c mice. These results suggest that in BALB/c mice, the malate that is removed from the TCA cycle in serovar Typhimurium SR-11 for conversion to pyruvate must be replenished by succinate or one of its precursors, e.g., arginine or ornithine, which might be available in mouse phagocytes.

  19. Prevalence and antibiotic resistance pattern of Salmonella serovars in integrated crop-livestock farms and their products sold in local markets.

    PubMed

    Peng, Mengfei; Salaheen, Serajus; Almario, Jose Alejandro; Tesfaye, Bezait; Buchanan, Robert; Biswas, Debabrata

    2016-05-01

    Major concern in the Mixed Crop-Livestock (MCL) farms, in which livestock and vegetables grown closely in the same facility, is cross-contamination of zoonotic bacterial pathogens especially Salmonella. To investigate the distribution of Salmonella serovars in MCL and their products, a total of 1287 pre-harvest samples from various farms and 1377 post-harvest samples from retail supermarkets in Maryland and Washington D.C. areas were collected and analysed. A total of 315 Salmonella isolates were recovered, with 17.44% and 5.88%, from MCL and conventional farms samples (P < 0.001). At post-harvest level, the prevalence of Salmonella was 30.95%, 19.83%, and 8.38% in chicken meat (P < 0.001) from farmers, organic, and conventional retail markets respectively, and 16.81% and 6.06% in produce products (P < 0.001) from farmers and organic retail markets, but none from conventional retail markets. From the isolated Salmonella, 34.50% was confirmed S. Typhimurium, followed by S. Heidelberg (10.86%) and S. Enteritidis (9.90%). The overall multi-antibiotic resistance in recovered Salmonella was 23.81% versus 4.55% in conventional and MCL farms (P = 0.004) and 66.67% versus 7.76% in conventional and farmers markets (P < 0.001). Overall the data reveals higher Salmonella risks in MCL farms' environment and their products sold in farmers markets and warrants taking necessary measures to limit Salmonella transmission. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Meta-analysis of chicken--salmonella infection experiments.

    PubMed

    Te Pas, Marinus F W; Hulsegge, Ina; Schokker, Dirkjan; Smits, Mari A; Fife, Mark; Zoorob, Rima; Endale, Marie-Laure; Rebel, Johanna M J

    2012-04-24

    Chicken meat and eggs can be a source of human zoonotic pathogens, especially Salmonella species. These food items contain a potential hazard for humans. Chickens lines differ in susceptibility for Salmonella and can harbor Salmonella pathogens without showing clinical signs of illness. Many investigations including genomic studies have examined the mechanisms how chickens react to infection. Apart from the innate immune response, many physiological mechanisms and pathways are reported to be involved in the chicken host response to Salmonella infection. The objective of this study was to perform a meta-analysis of diverse experiments to identify general and host specific mechanisms to the Salmonella challenge. Diverse chicken lines differing in susceptibility to Salmonella infection were challenged with different Salmonella serovars at several time points. Various tissues were sampled at different time points post-infection, and resulting host transcriptional differences investigated using different microarray platforms. The meta-analysis was performed with the R-package metaMA to create lists of differentially regulated genes. These gene lists showed many similarities for different chicken breeds and tissues, and also for different Salmonella serovars measured at different times post infection. Functional biological analysis of these differentially expressed gene lists revealed several common mechanisms for the chicken host response to Salmonella infection. The meta-analysis-specific genes (i.e. genes found differentially expressed only in the meta-analysis) confirmed and expanded the biological functional mechanisms. The meta-analysis combination of heterogeneous expression profiling data provided useful insights into the common metabolic pathways and functions of different chicken lines infected with different Salmonella serovars.

  1. SadA, a Trimeric Autotransporter from Salmonella enterica Serovar Typhimurium, Can Promote Biofilm Formation and Provides Limited Protection against Infection ▿ †

    PubMed Central

    Raghunathan, Dhaarini; Wells, Timothy J.; Morris, Faye C.; Shaw, Robert K.; Bobat, Saeeda; Peters, Sarah E.; Paterson, Gavin K.; Jensen, Karina Tveen; Leyton, Denisse L.; Blair, Jessica M. A.; Browning, Douglas F.; Pravin, John; Flores-Langarica, Adriana; Hitchcock, Jessica R.; Moraes, Claudia T. P.; Piazza, Roxane M. F.; Maskell, Duncan J.; Webber, Mark A.; May, Robin C.; MacLennan, Calman A.; Piddock, Laura J.; Cunningham, Adam F.; Henderson, Ian R.

    2011-01-01

    Salmonella enterica is a major cause of morbidity worldwide and mortality in children and immunocompromised individuals in sub-Saharan Africa. Outer membrane proteins of Salmonella are of significance because they are at the interface between the pathogen and the host, they can contribute to adherence, colonization, and virulence, and they are frequently targets of antibody-mediated immunity. In this study, the properties of SadA, a purported trimeric autotransporter adhesin of Salmonella enterica serovar Typhimurium, were examined. We demonstrated that SadA is exposed on the Salmonella cell surface in vitro and in vivo during infection of mice. Expression of SadA resulted in cell aggregation, biofilm formation, and increased adhesion to human intestinal Caco-2 epithelial cells. Immunization of mice with folded, full-length, purified SadA elicited an IgG response which provided limited protection against bacterial challenge. When anti-SadA IgG titers were enhanced by administering alum-precipitated protein, a modest additional protection was afforded. Therefore, despite SadA having pleiotropic functions, it is not a dominant, protective antigen for antibody-mediated protection against Salmonella. PMID:21859856

  2. Commercially laid eggs vs. discarded hatching eggs: contamination by Salmonella spp.

    PubMed

    Kottwitz, Luciana B M; Leão, Joice Aparecida; Back, Alberto; Rodrigues, Dalia dos P; Magnani, Marciane; de Oliveira, Tereza C R M

    2013-01-01

    Salmonella enterica is frequently associated with outbreaks of human salmonellosis, and products of avian origin, such as eggs and chicken meat, are the main vehicles of its transmission. The present study describes the occurrence of different serovars of Salmonella enterica and phagotypes of S. enterica serovar Enteritidis in eggs destined for human consumption. Four thousand eggs obtained from commercial egg laying farms and one thousand discarded hatching eggs from broiler farms, which were acquired at farmers' markets and informal shops, were analyzed. Salmonella spp. was isolated from 52.0% of the discarded hatching eggs, in which the predominant serovar was Enteritidis (84.6%), and the predominant Salmonella Enteritidis phagotype (PT) was PT7 (26.9%). Salmonella spp. was not isolated from eggs obtained from commercial egg laying farms. The antimicrobial resistance profile showed that 23.1% (n = 6) of the SE strains were resistant to nalidixic acid. The results suggest that the consumption of discarded hatching eggs represents an important source of Salmonella transmission to humans.

  3. Genomics of an emerging clone of Salmonella serovar Typhimurium ST313 from Nigeria and the Democratic Republic of Congo.

    PubMed

    Leekitcharoenphon, Pimlapas; Friis, Carsten; Zankari, Ea; Svendsen, Christina Aaby; Price, Lance B; Rahmani, Maral; Herrero-Fresno, Ana; Fashae, Kayode; Vandenberg, Olivier; Aarestrup, Frank M; Hendriksen, Rene S

    2013-10-15

    Salmonella enterica serovar Typhimurium ST313 is an invasive and phylogenetically distinct lineage present in sub-Saharan Africa. We report the presence of S. Typhimurium ST313 from patients in the Democratic Republic of Congo and Nigeria. Eighteen S. Typhimurium ST313 isolates were characterized by antimicrobial susceptibility testing, pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST). Additionally, six of the isolates were characterized by whole genome sequence typing (WGST). The presence of a putative virulence determinant was examined in 177 Salmonella isolates belonging to 57 different serovars. All S. Typhimurium ST313 isolates harbored resistant genes encoded by blaTEM1b, catA1, strA/B, sul1, and dfrA1. Additionally, aac(6')1aa gene was detected. Phylogenetic analyses revealed close genetic relationships among Congolese and Nigerian isolates from both blood and stool. Comparative genomic analyses identified a putative virulence fragment (ST313-TD) unique to S. Typhimurium ST313 and S. Dublin. We showed in a limited number of isolates that S. Typhimurium ST313 is a prevalent sequence-type causing gastrointestinal diseases and septicemia in patients from Nigeria and DRC. We found three distinct phylogenetic clusters based on the origin of isolation suggesting some spatial evolution. Comparative genomics showed an interesting putative virulence fragment (ST313-TD) unique to S. Typhimurium ST313 and invasive S. Dublin.

  4. Babies and bearded dragons: sudden increase in reptile-associated Salmonella enterica serovar Tennessee infections, Germany 2008.

    PubMed

    Weiss, Bettina; Rabsch, Wolfgang; Prager, Rita; Tietze, Erhard; Koch, Judith; Mutschmann, Frank; Roggentin, Peter; Frank, Christina

    2011-09-01

    In 2008 a marked increase in Salmonella enterica serovar Tennessee infections in infants occurred in Germany. In March and April 2008, eight cases were notified compared to a median of 0-1 cases in 2001-2006. We carried out an investigation including a case-control study to identify the source of infection. A patient was a child < 3 years of age with Salmonella Tennessee isolated from stool from September 1, 2007, through December 31, 2008, identified through the national surveillance system. A control was a child with a notified rotavirus infection in the matching district, frequency matched by age group. We conducted telephone interviews on feeding, herbal infusions, and animal contact. Matched odds ratios (mOR) were calculated using exact conditional logistic regression. For Salmonella Tennessee isolates, pulsed-field gel electrophoresis and multiple-locus variable number tandem repeat analysis were performed. Further cloacal swab samples of reptiles kept in case households were investigated. We identified 18 cases < 3 years. Ten children were male; median age was 3 months (1-32 months). In 8 of 16 case households reptiles were kept. Direct contact between child and reptile was denied. Other forms of reptile contact were reported in four of the remaining eight households. Ten case- and 21 control-patients were included in the study. Only keeping of a reptile and "any reptile contact" were associated with Salmonella Tennessee infection (mOR 29.0; 95% CI 3.1 ± ∞ and mOR 119.5; 95% CI 11.7 - ∞). Identical Salmonella Tennessee strains of child and reptile kept in the same household could be shown in 2 cases. Reptiles were the apparent source of Salmonella Tennessee infection in these infants. Indirect contact between infants and reptiles seems to be sufficient to cause infection and should therefore be avoided.

  5. Immune Reaction and Survivability of Salmonella Typhimurium and Salmonella Infantis after Infection of Primary Avian Macrophages

    PubMed Central

    Braukmann, Maria; Methner, Ulrich; Berndt, Angela

    2015-01-01

    Salmonella serovars are differentially able to infect chickens. The underlying causes are not yet fully understood. Aim of the present study was to elucidate the importance of Salmonella Pathogenicity Island 1 and 2 (SPI-1 and -2) for the virulence of two non-host-specific, but in-vivo differently invasive, Salmonella serovars in conjunction with the immune reaction of the host. Primary avian splenic macrophages were inoculated with Salmonella enterica sub-species enterica serovar (S.) Typhimurium and S. Infantis. The number and viability of intracellular bacteria and transcription of SPI-1 and -2 genes by the pathogens, as well as transcription of immune-related proteins, surface antigen expression and nitric oxide production by the macrophages, were compared at different times post inoculation. After infection, both of the Salmonella serovars were found inside the primary macrophages. Invasion-associated SPI-1 genes were significantly higher transcribed in S. Infantis- than S. Typhimurium-infected macrophages. The macrophages counteracted the S. Infantis and S. Typhimurium infection with elevated mRNA expression of inducible nitric oxide synthase (iNOS), interleukin (IL)-12, IL-18 and lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF) as well as with an increased synthesis of nitric oxide. Despite these host cell attacks, S. Typhimurium was better able than S. Infantis to survive within the macrophages and transcribed higher rates of the SPI-2 genes spiC, ssaV, sifA, and sseA. The results showed similar immune reactions of primary macrophages after infection with both of the Salmonella strains. The more rapid and stronger transcription of SPI-2-related genes by intracellular S. Typhimurium compared to S. Infantis might be responsible for its better survival in avian primary macrophages. PMID:25811871

  6. OXA-48 carbapenemase-producing Salmonella enterica serovar Kentucky isolate of sequence type 198 in a patient transferred from Libya to Switzerland.

    PubMed

    Seiffert, Salome N; Perreten, Vincent; Johannes, Sönke; Droz, Sara; Bodmer, Thomas; Endimiani, Andrea

    2014-01-01

    Here, we report a case of OXA-48-producing Salmonella enterica serovar Kentucky of sequence type 198 (ST198) from perianal screening cultures of a patient transferred from Libya to Switzerland. The blaOXA-48 gene was carried by Tn1999.2 and located on an ∼60-kb IncL/M plasmid. This Salmonella strain also possessed the blaVEB-8, aac(6)-Ib, tet(A), sul1, and mphA resistance genes and substitutions in GyrA (Ser83Phe and Asp87Asn) and ParC (Ser80Ile). This finding emphasizes that prompt screening strategies are essential to prevent the dissemination of carbapenemase producers imported from countries where they are endemic.

  7. Oral immunisation with live aroA attenuated Salmonella enterica serovar Typhimurium expressing the Yersinia pestis V antigen protects mice against plague.

    PubMed

    Garmory, Helen S; Griffin, Kate F; Brown, Katherine A; Titball, Richard W

    2003-06-20

    Bubonic and pneumonic plague are caused by the bacterium Yersinia pestis. The V antigen of Y. pestis is a protective antigen against plague. In this study, an aroA attenuated strain of Salmonella enterica serovar Typhimurium (SL3261) has been used to deliver the Y. pestis V antigen as a candidate oral plague vaccine. SL3261 was transformed with the expression plasmid pTrc-LcrV, containing the lcrV gene encoding V antigen. Immunoblot analysis showed V antigen expression in SL3261 in vitro and intragastric immunisation of mice with the recombinant Salmonella resulted in the induction of V antigen-specific serum antibody responses and afforded protection against Y. pestis challenge. However, the antibody responses induced by the recombinant Salmonella did not correlate with the protection afforded, indicating that immune responses other than antibody may play a role in the protection afforded against plague by this candidate vaccine.

  8. Immunity to Intracellular Salmonella Depends on Surface-associated Antigens

    PubMed Central

    Claudi, Beatrice; Mazé, Alain; Schemmer, Anne K.; Kirchhoff, Dennis; Schmidt, Alexander; Burton, Neil; Bumann, Dirk

    2012-01-01

    Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. PMID:23093937

  9. Variable-Number Tandem Repeats That Are Useful in Genotyping Isolates of Salmonella enterica subsp. enterica Serovars Typhimurium and Newport▿

    PubMed Central

    Witonski, D. ; Stefanova, R.; Ranganathan, A.; Schutze, G. E.; Eisenach, K. D.; Cave, M. D.

    2006-01-01

    The genome of Salmonella enterica subsp. enterica serovar Typhimurium strain LT2 was analyzed for direct repeats, and 54 sequences containing variable-number tandem repeat loci were identified. Ten primer pairs that anneal upstream and downstream of each selected locus were designed and used to amplify PCR targets in isolates of S. enterica serovars Typhimurium and Newport. Four of the 10 loci did not show polymorphism in the length of products. Six loci were selected for analysis. Isolates of S. enterica serovars Typhimurium and Newport that were related to specific outbreaks and showed identical pulsed-field gel electrophoresis patterns were indistinguishable by the length of the six variable-number tandem repeats. Isolates that differed in their pulsed-field gel electrophoresis patterns showed polymorphism in variable-number tandem repeat profiles. Length of the products was confirmed by DNA sequence analysis. Only 2 of the 10 loci contained exact integers of the direct repeat. Eight loci contained partial copies. The partial copies were maintained at the ends of the variable-number tandem repeat loci in all isolates. In spite of having partial copies that were maintained in all isolates, the number of direct repeats at a locus was polymorphic. Six variable-number tandem repeat loci were useful in distinguishing isolates of S. enterica serovars Typhimurium and Newport that had different pulsed-field gel electrophoresis patterns and in identifying outbreak-associated cases that shared a common pulsed-field gel pattern. PMID:16943354

  10. Rodents as a Source of Salmonella Contamination in Wet Markets in Thailand.

    PubMed

    Ribas, Alexis; Saijuntha, Weerachai; Agatsuma, Takeshi; Prantlová, Veronika; Poonlaphdecha, Srisupaph

    2016-08-01

    Few studies have been conducted on the presence of Salmonella in the rodents that inhabit the wet markets that play an important role in daily life in Southeast Asia. The results of studies of rodents as carriers of Salmonella vary greatly, ranging from an absence of Salmonella to high prevalences. Previous studies investigated habitats such as farms and urban and wild areas where there is less rodent-human interaction than in wet markets. Consequently, the potential role of rodents as reservoirs and transmitters of Salmonella in wet markets is of great interest. Rodents were trapped in eight traditional wet markets in Thailand and identified to species level. Subsequently, they were screened for Salmonella and isolates were serotyped. A total of 110 rats (Rattus norvegicus and Rattus exulans) were examined. Overall, the prevalence of Salmonella in rats was 49.10%, but varied between 0% and 73.3% among markets. Three serovars were identified: Salmonella Typhimurium (30%), S. Weltevreden (12.7%), and S. 4,[5],12:i:- (6.4%). Our results show that rodents in wet markets are a potential reservoir of Salmonella due to the close contact they have with humans and food. The three isolated serovars, of which serovar S. 4,[5],12:i:- is reported for the first time in rodents, are among the 10 commonest serovars isolated from humans in Thailand. Thus, more attention should be paid to rodents as potential reservoirs of Salmonella.

  11. Pathogenicity of Salmonella Strains Isolated from Egg Shells and the Layer Farm Environment in Australia

    PubMed Central

    McWhorter, Andrea R.; Davos, Dianne

    2014-01-01

    In Australia, the egg industry is periodically implicated during outbreaks of Salmonella food poisoning. Salmonella enterica serovar Typhimurium and other nontyphoidal Salmonella spp., in particular, are a major concern for Australian public health. Several definitive types of Salmonella Typhimurium strains, but primarily Salmonella Typhimurium definitive type 9 (DT9), have been frequently reported during egg-related food poisoning outbreaks in Australia. The aim of the present study was to generate a pathogenicity profile of nontyphoidal Salmonella isolates obtained from Australian egg farms. To achieve this, we assessed the capacity of Salmonella isolates to cause gastrointestinal disease using both in vitro and in vivo model systems. Data from in vitro experiments demonstrated that the invasion capacity of Salmonella serovars cultured to stationary phase (liquid phase) in LB medium was between 90- and 300-fold higher than bacterial suspensions in normal saline (cultured in solid phase). During the in vivo infection trial, clinical signs of infection and mortality were observed only for mice infected with either 103 or 105 CFU of S. Typhimurium DT9. No mortality was observed for mice infected with Salmonella serovars with medium or low invasive capacity in Caco-2 cells. Pathogenicity gene profiles were also generated for all serovars included in this study. The majority of serovars tested were positive for selected virulence genes. No relationship between the presence or absence of virulence genes by PCR and either in vitro invasive capacity or in vivo pathogenicity was detected. Our data expand the knowledge of strain-to-strain variation in the pathogenicity of Australian egg industry-related Salmonella spp. PMID:25362057

  12. Investigation of Outbreaks of Salmonella enterica Serovar Typhimurium and Its Monophasic Variants Using Whole-Genome Sequencing, Denmark

    PubMed Central

    Gymoese, Pernille; Sørensen, Gitte; Litrup, Eva; Olsen, John Elmerdal; Nielsen, Eva Møller

    2017-01-01

    Whole-genome sequencing is rapidly replacing current molecular typing methods for surveillance purposes. Our study evaluates core-genome single-nucleotide polymorphism analysis for outbreak detection and linking of sources of Salmonella enterica serovar Typhimurium and its monophasic variants during a 7-month surveillance period in Denmark. We reanalyzed and defined 8 previously characterized outbreaks from the phylogenetic relatedness of the isolates, epidemiologic data, and food traceback investigations. All outbreaks were identified, and we were able to exclude unrelated and include additional related human cases. We were furthermore able to link possible food and veterinary sources to the outbreaks. Isolates clustered according to sequence types (STs) 19, 34, and 36. Our study shows that core-genome single-nucleotide polymorphism analysis is suitable for surveillance and outbreak investigation for Salmonella Typhimurium (ST19 and ST36), but whole genome–wide analysis may be required for the tight genetic clone of monophasic variants (ST34). PMID:28930002

  13. Molecular and cellular characterization of a Salmonella enterica serovar Paratyphi a outbreak strain and the human immune response to infection.

    PubMed

    Gal-Mor, Ohad; Suez, Jotham; Elhadad, Dana; Porwollik, Steffen; Leshem, Eyal; Valinsky, Lea; McClelland, Michael; Schwartz, Eliezer; Rahav, Galia

    2012-02-01

    Enteric fever is an invasive life-threatening systemic disease caused by the Salmonella enterica human-adapted serovars Typhi and Paratyphi. Increasing incidence of infections with Salmonella enterica serovar Paratyphi A and the spreading of its antibiotic-resistant derivates pose a significant health concern in some areas of the world. Herein, we describe a molecular and phenotypic characterization of an S. Paratyphi A strain accounted for a recent paratyphoid outbreak in Nepal that affected at least 37 travelers. Pulsed-field gel electrophoresis analysis of the outbreak isolates revealed one genetic clone (pulsotype), confirming a single infecting source. Genetic profiling of the outbreak strain demonstrated the contribution of specific bacteriophages as a prime source of genetic diversity among clinical isolates of S. Paratyphi A. Phenotypic characterization in comparison with the S. Paratyphi A ATCC 9150 reference sequenced strain showed differences in flagellar morphology and increased abilities of the outbreak strain with respect to its motility, invasion into nonphagocytic cells, intracellular multiplication, survival within macrophages, and higher induction of interleukin-8 (IL-8) secreted by host cells. Collectively, these differences suggest an enhanced virulence potential of this strain and demonstrate an interesting phenotypic variation among S. Paratyphi A isolates. In vivo profiling of 16 inflammatory cytokines in patients infected with the outbreak strain revealed a common profile of a remarkable gamma interferon (IFN-γ) induction together with elevated concentrations of tumor necrosis factor alpha (TNF-α), IL-6, IL-8, IL-10, and IL-15, but not IL-12, which was previously demonstrated as elevated in nontyphoidal Salmonella infections. This apparent profile implies a distinct immune response to paratyphoid infections.

  14. The Legacy of Genetic Analysis Advances Contemporary Research with Escherichia coli K-12 and Salmonella enterica serovar Typhimurium LT2.

    PubMed

    Stewart, Valley

    2017-04-01

    Escherichia coli K-12 and Salmonella enterica serovar Typhimurium LT2 became standard organisms for genetic analysis during the Truman administration. Half a century later, genetic analysis with these strains had become an art form, interpreted through 23 articles in the ambitious two-volume masterpiece edited by the late Fred Neidhardt and colleagues. These legacy articles now are available through EcoSal Plus , so as to inform and inspire contemporary genetic analyses in these standard organisms and their relatives.

  15. Increased lymphocyte subpopulations and macrophages in the ovaries and oviducts of laying hens infected with Salmonella enterica serovar Enteritidis.

    PubMed

    Withanage, G S K; Sasai, K; Fukata, T; Miyamoto, T; Lillehoj, H S; Baba, E

    2003-12-01

    Salmonella enterica serovar Enteritidis (SE) is a causative agent for human food poisoning cases throughout the world. The ovaries and the oviducts of the laying hens are the major sites of SE colonization from which vertical transmission to eggs occurs. In this study, Salmonella-induced changes in T lymphocytes, B lymphocytes and macrophages in the ovaries and oviducts were assessed after primary and secondary experimental inoculations of laying hen with SE. Statistically significant increases in the numbers of T cells (both CD4+ and CD8+) and macrophages were observed 7 to 14 days after primary inoculation, followed by a peak in B-cell numbers from the 14th day post-primary inoculation onwards in the secretory areas of the oviducts. The peak in lymphocyte numbers immediately preceded a decline in the rate of SE recovery from the reproductive tract beginning at day 14. The correlation of decreased Salmonella recovery with elevated lymphocyte and macrophage numbers strongly suggests that local cell-mediated immunity is involved in controlling SE injection in the ovaries and oviducts.

  16. A Mutation in the PoxA Gene of Salmonella enterica Serovar Typhimurium Results in Altered Protein Production, Elevated Susceptibility to Environmental Challenges, and Decreased Swine Colonization

    USDA-ARS?s Scientific Manuscript database

    Using signature-tagged mutagenesis of Salmonella enterica serovar Typhimurium (S. Typhimurium), a mutation in the poxA gene (STM4344; yjeA; poxR), encoding a putative lysyl-tRNA synthetase, was previously identified by our research group which caused decreased survival in an ex vivo swine stomach co...

  17. Meta-analysis of Chicken – Salmonella infection experiments

    PubMed Central

    2012-01-01

    Background Chicken meat and eggs can be a source of human zoonotic pathogens, especially Salmonella species. These food items contain a potential hazard for humans. Chickens lines differ in susceptibility for Salmonella and can harbor Salmonella pathogens without showing clinical signs of illness. Many investigations including genomic studies have examined the mechanisms how chickens react to infection. Apart from the innate immune response, many physiological mechanisms and pathways are reported to be involved in the chicken host response to Salmonella infection. The objective of this study was to perform a meta-analysis of diverse experiments to identify general and host specific mechanisms to the Salmonella challenge. Results Diverse chicken lines differing in susceptibility to Salmonella infection were challenged with different Salmonella serovars at several time points. Various tissues were sampled at different time points post-infection, and resulting host transcriptional differences investigated using different microarray platforms. The meta-analysis was performed with the R-package metaMA to create lists of differentially regulated genes. These gene lists showed many similarities for different chicken breeds and tissues, and also for different Salmonella serovars measured at different times post infection. Functional biological analysis of these differentially expressed gene lists revealed several common mechanisms for the chicken host response to Salmonella infection. The meta-analysis-specific genes (i.e. genes found differentially expressed only in the meta-analysis) confirmed and expanded the biological functional mechanisms. Conclusions The meta-analysis combination of heterogeneous expression profiling data provided useful insights into the common metabolic pathways and functions of different chicken lines infected with different Salmonella serovars. PMID:22531008

  18. Antibiotic Resistance of Salmonella spp. Isolated from Shrimp Farming Freshwater Environment in Northeast Region of Brazil

    PubMed Central

    Carvalho, Fátima C. T.; Sousa, Oscarina V.; Carvalho, Edirsana M. R.; Hofer, Ernesto; Vieira, Regine H. S. F.

    2013-01-01

    This study investigated the presence and antibiotic resistance of Salmonella spp. in a shrimp farming environment in Northeast Region of Brazil. Samples of water and sediments from two farms rearing freshwater-acclimated Litopenaeus vannamei were examined for the presence of Salmonella. Afterwards, Salmonella isolates were serotyped, the antimicrobial resistance was determined by a disk diffusion method, and the plasmid curing was performed for resistant isolates. A total of 30 (16.12%) of the 186 isolates were confirmed to be Salmonella spp., belonging to five serovars: S. serovar Saintpaul, S. serovar Infantis, S. serovar Panama, S. serovar Madelia, and S. serovar Braenderup, along with 2 subspecies: S. enterica serovar houtenae and S. enterica serovar enterica. About twenty-three percent of the isolates were resistant to at least one antibiotic, and twenty percent were resistant to at least two antibiotics. Three strains isolated from water samples (pond and inlet canal) exhibited multiresistance to ampicillin, tetracycline, oxytetracycline, and nitrofurantoin. One of them had a plasmid with genes conferring resistance to nitrofurantoin and ampicillin. The incidence of bacteria pathogenic to humans in a shrimp farming environment, as well as their drug-resistance pattern revealed in this study, emphasizes the need for a more rigorous attention to this area. PMID:24455280

  19. Salmonella enterica serovar Typhimurium adhesion and cytotoxicity during epithelial cell stress is reduced by Lactobacillus rhamnosus GG

    PubMed Central

    Burkholder, Kristin M; Bhunia, Arun K

    2009-01-01

    Background Physiological stressors may alter susceptibility of the host intestinal epithelium to infection by enteric pathogens. In the current study, cytotoxic effect, adhesion and invasion of Salmonella enterica serovar Typhimurium (S. Typhimurium) to Caco-2 cells exposed to thermal stress (41°C, 1 h) was investigated. Probiotic bacteria have been shown to reduce interaction of pathogens with the epithelium under non-stress conditions and may have a significant effect on epithelial viability during infection; however, probiotic effect on pathogen interaction with epithelial cells under physiological stress is not known. Therefore, we investigated the influence of Lactobacillus rhamnosus GG and Lactobacillus gasseri on Salmonella adhesion and Salmonella-induced cytotoxicity of Caco-2 cells subjected to thermal stress. Results Thermal stress increased the cytotoxic effect of both S. Typhimurium (P = 0.0001) and nonpathogenic E. coli K12 (P = 0.004) to Caco-2 cells, and resulted in greater susceptibility of cell monolayers to S. Typhimurium adhesion (P = 0.001). Thermal stress had no significant impact on inflammatory cytokines released by Caco-2 cells, although exposure to S. Typhimurium resulted in greater than 80% increase in production of IL-6 and IL-8. Blocking S. Typhimurium with anti-ShdA antibody prior to exposure of Salmonella decreased adhesion (P = 0.01) to non-stressed and thermal-stressed Caco-2 cells. Pre-exposure of Caco-2 cells to L. rhamnosus GG significantly reduced Salmonella-induced cytotoxicity (P = 0.001) and Salmonella adhesion (P = 0.001) to Caco-2 cells during thermal stress, while L. gasseri had no effect. Conclusion Results suggest that thermal stress increases susceptibility of intestinal epithelial Caco-2 cells to Salmonella adhesion, and increases the cytotoxic effect of Salmonella during infection. Use of L. rhamnosus GG as a probiotic may reduce the severity of infection during epithelial cell stress. Mechanisms by which thermal

  20. Homologous stress adaptation, antibiotic resistance, and biofilm forming ability of Salmonella enterica serovar Heidelberg (ATCC8326) on different food-contact surfaces following exposure to sub-lethal chlorine concentrations

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar Heidelberg (American Type Culture Collection; ATCC 8326) was examined for the ability to adapt to the homologous stress of chlorine through exposure to increasing chlorine concentrations (25 ppm daily increments) in tryptic soy broth (TSB). The tested strain exhibited an ...

  1. Synthesis of Metallo-β-Lactamase VIM-2 Is Associated with a Fitness Reduction in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Cordeiro, Nicolás F.; Chabalgoity, José A.; Yim, Lucía

    2014-01-01

    Antibiotic resistance, especially due to β-lactamases, has become one of the main obstacles in the correct treatment of Salmonella infections; furthermore, antibiotic resistance determines a gain of function that may encompass a biological cost, or fitness reduction, to the resistant bacteria. The aim of this work was to determine in vitro if the production of the class B β-lactamase VIM-2 determined a fitness cost for Salmonella enterica serovar Typhimurium. To that end the gene blaVIM-2 was cloned into the virulent strain S. Typhimurium SL1344, using both the tightly regulated pBAD22 vector and the natural plasmid pST12, for inducible and constitutive expression, respectively. Fitness studies were performed by means of motility, growth rate, invasiveness in epithelial cells, and plasmid stability. The expression of blaVIM-2 was accompanied by alterations in micro- and macroscopic morphology and reduced growth rate and motility, as well as diminished invasiveness in epithelial cells. These results suggest that VIM-2 production entails a substantial fitness cost for S. Typhimurium, which in turn may account for the extremely low number of reports of metallo-β-lactamase-producing Salmonella spp. PMID:25136026

  2. Screening for Salmonella in backyard chickens.

    PubMed

    Manning, Johanna; Gole, Vaibhav; Chousalkar, Kapil

    2015-06-15

    Salmonellosis is a significant zoonotic disease which has a considerable economic impact on the egg layer industry. There is limited information about the prevalence of Salmonella spp. in backyard chickens. The current study was conducted to determine the prevalence of Salmonella in backyard chickens, and the associated virulence of any serovars identified. Hundred and fifteen pooled samples from 30 backyard flocks in South Australia were screened. Four flocks tested positive for Salmonella spp. The overall Salmonella isolation rate in the current study was 10.4%. The estimated prevalence at individual bird level was 0.02% (95% CI 0.025-0.975). The serovars isolated were Salmonella Agona, Salmonella subsp 2 ser 21:z10:z6 (Wandsbek) and Salmonella Bovismorbificans. All Salmonella isolates tested positive for the prgH, orfL and spiC genes. The Salmonella subsp 2 ser 21:z10:z6 (Wandsbek) had the most antibiotic resistance, being resistant to ampicillin and cephalothin and having intermediate resistance to florphenicol. All of the Salmonella Agona had intermediate resistance to the ampicillin, while the Salmonella Bovismorbificans were susceptible to all antibiotics tested. With the increased interest of keeping backyard chickens, the current study highlights the zoonotic risk from Salmonella spp. associated with home flocks. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  3. Prevalence and characterization of motile Salmonella in commercial layer poultry farms in Bangladesh.

    PubMed

    Barua, Himel; Biswas, Paritosh K; Olsen, Katharina E P; Christensen, Jens P

    2012-01-01

    Salmonella is a globally widespread food-borne pathogen having major impact on public health. All motile serovars of Salmonella enterica of poultry origin are zoonotic, and contaminated meat and raw eggs are an important source to human infections. Information on the prevalence of Salmonella at farm/holding level, and the zoonotic serovars circulating in layer poultry in the South and South-East Asian countries including Bangladesh, where small-scale commercial farms are predominant, is limited. To investigate the prevalence of Salmonella at layer farm level, and to identify the prevalent serovars we conducted a cross-sectional survey by randomly selecting 500 commercial layer poultry farms in Bangladesh. Faecal samples from the selected farms were collected following standard procedure, and examined for the presence of Salmonella using conventional bacteriological procedures. Thirty isolates were randomly selected, from the ninety obtained from the survey, for serotyping and characterized further by plasmid profiling and pulsed-field gel electrophoresis (PFGE). Results of the survey showed that the prevalence of motile Salmonella at layer farm level was 18% (95% confidence interval 15-21%), and Salmonella Kentucky was identified to be the only serovar circulating in the study population. Plasmid analysis of the S. Kentucky and non-serotyped isolates revealed two distinct profiles with a variation of two different sizes (2.7 and 4.8 kb). PFGE of the 30 S. Kentucky and 30 non-serotyped isolates showed that all of them were clonally related because only one genotype and three subtypes were determined based on the variation in two or three bands. This is also the first report on the presence of any specific serovar of Salmonella enterica in poultry in Bangladesh.

  4. Prevalence and Characterization of Motile Salmonella in Commercial Layer Poultry Farms in Bangladesh

    PubMed Central

    Barua, Himel; Biswas, Paritosh K.; Olsen, Katharina E. P.; Christensen, Jens P.

    2012-01-01

    Salmonella is a globally widespread food-borne pathogen having major impact on public health. All motile serovars of Salmonella enterica of poultry origin are zoonotic, and contaminated meat and raw eggs are an important source to human infections. Information on the prevalence of Salmonella at farm/holding level, and the zoonotic serovars circulating in layer poultry in the South and South-East Asian countries including Bangladesh, where small-scale commercial farms are predominant, is limited. To investigate the prevalence of Salmonella at layer farm level, and to identify the prevalent serovars we conducted a cross-sectional survey by randomly selecting 500 commercial layer poultry farms in Bangladesh. Faecal samples from the selected farms were collected following standard procedure, and examined for the presence of Salmonella using conventional bacteriological procedures. Thirty isolates were randomly selected, from the ninety obtained from the survey, for serotyping and characterized further by plasmid profiling and pulsed-field gel electrophoresis (PFGE). Results of the survey showed that the prevalence of motile Salmonella at layer farm level was 18% (95% confidence interval 15–21%), and Salmonella Kentucky was identified to be the only serovar circulating in the study population. Plasmid analysis of the S. Kentucky and non-serotyped isolates revealed two distinct profiles with a variation of two different sizes (2.7 and 4.8 kb). PFGE of the 30 S. Kentucky and 30 non-serotyped isolates showed that all of them were clonally related because only one genotype and three subtypes were determined based on the variation in two or three bands. This is also the first report on the presence of any specific serovar of Salmonella enterica in poultry in Bangladesh. PMID:22558269

  5. Negative supercoiling of DNA by gyrase is inhibited in Salmonella enterica serovar Typhimurium during adaptation to acid stress.

    PubMed

    Colgan, Aoife M; Quinn, Heather J; Kary, Stefani C; Mitchenall, Lesley A; Maxwell, Anthony; Cameron, Andrew D S; Dorman, Charles J

    2018-03-01

    DNA in intracellular Salmonella enterica serovar Typhimurium relaxes during growth in the acidified (pH 4-5) macrophage vacuole and DNA relaxation correlates with the upregulation of Salmonella genes involved in adaptation to the macrophage environment. Bacterial ATP levels did not increase during adaptation to acid pH unless the bacterium was deficient in MgtC, a cytoplasmic-membrane-located inhibitor of proton-driven F 1 F 0 ATP synthase activity. Inhibiting ATP binding by DNA gyrase and topo IV with novobiocin enhanced the effect of low pH on DNA relaxation. Bacteria expressing novobiocin-resistant (Nov R ) derivatives of gyrase or topo IV also exhibited DNA relaxation at acid pH, although further relaxation with novobiocin was not seen in the strain with Nov R gyrase. Thus, inhibition of the negative supercoiling activity of gyrase was the primary cause of enhanced DNA relaxation in drug-treated bacteria. The Salmonella cytosol reaches pH 5-6 in response to an external pH of 4-5: the ATP-dependent DNA supercoiling activity of purified gyrase was progressively inhibited by lowering the pH in this range, as was the ATP-dependent DNA relaxation activity of topo IV. We propose that DNA relaxation in Salmonella within macrophage is due to acid-mediated impairment of the negative supercoiling activity of gyrase. © 2018 John Wiley & Sons Ltd.

  6. Conjugal Transfer of the Pathogenicity Island ROD21 in Salmonella enterica serovar Enteritidis Depends on Environmental Conditions

    PubMed Central

    Salazar-Echegarai, Francisco J.; Tobar, Hugo E.; Nieto, Pamela A.; Riedel, Claudia A.; Bueno, Susan M.

    2014-01-01

    Unstable pathogenicity islands are chromosomal elements that can be transferred from one bacterium to another. Salmonella enterica serovar Enteritidis (S. Enteritidis) is a pathogenic bacterium containing such unstable pathogenicity islands. One of them, denominated ROD21, is 26.5 kb in size and capable of excising from the chromosome in certain culture conditions, as well as during bacterial infection of phagocytic cells. In this study we have evaluated whether ROD21 can be effectively transferred from one bacterium to another. We generated a donor and several recipient strains of S. Enteritidis to carry out transfer assays in liquid LB medium. These assays showed that ROD21 is effectively transferred from donor to recipient strains of S. Enteritidis and S. Typhimurium. When Escherichia coli was used as the recipient strain, ROD21 transfer failed to be observed. Subsequently, we showed that a conjugative process was required for the transfer of the island and that changes in temperature and pH increased the transfer frequency between Salmonella strains. Our data indicate that ROD21 is an unstable pathogenicity island that can be transferred by conjugation in a species-specific manner between Salmonellae. Further, ROD21 transfer frequency increases in response to environmental changes, such as pH and temperature. PMID:24705125

  7. Salmonella Intracellular Lifestyles and Their Impact on Host-to-Host Transmission.

    PubMed

    Pucciarelli, M Graciela; García-Del Portillo, Francisco

    2017-07-01

    More than a century ago, infections by Salmonella were already associated with foodborne enteric diseases with high morbidity in humans and cattle. Intestinal inflammation and diarrhea are hallmarks of infections caused by nontyphoidal Salmonella serovars, and these pathologies facilitate pathogen transmission to the environment. In those early times, physicians and microbiologists also realized that typhoid and paratyphoid fever caused by some Salmonella serovars could be transmitted by "carriers," individuals outwardly healthy or at most suffering from some minor chronic complaint. In his pioneering study of the nontyphoidal serovar Typhimurium in 1967, Takeuchi published the first images of intracellular bacteria enclosed by membrane-bound vacuoles in the initial stages of the intestinal epithelium penetration. These compartments, called Salmonella -containing vacuoles, are highly dynamic phagosomes with differing biogenesis depending on the host cell type. Single-cell studies involving real-time imaging and gene expression profiling, together with new approaches based on genetic reporters sensitive to growth rate, have uncovered unprecedented heterogeneous responses in intracellular bacteria. Subpopulations of intracellular bacteria displaying fast, reduced, or no growth, as well as cytosolic and intravacuolar bacteria, have been reported in both in vitro and in vivo infection models. Recent investigations, most of them focused on the serovar Typhimurium, point to the selection of persisting bacteria inside macrophages or following an autophagy attack in fibroblasts. Here, we discuss these heterogeneous intracellular lifestyles and speculate on how these disparate behaviors may impact host-to-host transmissibility of Salmonella serovars.

  8. Regulation of Flagellum Biosynthesis in Response to Cell Envelope Stress in Salmonella enterica Serovar Typhimurium

    PubMed Central

    2018-01-01

    ABSTRACT Flagellum-driven motility of Salmonella enterica serovar Typhimurium facilitates host colonization. However, the large extracellular flagellum is also a prime target for the immune system. As consequence, expression of flagella is bistable within a population of Salmonella, resulting in flagellated and nonflagellated subpopulations. This allows the bacteria to maximize fitness in hostile environments. The degenerate EAL domain protein RflP (formerly YdiV) is responsible for the bistable expression of flagella by directing the flagellar master regulatory complex FlhD4C2 with respect to proteolytic degradation. Information concerning the environmental cues controlling expression of rflP and thus about the bistable flagellar biosynthesis remains ambiguous. Here, we demonstrated that RflP responds to cell envelope stress and alterations of outer membrane integrity. Lipopolysaccharide (LPS) truncation mutants of Salmonella Typhimurium exhibited increasing motility defects due to downregulation of flagellar gene expression. Transposon mutagenesis and genetic profiling revealed that σ24 (RpoE) and Rcs phosphorelay-dependent cell envelope stress response systems sense modifications of the lipopolysaccaride, low pH, and activity of the complement system. This subsequently results in activation of RflP expression and degradation of FlhD4C2 via ClpXP. We speculate that the presence of diverse hostile environments inside the host might result in cell envelope damage and would thus trigger the repression of resource-costly and immunogenic flagellum biosynthesis via activation of the cell envelope stress response. PMID:29717015

  9. Comparative analysis of core genome MLST and SNP typing within a European Salmonella serovar Enteritidis outbreak.

    PubMed

    Pearce, Madison E; Alikhan, Nabil-Fareed; Dallman, Timothy J; Zhou, Zhemin; Grant, Kathie; Maiden, Martin C J

    2018-06-02

    Multi-country outbreaks of foodborne bacterial disease present challenges in their detection, tracking, and notification. As food is increasingly distributed across borders, such outbreaks are becoming more common. This increases the need for high-resolution, accessible, and replicable isolate typing schemes. Here we evaluate a core genome multilocus typing (cgMLST) scheme for the high-resolution reproducible typing of Salmonella enterica (S. enterica) isolates, by its application to a large European outbreak of S. enterica serovar Enteritidis. This outbreak had been extensively characterised using single nucleotide polymorphism (SNP)-based approaches. The cgMLST analysis was congruent with the original SNP-based analysis, the epidemiological data, and whole genome MLST (wgMLST) analysis. Combination of the cgMLST and epidemiological data confirmed that the genetic diversity among the isolates predated the outbreak, and was likely present at the infection source. There was consequently no link between country of isolation and genetic diversity, but the cgMLST clusters were congruent with date of isolation. Furthermore, comparison with publicly available Enteritidis isolate data demonstrated that the cgMLST scheme presented is highly scalable, enabling outbreaks to be contextualised within the Salmonella genus. The cgMLST scheme is therefore shown to be a standardised and scalable typing method, which allows Salmonella outbreaks to be analysed and compared across laboratories and jurisdictions. Copyright © 2018. Published by Elsevier B.V.

  10. DksA-dependent resistance of Salmonella enterica serovar Typhimurium against the antimicrobial activity of inducible nitric oxide synthase.

    PubMed

    Henard, Calvin A; Vázquez-Torres, Andrés

    2012-04-01

    In coordination with the ppGpp alarmone, the RNA polymerase regulatory protein DksA controls the stringent response of eubacteria, negatively regulating transcription of translational machinery and directly activating amino acid promoters and de novo amino acid biosynthesis. Given the effects of nitric oxide (NO) on amino acid biosynthetic pathways and the intimate relationship of DksA with amino acid synthesis and transport, we tested whether DksA contributes to the resistance of Salmonella to reactive nitrogen species (RNS). Our studies show that the zinc finger predicted to position DksA in the secondary channel of the RNA polymerase is essential for the resistance of Salmonella enterica serovar Typhimurium to RNS in a murine model of systemic salmonellosis. Despite exhibiting auxotrophies for various amino acids, ΔdksA mutant Salmonella strains regain virulence in mice lacking inducible NO synthase (iNOS). DksA is also important for growth of this intracellular pathogen in the presence of NO congeners generated by iNOS during the innate response of murine macrophages. Accordingly, dksA mutant Salmonella strains are hypersusceptible to chemically generated NO, a phenotype that can be prevented by adding amino acids. The DksA-dependent antinitrosative defenses do not rely on the Hmp flavohemoprotein that detoxifies NO to NO(3)(-) and appear to operate independently of the ppGpp alarmone. Our investigations are consistent with a model by which NO produced in the innate response to Salmonella exerts considerable pressure on amino acid biosynthesis. The cytotoxicity of NO against Salmonella amino acid biosynthetic pathways is antagonized in great part by the DksA-dependent regulation of amino acid biosynthesis and transport.

  11. Salmonella enterica serovar Oranienburg outbreak in a veterinary medical teaching hospital with evidence of nosocomial and on-farm transmission.

    PubMed

    Cummings, Kevin J; Rodriguez-Rivera, Lorraine D; Mitchell, Katharyn J; Hoelzer, Karin; Wiedmann, Martin; McDonough, Patrick L; Altier, Craig; Warnick, Lorin D; Perkins, Gillian A

    2014-07-01

    Nosocomial salmonellosis continues to pose an important threat to veterinary medical teaching hospitals. The objectives of this study were to describe an outbreak of salmonellosis caused by Salmonella enterica serovar Oranienburg within our hospital and to highlight its unique features, which can be used to help mitigate or prevent nosocomial outbreaks in the future. We retrospectively analyzed data from patients that were fecal culture-positive for Salmonella Oranienburg between January 1, 2006, and June 1, 2011, including historical, clinical, and pulsed-field gel electrophoresis (PFGE) data. Salmonella Oranienburg was identified in 20 horses, five alpacas, and three cows during this time frame, with dates of admission spanning the period from August, 2006, through January, 2008. We consider most of these patients to have become infected through either nosocomial or on-farm transmission, as evidenced by molecular subtyping results and supportive epidemiologic data. Interpretation of PFGE results in this outbreak was challenging because of the identification of several closely related Salmonella Oranienburg subtypes. Furthermore, a high percentage of cases were fecal culture-positive for Salmonella Oranienburg within 24 h of admission. These patients initially appeared to represent new introductions of Salmonella into the hospital, but closer inspection of their medical records revealed epidemiologic links to the hospital following the index case. Cessation of this outbreak was observed following efforts to further heighten biosecurity efforts, with no known cases or positive environmental samples after January, 2008. This study demonstrates that a Salmonella-positive culture result within 24 h of admission does not exclude the hospital as the source of infection, and it underscores the important role played by veterinary medical teaching hospitals as nodes of Salmonella infection that can promote transmission outside of the hospital setting.

  12. Evolution of Salmonella enterica Virulence via Point Mutations in the Fimbrial Adhesin

    PubMed Central

    Kisiela, Dagmara I.; Chattopadhyay, Sujay; Libby, Stephen J.; Karlinsey, Joyce E.; Fang, Ferric C.; Tchesnokova, Veronika; Kramer, Jeremy J.; Beskhlebnaya, Viktoriya; Samadpour, Mansour; Grzymajlo, Krzysztof; Ugorski, Maciej; Lankau, Emily W.; Mackie, Roderick I.; Clegg, Steven; Sokurenko, Evgeni V.

    2012-01-01

    Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella. PMID:22685400

  13. Neutral Genomic Microevolution of a Recently Emerged Pathogen, Salmonella enterica Serovar Agona

    PubMed Central

    Litrup, Eva; Murphy, Ronan; Cormican, Martin; Fanning, Seamus; Brown, Derek; Guttman, David S.; Brisse, Sylvain; Achtman, Mark

    2013-01-01

    Salmonella enterica serovar Agona has caused multiple food-borne outbreaks of gastroenteritis since it was first isolated in 1952. We analyzed the genomes of 73 isolates from global sources, comparing five distinct outbreaks with sporadic infections as well as food contamination and the environment. Agona consists of three lineages with minimal mutational diversity: only 846 single nucleotide polymorphisms (SNPs) have accumulated in the non-repetitive, core genome since Agona evolved in 1932 and subsequently underwent a major population expansion in the 1960s. Homologous recombination with other serovars of S. enterica imported 42 recombinational tracts (360 kb) in 5/143 nodes within the genealogy, which resulted in 3,164 additional SNPs. In contrast to this paucity of genetic diversity, Agona is highly diverse according to pulsed-field gel electrophoresis (PFGE), which is used to assign isolates to outbreaks. PFGE diversity reflects a highly dynamic accessory genome associated with the gain or loss (indels) of 51 bacteriophages, 10 plasmids, and 6 integrative conjugational elements (ICE/IMEs), but did not correlate uniquely with outbreaks. Unlike the core genome, indels occurred repeatedly in independent nodes (homoplasies), resulting in inaccurate PFGE genealogies. The accessory genome contained only few cargo genes relevant to infection, other than antibiotic resistance. Thus, most of the genetic diversity within this recently emerged pathogen reflects changes in the accessory genome, or is due to recombination, but these changes seemed to reflect neutral processes rather than Darwinian selection. Each outbreak was caused by an independent clade, without universal, outbreak-associated genomic features, and none of the variable genes in the pan-genome seemed to be associated with an ability to cause outbreaks. PMID:23637636

  14. Isolation and characterization of Salmonella Enteritidis and Salmonella Typhimurium from chicken meat in Egypt.

    PubMed

    Tarabees, Reda; Elsayed, Mohamed S A; Shawish, Reyad; Basiouni, Shereen; Shehata, Awad A

    2017-04-30

    Salmonella enterica serovars Enteritidis and Typhimurium represent the major serovars associated with human salmonellosis. Contamination of meat products with these serovars is considered the main source of infection. In this study, 100 raw chicken meat samples were investigated for the presence of Salmonella spp., which were subsequently identified based on biochemical and serological tests as well as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) profile. Furthermore, the isolated serovars were examined using multiplex polymerase chain reaction (PCR) for the presence of virulence genes suspected to have a role in infection. S. Enteritidis was isolated from two samples (2%), while S. Typhimurium was isolated from three samples (3%) of chicken meat. Of the 17 examined virulence genes using multiplex PCR, the sitC, sopB, sifA, lpfC, spaN, sipB, invA, spiA, and msgA genes were detected in S. Enteritidis. However, the sitC, iroN, sopB, sifA, lpfC, spaN, sipB, invA, and tolC genes were successfully amplified in S. Typhimurium. The detection of S. Enteritidis and S. Typhimurium in meat, even at low incidence, has important implications. In addition, the data presented here is the first attempt to identify a wide range of virulence genes in Egyptian Salmonella isolates recovered from meat products. A strict public health and food safety regime is urgently needed in order to decrease the human health hazard risk associated with salmonellosis.

  15. Sources of Salmonella on broiler carcasses during transportation and processing: modes of contamination and methods of control.

    PubMed

    Corry, Janet E L; Allen, V M; Hudson, W R; Breslin, M F; Davies, R H

    2002-01-01

    The prevalence and types of salmonella in broiler chickens during transportation and during slaughter and dressing were studied. This was part of a comprehensive investigation of salmonellas in two UK poultry companies, which aimed to find the origins and mechanisms of salmonella contamination. Salmonellas were isolated using cultural methods. Serovars of Salmonella detected during rearing were usually also found in a small proportion of birds on the day of slaughter and on the carcasses at various points during processing. There was little evidence of salmonellas spreading to large numbers of carcasses during processing. Many serovars found in the feedmills or hatcheries were also detected in the birds during rearing and/or slaughter. Transport crates were contaminated with salmonellas after washing and disinfection. Prevalence of salmonellas fell in the two companies during this survey. A small number of serovars predominated in the processing plants of each company. These serovars originated from the feed mills. Reasons for transport crate contamination were: (1) inadequate cleaning, resulting in residual faecal soiling; (2) disinfectant concentration and temperature of disinfectant too low; (3) contaminated recycled flume water used to soak the crates. Efforts to control salmonella infection in broilers need to concentrate on crate cleaning and disinfection and hygiene in the feed mills.

  16. Comparison of advanced whole genome sequence-based methods to distinguish strains of Salmonella enterica serovar Heidelberg involved in foodborne outbreaks in Québec.

    PubMed

    Vincent, Caroline; Usongo, Valentine; Berry, Chrystal; Tremblay, Denise M; Moineau, Sylvain; Yousfi, Khadidja; Doualla-Bell, Florence; Fournier, Eric; Nadon, Céline; Goodridge, Lawrence; Bekal, Sadjia

    2018-08-01

    Salmonella enterica serovar Heidelberg (S. Heidelberg) is one of the top serovars causing human salmonellosis. This serovar ranks second and third among serovars that cause human infections in Québec and Canada, respectively, and has been associated with severe infections. Traditional typing methods such as PFGE do not display adequate discrimination required to resolve outbreak investigations due to the low level of genetic diversity of isolates belonging to this serovar. This study evaluates the ability of four whole genome sequence (WGS)-based typing methods to differentiate among 145 S. Heidelberg strains involved in four distinct outbreak events and sporadic cases of salmonellosis that occurred in Québec between 2007 and 2016. Isolates from all outbreaks were indistinguishable by PFGE. The core genome single nucleotide variant (SNV), core genome multilocus sequence typing (MLST) and whole genome MLST approaches were highly discriminatory and separated outbreak strains into four distinct phylogenetic clusters that were concordant with the epidemiological data. The clustered regularly interspaced short palindromic repeats (CRISPR) typing method was less discriminatory. However, CRISPR typing may be used as a secondary method to differentiate isolates of S. Heidelberg that are genetically similar but epidemiologically unrelated to outbreak events. WGS-based typing methods provide a highly discriminatory alternative to PFGE for the laboratory investigation of foodborne outbreaks. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Horizontal Acquisition of a Multidrug-Resistance Module (R-type ASSuT) Is Responsible for the Monophasic Phenotype in a Widespread Clone of Salmonella Serovar 4,[5],12:i:.

    PubMed

    García, Patricia; Malorny, Burkhard; Rodicio, M Rosario; Stephan, Roger; Hächler, Herbert; Guerra, Beatriz; Lucarelli, Claudia

    2016-01-01

    Salmonella enterica serovar 4,[5],12:i:- is a monophasic variant of S. Typhimurium incapable of expressing the second-phase flagellar antigen (fljAB operon), and it is recognized to be one of the most prevalent serovars causing human infections. A clonal lineage characterized by phage type DT193, PulseNet PFGE profile STYMXB.0131 and multidrug resistance to ampicillin, streptomycin, sulphonamides and tetracycline (R-type ASSuT) is commonly circulating in Europe. In this study we determined the deletions affecting the fljAB operon and the resistance region responsible for the R-type ASSuT in a strain of Salmonella enterica serovar 4,5,12:i:- DT193/STYMXB.0131, through an approach based on PCRs and Southern blot hybridization of genomic DNA. Using a set of nine specific PCRs, the prevalence of the resistance region was assessed in a collection of 144 S. enterica serovar 4,[5],12:i:-/ASSuT/STYMXB.0131 strains isolated from Germany, Switzerland and Italy. A 28 kb-region is embedded between the loci STM2759 and iroB, replacing the DNA located in between, including the fljAB operon. It encompasses the genes bla TEM-1, strA-strB, sul2 and tet(B) responsible for the R-type ASSuT together with genes involved in plasmid replication and orfs of unknown function characteristically located on IncH1 plasmids. Its location and internal structure is fairly conserved in S. enterica serovar 4,[5],12:i:-/ASSuT/STYMXB.0131 strains regardless of the isolation source or country. Hence, in the S. enterica serovar 4,[5],12:i:-/ASSuT/STYMXB.0131 clonal lineage widespread in Germany, Switzerland and Italy, a resistance region derived from IncH1 plasmids has replaced the chromosomal region encoding the second flagellar phase and is an example of the stabilization of new plasmid-derived genetic material due to integration into the bacterial chromosome.

  18. Salmonella enterica serovar Typhimurium and Escherichia coli contamination of root and leaf vegetables grown in soils with incorporated bovine manure.

    PubMed

    Natvig, Erin E; Ingham, Steven C; Ingham, Barbara H; Cooperband, Leslie R; Roper, Teryl R

    2002-06-01

    Bovine manure, with or without added Salmonella enterica serovar Typhimurium (three strains), was incorporated into silty clay loam (SCL) and loamy sand (LS) soil beds (53- by 114-cm surface area, 17.5 cm deep) and maintained in two controlled-environment chambers. The S. enterica serovar Typhimurium inoculum was 4 to 5 log CFU/g in manure-fertilized soil. The conditions in the two environmental chambers, each containing inoculated and uninoculated beds of manure-fertilized soil, simulated daily average Madison, Wis., weather conditions (hourly temperatures, rainfall, daylight, and humidity) for a 1 March or a 1 June manure application and subsequent vegetable growing seasons ending 9 August or 28 September, respectively. Core soil samples were taken biweekly from both inoculated and uninoculated soil beds in each chamber. Radishes, arugula, and carrots were planted in soil beds, thinned, and harvested. Soils, thinned vegetables, and harvested vegetables were analyzed for S. enterica serovar Typhimurium and Escherichia coli (indigenous in manure). After the 1 March manure application, S. enterica serovar Typhimurium was detected at low levels in both soils on 31 May, but not on vegetables planted 1 May and harvested 12 July from either soil. After the 1 June manure application, S. enterica serovar Typhimurium was detected in SCL soil on 7 September and on radishes and arugula planted in SCL soil on 15 August and harvested on 27 September. In LS soil, S. enterica serovar Typhimurium died at a similar rate (P >or= 0.05) after the 1 June manure application and was less often detected on arugula and radishes harvested from this soil compared to the SCL soil. Pathogen levels on vegetables were decreased by washing. Manure application in cool (daily average maximum temperature of <10 degrees C) spring conditions is recommended to ensure that harvested vegetables are not contaminated with S. enterica serovar Typhimurium. Manure application under warmer (daily average

  19. Salmonella enterica Serovar Typhimurium and Escherichia coli Contamination of Root and Leaf Vegetables Grown in Soils with Incorporated Bovine Manure

    PubMed Central

    Natvig, Erin E.; Ingham, Steven C.; Ingham, Barbara H.; Cooperband, Leslie R.; Roper, Teryl R.

    2002-01-01

    Bovine manure, with or without added Salmonella enterica serovar Typhimurium (three strains), was incorporated into silty clay loam (SCL) and loamy sand (LS) soil beds (53- by 114-cm surface area, 17.5 cm deep) and maintained in two controlled-environment chambers. The S. enterica serovar Typhimurium inoculum was 4 to 5 log CFU/g in manure-fertilized soil. The conditions in the two environmental chambers, each containing inoculated and uninoculated beds of manure-fertilized soil, simulated daily average Madison, Wis., weather conditions (hourly temperatures, rainfall, daylight, and humidity) for a 1 March or a 1 June manure application and subsequent vegetable growing seasons ending 9 August or 28 September, respectively. Core soil samples were taken biweekly from both inoculated and uninoculated soil beds in each chamber. Radishes, arugula, and carrots were planted in soil beds, thinned, and harvested. Soils, thinned vegetables, and harvested vegetables were analyzed for S. enterica serovar Typhimurium and Escherichia coli (indigenous in manure). After the 1 March manure application, S. enterica serovar Typhimurium was detected at low levels in both soils on 31 May, but not on vegetables planted 1 May and harvested 12 July from either soil. After the 1 June manure application, S. enterica serovar Typhimurium was detected in SCL soil on 7 September and on radishes and arugula planted in SCL soil on 15 August and harvested on 27 September. In LS soil, S. enterica serovar Typhimurium died at a similar rate (P ≥ 0.05) after the 1 June manure application and was less often detected on arugula and radishes harvested from this soil compared to the SCL soil. Pathogen levels on vegetables were decreased by washing. Manure application in cool (daily average maximum temperature of <10°C) spring conditions is recommended to ensure that harvested vegetables are not contaminated with S. enterica serovar Typhimurium. Manure application under warmer (daily average maximum

  20. Turtles as a Possible Reservoir of Nontyphoidal Salmonella in Shanghai, China

    PubMed Central

    Zhang, Jianmin; Kuang, Dai; Wang, Fei; Meng, Jianghong; Jin, Huiming; Yang, Xiaowei; Liao, Ming; Klena, John D.; Wu, Shuyu; Zhang, Yongbiao; Xu, Xuebin

    2017-01-01

    Terrapins and turtles are known to transmit Salmonella to humans. However, little was known about the occurrence of this pathogen in soft-shelled terrapin that is a popular delicacy in Chinese and other East Asian cuisines. We isolated and characterized 82 (24.4%) isolates of Salmonella from 336 fecal samples of soft-shelled terrapins (51 of 172; 29.7%) and pet turtles (31 of 164; 18.9%) in Shanghai. Salmonella Thompson was the most common serotype (17.1%) among others. Many isolates (84.1%) were resistant to multiple antimicrobials (≥3). Molecular analysis of Salmonella Thompson and Salmonella Typhimurium using pulsed-field gel electrophoresis unveiled a close genetic relationship between several human and terrapin isolates. Our results highlight the risk associated with the handling and consumption of turtles and their role in the spread of Salmonella in the human salmonellosis. PMID:27267492

  1. Application of Scutellariae radix, Gardeniae fructus, and Probiotics to Prevent Salmonella enterica Serovar Choleraesuis Infection in Swine

    PubMed Central

    Chang, Chiung-Hung; Chen, Yueh-Sheng; Chiou, Ming-Tang; Su, Chiu-Hsian; Chen, Daniel S.; Tsai, Chin-En; Yu, Bi; Hsu, Yuan-Man

    2013-01-01

    Salmonella enterica serovar Choleraesuis, a host-adapted pathogen of swine, usually causes septicemia. Lactic acid bacteria (LAB) strains have been widely studied in recent years for their probiotic properties. In this study, a mouse infection model first screened for potential agents against infection, then a pig infection model evaluated effects of LAB strains and herbal plants against infection. Scutellariae radix (SR) and Gardeniae fructus (GF) showed abilities to reduce bacteria shedding and suppressing serum level of TNF-α induced by infection in swine. Bioactivities of SR and GF were enhanced by combining with LAB strains, which alone could speed up the bacteria elimination time in feces and boost immunity of infected pigs. Baicalein and genipin exhibited stronger cytotoxicity than baicalin and geniposide did, as well as prevent Salmonella from invading macrophages. Our study suggests LAB strains as exhibiting multiple functions: preventing infection, enhancing immunity to prepare host defenses against further infection, and adjusting intestinal microbes' enzymatic activity in order to convert herbal compounds to active compounds. The SR/GF-LAB strain mixture holds potential infection-prevention agents supplied as feed additives. PMID:23533497

  2. Prevalence of Salmonella in diverse environmental farm samples.

    PubMed

    Rodriguez, Andres; Pangloli, Philipus; Richards, Harold A; Mount, John R; Draughon, F Ann

    2006-11-01

    The development of suitable intervention strategies to control Salmonella populations at the farm level requires reliable data on the occurrence and prevalence of the pathogen. Previous studies on Salmonella prevalence have focused on acquiring data from specific farm types and/or selected regions. The purpose of this study was to evaluate the distribution of this pathogen across a variety of farm types and regions in order to generate comparative data from a diverse group of environmental samples. Farm samples (n = 2,496) were collected quarterly from 18 different farms across five states (Tennessee, North Carolina, Alabama, California, and Washington) over a 24-month period. The participating farms included beef and dairy cattle operations, swine production and farrowing facilities, and poultry farms (both broiler chicken and turkey). The samples were analyzed for the presence of Salmonella by means of the U.S. Food and Drug Administration's Bacteriological Analytical Manual methods optimized for farm samples. Salmonella isolates were characterized by automated riboprinting. Salmonella serovars were recovered from 4.7% of all samples. The majority of positive findings were isolated from swine farms (57.3%). The occurrence of Salmonella was lower on dairy farms (17.9%), poultry farms (16.2%), and beef cattle farms (8.5%). The most commonly isolated serovar was Salmonella Anatum (48.4%), which was isolated notably more frequently than the next most common Salmonella serovars, Arizonae (12.1%) and Javiana (8.8%). The results of this study suggest that significant reservoirs of Salmonella populations still exist on swine production facilities and to a lesser extent in other animal production facilities. Data showed that the surrounding farm environment could be an important source of contamination.

  3. Genetic diversity of human isolates of Salmonella enterica serovar Enteritidis in Malaysia.

    PubMed

    Bakeri, S A; Yasin, R M; Koh, Y T; Puthucheary, S D; Thong, K L

    2003-01-01

    The study was undertaken to determine clonal relationship and genetic diversity of the human strains of Salmonella enterica serovar Enteritidis isolated from 1995 to 2002 from different parts of Malaysia. Antimicrobial susceptibility test, plasmid profiling and pulsed-field gel electrophoresis were applied to analyse 65 human isolates of S. Enteritidis obtained over an eight year period from different parts of Malaysia. Four nonhuman isolates were included for comparison. A total of 14 distinct XbaI-pulsed-field profiles (PFPs) were observed, although a single PFP X1 was predominant and this particular clone was found to be endemic in Malaysia. The incidence of drug resistant S. Enteritidis remained relatively low with only 37% of the strains analysed being resistant to one or more antimicrobial agents. All except one resistant strain carried at least one plasmid ranging in size from 3.7 to 62 MDa giving nine plasmid profiles. The three isolates from raw milk and one from well-water had similar PFPs to that of the human isolates. Salmonella Enteritidis strains were more diverse than was previously thought. Fourteen subtypes were noted although one predominant clone persisted in Malaysia. The combination of pulsed-field gel electrophoresis, plasmid profiling and antibiograms provided additional discrimination to the highly clonal strains of S. Enteritidis. This is the first report to assess the genotypes of the predominant clinical S. Enteritidis in different parts of the country. As S. Enteritidis is highly endemic in Malaysia, the data generated would be useful for tracing the source during outbreaks of gastroenteritis in the study area.

  4. In Vivo Visualization of Bacterial Colonization, Antigen Expression, and Specific T-Cell Induction following Oral Administration of Live Recombinant Salmonella enterica Serovar Typhimurium

    PubMed Central

    Bumann, Dirk

    2001-01-01

    Live attenuated Salmonella strains that express a foreign antigen are promising oral vaccine candidates. Numerous genetic modifications have been empirically tested, but their effects on immunogenicity are difficult to interpret since important in vivo properties of recombinant Salmonella strains such as antigen expression and localization are incompletely characterized and the crucial early inductive events of an immune response to the foreign antigen are not fully understood. Here, methods were developed to directly localize and quantitate the in situ expression of an ovalbumin model antigen in recombinant Salmonella enterica serovar Typhimurium using two-color flow cytometry and confocal microscopy. In parallel, the in vivo activation, blast formation, and division of ovalbumin-specific CD4+ T cells were followed using a well-characterized transgenic T-cell receptor mouse model. This combined approach revealed a biphasic induction of ovalbumin-specific T cells in the Peyer's patches that followed the local ovalbumin expression of orally administered recombinant Salmonella cells in a dose- and time-dependent manner. Interestingly, intact Salmonella cells and cognate T cells seemed to remain in separate tissue compartments throughout induction, suggesting a transport of killed Salmonella cells from the colonized subepithelial dome area to the interfollicular inductive sites. The findings of this study will help to rationally optimize recombinant Salmonella strains as efficacious live antigen carriers for oral vaccination. PMID:11402006

  5. Spatial distribution of antibodies to Salmonella enterica serovar Typhimurium O antigens in bulk milk from Texas dairy herds.

    PubMed

    Graham, S L; Barling, K S; Waghela, S; Scott, H M; Thompson, J A

    2005-06-10

    Environmental factors that enhance either the survivability or dispersion of Salmonella enterica serovar Typhimurium (S. Typhimurium) could result in a spatial pattern of disease risk. The objectives of this study were to: (1) describe herd status based on antibody response to Salmonella Typhimurium as estimated from bulk tank milk samples and (2) to describe the resulting geographical patterns found among Texas dairy herds. Eight hundred and fifty-two bulk milk samples were collected from georeferenced dairy farms and assayed by an indirect enzyme-linked immunosorbent assay (ELISA) using S. Typhimurium lipopolysaccharide (LPS). ELISA signal-to-noise ratios for each bulk tank milk sample were calculated and used for geostatistical analyses. Best-fit parameters for the exponential theoretical variogram included a range of 438.8 km, partial sill of 0.060 and nugget of 0.106. The partial sill is the classical geostatistical term for the variance that can be explained by the herd's location and the nugget is the spatially random component of the variance. We have identified a spatial process in bulk milk tank titers for S. Typhimurium in Texas dairy herds and present a map of the expected smoothed surface. Areas with higher expected titers should be targeted in further studies on controlling Salmonella infection with environmental modifications.

  6. Prevalence and Characterization of Salmonella enterica and Salmonella Bacteriophages Recovered from Beef Cattle Feedlots in South Texas.

    PubMed

    Xie, Yicheng; Savell, Jeffrey W; Arnold, Ashley N; Gehring, Kerri B; Gill, Jason J; Taylor, T Matthew

    2016-08-01

    Asymptomatic Salmonella carriage in beef cattle is a food safety concern, and the beef feedlot environment may function as a reservoir of this pathogen. The goal of this study was to identify and isolate Salmonella and Salmonella bacteriophages from beef cattle feedlot environments in order to better understand the microbial ecology of Salmonella and identify phages that might be useful as anti-Salmonella beef safety interventions. Three feedlots in south Texas were visited, and 27 distinct samples from each source were collected from dropped feces, feed from feed bunks, drinking water from troughs, and soil in cattle pens (n = 108 samples). Preenrichment, selective enrichment, and selective/differential isolation of Salmonella were performed on each sample. A representative subset of presumptive Salmonella isolates was prepared for biochemical identification and serotyping. Samples were pooled by feedlot and sample type to create 36 samples and enriched to recover phages. Recovered phages were tested for host range against two panels of Salmonella hosts. Salmonella bacteria were identified in 20 (18.5%) of 108 samples by biochemical and/or serological testing. The serovars recovered included Salmonella enterica serovars Anatum, Muenchen, Altona, Kralingen, Kentucky, and Montevideo; Salmonella Anatum was the most frequently recovered serotype. Phage-positive samples were distributed evenly over the three feedlots, suggesting that phage prevalence is not strongly correlated with the presence of culturable Salmonella. Phages were found more frequently in soil and feces than in feed and water samples. The recovery of bacteriophages in the Salmonella-free feedlot suggests that phages might play a role in suppressing the Salmonella population in a feedlot environment.

  7. Salmonella infection and carriage in reptiles in a zoological collection.

    PubMed

    Clancy, Meredith M; Davis, Meghan; Valitutto, Marc T; Nelson, Kenrad; Sykes, John M

    2016-05-01

    OBJECTIVE To identify important subspecies and serovars of Salmonella enterica in a captive reptile population and clinically relevant risk factors for and signs of illness in Salmonella-positive reptiles. DESIGN Retrospective cross-sectional study. ANIMALS 11 crocodilians (4 samples), 78 snakes (91 samples), 59 lizards (57 samples), and 34 chelonians (23 samples) at the Bronx Zoo from 2000 through 2012. PROCEDURES Data pertaining to various types of biological samples obtained from reptiles with positive Salmonella culture results and the reptiles themselves were analyzed to determine period prevalence of and risk factors for various Salmonella-related outcomes. RESULTS Serovar distribution differences were identified for sample type, reptile phylogenetic family, and reptile origin and health. Salmonella enterica subsp enterica was the most common subspecies in Salmonella cultures (78/175 [45%]), identified across all reptilian taxa. Salmonella enterica subsp diarizonae was also common (42/175 [24%]) and was recovered almost exclusively from snakes (n = 33), many of which had been clinically ill (17). Clinically ill reptiles provided 37% (64) of Salmonella cultures. Factors associated with an increased risk of illness in reptiles with a positive culture result were carnivorous diet and prior confiscation. Snakes had a higher risk of illness than other reptile groups, whereas lizards had a lower risk. Bony changes, dermatitis, and anorexia were the most common clinical signs. CONCLUSIONS AND CLINICAL RELEVANCE This study provided new information on Salmonella infection or carriage and associated clinical disease in reptiles. Associations identified between serovars or subspecies and reptile groups or clinical disease can guide management of Salmonella-positive captive reptiles.

  8. Prevalence and antimicrobial resistance of Salmonella isolated from broiler farms, chicken carcasses, and street-vended restaurants in Casamance, Senegal.

    PubMed

    Dione, Michel M; Ieven, Margareta; Garin, Benoît; Marcotty, Tanguy; Geerts, Stanny

    2009-11-01

    This study was undertaken to determine the prevalence and distribution of Salmonella on 57 randomly selected broiler farms at the end of the rearing period and in chicken products in urban and periurban areas in Casamance, Senegal, and to evaluate the antimicrobial resistance profiles of the Salmonella serovars. Salmonella was detected in chicken feces, on carcass skin, and in muscle on 35.1, 38.6, and 29.8% of farms, respectively. Salmonella was found in chicken meat servings from 14.3% of the 42 street restaurants and in 40.4% of the 285 chicken carcasses examined. The prevalence on skin and in muscle was significantly associated with the detection of Salmonella in feces (P Salmonella serovars were identified; the most common were Brancaster (57.9%), Goelzau (10.7%), Kentucky (8.4%), and Hadar (7.3%). High levels of resistance were found to trimethoprim-sulfamethoxazole, tetracycline, trimethoprim, streptomycin, and sulfonamides. All Salmonella serovars were susceptible to fluoroquinolones and third-generation cephalosporins. A large proportion of the isolates belonging to 11 serovars were resistant to two or more antibiotics. Salmonella continues to be of serious concern in the broiler production chain in Senegal.

  9. Novel small RNA (sRNA) landscape of the starvation-stress response transcriptome of Salmonella enterica serovar typhimurium.

    PubMed

    Amin, Shivam V; Roberts, Justin T; Patterson, Dillon G; Coley, Alexander B; Allred, Jonathan A; Denner, Jason M; Johnson, Justin P; Mullen, Genevieve E; O'Neal, Trenton K; Smith, Jason T; Cardin, Sara E; Carr, Hank T; Carr, Stacie L; Cowart, Holly E; DaCosta, David H; Herring, Brendon R; King, Valeria M; Polska, Caroline J; Ward, Erin E; Wise, Alice A; McAllister, Kathleen N; Chevalier, David; Spector, Michael P; Borchert, Glen M

    2016-01-01

    Small RNAs (sRNAs) are short (∼50-200 nucleotides) noncoding RNAs that regulate cellular activities across bacteria. Salmonella enterica starved of a carbon-energy (C) source experience a host of genetic and physiological changes broadly referred to as the starvation-stress response (SSR). In an attempt to identify novel sRNAs contributing to SSR control, we grew log-phase, 5-h C-starved and 24-h C-starved cultures of the virulent Salmonella enterica subspecies enterica serovar Typhimurium strain SL1344 and comprehensively sequenced their small RNA transcriptomes. Strikingly, after employing a novel strategy for sRNA discovery based on identifying dynamic transcripts arising from "gene-empty" regions, we identify 58 wholly undescribed Salmonella sRNA genes potentially regulating SSR averaging an ∼1,000-fold change in expression between log-phase and C-starved cells. Importantly, the expressions of individual sRNA loci were confirmed by both comprehensive transcriptome analyses and northern blotting of select candidates. Of note, we find 43 candidate sRNAs share significant sequence identity to characterized sRNAs in other bacteria, and ∼70% of our sRNAs likely assume characteristic sRNA structural conformations. In addition, we find 53 of our 58 candidate sRNAs either overlap neighboring mRNA loci or share significant sequence complementarity to mRNAs transcribed elsewhere in the SL1344 genome strongly suggesting they regulate the expression of transcripts via antisense base-pairing. Finally, in addition to this work resulting in the identification of 58 entirely novel Salmonella enterica genes likely participating in the SSR, we also find evidence suggesting that sRNAs are significantly more prevalent than currently appreciated and that Salmonella sRNAs may actually number in the thousands.

  10. Novel small RNA (sRNA) landscape of the starvation-stress response transcriptome of Salmonella enterica serovar typhimurium

    PubMed Central

    Amin, Shivam V.; Roberts, Justin T.; Patterson, Dillon G.; Coley, Alexander B.; Allred, Jonathan A.; Denner, Jason M.; Johnson, Justin P.; Mullen, Genevieve E.; O'Neal, Trenton K.; Smith, Jason T.; Cardin, Sara E.; Carr, Hank T.; Carr, Stacie L.; Cowart, Holly E.; DaCosta, David H.; Herring, Brendon R.; King, Valeria M.; Polska, Caroline J.; Ward, Erin E.; Wise, Alice A.; McAllister, Kathleen N.; Chevalier, David; Spector, Michael P.; Borchert, Glen M.

    2016-01-01

    ABSTRACT Small RNAs (sRNAs) are short (∼50–200 nucleotides) noncoding RNAs that regulate cellular activities across bacteria. Salmonella enterica starved of a carbon-energy (C) source experience a host of genetic and physiological changes broadly referred to as the starvation-stress response (SSR). In an attempt to identify novel sRNAs contributing to SSR control, we grew log-phase, 5-h C-starved and 24-h C-starved cultures of the virulent Salmonella enterica subspecies enterica serovar Typhimurium strain SL1344 and comprehensively sequenced their small RNA transcriptomes. Strikingly, after employing a novel strategy for sRNA discovery based on identifying dynamic transcripts arising from “gene-empty” regions, we identify 58 wholly undescribed Salmonella sRNA genes potentially regulating SSR averaging an ∼1,000-fold change in expression between log-phase and C-starved cells. Importantly, the expressions of individual sRNA loci were confirmed by both comprehensive transcriptome analyses and northern blotting of select candidates. Of note, we find 43 candidate sRNAs share significant sequence identity to characterized sRNAs in other bacteria, and ∼70% of our sRNAs likely assume characteristic sRNA structural conformations. In addition, we find 53 of our 58 candidate sRNAs either overlap neighboring mRNA loci or share significant sequence complementarity to mRNAs transcribed elsewhere in the SL1344 genome strongly suggesting they regulate the expression of transcripts via antisense base-pairing. Finally, in addition to this work resulting in the identification of 58 entirely novel Salmonella enterica genes likely participating in the SSR, we also find evidence suggesting that sRNAs are significantly more prevalent than currently appreciated and that Salmonella sRNAs may actually number in the thousands. PMID:26853797

  11. High Phenotypic Variability among Representative Strains of Common Salmonella enterica Serovars with Possible Implications for Food Safety.

    PubMed

    Abdullah, Wan Zawiah Wan; Mackey, Bernard M; Karatzas, Kimon Andreas G

    2018-01-01

    Salmonella is an important foodborne pathogen, whose ability to resist stress and survive can vary among strains. This variability is normally not taken into account when predictions are made about survival in foods with negative consequences. Therefore, we examined the contribution of variable phenotypic properties to survival under stress in 10 Salmonella serovars. One strain (Typhimurium 10) was intentionally RpoS-negative; however, another strain (Heidelberg) showed an rpoS mutation, rendering it inactive. We assessed an array of characteristics (motility, biofilm formation, bile resistance, acid resistance, and colony morphology) that show major variability among strains associated with a 10- to 19-fold difference between the highest and the lowest strain for most characteristics. The RpoS status of isolates did not affect variability in the characteristics, with the exception of resistance to NaCl, acetic acid, lactic acid, and the combination of acetic acid and salt, where the variability between the highest and the lowest strain was reduced to 3.1-fold, 1.7-fold, 2-fold, and 1.7-fold, respectively, showing that variability was significant among RpoS-positive strains. Furthermore, we also found a good correlation between acid resistance and lysine decarboxylase activity, showing its importance for acid resistance, and demonstrated a possible role of RpoS in the lysine decarboxylase activity in Salmonella.

  12. Complete genome sequence of a ciprofloxacin resistant Salmonella enterica subsp. enterica serovar Kentucky sequence of a ciprofloxacin strain, PU131, isolated from a human patient in Washington State.

    USDA-ARS?s Scientific Manuscript database

    A ciprofloxacin resistant (CipR) Salmonella enterica subsp. enterica serovar Kentucky ST198 has rapidly and extensively disseminated globally to become a major food-safety and public health concern. Here, we report a complete genome sequence of a CipR S. Kentucky ST198 strain PU131 isolated from a ...

  13. wksl3, a New Biocontrol Agent for Salmonella enterica Serovars Enteritidis and Typhimurium in Foods: Characterization, Application, Sequence Analysis, and Oral Acute Toxicity Study

    PubMed Central

    Kang, Hyun-Wol; Kim, Jae-Won; Jung, Tae-Sung

    2013-01-01

    Of the Salmonella enterica serovars, S. Enteritidis and S. Typhimurium are responsible for most of the Salmonella outbreaks implicated in the consumption of contaminated foods in the Republic of Korea. Because of the widespread occurrence of antimicrobial-resistant Salmonella in foods and food processing environments, bacteriophages have recently surfaced as an alternative biocontrol tool. In this study, we isolated a virulent bacteriophage (wksl3) that could specifically infect S. Enteritidis, S. Typhimurium, and several additional serovars. Transmission electron microscopy revealed that phage wksl3 belongs to the family Siphoviridae. Complete genome sequence analysis and bioinformatic analysis revealed that the DNA of phage wksl3 is composed of 42,766 bp with 64 open reading frames. Since it does not encode any phage lysogeny factors, toxins, pathogen-related genes, or food-borne allergens, phage wksl3 may be considered a virulent phage with no side effects. Analysis of genetic similarities between phage wksl3 and four of its relatives (SS3e, vB_SenS-Ent1, SE2, and SETP3) allowed wksl3 to be categorized as a SETP3-like phage. A single-dose test of oral toxicity with BALB/c mice resulted in no abnormal clinical observations. Moreover, phage application to chicken skin at 8°C resulted in an about 2.5-log reduction in the number of Salmonella bacteria during the test period. The strong, stable lytic activity, the significant reduction of the number of S. Enteritidis bacteria after application to food, and the lack of clinical symptoms of this phage suggest that wksl3 may be a useful agent for the protection of foods against S. Enteritidis and S. Typhimurium contamination. PMID:23335772

  14. Evidence for Lack of Acquisition of Tolerance in Salmonella enterica Serovar Typhimurium ATCC 14028 after Exposure to Subinhibitory Amounts of Origanum vulgare L. Essential Oil and Carvacrol

    PubMed Central

    Luz, Isabelle da Silva; Gomes Neto, Nelson Justino; Tavares, Adassa Gama; Nunes, Pollyana Campos; Magnani, Marciane

    2012-01-01

    Overnight exposure of Salmonella enterica serovar Typhimurium to sublethal amounts of Origanum vulgare essential oil (OV) and carvacrol (CAR) did not result in direct and cross-bacterial protection. Cells subcultured with increasing amounts of OV or CAR survived up to the MIC of either compound, revealing few significant changes in bacterial susceptibility. PMID:22544235

  15. Human Milk Mucin 1 and Mucin 4 Inhibit Salmonella enterica Serovar Typhimurium Invasion of Human Intestinal Epithelial Cells In Vitro123

    PubMed Central

    Liu, Bo; Yu, Zhuoteng; Chen, Ceng; Kling, David E.; Newburg, David S.

    2012-01-01

    Many human milk glycans inhibit pathogen binding to host receptors and their consumption by infants is associated with reduced risk of disease. Salmonella infection is more frequent among infants than among the general population, but the incidence is lower in breast-fed babies, suggesting that human milk could contain components that inhibit Salmonella. This study aimed to test whether human milk per se inhibits Salmonella invasion of human intestinal epithelial cells in vitro and, if so, to identify the milk components responsible for inhibition. Salmonella enterica serovar Typhimurium SL1344 (SL1344) invasion of FHs 74 Int and Caco-2 cells were the models of human intestinal epithelium infection. Internalization of fluorescein-5-isothiocyanate–labeled SL1344 into intestinal cells was measured by flow cytometry to quantify infection. Human milk and its fractions inhibited infection; the inhibitory activity localized to the high molecular weight glycans. Mucin 1 and mucin 4 were isolated to homogeneity. At 150 μg/L, a typical concentration in milk, human milk mucin 1 and mucin 4 inhibited SL1344 invasion of both target cell types. These mucins inhibited SL1344 invasion of epithelial cells in a dose-dependent manner. Thus, mucins may prove useful as a basis for developing novel oral prophylactic and therapeutic agents that inhibit infant diseases caused by Salmonella and related pathogens. PMID:22718031

  16. Evaluation of guinea pig model for experimental Salmonella serovar Abortusequi infection in reference to infertility.

    PubMed

    Singh, B R; Alam, Javed; Hansda, D; Verma, J C; Singh, V P; Yadav, M P

    2002-03-01

    The present study conclusively revealed the role for Salmonella enterica subspecies enterica serovar Abortusequi in conception failure. None of the 12 guinea pigs conceived when orally exposed to sublethal dose of the pathogen during breeding, while 66.67% of animals in control group were found pregnant during same period of observation under similar conditions. Salmonella carrier animals also had drastic reduction in conception rate (16.67%). During mid pregnancy, S. Abortusequi exposure to guinea pigs through intravaginal, intramuscular and subcutaneous routes induced fetal death followed by resorption. While 2 out of 6 orally inoculated and 3 out of 6 intraperitonially inoculated guinea pigs aborted, in rest of the animals fetal death was followed by meceration and resorption. It was interesting to note that S. Abortusequi could not persist longer than a week in males while in pregnant females it could be detected for >10 weeks after inoculation. In late pregnancy, most of the exposed animals aborted and non aborting animals though had normal parturition, survival rate of their babies was nearly zero in comparison to the control group. The study revealed role for S. Abortusequi in impairing conception, abortion, early fetal deaths, fetal meceration and resorption. Further studies are required to identify factors responsible for increased susceptibility of females particularly during pregnancy.

  17. Epigenetic modification: possible approach to reduce Salmonella enterica serovar enteritidis susceptibility under stress conditions.

    PubMed

    Soleimani, A F; Zulkifli, I; Hair-Bejo, M; Ebrahimi, M; Jazayeri, S D; Hashemi, S R; Meimandipour, A; Goh, Y M

    2012-01-01

    Stressors may influence chicken susceptibility to pathogens such as Salmonella enterica. Feed withdrawal stress can cause changes in normal intestinal epithelial structure and may lead to increased attachment and colonization of Salmonella. This study aimed to investigate modulatory effects of epigenetic modification by feed restriction on S. enterica serovar Enteritidis colonization in broiler chickens subjected to feed withdrawal stress. Chicks were divided into four groups: ad libitum feeding; ad libitum feeding with 24-h feed withdrawal on day 42; 60% feed restriction on days 4, 5, and 6; and 60% feed restriction on days 4, 5, and 6 with 24-h feed withdrawal on day 42. Attachment of S. Enteritidis to ileal tissue was determined using an ex vivo ileal loop assay, and heat shock protein 70 (Hsp70) expression was evaluated using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blotting. Feed withdrawal stress increased S. Enteritidis attachment to ileal tissue. However, following feed withdrawal the epigenetically modified chickens had significantly lower attachment of S. Enteritidis than their control counterparts. A similar trend with a very positive correlation was observed for Hsp70 expression. It appears that epigenetic modification can enhance resistance to S. Enteritidis colonization later in life in chickens under stress conditions. The underlying mechanism could be associated with the lower Hsp70 expression in the epigenetically modified chickens.

  18. Low-Shear modeled microgravity alters the Salmonella enterica serovar typhimurium stress response in an RpoS-independent manner

    NASA Technical Reports Server (NTRS)

    Wilson, James W.; Ott, C. Mark; Ramamurthy, Rajee; Porwollik, Steffen; McClelland, Michael; Pierson, Duane L.; Nickerson, Cheryl A.

    2002-01-01

    We have previously demonstrated that low-shear modeled microgravity (low-shear MMG) serves to enhance the virulence of a bacterial pathogen, Salmonella enterica serovar Typhimurium. The Salmonella response to low-shear MMG involves a signaling pathway that we have termed the low-shear MMG stimulon, though the identities of the low-shear MMG stimulon genes and regulatory factors are not known. RpoS is the primary sigma factor required for the expression of genes that are induced upon exposure to different environmental-stress signals and is essential for virulence in mice. Since low-shear MMG induces a Salmonella acid stress response and enhances Salmonella virulence, we reasoned that RpoS would be a likely regulator of the Salmonella low-shear MMG response. Our results demonstrate that low-shear MMG provides cross-resistance to several environmental stresses in both wild-type and isogenic rpoS mutant strains. Growth under low-shear MMG decreased the generation time of both strains in minimal medium and increased the ability of both strains to survive in J774 macrophages. Using DNA microarray analysis, we found no evidence of induction of the RpoS regulon by low-shear MMG but did find that other genes were altered in expression under these conditions in both the wild-type and rpoS mutant strains. Our results indicate that, under the conditions of these studies, RpoS is not required for transmission of the signal that induces the low-shear MMG stimulon. Moreover, our studies also indicate that low-shear MMG can be added to a short list of growth conditions that can serve to preadapt an rpoS mutant for resistance to multiple environmental stresses.

  19. Population structure of Salmonella enterica subspecies enterica (subspecies 1)

    USDA-ARS?s Scientific Manuscript database

    We sequenced and assembled 354 new Salmonella enterica ssp. enterica genomes. These genomes were chosen to maximize genetic diversity, representing at least 100 different serovars and distinct PFGE patterns within these serovars. 119 of the strains were of known antibiotic resistance,...

  20. Inhibition of the early stage of Salmonella enterica serovar Enteritidis biofilm development on stainless steel by cell-free supernatant of a Hafnia alvei culture.

    PubMed

    Chorianopoulos, Nikos G; Giaouris, Efstathios D; Kourkoutas, Yiannis; Nychas, George-John E

    2010-03-01

    Compounds present in Hafnia alvei cell-free culture supernatant cumulatively negatively influence the early stage of biofilm development by Salmonella enterica serovar Enteritidis on stainless steel while they also reduce the overall metabolic activity of S. Enteritidis planktonic cells. Although acylhomoserine lactones (AHLs) were detected among these compounds, the use of several synthetic AHLs was not able to affect the initial stage of biofilm formation by this pathogen.

  1. Population Dynamics of Salmonella enterica Serotypes in Commercial Egg and Poultry Production ▿

    PubMed Central

    Foley, Steven L.; Nayak, Rajesh; Hanning, Irene B.; Johnson, Timothy J.; Han, Jing; Ricke, Steven C.

    2011-01-01

    Fresh and processed poultry have been frequently implicated in cases of human salmonellosis. Furthermore, increased consumption of meat and poultry has increased the potential for exposure to Salmonella enterica. While advances have been made in reducing the prevalence and frequency of Salmonella contamination in processed poultry, there is mounting pressure on commercial growers to prevent and/or eliminate these human pathogens in preharvest production facilities. Several factors contribute to Salmonella colonization in commercial poultry, including the serovar and the infectious dose. In the early 1900s, Salmonella enterica serovars Pullorum and Gallinarum caused widespread diseases in poultry, but vaccination and other voluntary programs helped eradicate pullorum disease and fowl typhoid from commercial flocks. However, the niche created by the eradication of these serovars was likely filled by S. Enteritidis, which proliferated in the bird populations. While this pathogen remains a significant problem in commercial egg and poultry production, its prevalence among poultry has been declining since the 1990s. Coinciding with the decrease of S. Enteritidis, S. Heidelberg and S. Kentucky have emerged as the predominant serovars in commercial broilers. In this review, we have highlighted bacterial genetic and host-related factors that may contribute to such shifts in Salmonella populations in commercial poultry and intervention strategies that could limit their colonization. PMID:21571882

  2. Evidence for the transmission of Salmonella from reptiles to children in Germany, July 2010 to October 2011.

    PubMed

    Pees, M; Rabsch, W; Plenz, B; Fruth, A; Prager, R; Simon, S; Schmidt, V; Munch, S; Braun, Pg

    2013-11-14

    This study examines the Salmonella status in reptiles kept in households with children suffering from gastroenteritis due to an exotic Salmonella serovar, to obtain information on possible transmission paths. A number of affected households (n=79) were contacted, and almost half (34/79) comprised at least one reptile in the home. Of the households, 19 were further studied, whereby a total of 36 reptiles were investigated. Samples were taken from the reptiles including the oral cavity, the cloaca, the skin and, in the case of lizards, the stomach, and isolation of Salmonella strains was performed using repeated enrichment and typing. Where the Salmonella serovars of the infected child and the reptile were identical, typing was followed by pulsed-field gel electrophoresis (PFGE). Bearded dragons (Pogona vitticeps) constituted 19 of 36 examined reptiles. Altogether 319 Salmonella isolates were investigated and 24 different serovars identified in the reptiles. In 15 of 19 households, an identical serovar to the human case was confirmed in at least one reptile (including 16 of all 19 bearded dragons examined). The results demonstrate that reptiles and especially bearded dragons shed various Salmonella serovars including those isolated from infected children in the respective households. Hygiene protocols and parents' education are therefore highly necessary to reduce the risk of transmission. From a terminological point of view, we propose to call such infections 'Reptile-Exotic-Pet-Associated-Salmonellosis' (REPAS).

  3. Salmonella and antimicrobial resistance in an animal-based agriculture river system.

    PubMed

    Palhares, Julio Cesar Pascale; Kich, Jalusa D; Bessa, Marjo C; Biesus, Luiza L; Berno, Lais G; Triques, Nelise J

    2014-02-15

    The aim of this study was to examine the Salmonella serovars and antimicrobial resistance within an animal-based agriculture river system. The study area consisted of a 1,345 ha upper part of Pinhal catchment. A total of 384 samples were collected in four years of monitoring. Salmonella was isolated from 241 samples (62.7%), resulting in 324 isolates. The highest number of Salmonella sp. occurred in samples associated with sites with high stoking density animal unit per hectare. It was possible to demonstrate the variability of serovars in the study area: 30 different serovars were found and at least 11 per monitoring site. Thirty-three potentially related isolates were genotyped by PFGE, one major clone was observed in serovar Typhimurium, which occurred in animal feces (swine and bovine), and different sites and samplings proving the cross-contamination and persistence of this specific clone. Among 180 isolates submitted to an antimicrobial susceptibility test, 50.5% were susceptible to all 21 antimicrobials tested and 54 different profiles were found. In the current study, 49.5% of the tested isolates were resistant to at least one antimicrobial, and multi-resistance occurred in 18% of isolates. Results indicate a close interaction between animal-based agriculture, Salmonella, and antimicrobial resistance. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Dynamics of Salmonella Shedding and Welfare of Hens in Free-Range Egg Production Systems

    PubMed Central

    Gole, Vaibhav C.; Woodhouse, Rebecca; Caraguel, Charles; Moyle, Talia; Rault, Jean-Loup; Sexton, Margaret

    2016-01-01

    ABSTRACT The current study investigated the effect of environmental stressors (i.e., weather changes) on Salmonella shedding in free-range production systems and the correlations with behavioral and physiological measures (i.e., fecal glucocorticoid metabolites). This involved longitudinal and point-in-time surveys of Salmonella shedding and environmental contamination on four commercial free-range layer farms. The shedding of Salmonella was variable across free-range farms and in different seasons. There was no significant effect of season on the Salmonella prevalence during this investigation. In this study, the combined Salmonella most probable number (MPN) counts in environmental (including feces, egg belt, dust, nest box, and ramp) samples were highest in samples collected during the summer season (4th sampling, performed in February). The predominant serovars isolated during this study were Salmonella enterica serovar Mbandaka and Salmonella enterica serovar Typhimurium phage types 135 and 135a. These two phage types were involved in several egg product-related Salmonella outbreaks in humans. Multilocus variable-number tandem-repeat analysis (MLVA) results indicated that MLVA types detected from human food poisoning cases exhibited MLVA patterns similar to the strains isolated during this study. All Salmonella isolates (n = 209) were tested for 15 different genes involved in adhesion, invasion, and survival of Salmonella spp. We also observed variations for sopA, ironA, and misL. There were no positive correlations between fecal corticosterone metabolite (FCM) and Salmonella prevalence and/or shedding in feces. Also, there were no positive correlations between Salmonella prevalence and Salmonella count (log MPN) and any of the other welfare parameters. IMPORTANCE In this study, the welfare of laying hens and Salmonella shedding were compared over a prolonged period of time in field conditions. This study investigated the long-term shedding of Salmonella

  5. Dynamics of Salmonella Shedding and Welfare of Hens in Free-Range Egg Production Systems.

    PubMed

    Gole, Vaibhav C; Woodhouse, Rebecca; Caraguel, Charles; Moyle, Talia; Rault, Jean-Loup; Sexton, Margaret; Chousalkar, Kapil

    2017-03-01

    The current study investigated the effect of environmental stressors (i.e., weather changes) on Salmonella shedding in free-range production systems and the correlations with behavioral and physiological measures (i.e., fecal glucocorticoid metabolites). This involved longitudinal and point-in-time surveys of Salmonella shedding and environmental contamination on four commercial free-range layer farms. The shedding of Salmonella was variable across free-range farms and in different seasons. There was no significant effect of season on the Salmonella prevalence during this investigation. In this study, the combined Salmonella most probable number (MPN) counts in environmental (including feces, egg belt, dust, nest box, and ramp) samples were highest in samples collected during the summer season (4th sampling, performed in February). The predominant serovars isolated during this study were Salmonella enterica serovar Mbandaka and Salmonella enterica serovar Typhimurium phage types 135 and 135a. These two phage types were involved in several egg product-related Salmonella outbreaks in humans. Multilocus variable-number tandem-repeat analysis (MLVA) results indicated that MLVA types detected from human food poisoning cases exhibited MLVA patterns similar to the strains isolated during this study. All Salmonella isolates ( n = 209) were tested for 15 different genes involved in adhesion, invasion, and survival of Salmonella spp. We also observed variations for sopA , ironA , and misL There were no positive correlations between fecal corticosterone metabolite (FCM) and Salmonella prevalence and/or shedding in feces. Also, there were no positive correlations between Salmonella prevalence and Salmonella count (log MPN) and any of the other welfare parameters. IMPORTANCE In this study, the welfare of laying hens and Salmonella shedding were compared over a prolonged period of time in field conditions. This study investigated the long-term shedding of Salmonella serovars in

  6. Salmonella enterica Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping.

    PubMed

    Mottawea, Walid; Duceppe, Marc-Olivier; Dupras, Andrée A; Usongo, Valentine; Jeukens, Julie; Freschi, Luca; Emond-Rheault, Jean-Guillaume; Hamel, Jeremie; Kukavica-Ibrulj, Irena; Boyle, Brian; Gill, Alexander; Burnett, Elton; Franz, Eelco; Arya, Gitanjali; Weadge, Joel T; Gruenheid, Samantha; Wiedmann, Martin; Huang, Hongsheng; Daigle, France; Moineau, Sylvain; Bekal, Sadjia; Levesque, Roger C; Goodridge, Lawrence D; Ogunremi, Dele

    2018-01-01

    Non-typhoidal Salmonella is a leading cause of foodborne illness worldwide. Prompt and accurate identification of the sources of Salmonella responsible for disease outbreaks is crucial to minimize infections and eliminate ongoing sources of contamination. Current subtyping tools including single nucleotide polymorphism (SNP) typing may be inadequate, in some instances, to provide the required discrimination among epidemiologically unrelated Salmonella strains. Prophage genes represent the majority of the accessory genes in bacteria genomes and have potential to be used as high discrimination markers in Salmonella . In this study, the prophage sequence diversity in different Salmonella serovars and genetically related strains was investigated. Using whole genome sequences of 1,760 isolates of S. enterica representing 151 Salmonella serovars and 66 closely related bacteria, prophage sequences were identified from assembled contigs using PHASTER. We detected 154 different prophages in S. enterica genomes. Prophage sequences were highly variable among S. enterica serovars with a median ± interquartile range (IQR) of 5 ± 3 prophage regions per genome. While some prophage sequences were highly conserved among the strains of specific serovars, few regions were lineage specific. Therefore, strains belonging to each serovar could be clustered separately based on their prophage content. Analysis of S . Enteritidis isolates from seven outbreaks generated distinct prophage profiles for each outbreak. Taken altogether, the diversity of the prophage sequences correlates with genome diversity. Prophage repertoires provide an additional marker for differentiating S. enterica subtypes during foodborne outbreaks.

  7. Survival of Salmonella spp. and fecal indicator bacteria in Vietnamese biogas digesters receiving pig slurry.

    PubMed

    Huong, Luu Quynh; Forslund, Anita; Madsen, Henry; Dalsgaard, Anders

    2014-09-01

    Small-scale biogas digesters are widely promoted worldwide as a sustainable technology to manage livestock manure. In Vietnam, pig slurry is commonly applied to biogas digesters for production of gas for electricity and cooking with the effluent being used to fertilize field crops, vegetables and fish ponds. Slurry may contain a variety of zoonotic pathogens, e.g. Salmonella spp., which are able to cause disease in humans either through direct contact with slurry or by fecal contamination of water and foods. The objective of this study was to evaluate the survival of Salmonella spp. and the fecal indicator bacteria, enterococci, E. coli, and spores of Clostridium perfringens in biogas digesters operated by small-scale Vietnamese pig farmers. The serovar and antimicrobial susceptibility of the Salmonella spp. isolated were also established. The study was conducted in 12 farms (6 farms with and 6 farms without toilet connected) located in Hanam province, Vietnam. Sampling of pig slurry and biogas effluent was done during two seasons. Results showed that the concentration of enterococci, E. coli, and Clostridium perfringens spores was overall reduced by only 1-2 log10-units in the biogas digesters when comparing raw slurry and biogas effluent. Salmonella spp. was found in both raw slurry and biogas effluent. A total of 19 Salmonella serovars were identified, with the main serovars being Salmonella Typhimurium (55/138), Salmonella enterica serovar 4,[5],12:i:- (19/138), Salmonella Weltevreden (9/138) and Salmonella Rissen (9/138). The Salmonella serovars showed similar antimicrobial resistance patterns to those previously reported from Vietnam. When promoting biogas, farmers should be made aware that effluent should only be used as fertilizer for crops not consumed raw and that indiscriminate discharge of effluent are likely to contaminate water recipients, e.g. drinking water sources, with pathogens. Relevant authorities should promote safe animal manure management

  8. Histopathology case definition of naturally acquired Salmonella enterica serovar Dublin infection in young Holstein cattle in the northeastern United States.

    PubMed

    Pecoraro, Heidi L; Thompson, Belinda; Duhamel, Gerald E

    2017-11-01

    Salmonella enterica subsp. enterica serovar Dublin ( Salmonella Dublin) is a host-adapted bacterium that causes high morbidity and mortality in dairy cattle worldwide. A retrospective search of archives at the New York Animal Health Diagnostic Center revealed 57 culture-confirmed Salmonella Dublin cases from New York and Pennsylvania in which detailed histology of multiple tissues was available. Tissues routinely submitted by referring veterinarians for histologic evaluation included sections of heart, lungs, liver, spleen, and lymph nodes. Of the 57 S almonella Dublin-positive cases, all were Holstein breed, 53 were female (93%), and 49 (86%) were <6 mo of age. Specifically, in calves <6 mo of age, >90% (45 of 49) of lungs, 90% (28 of 31) of livers, 50% (11 of 22) of spleens, and 62% (18 of 29) of lymph nodes examined had moderate-to-severe inflammation with or without necrosis. Inconstant lesions were seen in 48% (10 of 21) of hearts examined, and consisted of variable inflammatory infiltrates and rare areas of necrosis. We propose a histopathology case definition of Salmonella Dublin in <6-mo-old Holstein cattle that includes a combination of pulmonary alveolar capillary neutrophilia with or without hepatocellular necrosis and paratyphoid granulomas, splenitis, and lymphadenitis. These findings will assist in the development of improved protocols for the diagnosis of infectious diseases of dairy cattle.

  9. Impact of storm runoff on Salmonella and Escherichia coli prevalence in irrigation ponds of fresh produce farms in southern Georgia.

    PubMed

    Harris, C S; Tertuliano, M; Rajeev, S; Vellidis, G; Levy, K

    2018-03-01

    To examine Salmonella and Escherichia coli in storm runoff and irrigation ponds used by fresh produce growers, and compare Salmonella serovars with those found in cases of human salmonellosis. We collected water before and after rain events at two irrigation ponds on farms in southern Georgia, USA, and collected storm runoff/storm flow within the contributing watershed of each pond. Salmonella and E. coli concentrations were higher in ponds after rain events by an average of 0·46 (P < 0·01) and 0·61 (P < 0·05) log 10 most probable number (MPN) per 100 ml respectively. Salmonella concentrations in storm runoff from fields and forests were not significantly higher than in ponds before rain events, but concentrations in storm flow from streams and ditches were higher by an average of 1·22 log 10 MPN per 100 ml (P < 0·001). Eighteen Salmonella serovars were identified from 155 serotyped isolates, and eight serovars were shared between storm runoff/storm flow and ponds. Seven of the serovars, including five of the shared serovars, were present in cases of human illness in the study region in the same year. However, several serovars most commonly associated with human illness in the study region (e.g. Javiana, Enteritidis, and Montevideo) were not found in any water samples. Salmonella and E. coli concentrations in irrigation ponds were higher, on average, after rain events, but concentrations of Salmonella were low, and the ponds met FDA water quality standards based on E. coli. Some similarities and notable differences were found between Salmonella serovars in water samples and in cases of human illness. This study directly examined storm runoff/storm flow into irrigation ponds and quantified increases in Salmonella and E. coli following rain events, with potential implications for irrigation pond management as well as human health. © 2018 The Society for Applied Microbiology.

  10. Short communication: Determination of Salmonella clustered regularly interspaced short palindromic repeats (CRISPR) diversity on dairy farms in Wisconsin and Minnesota.

    PubMed

    Wehnes, C A; Rehberger, T G; Barrangou, R; Smith, A H

    2014-10-01

    Salmonella enterica ssp. enterica is a foodborne pathogen able to cause disease in both humans and animals. Diverse serovars of this pathogen exist, some of which are host specific, causing a range of clinical symptoms from asymptomatic infection through morbidity and mortality. According to a 2007 survey by the USDA National Animal Health Monitoring System, fecal shedding of Salmonella from healthy cows occurs on 39.7% of dairy farms in the United States. Certain serovars are frequently isolated from dairy farms and the majority of isolates from the National Animal Health Monitoring System study were represented by 5 serovars; however, genotypic diversity was not examined. The objective of this study was to determine the diversity of clustered regularly interspaced short palindromic repeats (CRISPR) loci in Salmonella collected from 8 dairy farms with a previous history of salmonellosis. None of the cows or calves sampled on 2 of the 8 dairy farms were shedding Salmonella, although Salmonella was detected in a cow bedding sample on 1 of these farms. Salmonella populations were discrete on each farm, according to CRISPR typing, with the exception of an Anatum var. 15+ type on farms 5 and 6 and the Montevideo type on farms 1 and 2. One to 4 distinct CRISPR genotypes were identified per farm. The CRISPR typing differed within serovars, as Montevideo, Anatum var. 15+, and Muenster serovars had no overlap of spacer content, even on the same farm, reflecting between- and within-serovar genetic diversity. The dynamic nature of Salmonella populations was shown in a farm that was sampled longitudinally over 13.5 mo. Changes in serovar from 3,19:-:z27 to Montevideo was observed between the first sampling time and 8 mo later, with concomitant change in CRISPR alleles. The results indicate that Salmonella strains present in smaller dairy herds (<500 head) are specific to that farm and new Salmonella strains may emerge over time. Copyright © 2014 American Dairy Science

  11. Salmonella Serogroup C: Current Status of Vaccines and Why They Are Needed

    PubMed Central

    Fuche, Fabien J.; Sow, Ousmane; Simon, Raphael

    2016-01-01

    Nontyphoidal Salmonella (NTS; i.e., Salmonella enterica organisms that do not cause typhoid or paratyphoid) are responsible for 94 million infections and 155,000 deaths worldwide annually, 86% of which are estimated to be foodborne. Although more than 50 serogroups and 2,600 serovars have been described, not all Salmonella serovars cause disease in humans and animals. Efforts are being made to develop NTS vaccines, with most approaches eliciting protection against serovars Typhimurium and Enteritidis (serogroups B [O:4] and D [O:9], respectively), as they are widely considered the most prevalent. Here, we show that serogroup C (O:6,7, O:6,8, or O:8 epitopes) is the most common serogroup in the United States, and the prevalence of serovars from this serogroup has been increasing in Europe and the United States over the last decade. They are also the most commonly isolated serovars from healthy cattle and poultry, indicating the underlying importance of surveillance in animals. Four out of the 10 most lethal serovars in the United States are serogroup C, and reports from African countries suggest that strains within this serogroup are highly antibiotic resistant. Serogroup C consists of highly diverse organisms among which 37 serovars account for the majority of human cases, compared to 17 and 11 serovars for serogroups B and D, respectively. Despite these concerning data, no human vaccines targeting serogroup C NTS are available, and animal vaccines are in limited use. Here, we describe the underestimated burden represented by serogroup C NTS, as well as a discussion of vaccines that target these pathogens. PMID:27413069

  12. Lactic acid bacteria and bifidobacteria attenuate the proinflammatory response in intestinal epithelial cells induced by Salmonella enterica serovar Typhimurium.

    PubMed

    Carey, Christine M; Kostrzynska, Magdalena

    2013-01-01

    Inflammation is a physiological response to infections and tissue injury; however, abnormal immune responses can give rise to chronic inflammation and contribute to disease progression. Various dietary components, including probiotic lactic acid bacteria and prebiotics, have the potential to modulate intestinal inflammatory responses. One factor in particular, the chemokine interleukin-8 (IL-8, CXCL-8), is one of the major mediators of the inflammatory response. The purpose of this study was to investigate modulation of the inflammatory host response induced by Salmonella enterica serovar Typhimurium DT104 in the presence of selected probiotics and lactic acid bacteria (LAB) isolated from human sources, dairy products, and farm animals. IL-8 gene expression and protein production in HT-29 cells were evaluated by real-time PCR and ELISA, respectively. Pre-incubation of HT-29 cells with Lactobacillus kefir IM002, Bifidobacterium adolescentis FRP 61, Bifidobacterium longum FRP 68 and FRP 69, Bifidobacterium breve FRP 334, and Leuconostoc mesenteroides IM080 significantly inhibited IL-8 secretion induced by Salmonella Typhimurium DT104. Co-culture of selected probiotics and Salmonella Typhimurium DT104 reduced IL-8 production, while potential probiotics and LAB had no effect on IL-8 secretion in HT-29 cells preincubated with Salmonella Typhimurium DT104 prior to adding probiotics. Lactobacillus kefir IM002 supernatant also significantly reduced IL-8 production. In conclusion, our study suggests that probiotic bifidobacteria and LAB modulate cytokine induction and possess anti-inflammatory properties; however, the effectiveness is strain dependent.

  13. Modulation of systemic and mucosal immunity against an inactivated vaccine of Newcastle disease virus by oral co-administration of live attenuated Salmonella enterica serovar Typhimurium expressing chicken interleukin-18 and interferon-α

    PubMed Central

    RAHMAN, Md. Masudur; UYANGAA, Erdenebelig; HAN, Young Woo; HUR, Jin; PARK, Sang-Youel; LEE, John Hwa; KIM, Koanhoi; EO, Seong Kug

    2014-01-01

    Newcastle disease (ND) is a highly contagious disease of chickens causing significant economic losses worldwide. Due to limitations in the efficacy against currently circulating ND viruses, existing vaccination strategies require improvements, and incorporating immunomodulatory cytokines with existing vaccines might be a novel approach. Here, we investigated the systemic and mucosal immunomodulatory properties of oral co-administration of chicken interleukin-18 (chIL-18) and chicken interferon-α (chIFN-α) using attenuated Salmonella enterica serovar Typhimurium on an inactivated ND vaccine. Our results demonstrate that oral administration of S. enterica serovar Typhimurium expressing chIL-18 or chIFN-α provided enhanced systemic and mucosal immune responses, as determined by serum hemagglutination inhibition antibody and NDV Ag-specific IgG as well as NDV Ag-specific IgA in lung and duodenal lavages of chickens immunized with inactivated ND vaccine via the intramuscular or intranasal route. Notably, combined oral administration of S. enterica serovar Typhimurium expressing chIL-18 and chIFN-α significantly enhanced systemic and mucosal immunity in ND-vaccinated chickens, compared to single administration of S. enterica serovar Typhimurium expressing chIL-18 or chIFN-α. In addition, oral co-administration of S. enterica serovar Typhimurium expressing chIL-18 and chIFN-α provided enhanced NDV Ag-specific proliferation of peripheral blood mononuclear cells and Th1-biased cell-mediated immunity, compared to single administration of either construct. Therefore, our results provide valuable insight into the modulation of systemic and mucosal immunity by incorporation of immunomodulatory chIL-18 and chIFN-α using Salmonella vaccines into existing ND vaccines. PMID:25502364

  14. Prophylactic administration of vector-encoded porcine granulocyte-colony stimulating factor reduces Salmonella shedding,tonsil colonization,& microbiota alterations of the gastrointestinal tract in Salmonella-challenged swine

    USDA-ARS?s Scientific Manuscript database

    Salmonella colonization of food animals is a concern for animal health and public health as a food safety risk. Various obstacles impede the effort to reduce asymptomatic Salmonella carriage in food animals, including the existence of numerous serovars and the ubiquitous nature of Salmonella. To d...

  15. Salmonella enterica Serovar Typhi Lipopolysaccharide O-Antigen Modification Impact on Serum Resistance and Antibody Recognition

    DOE PAGES

    Kintz, Erica; Heiss, Christian; Black, Ian; ...

    2017-02-06

    Salmonella enterica serovar Typhi is a human-restricted Gram-negative bacterial pathogen responsible for causing an estimated 27 million cases of typhoid fever annually, leading to 217,000 deaths, and current vaccines do not offer full protection. The O-antigen side chain of the lipopolysaccharide is an immunodominant antigen, can define host-pathogen interactions, and is under consideration as a vaccine target for some Gram-negative species. The composition of the O-antigen can be modified by the activity of glycosyltransferase (gtr) operons acquired by horizontal gene transfer. Here we investigate the role of two gtr operons that we identified in the S. Typhi genome. Strains weremore » engineered to express specific gtr operons. Full chemical analysis of the O-antigens of these strains identified gtr-dependent glucosylation and acetylation. The glucosylated form of the O-antigen mediated enhanced survival in human serum and decreased complement binding. A single nucleotide deviation from an epigenetic phase variation signature sequence rendered the expression of this glucosylating gtr operon uniform in the population. In contrast, the expression of the acetylating gtrC gene is controlled by epigenetic phase variation. Acetylation did not affect serum survival, but phase variation can be an immune evasion mechanism, and thus, this modification may contribute to persistence in a host. In murine immunization studies, both O-antigen modifications were generally immunodominant. Our results emphasize that natural O-antigen modifications should be taken into consideration when assessing responses to vaccines, especially O-antigen-based vaccines, and that the Salmonella gtr repertoire may confound the protective efficacy of broad-ranging Salmonella lipopolysaccharide conjugate vaccines.« less

  16. Salmonella enterica Serovar Typhi Lipopolysaccharide O-Antigen Modification Impact on Serum Resistance and Antibody Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kintz, Erica; Heiss, Christian; Black, Ian

    Salmonella enterica serovar Typhi is a human-restricted Gram-negative bacterial pathogen responsible for causing an estimated 27 million cases of typhoid fever annually, leading to 217,000 deaths, and current vaccines do not offer full protection. The O-antigen side chain of the lipopolysaccharide is an immunodominant antigen, can define host-pathogen interactions, and is under consideration as a vaccine target for some Gram-negative species. The composition of the O-antigen can be modified by the activity of glycosyltransferase (gtr) operons acquired by horizontal gene transfer. Here we investigate the role of two gtr operons that we identified in the S. Typhi genome. Strains weremore » engineered to express specific gtr operons. Full chemical analysis of the O-antigens of these strains identified gtr-dependent glucosylation and acetylation. The glucosylated form of the O-antigen mediated enhanced survival in human serum and decreased complement binding. A single nucleotide deviation from an epigenetic phase variation signature sequence rendered the expression of this glucosylating gtr operon uniform in the population. In contrast, the expression of the acetylating gtrC gene is controlled by epigenetic phase variation. Acetylation did not affect serum survival, but phase variation can be an immune evasion mechanism, and thus, this modification may contribute to persistence in a host. In murine immunization studies, both O-antigen modifications were generally immunodominant. Our results emphasize that natural O-antigen modifications should be taken into consideration when assessing responses to vaccines, especially O-antigen-based vaccines, and that the Salmonella gtr repertoire may confound the protective efficacy of broad-ranging Salmonella lipopolysaccharide conjugate vaccines.« less

  17. A multiplex single nucleotide polymorphism typing assay for detecting mutations that result in decreased fluoroquinolone susceptibility in Salmonella enterica serovars Typhi and Paratyphi A

    PubMed Central

    Song, Yajun; Roumagnac, Philippe; Weill, François-Xavier; Wain, John; Dolecek, Christiane; Mazzoni, Camila J.; Holt, Kathryn E.; Achtman, Mark

    2010-01-01

    Objectives Decreased susceptibility to fluoroquinolones has become a major problem for the successful therapy of human infections caused by Salmonella enterica, especially the life-threatening typhoid and paratyphoid fevers. Methods By using Luminex xTAG beads, we developed a rapid, reliable and cost-effective multiplexed genotyping assay for simultaneously detecting 11 mutations in gyrA, gyrB and parE of S. enterica serovars Typhi and Paratyphi A that result in nalidixic acid resistance (NalR) and/or decreased susceptibility to fluoroquinolones. Results This assay yielded unambiguous single nucleotide polymorphism calls on extracted DNA from 292 isolates of Salmonella Typhi (NalR = 223 and NalS = 69) and 106 isolates of Salmonella Paratyphi A (NalR = 24 and NalS = 82). All of the 247 NalR Salmonella Typhi and Salmonella Paratyphi A isolates were found to harbour at least one of the target mutations, with GyrA Phe-83 as the most common one (143/223 for Salmonella Typhi and 18/24 for Salmonella Paratyphi A). We also identified three GyrB mutations in eight NalS Salmonella Typhi isolates (six for GyrB Phe-464, one for GyrB Leu-465 and one for GyrB Asp-466), and mutations GyrB Phe-464 and GyrB Asp-466 seem to be related to the decreased ciprofloxacin susceptibility phenotype in Salmonella Typhi. This assay can also be used directly on boiled single colonies. Conclusions The assay presented here would be useful for clinical and reference laboratories to rapidly screen quinolone-resistant isolates of Salmonella Typhi and Salmonella Paratyphi A, and decipher the underlying genetic changes for epidemiological purposes. PMID:20511368

  18. Prevalence of Salmonella in broilers at retail outlets, processing plants and farms in Malaysia.

    PubMed

    Rusul, G; Khair, J; Radu, S; Cheah, C T; Yassin, R M

    1996-12-01

    A study was conducted to estimate the prevalence of Salmonella among broilers retailed at wet-markets and processing plants. Litter and feed samples obtained from both broiler and breeder farms were also examined for Salmonella. A total of 158 out of 445 (35.5%) and 52 out of 104 (50.0%) broiler carcasses obtained from wet-markets and processing plants were contaminated with Salmonella, respectively. Salmonella was isolated from 14 out of 98 (14.3%) samples of intestinal content. Litter samples from broiler and breeder farms were positive for Salmonella, 8/40 (20%) and 2/10 (20%), respectively. Salmonella isolates (230) belonging to 15 different serovars were isolated. Predominant serovars were S. enteritidis, S. muenchen, S. kentucky and S. blockley.

  19. Thermal resistance of Salmonella serovars isolated from raw, frozen chicken nuggets/strips, nugget meat and pelleted broiler feed.

    PubMed

    Bucher, Oliver; D'Aoust, J-Y; Holley, Richard A

    2008-05-31

    Raw, frozen chicken nuggets/strips available at retail and prepared at home before consumption have been identified as a significant risk factor in contracting food-borne salmonellosis. Cases of salmonellosis from consumption of these products may be due, in part, to Salmonella strains originating in broiler feed. In this study the thermal resistances of Salmonella strains isolated from chicken nuggets and strips, chicken nugget/strip meat and broiler feed were determined to assess whether they exhibited enhanced thermal resistance. Thermal resistances (D- and z- values) of 7 cocktails (25 isolates, 4 serovars) were determined in commercially prepared irradiation-treated chicken nugget/strip meat blend, and heated in a constant temperature waterbath. The thermal resistances found were lower than those reported for similar strains in the literature. D-values ranged from 6.93 to 0.12 min at 55 and 62 degrees C respectively, with z-values from 4.10 to 5.17 degrees C. Two strains of S. Enteritidis separately isolated from pelleted feed and chicken nugget meat blend, with indistinguishable geno- and phenotypes, had lower (and probably identical) thermal resistances than the other isolates. Results indicated that the strains of Salmonella isolated from raw, frozen chicken nuggets/strips and pelleted broiler feed did not exhibit unusually high thermal resistance, and that normal heating (71 degrees C) prior to consumption should eliminate these organisms from chicken nuggets/strips.

  20. Dam methylation is required for efficient biofilm production in Salmonella enterica serovar Enteritidis.

    PubMed

    Aya Castañeda, María del Rosario; Sarnacki, Sebastián Hernán; Noto Llana, Mariángeles; López Guerra, Adriana Gabriela; Giacomodonato, Mónica Nancy; Cerquetti, María Cristina

    2015-01-16

    The ecological success of Salmonella enterica to survive in different environments is due, in part, to the ability to form biofilms, something which is especially important for food industry. The aim of the current study was to evaluate the involvement of Dam methylation in biofilm production in S. Enteritidis strains. The ability to generate biofilms was analyzed in wild type and dam mutant strains. In S. Enteritidis, the absence of Dam affected the capacity to develop pellicles at the air-liquid interface and reduced the ability to form biofilm on polystyrene surfaces. Curli and cellulose production, determined by Congo red and calcofluor assays, were affected in dam mutant strains. Relative quantitative real-time PCR experiments showed that the expression of csgD and csgA genes is reduced in mutants lacking dam gene with respect to the wild type strains, whereas transcript levels of bcsA are not affected in the absence of Dam. To our knowledge, this is the first report on the participation of Dam methylation on biofilm production in Enteritidis or any other serovar of S. enterica. Results presented here suggest that changes in gene expression required for biofilm production are finely regulated by Dam methylation. Thus, Dam methylation could modulate csgD expression and upregulate the expression of factors related with biofilm production, including curli and cellulose. This study contributes to the understanding of biofilm regulation in Salmonella spp. and to the design of new strategies to prevent food contamination and humans and animals infections. Copyright © 2014. Published by Elsevier B.V.

  1. Ethanol adaptation induces direct protection and cross-protection against freezing stress in Salmonella enterica serovar Enteritidis.

    PubMed

    He, S; Zhou, X; Shi, C; Shi, X

    2016-03-01

    Salmonella enterica serovar Enteritidis (Salm. Enteritidis) encounters mild ethanol stress during its life cycle. However, adaptation to a stressful condition may affect bacterial resistance to subsequent stresses. Hence, this work was undertaken to investigate the influences of ethanol adaptation on stress tolerance of Salm. Enteritidis. Salmonella Enteritidis was subjected to different ethanol adaptation treatments (2·5-10% ethanol for 1 h). Cellular morphology and tolerance to subsequent environmental stresses (15% ethanol, -20°C, 4°C, 50°C and 10% NaCl) were evaluated. It was found that 10% was the maximum ethanol concentration that allowed growth of the target bacteria. Ethanol adaptation did not cause cell-surface damage in Salm. Enteritidis as revealed by membrane permeability measurements and electron micrograph analysis. Salmonella Enteritidis adapted with 2·5-10% ethanol displayed an enhanced resistance to a 15%-ethanol challenge compared with an unchallenged control. The maximum ethanol resistance was observed when ethanol concentration used for ethanol adaptation was increased to 5·0%. Additionally, pre-adaptation to 5·0% ethanol cross-protected Salm. Enteritidis against -20°C, but not against 4°C, 50°C or 10% NaCl. Ethanol adaptation provided Salm. Enteritidis direct protection from a high level ethanol challenge and cross-protection from freezing, but not other stresses tested (low temperature, high salinity or high temperature). The results are valuable in developing adequate and efficient control measures for Salm. Enteritidis in foods. © 2016 The Society for Applied Microbiology.

  2. Characterization of antimicrobial resistance, molecular and phage types of Salmonella enterica serovar Typhi isolations.

    PubMed

    Demczuk, W H B; Finley, R; Nadon, C; Spencer, A; Gilmour, M; Ng, L-K

    2010-10-01

    Isolation rates in Canada of Salmonella enterica serovar Typhi increased from 0.29 to 0.55 isolations/100,000 population during 2000-2006. Although no ciprofloxacin resistance was detected, nalidixic acid resistance increased from 41% to 80%. Multidrug-resistant S. Typhi represented 18% of the strains tested. Pulsed-field gel electrophoresis (PFGE) analysis of 222 isolates resulted in 91 distinct patterns clustering into four major genetic similarity groups. The five most frequently occurring PFGE patterns accounted for 46% of the isolates. Drug-resistant isolates predominantly occurred in one PFGE similarity group. There were 39 phage types identified in 826 isolates analysed with 60% described by five phage types; 134 were untypable. The phage types associated with multidrug resistance were phage types 53, B1, D1, E1, E9, G3 and M1. Improved integration of epidemiological and laboratory case data will facilitate the protection of public health in Canada during an era of increasing travel and globalization.

  3. An extended genotyping framework for Salmonella enterica serovar Typhi, the cause of human typhoid

    PubMed Central

    Wong, Vanessa K.; Baker, Stephen; Connor, Thomas R.; Pickard, Derek; Page, Andrew J.; Dave, Jayshree; Murphy, Niamh; Holliman, Richard; Sefton, Armine; Millar, Michael; Dyson, Zoe A.; Dougan, Gordon; Holt, Kathryn E.; Parkhill, Julian; Feasey, Nicholas A.; Kingsley, Robert A.; Thomson, Nicholas R.; Keane, Jacqueline A.; Weill, François- Xavier; Le Hello, Simon; Hawkey, Jane; Edwards, David J.; Harris, Simon R.; Cain, Amy K.; Hadfield, James; Hart, Peter J.; Thieu, Nga Tran Vu; Klemm, Elizabeth J.; Breiman, Robert F.; Watson, Conall H.; Edmunds, W. John; Kariuki, Samuel; Gordon, Melita A.; Heyderman, Robert S.; Okoro, Chinyere; Jacobs, Jan; Lunguya, Octavie; Msefula, Chisomo; Chabalgoity, Jose A.; Kama, Mike; Jenkins, Kylie; Dutta, Shanta; Marks, Florian; Campos, Josefina; Thompson, Corinne; Obaro, Stephen; MacLennan, Calman A.; Dolecek, Christiane; Keddy, Karen H.; Smith, Anthony M.; Parry, Christopher M.; Karkey, Abhilasha; Dongol, Sabina; Basnyat, Buddha; Arjyal, Amit; Mulholland, E. Kim; Campbell, James I.; Dufour, Muriel; Bandaranayake, Don; Toleafoa, Take N.; Singh, Shalini Pravin; Hatta, Mochammad; Newton, Paul N.; Dance, David; Davong, Viengmon; Onsare, Robert S.; Isaia, Lupeoletalalelei; Thwaites, Guy; Wijedoru, Lalith; Crump, John A.; De Pinna, Elizabeth; Nair, Satheesh; Nilles, Eric J.; Thanh, Duy Pham; Turner, Paul; Soeng, Sona; Valcanis, Mary; Powling, Joan; Dimovski, Karolina; Hogg, Geoff; Farrar, Jeremy; Mather, Alison E.; Amos, Ben

    2016-01-01

    The population of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, exhibits limited DNA sequence variation, which complicates efforts to rationally discriminate individual isolates. Here we utilize data from whole-genome sequences (WGS) of nearly 2,000 isolates sourced from over 60 countries to generate a robust genotyping scheme that is phylogenetically informative and compatible with a range of assays. These data show that, with the exception of the rapidly disseminating H58 subclade (now designated genotype 4.3.1), the global S. Typhi population is highly structured and includes dozens of subclades that display geographical restriction. The genotyping approach presented here can be used to interrogate local S. Typhi populations and help identify recent introductions of S. Typhi into new or previously endemic locations, providing information on their likely geographical source. This approach can be used to classify clinical isolates and provides a universal framework for further experimental investigations. PMID:27703135

  4. The Rcs-Regulated Colanic Acid Capsule Maintains Membrane Potential in Salmonella enterica serovar Typhimurium

    PubMed Central

    Pando, Jasmine M.; Karlinsey, Joyce E.; Lara, Jimmie C.; Libby, Stephen J.

    2017-01-01

    ABSTRACT The Rcs phosphorelay and Psp (phage shock protein) systems are envelope stress responses that are highly conserved in gammaproteobacteria. The Rcs regulon was found to be strongly induced during metal deprivation of Salmonella enterica serovar Typhimurium lacking the Psp response. Nineteen genes activated by the RcsA-RcsB response regulator make up an operon responsible for the production of colanic acid capsular polysaccharide, which promotes biofilm development. Despite more than half a century of research, the physiological function of colanic acid has remained elusive. Here we show that Rcs-dependent colanic acid production maintains the transmembrane electrical potential and proton motive force in cooperation with the Psp response. Production of negatively charged exopolysaccharide covalently bound to the outer membrane may enhance the surface potential by increasing the local proton concentration. This provides a unifying mechanism to account for diverse Rcs/colanic acid-related phenotypes, including susceptibility to membrane-damaging agents and biofilm formation. PMID:28588134

  5. A Mutation in the Putative Lysl-tRNA Synthetase Gene, PoxR of Salmonella enterica Serovar Typhimurium Results in Altered Protein Production, Elevated Susceptibility to Environmental Challenges and Decreased Swine Colonization

    USDA-ARS?s Scientific Manuscript database

    Using signature-tagged mutagenesis, a mutation in the poxR gene of Salmonella enterica serovar Typhimurium was identified with decreased survival in an ex vivo swine stomach content assay(Bearson et al. Appl Environ Microbiol. 72:2829-36). Gastrointestinal colonization and fecal shedding of the pox...

  6. Genomic Analysis of Salmonella enterica Serovar Typhimurium DT160 Associated with a 14-Year Outbreak, New Zealand, 1998–2012

    PubMed Central

    Benschop, Jackie; Biggs, Patrick J.; Marshall, Jonathan C.; Hayman, David T.S.; Carter, Philip E.; Midwinter, Anne C.; Mather, Alison E.; French, Nigel P.

    2017-01-01

    During 1998–2012, an extended outbreak of Salmonella enterica serovar Typhimurium definitive type 160 (DT160) affected >3,000 humans and killed wild birds in New Zealand. However, the relationship between DT160 within these 2 host groups and the origin of the outbreak are unknown. Whole-genome sequencing was used to compare 109 Salmonella Typhimurium DT160 isolates from sources throughout New Zealand. We provide evidence that DT160 was introduced into New Zealand around 1997 and rapidly propagated throughout the country, becoming more genetically diverse over time. The genetic heterogeneity was evenly distributed across multiple predicted functional protein groups, and we found no evidence of host group differentiation between isolates collected from human, poultry, bovid, and wild bird sources, indicating ongoing transmission between these host groups. Our findings demonstrate how a comparative genomic approach can be used to gain insight into outbreaks, disease transmission, and the evolution of a multihost pathogen after a probable point-source introduction. PMID:28516864

  7. Electron-beam-inactivated vaccine against Salmonella enteritidis colonization in molting hens

    USDA-ARS?s Scientific Manuscript database

    Electron Beam (eBeam) ionization technology has a variety of applications in modern society. The underlying hypothesis was that electron beam (eBeam) inactivated Salmonella enterica serovar Enteritidis (SE) cells can serve as a vaccine to control Salmonella colonization and Salmonella shedding in c...

  8. Diversity of Antimicrobial Resistance Phenotypes in Salmonella Isolated from Commercial Poultry Farms.

    PubMed

    Liljebjelke, Karen A; Hofacre, Charles L; White, David G; Ayers, Sherry; Lee, Margie D; Maurer, John J

    2017-01-01

    Salmonella remains the leading cause of foodborne illness in the United States, and the dissemination of drug-resistant Salmonellae through the food chain has important implications for treatment failure of salmonellosis. We investigated the ecology of Salmonella in integrated broiler production in order to understand the flow of antibiotic susceptible and resistant strains within this system. Data were analyzed from a retrospective study focused on antimicrobial resistant Salmonella recovered from commercial broiler chicken farms conducted during the initial years of the US FDA's foray into retail meat surveillance by the National Antimicrobial Resistance Monitoring System (NARMS). Sixty-three percentage of Salmonella were pan-susceptible to a panel of 19 antimicrobials used by the NARMS program. Twenty-five antimicrobial resistance phenotypes were observed in Salmonella isolated from two broiler chicken farms. However, Salmonella displaying resistance to streptomycin, alone, and in combination with other antibiotics was the most prevalent (36.3%) antimicrobial resistance phenotype observed. Resistance to streptomycin and sulfadimethoxine appeared to be linked to the transposon, Tn 21 . Combinations of resistance against streptomycin, gentamicin, sulfadimethoxine, trimethoprim, and tetracycline were observed for a variety of Salmonella enterica serovars and genetic types as defined by pulsed-field gel electrophoresis. There were within and between farm differences in the antibiotic susceptibilities of Salmonella and some of these differences were linked to specific serovars. However, farm differences were not linked to antibiotic usage. Analysis of the temporal and spatial distribution of the endemic Salmonella serovars on these farms suggests that preventing vertical transmission of antibiotic-resistant Salmonella would reduce carcass contamination with antibiotic-resistant Salmonella and subsequently human risk exposure.

  9. Diversity of Antimicrobial Resistance Phenotypes in Salmonella Isolated from Commercial Poultry Farms

    PubMed Central

    Liljebjelke, Karen A.; Hofacre, Charles L.; White, David G.; Ayers, Sherry; Lee, Margie D.; Maurer, John J.

    2017-01-01

    Salmonella remains the leading cause of foodborne illness in the United States, and the dissemination of drug-resistant Salmonellae through the food chain has important implications for treatment failure of salmonellosis. We investigated the ecology of Salmonella in integrated broiler production in order to understand the flow of antibiotic susceptible and resistant strains within this system. Data were analyzed from a retrospective study focused on antimicrobial resistant Salmonella recovered from commercial broiler chicken farms conducted during the initial years of the US FDA’s foray into retail meat surveillance by the National Antimicrobial Resistance Monitoring System (NARMS). Sixty-three percentage of Salmonella were pan-susceptible to a panel of 19 antimicrobials used by the NARMS program. Twenty-five antimicrobial resistance phenotypes were observed in Salmonella isolated from two broiler chicken farms. However, Salmonella displaying resistance to streptomycin, alone, and in combination with other antibiotics was the most prevalent (36.3%) antimicrobial resistance phenotype observed. Resistance to streptomycin and sulfadimethoxine appeared to be linked to the transposon, Tn21. Combinations of resistance against streptomycin, gentamicin, sulfadimethoxine, trimethoprim, and tetracycline were observed for a variety of Salmonella enterica serovars and genetic types as defined by pulsed-field gel electrophoresis. There were within and between farm differences in the antibiotic susceptibilities of Salmonella and some of these differences were linked to specific serovars. However, farm differences were not linked to antibiotic usage. Analysis of the temporal and spatial distribution of the endemic Salmonella serovars on these farms suggests that preventing vertical transmission of antibiotic-resistant Salmonella would reduce carcass contamination with antibiotic-resistant Salmonella and subsequently human risk exposure. PMID:28691011

  10. Physiology, pathogenicity and immunogenicity of live, attenuated Salmonella enterica serovar Enteritidis mutants in chicks.

    PubMed

    Si, Wei; Wang, Xiumei; Liu, Huifang; Yu, Shenye; Li, Zhaoli; Chen, Liping; Zhang, Wanjiang; Liu, Siguo

    2015-01-01

    To construct a novel live, attenuated Salmonella vaccine, the lon, cpxR and cpdB genes were deleted from a wild-type Salmonella enterica serovar Enteritidis-6 (SM-6) strain using the phage λ Red homologous recombination system, resulting in SM-△CpxR, SM-△C/Lon and SM-△C/L/CpdB. The growth curves of strain SM-△C/Lon grew more rapidly than the other strains and had OD 600 values higher than the other strains starting at the 4 h time point. The growth curves of strain SM-△C/L/CpdB were relatively flat. The colonization time of SM-△C/L/CpdB is about 8-10 days. Deleting the lon/cpxR/cpdB (SM-6) genes resulted in an approximate 10(3)-fold attenuation in virulence assessed by the analysis of the LD50 of specific pathogen-free (SPF) chicks. This result indicated that the deletion of the lon, cpxR and cpdB genes induced significant virulence attenuation. The protective effects of SM-△C/L/CpdB vaccination in SPF chicks against 5 × 10(9) colony forming units (CFU) of S. Enteritidis were resulted from the induction of an effective immune response. These findings demonstrate the potential of mutant SM-△C/L/CpdB to be used as an effective vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. [Detection of Salmonella and Mycobacterium species in seagulls captured in Talcahuano, Chile].

    PubMed

    López-Martín, Juana; Junod, Tania; Riquelme, Fredy; Contreras, Cecilia; González-Acuña, Daniel

    2011-11-01

    Salmonella can be isolated from the feces of seagulls. Therefore these birds can be a vector for dissemination of this pathogen. To evaluate the possible role of gulls as vectors of two important human and animal pathogens (My-cobacteria and Salmonella). One hundred twenty three Kelp gull (Larus dominicanus) and 60 Franklin gulls (Leucophaeus pipixcan) captured off the coast of the seaport of Talcahuano, were analyzed. Using traditional microbiological methods, the presence of Mycobacteria in cloacal swabs and feet lavages, was analyzed in both types of gulls. To detect the presence of Salmonella, feces, fecal and tracheal swabs, and feet lavage were analyzed from Franklin gulls. Feces, feet lavage, intestine, spleen, liver, kidney and lung, were examined in Kelp gulls. All Mycobacteria cultures were negative. Salmonella enterica cultures were positive in 25 % of Kelp gulls and 6.7 % of Franklin gulls. Four serovars were identified by serotyping. Enteritidis and Senfteberg serovars were found in both types of gulls. Anatum and Infantis serovars were found only in Kelp gulls. Feces of gulls captured during the winter had the highest yield of positive cultures (36.1%). Seagulls are an important Salmonella vector in Chile.

  12. Proteomic analysis of intestinal mucosa responses to Salmonella enterica serovar typhimurium in naturally infected pig.

    PubMed

    Arce, C; Lucena, C; Moreno, A; Garrido, J J

    2014-01-01

    Salmonella enterica serovar typhimurium (S. typhimurium) is one of the most frequent Salmonella serotypes isolated from European pigs. Despite the advances in understanding the mechanisms involved in host-pathogen interactions and host cell responses to S. typhimurium, the global change that occurs in naturally exposed populations has been poorly characterized. Here, we present a proteomics study on intestinal mucosa of pigs naturally infected with S. typhimurium, in order to better understand the pathogenesis of salmonellosis and the pathways which might be affected after infection. Samples were analyzed by 2D-DIGE and 44 different proteins exhibited statistically significant differences. The data set was analyzed by employing the Ingenuity Pathway Analysis and the physiological function most significantly perturbed were immunological and infectious disease, cellular assembly and organization and metabolism. The pathways implicated in the porcine immune response to S. typhimurium were gluconeogenesis and Rho GDI/RhoA signaling, and our results suggest that keratins and the intermediate filaments could play an important role in the damage of the mucosa and in the success of infection. The role of these findings in salmonellosis has been discussed, as well as the importance of analyzing naturally infected animals to have a complete picture of the infection. Also, we compared the results found in this work with those obtained in a similar study using experimentally infected animals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. β-1,3/1,6-Glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium.

    PubMed

    Shao, Yujing; Guo, Yuming; Wang, Zhong

    2013-07-01

    This study investigated the protective effect of β-1,3/1,6-glucan on gut morphology, intestinal epithelial tight junctions, and bacterial translocation of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Ninety Salmonella-free Arbor Acre male broiler chickens were randomly divided into 3 groups: negative control group (NC), Salmonella Typhimurium-infected positive group (PC), and the Salmonella Typhimurium-infected group with dietary 100 mg/kg of β-1,3/1,6-glucan supplementation (T) to determine the effect of β-1,3/1,6-glucan on intestinal barrier function. Salmonella Typhimurium challenge alone significantly decreased villus height (P < 0.001), villus height/crypt depth ratio (P < 0.05), and the number of goblet cells (P < 0.001) in the jejunum at 14 d postinfection (dpi), but significantly increased the number of intestinal secretory IgA (sIgA)-expressing cells at 14 dpi (P < 0.01) and total sIgA levels in the jejunum at 7 (P < 0.05) and 14 dpi (P < 0.01) compared with the unchallenged birds (NC). Dietary β-1,3/1,6-glucan supplementation not only significantly increased villus height, villus height/crypt depth ratio, and the number of goblet cells (P < 0.01), but also increased the number of sIgA-expressing cells (P < 0.05) and sIgA content in the jejunum at 14 dpi (P < 0.01) in birds challenged with Salmonella Typhimurium in comparison with Salmonella Typhimurium challenge alone. β-1,3/1,6-Glucan addition had significant inhibitory effects (P < 0.05) on cecal Salmonella colonization levels and liver Salmonella invasion of the Salmonella Typhimurium-infected birds compared with the PC group. Intestinal tight junction proteins claudin-1, claudin-4, and occludin mRNA expression in the jejunum at 14 dpi was significantly decreased by Salmonella Typhimurium challenge alone (P < 0.01) compared with that of the NC group, whereas β-1,3/1,6-glucan supplementation significantly increased claudin-1 and occludin mRNA expression (P < 0.01) at

  14. Genomic and phenotypic variation in epidemic-spanning Salmonella enterica serovar Enteritidis isolates

    PubMed Central

    2009-01-01

    Background Salmonella enterica serovar Enteritidis (S. Enteritidis) has caused major epidemics of gastrointestinal infection in many different countries. In this study we investigate genome divergence and pathogenic potential in S. Enteritidis isolated before, during and after an epidemic in Uruguay. Results 266 S. Enteritidis isolates were genotyped using RAPD-PCR and a selection were subjected to PFGE analysis. From these, 29 isolates spanning different periods, genetic profiles and sources of isolation were assayed for their ability to infect human epithelial cells and subjected to comparative genomic hybridization using a Salmonella pan-array and the sequenced strain S. Enteritidis PT4 P125109 as reference. Six other isolates from distant countries were included as external comparators. Two hundred and thirty three chromosomal genes as well as the virulence plasmid were found as variable among S. Enteritidis isolates. Ten out of the 16 chromosomal regions that varied between different isolates correspond to phage-like regions. The 2 oldest pre-epidemic isolates lack phage SE20 and harbour other phage encoded genes that are absent in the sequenced strain. Besides variation in prophage, we found variation in genes involved in metabolism and bacterial fitness. Five epidemic strains lack the complete Salmonella virulence plasmid. Significantly, strains with indistinguishable genetic patterns still showed major differences in their ability to infect epithelial cells, indicating that the approach used was insufficient to detect the genetic basis of this differential behaviour. Conclusion The recent epidemic of S. Enteritidis infection in Uruguay has been driven by the introduction of closely related strains of phage type 4 lineage. Our results confirm previous reports demonstrating a high degree of genetic homogeneity among S. Enteritidis isolates. However, 10 of the regions of variability described here are for the first time reported as being variable in S

  15. Salmonella Enterica Serovar Typhimurium BipA Exhibits Two Distinct Ribosome Binding Modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    deLivron, M.; Robinson, V

    BipA is a highly conserved prokaryotic GTPase that functions to influence numerous cellular processes in bacteria. In Escherichia coli and Salmonella enterica serovar Typhimurium, BipA has been implicated in controlling bacterial motility, modulating attachment and effacement processes, and upregulating the expression of virulence genes and is also responsible for avoidance of host defense mechanisms. In addition, BipA is thought to be involved in bacterial stress responses, such as those associated with virulence, temperature, and symbiosis. Thus, BipA is necessary for securing bacterial survival and successful invasion of the host. Steady-state kinetic analysis and pelleting assays were used to assess themore » GTPase and ribosome-binding properties of S. enterica BipA. Under normal bacterial growth, BipA associates with the ribosome in the GTP-bound state. However, using sucrose density gradients, we demonstrate that the association of BipA and the ribosome is altered under stress conditions in bacteria similar to those experienced during virulence. The data show that this differential binding is brought about by the presence of ppGpp, an alarmone that signals the onset of stress-related events in bacteria.« less

  16. First detection and characterization of Salmonella spp. in poultry and swine raised in backyard production systems in central Chile.

    PubMed

    Alegria-Moran, R; Rivera, D; Toledo, V; Moreno-Switt, A I; Hamilton-West, C

    2017-11-01

    Little is known about Salmonella serovars circulating in backyard poultry and swine populations worldwide. Backyard production systems (BPS) that raise swine and/or poultry are distributed across Chile, but are more heavily concentrated in central Chile, where industrialized systems are in close contact with BPS. This study aims to detect and identify circulating Salmonella serovars in poultry and swine raised in BPS. Bacteriological Salmonella isolation was carried out for 1744 samples collected from 329 BPS in central Chile. Faecal samples were taken from swine, poultry, geese, ducks, turkeys and peacocks, as well as environmental faecal samples. Confirmation of Salmonella spp. was performed using invA-polymerase chain reaction (PCR). Identification of serovars was carried out using a molecular serotyping approach, where serogroups were confirmed by a multiplex PCR of Salmonella serogroup genes for five Salmonella O antigens (i.e., D, B, C1, C2-C3, and E1), along with two PCR amplifications, followed by sequencing of fliC and fljB genes. A total of 25 samples (1·4% of total samples) from 15 BPS (4·6 % of total sampled BPS) were found positive for Salmonella. Positive samples were found in poultry (chickens and ducks), swine and environmental sources. Molecular prediction of serovars on Salmonella isolated showed 52·0% of S. Typhimurium, 16·0% of S. Infantis, 16·0% S. Enteritidis, 8·0% S. Hadar, 4·0% S. Tennessee and 4·0% S. Kentucky. Poor biosecurity measures were found on sampled BPS, where a high percentage of mixed confinement systems (72·8%); and almost half of the sampled BPS with improper management of infected mortalities (e.g. selling the carcasses of infected animals for consumption). Number of birds other than chickens (P = 0·014; OR = 1·04; IC (95%) = 1·01-1·07), mixed productive objective (P = 0·030; OR = 5·35; IC (95%) = 1·24-27·59) and mixed animal replacement origin (P = 0017; OR = 5·19; IC (95%) = 1·35-20·47) were detected as

  17. Salmonella infections in Antarctic fauna and island populations of wildlife exposed to human activities in coastal areas of Australia.

    PubMed

    Iveson, J B; Shellam, G R; Bradshaw, S D; Smith, D W; Mackenzie, J S; Mofflin, R G

    2009-06-01

    Salmonella infections in Antarctic wildlife were first reported in 1970 and in a search for evidence linking isolations with exposure to human activities, a comparison was made of serovars reported from marine fauna in the Antarctic region from 1982-2004 with those from marine mammals in the Northern hemisphere. This revealed that 10 (83%) Salmonella enterica serovars isolated from Antarctic penguins and seals were classifiable in high-frequency (HF) quotients for serovars prevalent in humans and domesticated animals. In Australia, 16 (90%) HF serovars were isolated from marine birds and mammals compared with 12 (86%) HF serovars reported from marine mammals in the Northern hemisphere. In Western Australia, HF serovars from marine species were also recorded in humans, livestock, mussels, effluents and island populations of wildlife in urban coastal areas. Low-frequency S. enterica serovars were rarely detected in humans and not detected in seagulls or marine species. The isolation of S. Enteritidis phage type 4 (PT4), PT8 and PT23 strains from Adélie penguins and a diversity of HF serovars reported from marine fauna in the Antarctic region and coastal areas of Australia, signal the possibility of transient serovars and endemic Salmonella strains recycling back to humans from southern latitudes in marine foodstuffs and feed ingredients.

  18. Antimicrobial Resistance and Molecular Characterization of Salmonella enterica Serovar Enteritidis from Retail Chicken Products in Shanghai, China.

    PubMed

    Zhou, Xiujuan; Xu, Li; Xu, Xuebin; Zhu, Yuding; Suo, Yujuan; Shi, Chunlei; Shi, Xianming

    2018-05-30

    Salmonella enterica serovar Enteritidis is the leading global cause of salmonellosis. A total of 146 Salmonella Enteritidis isolates obtained from retail chicken products in Shanghai, China were characterized for their antimicrobial susceptibilities, virulence and antibiotic resistance gene profiles, and molecular subtypes using pulsed-field gel electrophoresis (PFGE). Approximately 42% (61/146) of the isolates were susceptible to all 13 antimicrobials tested. More than half of the isolates (50.70%) were resistant to ampicillin, 49.32% to sulfisoxazole, 17.12% to tetracycline, and 15.75% to doxycycline. Thirty (20.55%) isolates were resistant to three or more antimicrobials. The avrA, mgtC, and sopE virulence genes were identified in all isolates, while 97.2% and 92.4% were positive for bcfC and spvC genes, respectively. Genes associated with resistance to streptomycin (aadA), β-lactams (blaTEM, blaCMY, blaSHV, and blaCTX), tetracycline (tetA and tetB), and sulfonamides (sulI, sulII, and sulIII) were detected among corresponding resistant isolates. A total of 41 PFGE patterns were identified from 77 antimicrobial resistance (AMR) isolates and were primarily grouped into seven clusters (A-G), each with 90% similarity. The majority of Salmonella Enteritidis isolates (63.63%, 49/77) shared the same PFGE cluster, indicating potential cross contamination during processing and cutting or working during retailing and marketing. A significantly (p < 0.05) lower percentage (<25%) of isolates belonging to clusters D and E were resistant to sulfisoxazole compared with those belonging to clusters A, B, C, F, and G (>80%), indicating that sulfisoxazole resistance might be associated with genetic content (PFGE profiles) of Salmonella Enteritidis. This study provides important and updated information about the baseline antimicrobial-resistant data for food safety risk assessment of Salmonella Enteritidis from retailed chicken in Shanghai, which is the first step for the

  19. Prevalence and Antimicrobial Resistance of Salmonella Isolates from Chicken Carcasses in Retail Markets in Yangon, Myanmar.

    PubMed

    Moe, Aung Zaw; Paulsen, Peter; Pichpol, Duangporn; Fries, Reinhard; Irsigler, Herlinde; Baumann, Maximilian P O; Oo, Kyaw Naing

    2017-06-01

    A cross-sectional investigation was conducted concerning prevalence, antimicrobial resistance, multidrug resistance patterns, and serovar diversity of Salmonella in chicken meat sold at retail in Yangon, Myanmar. The 141 chicken meat samples were collected at 141 retail markets in the Yangon Region, Myanmar, 1 November 2014 to 31 March 2015. Information on hygienic practices (potential risk factors) was retrieved via checklists. Salmonella was isolated and identified according to International Organization for Standardization methods (ISO 6579:2002) with minor modifications. Twelve antimicrobial agents belonging to eight pharmacological groups were used for antimicrobial susceptibility testing (disk diffusion method). Salmonella was recovered from 138 (97.9%) of the 141 samples. The isolates were most frequently resistant to trimethoprim-sulfamethoxazole (70.3% of isolates), tetracycline (54.3%), streptomycin (49.3%), and ampicillin (47.1%). Resistance was also found to chloramphenicol (29.7%), amoxicillin-clavulanic acid (17.4%), ciprofloxacin (9.4%), tobramycin (8.7%), gentamicin (8%), cefazolin (7.2%), lincomycin-spectinomycin (5.8%), and norfloxacin (0.7%). Among the 138 Salmonella isolates, 72 (52.2%) were resistant to three or more antimicrobial agents. Twenty-four serovars were identified among the 138 Salmonella-positive samples; serovars Albany, Kentucky, Braenderup, and Indiana were found in 38, 11, 10, and 8% of samples, respectively. None of the potential risk factors were significantly related to Salmonella contamination of chicken carcasses. This study provides new information regarding prevalence and antimicrobial resistance and Salmonella serovar diversity in retail markets in Yangon, Myanmar.

  20. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms

    PubMed Central

    2009-01-01

    Background Biofilm formation enhances the capacity of pathogenic Salmonella bacteria to survive stresses that are commonly encountered within food processing and during host infection. The persistence of Salmonella within the food chain has become a major health concern, as biofilms can serve as a reservoir for the contamination of food products. While the molecular mechanisms required for the survival of bacteria on surfaces are not fully understood, transcriptional studies of other bacteria have demonstrated that biofilm growth triggers the expression of specific sets of genes, compared with planktonic cells. Until now, most gene expression studies of Salmonella have focused on the effect of infection-relevant stressors on virulence or the comparison of mutant and wild-type bacteria. However little is known about the physiological responses taking place inside a Salmonella biofilm. Results We have determined the transcriptomic and proteomic profiles of biofilms of Salmonella enterica serovar Typhimurium. We discovered that 124 detectable proteins were differentially expressed in the biofilm compared with planktonic cells, and that 10% of the S. Typhimurium genome (433 genes) showed a 2-fold or more change in the biofilm compared with planktonic cells. The genes that were significantly up-regulated implicated certain cellular processes in biofilm development including amino acid metabolism, cell motility, global regulation and tolerance to stress. We found that the most highly down-regulated genes in the biofilm were located on Salmonella Pathogenicity Island 2 (SPI2), and that a functional SPI2 secretion system regulator (ssrA) was required for S. Typhimurium biofilm formation. We identified STM0341 as a gene of unknown function that was needed for biofilm growth. Genes involved in tryptophan (trp) biosynthesis and transport were up-regulated in the biofilm. Deletion of trpE led to decreased bacterial attachment and this biofilm defect was restored by exogenous

  1. Generation and selection of anti-flagellin monoclonal antibodies useful for serotyping Salmonella enterica.

    PubMed

    Hiriart, Yanina; Serradell, Maria; Martínez, Araci; Sampaolesi, Sofia; Maciel, Dolores Gonzalez; Chabalgoity, Jose Alejandro; Yim, Lucía; Algorta, Gabriela; Rumbo, Martin

    2013-01-01

    In developing countries, bacterial acute gastroenteritis continues to be an important cause of morbidity and mortality among young children. Salmonellosis constitutes a major cause of infectious enteritis worldwide, most of them associated to the consumption of contaminated food products. Traditionally, Salmonella has been classified in serovars based on varieties of O and H surface antigens. In the present work we generated and characterized a panel of anti-flagellin monoclonal antibodies (MAbs) in order to select antibodies useful for detecting the H surface antigen. Four different MAbs were obtained by somatic hybridization of splenocytes. We found two MAbs that recognised regions of flagellin conserved among different Salmonella serovars. Other two MAbs recognised structures restricted to Salmonella enterica sv. Typhimurium, being one of them suitable for agglutination tests. Using a diverse panel of S. enterica serovars with different H antigen varieties we confirmed that this MAb agglutinates specifically S. Typhimurium (antigenic formula: 4,12:i:1,2) or other serovars expressing flagellar factor i. In conclusion, we generated a valuable immunochemical tool to be used in simple assays for serotyping of epidemiologically relevant strains. The capacity to characterize specific strains and determine the primary sources of Salmonella contamination generate valuable information of the epidemiology of this microorganism, contributing to the improvement of public health.

  2. Clonal Occurrence of Salmonella Weltevreden in Cultured Shrimp in the Mekong Delta, Vietnam

    PubMed Central

    Noor Uddin, Gazi Md.; Larsen, Marianne Halberg; Barco, Lisa; Minh Phu, Tran; Dalsgaard, Anders

    2015-01-01

    This study investigated the occurrence, serovar and antimicrobial resistance of Salmonella spp. in shrimp samples from intensive and extensive farms located in three different provinces in the Mekong Delta, Vietnam. Shrimp from 11 of the 48 farms all contained S. Weltevreden, except for one farm yielding S. Agona, with no difference in Salmonella occurrence between the two production systems. Pulsed field gel electrophoresis (PFGE) of S. Weltevreden showed closely related XbaI pulse types, suggesting a clonal relationship despite the farms and shrimp samples being epidemiologically unrelated. S. Weltevreden was susceptible to most antimicrobials tested, with a few strains being resistant to florfenicol, chloramphenicol, sulfamethoxazole or trimethoprim. Future studies of the ecology of S. Weltevreden should establish if this serovar may survive better and even multiply in warm-water shrimp farm environments compared to other Salmonella serovars. PMID:26222547

  3. Control of Salmonella enterica serovar Enteritidis in laying hens by inactivated Salmonella Enteritidis vaccines

    PubMed Central

    de Freitas Neto, Oliveiro Caetano; Mesquita, Aline Lopes; de Paiva, Jaqueline Boldrin; Zotesso, Fábio; Berchieri Júnior, Angelo

    2008-01-01

    Salmonella Enteritidis is one of the agents that is responsible for outbreaks of human foodborne salmonellosis caused by Salmonella Enteritidis and is generally associated with the consumption of poultry products. Inactivated Salmonella Enteritidis cell vaccine is one of the available methods to control Salmonella Enteritidis in breeders and laying hens, however results in terms of efficacy vary. This vaccine has never been tested in Brazil, therefore, the present work was carried out to assess three commercial inactivated Salmonella Enteritidis vaccines allowed in Brazil. Four hundred white light variety commercial laying hens were obtained at one-day-of age. At eight weeks old, the birds were divided into four groups with one hundred animals each. Birds from three groups (V1, V2 and V3) received different intramuscular vaccines, followed by a booster dose at 16 weeks of age. Birds from another group (CG) were not vaccinated. When the laying hens were 20, 25 and 31 weeks old, 13 from each group were transferred to another room and were challenged by inoculating 2 mL neat culture of Salmonella Enteritidis. On the second day after each challenge, the caecal contents, spleen, liver and ovary of three birds from each group were analyzed for the presence of Salmonella Enteritidis. Twice a week a cloacal swab of each bird was taken and all eggs laid were examined for the presence of Salmonella Enteritidis. After four consecutive negative cloacal swabs in all the groups, the birds were sacrificed so as to examine the liver, caecal contents and ovaries. Overall, the inactivated vaccine used in group V3 reduced Salmonella Enteritidis in the feces and eggs. A very small amount of Salmonella was found in the spleen, liver, ovary and caeca of the birds in the four groups during the whole experiment. In general, inactivated Salmonella Enteritidis vaccines was able to decrease the presence of Salmonella Enteritidis in the birds and in the eggs as well. Nevertheless, they must

  4. Early Strains of Multidrug-Resistant Salmonella enterica Serovar Kentucky Sequence Type 198 from Southeast Asia Harbor Salmonella Genomic Island 1-J Variants with a Novel Insertion Sequence

    PubMed Central

    Le Hello, Simon; Weill, François-Xavier; Guibert, Véronique; Praud, Karine; Cloeckaert, Axel

    2012-01-01

    Salmonella genomic island 1 (SGI1) is a 43-kb integrative mobilizable element that harbors a great diversity of multidrug resistance gene clusters described in numerous Salmonella enterica serovars and also in Proteus mirabilis. The majority of SGI1 variants contain an In104-derivative complex class 1 integron inserted between resolvase gene res and open reading frame (ORF) S044 in SGI1. Recently, the international spread of ciprofloxacin-resistant S. enterica serovar Kentucky sequence type 198 (ST198) containing SGI1-K variants has been reported. A retrospective study was undertaken to characterize ST198 S. Kentucky strains isolated before the spread of the epidemic ST198-SGI1-K population in Africa and the Middle East. Here, we characterized 12 ST198 S. Kentucky strains isolated between 1969 and 1999, mainly from humans returning from Southeast Asia (n = 10 strains) or Israel (n = 1 strain) or from meat in Egypt (n = 1 strain). All these ST198 S. Kentucky strains did not belong to the XbaI pulsotype X1 associated with the African epidemic clone but to pulsotype X2. SGI1-J subgroup variants containing different complex integrons with a partial transposition module and inserted within ORF S023 of SGI1 were detected in six strains. The SGI1-J4 variant containing a partially deleted class 1 integron and thus showing a narrow resistance phenotype to sulfonamides was identified in two epidemiologically unrelated strains from Indonesia. The four remaining strains harbored a novel SGI1-J variant, named SGI1-J6, which contained aadA2, floR2, tetR(G)-tetA(G), and sul1 resistance genes within its complex integron. Moreover, in all these S. Kentucky isolates, a novel insertion sequence related to the IS630 family and named ISSen5 was found inserted upstream of the SGI1 complex integron in ORF S023. Thus, two subpopulations of S. Kentucky ST198 independently and exclusively acquired the SGI1 during the 1980s and 1990s. Unlike the ST198-X1 African epidemic subpopulation, the

  5. Early strains of multidrug-resistant Salmonella enterica serovar Kentucky sequence type 198 from Southeast Asia harbor Salmonella genomic island 1-J variants with a novel insertion sequence.

    PubMed

    Le Hello, Simon; Weill, François-Xavier; Guibert, Véronique; Praud, Karine; Cloeckaert, Axel; Doublet, Benoît

    2012-10-01

    Salmonella genomic island 1 (SGI1) is a 43-kb integrative mobilizable element that harbors a great diversity of multidrug resistance gene clusters described in numerous Salmonella enterica serovars and also in Proteus mirabilis. The majority of SGI1 variants contain an In104-derivative complex class 1 integron inserted between resolvase gene res and open reading frame (ORF) S044 in SGI1. Recently, the international spread of ciprofloxacin-resistant S. enterica serovar Kentucky sequence type 198 (ST198) containing SGI1-K variants has been reported. A retrospective study was undertaken to characterize ST198 S. Kentucky strains isolated before the spread of the epidemic ST198-SGI1-K population in Africa and the Middle East. Here, we characterized 12 ST198 S. Kentucky strains isolated between 1969 and 1999, mainly from humans returning from Southeast Asia (n = 10 strains) or Israel (n = 1 strain) or from meat in Egypt (n = 1 strain). All these ST198 S. Kentucky strains did not belong to the XbaI pulsotype X1 associated with the African epidemic clone but to pulsotype X2. SGI1-J subgroup variants containing different complex integrons with a partial transposition module and inserted within ORF S023 of SGI1 were detected in six strains. The SGI1-J4 variant containing a partially deleted class 1 integron and thus showing a narrow resistance phenotype to sulfonamides was identified in two epidemiologically unrelated strains from Indonesia. The four remaining strains harbored a novel SGI1-J variant, named SGI1-J6, which contained aadA2, floR2, tetR(G)-tetA(G), and sul1 resistance genes within its complex integron. Moreover, in all these S. Kentucky isolates, a novel insertion sequence related to the IS630 family and named ISSen5 was found inserted upstream of the SGI1 complex integron in ORF S023. Thus, two subpopulations of S. Kentucky ST198 independently and exclusively acquired the SGI1 during the 1980s and 1990s. Unlike the ST198-X1 African epidemic subpopulation, the

  6. Functional Activity of Antibodies Directed towards Flagellin Proteins of Non-Typhoidal Salmonella

    PubMed Central

    Boyd, Mary A.; Wang, Jin Y.; Tulapurkar, Mohan E.; Pasetti, Marcela F.; Levine, Myron M.; Simon, Raphael

    2016-01-01

    Non-typhoidal Salmonella (NTS) serovars Typhimurium and Enteritidis are major causes of invasive bacterial infections in children under 5 years old in sub-Saharan Africa, with case fatality rates of ~20%. There are no licensed NTS vaccines for humans. Vaccines that induce antibodies against a Salmonella Typhi surface antigen, Vi polysaccharide, significantly protect humans against typhoid fever, establishing that immune responses to Salmonella surface antigens can be protective. Flagella proteins, abundant surface antigens in Salmonella serovars that cause human disease, are also powerful immunogens, but the functional capacity of elicited anti-flagellar antibodies and their role in facilitating bacterial clearance has been unclear. We examined the ability of anti-flagellar antibodies to mediate microbial killing by immune system components in-vitro and assessed their role in protecting mice against invasive Salmonella infection. Polyclonal (hyperimmune sera) and monoclonal antibodies raised against phase 1 flagellin proteins of S. Enteritidis and S. Typhimurium facilitated bacterial uptake and killing of the homologous serovar pathogen by phagocytes. Polyclonal anti-flagellar antibodies accompanied by complement also achieved direct bacterial killing. Serum bactericidal activity was restricted to Salmonella serovars expressing the same flagellin used as immunogen. Notably, individual anti-flagellin monoclonal antibodies with complement were not bactericidal, but this biological activity was restored when different monoclonal anti-flagellin antibodies were combined. Passive transfer immunization with a monoclonal IgG antibody specific for phase 1 flagellin from S. Typhimurium protected mice against lethal challenge with a representative African invasive S. Typhimurium strain. These findings have relevance for the use of flagellin proteins in NTS vaccines, and confirm the role of anti-flagellin antibodies as mediators of protective immunity. PMID:26998925

  7. The isolation of salmonellae, Newcastle disease virus and other infectious agents from quarantined imported birds in Canada.

    PubMed Central

    Rigby, C E; Pettit, J R; Papp-Vid, G; Spencer, J L; Willis, N G

    1981-01-01

    Necropsy and culture results are presented for 269 consignments of imported birds (mainly psittacine and passerine species) examined between January 1977 and August 1980. Consignments were submitted for diagnosis of clinical illness or deaths occurring among these birds while they were in quarantine before entry into Canada. Enteritis and injury were the most frequent diagnoses. Pathogens or potential pathogens were isolated from 77% of consignments. Newcastle disease virus was isolated nine times, and Chlamydia psittaci was isolated once. Escherichia coli (from 113 consignments) and salmonellae (from 49) were the most common bacteria isolated, and reoviruses (from 22) and paramyxoviruses other than Newcastle disease virus (from 22) were the most common viruses. Salmonella typhimurium was the most common Salmonella serovar. Salmonella hadar was isolated from turkey poults imported from Great Britain. The possible public health significance of the role of imported birds in the introduction of exotic Salmonella serovars, or of serovars resistant to several antimicrobials is discussed. PMID:7039785

  8. An Inducible and Secreted Eukaryote-Like Serine/Threonine Kinase of Salmonella enterica Serovar Typhi Promotes Intracellular Survival and Pathogenesis

    PubMed Central

    Theeya, Nagaraja; Ta, Atri; Das, Sayan; Mandal, Rahul S.; Chakrabarti, Oishee; Chakrabarti, Saikat; Ghosh, Amar N.

    2014-01-01

    Eukaryote-like serine/threonine kinases (eSTKs) constitute an important family of bacterial virulence factors. Genome analysis had predicted putative eSTKs in Salmonella enterica serovar Typhi, although their functional characterization and the elucidation of their role in pathogenesis are still awaited. We show here that the primary sequence and secondary structure of the t4519 locus of Salmonella Typhi Ty2 have all the signatures of eukaryotic superfamily kinases. t4519 encodes a ∼39-kDa protein (T4519), which shows serine/threonine kinase activities in vitro. Recombinant T4519 (rT4519) is autophosphorylated and phosphorylates the universal substrate myelin basic protein. Infection of macrophages results in decreased viability of the mutant (Ty2Δt4519) strain, which is reversed by gene complementation. Moreover, reactive oxygen species produced by the macrophages signal to the bacteria to induce T4519, which is translocated to the host cell cytoplasm. That T4519 may target a host substrate(s) is further supported by the activation of host cellular signaling pathways and the induction of cytokines/chemokines. Finally, the role of T4519 in the pathogenesis of Salmonella Typhi is underscored by the significantly decreased mortality of mice infected with the Ty2Δt4519 strain and the fact that the competitive index of this strain for causing systemic infection is 0.25% that of the wild-type strain. This study characterizes the first eSTK of Salmonella Typhi and demonstrates its role in promoting phagosomal survival of the bacteria within macrophages, which is a key determinant of pathogenesis. This, to the best of our knowledge, is the first study to describe the essential role of eSTKs in the in vivo pathogenesis of Salmonella spp. PMID:25404028

  9. Discovery of Novel Secreted Virulence Factors from Salmonella enterica Serovar Typhimurium by Proteomic Analysis of Culture Supernatants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemann, George; Brown, Roslyn N.; Gustin, Jean K.

    The intracellular pathogen Salmonella enterica serovar Typhimurium is a leading cause of acute gastroenteritis in the world. This pathogen has two type-III secretion systems (TTSS) necessary for virulence that are encoded in Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) and are expressed during extracellular or intracellular infectious states, respectively, to deliver virulence factors (effectors) to the host cell cytoplasm. While many have been identified and at least partially characterized, the full repertoire of effectors has not been catalogued. In this mass spectrometry-based proteomics study, we identified effector proteins secreted under minimal acidic medium growth conditions that induced themore » SPI-2 TTSS and its effectors, and compared the secretome from the parent strain to the secretome from strains missing either essential (SsaK) or regulatory components (SsaL) of the SPI-2 secretion apparatus. We identified 75% of the known TTSS effector repertoire. Excluding translocon components, 95% of the known effectors were biased for identification in the ssaL mutant background, which demonstrated that SsaL regulates SPI-2 type III secretion. To confirm secretion to animal cells, we made translational fusions of several of the best candidates to the calmodulin-dependent adenylate cyclase of Bordetella pertussis and assayed cAMP levels of infected J774 macrophage-like cells. From these infected cells we identified six new TTSS effectors and two others that are secreted independent of TTSS. Our results substantiate reports of additional secretion systems encoded by Salmonella other than TTSS.« less

  10. Saccharomyces boulardii prevention of the hepatic injury induced by Salmonella Enteritidis infection.

    PubMed

    Wu, Daichao; Teng, Da; Wang, Xiumin; Dai, Changsong; Wang, Jianhua

    2014-10-01

    Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis) is the predominant cause of serovar-associated food-borne outbreaks in many countries and causes significant clinical symptoms of liver injury, enteritis, and diarrheal diseases. Saccharomyces boulardii is used in clinical application for prophylaxis and the treatment of a variety of diseases caused by bacterial infection. We used a mouse model of Salmonella Enteritidis infection, which included pretreatment with S. boulardii, to reveal the protection mechanisms of S. boulardii against Salmonella Enteritidis infection, including the translocation of Salmonella Enteritidis to the liver 10 days after Salmonella Enteritidis challenge, and the colonisation of Salmonella Enteritidis and the formation of hepatic tissue lesions in mice after Salmonella Enteritidis challenge on the 10th day. Compared with Salmonella Enteritidis infection in mice, S. boulardii decreased Salmonella Enteritidis translocation to the liver by 96%, and 99% of Salmonella Enteritidis colonised the cecum on the 10th day. Saccharomyces boulardii also abated hepatic tissue injury caused by the infiltration of neutrophilic granulocytes, lymphocytes, and plasmocytes by decreasing the translocation of Salmonella to the liver. These findings demonstrated that S. boulardii is an effective agent in the prevention of the hepatic injury induced by Salmonella Enteritidis infection in a mouse model.

  11. Prevalence and antimicrobial susceptibility of salmonellae isolates from reptiles in Taiwan.

    PubMed

    Chen, Chun-Yu; Chen, Wan-Ching; Chin, Shih-Chien; Lai, Yen-Hsueh; Tung, Kwong-Chung; Chiou, Chien-Shun; Hsu, Yuan-Man; Chang, Chao-Chin

    2010-01-01

    Pets, including reptiles, have been shown to be a source of Salmonella infection in humans. Due to increasing popularity and variety of exotic reptiles as pets in recent years, more human clinical cases of reptile-associated Salmonella infection have been identified. However, limited information is available with regard to serotypes in different reptiles (turtles, snakes, and lizards) and antimicrobial resistance of Salmonella in pet reptiles. The current study was thus conducted to determine the prevalence of Salmonella colonization in pet reptiles. Salmonella organisms were isolated from 30.9% of 476 reptiles investigated. The isolation prevalences were 69.7% (23/33), 62.8% (27/43), and 24.3% (97/400) in snakes, lizards, and turtles, respectively. A total of 44 different Salmonella serovars were identified. Compared with S. Heron, Bredeney, Treforest, and 4,[5],12:i:-, S. Typhimurium isolates were resistant to many antimicrobials tested, and notably 61.1% of the isolates were resistant to cephalothin. The results indicated that raising reptiles as pets could be a possible source of Salmonella infection in humans, particularly zoonotic Salmonella serovars such as S. Typhimurium that may be resistant to antimicrobials.

  12. Drinking water from dug wells in rural ghana--salmonella contamination, environmental factors, and genotypes.

    PubMed

    Dekker, Denise Myriam; Krumkamp, Ralf; Sarpong, Nimako; Frickmann, Hagen; Boahen, Kennedy Gyau; Frimpong, Michael; Asare, Renate; Larbi, Richard; Hagen, Ralf Matthias; Poppert, Sven; Rabsch, Wolfgang; Marks, Florian; Adu-Sarkodie, Yaw; May, Jürgen

    2015-03-27

    Salmonellosis is an important but neglected disease in sub-Saharan Africa. Food or fecal-oral associated transmissions are the primary cause of infections, while the role of waterborne transmission is unclear. Samples were collected from different dug wells in a rural area of Ghana and analyzed for contamination with bacteria, and with Salmonella in particular. In addition, temporal dynamics and riks factors for contamination were investigated in 16 wells. For all Salmonella isolates antibiotic susceptibility testing was performed, serovars were determined and strains from the same well with the same serovar were genotyped. The frequency of well water contamination with Gram-negative rod-shaped bacteria was 99.2% (n = 395). Out of 398 samples, 26 (6.5%) tested positive for Salmonella spp. The serovar distribution was diverse including strains not commonly isolated from clinical samples. Resistance to locally applied antibiotics or resistance to fluoroquinolones was not seen in the Salmonella isolates. The risk of Salmonella contamination was lower in wells surrounded by a frame and higher during the rainy season. The study confirms the overall poor microbiological quality of well water in a resource-poor area of Ghana. Well contamination with Salmonella poses a potential threat of infection, thus highlighting the important role of drinking water safety in infectious disease control.

  13. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium

    PubMed Central

    Robinson, Nirmal; McComb, Scott; Mulligan, Rebecca; Dudani, Renu; Krishnan, Lakshmi; Sad, Subash

    2014-01-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a virulent pathogen that induces rapid host death. Here we observed that host survival after infection with S. Typhimurium was enhanced in the absence of type I interferon signaling, with improved survival of mice deficient in the receptor for type I interferons (Ifnar1−/− mice) that was attributed to macrophages. Although there was no impairment in cytokine expression or inflammasome activation in Ifnar1−/− macrophages, they were highly resistant to S. Typhimurium–induced cell death. Specific inhibition of the kinase RIP1or knockdown of the gene encoding the kinase RIP3 prevented the death of wild-type macrophages, which indicated that necroptosis was a mechanism of cell death. Finally, RIP3-deficient macrophages, which cannot undergo necroptosis, had similarly less death and enhanced control of S. Typhimurium in vivo. Thus, we propose that S. Typhimurium induces the production of type I interferon, which drives necroptosis of macrophages and allows them to evade the immune response. PMID:22922364

  14. Salmonella enterica Serovar Typhimurium Exploits Inflammation to Compete with the Intestinal Microbiota

    PubMed Central

    Stecher, Bärbel; Westendorf, Astrid M; Barthel, Manja; Kremer, Marcus; Chaffron, Samuel; Macpherson, Andrew J; Buer, Jan; Parkhill, Julian; Dougan, Gordon; von Mering, Christian; Hardt, Wolf-Dietrich

    2007-01-01

    Most mucosal surfaces of the mammalian body are colonized by microbial communities (“microbiota”). A high density of commensal microbiota inhabits the intestine and shields from infection (“colonization resistance”). The virulence strategies allowing enteropathogenic bacteria to successfully compete with the microbiota and overcome colonization resistance are poorly understood. Here, we investigated manipulation of the intestinal microbiota by the enteropathogenic bacterium Salmonella enterica subspecies 1 serovar Typhimurium (S. Tm) in a mouse colitis model: we found that inflammatory host responses induced by S. Tm changed microbiota composition and suppressed its growth. In contrast to wild-type S. Tm, an avirulent invGsseD mutant failing to trigger colitis was outcompeted by the microbiota. This competitive defect was reverted if inflammation was provided concomitantly by mixed infection with wild-type S. Tm or in mice (IL10−/−, VILLIN-HACL4-CD8) with inflammatory bowel disease. Thus, inflammation is necessary and sufficient for overcoming colonization resistance. This reveals a new concept in infectious disease: in contrast to current thinking, inflammation is not always detrimental for the pathogen. Triggering the host's immune defence can shift the balance between the protective microbiota and the pathogen in favour of the pathogen. PMID:17760501

  15. Pediatric Epidemic of Salmonella enterica Serovar Typhimurium in the Area of L'Aquila, Italy, Four Years after a Catastrophic Earthquake.

    PubMed

    Nigro, Giovanni; Bottone, Gabriella; Maiorani, Daniela; Trombatore, Fabiana; Falasca, Silvana; Bruno, Gianfranco

    2016-05-06

    A Salmonella enterica epidemic occurred in children of the area of L'Aquila (Central Italy, Abruzzo region) between June 2013 and October 2014, four years after the catastrophic earthquake of 6 April 2009. Clinical and laboratory data were collected from hospitalized and ambulatory children. Routine investigations for Salmonella infection were carried out on numerous alimentary matrices of animal origin and sampling sources for drinking water of the L'Aquila district, including pickup points of the two main aqueducts. Salmonella infection occurred in 155 children (83 females: 53%), aged 1 to 15 years (mean 2.10). Of these, 44 children (28.4%) were hospitalized because of severe dehydration, electrolyte abnormalities, and fever resistant to oral antipyretic and antibiotic drugs. Three children (1.9%) were reinfected within four months after primary infection by the same Salmonella strain. Four children (2.6%), aged one to two years, were coinfected by rotavirus. A seven-year old child had a concomitant right hip joint arthritis. The isolated strains, as confirmed in about the half of cases or probable/possible in the remaining ones, were identified as S. enterica serovar Typhimurium [4,5:i:-], monophasic variant. Aterno river, bordering the L'Aquila district, was recognized as the main responsible source for the contamination of local crops and vegetables derived from polluted crops. The high rate of hospitalized children underlines the emergence of a highly pathogenic S. enterica strain probably subsequent to the contamination of the spring water sources after geological changes occurred during the catastrophic earthquake.

  16. Interaction of Saccharomyces boulardii with Salmonella enterica Serovar Typhimurium Protects Mice and Modifies T84 Cell Response to the Infection

    PubMed Central

    Martins, Flaviano S.; Dalmasso, Guillaume; Arantes, Rosa M. E.; Doye, Anne; Lemichez, Emmanuel; Lagadec, Patricia; Imbert, Veronique; Peyron, Jean-François; Rampal, Patrick; Nicoli, Jacques R.; Czerucka, Dorota

    2010-01-01

    Background Salmonella pathogenesis engages host cells in two-way biochemical interactions: phagocytosis of bacteria by recruitment of cellular small GTP-binding proteins induced by the bacteria, and by triggering a pro-inflammatory response through activation of MAPKs and nuclear translocation of NF-κB. Worldwide interest in the use of functional foods containing probiotic bacteria for health promotion and disease prevention has increased significantly. Saccharomyces boulardii is a non-pathogenic yeast used as a probiotic in infectious diarrhea. Methodology/Principal Findings In this study, we reported that S. boulardii (Sb) protected mice from Salmonella enterica serovar Typhimurium (ST)-induced death and prevented bacterial translocation to the liver. At a molecular level, using T84 human colorectal cancer cells, we demonstrate that incubation with Sb before infection totally abolished Salmonella invasion. This correlates with a decrease of activation of Rac1. Sb preserved T84 barrier function and decreased ST-induced IL-8 synthesis. This anti-inflammatory effect was correlated with an inhibitory effect of Sb on ST-induced activation of the MAPKs ERK1/2, p38 and JNK as well as on activation of NF-κB. Electron and confocal microscopy experiments showed an adhesion of bacteria to yeast cells, which could represent one of the mechanisms by which Sb exerts its protective effects. Conclusions Sb shows modulating effects on permeability, inflammation, and signal transduction pathway in T84 cells infected by ST and an in vivo protective effect against ST infection. The present results also demonstrate that Sb modifies invasive properties of Salmonella. PMID:20111723

  17. Validation of Single and Pooled Manure Drag Swabs for the Detection of Salmonella Serovar Enteritidis in Commercial Poultry Houses.

    PubMed

    Kinde, Hailu; Goodluck, Helen A; Pitesky, Maurice; Friend, Tom D; Campbell, James A; Hill, Ashley E

    2015-12-01

    Single swabs (cultured individually) are currently used in the Food and Drug Administration (FDA) official method for sampling the environment of commercial laying hens for the detection of Salmonella enterica ssp. serovar Enteritidis (Salmonella Enteritidis). The FDA has also granted provisional acceptance of the National Poultry Improvement Plan's (NPIP) Salmonella isolation and identification methodology for samples taken from table-egg layer flock environments. The NPIP method, as with the FDA method, requires single-swab culturing for the environmental sampling of laying houses for Salmonella Enteritidis. The FDA culture protocol requires a multistep culture enrichment broth, and it is more labor intensive than the NPIP culture protocol, which requires a single enrichment broth. The main objective of this study was to compare the FDA single-swab culturing protocol with that of the NPIP culturing protocol but using a four-swab pool scheme. Single and multi-laboratory testing of replicate manure drag swab sets (n  =  525 and 672, respectively) collected from a Salmonella Enteritidis-free commercial poultry flock was performed by artificially contaminating swabs with either Salmonella Enteritidis phage type 4, 8, or 13a at one of two inoculation levels: low, x¯  = 2.5 CFU (range 2.5-2.7), or medium, x¯  = 10.0 CFU (range 7.5-12). For each replicate, a single swab (inoculated), sets of two swabs (one inoculated and one uninoculated), and sets of four swabs (one inoculated and three uninoculated), testing was conducted using the FDA or NPIP culture method. For swabs inoculated with phage type 8, the NPIP method was more efficient (P < 0.05) for all swab sets at both inoculation levels than the reference method. The single swabs in the NPIP method were significantly (P < 0.05) better than four-pool swabs in detecting Salmonella Enteritidis at the lower inoculation level. In the collaborative study (n  =  13 labs) using Salmonella Enteritidis phage

  18. Genomic diversity and adaptation of Salmonella enterica serovar Typhimurium from analysis of six genomes of different phage types

    PubMed Central

    2013-01-01

    Background Salmonella enterica serovar Typhimurium (or simply Typhimurium) is the most common serovar in both human infections and farm animals in Australia and many other countries. Typhimurium is a broad host range serovar but has also evolved into host-adapted variants (i.e. isolated from a particular host such as pigeons). Six Typhimurium strains of different phage types (defined by patterns of susceptibility to lysis by a set of bacteriophages) were analysed using Illumina high-throughput genome sequencing. Results Variations between strains were mainly due to single nucleotide polymorphisms (SNPs) with an average of 611 SNPs per strain, ranging from 391 SNPs to 922 SNPs. There were seven insertions/deletions (indels) involving whole or partial gene deletions, four inactivation events due to IS200 insertion and 15 pseudogenes due to early termination. Four of these inactivated or deleted genes may be virulence related. Nine prophage or prophage remnants were identified in the six strains. Gifsy-1, Gifsy-2 and the sopE2 and sspH2 phage remnants were present in all six genomes while Fels-1, Fels-2, ST64B, ST104 and CP4-57 were variably present. Four strains carried the 90-kb plasmid pSLT which contains several known virulence genes. However, two strains were found to lack the plasmid. In addition, one strain had a novel plasmid similar to Typhi strain CT18 plasmid pHCM2. Conclusion The genome data suggest that variations between strains were mainly due to accumulation of SNPs, some of which resulted in gene inactivation. Unique genetic elements that were common between host-adapted phage types were not found. This study advanced our understanding on the evolution and adaptation of Typhimurium at genomic level. PMID:24138507

  19. Impairment of Swimming Motility by Antidiarrheic Lactobacillus acidophilus Strain LB Retards Internalization of Salmonella enterica Serovar Typhimurium within Human Enterocyte-Like Cells▿

    PubMed Central

    Liévin-Le Moal, Vanessa; Amsellem, Raymonde; Servin, Alain L.

    2011-01-01

    We report that both culture and the cell-free culture supernatant (CFCS) of Lactobacillus acidophilus strain LB (Lactéol Boucard) have the ability (i) to delay the appearance of Salmonella enterica serovar Typhimurium strain SL1344-induced mobilization of F-actin and, subsequently, (ii) to retard cell entry by S. Typhimurium SL1344. Time-lapse imaging and Western immunoblotting showed that S. Typhimurium SL1344 swimming motility, as represented by cell tracks of various types, was rapidly but temporarily blocked without affecting the expression of FliC flagellar propeller protein. We show that the product(s) secreted by L. acidophilus LB that supports the inhibitory activity is heat stable and of low molecular weight. The product(s) caused rapid depolarization of the S. Typhimurium SL1344 cytoplasmic membrane without affecting bacterial viability. We identified inhibition of swimming motility as a newly discovered mechanism by which the secreted product(s) of L. acidophilus strain LB retards the internalization of the diarrhea-associated pathogen S. enterica serovar Typhimurium within cultured human enterocyte-like cells. PMID:21825295

  20. A Multischool Outbreak Due to Salmonella enterica serovar Napoli Associated with Elevated Rates of Hospitalizations and Bacteremia, Milan, Italy, 2014.

    PubMed

    Huedo, Pol; Gori, Maria; Amato, Ettore; Bianchi, Roberta; Valerio, Edgardo; Magnoli, Luigi; Pontello, Mirella

    2016-08-01

    A multischool outbreak of salmonellosis caused by Salmonella enterica serovar Napoli was investigated in the province of Milan from October to November 2014, following an increase in school absenteeism coinciding with two positive cases. Epidemiological studies detected 47 cases in four primary schools: 46 children and 1 adult woman (51.4% males and 48.6% females, median age 8.9). From these, 14 cases (29.8%) were severe and resulted in hospitalization, including 6 children (12.8%) who developed an invasive salmonellosis. The epidemic curve revealed an abnormally long incubation period, peaking 1 week after the first confirmed case. Twenty-five available isolates were typed by pulsed-field gel electrophoresis showing an identical pattern. The isolate belongs to ST474, an ST composed exclusively of Salmonella Napoli human strains isolated in France and Italy. Antibiotic resistance analysis showed resistance to aminoglycosides, correlating with the presence of the aminoglycoside resistance gene aadA25 in its genome. Trace-back investigations strongly suggested contaminated ham as the most likely food vehicle, which was delivered by a common food center on 21 October. Nevertheless, this ingredient could not be retrospectively investigated since it was no longer available at the repository. This represents the largest Salmonella Napoli outbreak ever reported in Italy and provides a unique scenario for studying the outcome of salmonellosis caused by this emerging and potentially invasive nontyphoidal serotype.

  1. Paradigm Diagnostics Salmonella Indicator Broth (PDX-SIB) for detection of Salmonella on selected environmental surfaces.

    PubMed

    Olstein, Alan; Griffith, Leena; Feirtag, Joellen; Pearson, Nicole

    2013-01-01

    The Paradigm Diagnostics Salmonella Indicator Broth (PDX-SIB) is intended as a single-step selective enrichment indicator broth to be used as a simple screening test for the presence of Salmonella spp. in environmental samples. This method permits the end user to avoid multistep sample processing to identify presumptively positive samples, as exemplified by standard U.S. reference methods. PDX-SIB permits the outgrowth of Salmonella while inhibiting the growth of competitive Gram-negative and -positive microflora. Growth of Salmonella-positive cultures results in a visual color change of the medium from purple to yellow when the sample is grown at 37 +/- 1 degree C. Performance of PDX-SIB has been evaluated in five different categories: inclusivity-exclusivity, methods comparison, ruggedness, lot-to-lot variability, and shelf stability. The inclusivity panel included 100 different Salmonella serovars, 98 of which were SIB-positive during the 30 to 48 h incubation period. The exclusivity panel included 33 different non-Salmonella microorganisms, 31 of which were SIB-negative during the incubation period. Methods comparison studies included four different surfaces: S. Newport on plastic, S. Anatum on sealed concrete, S. Abaetetuba on ceramic tile, and S. Typhimurium in the presence of 1 log excess of Citrobacter freundii. Results of the methods comparison studies demonstrated no statistical difference between the SIB method and the U.S. Food and Drug Administration-Bacteriological Analytical Manual reference method, as measured by the Mantel-Haenszel Chi-square test. Ruggedness studies demonstrated little variation in test results when SIB incubation temperatures were varied over a 34-40 degrees C range. Lot-to-lot consistency results suggest no detectable differences in manufactured goods using two reference Salmonella serovars and one non-Salmonella microorganism.

  2. An rfaH Mutant of Salmonella enterica Serovar Typhimurium is Attenuated in Swine and Reduces Intestinal Colonization, Fecal Shedding, and Disease Severity Due to Virulent Salmonella Typhimurium

    PubMed Central

    Bearson, Bradley L.; Bearson, Shawn M. D.; Kich, Jalusa D.; Lee, In Soo

    2014-01-01

    Swine are often asymptomatic carriers of Salmonella spp., and interventions are needed to limit colonization of swine to enhance food safety and reduce environmental contamination. We evaluated the attenuation and potential vaccine use in pigs of a Salmonella enterica serovar Typhimurium mutant of rfaH, the gene encoding the RfaH antiterminator that prevents premature termination of long mRNA transcripts. Pigs inoculated with wild-type S. Typhimurium exhibited a significant elevation in average body temperature (fever) at 1 and 2 days post-inoculation; rfaH-inoculated pigs did not (n = 5/group). During the 7-day trial, a significant reduction of Salmonella in the feces, tonsils, and cecum were observed in the rfaH-inoculated pigs compared to wild-type inoculated pigs. To determine whether vaccination with the rfaH mutant could provide protection against wild-type S. Typhimurium challenge, two groups of pigs (n = 14/group) were intranasally inoculated with either the rfaH mutant or a PBS placebo at 6 and 8 weeks of age and challenged with the parental, wild-type S. Typhimurium at 11 weeks of age. The average body temperature was significantly elevated in the mock-vaccinated pigs at 1 and 2 days post-challenge, but not in the rfaH-vaccinated pigs. Fecal shedding at 2 and 3 days post-challenge and colonization of intestinal tract tissues at 7 days post-challenge by wild-type S. Typhimurium was significantly reduced in the rfaH-vaccinated pigs compared to mock-vaccinated pigs. Serological analysis using the IDEXX HerdChek Swine Salmonella Test Kit indicated that vaccination with the rfaH mutant did not stimulate an immune response against LPS. These results indicate that vaccination of swine with the attenuated rfaH mutant confers protection against challenge with virulent S. Typhimurium but does not interfere with herd level monitoring for Salmonella spp., thereby allowing for differentiation of infected from vaccinated animals (DIVA). PMID

  3. Drinking Water from Dug Wells in Rural Ghana — Salmonella Contamination, Environmental Factors, and Genotypes

    PubMed Central

    Dekker, Denise Myriam; Krumkamp, Ralf; Sarpong, Nimako; Frickmann, Hagen; Boahen, Kennedy Gyau; Frimpong, Michael; Asare, Renate; Larbi, Richard; Hagen, Ralf Matthias; Poppert, Sven; Rabsch, Wolfgang; Marks, Florian; Adu-Sarkodie, Yaw; May, Jürgen

    2015-01-01

    Salmonellosis is an important but neglected disease in sub-Saharan Africa. Food or fecal-oral associated transmissions are the primary cause of infections, while the role of waterborne transmission is unclear. Samples were collected from different dug wells in a rural area of Ghana and analyzed for contamination with bacteria, and with Salmonella in particular. In addition, temporal dynamics and riks factors for contamination were investigated in 16 wells. For all Salmonella isolates antibiotic susceptibility testing was performed, serovars were determined and strains from the same well with the same serovar were genotyped. The frequency of well water contamination with Gram-negative rod-shaped bacteria was 99.2% (n = 395). Out of 398 samples, 26 (6.5%) tested positive for Salmonella spp. The serovar distribution was diverse including strains not commonly isolated from clinical samples. Resistance to locally applied antibiotics or resistance to fluoroquinolones was not seen in the Salmonella isolates. The risk of Salmonella contamination was lower in wells surrounded by a frame and higher during the rainy season. The study confirms the overall poor microbiological quality of well water in a resource-poor area of Ghana. Well contamination with Salmonella poses a potential threat of infection, thus highlighting the important role of drinking water safety in infectious disease control. PMID:25826395

  4. Antimicrobial Resistance in Nontyphoidal Salmonella Isolated from Human and Poultry-Related Samples in Brazil: 20-Year Meta-Analysis.

    PubMed

    Voss-Rech, Daiane; Potter, Luciana; Vaz, Clarissa Silveira Luiz; Pereira, Daniela Isabel Brayer; Sangioni, Luís Antonio; Vargas, Águeda Castagna; de Avila Botton, Sônia

    2017-02-01

    Nontyphoidal Salmonella are one of the leading causes of foodborne diseases in the world. As poultry products are recognized as main sources of human salmonellosis, nontyphoidal Salmonella control has become a global issue for the poultry industry. The increasing antimicrobial resistance in poultry-related nontyphoidal Salmonella serovars is a global matter of concern. By monitoring the evolution of antimicrobial resistance, alternative treatments can be identified and possible restrictions in the treatment of systemic human salmonellosis foreseen. A meta-analysis was conducted to assess the profile and temporal evolution of the antimicrobial resistance of nontyphoidal Salmonella of poultry and human origin in Brazil, isolated in the period from 1995 to 2014. Four databases were researched; twenty-nine articles met the eligibility criteria and were included in the meta-analysis. In the nontyphoidal isolates of poultry origin, the highest levels of antimicrobial resistance were verified for sulfonamides (44.3%), nalidixic acid (42.5%), and tetracycline (35.5%). In the human-origin isolates, the resistance occurred mainly for sulfonamides (46.4%), tetracycline (36.9%), and ampicillin (23.6%). Twenty-two articles described results of antimicrobial resistance specifically for Salmonella Enteritidis, also enabling the individual meta-analysis of this serovar. For most antimicrobials, the resistance levels of Salmonella Enteritidis were lower than those found when considering all the nontyphoidal serovars. In the poultry-origin isolates, a quadratic temporal distribution was observed, with reduced resistance to streptomycin in Salmonella Enteritidis and in all nontyphoidal serovars, and a linear increase of resistance to nalidixic acid in Salmonella Enteritidis. In the human-origin isolates, a linear increase was identified in the resistance to nalidixic acid in Salmonella Enteritidis and in all the nontyphoidal isolates, and to gentamicin in Salmonella Enteritidis

  5. Early immune response following Salmonella enterica subspecies enterica serovar Typhimurium infection in porcine jejunal gut loops

    PubMed Central

    Meurens, François; Berri, Mustapha; Auray, Gael; Melo, Sandrine; Levast, Benoît; Virlogeux-Payant, Isabelle; Chevaleyre, Claire; Gerdts, Volker; Salmon, Henri

    2009-01-01

    Salmonella enterica subspecies enterica serovar Typhimurium, commonly called S. Typhimurium, can cause intestinal infections in humans and various animal species such as swine. To analyze the host response to Salmonella infection in the pig we used an in vivo gut loop model, which allows the analysis of multiple immune responses within the same animal. Four jejunal gut-loops were each inoculated with 3×108 cfu of S. Typhimurium in 3 one-month-old piglets and mRNA expressions of various cytokines, chemokines, transcription factors, antimicrobial peptides, toll like and chemokine receptors were assessed by quantitative real-time PCR in the Peyer’s patch and the gut wall after 24 h. Several genes such as the newly cloned CCRL1/CCX-CKR were assessed for the first time in the pig at the mRNA level. Pro-inflammatory and T-helper type-1 (Th1) cytokine mRNA were expressed at higher levels in infected compared to non-infected control loops. Similarly, some B cell activation genes, NOD2 and toll like receptor 2 and 4 transcripts were more expressed in both tissues while TLR5 mRNA was down-regulated. Interestingly, CCL25 mRNA expression as well as the mRNA expressions of its receptors CCR9 and CCRL1 were decreased both in the Peyer’s patch and gut wall suggesting a potential Salmonella strategy to reduce lymphocyte homing to the intestine. In conclusion, these results provide insight into the porcine innate mucosal immune response to infection with entero-invasive microorganisms such as S. Typhimurium. In the future, this knowledge should help in the development of improved prophylactic and therapeutic approaches against porcine intestinal S. Typhimurium infections. PMID:18922229

  6. Significance of the Bacteriophage Treatment Schedule in Reducing Salmonella Colonization of Poultry

    PubMed Central

    Bardina, Carlota; Spricigo, Denis A.; Cortés, Pilar

    2012-01-01

    Salmonella remains the major cause of food-borne diseases worldwide, with chickens known to be the main reservoir for this zoonotic pathogen. Among the many approaches to reducing Salmonella colonization of broilers, bacteriophage offers several advantages. In this study, three bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87) obtained from our collection that exhibited a broad host range against Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium were characterized with respect to morphology, genome size, and restriction patterns. A cocktail composed of the three bacteriophages was more effective in promoting the lysis of S. Enteritidis and S. Typhimurium cultures than any of the three bacteriophages alone. In addition, the cocktail was able to lyse the Salmonella enterica serovars Virchow, Hadar, and Infantis. The effectiveness of the bacteriophage cocktail in reducing the concentration of S. Typhimurium was tested in two animal models using different treatment schedules. In the mouse model, 50% survival was obtained when the cocktail was administered simultaneously with bacterial infection and again at 6, 24, and 30 h postinfection. Likewise, in the White Leghorn chicken specific-pathogen-free (SPF) model, the best results, defined as a reduction of Salmonella concentration in the chicken cecum, were obtained when the bacteriophage cocktail was administered 1 day before or just after bacterial infection and then again on different days postinfection. Our results show that frequent treatment of the chickens with bacteriophage, and especially prior to colonization of the intestinal tract by Salmonella, is required to achieve effective bacterial reduction over time. PMID:22773654

  7. Allelic Variation in TLR4 Is Linked to Susceptibility to Salmonella enterica Serovar Typhimurium Infection in Chickens

    PubMed Central

    Leveque, Gary; Forgetta, Vincenzo; Morroll, Shaun; Smith, Adrian L.; Bumstead, Nat; Barrow, Paul; Loredo-Osti, J. C.; Morgan, Kenneth; Malo, Danielle

    2003-01-01

    Toll-like receptor 4 (TLR4) is part of a group of evolutionarily conserved pattern recognition receptors involved in the activation of the immune system in response to various pathogens and in the innate defense against infection. We describe here the cloning and characterization of the avian orthologue of mammalian TLR4. Chicken TLR4 encodes a 843-amino-acid protein that contains a leucine-rich repeat extracellular domain, a short transmembrane domain typical of type I transmembrane proteins, and a Toll-interleukin-1R signaling domain characteristic of all TLR proteins. The chicken TLR4 protein shows 46% identity (64% similarity) to human TLR4 and 41% similarity to other TLR family members. Northern blot analysis reveals that TLR4 is expressed at approximately the same level in all tissues tested, including brain, thymus, kidney, intestine, muscle, liver, lung, bursa of Fabricius, heart, and spleen. The probe detected only one transcript of ca. 4.4 kb in length for all tissues except muscle where the size of TLR4 mRNA was ca. 9.6 kb. We have mapped TLR4 to microchromosome E41W17 in a region harboring the gene for tenascin C and known to be well conserved between the chicken and mammalian genomes. This region of the chicken genome was shown previously to harbor a Salmonella susceptibility locus. By using linkage analysis, TLR4 was shown to be linked to resistance to infection with Salmonella enterica serovar Typhimurium in chickens (likelihood ratio test of 10.2, P = 0.00138), suggesting a role of TLR4 in the host response of chickens to Salmonella infection. PMID:12595422

  8. Presumable role of outer membrane proteins of Salmonella containing sialylated lipopolysaccharides serovar Ngozi, sv. Isaszeg and subspecies arizonae in determining susceptibility to human serum.

    PubMed

    Futoma-Kołoch, Bożena; Godlewska, Urszula; Guz-Regner, Katarzyna; Dorotkiewicz-Jach, Agata; Klausa, Elżbieta; Rybka, Jacek; Bugla-Płoskońska, Gabriela

    2015-01-01

    The O48 group comprises Salmonella bacteria containing sialic acid in the lipopolysaccharide (LPS). Bacteria with sialylated surface structures are described as pathogens that avoid immunological response of the host by making similar their surface antigens to the host's tissues (molecular mimicry). It is known that the smooth-type LPS of Salmonella enterica and outer membrane proteins (OMP) PgtE, PagC and Rck mediate serum resistant phenotype by affecting complement system (C). The aim of this study was to investigate C3 component activation by Salmonella O48 LPS and OMP. In the present study, we examined C3 component deposition on the three Salmonella O48 strains: S. enterica subspecies enterica serovar Ngozi, S. enterica subsp. enterica sv. Isaszeg, and S. enterica subsp. arizonae containing sialic acid in the O-specific part of LPS. The greatest C3 deposition occurred on Salmonella sv. Isaszeg cells (p < 0.005) as well as on their LPS (low content of sialic acid in LPS) (p < 0.05) after 45 min of incubation in 50% human serum. Weaker C3 deposition ratio on the Salmonella sv. Ngozi (high content of sialic acid in LPS) and Salmonella subsp. arizonae (high content of sialic acid in LPS) cells correlated with the lower C3 activation on their LPS. Immunoblotting revealed that OMP isolated from the tested strains also bound C3 protein fragments. We suggest that activation of C3 serum protein is dependent on the sialic acid contents in the LPS as well as on the presence of OMP in the range of molecular masses of 35-48 kDa.

  9. Genetic diversity and antimicrobial resistance of Campylobacter and Salmonella strains isolated from decoys and raptors.

    PubMed

    Jurado-Tarifa, E; Torralbo, A; Borge, C; Cerdà-Cuéllar, M; Ayats, T; Carbonero, A; García-Bocanegra, I

    2016-10-01

    Infections caused by thermotolerant Campylobacter spp. and Salmonella spp. are the leading causes of human gastroenteritis worldwide. Wild birds can act as reservoirs of both pathogens. A survey was carried out to determine the prevalence, genetic diversity and antimicrobial resistance of thermotolerant Campylobacter and Salmonella in waterfowl used as decoys and wild raptors in Andalusia (Southern Spain). The overall prevalence detected for Campylobacter was 5.9% (18/306; CI95%: 3.25-8.52) in decoys and 2.3% (9/387; CI95%: 0.82-3.83) in wild raptors. Isolates were identified as C. jejuni, C. coli and C. lari in both bird groups. Salmonella was isolated in 3.3% (10/306; CI95%: 2.3-4.3) and 4.6% (18/394; CI95%: 3.5-5.6) of the decoys and raptors, respectively. Salmonella Enteritidis and Typhimurium were the most frequently identified serovars, although Salmonella serovars Anatum, Bredeney, London and Mikawasima were also isolated. Pulsed-field gel electrophoresis analysis of isolates showed higher genetic diversity within Campylobacter species compared to Salmonella serovars. Campylobacter isolates showed resistance to gentamicin, ciprofloxacin and tetracycline, while resistance to erythromycin and tetracycline was found in Salmonella isolates. The results indicate that both decoys and raptors can act as natural carriers of Campylobacter and Salmonella in Spain, which may have important implications for public and animal health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Comparison of 7 culture methods for Salmonella serovar Enteritidis and Salmonella serovar Typhimurium isolation in poultry feces.

    PubMed

    Rodríguez, Francisco I; Procura, Francisco; Bueno, Dante J

    2018-06-26

    The present work compared 7 different culture methods and 3 selective-differential plating media for Salmonella ser. Enteritidis (SE) and S. ser. Typhimurium (ST) isolation using artificially contaminated poultry feces. The sensitivity (Se) and accuracy (AC) values increased when Modified Semisolid Rappaport Vassiliadis (MSRV) methods were used in place of the Tetrathionate (TT) or Tetrathionate Hajna broth (TTH) method in the enrichment step. However, there was no significant difference between the pre-enrichment incubation at 4 to 6 and 18 to 24 h for MSRV5 and MSRV24 methods, respectively. All Salmonella strains were recovered in the lowest dilutions tested for MSRV24 and 3 out of 4 for MSRV5 methods (2 to 10 cfu/25 g). The TT and TTH methods showed a detection limit between 2.2 × 101 and 1.0 × 106 cfu/25 g of fecal sample. The agreement was variable between the methods. However, there was a very good agreement between the MSRV5 and MSRV24 methods, and between tetrathionate direct (TTD, no pre-enrichment media used) and buffered peptone water 18 to 24 h Tetrathionate broth combination (TT24 method) for Salmonella strains. The 3 selective-differential plating media showed an agreement between fair and excellent. They performed a high Se and AC in the MSRV methods for Salmonella strains. There was a significant difference between center and periphery for MSRV methods, and there was a fair agreement between them for all strains. The MSRV methods are better than TT/TTH methods for the isolation of different strains of SE and ST in poultry fecal samples. The MSRV5 method can be used to reduce the time for the detection of SE and ST in these samples. Furthermore, a loopful of the periphery of the growth should be streaked onto differential-selective plating media, even in the absence of halo, to decrease the number of false negative results.

  11. β-Galactomannan and Saccharomyces cerevisiae var. boulardii modulate the immune response against Salmonella enterica serovar Typhimurium in porcine intestinal epithelial and dendritic cells.

    PubMed

    Badia, Roger; Brufau, M Teresa; Guerrero-Zamora, Ana Maria; Lizardo, Rosil; Dobrescu, Irina; Martin-Venegas, Raquel; Ferrer, Ruth; Salmon, Henri; Martínez, Paz; Brufau, Joaquim

    2012-03-01

    Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that causes inflammation, necrosis, and diarrhea in pigs, as well as being an important source of food-borne diseases in humans. Probiotics and prebiotics are promising alternatives to antibiotics to control and prevent intestinal infections. The present work investigated a recently developed β-galactomannan (βGM) prebiotic compared to the proven probiotic Saccharomyces cerevisiae var. boulardii on porcine ileum intestinal epithelial cells (IECs) of the IPI-2I line and monocyte-derived dendritic cells (DCs) cocultured in vitro with Salmonella. We observed that both S. cerevisiae var. boulardii and βGM inhibited the association of Salmonella with IECs in vitro. Our data indicated that βGM has a higher ability than S. cerevisiae var. boulardii to inhibit Salmonella-induced proinflammatory mRNA (cytokines tumor necrosis factor alpha [TNF-α], interleukin-1α [IL-1α], IL-6, and granulocyte-macrophage colony-stimulating factor [GM-CSF] and chemokines CCL2, CCL20, and CXCL8) and at protein levels (IL-6 and CXCL8). Additionally, βGM and S. cerevisiae var. boulardii induced some effects on DCs that were not observed on IECs: βGM and S. cerevisiae var. boulardii showed slight upregulation of mRNA for TNF-α, GM-CSF, and CCR7 receptor on porcine monocyte-derived dendritic cells (DCs). Indeed, the addition of βGM or S. cerevisiae var. boulardii on DCs cocultured with Salmonella showed higher gene expression (mRNA) for TNF-α, GM-CSF, and CXCL8 compared to that of the control with Salmonella. In conclusion, the addition of βGM inhibits Salmonella-induced proinflammatory profiles in IECs but may promote DC activation, although associated molecular mechanisms remain to be elucidated.

  12. β-Galactomannan and Saccharomyces cerevisiae var. boulardii Modulate the Immune Response against Salmonella enterica Serovar Typhimurium in Porcine Intestinal Epithelial and Dendritic Cells

    PubMed Central

    Brufau, M. Teresa; Guerrero-Zamora, Ana Maria; Lizardo, Rosil; Dobrescu, Irina; Martin-Venegas, Raquel; Ferrer, Ruth; Salmon, Henri; Martínez, Paz

    2012-01-01

    Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that causes inflammation, necrosis, and diarrhea in pigs, as well as being an important source of food-borne diseases in humans. Probiotics and prebiotics are promising alternatives to antibiotics to control and prevent intestinal infections. The present work investigated a recently developed β-galactomannan (βGM) prebiotic compared to the proven probiotic Saccharomyces cerevisiae var. boulardii on porcine ileum intestinal epithelial cells (IECs) of the IPI-2I line and monocyte-derived dendritic cells (DCs) cocultured in vitro with Salmonella. We observed that both S. cerevisiae var. boulardii and βGM inhibited the association of Salmonella with IECs in vitro. Our data indicated that βGM has a higher ability than S. cerevisiae var. boulardii to inhibit Salmonella-induced proinflammatory mRNA (cytokines tumor necrosis factor alpha [TNF-α], interleukin-1α [IL-1α], IL-6, and granulocyte-macrophage colony-stimulating factor [GM-CSF] and chemokines CCL2, CCL20, and CXCL8) and at protein levels (IL-6 and CXCL8). Additionally, βGM and S. cerevisiae var. boulardii induced some effects on DCs that were not observed on IECs: βGM and S. cerevisiae var. boulardii showed slight upregulation of mRNA for TNF-α, GM-CSF, and CCR7 receptor on porcine monocyte-derived dendritic cells (DCs). Indeed, the addition of βGM or S. cerevisiae var. boulardii on DCs cocultured with Salmonella showed higher gene expression (mRNA) for TNF-α, GM-CSF, and CXCL8 compared to that of the control with Salmonella. In conclusion, the addition of βGM inhibits Salmonella-induced proinflammatory profiles in IECs but may promote DC activation, although associated molecular mechanisms remain to be elucidated. PMID:22301691

  13. Phenotypic, Genotypic and Pathogenicity assessment of Salmonella Infantis strains isolated from poultry

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica subspecies enterica serovar Infantis has been associated with human illnesslinked to contamination of poultry products. In the US, Salmonella Infantis has been recently associated to human cases of salmonellosis linked to live poultry. The presence of multidrug resistant strains ...

  14. Longitudinal Monitoring of Successive Commercial Layer Flocks for Salmonella enterica Serovar Enteritidis.

    PubMed

    Denagamage, Thomas N; Patterson, Paul; Wallner-Pendleton, Eva; Trampel, Darrell; Shariat, Nikki; Dudley, Edward G; Jayarao, Bhushan M; Kariyawasam, Subhashinie

    2016-11-01

    The Pennsylvania Egg Quality Assurance Program (EQAP) provided the framework for Salmonella Enteritidis (SE) control programs, including the Food and Drug Administration (FDA) mandated Final Egg Rule, for commercial layer facilities throughout the United States. Although flocks with ≥3000 birds must comply with the FDA Final Egg Rule, smaller flocks are exempted from the rule. As a result, eggs produced by small layer flocks may pose a greater public health risk than those from larger flocks. It is also unknown if the EQAPs developed with large flocks in mind are suitable for small- and medium-sized flocks. Therefore, a study was performed to evaluate the effectiveness of best management practices included in EQAPs in reducing SE contamination of small- and medium-sized flocks by longitudinal monitoring of their environment and eggs. A total of 59 medium-sized (3000 to 50,000 birds) and small-sized (<3000 birds) flocks from two major layer production states of the United States were enrolled and monitored for SE by culturing different types of environmental samples and shell eggs for two consecutive flock cycles. Isolated SE was characterized by phage typing, pulsed-field gel electrophoresis (PFGE), and clustered regularly interspaced short palindromic repeats-multi-virulence-locus sequence typing (CRISPR-MVLST). Fifty-four Salmonella isolates belonging to 17 serovars, 22 of which were SE, were isolated from multiple sample types. Typing revealed that SE isolates belonged to three phage types (PTs), three PFGE fingerprint patterns, and three CRISPR-MVLST SE Sequence Types (ESTs). The PT8 and JEGX01.0004 PFGE pattern, the most predominant SE types associated with foodborne illness in the United States, were represented by a majority (91%) of SE. Of the three ESTs observed, 85% SE were typed as EST4. The proportion of SE-positive hen house environment during flock cycle 2 was significantly less than the flock cycle 1, demonstrating that current EQAP practices were

  15. Demonstration of persistent contamination of a cooked egg product production facility with Salmonella enterica serovar Tennessee and characterization of the persistent strain.

    PubMed

    Jakočiūnė, D; Bisgaard, M; Pedersen, K; Olsen, J E

    2014-08-01

    The aim of this study was to investigate whether continuous contamination of light pasteurized egg products with Salmonella enterica serovar Tennessee (S. Tennessee) at a large European producer of industrial egg products was caused by persistent contamination of the production facility and to characterize the persistent strains. Seventy-three S. Tennessee isolates collected from products over a 3-year period with intermittent contamination, and 15 control strains were compared by pulsed field gel electrophoresis (PFGE) using two enzymes. Forty-five case isolates distributed throughout the full period were shown to belong to one profile type. Isolates representing different PFGE profiles were all assigned to ST 319 by multilocus sequence typing (MLST). The case isolates did not show a higher ability to form biofilm on a plastic surface than noncase isolates. Characteristically, members of the persistent clone were weak producers of H2 S in laboratory medium. S. Tennessee isolated from the case was able to grow better in pasteurized egg product compared with other serovars investigated. It was concluded that the contamination was caused by a persistent strain in the production facility and that this strain apparently had adapted to grow in the relevant egg product. S. Tennessee has previously been associated with persistence in hatching facilities. This is the first report of persistent contamination of an egg production facility with this serovar. © 2014 The Society for Applied Microbiology.

  16. Incidence of Nontyphoidal Salmonella in Food-Producing Animals, Animal Feed, and the Associated Environment in South Africa, 2012-2014.

    PubMed

    Magwedere, Kudakwashe; Rauff, Dionne; De Klerk, Grietjie; Keddy, Karen H; Dziva, Francis

    2015-11-01

    Nontyphoidal salmonellosis continues to pose a global threat to human health, primarily by causing food-borne illnesses, and food-producing animals are the principal reservoirs of many pathogenic serovars. To identify key control points and generate information that may enable future estimation of the transmission routes between the environment, animals, and humans, we examined data on Salmonella isolates in South Africa. Samples were obtained from livestock and poultry on farms, meat at abattoirs, raw materials at feed mills, animal feed, and environmental sources (eg, poultry houses, abattoirs, feed mills, water) from 2012 to 2014 in compliance with each establishment's protocols conforming to International Organization for Standardization (ISO) (ISO/TS 17728, ISO 18593:2004 and ISO 17604:2003) standards. Isolation and serotyping of Salmonella were performed according to the scope of accreditation of the respective laboratories conforming to ISO/IEC 17025:2005 standard techniques. Salmonella was isolated from 9031 of 180 298 (5.0%) samples, and these isolates were distributed among 188 different serovars. Salmonella Enteritidis was the most frequent isolate, with 1944 of 180 298 (21.5%) originating from poultry on farms, poultry meat, and poultry houses, followed by Salmonella Havana, with 677 of 180 298 (7.5%), mostly from environmental samples. Serovars that are uncommonly associated with human disease (Salmonella Idikan, Salmonella Salford, and Salmonella Brancaster) were isolated at higher frequencies than Salmonella Typhimurium, a common cause of human illness. Environmental samples accounted for 3869 of 9031 (42.8%) samples positive for Salmonella. We describe the frequent isolation of Salmonella of a wide variety of serovars, from an array of animal feeds, food animals, and food animal environment. As prevention of human salmonellosis requires the effective control of Salmonella in food animals, these data can be used to facilitate Salmonella control in

  17. Biofilm formation ability of Salmonella enterica serovar Typhimurium acrAB mutants.

    PubMed

    Schlisselberg, Dov B; Kler, Edna; Kisluk, Guy; Shachar, Dina; Yaron, Sima

    2015-10-01

    Recent studies offer contradictory findings about the role of multidrug efflux pumps in bacterial biofilm development. Thus, the aim of this study was to investigate the involvement of the AcrAB efflux pump in biofilm formation by investigating the ability of AcrB and AcrAB null mutants of Salmonella enterica serovar Typhimurium to produce biofilms. Three models were used to compare the ability of S. Typhimurium wild-type and its mutants to form biofilms: formation of biofilm on polystyrene surfaces; production of biofilm (mat model) on the air/liquid interface; and expression of curli and cellulose on Congo red-supplemented agar plates. All three investigated genotypes formed biofilms with similar characteristics. However, upon exposure to chloramphenicol, formation of biofilms on solid surfaces as well as the production of curli were either reduced or were delayed more significantly in both mutants, whilst there was no visible effect on pellicle formation. It can be concluded that when no selective pressure is applied, S. Typhimurium is able to produce biofilms even when the AcrAB efflux pumps are inactivated, implying that the use of efflux pump inhibitors to prevent biofilm formation is not a general solution and that combined treatments might be more efficient. Other factors that affect the ability to produce biofilms depending on efflux pump activity are yet to be identified. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  18. Improving Food Safety by Understanding the Evolution of Egg-contaminating Salmonella Enteritidis

    USDA-ARS?s Scientific Manuscript database

    Improving Food Safety by Understanding the Evolution of Egg-contaminating Salmonella Enteritidis Jean Guard, Veterinary Medical Officer U. S. Department of Agriculture, Athens, GA USA (jean.guard@ars.usda.gov) The curious case of egg contamination by Salmonella enterica serovar Enteritidis S. ...

  19. Col plasmids contribute to the fitness of Salmonella Heidelberg in poultry litter evolution experiment

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica subsp. enterica serovar Heidelberg (S. Heidelberg) is a clinically-important serovar, linked to food-borne illness, and commonly isolated from poultry. Investigations of a large, multistate outbreak in the USA in 2011 identified poultry litter (PL) as an important extra-intestina...

  20. A Comparative Genomic Analysis Provides Novel Insights Into the Ecological Success of the Monophasic Salmonella Serovar 4,[5],12:i:-

    PubMed Central

    Mastrorilli, Eleonora; Pietrucci, Daniele; Barco, Lisa; Ammendola, Serena; Petrin, Sara; Longo, Alessandra; Mantovani, Claudio; Battistoni, Andrea; Ricci, Antonia; Desideri, Alessandro; Losasso, Carmen

    2018-01-01

    Over the past decades, Salmonella 4,[5],12:i:- has rapidly emerged and it is isolated with high frequency in the swine food chain. Although many studies have documented the epidemiological success of this serovar, few investigations have tried to explain this phenomenon from a genetic perspective. Here a comparative whole-genome analysis of 50 epidemiologically unrelated S. 4,[5],12:i:-, isolated in Italy from 2010 to 2016 was performed, characterizing them in terms of genetic elements potentially conferring resistance, tolerance and persistence characteristics. Phylogenetic analyses indicated interesting distinctions among the investigated isolates. The most striking genetic trait characterizing the analyzed isolates is the widespread presence of heavy metals tolerance gene cassettes: most of the strains possess genes expected to confer resistance to copper and silver, whereas about half of the isolates also contain the mercury tolerance gene merA. A functional assay showed that these genes might be useful for preventing the toxic effects of metals, thus supporting the hypothesis that they can contribute to the success of S. 4,[5],12:i:- in farming environments. In addition, the analysis of the distribution of type II toxin-antitoxin families indicated that these elements are abundant in this serovar, suggesting that this is another factor that might favor its successful spread. PMID:29719530

  1. A Nutrient-Tunable Bistable Switch Controls Motility in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Koirala, Santosh; Mears, Patrick; Sim, Martin; Golding, Ido; Chemla, Yann R.; Aldridge, Phillip D.

    2014-01-01

    ABSTRACT Many bacteria are motile only when nutrients are scarce. In contrast, Salmonella enterica serovar Typhimurium is motile only when nutrients are plentiful, suggesting that this bacterium uses motility for purposes other than foraging, most likely for host colonization. In this study, we investigated how nutrients affect motility in S. enterica and found that they tune the fraction of motile cells. In particular, we observed coexisting populations of motile and nonmotile cells, with the distribution being determined by the concentration of nutrients in the growth medium. Interestingly, S. enterica responds not to a single nutrient but apparently to a complex mixture of them. Using a combination of experimentation and mathematical modeling, we investigated the mechanism governing this behavior and found that it results from two antagonizing regulatory proteins, FliZ and YdiV. We also found that a positive feedback loop involving the alternate sigma factor FliA is required, although its role appears solely to amplify FliZ expression. We further demonstrate that the response is bistable: that is, genetically identical cells can exhibit different phenotypes under identical growth conditions. Together, these results uncover a new facet of the regulation of the flagellar genes in S. enterica and further demonstrate how bacteria employ phenotypic diversity as a general mechanism for adapting to change in their environment. PMID:25161191

  2. Variable Number of Tandem Repeats in Salmonella enterica subsp. enterica for Typing Purposes

    PubMed Central

    Ramisse, Vincent; Houssu, Perrine; Hernandez, Eric; Denoeud, France; Hilaire, Valérie; Lisanti, Olivier; Ramisse, Françoise; Cavallo, Jean-Didier; Vergnaud, Gilles

    2004-01-01

    The genomic sequences of Salmonella enterica subsp. enterica strains CT18, Ty2 (serovar Typhi), and LT2 (serovar Typhimurium) were analyzed for potential variable number tandem repeats (VNTRs). A multiple-locus VNTR analysis (MLVA) of 99 strains of S. enterica supsp. enterica based on 10 VNTRs distinguished 52 genotypes and placed them into four groups. All strains tested were independent human isolates from France and did not reflect isolates from outbreak episodes. Of these 10 VNTRs, 7 showed variability within serovar Typhi, whereas 1 showed variability within serovar Typhimurium. Four VNTRs showed high Nei's diversity indices (DIs) of 0.81 to 0.87 within serovar Typhi (n = 27). Additionally, three of these more variable VNTRs showed DIs of 0.18 to 0.58 within serovar Paratyphi A (n = 10). The VNTR polymorphic site within multidrug-resistant (MDR) serovar Typhimurium isolates (n = 39; resistance to ampicillin, chloramphenicol, spectinomycin, sulfonamides, and tetracycline) showed a DI of 0.81. Cluster analysis not only identified three genetically distinct groups consistent with the present serovar classification of salmonellae (serovars Typhi, Paratyphi A, and Typhimurium) but also discriminated 25 subtypes (93%) within serovar Typhi isolates. The analysis discriminated only eight subtypes within serovar Typhimurium isolates resistant to ampicillin, chloramphenicol, spectinomycin, sulfonamides, and tetracycline, possibly reflecting the emergence in the mid-1990s of the DT104 phage type, which often displays such an MDR spectrum. Coupled with the ongoing improvements in automated procedures offered by capillary electrophoresis, use of these markers is proposed in further investigations of the potential of MLVA in outbreaks of salmonellosis, especially outbreaks of typhoid fever. PMID:15583305

  3. Ultra-Fast and Sensitive Detection of Non-Typhoidal Salmonella Using Microwave-Accelerated Metal-Enhanced Fluorescence (“MAMEF”)

    PubMed Central

    Galen, James E.; Geddes, Chris D.; Levine, Myron M.

    2011-01-01

    Certain serovars of Salmonella enterica subsp. enterica cause invasive disease (e.g., enteric fever, bacteremia, septicemia, meningitis, etc.) in humans and constitute a global public health problem. A rapid, sensitive diagnostic test is needed to allow prompt initiation of therapy in individual patients and for measuring disease burden at the population level. An innovative and promising new rapid diagnostic technique is microwave-accelerated metal-enhanced fluorescence (MAMEF). We have adapted this assay platform to detect the chromosomal oriC locus common to all Salmonella enterica subsp. enterica serovars. We have shown efficient lysis of biologically relevant concentrations of Salmonella spp. suspended in bacteriological media using microwave-induced lysis. Following lysis and DNA release, as little as 1 CFU of Salmonella in 1 ml of medium can be detected in <30 seconds. Furthermore the assay is sensitive and specific: it can detect oriC from Salmonella serovars Typhi, Paratyphi A, Paratyphi B, Paratyphi C, Typhimurium, Enteritidis and Choleraesuis but does not detect Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pneumoniae, Haemophilus influenzae or Acinetobacter baumanii. We have also performed preliminary experiments using a synthetic Salmonella oriC oligonucleotide suspended in whole human blood and observed rapid detection when the sample was diluted 1∶1 with PBS. These pre-clinical data encourage progress to the next step to detect Salmonella in blood (and other ordinarily sterile, clinically relevant body fluids). PMID:21494634

  4. Characterization of Salmonella enterica Derivatives Harboring Defined aroC and Salmonella Pathogenicity Island 2 Type III Secretion System (ssaV) Mutations by Immunization of Healthy Volunteers

    PubMed Central

    Hindle, Zoë; Chatfield, Steven N.; Phillimore, Jo; Bentley, Matthew; Johnson, Julie; Cosgrove, Catherine A.; Ghaem-Maghami, Marjan; Sexton, Amy; Khan, Mohammad; Brennan, Frank R.; Everest, Paul; Wu, Tao; Pickard, Derek; Holden, David W.; Dougan, Gordon; Griffin, George E.; House, Deborah; Santangelo, Joseph D.; Khan, Shahid A.; Shea, Jaqueline E.; Feldman, Robert G.; Lewis, David J. M.

    2002-01-01

    The attenuation and immunogenicity of two novel Salmonella vaccine strains, Salmonella enterica serovar Typhi (Ty2 ΔaroC ΔssaV, designated ZH9) and S. enterica serovar Typhimurium (TML ΔaroC ΔssaV, designated WT05), were evaluated after their oral administration to volunteers as single escalating doses of 107, 108, or 109 CFU. ZH9 was well tolerated, not detected in blood, nor persistently excreted in stool. Six of nine volunteers elicited anti-serovar Typhi lipopolysaccharide (LPS) immunoglobulin A (IgA) antibody-secreting cell (ASC) responses, with three of three vaccinees receiving 108 and two of three receiving 109 CFU which elicited high-titer LPS-specific serum IgG. WT05 was also well tolerated with no diarrhea, although the administration of 108 and 109 CFU resulted in shedding in stools for up to 23 days. Only volunteers immunized with 109 CFU of WT05 mounted detectable serovar Typhimurium LPS-specific ASC responses and serum antibody responses were variable. These data indicate that mutations in type III secretion systems may provide a route to the development of live vaccines in humans and highlight significant differences in the potential use of serovars Typhimurium and Typhi. PMID:12065485

  5. Metagenomic analysis of the bovine hindgut from Salmonella Kentucky and Cerro-shedding dairy cows

    USDA-ARS?s Scientific Manuscript database

    In the United States Salmonella enterica subsp. enterica serovars Kentucky and Cerro are frequently isolated from dairy cows that appear asymptomatic. Although they are not major contributors to the salmonellosis burden, these serovars have been implicated in human clinical cases in recent years. To...

  6. Salmonella enterica isolates from layer farm environments are able to form biofilm on eggshell surfaces.

    PubMed

    Pande, Vivek V; McWhorter, Andrea R; Chousalkar, Kapil K

    2016-08-01

    This study examined the eggshell biofilm forming ability of Salmonella enterica isolates recovered from egg farms. Multicellular behaviour and biofilm production were examined at 22 and 37°C by Congo red morphology and the crystal violet staining assay. The results indicated that the biofilm forming behaviour of Salmonella isolates was dependent on temperature and associated with serovars. Significantly greater biofilm production was observed at 22°C compared with 37°C. The number of viable biofilm cells attached to eggshells after incubation for 48 h at 22°C was significantly influenced by serovar. Scanning electron microscopic examination revealed firm attachment of bacterial cells to the eggshell surface. The relative expression of csgD and adrA gene was significantly higher in eggshell biofilm cells of S. Mbandaka and S. Oranienburg. These findings demonstrate that Salmonella isolates are capable of forming biofilm on the eggshell surface and that this behaviour is influenced by temperature and serovar.

  7. Genotypic and phenotypic characterization of multidrug resistant Salmonella Typhimurium and Salmonella Kentucky strains recovered from chicken carcasses

    PubMed Central

    Grant, Ar’Quette; Choi, Seon Young; Alam, M. Samiul; Bell, Rebecca; Cavanaugh, Christopher; Balan, Kannan V.; Babu, Uma S.

    2017-01-01

    Abstract Salmonella Typhimurium is the leading cause of human non-typhoidal gastroenteritis in the US. S. Kentucky is one the most commonly recovered serovars from commercially processed poultry carcasses. This study compared the genotypic and phenotypic properties of two Salmonella enterica strains Typhimurium (ST221_31B) and Kentucky (SK222_32B) recovered from commercially processed chicken carcasses using whole genome sequencing, phenotype characterizations and an intracellular killing assay. Illumina MiSeq platform was used for sequencing of two Salmonella genomes. Phylogenetic analysis employing homologous alignment of a 1,185 non-duplicated protein-coding gene in the Salmonella core genome demonstrated fully resolved bifurcating patterns with varying levels of diversity that separated ST221_31B and SK222_32B genomes into distinct monophyletic serovar clades. Single nucleotide polymorphism (SNP) analysis identified 2,432 (ST19) SNPs within 13 Typhimurium genomes including ST221_31B representing Sequence Type ST19 and 650 (ST152) SNPs were detected within 13 Kentucky genomes including SK222_32B representing Sequence Type ST152. In addition to serovar-specific conserved coding sequences, the genomes of ST221_31B and SK222_32B harbor several genomic regions with significant genetic differences. These included phage and phage-like elements, carbon utilization or transport operons, fimbriae operons, putative membrane associated protein-encoding genes, antibiotic resistance genes, siderophore operons, and numerous hypothetical protein-encoding genes. Phenotype microarray results demonstrated that ST221_31B is capable of utilizing certain carbon compounds more efficiently as compared to SK222_3B; namely, 1,2-propanediol, M-inositol, L-threonine, α-D-lactose, D-tagatose, adonitol, formic acid, acetoacetic acid, and L-tartaric acid. ST221_31B survived for 48 h in macrophages, while SK222_32B was mostly eliminated. Further, a 3-fold growth of ST221_31B was observed at

  8. Genotypic and phenotypic characterization of multidrug resistant Salmonella Typhimurium and Salmonella Kentucky strains recovered from chicken carcasses.

    PubMed

    Tasmin, Rizwana; Hasan, Nur A; Grim, Christopher J; Grant, Ar'Quette; Choi, Seon Young; Alam, M Samiul; Bell, Rebecca; Cavanaugh, Christopher; Balan, Kannan V; Babu, Uma S; Parveen, Salina

    2017-01-01

    Salmonella Typhimurium is the leading cause of human non-typhoidal gastroenteritis in the US. S. Kentucky is one the most commonly recovered serovars from commercially processed poultry carcasses. This study compared the genotypic and phenotypic properties of two Salmonella enterica strains Typhimurium (ST221_31B) and Kentucky (SK222_32B) recovered from commercially processed chicken carcasses using whole genome sequencing, phenotype characterizations and an intracellular killing assay. Illumina MiSeq platform was used for sequencing of two Salmonella genomes. Phylogenetic analysis employing homologous alignment of a 1,185 non-duplicated protein-coding gene in the Salmonella core genome demonstrated fully resolved bifurcating patterns with varying levels of diversity that separated ST221_31B and SK222_32B genomes into distinct monophyletic serovar clades. Single nucleotide polymorphism (SNP) analysis identified 2,432 (ST19) SNPs within 13 Typhimurium genomes including ST221_31B representing Sequence Type ST19 and 650 (ST152) SNPs were detected within 13 Kentucky genomes including SK222_32B representing Sequence Type ST152. In addition to serovar-specific conserved coding sequences, the genomes of ST221_31B and SK222_32B harbor several genomic regions with significant genetic differences. These included phage and phage-like elements, carbon utilization or transport operons, fimbriae operons, putative membrane associated protein-encoding genes, antibiotic resistance genes, siderophore operons, and numerous hypothetical protein-encoding genes. Phenotype microarray results demonstrated that ST221_31B is capable of utilizing certain carbon compounds more efficiently as compared to SK222_3B; namely, 1,2-propanediol, M-inositol, L-threonine, α-D-lactose, D-tagatose, adonitol, formic acid, acetoacetic acid, and L-tartaric acid. ST221_31B survived for 48 h in macrophages, while SK222_32B was mostly eliminated. Further, a 3-fold growth of ST221_31B was observed at 24 hours

  9. Salmonella and impact on egg production.

    USDA-ARS?s Scientific Manuscript database

    There is a strong association between the incidence of human illness and the prevalence of Salmonella Enteritidis in commercial egg-producing poultry. Although most egg-associated disease around the world has been attributed to S. Enteritidis, other serovars are sometimes implicated. The deposition ...

  10. Salmonella Isolates in the Introduced Asian House Gecko (Hemidactylus frenatus) with Emphasis on Salmonella Weltevreden, in Two Regions in Costa Rica.

    PubMed

    Jiménez, Randall R; Barquero-Calvo, Elías; Abarca, Juan G; Porras, Laura P

    2015-09-01

    The Asian house gecko Hemidactylus frenatus has been widely introduced in Costa Rica and tends to establish in human settlements. Some studies in other invaded countries have suggested that this gecko plays a significant role in the epidemiology of salmonellosis and it is of value to public health. To our knowledge, no studies have examined Salmonella from this species in Costa Rica. Therefore, we collected 115 geckos from houses in two Costa Rican regions. We examined gut contents for Salmonella through microbiological analysis. Presumptive Salmonella spp. were sent to a reference laboratory for serotyping and antimicrobial susceptibility testing. Molecular typing was also conducted with the main Salmonella isolates of zoonotic relevance in Costa Rica. H. frenatus was found in 95% of the houses surveyed. Salmonella was isolated in 4.3% of the samples, and four zoonotic serovars were detected. None of the isolates were resistant to the antibiotics most frequently used for salmonellosis treatment in Costa Rica. All Salmonella isolates from the lower gut of H. frenatus are associated with human salmonellosis. Pulsotypes from Salmonella enterica serotype Weltevreden were identical to the only clone previously reported from human samples in Costa Rica. Molecular typing of Salmonella Weltevreden suggested that H. frenatus harbors a serovar of public health importance in Costa Rica. Results demonstrated that H. frenatus plays a role in the epidemiology of human salmonellosis in two regions of Costa Rica. However, more detailed epidemiological studies are needed to understand better the role of the Asian house gecko with human salmonellosis, especially caused by Salmonella Weltevreden, and to quantify its risk in Costa Rica accurately.

  11. Characterization of Salmonella spp. from wastewater used for food production in Morogoro, Tanzania.

    PubMed

    Mhongole, Ofred J; Mdegela, Robinson H; Kusiluka, Lughano J M; Forslund, Anita; Dalsgaard, Anders

    2017-03-01

    Wastewater use for crop irrigation and aquaculture is commonly practiced by communities situated close to wastewater treatment ponds. The objective of this study was to characterize Salmonella spp. and their antimicrobial susceptibility patterns among isolates from wastewater and Tilapia fish. A total of 123 Salmonella spp. isolates were isolated from 52 water and 21 fish intestinal samples. Genotyping of Salmonella spp. isolates was done by Pulsed-field Gel Electrophoresis (PFGE). Antimicrobial susceptibility testing was done by the minimal inhibitory concentration (MIC) technique. A total of 123 Salmonella spp. isolates represented 13 different serovars and 22 PFGE groups. Salmonella serovars showed resistance to 8 out of 14 antimicrobials; sulfamethaxazole (94%), streptomycin (61%), tetracycline (22%), ciprofloxacin and nalidixic acid (17%), trimethoprim (11%); gentamycin and chloramphenicol (6%). Salmonella Kentucky, S. Chandans, S. Durban and S. Kiambu showed multiple antimicrobial resistance to 7, 6 and 3 antimicrobials, respectively. This study has demonstrated that wastewater at the study sites is contaminated with Salmonella spp. which are resistant to common antimicrobials used for treatment of diseases in humans. Wastewater may, therefore, contaminate pristine surface water bodies and foodstuffs including fish and irrigated crops as well as food handlers.

  12. Effect of Salmonella vaccination of breeder chickens on contamination of broiler chicken carcasses in integrated poultry operations.

    PubMed

    Dórea, Fernanda C; Cole, Dana J; Hofacre, Charles; Zamperini, Katherine; Mathis, Demetrius; Doyle, Michael P; Lee, Margie D; Maurer, John J

    2010-12-01

    While measures to control carcass contamination with Salmonella at the processing plant have been implemented with some success, on-farm interventions that reduce Salmonella prevalence in meat birds entering the processing plant have not translated well on a commercial scale. We determined the impact of Salmonella vaccination on commercial poultry operations by monitoring four vaccinated and four nonvaccinated breeder (parental) chicken flocks and comparing Salmonella prevalences in these flocks and their broiler, meat bird progeny. For one poultry company, their young breeders were vaccinated by using a live-attenuated Salmonella enterica serovar Typhimurium vaccine (Megan VAC-1) followed by a killed Salmonella bacterin consisting of S. enterica serovar Berta and S. enterica serovar Kentucky. The other participating poultry company did not vaccinate their breeders or broilers. The analysis revealed that vaccinated hens had a lower prevalence of Salmonella in the ceca (38.3% versus 64.2%; P < 0.001) and the reproductive tracts (14.22% versus 51.7%; P < 0.001). We also observed a lower Salmonella prevalence in broiler chicks (18.1% versus 33.5%; P < 0.001), acquired from vaccinated breeders, when placed at the broiler farms contracted with the poultry company. Broiler chicken farms populated with chicks from vaccinated breeders also tended to have fewer environmental samples containing Salmonella (14.4% versus 30.1%; P < 0.001). There was a lower Salmonella prevalence in broilers entering the processing plants (23.4% versus 33.5%; P < 0.001) for the poultry company that utilized this Salmonella vaccination program for its breeders. Investigation of other company-associated factors did not indicate that the difference between companies could be attributed to measures other than the vaccination program.

  13. Impact of the choice of reference genome on the ability of the core genome SNV methodology to distinguish strains of Salmonella enterica serovar Heidelberg.

    PubMed

    Usongo, Valentine; Berry, Chrystal; Yousfi, Khadidja; Doualla-Bell, Florence; Labbé, Genevieve; Johnson, Roger; Fournier, Eric; Nadon, Celine; Goodridge, Lawrence; Bekal, Sadjia

    2018-01-01

    Salmonella enterica serovar Heidelberg (S. Heidelberg) is one of the top serovars causing human salmonellosis. The core genome single nucleotide variant pipeline (cgSNV) is one of several whole genome based sequence typing methods used for the laboratory investigation of foodborne pathogens. SNV detection using this method requires a reference genome. The purpose of this study was to investigate the impact of the choice of the reference genome on the cgSNV-informed phylogenetic clustering and inferred isolate relationships. We found that using a draft or closed genome of S. Heidelberg as reference did not impact the ability of the cgSNV methodology to differentiate among 145 S. Heidelberg isolates involved in foodborne outbreaks. We also found that using a distantly related genome such as S. Dublin as choice of reference led to a loss in resolution since some sporadic isolates were found to cluster together with outbreak isolates. In addition, the genetic distances between outbreak isolates as well as between outbreak and sporadic isolates were overall reduced when S. Dublin was used as the reference genome as opposed to S. Heidelberg.

  14. Isolation and identification of Salmonella spp. in environmental water by molecular technology in Taiwan

    NASA Astrophysics Data System (ADS)

    Kuo, Chun Wei; Hao Huang, Kuan; Hsu, Bing Mu; Tsai, Hsien Lung; Tseng, Shao Feng; Shen, Tsung Yu; Kao, Po Min; Shen, Shu Min; Chen, Jung Sheng

    2013-04-01

    Salmonella spp. is one of the most important causal agents of waterborne diseases. The taxonomy of Salmonella is very complicated and its genus comprises more than 2,500 serotypes. The detection of Salmonella in environmental water samples by routines culture methods using selective media and characterization of suspicious colonies based on biochemical tests and serological assay are generally time consuming. To overcome this drawback, it is desirable to use effective method which provides a higher discrimination and more rapid identification about Salmonella in environmental water. The aim of this study is to investigate the occurrence of Salmonella using molecular technology and to identify the serovars of Salmonella isolates from 70 environmental water samples in Taiwan. The analytical procedures include membrane filtration, non-selective pre-enrichment, selective enrichment of Salmonella. After that, we isolated Salmonella strains by selective culture plates. Both selective enrichment and culture plates were detected by Polymerase Chain Reaction (PCR). Finally, the serovars of Salmonella were confirmed by using biochemical tests and serological assay. In this study, 15 water samples (21.4%) were identified as Salmonella by PCR. The positive water samples will further identify their serotypes by culture method. The presence of Salmonella in environmental water indicates the possibility of waterborne transmission in drinking watershed. Consequently, the authorities need to provide sufficient source protection and to maintain the system for disease prevention. Keywords: Salmonella spp., serological assay, PCR

  15. Salmonella in the pork production chain and its impact on human health in the European Union.

    PubMed

    Bonardi, S

    2017-06-01

    Salmonella spp. comprise the second most common food-borne pathogens in the European Union (EU). The role of pigs as carriers of Salmonella has been intensively studied both on farm and at slaughter. Salmonella infection in pigs may cause fever, diarrhoea, prostration and mortality. However, most infected pigs remain healthy carriers, and those infected at the end of the fattening period could pose a threat to human health. Contamination of pig carcasses can occur on the slaughter line, and it is linked to cross-contamination from other carcasses and the presence of Salmonella in the environment. Therefore, Salmonella serovars present on pig carcasses can be different from those detected in the same bathes on the farm. In recent years, S. Typhimurium, S. Derby and S. serotype 4,[5],12:i:- (a monophasic variant of S. Typhimurium) have been the most common serovars to be detected in pigs in EU countries, but S. Rissen, S. Infantis, S. Enteritidis and S. Brandenburg have also been reported. In humans, several cases of salmonellosis have been linked to the consumption of raw or undercooked pork and pork products. Among the main serovars of porcine origin detected in confirmed human cases, S. Typhimurium, the monophasic variant S. 4,[5],12:i:- and S. Derby are certainly the most important.

  16. Development of a multiplex qPCR in real time for quantification and differential diagnosis of Salmonella Gallinarum and Salmonella Pullorum.

    PubMed

    Rubio, Marcela da Silva; Penha Filho, Rafael Antonio Casarin; Almeida, Adriana Maria de; Berchieri, Angelo

    2017-12-01

    Currently there are 2659 Salmonella serovars. The host-specific biovars Salmonella Pullorum and Salmonella Gallinarum cause systemic infections in food-producing and wild birds. Fast diagnosis is crucial to control the dissemination in avian environments. The present work describes the development of a multiplex qPCR in real time using a low-cost DNA dye (SYBr Green) to identify and quantify these biovars. Primers were chosen based on genomic regions of difference (RoD) and optimized to control dimers. Primers pSGP detect both host-specific biovars but not other serovars and pSG and pSP differentiate biovars. Three amplicons showed different melting temperatures (Tm), allowing differentiation. The pSGP amplicon (97 bp) showed Tm of 78°C for both biovars. The pSG amplicon (273 bp) showed a Tm of 86.2°C for S. Gallinarum and pSP amplicon (260 bp) dissociated at 84.8°C for S. Pullorum identification. The multiplex qPCR in real time showed high sensitivity and was capable of quantifying 10 8 -10 1 CFU of these biovars.

  17. Development of a novel in-water vaccination protocol for DNA adenine methylase deficient Salmonella enterica serovar Typhimurium vaccine in adult sheep.

    PubMed

    Mohler, V L; Heithoff, D M; Mahan, M J; Hornitzky, M A; Thomson, P C; House, J K

    2012-02-14

    Intensive livestock production is associated with an increased incidence of salmonellosis. The risk of infection and the subsequent public health concern is attributed to increased pathogen exposure and disease susceptibility due to multiple stressors experienced by livestock from farm to feedlot. Traditional parenteral vaccine methods can further stress susceptible populations and cause carcass damage, adverse reactions, and resultant increased production costs. As a potential means to address these issues, in-water delivery of live attenuated vaccines affords a low cost, low-stress method for immunization of livestock populations that is not associated with the adverse handling stressors and injection reactions associated with parenteral administration. We have previously established that in-water administration of a Salmonella enterica serovar Typhimurium dam vaccine conferred significant protection in livestock. While these experimental trials hold significant promise, the ultimate measure of the vaccine will not be established until it has undergone clinical testing in the field wherein environmental and sanitary conditions are variable. Here we show that in-water administration of a S. Typhimurium dam attenuated vaccine was safe, stable, and well-tolerated in adult sheep. The dam vaccine did not alter water consumption or vaccine dosing; remained viable under a wide range of temperatures (21-37°C); did not proliferate within fecal-contaminated trough water; and was associated with minimal fecal shedding and clinical disease as a consequence of vaccination. The capacity of Salmonella dam attenuated vaccines to be delivered in drinking water to protect livestock from virulent Salmonella challenge offers an effective, economical, stressor-free Salmonella prophylaxis for intensive livestock production systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. High resolution melting (HRM) analysis as a new tool for rapid identification of Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum.

    PubMed

    Ren, Xingxing; Fu, Ying; Xu, Chenggang; Feng, Zhou; Li, Miao; Zhang, Lina; Zhang, Jianmin; Liao, Ming

    2017-05-01

    Salmonella enterica serovar Gallinarum biovars Pullorum and Gallinarum represent the most common causative agents of chicken salmonellosis, which result in high mortality and morbidity throughout the world. It is difficult and laborious to discriminate these diseases based on biochemical or phenotypic methods. Herein, we report the development of a single nucleotide polymorphism (SNP) PCR-high resolution melt (PCR-HRM) assay for the detection and discrimination of both S. Pullorum and S. Gallinarun. The gene rfbS, which encodes a factor involved in the biosynthesis of ADP paratose in serogroup D of Salmonella, has been identified as a robust genetic marker for the identification of S. Pullorum and S. Gallinarun based on polymorphisms at positions 237 and 598. Therefore, PCR-HRM analyses were used to characterize this gene. A total of 15 reference and 33 clinical isolates of Salmonella and related Gram-negative bacteria were detected using 2 sets of primers. Our PCR-HRM assay could distinguish S. Pullorum from S. Gallinarun and other strains using the primer pair SP-237F/237R. Similarly, S. Gallinarun could be distinguished from S. Pullorum and other strains using primer set SG-598F/598R. These 2 assays showed high specificity (100%) for both S. Pullorum and S. Gallinarun; the sensitivity of these 2 assays was at least 100-fold greater than that of the allele-specific PCR assay. This present study demonstrated that HRM analysis represents a potent, simple, and economic tool for the rapid, specific, and sensitive detection of S. Pullorum and S. Gallinarun. Our approach also may aid efforts for purification of Avian Salmonella disease. © 2016 Poultry Science Association Inc.

  19. Survival of Salmonella Newport in oysters.

    PubMed

    Morrison, Christopher M; Armstrong, Alexandra E; Evans, Sanford; Mild, Rita M; Langdon, Christopher J; Joens, Lynn A

    2011-08-02

    Salmonella enterica is the leading cause of laboratory-confirmed foodborne illness in the United States and raw shellfish consumption is a commonly implicated source of gastrointestinal pathogens. A 2005 epidemiological study done in our laboratory by Brands et al., showed that oysters in the United States are contaminated with Salmonella, and in particular, a specific strain of the Newport serovar. This work sought to further investigate the host-microbe interactions between Salmonella Newport and oysters. A procedure was developed to reliably and repeatedly expose oysters to enteric bacteria and quantify the subsequent levels of bacterial survival. The results show that 10 days after an exposure to Salmonella Newport, an average concentration of 3.7 × 10(3)CFU/g remains within the oyster meat, and even after 60 days there still can be more than 10(2)CFU/g remaining. However, the strain of Newport that predominated in the market survey done by Brands et al. does not survive within oysters or the estuarine environment better than any other strains of Salmonella we tested. Using this same methodology, we compared Salmonella Newport's ability to survive within oysters to a non-pathogenic strain of E. coli and found that after 10 days the concentration of Salmonella was 200-times greater than that of E. coli. We also compared those same strains of Salmonella and E. coli in a depuration process to determine if a constant 120 L/h flux of clean seawater could significantly reduce the concentration of bacteria within oysters and found that after 3 days the oysters retained over 10(4)CFU/g of Salmonella while the oysters exposed to the non-pathogenic strain of E. coli contained 100-times less bacteria. Overall, the results of this study demonstrate that any of the clinically relevant serovars of Salmonella can survive within oysters for significant periods of time after just one exposure event. Based on the drastic differences in survivability between Salmonella and a non

  20. Salmonella prevalence and antimicrobial susceptibility among dairy farm environmental samples collected in Texas

    USDA-ARS?s Scientific Manuscript database

    Dairy cattle are a reservoir of several Salmonella serovars that are leading causes of human salmonellosis. The objectives of this study were to determine the environmental prevalence of Salmonella on dairy farms in Texas and to characterize the antimicrobial susceptibility of the isolates. Eleven...

  1. Human Infections Attributable to the d-Tartrate-Fermenting Variant of Salmonella enterica Serovar Paratyphi B in Germany Originate in Reptiles and, on Rare Occasions, Poultry

    PubMed Central

    Toboldt, Anne; Tietze, Erhard; Helmuth, Reiner; Fruth, Angelika; Junker, Ernst

    2012-01-01

    In this study, the population structure, incidence, and potential sources of human infection caused by the d-tartrate-fermenting variant of Salmonella enterica serovar Paratyphi B [S. Paratyphi B (dT+)] was investigated. In Germany, the serovar is frequently isolated from broilers. Therefore, a selection of 108 epidemiologically unrelated S. enterica serovar Paratyphi B (dT+) strains isolated in Germany between 2002 and 2010 especially from humans, poultry/poultry meat, and reptiles was investigated by phenotypic and genotypic methods. Strains isolated from poultry and products thereof were strongly associated with multilocus sequence type ST28 and showed antimicrobial multiresistance profiles. Pulsed-field gel electrophoresis XbaI profiles were highly homogeneous, with only a few minor XbaI profile variants. All strains isolated from reptiles, except one, were strongly associated with ST88, another distantly related type. Most of the strains were susceptible to antimicrobial agents, and XbaI profiles were heterogeneous. Strains isolated from humans yielded seven sequence types (STs) clustering in three distantly related lineages. The first lineage, comprising five STs, represented mainly strains belonging to ST43 and ST149. The other two lineages were represented only by one ST each, ST28 and ST88. The relatedness of strains based on the pathogenicity gene repertoire (102 markers tested) was mostly in agreement with the multilocus sequence type. Because ST28 was frequently isolated from poultry but rarely in humans over the 9-year period investigated, overall, this study indicates that in Germany S. enterica serovar Paratyphi B (dT+) poses a health risk preferentially by contact with reptiles and, to a less extent, by exposure to poultry or poultry meat. PMID:22885742

  2. Molecular epidemiology of fluoroquinolone resistant Salmonella in Africa: A systematic review and meta-analysis

    PubMed Central

    Tessema, Tesfaye S.; Beyene, Getenet; Aseffa, Abraham

    2018-01-01

    Background Wide-ranging evidence on the occurrence of fluoroquinolone (FQ) resistance genetic determinants in African Salmonella strains is not available. The main objectives of this study were to assess the heterogeneity, estimate pooled proportions and describe the preponderance of FQ-resistance determinants in typhoidal and non-typhoidal Salmonella (NTS) isolates of Africa. Methods Genetic and phenotypic data on 6103 Salmonella isolates were considered. Meta- and frequency analyses were performed depending on the number of studies by category, number of isolates and risks of bias. A random effects model was used to assess heterogeneity and estimate pooled proportions. Relative and cumulative frequencies were calculated to describe the overall preponderance of FQ-resistance determinants in quinolone resistant isolates. Results The pooled proportion of gyrA mutants (Salmonella enterica serovar Typhi, Salmonella enterica serovar Typhimurium, and Salmonella enterica serovar Enteritidis) was estimated at 5.7% (95% Confidence interval (CI) = 2.6, 9.8; Tau squared (T2) = 0.1105), and was higher in S. Typhi than in S. Typhimurium (odds ratio (OR) = 3.3, 95%CI = 2, 5.7). The proportions of each of gyrB and parC mutants, and strains with Plasmid Mediated Quinolone Resistance genes (qnrA, qnrB and qnrS) were low (≤ 0.3%). Overall, 23 mutant serotypes were identified, and most strains had mutations at codons encoding Ser83 and Asp87 of gyrA (82%, 95%CI = 78, 86). Conclusions Mutations at gyrA appear to account for ciprofloxacin non-susceptibility in most clinical Salmonella strains in Africa. The estimates could be harnessed to develop a mismatch-amplification mutation-assay for the detection of FQ-resistant strains in Africa. PMID:29432492

  3. Molecular epidemiology of fluoroquinolone resistant Salmonella in Africa: A systematic review and meta-analysis.

    PubMed

    Tadesse, Getachew; Tessema, Tesfaye S; Beyene, Getenet; Aseffa, Abraham

    2018-01-01

    Wide-ranging evidence on the occurrence of fluoroquinolone (FQ) resistance genetic determinants in African Salmonella strains is not available. The main objectives of this study were to assess the heterogeneity, estimate pooled proportions and describe the preponderance of FQ-resistance determinants in typhoidal and non-typhoidal Salmonella (NTS) isolates of Africa. Genetic and phenotypic data on 6103 Salmonella isolates were considered. Meta- and frequency analyses were performed depending on the number of studies by category, number of isolates and risks of bias. A random effects model was used to assess heterogeneity and estimate pooled proportions. Relative and cumulative frequencies were calculated to describe the overall preponderance of FQ-resistance determinants in quinolone resistant isolates. The pooled proportion of gyrA mutants (Salmonella enterica serovar Typhi, Salmonella enterica serovar Typhimurium, and Salmonella enterica serovar Enteritidis) was estimated at 5.7% (95% Confidence interval (CI) = 2.6, 9.8; Tau squared (T2) = 0.1105), and was higher in S. Typhi than in S. Typhimurium (odds ratio (OR) = 3.3, 95%CI = 2, 5.7). The proportions of each of gyrB and parC mutants, and strains with Plasmid Mediated Quinolone Resistance genes (qnrA, qnrB and qnrS) were low (≤ 0.3%). Overall, 23 mutant serotypes were identified, and most strains had mutations at codons encoding Ser83 and Asp87 of gyrA (82%, 95%CI = 78, 86). Mutations at gyrA appear to account for ciprofloxacin non-susceptibility in most clinical Salmonella strains in Africa. The estimates could be harnessed to develop a mismatch-amplification mutation-assay for the detection of FQ-resistant strains in Africa.

  4. Oxidoreductases that Act as Conditional Virulence Suppressors in Salmonella enterica Serovar Typhimurium

    PubMed Central

    Anwar, Naeem; Sem, Xiao Hui; Rhen, Mikael

    2013-01-01

    In Salmonella enterica serovar Typhimurium, oxidoreductases of the thioredoxin superfamily contribute to bacterial invasiveness, intracellular replication and to the virulence in BALB/c mice as well as in the soil nematode Caenorhabditis elegans. The scsABCD gene cluster, present in many but not all enteric bacteria, codes for four putative oxidoreductases of the thioredoxin superfamily. Here we have analyzed the potential role of the scs genes in oxidative stress tolerance and virulence in S. Typhimurium. An scsABCD deletion mutant showed moderate sensitization to the redox-active transition metal ion copper and increased protein carbonylation upon exposure to hydrogen peroxide. Still, the scsABCD mutant was not significantly affected for invasiveness or intracellular replication in respectively cultured epithelial or macrophage-like cells. However, we noted a significant copper chloride sensitivity of SPI1 T3SS mediated invasiveness that strongly depended on the presence of the scs genes. The scsABCD deletion mutant was not attenuated in animal infection models. In contrast, the mutant showed a moderate increase in its competitive index upon intraperitoneal challenge and enhanced invasiveness in small intestinal ileal loops of BALB/c mice. Moreover, deletion of the scsABCD genes restored the invasiveness of a trxA mutant in epithelial cells and its virulence in C. elegans. Our findings thus demonstrate that the scs gene cluster conditionally affects virulence and underscore the complex interactions between oxidoreductases of the thioredoxin superfamily in maintaining host adaptation of S. Typhimurium. PMID:23750221

  5. Validation of the baking process as a kill-step for controlling Salmonella in muffins.

    PubMed

    Channaiah, Lakshmikantha H; Michael, Minto; Acuff, Jennifer C; Phebus, Randall K; Thippareddi, Harshavardhan; Olewnik, Maureen; Milliken, George

    2017-06-05

    This research investigates the potential risk of Salmonella in muffins when contamination is introduced via flour, the main ingredient. Flour was inoculated with a 3-strain cocktail of Salmonella serovars (Newport, Typhimurium, and Senftenberg) and re-dried to achieve a target concentration of ~8logCFU/g. The inoculated flour was then used to prepare muffin batter following a standard commercial recipe. The survival of Salmonella during and after baking at 190.6°C for 21min was analyzed by plating samples on selective and injury-recovery media at regular intervals. The thermal inactivation parameters (D and z values) of the 3-strain Salmonella cocktail were determined. A ≥5logCFU/g reduction in Salmonella population was demonstrated by 17min of baking, and a 6.1logCFU/g reduction in Salmonella population by 21min of baking. The D-values of Salmonella serovar cocktail in muffin batter were 62.2±3.0, 40.1±0.9 and 16.5±1.7min at 55, 58 and 61°C, respectively; and the z-value was 10.4±0.6°C. The water activity (a w ) of the muffin crumb (0.928) after baking and 30min of cooling was similar to that of pre-baked muffin batter, whereas the a w of the muffin crust decreased to (0.700). This study validates a typical commercial muffin baking process utilizing an oven temperature of 190.6°C for at least 17min as an effective kill-step in reducing a Salmonella serovar population by ≥5logCFU/g. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Selection of Salmonella enterica Serovar Typhi Genes Involved during Interaction with Human Macrophages by Screening of a Transposon Mutant Library

    PubMed Central

    Sabbagh, Sébastien C.; Lepage, Christine; McClelland, Michael; Daigle, France

    2012-01-01

    The human-adapted Salmonella enterica serovar Typhi (S. Typhi) causes a systemic infection known as typhoid fever. This disease relies on the ability of the bacterium to survive within macrophages. In order to identify genes involved during interaction with macrophages, a pool of approximately 105 transposon mutants of S. Typhi was subjected to three serial passages of 24 hours through human macrophages. Mutants recovered from infected macrophages (output) were compared to the initial pool (input) and those significantly underrepresented resulted in the identification of 130 genes encoding for cell membrane components, fimbriae, flagella, regulatory processes, pathogenesis, and many genes of unknown function. Defined deletions in 28 genes or gene clusters were created and mutants were evaluated in competitive and individual infection assays for uptake and intracellular survival during interaction with human macrophages. Overall, 26 mutants had defects in the competitive assay and 14 mutants had defects in the individual assay. Twelve mutants had defects in both assays, including acrA, exbDB, flhCD, fliC, gppA, mlc, pgtE, typA, waaQGP, SPI-4, STY1867-68, and STY2346. The complementation of several mutants by expression of plasmid-borne wild-type genes or gene clusters reversed defects, confirming that the phenotypic impairments within macrophages were gene-specific. In this study, 35 novel phenotypes of either uptake or intracellular survival in macrophages were associated with Salmonella genes. Moreover, these results reveal several genes encoding molecular mechanisms not previously known to be involved in systemic infection by human-adapted typhoidal Salmonella that will need to be elucidated. PMID:22574205

  7. Global Screening of Salmonella enterica Serovar Typhimurium Genes for Desiccation Survival

    PubMed Central

    Mandal, Rabindra K.; Kwon, Young M.

    2017-01-01

    Salmonella spp., one of the most common foodborne bacterial pathogens, has the ability to survive under desiccation conditions in foods and food processing facilities for years. This raises the concerns of Salmonella infection in humans associated with low water activity foods. Salmonella responds to desiccation stress via complex pathways involving immediate physiological actions as well as coordinated genetic responses. However, the exact mechanisms of Salmonella to resist desiccation stress remain to be fully elucidated. In this study, we screened a genome-saturating transposon (Tn5) library of Salmonella Typhimurium (S. Typhimurium) 14028s under the in vitro desiccation stress using transposon sequencing (Tn-seq). We identified 61 genes and 6 intergenic regions required to overcome desiccation stress. Salmonella desiccation resistance genes were mostly related to energy production and conversion; cell wall/membrane/envelope biogenesis; inorganic ion transport and metabolism; regulation of biological process; DNA metabolic process; ABC transporters; and two component system. More than 20% of the Salmonella desiccation resistance genes encode either putative or hypothetical proteins. Phenotypic evaluation of 12 single gene knockout mutants showed 3 mutants (atpH, atpG, and corA) had significantly (p < 0.02) reduced survival as compared to the wild type during desiccation survival. Thus, our study provided new insights into the molecular mechanisms utilized by Salmonella for survival against desiccation stress. The findings might be further exploited to develop effective control strategies against Salmonella contamination in low water activity foods and food processing facilities. PMID:28943871

  8. Methodologies for Salmonella enterica subsp. enterica Subtyping: Gold Standards and Alternatives▿

    PubMed Central

    Wattiau, Pierre; Boland, Cécile; Bertrand, Sophie

    2011-01-01

    For more than 80 years, subtyping of Salmonella enterica has been routinely performed by serotyping, a method in which surface antigens are identified based on agglutination reactions with specific antibodies. The serotyping scheme, which is continuously updated as new serovars are discovered, has generated over time a data set of the utmost significance, allowing long-term epidemiological surveillance of Salmonella in the food chain and in public health control. Conceptually, serotyping provides no information regarding the phyletic relationships inside the different Salmonella enterica subspecies. In epidemiological investigations, identification and tracking of salmonellosis outbreaks require the use of methods that can fingerprint the causative strains at a taxonomic level far more specific than the one achieved by serotyping. During the last 2 decades, alternative methods that could successfully identify the serovar of a given strain by probing its DNA have emerged, and molecular biology-based methods have been made available to address phylogeny and fingerprinting issues. At the same time, accredited diagnostics have become increasingly generalized, imposing stringent methodological requirements in terms of traceability and measurability. In these new contexts, the hand-crafted character of classical serotyping is being challenged, although it is widely accepted that classification into serovars should be maintained. This review summarizes and discusses modern typing methods, with a particular focus on those having potential as alternatives for classical serotyping or for subtyping Salmonella strains at a deeper level. PMID:21856826

  9. Differential levels of cecal colonization by Salmonella Enteritidis in chickens triggers distinct immune kinome profiles

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar Enteritidis are facultative intracellular bacteria that cause disease in numerous species. Salmonella-related infections originating from poultry and/or poultry products are a major cause of human foodborne illness, and S. Enteritidis is the leading cause worldwide. Des...

  10. Characterization of Salmonella Occurring at High Prevalence in a Population of the Land Iguana Conolophus subcristatus in Galápagos Islands, Ecuador

    PubMed Central

    Franco, Alessia; Hendriksen, Rene S.; Lorenzetti, Serena; Onorati, Roberta; Gentile, Gabriele; Dell'Omo, Giacomo; Aarestrup, Frank M.; Battisti, Antonio

    2011-01-01

    The aim of the study was to elucidate the association between the zoonotic pathogen Salmonella and a population of land iguana, Colonophus subcristatus, endemic to Galápagos Islands in Ecuador. We assessed the presence of Salmonella subspecies and serovars and estimated the prevalence of the pathogen in that population. Additionally, we investigated the genetic relatedness among isolates and serovars utilising pulsed field gel electrophoresis (PFGE) on XbaI-digested DNA and determined the antimicrobial susceptibility to a panel of antimicrobials. The study was carried out by sampling cloacal swabs from animals (n = 63) in their natural environment on in the island of Santa Cruz. A high prevalence (62/63, 98.4%) was observed with heterogeneity of Salmonella subspecies and serovars, all known to be associated with reptiles and with reptile-associated salomonellosis in humans. Serotyping revealed 14 different serovars among four Salmonella enterica subspecies: S. enterica subsp. enterica (n = 48), S. enterica subsp. salamae (n = 2), S. enterica subsp. diarizonae (n = 1), and S. enterica subsp. houtenae (n = 7). Four serovars were predominant: S. Poona (n = 18), S. Pomona (n = 10), S. Abaetetuba (n = 8), and S.Newport (n = 5). The S. Poona isolates revealed nine unique XbaI PFGE patterns, with 15 isolates showing a similarity of 70%. Nine S. Pomona isolates had a similarity of 84%. One main cluster with seven (88%) indistinguishable isolates of S. Abaetetuba was observed. All the Salmonella isolates were pan-susceptible to antimicrobials representative of the most relevant therapeutic classes. The high prevalence and absence of clinical signs suggest a natural interaction of the different Salmonella serovars with the host species. The interaction may have been established before any possible exposure of the iguanas and the biocenosis to direct or indirect environmental factors influenced by the use of antimicrobials in agriculture

  11. Characterization of Salmonella occurring at high prevalence in a population of the land iguana Conolophus subcristatus in Galápagos Islands, Ecuador.

    PubMed

    Franco, Alessia; Hendriksen, Rene S; Lorenzetti, Serena; Onorati, Roberta; Gentile, Gabriele; Dell'Omo, Giacomo; Aarestrup, Frank M; Battisti, Antonio

    2011-01-01

    The aim of the study was to elucidate the association between the zoonotic pathogen Salmonella and a population of land iguana, Colonophus subcristatus, endemic to Galápagos Islands in Ecuador. We assessed the presence of Salmonella subspecies and serovars and estimated the prevalence of the pathogen in that population. Additionally, we investigated the genetic relatedness among isolates and serovars utilising pulsed field gel electrophoresis (PFGE) on XbaI-digested DNA and determined the antimicrobial susceptibility to a panel of antimicrobials. The study was carried out by sampling cloacal swabs from animals (n = 63) in their natural environment on in the island of Santa Cruz. A high prevalence (62/63, 98.4%) was observed with heterogeneity of Salmonella subspecies and serovars, all known to be associated with reptiles and with reptile-associated salomonellosis in humans. Serotyping revealed 14 different serovars among four Salmonella enterica subspecies: S. enterica subsp. enterica (n = 48), S. enterica subsp. salamae (n = 2), S. enterica subsp. diarizonae (n = 1), and S. enterica subsp. houtenae (n = 7). Four serovars were predominant: S. Poona (n = 18), S. Pomona (n = 10), S. Abaetetuba (n = 8), and S. Newport (n = 5). The S. Poona isolates revealed nine unique XbaI PFGE patterns, with 15 isolates showing a similarity of 70%. Nine S. Pomona isolates had a similarity of 84%. One main cluster with seven (88%) indistinguishable isolates of S. Abaetetuba was observed. All the Salmonella isolates were pan-susceptible to antimicrobials representative of the most relevant therapeutic classes. The high prevalence and absence of clinical signs suggest a natural interaction of the different Salmonella serovars with the host species. The interaction may have been established before any possible exposure of the iguanas and the biocenosis to direct or indirect environmental factors influenced by the use of antimicrobials in agriculture

  12. Gene co-expression network analysis identifies porcine genes associated with variation in Salmonella shedding

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar Typhimurium is a gram-negative bacterium that can colonize the gut of humans and several species of food producing farm animals to cause enteric or septicaemic salmonellosis. While many studies have looked into the host genetic response to Salmonella infection, relatively...

  13. Modeling the survival of Salmonella Enteritidis and Salmonella Typhimurium during the fermentation of yogurt.

    PubMed

    Savran, Derya; Pérez-Rodríguez, Fernando; Halkman, A Kadir

    2018-03-01

    The objective of this study was to evaluate the behavior of Salmonella Enteritidis and Salmonella Typhimurium, the two most important serovars of salmonellosis , during the fermentation of yogurt. The microorganisms were enumerated in milk throughout the fermentation process at three initial inoculum levels (3, 5 and 7 log CFU/mL). DMFit software was used in the fitting procedure of the data (IFR, Norwich, UK, Version 3.5). The data provided sigmoidal curves that were successfully displayed with the Baranyi model. The results showed that the initial inoculum level did not affect the growth for both pathogens; thus, the µ max values (maximum specific growth rate) did not significantly differ across all the contamination levels, ranging from 0.26 to 0.38 for S. Enteritidis and from 0.50 to 0.56 log CFU/g/h for S. Typhimurium ( P > 0.05). However, the µ max values significantly differed between the two serovars ( P < 0.05). The λ values (lag time) did not have a clear trend in either of the pathogens. The present study showed that Salmonella can survive the fermentation process of milk even at a low contamination level. In addition, the models presented in this study can be used in quantitative risk assessment studies to estimate the threat to consumers.

  14. Chicken-Specific Kinome Array Reveals that Salmonella enterica Serovar Enteritidis Modulates Host Immune Signaling Pathways in the Cecum to Establish a Persistence Infection

    PubMed Central

    Kogut, Michael H.; Swaggerty, Christina L.; Byrd, James Allen; Selvaraj, Ramesh; Arsenault, Ryan J.

    2016-01-01

    Non-typhoidal Salmonella enterica induces an early, short-lived pro-inflammatory response in chickens that is asymptomatic of clinical disease and results in a persistent colonization of the gastrointestinal (GI) tract that transmits infections to naïve hosts via fecal shedding of bacteria. The underlying mechanisms that control this persistent colonization of the ceca of chickens by Salmonella are only beginning to be elucidated. We hypothesize that alteration of host signaling pathways mediate the induction of a tolerance response. Using chicken-specific kinomic immune peptide arrays and quantitative RT-PCR of infected cecal tissue, we have previously evaluated the development of disease tolerance in chickens infected with Salmonella enterica serovar Enteritidis (S. Enteritidis) in a persistent infection model (4–14 days post infection). Here, we have further outlined the induction of an tolerance defense strategy in the cecum of chickens infected with S. Enteritidis beginning around four days post-primary infection. The response is characterized by alterations in the activation of T cell signaling mediated by the dephosphorylation of phospholipase c-γ1 (PLCG1) that inhibits NF-κB signaling and activates nuclear factor of activated T-cells (NFAT) signaling and blockage of interferon-γ (IFN-γ) production through the disruption of the JAK-STAT signaling pathway (dephosphorylation of JAK2, JAK3, and STAT4). Further, we measured a significant down-regulation reduction in IFN-γ mRNA expression. These studies, combined with our previous findings, describe global phenotypic changes in the avian cecum of Salmonella Enteritidis-infected chickens that decreases the host responsiveness resulting in the establishment of persistent colonization. The identified tissue protein kinases also represent potential targets for future antimicrobial compounds for decreasing Salmonella loads in the intestines of food animals before going to market. PMID:27472318

  15. Chicken-Specific Kinome Array Reveals that Salmonella enterica Serovar Enteritidis Modulates Host Immune Signaling Pathways in the Cecum to Establish a Persistence Infection.

    PubMed

    Kogut, Michael H; Swaggerty, Christina L; Byrd, James Allen; Selvaraj, Ramesh; Arsenault, Ryan J

    2016-07-27

    Non-typhoidal Salmonella enterica induces an early, short-lived pro-inflammatory response in chickens that is asymptomatic of clinical disease and results in a persistent colonization of the gastrointestinal (GI) tract that transmits infections to naïve hosts via fecal shedding of bacteria. The underlying mechanisms that control this persistent colonization of the ceca of chickens by Salmonella are only beginning to be elucidated. We hypothesize that alteration of host signaling pathways mediate the induction of a tolerance response. Using chicken-specific kinomic immune peptide arrays and quantitative RT-PCR of infected cecal tissue, we have previously evaluated the development of disease tolerance in chickens infected with Salmonella enterica serovar Enteritidis (S. Enteritidis) in a persistent infection model (4-14 days post infection). Here, we have further outlined the induction of an tolerance defense strategy in the cecum of chickens infected with S. Enteritidis beginning around four days post-primary infection. The response is characterized by alterations in the activation of T cell signaling mediated by the dephosphorylation of phospholipase c-γ1 (PLCG1) that inhibits NF-κB signaling and activates nuclear factor of activated T-cells (NFAT) signaling and blockage of interferon-γ (IFN-γ) production through the disruption of the JAK-STAT signaling pathway (dephosphorylation of JAK2, JAK3, and STAT4). Further, we measured a significant down-regulation reduction in IFN-γ mRNA expression. These studies, combined with our previous findings, describe global phenotypic changes in the avian cecum of Salmonella Enteritidis-infected chickens that decreases the host responsiveness resulting in the establishment of persistent colonization. The identified tissue protein kinases also represent potential targets for future antimicrobial compounds for decreasing Salmonella loads in the intestines of food animals before going to market.

  16. Adaptive Resistance to Biocides in Salmonella enterica and Escherichia coli O157 and Cross-Resistance to Antimicrobial Agents

    PubMed Central

    Braoudaki, M.; Hilton, A. C.

    2004-01-01

    The mechanisms by which bacteria resist killing by antibiotics and biocides are still poorly defined, although repeated exposure to sublethal concentrations of antibacterial agents undoubtedly contributes to their development. This study aimed both to investigate the potential of Salmonella enterica and Escherichia coli O157 for adaptive resistance to commonly used biocides and to determine any cross-resistance to antibiotics. Strains were repeatedly passaged in media containing increasing concentrations of a biocide or antibiotic until adaptive resistance was obtained. A wide panel of antimicrobial agents was then screened by using the adapted strain to determine cross-resistance, if any. Adaptive resistance was readily achieved for both S. enterica and E. coli O157. Cross-resistance in adaptively resistant S. enterica varied with the serotype; Salmonella enterica serovar Enteritidis expressed cross-resistance to chloramphenicol, whereas Salmonella enterica serovar Typhimurium expressed cross-resistance to chlorhexidine. Benzalkonium chloride-resistant Salmonella enterica serovar Virchow showed elevated resistance to chlorhexidine; however, chlorhexidine-resistant Salmonella serovar Virchow did not demonstrate reciprocal cross-resistance to benzalkonium chloride, suggesting specific rather than generic resistance mechanisms. E. coli O157 strains acquired high levels of resistance to triclosan after only two sublethal exposures and, when adapted, repeatedly demonstrated decreased susceptibilities to various antimicrobial agents, including chloramphenicol, erythromycin, imipenem, tetracycline, and trimethoprim, as well as to a number of biocides. These observations raise concern over the indiscriminate and often inappropriate use of biocides, especially triclosan, in situations where they are unnecessary, whereby they may contribute to the development of microbial resistance mechanisms. PMID:14715734

  17. Contribution of Salmonella Enteritidis virulence factors to intestinal colonization and systemic dissemination in 1-day-old chickens.

    PubMed

    Addwebi, Tarek M; Call, Douglas R; Shah, Devendra H

    2014-04-01

    Salmonella enterica serovar Enteritidis is one of the most common serovars associated with poultry and poultry product contamination in the United States. We previously identified 14 mutant strains of Salmonella Enteritidis phage type 4 (PT4) with significantly reduced invasiveness in human intestinal epithelial cells (Caco-2), chicken macrophages (HD-11), and chicken hepatocellular epithelial cells (LMH). These included Salmonella Enteritidis mutants with transposon insertions in 6 newly identified Salmonella Enteritidis-specific genes (pegD and SEN1393), and genes or genomic islands common to most other Salmonella serovars (SEN0803, SEN0034, SEN2278, and SEN3503) along with 8 genes previously known to contribute to enteric infection (hilA, pipA, fliH, fljB, csgB, spvR, and rfbMN). We hypothesized that Salmonella Enteritidis employs both common Salmonella enterica colonization factors and Salmonella Enteritidis-specific traits to establish infection in chickens. Four Salmonella Enteritidis mutants (SEN0034::Tn5, fliH::Tn5, SEN1393::Tn5, and spvR::Tn5) were indistinguishable from the isogenic wild-type strain when orally inoculated in 1-d-old chickens, whereas 2 mutants (CsgB::Tn5 and PegD::Tn5) were defective for intestinal colonization (P < 0.05) and 8 mutants (hilA::Tn5, SEN3503::Tn5, SEN0803::Tn5, SEN2278::Tn5, fljB::Tn5, rfbM::Tn5, rfbN::Tn5, and pipA::Tn5) showed significant in vivo attenuation in more than one organ (P < 0.05). Complementation studies confirmed the role of rfbN and SEN3503 during infection. This study should contribute to a better understanding of the mechanisms involved in Salmonella Enteritidis pathogenesis, and the target genes identified here could potentially serve as targets for the development of live-attenuated or subunit vaccine.

  18. Detection of Salmonella enterica Serovar Montevideo and Newport in Free-ranging Sea Turtles and Beach Sand in the Caribbean and Persistence in Sand and Seawater Microcosms.

    PubMed

    Ives, A-K; Antaki, E; Stewart, K; Francis, S; Jay-Russell, M T; Sithole, F; Kearney, M T; Griffin, M J; Soto, E

    2017-09-01

    Salmonellae are Gram-negative zoonotic bacteria that are frequently part of the normal reptilian gastrointestinal flora. The main objective of this project was to estimate the prevalence of non-typhoidal Salmonella enterica in the nesting and foraging populations of sea turtles on St. Kitts and in sand from known nesting beaches. Results suggest a higher prevalence of Salmonella in nesting leatherback sea turtles compared with foraging green and hawksbill sea turtles. Salmonella was cultured from 2/9 and identified by molecular diagnostic methods in 3/9 leatherback sea turtle samples. Salmonella DNA was detected in one hawksbill turtle, but viable isolates were not recovered from any hawksbill sea turtles. No Salmonella was detected in green sea turtles. In samples collected from nesting beaches, Salmonella was only recovered from a single dry sand sample. All recovered isolates were positive for the wzx gene, consistent with the O:7 serogroup. Further serotyping characterized serovars Montevideo and Newport present in cloacal and sand samples. Repetitive-element palindromic PCR (rep-PCR) fingerprint analysis and pulsed-field gel electrophoresis of the 2014 isolates from turtles and sand as well as archived Salmonella isolates recovered from leatherback sea turtles in 2012 and 2013, identified two distinct genotypes and four different pulsotypes, respectively. The genotyping and serotyping were directly correlated. To determine the persistence of representative strains of each serotype/genotype in these environments, laboratory-controlled microcosm studies were performed in water and sand (dry and wet) incubated at 25 or 35°C. Isolates persisted for at least 32 days in most microcosms, although there were significant decreases in culturable bacteria in several microcosms, with the greatest reduction in dry sand incubated at 35°C. This information provides a better understanding of the epizootiology of Salmonella in free-ranging marine reptiles and the potential

  19. Validation of the ANSR Salmonella method for detection of Salmonella spp. in selected foods and environmental samples.

    PubMed

    Mozola, Mark; Norton, Paul; Alles, Susan; Gray, R Lucas; Tolan, Jerry; Caballero, Oscar; Pinkava, Lisa; Hosking, Edan; Luplow, Karen; Rice, Jennifer

    2013-01-01

    ANSR Salmonella is a new molecular diagnostic assay for detection of Salmonella spp. in foods and environmental samples. The test is based on the nicking enzyme amplification reaction (NEAR) isothermal nucleic acid amplification technology. The assay platform features simple instrumentation, minimal labor, and, following a single-step 10-24 h enrichment (depending on sample type), an extremely short assay time of 30 min, including sample preparation. Detection is real-time using fluorescent molecular beacon probes. Inclusivity testing was performed using a panel of 113 strains of S. enterica and S. bongori, representing 109 serovars and all genetic subgroups. With the single exception of the rare serovar S. Weslaco, all serovars and genetic subgroups were detected. Exclusivity testing of 38 non-salmonellae, mostly Enterobacteriaceae, yielded no evidence of cross-reactivity. In comparative testing of chicken carcass rinse, raw ground turkey, raw ground beef, hot dogs, and oat cereal, there were no statistically significant differences in the number of positive results obtained with the ANSR and the U.S. Department of Agriculture-Food Safety and Inspection Service or U.S. Food and Drug Administration/Bacteriological Analytical Manual reference culture methods. In testing of swab or sponge samples from five different environmental surfaces, four trials showed no statistically significant differences in the number of positive results by the ANSR and the U.S. Food and Drug Administration/ Bacteriological Analytical Manual reference methods; in the trial with stainless steel surface, there were significantly more positive results by the ANSR method. Ruggedness experiments showed a high degree of assay robustness when deviations in reagent volumes and incubation times were introduced.

  20. Expression, Extracellular Secretion, and Immunogenicity of the Plasmodium falciparum Sporozoite Surface Protein 2 in Salmonella Vaccine Strains

    PubMed Central

    Gómez-Duarte, Oscar G.; Pasetti, Marcela F.; Santiago, Araceli; Sztein, Marcelo B.; Hoffman, Stephen L.; Levine, Myron M.

    2001-01-01

    Deleting transmembrane α-helix motifs from Plasmodium falciparum sporozoite surface protein (SSP-2) allowed its secretion from Salmonella enterica serovar Typhimurium SL3261 and S. enterica serovar Typhi CVD 908-htrA by the Hly type I secretion system. In mice immunized intranasally, serovar Typhimurium constructs secreting SSP-2 stimulated greater gamma interferon splenocyte responses than did nonsecreting constructs (P = 0.04). PMID:11160021

  1. Wild Griffon Vultures (Gyps fulvus) as a Source of Salmonella and Campylobacter in Eastern Spain

    PubMed Central

    Marin, Clara; Palomeque, Maria-Dolores; Marco-Jiménez, Francisco; Vega, Santiago

    2014-01-01

    The existence of Campylobacter and Salmonella reservoirs in wildlife is a potential hazard to animal and human health; however, the prevalence of these species is largely unknown. Until now, only a few studies have evaluated the presence of Campylobacter and Salmonella in wild griffon vultures and based on a small number of birds. The aim of this study was to evaluate the presence of Campylobacter and Salmonella in wild griffon vultures (n = 97) during the normal ringing programme at the Cinctorres Observatory in Eastern Spain. In addition, the effect of ages of individuals (juveniles, subadult and adult) on the presence were compared. Campylobacter was isolated from 1 of 97 (1.0%) griffon vultures and identified as C. jejuni. Salmonella was isolated from 51 of 97 (52.6%) griffon vultures. No significant differences were found between the ages of individuals for the presence of Salmonella. Serotyping revealed 6 different serovars among two Salmonella enterica subspecies; S. enterica subsp. enterica (n = 49, 96.1%) and S. enterica subsp. salamae (n = 2, 3.9%). No more than one serovar was isolated per individual. The serovars isolated were S. Typhimurium (n = 42, 82.3%), S. Rissen (n = 4, 7.8%), S. Senftenberg (n = 3, 5.9%) and S. 4,12:b[-] (n = 2, 3.9%). Our results imply that wild griffon vultures are a risk factor for Salmonella transmission, but do not seem to be a reservoir for Campylobacter. We therefore rule out vultures as a risk factor for human campylobacteriosis. Nevertheless, further studies should be undertaken in other countries to confirm these results. PMID:24710464

  2. Genetic lineages of Salmonella enterica serovar Kentucky spreading in pet reptiles.

    PubMed

    Zając, Magdalena; Wasyl, Dariusz; Hoszowski, Andrzej; Le Hello, Simon; Szulowski, Krzysztof

    2013-10-25

    The purpose of the study was to define genetic diversity of reptilian Salmonella enterica serovar (S.) Kentucky isolates and their epidemiological relations to the ones from poultry, food, and environmental origin in Poland. Between 2010 and 2012 twenty-four S. Kentucky isolates derived from snakes (N=8), geckos (N=7), chameleons (N=4), agamas (N=1), lizard (N=1), and environmental swabs taken from reptile exhibition (N=3) were identified. They were characterized with antimicrobial minimal inhibitory concentration testing, XbaI-PFGE and MLST typing. The profiles compared to S. Kentucky available in BioNumerics local laboratory database (N=40) showed 67.3% of relatedness among reptile isolates. Three genetic lineages were defined. The first lineage gathered 20 reptile isolates with 83.4% of similarity and wild-type MICs for all antimicrobials tested but streptomycin in single case. The remaining three reptilian and one post-exhibition environment S. Kentucky isolates were clustered (87.2%) with isolates originating from poultry, mainly turkey, food, and environment and presented variable non-wild type MICs to numerous antimicrobials. The third S. Kentucky lineage was composed of two isolates from feed (96.3%). The results suggest diverse sources and independent routes of infection. Most of the isolates belonged to reptile-associated clones spread both horizontally and vertically. Simultaneously, PFGE profiles and MLST type indistinguishable from the ones observed in poultry point out carnivore reptiles as possible vector of infection with multidrug and high-level ciprofloxacin resistant (MIC≥8 mg/L) S. Kentucky. Public awareness and education are required to prevent potential reptile-associated S. Kentucky infections in humans. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Salmonella in Wild Birds Utilizing Protected and Human Impacted Habitats, Uganda.

    PubMed

    Afema, Josephine Azikuru; Sischo, William M

    2016-09-01

    As human populations in Africa expand, humans encroach and modify wildlife habitats for farming, fishing, tourism, or settlement. Anthropogenic activities in shared environments may promote transmission of zoonotic pathogens between humans, domestic animals, and wildlife. Between July 2012 and February 2014, we evaluated Salmonella prevalence, serovars, genotypes, and antibiotic resistant phenotypes in resident and migratory birds utilizing human-impacted habitats in northwestern Lake Victoria and protected habitats in Queen Elisabeth National Park. Salmonella occurrence in the urban environment was assessed by sampling storm-water and wastewater from a channel that drains Kampala City into Lake Victoria. Salmonella was detected in 4.3% pooled bird fecal samples, and 57.1% of environmental samples. While birds in impacted and protected areas shared serovars, the genotypes were distinct. We found distinct strains in birds and the environment suggesting some strains in birds are host adapted, and strains circulating in the environment may not necessarily disseminate to birds. Conversely, birds in both impacted and protected areas shared strains with the urban environment, suggesting Salmonella disseminates between impacted environments and birds across sites. Overall, more strains were observed in the urban environment compared to birds, and poses risk of Salmonella reemergence in birds and transmission across species and space.

  4. Clinically and Microbiologically Derived Azithromycin Susceptibility Breakpoints for Salmonella enterica Serovars Typhi and Paratyphi A

    PubMed Central

    Thieu, Nga Tran Vu; Dolecek, Christiane; Karkey, Abhilasha; Gupta, Ruchi; Turner, Paul; Dance, David; Maude, Rapeephan R.; Ha, Vinh; Tran, Chinh Nguyen; Thi, Phuong Le; Be, Bay Pham Van; Phi, La Tran Thi; Ngoc, Rang Nguyen; Ghose, Aniruddha; Dongol, Sabina; Campbell, James I.; Thanh, Duy Pham; Thanh, Tuyen Ha; Moore, Catrin E.; Sona, Soeng; Gaind, Rajni; Deb, Monorama; Anh, Ho Van; Van, Sach Nguyen; Tinh, Hien Tran; Day, Nicholas P. J.; Dondorp, Arjen; Thwaites, Guy; Faiz, Mohamed Abul; Phetsouvanh, Rattanaphone; Newton, Paul; Basnyat, Buddha; Farrar, Jeremy J.; Baker, Stephen

    2015-01-01

    Azithromycin is an effective treatment for uncomplicated infections with Salmonella enterica serovar Typhi and serovar Paratyphi A (enteric fever), but there are no clinically validated MIC and disk zone size interpretative guidelines. We studied individual patient data from three randomized controlled trials (RCTs) of antimicrobial treatment in enteric fever in Vietnam, with azithromycin used in one treatment arm, to determine the relationship between azithromycin treatment response and the azithromycin MIC of the infecting isolate. We additionally compared the azithromycin MIC and the disk susceptibility zone sizes of 1,640 S. Typhi and S. Paratyphi A clinical isolates collected from seven Asian countries. In the RCTs, 214 patients who were treated with azithromycin at a dose of 10 to 20 mg/ml for 5 to 7 days were analyzed. Treatment was successful in 195 of 214 (91%) patients, with no significant difference in response (cure rate, fever clearance time) with MICs ranging from 4 to 16 μg/ml. The proportion of Asian enteric fever isolates with an MIC of ≤16 μg/ml was 1,452/1,460 (99.5%; 95% confidence interval [CI], 98.9 to 99.7) for S. Typhi and 207/240 (86.3%; 95% CI, 81.2 to 90.3) (P < 0.001) for S. Paratyphi A. A zone size of ≥13 mm to a 5-μg azithromycin disk identified S. Typhi isolates with an MIC of ≤16 μg/ml with a sensitivity of 99.7%. An azithromycin MIC of ≤16 μg/ml or disk inhibition zone size of ≥13 mm enabled the detection of susceptible S. Typhi isolates that respond to azithromycin treatment. Further work is needed to define the response to treatment in S. Typhi isolates with an azithromycin MIC of >16 μg/ml and to determine MIC and disk breakpoints for S. Paratyphi A. PMID:25733500

  5. Infection with Salmonella enterica Serovar Typhimurium Leads to Increased Proportions of F4/80+ Red Pulp Macrophages and Decreased Proportions of B and T Lymphocytes in the Spleen.

    PubMed

    Rosche, Kristin L; Aljasham, Alanoud T; Kipfer, James N; Piatkowski, Bryan T; Konjufca, Vjollca

    2015-01-01

    Infection of mice with Salmonella enterica serovar Typhimurium (Salmonella) causes systemic inflammatory disease and enlargement of the spleen (splenomegaly). Splenomegaly has been attributed to a general increase in the numbers of phagocytes, lymphocytes, as well as to the expansion of immature CD71+Ter119+ reticulocytes. The spleen is important for recycling senescent red blood cells (RBCs) and for the capture and eradication of blood-borne pathogens. Conservation of splenic tissue architecture, comprised of the white pulp (WP), marginal zone (MZ), and red pulp (RP) is essential for initiation of adaptive immune responses to captured pathogens. Using flow cytometry and four color immunofluorescence microscopy (IFM), we show that Salmonella-induced splenomegaly is characterized by drastic alterations of the splenic tissue architecture and cell population proportions, as well as in situ cell distributions. A major cause of splenomegaly appears to be the significant increase in immature RBC precursors and F4/80+ macrophages that are important for recycling of heme-associated iron. In contrast, the proportions of B220+, CD4+ and CD8+ lymphocytes, as well as MZ MOMA+ macrophages decrease significantly as infection progresses. Spleen tissue sections show visible tears and significantly altered tissue architecture with F4/80+ macrophages and RBCs expanding beyond the RP and taking over most of the spleen tissue. Additionally, F4/80+ macrophages actively phagocytose not only RBCs, but also lymphocytes, indicating that they may contribute to declining lymphocyte proportions during Salmonella infection. Understanding how these alterations of spleen microarchitecture impact the generation of adaptive immune responses to Salmonella has implications for understanding Salmonella pathogenesis and for the design of more effective Salmonella-based vaccines.

  6. Toll-Like Receptor Activation by Generalized Modules for Membrane Antigens from Lipid A Mutants of Salmonella enterica Serovars Typhimurium and Enteritidis.

    PubMed

    Rossi, Omar; Caboni, Mariaelena; Negrea, Aurel; Necchi, Francesca; Alfini, Renzo; Micoli, Francesca; Saul, Allan; MacLennan, Calman A; Rondini, Simona; Gerke, Christiane

    2016-04-01

    Invasive nontyphoidal Salmonella (iNTS) disease is a neglected disease with high mortality in children and HIV-positive individuals in sub-Saharan Africa, caused primarily by Africa-specific strains of Salmonella enterica serovars Typhimurium and Enteritidis. A vaccine using GMMA (generalized modules for membrane antigens) fromS.Typhimurium andS.Enteritidis containing lipid A modifications to reduce potential in vivo reactogenicity is under development. GMMA with penta-acylated lipid A showed the greatest reduction in the level of cytokine release from human peripheral blood monocytes from that for GMMA with wild-type lipid A. Deletion of the lipid A modification genes msbB and pagP was required to achieve pure penta-acylation. Interestingly, ΔmsbBΔ pagP GMMA from S. Enteritidis had a slightly higher stimulatory potential than those from S. Typhimurium, a finding consistent with the higher lipopolysaccharide (LPS) content and Toll-like receptor 2 (TLR2) stimulatory potential of the former. Also, TLR5 ligand flagellin was found in Salmonella GMMA. No relevant contribution to the stimulatory potential of GMMA was detected even when the flagellin protein FliC from S. Typhimurium was added at a concentration as high as 10% of total protein, suggesting that flagellin impurities are not a major factor for GMMA-mediated immune stimulation. Overall, the stimulatory potential of S. Typhimurium and S. Enteritidis ΔmsbB ΔpagP GMMA was close to that of Shigella sonnei GMMA, which are currently in phase I clinical trials. Copyright © 2016 Rossi et al.

  7. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar Typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances.

    PubMed

    Wang, Rong; Kalchayanand, Norasak; Schmidt, John W; Harhay, Dayna M

    2013-09-01

    Shiga toxin-producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their planktonic counterparts, so these foodborne pathogens in biofilms pose a serious food safety concern. We investigated how the coexistence of E. coli O157:H7 and Salmonella Typhimurium strains would affect bacterial planktonic growth competition and mixed biofilm composition. Furthermore, we also investigated how mixed biofilm formation would affect bacterial resistance to common sanitizers. Salmonella Typhimurium strains were able to outcompete E. coli strains in the planktonic growth phase; however, mixed biofilm development was highly dependent upon companion strain properties in terms of the expression of bacterial extracellular polymeric substances (EPS), including curli fimbriae and exopolysaccharide cellulose. The EPS-producing strains with higher biofilm-forming abilities were able to establish themselves in mixed biofilms more efficiently. In comparison to single-strain biofilms, Salmonella or E. coli strains with negative EPS expression obtained significantly enhanced resistance to sanitization by forming mixed biofilms with an EPS-producing companion strain of the other species. These observations indicate that the bacterial EPS components not only enhance the sanitizer resistance of the EPS-producing strains but also render protections to their companion strains, regardless of species, in mixed biofilms. Our study highlights the potential risk of cross-contamination by multispecies biofilms in food safety and the need for increased attention to proper sanitization practices in food processing facilities.

  8. Molecular Epidemiology of Salmonella enterica Serovar Typhimurium Isolates Determined by Pulsed-Field Gel Electrophoresis: Comparison of Isolates from Avian Wildlife, Domestic Animals, and the Environment in Norway

    PubMed Central

    Refsum, Thorbjørn; Heir, Even; Kapperud, Georg; Vardund, Traute; Holstad, Gudmund

    2002-01-01

    The molecular epidemiology of 142 isolates of Salmonella enterica serovar Typhimurium from avian wildlife, domestic animals, and the environment in Norway was investigated using pulsed-field gel electrophoresis (PFGE) and computerized numerical analysis of the data. The bacterial isolates comprised 79 isolates from wild-living birds, including 46 small passerines and 26 gulls, and 63 isolates of nonavian origin, including 50 domestic animals and 13 environmental samples. Thirteen main clusters were discernible at the 90% similarity level. Most of the isolates (83%) were grouped into three main clusters. These were further divided into 20 subclusters at the 95% similarity level. Isolates from passerines, gulls, and pigeons dominated within five subclusters, whereas isolates from domestic animals and the environment belonged to many different subclusters with no predominance. The results support earlier results that passerines constitute an important source of infection to humans in Norway, whereas it is suggested that gulls and pigeons, based on PFGE analysis, represent only a minor source of human serovar Typhimurium infections. Passerines, gulls, and pigeons may also constitute a source of infection of domestic animals and feed plants or vice versa. Three isolates from cattle and a grain source, of which two were multiresistant, were confirmed as serovar Typhimurium phage type DT 104. These represent the first reported phage type DT 104 isolates from other sources than humans in Norway. PMID:12406755

  9. Bacteriophage cocktail for biocontrol of Salmonella in dried pet food.

    PubMed

    Heyse, Serena; Hanna, Leigh Farris; Woolston, Joelle; Sulakvelidze, Alexander; Charbonneau, Duane

    2015-01-01

    Human salmonellosis has been associated with contaminated pet foods and treats. Therefore, there is interest in identifying novel approaches for reducing the risk of Salmonella contamination within pet food manufacturing environments. The use of lytic bacteriophages shows promise as a safe and effective way to mitigate Salmonella contamination in various food products. Bacteriophages are safe, natural, highly targeted antibacterial agents that specifically kill bacteria and can be targeted to kill food pathogens without affecting other microbiota. In this study, we show that a cocktail containing six bacteriophages had a broadspectrum activity in vitro against a library of 930 Salmonella enterica strains representing 44 known serovars. The cocktail was effective against 95% of the strains in this tested library. In liquid culture dose-ranging experiments, bacteriophage cocktail concentrations of ≥10(8) PFU/ml inactivated more than 90% of the Salmonella population (10(1) to 10(3) CFU/ml). Dried pet food inoculated with a mixture containing equal proportions of Salmonella serovars Enteritidis (ATCC 4931), Montevideo (ATCC 8387), Senftenberg (ATCC 8400), and Typhimurium (ATCC 13311) and then surface treated with the six-bacteriophage cocktail (≥2.5 ± 1.5 × 10(6) PFU/g) achieved a greater than 1-log (P < 0.001) reduction compared with the phosphate-buffered saline-treated control in measured viable Salmonella within 60 min. Moreover, this bacteriophage cocktail reduced natural contamination in samples taken from an undistributed lot of commercial dried dog food that tested positive for Salmonella. Our results indicate that bacteriophage biocontrol of S. enterica in dried pet food is technically feasible.

  10. Effects of water, sodium hypochlorite, peroxyacetic acid, and acidified sodium chlorite on in-shell hazelnuts inoculated with Salmonella enterica serovar Panama.

    PubMed

    Weller, Lisa D; Daeschel, Mark A; Durham, Catherine A; Morrissey, Michael T

    2013-12-01

    Recent foodborne disease outbreaks involving minimally processed tree nuts have generated a need for improved sanitation procedures. Chemical sprays and dips have shown promise for reducing pathogens on fresh produce, but little research has been conducted for in-shell hazelnuts. This study analyzed the effectiveness of 3 chemical sanitizers for reducing Salmonella on in-shell hazelnuts. Treatments of water, sodium hypochlorite (NaOCl; 25 and 50 ppm), peroxyacetic acid (PAA; 80 and 120 ppm), and acidified sodium chlorite (ASC; 450, 830, and 1013 ppm) were sprayed onto hazelnut samples inoculated with Salmonella enterica serovar Panama. Hazelnut samples were immersed in liquid cultures of S. Panama for 24 h, air-dried, and then sprayed with water and chemical treatments. Inoculation achieved S. Panama populations of approximately 8.04 log CFU/hazelnut. Surviving S. panama populations were evaluated using a nonselective medium (tryptic soy agar), incubated 3 h, and then overlaid with selective media (xylose lysine deoxycholate agar). All of the chemical treatments significantly reduced S. Panama populations (P ≤ 0.0001). The most effective concentrations of ASC, PAA, and NaOCl treatments reduced populations by 2.65, 1.46, and 0.66 log units, respectively. ASC showed the greatest potential for use as a postharvest sanitation treatment. © 2013 Institute of Food Technologists®

  11. Persistence of two Salmonella enterica ser. Montevideo strains throughout horn fly (Diptera: Muscidae) larval and pupal development

    USDA-ARS?s Scientific Manuscript database

    Strains of Salmonella enterica can be subdivided into clades that differ in their composition of genes, including those that influence microbial ecology and bacterial transmission. Salmonella serovar Montevideo strains 1110 and 304, representatives of two different clades, were used throughout this ...

  12. Distinct fermentation and antibiotic sensitivity profiles exist in salmonellae of canine and human origin.

    PubMed

    Wallis, Corrin V; Lowden, Preena; Marshall-Jones, Zoe V; Hilton, Anthony C

    2018-02-26

    Salmonella enterica is a recognised cause of diarrhoea in dogs and humans, yet the potential for transfer of salmonellosis between dogs and their owners is unclear, with reported evidence both for and against Salmonella as a zoonotic pathogen. A collection of 174 S. enterica isolates from clinical infections in humans and dogs were analysed for serotype distribution, carbon source utilisation, chemical and antimicrobial sensitivity profiles. The aim of the study was to understand the degree of conservation in phenotypic characteristics of isolates across host species. Serovar distribution across human and canine isolates demonstrated nine serovars common to both host species, 24 serovars present in only the canine collection and 39 solely represented within the human collection. Significant differences in carbon source utilisation profiles and ampicillin, amoxicillin and chloramphenicol sensitivity profiles were detected in isolates of human and canine origin. Differences between the human and canine Salmonella collections were suggestive of evolutionary separation, with canine isolates better able to utilise several simple sugars than their human counterparts. Generally higher minimum inhibitory concentrations of three broad-spectrum antimicrobials, commonly used in veterinary medicine, were also observed in canine S. enterica isolates. Differential carbon source utilisation and antimicrobial sensitivity profiles in pathogenic Salmonella isolated from humans and dogs are suggestive of distinct reservoirs of infection for these hosts. Although these findings do not preclude zoonotic or anthroponotic potential in salmonellae, the separation of carbon utilisation and antibiotic profiles with isolate source is indicative that infectious isolates are not part of a common reservoir shared frequently between these host species.

  13. Salmonella Strains Isolated from Galápagos Iguanas Show Spatial Structuring of Serovar and Genomic Diversity

    PubMed Central

    Lankau, Emily W.; Cruz Bedon, Lenin; Mackie, Roderick I.

    2012-01-01

    It is thought that dispersal limitation primarily structures host-associated bacterial populations because host distributions inherently limit transmission opportunities. However, enteric bacteria may disperse great distances during food-borne outbreaks. It is unclear if such rapid long-distance dispersal events happen regularly in natural systems or if these events represent an anthropogenic exception. We characterized Salmonella enterica isolates from the feces of free-living Galápagos land and marine iguanas from five sites on four islands using serotyping and genomic fingerprinting. Each site hosted unique and nearly exclusive serovar assemblages. Genomic fingerprint analysis offered a more complex model of S. enterica biogeography, with evidence of both unique strain pools and of spatial population structuring along a geographic gradient. These findings suggest that even relatively generalist enteric bacteria may be strongly dispersal limited in a natural system with strong barriers, such as oceanic divides. Yet, these differing results seen on two typing methods also suggests that genomic variation is less dispersal limited, allowing for different ecological processes to shape biogeographical patterns of the core and flexible portions of this bacterial species' genome. PMID:22615968

  14. Differential roles for pathogenicity islands SPI-13 and SPI-8 in the interaction of Salmonella Enteritidis and Salmonella Typhi with murine and human macrophages.

    PubMed

    Espinoza, Rodrigo A; Silva-Valenzuela, Cecilia A; Amaya, Fernando A; Urrutia, Ítalo M; Contreras, Inés; Santiviago, Carlos A

    2017-02-15

    Salmonella pathogenicity island (SPI)-13 is conserved in many serovars of S. enterica, including S. Enteritidis, S. Typhimurium and S. Gallinarum. However, it is absent in typhoid serovars such as S. Typhi and Paratyphi A, which carry SPI-8 at the same genomic location. Because the interaction with macrophages is a critical step in Salmonella pathogenicity, in this study we investigated the role played by SPI-13 and SPI-8 in the interaction of S. Enteritidis and S. Typhi with cultured murine (RAW264.7) and human (THP-1) macrophages. Our results showed that SPI-13 was required for internalization of S. Enteritidis in murine but not human macrophages. On the other hand, SPI-8 was not required for the interaction of S. Typhi with human or murine macrophages. Of note, the presence of an intact copy of SPI-13 in a S. Typhi mutant carrying a deletion of SPI-8 did not improve its ability to be internalized by, or survive in human or murine macrophages. Altogether, our results point out to different roles for SPI-13 and SPI-8 during Salmonella infection. While SPI-13 contributes to the interaction of S. Enteritidis with murine macrophages, SPI-8 is not required in the interaction of S. Typhi with murine or human macrophages. We hypothesized that typhoid serovars have lost SPI-13 and maintained SPI-8 to improve their fitness during another phase of human infection.

  15. Real-Time PCR Method for Detection of Salmonella spp. in Environmental Samples.

    PubMed

    Kasturi, Kuppuswamy N; Drgon, Tomas

    2017-07-15

    The methods currently used for detecting Salmonella in environmental samples require 2 days to produce results and have limited sensitivity. Here, we describe the development and validation of a real-time PCR Salmonella screening method that produces results in 18 to 24 h. Primers and probes specific to the gene invA , group D, and Salmonella enterica serovar Enteritidis organisms were designed and evaluated for inclusivity and exclusivity using a panel of 329 Salmonella isolates representing 126 serovars and 22 non- Salmonella organisms. The invA - and group D-specific sets identified all the isolates accurately. The PCR method had 100% inclusivity and detected 1 to 2 copies of Salmonella DNA per reaction. Primers specific for Salmonella -differentiating fragment 1 (Sdf-1) in conjunction with the group D set had 100% inclusivity for 32 S Enteritidis isolates and 100% exclusivity for the 297 non-Enteritidis Salmonella isolates. Single-laboratory validation performed on 1,741 environmental samples demonstrated that the PCR method detected 55% more positives than the V itek i mmuno d iagnostic a ssay s ystem (VIDAS) method. The PCR results correlated well with the culture results, and the method did not report any false-negative results. The receiver operating characteristic (ROC) analysis documented excellent agreement between the results from the culture and PCR methods (area under the curve, 0.90; 95% confidence interval of 0.76 to 1.0) confirming the validity of the PCR method. IMPORTANCE This validated PCR method detects 55% more positives for Salmonella in half the time required for the reference method, VIDAS. The validated PCR method will help to strengthen public health efforts through rapid screening of Salmonella spp. in environmental samples.

  16. Real-Time PCR Method for Detection of Salmonella spp. in Environmental Samples

    PubMed Central

    Drgon, Tomas

    2017-01-01

    ABSTRACT The methods currently used for detecting Salmonella in environmental samples require 2 days to produce results and have limited sensitivity. Here, we describe the development and validation of a real-time PCR Salmonella screening method that produces results in 18 to 24 h. Primers and probes specific to the gene invA, group D, and Salmonella enterica serovar Enteritidis organisms were designed and evaluated for inclusivity and exclusivity using a panel of 329 Salmonella isolates representing 126 serovars and 22 non-Salmonella organisms. The invA- and group D-specific sets identified all the isolates accurately. The PCR method had 100% inclusivity and detected 1 to 2 copies of Salmonella DNA per reaction. Primers specific for Salmonella-differentiating fragment 1 (Sdf-1) in conjunction with the group D set had 100% inclusivity for 32 S. Enteritidis isolates and 100% exclusivity for the 297 non-Enteritidis Salmonella isolates. Single-laboratory validation performed on 1,741 environmental samples demonstrated that the PCR method detected 55% more positives than the Vitek immunodiagnostic assay system (VIDAS) method. The PCR results correlated well with the culture results, and the method did not report any false-negative results. The receiver operating characteristic (ROC) analysis documented excellent agreement between the results from the culture and PCR methods (area under the curve, 0.90; 95% confidence interval of 0.76 to 1.0) confirming the validity of the PCR method. IMPORTANCE This validated PCR method detects 55% more positives for Salmonella in half the time required for the reference method, VIDAS. The validated PCR method will help to strengthen public health efforts through rapid screening of Salmonella spp. in environmental samples. PMID:28500041

  17. Feverlike Temperature is a Virulence Regulatory Cue Controlling the Motility and Host Cell Entry of Typhoidal Salmonella.

    PubMed

    Elhadad, Dana; McClelland, Michael; Rahav, Galia; Gal-Mor, Ohad

    2015-07-01

    Human infection with typhoidal Salmonella serovars causes a febrile systemic disease, termed enteric fever. Here we establish that in response to a temperature equivalent to fever (39 °C-42 °C) Salmonella enterica serovars Typhi, Paratyphi A, and Sendai significantly attenuate their motility, epithelial cell invasion, and uptake by macrophages. Under these feverlike conditions, the residual epithelial cell invasion of S. Paratyphi A occurs in a type III secretion system (T3SS) 1-independent manner and results in restrained disruption of epithelium integrity. The impaired motility and invasion are associated with down-regulation of T3SS-1 genes and class II and III (but not I) of the flagella-chemotaxis regulon. In contrast, we demonstrate up-regulation of particular Salmonella pathogenicity island 2 genes (especially spiC) and increased intraepithelial growth in a T3SS-2-dependent manner. These results indicate that elevated physiological temperature is a novel cue controlling virulence phenotypes in typhoidal serovars, which is likely to play a role in the distinct clinical manifestations elicited by typhoidal and nontyphoidal salmonellae. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Salmonella enterica Serovar Enteritidis Core O Polysaccharide Conjugated to H:g,m Flagellin as a Candidate Vaccine for Protection against Invasive Infection with S. Enteritidis▿†

    PubMed Central

    Simon, Raphael; Tennant, Sharon M.; Wang, Jin Y.; Schmidlein, Patrick J.; Lees, Andrew; Ernst, Robert K.; Pasetti, Marcela F.; Galen, James E.; Levine, Myron M.

    2011-01-01

    Nontyphoidal Salmonella enterica serovars Enteritidis and Typhimurium are a common cause of gastroenteritis but also cause invasive infections and enteric fever in certain hosts (young children in sub-Saharan Africa, the elderly, and immunocompromised individuals). Salmonella O polysaccharides (OPS) and flagellar proteins are virulence factors and protective antigens. The surface polysaccharides of Salmonella are poorly immunogenic and do not confer immunologic memory, limitations overcome by covalently attaching them to carrier proteins. We conjugated core polysaccharide-OPS (COPS) of Salmonella Enteritidis lipopolysaccharide (LPS) to flagellin protein from the homologous strain. COPS and flagellin were purified from a genetically attenuated (ΔguaBA) “reagent strain” (derived from an isolate from a patient with clinical bacteremia) engineered for increased flagellin production (ΔclpPX). Conjugates were constructed by linking flagellin monomers or polymers at random COPS hydroxyls with various polysaccharide/protein ratios by 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) or at the 3-deoxy-d-manno-octulosonic acid (KDO) terminus by thioether chemistry. Mice immunized on days 0, 28, and 56 with COPS-flagellin conjugates mounted higher anti-LPS IgG levels than mice receiving unconjugated COPS and exhibited high antiflagellin IgG; anti-LPS and antiflagellin IgG levels increased following booster doses. Antibodies generated by COPS-flagellin conjugates mediated opsonophagocytosis of S. Enteritidis cells into mouse macrophages. Mice immunized with flagellin alone, COPS-CRM197, or COPS-flagellin conjugates were significantly protected from lethal challenge with wild-type S. Enteritidis (80 to 100% vaccine efficacy). PMID:21807909

  19. First detection of oqxAB in Salmonella spp. isolated from food.

    PubMed

    Wong, Marcus Ho Yin; Chen, Sheng

    2013-01-01

    Food-borne salmonellosis is an important public health problem worldwide and the second leading cause of food-borne illnesses in Hong Kong. In this study, the prevalence and antimicrobial resistance of Salmonella in meat products in Hong Kong were determined. Interestingly, a plasmid-mediated quinolone resistance (PMQR) gene combination, oqxAB, which mediates resistance to nalidixic acid, chloramphenicol, and olaquindox, was for the first time detectable on the chromosomes of two Salmonella enterica serovar Derby isolates. Further surveillance of oqxAB in Salmonella will be needed.

  20. Induction of Fatty Acid Composition Modifications and Tolerance to Biocides in Salmonella enterica Serovar Typhimurium by Plant-Derived Terpenes▿

    PubMed Central

    Dubois-Brissonnet, Florence; Naïtali, Murielle; Mafu, Akier Assanta; Briandet, Romain

    2011-01-01

    To enhance food safety and stability, the food industry tends to use natural antimicrobials such as plant-derived compounds as an attractive alternative to chemical preservatives. Nonetheless, caution must be exercised in light of the potential for bacterial adaptation to these molecules, a phenomenon previously observed with other antimicrobials. The aim of this study was to characterize the adaptation of Salmonella enterica serovar Typhimurium to sublethal concentrations of four terpenes extracted from aromatic plants: thymol, carvacrol, citral, and eugenol, or combinations thereof. Bacterial adaptation in these conditions was demonstrated by changes in membrane fatty acid composition showing (i) limitation of the cyclization of unsaturated fatty acids to cyclopropane fatty acids when cells entered the stationary phase and (ii) bacterial membrane saturation. Furthermore, we demonstrated an increased cell resistance to the bactericidal activity of two biocides (peracetic acid and didecyl dimethyl ammonium bromide). The implications of membrane modifications in terms of hindering the penetration of antimicrobials through the bacterial membrane are discussed. PMID:21131520

  1. Genetic diversity and antimicrobial resistance pattern of Salmonella enterica serovar Enteritidis clinical isolates in Thailand.

    PubMed

    Utrarachkij, Fuangfa; Nakajima, Chie; Siripanichgon, Kanokrat; Changkaew, Kanjana; Thongpanich, Yuwanda; Pornraungwong, Srirat; Suthienkul, Orasa; Suzuki, Yasuhiko

    2016-04-01

    To trace the history of antimicrobial resistance in Salmonella enterica serovar Enteritidis (S. Enteritidis, SE) circulating in Thailand, we characterised clinical isolates obtained during 2004-2007. Antimicrobial resistance profiles, multi-locus variable number tandem repeat analysis (MLVA) types and 3 representative virulence determinants (spvA, sodCI and sopE) were established from SE isolates (n = 192) collected from stool and blood of patients throughout Thailand during the period 2004-2007. Resistance was found in SE against 10 out of 11 antimicrobials studied. The highest resistance ratios were observed for nalidixic acid (83.2%), ciprofloxacin (51.1%) and ampicillin (50.5%), and 25.5% were multidrug resistant. Based on five polymorphic tandem repeat loci analysis, MLVA identified 20 distinct types with three closely related predominant types. A significant increase of AMP resistance from 2004 to 2006 was strongly correlated with that of a MLVA type, 5-5-11-7-3. The usage of antimicrobials in human medicine or farm settings might act as selective pressures and cause the spread of resistant strains. Hence, a strict policy on antimicrobial usage needs to be implemented to achieve the control of resistant SE in Thailand. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. Estimation of the rate of egg contamination from Salmonella-infected chickens.

    PubMed

    Arnold, M E; Martelli, F; McLaren, I; Davies, R H

    2014-02-01

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is one of the most prevalent causes for human gastroenteritis and is by far the predominant Salmonella serovar among human cases, followed by Salmonella Typhimurium. Contaminated eggs produced by infected laying hens are thought to be the main source of human infection with S. Enteritidis throughout the world. Although previous studies have looked at the proportion of infected eggs from infected flocks, there is still uncertainty over the rate at which infected birds produce contaminated eggs. The aim of this study was to estimate the rate at which infected birds produce contaminated egg shells and egg contents. Data were collected from two studies, consisting of 15 and 20 flocks, respectively. Faecal and environmental sampling and testing of ovaries/caeca from laying hens were carried out in parallel with (i) for the first study, testing 300 individual eggs, contents and shells together and (ii) for the second study, testing 4000 eggs in pools of six, with shells and contents tested separately. Bayesian methods were used to estimate the within-flock prevalence of infection from the faecal and hen post-mortem data, and this was related to the proportion of positive eggs. Results indicated a linear relationship between the rate of contamination of egg contents and the prevalence of infected chickens, but a nonlinear (quadratic) relationship between infection prevalence and the rate of egg shell contamination, with egg shell contamination occurring at a much higher rate than that of egg contents. There was also a significant difference in the rate of egg contamination between serovars, with S. Enteritidis causing a higher rate of contamination of egg contents and a lower rate of contamination of egg shells compared to non-S. Enteritidis serovars. These results will be useful for risk assessments of human exposure to Salmonella-contaminated eggs. © 2013 Crown copyright. This article is published with the

  3. Sugar sulfates are not hydrolyzed by the acid-inducible sulfatase AslA from Salmonella enterica Enteritidis NalR and Kentucky 3795 at pH 5.5.

    PubMed

    Ganguly, Arpeeta; Joerger, Rolf D

    2017-08-01

    The open reading frames SEN0085 and SeKA_A4361, from Salmonella enterica serovar Enteritidis Nal R and serovar Kentucky 3795, respectively, corresponding to the acid-inducible sulfatase gene aslA from Salmonella enterica serovar Typhimurium, were previously suggested by microarray analysis to be differentially expressed under acid conditions. However, growth and enzyme activity tests in the present study demonstrated that both wild-type strains exhibited sulfatase activity with 4-nitrophenyl sulfate and 5-bromo-4-chloro-3 indolyl sulfate at pH 5.5. The acid sulfatase does not appear to be involved in sugar sulfate, tyrosine sulfate, 4-hydroxy-3-methoxyphenylglycol sulfate, heparin sulfate, or chondroitin sulfate hydrolysis at pH 5.5. Adhesion and invasion assays did not reveal differences between the serotypes and their corresponding aslA deletion mutants. Thus, the role and substrate(s) of AslA, a protein unique to salmonella and encoded in all sequenced Salmonella strains, remain elusive.

  4. Fluorescence-based thermal shift data on multidrug regulator AcrR from Salmonella enterica subsp. entrica serovar Typhimurium str. LT2.

    PubMed

    Manjasetty, Babu A; Halavaty, Andrei S; Luan, Chi-Hao; Osipiuk, Jerzy; Mulligan, Rory; Kwon, Keehwan; Anderson, Wayne F; Joachimiak, Andrzej

    2016-06-01

    The fluorescence-based thermal shift (FTS) data presented here include Table S1 and Fig. S1, and are supplemental to our original research article describing detailed structural, FTS, and fluorescence polarization analyses of the Salmonella enterica subsp. entrica serovar Typhimurium str. LT2 multidrug transcriptional regulator AcrR (StAcrR) (doi:10.1016/j.jsb.2016.01.008) (Manjasetty et al., 2015 [1]). Table S1 contains chemical formulas, a Chemical Abstracts Service (CAS) Registry Number (CAS no.), FTS rank (a ligand with the highest rank) has the largest difference in the melting temperature (ΔT m), and uses as drug molecules against various pathological conditions of sixteen small-molecule ligands that increase thermal stability of StAcrR. Thermal stability of human enolase 1, a negative control protein, was not affected in the presence of various concentrations of the top six StAcrR binders (Fig. S1).

  5. Enhanced recovery of Salmonella from apple cider and apple juice with universal preenrichment broth.

    PubMed

    Hammack, Thomas S; Johnson, Mildred L; Jacobson, Andrew P; Andrews, Wallace H

    2002-01-01

    A comparison was made of the relative efficiencies of Universal Preenrichment (UP) broth and lactose broth for the recovery of a variety of Salmonella serovars from pasteurized and unpasteurized apple cider and pasteurized apple juice. Bulk portions of juice were contaminated with single Salmonella serovars at high and low levels of 0.4 and 0.04 CFU/mL, respectively. The juice was aged for a minimum of 5 days at 2-5 degrees C. On the day analysis was initiated, each of 20 test portions (25 mL) of the contaminated juice was preenriched in UP broth and in lactose broth. The Bacteriological Analytical Manual Salmonella culture method was followed thereafter. For pasteurized apple cider, UP broth recovered significantly (p < 0.05) more Salmonella-positive test portions than did lactose broth (112 and 75, respectively). For unpasteurized apple cider, UP broth recovered significantly more Salmonella-positive test portions than did lactose broth (326 and 221, respectively). For pasteurized apple juice, UP broth recovered more Salmonella-positive test portions than did lactose broth (93 and 81, respectively). However, this difference was not statistically significant. These results indicate that UP broth should replace lactose broth for the analysis of pasteurized and unpasteurized apple cider and pasteurized apple juice.

  6. Iron-Induced Virulence of Salmonella enterica Serovar Typhimurium at the Intestinal Epithelial Interface Can Be Suppressed by Carvacrol

    PubMed Central

    Kortman, Guus A. M.; Roelofs, Rian W. H. M.; Swinkels, Dorine W.; de Jonge, Marien I.; Burt, Sara A.

    2014-01-01

    Oral iron therapy can increase the abundance of bacterial pathogens, e.g., Salmonella spp., in the large intestine of African children. Carvacrol is a natural compound with antimicrobial activity against various intestinal bacterial pathogens, among which is the highly prevalent Salmonella enterica serovar Typhimurium. This study aimed to explore a presumed interaction between carvacrol and bacterial iron handling and to assess the potential of carvacrol in preventing the increase of bacterial pathogenicity during high iron availability. S. Typhimurium was cultured with increasing concentrations of iron and carvacrol to study the effects of these combined interventions on growth, adhesion to intestinal epithelial cells, and iron uptake/influx in both bacterial and epithelial cells. In addition, the ability of carvacrol to remove iron from the high-affinity ligand transferrin and an Fe-dye complex was examined. Carvacrol retarded growth of S. Typhimurium at all iron conditions. Furthermore, iron-induced epithelial adhesion was effectively reduced by carvacrol at high iron concentrations. The reduction of growth and virulence by carvacrol was not paralleled by a change in iron uptake or influx into S. Typhimurium. In contrast, bioavailability of iron for epithelial cells was moderately decreased under these conditions. Further, carvacrol was shown to lack the properties of an iron binding molecule; however, it was able to weaken iron-ligand interactions by which it may possibly interfere with bacterial virulence. In conclusion, our in vitro data suggest that carvacrol has the potential to serve as a novel dietary supplement to prevent pathogenic overgrowth and colonization in the large intestine during oral iron therapy. PMID:24379194

  7. Optimization of inactivated H5N9 highly pathogenic avian influenza vaccine and inactivated Salmonella enterica serovar Typhimurium vaccine with antigen dose and prime-boost regimen in domestic ducks.

    PubMed

    Yuk, Seong-Su; To, Eredene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Hong, Woo-Tack; Jeong, Jei-Hyun; Gwon, Gyeong-Bin; Song, Chang-Seon

    2017-09-01

    Owing to the increase in the number of diseases affecting ducks and the demand for food safety by consumers, vaccination has become one of the factors that influence duck meat productivity. The highly pathogenic avian influenza (HPAI) virus is one of the most prevalent and causes one of the most lethal diseases in domestic ducks, and Salmonella enterica serovar Typhimurium is a food-borne pathogen persistent in the domestic duck population. To better understand the optimal usage of HPAI and S. enterica serovar Typhimurium vaccines, we aimed to determine antigen dose, oil and gel adjuvant usage with prime-boost regimen, and vaccination age, inducing the best immune response in ducks, without an effect on body weight gain. In the case of the inactivated H5N9 vaccine, a single dose of vaccine was inadequate to induce proper antibody titer when administered to day-old ducks, which necessitates boost vaccination. Administration of the oil-adjuvanted H5N9 vaccine administration in day-old and 2-week-old ducks resulted in a lower body weight at the time of slaughtering, compared to that of gel-adjuvanted H5N9 vaccine. However, gel-adjuvanted H5N9 vaccine failed to induce proper immune response to an extent recommend by OIE-World Organization for Animal Health. In the case of the Salmonella enterica serovar Typhimurium vaccine, a moderate or low dose of vaccine was appropriate for day-old ducks receiving the gel prime-oil boost vaccination. Single vaccination with oil adjuvants affects the mean body weight of 7-week-old ducks, suggesting that the gel adjuvant is more suitable for meat production. We expect that the use of adjuvants in a prime-boost regimen and at antigen doses set in this study will be helpful to maximize body weight in the case of domestic duck production at the actual farm site. © 2017 Poultry Science Association Inc.

  8. Whole genome sequencing analysis of Salmonella enterica serovar Weltevreden isolated from human stool and contaminated food samples collected from the Southern coastal area of China.

    PubMed

    Li, Baisheng; Yang, Xingfen; Tan, Hailing; Ke, Bixia; He, Dongmei; Wang, Haiyan; Chen, Qiuxia; Ke, Changwen; Zhang, Yonghui

    2018-02-02

    Salmonella enterica serovar Weltevreden is the most common non-typhoid Salmonella found in South and Southeast Asia. It causes zoonoses worldwide through the consumption of contaminated foods and seafood, and is considered as an important food-borne pathogen in China, especially in the Southern coastal area. We compared the whole genomes of 44 S. Weltevreden strains isolated from human stool and contaminated food samples from Southern Coastal China, in order to investigate their phylogenetic relationships and establish their genetic relatedness to known international strains. ResFinder analysis of the draft genomes of isolated strains detected antimicrobial resistance (AMR) genes in only eight isolates, equivalent to minimum inhibitory concentration assay, and only a few isolates showed resistance to tetracycline, ciprofloxacin or ampicillin. In silico MLST analysis revealed that 43 out of 44 S. Weltevreden strains belonged to sequence type 365 (CC205), the most common sequence type of the serovars. Phylogenetic analysis of the 44 domestic and 26 international isolates suggested that the population of S. Weltevreden could be segregated into six phylogenetic clusters. Cluster I included two strains from food and strains of the "Island Cluster", indicating potential inter-transmission between different countries and regions through foods. The predominant S. Weltevreden isolates obtained from the samples from Southern coastal China were found to be phylogenetically related to strains from Southern East Asia, and formed clusters II-VI. The study has demonstrated that WGS-based analysis may be used to improve our understanding of the epidemiology of this bacterium as part of a food-borne disease surveillance program. The methods used are also more widely applicable to other geographical regions and areas and could therefore be useful for improving our understanding of the international spread of S. Weltevreden on a global scale. Copyright © 2017. Published by Elsevier

  9. Effects of leachate from crumb rubber and zinc in green roofs on the survival, growth, and resistance characteristics of Salmonella enterica subsp. enterica serovar Typhimurium.

    PubMed

    Crampton, Mollee; Ryan, Allayna; Eckert, Cori; Baker, Katherine H; Herson, Diane S

    2014-05-01

    The use of green roofs is a growing practice worldwide, particularly in densely populated areas. In an attempt to find new methods for recycling crumb rubber, incorporation of crumb rubber into artificial medium for plant growth in green roofs and similar engineered environments has become an attractive option for the recycling of waste tires. Though this approach decreases waste in landfills, there are concerns about the leaching of zinc and other heavy metals, as well as nutrient and organic compounds, into the environment. The present study analyzed the impact of leachate from crumb rubber and zinc on the growth and viability of Salmonella enterica subsp. enterica serovar Typhimurium. Zinc was chosen for further studies since it has been previously implicated with other biological functions, including biofilm formation, motility, and possible cross-resistance to antimicrobial agents. The study showed that Salmonella can colonize crumb rubber and that crumb rubber extract may provide nutrients that are usable by this bacterium. Salmonella strains with reduced susceptibility (SRS) to zinc were obtained after subculturing in increasing concentrations of zinc. The SRS exhibited differences in gene expression of flux pump genes zntA and znuA compared to that of the parent when exposed to 20 mM added zinc. In biofilm formation studies, the SRS formed less biofilm but was more motile than the parental strain.

  10. Effects of Leachate from Crumb Rubber and Zinc in Green Roofs on the Survival, Growth, and Resistance Characteristics of Salmonella enterica subsp. enterica Serovar Typhimurium

    PubMed Central

    Crampton, Mollee; Ryan, Allayna; Eckert, Cori; Baker, Katherine H.

    2014-01-01

    The use of green roofs is a growing practice worldwide, particularly in densely populated areas. In an attempt to find new methods for recycling crumb rubber, incorporation of crumb rubber into artificial medium for plant growth in green roofs and similar engineered environments has become an attractive option for the recycling of waste tires. Though this approach decreases waste in landfills, there are concerns about the leaching of zinc and other heavy metals, as well as nutrient and organic compounds, into the environment. The present study analyzed the impact of leachate from crumb rubber and zinc on the growth and viability of Salmonella enterica subsp. enterica serovar Typhimurium. Zinc was chosen for further studies since it has been previously implicated with other biological functions, including biofilm formation, motility, and possible cross-resistance to antimicrobial agents. The study showed that Salmonella can colonize crumb rubber and that crumb rubber extract may provide nutrients that are usable by this bacterium. Salmonella strains with reduced susceptibility (SRS) to zinc were obtained after subculturing in increasing concentrations of zinc. The SRS exhibited differences in gene expression of flux pump genes zntA and znuA compared to that of the parent when exposed to 20 mM added zinc. In biofilm formation studies, the SRS formed less biofilm but was more motile than the parental strain. PMID:24584242

  11. Salmonella Newport omphaloarteritis in a stranded killer whale (Orcinus orca) neonate.

    PubMed

    Colegrove, Kathleen M; St Leger, Judy A; Raverty, Stephen; Jang, Spencer; Berman-Kowalewski, Michelle; Gaydos, Joseph K

    2010-10-01

    Salmonella enterica serovar Newport (Salmonella Newport) was isolated from multiple tissues in a neonate killer whale (Orcinus orca) that stranded dead in 2005 along the central coast of California, USA. Necrotizing omphaloarteritis and omphalophlebitis was observed on histologic examination suggesting umbilical infection was the route of entry. Genetic analysis of skin samples indicated that the neonate had an offshore haplotype. Salmonellosis has rarely been identified in free-ranging marine mammals and the significance of Salmonella Newport infection to the health of free-ranging killer whales is currently unknown.

  12. Phenotypic and genotypic antimicrobial resistance and virulence genes of Salmonella enterica isolated from pet dogs and cats.

    PubMed

    Srisanga, Songsak; Angkititrakul, Sunpetch; Sringam, Patcharee; Le Ho, Phuong T; T Vo, An T; Chuanchuen, Rungtip

    2017-09-30

    Salmonella enterica isolates (n = 122), including 32 serotypes from 113 dogs and 9 cats, were obtained from household dogs (n = 250) and cats (n = 50) during 2012-2015. The isolates were characterized by serotyping, antimicrobial resistance phenotyping and genotyping, and virulence gene screening. Serovars Weltevreden (15.6%) and Typhimurium (13.9%) were the most common. The majority (43%) of the isolates were multidrug resistant. The dog isolates (12.3%) harbored class 1 integrons, of which the dfrA12 - aadA2 cassette was most frequent (66.7%). The only class integron in serovar Albany was located on a conjugative plasmid. Two ESBL-producing isolates ( i.e ., a serovar Krefeld and a serovar Enteritridis) carried bla TEM and bla CTX-M , and the bla TEM gene in both was horizontally transferred. Of the plasmid-mediated quinolone resistance genes tested, only qnrS (4.9%) was detected. Most Salmonella isolates harbored invA (100%), prgH (91.8%), and sipB (91%). Positive associations between resistance and virulence genes were observed for bla PSE-1 / orgA , cmlA / span , tolC , and sul1 / tolC ( p < 0.05). The results suggest that companion dogs and cats are potential sources of S. enterica strains that carry resistance and virulence genes and that antimicrobial use in companion animals may select for the examined Salmonella virulence factors.

  13. Phenotypic and genotypic antimicrobial resistance and virulence genes of Salmonella enterica isolated from pet dogs and cats

    PubMed Central

    Srisanga, Songsak; Angkititrakul, Sunpetch; Sringam, Patcharee; Le Ho, Phuong T.; Vo, An T. T.

    2017-01-01

    Salmonella enterica isolates (n = 122), including 32 serotypes from 113 dogs and 9 cats, were obtained from household dogs (n = 250) and cats (n = 50) during 2012–2015. The isolates were characterized by serotyping, antimicrobial resistance phenotyping and genotyping, and virulence gene screening. Serovars Weltevreden (15.6%) and Typhimurium (13.9%) were the most common. The majority (43%) of the isolates were multidrug resistant. The dog isolates (12.3%) harbored class 1 integrons, of which the dfrA12-aadA2 cassette was most frequent (66.7%). The only class integron in serovar Albany was located on a conjugative plasmid. Two ESBL-producing isolates (i.e., a serovar Krefeld and a serovar Enteritridis) carried blaTEM and blaCTX-M, and the blaTEM gene in both was horizontally transferred. Of the plasmid-mediated quinolone resistance genes tested, only qnrS (4.9%) was detected. Most Salmonella isolates harbored invA (100%), prgH (91.8%), and sipB (91%). Positive associations between resistance and virulence genes were observed for blaPSE-1/orgA, cmlA/spaN, tolC, and sul1/tolC (p < 0.05). The results suggest that companion dogs and cats are potential sources of S. enterica strains that carry resistance and virulence genes and that antimicrobial use in companion animals may select for the examined Salmonella virulence factors. PMID:27586467

  14. Aneurysm of the cranial mesenteric artery as a site of carriage of Salmonella enterica subsp. enterica serovar Abortusequi in the horse.

    PubMed

    Niwa, Hidekazu; Hobo, Seiji; Kinoshita, Yuta; Muranaka, Masanori; Ochi, Akihiro; Ueno, Takanori; Oku, Kazuomi; Hariu, Kazuhisa; Katayama, Yoshinari

    2016-07-01

    Salmonella enterica subsp. enterica serovar Abortusequi is a pathogen restricted to horses. Our investigation targeted 4 draft horses (9-10 months old) kept on a Japanese farm that had suffered an outbreak of S. Abortusequi abortion. The 4 horses were suspected to be carriers of the bacterium owing to their high agglutination titers (≥1:2,560) in tube agglutination testing. The owners' on-farm observations confirmed that the horses had no apparent abnormalities, and S. Abortusequi was not isolated from their blood, rectal swabs, or sternal bone marrow fluid at antemortem investigation. However, at autopsy, all horses displayed the following: suppurative aneurysm of the cranial mesenteric artery with heavy infection with Strongylus vulgaris larvae; heavy intestinal parasitic infection with Gasterophilus intestinalis, Parascaris equorum, Anoplocephala perfoliata, and S. vulgaris; and enlargement of the systemic lymph nodes. In each case, large numbers of S. Abortusequi were isolated from the anterior mesenteric artery thrombus. The thrombus isolates harbored a single virulence plasmid, and the pulsed-field gel electrophoresis profiles of the isolates were identical not only to each other but also to those of Japanese enzootic strains of S. Abortusequi. These results reveal that parasitic aneurysms of the cranial mesenteric artery should be considered an important possible site of carriage of S. Abortusequi in horses. The results also suggest high clonality of the isolated serovar in the horse population in Japan. © 2016 The Author(s).

  15. Identification and Characterization of a Cis Antisense RNA of the rpoH Gene of Salmonella enterica Serovar Typhi.

    PubMed

    Xiong, Changyan; Li, Xuejiao; Liu, Juanli; Zhao, Xin; Xu, Shungao; Huang, Xinxiang

    2018-01-01

    Antisense RNAs from complementary strands of protein coding genes regulate the expression of genes involved in many cellular processes. Using deep sequencing analysis of the Salmonella enterica serovar Typhi ( S. Typhi) transcriptome, a novel antisense RNA encoded on the strand complementary to the rpoH gene was revealed. In this study, the molecular features of this antisense RNA were assessed using northern blotting and rapid amplification of cDNA ends. The 3,508 nt sequence of RNA was identified as the antisense RNA of the rpoH gene and was named ArpH. ArpH was found to attenuate the invasion of HeLa cells by S. Typhi by regulating the expression of SPI-1 genes. In an rpoH mutant strain, the invasive capacity of S. Typhi was increased, whereas overexpression of ArpH positively regulates rpoH mRNA levels. Results of this study suggest that the cis -encoded antisense RNA ArpH is likely to affect the invasive capacity of S. Typhi by regulating the expression of rpoH .

  16. Antimicrobial resistance among Salmonella enterica serovar Infantis from broiler carcasses in Serbia

    NASA Astrophysics Data System (ADS)

    Nikolić, A.; Baltić, T.; Velebit, B.; Babić, M.; Milojević, L.; Đorđević, V.

    2017-09-01

    This study aimed to investigate antimicrobial resistance of Salmonella Infantis isolates from poultry carcasses in Serbia. A total of 48 Salmonella isolates were examined for antimicrobial resistance. A panel of 10 antibiotics was selected for testing. Isolates showed resistance to sulfamethoxazole, ceftazidime and cefotaxime (100%). However, the highest number of Salmonella Infantis isolates were sensitive to chloramphenicol. The usage of antibiotics in food producing animals could result in antimicrobial resistance pathogenic bacteria especially Salmonella spp. in poultry, which may be transmitted to humans through the food chain and increase risk of treatment failures.

  17. Wild-type and mutant AvrA- Salmonella induce broadly similar immune pathways in the chicken ceca with key differences in signaling intermediates and inflammation

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar Typhimurium (ST) is a serious infectious disease throughout the world, and a major reservoir for Salmonella is chicken. Chicken infected with Salmonella do not develop clinical disease, this may be the result of important host interactions with key virulence proteins. T...

  18. Proteins from latex of Calotropis procera prevent septic shock due to lethal infection by Salmonella enterica serovar Typhimurium.

    PubMed

    Lima-Filho, José V; Patriota, Joyce M; Silva, Ayrles F B; Filho, Nicodemos T; Oliveira, Raquel S B; Alencar, Nylane M N; Ramos, Márcio V

    2010-06-16

    The latex of Calotropis procera has been used in traditional medicine to treat different inflammatory diseases. The anti-inflammatory activity of latex proteins (LP) has been well documented using different inflammatory models. In this work the anti-inflammatory protein fraction was evaluated in a true inflammatory process by inducing a lethal experimental infection in the murine model caused by Salmonella enterica Subsp. enterica serovar Typhimurium. Experimental Swiss mice were given 0.2 ml of LP (30 or 60 mg/kg) by the intraperitoneal route 24 h before or after lethal challenge (0.2 ml) containing 10(6) CFU/ml of Salmonella Typhimurium using the same route of administration. All the control animals succumbed to infection within 6 days. When given before bacterial inoculums LP prevented the death of mice, which remained in observation until day 28. Even, LP-treated animals exhibited only discrete signs of infection which disappeared latter. LP fraction was also protective when given orally or by subcutaneous route. Histopathological examination revealed that necrosis and inflammatory infiltrates were similar in both the experimental and control groups on days 1 and 5 after infection. LP activity did not clear Salmonella Typhimurium, which was still present in the spleen at approximately 10(4) cells/g of organ 28 days after challenge. However, no bacteria were detected in the liver at this stage. LP did not inhibit bacterial growth in culture medium at all. In the early stages of infection bacteria population was similar in organs and in the peritoneal fluid but drastically reduced in blood. Titration of TNF-alpha in serum revealed no differences between experimental and control groups on days 1 and 5 days after infection while IL-12 was only discretely diminished in serum of experimental animals on day 5. Moreover, cultured macrophages treated with LP and stimulated by LPS released significantly less IL-1beta. LP-treated mice did not succumb to septic shock when

  19. Rapid DNA transformation in Salmonella Typhimurium by the hydrogel exposure method.

    PubMed

    Elabed, Hamouda; Hamza, Rim; Bakhrouf, Amina; Gaddour, Kamel

    2016-07-01

    Even with advances in molecular cloning and DNA transformation, new or alternative methods that permit DNA penetration in Salmonella enterica subspecies enterica serovar Typhimurium are required in order to use this pathogen in biotechnological or medical applications. In this work, an adapted protocol of bacterial transformation with plasmid DNA based on the "Yoshida effect" was applied and optimized on Salmonella enterica serovar Typhimurium LT2 reference strain. The plasmid transference based on the use of sepiolite as acicular materials to promote cell piercing via friction forces produced by spreading on the surface of a hydrogel. The transforming mixture containing sepiolite nanofibers, bacterial cells to be transformed and plasmid DNA were plated directly on selective medium containing 2% agar. In order to improve the procedure, three variables were tested and the transformation of Salmonella cells was accomplished using plasmids pUC19 and pBR322. Using the optimized protocol on Salmonella LT2 strain, the efficiency was about 10(5) transformed cells per 10(9) subjected to transformation with 0.2μg plasmid DNA. In summary, the procedure is fast, offers opportune efficiency and promises to become one of the widely used transformation methods in laboratories. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Antimicrobial effect of the Tunisian Nana variety Punica granatum L. extracts against Salmonella enterica (serovars Kentucky and Enteritidis) isolated from chicken meat and phenolic composition of its peel extract.

    PubMed

    Wafa, Ben Ajmia; Makni, Mohamed; Ammar, Sonda; Khannous, Lamia; Hassana, Amal Ben; Bouaziz, Mohamed; Es-Safi, Nour Eddine; Gdoura, Radhouane

    2017-01-16

    Punica granatum L. is widely recognized for its potency against a broad spectrum of bacterial pathogens. The purpose of this study was to explore the inhibitory and the bactericidal activities of Punica granatum against Salmonella strains. The effect of extracts obtained from different parts (peels, seeds, juice and flowers) of pomegranate and using different solvents against Salmonella enterica serovars Kentucky and Enteritidis isolated from chicken meat was thus investigated. Salmonella strains were identified with the standard API-20E system and confirmed by real time PCR. The obtained results showed that the highest antibacterial activity against Salmonella strains was observed with the peels ethanolic extract giving MIC values ranging from 10.75 to 12.5mg/mL. The ethanolic extract of P. granatum Nana peels at 0.8 and 1.6mg/g significantly inhibited the growth of Salmonella Kentucky in chicken meat stored at 4°C. The phenolic composition of the ethanolic peel extract was explored by HPLC coupled to both DAD and ESI/TOF-MS detections. The obtained results allowed the detection of 21 phytochemical compounds among which various phenolic compounds have been identified on the basis of their UV and MS spectra as well as with literature data. Among the detected compounds, anthocyanins, ellagitannins, ellagic acid derivatives and flavanols were further characterized through MS-MS analysis. Our results showed thus that the Tunisian variety Nana pomegranate constitutes a good source of bioactive compounds with potent antimicrobial activity on the growth of Salmonella strains suggesting that the studied pomegranate cultivar could be a natural remedy to minimize the emergence of Salmonella enterica strains which is often involved in food borne illness. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Detection of Salmonella spp. in veterinary samples by combining selective enrichment and real-time PCR.

    PubMed

    Goodman, Laura B; McDonough, Patrick L; Anderson, Renee R; Franklin-Guild, Rebecca J; Ryan, James R; Perkins, Gillian A; Thachil, Anil J; Glaser, Amy L; Thompson, Belinda S

    2017-11-01

    Rapid screening for enteric bacterial pathogens in clinical environments is essential for biosecurity. Salmonella found in veterinary hospitals, particularly Salmonella enterica serovar Dublin, can pose unique challenges for culture and testing because of its poor growth. Multiple Salmonella serovars including Dublin are emerging threats to public health given increasing prevalence and antimicrobial resistance. We adapted an automated food testing method to veterinary samples and evaluated the performance of the method in a variety of matrices including environmental samples ( n = 81), tissues ( n = 52), feces ( n = 148), and feed ( n = 29). A commercial kit was chosen as the basis for this approach in view of extensive performance characterizations published by multiple independent organizations. A workflow was established for efficiently and accurately testing veterinary matrices and environmental samples by use of real-time PCR after selective enrichment in Rappaport-Vassiliadis soya (RVS) medium. Using this method, the detection limit for S. Dublin improved by 100-fold over subculture on selective agars (eosin-methylene blue, brilliant green, and xylose-lysine-deoxycholate). Overall, the procedure was effective in detecting Salmonella spp. and provided next-day results.

  2. The taxonomic structure of Salmonella enterica subspecies enterica

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica is the leading cause of food-borne bacterial infection in humans and has a high economic burden in agriculture. Strains differ by sequence additions and losses of up to ~10% of each genome. In the last few decades, some serovars have become more common. Many strains have acquired...

  3. A Case Report of Salmonella muenchen Enteritis Causing Rhabdomyolysis and Myocarditis in a Previously Healthy 26-Year-Old Man.

    PubMed

    Chapple, Will; Martell, Jon; Wilson, Joy S; Matsuura, Don T

    2017-04-01

    This case report examines an unusual presentation of a non-typhoidal Salmonella serovar with limited prevalence in the literature. This is the first case report to associate specifically the Salmonella muenchen serovar with rhabdomyolysis and myocarditis. This case report reviews the diagnostic criteria for myocarditis and explores the diagnostic dilemma of troponin elevation in the setting of rhabdomyolysis. It demonstrates that Salmonella muenchen has the ability to present in a broad range of individuals with complications extending beyond classical gastrointestinal symptoms. This report also concludes that diagnosis of the many possible complications from non-typhoidal Salmonella infections can be difficult due to patient comorbidities, variability in the severity of the illnesses, laboratory test limitations, and imaging limitations. When a patient presents with elevated troponins in the setting of rhabdomyolysis a careful workup should be done to evaluate for ischemic causes, myocarditis, or false elevation secondary to rhabdomyolysis.

  4. Linear antigenic mapping of flagellin (FliC) from Salmonella enterica serovar Enteritidis with yeast surface expression system.

    PubMed

    Wang, Gaoling; Shi, Bingtian; Li, Tao; Zuo, Teng; Wang, Bin; Si, Wei; Xin, Jiuqing; Yang, Kongbin; Shi, Xuanlin; Liu, Siguo; Liu, Henggui

    2016-02-29

    Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne illness around the world and can have significant health implications in humans, poultry and other animals. Flagellin (FliC) is the primary component of bacterial flagella. It has been shown that the FliC of S. Enteritidis is a significant antigenic structure and can elicit strong humoral responses against S. Enteritidis infection in chickens. Here, we constructed a FliC antigen library using a yeast surface expression system. Yeast cells expressing FliC peptide antigens were labeled with chicken sera against S. Enteritidis and sorted using FACS. The analyses of FliC peptides revealed that the FliC linear antigenicity in chickens resided on three domains which were able to elicit strong humoral responses in vivo. Animal experiments further revealed that the antibodies elicited by these antigenic domains were able to significantly inhibit the invasion of S. Enteritidis into the liver and spleen of chickens. These findings will facilitate our better understanding of the humoral responses elicited by FliC in chickens upon infection by S. Enteritidis. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The Salmonella In Silico Typing Resource (SISTR): An Open Web-Accessible Tool for Rapidly Typing and Subtyping Draft Salmonella Genome Assemblies.

    PubMed

    Yoshida, Catherine E; Kruczkiewicz, Peter; Laing, Chad R; Lingohr, Erika J; Gannon, Victor P J; Nash, John H E; Taboada, Eduardo N

    2016-01-01

    For nearly 100 years serotyping has been the gold standard for the identification of Salmonella serovars. Despite the increasing adoption of DNA-based subtyping approaches, serotype information remains a cornerstone in food safety and public health activities aimed at reducing the burden of salmonellosis. At the same time, recent advances in whole-genome sequencing (WGS) promise to revolutionize our ability to perform advanced pathogen characterization in support of improved source attribution and outbreak analysis. We present the Salmonella In Silico Typing Resource (SISTR), a bioinformatics platform for rapidly performing simultaneous in silico analyses for several leading subtyping methods on draft Salmonella genome assemblies. In addition to performing serovar prediction by genoserotyping, this resource integrates sequence-based typing analyses for: Multi-Locus Sequence Typing (MLST), ribosomal MLST (rMLST), and core genome MLST (cgMLST). We show how phylogenetic context from cgMLST analysis can supplement the genoserotyping analysis and increase the accuracy of in silico serovar prediction to over 94.6% on a dataset comprised of 4,188 finished genomes and WGS draft assemblies. In addition to allowing analysis of user-uploaded whole-genome assemblies, the SISTR platform incorporates a database comprising over 4,000 publicly available genomes, allowing users to place their isolates in a broader phylogenetic and epidemiological context. The resource incorporates several metadata driven visualizations to examine the phylogenetic, geospatial and temporal distribution of genome-sequenced isolates. As sequencing of Salmonella isolates at public health laboratories around the world becomes increasingly common, rapid in silico analysis of minimally processed draft genome assemblies provides a powerful approach for molecular epidemiology in support of public health investigations. Moreover, this type of integrated analysis using multiple sequence-based methods of sub

  6. Low Concentration of Salmonella enterica and Generic Escherichia coli in Farm Ponds and Irrigation Distribution Systems Used for Mixed Produce Production in Southern Georgia.

    PubMed

    Antaki, Elizabeth M; Vellidis, George; Harris, Casey; Aminabadi, Peiman; Levy, Karen; Jay-Russell, Michele T

    2016-10-01

    Studies have shown that irrigation water can be a vector for pathogenic bacteria. Due to this, the Food Safety Modernization Act's (FSMA) produce safety rule requires that agricultural water directly applied to produce be safe and of adequate sanitary quality for use, which may pose a challenge for some farmers. The purpose of this research was to assess the presence and concentration of Salmonella and generic Escherichia coli in irrigation water from distribution systems in a mixed produce production region of southern Georgia. Water samples were collected during three growing seasons at three farms irrigating crops with surface water (Pond 1, Pond 2) or groundwater (Well) during 2012-2013. Salmonella and generic E. coli populations were monitored by culture and Most Probable Number (MPN). Confirmed isolates were characterized by pulsed-field gel electrophoresis and serotyping. In Pond 1, Salmonella was detected in 2/21 surface, 5/26 subsurface, 10/50 center pivot, and 0/16 solid set sprinkler head water samples. In Pond 2, Salmonella was detected in 2/18 surface, 1/18 subsurface, 6/36 drip line start, and 8/36 drip line end water samples. Twenty-six well pumps and 64 associated drip line water samples were negative. The overall mean Salmonella concentration for positive water samples was 0.03 MPN/100 mL (range <0.0011-1.8 MPN/100 mL). Nine Salmonella serovars comprising 22 pulsotypes were identified. Identical serovars and subtypes were found three times on the same day and location: Pond 1-Pivot-Cantaloupe (serovar Rubislaw), Pond 1-Pivot-Peanut (serovar Saintpaul), and Pond 2-Drip Line Start-Drip Line End-Yellow Squash (serovar III_16z10:e,n,x,z15). Generic E. coli was detected in water from both farm ponds and irrigation distribution systems, but the concentrations met FSMA microbial water quality criteria. The results from this study will allow producers in southern Georgia to better understand how potential pathogens move through irrigation distribution

  7. Characterization of Foodborne Outbreaks of Salmonella enterica Serovar Enteritidis with Whole-Genome Sequencing Single Nucleotide Polymorphism-Based Analysis for Surveillance and Outbreak Detection.

    PubMed

    Taylor, Angela J; Lappi, Victoria; Wolfgang, William J; Lapierre, Pascal; Palumbo, Michael J; Medus, Carlota; Boxrud, David

    2015-10-01

    Salmonella enterica serovar Enteritidis is a significant cause of gastrointestinal illness in the United States; however, current molecular subtyping methods lack resolution for this highly clonal serovar. Advances in next-generation sequencing technologies have made it possible to examine whole-genome sequencing (WGS) as a potential molecular subtyping tool for outbreak detection and source trace back. Here, we conducted a retrospective analysis of S. Enteritidis isolates from seven epidemiologically confirmed foodborne outbreaks and sporadic isolates (not epidemiologically linked) to determine the utility of WGS to identify outbreaks. A collection of 55 epidemiologically characterized clinical and environmental S. Enteritidis isolates were sequenced. Single nucleotide polymorphism (SNP)-based cluster analysis of the S. Enteritidis genomes revealed well supported clades, with less than four-SNP pairwise diversity, that were concordant with epidemiologically defined outbreaks. Sporadic isolates were an average of 42.5 SNPs distant from the outbreak clusters. Isolates collected from the same patient over several weeks differed by only two SNPs. Our findings show that WGS provided greater resolution between outbreak, sporadic, and suspect isolates than the current gold standard subtyping method, pulsed-field gel electrophoresis (PFGE). Furthermore, results could be obtained in a time frame suitable for surveillance activities, supporting the use of WGS as an outbreak detection and characterization method for S. Enteritidis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Phylogenetic Diversity of the Enteric Pathogen Salmonella enterica subsp. enterica Inferred from Genome-Wide Reference-Free SNP Characters

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica is a major cause of food-borne illness in the US, leading to more deaths than any other food-related pathogen. This is an extremely diverse bacterial species consisting of six subspecies and over 2500 named serovars. Examining the evolutionary history within Salmonella with techn...

  9. Estimating the number of human cases of ceftiofur-resistant Salmonella enterica serovar Heidelberg in Québec and Ontario, Canada.

    PubMed

    Otto, Simon J G; Carson, Carolee A; Finley, Rita L; Thomas, M Kate; Reid-Smith, Richard J; McEwen, Scott A

    2014-11-01

    A stochastic model was used to estimate the number of human cases of ceftiofur-resistant Salmonella enterica serovar Heidelberg in Québec and Ontario attributable to chicken consumption and excess cases attributable to human prior antimicrobial consumption. The annual mean incidence of S. Heidelberg (Québec/Ontario) decreased from 70/62 cases per 100 000 in 2004 to 29/30 cases per 100 000 in 2007 (Québec)/2008 (Ontario), increasing to 59/45 cases per 100 000 in 2011. The annual mean incidence of ceftiofur-resistant cases from chicken decreased from 8/7 cases per 100 000 in 2004 to 1/1 cases per 100 000 in 2007 (Québec)/2008 (Ontario), increasing to 7/5 cases per 100 000 in 2011. The annual mean total number of excess ceftiofur-resistant cases from chicken attributable to human prior antimicrobial consumption (Québec/Ontario) decreased from 71/123 in 2004 to 6/24 in 2007 (Québec)/2008 (Ontario), but increased to 62/91 in 2011. This model will support future work to determine the increased severity, mortality and healthcare costs for ceftiofur-resistant Salmonella Heidelberg infections. These results provide a basis for the evaluation of future public health interventions to address antimicrobial resistance. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Influence of ethanol adaptation on Salmonella enterica serovar Enteritidis survival in acidic environments and expression of acid tolerance-related genes.

    PubMed

    He, Shoukui; Cui, Yan; Qin, Xiaojie; Zhang, Fen; Shi, Chunlei; Paoli, George C; Shi, Xianming

    2018-06-01

    Cross-protection to environmental stresses by ethanol adaptation in Salmonella poses a great threat to food safety because it can undermine food processing interventions. The ability of Salmonella enterica serovar Enteritidis (S. Enteritidis) to develop acid resistance following ethanol adaptation (5% ethanol for 1 h) was evaluated in this study. Ethanol-adapted S. Enteritidis mounted cross-tolerance to malic acid (a two-fold increase in minimum bactericidal concentration), but not to acetic, ascorbic, lactic, citric and hydrochloric acids. The population of S. Enteritidis in orange juice (pH 3.77) over a 48-h period was not significantly (p > 0.05) influenced by ethanol adaptation. However, an increased survival by 0.09-1.02 log CFU/ml was noted with ethanol-adapted cells of S. Enteritidis compared to non-adapted cells in apple juice (pH 3.57) stored at 25 °C (p < 0.05), but not at 4 °C. RT-qPCR revealed upregulation of two acid tolerance-related genes, rpoS (encoding σ S ) and SEN1564A (encoding an acid shock protein), following ethanol adaptation. The relative expression level of the acid resistance gene hdeB did not change. The resistance phenotypes and transcriptional profiles of S. Enteritidis suggest some involvement of rpoS and SEN1564A in the ethanol-induced acid tolerance mechanism. Copyright © 2017. Published by Elsevier Ltd.

  11. Use of an attenuated live Salmonella Typhimurium vaccine on three breeding pig units: A longitudinal observational field study.

    PubMed

    Davies, R; Gosling, R J; Wales, A D; Smith, R P

    2016-06-01

    The study examined the effects of a licensed live Salmonella Typhimurium vaccine, administered to sows and gilts on three commercial pig units experiencing clinical salmonellosis associated with S. Typhimurium or its monophasic variant. After vaccination, clinical salmonellosis resolved and shedding of S. Typhimurium declined markedly and persistently on all breeding or breeding-finishing units, during the one- to two-year monitoring period. On two finishing units supplied in part by one of the vaccinated herds, pigs from the vaccinated herd were less likely to shed Salmonella than those from non-vaccinating herds, and Salmonella counts in faeces were also lower from the vaccine-linked animals. Non-Typhimurium Salmonella serovars were isolated typically in fewer than 10% of samples, and showed no clear temporal changes in frequency. Vaccination of dams alone with S. Typhimurium was associated with reduced shedding of closely-related serovars among all age groups in this commercial setting. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  12. Functional Analysis of the Chaperone-Usher Fimbrial Gene Clusters of Salmonella enterica serovar Typhi.

    PubMed

    Dufresne, Karine; Saulnier-Bellemare, Julie; Daigle, France

    2018-01-01

    The human-specific pathogen Salmonella enterica serovar Typhi causes typhoid, a major public health issue in developing countries. Several aspects of its pathogenesis are still poorly understood. S . Typhi possesses 14 fimbrial gene clusters including 12 chaperone-usher fimbriae ( stg, sth, bcf , fim, saf , sef , sta, stb, stc, std, ste , and tcf ). These fimbriae are weakly expressed in laboratory conditions and only a few are actually characterized. In this study, expression of all S . Typhi chaperone-usher fimbriae and their potential roles in pathogenesis such as interaction with host cells, motility, or biofilm formation were assessed. All S . Typhi fimbriae were better expressed in minimal broth. Each system was overexpressed and only the fimbrial gene clusters without pseudogenes demonstrated a putative major subunits of about 17 kDa on SDS-PAGE. Six of these (Fim, Saf, Sta, Stb, Std, and Tcf) also show extracellular structure by electron microscopy. The impact of fimbrial deletion in a wild-type strain or addition of each individual fimbrial system to an S . Typhi afimbrial strain were tested for interactions with host cells, biofilm formation and motility. Several fimbriae modified bacterial interactions with human cells (THP-1 and INT-407) and biofilm formation. However, only Fim fimbriae had a deleterious effect on motility when overexpressed. Overall, chaperone-usher fimbriae seem to be an important part of the balance between the different steps (motility, adhesion, host invasion and persistence) of S . Typhi pathogenesis.

  13. Bistable Expression of CsgD in Salmonella enterica Serovar Typhimurium Connects Virulence to Persistence

    PubMed Central

    MacKenzie, Keith D.; Wang, Yejun; Shivak, Dylan J.; Wong, Cynthia S.; Hoffman, Leia J. L.; Lam, Shirley; Kröger, Carsten; Cameron, Andrew D. S.; Townsend, Hugh G. G.; Köster, Wolfgang

    2015-01-01

    Pathogenic bacteria often need to survive in the host and the environment, and it is not well understood how cells transition between these equally challenging situations. For the human and animal pathogen Salmonella enterica serovar Typhimurium, biofilm formation is correlated with persistence outside a host, but the connection to virulence is unknown. In this study, we analyzed multicellular-aggregate and planktonic-cell subpopulations that coexist when S. Typhimurium is grown under biofilm-inducing conditions. These cell types arise due to bistable expression of CsgD, the central biofilm regulator. Despite being exposed to the same stresses, the two cell subpopulations had 1,856 genes that were differentially expressed, as determined by transcriptome sequencing (RNA-seq). Aggregated cells displayed the characteristic gene expression of biofilms, whereas planktonic cells had enhanced expression of numerous virulence genes. Increased type three secretion synthesis in planktonic cells correlated with enhanced invasion of a human intestinal cell line and significantly increased virulence in mice compared to the aggregates. However, when the same groups of cells were exposed to desiccation, the aggregates survived better, and the competitive advantage of planktonic cells was lost. We hypothesize that CsgD-based differentiation is a form of bet hedging, with single cells primed for host cell invasion and aggregated cells adapted for persistence in the environment. This allows S. Typhimurium to spread the risks of transmission and ensures a smooth transition between the host and the environment. PMID:25824832

  14. Genetic Diversity and Evolution of Salmonella enterica Serovar Enteritidis Strains with Different Phage Types

    PubMed Central

    Pettengill, James; Strain, Errol; Allard, Marc W.; Ahmed, Rafiq; Zhao, Shaohua; Brown, Eric W.

    2014-01-01

    Phage typing has been used for the epidemiological surveillance of Salmonella enterica serovar Enteritidis for over 2 decades. However, knowledge of the genetic and evolutionary relationships between phage types is very limited, making differences difficult to interpret. Here, single nucleotide polymorphisms (SNPs) identified from whole-genome comparisons were used to determine the relationships between some S. Enteritidis phage types (PTs) commonly associated with food-borne outbreaks in the United States. Emphasis was placed on the predominant phage types PT8, PT13a, and PT13 in North America. With >89,400 bp surveyed across 98 S. Enteritidis isolates representing 14 distinct phage types, 55 informative SNPs were discovered within 23 chromosomally anchored loci. To maximize the discriminatory and evolutionary partitioning of these highly homogeneous strains, sequences comprising informative SNPs were concatenated into a single combined data matrix and subjected to phylogenetic analysis. The resultant phylogeny allocated most S. Enteritidis isolates into two distinct clades (clades I and II) and four subclades. Synapomorphic (shared and derived) sets of SNPs capable of distinguishing individual clades/subclades were identified. However, individual phage types appeared to be evolutionarily disjunct when mapped to this phylogeny, suggesting that phage typing may not be valid for making phylogenetic inferences. Furthermore, the set of SNPs identified here represents useful genetic markers for strain differentiation of more clonal S. Enteritidis strains and provides core genotypic markers for future development of a SNP typing scheme with S. Enteritidis. PMID:24574287

  15. BcsZ inhibits biofilm phenotypes and promotes virulence by blocking cellulose production in Salmonella enterica serovar Typhimurium.

    PubMed

    Ahmad, Irfan; Rouf, Syed Fazle; Sun, Lei; Cimdins, Annika; Shafeeq, Sulman; Le Guyon, Soazig; Schottkowski, Marco; Rhen, Mikael; Römling, Ute

    2016-10-19

    Cellulose, a 1,4 beta-glucan polysaccharide, is produced by a variety of organisms including bacteria. Although the production of cellulose has a high biological, ecological and economical impact, regulatory mechanisms of cellulose biosynthesis are mostly unknown. Family eight cellulases are regularly associated with cellulose biosynthesis operons in bacteria; however, their function is poorly characterized. In this study, we analysed the role of the cellulase BcsZ encoded by the bcsABZC cellulose biosynthesis operon of Salmonella enterica serovar Typhimurium (S. Typhimurium) in biofilm related behavior. We also investigated the involvement of BcsZ in pathogenesis of S. Typhimurium including a murine typhoid fever infection model. In S. Typhimurium, cellulase BcsZ with a putative periplasmic location negatively regulates cellulose biosynthesis. Moreover, as assessed with a non-polar mutant, BcsZ affects cellulose-associated phenotypes such as the rdar biofilm morphotype, cell clumping, biofilm formation, pellicle formation and flagella-dependent motility. Strikingly, although upregulation of cellulose biosynthesis was not observed on agar plate medium at 37 °C, BcsZ is required for efficient pathogen-host interaction. Key virulence phenotypes of S. Typhimurium such as invasion of epithelial cells and proliferation in macrophages were positively regulated by BcsZ. Further on, a bcsZ mutant was outcompeted by the wild type in organ colonization in the murine typhoid fever infection model. Selected phenotypes were relieved upon deletion of the cellulose synthase BcsA and/or the central biofilm activator CsgD. Although the protein scaffold has an additional physiological role, our findings indicate that the catalytic activity of BcsZ effectively downregulates CsgD activated cellulose biosynthesis. Repression of cellulose production by BcsZ subsequently enables Salmonella to efficiently colonize the host.

  16. The consequences of a sudden demographic change on the seroprevalence pattern, virulence genes, identification and characterisation of integron-mediated antibiotic resistance in the Salmonella enterica isolated from clinically diarrhoeic humans in Egypt.

    PubMed

    Osman, K M; Hassan, W M M; Mohamed, R A H

    2014-08-01

    The present study was undertaken to identify and characterise integrons and integrated resistance gene cassettes among eight multidrug-resistant (MDR) Salmonella serovars isolated from humans in Egypt. Virulotyping by polymerase chain reaction (PCR) was used for the detection of the presence of virulence genes. Integron PCR was used to detect the presence of class 1 in the MDR strains. The associated individual resistance gene cassettes were identified using specific PCRs. The isolated serovars were Salmonella Grampian (C1; 2/5), Larose (C1; 1/5), Hato (B; 1/5) and Texas (B; 1/5). Among the Salmonella serovars, five Salmonella isolates showed the highest resistance to amoxicillin, ampicillin, chloramphenicol, lincomycin, gentamicin, nalidixic acid, streptomycin and trimethoprim (100%), followed by neomycin, norfloxacin and tetracycline (80%), while the lowest resistance was recorded to colistin sulphate and ciprofloxacin in percentages of 20 and 40%, respectively. The invA, avrA, ssaQ, mgtC, siiD and sopB genes were detected in all isolates (100%), while the spvC and gipA genes were totally (100%) absent from all isolates. The remaining three virulence genes were diversely distributed as follows: the bcfC gene was detected in all isolates except Salmonella Hato (80%); the sodC1 gene was detected only in Salmonella Grampian and Salmonella Texas (60%); and the sopE1 gene was detected only in Salmonella Grampian, Hato and Texas (60%). Class 1 integrons were detected in 90% of the MDR isolates, comprising serovars Muenster, Florian, Noya, Grampian, Larose, Hato and Texas. Of the class 1 integron-positive isolates, 45% harboured Salmonella genomic island 1 (SGI1) either right junction or right and left junction having an A-C-S-T phenotype. Of the class 1 integron-positive isolates, 44% harboured integron gene cassette aadA2, while 11% harboured the floR gene present in multidrug resistance flanked by two integrons of SGI1. The results of the present study indicate that

  17. Enhancement of Th1-biased protective immunity against avian influenza H9N2 virus via oral co-administration of attenuated Salmonella enterica serovar Typhimurium expressing chicken interferon-α and interleukin-18 along with an inactivated vaccine

    PubMed Central

    2012-01-01

    Background Control of currently circulating re-assorted low-pathogenicity avian influenza (LPAI) H9N2 is a major concern for both animal and human health. Thus, an improved LPAI H9N2 vaccination strategy is needed to induce complete immunity in chickens against LPAI H9N2 virus strains. Cytokines play a crucial role in mounting both the type and extent of an immune response generated following infection with a pathogen or after vaccination. To improve the efficacy of inactivated LPAI H9N2 vaccine, attenuated Salmonella enterica serovar Typhimurium was used for oral co-administration of chicken interferon-α (chIFN-α) and chicken interleukin-18 (chIL-18) as natural immunomodulators. Results Oral co-administration of S. enterica serovar Typhimurium expressing chIFN-α and chIL-18, prior to vaccination with inactivated AI H9N2 vaccine, modulated the immune response of chickens against the vaccine antigen through enhanced humoral and Th1-biased cell-mediated immunity, compared to chickens that received single administration of S. enterica serovar Typhimurium expressing either chIFN-α or chIL-18. To further test the protective efficacy of this improved vaccination regimen, immunized chickens were intra-tracheally challenged with a high dose of LPAI H9N2 virus. Combined administration of S. enterica serovar Typhimurium expressing chIFN-α and chIL-18 showed markedly enhanced protection compared to single administration of the construct, as determined by mortality, clinical severity, and feed and water intake. This enhancement of protective immunity was further confirmed by reduced rectal shedding and replication of AIV H9N2 in different tissues of challenged chickens. Conclusions Our results indicate the value of combined administration of chIFN-α and chIL-18 using a Salmonella vaccine strain to generate an effective immunization strategy in chickens against LPAI H9N2. PMID:22776696

  18. Development of protective immunity to Salmonella, a mucosal pathogen with a systemic agenda

    PubMed Central

    Griffin, Amanda J.; McSorley, Stephen J.

    2014-01-01

    Salmonella infections can cause a range of intestinal and systemic disease in human and animal hosts. While some Salmonella serovars initiate a localized intestinal inflammatory response, others use the intestine as a portal of entry to initiate a systemic infection. Considerable progress has been made in understanding bacterial invasion and dissemination strategies and the nature of the Salmonella-specific immune response to oral infection. Innate and adaptive immunity are rapidly initiated after oral infection but these effector responses can also be hindered by bacterial evasion strategies. Furthermore, although Salmonella resides within intramacrophage phagosomes, recent studies highlight a surprising collaboration of CD4 Th1, Th17, and B cell responses in mediating resistance to Salmonella infection. PMID:21307847

  19. Expression and crystallization of SeDsbA, SeDsbL and SeSrgA from Salmonella enterica serovar Typhimurium.

    PubMed

    Jarrott, R; Shouldice, S R; Guncar, G; Totsika, M; Schembri, M A; Heras, B

    2010-05-01

    Pathogens require protein-folding enzymes to produce functional virulence determinants. These foldases include the Dsb family of proteins, which catalyze oxidative folding in bacteria. Bacterial disulfide catalytic processes have been well characterized in Escherichia coli K-12 and these mechanisms have been extrapolated to other organisms. However, recent research indicates that the K-12 complement of Dsb proteins is not common to all bacteria. Importantly, many pathogenic bacteria have an extended arsenal of Dsb catalysts that is linked to their virulence. To help to elucidate the process of oxidative folding in pathogens containing a wide repertoire of Dsb proteins, Salmonella enterica serovar Typhimurium has been focused on. This Gram-negative bacterium contains three DsbA proteins: SeDsbA, SeDsbL and SeSrgA. Here, the expression, purification, crystallization and preliminary diffraction analysis of these three proteins are reported. SeDsbA, SeDsbL and SeSrgA crystals diffracted to resolution limits of 1.55, 1.57 and 2.6 A and belonged to space groups P2(1), P2(1)2(1)2 and C2, respectively.

  20. Identification and Characterization of a Cis-Encoded Antisense RNA Associated with the Replication Process of Salmonella enterica Serovar Typhi

    PubMed Central

    Dadzie, Isaac; Xu, Shungao; Ni, Bin; Zhang, Xiaolei; Zhang, Haifang; Sheng, Xiumei; Xu, Huaxi; Huang, Xinxiang

    2013-01-01

    Antisense RNAs that originate from the complementary strand of protein coding genes are involved in the regulation of gene expression in all domains of life. In bacteria, some of these antisense RNAs are transcriptional noise whiles others play a vital role to adapt the cell to changing environmental conditions. By deep sequencing analysis of transcriptome of Salmonella enterica serovar Typhi, a partial RNA sequence encoded in-cis to the dnaA gene was revealed. Northern blot and RACE analysis confirmed the transcription of this antisense RNA which was expressed mostly in the stationary phase of the bacterial growth and also under iron limitation and osmotic stress. Pulse expression analysis showed that overexpression of the antisense RNA resulted in a significant increase in the mRNA levels of dnaA, which will ultimately enhance their translation. Our findings have revealed that antisense RNA of dnaA is indeed transcribed not merely as a by-product of the cell's transcription machinery but plays a vital role as far as stability of dnaA mRNA is concerned. PMID:23637809