Sample records for salmonella-induced tubular network

  1. Reorganization of the Endosomal System in Salmonella-Infected Cells: The Ultrastructure of Salmonella-Induced Tubular Compartments

    PubMed Central

    Krieger, Viktoria; Liebl, David; Zhang, Yuying; Rajashekar, Roopa; Chlanda, Petr; Giesker, Katrin; Chikkaballi, Deepak; Hensel, Michael

    2014-01-01

    During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella. PMID:25254663

  2. Albumin-induced apoptosis of tubular cells is modulated by BASP1

    PubMed Central

    Sanchez-Niño, M D; Fernandez-Fernandez, B; Perez-Gomez, M V; Poveda, J; Sanz, A B; Cannata-Ortiz, P; Ruiz-Ortega, M; Egido, J; Selgas, R; Ortiz, A

    2015-01-01

    Albuminuria promotes tubular injury and cell death, and is associated with faster progression of chronic kidney disease (CKD) to end-stage renal disease. However, the molecular mechanisms regulating tubular cell death in response to albuminuria are not fully understood. Brain abundant signal protein 1 (BASP1) was recently shown to mediate glucose-induced apoptosis in tubular cells. We have studied the role of BASP1 in albumin-induced tubular cell death. BASP1 expression was studied in experimental puromycin aminonucleoside-induced nephrotic syndrome in rats and in human nephrotic syndrome. The role of BASP1 in albumin-induced apoptosis was studied in cultured human HK2 proximal tubular epithelial cells. Puromycin aminonucleoside induced proteinuria and increased total kidney BASP1 mRNA and protein expression. Immunohistochemistry localized the increased BASP1 to tubular cells. BASP1 expression colocalized with deoxynucleotidyl-transferase-mediated dUTP nick-end labeling staining for apoptotic cells. Increased tubular BASP1 expression was observed in human proteinuric nephropathy by immunohistochemistry, providing evidence for potential clinical relevance. In cultured tubular cells, albumin induced apoptosis and increased BASP1 mRNA and protein expression at 6–48 h. Confocal microscopy localized the increased BASP1 expression in albumin-treated cells mainly to the perinuclear area. A peripheral location near the cell membrane was more conspicuous in albumin-treated apoptotic cells, where it colocalized with actin. Inhibition of BASP1 expression by a BASP1 siRNA protected from albumin-induced apoptosis. In conclusion, albumin-induced apoptosis in tubular cells is BASP1-dependent. This information may be used to design novel therapeutic approaches to slow CKD progression based on protection of tubular cells from the adverse consequences of albuminuria. PMID:25675304

  3. VCP-dependent muscle degeneration is linked to defects in a dynamic tubular lysosomal network in vivo

    PubMed Central

    Johnson, Alyssa E; Shu, Huidy; Hauswirth, Anna G; Tong, Amy; Davis, Graeme W

    2015-01-01

    Lysosomes are classically viewed as vesicular structures to which cargos are delivered for degradation. Here, we identify a network of dynamic, tubular lysosomes that extends throughout Drosophila muscle, in vivo. Live imaging reveals that autophagosomes merge with tubular lysosomes and that lysosomal membranes undergo extension, retraction, fusion and fission. The dynamics and integrity of this tubular lysosomal network requires VCP, an AAA-ATPase that, when mutated, causes degenerative diseases of muscle, bone and neurons. We show that human VCP rescues the defects caused by loss of Drosophila VCP and overexpression of disease relevant VCP transgenes dismantles tubular lysosomes, linking tubular lysosome dysfunction to human VCP-related diseases. Finally, disruption of tubular lysosomes correlates with impaired autophagosome-lysosome fusion, increased cytoplasmic poly-ubiquitin aggregates, lipofuscin material, damaged mitochondria and impaired muscle function. We propose that VCP sustains sarcoplasmic proteostasis, in part, by controlling the integrity of a dynamic tubular lysosomal network. DOI: http://dx.doi.org/10.7554/eLife.07366.001 PMID:26167652

  4. Salmonella induces prominent gene expression in the rat colon

    PubMed Central

    Rodenburg, Wendy; Keijer, Jaap; Kramer, Evelien; Roosing, Susanne; Vink, Carolien; Katan, Martijn B; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg MJ

    2007-01-01

    Background Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point). As fructo-oligosaccharides (FOS) affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Results Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase), antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2), inflammation (e.g. calprotectin), oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2) and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9). Furthermore, Salmonella translocation increased serum IFNγ and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap), showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. Conclusion We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in mucosal gene expression

  5. Salmonella induces prominent gene expression in the rat colon.

    PubMed

    Rodenburg, Wendy; Keijer, Jaap; Kramer, Evelien; Roosing, Susanne; Vink, Carolien; Katan, Martijn B; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J

    2007-09-12

    Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point). As fructo-oligosaccharides (FOS) affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase), antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2), inflammation (e.g. calprotectin), oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2) and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9). Furthermore, Salmonella translocation increased serum IFN gamma and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap), showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in mucosal gene expression.

  6. A Role for Tubular Necroptosis in Cisplatin-Induced AKI

    PubMed Central

    Xu, Yanfang; Ma, Huabin; Shao, Jing; Wu, Jianfeng; Zhou, Linying; Zhang, Zhirong; Wang, Yuze; Huang, Zhe; Ren, Junming; Liu, Suhuan; Chen, Xiangmei

    2015-01-01

    Cell death and inflammation in the proximal tubules are the hallmarks of cisplatin-induced AKI, but the mechanisms underlying these effects have not been fully elucidated. Here, we investigated whether necroptosis, a type of programmed necrosis, has a role in cisplatin-induced AKI. We found that inhibition of any of the core components of the necroptotic pathway—receptor-interacting protein 1 (RIP1), RIP3, or mixed lineage kinase domain-like protein (MLKL)—by gene knockout or a chemical inhibitor diminished cisplatin-induced proximal tubule damage in mice. Similar results were obtained in cultured proximal tubular cells. Furthermore, necroptosis of cultured cells could be induced by cisplatin or by a combination of cytokines (TNF-α, TNF-related weak inducer of apoptosis, and IFN-γ) that were upregulated in proximal tubules of cisplatin-treated mice. However, cisplatin induced an increase in RIP1 and RIP3 expression in cultured tubular cells in the absence of cytokine release. Correspondingly, overexpression of RIP1 or RIP3 enhanced cisplatin-induced necroptosis in vitro. Notably, inflammatory cytokine upregulation in cisplatin-treated mice was partially diminished in RIP3- or MLKL-deficient mice, suggesting a positive feedback loop involving these genes and inflammatory cytokines that promotes necroptosis progression. Thus, our data demonstrate that necroptosis is a major mechanism of proximal tubular cell death in cisplatin-induced nephrotoxic AKI. PMID:25788533

  7. Hemodynamic and tubular changes induced by contrast media.

    PubMed

    Caiazza, Antonella; Russo, Luigi; Sabbatini, Massimo; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI.

  8. Hemodynamic and Tubular Changes Induced by Contrast Media

    PubMed Central

    Caiazza, Antonella; Russo, Luigi; Russo, Domenico

    2014-01-01

    The incidence of acute kidney injury induced by contrast media (CI-AKI) is the third cause of AKI in hospitalized patients. Contrast media cause relevant alterations both in renal hemodynamics and in renal tubular cell function that lead to CI-AKI. The vasoconstriction of intrarenal vasculature is the main hemodynamic change induced by contrast media; the vasoconstriction is accompanied by a cascade of events leading to ischemia and reduction of glomerular filtration rate. Cytotoxicity of contrast media causes apoptosis of tubular cells with consequent formation of casts and worsening of ischemia. There is an interplay between the negative effects of contrast media on renal hemodynamics and on tubular cell function that leads to activation of renin-angiotensin system and increased production of reactive oxygen species (ROS) within the kidney. Production of ROS intensifies cellular hypoxia through endothelial dysfunction and alteration of mechanisms regulating tubular cells transport. The physiochemical characteristics of contrast media play a critical role in the incidence of CI-AKI. Guidelines suggest the use of either isoosmolar or low-osmolar contrast media rather than high-osmolar contrast media particularly in patients at increased risk of CI-AKI. Older age, presence of atherosclerosis, congestive heart failure, chronic renal disease, nephrotoxic drugs, and diuretics may multiply the risk of CI-AKI. PMID:24678510

  9. [The fundamental role of stage control technology on the detectability for Salmonella networking laboratory].

    PubMed

    Zhou, Yong-ming; Chen, Xiu-hua; Xu, Wen; Jin, Hui-ming; Li, Chao-qun; Liang, Wei-li; Wang, Duo-chun; Yan, Mei-ying; Lou, Jing; Kan, Biao; Ran, Lu; Cui, Zhi-gang; Wang, Shu-kun; Xu, Xue-bin

    2013-11-01

    To evaluated the fundamental role of stage control technology (SCT) on the detectability for Salmonella networking laboratories. Appropriate Salmonella detection methods after key point control being evaluated, were establishment and optimized. Our training and evaluation networking laboratories participated in the World Health Organization-Global Salmonella Surveillance Project (WHO-GSS) and China-U.S. Collaborative Program on Emerging and Re-emerging infectious diseases Project (GFN) in Shanghai. Staff members from the Yunnan Yuxi city Center for Disease Control and Prevention were trained on Salmonella isolation from diarrhea specimens. Data on annual Salmonella positive rates was collected from the provincial-level monitoring sites to be part of the GSS and GFN projects from 2006 to 2012. The methodology was designed based on the conventional detection procedure of Salmonella which involved the processes as enrichment, isolation, species identification and sero-typing. These methods were simultaneously used to satisfy the sensitivity requirements on non-typhoid Salmonella detection for networking laboratories. Public Health Laboratories in Shanghai had developed from 5 in 2006 to 9 in 2011, and Clinical laboratories from 8 to 22. Number of clinical isolates, including typhoid and non-typhoid Salmonella increased from 196 in 2006 to 1442 in 2011. The positive rate of Salmonella isolated from the clinical diarrhea cases was 2.4% in Yuxi county, in 2012. At present, three other provincial monitoring sites were using the SBG technique as selectivity enrichment broth for Salmonella isolation, with Shanghai having the most stable positive baseline. The method of SCT was proved the premise of the network laboratory construction. Based on this, the improvement of precise phenotypic identification and molecular typing capabilities could reach the level equivalent to the national networking laboratory.

  10. Reconstruction of the temporal signaling network in Salmonella-infected human cells.

    PubMed

    Budak, Gungor; Eren Ozsoy, Oyku; Aydin Son, Yesim; Can, Tolga; Tuncbag, Nurcan

    2015-01-01

    Salmonella enterica is a bacterial pathogen that usually infects its host through food sources. Translocation of the pathogen proteins into the host cells leads to changes in the signaling mechanism either by activating or inhibiting the host proteins. Given that the bacterial infection modifies the response network of the host, a more coherent view of the underlying biological processes and the signaling networks can be obtained by using a network modeling approach based on the reverse engineering principles. In this work, we have used a published temporal phosphoproteomic dataset of Salmonella-infected human cells and reconstructed the temporal signaling network of the human host by integrating the interactome and the phosphoproteomic dataset. We have combined two well-established network modeling frameworks, the Prize-collecting Steiner Forest (PCSF) approach and the Integer Linear Programming (ILP) based edge inference approach. The resulting network conserves the information on temporality, direction of interactions, while revealing hidden entities in the signaling, such as the SNARE binding, mTOR signaling, immune response, cytoskeleton organization, and apoptosis pathways. Targets of the Salmonella effectors in the host cells such as CDC42, RHOA, 14-3-3δ, Syntaxin family, Oxysterol-binding proteins were included in the reconstructed signaling network although they were not present in the initial phosphoproteomic data. We believe that integrated approaches, such as the one presented here, have a high potential for the identification of clinical targets in infectious diseases, especially in the Salmonella infections.

  11. FGF21 is induced in cisplatin nephrotoxicity to protect against kidney tubular cell injury.

    PubMed

    Li, Fanghua; Liu, Zhiwen; Tang, Chengyuan; Cai, Juan; Dong, Zheng

    2018-01-22

    Cisplatin, a widely used cancer therapy drug, induces nephrotoxicity or acute kidney injury (AKI), but the underlying mechanism remains unclear, and renal protective approaches are not available. Fibroblast growth factor (FGF)21 is an endocrine factor that regulates glucose uptake, metabolism, and energy expenditure. However, recent work has also implicated FGF21 in cellular stress response under pathogenic conditions. The role and regulation of FGF21 in AKI are unclear. Here, we show that FGF21 was dramatically induced during cisplatin treatment of renal tubular cells in vitro and mouse kidneys in vivo. The inductive response was suppressed by pifithrin (a pharmacological inhibitor of P53), suggesting a role of P53 in FGF21 induction. In cultured renal tubular cells, knockdown of FGF21 aggravated cisplatin-induced apoptosis, whereas supplementation of recombinant FGF21 was protective. Consistently, recombinant FGF21 alleviated cisplatin-induced kidney dysfunction, tissue damage, and tubular apoptosis in mice. Mechanistically, FGF21 suppressed P53 induction and activation during cisplatin treatment. Together, these results indicate that FGF21 is induced during cisplatin nephrotoxicity to protect renal tubules, and recombinant FGF21 may have therapeutic potential.-Li, F., Liu, Z., Tang, C., Cai, J., Dong, Z. FGF21 is induced in cisplatin nephrotoxicity to protect against kidney tubular cell injury.

  12. Salmonella infections modelling in Mississippi using neural network and geographical information system (GIS).

    PubMed

    Akil, Luma; Ahmad, H Anwar

    2016-03-03

    Mississippi (MS) is one of the southern states with high rates of foodborne infections. The objectives of this paper are to determine the extent of Salmonella and Escherichia coli infections in MS, and determine the Salmonella infections correlation with socioeconomic status using geographical information system (GIS) and neural network models. In this study, the relevant updated data of foodborne illness for southern states, from 2002 to 2011, were collected and used in the GIS and neural networks models. Data were collected from the Centers for Disease Control and Prevention (CDC), MS state Department of Health and the other states department of health. The correlation between low socioeconomic status and Salmonella infections were determined using models created by several software packages, including SAS, ArcGIS @RISK and NeuroShell. Results of this study showed a significant increase in Salmonella outbreaks in MS during the study period, with highest rates in 2011 (47.84 ± 24.41 cases/100,000; p<0.001). MS had the highest rates of Salmonella outbreaks compared with other states (36 ± 6.29 cases/100,000; p<0.001). Regional and district variations in the rates were also observed. GIS maps of Salmonella outbreaks in MS in 2010 and 2011 showed the districts with higher rates of Salmonella. Regression analysis and neural network models showed a moderate correlation between cases of Salmonella infections and low socioeconomic factors. Poverty was shown to have a negative correlation with Salmonella outbreaks (R(2)=0.152, p<0.05). Geographic location besides socioeconomic status may contribute to the high rates of Salmonella outbreaks in MS. Understanding the geographical and economic relationship with infectious diseases will help to determine effective methods to reduce outbreaks within low socioeconomic status communities. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Increased renal tubular sodium reabsorption during exercise-induced hypervolemia in humans

    NASA Technical Reports Server (NTRS)

    Nagashima, K.; Wu, J.; Kavouras, S. A.; Mack, G. W.

    2001-01-01

    We tested the hypothesis that renal tubular Na(+) reabsorption increased during the first 24 h of exercise-induced plasma volume expansion. Renal function was assessed 1 day after no-exercise control (C) or intermittent cycle ergometer exercise (Ex, 85% of peak O(2) uptake) for 2 h before and 3 h after saline loading (12.5 ml/kg over 30 min) in seven subjects. Ex reduced renal blood flow (p-aminohippurate clearance) compared with C (0.83 +/- 0.12 vs. 1.49 +/- 0.24 l/min, P < 0.05) but did not influence glomerular filtration rates (97 +/- 10 ml/min, inulin clearance). Fractional tubular reabsorption of Na(+) in the proximal tubules was higher in Ex than in C (P < 0.05). Saline loading decreased fractional tubular reabsorption of Na(+) from 99.1 +/- 0.1 to 98.7 +/- 0.1% (P < 0.05) in C but not in Ex (99.3 +/- 0.1 to 99.4 +/- 0.1%). Saline loading reduced plasma renin activity and plasma arginine vasopressin levels in C and Ex, although the magnitude of decrease was greater in C (P < 0.05). These results indicate that, during the acute phase of exercise-induced plasma volume expansion, increased tubular Na(+) reabsorption is directed primarily to the proximal tubules and is associated with a decrease in renal blood flow. In addition, saline infusion caused a smaller reduction in fluid-regulating hormones in Ex. The attenuated volume-regulatory response acts to preserve distal tubular Na(+) reabsorption during saline infusion 24 h after exercise.

  14. Uric Acid Induces Renal Inflammation via Activating Tubular NF-κB Signaling Pathway

    PubMed Central

    Zhou, Yang; Fang, Li; Jiang, Lei; Wen, Ping; Cao, Hongdi; He, Weichun; Dai, Chunsun; Yang, Junwei

    2012-01-01

    Inflammation is a pathologic feature of hyperuricemia in clinical settings. However, the underlying mechanism remains unknown. Here, infiltration of T cells and macrophages were significantly increased in hyperuricemia mice kidneys. This infiltration of inflammatory cells was accompanied by an up-regulation of TNF-α, MCP-1 and RANTES expression. Further, infiltration was largely located in tubular interstitial spaces, suggesting a role for tubular cells in hyperuricemia-induced inflammation. In cultured tubular epithelial cells (NRK-52E), uric acid, probably transported via urate transporter, induced TNF-α, MCP-1 and RANTES mRNA as well as RANTES protein expression. Culture media of NRK-52E cells incubated with uric acid showed a chemo-attractive ability to recruit macrophage. Moreover uric acid activated NF-κB signaling. The uric acid-induced up-regulation of RANTES was blocked by SN 50, a specific NF-κB inhibitor. Activation of NF-κB signaling was also observed in tubule of hyperuricemia mice. These results suggest that uric acid induces renal inflammation via activation of NF-κB signaling. PMID:22761883

  15. Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney.

    PubMed

    Duan, Xiaolu; Kong, Zhenzhen; Mai, Xin; Lan, Yu; Liu, Yang; Yang, Zhou; Zhao, Zhijian; Deng, Tuo; Zeng, Tao; Cai, Chao; Li, Shujue; Zhong, Wen; Wu, Wenqi; Zeng, Guohua

    2018-06-01

    Hyperoxaluria-induced oxidative injury of renal tubular epithelial cell is a casual and essential factor in kidney calcium oxalate (CaOx) stone formation. Autophagy has been shown to be critical for the regulation of oxidative stress-induced renal tubular injury; however, little is known about its role in kidney CaOx stone formation. In the present study, we found that the autophagy antagonist chloroquine could significantly attenuate oxalate-induced autophagy activation, oxidative injury and mitochondrial damage of renal tubular cells in vitro and in vivo, as well as hyperoxaluria-induced CaOx crystals depositions in rat kidney, whereas the autophagy agonist rapamycin exerted contrasting effects. In addition, oxalate-induced p38 phosphorylation was significantly attenuated by chloroquine pretreatment but was markedly enhanced by rapamycin pretreatment, whereas the protective effect of chloroquine on rat renal tubular cell oxidative injury was partly reversed by a p38 protein kinase activator anisomycin. Furthermore, the knockdown of Beclin1 represented similar effects to chloroquine on oxalate-induced cell oxidative injury and p38 phosphorylation in vitro. Taken together, our results revealed that autophagy inhibition could attenuate oxalate-induced oxidative injury of renal tubular cell and CaOx crystal depositions in the rat kidney via, at least in part, inhibiting the activation of p38 signaling pathway, thus representing a novel role of autophagy in the regulation of oxalate-induced renal oxidative injury and CaOx crystal depositions for the first time. Copyright © 2018. Published by Elsevier B.V.

  16. Curcumin suppresses AGEs induced apoptosis in tubular epithelial cells via protective autophagy

    PubMed Central

    Wei, Ying; Gao, Jiaqi; Qin, Lingling; Xu, Yunling; Shi, Haoxia; Qu, Lingxia; Liu, Yongqiao; Xu, Tunhai; Liu, Tonghua

    2017-01-01

    Renal tubular cell apoptosis and tubular dysfunction is an important process underlying diabetic nephropathy (DN). Understanding the mechanisms underlying renal tubular epithelial cell survival is important for the prevention of kidney damage associated with glucotoxicity. Curcumin has been demonstrated to possess potent anti-apoptotic properties. However, the roles of curcumin in renal epithelial cells are yet to be defined. The present study investigated advanced glycation or glycoxidation end-product (AGE)-induced toxicity in renal tubular epithelial cells via several complementary assays, including cell viability, cell apoptosis and cell autophagy in the NRK-52E rat kidney tubular epithelial cell line. The extent of apoptosis was significantly increased in the NRK-52E cells following treatment with AGEs. The results also indicated that curcumin reversed this effect by promoting autophagy through the phosphoinositide 3-kinase/AKT serine/threonine kinase signaling pathway. These conclusions suggested that curcumin exerts a renoprotective effect in the presence of AGEs, at least in part by activating autophagy in NRK-52E cells. Collectively, these findings indicate that curcumin not only exerts renoprotective effects, however may also act as a novel therapeutic strategy for the treatment of diabetic nephropathy. PMID:29285156

  17. Saccharomyces boulardii prevention of the hepatic injury induced by Salmonella Enteritidis infection.

    PubMed

    Wu, Daichao; Teng, Da; Wang, Xiumin; Dai, Changsong; Wang, Jianhua

    2014-10-01

    Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis) is the predominant cause of serovar-associated food-borne outbreaks in many countries and causes significant clinical symptoms of liver injury, enteritis, and diarrheal diseases. Saccharomyces boulardii is used in clinical application for prophylaxis and the treatment of a variety of diseases caused by bacterial infection. We used a mouse model of Salmonella Enteritidis infection, which included pretreatment with S. boulardii, to reveal the protection mechanisms of S. boulardii against Salmonella Enteritidis infection, including the translocation of Salmonella Enteritidis to the liver 10 days after Salmonella Enteritidis challenge, and the colonisation of Salmonella Enteritidis and the formation of hepatic tissue lesions in mice after Salmonella Enteritidis challenge on the 10th day. Compared with Salmonella Enteritidis infection in mice, S. boulardii decreased Salmonella Enteritidis translocation to the liver by 96%, and 99% of Salmonella Enteritidis colonised the cecum on the 10th day. Saccharomyces boulardii also abated hepatic tissue injury caused by the infiltration of neutrophilic granulocytes, lymphocytes, and plasmocytes by decreasing the translocation of Salmonella to the liver. These findings demonstrated that S. boulardii is an effective agent in the prevention of the hepatic injury induced by Salmonella Enteritidis infection in a mouse model.

  18. Salmonella infections associated with international travel: a Foodborne Diseases Active Surveillance Network (FoodNet) study.

    PubMed

    Johnson, Laura R; Gould, L Hannah; Dunn, John R; Berkelman, Ruth; Mahon, Barbara E

    2011-09-01

    Salmonella species cause an estimated 1.2 million infections per year in the United States, making it one of the most commonly reported enteric pathogens. In addition, Salmonella is an important cause of travel-associated diarrhea and enteric fever, a systemic illness commonly associated with Salmonella serotypes Typhi and Paratyphi A. We reviewed cases of Salmonella infection reported to the Centers for Disease Control and Prevention's (CDC) Foodborne Diseases Active Surveillance Network (FoodNet), a sentinel surveillance network, from 2004 to 2008. We compared travelers with Salmonella infection to nontravelers with Salmonella infection with respect to demographics, clinical characteristics, and serotypes. Among 23,712 case-patients with known travel status, 11% had traveled internationally in the 7 days before illness. Travelers with Salmonella infection tended to be older (median age, 30 years) than nontravelers (median age, 24 years; p<0.0001), but were similar with respect to gender. The most common destinations reported were Mexico (38% of travel-associated infections), India (9%), Jamaica (7%), the Dominican Republic (4%), China (3%), and the Bahamas (2%). The proportions of travelers with Salmonella infection hospitalized and with invasive disease were inversely related to the income level of the destination (p<0.0001). The most commonly reported serotypes, regardless of travel status, were Enteritidis (19% of cases), Typhimurium (14%), Newport (9%), and Javiana (5%). Among infections caused by these four serotypes, 22%, 6%, 5%, and 4%, respectively, were associated with travel. A high index of clinical suspicion for Salmonella infection is appropriate when evaluating recent travelers, especially those who visited Africa, Asia, or Latin America.

  19. Autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury induced by albumin overload.

    PubMed

    Tan, Jin; Wang, Miaohong; Song, Shuling; Miao, Yuyang; Zhang, Qiang

    2018-01-10

    Proteinuria (albuminuria) is an important cause of aggravating tubulointerstitial injury. Previous studies have shown that autophagy activation can alleviate renal tubular epithelial cell injury caused by urinary protein, but the mechanism is not clear. Here, we investigated the role of clearance of damaged mitochondria in this protective effect. We found that albumin overload induces a significant increase in turnover of LC3-II and decrease in p62 protein level in renal proximal tubular (HK-2) cells in vitro. Albumin overload also induces an increase in mitochondrial damage. ALC, a mitochondrial torpent, alleviates mitochondrial damage induced by albumin overload and also decreases autophagy, while mitochondrial damage revulsant CCCP further increases autophagy. Furthermore, pretreatment of HK-2 cells with rapamycin reduced the amount of damaged mitochondria and the level of apoptosis induced by albumin overload. In contrast, blocking autophagy with chloroquine exerted an opposite effect. Taken together, our results indicated autophagy activation promotes removal of damaged mitochondria and protects against renal tubular injury caused by albumin overload. This further confirms previous research that autophagy activation is an adaptive response in renal tubular epithelial cells after urinary protein overload.

  20. Hydraulic pressure inducing renal tubular epithelial-myofibroblast transdifferentiation in vitro.

    PubMed

    Li, Fei-yan; Xie, Xi-sheng; Fan, Jun-ming; Li, Zi; Wu, Jiang; Zheng, Rong

    2009-09-01

    The effects of hydraulic pressure on renal tubular epithelial-myofibroblast transdifferentiation (TEMT) were investigated. We applied hydraulic pressure (50 cm H2O) to normal rat kidney tubular epithelial cells (NRK52E) for different durations. Furthermore, different pressure magnitudes were applied to cells. The morphology, cytoskeleton, and expression of myofibroblastic marker protein and transforming growth factor-beta1 (TGF-beta1) of NRK52E cells were examined. Disorganized actin filaments and formation of curling clusters in actin were seen in the cytoplasm of pressurized cells. We verified that de novo expression of alpha-smooth muscle actin induced by pressure, which indicated TEMT, was dependent on both the magnitude and duration of pressure. TGF-beta1 expression was significantly upregulated under certain conditions, which implies that the induction of TEMT by hydraulic pressure is related with TGF-beta1. We illustrate for the first time that hydraulic pressure can induce TEMT in a pressure magnitude- and duration-dependent manner, and that this TEMT is accompanied by TGF-beta1 secretion.

  1. Stem Cell Conditioned Culture Media Attenuated Albumin-Induced Epithelial– Mesenchymal Transition in Renal Tubular Cells

    PubMed Central

    Hu, Junping; Zhu, Qing; Li, Pin-Lan; Wang, Weili; Yi, Fan; Li, Ningjun

    2015-01-01

    Background Proteinuria-induced epithelial-mesenchymal transition (EMT) plays an important role in progressive renal tubulointerstitial fibrosis in chronic renal disease. Stem cell therapy has been used for different diseases. Stem cell conditioned culture media (SCM) exhibits similar beneficial effects as stem cell therapy. The present study tested the hypothesis that SCM inhibits albumin-induced EMT in cultured renal tubular cells. Methods Rat renal tubular cells were treated with/without albumin (20 μmg/ml) plus SCM or control cell media (CCM). EMT markers and inflammatory factors were measured by Western blot and fluorescent images. Results Albumin induced EMT as shown by significant decreases in levels of epithelial marker E-cadherin, increases in mesenchymal markers fibroblast-specific protein 1 and α-smooth muscle actin, and elevations in collagen I. SCM inhibited all these changes. Meanwhile, albumin induced NF-κB translocation from cytosol into nucleus and that SCM blocked the nuclear translocation of NF-κB. Albumin also increased the levels of pro-inflammatory factor monocyte chemoattractant protein-1 (MCP)-1 by nearly 30 fold compared with control. SCM almost abolished albumin-induced increase of MCP-1. Conclusion These results suggest that SCM attenuated albumin-induced EMT in renal tubular cells via inhibiting activation of inflammatory factors, which may serve as a new therapeutic approach for chronic kidney diseases. PMID:25832005

  2. Asparagine deprivation mediated by Salmonella asparaginase causes suppression of activation-induced T cell metabolic reprogramming.

    PubMed

    Torres, AnnMarie; Luke, Joanna D; Kullas, Amy L; Kapilashrami, Kanishk; Botbol, Yair; Koller, Antonius; Tonge, Peter J; Chen, Emily I; Macian, Fernando; van der Velden, Adrianus W M

    2016-02-01

    Salmonellae are pathogenic bacteria that induce immunosuppression by mechanisms that remain largely unknown. Previously, we showed that a putative type II l-asparaginase produced by Salmonella Typhimurium inhibits T cell responses and mediates virulence in a murine model of infection. Here, we report that this putative L-asparaginase exhibits L-asparagine hydrolase activity required for Salmonella Typhimurium to inhibit T cells. We show that L-asparagine is a nutrient important for T cell activation and that L-asparagine deprivation, such as that mediated by the Salmonella Typhimurium L-asparaginase, causes suppression of activation-induced mammalian target of rapamycin signaling, autophagy, Myc expression, and L-lactate secretion. We also show that L-asparagine deprivation mediated by the Salmonella Typhimurium L-asparaginase causes suppression of cellular processes and pathways involved in protein synthesis, metabolism, and immune response. Our results advance knowledge of a mechanism used by Salmonella Typhimurium to inhibit T cell responses and mediate virulence, and provide new insights into the prerequisites of T cell activation. We propose a model in which l-asparagine deprivation inhibits T cell exit from quiescence by causing suppression of activation-induced metabolic reprogramming. © Society for Leukocyte Biology.

  3. A class of dynamin-like GTPases involved in the generation of the tubular ER network

    PubMed Central

    Hu, Junjie; Shibata, Yoko; Zhu, Peng-Peng; Voss, Christiane; Rismanchi, Neggy; Prinz, William A.; Rapoport, Tom A.; Blackstone, Craig

    2009-01-01

    The endoplasmic reticulum (ER) consists of tubules that are shaped by the reticulons and DP1/Yop1p, but how the tubules form an interconnected network is unknown. Here, we show that mammalian atlastins, which are dynamin-like, integral membrane GTPases, interact with the tubule-shaping proteins. The atlastins localize to the tubular ER and are required for proper network formation in vivo and in vitro. Depletion of the atlastins or overexpression of dominant-negative forms inhibits tubule interconnections. The Sey1p GTPase in S. cerevisiae is likely a functional ortholog of the atlastins; it shares the same signature motifs and membrane topology and interacts genetically and physically with the tubule-shaping proteins. Cells simultaneously lacking Sey1p and a tubule-shaping protein have ER morphology defects. These results indicate that formation of the tubular ER network depends on conserved dynamin-like GTPases. Since atlastin-1 mutations cause a common form of hereditary spastic paraplegia, we suggest ER shaping defects as a novel neuropathogenic mechanism. PMID:19665976

  4. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy

    PubMed Central

    Liu, Hong; Gu, Liu-bao; Tu, Yue; Hu, Hao; Huang, Yan-ru; Sun, Wei

    2016-01-01

    Aim: A previous report shows that emodin extracted from the Chinese herbs rhubarb and giant knotweed rhizome can ameliorate the anticancer drug cisplatin-induced injury of HEK293 cells. In this study, we investigated whether and how emodin could protect renal tubular epithelial cells against cisplatin-induced nephrotoxicity in vitro. Methods: The viability and apoptosis of normal rat renal tubular epithelial cells (NRK-52E) were detected using formazan assay and flow cytometry analysis, respectively. The expression levels of cleaved caspase-3, autophagy maker LC3 I/II, and AMPK/mTOR signaling pathway-related proteins were measured with Western blot analysis. The changes of morphology and RFP-LC3 fluorescence were observed under microscopy. Results: Cisplatin (10-50 μmol/L) dose-dependently induced cell damage and apoptosis in NRK-52E cells, whereas emodin (10 and 100 μmol/L) significantly ameliorated cisplatin-induced cell damage, apoptosis and caspase-3 cleavage. Emodin dose-dependently increased LC3-II levels and induced RFP-LC3-containing punctate structures in NRK-52E cells. Furthermore, the protective effects of emodin were abolished by bafilomycin A1 (10 nmol/L), and mimicked by rapamycin (100 nmol/L). Moreover, emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR. The AMPK inhibitor compound C (10 μmol/L) not only abolished emodin-induced autophagy activation, but also emodin-induced anti-apoptotic effects. Conclusion: Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro through modulating the AMPK/mTOR signaling pathways and activating autophagy. Emodin may have therapeutic potential for the prevention of cisplatin-induced nephrotoxicity. PMID:26775661

  5. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy.

    PubMed

    Liu, Hong; Gu, Liu-bao; Tu, Yue; Hu, Hao; Huang, Yan-ru; Sun, Wei

    2016-02-01

    A previous report shows that emodin extracted from the Chinese herbs rhubarb and giant knotweed rhizome can ameliorate the anticancer drug cisplatin-induced injury of HEK293 cells. In this study, we investigated whether and how emodin could protect renal tubular epithelial cells against cisplatin-induced nephrotoxicity in vitro. The viability and apoptosis of normal rat renal tubular epithelial cells (NRK-52E) were detected using formazan assay and flow cytometry analysis, respectively. The expression levels of cleaved caspase-3, autophagy maker LC3 I/II, and AMPK/mTOR signaling pathway-related proteins were measured with Western blot analysis. The changes of morphology and RFP-LC3 fluorescence were observed under microscopy. Cisplatin (10-50 μmol/L) dose-dependently induced cell damage and apoptosis in NRK-52E cells, whereas emodin (10 and 100 μmol/L) significantly ameliorated cisplatin-induced cell damage, apoptosis and caspase-3 cleavage. Emodin dose-dependently increased LC3-II levels and induced RFP-LC3-containing punctate structures in NRK-52E cells. Furthermore, the protective effects of emodin were abolished by bafilomycin A1 (10 nmol/L), and mimicked by rapamycin (100 nmol/L). Moreover, emodin increased the phosphorylation of AMPK and suppressed the phosphorylation of mTOR. The AMPK inhibitor compound C (10 μmol/L) not only abolished emodin-induced autophagy activation, but also emodin-induced anti-apoptotic effects. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro through modulating the AMPK/mTOR signaling pathways and activating autophagy. Emodin may have therapeutic potential for the prevention of cisplatin-induced nephrotoxicity.

  6. An intracellular matrix metalloproteinase-2 isoform induces tubular regulated necrosis: implications for acute kidney injury.

    PubMed

    Ceron, Carla S; Baligand, Celine; Joshi, Sunil; Wanga, Shaynah; Cowley, Patrick M; Walker, Joy P; Song, Sang Heon; Mahimkar, Rajeev; Baker, Anthony J; Raffai, Robert L; Wang, Zhen J; Lovett, David H

    2017-06-01

    Acute kidney injury (AKI) causes severe morbidity, mortality, and chronic kidney disease (CKD). Mortality is particularly marked in the elderly and with preexisting CKD. Oxidative stress is a common theme in models of AKI induced by ischemia-reperfusion (I-R) injury. We recently characterized an intracellular isoform of matrix metalloproteinase-2 (MMP-2) induced by oxidative stress-mediated activation of an alternate promoter in the first intron of the MMP-2 gene. This generates an NH 2 -terminal truncated MMP-2 (NTT-MMP-2) isoform that is intracellular and associated with mitochondria. The NTT-MMP-2 isoform is expressed in kidneys of 14-mo-old mice and in a mouse model of coronary atherosclerosis and heart failure with CKD. We recently determined that NTT-MMP-2 is induced in human renal transplants with delayed graft function and correlated with tubular cell necrosis. To determine mechanism(s) of action, we generated proximal tubule cell-specific NTT-MMP-2 transgenic mice. Although morphologically normal at the light microscopic level at 4 mo, ultrastructural studies revealed foci of tubular epithelial cell necrosis, the mitochondrial permeability transition, and mitophagy. To determine whether NTT-MMP-2 expression enhances sensitivity to I-R injury, we performed unilateral I-R to induce mild tubular injury in wild-type mice. In contrast, expression of the NTT-MMP-2 isoform resulted in a dramatic increase in tubular cell necrosis, inflammation, and fibrosis. NTT-MMP-2 mice had enhanced expression of innate immunity genes and release of danger-associated molecular pattern molecules. We conclude that NTT-MMP-2 "primes" the kidney to enhanced susceptibility to I-R injury via induction of mitochondrial dysfunction. NTT-MMP-2 may be a novel AKI treatment target.

  7. Dietary sodium induces a redistribution of the tubular metabolic workload

    PubMed Central

    Udwan, Khalil; Abed, Ahmed; Roth, Isabelle; Dizin, Eva; Maillard, Marc; Bettoni, Carla; Loffing, Johannes; Wagner, Carsten A.; Edwards, Aurélie

    2017-01-01

    . Mathematical modelling predicted that tubular Na+ reabsorption decreased in the proximal tubule but increased in distal segments with lower transport efficiency with respect to O2 consumption. This prediction was confirmed by the natriuretic response to diuretics. The activity of the metabolic sensor adenosine monophosphate‐activated protein kinase (AMPK) was related to the changes in tubular Na+ reabsorption. Our data show that fractional Na+ reabsorption is distributed differently according to dietary Na+ intake and induces changes in tubular O2 consumption and sodium transport efficiency. PMID:28940314

  8. Tubular nanostructured materials for bioapplications

    NASA Astrophysics Data System (ADS)

    Xie, Jining; Chen, Linfeng; Srivatsan, Malathi; Varadan, Vijay K.

    2009-03-01

    Tubular nanomaterials possess hollow structures as well as high aspect ratios. In addition to their unique physical and chemical properties induced by their nanoscale dimensions, their inner voids and outer surfaces make them ideal candidates for a number of biomedical applications. In this work, three types of tubular nanomaterials including carbon nanotubes, hematite nanotubes, and maghemite nanotubes, were synthesized by different chemical techniques. Their structural and crystalline properties were characterized. For potential bioapplications of tubular nanomaterials, experimental investigations were carried out to demonstrate the feasibility of using carbon nanotubes, hematite nanotubes, and maghemite nanotubes in glucose sensing, neuronal growth, and drug delivery, respectively. Preliminary results show the promise of tubular nanomaterials in future biomedical applications.

  9. A role for tubular networks and a COP I-independent pathway in the mitotic fragmentation of Golgi stacks in a cell-free system

    PubMed Central

    1995-01-01

    Golgi stacks were previously shown to be converted into tubular networks when incubated in mitotic cytosol depleted of the coatomer subunit of COP I coats (Misteli and Warren, 1994). Similar, though smaller, networks are now shown to be an early intermediate on the Golgi fragmentation pathway both in vitro and in vivo. Their appearance mirrors the disappearance of Golgi cisternae and at their peak they constitute 35% of total Golgi membrane. They are consumed by two pathways, the first involving the budding of COP I-coated vesicles described previously (Misteli and Warren, 1994). The second involves a COP I-independent mechanism that leads eventually to a vesicle fraction that is larger in size and more heterogeneous than that produced by the COP I-mechanism. We suggest that both pathways operate concurrently at the onset of mitotic fragmentation. The COP I-independent pathway converts cisternae into tubular networks that then fragment. The COP I- dependent pathway partially consumes first the cisternae at the beginning of the incubation and then the tubular networks that form from them. PMID:7657690

  10. Indoxyl Sulfate Induces Apoptosis and Hypertrophy in Human Kidney Proximal Tubular Cells.

    PubMed

    Ellis, Robert J; Small, David M; Ng, Keng Lim; Vesey, David A; Vitetta, Luis; Francis, Ross S; Gobe, Glenda C; Morais, Christudas

    2018-06-01

    Indoxyl sulfate (IS) is a protein-bound uremic toxin that accumulates in patients with declining kidney function. Although generally thought of as a consequence of declining kidney function, emerging evidence demonstrates direct cytotoxic role of IS on endothelial cells and cardiomyocytes, largely through the expression of pro-inflammatory and pro-fibrotic factors. The direct toxicity of IS on human kidney proximal tubular epithelial cells (PTECs) remains a matter of debate. The current study explored the effect of IS on primary cultures of human PTECs and HK-2, an immortalized human PTEC line. Pathologically relevant concentrations of IS induced apoptosis and increased the expression of the proapoptotic molecule Bax in both cell types. IS impaired mitochondrial metabolic activity and induced cellular hypertrophy. Furthermore, statistically significant upregulation of pro-fibrotic (transforming growth factor-β, fibronectin) and pro-inflammatory molecules (interleukin-6, interleukin-8, and tumor necrosis factor-α) in response to IS was observed. Albumin had no influence on the toxicity of IS. The results of this study suggest that IS directly induced a pro-inflammatory and pro-fibrotic phenotype in proximal tubular cells. In light of the associated apoptosis, hypertrophy, and metabolic dysfunction, this study demonstrates that IS may play a role in the progression of chronic kidney disease.

  11. Reduction of high-energy shock-wave-induced renal tubular injury by selenium.

    PubMed

    Strohmaier, W L; Lahme, S; Weidenbach, P M; Bichler, K H

    1999-10-01

    In shock-wave-induced renal injury cavitation-generated free radicals play an important role. Using an in vitro model with Madin-Darby canine kidney (MDCK) cells, we investigated the influence of selenium, a free radical scavenger, in shock-wave-induced tubular cell injury. Suspensions of MDCK cells (33 x 10(6) cells/ml) were placed in small containers (volume 1.1 ml) for shock wave exposure. Two groups of 12 containers each were examined: (1) control (no medication), (2) selenium (0.4 microg/ml nutrient medium). Six containers in each group were exposed to shock waves (impulse rate 256, frequency 60 Hz, generator voltage 18 kV), while the other six containers in each group served as a control. After shock wave exposure, the concentration of cellular enzymes such as lactate dehydrogenase (LDH), N-acetyl-beta-glucosaminidase (NAG), glutamate oxaloacetate transaminase (GOT) and glutamate lactate dehydrogenase (GLDH) in the nutrient medium was examined. Following shock wave exposure there was a significant rise in LDH, NAG, GOT and GLDH concentrations. Selenium reduced this enzyme leakage significantly. Thus we conclude that selenium protects renal tubular cells against shock-wave-induced injury. Since selenium is an essential part of glutathione peroxidase, this effect seems to be mediated by a reduction in reactive oxygen species.

  12. Overexpressed cyclophilin B suppresses aldosterone-induced proximal tubular cell injury both in vitro and in vivo.

    PubMed

    Wang, Bin; Lin, Lilu; Wang, Haidong; Guo, Honglei; Gu, Yong; Ding, Wei

    2016-10-25

    The renin-angiotensin-aldosterone system (RAAS) is overactivated in patients with chronic kidney disease. Oxidative stress and endoplasmic reticulum stress (ERS) are two major mechanisms responsible for aldosterone-induced kidney injury. Cyclophilin (CYP) B is a chaperone protein that accelerates the rate of protein folding through its peptidyl-prolyl cis-trans isomerase (PPIase) activity. We report that overexpression of wild-type CYPB attenuated aldosterone-induced oxidative stress (evidenced by reduced production of reactive oxygen species and improved mitochondrial dysfunction), ERS (indicated by reduced expression of the ERS markers glucose-regulated protein 78 [GRP78] and C/-EBP homologous protein [CHOP]), and tubular cell apoptosis in comparison with aldosterone-induced human kidney-2 (HK-2) cells. The in vivo study also yielded similar results. Hence, CYPB performs a crucial function in protecting cells against aldosterone-induced oxidative stress, ERS, and tubular cell injury via its PPIase activity.

  13. Overexpressed cyclophilin B suppresses aldosterone-induced proximal tubular cell injury both in vitro and in vivo

    PubMed Central

    Wang, Haidong; Guo, Honglei; Gu, Yong; Ding, Wei

    2016-01-01

    The renin-angiotensin-aldosterone system (RAAS) is overactivated in patients with chronic kidney disease. Oxidative stress and endoplasmic reticulum stress (ERS) are two major mechanisms responsible for aldosterone-induced kidney injury. Cyclophilin (CYP) B is a chaperone protein that accelerates the rate of protein folding through its peptidyl-prolyl cis-trans isomerase (PPIase) activity. We report that overexpression of wild-type CYPB attenuated aldosterone-induced oxidative stress (evidenced by reduced production of reactive oxygen species and improved mitochondrial dysfunction), ERS (indicated by reduced expression of the ERS markers glucose-regulated protein 78 [GRP78] and C/-EBP homologous protein [CHOP]), and tubular cell apoptosis in comparison with aldosterone-induced human kidney-2 (HK-2) cells. The in vivo study also yielded similar results. Hence, CYPB performs a crucial function in protecting cells against aldosterone-induced oxidative stress, ERS, and tubular cell injury via its PPIase activity. PMID:27732567

  14. Protective effect of 20-hydroxyeicosatetraenoic acid (20-HETE) on adriamycin-induced toxicity of human renal tubular epithelial cell (HK-2).

    PubMed

    Tian, Ting; Li, Jin; Wang, Meng-Ying; Xie, Xian-Fei; Li, Qi-Xiong

    2012-05-15

    20-Hydroxyeicosatetraenoic acid is a cytochrome P4504A11 metabolite of arachidonic acid that plays an important role in the regulation of human renal functions. In the present study, we investigated the role of 20-hydroxyeicosatetraenoic acid on adriamycin induced toxicity in human renal tubular epithelial cells. Results showed that cell viability was decreased significantly and lactate dehydrogenase activity was increased significantly in a concentration-dependent manner when human renal tubular epithelial cells were incubated with adriamycin (10⁻⁷-10⁻³ mol/l) for 24h. In contrast, 20-hydroxyeicosatetraenoic acid (0.1, 1, 10, 50 μmol/l) increased cell survival and decreased lactate dehydrogenase activity concentration dependently in human renal tubular epithelial cells. When 20-hydroxyeicosatetraenoic acid (10, 50 μmol/l) was co-administered with adriamycin (10⁻³ mol/l), it significantly increased cell viability and decreased lactate dehydrogenase activity. On the other hand, N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine (HET-0016) (1 μM), a selective inhibitor of 20-hydroxyeicosatetraenoic acid synthesizing enzyme exaggerated cell viability reduction and lactate dehydrogenase activity augmentation induced by adriamycin. Adriamycin suppressed the expression of cytochrome P4504A11 gene and its protein production in human renal tubular epithelial cells. Furthermore, adriamycin was more effective than N-hydroxy-N'-(4-butyl-2-methylphenyl)formamidine at lowering the expression of cytochrome P4504A11 gene and its protein. These results suggest that 20-hydroxyeicosatetraenoic acid may protect adriamycin-induced toxicity of human renal tubular epithelial cells, meanwhile, adriamycin-induced toxicity of human renal tubular epithelial cells possibly involves inhibiting cytochrome P4504A11 expression. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  15. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    PubMed

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  16. Kidney specific protein-positive cells derived from embryonic stem cells reproduce tubular structures in vitro and differentiate into renal tubular cells.

    PubMed

    Morizane, Ryuji; Monkawa, Toshiaki; Fujii, Shizuka; Yamaguchi, Shintaro; Homma, Koichiro; Matsuzaki, Yumi; Okano, Hideyuki; Itoh, Hiroshi

    2014-01-01

    Embryonic stem cells and induced pluripotent stem cells have the ability to differentiate into various organs and tissues, and are regarded as new tools for the elucidation of disease mechanisms as well as sources for regenerative therapies. However, a method of inducing organ-specific cells from pluripotent stem cells is urgently needed. Although many scientists have been developing methods to induce various organ-specific cells from pluripotent stem cells, renal lineage cells have yet to be induced in vitro because of the complexity of kidney structures and the diversity of kidney-component cells. Here, we describe a method of inducing renal tubular cells from mouse embryonic stem cells via the cell purification of kidney specific protein (KSP)-positive cells using an anti-KSP antibody. The global gene expression profiles of KSP-positive cells derived from ES cells exhibited characteristics similar to those of cells in the developing kidney, and KSP-positive cells had the capacity to form tubular structures resembling renal tubular cells when grown in a 3D culture in Matrigel. Moreover, our results indicated that KSP-positive cells acquired the characteristics of each segment of renal tubular cells through tubular formation when stimulated with Wnt4. This method is an important step toward kidney disease research using pluripotent stem cells, and the development of kidney regeneration therapies.

  17. Renal tubular angiotensin converting enzyme is responsible for nitro-L-arginine methyl ester (L-NAME)-induced salt sensitivity

    PubMed Central

    Giani, Jorge F.; Eriguchi, Masahiro; Bernstein, Ellen A.; Katsumata, Makoto; Shen, Xiao Z.; Li, Liang; McDonough, Alicia A.; Fuchs, Sebastien; Bernstein, Kenneth E.; Gonzalez-Villalobos, Romer A.

    2017-01-01

    Renal parenchymal injury predisposes to salt-sensitive hypertension, but how this occurs is not known. Here we tested whether renal tubular angiotensin converting enzyme (ACE), the main site of kidney ACE expression, is central to the development of salt sensitivity in this setting. Two mouse models were used: it-ACE mice in which ACE expression is selectively eliminated from renal tubular epithelial cells; and ACE 3/9 mice, a compound heterozygous mouse model that makes ACE only in renal tubular epithelium from the ACE 9 allele, and in liver hepatocytes from the ACE 3 allele. Salt sensitivity was induced using a post L-NAME salt challenge. While both wild-type and ACE 3/9 mice developed arterial hypertension following three weeks of high salt administration, it-ACE mice remained normotensive with low levels of renal angiotensin II. These mice displayed increased sodium excretion, lower sodium accumulation, and an exaggerated reduction in distal sodium transporters. Thus, in mice with renal injury induced by L-NAME pretreatment, renal tubular epithelial ACE, and not ACE expression by renal endothelium, lung, brain, or plasma, is essential for renal angiotensin II accumulation and salt-sensitive hypertension. PMID:27988209

  18. Deferasirox-induced iron depletion promotes BclxL downregulation and death of proximal tubular cells

    PubMed Central

    Martin-Sanchez, Diego; Gallegos-Villalobos, Angel; Fontecha-Barriuso, Miguel; Carrasco, Susana; Sanchez-Niño, Maria Dolores; Lopez-Hernandez, Francisco J; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto; Sanz, Ana Belén

    2017-01-01

    Iron deficiency has been associated with kidney injury. Deferasirox is an oral iron chelator used to treat blood transfusion-related iron overload. Nephrotoxicity is the most serious and common adverse effect of deferasirox and may present as an acute or chronic kidney disease. However, scarce data are available on the molecular mechanisms of nephrotoxicity. We explored the therapeutic modulation of deferasirox-induced proximal tubular cell death in culture. Deferasirox induced dose-dependent tubular cell death and AnexxinV/7AAD staining showed features of apoptosis and necrosis. However, despite inhibiting caspase-3 activation, the pan-caspase inhibitor zVAD-fmk failed to prevent deferasirox-induced cell death. Moreover, zVAD increased deferasirox-induced cell death, a feature sometimes found in necroptosis. Electron microscopy identified mitochondrial injury and features of necrosis. However, neither necrostatin-1 nor RIP3 knockdown prevented deferasirox-induced cell death. Deferasirox caused BclxL depletion and BclxL overexpression was protective. Preventing iron depletion protected from BclxL downregulation and deferasirox cytotoxicity. In conclusion, deferasirox promoted iron depletion-dependent cell death characterized by BclxL downregulation. BclxL overexpression was protective, suggesting a role for BclxL downregulation in iron depletion-induced cell death. This information may be used to develop novel nephroprotective strategies. Furthermore, it supports the concept that monitoring kidney tissue iron depletion may decrease the risk of deferasirox nephrotoxicity. PMID:28139717

  19. Deferasirox-induced iron depletion promotes BclxL downregulation and death of proximal tubular cells.

    PubMed

    Martin-Sanchez, Diego; Gallegos-Villalobos, Angel; Fontecha-Barriuso, Miguel; Carrasco, Susana; Sanchez-Niño, Maria Dolores; Lopez-Hernandez, Francisco J; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto; Sanz, Ana Belén

    2017-01-31

    Iron deficiency has been associated with kidney injury. Deferasirox is an oral iron chelator used to treat blood transfusion-related iron overload. Nephrotoxicity is the most serious and common adverse effect of deferasirox and may present as an acute or chronic kidney disease. However, scarce data are available on the molecular mechanisms of nephrotoxicity. We explored the therapeutic modulation of deferasirox-induced proximal tubular cell death in culture. Deferasirox induced dose-dependent tubular cell death and AnexxinV/7AAD staining showed features of apoptosis and necrosis. However, despite inhibiting caspase-3 activation, the pan-caspase inhibitor zVAD-fmk failed to prevent deferasirox-induced cell death. Moreover, zVAD increased deferasirox-induced cell death, a feature sometimes found in necroptosis. Electron microscopy identified mitochondrial injury and features of necrosis. However, neither necrostatin-1 nor RIP3 knockdown prevented deferasirox-induced cell death. Deferasirox caused BclxL depletion and BclxL overexpression was protective. Preventing iron depletion protected from BclxL downregulation and deferasirox cytotoxicity. In conclusion, deferasirox promoted iron depletion-dependent cell death characterized by BclxL downregulation. BclxL overexpression was protective, suggesting a role for BclxL downregulation in iron depletion-induced cell death. This information may be used to develop novel nephroprotective strategies. Furthermore, it supports the concept that monitoring kidney tissue iron depletion may decrease the risk of deferasirox nephrotoxicity.

  20. Tubular Epithelial NF-κB Activity Regulates Ischemic AKI

    PubMed Central

    Vigolo, Emilia; Hinze, Christian; Park, Joon-Keun; Roël, Giulietta; Balogh, András; Choi, Mira; Wübken, Anne; Cording, Jimmi; Blasig, Ingolf E.; Luft, Friedrich C.; Scheidereit, Claus; Schmidt-Ott, Kai M.; Schmidt-Ullrich, Ruth; Müller, Dominik N.

    2016-01-01

    NF-κB is a key regulator of innate and adaptive immunity and is implicated in the pathogenesis of AKI. The cell type–specific functions of NF-κB in the kidney are unknown; however, the pathway serves distinct functions in immune and tissue parenchymal cells. We analyzed tubular epithelial-specific NF-κB signaling in a mouse model of ischemia-reperfusion injury (IRI)–induced AKI. NF-κB reporter activity and nuclear localization of phosphorylated NF-κB subunit p65 analyses in mice revealed that IRI induced widespread NF-κB activation in renal tubular epithelia and in interstitial cells that peaked 2–3 days after injury. To genetically antagonize tubular epithelial NF-κB activity, we generated mice expressing the human NF-κB super-repressor IκBαΔN in renal proximal, distal, and collecting duct epithelial cells. Compared with control mice, these mice exhibited improved renal function, reduced tubular apoptosis, and attenuated neutrophil and macrophage infiltration after IRI-induced AKI. Furthermore, tubular NF-κB–dependent gene expression profiles revealed temporally distinct functional gene clusters for apoptosis, chemotaxis, and morphogenesis. Primary proximal tubular cells isolated from IκBαΔN-expressing mice and exposed to hypoxia-mimetic agent cobalt chloride exhibited less apoptosis and expressed lower levels of chemokines than cells from control mice did. Our results indicate that postischemic NF-κB activation in renal tubular epithelia aggravates tubular injury and exacerbates a maladaptive inflammatory response. PMID:26823548

  1. Tubular inverse opal scaffolds for biomimetic vessels

    NASA Astrophysics Data System (ADS)

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-01

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially

  2. Dragon (Repulsive Guidance Molecule RGMb) Inhibits E-cadherin Expression and Induces Apoptosis in Renal Tubular Epithelial Cells*

    PubMed Central

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y.; Xia, Yin

    2013-01-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45–66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo. PMID:24052264

  3. The use of social network analysis to examine the transmission of Salmonella spp. within a vertically integrated broiler enterprise.

    PubMed

    Crabb, Helen Kathleen; Allen, Joanne Lee; Devlin, Joanne Maree; Firestone, Simon Matthew; Stevenson, Mark Anthony; Gilkerson, James Rudkin

    2018-05-01

    To better understand factors influencing infectious agent dispersal within a livestock population information is needed on the nature and frequency of contacts between farm enterprises. This study uses social network analysis to describe the contact network within a vertically integrated broiler poultry enterprise to identify the potential horizontal and vertical transmission pathways for Salmonella spp. Nodes (farms, sheds, production facilities) were identified and the daily movement of commodities (eggs, birds, feed, litter) and people between nodes were extracted from routinely kept farm records. Three time periods were examined in detail, 1- and 8- and 17-weeks of the production cycle and contact networks were described for all movements, and by commodity and production type. All nodes were linked by at least one movement during the study period but network density was low indicating that all potential pathways between nodes did not exist. Salmonella spp. transmission via vertical or horizontal pathways can only occur along directed pathways when those pathways are present. Only two locations (breeder or feed nodes) were identified where the transmission of a single Salmonella spp. clone could theoretically percolate through the network to the broiler or processing nodes. Only the feed transmission pathway directly connected all parts of the network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Sirt1 protects against oxidative stress-induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasegawa, Kazuhiro; Wakino, Shu; Yoshioka, Kyoko

    2008-07-18

    NAD{sup +}-dependent protein deacetylase Sirt1 regulates cellular apoptosis. We examined the role of Sirt1 in renal tubular cell apoptosis by using HK-2 cells, proximal tubular cell lines with or without reactive oxygen species (ROS), H{sub 2}O{sub 2}. Without any ROS, Sirt1 inhibitors enhanced apoptosis and the expression of ROS scavenger, catalase, and Sirt1 overexpression downregulated catalase. When apoptosis was induced with H{sub 2}O{sub 2}, Sirt1 was upregulated with the concomitant increase in catalase expression. Sirt1 overexpression rescued H{sub 2}O{sub 2}-induced apoptosis through the upregulation of catalase. H{sub 2}O{sub 2} induced the nuclear accumulation of forkhead transcription factor, FoxO3a and themore » gene silencing of FoxO3a enhanced H{sub 2}O{sub 2}-induced apoptosis. In conclusion, endogenous Sirt1 maintains cell survival by regulating catalase expression and by preventing the depletion of ROS required for cell survival. In contrast, excess ROS upregulates Sirt1, which activates FoxO3a and catalase leading to rescuing apoptosis. Thus, Sirt1 constitutes a determinant of renal tubular cell apoptosis by regulating cellular ROS levels.« less

  5. SiRNA-HMGA2 weakened AGEs-induced epithelial-to-mesenchymal transition in tubular epithelial cells.

    PubMed

    Bai, Yi-Hua; Wang, Jia-Ping; Yang, Min; Zeng, Yi; Jiang, Hong-Ying

    2015-02-20

    Diabetic nephropathy as the most common cause of end-stage renal disease accounts for a significant increase in morbidity and mortality in patients. Epithelial to mesenchymal transition (EMT) of tubular cells is associated with diabetic nephropathy. Advanced glycation end products (AGEs) are thought to be involved in the pathogenesis of diabetic nephropathy via multifactorial mechanisms. However, whether AGEs could induce EMT in Tubular epithelial cells is still unknown. In this study, we found that AGEs induced EMT and accompanied by reduced expression of the epithelial markers E-cadherin and enhanced expression of the mesenchymal markers vimentin and alpha-smooth muscle actin. Furthermore, the expression of HMGA2 was upregulated by AGEs. Far more interesting, its knockdown by short interfering RNA (siRNA) effectively reversed AGEs-induced EMT. Meanwhile, we also found that knockdown of HMGA2 inhibited high AGEs-induced generation of reactive oxygen species (ROS) and the activation of p38 MAPK. Collectively, these studies suggest that HMGA2 plays a important role in EMT during Diabetic nephropathy and more study toward HMGA2 should be played in renal pathogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Mechanism of intracellular signal transduction during injury of renal tubular cells induced by postasphyxial serum in neonates with asphyxia.

    PubMed

    Zhao, Jin; Dong, Wen-Bin; Li, Peng-yun; Deng, Chun-liang

    2009-01-01

    Renal injury is a severe and extremely common complication that occurs early in neonates with asphyxia. Reperfusion injury has been suggested as the cause of kidney damage during resuscitation of neonatal asphyxia. Previous studies have demonstrated that postasphyxial serum from neonates with asphyxia may result in apoptosis of renal tubular cells. However, the mechanisms that mediate renal tubular cell apoptosis induced by postasphyxial serum remain poorly understood. In this report we investigate the intracellular signal transduction mechanisms that operate during injury of renal tubular cells induced by postasphyxial serum in neonates. Cultured human renal proximal tubular cells HK-2 cell were exposed to 10% fetal calf serum (normal control), 20% postasphyxial serum or 20% postasphyxial serum with pyrrolidine dithiocarbamate (PDTC). The expression of both BAD and BAX in the cytoplasm was detected by immunohistochemistry. The mitochondria membrane potential (Deltapsim) was examined by confocal microscopy, and the release of the apoptogenic mitochondrial proteins cytochrome C and AIF was assessed by Western blot analysis. Loss of mitochondria membrane potential was detected in HK-2 cells treated with 20% postasphyxial serum as compared to cells in normal serum or PTDC-pretreated cells in 20% postasphyxial serum. A significant increase of Bad and Bax protein expression was also detected, along with the release of cytochrome C and AIF from mitochondria to cytosol in the postasphyxial serum treated cells, but not in the normal or PTDC-pretreated control cells. Our findings suggest that postasphyxial serum may induce renal tubular cell apoptosis through the mitochondrial pathway, and its intracellular signal transduction mechanism includes the activation of nuclear factor-kappaB. Copyright 2009 S. Karger AG, Basel.

  7. Naproxen-induced Ca2+ movement and death in MDCK canine renal tubular cells.

    PubMed

    Cheng, H-H; Chou, C-T; Sun, T-K; Liang, W-Z; Cheng, J-S; Chang, H-T; Tseng, H-W; Kuo, C-C; Chen, F-A; Kuo, D-H; Shieh, P; Jan, C-R

    2015-11-01

    Naproxen is an anti-inflammatory drug that affects cellular calcium ion (Ca(2+)) homeostasis and viability in different cells. This study explored the effect of naproxen on [Ca(2+)](i) and viability in Madin-Darby canine kidney cells (MDCK) canine renal tubular cells. At concentrations between 50 μM and 300 μM, naproxen induced [Ca(2+)](i) rises in a concentration-dependent manner. This Ca(2+) signal was reduced partly when extracellular Ca(2+) was removed. The Ca(2+) signal was inhibited by a Ca(2+) channel blocker nifedipine but not by store-operated Ca(2+) channel inhibitors (econazole and SKF96365), a protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, and a PKC inhibitor GF109203X. In Ca(2+)-free medium, pretreatment with 2,5-di-tert-butylhydroquinone or thapsigargin, an inhibitor of endoplasmic reticulum Ca(2+) pumps, partly inhibited naproxen-induced Ca(2+) signal. Inhibition of phospholipase C with U73122 did not alter naproxen-evoked [Ca(2+)](i) rises. At concentrations between 15 μM and 30 μM, naproxen killed cells in a concentration-dependent manner, which was not reversed by prechelating cytosolic Ca(2+) with the acetoxymethyl ester of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl. Annexin V/propidium iodide staining data suggest that naproxen induced apoptosis. Together, in MDCK renal tubular cells, naproxen induced [Ca(2+)](i) rises by inducing Ca(2+) release from multiple stores that included the endoplasmic reticulum and Ca(2+) entry via nifedipine-sensitive Ca(2+) channels. Naproxen induced cell death that involved apoptosis. © The Author(s) 2015.

  8. A novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in rat vascular smooth muscle and renal proximal tubular cells.

    PubMed

    Guo, Deng-Fu; Tardif, Valerie; Ghelima, Karin; Chan, John S D; Ingelfinger, Julie R; Chen, XiangMei; Chenier, Isabelle

    2004-05-14

    Angiotensin II stimulates cellular hypertrophy in cultured vascular smooth muscle and renal proximal tubular cells. This effect is believed to be one of earliest morphological changes of heart and renal failure. However, the precise molecular mechanism involved in angiotensin II-induced hypertrophy is poorly understood. In the present study we report the isolation of a novel angiotensin II type 1 receptor-associated protein. It encodes a 531-amino acid protein. Its mRNA is detected in all human tissues examined but highly expressed in the human kidney, pancreas, heart, and human embryonic kidney cells as well as rat vascular smooth muscle and renal proximal tubular cells. Protein synthesis and relative cell size analyzed by flow cytometry studies indicate that overexpression of the novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in cultured rat vascular smooth muscle and renal proximal tubular cells. In contrast, the hypertrophic effects was reversed in renal proximal tubular cell lines expressing the novel gene in the antisense orientation and its dominant negative mutant, which lacks the last 101 amino acids in its carboxyl-terminal tail. The hypertrophic effects are at least in part mediated via protein kinase B activation or cyclin-dependent kinase inhibitor, p27(kip1) protein expression level in vascular smooth muscle, and renal proximal tubular cells. Moreover, angiotensin II could not stimulate cellular hypertrophy in renal proximal tubular cells expressing the novel gene in the antisense orientation and its mutant. These findings may provide new molecular mechanisms to understand hypertrophic agents such as angiotensin II-induced cellular hypertrophy.

  9. Tubular inverse opal scaffolds for biomimetic vessels.

    PubMed

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-14

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.

  10. O-Serotype Conversion in Salmonella Typhimurium Induces Protective Immune Responses against Invasive Non-Typhoidal Salmonella Infections.

    PubMed

    Li, Pei; Liu, Qing; Luo, Hongyan; Liang, Kang; Yi, Jie; Luo, Ying; Hu, Yunlong; Han, Yue; Kong, Qingke

    2017-01-01

    Salmonella infections remain a big problem worldwide, causing enteric fever by Salmonella Typhi (or Paratyphi) or self-limiting gastroenteritis by non-typhoidal Salmonella (NTS) in healthy individuals. NTS may become invasive and cause septicemia in elderly or immuno-compromised individuals, leading to high mortality and morbidity. No vaccines are currently available for preventing NTS infection in human. As these invasive NTS are restricted to several O-antigen serogroups including B1, D1, C1, and C2, O-antigen polysaccharide is believed to be a good target for vaccine development. In this study, a strategy of O-serotype conversion was investigated to develop live attenuated S . Typhimurium vaccines against the major serovars of NTS infections. The immunodominant O4 serotype of S . Typhimurium was converted into O9, O7, and O8 serotypes through unmarked chromosomal deletion-insertion mutations. O-serotype conversion was confirmed by LPS silver staining and western blotting. All O-serotype conversion mutations were successfully introduced into the live attenuated S . Typhimurium vaccine S738 (Δ crp Δ cya ) to evaluate their immunogenicity in mice model. The vaccine candidates induced high amounts of heterologous O-polysaccharide-specific functional IgG responses. Vaccinated mice survived a challenge of 100 times the 50% lethality dose (LD 50 ) of wild-type S . Typhimurium. Protective efficacy against heterologous virulent Salmonella challenges was highly O-serotype related. Furthermore, broad-spectrum protection against S . Typhimurium, S . Enteritidis, and S . Choleraesuis was observed by co-vaccination of O9 and O7 O-serotype-converted vaccine candidates. This study highlights the strategy of expressing heterologous O-polysaccharides via genetic engineering in developing live attenuated S . Typhimurium vaccines against NTS infections.

  11. Salmonella Typhimurium induces SPI-1 and SPI-2 regulated and strain dependent downregulation of MHC II expression on porcine alveolar macrophages

    PubMed Central

    2012-01-01

    Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host’s immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI)-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig’s immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology. PMID:22694285

  12. Phylogenetic structure of European Salmonella Enteritidis outbreak correlates with national and international egg distribution network

    PubMed Central

    Inns, Thomas; Jombart, Thibaut; Ashton, Philip; Loman, Nicolas; Chatt, Carol; Messelhaeusser, Ute; Rabsch, Wolfgang; Simon, Sandra; Nikisins, Sergejs; Bernard, Helen; le Hello, Simon; Jourdan da-Silva, Nathalie; Kornschober, Christian; Mossong, Joel; Hawkey, Peter; de Pinna, Elizabeth; Grant, Kathie; Cleary, Paul

    2016-01-01

    Outbreaks of Salmonella Enteritidis have long been associated with contaminated poultry and eggs. In the summer of 2014 a large multi-national outbreak of Salmonella Enteritidis phage type 14b occurred with over 350 cases reported in the United Kingdom, Germany, Austria, France and Luxembourg. Egg supply network investigation and microbiological sampling identified the source to be a Bavarian egg producer. As part of the international investigation into the outbreak, over 400 isolates were sequenced including isolates from cases, implicated UK premises and eggs from the suspected source producer. We were able to show a clear statistical correlation between the topology of the UK egg distribution network and the phylogenetic network of outbreak isolates. This correlation can most plausibly be explained by different parts of the egg distribution network being supplied by eggs solely from independent premises of the Bavarian egg producer (Company X). Microbiological sampling from the source premises, traceback information and information on the interventions carried out at the egg production premises all supported this conclusion. The level of insight into the outbreak epidemiology provided by whole-genome sequencing (WGS) would not have been possible using traditional microbial typing methods. PMID:28348865

  13. Phylogenetic structure of European Salmonella Enteritidis outbreak correlates with national and international egg distribution network.

    PubMed

    Dallman, Tim; Inns, Thomas; Jombart, Thibaut; Ashton, Philip; Loman, Nicolas; Chatt, Carol; Messelhaeusser, Ute; Rabsch, Wolfgang; Simon, Sandra; Nikisins, Sergejs; Bernard, Helen; le Hello, Simon; Jourdan da-Silva, Nathalie; Kornschober, Christian; Mossong, Joel; Hawkey, Peter; de Pinna, Elizabeth; Grant, Kathie; Cleary, Paul

    2016-08-01

    Outbreaks of Salmonella Enteritidis have long been associated with contaminated poultry and eggs. In the summer of 2014 a large multi-national outbreak of Salmonella Enteritidis phage type 14b occurred with over 350 cases reported in the United Kingdom, Germany, Austria, France and Luxembourg. Egg supply network investigation and microbiological sampling identified the source to be a Bavarian egg producer. As part of the international investigation into the outbreak, over 400 isolates were sequenced including isolates from cases, implicated UK premises and eggs from the suspected source producer. We were able to show a clear statistical correlation between the topology of the UK egg distribution network and the phylogenetic network of outbreak isolates. This correlation can most plausibly be explained by different parts of the egg distribution network being supplied by eggs solely from independent premises of the Bavarian egg producer (Company X). Microbiological sampling from the source premises, traceback information and information on the interventions carried out at the egg production premises all supported this conclusion. The level of insight into the outbreak epidemiology provided by whole-genome sequencing (WGS) would not have been possible using traditional microbial typing methods.

  14. The effect of maleate induced proximal tubular dysfunction on the renal handling of Tc-99m DMSA in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Provoost, A.P.; Van Aken, M.

    1984-01-01

    In the healthy kidney Tc-99m DMSA accumulates in the proximal tubular cells. Consequently, impairment of the reabsorptive function of these cells may alter the renal handling of this static renal imaging agent. The authors investigated in rats the effects of a sodiummaleate (Ma) (2mmol/kg iv) induced proximal tubular dysfunction on the renal accumulation and excretion of Tc-99m DMSA. Such a treatment results in a moderate fall of the glomerular filtration rate, glycosuria, aminoaciduria and a tubular proteinuria. In 7 adult male Wistar rats, Tc-99m DMSA scans were taken before Ma, on the day of treatment, and 1 week thereafter. Themore » accumulation of Tc-99m DMSA in kidneys (Ki) and bladder (Bl) was determined at 1, 2, 4, and 24 hours after i.v. injection. The results, expressed as a percentage of the injected dose, are presented. The findings show that a reversible Ma induced impairment of the proximal reabsorptive capacity severely alters the renal tubular handling of Tc-99m DMSA. In contrast to the control situation, only a small fraction of the DMSA is retained in the kidney and the majority is transported directly to the urinary bladder. When similar alterations are observed in clinical Tc-99m DMSA scans, this may be an indication of an impairment of the proximal tubular function.« less

  15. Pink1/Parkin-mediated mitophagy play a protective role in cisplatin induced renal tubular epithelial cells injury.

    PubMed

    Zhao, Chuanyan; Chen, Zhuyun; Xu, Xueqiang; An, Xiaofei; Duan, Suyan; Huang, Zhimin; Zhang, Chengning; Wu, Lin; Zhang, Bo; Zhang, Aihua; Xing, Changying; Yuan, Yanggang

    2017-01-15

    Cisplatin often causes acute kidney injury (AKI) in the treatment of a wide variety of malignancies. Mitochondrial dysfunction is one of the main reasons for cisplatin nephrotoxicity. Previous study showed that Pink1 and Parkin play central roles in regulating the mitophagy, which is a key protective mechanism by specifically eliminating dysfunctional or damaged mitochondria. However, the mechanisms that modulate mitophagy in cisplatin induced nephrotoxicity remain to be elucidated. The purpose of this study was to investigate the effects of Pink1/Parkin pathway in mitophagy, mitochondrial dysfunction and renal proximal tubular cells injury during cisplatin treatment. In cultured human renal proximal tubular cells, we found that knockdown of Pink1/Parkin induced the aggravation of mitochondrial function, leading to the increase of cell injury through inhibition of mitophagy. Additionally, the overexpression of Pink1/Parkin protected against cisplatin-induced mitochondrial dysfunction and cell injury by promoting mitophagy. Our results provide clear evidence that Pink1/Parkin-dependent mitophagy has identified potential targets for the treatment of cisplatin-induced AKI. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Diabetes and renal tubular cell apoptosis

    PubMed Central

    Habib, Samy L

    2013-01-01

    Apoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose induces apoptosis is not fully understood. Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Hyperglycemia and high glucose in vitro also lead to apoptosis, a form of programmed cell death. High glucose similar to those seen with hyperglycemia in people with diabetes mellitus, lead to accelerated apoptosis, a form of programmed cell death characterized by cell shrinkage, chromatin condensation and DNA fragmentation, in variety of cell types, including renal proximal tubular epithelial cells. PMID:23593533

  17. Diabetes and renal tubular cell apoptosis.

    PubMed

    Habib, Samy L

    2013-04-15

    Apoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose induces apoptosis is not fully understood. Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Hyperglycemia and high glucose in vitro also lead to apoptosis, a form of programmed cell death. High glucose similar to those seen with hyperglycemia in people with diabetes mellitus, lead to accelerated apoptosis, a form of programmed cell death characterized by cell shrinkage, chromatin condensation and DNA fragmentation, in variety of cell types, including renal proximal tubular epithelial cells.

  18. Response of human renal tubular cells to cyclosporine and sirolimus: A toxicogenomic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallet, Nicolas; Rabant, Marion; Xu-Dubois, Yi-Chun

    The molecular mechanisms involved in the potentially nephrotoxic response of tubular cells to immunosuppressive drugs remain poorly understood. Transcriptional profiles of human proximal tubular cells exposed to cyclosporine A (CsA), sirolimus (SRL) or their combination, were established using oligonucleotide microarrays. Hierarchical clustering of genes implicated in fibrotic processes showed a clear distinction between expression profiles with CsA and CsA + SRL treatments on the one hand and SRL treatment on the other. Functional analysis found that CsA and CsA + SRL treatments preferentially alter biological processes located at the cell membrane, such as ion transport or signal transduction, whereas SRLmore » modifies biological processes within the nucleus and related to transcriptional activity. Genome wide expression analysis suggested that CsA may induce an endoplasmic reticulum (ER) stress in tubular cells in vitro. Moreover we found that CsA exposure in vivo is associated with the upregulation of the ER stress marker BIP in kidney transplant biopsies. In conclusion, this toxicogenomic study highlights the molecular interaction networks that may contribute to the tubular response to CsA and SRL. These results may also offer a new working hypothesis for future research in the field of CsA nephrotoxicity. Further studies are needed to evaluate if ER stress detection in tubular cells in human biopsies can predict CsA nephrotoxicity.« less

  19. Tubular Recovery after Acute Kidney Injury.

    PubMed

    Fattah, Hadi; Vallon, Volker

    2018-05-31

    A significant portion of patients who are affected by acute kidney injury (AKI) do not fully recover due to largely unclear reasons. Restoration of tubular function has been proposed to be a prerequisite for glomerular filtration rate (GFR) recovery. Proximal tubular cells dedifferentiate during the tubular injury phase, which is required for subsequent cell proliferation and replacement of lost epithelial cells. Experimental studies indicate that some cells fail to redifferentiate and continue to produce growth factors (e.g., transforming growth factor β) that can induce fibrosis. Preclinical studies provide first evidence for beneficial effects of inhibiting glucose transport in the proximal tubule in models of ischemia-reperfusion injury. Comparing renal RNA sequencing data with kidney function during recovery from varying levels of AKI may provide new cues with regard to the sequence of events and help identify key determinants of recovery from AKI. Key Messages: Tubular recovery after AKI is vital for recovery of kidney function including improvement of GFR, and likely determines which patients fully recover from AKI or progress to chronic kidney disease. There is a need to better understand the sequence of events and the processes of tubular cell proliferation and repair, including safe strategies to intervene. The temporary inhibition of selected tubular transport processes, possibly in selected nephron regions, may provide an opportunity to improve tubular cell energetics and facilitate tubular cell recovery with consequences for kidney outcome. © 2018 S. Karger AG, Basel.

  20. Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network

    PubMed Central

    Park, Seong H.; Zhu, Peng-Peng; Parker, Rell L.; Blackstone, Craig

    2010-01-01

    Hereditary spastic paraplegias (HSPs; SPG1–45) are inherited neurological disorders characterized by lower extremity spastic weakness. More than half of HSP cases result from autosomal dominant mutations in atlastin-1 (also known as SPG3A), receptor expression enhancing protein 1 (REEP1; SPG31), or spastin (SPG4). The atlastin-1 GTPase interacts with spastin, a microtubule-severing ATPase, as well as with the DP1/Yop1p and reticulon families of ER-shaping proteins, and SPG3A caused by atlastin-1 mutations has been linked pathogenically to abnormal ER morphology. Here we investigated SPG31 by analyzing the distribution, interactions, and functions of REEP1. We determined that REEP1 is structurally related to the DP1/Yop1p family of ER-shaping proteins and localizes to the ER in cultured rat cerebral cortical neurons, where it colocalizes with spastin and atlastin-1. Upon overexpression in COS7 cells, REEP1 formed protein complexes with atlastin-1 and spastin within the tubular ER, and these interactions required hydrophobic hairpin domains in each of these proteins. REEP proteins were required for ER network formation in vitro, and REEP1 also bound microtubules and promoted ER alignment along the microtubule cytoskeleton in COS7 cells. A SPG31 mutant REEP1 lacking the C-terminal cytoplasmic region did not interact with microtubules and disrupted the ER network. These data indicate that the HSP proteins atlastin-1, spastin, and REEP1 interact within the tubular ER membrane in corticospinal neurons to coordinate ER shaping and microtubule dynamics. Thus, defects in tubular ER shaping and network interactions with the microtubule cytoskeleton seem to be the predominant pathogenic mechanism of HSP. PMID:20200447

  1. Effect of taurine on advanced glycation end products-induced hypertrophy in renal tubular epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J.-S.; Chuang, L.-Y.; Guh, J.-Y.

    2008-12-01

    Mounting evidence indicates that advanced glycation end products (AGE) play a major role in the development of diabetic nephropathy (DN). Taurine is a well documented antioxidant agent. To explore whether taurine was linked to altered AGE-mediated renal tubulointerstitial fibrosis in DN, we examined the molecular mechanisms of taurine responsible for inhibition of AGE-induced hypertrophy in renal tubular epithelial cells. We found that AGE (but not non-glycated BSA) caused inhibition of cellular mitogenesis rather than cell death by either necrosis or apoptosis. There were no changes in caspase 3 activity, bcl-2 protein expression, and mitochondrial cytochrome c release in BSA, AGE,more » or the antioxidant taurine treatments in these cells. AGE-induced the Raf-1/extracellular signal-regulated kinase (ERK) activation was markedly blocked by taurine. Furthermore, taurine, the Raf-1 kinase inhibitor GW5074, and the ERK kinase inhibitor PD98059 may have the ability to induce cellular proliferation and cell cycle progression from AGE-treated cells. The ability of taurine, GW5074, or PD98059 to inhibit AGE-induced hypertrophy was verified by the observation that it significantly decreased cell size, cellular hypertrophy index, and protein levels of RAGE, p27{sup Kip1}, collagen IV, and fibronectin. The results obtained in this study suggest that taurine may serve as the potential anti-fibrotic activity in DN through mechanism dependent of its Raf-1/ERK inactivation in AGE-induced hypertrophy in renal tubular epithelial cells.« less

  2. Histone deacetylase inhibitors protect against cisplatin-induced acute kidney injury by activating autophagy in proximal tubular cells.

    PubMed

    Liu, Jing; Livingston, Man J; Dong, Guie; Tang, Chengyuan; Su, Yunchao; Wu, Guangyu; Yin, Xiao-Ming; Dong, Zheng

    2018-02-23

    Histone deacetylase inhibitors (HDACi) have therapeutic effects in models of various renal diseases including acute kidney injury (AKI); however, the underlying mechanism remains unclear. Here we demonstrate that two widely tested HDACi (suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA)) protect the kidneys in cisplatin-induced AKI by enhancing autophagy. In cultured renal proximal tubular cells, SAHA and TSA enhanced autophagy during cisplatin treatment. We further verified the protective effect of TSA against cisplatin-induced apoptosis in these cells. Notably, inhibition of autophagy by chloroquine or by autophagy gene 7 (Atg7) ablation diminished the protective effect of TSA. In mice, TSA increased autophagy in renal proximal tubules and protected against cisplatin-induced AKI. The in vivo effect of TSA was also abolished by chloroquine and by Atg7 knockout specifically from renal proximal tubules. Mechanistically, TSA stimulated AMPK and inactivated mTOR during cisplatin treatment of proximal tubule cells and kidneys in mice. Together, these results suggest that HDACi may protect kidneys by activating autophagy in proximal tubular cells.

  3. Hypertrophy of proximal tubular epithelial cells induced by low pH in vitro is independent of ammoniagenesis.

    PubMed

    Bevington, A; Millwater, C J; Walls, J

    1994-01-01

    Metabolic acidosis can lead to tubular hypertrophy in vivo. This is thought to arise from stimulation of renal production of ammonia, a known hypertrophic agent. To examine this effect in vitro, confluent opossum (OK) proximal tubular epithelial cells were cultured at acidic pH (7.21 +/- 0.02) or at control pH (7.37 +/- 0.01) for 4 days. Protein content was 9% higher at acidic pH whereas DNA content was unaffected. The resulting increase in mean cell size (protein/DNA ratio) was 10% but correlated inversely with the mass of cells in control wells, varying from +48% at low cell mass to -14% at high cell mass. In contrast, low pH decreased 3H-thymidine incorporation by 9%. However, ammonia production was unaffected. These changes in protein/DNA ratio and 3H-thymidine incorporation cannot therefore be attributed to acid-induced ammoniagenesis and imply that low pH exerts a more direct effect on tubular cell growth than previously envisaged.

  4. Salmonella Modulates Metabolism during Growth under Conditions that Induce Expression of Virulence Genes

    PubMed Central

    Kim, Young-Mo; Schmidt, Brian J.; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage Kaiser, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-01-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes to virulence in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Furthermore, analyses of omics data in the context of the metabolic model indicated rewiring of the metabolic network to support pathways associated with virulence. For example, cellular concentrations of polyamines were perturbed, as well as the predicted capacity for secretion and uptake. PMID:23559334

  5. Resveratrol prevents high glucose-induced epithelial-mesenchymal transition in renal tubular epithelial cells by inhibiting NADPH oxidase/ROS/ERK pathway.

    PubMed

    He, Ting; Guan, Xu; Wang, Song; Xiao, Tangli; Yang, Ke; Xu, Xinli; Wang, Junping; Zhao, Jinghong

    2015-02-15

    Resveratrol (RSV) is reported to have renoprotective activity against diabetic nephropathy, while the mechanisms underlying its function have not been fully elucidated. In this study, we investigate the effect and related mechanism of RSV against high glucose-induced epithelial to mesenchymal transition (EMT) in human tubular epithelial cells (HK-2). A typical EMT is induced by high glucose in HK-2 cells, accompanied by increased levels of reactive oxygen species (ROS). RSV exhibits a strong ability to inhibit high glucose-induced EMT by decreasing intracellular ROS levels via down-regulation of NADPH oxidase subunits NOX1 and NOX4. The activation of extracellular signal-regulated kinase (ERK1/2) is found to be involved in high glucose-induced EMT in HK-2 cells. RSV, like NADPH oxidase inhibitor diphenyleneiodonium, can block ERK1/2 activation induced by high glucose. Our results demonstrate that RSV is a potent agent against high glucose-induced EMT in renal tubular cells via inhibition of NADPH oxidase/ROS/ERK1/2 pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer's disease.

    PubMed

    Sharoar, M G; Shi, Q; Ge, Y; He, W; Hu, X; Perry, G; Zhu, X; Yan, R

    2016-09-01

    Pathological features in Alzheimer's brains include mitochondrial dysfunction and dystrophic neurites (DNs) in areas surrounding amyloid plaques. Using a mouse model that overexpresses reticulon 3 (RTN3) and spontaneously develops age-dependent hippocampal DNs, here we report that DNs contain both RTN3 and REEPs, topologically similar proteins that can shape tubular endoplasmic reticulum (ER). Importantly, ultrastructural examinations of such DNs revealed gradual accumulation of tubular ER in axonal termini, and such abnormal tubular ER inclusion is found in areas surrounding amyloid plaques in biopsy samples from Alzheimer's disease (AD) brains. Functionally, abnormally clustered tubular ER induces enhanced mitochondrial fission in the early stages of DN formation and eventual mitochondrial degeneration at later stages. Furthermore, such DNs are abrogated when RTN3 is ablated in aging and AD mouse models. Hence, abnormally clustered tubular ER can be pathogenic in brain regions: disrupting mitochondrial integrity, inducing DNs formation and impairing cognitive function in AD and aging brains.

  7. 3-MCPD 1-Palmitate Induced Tubular Cell Apoptosis In Vivo via JNK/p53 Pathways

    PubMed Central

    Liu, Man; Huang, Guoren; Wang, Thomas T.Y.; Sun, Xiangjun; Yu, Liangli (Lucy)

    2016-01-01

    Fatty acid esters of 3-chloro-1, 2-propanediol (3-MCPD esters) are a group of processing induced food contaminants with nephrotoxicity but the molecular mechanism(s) remains unclear. This study investigated whether and how the JNK/p53 pathway may play a role in the nephrotoxic effect of 3-MCPD esters using 3-MCPD 1-palmitate (MPE) as a probe compound in Sprague Dawley rats. Microarray analysis of the kidney from the Sprague Dawley rats treated with MPE, using Gene Ontology categories and KEGG pathways, revealed that MPE altered mRNA expressions of the genes involved in the mitogen-activated protein kinase (JNK and ERK), p53, and apoptotic signal transduction pathways. The changes in the mRNA expressions were confirmed by qRT-PCR and Western blot analyses and were consistent with the induction of tubular cell apoptosis as determined by histopathological, TUNEL, and immunohistochemistry analyses in the kidneys of the Sprague Dawley rats. Additionally, p53 knockout attenuated the apoptosis, and the apoptosis-related protein bax expression and cleaved caspase-3 activation induced by MPE in the p53 knockout C57BL/6 mice, whereas JNK inhibitor SP600125 but not ERK inhibitor U0126 inhibited MPE-induced apoptosis, supporting the conclusion that JNK/p53 might play a critical role in the tubular cell apoptosis induced by MPE and other 3-MCPD fatty acid esters. PMID:27008853

  8. Bcl-2 protects tubular epithelial cells from ischemia/reperfusion injury by dual mechanisms.

    PubMed

    Isaka, Y; Suzuki, C; Abe, T; Okumi, M; Ichimaru, N; Imamura, R; Kakuta, Y; Matsui, I; Takabatake, Y; Rakugi, H; Shimizu, S; Takahara, S

    2009-01-01

    Ischemia/reperfusion (I/R) injury, which induces extensive loss of tubular epithelial cells, is associated with delayed graft function following kidney transplantation. Recent reports have suggested that cell death by I/R injury occurs by autophagy, a cellular degradation process responsible for the turnover of unnecessary or dysfunctional organelles and cytoplasmic proteins, as well as by apoptosis. Recently, we demonstrated that overexpression of the anti-apoptotic factor, Bcl-2, inhibited tubular apoptosis and subsequent tubulointerstitial damage after I/R injury. Autophagy is also observed in cells undergoing cell death in several diseases. Therefore, we hypothesized that increased Bcl-2 protein may protect tubular epithelial cells by suppressing autophagy and inhibiting apoptosis. In the present study, a transgenic mouse model (LC3-GFP TG) in which autophagosomes are labeled with LC3-GFP and Bcl-2/LC3-GFP double transgenic mice (Bcl-2/LC3-GFP TG) were used to examine the effect of Bcl-2 on I/R-induced autophagy. I/R injury, which is associated with marked disruption of normal tubular morphology, promoted the formation of LC3-GFP dots, representing extensively induced autophagosomes. On electron microscopy, the autophagosomes contained mitochondria in I/R-injured tubular epithelial cells. In contrast, Bcl-2 augmentation suppressed the formation of autophagosomes and there was less tubular damage. In conclusion, Bcl-2 augmentation protected renal tubular epithelial cells from I/R injury by suppressing autophagosomal degradation and inhibiting tubular apoptosis.

  9. Application of genetically engineered Salmonella typhimurium for interferon-gamma-induced therapy against melanoma.

    PubMed

    Yoon, Wonsuck; Park, Yoo Chang; Kim, Jinseok; Chae, Yang Seok; Byeon, Jung Hye; Min, Sang-Hyun; Park, Sungha; Yoo, Young; Park, Yong Keun; Kim, Byeong Mo

    2017-01-01

    Salmonella have been experimentally used as anti-cancer agents, because they show selective growth in tumours. In this study, we genetically modified attenuated Salmonella typhimurium to express and secrete interferon-gamma (IFN-γ) as a tumouricidal agent to enhance the therapeutic efficacy of Salmonella. IFN-γ was fused to the N-terminal region (residues 1-160) of SipB (SipB160) for secretion from bacterial cells. Attenuated S. typhimurium expressing recombinant IFN-γ (S. typhimurium (IFN-γ)) invaded the melanoma cells and induced cytotoxicity. Subcutaneous administration of S. typhimurium (IFN-γ) also efficiently inhibited tumour growth and prolonged the survival of C57BL/6 mice bearing B16F10 melanoma compared with administration of phosphate-buffered saline (PBS), unmodified S. typhimurium or S. typhimurium expressing empty vector (S. typhimurium [Vec]) in a natural killer (NK) cell-dependent manner. Moreover, genetically modified Salmonella, including S. typhimurium (IFN-γ), showed little toxicity to normal tissues with no observable adverse effects. However, S. typhimurium (IFN-γ)-mediated tumour suppression was attributed to direct killing of tumour cells rather than to stable anti-tumour immunity. Collectively, these results suggest that tumour-targeted therapy using S. typhimurium (IFN-γ) has potential for melanoma treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Spermidine rescues proximal tubular cells from oxidative stress and necrosis after ischemic acute kidney injury.

    PubMed

    Kim, Jinu

    2017-10-01

    Kidney ischemia and reperfusion injury (IRI) is associated with a high mortality rate, which is attributed to tubular oxidative stress and necrosis; however, an effective approach to limit IRI remains elusive. Spermidine, a naturally occurring polyamine, protects yeast cells against aging through the inhibition of oxidative stress and necrosis. In the present study, spermidine supplementation markedly attenuated increases in plasma creatinine concentration and tubular injury score after IRI. In addition, exogenous spermidine potently inhibited oxidative stress, especially lipid peroxidation after IRI in kidneys and exposure to hydrogen peroxide in kidney proximal tubular cells, suppressing plasma membrane disruption and necrosis. Consistent with spermidine supplementation, upregulation of ornithine decarboxylase (ODC) in human kidney proximal tubular cells significantly diminished lipid peroxidation and necrosis induced by hydrogen peroxide-induced injury. Conversely, ODC deficiency significantly enhanced lipid peroxidation and necrosis after exposure to hydrogen peroxide. Finally, small interfering RNA-mediated ODC inhibition induced functional and histological damage in kidneys as well as it increased lipid hydroperoxide levels after IRI. In conclusion, these data suggest that spermidine level determines kidney proximal tubular damage through oxidative stress and necrosis induced by IRI, and this finding provides a novel target for prevention of tubular damage induced by IRI.

  11. Dysregulated humoral immunity to nontyphoidal Salmonella in HIV-infected African adults

    PubMed Central

    MacLennan, Calman A.; Gilchrist, James J.; Gordon, Melita A.; Cunningham, Adam F.; Cobbold, Mark; Goodall, Margaret; Kingsley, Robert A.; van Oosterhout, Joep J. G.; Msefula, Chisomo L.; Mandala, Wilson L.; Leyton, Denisse L.; Marshall, Jennifer L.; Gondwe, Esther N.; Bobat, Saeeda; López-Macías, Constantino; Doffinger, Rainer; Henderson, Ian R.; Zijlstra, Eduard E.; Dougan, Gordon; Drayson, Mark T.; MacLennan, Ian C. M.; Molyneux, Malcolm E.

    2013-01-01

    Nontyphoidal Salmonellae are a major cause of life-threatening bacteremia among HIV-infected individuals. Although cell-mediated immunity controls intracellular infection, antibody protects against Salmonella bacteremia. We report that high titer antibodies specific for Salmonella lipopolysaccharide (LPS) associate with absent Salmonella-killing in HIV-infected African adults. Killing was restored by genetically shortening LPS from target Salmonella, or removing LPS-specific antibodies from serum. Complement-mediated killing of Salmonella by healthy serum is shown to be induced specifically by antibodies against outer membrane proteins. This killing is lost when excess antibody against Salmonella LPS is added. Thus our study indicates impaired immunity against nontyphoidal Salmonella bacteremia in HIV infection results from excess inhibitory antibodies against Salmonella LPS, whilst serum killing of Salmonella is induced by antibodies against outer membrane proteins. PMID:20413503

  12. Drp1-dependent mitophagy protects against cisplatin-induced apoptosis of renal tubular epithelial cells by improving mitochondrial function

    PubMed Central

    Qi, Jia; Duan, Suyan; Huang, Zhimin; Zhang, Chengning; Wu, Lin; Zeng, Ming; Zhang, Bo; Wang, Ningning; Mao, Huijuan; Zhang, Aihua; Xing, Changying; Yuan, Yanggang

    2017-01-01

    Cisplatin chemotherapy often causes acute kidney injury (AKI) in cancer patients. There is increasing evidence that mitochondrial dysfunction plays an important role in cisplatin-induced nephrotoxicity. Degradation of damaged mitochondria is carried out by mitophagy. Although mitophagy is considered of particular importance in protecting against AKI, little is known of the precise role of mitophagy and its molecular mechanisms during cisplatin-induced nephrotoxicity. Also, evidence that activation of mitophagy improved mitochondrial function is lacking. Furthermore, several evidences have shown that mitochondrial fission coordinates with mitophagy. The aim of this study was to investigate whether activation of mitophagy protects against mitochondrial dysfunction and renal proximal tubular cells injury during cisplatin treatment. The effect of mitochondrial fission on mitophagy was also investigated. In cultured human renal proximal tubular cells, we observed that 3-methyladenine, a pharmacological inhibitor of autophagy, blocked mitophagy and exacerbated cisplatin-induced mitochondrial dysfunction and cells injury. In contrast, autophagy activator rapamycin enhanced mitophagy and protected against the harmful effects of cisplatin on mitochondrial function and cells viability. Suppression of mitochondrial fission by knockdown of its main regulator dynamin-related protein-1 (Drp1) decreased cisplatin-induced mitophagy. Meanwhile, Drp1 suppression protected against cisplatin-induced cells injury by inhibiting mitochondrial dysfunction. Our results provide evidence that Drp1-depedent mitophagy has potential as renoprotective targets for the treatment of cisplatin-induced AKI. PMID:28423497

  13. Endocytosis of wheat germ agglutinin binding sites from the cell surface into a tubular endosomal network.

    PubMed

    Raub, T J; Koroly, M J; Roberts, R M

    1990-04-01

    By using fluorescence and electron microscopy, the endocytic pathway encountered by cell surface components after they had bound wheat germ agglutinin (WGA) was visualized. The majority of these components are thought to consist of sialylated glycoproteins (HMWAG) that represent a subpopulation of the total cell surface proteins but most of the externally disposed plasma membrane proteins of the cell. Examination of semi-thin sections by medium- and high-voltage electron microscopy revealed the three-dimensional organization of vesicular and tubular endosomes. Binding of either fluorescein isothiocyanate-, horseradish peroxidase-, or ferritin-conjugated WGA to cells at 4 degrees C showed that the HMWAG were distributed uniformly over the cell surface. Warming of surface-labeled cells to 37 degrees C resulted in the endocytosis of WGA into peripheral endosomes via invagination of regions of both coated and uncoated membrane. The peripheral endosome appeared as isolated complexes comprising a vesicular element (300-400 nm diam.) surrounded by and continuous with tubular cisternae (45-60 nm diam.), which did not interconnect the endosomes. After 30 min or more label also became localized in a network of anastomosing tubules (45-60 nm diam.) that were located in the centrosomal region of the cell. Endocytosed WGA-HMWAG complexes did not become associated with cisternae of the Golgi apparatus, although tubular and vesicular endosomes were noted in the vicinity of the trans-Golgi region. The accumulation of WGA-HMWAG in the endosomes within the centrosomal region was inhibited when cells were incubated at 18 degrees C. None of these compartments contained acid phosphatase activity, a result that is consistent with other data that the HMWAG do not pass through lysosomes initially. The kinetics of labeling were consistent with the interpretation that recycling of most of the WGA binding surface glycoproteins occurred rapidly from early peripheral endosomes followed by the

  14. Lovastatin prevents cisplatin-induced activation of pro-apoptotic DNA damage response (DDR) of renal tubular epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krüger, Katharina; Ziegler, Verena; Hartmann, Christina

    The platinating agent cisplatin (CisPt) is commonly used in the therapy of various types of solid tumors. The anticancer efficacy of CisPt largely depends on the formation of bivalent DNA intrastrand crosslinks, which stimulate mechanisms of the DNA damage response (DDR), thereby triggering checkpoint activation, gene expression and cell death. The clinically most relevant adverse effect associated with CisPt treatment is nephrotoxicity that results from damage to renal tubular epithelial cells. Here, we addressed the question whether the HMG-CoA-reductase inhibitor lovastatin affects the DDR of renal cells by employing rat renal proximal tubular epithelial (NRK-52E) cells as in vitro model.more » The data show that lovastatin has extensive inhibitory effects on CisPt-stimulated DDR of NRK-52E cells as reflected on the levels of phosphorylated ATM, Chk1, Chk2, p53 and Kap1. Mitigation of CisPt-induced DDR by lovastatin was independent of the formation of DNA damage as demonstrated by (i) the analysis of Pt-(GpG) intrastrand crosslink formation by Southwestern blot analyses and (ii) the generation of DNA strand breaks as analyzed on the level of nuclear γH2AX foci and employing the alkaline comet assay. Lovastatin protected NRK-52E cells from the cytotoxicity of high CisPt doses as shown by measuring cell viability, cellular impedance and flow cytometry-based analyses of cell death. Importantly, the statin also reduced the level of kidney DNA damage and apoptosis triggered by CisPt treatment of mice. The data show that the lipid-lowering drug lovastatin extensively counteracts pro-apoptotic signal mechanisms of the DDR of tubular epithelial cells following CisPt injury. - Highlights: • Lovastatin blocks ATM/ATR-regulated DDR of tubular cells following CisPt treatment. • Lovastatin attenuates CisPt-induced activation of protein kinase ATM in vitro. • Statin-mediated DDR inhibition is independent of initial DNA damage formation. • Statin-mediated blockage

  15. Lactobacillus acidophilus attenuates Salmonella-induced intestinal inflammation via TGF-β signaling.

    PubMed

    Huang, I-Fei; Lin, I-Chun; Liu, Pei-Feng; Cheng, Ming-Fang; Liu, Yen-Chen; Hsieh, Yao-Dung; Chen, Jih-Jung; Chen, Chun-Lin; Chang, Hsueh-Wei; Shu, Chih-Wen

    2015-10-07

    Salmonella is a common intestinal pathogen that causes acute and chronic inflammatory response. Probiotics reduce inflammatory cytokine production and serve as beneficial commensal microorganisms in the human gastrointestinal tract. TGF-β (transforming growth factor β)/SMAD and NF-κB signaling play important roles in inflammation in intestinal cells. However, the involvement of the signaling in regulating inflammation between Salmonella and probiotics is not fully understood. L. acidophilus and prebiotic inulin were used to treat human intestinal Caco-2 cells prior to infection with Salmonella. The cells were harvested to examine the cytokines and MIR21 expression with immunoblotting and real-time PCR. NF-κB and SMAD3/4 reporter vectors were transfected into cells to monitor inflammation and TGF-β1 signaling, respectively. In this study, we showed that the probiotic L. acidophilus decreased Salmonella-induced NF-κB activation in human intestinal Caco-2 cells. Expression of the inflammatory cytokines, TNF-α and IL-8, in L. acidophilus-pretreated cells was also significantly lower than that in cells infected with Salmonella alone. Moreover, TGF-β1 and MIR21 expression was elevated in cells pretreated with L. acidophilus or synbiotic, a combination of inulin and L. acidophilus, compared to that in untreated cells or cells infected with S. typhimurium alone. By contrast, expression of SMAD7, a target of MIR21, was accordingly reduced in cells treated with L. acidophilus or synbiotics. Consistent with TGF-β1/MIR21 and SMAD7 expression, SMAD3/4 transcriptional activity was significantly higher in the cells treated with L. acidophilus or synbiotics. Furthermore, TGF-β1 antibody antagonized the SMAD3/4 and NF-κB transcriptional activity modulated by L. acidophilus in intestinal cells. Our results suggest that the TGF-β1/MIR21 signaling pathway may be involved in the suppressive effects of L. acidophilus on inflammation caused by S. typhimurium in intestinal

  16. Technologies and Approaches to Elucidate and Model the Virulence Program of Salmonella.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Yoon, Hyunjin; Nakayasu, Ernesto S.

    Salmonella is a primary cause of enteric diseases in a variety of animals. During its evolution into a pathogenic bacterium, Salmonella acquired an elaborate regulatory network that responds to multiple environmental stimuli within host animals and integrates them resulting in fine regulation of the virulence program. The coordinated action by this regulatory network involves numerous virulence regulators, necessitating genome-wide profiling analysis to assess and combine efforts from multiple regulons. In this review we discuss recent high-throughput analytic approaches to understand the regulatory network of Salmonella that controls virulence processes. Application of high-throughput analyses have generated a large amount of datamore » and driven development of computational approaches required for data integration. Therefore, we also cover computer-aided network analyses to infer regulatory networks, and demonstrate how genome-scale data can be used to construct regulatory and metabolic systems models of Salmonella pathogenesis. Genes that are coordinately controlled by multiple virulence regulators under infectious conditions are more likely to be important for pathogenesis. Thus, reconstructing the global regulatory network during infection or, at the very least, under conditions that mimic the host cellular environment not only provides a bird’s eye view of Salmonella survival strategy in response to hostile host environments but also serves as an efficient means to identify novel virulence factors that are essential for Salmonella to accomplish systemic infection in the host.« less

  17. SPIRULINA PLATENSIS PROTECTS AGAINST RENAL INJURY IN RATS WITH GENTAMICIN-INDUCED ACUTE TUBULAR NECROSIS

    PubMed Central

    Avdagić, Nesina; Ćosović, Esad; Nakaš-Ićindić, Emina; Mornjaković, Zakira; Začiragić, Asija; Hadžović-Džuvo, Almira

    2008-01-01

    The present study was carried out to evaluate the renoprotective antioxidant effect of Spirulina platensis on gentamicin-induced acute tubular necrosis in rats. Albino-Wistar rats, (9male and 9 female), weighing approximately 250 g, were used for this study. Rats were randomly assigned to three equal groups. Control group received 0,9 % sodium chloride intraperitoneally for 7 days at the same volume as gentamicin group. Gentamicin group was treated intraperitoneally with gentamicin, 80mg/kg daily for 7 days. Gentamicin+spirulina group received Spirulina platensis 1000 mg/kg orally 2 days before and 7 days concurrently with gentamicin (80mg/kg i.p.). Nephrotoxicity was assessed by measuring plasma nitrite concentration, stabile metabolic product of nitric oxide with oxygen. Plasma nitrite concentration was determined by colorimetric method using Griess reaction. For histological analysis kidney specimens were stained with hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) stain. Plasma nitrite concentration and the level of kidney damage were significantly higher in gentamicin group in comparison both to the control and gentamicin+spirulina group. Spirulina platensis significantly lowered the plasma nitrite level and attenuated histomorphological changes related to renal injury caused by gentamicin. Thus, the results from present study suggest that Spirulina platensis has renoprotective potential in gentamicin-induced acute tubular necrosis possibly due to its antioxidant properties. PMID:19125703

  18. Spirulina platensis protects against renal injury in rats with gentamicin-induced acute tubular necrosis.

    PubMed

    Avdagić, Nesina; Cosović, Esad; Nakas-Ićindić, Emina; Mornjaković, Zakira; Zaciragić, Asija; Hadzović-Dzuvo, Almira

    2008-11-01

    The present study was carried out to evaluate the renoprotective antioxidant effect of Spirulina platensis on gentamicin-induced acute tubular necrosis in rats. Albino-Wistar rats, (9male and 9 female), weighing approximately 250 g, were used for this study. Rats were randomly assigned to three equal groups. Control group received 0,9 % sodium chloride intraperitoneally for 7 days at the same volume as gentamicin group. Gentamicin group was treated intraperitoneally with gentamicin, 80 mg/kg daily for 7 days. Gentamicin+spirulina group received Spirulina platensis 1000 mg/kg orally 2 days before and 7 days concurrently with gentamicin (80 mg/kg i.p.). Nephrotoxicity was assessed by measuring plasma nitrite concentration, stabile metabolic product of nitric oxide with oxygen. Plasma nitrite concentration was determined by colorimetric method using Griess reaction. For histological analysis kidney specimens were stained with hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) stain. Plasma nitrite concentration and the level of kidney damage were significantly higher in gentamicin group in comparison both to the control and gentamicin+spirulina group. Spirulina platensis significantly lowered the plasma nitrite level and attenuated histomorphological changes related to renal injury caused by gentamicin. Thus, the results from present study suggest that Spirulina platensis has renoprotective potential in gentamicin-induced acute tubular necrosis possibly due to its antioxidant properties.

  19. Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007.

    PubMed

    Hendriksen, Rene S; Vieira, Antonio R; Karlsmose, Susanne; Lo Fo Wong, Danilo M A; Jensen, Arne B; Wegener, Henrik C; Aarestrup, Frank M

    2011-08-01

    Salmonella enterica is commonly acquired from contaminated food and is an important cause of illness worldwide. Interventions are needed to control Salmonella; subtyping Salmonella by serotyping is useful for targeting such interventions. We, therefore, analyzed the global distribution of the 15 most frequently identified serovars of Salmonella isolated from humans from 2001 to 2007 in laboratories from 37 countries that participated in World Health Organization Global Foodborne Infections Network and demonstrated serotyping proficiency in the Global Foodborne Infections Network External Quality Assurance System. In all regions throughout the study period, with the exception of the Oceania and North American regions, Salmonella serovars Enteritidis and Typhimurium ranked as the most common and second most common serovar, respectively. In the North American and Oceania (Australia and New Zealand) regions, Salmonella serovar Typhimurium was the most common serovar reported, and Salmonella serovar Enteritidis was the second most common serovar. During the study period, the proportion of Salmonella isolates reported from humans that were Salmonella serovar Enteritidis was 43.5% (range: 40.6% [2007] to 44.9% [2003]), and Salmonella serovar Typhimurium was 17.1% (range: 15% [2007] to 18.9% [2001]). Salmonella serovars Newport (mainly observed in Latin and North American and European countries), Infantis (dominating in all regions), Virchow (mainly observed in Asian, European, and Oceanic countries), Hadar (profound in European countries), and Agona (intense in Latin and North American and European countries) were also frequently isolated with an overall proportion of 3.5%, 1.8%, 1.5%, 1.5%, and 0.8%, respectively. There were large differences in the most commonly isolated serovars between regions, but lesser differences between countries within the same region. The results also highlight the complexity of the global epidemiology of Salmonella and the need and importance

  20. Ochratoxin A induced premature senescence in human renal proximal tubular cells.

    PubMed

    Yang, Xuan; Liu, Sheng; Huang, Chuchu; Wang, Haomiao; Luo, Yunbo; Xu, Wentao; Huang, Kunlun

    2017-05-01

    Ochratoxin A (OTA) has many nephrotoxic effects and is a promising compound for the study of nephrotoxicity. Human renal proximal tubular cells (HKC) are an important model for the study of renal reabsorption, renal physiology and pathology. Since the induction of OTA in renal senescence is largely unknown, whether OTA can induce renal senescence, especially at a sublethal dose, and the mechanism of OTA toxicity remain unclear. In our study, a sublethal dose of OTA led to an enhanced senescent phenotype, β-galactosidase staining and senescence associated secretory phenotype (SASP). Cell cycle arrest and cell shape alternations also confirmed senescence. In addition, telomere analysis by RT-qPCR allowed us to classify OTA-induced senescence as a premature senescence. Western blot assays showed that the p53-p21 and the p16-pRB pathways and the ezrin-associated cell spreading changes were activated during the OTA-induced senescence of HKC. In conclusion, our results demonstrate that OTA promotes the senescence of HKC through the p53-p21 and p16-pRB pathways. The understanding of the mechanisms of OTA-induced senescence is critical in determining the role of OTA in cytotoxicity and its potential carcinogenicity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Low-oxygen tensions found in Salmonella-infected gut tissue boost Salmonella replication in macrophages by impairing antimicrobial activity and augmenting Salmonella virulence.

    PubMed

    Jennewein, Jonas; Matuszak, Jasmin; Walter, Steffi; Felmy, Boas; Gendera, Kathrin; Schatz, Valentin; Nowottny, Monika; Liebsch, Gregor; Hensel, Michael; Hardt, Wolf-Dietrich; Gerlach, Roman G; Jantsch, Jonathan

    2015-12-01

    hypoxia-induced impairment of antimicrobial activity and Salmonella virulence cooperate to allow for enhanced Salmonella replication in MΦ. © 2015 John Wiley & Sons Ltd.

  2. General regression neural network model for behavior of Salmonella on chicken meat during cold storage.

    PubMed

    Oscar, Thomas P

    2014-05-01

    A study was undertaken to investigate and model behavior of Salmonella on chicken meat during cold storage at constant temperatures. Chicken meat (white, dark, or skin) portions (0.75 cm(3)) were inoculated with a single strain of Salmonella Typhimurium DT104 (2.8 log) followed by storage for 0 to 8 d at -8, 0, 8, 12, 14, or 16 °C for model development and at -4, 4, 10, or 14 °C for model validation. A general regression neural network model was developed with commercial software. Performance of the model was considered acceptable when the proportion of residuals (observed--predicted) in an acceptable prediction zone (pAPZ) from -1 log (fail-safe) to 0.5 logs (fail-dangerous) was ≥ 0.7. Growth of Salmonella Typhimurium DT104 on chicken meat was observed at 12, 14, and 16 °C and was highest on dark meat, intermediate on skin, and lowest on white meat. At lower temperatures (-8 to 10 °C) Salmonella Typhimurium DT104 remained at initial levels throughout 8 d of storage except at 4 °C where there was a small (0.4 log) but significant decline. The model had acceptable performance (pAPZ = 0.929) for dependent data (n = 482) and acceptable performance (pAPZ = 0.923) for independent data (n = 235). Results indicated that it is important to include type of meat as an independent variable in the model and that the model provided valid predictions of the behavior of Salmonella Typhimurium DT104 on chicken skin, white, and dark meat during storage for 0 to 8 d at constant temperatures from -8 to 16 °C. A model for predicting behavior of Salmonella on chicken meat during cold storage was developed and validated. The model will help the chicken industry to better predict and manage this risk to public health. Journal of Food Science © 2014 Institute of Food Technologists® No claim to original US government works.

  3. Guar meal diets as an alternative approach to inducing molt and improving Salmonella enteritidis resistance in late-phase laying hens.

    PubMed

    Gutierrez, O; Zhang, C; Caldwell, D J; Carey, J B; Cartwright, A L; Bailey, C A

    2008-03-01

    Induced molting of laying hens is a practice used by commercial egg producers to increase the productive lifetime of their flock. However, the conventional method of inducing molt, which involves removal of feed, water, or both as well as a reduction in photoperiod to less than a natural day has drawn criticism due to animal welfare and food safety concerns. The objective of this study was to explore the efficacy of diets containing high levels of guar meal (GM) in inducing molt and reducing susceptibility to Salmonella Enteritidis colonization in late-phase laying hens. Late-phase (68 wk old) Lohmann laying hens were either full-fed standard laying hen diets (nonmolted control), induced to molt by feed withdrawal, or full-fed standard laying hen diets containing 20% GM with or without 250 units/kg of mannanase Hemicell supplementation. On the fourth day of treatment, all hens were orally challenged with SE (1.65 x 10(7) cfu). Hens were killed and evaluated for Salmonella colonization and differences in organ weights 5 d postinoculation. Salmonella Enteritidis present in crop, liver, ovary, and cecal contents were significantly reduced by feeding GM with enzyme supplementation compared with feed withdrawal hens. No significant differences were observed in reproductive tract weights of molted groups, although a difference in liver weight was detected. Results indicate that feeding diets containing 20% GM are as effective as complete feed withdrawal with respect to inducing molt with the added benefit of improved resistance to Salmonella Enteritidis colonization and translocation.

  4. Signal transduction involved in lipoxin A4-induced protection of tubular epithelial cells against hypoxia/reoxygenation injury

    PubMed Central

    Wu, Sheng-Hua; Wang, Ming-Jie; Lü, Jing; Chen, Xiao-Qing

    2017-01-01

    Previous studies have reported that lipoxin A4 (LXA4) may exert a renoprotective effect on ischemia/reperfusion injury in various animal models. The underlying mechanism of LXA4-induced renoprotection during ischemia/reperfusion injury remains to be elucidated. The present study investigated LXA4-induced protection on renal tubular cells subjected to hypoxia/reoxygenation (H/R) injury, and determined the effects of peroxisome proliferator-activated receptor-γ (PPARγ) and heme oxygenase-1 (HO-1) on LXA4 treatment. HK-2 human tubular epithelial cells exposed to H/R injury were pretreated with LXA4, signal molecule inhibitors or the HO-1 inhibitor zinc protoporphyrin-IX, or were transfected with PPARγ small interfering RNA (siRNA) or nuclear factor E2-related factor 2 (Nrf2) siRNA. The protein and mRNA expression levels of PPARγ and HO-1 were analyzed using western blotting and reverse transcription-quantitative polymerase chain reaction. Binding activity of Nrf2 to the HO-1 E1 enhancer was determined using chromatin immunoprecipitation. Nrf2 binding to the HO-1 antioxidant responsive element (ARE) was assessed using electrophoretic mobility shift assay. Preincubation of cells with LXA4 exposed to H/R injury led to a decreased production of inducible nitrogen oxide synthase, malondialdehyde, γ-glutamyl transpeptidase, leucine aminopeptidase and N-acetyl-β-glucosaminidase. In addition, LXA4 pretreatment increased cell viability, protein and mRNA expression levels of PPARγ and HO-1 and PPARγ and HO-1 promoter activity. SB20358 is a p38 mitogen-activated protein kinase (p38 MAPK) pathway inhibitor, which reduced LXA4-induced PPARγ expression levels. LXA4 treatment upregulated p38 MAPK activation, Nrf2 nuclear translocation and increased binding activity of Nrf2 to HO-1 ARE and E1 enhancer in cells exposed to H/R injury. Transfection of the cells with PPARγ siRNA reduced the LXA4-induced Nrf2 translocation. Transfection of the cells with PPARγ siRNA or Nrf2 si

  5. Berberine activates Nrf2 nuclear translocation and inhibits apoptosis induced by high glucose in renal tubular epithelial cells through a phosphatidylinositol 3-kinase/Akt-dependent mechanism.

    PubMed

    Zhang, Xiuli; Liang, Dan; Lian, Xu; Jiang, Yan; He, Hui; Liang, Wei; Zhao, Yue; Chi, Zhi-Hong

    2016-06-01

    Apoptosis of tubular epithelial cells is a major feature of diabetic kidney disease, and hyperglycemia triggers the generation of free radicals and oxidant stress in tubular cells. Berberine (BBR) is identified as a potential anti-diabetic herbal medicine due to its beneficial effects on insulin sensitivity, glucose metabolism and glycolysis. In this study, the underlying mechanisms involved in the protective effects of BBR on high glucose-induced apoptosis were explored using cultured renal tubular epithelial cells (NRK-52E cells) and human kidney proximal tubular cell line (HK-2 cells). We identified the pivotal role of phosphatidylinositol 3-kinase (PI3K)/Akt in BBR cellular defense mechanisms and revealed the novel effect of BBR on nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2) and heme oxygenase (HO)-1 in NRK-52E and HK-2 cells. BBR attenuated reactive oxygen species production, antioxidant defense (GSH and SOD) and oxidant-sensitive proteins (Nrf2 and HO-1), which also were blocked by LY294002 (an inhibitor of PI3K) in HG-treated NRK-52E and HK-2 cells. Furthermore, BBR improved mitochondrial function by increasing mitochondrial membrane potential. BBR-induced anti-apoptotic function was demonstrated by decreasing apoptotic proteins (cytochrome c, Bax, caspase3 and caspase9). All these findings suggest that BBR exerts the anti-apoptosis effects through activation of PI3K/Akt signal pathways and leads to activation of Nrf2 and induction of Nrf2 target genes, and consequently protecting the renal tubular epithelial cells from HG-induced apoptosis.

  6. Electronic network for monitoring travellers' diarrhoea and detection of an outbreak caused by Salmonella enteritidis among overseas travellers.

    PubMed

    Osaka, K; Inouye, S; Okabe, N; Taniguchi, K; Izumiya, H; Watanabe, H; Matsumoto, Y; Yokota, T; Hashimoto, S; Sagara, H

    1999-12-01

    The Traveller's Diarrhoea Network, by which the Infectious Disease Surveillance Center is electronically connected with two major airport quarantine stations and three infectious disease hospitals, was launched in February 1988 in Japan. The data on travellers' diarrhoea detected is reported weekly by e-mail. Two clusters of infection among travellers returning from Italy were reported by two airport quarantine stations at the end of September 1998. A total of 12 salmonella isolates from 2 clusters were examined. All were identified as Salmonella enteritidis, phage type 4 and showed identical banding patterns on pulsed-field gel electrophoresis. A case-control study showed that the scrambled eggs served at the hotel restaurant in Rome were the likely source of this outbreak. This outbreak could not have been detected promptly and investigated easily without the e-mail network. International exchange of data on travellers' diarrhoea is important for preventing and controlling food-borne illnesses infected abroad.

  7. Puerarin protects against lead-induced cytotoxicity in cultured primary rat proximal tubular cells.

    PubMed

    Liu, Gang; Li, Zifa; Wang, Jinqiu; Wang, Hong; Wang, Zhenyong; Wang, Lin

    2014-10-01

    Puerarin, a potent free radicals scavenger, has been demonstrated to have protective efficacy in oxidative damage induced by nephrotoxins. In the present study, the attenuating effect of puerarin (PU) on lead (Pb)-induced apoptosis and oxidative stress was investigated in cultured primary rat proximal tubular (rPT) cells. Results showed that exposure to 0.5 µM Pb induced a decrease in cell viability accompanied with obvious cellular morphological alterations and caused an increase in apoptotic rate and apoptotic morphological changes. Simultaneously, depletion of mitochondrial membrane potential (ΔΨ) and intracellular glutathione (GSH); elevation of caspase-3 activity, intracellular reactive oxygen species, and malondialdehyde levels; and inhibition of GSH peroxidase (GSH-Px) activity were revealed in the cells exposed to Pb alone. However, simultaneous supplementation with PU (50 and 100 µM) protected rPT cells from Pb-induced cytotoxicity through inhibiting apoptosis, attenuating lipid peroxidation, renewing mitochondrial function, and elevating the intracellular antioxidants (nonenzymatic and enzymic) levels. In conclusion, these findings suggested that PU, as a widely distributed dietary antioxidant, contributes potentially to inhibition of Pb-induced cytotoxicity in rPT cells. © The Author(s) 2014.

  8. Perspectives on using a multiplex human kidney safety biomarker panel to detect cisplatin-induced tubular toxicity in male and female Cynomolgus monkeys.

    PubMed

    Chen, Yafei; Dale Thurman, J; Kinter, Lewis B; Bialecki, Russell; Eric McDuffie, J

    2017-12-01

    Multiplex biomarker panel assays would enable early de-risking of discovery compound related kidney safety liabilities. The objective of this study was to evaluate the usefulness of the Myriad RBM Human KidneyMAP (Multi-Analyte Profile)® v.1.0 panel to detect experimental nephrotoxicity in Cynomolgus monkeys following a single intravenous administration of cisplatin (2.5mg/kg). Urine samples were collected at baseline on day -2; at approximately 4hr post-dose on day 1; and on days 4, 9, 15 and/or 20. Blood samples were collected at predose on day -2; at 4hr post-dose on day 1; and on days 2, 5, 10 and/or 21. Changes in toxicokinetic and biochemistry parameters in plasma, qualitative/quantitative urinalysis parameters, and urinary kidney safety biomarkers were assessed. Kidney tissues were collected on days 2, 5, 10 and 21 for routine microscopy. Cisplatin-induced tubular alterations were characterized by acute and progressive cortical tubular degeneration/necrosis, regeneration, tubular dilation and proteinaceous cast in the absence of statistically significant changes in traditional plasma biochemistry and urinalysis parameters. When normalized to urinary creatinine, cisplatin-induced significant increases in urinary levels of kidney injury molecule 1 (females on day 4), increases in calbindin D28k (males and females on day 4), decreases in Tamm-Horsfall glycoprotein (males on days 1, 4 and 9), and increases in clusterin (females and males on days 15 and 20, respectively), when compared to concurrent controls. This study revealed the usefulness of the Human KidneyMAP® multiplex panel when measuring changes in urine-based biomarkers to reliably detect cisplatin-induced acute/progressive cortical tubular injury in male and female Cynomolgus monkeys. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Overexpression of MicA induces production of OmpC-enriched outer membrane vesicles that protect against Salmonella challenge.

    PubMed

    Choi, Hyun-Il; Kim, Moonjeong; Jeon, Jinseong; Han, Jin Kwan; Kim, Kwang-Sun

    2017-08-26

    Outer membrane vesicles (OMVs) derived from bacteria are promising candidates for subunit vaccines. Stresses that modulate the composition of outer membrane proteins (OMPs) are important for OMV synthesis. Small RNAs (sRNAs) expressed in response to stress regulate OMPs, although the mechanism underlying sRNA-mediated OMV biogenesis and its utility for developing vaccine platforms remains to be elucidated. Here, we characterized the role of a sRNA, MicA, which regulates OmpA, a major OMP involved in both production of OMVs and reactive immunity against Salmonella challenge. A Salmonella strain overexpressing MicA generated more OMVs than a control strain. In addition, OmpC was the major component of MicA-derived OMV proteins. MicA-derived OMVs induced Th1- and Th17-type immune responses in vitro and reduced Salmonella-mediated lethality in a mouse model. Thus, OmpA-regulatory sRNA-derived OMVs may facilitate production of Salmonella-protective vaccines. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Non-Saccharomyces yeasts protect against epithelial cell barrier disruption induced by Salmonella enterica subsp. enterica serovar Typhimurium.

    PubMed

    Smith, I M; Baker, A; Arneborg, N; Jespersen, L

    2015-11-01

    The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast

  11. The enhanced immune responses induced by Salmonella enteritidis ghosts loaded with Neisseria gonorrhoeae porB against Salmonella in mice.

    PubMed

    Jiao, Hongmei; Yang, Hui; Zhao, Dan; He, Li; Chen, Jin; Li, Guocai

    2016-11-01

    Human health has been seriously endangered by highly prevalent salmonellosis and multidrug-resistant Salmonella strains. Current vaccines suffer from variable immune-protective effects, so more effective ones are needed to control Salmonella infection : Bacterial ghosts have been produced by the expression of lysis gene E from bacteriophage PhiX174 and can be filled with considerable exogenous substances such as DNA or drugs as a novel platform. In this study, Salmonella enteritidis (SE) ghosts were developed and loaded with Neisseria gonorrhoeae porin B (porB) to construct a novel inactive vaccine. Our new studies show that SE ghosts loaded with porB displayed increased production of pro-inflammatory cytokines (IL-1β, IL-6, IL-10 and IL-12p70) in bone marrow-derived dendritic cells (BMDCs), and elicited significantly higher specific systemic and mucosal immune responses to Salmonella than SE ghosts alone. In addition, the novel porB-loaded ghosts conferred higher protective effects on virulent Salmonella challenge. For the first time, we demonstrate that N. gonorrhoeae porB, as a novel adjuvant, can increase the immunogenicity of SE ghosts. Our studies suggested that Salmonella enteritidis ghosts loaded with Neisseria gonorrhoeae porin B might be a useful mucosal Salmonella vaccine candidate for practical use in the future. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Nephrolithiasis in renal tubular acidosis.

    PubMed

    Buckalew, V M

    1989-03-01

    Renal tubular acidosis is a term applied to several conditions in which metabolic acidosis is caused by specific defects in renal tubular hydrogen ion secretion. Three types of renal tubular acidosis generally are recognized based on the nature of the tubular defect. Nephrolithiasis occurs only in type I renal tubular acidosis, a condition marked by an abnormality in the generation and maintenance of a hydrogen ion gradient by the distal tubule. A forme fruste of type I renal tubular acidosis has been described in which the characteristic defect in distal hydrogen ion secretion occurs in the absence of metabolic acidosis (incomplete renal tubular acidosis). Type I renal tubular acidosis is a heterogeneous disorder that may be hereditary, idiopathic or secondary to a variety of conditions. Secondary type I renal tubular acidosis in sporadic cases is associated most commonly with autoimmune diseases, such as Sjögren's syndrome and systemic lupus erythematosus, and it occurs more frequently in women than men. Nephrolithiasis, which may occur in any of the subsets of type I renal tubular acidosis, accounts for most of the morbidity in adults and adolescents. Major risk factors for nephrolithiasis include alkaline urine, hypercalciuria and hypocitraturia. In addition, we found hyperuricosuria in 21 per cent of the patients with type I renal tubular acidosis with nephrolithiasis. The most frequently occurring risk factor, hypocitraturia, is due to decreased filtered load and/or to increased tubular reabsorption of filtered citrate. While increased tubular reabsorption may be due to systemic acidosis, hypocitraturia occurs in incomplete renal tubular acidosis. Furthermore, alkali therapy (either bicarbonate or citrate salts) increases citrate excretion in complete and incomplete type I renal tubular acidosis. These data suggest that hypocitraturia in type I renal tubular acidosis may be due to a defect in proximal tubule function. Hypercalciuria appears to have 2 causes

  13. Inner Surface Chirality of Single-Handed Twisted Carbonaceous Tubular Nanoribbons.

    PubMed

    Liu, Dan; Li, Baozong; Guo, Yongmin; Li, Yi; Yang, Yonggang

    2015-11-01

    Single-handed twisted 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and single-layered nanoribbons were prepared by tuning the water/ethanol volume ratio in the reaction mixture at pH = 11.6 through a supramolecular templating approach. The single-layered nanoribbons were formed by shrinking tubular nanoribbons after the removal of the templates. In addition, solvent-induced handedness inversion was achieved. The handedness of the polybissilsesquioxanes could be controlled by changing the ethanol/water volume ratio in the reaction mixture. After carbonization at 900 °C for 4.0 h and removal of silica, single-handed twisted carbonaceous tubular nanoribbons and single-layered nanoribbons with micropores in the walls were obtained. X-ray diffraction and Raman spectroscopy analyses indicated that the carbon is predominantly amorphous. The circular dichroism spectra show that the twisted tubular nanoribbons exhibit optical activity, while the twisted single-layered nanoribbons do not. The results shown here indicate that chirality is transferred from the organic self-assemblies to the inner surfaces of the 4,4'-biphenylene-bridged polybissilsesquioxane tubular nanoribbons and subsequently to those of the carbonaceous tubular nanoribbons. © 2015 Wiley Periodicals, Inc.

  14. Effects of Climate Change on Salmonella Infections

    PubMed Central

    Akil, Luma; Reddy, Remata S.

    2014-01-01

    Abstract Background: Climate change and global warming have been reported to increase spread of foodborne pathogens. To understand these effects on Salmonella infections, modeling approaches such as regression analysis and neural network (NN) were used. Methods: Monthly data for Salmonella outbreaks in Mississippi (MS), Tennessee (TN), and Alabama (AL) were analyzed from 2002 to 2011 using analysis of variance and time series analysis. Meteorological data were collected and the correlation with salmonellosis was examined using regression analysis and NN. Results: A seasonal trend in Salmonella infections was observed (p<0.001). Strong positive correlation was found between high temperature and Salmonella infections in MS and for the combined states (MS, TN, AL) models (R2=0.554; R2=0.415, respectively). NN models showed a strong effect of rise in temperature on the Salmonella outbreaks. In this study, an increase of 1°F was shown to result in four cases increase of Salmonella in MS. However, no correlation between monthly average precipitation rate and Salmonella infections was observed. Conclusion: There is consistent evidence that gastrointestinal infection with bacterial pathogens is positively correlated with ambient temperature, as warmer temperatures enable more rapid replication. Warming trends in the United States and specifically in the southern states may increase rates of Salmonella infections. PMID:25496072

  15. Effects of climate change on Salmonella infections.

    PubMed

    Akil, Luma; Ahmad, H Anwar; Reddy, Remata S

    2014-12-01

    Climate change and global warming have been reported to increase spread of foodborne pathogens. To understand these effects on Salmonella infections, modeling approaches such as regression analysis and neural network (NN) were used. Monthly data for Salmonella outbreaks in Mississippi (MS), Tennessee (TN), and Alabama (AL) were analyzed from 2002 to 2011 using analysis of variance and time series analysis. Meteorological data were collected and the correlation with salmonellosis was examined using regression analysis and NN. A seasonal trend in Salmonella infections was observed (p<0.001). Strong positive correlation was found between high temperature and Salmonella infections in MS and for the combined states (MS, TN, AL) models (R(2)=0.554; R(2)=0.415, respectively). NN models showed a strong effect of rise in temperature on the Salmonella outbreaks. In this study, an increase of 1°F was shown to result in four cases increase of Salmonella in MS. However, no correlation between monthly average precipitation rate and Salmonella infections was observed. There is consistent evidence that gastrointestinal infection with bacterial pathogens is positively correlated with ambient temperature, as warmer temperatures enable more rapid replication. Warming trends in the United States and specifically in the southern states may increase rates of Salmonella infections.

  16. Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression.

    PubMed

    Nezu, Masahiro; Souma, Tomokazu; Yu, Lei; Suzuki, Takafumi; Saigusa, Daisuke; Ito, Sadayoshi; Suzuki, Norio; Yamamoto, Masayuki

    2017-02-01

    Acute kidney injury is a devastating disease with high morbidity in hospitalized patients and contributes to the pathogenesis of chronic kidney disease. An underlying mechanism of acute kidney injury involves ischemia-reperfusion injury which, in turn, induces oxidative stress and provokes organ damage. Nrf2 is a master transcription factor that regulates the cellular response to oxidative stress. Here, we examined the role of Nrf2 in the progression of ischemia-reperfusion injury-induced kidney damage in mice using genetic and pharmacological approaches. Both global and tubular-specific Nrf2 activation enhanced gene expression of antioxidant and NADPH synthesis enzymes, including glucose-6-phosphate dehydrogenase, and ameliorated both the initiation of injury in the outer medulla and the progression of tubular damage in the cortex. Myeloid-specific Nrf2 activation was ineffective. Short-term administration of the Nrf2 inducer CDDO during the initial phase of injury ameliorated the late phase of tubular damage. This inducer effectively protected the human proximal tubular cell line HK-2 from oxidative stress-mediated cell death while glucose-6-phosphate dehydrogenase knockdown increased intracellular reactive oxygen species. These findings demonstrate that tubular hyperactivation of Nrf2 in the initial phase of injury prevents the progression of reactive oxygen species-mediated tubular damage by inducing antioxidant enzymes and NADPH synthesis. Thus, Nrf2 may be a promising therapeutic target for preventing acute kidney injury to chronic kidney disease transition. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  17. Human mesenchymal stromal cells transplanted into mice stimulate renal tubular cells and enhance mitochondrial function.

    PubMed

    Perico, Luca; Morigi, Marina; Rota, Cinzia; Breno, Matteo; Mele, Caterina; Noris, Marina; Introna, Martino; Capelli, Chiara; Longaretti, Lorena; Rottoli, Daniela; Conti, Sara; Corna, Daniela; Remuzzi, Giuseppe; Benigni, Ariela

    2017-10-17

    Mesenchymal stromal cells (MSCs) are renoprotective and drive regeneration following injury, although cellular targets of such an effect are still ill-defined. Here, we show that human umbilical cord (UC)-MSCs transplanted into mice stimulate tubular cells to regain mitochondrial mass and function, associated with enhanced microtubule-rich projections that appear to mediate mitochondrial trafficking to create a reparative dialogue among adjacent tubular cells. Treatment with UC-MSCs in mice with cisplatin-induced acute kidney injury (AKI) regulates mitochondrial biogenesis in proximal tubuli by enhancing PGC1α expression, NAD + biosynthesis and Sirtuin 3 (SIRT3) activity, thus fostering antioxidant defenses and ATP production. The functional role of SIRT3 in tubular recovery is highlighted by data that in SIRT3-deficient mice with AKI, UC-MSC treatment fails to induce renoprotection. These data document a previously unrecognized mechanism through which UC-MSCs facilitate renal repair, so as to induce global metabolic reprogramming of damaged tubular cells to sustain energy supply.Mesenchymal stromal cells drive renal regeneration following injury. Here, the authors show that human mesenchymal stromal cells, when transplanted into mice with acute kidney injury, stimulate renal tubular cell growth and enhance mitochondrial function via SIRT3.

  18. Apelin attenuates TGF-β1-induced epithelial to mesenchymal transition via activation of PKC-ε in human renal tubular epithelial cells.

    PubMed

    Wang, Li-Yan; Diao, Zong-Li; Zheng, Jun-Fang; Wu, Yi-Ru; Zhang, Qi-Dong; Liu, Wen-Hu

    2017-10-01

    Epithelial to mesenchymal transition (EMT), a process whereby fully differentiated epithelial cells transition to a mesenchymal phenotype, has been implicated in the pathogenesis of renal fibrosis. Apelin, a bioactive peptide, has recently been recognized to protect against renal profibrotic activity, but the underlying mechanism has not yet been elucidated. In this study, we investigated the regulation of EMT in the presence of apelin-13 in vitro. Expression of the mesenchymal marker alpha-smooth muscle actin (α-SMA) and the epithelial marker E-cadherin was examined by immunofluorescence and western blotting in transforming growth factor beta 1 (TGF-β1)-stimulated human proximal tubular epithelial cells. Expression of extracellular matrix, fibronectin and collagen-I was examined by quantitative real-time PCR and ELISA. F13A, an antagonist of the apelin receptor APJ, and small interfering RNA targeting protein kinase C epsilon (PKC-ε) were used to explore the relevant signaling pathways. Apelin attenuated TGF-β1-induced EMT, and inhibited the EMT-associated increase in α-SMA, loss of E-cadherin, and secretion of extracellular matrix. Moreover, apelin activated PKC-ε in tubular epithelial cells, which in turn decreased phospho-Smad2/3 levels and increased Smad-7 levels. APJ inhibition or PKC-ε deletion diminished apelin-induced modulation of Smad signaling and suppression of tubular EMT. Our findings identify a novel PKC-ε-dependent mechanism in which apelin suppresses TGF-β1-mediated activation of Smad signaling pathways and thereby inhibits tubular EMT. These results suggest that apelin may be a new agent that can suppress renal fibrosis and retard chronic kidney disease progression. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. [Peritubular capillary injury in Chinese herb guan-mu-tong-induced acute tubular necrosis].

    PubMed

    Yang, Li; Li, Xiao-mei; Wang, Su-xia; Wang, Hai-yan

    2005-07-01

    To explore the role and mechanisms of peritubular capillary (PTC) injury in the progression of Chinese Herb guan-mu-tong (GMT, aristolochiae manshuriensis kom) induced acute tubular necrosis (GMT-ATN). Renal biopsy tissue from 4 cases of GMT-ATN and 5 cases of antibiotic induced ATN (A-ATN) were included in the study. Tubulointerstitial injury was semi-quantitatively assessed. Immunohistochemical SP method was applied to reveal PTC as well as the expression of vascular endothelial growth factor (VEGF). Ultra microstructure of endothelial cells and basement membrane of PTC was detected by electronic microscopy (EM). 5 cases of minor mesangioproliferative non-IgA glomerulonephritis were selected as a control group. The density of PTC was decreased significantly in GMT-ATN, as compared with the A-ATN and control group (211.08 +/- 56.15 vs 413.54 +/- 66.59, 536.62 +/- 68.38, P < 0.01). Dilated and deformed PTC lumina were noted in GMT-ATN with some endothelial cells and basement membrane partially disrupted. Most endothelial cells were found to be swollen with vacuoles dispersed in the cell plasma. The basement membrane was partially shrunk and thickened. The expression of VEGF in renal tubular epithelial cells (RTEC) was much less in the GMT-ATN than that in A-ATN group 2.1 (0-3.86)% vs [42.5 (31.33-60.25)%, P < 0.01], even though it was higher than that in the control group [23.1 (18.2-39.5)%, P < 0.01]; the expression was correlated with PTC density. Close correlation was also found between RTEC regeneration and PTC density, as well as VEGF expression (r = 0.880 and 0.802 respectively, P < 0.01). PTC was markedly injured in GMT-ATN; this could be one of the cause for the continuously progressing tubulointerstitial damage. The low expression of VEGF in RTEC might contribute to the PTC injury process.

  20. Salmonella exploits the host endolysosomal tethering factor HOPS complex to promote its intravacuolar replication

    PubMed Central

    Sindhwani, Aastha; Kaur, Harmeet; Tuli, Amit

    2017-01-01

    Salmonella enterica serovar typhimurium extensively remodels the host late endocytic compartments to establish its vacuolar niche within the host cells conducive for its replication, also known as the Salmonella-containing vacuole (SCV). By maintaining a prolonged interaction with late endosomes and lysosomes of the host cells in the form of interconnected network of tubules (Salmonella-induced filaments or SIFs), Salmonella gains access to both membrane and fluid-phase cargo from these compartments. This is essential for maintaining SCV membrane integrity and for bacterial intravacuolar nutrition. Here, we have identified the multisubunit lysosomal tethering factor—HOPS (HOmotypic fusion and Protein Sorting) complex as a crucial host factor facilitating delivery of late endosomal and lysosomal content to SCVs, providing membrane for SIF formation, and nutrients for intravacuolar bacterial replication. Accordingly, depletion of HOPS subunits significantly reduced the bacterial load in non-phagocytic and phagocytic cells as well as in a mouse model of Salmonella infection. We found that Salmonella effector SifA in complex with its binding partner; SKIP, interacts with HOPS subunit Vps39 and mediates recruitment of this tethering factor to SCV compartments. The lysosomal small GTPase Arl8b that binds to, and promotes membrane localization of Vps41 (and other HOPS subunits) was also required for HOPS recruitment to SCVs and SIFs. Our findings suggest that Salmonella recruits the host late endosomal and lysosomal membrane fusion machinery to its vacuolar niche for access to host membrane and nutrients, ensuring its intracellular survival and replication. PMID:29084291

  1. In Vivo Blockage of Nitric Oxide with Aminoguanidine Inhibits Immunosuppression Induced by an Attenuated Strain of Salmonella typhimurium, Potentiates Salmonella Infection, and Inhibits Macrophage and Polymorphonuclear Leukocyte Influx into the Spleen

    PubMed Central

    MacFarlane, Amanda Shearer; Schwacha, Martin G.; Eisenstein, Toby K.

    1999-01-01

    Our laboratory has previously shown that after immunization with a strain of Salmonella typhimurium, SL3235, made avirulent by a blockage in the pathway of aromatic synthesis, murine splenocytes were profoundly suppressed in their capacity to mount an in vitro antibody plaque-forming cell (PFC) response to sheep erythrocytes. Evidence indicated that suppression was mediated by nitric oxide (NO), since the in vitro addition of NG-monomethyl-l-arginine blocked suppression. The present studies examined the effect of blocking NO production on Salmonella-induced immunosuppression by in vivo administration of aminoguanidine hemisulfate (AG). AG was administered to C3HeB/FeJ mice in their drinking water (2.5% solution) for 7 days prior to intraperitoneal inoculation with SL3235. AG treatment inhibited the increase in nitrate and nitrite levels in plasma and nitrite levels in the spleen seen in immunized mice. Importantly, AG treatment completely blocked suppression of the splenic PFC response and markedly attenuated the suppression of the response to concanavalin A in immunized mice, providing further evidence that Salmonella-induced immunosuppression is mediated by NO. AG treatment also alleviated the majority of the splenomegaly associated with SL3235 inoculation, which correlated with a blockage of influx of neutrophils and macrophages into spleens, as assessed by flow cytometry. AG treatment unexpectedly resulted in 90% mortality in mice injected with the highly attenuated vaccine strain of Salmonella, SL3235. Increased mortality in AG-treated mice correlated with inability to clear organisms from the spleen by day 15 postinoculation and with persistent bacteremia, compared with control mice. Collectively, these in vivo results underscore the dual biological consequences of NO production following Salmonella infection, with NO being necessary for host defense, but also having the potentially adverse effect of immunosuppression. A unifying hypothesis to explain how

  2. Tubular graphite cones.

    PubMed

    Zhang, Guangyu; Jiang, Xin; Wang, Enge

    2003-04-18

    We report the synthesis of tubular graphite cones using a chemical vapor deposition method. The cones have nanometer-sized tips, micrometer-sized roots, and hollow interiors with a diameter ranging from about 2 to several tens of nanometers. The cones are composed of cylindrical graphite sheets; a continuous shortening of the graphite layers from the interior to the exterior makes them cone-shaped. All of the tubular graphite cones have a faceted morphology. The constituent graphite sheets have identical chiralities of a zigzag type across the entire diameter, imparting structural control to tubular-based carbon structures. The tubular graphite cones have potential for use as tips for scanning probe microscopy, but with greater rigidity and easier mounting than currently used carbon nanotubes.

  3. Applications of microscopy in Salmonella research.

    PubMed

    Malt, Layla M; Perrett, Charlotte A; Humphrey, Suzanne; Jepson, Mark A

    2015-01-01

    Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in humans and many other animals. Understanding the mechanisms by which Salmonella induces disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type 3 secretion system. Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second type 3 secretion system initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. Elucidation of the complex and highly dynamic pathogen-host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopy techniques to analyze Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and high-resolution light microscopy techniques such as confocal microscopy can reveal the precise location of Salmonella and its relationship to cellular components. Widefield light microscopy is a simpler approach with which to study the interaction of bacteria with host cells and often has advantages for live cell imaging, enabling detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on some microscopy techniques used routinely in our own research.

  4. LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the Intracellular Proliferation of Salmonella typhimurium.

    PubMed

    Lee, Eun-Ju; Park, Kwan-Sik; Jeon, In-Sook; Choi, Jae-Woon; Lee, Sang-Jeon; Choy, Hyun E; Song, Ki-Duk; Lee, Hak-Kyo; Choi, Joong-Kook

    2016-07-01

    Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella-induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation.

  5. LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the Intracellular Proliferation of Salmonella typhimurium

    PubMed Central

    Lee, Eun-Ju; Park, Kwan-Sik; Jeon, In-Sook; Choi, Jae-Woon; Lee, Sang-Jeon; Choy, Hyun E.; Song, Ki-Duk; Lee, Hak-Kyo; Choi, Joong-Kook

    2016-01-01

    Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella-induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation. PMID:27329040

  6. Streptomycin Induced Stress Response in Salmonella enterica Serovar Typhimurium Shows Distinct Colony Scatter Signature

    PubMed Central

    Singh, Atul K.; Drolia, Rishi; Bai, Xingjian; Bhunia, Arun K.

    2015-01-01

    We investigated the streptomycin-induced stress response in Salmonella enterica serovars with a laser optical sensor, BARDOT (bacterial rapid detection using optical scattering technology). Initially, the top 20 S. enterica serovars were screened for their response to streptomycin at 100 μg/mL. All, but four S. enterica serovars were resistant to streptomycin. The MIC of streptomycin-sensitive serovars (Enteritidis, Muenchen, Mississippi, and Schwarzengrund) varied from 12.5 to 50 μg/mL, while streptomycin-resistant serovar (Typhimurium) from 125–250 μg/mL. Two streptomycin-sensitive serovars (Enteritidis and Mississippi) were grown on brain heart infusion (BHI) agar plates containing sub-inhibitory concentration of streptomycin (1.25–5 μg/mL) and a streptomycin-resistant serovar (Typhimurium) was grown on BHI containing 25–50 μg/mL of streptomycin and the colonies (1.2 ± 0.1 mm diameter) were scanned using BARDOT. Data show substantial qualitative and quantitative differences in the colony scatter patterns of Salmonella grown in the presence of streptomycin than the colonies grown in absence of antibiotic. Mass-spectrometry identified overexpression of chaperonin GroEL, which possibly contributed to the observed differences in the colony scatter patterns. Quantitative RT-PCR and immunoassay confirmed streptomycin-induced GroEL expression while, aminoglycoside adenylyltransferase (aadA), aminoglycoside efflux pump (aep), multidrug resistance subunit acrA, and ribosomal protein S12 (rpsL), involved in streptomycin resistance, were unaltered. The study highlights suitability of the BARDOT as a non-invasive, label-free tool for investigating stress response in Salmonella in conjunction with the molecular and immunoassay methods. PMID:26252374

  7. THE FAILURE OF CHLOROFORM ADMINISTERED IN THE DRINKING WATER TO INDUCE RENAL TUBULAR CELL NEOPLASIA IN MALE F344/N RATS

    EPA Science Inventory

    The failure of chloroform administered in drinking water to induce renal tubular cell neoplasia in male F344/N rats

    Chloroform (TCM) has been demonstrated to be a renal carcinogen in the male Osborne-
    Mendel rat when administered either by corn oil gavage or in drin...

  8. Resveratrol induces membrane and DNA disruption via pro-oxidant activity against Salmonella typhimurium.

    PubMed

    Lee, Wonjong; Lee, Dong Gun

    2017-07-22

    Resveratrol is a flavonoid found in various plants including grapes, which has been reported to be active against various pathogenic bacteria. However, antibacterial effects and mechanisms via pro-oxidant property of resveratrol remain unknown and speculative. This research investigated antibacterial mechanism of resveratrol against a food-borne human pathogen Salmonella typhimurium, and confirmed the cell death associated oxidative damage. Resveratrol increased outer membrane permeability and membrane depolarization. It also was observed DNA injury responses such as DNA fragmentation, increasing DNA contents and cell division inhibition. Intracellular ROS accumulation, GSH depletion and significant increased malondialdehyde levels were confirmed, which indicated pro-oxidant activity of resveratrol and oxidative stress. Furthermore, the observed lethal damages were reduced by antioxidant N-acetylcysteine treatment supported the view that resveratrol-induced oxidative stress stimulated S. typhimurium cell death. In conclusion, this study expands understanding on role of pro-oxidant property and insight into previously unrecognized oxygen-dependent anti-Salmonella mechanism on resveratrol. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Coordinate Intracellular Expression of Salmonella Genes Induced during Infection

    PubMed Central

    Heithoff, Douglas M.; Conner, Christopher P.; Hentschel, Ute; Govantes, Fernando; Hanna, Philip C.; Mahan, Michael J.

    1999-01-01

    Salmonella typhimurium in vivo-induced (ivi) genes were grouped by their coordinate behavior in response to a wide variety of environmental and genetic signals, including pH, Mg2+, Fe2+, and PhoPQ. All of the seven ivi fusions that are induced by both low pH and low Mg2+ (e.g., iviVI-A) are activated by the PhoPQ regulatory system. Iron-responsive ivi fusions include those induced under iron limitation (e.g., entF) as well as one induced by iron excess but only in the absence of PhoP (pdu). Intracellular expression studies showed that each of the pH- and Mg2+-responsive fusions is induced upon entry into and growth within three distinct mammalian cell lines: RAW 264.7 murine macrophages and two cultured human epithelial cell lines: HEp-2 and Henle-407. Each ivi fusion has a characteristic level of induction consistent within all three cell types, suggesting that this class of coordinately expressed ivi genes responds to general intracellular signals that are present both in initial and in progressive stages of infection and may reflect their responses to similar vacuolar microenvironments in these cell types. Investigation of ivi expression patterns reveals not only the inherent versatility of pathogens to express a given gene(s) at various host sites but also the ability to modify their expression within the context of different animal hosts, tissues, cell types, or subcellular compartments. PMID:9922242

  10. Lactic acid bacteria and bifidobacteria attenuate the proinflammatory response in intestinal epithelial cells induced by Salmonella enterica serovar Typhimurium.

    PubMed

    Carey, Christine M; Kostrzynska, Magdalena

    2013-01-01

    Inflammation is a physiological response to infections and tissue injury; however, abnormal immune responses can give rise to chronic inflammation and contribute to disease progression. Various dietary components, including probiotic lactic acid bacteria and prebiotics, have the potential to modulate intestinal inflammatory responses. One factor in particular, the chemokine interleukin-8 (IL-8, CXCL-8), is one of the major mediators of the inflammatory response. The purpose of this study was to investigate modulation of the inflammatory host response induced by Salmonella enterica serovar Typhimurium DT104 in the presence of selected probiotics and lactic acid bacteria (LAB) isolated from human sources, dairy products, and farm animals. IL-8 gene expression and protein production in HT-29 cells were evaluated by real-time PCR and ELISA, respectively. Pre-incubation of HT-29 cells with Lactobacillus kefir IM002, Bifidobacterium adolescentis FRP 61, Bifidobacterium longum FRP 68 and FRP 69, Bifidobacterium breve FRP 334, and Leuconostoc mesenteroides IM080 significantly inhibited IL-8 secretion induced by Salmonella Typhimurium DT104. Co-culture of selected probiotics and Salmonella Typhimurium DT104 reduced IL-8 production, while potential probiotics and LAB had no effect on IL-8 secretion in HT-29 cells preincubated with Salmonella Typhimurium DT104 prior to adding probiotics. Lactobacillus kefir IM002 supernatant also significantly reduced IL-8 production. In conclusion, our study suggests that probiotic bifidobacteria and LAB modulate cytokine induction and possess anti-inflammatory properties; however, the effectiveness is strain dependent.

  11. Intra-tubular hydrodynamic forces influence tubulo-interstitial fibrosis in the kidney

    PubMed Central

    Rohatgi, Rajeev; Flores, Daniel

    2010-01-01

    Purpose of review Renal epithelial cells respond to mechanical stimuli with immediate transduction events (e.g., activation of ion channels), intermediate biological responses (e.g., changes in gene expression), and long term cellular adaptation (e.g., protein expression). Progressive renal disease is characterized by disturbed glomerular hydrodynamics that contributes to glomerulosclerosis, but, how intra-tubular biomechanical forces contribute to tubulo-interstital inflammation and fibrosis is poorly understood. Recent findings In vivo and in vitro models of obstructive uropathy demonstrate that tubular stretch induces robust expression of transforming growth factor β-1 (TGFβ-1), activation of tubular apoptosis, and induction of NF-κB signaling which contribute to the inflammatory and fibrotic milieu. Non-obstructive structural kidney diseases associated with nephron loss follow a course characterized by compensatory increases of single nephron glomerular filtration rate and tubular flow rate. Resulting increases in tubular fluid shear stress (FSS) reduce tissue-plasminogen activator and urokinase enzymatic activity which diminishes breakdown of extracellular matrix. In models of high dietary Na intake, which increase tubular flow, urinary TGFβ-1 concentrations and renal mitogen activated protein kinase activity are increased. Summary In conclusion, intra-tubular biomechanical forces, stretch and FSS, generate changes in intracellular signaling and gene expression that contribute to the pathobiology of obstructive, and non-obstructive kidney disease. PMID:19851105

  12. Two Novel Salmonella Bivalent Vaccines Confer Dual Protection against Two Salmonella Serovars in Mice

    PubMed Central

    Zhao, Xinxin; Dai, Qinlong; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Wang, Mingshu; Chen, Shun; Sun, Kunfeng; Yang, Qiao; Wu, Ying; Cheng, Anchun

    2017-01-01

    Non-typhoidal Salmonella includes thousands of serovars that are leading causes of foodborne diarrheal illness worldwide. In this study, we constructed three bivalent vaccines for preventing both Salmonella Typhimurium and Salmonella Newport infections by using the aspartate semialdehyde dehydrogenase (Asd)-based balanced-lethal vector-host system. The constructed Asd+ plasmid pCZ11 carrying a subset of the Salmonella Newport O-antigen gene cluster including the wzx-wbaR-wbaL-wbaQ-wzy-wbaW-wbaZ genes was introduced into three Salmonella Typhimurium mutants: SLT19 (Δasd) with a smooth LPS phenotype, SLT20 (Δasd ΔrfbN) with a rough LPS phenotype, and SLT22 (Δasd ΔrfbN ΔpagL::T araC PBAD rfbN) with a smooth LPS phenotype when grown with arabinose. Immunoblotting demonstrated that SLT19 harboring pCZ11 [termed SLT19 (pCZ11)] co-expressed the homologous and heterologous O-antigens; SLT20 (pCZ11) exclusively expressed the heterologous O-antigen; and when arabinose was available, SLT22 (pCZ11) expressed both types of O-antigens, while in the absence of arabinose, SLT22 (pCZ11) expressed only the heterologous O-antigen. Exclusive expression of the heterologous O-antigen in Salmonella Typhimurium decreased the swimming ability of the bacterium and its susceptibility to polymyxin B. Next, the crp gene was deleted from the three recombinant strains for attenuation purposes, generating the three bivalent vaccine strains SLT25 (pCZ11), SLT26 (pCZ11), and SLT27 (pCZ11), respectively. Groups of BALB/c mice (12 mice/group) were orally immunized with 109 CFU of each vaccine strain twice at an interval of 4 weeks. Compared with a mock immunization, immunization with all three vaccine strains induced significant serum IgG responses against both Salmonella Typhimurium and Salmonella Newport LPS. The bacterial loads in the mouse tissues were significantly lower in the three vaccine-strain-immunized groups than in the mock group after either Salmonella Typhimurium or Salmonella

  13. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σ E-regulated SPI-2 gene expression

    DOE PAGES

    Li, Jie; Overall, Christopher C.; Nakayasu, Ernesto S.; ...

    2015-02-10

    The extracytoplasmic functioning sigma factor σ E is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well characterized, especially during infection. Here we used microarray to identify genes regulated by σ E in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σ E regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression ofmore » genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σ E in at least one of the three conditions. An important finding is that σ E up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σ E is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σ E and SPI-2 genes, combined with the global regulatory effect of σ E, may account for the lethality of rpoE-deficient Salmonella in murine infection.« less

  14. Analysis of the Salmonella regulatory network suggests involvement of SsrB and H-NS in σ E-regulated SPI-2 gene expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Overall, Christopher C.; Nakayasu, Ernesto S.

    The extracytoplasmic functioning sigma factor σ E is known to play an essential role for Salmonella enterica serovar Typhimurium to survive and proliferate in macrophages and mice. However, its regulatory network is not well characterized, especially during infection. Here we used microarray to identify genes regulated by σ E in Salmonella grown in three conditions: a nutrient-rich condition and two others that mimic early and late intracellular infection. We found that in each condition σ E regulated different sets of genes, and notably, several global regulators. When comparing nutrient-rich and infection-like conditions, large changes were observed in the expression ofmore » genes involved in Salmonella pathogenesis island (SPI)-1 type-three secretion system (TTSS), SPI-2 TTSS, protein synthesis, and stress responses. In total, the expression of 58% of Salmonella genes was affected by σ E in at least one of the three conditions. An important finding is that σ E up-regulates SPI-2 genes, which are essential for Salmonella intracellular survival, by up-regulating SPI-2 activator ssrB expression at the early stage of infection and down-regulating SPI-2 repressor hns expression at a later stage. Moreover, σ E is capable of countering the silencing of H-NS, releasing the expression of SPI-2 genes. This connection between σ E and SPI-2 genes, combined with the global regulatory effect of σ E, may account for the lethality of rpoE-deficient Salmonella in murine infection.« less

  15. Immune Reaction and Survivability of Salmonella Typhimurium and Salmonella Infantis after Infection of Primary Avian Macrophages

    PubMed Central

    Braukmann, Maria; Methner, Ulrich; Berndt, Angela

    2015-01-01

    Salmonella serovars are differentially able to infect chickens. The underlying causes are not yet fully understood. Aim of the present study was to elucidate the importance of Salmonella Pathogenicity Island 1 and 2 (SPI-1 and -2) for the virulence of two non-host-specific, but in-vivo differently invasive, Salmonella serovars in conjunction with the immune reaction of the host. Primary avian splenic macrophages were inoculated with Salmonella enterica sub-species enterica serovar (S.) Typhimurium and S. Infantis. The number and viability of intracellular bacteria and transcription of SPI-1 and -2 genes by the pathogens, as well as transcription of immune-related proteins, surface antigen expression and nitric oxide production by the macrophages, were compared at different times post inoculation. After infection, both of the Salmonella serovars were found inside the primary macrophages. Invasion-associated SPI-1 genes were significantly higher transcribed in S. Infantis- than S. Typhimurium-infected macrophages. The macrophages counteracted the S. Infantis and S. Typhimurium infection with elevated mRNA expression of inducible nitric oxide synthase (iNOS), interleukin (IL)-12, IL-18 and lipopolysaccharide-induced tumor necrosis factor alpha factor (LITAF) as well as with an increased synthesis of nitric oxide. Despite these host cell attacks, S. Typhimurium was better able than S. Infantis to survive within the macrophages and transcribed higher rates of the SPI-2 genes spiC, ssaV, sifA, and sseA. The results showed similar immune reactions of primary macrophages after infection with both of the Salmonella strains. The more rapid and stronger transcription of SPI-2-related genes by intracellular S. Typhimurium compared to S. Infantis might be responsible for its better survival in avian primary macrophages. PMID:25811871

  16. Renal pathophysiologic role of cortical tubular inclusion bodies.

    PubMed

    Radi, Zaher A; Stewart, Zachary S; Grzemski, Felicity A; Bobrowski, Walter F

    2013-01-01

    Renal tubular inclusion bodies are rarely associated with drug administration. The authors describe the finding of renal cortical tubular intranuclear and intracytoplasmic inclusion bodies associated with the oral administration of a norepinephrine/serotonin reuptake inhibitor (NSRI) test article in Sprague-Dawley (SD) rats. Rats were given an NSRI daily for 4 weeks, and kidney histopathologic, ultrastructural pathology, and immunohistochemical examinations were performed. Round eosinophilic intranuclear inclusion bodies were observed histologically in the tubular epithelial cells of the renal cortex in male and female SD rats given the NSRI compound. No evidence of degeneration or necrosis was noted in the inclusion-containing renal cells. By ultrastructural pathology, inclusion bodies consisted of finely granular, amorphous, and uniformly stained nonmembrane-bound material. By immunohistochemistry, inclusion bodies stained positive for d-amino acid oxidase (DAO) protein. In addition, similar inclusion bodies were noted in the cytoplasmic tubular epithelial compartment by ultrastructural and immunohistochemical examination.  This is the first description of these renal inclusion bodies after an NSRI test article administration in SD rats. Such drug-induced renal inclusion bodies are rat-specific, do not represent an expression of nephrotoxicity, represent altered metabolism of d-amino acids, and are not relevant to human safety risk assessment.

  17. Expandable tubulars for use in geologic structures

    DOEpatents

    Spray, Jeffery A.; Svedeman, Steven; Walter, David; Mckeighan, Peter; Siebanaler, Shane; Dewhurst, Peter; Hobson, Steven; Foss, Doug; Wirz, Holger; Sharpe, Aaron; Apostal, Michael

    2014-08-12

    An expandable tubular includes a plurality of leaves formed from sheet material that have curved surfaces. The leaves extend around a portion or fully around the diameter of the tubular structure. Some of the adjacent leaves of the tubular are coupled together. The tubular is compressed to a smaller diameter so that it can be inserted through previously deployed tubular assemblies. Once the tubular is properly positioned, it is deployed and coupled or not coupled to a previously deployed tubular assembly. The tubular is useful for all types of wells and boreholes.

  18. Probiotics L. acidophilus and B. clausii Modulate Gut Microbiota in Th1- and Th2-Biased Mice to Ameliorate Salmonella Typhimurium-Induced Diarrhea.

    PubMed

    Pradhan, Biswaranjan; Guha, Dipanjan; Naik, Aman Kumar; Banerjee, Arka; Tambat, Subodh; Chawla, Saurabh; Senapati, Shantibhusan; Aich, Palok

    2018-06-16

    Gut microbiota play important role in maintaining health. Probiotics are believed to augment it further. We aimed at comparing effects of probiotics, Lactobacillus acidophilus (LA) and Bacillus clausii (BC) (a) on the gut microbiota abundance and diversity and (b) their contributions to control intestinal dysbiosis and inflammation in Th1- and Th2-biased mice following Salmonella infection. We report how could gut microbiota and the differential immune bias (Th1 or Th2) of the host regulate host responses when challenged with Salmonella typhimurium in the presence and absence of either of the probiotics. LA was found to be effective in ameliorating the microbial dysbiosis and inflammation caused by Salmonella infection, in Th1 (C57BL/6) and Th2 (BALB/c)-biased mouse. BC was able to ameliorate Salmonella-induced dysbiosis and inflammation in Th2 but not in Th1-biased mouse. These results may support probiotics LA as a treatment option in the case of Salmonella infection.

  19. Ceramide-Induced Apoptosis in Renal Tubular Cells: A Role of Mitochondria and Sphingosine-1-Phoshate

    PubMed Central

    Ueda, Norishi

    2015-01-01

    Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed. PMID:25751724

  20. Hyperglycemia induced damage to mitochondrial respiration in renal mesangial and tubular cells: Implications for diabetic nephropathy.

    PubMed

    Czajka, Anna; Malik, Afshan N

    2016-12-01

    Damage to renal tubular and mesangial cells is central to the development of diabetic nephropathy (DN), a complication of diabetes which can lead to renal failure. Mitochondria are the site of cellular respiration and produce energy in the form of ATP via oxidative phosphorylation, and mitochondrial dysfunction has been implicated in DN. Since the kidney is an organ with high bioenergetic needs, we postulated that hyperglycemia causes damage to renal mitochondria resulting in bioenergetic deficit. The bioenergetic profiles and the effect of hyperglycemia on cellular respiration of human primary mesangial (HMCs) and proximal tubular cells (HK-2) were compared in normoglycemic and hyperglycemic conditions using the seahorse bio-analyzer. In normoglycemia, HK-2 had significantly lower basal, ATP-linked and maximal respiration rates, and lower reserve capacity compared to HMCs. Hyperglycemia caused a down-regulation of all respiratory parameters within 4 days in HK-2 but not in HMCs. After 8 days of hyperglycemia, down-regulation of respiratory parameters persisted in tubular cells with compensatory up-regulated glycolysis. HMCs had reduced maximal respiration and reserve capacity at 8 days, and by 12 days had compromised mitochondrial respiration despite which they did not enhance glycolysis. These data suggest that diabetes is likely to lead to a cellular deficit in ATP production in both cell types, although with different sensitivities, and this mechanism could significantly contribute to the cellular damage seen in the diabetic kidney. Prevention of diabetes induced damage to renal mitochondrial respiration may be a novel therapeutic approach for the prevention/treatment of DN. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. DksA-dependent resistance of Salmonella enterica serovar Typhimurium against the antimicrobial activity of inducible nitric oxide synthase.

    PubMed

    Henard, Calvin A; Vázquez-Torres, Andrés

    2012-04-01

    In coordination with the ppGpp alarmone, the RNA polymerase regulatory protein DksA controls the stringent response of eubacteria, negatively regulating transcription of translational machinery and directly activating amino acid promoters and de novo amino acid biosynthesis. Given the effects of nitric oxide (NO) on amino acid biosynthetic pathways and the intimate relationship of DksA with amino acid synthesis and transport, we tested whether DksA contributes to the resistance of Salmonella to reactive nitrogen species (RNS). Our studies show that the zinc finger predicted to position DksA in the secondary channel of the RNA polymerase is essential for the resistance of Salmonella enterica serovar Typhimurium to RNS in a murine model of systemic salmonellosis. Despite exhibiting auxotrophies for various amino acids, ΔdksA mutant Salmonella strains regain virulence in mice lacking inducible NO synthase (iNOS). DksA is also important for growth of this intracellular pathogen in the presence of NO congeners generated by iNOS during the innate response of murine macrophages. Accordingly, dksA mutant Salmonella strains are hypersusceptible to chemically generated NO, a phenotype that can be prevented by adding amino acids. The DksA-dependent antinitrosative defenses do not rely on the Hmp flavohemoprotein that detoxifies NO to NO(3)(-) and appear to operate independently of the ppGpp alarmone. Our investigations are consistent with a model by which NO produced in the innate response to Salmonella exerts considerable pressure on amino acid biosynthesis. The cytotoxicity of NO against Salmonella amino acid biosynthetic pathways is antagonized in great part by the DksA-dependent regulation of amino acid biosynthesis and transport.

  2. Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis

    PubMed Central

    Ruggiero, Christine; Elks, Carrie M.; Kruger, Claudia; Cleland, Ellen; Addison, Kaity; Noland, Robert C.

    2014-01-01

    Albuminuria is associated with metabolic syndrome and diabetes. It correlates with the progression of chronic kidney disease, particularly with tubular atrophy. The fatty acid load on albumin significantly increases in obesity, presenting a proinflammatory environment to the proximal tubules. However, little is known about changes in the redox milieu during fatty acid overload and how redox-sensitive mechanisms mediate cell death. Here, we show that albumin with fatty acid impurities or conjugated with palmitate but not albumin itself compromised mitochondrial and cell viability, membrane potential and respiration. Fatty acid overload led to a redox imbalance which deactivated the antioxidant protein peroxiredoxin 2 and caused a peroxide-mediated apoptosis through the redox-sensitive pJNK/caspase-3 pathway. Transfection of tubular cells with peroxiredoxin 2 was protective and mitigated apoptosis. Mitochondrial fatty acid entry and ceramide synthesis modulators suggested that mitochondrial β oxidation but not ceramide synthesis may modulate lipotoxic effects on tubular cell survival. These results suggest that albumin overloaded with fatty acids but not albumin itself changes the redox environment in the tubules, inducing a peroxide-mediated redox-sensitive apoptosis. Thus, mitigating circulating fatty acid levels may be an important factor in both preserving redox balance and preventing tubular cell damage in proteinuric diseases. PMID:24500687

  3. Fate of Salmonella Typhimurium in laboratory-scale drinking water biofilms.

    PubMed

    Schaefer, L M; Brözel, V S; Venter, S N

    2013-12-01

    Investigations were carried out to evaluate and quantify colonization of laboratory-scale drinking water biofilms by a chromosomally green fluorescent protein (gfp)-tagged strain of Salmonella Typhimurium. Gfp encodes the green fluorescent protein and thus allows in situ detection of undisturbed cells and is ideally suited for monitoring Salmonella in biofilms. The fate and persistence of non-typhoidal Salmonella in simulated drinking water biofilms was investigated. The ability of Salmonella to form biofilms in monoculture and the fate and persistence of Salmonella in a mixed aquatic biofilm was examined. In monoculture S. Typhimurium formed loosely structured biofilms. Salmonella colonized established multi-species drinking water biofilms within 24 hours, forming micro-colonies within the biofilm. S. Typhimurium was also released at high levels from the drinking water-associated biofilm into the water passing through the system. This indicated that Salmonella could enter into, survive and grow within, and be released from a drinking water biofilm. The ability of Salmonella to survive and persist in a drinking water biofilm, and be released at high levels into the flow for recolonization elsewhere, indicates the potential for a persistent health risk to consumers once a network becomes contaminated with this bacterium.

  4. RGMb protects against acute kidney injury by inhibiting tubular cell necroptosis via an MLKL-dependent mechanism.

    PubMed

    Liu, Wenjing; Chen, Binbin; Wang, Yang; Meng, Chenling; Huang, Huihui; Huang, Xiao-Ru; Qin, Jinzhong; Mulay, Shrikant R; Anders, Hans-Joachim; Qiu, Andong; Yang, Baoxue; Freeman, Gordon J; Lu, Hua Jenny; Lin, Herbert Y; Zheng, Zhi-Hua; Lan, Hui-Yao; Huang, Yu; Xia, Yin

    2018-02-13

    Tubular cell necrosis is a key histological feature of acute kidney injury (AKI). Necroptosis is a type of programed necrosis, which is executed by mixed lineage kinase domain-like protein (MLKL) upon its binding to the plasma membrane. Emerging evidence indicates that necroptosis plays a critical role in the development of AKI. However, it is unclear whether renal tubular cells undergo necroptosis in vivo and how the necroptotic pathway is regulated during AKI. Repulsive guidance molecule (RGM)-b is a member of the RGM family. Our previous study demonstrated that RGMb is highly expressed in kidney tubular epithelial cells, but its biological role in the kidney has not been well characterized. In the present study, we found that RGMb reduced membrane-associated MLKL levels and inhibited necroptosis in cultured cells. During ischemia/reperfusion injury (IRI) or oxalate nephropathy, MLKL was induced to express on the apical membrane of proximal tubular (PT) cells. Specific knockout of Rgmb in tubular cells (Rgmb cKO) increased MLKL expression at the apical membrane of PT cells and induced more tubular cell death and more severe renal dysfunction compared with wild-type mice. Treatment with the necroptosis inhibitor Necrostatin-1 or GSK'963 reduced MLKL expression on the apical membrane of PT cells and ameliorated renal function impairment after IRI in both wild-type and Rgmb cKO mice. Taken together, our results suggest that proximal tubular cell necroptosis plays an important role in AKI, and that RGMb protects against AKI by inhibiting MLKL membrane association and necroptosis in proximal tubular cells.

  5. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Takanori; Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp; Takeuchi, Masayoshi

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenicmore » reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE

  6. Oral vaccination with a live Salmonella Enteritidis/Typhimurium bivalent vaccine in layers induces cross-protection against caecal and internal organ colonization by a Salmonella Infantis strain.

    PubMed

    Eeckhaut, Venessa; Haesebrouck, Freddy; Ducatelle, Richard; Van Immerseel, Filip

    2018-05-01

    Salmonella is an important zoonotic agent, and poultry products remain one of the main sources of infection for humans. Salmonella Infantis is an emerging serotype in poultry worldwide, reflected by an increased prevalence in poultry flocks, on broiler meat and in human foodborne illness cases. In the current study, the efficacy of oral administration of a live monovalent Salmonella Enteritidis and a live bivalent Salmonella Enteritidis/Typhimurium vaccine, against a Salmonella Enteritidis and Infantis infection, was determined. Oral administration of the live vaccines to day-old chickens caused a decrease in caecal colonization by Salmonella Enteritidis, but not Infantis, at day 7, when challenged at day 2. Vaccination with the bivalent vaccine at day 1 resulted in a decreased spleen colonization by both Salmonella Infantis and Enteritidis. Twice (at day 1 and week 6) and thrice vaccination (at day 1, week 6 and 16) of laying hens with the bivalent vaccine resulted in a decreased caecal colonization by Salmonella Enteritidis and Infantis, and significantly lower oviduct colonization levels by Salmonella Enteritidis. These data show cross-protection against Salmonella Infantis by oral administration of live vaccine strains belonging to other serogroups. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. MDM2 prevents spontaneous tubular epithelial cell death and acute kidney injury

    PubMed Central

    Thomasova, Dana; Ebrahim, Martrez; Fleckinger, Kristina; Li, Moying; Molnar, Jakob; Popper, Bastian; Liapis, Helen; Kotb, Ahmed M; Siegerist, Florian; Endlich, Nicole; Anders, Hans-Joachim

    2016-01-01

    Murine double minute-2 (MDM2) is an E3-ubiquitin ligase and the main negative regulator of tumor suppressor gene p53. MDM2 has also a non-redundant function as a modulator of NF-kB signaling. As such it promotes proliferation and inflammation. MDM2 is highly expressed in the unchallenged tubular epithelial cells and we hypothesized that MDM2 is necessary for their survival and homeostasis. MDM2 knockdown by siRNA or by genetic depletion resulted in demise of tubular cells in vitro. This phenotype was completely rescued by concomitant knockdown of p53, thus suggesting p53 dependency. In vivo experiments in the zebrafish model demonstrated that the tubulus cells of the larvae undergo cell death after the knockdown of mdm2. Doxycycline-induced deletion of MDM2 in tubular cell-specific MDM2-knockout mice Pax8rtTa-cre; MDM2f/f caused acute kidney injury with increased plasma creatinine and blood urea nitrogen and sharp decline of glomerular filtration rate. Histological analysis showed massive swelling of renal tubular cells and later their loss and extensive tubular dilation, markedly in proximal tubules. Ultrastructural changes of tubular epithelial cells included swelling of the cytoplasm and mitochondria with the loss of cristae and their transformation in the vacuoles. The pathological phenotype of the tubular cell-specific MDM2-knockout mouse model was completely rescued by co-deletion of p53. Tubular epithelium compensates only partially for the cell loss caused by MDM2 depletion by proliferation of surviving tubular cells, with incomplete MDM2 deletion, but rather mesenchymal healing occurs. We conclude that MDM2 is a non-redundant survival factor for proximal tubular cells by protecting them from spontaneous p53 overexpression-related cell death. PMID:27882940

  8. Laboratory-based Salmonella surveillance in Fiji, 2004-2005.

    PubMed

    Dunn, John; Pryor, Jan; Saketa, Salanieta; Delai, Wasale; Buadromo, Eka; Kishore, Kamal; Naidu, Shakila; Greene, Sharon; Varma, Jay; Chiller, Tom

    2005-09-01

    Although foodborne diseases are an important public health problem worldwide, the burden of foodborne illness is not well described in most Pacific Island Countries and Territories. Laboratory-based surveillance programs can detect trends and outbreaks, estimate burden of illness, and allow subtyping of enteric pathogens (e.g. Salmonella serotyping), which is critical for linking illness to food vehicles and animal reservoirs. To enhance public health capacity in Fiji for foodborne disease surveillance, we developed the Salmonella Surveillance Project (SSP), a collaboration to pilot laboratory-based surveillance for Salmonella. A network of national and international partners was formed including epidemiologists, microbiologists, and environmental health personnel. Ministry of Health personnel were trained in foodborne disease surveillance and outbreak investigation. Three clinical microbiology laboratories from different parts of the country functioned as sentinel sites, reporting all laboratory-confirmed Salmonella infections using a standardized case report form. Non-Typhi Salmonella isolates were collected for serotyping. In 2004-2005, 86 non-Typhi Salmonella and 275 S. Typhi laboratory-confirmed infections were reported. Salmonella enterica serotype I 3,10: r:- and Salmonella enterica serotype Weltevreden were the most commonly isolated non-Typhi serotypes. In Fiji, the SSP utilized international partnerships to facilitate training, and to enhance laboratory capacity and surveillance for salmonellosis. Incorporating laboratory-based foodborne disease reporting into national disease surveillance will enable public health officials to describe the burden of foodborne illness, identify outbreaks, conduct analytic epidemiology studies, and improve food safety.

  9. Synthesis and adsorption properties of hollow tubular alumina fibers

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, A. S.; Kazantsev, S. O.; Glazkova, E. A.

    2017-12-01

    In this study, composite glass fibers coated with alumina nanoplates and hollow tubular alumina fibers with a diameter of 400-500 nm are synthesized based on glass fiber templated hydrothermal strategy. Porous coatings on glass fibers and hollow fibers consist of cross-linked alumina nanoplates with the size of 100-200 nm and thickness of 2-5 nm. Their formation is attributed to the template-induced heterogeneous growth of alumina nanoplates on glass fibers of the B-06-F type. It is important that composite glass fibers and hollow tubular fibers have opposite surface charges and exhibit selective sorption characteristics towards anionic and cationic dyes.

  10. Thioredoxin interacting protein (TXNIP) regulates tubular autophagy and mitophagy in diabetic nephropathy through the mTOR signaling pathway

    PubMed Central

    Huang, Chunling; Zhang, Yuan; Kelly, Darren J.; Tan, Christina Y. R.; Gill, Anthony; Cheng, Delfine; Braet, Filip; Park, Jin-Sung; Sue, Carolyn M.; Pollock, Carol A.; Chen, Xin-Ming

    2016-01-01

    Hyperglycemia upregulates thioredoxin interacting protein (TXNIP) expression, which in turn induces ROS production, inflammatory and fibrotic responses in the diabetic kidney. Dysregulation of autophagy contributes to the development of diabetic nephropathy. However, the interaction of TXNIP with autophagy/mitophagy in diabetic nephropathy is unknown. In this study, streptozotocin-induced diabetic rats were given TXNIP DNAzyme or scrambled DNAzyme for 12 weeks respectively. Fibrotic markers, mitochondrial function and mitochondrial reactive oxygen species (mtROS) were assessed in kidneys. Tubular autophagy and mitophagy were determined in kidneys from both human and rats with diabetic nephropathy. TXNIP and autophagic signaling molecules were examined. TXNIP DNAzyme dramatically attenuated extracellular matrix deposition in the diabetic kidneys compared to the control DNAzyme. Accumulation of autophagosomes and reduced autophagic clearance were shown in tubular cells of human diabetic compared to non-diabetic kidneys, which was reversed by TXNIP DNAzyme. High glucose induced mitochondrial dysfunction and mtROS production, and inhibited mitophagy in proximal tubular cells, which was reversed by TXNIP siRNA. TXNIP inhibition suppressed diabetes-induced BNIP3 expression and activation of the mTOR signaling pathway. Collectively, hyperglycemia-induced TXNIP contributes to the dysregulation of tubular autophagy and mitophagy in diabetic nephropathy through activation of the mTOR signaling pathway. PMID:27381856

  11. 78 FR 14361 - U.S. Steel Tubular Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United States Steel Corporation, Mckeesport, PA; Notice of Initiation of Investigation To Terminate Certification of Eligibility Pursuant to... Tubular Products, McKeesport Tubular Operations Division, Subsidiary of United States Steel Corporation...

  12. In-Situ TEM-STM Observations of SWCNT Ropes/Tubular Transformations

    NASA Technical Reports Server (NTRS)

    Sola, F.; Lebron-Colon, M.; Ferreira, P. J.; Fonseca, L. F.; Meador, M. A.; Marin, C.

    2010-01-01

    Single-walled carbon nanotubes (SWCNTs) prepared by the HiPco process were purified using a modified gas phase purification technique. A TEM-STM holder was used to study the morphological changes of SWCNT ropes as a function of applied voltage. Kink formation, buckling behavior, tubular transformation and eventual breakdown of the system were observed. The tubular formation was attributed to a transformation from SWCNT ropes to multi-walled carbon nanotube (MWCNT) structures. It is likely mediated by the patching and tearing mechanism which is promoted primarily by the mobile vacancies generated due to current-induced heating and, to some extent, by electron irradiation.

  13. 78 FR 37584 - U.S. Steel Tubular Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... make the following certification: All workers of U.S. Steel Tubular Products, McKeesport Tubular... Products, Inc., Mckeesport Tubular Operations Division, Subsidiary of United States Steel Corporation, Mckeesport, Pennsylvania; Notice of Amended Certification Pursuant to Section 221 of the Trade Act of 1974...

  14. Renal tubular ACE-mediated tubular injury is the major contributor to microalbuminuria in early diabetic nephropathy.

    PubMed

    Eriguchi, Masahiro; Lin, Mercury; Yamashita, Michifumi; Zhao, Tuantuan V; Khan, Zakir; Bernstein, Ellen A; Gurley, Susan B; Gonzalez-Villalobos, Romer A; Bernstein, Kenneth E; Giani, Jorge F

    2018-04-01

    Diabetic nephropathy is a major cause of end-stage renal disease in developed countries. While angiotensin-converting enzyme (ACE) inhibitors are used to treat diabetic nephropathy, how intrarenal ACE contributes to diabetic renal injury is uncertain. Here, two mouse models with different patterns of renal ACE expression were studied to determine the specific contribution of tubular vs. glomerular ACE to early diabetic nephropathy: it-ACE mice, which make endothelial ACE but lack ACE expression by renal tubular epithelium, and ACE 3/9 mice, which lack endothelial ACE and only express renal ACE in tubular epithelial cells. The absence of endothelial ACE normalized the glomerular filtration rate and endothelial injury in diabetic ACE 3/9 mice. However, these mice developed tubular injury and albuminuria and displayed low renal levels of megalin that were similar to those observed in diabetic wild-type mice. In diabetic it-ACE mice, despite hyperfiltration, the absence of renal tubular ACE greatly reduced tubulointerstitial injury and albuminuria and increased renal megalin expression compared with diabetic wild-type and diabetic ACE 3/9 mice. These findings demonstrate that endothelial ACE is a central regulator of the glomerular filtration rate while tubular ACE is a key player in the development of tubular injury and albuminuria. These data suggest that tubular injury, rather than hyperfiltration, is the main cause of microalbuminuria in early diabetic nephropathy.

  15. Tisp40 deficiency attenuates renal ischemia reperfusion injury induced apoptosis of tubular epithelial cells.

    PubMed

    Qin, Cong; Xiao, Chengcheng; Su, Yang; Zheng, Haizhou; Xu, Tao; Lu, Jingxiao; Luo, Pengcheng; Zhang, Jie

    2017-10-01

    Renal ischemia reperfusion (IR) is a major cause of acute kidney injury (AKI) and no effective treatments have been established. Tisp40 is a transcription factor of the CREB/ATF family and involves in cell apoptosis, proliferation and differentiation, but its role in renal IR remains unknown. Here, we investigated the role of Tisp40 in renal IR injury. In vivo, Tisp40 knockout (KO) and wild-type (WT) mice were subjected to thirty minutes of bilateral renal ischemia and 48h reperfusion, the blood and kidneys were harvested for analysis. In vitro, Tisp40 overexpression and vector cells were subjected to hypoxia/reoxygenation (HR), the apoptosis rate and the expressions of related proteins were measured. Following IR, the expressions of Tisp40 protein, serum creatinine (sCr), blood urea nitrogen (BUN) and apoptosis of tubular cells were significantly increased in WT mice. However, Tisp40 deficiency significantly attenuated the increase of sCr, BUN and apoptosis of tubular cells. Following HR, apoptosis of tubular cells was increased in Tisp40 overexpression cells compared with vector cells. Mechanistically, Tisp40 promoted the expressions of C/EBP homologous protein (CHOP), Bax and Cleaved caspase3 and suppressed the expression of Bcl-2 in renal IR injury. In conclusion, Tisp40 aggravates tubular cells apoptosis in renal IR injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Interaction between Salmonella typhimurium and phagocytic cells in pigs. Phagocytosis, oxidative burst and killing in polymorphonuclear leukocytes and monocytes.

    PubMed

    Riber, U; Lind, P

    1999-02-22

    Interactions between Salmonella typhimurium and peripheral blood leucocytes from healthy, Salmonella-free pigs were investigated in vitro. Both granulocytes and monocytes phagocytized FITC-labelled heat-killed Salmonella bacteria as shown by flow cytometry. Phagocytosis in whole blood and isolated leucocytes was measured as acquired fluorescence in the leukocytes and was both time and dose related. Living, serum-opsonized Salmonella bacteria induced a dose-dependent oxidative burst in PMNs and monocytes as measured by luminol-enhanced chemiluminescence (LC). When opsonized in normal serum the Salmonella bacteria, in the range of 2-5 x 10(7) cfu, induced a LC response in monocytes comparable to the level of responses induced by phorbol myristate acetate (PMA) and opsonized zymosan, and the Salmonella-induced response was only marginally reduced by superoxide dismutase (SOD). Intracellular killing of Salmonella by monocytes was assessed from plate colony counts of lysed monocytes and showed that Salmonella typhimurium was able to survive and proliferate in adherent monocytes in vitro despite a reduction in intracellular cfu during the first hour's incubation in cells from some pigs. Experiments with the exhaustion of oxidative burst in non-adherent monocytes were performed by prestimulation with PMA, heat-killed Salmonella or buffer. Prestimulation with PMA led to a strong reduction in oxidative burst induced by living opsonized Salmonella bacteria, whereas prestimulation with heat-killed bacteria gave rise to an enhanced response. In these experiments intracellular killing of the added living Salmonella gave variable results, in that monocytes from two out of three pigs showed no essential change in intracellular bactericidal activity, but with cells from one pig a less pronounced bactericidal activity was found after prestimulation with PMA.

  17. Salmonella Overcomes Drug Resistance in Tumor through P-glycoprotein Downregulation.

    PubMed

    Yang, Chih-Jen; Chang, Wen-Wei; Lin, Song-Tao; Chen, Man-Chin; Lee, Che-Hsin

    2018-01-01

    Chemotherapy is one of effective methods for the treatment of tumor. Patients often develop drug resistance after chemotherapic cycles. Salmonella has potential as antitumor agent. Salmonella used in tandem with chemotherapy had additive effects, providing a rationale for using tumor-targeting Salmonella in combination with conventional chemotherapy. To improve the efficacy and safety of Salmonella , a further understanding of Salmonella interactions with the tumor microenvironment is required. The presence of plasma membrane multidrug resistance protein P-glycoprotein (P-gp) is highly relevant for the success of chemotherapy. Following Salmonella infection, dose-dependent downregulation of P-gp expressions were examined. Salmonella significantly decreased the efflux capabilities of P-gp, as based on the influx of Rhodamine 123 assay. In addition, Salmonella significant reduced the protein express the expression levels of phosph-protein kinase B (P-AKT), phosph-mammalian targets of rapamycin (P-mTOR), and phosph-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells. The Salmonella -induced downregulation of P-gp was rescued by transfection of cells with active P-AKT. Our results demonstrate that Salmonella in tumor sites leads to decrease the expression of P-gp and enhances the combination of Salmonell a and 5-Fluorouracil therapeutic effects.

  18. Regulatory principles governing Salmonella and Yersinia virulence

    PubMed Central

    Erhardt, Marc; Dersch, Petra

    2015-01-01

    Enteric pathogens such as Salmonella and Yersinia evolved numerous strategies to survive and proliferate in different environmental reservoirs and mammalian hosts. Deciphering common and pathogen-specific principles for how these bacteria adjust and coordinate spatiotemporal expression of virulence determinants, stress adaptation, and metabolic functions is fundamental to understand microbial pathogenesis. In order to manage sudden environmental changes, attacks by the host immune systems and microbial competition, the pathogens employ a plethora of transcriptional and post-transcriptional control elements, including transcription factors, sensory and regulatory RNAs, RNAses, and proteases, to fine-tune and control complex gene regulatory networks. Many of the contributing global regulators and the molecular mechanisms of regulation are frequently conserved between Yersinia and Salmonella. However, the interplay, arrangement, and composition of the control elements vary between these closely related enteric pathogens, which generate phenotypic differences leading to distinct pathogenic properties. In this overview we present common and different regulatory networks used by Salmonella and Yersinia to coordinate the expression of crucial motility, cell adhesion and invasion determinants, immune defense strategies, and metabolic adaptation processes. We highlight evolutionary changes of the gene regulatory circuits that result in different properties of the regulatory elements and how this influences the overall outcome of the infection process. PMID:26441883

  19. Heparanase regulates the M1 polarization of renal macrophages and their crosstalk with renal epithelial tubular cells after ischemia/reperfusion injury.

    PubMed

    Masola, Valentina; Zaza, Gianluigi; Bellin, Gloria; Dall'Olmo, Luigi; Granata, Simona; Vischini, Gisella; Secchi, Maria Francesca; Lupo, Antonio; Gambaro, Giovanni; Onisto, Maurizio

    2018-02-01

    Heparanase (HPSE) is part of the biologic network triggered by ischemia/reperfusion (I/R) injury, a complication of renal transplantation and acute kidney injury. During this period, the kidney or graft undergoes a process of macrophages recruitment and activation. HPSE may therefore control these biologic effects. We measured the ability of HPSE and its inhibitor, SST0001, to regulate macrophage polarization and the crosstalk between macrophages and HK-2 renal tubular cells during in vitro hypoxia/reoxygenation (H/R). Furthermore, we evaluated in vivo renal inflammation, macrophage polarization, and histologic changes in mice subjected to monolateral I/R and treated with SST0001 for 2 or 7 d. The in vitro experiments showed that HPSE sustained M1 macrophage polarization and modulated apoptosis, the release of damage associated molecular patterns in post-H/R tubular cells, the synthesis of proinflammatory cytokines, and the up-regulation of TLRs on both epithelial cells and macrophages. HPSE also regulated M1 polarization induced by H/R-injured tubular cells and the partial epithelial-mesenchymal transition of these epithelial cells by M1 macrophages. All these effects were prevented by inhibiting HPSE. Furthermore, the inhibition of HPSE in vivo reduced inflammation and M1 polarization in mice undergoing I/R injury, partially restored renal function and normal histology, and reduced apoptosis. These results show for the first time that HPSE regulates macrophage polarization as well as renal damage and repair after I/R. HPSE inhibitors could therefore provide a new pharmacologic approach to minimize acute kidney injury and to prevent the chronic profibrotic damages induced by I/R.-Masola, V., Zaza, G., Bellin, G., Dall'Olmo, L., Granata, S., Vischini, G., Secchi, M. F., Lupo, A., Gambaro, G., Onisto, M. Heparanase regulates the M1 polarization of renal macrophages and their crosstalk with renal epithelial tubular cells after ischemia/reperfusion injury.

  20. Viable-but-Nonculturable Listeria monocytogenes and Salmonella enterica Serovar Thompson Induced by Chlorine Stress Remain Infectious.

    PubMed

    Highmore, Callum J; Warner, Jennifer C; Rothwell, Steve D; Wilks, Sandra A; Keevil, C William

    2018-04-17

    The microbiological safety of fresh produce is monitored almost exclusively by culture-based detection methods. However, bacterial food-borne pathogens are known to enter a viable-but-nonculturable (VBNC) state in response to environmental stresses such as chlorine, which is commonly used for fresh produce decontamination. Here, complete VBNC induction of green fluorescent protein-tagged Listeria monocytogenes and Salmonella enterica serovar Thompson was achieved by exposure to 12 and 3 ppm chlorine, respectively. The pathogens were subjected to chlorine washing following incubation on spinach leaves. Culture data revealed that total viable L. monocytogenes and Salmonella Thompson populations became VBNC by 50 and 100 ppm chlorine, respectively, while enumeration by direct viable counting found that chlorine caused a <1-log reduction in viability. The pathogenicity of chlorine-induced VBNC L. monocytogenes and Salmonella Thompson was assessed by using Caenorhabditis elegans Ingestion of VBNC pathogens by C. elegans resulted in a significant life span reduction ( P = 0.0064 and P < 0.0001), and no significant difference between the life span reductions caused by the VBNC and culturable L. monocytogenes treatments was observed. L. monocytogenes was visualized beyond the nematode intestinal lumen, indicating resuscitation and cell invasion. These data emphasize the risk that VBNC food-borne pathogens could pose to public health should they continue to go undetected. IMPORTANCE Many bacteria are known to enter a viable-but-nonculturable (VBNC) state in response to environmental stresses. VBNC cells cannot be detected by standard laboratory culture techniques, presenting a problem for the food industry, which uses these techniques to detect pathogen contaminants. This study found that chlorine, a sanitizer commonly used for fresh produce, induces a VBNC state in the food-borne pathogens Listeria monocytogenes and Salmonella enterica It was also found that

  1. HIF-1-mediated production of exosomes during hypoxia is protective in renal tubular cells.

    PubMed

    Zhang, Wei; Zhou, Xiangjun; Yao, Qisheng; Liu, Yutao; Zhang, Hao; Dong, Zheng

    2017-10-01

    Exosomes are nano-sized vesicles produced and secreted by cells to mediate intercellular communication. The production and function of exosomes in kidney tissues and cells remain largely unclear. Hypoxia is a common pathophysiological condition in kidneys. This study was designed to characterize exosome production during hypoxia of rat renal proximal tubular cells (RPTCs), investigate the regulation by hypoxia-inducible factor-1 (HIF-1), and determine the effect of the exosomes on ATP-depletion-induced tubular cell injury. Hypoxia did not change the average sizes of exosomes secreted by RPTCs, but it significantly increased exosome production in a time-dependent manner. HIF-1 induction with dimethyloxalylglycine also promoted exosome secretion, whereas pharmacological and genetic suppression of HIF-1 abrogated the increase of exosome secretion under hypoxia. The exosomes from hypoxic RPTCs had inhibitory effects on apoptosis of RPTCs following ATP depletion. The protective effects were lost in the exosomes from HIF-1α knockdown cells. It is concluded that hypoxia stimulates exosome production and secretion in renal tubular cells. The exosomes from hypoxic cells are protective against renal tubular cell injury. HIF-1 mediates exosome production during hypoxia and contributes to the cytoprotective effect of the exosomes. Copyright © 2017 the American Physiological Society.

  2. Interplay between autophagy and apoptosis in lead(II)-induced cytotoxicity of primary rat proximal tubular cells.

    PubMed

    Chu, Bing-Xin; Fan, Rui-Feng; Lin, Shu-Qian; Yang, Du-Bao; Wang, Zhen-Yong; Wang, Lin

    2018-05-01

    Autophagy and apoptosis are two different biological processes that determine cell fates. We previously reported that autophagy inhibition and apoptosis induction are involved in lead(II)-induced cytotoxicity in primary rat proximal tubular (rPT) cells, but the interplay between them remains to be elucidated. Firstly, data showed that lead(II)-induced elevation of LC3-II protein levels can be significantly modulated by 3-methyladenine or rapamycin; moreover, protein levels of Autophagy-related protein 5 (Atg5) and Beclin-1 were markedly up-regulated by lead(II) treatment, demonstrating that lead(II) could promote the autophagosomes formation in rPT cells. Next, we applied three pharmacological agents and genetic method targeting the early stage of autophagy to validate that enhancement of autophagosomes formation can inhibit lead(II)-induced apoptotic cell death in rPT cells. Simultaneously, lead(II) inhibited the autophagic degradation of rPT cells, while the addition of autophagic degradation inhibitor bafilomycin A1 aggravated lead(II)-induced apoptotic death in rPT cells. Collectively, this study provided us a good model to know about the dynamic process of lead(II)-induced autophagy in rPT cells, and the interplay between autophagy and apoptosis highlights a new sight into the mechanism of lead(II)-induced nephrotoxicity. Copyright © 2018. Published by Elsevier Inc.

  3. Bcl-2 protects tubular epithelial cells from ischemia reperfusion injury by inhibiting apoptosis.

    PubMed

    Suzuki, Chigure; Isaka, Yoshitaka; Shimizu, Shigeomi; Tsujimoto, Yoshihide; Takabatake, Yoshitsugu; Ito, Takahito; Takahara, Shiro; Imai, Enyu

    2008-01-01

    Ischemia followed by reperfusion leads to severe organ injury and dysfunction. Inflammation is considered to be the most important cause of graft dysfunction in kidney transplantation subjected to ischemia. The mechanism that triggers inflammation and renal injury after ischemia remains to be elucidated; however, cellular stress may induce apoptosis during the first hours and days after transplantation, which might play a crucial role in early graft dysfunction. Bcl-2 is known to inhibit apoptosis induced by the etiological factors promoting ischemia and reperfusion injury. Accordingly, we hypothesized that an augmentation of the antiapoptotic factor Bcl-2 may thus protect tubular epithelial cells by inhibiting apoptosis, thereby ameliorating the subsequent tubulointerstitial injury. We examined the effects of Bcl-2 overexpression on ischemia-reperfusion (I/R) injury using Bcl-2 transgenic mice (Bcl-2 TG) and their wild-type littermates (WT). To investigate the effects of I/R injury, the left renal artery and vein were clamped for 45 min, followed by reperfusion for 0-96 h. Bcl-2 TG exhibited decreased active caspase protein in the tubular cells, which led to a reduction in TUNEL-positive apoptotic cells. Consequently, interstitial fibrosis and phenotypic changes were ameliorated in Bcl-2 TG. In conclusion, Bcl-2 augmentation protected renal tubular epithelial cells from I/R, and subsequent interstitial injury by inhibiting tubular apoptosis.

  4. Landscape and seasonal factors influence salmonella and campylobacter prevalence in a rural mixed use watershed

    USDA-ARS?s Scientific Manuscript database

    Salmonella and Campylobacter prevalence in stream networks of the Satilla River Basin (SRB) were monitored monthly from August 2007 to August 2009 to study relationships between these pathogens and land use, presence of poultry houses and wastewater treatment plant (WWTP) discharge. Salmonella and ...

  5. Calcium-binding proteins annexin A2 and S100A6 are sensors of tubular injury and recovery in acute renal failure.

    PubMed

    Cheng, Chao-Wen; Rifai, Abdalla; Ka, Shuk-Man; Shui, Hao-Ai; Lin, Yuh-Feng; Lee, Wei-Hwa; Chen, Ann

    2005-12-01

    Rise in cellular calcium is associated with acute tubular necrosis, the most common cause of acute renal failure (ARF). The mechanisms that calcium signaling induce in the quiescent tubular cells to proliferate and differentiate during acute tubular necrosis have not been elucidated. Acute tubular necrosis induced in mice by single intravenous injection of uranyl nitrate and examined after 1, 3, 7, and 14 days. Renal function was monitored and kidneys were evaluated by histology, immunohistochemistry, Western blotting, in situ hybridization, and real-time reverse transcription-polymerase chain reaction (RT-PCR). Models of folic acid induced-ARF and ischemic/reperfusion (I/R) injury were similarly investigated. Analysis of mRNA expression of intracellular calcium and phospholipid-binding proteins demonstrated selective expression of S100A6 and Annexin A2 (Anxa2) in the renal cortex with marked elevation on day 3, and gradually decline on day 7 and further attenuation on day 14. Similarly, the expression of both proteins, as demonstrated by immunohistochemistry and Western blot analysis, was increased and reached the peak level on day 7 and then gradually declined by day 14. Vimentin, a marker of dedifferentiated cells, was highly expressed during the recovery phase. Combined in situ hybridization immunohistochemistry revealed colocalization of both S100A6 and Anxa2 with proliferating cell nuclear antigen (PCNA). The universality of this phenomenon was confirmed in two other mouse acute tubular necrosis models, the ischemic-reperfusion injury and folic acid-induced ARF. Collectively, these findings demonstrate that S100A6 and Anxa2 expression, initiated in response to tubular injury, persist in parallel throughout the recovery process of tubular cells in acute renal failure.

  6. Salmonella-based plague vaccines for bioterrorism.

    PubMed

    Calhoun, Leona Nicole; Kwon, Young-Min

    2006-04-01

    Yersinia pestis, the causative agent of plague, is an emerging threat as a means of bioterrorism. Accordingly, the Working Group on Civilian Biodefense, as well as the Centers for Disease Control and Prevention, has specified Y. pestis as a prime candidate for use in bioterrorism. As the threat of bioterrorism increases, so does the need for an effective vaccine against this potential agent. Experts agree that a stable, non-invasive vaccine would be necessary for the rapid large-scale immunization of a population following a bioterrorism attack. Thus far, live Salmonella-based oral vaccines show the most potential for this purpose. When delivered via a mucosal route, Salmonella-based plague vaccines show the ability to protect against the deadly pneumonic form of plague. Also, mass production, distribution, and administration are easier and less costly for attenuated Salmonella-based plague vaccines than for plague vaccines consisting of purified proteins. Most attenuated Salmonella-based plague vaccines have utilized a plasmid-based expression system to deliver plague antigen(s) to the mucosa. However, these systems are frequently associated with plasmid instability, an increased metabolic burden upon the vaccine strain, and highly undesirable antibiotic resistance genes. The future of Salmonella-based plague vaccines seems to lie in the use of chromosomally encoded plague antigens and the use of in vivo inducible promoters to drive their expression. This method of vaccine development has been proven to greatly increase the retention of foreign genes, and also eliminates the need for antibiotic resistance genes within Salmonella-based vaccines.

  7. Transcriptomic analysis of Salmonella desiccation resistance.

    PubMed

    Li, Haiping; Bhaskara, Anuhya; Megalis, Christina; Tortorello, Mary Lou

    2012-12-01

    The survival of Salmonella in low moisture foods and processing environments remains a great challenge for the food industry and public health. To explore the mechanisms of Salmonella desiccation resistance, we studied the transcriptomic responses in Salmonella Tennessee (Tennessee), using Salmonella Typhimurium LT2 (LT2), a strain weakly resistant to desiccation, as a reference strain. In response to 2 h of air-drying at 11% equilibrated relative humidity, approximately one-fourth of the open reading frames (ORFs) in the Tennessee genome and one-fifth in LT2 were differentially expressed (>2-fold). Among all differentially expressed functional groups (>5-fold) in both strains, the expression fold change associated with fatty acid metabolism was the highest, and constituted 51% and 35% of the total expression fold change in Tennessee and LT2, respectively. Tennessee showed greater changes in expression of genes associated with stress response and envelope modification than LT2, while showing lesser changes in protein biosynthesis expression. Expression of flagella genes was significantly more inhibited in stationary phase cells of Tennessee than LT2 both before and after desiccation. The accumulation of the osmolyte trehalose was significantly induced by desiccation in Tennessee, but no increase was detectable in LT2, which is consistent with the expression patterns of the entire trehalose biosynthesis and degradation pathways in both strains. Results from this study present a global view of the dynamic desiccation responses in Salmonella, which will guide future research efforts to control Salmonella in low moisture environments.

  8. Cellular Uptake and Localization of Polymyxins in Renal Tubular Cells Using Rationally Designed Fluorescent Probes

    PubMed Central

    Yun, Bo; Azad, Mohammad A. K.; Nowell, Cameron J.; Nation, Roger L.; Thompson, Philip E.; Roberts, Kade D.

    2015-01-01

    Polymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity. PMID:26392495

  9. Gene co-expression network analysis identifies porcine genes associated with variation in Salmonella shedding

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar Typhimurium is a gram-negative bacterium that can colonize the gut of humans and several species of food producing farm animals to cause enteric or septicaemic salmonellosis. While many studies have looked into the host genetic response to Salmonella infection, relatively...

  10. Quinolone-resistant Salmonella enterica serotype Enteritidis infections associated with international travel.

    PubMed

    O'Donnell, Allison T; Vieira, Antonio R; Huang, Jennifer Y; Whichard, Jean; Cole, Dana; Karp, Beth E

    2014-11-01

    We found a strong association between nalidixic acid-resistant Salmonella enterica serotype Enteritidis infections in the United States and recent international travel by linking Salmonella Enteritidis data from the National Antimicrobial Resistance Monitoring System and the Foodborne Diseases Active Surveillance Network. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  11. Cirtical role for Salmonella effector SopB in regulating inflammasome activation.

    PubMed

    Hu, Gui-Qiu; Song, Pei-Xuan; Chen, Wei; Qi, Shuai; Yu, Shui-Xing; Du, Chong-Tao; Deng, Xu-Ming; Ouyang, Hong-Sheng; Yang, Yong-Jun

    2017-10-01

    Salmonella is known to evolve many mechanisms to avoid or delay inflammasome activation which remain largely unknown. In this study, we investigated whether the SopB protein critical to bacteria virulence capacity was an effector that involved in the regulation of inflammasome activation. BMDMs from NLRC4-, NLRP3-, caspase-1/-11-, IFI16- and AIM2-deficient mice were pretreated with LPS, and subsequently stimulated with a series of SopB-related strains of Salmonella, inflammasome induced cell death, IL-1β secretion, cleaved caspase-1 production and ASC speckle formation were detected. We found that SopB could inhibit host IL-1β secretion, caspase-1 activation and inflammasome induced cell death using a series of SopB-related strains of Salmonella; however the reduction of IL-1β secretion was not dependent on sensor that contain PYD domain, such as NLRP3, AIM2 or IFI16, but dependent on NLRC4. Notably, SopB specifically prevented ASC oligomerization and the enzymatic activity of SopB was responsible for the inflammasome inhibition. Furthermore, inhibition of Akt signaling induced enhanced inflammasome activation. These results revealed a novel role in inhibition of NLRC4 inflammasome for Salmonella effector SopB. Copyright © 2017. Published by Elsevier Ltd.

  12. Resistance to Extended-Spectrum β-Lactamases in Salmonella from a Broiler Supply Chain

    PubMed Central

    Gelinski, Jane Mary Lafayette Neves; Bombassaro, Amanda; Baratto, César Milton; Vicente, Vânia Aparecida

    2014-01-01

    The prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae varies worldwide, however, the incidence of ESBL-producing environmental Salmonella isolates is increasing. Salmonella is still one of the most important pathogens that occur in the poultry supply chain. Therefore, this study analyzed the susceptibility of Salmonella isolates collected from a poultry supply chain to β-lactam antibiotics, and examined the phenotypes of the isolates based on enzyme-inducible AmpC β-lactamase analysis. All analysis of the putative positive isolates in the current study confirmed that 27.02% (77/285 analysis) of all ESBL tests realized with the isolates produced a profile of resistance consistent with β-lactamase production. All isolates of S. Minnesota serotype had ESBL phenotype. Aztreonam resistance was the least common amongst the Salmonella isolates, followed by ceftazidime. The presence of inducible chromosomal ESBL was detected in 14 different isolates of the 19 serotypes investigated. These results are very indicatives of the presence of ESBL genes in Salmonella isolates from a broiler supply chain, reaffirming the growing global problem of ESBL resistance. PMID:25402566

  13. Microvesicles derived from human umbilical cord mesenchymal stem cells facilitate tubular epithelial cell dedifferentiation and growth via hepatocyte growth factor induction.

    PubMed

    Ju, Guan-qun; Cheng, Jun; Zhong, Liang; Wu, Shuai; Zou, Xiang-yu; Zhang, Guang-yuan; Gu, Di; Miao, Shuai; Zhu, Ying-jian; Sun, Jie; Du, Tao

    2015-01-01

    During acute kidney injury (AKI), tubular cell dedifferentiation initiates cell regeneration; hepatocyte growth factor (HGF) is involved in modulating cell dedifferentiation. Mesenchymal stem cell (MSC)-derived microvesicles (MVs) deliver RNA into injured tubular cells and alter their gene expression, thus regenerating these cells. We boldly speculated that MVs might induce HGF synthesis via RNA transfer, thereby facilitating tubular cell dedifferentiation and regeneration. In a rat model of unilateral AKI, the administration of MVs promoted kidney recovery. One of the mechanisms of action is the acceleration of tubular cell dedifferentiation and growth. Both in vivo and in vitro, rat HGF expression in damaged rat tubular cells was greatly enhanced by MV treatment. In addition, human HGF mRNA present in MVs was delivered into rat tubular cells and translated into the HGF protein as another mechanism of HGF induction. RNase treatment abrogated all MV effects. In the in vitro experimental setting, the conditioned medium of MV-treated injured tubular cells, which contains a higher concentration of HGF, strongly stimulated cell dedifferentiation and growth, as well as Erk1/2 signaling activation. Intriguingly, these effects were completely abrogated by either c-Met inhibitor or MEK inhibitor, suggesting that HGF induction is a crucial contributor to the acceleration of cell dedifferentiation and growth. All these findings indicate that MV-induced HGF synthesis in damaged tubular cells via RNA transfer facilitates cell dedifferentiation and growth, which are important regenerative mechanisms.

  14. Inhibiting post-translational core fucosylation protects against albumin-induced proximal tubular epithelial cell injury.

    PubMed

    Wang, Dapeng; Fang, Ming; Shen, Nan; Li, Longkai; Wang, Weidong; Wang, Lingyu; Lin, Hongli

    2017-01-01

    Albuminuria is an independent risk factor for renal interstitial fibrosis (RIF). Glomerular-filtered albumin in endocytic and non-endocytic pathways may injure proximal tubular epithelial cells (PTECs) via megalin and TGFβRII, respectively. Since megalin and TGFβRII are both modified by post-translational core fucosylation, which plays a critical role in RIF. Thus, we sought to identify whether core fucosylation is a potential target for reducing albumin-induced injury to PTECs. We constructed a human PTEC-derived cell line (HK-2 cells) and established an in vitro model of bovine serum albumin (BSA) injury. RNAi was used to inhibit the expression of megalin, TGFβRII, and Fut8. Western blotting, immunostaining, ELISA, lectin blotting, and fluorescence-activated cell sorting were used to identify BSA-induced endocytic and non-endocytic damage in HK-2 cells. Fut8 is a core fucosylation-related gene, which is significantly increased in HK-2 cells following an incubation with BSA. Fut8 siRNA significantly reduced the core fucosylation of megalin and TGFβRII and also inhibited the activation of the TGFβ/TGFβRII/Smad2/3 signaling pathway. Furthermore, Fut8 siRNA could reduce monocyte chemotactic protein-1, reactive oxygen species, and apoptosis, as well as significantly decrease the fibronectin and collagen I levels in BSA-overloaded HK-2 cells. Core fucosylation inhibition was more effective than inhibiting either megalin or TGFβRII for the prevention of albumin-induced injury to PTECs. Our findings indicate that post-translational core fucosylation is essential for the albumin-induced injury to PTECs. Thus, the inhibition of core fucosylation could effectively alleviate albumin-induced endocytic and non-endocytic injury to PTECs. Our study provides a potential therapeutic target for albuminuria-induced injury.

  15. Immunity to intestinal pathogens: lessons learned from Salmonella

    PubMed Central

    McSorley, Stephen J.

    2014-01-01

    Summary Salmonella are a common source of food or water-borne infection and cause a wide range of clinical disease in human and animal hosts. Salmonella are relatively easy to culture and manipulate in a laboratory setting, and the infection of laboratory animals induces robust innate and adaptive immune responses. Thus, immunologists have frequently turned to Salmonella infection models to expand understanding of immunity to intestinal pathogens. In this review, I summarize current knowledge of innate and adaptive immunity to Salmonella and highlight features of this response that have emerged from recent studies. These include the heterogeneity of the antigen-specific T-cell response to intestinal infection, the prominence of microbial mechanisms to impede T and B-cell responses, and the contribution of non-cognate pathways for elicitation of T-cell effector functions. Together, these different issues challenge an overly simplistic view of host-pathogen interaction during mucosal infection but also allow deeper insight into the real-world dynamic of protective immunity to intestinal pathogens. PMID:24942689

  16. The treatment of mouse colorectal cancer by oral delivery tumor-targeting Salmonella

    PubMed Central

    Wang, Wei-Kuang; Lu, Meng-Fan; Kuan, Yu-Diao; Lee, Che-Hsin

    2015-01-01

    Systemic administration of Salmonella to tumor-bearing mice leads to its preferential accumulation in tumor sites, the enhancement of host immunity, and the inhibition of tumor growth. However, the underlying mechanism for Salmonella-induced antitumor immune response via oral delivery remained uncertain. Herein, we used mouse colorectal cancer (CT26) as tumor model to study the therapeutic effects after oral delivery of Salmonella. When orally administered into tumor-bearing mice, Salmonella significantly accumulated in the tumor sites, inhibited tumor growth and extended the survival of mice. No obvious toxicity was observed during orally administered Salmonella by examining body weight and inflammatory cytokines. As indoleamine 2, 3-dioxygenase 1 (IDO) is a crucial mediator for tumor-mediated immune tolerance, we examined the expression of IDO. We demonstrated that Salmonella inhibited IDO expression in mouse cancer cells. Furthermore, immunohistochemical studies of the tumors revealed the infiltration of neutrophils and T cells in mice treated with Salmonella. In conclusion, our results indicate that Salmonella exerts its tumoricidal effects and stimulates T cell activities by inhibiting IDO expression. Oral delivery of Salmonella may, represent a potential strategy for the treatment of tumor. PMID:26328252

  17. Phenotypical resistance correlation networks for 10 non-typhoidal Salmonella subpopulations in an active antimicrobial surveillance programme.

    PubMed

    Love, W J; Zawack, K A; Booth, J G; Gröhn, Y T; Lanzas, C

    2018-06-01

    Antimicrobials play a critical role in treating cases of invasive non-typhoidal salmonellosis (iNTS) and other diseases, but efficacy is hindered by resistant pathogens. Selection for phenotypical resistance may occur via several mechanisms. The current study aims to identify correlations that would allow indirect selection of increased resistance to ceftriaxone, ciprofloxacin and azithromycin to improve antimicrobial stewardship. These are medically important antibiotics for treating iNTS, but these resistances persist in non-Typhi Salmonella serotypes even though they are not licensed for use in US food animals. A set of 2875 Salmonella enterica isolates collected from animal sources by the National Antimicrobial Resistance Monitoring System were stratified in to 10 subpopulations based on serotype and host species. Collateral resistances in each subpopulation were estimated as network models of minimum inhibitory concentration partial correlations. Ceftriaxone sensitivity was correlated with other β-lactam resistances, and less commonly resistances to tetracycline, trimethoprim-sulfamethoxazole or kanamycin. Azithromycin resistance was frequently correlated with chloramphenicol resistance. Indirect selection for ciprofloxacin resistance via collateral selection appears unlikely. Density of the ACSSuT subgraph resistance aligned well with the phenotypical frequency. The current study identifies several important resistances in iNTS serotypes and further research is needed to identify the causative genetic correlations.

  18. [Salmonella].

    PubMed

    Amo, Kiyoko

    2012-08-01

    Nontyphoidal salmonella causes infectious gastroenteritis, and sometimes causes bacteremia and meningitis. Gastroenteritis associated with nontyphoidal salmonella, in which fever, diarrhea, vomiting and abdominal cramps, is a common disease. The major way of transmittion is food of animal origin, for example egg. That is the reason why precausion is so important such as wash hands before cooking, avoid eating raw egg and wash the cooking utensils after contact raw foods. In this report, I presented the rare severe case of encephalitis caused by salmonella infection.

  19. Novel Inducers of the Envelope Stress Response BaeSR in Salmonella Typhimurium: BaeR Is Critically Required for Tungstate Waste Disposal

    PubMed Central

    Appia-Ayme, Corinne; Patrick, Elaine; J. Sullivan, Matthew; Alston, Mark J.; Field, Sarah J.; AbuOun, Manal; Anjum, Muna F.; Rowley, Gary

    2011-01-01

    The RpoE and CpxR regulated envelope stress responses are extremely important for SalmonellaTyphimurium to cause infection in a range of hosts. Until now the role for BaeSR in both the Salmonella Typhimurium response to stress and its contribution to infection have not been fully elucidated. Here we demonstrate stationary phase growth, iron and sodium tungstate as novel inducers of the BaeRregulon, with BaeR critically required for Salmonella resistance to sodium tungstate. We show that functional overlap between the resistance nodulation-cell division (RND) multidrug transporters, MdtA, AcrD and AcrB exists for the waste disposal of tungstate from the cell. We also point to a role for enterobactinsiderophores in the protection of enteric organisms from tungstate, akin to the scenario in nitrogen fixing bacteria. Surprisingly, BaeR is the first envelope stress response pathway investigated in S. Typhimurium that is not required for murine typhoid in either ityS or ityR mouse backgrounds. BaeR is therefore either required for survival in larger mammals such as pigs or calves, an avian host such as chickens, or survival out with the host altogether where Salmonella and related enterics must survive in soil and water. PMID:21886814

  20. Hyperactivation of Nrf2 in early tubular development induces nephrogenic diabetes insipidus

    PubMed Central

    Suzuki, Takafumi; Seki, Shiori; Hiramoto, Keiichiro; Naganuma, Eriko; Kobayashi, Eri H.; Yamaoka, Ayaka; Baird, Liam; Takahashi, Nobuyuki; Sato, Hiroshi; Yamamoto, Masayuki

    2017-01-01

    NF-E2-related factor-2 (Nrf2) regulates cellular responses to oxidative and electrophilic stress. Loss of Keap1 increases Nrf2 protein levels, and Keap1-null mice die of oesophageal hyperkeratosis because of Nrf2 hyperactivation. Here we show that deletion of oesophageal Nrf2 in Keap1-null mice allows survival until adulthood, but the animals develop polyuria with low osmolality and bilateral hydronephrosis. This phenotype is caused by defects in water reabsorption that are the result of reduced aquaporin 2 levels in the kidney. Renal tubular deletion of Keap1 promotes nephrogenic diabetes insipidus features, confirming that Nrf2 activation in developing tubular cells causes a water reabsorption defect. These findings suggest that Nrf2 activity should be tightly controlled during development in order to maintain renal homeostasis. In addition, tissue-specific ablation of Nrf2 in Keap1-null mice might create useful animal models to uncover novel physiological functions of Nrf2. PMID:28233855

  1. Micro-Tubular Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; Anderson, Everett B.; Jayne, Karen D.; Woodman, Alan S.

    2004-01-01

    Micro-tubular fuel cells that would operate at power levels on the order of hundreds of watts or less are under development as alternatives to batteries in numerous products - portable power tools, cellular telephones, laptop computers, portable television receivers, and small robotic vehicles, to name a few examples. Micro-tubular fuel cells exploit advances in the art of proton-exchange-membrane fuel cells. The main advantage of the micro-tubular fuel cells over the plate-and-frame fuel cells would be higher power densities: Whereas the mass and volume power densities of low-pressure hydrogen-and-oxygen-fuel plate-and-frame fuel cells designed to operate in the targeted power range are typically less than 0.1 W/g and 0.1 kW/L, micro-tubular fuel cells are expected to reach power densities much greater than 1 W/g and 1 kW/L. Because of their higher power densities, micro-tubular fuel cells would be better for powering portable equipment, and would be better suited to applications in which there are requirements for modularity to simplify maintenance or to facilitate scaling to higher power levels. The development of PEMFCs has conventionally focused on producing large stacks of cells that operate at typical power levels >5 kW. The usual approach taken to developing lower-power PEMFCs for applications like those listed above has been to simply shrink the basic plate-and-frame configuration to smaller dimensions. A conventional plate-and-frame fuel cell contains a membrane/electrode assembly in the form of a flat membrane with electrodes of the same active area bonded to both faces. In order to provide reactants to both electrodes, bipolar plates that contain flow passages are placed on both electrodes. The mass and volume overhead of the bipolar plates amounts to about 75 percent of the total mass and volume of a fuel-cell stack. Removing these bipolar plates in the micro-tubular fuel cell significantly increases the power density.

  2. An Inducible and Secreted Eukaryote-Like Serine/Threonine Kinase of Salmonella enterica Serovar Typhi Promotes Intracellular Survival and Pathogenesis

    PubMed Central

    Theeya, Nagaraja; Ta, Atri; Das, Sayan; Mandal, Rahul S.; Chakrabarti, Oishee; Chakrabarti, Saikat; Ghosh, Amar N.

    2014-01-01

    Eukaryote-like serine/threonine kinases (eSTKs) constitute an important family of bacterial virulence factors. Genome analysis had predicted putative eSTKs in Salmonella enterica serovar Typhi, although their functional characterization and the elucidation of their role in pathogenesis are still awaited. We show here that the primary sequence and secondary structure of the t4519 locus of Salmonella Typhi Ty2 have all the signatures of eukaryotic superfamily kinases. t4519 encodes a ∼39-kDa protein (T4519), which shows serine/threonine kinase activities in vitro. Recombinant T4519 (rT4519) is autophosphorylated and phosphorylates the universal substrate myelin basic protein. Infection of macrophages results in decreased viability of the mutant (Ty2Δt4519) strain, which is reversed by gene complementation. Moreover, reactive oxygen species produced by the macrophages signal to the bacteria to induce T4519, which is translocated to the host cell cytoplasm. That T4519 may target a host substrate(s) is further supported by the activation of host cellular signaling pathways and the induction of cytokines/chemokines. Finally, the role of T4519 in the pathogenesis of Salmonella Typhi is underscored by the significantly decreased mortality of mice infected with the Ty2Δt4519 strain and the fact that the competitive index of this strain for causing systemic infection is 0.25% that of the wild-type strain. This study characterizes the first eSTK of Salmonella Typhi and demonstrates its role in promoting phagosomal survival of the bacteria within macrophages, which is a key determinant of pathogenesis. This, to the best of our knowledge, is the first study to describe the essential role of eSTKs in the in vivo pathogenesis of Salmonella spp. PMID:25404028

  3. Cellular Uptake and Localization of Polymyxins in Renal Tubular Cells Using Rationally Designed Fluorescent Probes.

    PubMed

    Yun, Bo; Azad, Mohammad A K; Nowell, Cameron J; Nation, Roger L; Thompson, Philip E; Roberts, Kade D; Velkov, Tony; Li, Jian

    2015-12-01

    Polymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1.

    PubMed

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu

    2015-01-01

    Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF-β1. Forced overexpression of BAG3 selectively increased collagens. TGF-β1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins.

  5. BAG3 regulates ECM accumulation in renal proximal tubular cells induced by TGF-β1

    PubMed Central

    Du, Feng; Li, Si; Wang, Tian; Zhang, Hai-Yan; Li, De-Tian; Du, Zhen-Xian; Wang, Hua-Qin; Wang, Yan-Qiu

    2015-01-01

    Previously we have demonstrated that Bcl-2-associated athanogene 3 (BAG3) is increased in renal fibrosis using a rat unilateral ureteral obstruction model. The current study investigated the role of BAG3 in renal fibrosis using transforming growth factor (TGF)-β1-treated human proximal tubular epithelial (HK-2) cells. An upregulation of BAG3 in vitro models was observed, which correlated with the increased synthesis of extracellular matrix (ECM) proteins and expression of tissue-type plasminogen activator inhibitor (PAI)-1. Blockade of BAG3 induction by shorting hairpin RNA suppressed the expression of ECM proteins but had no effect on PAI-1 expression induced by TGF-β1. Forced overexpression of BAG3 selectively increased collagens. TGF-β1-induced BAG3 expression in HK-2 cells was attenuated by ERK1/2 and JNK MAPK inhibitors. In addition, forced BAG3 overexpression blocked attenuation of collagens expression by ERK1/2 and JNK inhibitors. These data suggest that ERK1/2 and JNK signaling events are involved in modulating the expression of BAG3, which would ultimately contribute to renal fibrosis by enhancing the synthesis and deposition of ECM proteins. PMID:26885277

  6. Comparison of CHROMagar Salmonella Medium and Xylose-Lysine-Desoxycholate and Salmonella-Shigella Agars for Isolation of Salmonella Strains from Stool Samples

    PubMed Central

    Maddocks, Susan; Olma, Tom; Chen, Sharon

    2002-01-01

    The growth and appearance of 115 stock Salmonella isolates on a new formulation of CHROMagar Salmonella (CAS) medium were compared to those on xylose-lysine-desoxycholate agar (XLD), Salmonella-Shigella agar (SS), and Hektoen enteric agar (HEA) media. CAS medium was then compared prospectively to XLD and SS for the detection and presumptive identification of Salmonella strains in 500 consecutive clinical stool samples. All stock Salmonella isolates produced typical mauve colonies on CAS medium. Nine Salmonella strains were isolated from clinical specimens. The sensitivities for the detection of salmonellae after primary plating on CAS medium and the combination of XLD and SS after enrichment were 100%. The specificity for the detection of salmonellae after primary plating on CAS medium (83%) was significantly (P < 0.0001) higher than that after primary plating on the combination of SS and XLD media (55%) (a 28% difference in rates; 95% confidence interval, 23.0 to 34%). Twenty-nine non-Salmonella organisms produced mauve colonies on CAS medium, including 17 Candida spp. (59%) and 8 Pseudomonas spp. (28%). These were easily excluded as salmonellae by colony morphology, microscopic examination of a wet preparation, or oxidase testing. One biochemically inert Escherichia coli isolate required further identification to differentiate it from Salmonella spp. The use of plating on CAS medium demonstrated high levels of sensitivity and specificity and reduced the time to final identification of Salmonella spp., resulting in substantial cost savings. It can be recommended for use for the primary isolation of Salmonella spp. from stool specimens. Other media (e.g., XLD) are required to detect Shigella spp. concurrently. PMID:12149365

  7. Disruption of gap junctions attenuates aminoglycoside-elicited renal tubular cell injury.

    PubMed

    Yao, Jian; Huang, Tao; Fang, Xin; Chi, Yuan; Zhu, Ying; Wan, Yigang; Matsue, Hiroyuki; Kitamura, Masanori

    2010-08-01

    Gap junctions play important roles in the regulation of cell phenotype and in determining cell survival after various insults. Here, we investigated the role of gap junctions in aminoglycoside-induced injury to renal tubular cells. Two tubular epithelial cell lines NRK-E52 and LLC-PK1 were compared for gap junction protein expression and function by immunofluorescent staining, Western blot and dye transfer assay. Cell viability after exposure to aminoglycosides was evaluated by WST assay. Gap junctions were modulated by transfection of the gap junction protein, connexin 43 (Cx43), use of Cx43 siRNA and gap junction inhibitors. NRK-E52 cells expressed abundant Cx43 and were functionally coupled by gap junctional intercellular communication (GJIC). Exposure of NRK-E52 cells to aminoglycosides, G418 and hygromycin, increased Cx43 phosphorylation and GJIC. The aminoglycosides also decreased cell viability that was prevented by gap junction inhibitors and Cx43 siRNA. LLC-PK1 cells were gap junction-deficient and resistant to aminoglycoside-induced cytotoxicity. Over-expression of a wild-type Cx43 converted LLC-PK1 cells to a drug-sensitive phenotype. The gap junction inhibitor alpha-glycyrrhetinic acid (alpha-GA) activated Akt in NRK-E52 cells. Inhibition of the Akt pathway enhanced cell toxicity to G418 and abolished the protective effects of alpha-GA. In addition, gentamycin-elicited cytotoxicity in NRK-E52 cells was also significantly attenuated by alpha-GA. Gap junctions contributed to the cytotoxic effects of aminoglycosides. Modulation of gap junctions could be a promising approach for prevention and treatment of aminoglycoside-induced renal tubular cell injury.

  8. Influence of On-farm pig Salmonella status on Salmonella Shedding at Slaughter.

    PubMed

    Casanova-Higes, A; Andrés-Barranco, S; Mainar-Jaime, R C

    2017-08-01

    The risk of Salmonella shedding among pigs at slaughter with regard to their previous on-farm Salmonella status was assessed in a group of pigs from a farm from NE of Spain. A total of 202 pigs that had been serologically monitored monthly during the fattening period and from which mesenteric lymph nodes (MLN) and faecal (SFEC) samples were collected at slaughter for Salmonella isolation were included. A repeated-measures anova was used to assess the relationship between mean OD% values during the fattening period and sampling time and bacteriology on MLN and SFEC. Pigs were also grouped into four groups, that is pigs seronegative during the fattening period and Salmonella negative in MLN (group A; n = 69); pigs seronegative during the fattening period but Salmonella positive in MLN (B; n = 36); pigs seropositive at least once and Salmonella positive in MLN (C; n = 50); and pigs seropositive at least once but Salmonella negative in (D; n = 47). Pigs shedding at slaughter seroconverted much earlier and showed much higher mean OD% values than non-shedders pigs. The proportion of Salmonella shedders in groups A and D was high and similar (26.1% and 29.8%, respectively), but significantly lower than that for groups B and C. The odds of shedding Salmonella for groups B and C were 4.8 (95% CI = 1.5-15.5) and 20.9 (3.7-118) times higher, respectively, when compared to A. It was concluded that a large proportion of Salmonella seronegative pigs may shed Salmonella at slaughter, which would be likely associated to previous exposure with contaminated environments (i.e. transport and lairage). For pigs already infected at farm, the likelihood of shedding Salmonella was much higher and may depend on whether the bacterium has colonized the MLN or not. The odds of shedding Salmonella spp. were always much higher for pigs in which Salmonella was isolated from MLN. © 2016 Blackwell Verlag GmbH.

  9. Population analysis of the cingulum bundle using the tubular surface model for schizophrenia detection

    NASA Astrophysics Data System (ADS)

    Mohan, Vandana; Sundaramoorthi, Ganesh; Kubicki, Marek; Terry, Douglas; Tannenbaum, Allen

    2010-03-01

    We propose a novel framework for population analysis of DW-MRI data using the Tubular Surface Model. We focus on the Cingulum Bundle (CB) - a major tract for the Limbic System and the main connection of the Cingulate Gyrus, which has been associated with several aspects of Schizophrenia symptomatology. The Tubular Surface Model represents a tubular surface as a center-line with an associated radius function. It provides a natural way to sample statistics along the length of the fiber bundle and reduces the registration of fiber bundle surfaces to that of 4D curves. We apply our framework to a population of 20 subjects (10 normal, 10 schizophrenic) and obtain excellent results with neural network based classification (90% sensitivity, 95% specificity) as well as unsupervised clustering (k-means). Further, we apply statistical analysis to the feature data and characterize the discrimination ability of local regions of the CB, as a step towards localizing CB regions most relevant to Schizophrenia.

  10. Sugar sulfates are not hydrolyzed by the acid-inducible sulfatase AslA from Salmonella enterica Enteritidis NalR and Kentucky 3795 at pH 5.5.

    PubMed

    Ganguly, Arpeeta; Joerger, Rolf D

    2017-08-01

    The open reading frames SEN0085 and SeKA_A4361, from Salmonella enterica serovar Enteritidis Nal R and serovar Kentucky 3795, respectively, corresponding to the acid-inducible sulfatase gene aslA from Salmonella enterica serovar Typhimurium, were previously suggested by microarray analysis to be differentially expressed under acid conditions. However, growth and enzyme activity tests in the present study demonstrated that both wild-type strains exhibited sulfatase activity with 4-nitrophenyl sulfate and 5-bromo-4-chloro-3 indolyl sulfate at pH 5.5. The acid sulfatase does not appear to be involved in sugar sulfate, tyrosine sulfate, 4-hydroxy-3-methoxyphenylglycol sulfate, heparin sulfate, or chondroitin sulfate hydrolysis at pH 5.5. Adhesion and invasion assays did not reveal differences between the serotypes and their corresponding aslA deletion mutants. Thus, the role and substrate(s) of AslA, a protein unique to salmonella and encoded in all sequenced Salmonella strains, remain elusive.

  11. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy

    PubMed Central

    Jheng, Huei-Fen; Tsai, Pei-Jane; Chuang, Yi-Lun; Shen, Yi-Ting; Tai, Ting-An; Chen, Wen-Chung; Chou, Chuan-Kai; Ho, Li-Chun; Tang, Ming-Jer; Lai, Kuei-Tai A.; Sung, Junne-Ming; Tsai, Yau-Sheng

    2015-01-01

    ABSTRACT Increased urinary albumin excretion is not simply an aftermath of glomerular injury, but is also involved in the progression of diabetic nephropathy (DN). Whereas Toll-like receptors (TLRs) are incriminated in the renal inflammation of DN, whether and how albumin is involved in the TLR-related renal inflammatory response remains to be clarified. Here, we showed that both TLR2 and TLR4, one of their putative endogenous ligands [heat shock protein 70 (HSP70)] and nuclear factor-κB promoter activity were markedly elevated in the kidneys of diabetic mice. A deficiency of TLR4 but not of TLR2 alleviated albuminuria, tubulointerstitial fibrosis and inflammation induced by diabetes. The protection against renal injury in diabetic Tlr4−/− mice was associated with reduced tubular injuries and preserved cubilin levels, rather than amelioration of glomerular lesions. In vitro studies revealed that albumin, a stronger inducer than high glucose (HG), induced the release of HSP70 from proximal tubular cells. HSP70 blockade ameliorated albumin-induced inflammatory mediators. HSP70 triggered the production of inflammatory mediators in a TLR4-dependent manner. Moreover, HSP70 inhibition in vivo ameliorated diabetes-induced albuminuria, inflammatory response and tubular injury. Finally, we found that individuals with DN had higher levels of TLR4 and HSP70 in the dilated tubules than non-diabetic controls. Thus, activation of the HSP70-TLR4 axis, stimulated at least in part by albumin, in the tubular cell is a newly identified mechanism associated with induction of tubulointerstitial inflammation and aggravation of pre-existing microalbuminuria in the progression of DN. PMID:26398934

  12. A rabbit model of non-typhoidal Salmonella bacteremia.

    PubMed

    Panda, Aruna; Tatarov, Ivan; Masek, Billie Jo; Hardick, Justin; Crusan, Annabelle; Wakefield, Teresa; Carroll, Karen; Yang, Samuel; Hsieh, Yu-Hsiang; Lipsky, Michael M; McLeod, Charles G; Levine, Myron M; Rothman, Richard E; Gaydos, Charlotte A; DeTolla, Louis J

    2014-09-01

    Bacteremia is an important cause of morbidity and mortality in humans. In this study, we focused on the development of an animal model of bacteremia induced by non-typhoidal Salmonella. New Zealand White rabbits were inoculated with a human isolate of non-typhoidal Salmonella strain CVD J73 via the intra-peritoneal route. Blood samples were collected at specific time points and at euthanasia from infected rabbits. Additionally, tissue samples from the heart, lungs, spleen, gastrointestinal tract, liver and kidneys were obtained at euthanasia. All experimentally infected rabbits displayed clinical signs of disease (fever, dehydration, weight loss and lethargy). Tissues collected at necropsy from the animals exhibited histopathological changes indicative of bacteremia. Non-typhoidal Salmonella bacteria were detected in the blood and tissue samples of infected rabbits by microbiological culture and real-time PCR assays. The development of this animal model of bacteremia could prove to be a useful tool for studying how non-typhoidal Salmonella infections disseminate and spread in humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Control of a Salmonella virulence locus by an ATP-sensing leader messenger RNA.

    PubMed

    Lee, Eun-Jin; Groisman, Eduardo A

    2012-06-13

    The facultative intracellular pathogen Salmonella enterica resides within a membrane-bound compartment inside macrophages. This compartment must be acidified for Salmonella to survive within macrophages, possibly because acidic pH promotes expression of Salmonella virulence proteins. We reasoned that Salmonella might sense its surroundings have turned acidic not only upon protonation of the extracytoplasmic domain of a protein sensor but also by an increase in cytosolic ATP levels, because conditions that enhance the proton gradient across the bacterial inner membrane stimulate ATP synthesis. Here we report that an increase in cytosolic ATP promotes transcription of the coding region for the virulence gene mgtC, which is the most highly induced horizontally acquired gene when Salmonella is inside macrophages. This transcript is induced both upon media acidification and by physiological conditions that increase ATP levels independently of acidification. ATP is sensed by the coupling/uncoupling of transcription of the unusually long mgtC leader messenger RNA and translation of a short open reading frame located in this region. A mutation in the mgtC leader messenger RNA that eliminates the response to ATP hinders mgtC expression inside macrophages and attenuates Salmonella virulence in mice. Our results define a singular example of an ATP-sensing leader messenger RNA. Moreover, they indicate that pathogens can interpret extracellular cues by the impact they have on cellular metabolites.

  14. MUTAGENICITY IN SALMONELLA AND DNA DAMAGE IN THE CHO/COMET ASSAY INDUCED BY NITROHALOMETHANES, A NOVEL CLASS OF DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    Mutagenicity in Salmonella and DNA Damage in the CHO/Comet Assay Induced by Nitrohalomethanes, a Novel Class of Drinking Water Disinfection By-Products.

    Halomethanes are a class of drinking water disinfection by-products (DBPs) whose genotoxicity has been studied extensi...

  15. Type I interferon induces necroptosis in macrophages during infection with Salmonella enterica serovar Typhimurium

    PubMed Central

    Robinson, Nirmal; McComb, Scott; Mulligan, Rebecca; Dudani, Renu; Krishnan, Lakshmi; Sad, Subash

    2014-01-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a virulent pathogen that induces rapid host death. Here we observed that host survival after infection with S. Typhimurium was enhanced in the absence of type I interferon signaling, with improved survival of mice deficient in the receptor for type I interferons (Ifnar1−/− mice) that was attributed to macrophages. Although there was no impairment in cytokine expression or inflammasome activation in Ifnar1−/− macrophages, they were highly resistant to S. Typhimurium–induced cell death. Specific inhibition of the kinase RIP1or knockdown of the gene encoding the kinase RIP3 prevented the death of wild-type macrophages, which indicated that necroptosis was a mechanism of cell death. Finally, RIP3-deficient macrophages, which cannot undergo necroptosis, had similarly less death and enhanced control of S. Typhimurium in vivo. Thus, we propose that S. Typhimurium induces the production of type I interferon, which drives necroptosis of macrophages and allows them to evade the immune response. PMID:22922364

  16. Naturally occurring and stress induced tubular structures from mammalian cells, a survival mechanism

    PubMed Central

    Wu, Yonnie; Laughlin, Richard C; Henry, David C; Krueger, Darryl E; Hudson, JoAn S; Kuan, Cheng-Yi; He, Jian; Reppert, Jason; Tomkins, Jeffrey P

    2007-01-01

    Background Tubular shaped mammalian cells in response to dehydration have not been previously reported. This may be due to the invisibility of these cells in aqueous solution, and because sugars and salts added to the cell culture for manipulation of the osmotic conditions inhibit transformation of normal cells into tubular shaped structures. Results We report the transformation of normal spherical mammalian cells into tubular shaped structures in response to stress. We have termed these transformed structures 'straw cells' which we have associated with a variety of human tissue types, including fresh, post mortem and frozen lung, liver, skin, and heart. We have also documented the presence of straw cells in bovine brain and prostate tissues of mice. The number of straw cells in heart, lung tissues, and collapsed straw cells in urine increases with the age of the mammal. Straw cells were also reproduced in vitro from human cancer cells (THP1, CACO2, and MCF7) and mouse stem cells (D1 and adipose D1) by dehydrating cultured cells. The tubular center of the straw cells is much smaller than the original cell; houses condensed organelles and have filamentous extensions that are covered with microscopic hair-like structures and circular openings. When rehydrated, the filaments uptake water rapidly. The straw cell walls, have a range of 120 nm to 200 nm and are composed of sulfated-glucose polymers and glycosylated acidic proteins. The transformation from normal cell to straw cells takes 5 to 8 hr in open-air. This process is characterized by an increase in metabolic activity. When rehydrated, the straw cells regain their normal spherical shape and begin to divide in 10 to 15 days. Like various types of microbial spores, straw cells are resistant to harsh environmental conditions such as UV-C radiation. Conclusion Straw cells are specialized cellular structures and not artifacts from spontaneous polymerization, which are generated in response to stress conditions, like

  17. Deciphering Interplay between Salmonella Invasion Effectors

    PubMed Central

    Koronakis, Vassilis

    2008-01-01

    Bacterial pathogens have evolved a specialized type III secretion system (T3SS) to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP) can individually manipulate actin dynamics at the plasma membrane, which acts as a ‘signaling hub’ during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cis binary entry effector interplay (BENEFIT) screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen–host interaction. PMID:18389058

  18. Formate Acts as a Diffusible Signal To Induce Salmonella Invasion▿

    PubMed Central

    Huang, Yanyan; Suyemoto, Mitsu; Garner, Cherilyn D.; Cicconi, Kellie M.; Altier, Craig

    2008-01-01

    To infect an animal host, Salmonella enterica serovar Typhimurium must penetrate the intestinal epithelial barrier. This process of invasion requires a type III secretion system encoded within Salmonella pathogenicity island I (SPI1). We found that a mutant with deletions of the acetate kinase and phosphotransacetylase genes (ackA-pta) was deficient in invasion and SPI1 expression but that invasion gene expression was completely restored by supplying medium conditioned by growth of the wild-type strain, suggesting that a signal produced by the wild type, but not by the ackA-pta mutant, was required for invasion. This mutant also excreted 68-fold-less formate into the culture medium, and the addition of sodium formate to cultures restored both the expression of SPI1 and the invasion of cultured epithelial cells by the mutant. The effect of formate was pH dependent, requiring a pH below neutrality, and studies in mice showed that the distal ileum, the preferred site of Salmonella invasion in this species, had the appropriate formate concentration and pH to elicit invasion, while the cecum contained no detectable formate. Furthermore, we found that formate affected the major regulators of SPI1, hilA and hilD, but that the primary routes of formate metabolism played no role in its activity as a signal. PMID:18424519

  19. Evaluation of Temporal Changes in Urine-based Metabolomic and Kidney Injury Markers to Detect Compound Induced Acute Kidney Tubular Toxicity in Beagle Dogs.

    PubMed

    Wagoner, M P; Yang, Y; McDuffie, J E; Klapczynski, M; Buck, W; Cheatham, L; Eisinger, D; Sace, F; Lynch, K M; Sonee, M; Ma, J-Y; Chen, Y; Marshall, K; Damour, M; Stephen, L; Dragan, Y P; Fikes, J; Snook, S; Kinter, L B

    2017-01-01

    Urinary protein biomarkers and metabolomic markers have been leveraged to detect acute Drug Induced Kidney Injury (DIKI) in rats; however, the utility of these indicators to enable early detection of DIKI in canine models has not been well documented. Therefore, we evaluated temporal changes in biomarkers and metabolites in urine from male and female beagle dogs. Gentamicin- induced kidney lesions in male dogs were characterized by moderate to severe tubular epithelial cell degeneration/necrosis, epithelial cell regeneration and dilation; and a unique urinebased metabolomic fingerprint. These metabolite changes included time and treatment-dependent increases in lactate, taurine, glucose, lactate, alanine, and citrate as well as 9 other known metabolites. As early as 3 days post dose, gentamicin induced increases in urinary albumin, clusterin, neutrophil gelatinase associated protein (NGAL) and total protein concentrations. Urinary albumin, clusterin, and NGAL showed earlier and more robust elevations than traditional kidney safety biomarkers, blood urea nitrogen and serum creatinine. Elevations in urinary kidney injury molecule 1 (KIM-1) were less reliable for detection of gentamicin nephrotoxicity in dogs based on values generated utilizing multiple first-generation, canine-specific KIM-1 immunoassays. The metabolic fingerprint was further evaluated in male and female dogs that received Compound A which induced slightly reversible renal tubular alterations characterized as degeneration/necrosis and concurrent significant increases in urinary taurine amongst other markers. These data support further investigations to demonstrate the value of urinary metabolites, albumin, clusterin, NGAL and taurine as promising markers to enable early detection of DIKI in dogs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. The agricultural antibiotic carbadox induces generalized transducing phage in multidrug-resistant Salmonella enterica serovar Typhimurium DT104

    USDA-ARS?s Scientific Manuscript database

    Non-typhoidal Salmonella, a leading cause of U.S. foodborne disease and food-related deaths, often asymptomatically colonizes food-producing animals. In fact, >50% of U.S. swine production facilities test positive for Salmonella. The multidrug-resistant (MDR) Salmonella Typhimurium DT104 NCTC13348 c...

  1. Disruption of gap junctions attenuates aminoglycoside-elicited renal tubular cell injury

    PubMed Central

    Yao, Jian; Huang, Tao; Fang, Xin; Chi, Yuan; Zhu, Ying; Wan, Yigang; Matsue, Hiroyuki; Kitamura, Masanori

    2010-01-01

    BACKGROUND AND PURPOSE Gap junctions play important roles in the regulation of cell phenotype and in determining cell survival after various insults. Here, we investigated the role of gap junctions in aminoglycoside-induced injury to renal tubular cells. EXPERIMENTAL APPROACH Two tubular epithelial cell lines NRK-E52 and LLC-PK1 were compared for gap junction protein expression and function by immunofluorescent staining, Western blot and dye transfer assay. Cell viability after exposure to aminoglycosides was evaluated by WST assay. Gap junctions were modulated by transfection of the gap junction protein, connexin 43 (Cx43), use of Cx43 siRNA and gap junction inhibitors. KEY RESULTS NRK-E52 cells expressed abundant Cx43 and were functionally coupled by gap junctional intercellular communication (GJIC). Exposure of NRK-E52 cells to aminoglycosides, G418 and hygromycin, increased Cx43 phosphorylation and GJIC. The aminoglycosides also decreased cell viability that was prevented by gap junction inhibitors and Cx43 siRNA. LLC-PK1 cells were gap junction-deficient and resistant to aminoglycoside-induced cytotoxicity. Over-expression of a wild-type Cx43 converted LLC-PK1 cells to a drug-sensitive phenotype. The gap junction inhibitor α-glycyrrhetinic acid (α-GA) activated Akt in NRK-E52 cells. Inhibition of the Akt pathway enhanced cell toxicity to G418 and abolished the protective effects of α-GA. In addition, gentamycin-elicited cytotoxicity in NRK-E52 cells was also significantly attenuated by α-GA. CONCLUSION AND IMPLICATIONS Gap junctions contributed to the cytotoxic effects of aminoglycosides. Modulation of gap junctions could be a promising approach for prevention and treatment of aminoglycoside-induced renal tubular cell injury. PMID:20649601

  2. Management of oxidative stress by heme oxygenase-1 in cisplatin-induced toxicity in renal tubular cells.

    PubMed

    Schaaf, G J; Maas, R F M; de Groene, E M; Fink-Gremmels, J

    2002-08-01

    Induction of heme oxygenase-1 (HO-1) may serve as an immediate protective response during treatment with the cytostatic drug cisplatin (CDDP). Oxidative pathways participate in the characteristic nephrotoxicity of CDDP. In the present study, cultured tubular cells (LLC-PK1) were used to investigate whether induction of HO provided protection against CDDP by maintaining the cellular redox balance. The antioxidants, alpha-tocopherol (TOCO) and N-acetylcysteine (NAC), were used to demonstrate that elevation of ROS levels contribute to the development of CDDP-induced cytotoxicity. Chemical modulators of HO activity were used to investigate the role of HO herein. Hemin was used to specifically induce HO-1, while exposure of the cells to tin-protoporphyrin (SnPP) was shown to inhibit HO activity. Hemin treatment prior to CDDP-exposure significantly decreased the generation of ROS to control levels, while inhibition of HO increased the ROS levels beyond the levels measured in cells treated with CDDP alone. Furthermore, HO induction protected significantly against the cytotoxicity of CDDP, although this protection was limited. Similar results were obtained when the cells were preincubated with TOCO, suggesting that mechanisms other than impairment of the redox ratio are important in CDDP-induced loss of cell viability in vitro. In addition, SnPP treatment exacerbated the oxidative response and cytotoxicity of CDDP, especially at low CDDP concentrations. We therefore conclude that HO is able to directly limit the CDDP-induced oxidative stress response and thus serves as safeguard of the cellular redox balance.

  3. The Intestinal Microbiota Plays a Role in Salmonella-Induced Colitis Independent of Pathogen Colonization

    PubMed Central

    Ferreira, Rosana B. R.; Gill, Navkiran; Willing, Benjamin P.; Antunes, L. Caetano M.; Russell, Shannon L.; Croxen, Matthew A.; Finlay, B. Brett

    2011-01-01

    The intestinal microbiota is composed of hundreds of species of bacteria, fungi and protozoa and is critical for numerous biological processes, such as nutrient acquisition, vitamin production, and colonization resistance against bacterial pathogens. We studied the role of the intestinal microbiota on host resistance to Salmonella enterica serovar Typhimurium-induced colitis. Using multiple antibiotic treatments in 129S1/SvImJ mice, we showed that disruption of the intestinal microbiota alters host susceptibility to infection. Although all antibiotic treatments caused similar increases in pathogen colonization, the development of enterocolitis was seen only when streptomycin or vancomycin was used; no significant pathology was observed with the use of metronidazole. Interestingly, metronidazole-treated and infected C57BL/6 mice developed severe pathology. We hypothesized that the intestinal microbiota confers resistance to infectious colitis without affecting the ability of S. Typhimurium to colonize the intestine. Indeed, different antibiotic treatments caused distinct shifts in the intestinal microbiota prior to infection. Through fluorescence in situ hybridization, terminal restriction fragment length polymorphism, and real-time PCR, we showed that there is a strong correlation between the intestinal microbiota composition before infection and susceptibility to Salmonella-induced colitis. Members of the Bacteroidetes phylum were present at significantly higher levels in mice resistant to colitis. Further analysis revealed that Porphyromonadaceae levels were also increased in these mice. Conversely, there was a positive correlation between the abundance of Lactobacillus sp. and predisposition to colitis. Our data suggests that different members of the microbiota might be associated with S. Typhimurium colonization and colitis. Dissecting the mechanisms involved in resistance to infection and inflammation will be critical for the development of therapeutic and

  4. METHOD AND APPARATUS FOR FABRICATING TUBULAR UNITS

    DOEpatents

    Haldeman, G.W.

    1959-02-24

    A method and apparatus are described for fabricating tubular assemblies such as clad fuel elements for nuclear reactors. According to this method, a plurality of relatively short cylindrical slug-shaped members are inserted in an outer protective tubular jacket, and the assembly is passed through a reducing die to draw the outer tubular member into tight contact with the slug members, the slugs being automatically spaced with respect to each other and helium being inserted during the drawing operation to fill the spaces. The apparatus includes a pusher rod which functions to space the slugelements equidistantly by pushing on them in the direction of drawing but traveling at a slower rate than that of the tubular member.

  5. Trehalose protects against cadmium-induced cytotoxicity in primary rat proximal tubular cells via inhibiting apoptosis and restoring autophagic flux

    PubMed Central

    Wang, Xin-Yu; Yang, Heng; Wang, Min-Ge; Yang, Du-Bao; Wang, Zhen-Yong; Wang, Lin

    2017-01-01

    Autophagy has an important renoprotective function and we recently found that autophagy inhibition is involved in cadmium (Cd)-induced nephrotoxicity. Here, we aimed to investigate the protective effect of trehalose (Tre), a novel autophagy activator, against Cd-induced cytotoxicity in primary rat proximal tubular (rPT) cells. First, data showed that Tre treatment significantly decreased Cd-induced apoptotic cell death of rPT cells via inhibiting caspase-dependent apoptotic pathway, evidenced by morphological analysis, flow cytometric and immunoblot assays. Also, administration with Tre protected rPT cells against Cd-induced lipid peroxidation. Inhibition of autophagic flux in Cd-exposed rPT cells was markedly restored by Tre administration, demonstrated by immunoblot analysis of autophagy marker proteins and GFP and RFP tandemly tagged LC3 method. Resultantly, Cd-induced autophagosome accumulation was obviously alleviated by Tre treatment. Meanwhile, blockage of autophagosome–lysosome fusion by Cd exposure was noticeably restored by Tre, which promoted the autophagic degradation in Cd-exposed rPT cells. Moreover, Tre treatment markedly recovered Cd-induced lysosomal alkalinization and impairment of lysosomal degradation capacity in rPT cells, demonstrating that Tre has the ability to restore Cd-impaired lysosomal function. Collectively, these findings demonstrate that Tre treatment alleviates Cd-induced cytotoxicity in rPT cells by inhibiting apoptosis and restoring autophagic flux. PMID:29022917

  6. Salmonella Infections in Childhood.

    PubMed

    Bula-Rudas, Fernando J; Rathore, Mobeen H; Maraqa, Nizar F

    2015-08-01

    Salmonella are gram-negative bacilli within the family Enterobacteriaceae. They are the cause of significant morbidity and mortality worldwide. Animals (pets) are an important reservoir for nontyphoidal Salmonella, whereas humans are the only natural host and reservoir for Salmonella Typhi. Salmonella infections are a major cause of gastroenteritis worldwide. They account for an estimated 2.8 billion cases of diarrheal disease each year. The transmission of Salmonella is frequently associated with the consumption of contaminated water and food of animal origin, and it is facilitated by conditions of poor hygiene. Nontyphoidal Salmonella infections have a worldwide distribution, whereas most typhoidal Salmonella infections in the United States are acquired abroad. In the United States, Salmonella is a common agent for food-borne–associated infections. Several outbreaks have been identified and are most commonly associated with agricultural products. Nontyphoidal Salmonella infection is usually characterized by a self-limited gastroenteritis in immunocompetent hosts in industrialized countries, but it may also cause invasive disease in vulnerable individuals (eg, children less than 1 year of age, immunocompromised). Antibiotic treatment is not recommended for treatment of mild to moderate gastroenteritis by nontyphoidal Salmonella in immunocompetent adults or children more than 1 year of age. Antibiotic treatment is recommended for nontyphoidal Salmonella infections in infants less than 3 months of age, because they are at higher risk for bacteremia and extraintestinal complications. Typhoid (enteric) fever and its potential complications have a significant impact on children, especially those who live in developing countries. Antibiotic treatment of typhoid fever has become challenging because of the emergence of Salmonella Typhi strains that are resistant to classically used first-line agents: ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol. The

  7. Biological and regulatory roles of acid-induced small RNA RyeC in Salmonella Typhimurium.

    PubMed

    Ryan, Daniel; Mukherjee, Mohana; Nayak, Ritu; Dutta, Ria; Suar, Mrutyunjay

    2018-05-03

    Salmonella Typhimurium is an enteric pathogen that has evolved masterful strategies to enable survival under stress conditions both within and outside a host. The acid tolerance response (ATR) is one such mechanism that enhances the viability of acid adapted bacteria to lethal pH levels. While numerous studies exist on the protein coding components of this response, there is very little data on the roles of small RNAs (sRNAs). These non-coding RNA molecules have recently been shown to play roles as regulators of bacterial stress response and virulence pathways. They function through complementary base pairing interactions with target mRNAs and affect their translation and/or stability. There are also a few that directly bind to proteins by mimicking their respective targets. Here, we identify several sRNAs expressed during the ATR of S. Typhimurium and characterize one highly induced candidate, RyeC. Further, we identify ptsI as a trans-encoded target that is directly regulated by this sRNA. From a functional perspective, over-expression of RyeC in Salmonella produced a general attenuation of several in vitro phenotypes including acid survival, motility, adhesion and invasion of epithelial cell lines as well as replication within macrophages. Together, this study highlights the diverse roles played by sRNAs in acid tolerance and virulence of S. Typhimurium. Copyright © 2018. Published by Elsevier B.V.

  8. Activation of chicken bone marrow-derived dendritic cells induced by a Salmonella Enteritidis ghost vaccine candidate.

    PubMed

    Kamble, N M; Jawale, C V; Lee, J H

    2016-10-01

    Bacterial Ghost-based vaccine development has been applied to a variety of gram-negative bacteria. Developed Salmonella Enteritidis (S. Enteritidis) ghost are promising vaccine candidates because of their immunogenic and enhanced biosafety potential. In this study, we aimed to evaluate the immunostimulatory effect of a S. Enteritidis ghost vaccine on the maturation of chicken bone marrow-derived dendritic cells (chBM-DCs) in vitro The immature chBM-DCs were stimulated with S. Enteritidis ghost vaccine candidate. The vaccine efficiently stimulated maturation events in chBM-DCs, indicated by up-regulated expression of CD40, CD80, and MHC-II molecules. Immature BM-DCs responded to stimulation with S. Enteritidis ghost by increased expression of IL-6 and IL-12p40 cytokines. Also, S. Enteritidis ghost stimulated chBM-DCs induced the significant expression of IFN-γ and IL-2 in co-cultured autologous CD4+ T cells. In conclusion, our data suggest that S. Enteritidis ghost vaccine candidate is capable of activating and interacting with chBM-DCs. The results from current study may help for rational designing of Salmonella ghost based heterologous antigen delivery platforms to dendritic cells. © 2016 Poultry Science Association Inc.

  9. Arcas Rocket with Special Tubular Launcher

    NASA Image and Video Library

    1959-07-31

    Arcas Rocket with Special Tubular Launcher: Lt. Commander W. Houston checks elevation adjustment of special tubular launcher for Arcas rocket, July 31, 1959. Photograph published in A New Dimension Wallops Island Flight Test Range: The First Fifteen Years by Joseph Shortal. A NASA publication. Page 697.

  10. Tubular copper thrust chamber design study

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Galler, D. E.

    1992-01-01

    The use of copper tubular thrust chambers is particularly important in high performance expander cycle space engines. Tubular chambers have more surface area than flat wall chambers, and this extra surface area provides enhanced heat transfer for additional energy to power the cycle. This paper was divided into two sections: (1) a thermal analysis and sensitivity study; and (2) a preliminary design of a selected thrust chamber configuration. The thermal analysis consisted of a statistical optimization to determine the optimum tube geometry, tube booking, thrust chamber geometry, and cooling routing to achieve the maximum upper limit chamber pressure for a 25,000 pound thrust engine. The preliminary design effort produced a layout drawing of a tubular thrust chamber that is three inches shorter than the Advanced Expander Test Bed (AETB) milled channel chamber but is predicted to provide a five percent increase in heat transfer. Testing this chamber in the AETB would confirm the inherent advantages of tubular chamber construction and heat transfer.

  11. Differential antibacterial response of chicken granulosa cells to invasion by Salmonella serovars.

    PubMed

    Babu, Uma S; Harrison, Lisa M; Patel, Isha R; Ramirez, Gerardo A; Williams, Kristina M; Pereira, Marion; Balan, Kannan V

    2016-06-01

    In the United States, Salmonella enterica ser. Enteritidis (SE) is among the leading bacterial cause of foodborne illness via consumption of raw or undercooked eggs. The top Salmonella serovars implicated in U.S. foodborne outbreaks associated with chicken consumption include SE, Typhimurium (ST), Heidelberg (SH), Montevideo, Mbandka, Braenderup, and Newport. While enforcement actions target the eradication of SE from layer hens, there is a growing concern that other serovars could occupy this niche and be a cause of egg-transmitted human salmonellosis. Therefore, we tested the invasion and survival of SE, SH, ST, and Salmonella enterica ser. Hadar (S. Hadar) at 4 and 20 h post infection (hpi) in chicken ovarian granulosa cells (cGC); a cellular layer which surrounds the previtelline layer and central yolk in egg-forming follicles. We also evaluated cGC transcriptional changes, using an antibacterial response PCR array, to assess host response to intracellular SalmonellaWe observed that invasion of cGC by SE, SH, and ST was significantly higher than invasion by S. Hadar, with ST showing the highest level of invasion. The Bacterial Survival Index, defined as the ratio of intracellular bacteria at 20 and 4 h, were 18.94, 7.35, and 15.27 for SE, SH, and ST, respectively, with no significant difference in survival between SE or ST compared to SH. Evaluation of cGC anti-Salmonella gene responses indicated that at 4 hpi there was a significant decrease in Toll-like receptor (TLR)-4 mRNA in cGC infected with SE, whereas TLR5 and myeloid differentiation primary response gene 88 were significantly down regulated across all serovars. At 4 hpi, invasion by Salmonella serovars resulted in significant upregulation of several antimicrobial genes, and proinflammatory cytokines and chemokines (PICs). At 20 hpi, all the serovars induced PICs with SH being the strongest inducer. Additionally, SE, SH and ST differentially induced signal transduction pathways. Although only a single

  12. Salmonella employs multiple mechanisms to subvert the TLR-inducible zinc-mediated antimicrobial response of human macrophages.

    PubMed

    Kapetanovic, Ronan; Bokil, Nilesh J; Achard, Maud E S; Ong, Cheryl-Lynn Y; Peters, Kate M; Stocks, Claudia J; Phan, Minh-Duy; Monteleone, Mercedes; Schroder, Kate; Irvine, Katharine M; Saunders, Bernadette M; Walker, Mark J; Stacey, Katryn J; McEwan, Alastair G; Schembri, Mark A; Sweet, Matthew J

    2016-05-01

    We aimed to characterize antimicrobial zinc trafficking within macrophages and to determine whether the professional intramacrophage pathogen Salmonella enterica serovar Typhimurium (S Typhimurium) subverts this pathway. Using both Escherichia coli and S Typhimurium, we show that TLR signaling promotes the accumulation of vesicular zinc within primary human macrophages. Vesicular zinc is delivered to E. coli to promote microbial clearance, whereas S. Typhimurium evades this response via Salmonella pathogenicity island (SPI)-1. Even in the absence of SPI-1 and the zinc exporter ZntA, S Typhimurium resists the innate immune zinc stress response, implying the existence of additional host subversion mechanisms. We also demonstrate the combinatorial antimicrobial effects of zinc and copper, a pathway that S. Typhimurium again evades. Our use of complementary tools and approaches, including confocal microscopy, direct assessment of intramacrophage bacterial zinc stress responses, specific E. coli and S Typhimurium mutants, and inductively coupled plasma mass spectroscopy, has enabled carefully controlled characterization of this novel innate immune antimicrobial pathway. In summary, our study provides new insights at the cellular level into the well-documented effects of zinc in promoting host defense against infectious disease, as well as the complex host subversion strategies employed by S Typhimurium to combat this pathway.-Kapetanovic, R., Bokil, N. J., Achard, M. E. S., Ong, C.-L. Y., Peters, K. M., Stocks, C. J., Phan, M.-D., Monteleone, M., Schroder, K., Irvine, K. M., Saunders, B. M., Walker, M. J., Stacey, K. J., McEwan, A. G., Schembri, M. A., Sweet, M. J. Salmonella employs multiple mechanisms to subvert the TLR-inducible zinc-mediated antimicrobial response of human macrophages. © FASEB.

  13. Macrophage-stimulating protein attenuates gentamicin-induced inflammation and apoptosis in human renal proximal tubular epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ko Eun; Kim, Eun Young; Kim, Chang Seong

    2013-05-10

    Highlights: •MSP/RON system is activated in rat kidney damaged by gentamicin. •MSP inhibits GM-induced cellular apoptosis and inflammation in HK-2 cells. •MSP attenuates GM-induced activation of MAPKs and NF-κB pathways in HK-2 cells. -- Abstract: The present study aimed to investigate whether macrophage-stimulating protein (MSP) treatment attenuates renal apoptosis and inflammation in gentamicin (GM)-induced tubule injury and its underlying molecular mechanisms. To examine changes in MSP and its receptor, recepteur d’origine nantais (RON) in GM-induced nephropathy, rats were injected with GM for 7 days. Human renal proximal tubular epithelial (HK-2) cells were incubated with GM for 24 h in themore » presence of different concentrations of MSP and cell viability was measured by MTT assay. Apoptosis was determined by flow cytometry of cells stained with fluorescein isothiocyanate-conjugated annexin V protein and propidium iodide. Expression of Bcl-2, Bax, caspase-3, cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB), IκB-α, and mitogen-activated protein kinases (MAPKs) was analyzed by semiquantitative immunoblotting. MSP and RON expression was significantly greater in GM-treated rats, than in untreated controls. GM-treatment reduced HK-2 cell viability, an effect that was counteracted by MSP. Flow cytometry and DAPI staining revealed GM-induced apoptosis was prevented by MSP. GM reduced expression of anti-apoptotic protein Bcl-2 and induced expression of Bax and cleaved caspase 3; these effects and GM-induced expression of COX-2 and iNOS were also attenuated by MSP. GM caused MSP-reversible induction of phospho-ERK, phospho-JNK, and phospho-p38. GM induced NF-κB activation and degradation of IκB-α; the increase in nuclear NF-κB was blocked by inhibitors of ERK, JNK, p-38, or MSP pretreatment. These findings suggest that MSP attenuates GM-induced inflammation and apoptosis by inhibition of the MAPKs

  14. Inactivation of Salmonella Senftenberg, Salmonella Typhimurium and Salmonella Tennessee in peanut butter by 915 MHz microwave heating.

    PubMed

    Song, Won-Jae; Kang, Dong-Hyun

    2016-02-01

    This study evaluated the efficacy of a 915 MHz microwave with 3 different levels to inactivate 3 serovars of Salmonella in peanut butter. Peanut butter inoculated with Salmonella enterica serovar Senftenberg, S. enterica serovar Typhimurium and S. enterica serovar Tennessee were treated with a 915 MHz microwave with 2, 4 and 6 kW and acid and peroxide values and color changes were determined after 5 min of microwave heating. Salmonella populations were reduced with increasing treatment time and treatment power. Six kW 915 MHz microwave treatment for 5 min reduced these three Salmonella serovars by 3.24-4.26 log CFU/g. Four and two kW 915 MHz microwave processing for 5 min reduced these Salmonella serovars by 1.14-1.48 and 0.15-0.42 log CFU/g, respectively. Microwave treatment did not affect acid, peroxide, or color values of peanut butter. These results demonstrate that 915 MHz microwave processing can be used as a control method for reducing Salmonella in peanut butter without producing quality deterioration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The relationship between the numbers of Salmonella Enteritidis, Salmonella Heidelberg, or Salmonella Hadar colonizing reproductive tissues of experimentally infected laying hens and deposition inside eggs.

    PubMed

    Gast, Richard K; Guraya, Rupa; Guard, Jean; Holt, Peter S

    2011-06-01

    Contamination of eggs by Salmonella Enteritidis has been a prominent cause of human illness for several decades and is the focus of a recently implemented national regulatory plan for egg-producing flocks in the United States. Salmonella Heidelberg has also been identified as an egg-transmitted pathogen. The deposition of Salmonella strains inside eggs is a consequence of reproductive tract colonization in infected laying hens, but prior research has not determined the relationship between the numbers of Salmonella that colonize reproductive organs and the associated frequency of egg contamination. In the present study, groups of laying hens in two trials were experimentally infected with large oral doses of strains of Salmonella Enteritidis (phage type 13a), Salmonella Heidelberg, or Salmonella Hadar. Reproductive tissues of selected hens were cultured to detect and enumerate Salmonella at 5 days postinoculation, and the interior contents of eggs laid between 6 and 25 days postinoculation were tested for contamination. Significantly more internally contaminated eggs were laid by hens infected with Salmonella Enteritidis (3.58%) than with strains of either Salmonella Heidelberg (0.47%) or Salmonella Hadar (0%). However, no significant differences were observed between Salmonella strains in either isolation frequency or the number of colony-forming units (CFU) isolated from ovaries or oviducts. Salmonella isolation frequencies ranged from 20.8% to 41.7% for ovaries and from 8.3% to 33.3% for oviducts. Mean Salmonella colonization levels ranged from 0.10 to 0.51 log CFU/g for ovaries and from 0.25 to 0.46 log CFU/g for oviducts. Although parallel rank-orders were observed for Salmonella enumeration (in both ovaries and oviducts) and egg contamination frequency, a statistically significant relationship could not be established between these two parameters of infection.

  16. Impact of litter Salmonella status during feed withdrawal on Salmonella recovery from the broiler crop and ceca.

    PubMed

    Buhr, R J; Bourassa, D V; Hinton, A; Fairchild, B D; Ritz, C W

    2017-12-01

    Research was conducted to evaluate the impact of litter Salmonella status during feed withdrawal on Salmonella recovery from the crop and ceca following feed withdrawal. In 4 experiments, pens of broilers in separate rooms were challenged with marker strains of either Salmonella Montevideo or Salmonella Heidelberg. Three d post challenge, a 12-hour feed withdrawal was initiated, and one pen of broilers was switched between rooms for each Salmonella serotype. In experiments 3 and 4, non-challenged broilers also were added to the Salmonella challenge pens. The litter of each pen was sampled before and after the feed withdrawal period, the broilers euthanized, and the crop and ceca aseptically removed for Salmonella isolation. Results showed that only the challenge Salmonella serotype was recovered from the litter in challenge pens where broilers were not moved, while both Salmonella serotypes were recovered from the litter of the switched pens. Salmonella was recovered from 56/80 crops and from 66/80 ceca of challenged broilers that remained in the challenge pens. The challenge Salmonella serotype was recovered from 50/80 crops and from 60/80 ceca, and the switched pens' litter Salmonella serotype was recovered from 19/80 crops but not from the ceca in broilers challenged with Salmonella and then switched between pens. For experiments 3 and 4, Salmonella was recovered from 19/40 crops and from only 2/40 ceca from the non-challenged broilers placed into the Salmonella challenge pens. The results from broilers that were switched between Salmonella challenge pens indicate that the recovery of Salmonella from the crop of broilers following feed withdrawal (on Salmonella-contaminated litter) appears to depend mainly on the initial challenge Salmonella (62%) and less on the litter Salmonella (24%) status during the feed withdrawal period. In contrast, only the initial challenge Salmonella was recovered from the ceca (79%) from broilers that remained in challenge pens or

  17. Antimicrobial-resistant nontyphoidal Salmonella is associated with excess bloodstream infections and hospitalizations.

    PubMed

    Varma, Jay K; Molbak, Kåre; Barrett, Timothy J; Beebe, James L; Jones, Timothy F; Rabatsky-Ehr, Therese; Smith, Kirk E; Vugia, Duc J; Chang, Hwa-Gan H; Angulo, Frederick J

    2005-02-15

    Nontyphoidal Salmonella is a leading cause of foodborne illness. Few studies have explored the health consequences of antimicrobial-resistant Salmonella. The National Antimicrobial Resistance Monitoring System (NARMS) performs susceptibility testing on nontyphoidal Salmonella isolates. The Foodborne Diseases Active Surveillance Network (FoodNet) ascertains outcomes for patients with culture-confirmed Salmonella infection, in 9 states, each of which participates in NARMS. We analyzed the frequency of bloodstream infection and hospitalization among patients with resistant infections. Isolates defined as resistant to a clinically important agent were resistant to 1 or more of the following agents: ampicillin, ceftriaxone, ciprofloxacin, gentamicin, and/or trimethoprim-sulfamethoxazole. During 1996-2001, NARMS received 7370 serotyped, nontyphoidal Salmonella isolates from blood or stool. Bloodstream infection occurred more frequently among patients infected with an isolate resistant to > or =1 clinically important agent (adjusted odds ratio [OR], 1.6; 95% confidence interval [CI], 1.2-2.1), compared with patients with pansusceptible infection. During 1996-2001, FoodNet staff ascertained outcomes for 1415 patients who had isolates tested in NARMS. Hospitalization with bloodstream infection occurred more frequently among patients infected with an isolate resistant to > or =1 clinically important agent (adjusted OR, 3.1; 95% CI, 1.4-6.6), compared with patients with pansusceptible infection. Patients with antimicrobial-resistant nontyphoidal Salmonella infection were more likely to have bloodstream infection and to be hospitalized than were patients with pansusceptible infection. Mitigation of antimicrobial resistance in Salmonella will likely benefit human health.

  18. Role of the glomerular-tubular imbalance with tubular predominance in the arterial hypertension pathophysiology.

    PubMed

    Fox, María Ofelia Barber; Gutiérrez, Ernesto Barber

    2013-09-01

    In previous investigations we caused renal tubular reabsorption preponderance relating to the glomerular filtration (Glomerular-tubular imbalance) and we observed that this fact conducted to volume expansion and development of arterial hypertension, in rats that previously were normotens. We based on this evidence and other which are reflected in the literature arrived at the following hypothesis: a greater proportion of tubular reabsorption relating to the filtered volume is the base of the establishment of the glomerular-tubular imbalance with tubular predominance (GTI-T), which favors to the Na(+)-fluid retention and volume expansion. All of which conduced to arterial hypertension. These facts explain a primary hypertensive role of the kidney, consistent with the results of renal transplants performed in different lines of hypertensive rats and their respective controls and in humans: hypertension can be transferred with the kidney. GTI-T aims to be, a common phenomenon involved in the hypertension development in the multiple ways which is manifested the hypertensive syndrome. In secondary hypertension, GTI-T is caused by significant disruptions of hormone secretions that control renal function, or obvious vascular or parenchymal damage of these organs. In primary hypertension the GTI-T has less obvious causes inherently developed in the kidney, including humoral, cellular and subcellular mechanisms, which may insidiously manifest under environmental factors influence, resulting in insidious development of hypertension. This would explain the state of prehypertension that these individuals suffer. So it has great importance to study GTI-T before the hypertension is established, because when hypertensive state is established, other mechanisms are installed and they contribute to maintain the hypertension. Our hypothesis may explaining the inability of the kidneys to excrete salt and water in hypertension, as Guyton and colleagues have expressed and constitutes a

  19. Immunogenicity of Salmonella enterica serovar Enteritidis virulence protein, InvH, and cross-reactivity of its antisera with Salmonella strains.

    PubMed

    Dehghani, Behzad; Rasooli, Iraj; Gargari, Seyed Latif Mousavi; Nadooshan, Mohammad Reza Jalali; Owlia, Parviz; Nazarian, Shahram

    2013-02-22

    Acellular vaccines containing bacterial immunodominant components such as surface proteins may be potent alternatives to live attenuated vaccines in order to reduce salmonellosis risk to human health. invH gene, an important part of needle complex in type three secretion system (TTSS) plays important role in efficient bacterial adherence and entry into epithelial cells. In this work we hypothesize that use of a 15 kDa recombinant InvH as Salmonella enterica serovar Enteritidis surface protein could provoke antibody production in mouse and would help us study feasibility of its potential for diagnosis and/or a recombinant vaccine. The purified InvH provoked significant rise of IgG in mice. Active protection induced by immunization with InvH against variable doses of S. enterica serovar Enteritidis, indicated that the immunized mice were completely protected against challenge with 10(4) LD(50). The immunoreaction of sera from immunized mice with other Salmonella strains or cross reaction with sera of Salmonella strains inoculated mice is indicative of possessing by Salmonella strains of the surface protein, InvH, that can be employed in both prophylactic and diagnostic measures against S. enterica. Bacteria free spleen and ileum of the immunized mice in this study indicate that the invH gene affects bacterial invasion. Efficacy of the virulence protein, InvH, in shuttling into host cells in injectisome of S. enterica serovar Enteritidis and inhibition of this phenomenon by active immunization was shown in this study. In conclusion immunization with InvH protein can develop protection against S. enterica serovar Enteritidis infections. InvH in Salmonella strains can be exploited in protective measures as well as a diagnostic tool in Salmonella infections. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. Metallic nanowire networks

    DOEpatents

    Song, Yujiang; Shelnutt, John A.

    2012-11-06

    A metallic nanowire network synthesized using chemical reduction of a metal ion source by a reducing agent in the presence of a soft template comprising a tubular inverse micellar network. The network of interconnected polycrystalline nanowires has a very high surface-area/volume ratio, which makes it highly suitable for use in catalytic applications.

  1. FSP1-specific SMAD2 knockout in renal tubular, endothelial, and interstitial cells reduces fibrosis and epithelial-to-mesenchymal transition in murine STZ-induced diabetic nephropathy.

    PubMed

    Loeffler, Ivonne; Liebisch, Marita; Allert, Stefanie; Kunisch, Elke; Kinne, Raimund W; Wolf, Gunter

    2018-04-01

    Extracellular matrix deposition during tubulointerstitial fibrosis (TIF), a central pathological process in patients with diabetic nephropathy (DN), is driven by locally activated, disease-relevant myofibroblasts. Myofibroblasts can arise from various cellular sources, e.g., tubular epithelial cells via a process named epithelial-to-mesenchymal transition (EMT). Transforming growth factor beta 1 (TGF-β1) and its downstream Smad signaling play a critical role in both TIF and EMT. Whereas Smad3 is one central mediator, the role of the other prominently expressed variant, Smad2, is not completely understood. In this study, we sought to analyze the role of renal Smad2 in the development of TIF and EMT during streptozotocin-induced DN by using a fibroblast-specific protein 1 (FSP1)-promotor-driven SMAD2 knockout mouse model with decreased tubular, endothelial, and interstitial Smad2 expression. In contrast to wild-type diabetic mice, diabetic SMAD2 knockout mice showed the following features: (1) significantly reduced DN and TIF (shown by KIM1 expression; periodic acid Schiff staining; collagen I and III, fibronectin, and connective tissue growth factor deposition); (2) significantly reduced tubular EMT-like changes (e.g., altered Snail1, E-cadherin, matrix metalloproteinase 2, and vimentin deposition); and (3) significantly decreased expression of myofibroblast markers (α-smooth muscle actin, FSP1). As one mechanism for the protection against diabetes-induced TIF and EMT, decreased Smad3 protein levels and, as a possible consequence, reduced TGF-β1 levels were observed in diabetic SMAD2 knockout mice. Our findings thus support the important role of Smad2 for pro-fibrotic TGF-β/Smad3 signaling in experimental DN.

  2. Intracellular Kinases Mediate Increased Translation and Secretion of Netrin-1 from Renal Tubular Epithelial Cells

    PubMed Central

    Jayakumar, Calpurnia; Mohamed, Riyaz; Ranganathan, Punithavathi Vilapakkam; Ramesh, Ganesan

    2011-01-01

    Background Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS) to determine the signaling pathways that regulate netrin-1 production in response to injury. Methods and Principal Findings Ischemia reperfusion injury of the kidney was induced in mice by clamping renal pedicle for 30 minutes. Cellular stress was induced in mouse proximal tubular epithelial cell line by treating with pervanadate, cisplatin, lipopolysaccharide, glucose or hypoxia followed by reoxygenation. Netrin-1 expression was quantified by real time RT-PCR and protein production was quantified using an ELISA kit. Cellular stress induced a large increase in netrin-1 production without increase in transcription of netrin-1 gene. Mitogen activated protein kinase, ERK mediates the drug induced netrin-1 mRNA translation increase without altering mRNA stability. Conclusion Our results suggest that netrin-1 expression is suppressed at the translational level and MAPK activation leads to rapid translation of netrin-1 mRNA in the kidney tubular epithelial cells. PMID:22046354

  3. Salmonella Infections (For Parents)

    MedlinePlus

    ... iguanas). Another, rarer form — called Salmonella typhi — causes typhoid fever . What Is Salmonella Infection? Salmonella infection, or salmonellosis , ... More on this topic for: Parents Kids Teens Typhoid Fever E. Coli Stool Test: Bacteria Culture Food Safety ...

  4. Salmonella DNA Adenine Methylase Mutants Confer Cross-Protective Immunity

    PubMed Central

    Heithoff, Douglas M.; Enioutina, Elena Y.; Daynes, Raymond A.; Sinsheimer, Robert L.; Low, David A.; Mahan, Michael J.

    2001-01-01

    Salmonella isolates that lack or overproduce DNA adenine methylase (Dam) elicited a cross-protective immune response to different Salmonella serovars. The protection afforded by the Salmonella enterica serovar Typhimurium Dam vaccine was greater than that elicited in mice that survived a virulent infection. S. enterica serovar Typhimurium Dam mutant strains exhibited enhanced sensitivity to mediators of innate immunity such as antimicrobial peptides, bile salts, and hydrogen peroxide. Also, S. enterica serovar Typhimurium Dam− vaccines were not immunosuppressive; unlike wild-type vaccines, they failed to induce increased nitric oxide levels and permitted a subsequent robust humoral response to diptheria toxoid antigen in infected mice. Dam mutant strains exhibited a low-grade persistence which, coupled with the nonimmunosuppression and the ectopic protein expression caused by altered levels of Dam, may provide an expanded source of potential antigens in vaccinated hosts. PMID:11598044

  5. Turning self-destructing Salmonella into a universal DNA vaccine delivery platform.

    PubMed

    Kong, Wei; Brovold, Matthew; Koeneman, Brian A; Clark-Curtiss, Josephine; Curtiss, Roy

    2012-11-20

    We previously developed a biological containment system using recombinant Salmonella Typhimurium strains that are attenuated yet capable of synthesizing protective antigens. The regulated delayed attenuation and programmed self-destructing features designed into these S. Typhimurium strains enable them to efficiently colonize host tissues and allow release of the bacterial cell contents after lysis. To turn such a recombinant attenuated Salmonella vaccine (RASV) strain into a universal DNA vaccine-delivery vehicle, our approach was to genetically modify RASV strains to display a hyperinvasive phenotype to maximize Salmonella host entry and host cell internalization, to enable Salmonella endosomal escape to release a DNA vaccine into the cytosol, and to decrease Salmonella-induced pyroptosis/apoptosis that allows the DNA vaccine time to traffic to the nucleus for efficient synthesis of encoded protective antigens. A DNA vaccine vector that encodes a domain that contributes to the arabinose-regulated lysis phenotype but has a eukaryotic promoter was constructed. The vector was then improved by insertion of multiple DNA nuclear-targeting sequences for efficient nuclear trafficking and gene expression, and by increasing nuclease resistance to protect the plasmid from host degradation. A DNA vaccine encoding influenza WSN virus HA antigen delivered by the RASV strain with the best genetic attributes induced complete protection to mice against a lethal influenza virus challenge. Adoption of these technological improvements will revolutionize means for effective delivery of DNA vaccines to stimulate mucosal, systemic, and cellular protective immunities, and lead to a paradigm shift in cost-effective control and prevention of a diversity of diseases.

  6. Turning self-destructing Salmonella into a universal DNA vaccine delivery platform

    PubMed Central

    Kong, Wei; Brovold, Matthew; Koeneman, Brian A.; Clark-Curtiss, Josephine; Curtiss, Roy

    2012-01-01

    We previously developed a biological containment system using recombinant Salmonella Typhimurium strains that are attenuated yet capable of synthesizing protective antigens. The regulated delayed attenuation and programmed self-destructing features designed into these S. Typhimurium strains enable them to efficiently colonize host tissues and allow release of the bacterial cell contents after lysis. To turn such a recombinant attenuated Salmonella vaccine (RASV) strain into a universal DNA vaccine-delivery vehicle, our approach was to genetically modify RASV strains to display a hyperinvasive phenotype to maximize Salmonella host entry and host cell internalization, to enable Salmonella endosomal escape to release a DNA vaccine into the cytosol, and to decrease Salmonella-induced pyroptosis/apoptosis that allows the DNA vaccine time to traffic to the nucleus for efficient synthesis of encoded protective antigens. A DNA vaccine vector that encodes a domain that contributes to the arabinose-regulated lysis phenotype but has a eukaryotic promoter was constructed. The vector was then improved by insertion of multiple DNA nuclear-targeting sequences for efficient nuclear trafficking and gene expression, and by increasing nuclease resistance to protect the plasmid from host degradation. A DNA vaccine encoding influenza WSN virus HA antigen delivered by the RASV strain with the best genetic attributes induced complete protection to mice against a lethal influenza virus challenge. Adoption of these technological improvements will revolutionize means for effective delivery of DNA vaccines to stimulate mucosal, systemic, and cellular protective immunities, and lead to a paradigm shift in cost-effective control and prevention of a diversity of diseases. PMID:23129620

  7. Salmonella serovar-specific interaction with jejunal epithelial cells.

    PubMed

    Razzuoli, Elisabetta; Amadori, Massimo; Lazzara, Fabrizio; Bilato, Dania; Ferraris, Monica; Vito, Guendalina; Ferrari, Angelo

    2017-08-01

    Gut is often a receptacle for many different pathogens in feed and/or the environment, such as Salmonella spp. The current knowledge about pathogenicity of Salmonella is restricted to few serotypes, whereas other important ones like S. Coeln, S. Thompson, S. Veneziana, have not been investigated yet in human and animal models. Therefore, the aim of our work was to verify the ability of widespread environmental Salmonella strains to penetrate and modulate innate immunity in pig intestinal IPEC-J2 cells. Our results outline the different ability of Salmonella strains to modulate innate immunity; the expression of the IFN-β gene was increased by S. Typhimurium, S. Ablogame and S. Diarizonae 2, that also caused an inflammatory response in terms of Interleukin (IL)-1β and/or IL-8 gene espression. In particular, IL-8 gene expression and protein release were significantly modulated by 5 Salmonella strains out of 7. Interestingly, S. Typhimurium, S. Coeln and S. Thompson strains, characterized by a peculiar ability to penetrate into IPEC-J2 cells, up-regulated both IL-8 and TNF-α gene expression. Accordingly, blocking IL-8 was shown to decrease the penetration of S. Typhimurium. On the contrary, S. Diarizonae strain 1, showing lesser invasion of IPEC-J2 cells, down-regulated the p38-MAPK pathway, and it did not induce an inflammatory response. Our results confirm that IPEC-J2 cells are a useful model to evaluate host-gut pathogen interaction and indicate IL-8 and TNF-α as possible predictive markers of invasiveness of Salmonella strains in enterocytes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Immunisation of chickens with live Salmonella vaccines - Role of booster vaccination.

    PubMed

    Methner, U

    2018-05-17

    It is accepted that booster vaccinations of chickens with live Salmonella vaccines are essential part of vaccinations schemes to induce an effective adaptive immune response. As manufacturer of registered live Salmonella vaccines recommend different times of booster the question raises whether the duration between the first and second immunisation might influence the protective effect against Salmonella exposure. Chickens were immunised with a live Salmonella Enteritidis vaccine on day 1 of age followed by a booster vaccination at different intervals (day 28, 35 or 42 of age) to study the effects on the colonisation and invasion of the Salmonella vaccine strain, the humoral immune response and the efficacy against infection with Salmonella Enteritidis on day 56 of age. Immunisation of all groups resulted in a very effective adaptive immune response and a high degree of protection against severe Salmonella exposure, however, the time of booster had only an unverifiable influence on either the colonisation of the vaccine strain, the development of the humoral immune response or the colonisation of the Salmonella challenge strain. Therefore, the first oral immunisation of the chicks on day 1 of age seems to be of special importance and prerequisite for the development of the effective immune response. A booster immunisation should be carried out, however, the time of booster may vary between week 3 and week 7 of age of the chickens without adversely impact on the efficacy of the adaptive immune response or the protective effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Cisplatin-induced cytotoxicity in BSO-exposed renal proximal tubular epithelial cells: sex, age, and species.

    PubMed

    Lu, Yongke; Kawashima, Akira; Horii, Ikuo; Zhong, Laifu

    2005-01-01

    Cisplatin (CP)-induced kidney damage and effects of DL-buthionine-(S,R)-sulfoximine (BSO) on it are species- and age-different. It remains unclear whether CP-induced cytotoxicity in renal proximal tubular epithelial cells (RTEC), the main target cells of CP, is also species- and age-different; and whether CP-induced cytotoxicity varies with the difference in age and species, if any, is one of the questions. In the present study, the effects of BSO on CP-induced cytotoxicity in primary cultures of RTEC isolated from monkeys and different age and sex rats were studied. The RTEC were isolated from 3-week-old, 2-month-old, or 5-month-old rats, and 6-8 year-old monkeys. After subculturing, RTEC was inoculated into type I collagen-coated 96-well culture plates; after preincubation, 40 microM BSO was added, 16 hours later, varying concentrations of CP were added. At that time, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays were performed to test cell viability. The concentrations of CP that inhibited 50% cell growth (IC50) of RTEC from rats and monkeys were 1.11 and 3.03 mM at 8 hours, and 0.51 and 1.24 mM at 24 hours, respectively. The BSO made the IC50s of RTEC from rats and monkeys lower, down to 0.07 and 0.48 mM at 8 hours, and 0.02 and 0.11 mM at 24 hours, respectively. The IC50s of RTEC from different sex and age rats were almost same. These results suggested that CP-induced cytotoxicity was concentration- and time-dependent, with species-dependent differences, rat RTEC were more susceptible to CP than monkey RTEC, rat RTEC were more dependent on glutathione (GSH) during the stress state were than monkey cells; CP-induced cytotoxicity was without sex- and age-dependent differences in rat RTEC.

  10. Neurogenic regulation of renal tubular sodium reabsorption.

    PubMed

    DiBona, G F

    1977-08-01

    The evidence supporting a role for direct neurogenic control of renal tubular sodium reabsorption is reviewed. Electron microscopic and fluorescence histochemical studies have demonstrated adrenergic nerve terminals in direct contact with basement membranes of mammalian (rat, dog, and monkey) renal tubular epithelial cells. Low-level direct or baroreceptor reflex stimulation of renal sympathetic nerves produces an increase in renal tubular sodium reabsorption without alterations in glomerular filtration rate, renal blood flow, or intrarenal distribution of blood flow. Antinatriuresis was prevented by prior treatment of the kidney with guanethidine or phenoxybenzamine. Rat kidney micropuncture studies have localized a site of enhanced tubular sodium reabsorption to the proximal tubule. Possible indirect mediation of the antinatriuresis by other humoral agents known to be released from the kidney on renal nerve stimulation (angiotensin II, prostaglandin) was excluded by experiments with appropriate blocking agents. The possible effects of anesthesia and uncertainties about the completeness of surgical renal denervation and other tubular segmental sites of action are critically analyzed. The clinical implications of this mechanism in pathologic conditions of sodium and water retention are discussed and and a prospectus for future work is presented.

  11. Determination of viable Salmonellae from potable and source water through PMA assisted qPCR.

    PubMed

    Singh, Gulshan; Vajpayee, Poornima; Bhatti, Saurabh; Ronnie, Nirmala; Shah, Nimish; McClure, Peter; Shanker, Rishi

    2013-07-01

    Resource constrained countries identified as endemic zones for pathogenicity of Salmonella bear an economic burden due to recurring expenditure on medical treatment. qPCR used for Salmonella detection could not discriminate between viable and nonviable cells. Propidium monoazide (PMA) that selectively penetrates nonviable cells to cross-link their DNA, was coupled with ttr gene specific qPCR for quantifying viable salmonellae in source/potable waters collected from a north Indian city. Source water (raw water for urban potable water supply) and urban potable water exhibited viable salmonellae in the range of 2.1×10(4)-2.6×10(6) and 2-7160CFU/100mL, respectively. Potable water at water works exhibited DNA from dead cells but no viable cells were detected. PMA assisted qPCR could specifically detect low numbers of live salmonellae in Source and potable waters. This strategy can be used in surveillance of urban potable water distribution networks to map contamination points for better microbial risk management. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Regulation of proximal tubular cell differentiation and proliferation in primary culture by matrix stiffness and ECM components.

    PubMed

    Chen, Wan-Chun; Lin, Hsi-Hui; Tang, Ming-Jer

    2014-09-15

    To explore whether matrix stiffness affects cell differentiation, proliferation, and transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) in primary cultures of mouse proximal tubular epithelial cells (mPTECs), we used a soft matrix made from monomeric collagen type I-coated polyacrylamide gel or matrigel (MG). Both kinds of soft matrix benefited primary mPTECs to retain tubular-like morphology with differentiation and growth arrest and to evade TGF-β1-induced EMT. However, the potent effect of MG on mPTEC differentiation was suppressed by glutaraldehyde-induced cross-linking and subsequently stiffening MG or by an increasing ratio of collagen in the soft mixed gel. Culture media supplemented with MG also helped mPTECs to retain tubular-like morphology and a differentiated phenotype on stiff culture dishes as soft MG did. We further found that the protein level and activity of ERK were scaled with the matrix stiffness. U-0126, a MEK inhibitor, abolished the stiff matrix-induced dedifferentiation and proliferation. These data suggest that the ERK signaling pathway plays a vital role in matrix stiffness-regulated cell growth and differentiation. Taken together, both compliant property and specific MG signals from the matrix are required for the regulation of epithelial differentiation and proliferation. This study provides a basic understanding of how physical and chemical cues derived from the extracellular matrix regulate the physiological function of proximal tubules and the pathological development of renal fibrosis. Copyright © 2014 the American Physiological Society.

  13. Exciton Level Structure and Dynamics in Tubular Porphyrin Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yan; Stradomska, Anna; Fong, Sarah

    2014-10-30

    We present an account of the optical properties of the Frenkel excitons in self-assembled porphyrin tubular aggregates that represent an analog to natural photosynthetic antennae. Using a combination of ultrafast optical spectroscopy and stochastic exciton modeling, we address both linear and nonlinear exciton absorption, relaxation pathways, and the role of disorder. The static disorder-dominated absorption and fluorescence line widths show little temperature dependence for the lowest excitons (Q band), which we successfully simulate using a model of exciton scattering on acoustic phonons in the host matrix. Temperature-dependent transient absorption of and fluorescence from the excitons in the tubular aggregates aremore » marked by nonexponential decays with time scales ranging from a few picoseconds to a few nanoseconds, reflecting complex relaxation mechanisms. Combined experimental and theoretical investigations indicate that nonradiative pathways induced by traps and defects dominate the relaxation of excitons in the tubular aggregates. We model the pumpprobe spectra and ascribe the excited-state absorption to transitions from one-exciton states to a manifold of mixed one- and two-exciton states. Our results demonstrate that while the delocalized Frenkel excitons (over 208 (1036) molecules for the optically dominant excitons in the Q (B) band) resulting from strong intermolecular coupling in these aggregates could potentially facilitate efficient energy transfer, fast relaxation due to defects and disorder probably present a major limitation for exciton transport over large distances.« less

  14. Salmonella risk to consumers via pork is related to the Salmonella prevalence in pig feed.

    PubMed

    Rönnqvist, M; Välttilä, V; Ranta, J; Tuominen, P

    2018-05-01

    Pigs are an important source of human infections with Salmonella, one of the most common causes of sporadic gastrointestinal infections and foodborne outbreaks in the European region. Feed has been estimated to be a significant source of Salmonella in piggeries in countries of a low Salmonella prevalence. To estimate Salmonella risk to consumers via the pork production chain, including feed production, a quantitative risk assessment model was constructed. The Salmonella prevalence in feeds and in animals was estimated to be generally low in Finland, but the relative importance of feed as a source of Salmonella in pigs was estimated as potentially high. Discontinuation of the present strict Salmonella control could increase the risk of Salmonella in slaughter pigs and consequent infections in consumers. The increased use of low risk and controlled feed ingredients could result in a consistently lower residual contamination in pigs and help the tracing and control of the sources of infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Differential patterns of acquired virulence genes distinguish Salmonella strains

    PubMed Central

    Conner, Christopher P.; Heithoff, Douglas M.; Julio, Steven M.; Sinsheimer, Robert L.; Mahan, Michael J.

    1998-01-01

    Analysis of several Salmonella typhimurium in vivo-induced genes located in regions of atypical base composition has uncovered acquired genetic elements that cumulatively engender pathogenicity. Many of these regions are associated with mobile elements, encode predicted adhesin and invasin-like functions, and are required for full virulence. Some of these regions distinguish broad host range from host-adapted Salmonella serovars and may contribute to inherent differences in host specificity, tissue tropism, and disease manifestation. Maintenance of this archipelago of acquired sequence by selection in specific hosts reveals a fossil record of the evolution of pathogenic species. PMID:9539791

  16. Thalidomide Ameliorates Inflammation and Vascular Injury but Aggravates Tubular Damage in the Irradiated Mouse Kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharpfenecker, Marion, E-mail: m.scharpfenecker@nki.nl; Floot, Ben; Russell, Nicola S.

    Purpose: The late side effects of kidney irradiation include vascular damage and fibrosis, which are promoted by an irradiation-induced inflammatory response. We therefore treated kidney-irradiated mice with the anti-inflammatory and angiogenesis-modulating drug thalidomide in an attempt to prevent the development of late normal tissue damage and radiation nephropathy in the mouse kidney. Methods and Materials: Kidneys of C57Bl/6 mice were irradiated with a single dose of 14 Gy. Starting from week 16 after irradiation, the mice were fed with thalidomide-containing chow (100 mg/kg body weight/day). Gene expression and kidney histology were analyzed at 40 weeks and blood samples at 10, 20, 30, andmore » 40 weeks after irradiation. Results: Thalidomide improved the vascular structure and vessel perfusion after irradiation, associated with a normalization of pericyte coverage. The drug also reduced infiltration of inflammatory cells but could not suppress the development of fibrosis. Irradiation-induced changes in hematocrit and blood urea nitrogen levels were not rescued by thalidomide. Moreover, thalidomide worsened tubular damage after irradiation and also negatively affected basal tubular function. Conclusions: Thalidomide improved the inflammatory and vascular side effects of kidney irradiation but could not reverse tubular toxicity, which probably prevented preservation of kidney function.« less

  17. Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells.

    PubMed

    Kanlaya, Rattiyaporn; Khamchun, Supaporn; Kapincharanon, Chompunoot; Thongboonkerd, Visith

    2016-07-25

    This study evaluated effect of oxalate on epithelial mesenchymal transition (EMT) and potential anti-fibrotic property of epigallocatechin-3-gallate (EGCG). MDCK renal tubular cells were incubated with 0.5 mM sodium oxalate for 24-h with/without 1-h pretreatment with 25 μM EGCG. Microscopic examination, immunoblotting and immunofluorescence staining revealed that oxalate-treated cells gained mesenchymal phenotypes by fibroblast-like morphological change and increasing expression of vimentin and fibronectin, while levels of epithelial markers (E-cadherin, occludin, cytokeratin and ZO-1) were decreased. EGCG pretreatment could prevent all these changes and molecular mechanisms underlying the prevention by EGCG were most likely due to reduced production of intracellular ROS through activation of Nrf2 signaling and increased catalase anti-oxidant enzyme. Knockdown of Nrf2 by small interfering RNA (siRNA) abrogated all the effects of EGCG, confirming that the EGCG protection against oxalate-induced EMT was mediated via Nrf2. Taken together, our data indicate that oxalate turned on EMT of renal tubular cells that could be prevented by EGCG via Nrf2 pathway. These findings also shed light onto development of novel therapeutics or preventive strategies of renal fibrosis in the future.

  18. The fine structure of sheep myocardial cells; sarcolemmal invaginations and the transverse tubular system.

    PubMed

    SIMPSON, F O; OERTELIS, S J

    1962-01-01

    An electron microscope study of sheep myocardial cells has demonstrated the presence of a transverse tubular system, apparently forming a network across the cell at each Z band level. The walls of these tubules resemble the sarcolemma in consisting of two dense layers-plasma membrane and basement menbrane; continuity of the tubule walls with the sarcolemma can be seen when longitudinal sections of a cell are obtained between two subsarcolemmal myofibrils and at the same time perpendicular to the cell surface. The demonstration of communication between the lumen of the transverse tubular system and the extracellular space appears to be more definite in this study than in any work hitherto published. It provides anatomical evidence of a possible direct pathway for transmission of the activating impulse from the sarcolemma to the myofibril Z bands.

  19. Control of Salmonella enterica serovar Enteritidis in laying hens by inactivated Salmonella Enteritidis vaccines

    PubMed Central

    de Freitas Neto, Oliveiro Caetano; Mesquita, Aline Lopes; de Paiva, Jaqueline Boldrin; Zotesso, Fábio; Berchieri Júnior, Angelo

    2008-01-01

    Salmonella Enteritidis is one of the agents that is responsible for outbreaks of human foodborne salmonellosis caused by Salmonella Enteritidis and is generally associated with the consumption of poultry products. Inactivated Salmonella Enteritidis cell vaccine is one of the available methods to control Salmonella Enteritidis in breeders and laying hens, however results in terms of efficacy vary. This vaccine has never been tested in Brazil, therefore, the present work was carried out to assess three commercial inactivated Salmonella Enteritidis vaccines allowed in Brazil. Four hundred white light variety commercial laying hens were obtained at one-day-of age. At eight weeks old, the birds were divided into four groups with one hundred animals each. Birds from three groups (V1, V2 and V3) received different intramuscular vaccines, followed by a booster dose at 16 weeks of age. Birds from another group (CG) were not vaccinated. When the laying hens were 20, 25 and 31 weeks old, 13 from each group were transferred to another room and were challenged by inoculating 2 mL neat culture of Salmonella Enteritidis. On the second day after each challenge, the caecal contents, spleen, liver and ovary of three birds from each group were analyzed for the presence of Salmonella Enteritidis. Twice a week a cloacal swab of each bird was taken and all eggs laid were examined for the presence of Salmonella Enteritidis. After four consecutive negative cloacal swabs in all the groups, the birds were sacrificed so as to examine the liver, caecal contents and ovaries. Overall, the inactivated vaccine used in group V3 reduced Salmonella Enteritidis in the feces and eggs. A very small amount of Salmonella was found in the spleen, liver, ovary and caeca of the birds in the four groups during the whole experiment. In general, inactivated Salmonella Enteritidis vaccines was able to decrease the presence of Salmonella Enteritidis in the birds and in the eggs as well. Nevertheless, they must

  20. Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-{beta}1 up-regulation in proximal tubular epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Won Seok; Chang, Jai Won; Han, Nam Jeong

    The role of spleen tyrosine kinase (Syk) in high glucose-induced intracellular signal transduction has yet to be elucidated. We investigated whether Syk is implicated in high glucose-induced transforming growth factor-{beta}1 (TGF-{beta}1) up-regulation in cultured human proximal tubular epithelial cells (HK-2 cell). High glucose increased TGF-{beta}1 gene expression through Syk, extracellular signal-regulated kinase (ERK), AP-1 and NF-{kappa}B. High glucose-induced AP-1 DNA binding activity was decreased by Syk inhibitors and U0126 (an ERK inhibitor). Syk inhibitors suppressed high glucose-induced ERK activation, whereas U0126 had no effect on Syk activation. High glucose-induced NF-{kappa}B DNA binding activity was also decreased by Syk inhibitors. Highmore » glucose increased nuclear translocation of p65 without serine phosphorylation of I{kappa}B{alpha} and without degradation of I{kappa}B{alpha}, but with an increase in tyrosine phosphorylation of I{kappa}B{alpha} that may account for the activation of NF-{kappa}B. Both Syk inhibitors and Syk-siRNA attenuated high glucose-induced I{kappa}B{alpha} tyrosine phosphorylation and p65 nuclear translocation. Depletion of p21-activated kinase 2 (Pak2) by transfection of Pak2-siRNA abolished high glucose-induced Syk activation. In summary, high glucose-induced TGF-{beta}1 gene transcription occurred through Pak2, Syk and subsequent ERK/AP-1 and NF-{kappa}B pathways. This suggests that Syk might be implicated in the diabetic kidney disease.« less

  1. Use of Attenuated but Metabolically Competent Salmonella as a Probiotic To Prevent or Treat Salmonella Infection

    PubMed Central

    Sabag-Daigle, Anice; Blunk, Henry M.; Gonzalez, Juan F.; Steidley, Brandi L.; Boyaka, Prosper N.

    2016-01-01

    Salmonella enterica is among the most burdensome of foodborne disease agents. There are over 2,600 serovars that cause a range of disease manifestations ranging from enterocolitis to typhoid fever. While there are two vaccines in use in humans to protect against typhoid fever, there are none that prevent enterocolitis. If vaccines preventing enterocolitis were to be developed, they would likely protect against only one or a few serovars. In this report, we tested the hypothesis that probiotic organisms could compete for the preferred nutrient sources of Salmonella and thus prevent or treat infection. To this end, we added the fra locus, which encodes a utilization pathway for the Salmonella-specific nutrient source fructose-asparagine (F-Asn), to the probiotic bacterium Escherichia coli Nissle 1917 (Nissle) to increase its ability to compete with Salmonella in mouse models. We also tested a metabolically competent, but avirulent, Salmonella enterica serovar Typhimurium mutant for its ability to compete with wild-type Salmonella. The modified Nissle strain became more virulent and less able to protect against Salmonella in some instances. On the other hand, the modified Salmonella strain was safe and effective in preventing infection with wild-type Salmonella. While we tested for efficacy only against Salmonella Typhimurium, the modified Salmonella strain may be able to compete metabolically with most, if not all, Salmonella serovars, representing a novel approach to control of this pathogen. PMID:27185789

  2. Loss of tubular creatinine secretion as the only sign of tubular proximal cell dysfunction in light chain proximal tubulopathy: A case report.

    PubMed

    Stehlé, Thomas; Vignon, Marguerite; Flamant, Martin; Figueres, Marie-Lucile; Rabant, Marion; Rodenas, Anita; Noël, Laure-Hélène; Arnulf, Bertrand; Vidal-Petiot, Emmanuelle

    2016-06-01

    Light chain proximal tubulopathy (LCPT) is a rare disease, characterized by cytoplasmic inclusions of light chain (usually kappa) immunoglobulins. Clinical presentation is usually a Fanconi syndrome. The proximal tubular dysfunction can be incomplete, and exceptional cases of LCPT without any tubular dysfunction have even been described. Here, we report a case of LCPT in which the only sign of proximal tubulopathy is the absence of secretion of creatinine, as assessed by the simultaneous measurement of renal clearance of creatinine and CrEDTA. The loss of tubular creatinine secretion as a sign of tubular proximal cell dysfunction ought to be identified in patients with light chain proximal tubulopathy as it leads to a clinically relevant underestimation of GFR by the creatinine-derived equations. The prevalence and prognostic significance of this particular proximal tubular damage in LCPT remain to be determined.

  3. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations inmore » S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.« less

  4. Tubular Obstruction Leads to Progressive Proximal Tubular Injury and Atubular Glomeruli in Polycystic Kidney Disease

    PubMed Central

    Galarreta, Carolina I.; Grantham, Jared J.; Forbes, Michael S.; Maser, Robin L.; Wallace, Darren P.; Chevalier, Robert L.

    2015-01-01

    In polycystic kidney disease (PKD), renal parenchyma is destroyed by cysts, hypothesized to obstruct nephrons. A signature of unilateral ureteral obstruction, proximal tubular atrophy leads to formation of atubular glomeruli. To determine whether this process occurs in PKD, kidneys from pcy mice (moderately progressive PKD), kidneys from cpk mice (rapidly progressive PKD), and human autosomal dominant PKD were examined in early and late stages. Integrity of the glomerulotubular junction and proximal tubular mass were determined in sections stained with Lotus tetragonolobus lectin. Development of proximal tubular atrophy and atubular glomeruli was determined in serial sections of individual glomeruli. In pcy mice, most glomerulotubular junctions were normal at 20 weeks, but by 30 weeks, 56% were atrophic and 25% of glomeruli were atubular; glomerulotubular junction integrity decreased with increasing cyst area (r = 0.83, P < 0.05). In cpk mice, all glomerulotubular junctions were normal at 10 days, but by 19 days, 26% had become abnormal. In early-stage autosomal dominant PKD kidneys, 50% of glomeruli were atubular or attached to atrophic tubules; in advanced disease, 100% were abnormal. Thus, proximal tubular injury in cystic kidneys closely parallels that observed with ureteral obstruction. These findings support the hypothesis that, in renal cystic disorders, cyst-dependent obstruction of medullary and cortical tubules initiates a process culminating in widespread destruction of proximal convoluted tubules at the glomerulotubular junction. PMID:24815352

  5. Identification of multidrug-resistant Salmonella enterica serovar typhimurium isolates that have an antibiotic-induced invasion phenotype

    USDA-ARS?s Scientific Manuscript database

    Multidrug-resistant (MDR) Salmonella is an important food safety issue in humans and animals. The National Antimicrobial Resistance Monitoring System (NARMS) has reported that 27.3% of Salmonella enterica serotype Typhimurium isolates in humans were resistant to three or more classes of antibiotics...

  6. The effects of polymorphisms in 7 candidate genes on resistance to Salmonella Enteritidis in native chickens.

    PubMed

    Tohidi, R; Idris, I B; Malar Panandam, J; Hair Bejo, M

    2013-04-01

    Salmonella enterica serovar Enteritidis infection is a common concern in poultry production for its negative effects on growth as well as food safety for humans. Identification of molecular markers that are linked to resistance to Salmonella Enteritidis may lead to appropriate solutions to control Salmonella infection in chickens. This study investigated the association of candidate genes with resistance to Salmonella Enteritidis in young chickens. Two native breeds of Malaysian chickens, namely, Village Chickens and Red Junglefowl, were evaluated for bacterial colonization after Salmonella Enteritidis inoculation. Seven candidate genes were selected on the basis of their physiological role in immune response, as determined by prior studies in other genetic lines: natural resistance-associated protein 1 (NRAMP1), transforming growth factor β3 (TGFβ3), transforming growth factor β4 (TGFβ4), inhibitor of apoptosis protein 1 (IAP1), caspase 1 (CASP1), lipopolysaccharide-induced tumor necrosis factor (TNF) α factor (LITAF), and TNF-related apoptosis-inducing ligand (TRAIL). Polymerase chain reaction-RFLP was used to identify polymorphisms in the candidate genes; all genes exhibited polymorphisms in at least one breed. The NRAMP1-SacI polymorphism correlated with the differences in Salmonella Enteritidis load in the cecum (P = 0.002) and spleen (P = 0.01) of Village Chickens. Polymorphisms in the restriction sites of TGFβ3-BsrI, TGFβ4-MboII, and TRAIL-StyI were associated with Salmonella Enteritidis burden in the cecum, spleen, and liver of Village Chickens and Red Junglefowl (P < 0.05). These results indicate that the NRAMP1, TGFβ3, TGFβ4, and TRAIL genes are potential candidates for use in selection programs for increasing genetic resistance against Salmonella Enteritidis in native Malaysian chickens.

  7. Characterization of the RpoS Status of Clinical Isolates of Salmonella enterica

    PubMed Central

    Robbe-Saule, Véronique; Algorta, Gabriela; Rouilhac, Isabelle; Norel, Françoise

    2003-01-01

    The stationary-phase-inducible sigma factor, σS (RpoS), is the master regulator of the general stress response in Salmonella and is required for virulence in mice. rpoS mutants can frequently be isolated from highly passaged laboratory strains of Salmonella. We examined the rpoS status of 116 human clinical isolates of Salmonella, including 41 Salmonella enterica serotype Typhi strains isolated from blood, 38 S. enterica serotype Typhimurium strains isolated from blood, and 37 Salmonella serotype Typhimurium strains isolated from feces. We examined the abilities of these strains to produce the σS protein, to express RpoS-dependent catalase activity, and to resist to oxidative stress in the stationary phase of growth. We also carried out complementation experiments with a cloned wild-type rpoS gene. Our results showed that 15 of the 41 Salmonella serotype Typhi isolates were defective in RpoS. We sequenced the rpoS allele of 12 strains. This led to identification of small insertions, deletions, and point mutations resulting in premature stop codons or affecting regions 1 and 2 of σS, showing that the rpoS mutations are not clonal. Thus, mutant rpoS alleles can be found in freshly isolated clinical strains of Salmonella serotype Typhi, and they may affect virulence properties. Interestingly however, no rpoS mutants were found among the 75 Salmonella serotype Typhimurium isolates. Strains that differed in catalase activity and resistance to hydrogen peroxide were found, but the differences were not linked to the rpoS status. This suggests that Salmonella serotype Typhimurium rpoS mutants are counterselected because rpoS plays a role in the pathogenesis of Salmonella serotype Typhimurium in humans or in the transmission cycle of the disease. PMID:12902215

  8. Prevalence and Characterization of Salmonella enterica and Salmonella Bacteriophages Recovered from Beef Cattle Feedlots in South Texas.

    PubMed

    Xie, Yicheng; Savell, Jeffrey W; Arnold, Ashley N; Gehring, Kerri B; Gill, Jason J; Taylor, T Matthew

    2016-08-01

    Asymptomatic Salmonella carriage in beef cattle is a food safety concern, and the beef feedlot environment may function as a reservoir of this pathogen. The goal of this study was to identify and isolate Salmonella and Salmonella bacteriophages from beef cattle feedlot environments in order to better understand the microbial ecology of Salmonella and identify phages that might be useful as anti-Salmonella beef safety interventions. Three feedlots in south Texas were visited, and 27 distinct samples from each source were collected from dropped feces, feed from feed bunks, drinking water from troughs, and soil in cattle pens (n = 108 samples). Preenrichment, selective enrichment, and selective/differential isolation of Salmonella were performed on each sample. A representative subset of presumptive Salmonella isolates was prepared for biochemical identification and serotyping. Samples were pooled by feedlot and sample type to create 36 samples and enriched to recover phages. Recovered phages were tested for host range against two panels of Salmonella hosts. Salmonella bacteria were identified in 20 (18.5%) of 108 samples by biochemical and/or serological testing. The serovars recovered included Salmonella enterica serovars Anatum, Muenchen, Altona, Kralingen, Kentucky, and Montevideo; Salmonella Anatum was the most frequently recovered serotype. Phage-positive samples were distributed evenly over the three feedlots, suggesting that phage prevalence is not strongly correlated with the presence of culturable Salmonella. Phages were found more frequently in soil and feces than in feed and water samples. The recovery of bacteriophages in the Salmonella-free feedlot suggests that phages might play a role in suppressing the Salmonella population in a feedlot environment.

  9. Cross-protection against Salmonella enteritidis infection in mice. III. Delayed hypersensitivity reaction and clearance of the challenge organism.

    PubMed

    Padmanaban, V D; Mittal, K R

    1979-01-01

    Mice were immunized with live vaccines and with live vaccines with complete adjuvant incorporating Salmonella enteritidis, Salmonella typhi-murium, Salmonella gallinarum or Salmonella pullorum. On the 21st day after vacination, the hypersensitivity reactions elicited by the mice to extracts of the challenge organism (S. enteritidis 5694 SMR) were assessed. The degree of delayed hypersensitivity reaction was compared with the level of protection induced by the vaccine. The role in protection of delayed hypersensitivity is discussed. Clearance of the challenge organism from the liver of previously vaccinated and unvaccinated mice was assessed quantitatively.

  10. Screening for Salmonella in backyard chickens.

    PubMed

    Manning, Johanna; Gole, Vaibhav; Chousalkar, Kapil

    2015-06-15

    Salmonellosis is a significant zoonotic disease which has a considerable economic impact on the egg layer industry. There is limited information about the prevalence of Salmonella spp. in backyard chickens. The current study was conducted to determine the prevalence of Salmonella in backyard chickens, and the associated virulence of any serovars identified. Hundred and fifteen pooled samples from 30 backyard flocks in South Australia were screened. Four flocks tested positive for Salmonella spp. The overall Salmonella isolation rate in the current study was 10.4%. The estimated prevalence at individual bird level was 0.02% (95% CI 0.025-0.975). The serovars isolated were Salmonella Agona, Salmonella subsp 2 ser 21:z10:z6 (Wandsbek) and Salmonella Bovismorbificans. All Salmonella isolates tested positive for the prgH, orfL and spiC genes. The Salmonella subsp 2 ser 21:z10:z6 (Wandsbek) had the most antibiotic resistance, being resistant to ampicillin and cephalothin and having intermediate resistance to florphenicol. All of the Salmonella Agona had intermediate resistance to the ampicillin, while the Salmonella Bovismorbificans were susceptible to all antibiotics tested. With the increased interest of keeping backyard chickens, the current study highlights the zoonotic risk from Salmonella spp. associated with home flocks. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  11. Renal Impairment with Sublethal Tubular Cell Injury in a Chronic Liver Disease Mouse Model

    PubMed Central

    Ishida, Tokiko; Kotani, Hirokazu; Miyao, Masashi; Kawai, Chihiro; Jemail, Leila; Abiru, Hitoshi; Tamaki, Keiji

    2016-01-01

    The pathogenesis of renal impairment in chronic liver diseases (CLDs) has been primarily studied in the advanced stages of hepatic injury. Meanwhile, the pathology of renal impairment in the early phase of CLDs is poorly understood, and animal models to elucidate its mechanisms are needed. Thus, we investigated whether an existing mouse model of CLD induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) shows renal impairment in the early phase. Renal injury markers, renal histology (including immunohistochemistry for tubular injury markers and transmission electron microscopy), autophagy, and oxidative stress were studied longitudinally in DDC- and standard diet–fed BALB/c mice. Slight but significant renal dysfunction was evident in DDC-fed mice from the early phase. Meanwhile, histological examinations of the kidneys with routine light microscopy did not show definitive morphological findings, and electron microscopic analyses were required to detect limited injuries such as loss of brush border microvilli and mitochondrial deformities. Limited injuries have been recently designated as sublethal tubular cell injury. As humans with renal impairment, either with or without CLD, often show almost normal tubules, sublethal injury has been of particular interest. In this study, the injuries were associated with mitochondrial aberrations and oxidative stress, a possible mechanism for sublethal injury. Intriguingly, two defense mechanisms were associated with this injury that prevent it from progressing to apparent cell death: autophagy and single-cell extrusion with regeneration. Furthermore, the renal impairment of this model progressed to chronic kidney disease with interstitial fibrosis after long-term DDC feeding. These findings indicated that DDC induces renal impairment with sublethal tubular cell injury from the early phase, leading to chronic kidney disease. Importantly, this CLD mouse model could be useful for studying the pathophysiological mechanisms

  12. Visualization of gold and platinum nanoparticles interacting with Salmonella Enteritidis and Listeria monocytogenes

    PubMed Central

    Sawosz, Ewa; Chwalibog, André; Szeliga, Jacek; Sawosz, Filip; Grodzik, Marta; Rupiewicz, Marlena; Niemiec, Tomasz; Kacprzyk, Katarzyna

    2010-01-01

    Purpose Rapid development of nanotechnology has recently brought significant attention to the extraordinary biological features of nanomaterials. The objective of the present investigation was to evaluate morphological characteristics of the assembles of gold and platinum nanoparticles (nano-Au and nano-Pt respectively), with Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive), to reveal possibilities of constructing bacteria-nanoparticle vehicles. Methods Hydrocolloids of nano-Au or nano-Pt were added to two bacteria suspensions in the following order: nano-Au + Salmonella Enteritidis; nano-Au + Listeria monocytogenes; nano-Pt + Salmonella Enteritidis; nano-Pt + Listeria monocytogenes. Samples were inspected by transmission electron microscope. Results Visualization of morphological interaction between nano-Au and Salmonella Enteritidis and Listeria monocytogenes, showed that nano-Au were aggregated within flagella or biofilm network and did not penetrate the bacterial cell. The analysis of morphological effects of interaction of nano-Pt with bacteria revealed that nano-Pt entered cells of Listeria monocytogenes and were removed from the cells. In the case of Salmonella Enteritidis, nano-Pt were seen inside bacteria cells, probably bound to DNA and partly left bacterial cells. After washing and centrifugation, some of the nano-Pt-DNA complexes were observed within Salmonella Enteritidis. Conclusion The results indicate that the bacteria could be used as a vehicle to deliver nano-Pt to specific points in the body. PMID:20856838

  13. ssrA (tmRNA) Plays a Role in Salmonella enterica Serovar Typhimurium Pathogenesis

    PubMed Central

    Julio, Steven M.; Heithoff, Douglas M.; Mahan, Michael J.

    2000-01-01

    Escherichia coli ssrA encodes a small stable RNA molecule, tmRNA, that has many diverse functions, including tagging abnormal proteins for degradation, supporting phage growth, and modulating the activity of DNA binding proteins. Here we show that ssrA plays a role in Salmonella enterica serovar Typhimurium pathogenesis and in the expression of several genes known to be induced during infection. Moreover, the phage-like attachment site, attL, encoded within ssrA, serves as the site of integration of a region of Salmonella-specific sequence; adjacent to the 5′ end of ssrA is another region of Salmonella-specific sequence with extensive homology to predicted proteins encoded within the unlinked Salmonella pathogenicity island SPI4. S. enterica serovar Typhimurium ssrA mutants fail to support the growth of phage P22 and are delayed in their ability to form viable phage particles following induction of a phage P22 lysogen. These data indicate that ssrA plays a role in the pathogenesis of Salmonella, serves as an attachment site for Salmonella-specific sequences, and is required for the growth of phage P22. PMID:10692360

  14. Prevalence of Salmonella in Australian reptiles.

    PubMed

    Scheelings, T Franciscus; Lightfoot, Dianne; Holz, Peter

    2011-01-01

    From January 2007 until June 2008, 504 reptiles of four families and 57 species were examined for Salmonella by using cloacal or intestinal swabs. Salmonella was identified in 139 (28%) of the 504 animals tested. Of the 504 reptiles examined, 210 were captive and 294 were wild. Ninety-eight (47%) of the captive reptiles were shedding Salmonella at the time of sampling. In contrast, only 41 (14%) of the wild reptiles were shedding Salmonella. The higher prevalence of Salmonella in captive reptiles was statistically significant (P<0.0001). No Salmonella was found in 60 wild, freshwater chelonians or 48 wild southern water skinks (Eulamprus heatwolei). Our results suggest that some species of wild reptiles in Australia are not natural carriers of Salmonella and that diet and captivity may influence Salmonella excretion in other species.

  15. In vivo antibody-mediated modulation of aminopeptidase A in mouse proximal tubular epithelial cells.

    PubMed

    Mentzel, S; Dijkman, H B; van Son, J P; Wetzels, J F; Assmann, K J

    1999-07-01

    Aminopeptidase A (APA) is one of the many renal hydrolases. In mouse kidney, APA is predominantly expressed on the brush borders and sparsely on the basolateral membranes of proximal tubular epithelial cells. However, when large amounts of monoclonal antibodies (MAbs) against APA were injected into mice, we observed strong binding of the MAbs to the basolateral membranes, whereas the MAbs bound only transiently to the brush borders of the proximal tubular epithelial cells. In parallel, APA itself disappeared from the brush borders by both endocytosis and shedding, whereas it was increasingly expressed on the basolateral sides. Using ultrastructural immunohistology, we found no evidence for transcellular transport of endocytosed APA to the basolateral side of the proximal tubular epithelial cells. The absence of transcellular transport was confirmed by experiments in which we used a low dose of the MAbs. Such a low dose did not result in binding of the MAbs to the brush borders and had no effect on the presence of APA in the brush borders of the proximal tubular epithelial cells. In these experiments we still could observe binding of the MAbs to the basolateral membranes in parallel with the local appearance of APA. In addition, treatment of mice with chlorpromazine, a calmodulin antagonist that interferes with cytoskeletal function, largely inhibited the MAb-induced modulation of APA. Our studies suggest that injection of MAbs to APA specifically interrupts the normal intracellular traffic of this enzyme in proximal tubular epithelial cells. This intracellular transport is dependent on the action of cytoskeletal proteins.

  16. Neural Network Model for Survival and Growth of Salmonella enterica Serotype 8,20:-:z6 in Ground Chicken Thigh Meat during Cold Storage: Extrapolation to Other Serotypes.

    PubMed

    Oscar, T P

    2015-10-01

    Mathematical models that predict the behavior of human bacterial pathogens in food are valuable tools for assessing and managing this risk to public health. A study was undertaken to develop a model for predicting the behavior of Salmonella enterica serotype 8,20:-:z6 in chicken meat during cold storage and to determine how well the model would predict the behavior of other serotypes of Salmonella stored under the same conditions. To develop the model, ground chicken thigh meat (0.75 cm(3)) was inoculated with 1.7 log Salmonella 8,20:-:z6 and then stored for 0 to 8 -8 to 16°C. An automated miniaturized most-probable-number (MPN) method was developed and used for the enumeration of Salmonella. Commercial software (Excel and the add-in program NeuralTools) was used to develop a multilayer feedforward neural network model with one hidden layer of two nodes. The performance of the model was evaluated using the acceptable prediction zone (APZ) method. The number of Salmonella in ground chicken thigh meat stayed the same (P > 0.05) during 8 days of storage at -8 to 8°C but increased (P < 0.05) during storage at 9°C (+0.6 log) to 16°C (+5.1 log). The proportion of residual values (observed minus predicted values) in an APZ (pAPZ) from -1 log (fail-safe) to 0.5 log (fail-dangerous) was 0.939 for the data (n = 426 log MPN values) used in the development of the model. The model had a pAPZ of 0.944 or 0.954 when it was extrapolated to test data (n = 108 log MPN per serotype) for other serotypes (S. enterica serotype Typhimurium var 5-, Kentucky, Typhimurium, and Thompson) of Salmonella in ground chicken thigh meat stored for 0 to 8 days at -4, 4, 12, or 16°C under the same experimental conditions. A pAPZ of ≥0.7 indicates that a model provides predictions with acceptable bias and accuracy. Thus, the results indicated that the model provided valid predictions of the survival and growth of Salmonella 8,20:-:z6 in ground chicken thigh meat stored for 0 to 8 days at -8 to

  17. Oral immunisation of laying hens with the live vaccine strains of TAD Salmonella vac E and TAD Salmonella vac T reduces internal egg contamination with Salmonella Enteritidis.

    PubMed

    Gantois, Inne; Ducatelle, Richard; Timbermont, Leen; Boyen, Filip; Bohez, Lotte; Haesebrouck, Freddy; Pasmans, Frank; van Immerseel, Filip

    2006-09-11

    Eggs are a major source of human infections with Salmonella. Therefore controlling egg contamination in laying hen flocks is one of the main targets for control programmes. A study was carried out to assess the effect of oral vaccination with TAD Salmonella vac E, TAD Salmonella vac T and with both vaccines TAD Salmonella vac E and TAD Salmonella vac T, on colonization of the reproductive tract and internal egg contamination of laying hens with Salmonella Enteritidis. Three groups of 30 laying hens were vaccinated at 1 day, 6 weeks and 16 weeks of age with either one of the vaccine strains, or a combination of both vaccine strains, while a fourth group was left unvaccinated. At 24 weeks of age, the birds were intravenously challenged with 0.5 ml containing 5 x 10(7)cfu Salmonella Enteritidis PT4 S1400/94. The number of oviducts from which Salmonella was isolated, was significantly lower in the vaccinated than in the non-vaccinated hens at 3 weeks post-challenge. Significantly less egg contents were Salmonella positive in the birds vaccinated with TAD Salmonella vac E or TAD Salmonella vac T (12/105 batches of eggs in both groups) than in the unvaccinated birds (28/105 batches of eggs). Internal egg contamination in the hens vaccinated with both TAD Salmonella vac E and TAD Salmonella vac T was even more reduced, as over the whole experiment, only one batch of eggs was positive. In conclusion, these data indicate that vaccination of laying hens with these live vaccines could be considered as a valuable tool in controlling internal egg contamination.

  18. Kindlin-2 regulates renal tubular cell plasticity by activation of Ras and its downstream signaling.

    PubMed

    Wei, Xiaofan; Wang, Xiang; Xia, Yang; Tang, Yan; Li, Feng; Fang, Weigang; Zhang, Hongquan

    2014-01-01

    Kindlin-2 is an adaptor protein that contributes to renal tubulointerstitial fibrosis (TIF). Epithelial-to-mesenchymal transition (EMT) in tubular epithelial cells was regarded as one of the key events in TIF. To determine whether kindlin-2 is involved in the EMT process, we investigated its regulation of EMT in human kidney tubular epithelial cells (TECs) and explored the underlying mechanism. In this study, we found that overexpression of kindlin-2 suppressed epithelial marker E-cadherin and increased the expression of fibronectin and the myofibroblast marker α-smooth muscle actin (SMA). Kindlin-2 significantly activated ERK1/2 and Akt, and inhibition of ERK1/2 or Akt reversed kindlin-2-induced EMT in human kidney TECs. Mechanistically, kindlin-2 interacted with Ras and son of sevenless (Sos)-1. Furthermore, overexpression of kindlin-2 increased Ras activation through recruiting Sos-1. Treatment with a Ras inhibitor markedly repressed kindlin-2-induced ERK1/2 and Akt activation, leading to restraint of EMT. We further demonstrated that knockdown of kindlin-2 inhibited EGF-induced Ras-Sos-1 interaction, resulting in reduction of Ras activation and suppression of EMT stimulated by EGF. Importantly, we found that depletion of kindlin-2 significantly inhibited activation of ERK1/2 and Akt signaling in mice with unilateral ureteral obstruction. We conclude that kindlin-2, through activating Ras and the downstream ERK1/2 and Akt signaling pathways, plays an important role in regulating renal tubular EMT and could be a potential therapeutic target for the treatment of fibrotic kidney diseases.

  19. A novel mechanism by which hepatocyte growth factor blocks tubular epithelial to mesenchymal transition.

    PubMed

    Yang, Junwei; Dai, Chunsun; Liu, Youhua

    2005-01-01

    Hepatocyte growth factor (HGF) is a potent antifibrotic cytokine that blocks tubular epithelial to mesenchymal transition (EMT) induced by TGF-beta1. However, the underlying mechanism remains largely unknown. This study investigated the signaling events that lead to HGF blockade of the TGF-beta1-initiated EMT. Incubation of human kidney epithelial cells HKC with HGF only marginally affected the expression of TGF-beta1 and its type I and type II receptors, suggesting that disruption of TGF-beta1 signaling likely plays a critical role in mediating HGF inhibition of TGF-beta1 action. However, HGF neither affected TGF-beta1-induced Smad-2 phosphorylation and its subsequent nuclear translocation nor influenced the expression of inhibitory Smad-6 and -7 in tubular epithelial cells. HGF specifically induced the expression of Smad transcriptional co-repressor SnoN but not Ski and TG-interacting factor at both mRNA and protein levels in HKC cells. SnoN physically interacted with activated Smad-2 by forming transcriptionally inactive complex and overrode the profibrotic action of TGF-beta1. In vivo, HGF did not affect Smad-2 activation and its nuclear accumulation in tubular epithelium, but it restored SnoN protein abundance in the fibrotic kidney in obstructive nephropathy. Hence, HGF blocks EMT by antagonizing TGF-beta1's action via upregulating Smad transcriptional co-repressor SnoN expression. These findings not only identify a novel mode of interaction between the signals activated by HGF receptor tyrosine kinase and TGF-beta receptor serine/threonine kinases but also illustrate the feasibility of confining Smad activity as an effective strategy for blocking renal fibrosis.

  20. Wild-type and mutant AvrA- Salmonella induce broadly similar immune pathways in the chicken ceca with key differences in signaling intermediates and inflammation.

    PubMed

    Arsenault, Ryan J; Genovese, Kenneth J; He, Haiqi; Wu, Huixia; Neish, Andrew S; Kogut, Michael H

    2016-02-01

    Salmonella enterica serovar Typhimurium (ST) is a serious infectious disease throughout the world, and a major reservoir for Salmonella is chicken. Chicken infected with Salmonella do not develop clinical disease, this may be the result of important host interactions with key virulence proteins. To study this, we inoculated chicken with mutant Salmonella Typhimurium that lacked the virulence protein AvrA (AvrA(-)). AvrA is referred to as an avirulence factor, as it moderates the host immune response. The lack of the AvrA virulence gene in ST resulted in reduced weight gain, enhanced persistence and greater extraintestinal organ invasion in chickens, as compared to wild-type (WT) ST. Kinome analysis was performed on inoculated cecal tissue. The majority of the signal transduction pathways induced by AvrA(-) and WT ST were similar; however, we observed alterations in innate immune system signaling. In addition, a leukocyte migration pathway was altered by AvrA(-) ST that may allow greater gut barrier permeability and invasion by the mutant. Cytokine expression did not appear significantly altered at 7 d post-inoculation; at 14 d post-inoculation, there was an observed increase in the expression of anti-inflammatory IL-10 in the WT inoculated ceca. This study is the first to describe mutant AvrA(-) ST infection of chicken and provides further insight into the Salmonella responses observed in chicken relative to other species such as humans and cattle. Published by Oxford University Press on behalf of Poultry Science Association 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  1. A Bioprocessed Polysaccharide from Lentinus edodes Mycelia Cultures with Turmeric Protects Chicks from a Lethal Challenge of Salmonella Gallinarum.

    PubMed

    Han, Dalmuri; Lee, Hyung Tae; Lee, June Bong; Kim, Yongbaek; Lee, Sang Jong; Yoon, Jang Won

    2017-02-01

    Our previous studies demonstrated that a bioprocessed polysaccharide (BPP) isolated from Lentinus edodes mushroom mycelia cultures supplemented with black rice bran can protect mice against Salmonella lipopolysaccharide-induced endotoxemia and reduce the mortality from Salmonella Typhimurium infection through upregulated T-helper 1 immunity. Here, we report that a BPP from L. edodes mushroom mycelia liquid cultures supplemented with turmeric (referred to as BPP-turmeric) alters chicken macrophage responses against avian-adapted Salmonella Gallinarum and protects chicks against a lethal challenge from Salmonella Gallinarum. In vitro analyses revealed that the water extract of BPP-turmeric (i) changed the protein expression or secretion profile of Salmonella Gallinarum, although it was not bactericidal, (ii) reduced the phagocytic activity of the chicken-derived macrophage cell line HD-11 when infected with Salmonella Gallinarum, and (iii) significantly activated the transcription expression of interleukin (IL)-1β, IL-10, tumor necrosis factor α, and inducible nitric oxide synthase in response to various Salmonella infections, whereas it repressed that of IL-4, IL-6, interferon-β, and interferon-γ. We also found that BPP-turmeric (0.1 g/kg of feed) as a feed additive provided significant protection to 1-day-old chicks infected with a lethal dose of Salmonella Gallinarum. Collectively, these results imply that BPP-turmeric contains biologically active component(s) that protect chicks against Salmonella Gallinarum infection, possibly by regulating macrophage immune responses. Further studies are needed to evaluate the potential efficacy of BPP-turmeric as a livestock feed additive for the preharvest control of fowl typhoid or foodborne salmonellosis.

  2. Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells.

    PubMed

    Yokota, Etsuo; Ueda, Haruko; Hashimoto, Kohsuke; Orii, Hidefumi; Shimada, Tomoo; Hara-Nishimura, Ikuko; Shimmen, Teruo

    2011-05-01

    The reticular network of the endoplasmic reticulum (ER) consists of tubular and lamellar elements and is arranged in the cortical region of plant cells. This network constantly shows shape change and remodeling motion. Tubular ER structures were formed when GTP was added to the ER vesicles isolated from tobacco (Nicotiana tabacum) cultured BY-2 cells expressing ER-localized green fluorescent protein. The hydrolysis of GTP during ER tubule formation was higher than that under conditions in which ER tubule formation was not induced. Furthermore, a shearing force, such as the flow of liquid, was needed for the elongation/extension of the ER tubule. The shearing force was assumed to correspond to the force generated by the actomyosin system in vivo. To confirm this hypothesis, the S12 fraction was prepared, which contained both cytosol and microsome fractions, including two classes of myosins, XI (175-kD myosin) and VIII (BY-2 myosin VIII-1), and ER-localized green fluorescent protein vesicles. The ER tubules and their mesh-like structures were arranged in the S12 fraction efficiently by the addition of ATP, GTP, and exogenous filamentous actin. The tubule formation was significantly inhibited by the depletion of 175-kD myosin from the S12 fraction but not BY-2 myosin VIII-1. Furthermore, a recombinant carboxyl-terminal tail region of 175-kD myosin also suppressed ER tubule formation. The tips of tubules moved along filamentous actin during tubule elongation. These results indicated that the motive force generated by the actomyosin system contributes to the formation of ER tubules, suggesting that myosin XI is responsible not only for the transport of ER in cytoplasm but also for the reticular organization of cortical ER.

  3. Alteration of Fatty Acid Oxidation in Tubular Epithelial Cells: From Acute Kidney Injury to Renal Fibrogenesis

    PubMed Central

    Simon, Noémie; Hertig, Alexandre

    2015-01-01

    Renal proximal tubular cells are the most energy-demanding cells in the body. The ATP that they use is mostly produced in their mitochondrial and peroxisomal compartments, by the oxidation of fatty acids. When those cells are placed under a biological stress, such as a transient hypoxia, fatty acid oxidation (FAO) is shut down for a period of time that outlasts injury, and carbohydrate oxidation does not take over. Facing those metabolic constraints, surviving tubular epithelial cells exhibit a phenotypic switch that includes cytoskeletal rearrangement and production of extracellular matrix proteins, most probably contributing to acute kidney injury-induced renal fibrogenesis, thence to the development of chronic kidney disease. Here, we review experimental evidence that dysregulation of FAO profoundly affects the fate of tubular epithelial cells, by promoting epithelial-to-mesenchymal transition, inflammation, and eventually interstitial fibrosis. Restoring physiological production of energy is undoubtedly a possible therapeutic approach to unlock the mesenchymal reprograming of tubular epithelial cells in the kidney. In this respect, the benefit of the use of fibrates is uncertain, but new drugs that could specifically target this metabolic pathway, and, hopefully, attenuate renal fibrosis merit future research. PMID:26301223

  4. Salmonella Immunotherapy Improves the Outcome of CHOP Chemotherapy in Non-Hodgkin Lymphoma-Bearing Mice

    PubMed Central

    Bascuas, Thais; Moreno, María; Grille, Sofía; Chabalgoity, José A.

    2018-01-01

    We have previously shown that Salmonella immunotherapy is effective to treat B-cell non-Hodgkin lymphoma (B-NHL) in mice. However, this model involves animals with high tumor burden, whereas in the clinics B-NHL patients are usually treated with chemotherapy (CHOP: cyclophosphamide, doxorubicin, vincristine, and prednisone) as first-line therapy prior to immunotherapy. Recently, we have described a NHL-B preclinical model using CHOP chemotherapy to achieve MRD in immunocompetent animals that closely resemble patients’ conditions. In this work, we assessed the efficacy of Salmonella immunotherapy in B-NHL-bearing mice undergoing chemotherapy. Salmonella administration significantly delayed tumor growth and prolonged survival of chemotherapy-treated NHL-bearing animals. Mice receiving the CHOP–Salmonella combined therapy showed increased numbers of tumor-infiltrating leukocytes and a different profile of cytokines and chemokines expressed in the tumor microenvironment. Further, Salmonella immunotherapy in CHOP-treated animals also enhanced NK cells cytotoxic activity as well as induced systemic lymphoma-specific humoral and cellular responses. Chemotherapy treatment profoundly impacted on the general health status of recipient animals, but those receiving Salmonella showed significantly better overall body condition. Altogether, the results clearly demonstrated that Salmonella immunotherapy could be safely used in individuals under CHOP treatment, resulting in a better prognosis. These results give strong support to consider Salmonella as a neoadjuvant therapy in a clinical setting. PMID:29410666

  5. THE FINE STRUCTURE OF SHEEP MYOCARDIAL CELLS; SARCOLEMMAL INVAGINATIONS AND THE TRANSVERSE TUBULAR SYSTEM

    PubMed Central

    Simpson, F. O.; Oertelis, S. J.

    1962-01-01

    An electron microscope study of sheep myocardial cells has demonstrated the presence of a transverse tubular system, apparently forming a network across the cell at each Z band level. The walls of these tubules resemble the sarcolemma in consisting of two dense layers—plasma membrane and basement menbrane; continuity of the tubule walls with the sarcolemma can be seen when longitudinal sections of a cell are obtained between two subsarcolemmal myofibrils and at the same time perpendicular to the cell surface. The demonstration of communication between the lumen of the transverse tubular system and the extracellular space appears to be more definite in this study than in any work hitherto published. It provides anatomical evidence of a possible direct pathway for transmission of the activating impulse from the sarcolemma to the myofibril Z bands. PMID:13913207

  6. Plant Pathogen-Induced Water-Soaking Promotes Salmonella enterica Growth on Tomato Leaves

    PubMed Central

    Potnis, Neha; Colee, James; Jones, Jeffrey B.

    2015-01-01

    Plant pathogen infection is a critical factor for the persistence of Salmonella enterica on plants. We investigated the mechanisms responsible for the persistence of S. enterica on diseased tomato plants by using four diverse bacterial spot Xanthomonas species that differ in disease severities. Xanthomonas euvesicatoria and X. gardneri infection fostered S. enterica growth, while X. perforans infection did not induce growth but supported the persistence of S. enterica. X. vesicatoria-infected leaves harbored S. enterica populations similar to those on healthy leaves. Growth of S. enterica was associated with extensive water-soaking and necrosis in X. euvesicatoria- and X. gardneri-infected plants. The contribution of water-soaking to the growth of S. enterica was corroborated by an increased growth of populations on water-saturated leaves in the absence of a plant pathogen. S. enterica aggregates were observed with bacterial spot lesions caused by either X. euvesicatoria or X. vesicatoria; however, more S. enterica aggregates formed on X. euvesicatoria-infected leaves as a result of larger lesion sizes per leaf area and extensive water-soaking. Sparsely distributed lesions caused by X. vesicatoria infection do not support the overall growth of S. enterica or aggregates in areas without lesions or water-soaking; S. enterica was observed as single cells and not aggregates. Thus, pathogen-induced water-soaking and necrosis allow S. enterica to replicate and proliferate on tomato leaves. The finding that the pathogen-induced virulence phenotype affects the fate of S. enterica populations in diseased plants suggests that targeting of plant pathogen disease is important in controlling S. enterica populations on plants. PMID:26386057

  7. Glomerular and Tubular Renal Function after Repeated Once-Daily Tobramycin Courses in Cystic Fibrosis Patients.

    PubMed

    Stehling, Florian; Büscher, Rainer; Grosse-Onnebrink, Jörg; Hoyer, Peter F; Mellies, Uwe

    2017-01-01

    Introduction . Antibiotic treatment regimens against Pseudomonas aeruginosa lung infection in cystic fibrosis (CF) patients often include aminoglycoside antibiotics that may cause chronic renal failure after repeated courses. Aminoaciduria is an early marker of acute aminoglycoside-induced renal tubular dysfunction. We hypothesized that urinary amino acid reabsorption is decreased after repeated once-daily tobramycin therapies. Methods . In this prospective cross-sectional study creatinine clearance was estimated by the Schwartz and the Cockcroft-Gault formula. Tubular amino acid reabsorption was determined by ion exchange chromatography in 46 patients with CF who received multiple tobramycin courses (6.3 ± 10.1 (1-57)) in a once-daily dosing regimen and 10 who did not. Results . Estimated creatinine clearance employing the Cockcroft-Gault was mildly reduced in 17/46 (37%) of the patients who received tobramycin and 5/10 (50%) of the patients who did not but in none using the Schwartz formula. No association with lifetime tobramycin courses was found. Tubular amino acid reabsorption was not influenced by the amount of once-daily tobramycin courses. Conclusion . Clinically not significant reduction of eCCL occurred in a minority of CF patients. However, chronic tubular dysfunction was not present in patients with CF repeatedly treated with tobramycin in the once-daily dosing scheme.

  8. Broad-range (pan) Salmonella and Salmonella serotype typhi-specific real-time PCR assays: potential tools for the clinical microbiologist.

    PubMed

    Farrell, John J; Doyle, Laura J; Addison, Rachel M; Reller, L Barth; Hall, Geraldine S; Procop, Gary W

    2005-03-01

    We describe broad-range salmonellae (ie, Salmonella) and Salmonella serotype Typhi-specific LightCycler (Roche Diagnostics, Indianapolis, IN) real-time polymerase chain reaction assays. We validated these with a battery of 280 bacteria, 108 of which were salmonellae representing 20 serotypes. In addition, 298 isolates from 170 clinical specimens that were suspected to possibly represent Salmonella were tested with the pan- Salmonella assay. Finally, the pan-Salmonella assay also was used to test DNA extracts from 101 archived, frozen stool specimens, 55 of which were culture-positive for salmonellae. Both assays were 100% sensitive and specific when cultured isolates of the battery were tested. The pan- Salmonella assay also characterized correctly all salmonellae on the primary isolation agar and was 96% sensitive (53/55) and 96% specific (49/51) when nucleic acid extracts from direct stool specimens were tested. These assays represent potential tools the clinical microbiologist could use to screen suspect isolates or stool specimens for Salmonella.

  9. The Pearling Transition Provides Evidence of Force-Driven Endosomal Tubulation during Salmonella Infection.

    PubMed

    Gao, Yunfeng; Spahn, Christoph; Heilemann, Mike; Kenney, Linda J

    2018-06-19

    Bacterial pathogens exploit eukaryotic pathways for their own end. Upon ingestion, Salmonella enterica serovar Typhimurium passes through the stomach and then catalyzes its uptake across the intestinal epithelium. It survives and replicates in an acidic vacuole through the action of virulence factors secreted by a type three secretion system located on Salmonella pathogenicity island 2 (SPI-2). Two secreted effectors, SifA and SseJ, are sufficient for endosomal tubule formation, which modifies the vacuole and enables Salmonella to replicate within it. Two-color, superresolution imaging of the secreted virulence factor SseJ and tubulin revealed that SseJ formed clusters of conserved size at regular, periodic intervals in the host cytoplasm. Analysis of SseJ clustering indicated the presence of a pearling effect, which is a force-driven, osmotically sensitive process. The pearling transition is an instability driven by membranes under tension; it is induced by hypotonic or hypertonic buffer exchange and leads to the formation of beadlike structures of similar size and regular spacing. Reducing the osmolality of the fixation conditions using glutaraldehyde enabled visualization of continuous and intact tubules. Correlation analysis revealed that SseJ was colocalized with the motor protein kinesin. Tubulation of the endoplasmic reticulum is driven by microtubule motors, and in the present work, we describe how Salmonella has coopted the microtubule motor kinesin to drive the force-dependent process of endosomal tubulation. Thus, endosomal tubule formation is a force-driven process catalyzed by Salmonella virulence factors secreted into the host cytoplasm during infection. IMPORTANCE This study represents the first example of using two-color, superresolution imaging to analyze the secretion of Salmonella virulence factors as they are secreted from the SPI-2 type three secretion system. Previous studies imaged effectors that were overexpressed in the host cytoplasm. The

  10. Pathogenesis of Salmonellosis: Salmonella Exotoxins

    DTIC Science & Technology

    1982-03-08

    Newport; Sal. 9633 - serotype Newport; and Sal. 9186 - serotype Newport. Salmonella enteritidis serotype typhimurium strain 2000 was obtained from...7054 Table 1I CULTURE MEDIA SURVEY Salmonella enteritidis Salmonella typhimurium serotype Javiana #10016 SRlI Culture Media C H 0 Cell Factor C H 0 Cell...C r AD REPORT NUMBER 2 0 Pathogenesis of Salmonellosis: Salmonella Exotoxins Annual Progress Report (9/1/78-9/1/79) Johnny W. Peterson, Ph.D. March 8

  11. Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells.

    PubMed

    Lee, Hak Joo; Lee, Doug Yoon; Mariappan, Meenalakshmi M; Feliers, Denis; Ghosh-Choudhury, Goutam; Abboud, Hanna E; Gorin, Yves; Kasinath, Balakuntalam S

    2017-04-07

    High-glucose increases NADPH oxidase 4 (NOX4) expression, reactive oxygen species generation, and matrix protein synthesis by inhibiting AMP-activated protein kinase (AMPK) in renal cells. Because hydrogen sulfide (H 2 S) inhibits high glucose-induced matrix protein increase by activating AMPK in renal cells, we examined whether H 2 S inhibits high glucose-induced expression of NOX4 and matrix protein and whether H 2 S and NO pathways are integrated. High glucose increased NOX4 expression and activity at 24 h in renal proximal tubular epithelial cells, which was inhibited by sodium hydrosulfide (NaHS), a source of H 2 S. High glucose decreased AMPK phosphorylation and activity, which was restored by NaHS. Compound C, an AMPK inhibitor, prevented NaHS inhibition of high glucose-induced NOX4 expression. NaHS inhibition of high glucose-induced NOX4 expression was abrogated by N (ω)-nitro-l-arginine methyl ester, an inhibitor of NOS. NaHS unexpectedly augmented the expression of inducible NOS (iNOS) but not endothelial NOS. iNOS siRNA and 1400W, a selective iNOS inhibitor, abolished the ameliorative effects of NaHS on high glucose-induced NOX4 expression, reactive oxygen species generation, and, matrix laminin expression. Thus, H 2 S recruits iNOS to generate NO to inhibit high glucose-induced NOX4 expression, oxidative stress, and matrix protein accumulation in renal epithelial cells; the two gasotransmitters H 2 S and NO and their interaction may serve as therapeutic targets in diabetic kidney disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Salmonella, including antibiotic-resistant Salmonella, from flies captured from cattle farms in Georgia, U.S.A.

    PubMed

    Xu, Yumin; Tao, Sha; Hinkle, Nancy; Harrison, Mark; Chen, Jinru

    2018-03-01

    Flies can be transmission vehicles of Salmonella from cattle to humans. This study determined the prevalence of Salmonella in/on flies captured from 33 cattle farms, including 5 beef and 28 dairy farms, in Georgia, USA, and characterized antibiotic resistance profiles of the isolated Salmonella. Twenty-six out of the 33 cattle farms (79%) and 185 out of the 1650 flies (11%) tested positive for Salmonella in the study. The incidence of Salmonella-positive flies varied from farm to farm, ranging from 0 to 78%. Among the 185 Salmonella isolated from flies, 29% were resistant to ampicillin, 28% to tetracycline, 21% to amoxicillin/clavulanic acid, 20% to cefoxitin, and 12% to streptomycin. Incidences of resistance against other tested antibiotics were low, ranging from 0 to 3%. Furthermore, 28% of the Salmonella isolates were multidrug resistant, demonstrating resistance to 3 or more antibiotics. The minimal inhibitory concentrations of ampicillin, cefoxitin, streptomycin, and tetracycline against the Salmonella isolates ranged from 32 to >2048, 64 to 2048, 128 to 1024, and 32 to 1024μg/mL, respectively. These data suggest that flies could be effective vehicles of transmitting antibiotic resistant Salmonella and disseminating antibiotic resistance genes on cattle farms, posing risks to human and animal health. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Salmonella Typhi and Salmonella Paratyphi A elaborate distinct systemic metabolite signatures during enteric fever

    PubMed Central

    Näsström, Elin; Vu Thieu, Nga Tran; Dongol, Sabina; Karkey, Abhilasha; Voong Vinh, Phat; Ha Thanh, Tuyen; Johansson, Anders; Arjyal, Amit; Thwaites, Guy; Dolecek, Christiane; Basnyat, Buddha; Baker, Stephen; Antti, Henrik

    2014-01-01

    The host–pathogen interactions induced by Salmonella Typhi and Salmonella Paratyphi A during enteric fever are poorly understood. This knowledge gap, and the human restricted nature of these bacteria, limit our understanding of the disease and impede the development of new diagnostic approaches. To investigate metabolite signals associated with enteric fever we performed two dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC/TOFMS) on plasma from patients with S. Typhi and S. Paratyphi A infections and asymptomatic controls, identifying 695 individual metabolite peaks. Applying supervised pattern recognition, we found highly significant and reproducible metabolite profiles separating S. Typhi cases, S. Paratyphi A cases, and controls, calculating that a combination of six metabolites could accurately define the etiological agent. For the first time we show that reproducible and serovar specific systemic biomarkers can be detected during enteric fever. Our work defines several biologically plausible metabolites that can be used to detect enteric fever, and unlocks the potential of this method in diagnosing other systemic bacterial infections. DOI: http://dx.doi.org/10.7554/eLife.03100.001 PMID:24902583

  14. Fascin-1 is released from proximal tubular cells in response to calcineurin inhibitors (CNIs) and correlates with isometric vacuolization in kidney transplanted patients

    PubMed Central

    Jacobs-Cachá, Conxita; Torres, Irina B; López-Hellín, Joan; Cantarell, Carme; Azancot, María A; Román, Antonio; Moreso, Francesc; Serón, Daniel; Meseguer, Anna; Sarró, Eduard

    2017-01-01

    Immunosuppression based on calcineurin inhibitors (CNIs) has greatly improved organ transplantation, although subsequent nephrotoxicity significantly hinders treatment success. There are no currently available specific soluble biomarkers for CNI-induced nephrotoxicity and diagnosis relies on renal biopsy, which is costly, invasive and may cause complications. Accordingly, identification of non-invasive biomarkers distinguishing CNI-induced kidney tubular damage from that of other etiologies would greatly improve diagnosis and enable more precise dosage adjustment. For this purpose, HK-2 cells, widely used to model human proximal tubule, were treated with CNIs cyclosporine-A and FK506, or staurosporine as a calcineurin-independent toxic compound, and secretomes of each treatment were analyzed by proteomic means. Among the differentially secreted proteins identified, only fascin-1 was specifically released by both CNIs but not by staurosporine. To validate fascin-1 as a biomarker of CNI-induced tubular toxicity, fascin-1 levels were analyzed in serum and urine from kidney-transplanted patients under CNIs treatment presenting or not isometric vacuolization (IV), which nowadays represents the main histological hallmark of CNI-induced tubular damage. Patients with chronic kidney disease (CKD) and healthy volunteers were used as controls. Our results show that urinary fascin-1 was only significantly elevated in the subset of CNI-treated patients presenting IV. Moreover, fascin-1 anticipated the rise of sCr levels in serially collected urine samples from CNI-treated pulmonary-transplanted patients, where a decline in kidney function and serum creatinine (sCr) elevation was mainly attributed to CNIs treatment. In conclusion, our results point towards fascin-1 as a putative soluble biomarker of CNI-induced damage in the kidney tubular compartment. PMID:28979691

  15. Fascin-1 is released from proximal tubular cells in response to calcineurin inhibitors (CNIs) and correlates with isometric vacuolization in kidney transplanted patients.

    PubMed

    Jacobs-Cachá, Conxita; Torres, Irina B; López-Hellín, Joan; Cantarell, Carme; Azancot, María A; Román, Antonio; Moreso, Francesc; Serón, Daniel; Meseguer, Anna; Sarró, Eduard

    2017-01-01

    Immunosuppression based on calcineurin inhibitors (CNIs) has greatly improved organ transplantation, although subsequent nephrotoxicity significantly hinders treatment success. There are no currently available specific soluble biomarkers for CNI-induced nephrotoxicity and diagnosis relies on renal biopsy, which is costly, invasive and may cause complications. Accordingly, identification of non-invasive biomarkers distinguishing CNI-induced kidney tubular damage from that of other etiologies would greatly improve diagnosis and enable more precise dosage adjustment. For this purpose, HK-2 cells, widely used to model human proximal tubule, were treated with CNIs cyclosporine-A and FK506, or staurosporine as a calcineurin-independent toxic compound, and secretomes of each treatment were analyzed by proteomic means. Among the differentially secreted proteins identified, only fascin-1 was specifically released by both CNIs but not by staurosporine. To validate fascin-1 as a biomarker of CNI-induced tubular toxicity, fascin-1 levels were analyzed in serum and urine from kidney-transplanted patients under CNIs treatment presenting or not isometric vacuolization (IV), which nowadays represents the main histological hallmark of CNI-induced tubular damage. Patients with chronic kidney disease (CKD) and healthy volunteers were used as controls. Our results show that urinary fascin-1 was only significantly elevated in the subset of CNI-treated patients presenting IV. Moreover, fascin-1 anticipated the rise of sCr levels in serially collected urine samples from CNI-treated pulmonary-transplanted patients, where a decline in kidney function and serum creatinine (sCr) elevation was mainly attributed to CNIs treatment. In conclusion, our results point towards fascin-1 as a putative soluble biomarker of CNI-induced damage in the kidney tubular compartment.

  16. Surveillance of Salmonella prevalence in animal feeds and characterization of the Salmonella isolates by serotyping and antimicrobial susceptibility.

    PubMed

    Li, X; Bethune, L A; Jia, Y; Lovell, R A; Proescholdt, T A; Benz, S A; Schell, T C; Kaplan, G; McChesney, D G

    2012-08-01

    This article presents the surveillance data from the Feed Contaminants Program (2002-2009) and Salmonella Assignment (2007-2009) of the U.S. Food and Drug Administration (FDA), which monitor the trend of Salmonella contamination in animal feeds. A total of 2,058 samples were collected from complete animal feeds, feed ingredients, pet foods, pet treats, and supplements for pets in 2002-2009. These samples were tested for the presence of Salmonella. Those that were positive for Salmonella underwent serotyping and testing for antimicrobial susceptibility. Of the 2,058 samples, 257 were positive for Salmonella (12.5%). The results indicate a significant overall Salmonella reduction (p≤0.05) in animal feeds from 18.2% (187 samples tested) in 2002 to 8.0% (584 samples tested) in 2009. Among these samples, feed ingredients and pet foods/treats had the most significant reduction (p≤0.05). Of the 45 Salmonella serotypes identified, Salmonella Senftenberg and Salmonella Montevideo were the top two common serotypes (8.9%). Of the 257 Salmonella isolates obtained, 54 isolates (21%) were resistant to at least one antimicrobial. The findings provide the animal feed industries with Salmonella prevalence information that can be used to address Salmonella contamination problems. Our findings can also be used to educate pet owners when handling pet foods and treats at home to prevent salmonellosis.

  17. [Use of new immunoglobulin isotype-specific ELISA-systems to detect Salmonella infections in pigs].

    PubMed

    Ehlers, Joachim; Alt, Michael; Trepnau, Daniela; Lehmann, Jörg

    2006-01-01

    In Germany, the program for controlling salmonella infections in pigs is based on tests detecting salmonella-lipopolysaccharide (LPS) induced antibodies in meat-juice or blood. These conventional tests which are based on the technology of enzyme-linked immunosorbent assay (ELISA) detect exclusively or mainly immunoglobulin(lg)G antibodies. Meanwhile, novel ELISA systems (WCE-ELISA, 3-Isotype-Screening-ELISA) have been developed, which additionally detect the antibody classes IgM and IgA.This fact enables the registration of fresh salmonella infections (starting with day 5 p.i.) and thus, the distinction between early and older infections. The results show that animals with early salmonella infections appear significantly more often in herds with a high than with a low prevalence. With the newly developed tests this group of animals can be detected much more efficiently and precisely than with the tests used so far. Due to their clearly improved sensitivity the application of the WCE-ELISA and the 3-Isotype-Screening-ELISA in terms of the QS-Salmonella-Monitoring program can therefore significantly improve the selection of farms with potential salmonella excretors. Additionally, the WCE-ELISA can be applied very suitable for the examination of individual animals.

  18. Investigation of Listeria, Salmonella, and toxigenic Escherichia coli in various pet foods.

    PubMed

    Nemser, Sarah M; Doran, Tara; Grabenstein, Michael; McConnell, Terri; McGrath, Timothy; Pamboukian, Ruiqing; Smith, Angele C; Achen, Maya; Danzeisen, Gregory; Kim, Sun; Liu, Yong; Robeson, Sharon; Rosario, Grisel; McWilliams Wilson, Karen; Reimschuessel, Renate

    2014-09-01

    The Veterinary Laboratory Investigation and Response Network (Vet-LIRN), in collaboration with the Food Emergency Response Network (FERN) and its Microbiology Cooperative Agreement Program (MCAP) laboratories, conducted a study to evaluate the prevalence of selected microbial organisms in various types of pet foods. The goal of this blinded study was to help the Center for Veterinary Medicine prioritize potential future pet food-testing efforts. The study also increased the FERN laboratories' screening capabilities for foodborne pathogens in animal feed matrices, since such pathogens may also be a significant health risk to consumers who come into contact with pet foods. Six U.S. Food and Drug Administration FERN MCAP laboratories analyzed approximately 1056 samples over 2 years. Laboratories tested for Salmonella, Listeria, Escherichia coli O157:H7 enterohemorrhagic E. coli, and Shiga toxin-producing strains of E. coli (STEC). Dry and semimoist dog and cat foods purchased from local stores were tested during Phase 1. Raw dog and cat foods, exotic animal feed, and jerky-type treats purchased through the Internet were tested in Phase 2. Of the 480 dry and semimoist samples, only 2 tested positive: 1 for Salmonella and 1 for Listeria greyii. However, of the 576 samples analyzed during Phase 2, 66 samples were positive for Listeria (32 of those were Listeria monocytogenes) and 15 samples positive for Salmonella. These pathogens were isolated from raw foods and jerky-type treats, not the exotic animal dry feeds. This study showed that raw pet foods may harbor food safety pathogens, such as Listeria monocytogenes and Salmonella. Consumers should handle these products carefully, being mindful of the potential risks to human and animal health.

  19. Investigation of Listeria, Salmonella, and Toxigenic Escherichia coli in Various Pet Foods

    PubMed Central

    Doran, Tara; Grabenstein, Michael; McConnell, Terri; McGrath, Timothy; Pamboukian, Ruiqing; Smith, Angele C.; Achen, Maya; Danzeisen, Gregory; Kim, Sun; Liu, Yong; Robeson, Sharon; Rosario, Grisel; McWilliams Wilson, Karen; Reimschuessel, Renate

    2014-01-01

    Abstract The Veterinary Laboratory Investigation and Response Network (Vet-LIRN), in collaboration with the Food Emergency Response Network (FERN) and its Microbiology Cooperative Agreement Program (MCAP) laboratories, conducted a study to evaluate the prevalence of selected microbial organisms in various types of pet foods. The goal of this blinded study was to help the Center for Veterinary Medicine prioritize potential future pet food–testing efforts. The study also increased the FERN laboratories' screening capabilities for foodborne pathogens in animal feed matrices, since such pathogens may also be a significant health risk to consumers who come into contact with pet foods. Six U.S. Food and Drug Administration FERN MCAP laboratories analyzed approximately 1056 samples over 2 years. Laboratories tested for Salmonella, Listeria, Escherichia coli O157:H7 enterohemorrhagic E. coli, and Shiga toxin–producing strains of E. coli (STEC). Dry and semimoist dog and cat foods purchased from local stores were tested during Phase 1. Raw dog and cat foods, exotic animal feed, and jerky-type treats purchased through the Internet were tested in Phase 2. Of the 480 dry and semimoist samples, only 2 tested positive: 1 for Salmonella and 1 for Listeria greyii. However, of the 576 samples analyzed during Phase 2, 66 samples were positive for Listeria (32 of those were Listeria monocytogenes) and 15 samples positive for Salmonella. These pathogens were isolated from raw foods and jerky-type treats, not the exotic animal dry feeds. This study showed that raw pet foods may harbor food safety pathogens, such as Listeria monocytogenes and Salmonella. Consumers should handle these products carefully, being mindful of the potential risks to human and animal health. PMID:24824368

  20. DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells.

    PubMed

    Ma, Zhengwei; Wei, Qingqing; Dong, Guie; Huo, Yuqing; Dong, Zheng

    2014-07-01

    Renal ischemia-reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia-reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or "reperfusion" of renal proximal tubular cells (RPTCs) after ATP depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP depletion. The results suggest that DDR occurs during renal ischemia-reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells

    PubMed Central

    Ma, Zhengwei; Wei, Qingqing; Dong, Guie; Huo, Yuqing; Dong, Zheng

    2014-01-01

    Renal ischemia-reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia-reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or “reperfusion” of renal proximal tubular cells (RPTCs) after ATP-depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP-depletion. The results suggest that DDR occurs during renal ischemia-reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death. PMID:24726884

  2. Chlortetracycline and florfenicol induce expression of genes associated with pathogenicity in multidrug-resistant Salmonella enterica serovar Typhimurium

    USDA-ARS?s Scientific Manuscript database

    Background Multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium (S. Typhimurium) is a serious public health threat as infections caused by these strains are more difficult and expensive to treat. Livestock serve as a reservoir for MDR Salmonella, and the antibiotics chlortetracycline an...

  3. Occurrence and antimicrobial resistance of Salmonella strains from food of animal origin in southern Italy.

    PubMed

    Proroga, Yolande T R; Capuano, Federico; Carullo, Maria Rosaria; La Tela, Immacolata; Capparelli, Rosanna; Barco, Lisa; Pasquale, Vincenzo

    2016-01-01

    Six hundred fourteen strains of Salmonella enterica were isolated from 16,926 samples of food of animal origin collected in southern Italy from 2003 to 2012. The isolates were identified, serotyped, and challenged against 15 antibiotics according to the protocol defined at national level for veterinary isolates of Salmonella (EnterVet surveillance network). Salmonella serotypes Typhimurium, Hadar, Enteritidis, Derby, and 4,[5],12:i:- were those most frequently isolated. The widest resistances were recorded towards sulfonamides (69 % of the isolates), trimethoprim-sulfamethoxazole (52 % of the isolates), and tetracycline (51 % of the isolates). The rate of multidrug resistance of the isolates decreased significantly from the first 5 years of the study period (82.6 %) to the last 5 years (54.3 %).

  4. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions.

    PubMed

    Tan, Michelle Sze-Fan; Moore, Sean C; Tabor, Rico F; Fegan, Narelle; Rahman, Sadequr; Dykes, Gary A

    2016-09-15

    Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface. We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin. Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by

  5. Systems analysis of multiple regulator perturbations allows discovery of virulence factors in Salmonella

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Hyunjin; Ansong, Charles; McDermott, Jason E.

    Background: Systemic bacterial infections are highly regulated and complex processes that are orchestrated by numerous virulence factors. Genes that are coordinately controlled by the set of regulators required for systemic infection are potentially required for pathogenicity. Results: In this study we present a systems biology approach in which sample-matched multi-omic measurements of fourteen virulence-essential regulator mutants were coupled with computational network analysis to efficiently identify Salmonella virulence factors. Immunoblot experiments verified network-predicted virulence factors and a subset was determined to be secreted into the host cytoplasm, suggesting that they are virulence factors directly interacting with host cellular components. Two ofmore » these, SrfN and PagK2, were required for full mouse virulence and were shown to be translocated independent of either of the type III secretion systems in Salmonella or the type III injectisome-related flagellar mechanism. Conclusions: Integrating multi-omic datasets from Salmonella mutants lacking virulence regulators not only identified novel virulence factors but also defined a new class of translocated effectors involved in pathogenesis. The success of this strategy at discovery of known and novel virulence factors suggests that the approach may have applicability for other bacterial pathogens.« less

  6. Sensing and adaptation to low pH mediated by inducible amino acid decarboxylases in Salmonella.

    PubMed

    Viala, Julie P M; Méresse, Stéphane; Pocachard, Bérengère; Guilhon, Aude-Agnès; Aussel, Laurent; Barras, Frédéric

    2011-01-01

    During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection.

  7. International outbreak of Salmonella Oranienburg due to German chocolate.

    PubMed

    Werber, Dirk; Dreesman, Johannes; Feil, Fabian; van Treeck, Ulrich; Fell, Gerhard; Ethelberg, Steen; Hauri, Anja M; Roggentin, Peter; Prager, Rita; Fisher, Ian S T; Behnke, Susanne C; Bartelt, Edda; Weise, Ekkehard; Ellis, Andrea; Siitonen, Anja; Andersson, Yvonne; Tschäpe, Helmut; Kramer, Michael H; Ammon, Andrea

    2005-02-03

    This report describes a large international chocolate-associated Salmonella outbreak originating from Germany. We conducted epidemiologic investigations including a case-control study, and food safety investigations. Salmonella (S.) Oranienburg isolates were subtyped by the use of pulsed-field gel electrophoresis (PFGE). From 1 October 2001 through 24 March 2002, an estimated excess of 439 S. Oranienburg notifications was registered in Germany. Simultaneously, an increase in S. Oranienburg infections was noted in other European countries in the Enter-net surveillance network. In a multistate matched case-control study in Germany, daily consumption of chocolate (matched odds ratio [MOR]: 4.8; 95% confidence interval [CI]: 1.3-26.5), having shopped at a large chain of discount grocery stores (MOR: 4.2; CI: 1.2-23.0), and consumption of chocolate purchased there (MOR: 5.0; CI: 1.1-47.0) were associated with illness. Subsequently, two brands from the same company, one exclusively produced for that chain, tested positive for S. Oranienburg. In two other European countries and in Canada chocolate from company A was ascertained that also contained S. Oranienburg. Isolates from humans and from chocolates had indistinguishable PFGE profiles. No source or point of contamination was identified. Epidemiological identification of chocolate as a vehicle of infections required two months, and was facilitated by proxy measures. Despite the use of improved production technologies, the chocolate industry continues to carry a small risk of manufacturing Salmonella-containing products. Particularly in diffuse outbreak-settings, clear associations with surrogates of exposure should suffice to trigger public health action. Networks such as Enter-net have become invaluable for facilitating rapid and appropriate management of international outbreaks.

  8. Loop-Mediated Isothermal Amplification of the sefA Gene for Rapid Detection of Salmonella Enteritidis and Salmonella Gallinarum in Chickens.

    PubMed

    Gong, Jiansen; Zhuang, Linlin; Zhu, Chunhong; Shi, Shourong; Zhang, Di; Zhang, Linji; Yu, Yan; Dou, Xinhong; Xu, Bu; Wang, Chengming

    2016-04-01

    Salmonella spp. pose a threat to both human and animal health, with more than 2600 serovars having been reported to date. Salmonella serovars are usually identified by slide agglutination tests, which are labor intensive and time consuming. In an attempt to develop a more rapid screening method for the major poultry Salmonella serovars, we developed a loop-mediated isothermal amplification (LAMP) assay, which directly detected the sefA gene, a fimbrial operon gene existing in several specific serovars of Salmonella enterica including the major poultry serovars, namely Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) and Salmonella enterica serovar Gallinarum (Salmonella Gallinarum). With the 177 bacterial strains we tested, positive reactions were only observed with 85 strains of serovar Salmonella Enteritidis and Salmonella Gallinarum. The detection limit of the LAMP assay was 4 CFU/reaction with genomic DNAs of Salmonella Enteritidis (ATCC 13076) from pure culture and 400 CFU/ reaction with DNA extracted from spiked chicken feces. The LAMP assay was more sensitive than conventional culture, especially without enrichment, in detecting Salmonella Enteritidis (CMCC 50041) in the spiked fecal samples. The results show the sefA LAMP method is a rapid, sensitive, specific, and practical method for directly detection of Salmonella Enteritidis and Salmonella Gallinarum in chickens. The sefA LAMP assay can potentially serve as new on-site diagnostics in the poultry industry.

  9. TLR7 agonist in combination with Salmonella as an effective antimelanoma immunotherapy.

    PubMed

    Vola, Magdalena; Mónaco, Amy; Bascuas, Thais; Rimsky, Geraldine; Agorio, Caroline Isabel; Chabalgoity, José Alejandro; Moreno, María

    2018-03-22

    We evaluated a novel approach combining the use of attenuated Salmonella immunotherapy with a Toll-like receptor agonist, imiquimod, in B16F1 melanoma-bearing mice. B16F1 melanoma-bearing mice were daily treated with topical imiquimod in combination with one intratumoral injection of attenuated Salmonella enterica serovar Typhimurium LVR01. The combined therapy resulted in retarded tumor growth and prolonged survival. Combination treatment led to an enhancement in the expression of pro-inflammatory cytokines and chemokines in the tumor microenvironment, with a Th1-skewed profile, resulting in a broad antitumor response. The induced immunity was effective in controlling the occurrence of metastasis. Salmonella LVR01 immunotherapy in combination with imiquimod is a novel approach that could be considered as an effective antimelanoma therapy.

  10. Live-cell imaging of Salmonella Typhimurium interaction with zebrafish larvae after injection and immersion delivery methods.

    PubMed

    Varas, Macarena; Fariña, Alonso; Díaz-Pascual, Francisco; Ortíz-Severín, Javiera; Marcoleta, Andrés E; Allende, Miguel L; Santiviago, Carlos A; Chávez, Francisco P

    2017-04-01

    The zebrafish model has been used to determine the role of vertebrate innate immunity during bacterial infections. Here, we compare the in vivo immune response induced by GFP-tagged Salmonella Typhimurium inoculated by immersion and microinjection in transgenic zebrafish larvae. Our novel infection protocols in zebrafish allow live-cell imaging of Salmonella colonization. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Plant pathogen-induced water-soaking promotes Salmonella enterica growth on tomato leaves.

    PubMed

    Potnis, Neha; Colee, James; Jones, Jeffrey B; Barak, Jeri D

    2015-12-01

    Plant pathogen infection is a critical factor for the persistence of Salmonella enterica on plants. We investigated the mechanisms responsible for the persistence of S. enterica on diseased tomato plants by using four diverse bacterial spot Xanthomonas species that differ in disease severities. Xanthomonas euvesicatoria and X. gardneri infection fostered S. enterica growth, while X. perforans infection did not induce growth but supported the persistence of S. enterica. X. vesicatoria-infected leaves harbored S. enterica populations similar to those on healthy leaves. Growth of S. enterica was associated with extensive water-soaking and necrosis in X. euvesicatoria- and X. gardneri-infected plants. The contribution of water-soaking to the growth of S. enterica was corroborated by an increased growth of populations on water-saturated leaves in the absence of a plant pathogen. S. enterica aggregates were observed with bacterial spot lesions caused by either X. euvesicatoria or X. vesicatoria; however, more S. enterica aggregates formed on X. euvesicatoria-infected leaves as a result of larger lesion sizes per leaf area and extensive water-soaking. Sparsely distributed lesions caused by X. vesicatoria infection do not support the overall growth of S. enterica or aggregates in areas without lesions or water-soaking; S. enterica was observed as single cells and not aggregates. Thus, pathogen-induced water-soaking and necrosis allow S. enterica to replicate and proliferate on tomato leaves. The finding that the pathogen-induced virulence phenotype affects the fate of S. enterica populations in diseased plants suggests that targeting of plant pathogen disease is important in controlling S. enterica populations on plants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Treatment of a Salmonella-induced rapidly expanding aortic pseudoaneurysm involving the visceral arteries using the Cardiatis multilayer stent.

    PubMed

    Reijnen, Michel M P J; van Sterkenburg, Steven M M

    2014-10-01

    Treatment of infection-induced aortic aneurysms is among the greatest challenges nowadays of vascular surgery because the use of prosthetic material is considered unsuitable. The Cardiatis multilayer stent (Cardiatis, Isnes, Belgium) is a flow-diverting bare stent with a proven efficacy in peripheral and visceral artery aneurysms. We present a unique case of a Salmonella serotype enteritidis-induced rapidly expanding aortic pseudoaneurysm with a penetrating ulcer that was treated with the Cardiatis multilayer stent. At 18 months of follow-up, the patient was in good clinical condition, with normalized C-reactive protein levels. Computed tomography angiography and 2-deoxy-2-[F18]-fluoro-d-glucose-positron-emission tomography/computed tomography showed a stable, mostly thrombosed aneurysm, with adequate perfusion of the side branches and no remaining signs of infection. Copyright © 2014 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  13. Recent Trends in Salmonella Outbreaks and Emerging Technology for Biocontrol of Salmonella Using Phages in Foods: A Review.

    PubMed

    Oh, Jun-Hyun; Park, Mi-Kyung

    2017-12-28

    Salmonella is one of the principal causes of foodborne outbreaks. As traditional control methods have shown less efficacy against emerging Salmonella serotypes or antimicrobialresistant Salmonella , new approaches have been attempted. The use of lytic phages for the biocontrol of Salmonella in the food industry has become an attractive method owing to the many advantages offered by the use of phages as biocontrol agents. Phages are natural alternatives to traditional antimicrobial agents; they have proven effective in the control of bacterial pathogens in the food industry, which has led to the development of different phage products. The treatment with specific phages in the food industry can prevent the decay of products and the spread of bacterial diseases, and ultimately promotes safe environments for animal and plant food production, processing, and handling. After an extensive investigation of the current literature, this review focuses predominantly on the efficacy of phages for the successful control of Salmonella spp. in foods. This review also addresses the current knowledge on the pathogenic characteristics of Salmonella , the prevalence of emerging Salmonella outbreaks, the isolation and characterization of Salmonella -specific phages, the effectiveness of Salmonella -specific phages as biocontrol agents, and the prospective use of Salmonella -specific phages in the food industry.

  14. Design of a tubular skylight system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, B.L.

    1996-10-01

    Since its introduction to the US market in 1991, tubular skylight provides a solution to the problem of lighting up dark corners in a house. Over the years, design of similar products has emphasized on quantity alone and attention to a range of other equally important issues: efficient collecting system, selection of higher specular reflectance material, seals, distribution and quality of light, was not noted. In this paper, the fundamental design concept of an efficient tubular skylight and the possibility of collimating diffuse light is reviewed. The importance of specular reflectance of the tube material on the performance of tubularmore » skylight is demonstrated. Visual appearance (quality) of transmitted light down the tube is related in part to the yellowness index of various materials. Discussion of adequacy of current building and energy code requirements on tubular skylights is briefly touched on and energy simulation results based on a numerical code are presented.« less

  15. Contribution of Asparagine Catabolism to Salmonella Virulence

    PubMed Central

    McLaughlin, Patrick A.; McClelland, Michael; Yang, Hee-Jeong; Porwollik, Steffen; Bogomolnaya, Lydia; Chen, Juei-Suei; Andrews-Polymenis, Helene

    2016-01-01

    ABSTRACT Salmonellae are pathogenic bacteria that cause significant morbidity and mortality in humans worldwide. Salmonellae establish infection and avoid clearance by the immune system by mechanisms that are not well understood. We previously showed that l-asparaginase II produced by Salmonella enterica serovar Typhimurium (S. Typhimurium) inhibits T cell responses and mediates virulence. In addition, we previously showed that asparagine deprivation such as that mediated by l-asparaginase II of S. Typhimurium causes suppression of activation-induced T cell metabolic reprogramming. Here, we report that STM3997, which encodes a homolog of disulfide bond protein A (dsbA) of Escherichia coli, is required for l-asparaginase II stability and function. Furthermore, we report that l-asparaginase II localizes primarily to the periplasm and acts together with l-asparaginase I to provide S. Typhimurium the ability to catabolize asparagine and assimilate nitrogen. Importantly, we determined that, in a murine model of infection, S. Typhimurium lacking both l-asparaginase I and II genes competes poorly with wild-type S. Typhimurium for colonization of target tissues. Collectively, these results indicate that asparagine catabolism contributes to S. Typhimurium virulence, providing new insights into the competition for nutrients at the host-pathogen interface. PMID:27849183

  16. Contribution of Asparagine Catabolism to Salmonella Virulence.

    PubMed

    McLaughlin, Patrick A; McClelland, Michael; Yang, Hee-Jeong; Porwollik, Steffen; Bogomolnaya, Lydia; Chen, Juei-Suei; Andrews-Polymenis, Helene; van der Velden, Adrianus W M

    2017-02-01

    Salmonellae are pathogenic bacteria that cause significant morbidity and mortality in humans worldwide. Salmonellae establish infection and avoid clearance by the immune system by mechanisms that are not well understood. We previously showed that l-asparaginase II produced by Salmonella enterica serovar Typhimurium (S Typhimurium) inhibits T cell responses and mediates virulence. In addition, we previously showed that asparagine deprivation such as that mediated by l-asparaginase II of S Typhimurium causes suppression of activation-induced T cell metabolic reprogramming. Here, we report that STM3997, which encodes a homolog of disulfide bond protein A (dsbA) of Escherichia coli, is required for l-asparaginase II stability and function. Furthermore, we report that l-asparaginase II localizes primarily to the periplasm and acts together with l-asparaginase I to provide S Typhimurium the ability to catabolize asparagine and assimilate nitrogen. Importantly, we determined that, in a murine model of infection, S Typhimurium lacking both l-asparaginase I and II genes competes poorly with wild-type S Typhimurium for colonization of target tissues. Collectively, these results indicate that asparagine catabolism contributes to S Typhimurium virulence, providing new insights into the competition for nutrients at the host-pathogen interface. Copyright © 2017 American Society for Microbiology.

  17. In vivo guided vascular regeneration with a non-porous elastin-like polypeptide hydrogel tubular scaffold.

    PubMed

    Mahara, Atsushi; Kiick, Kristi L; Yamaoka, Tetsuji

    2017-06-01

    Herein, we demonstrate a new approach for small-caliber vascular reconstruction using a non-porous elastin-like polypeptide hydrogel tubular scaffold, based on the concept of guided vascular regeneration (GVR). The scaffolds are composed of elastin-like polypeptide, (Val-Pro-Gly-Ile-Gly) n , for compliance matching and antithrombogenicity and an Arg-Gly-Asp (RGD) motif for connective tissue regeneration. When the polypeptide was mixed with an aqueous solution of β-[Tris(hydroxymethyl)phosphino]propionic acid at 37°C, the polypeptide hydrogel was rapidly formed. The elastic modulus of the hydrogel was 4.4 kPa. The hydrogel tubular scaffold was formed in a mold and reinforced with poly(lactic acid) nanofibers. When tubular scaffolds with an inner diameter of 1 mm and length of 5 mm were implanted into rat abdominal aortae, connective tissue grew along the scaffold luminal surface from the flanking native tissues, resulting in new blood vessel tissue with a thickness of 200 μm in 1 month. In contrast, rats implanted with control scaffolds without the RGD motif died. These results indicate that the non-porous hydrogel tubular scaffold containing the RGD motif effectively induced rapid tissue regeneration and that GVR is a promising strategy for the regeneration of small-diameter blood vessels. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1746-1755, 2017. © 2017 Wiley Periodicals, Inc.

  18. Role of T3SS-1 SipD Protein in Protecting Mice against Non-typhoidal Salmonella Typhimurium

    PubMed Central

    Jneid, Bakhos; Moreau, Karine; Plaisance, Marc; Rouaix, Audrey; Dano, Julie

    2016-01-01

    Background Salmonella enterica species are enteric pathogens that cause severe diseases ranging from self-limiting gastroenteritis to enteric fever and sepsis in humans. These infectious diseases are still the major cause of morbidity and mortality in low-income countries, especially in children younger than 5 years and immunocompromised adults. Vaccines targeting typhoidal diseases are already marketed, but none protect against non-typhoidal Salmonella. The existence of multiple non-typhoidal Salmonella serotypes as well as emerging antibiotic resistance highlight the need for development of a broad-spectrum protective vaccine. All Salmonella spp. utilize two type III Secretion Systems (T3SS 1 and 2) to initiate infection, allow replication in phagocytic cells and induce systemic disease. T3SS-1, which is essential to invade epithelial cells and cross the barrier, forms an extracellular needle and syringe necessary to inject effector proteins into the host cell. PrgI and SipD form, respectively, the T3SS-1 needle and the tip complex at the top of the needle. Because they are common and highly conserved in all virulent Salmonella spp., they might be ideal candidate antigens for a subunit-based, broad-spectrum vaccine. Principal Findings We investigated the immunogenicity and protective efficacy of PrgI and SipD administered by subcutaneous, intranasal and oral routes, alone or combined, in a mouse model of Salmonella intestinal challenge. Robust IgG (in all immunization routes) and IgA (in intranasal and oral immunization routes) antibody responses were induced against both proteins, particularly SipD. Mice orally immunized with SipD alone or SipD combined with PrgI were protected against lethal intestinal challenge with Salmonella Typhimurium (100 Lethal Dose 50%) depending on antigen, route and adjuvant. Conclusions and Significance Salmonella T3SS SipD is a promising antigen for the development of a protective Salmonella vaccine, and could be developed for

  19. A Unified Theory of Sepsis-Induced Acute Kidney Injury: Inflammation, microcirculatory dysfunction, bioenergetics and the tubular cell adaptation to injury

    PubMed Central

    Gomez, Hernando; Ince, Can; De Backer, Daniel; Pickkers, Peter; Payen, Didier; Hotchkiss, John; Kellum, John A.

    2014-01-01

    Given that the leading clinical conditions associated with Acute kidney injury (AKI), namely, sepsis, major surgery, heart failure and hypovolemia, are all associated with shock, it is tempting to attribute all AKI to ischemia on the basis of macro-hemodynamic changes. However, an increasing body of evidence has suggested that in many patients, AKI can occur in the absence of overt signs of global renal hypoperfusion. Indeed, sepsis-induced AKI can occur in the setting of normal or even increased renal blood flow. Accordingly, renal injury may not be entirely explained solely on the basis of the classic paradigm of hypoperfusion, and thus other mechanisms must come into play. Herein, we put forward a “unifying theory” to explain the interplay between inflammation and oxidative stress, microvascular dysfunction, and the adaptive response of the tubular epithelial cell to the septic insult. We propose that this response is mostly adaptive in origin, that it is driven by mitochondria and that it ultimately results in and explains the clinical phenotype of sepsis induced AKI. PMID:24346647

  20. Assessment of attenuated Salmonella vaccine strains in controlling experimental Salmonella Typhimurium infection in chickens

    PubMed Central

    Pei, Yanlong; Parreira, Valeria R.; Roland, Kenneth L.; Curtiss, Roy; Prescott, John F.

    2014-01-01

    Salmonella hold considerable promise as vaccine delivery vectors for heterologous antigens in chickens. Such vaccines have the potential additional benefit of also controlling Salmonella infection in immunized birds. As a way of selecting attenuated strains with optimal immunogenic potential as antigen delivery vectors, this study screened 20 novel Salmonella Typhimurium vaccine strains, differing in mutations associated with delayed antigen synthesis and delayed attenuation, for their efficacy in controlling colonization by virulent Salmonella Typhimurium, as well as for their persistence in the intestine and the spleen. Marked differences were observed between strains in these characteristics, which provide the basis for selection for further study as vaccine vectors. PMID:24396177

  1. Assessment of attenuated Salmonella vaccine strains in controlling experimental Salmonella Typhimurium infection in chickens.

    PubMed

    Pei, Yanlong; Parreira, Valeria R; Roland, Kenneth L; Curtiss, Roy; Prescott, John F

    2014-01-01

    Salmonella hold considerable promise as vaccine delivery vectors for heterologous antigens in chickens. Such vaccines have the potential additional benefit of also controlling Salmonella infection in immunized birds. As a way of selecting attenuated strains with optimal immunogenic potential as antigen delivery vectors, this study screened 20 novel Salmonella Typhimurium vaccine strains, differing in mutations associated with delayed antigen synthesis and delayed attenuation, for their efficacy in controlling colonization by virulent Salmonella Typhimurium, as well as for their persistence in the intestine and the spleen. Marked differences were observed between strains in these characteristics, which provide the basis for selection for further study as vaccine vectors.

  2. Hypoxia-induced Bmi1 promotes renal tubular epithelial cell–mesenchymal transition and renal fibrosis via PI3K/Akt signal

    PubMed Central

    Du, Rui; Xia, Lin; Ning, Xiaoxuan; Liu, Limin; Sun, Wenjuan; Huang, Chen; Wang, Hanmin; Sun, Shiren

    2014-01-01

    Hypoxia is an important microenvironmental factor in the development of renal fibrosis; however, the underlying mechanisms are not well elucidated. Here we show that hypoxia induces Bmi1 mRNA and protein expression in human tubular epithelial cells. We further demonstrate that Bmi1 expression might be directly regulated by hypoxia-inducible factor-1a (HIF-1a) under low oxygen. Moreover, chromatin immunoprecipitation and reporter gene assay studies reveal cooperative transactivation of Bmi1 by HIF-1α and Twist. Enforced Bmi1 expression induces epithelial–mesenchymal transition (EMT), whereas silencing endogenous Bmi-1 expression reverses hypoxia-induced EMT. Up-regulation of Bmi1 leads to stabilization of Snail via modulation of PI3K/Akt signaling, whereas ablation of PI3K/Akt signaling partially rescues the phenotype of Bmi1-overexpressing cells, indicating that PI3K/Akt signaling might be a major mediator of Bmi1-induced EMT. In a rat model of obstructive nephropathy, Bmi1 expression increases in a time-dependent manner. Furthermore, we demonstrate that increased levels of Bmi1, correlated with HIF-1α and Twist, are associated with patients with chronic kidney disease. We provide in vitro and in vivo evidence that activation of HIF-1a/Twist-Bmi1 signaling in renal epithelial cells is associated with the development of chronic renal disease and may promote fibrogenesis via modulation of PI3K/Akt/Snail signaling by facilitating EMT. PMID:25009285

  3. 75 FR 28058 - Certain Oil Country Tubular Goods From China; Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-1159 (Final)] Certain Oil Country Tubular... threatened with material injury by reason of imports from China of certain oil country tubular goods (``OCTG... are contained in USITC Publication 4152 (May 2010), entitled Certain Oil Country Tubular Goods From...

  4. Renal Tubular Cell Mitochondrial Dysfunction Occurs Despite Preserved Renal Oxygen Delivery in Experimental Septic Acute Kidney Injury

    PubMed Central

    Pollen, Sean; Greco, Elisabetta; Courtneidge, Holly; Hall, Andrew M.; Duchen, Michael R.; Tam, Frederick W. K.; Unwin, Robert J.; Singer, Mervyn

    2018-01-01

    Objective: To explain the paradigm of significant renal functional impairment despite preserved hemodynamics and histology in sepsis-induced acute kidney injury. Design: Prospective observational animal study. Setting: University research laboratory. Subjects: Male Wistar rats. Intervention: Using a fluid-resuscitated sublethal rat model of fecal peritonitis, changes in renal function were characterized in relation to global and renal hemodynamics, and histology at 6 and 24 hours (n = 6–10). Sham-operated animals were used as comparison (n = 8). Tubular cell mitochondrial function was assessed using multiphoton confocal imaging of live kidney slices incubated in septic serum. Measurements and Main Results: By 24 hours, serum creatinine was significantly elevated with a concurrent decrease in renal lactate clearance in septic animals compared with sham-operated and 6-hour septic animals. Renal uncoupling protein-2 was elevated in septic animals at 24 hours although tubular cell injury was minimal and mitochondrial ultrastructure in renal proximal tubular cells preserved. There was no significant change in global or renal hemodynamics and oxygen delivery/consumption between sham-operated and septic animals at both 6- and 24-hour timepoints. In the live kidney slice model, mitochondrial dysfunction was seen in proximal tubular epithelial cells incubated with septic serum with increased production of reactive oxygen species, and decreases in nicotinamide adenine dinucleotide and mitochondrial membrane potential. These effects were prevented by coincubation with the reactive oxygen species scavenger, 4-hydroxy-2,2,6,6-tetramethyl-piperidin-1-oxyl. Conclusions: Renal dysfunction in sepsis occurs independently of hemodynamic instability or structural damage. Mitochondrial dysfunction mediated by circulating mediators that induce local oxidative stress may represent an important pathophysiologic mechanism. PMID:29293148

  5. PREVALENCE OF SALMONELLA IN CAPTIVE REPTILES FROM CROATIA.

    PubMed

    Lukac, Maja; Pedersen, Karl; Prukner-Radovcic, Estella

    2015-06-01

    Salmonellosis transmitted by pet reptiles is an increasing public health issue worldwide. The aim of this study was to investigate the prevalence of Salmonella strains from captive reptiles in Croatia. From November 2009 to November 2011 a total of 292 skin, pharyngeal, cloacal, and fecal samples from 200 apparently healthy reptiles were tested for Salmonella excretions by bacteriologic culture and serotyping. These 200 individual reptiles included 31 lizards, 79 chelonians, and 90 snakes belonging to private owners or housed at the Zagreb Zoo, Croatia. Salmonella was detected in a total of 13% of the animals, among them 48.4% lizards, 8.9% snakes, and 3.8% turtles. Representatives of five of the six Salmonella enterica subspecies were identified with the following proportions in the total number of isolates: Salmonella enterica enterica 34.6%, Salmonella enterica houtenae 23.1%, Salmonella enterica arizonae 23.1%, Salmonella enterica diarizonae 15.4%, and Salmonella enterica salamae 3.8%. The 14 different serovars isolated included several rarely occurring serovars such as Salmonella Apapa, Salmonella Halle, Salmonella Kisarawe, and Salmonella Potengi. These findings confirm that the prevalence of Salmonella is considerable in captive reptiles in Croatia, indicating that these animals may harbor serovars not commonly seen in veterinary or human microbiologic practice. This should be addressed in the prevention and diagnostics of human reptile-transmitted infections.

  6. Tubular duplication of the oesophagus presenting with dysphagia.

    PubMed

    Saha, A K; Kundu, A K

    2014-06-01

    Duplications of the alimentary tract are rare congenital malformations, with the ileum being the most commonly affected site, followed by the oesophagus. Among oesophageal duplications, cystic duplication is the most common and the tubular variety, the rarest. Herein, we report a rare case of tubular oesophageal duplication, complicated by adenosquamous carcinoma at the lower end of the oesophagus, in a 32-year-old man who presented with progressive dysphagia. Although proton pump inhibitors may relieve dysphagia, oesophagectomy and gastric interpositioning should be the first-line treatment for patients with tubular oesophageal duplication, in order to reduce the risk of malignant transformation at the lower end of the oesophagus.

  7. Coordinated Regulation of Virulence during Systemic Infection of Salmonella enterica serovar Typhimurium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Hyunjin; McDermott, Jason E.; Porwollik, Steffen

    Salmonella must respond to a myriad of environmental cues during infection of a mouse and express specific subsets of genes in a temporal and spatial manner to subvert the host defense mechanisms but these regulatory pathways are poorly established. To unravel how micro-environmental signals are processed and integrated into coordinated action, we constructed in-frame non-polar deletions of 84 regulators inferred to play a role in Salmonella typhimurium virulence and tested them in three virulence assays (intraperitoneal (i.p.), and intragastric (i.g.) infection in BALB/c mice, and persistence in SvJ129 mice). Overall 36 regulators were identified that were less virulent in atmore » least one assay, and of those, 15 regulators were required for systemic mouse infection in an acute infection model. As a first step towards understanding the interplay between a pathogen and its host from a systems biology standpoint we focused on these 15 genes. Transcriptional profiles were obtained for each of these 15 regulators from strains grown under four different environmental conditions. These results as well as publicly available transcriptional profiles were analyzed using both network inference and cluster analysis algorithms. The analysis predicts a regulatory network in which all 15 regulators control a specific set of genes necessary for Salmonella to cause systemic infection. We tested the regulatory model by expressing a subset of the regulators in trans and monitoring transcription of 7 known virulence factors located within Salmonella pathogenicity island 2 (SPI-2). These experiments validated the regulatory model and showed that, for these 7 genes, the response regulator SsrB and the marR type regulator SlyA co-regulate in a regulatory cascade by integrating multiple signals.« less

  8. Malaria-Associated l-Arginine Deficiency Induces Mast Cell-Associated Disruption to Intestinal Barrier Defenses against Nontyphoidal Salmonella Bacteremia

    PubMed Central

    Chau, Jennifer Y.; Tiffany, Caitlin M.; Nimishakavi, Shilpa; Lawrence, Jessica A.; Pakpour, Nazzy; Mooney, Jason P.; Lokken, Kristen L.; Caughey, George H.; Tsolis, Renee M.

    2013-01-01

    Coinfection with malaria and nontyphoidal Salmonella serotypes (NTS) can cause life-threatening bacteremia in humans. Coinfection with malaria is a recognized risk factor for invasive NTS, suggesting that malaria impairs intestinal barrier function. Here, we investigated mechanisms and strategies for prevention of coinfection pathology in a mouse model. Our findings reveal that malarial-parasite-infected mice, like humans, develop l-arginine deficiency, which is associated with intestinal mastocytosis, elevated levels of histamine, and enhanced intestinal permeability. Prevention or reversal of l-arginine deficiency blunts mastocytosis in ileal villi as well as bacterial translocation, measured as numbers of mesenteric lymph node CFU of noninvasive Escherichia coli Nissle and Salmonella enterica serotype Typhimurium, the latter of which is naturally invasive in mice. Dietary supplementation of malarial-parasite-infected mice with l-arginine or l-citrulline reduced levels of ileal transcripts encoding interleukin-4 (IL-4), a key mediator of intestinal mastocytosis and macromolecular permeability. Supplementation with l-citrulline also enhanced epithelial adherens and tight junctions in the ilea of coinfected mice. These data suggest that increasing l-arginine bioavailability via oral supplementation can ameliorate malaria-induced intestinal pathology, providing a basis for testing nutritional interventions to reduce malaria-associated mortality in humans. PMID:23690397

  9. mTOR Regulates Endocytosis and Nutrient Transport in Proximal Tubular Cells.

    PubMed

    Grahammer, Florian; Ramakrishnan, Suresh K; Rinschen, Markus M; Larionov, Alexey A; Syed, Maryam; Khatib, Hazim; Roerden, Malte; Sass, Jörn Oliver; Helmstaedter, Martin; Osenberg, Dorothea; Kühne, Lucas; Kretz, Oliver; Wanner, Nicola; Jouret, Francois; Benzing, Thomas; Artunc, Ferruh; Huber, Tobias B; Theilig, Franziska

    2017-01-01

    Renal proximal tubular cells constantly recycle nutrients to ensure minimal loss of vital substrates into the urine. Although most of the transport mechanisms have been discovered at the molecular level, little is known about the factors regulating these processes. Here, we show that mTORC1 and mTORC2 specifically and synergistically regulate PTC endocytosis and transport processes. Using a conditional mouse genetic approach to disable nonredundant subunits of mTORC1, mTORC2, or both, we showed that mice lacking mTORC1 or mTORC1/mTORC2 but not mTORC2 alone develop a Fanconi-like syndrome of glucosuria, phosphaturia, aminoaciduria, low molecular weight proteinuria, and albuminuria. Interestingly, proteomics and phosphoproteomics of freshly isolated kidney cortex identified either reduced expression or loss of phosphorylation at critical residues of different classes of specific transport proteins. Functionally, this resulted in reduced nutrient transport and a profound perturbation of the endocytic machinery, despite preserved absolute expression of the main scavenger receptors, MEGALIN and CUBILIN. Our findings highlight a novel mTOR-dependent regulatory network for nutrient transport in renal proximal tubular cells. Copyright © 2016 by the American Society of Nephrology.

  10. Genetic relatedness of a rarely isolated Salmonella: Salmonella enterica serotype Niakhar from NARMS animal isolates.

    PubMed

    Tankson, J D; Fedorka-Cray, P J; Jackson, C R; Headrick, M

    2006-02-01

    In the United States, Salmonella enterica serotype Niakhar is infrequently isolated. Between 1997 and 2000, the animal arm of the National Antimicrobial Resistance Monitoring System-Enteric Bacteria (NARMS) assayed a total of 22,383 Salmonella isolates from various animal sources (swine, cattle, chickens, turkeys, cats, horses, exotics and dogs) for antimicrobial susceptibility. Isolates originated from diagnostic and non-diagnostic submissions. To study the phenotypic and genotypic characteristics of Salmonella Niakhar. Only five (0.02%) of the 22,383 isolates were identified as Salmonella Niakhar. Antimicrobial resistance testing indicated that three isolates were pan-susceptible, one isolate was resistant to ampicillin and one isolate was resistant to ampicillin, chloramphenicol, ciprofloxacin, kanamycin, nalidixic acid, streptomycin, sulfamethoxazole, tetracycline and trimethoprim/sulfamethoxazole. RAPD-PCR analysis, PFGE and ribotyping indicated that two pan-susceptible isolates were genetically similar, whereas the three remaining isolates were genetically different. The one Salmonella Niakhar isolate that was multiresistant harboured a class I integron, intI1 and two large plasmids. This study represents the first report of a ciprofloxacin-resistant Salmonella isolate from the animal arm of NARMS.

  11. Farm-level associations with the shedding of Salmonella and antimicrobial-resistant Salmonella in U.S. dairy cattle.

    PubMed

    Habing, Greg G; Lombard, Jason E; Kopral, Christine A; Dargatz, David A; Kaneene, John B

    2012-09-01

    Salmonella enterica is the leading cause of foodborne-related deaths and hospitalizations within the United States. Infections caused by antimicrobial-resistant (AMR) strains are associated with higher hospital costs and case fatality. The objective for this study was to determine the association of management practices with the recovery of Salmonella and AMR Salmonella on dairy herds. Individual adult cow fecal samples and/or composite fecal samples were collected from 265 dairy herds in 17 states. Samples were cultured for Salmonella, and the MIC was determined for 15 antimicrobials. Herds were classified as Salmonella positive if at least one isolate was recovered, and AMR Salmonella positive if at least one resistant isolate was recovered. Questionnaires regarding management practices were administered to herd operators, and a subset of practices was selected based on subject knowledge and prior research. Data on preventive and therapeutic antimicrobial usage were included in the analysis. Logistic regression models were used to determine which practices were significantly (p<0.05) associated with each herd classification. A total of 124 and 25 herds were classified as Salmonella positive and AMR Salmonella positive, respectively. Variables significantly associated with Salmonella-positive herds included using sprinklers or misters for heat abatement (OR=2.8; CI: 1.6-4.9), feeding anionic salts to cows (OR=1.9; CI: 1.1-3.5), and feeding ionophores to cows (OR=2.1; CI: 1.2-3.7). Herds that used a broadcast/solid spread had lower odds (OR=0.26; CI: 0.11-0.63) of being Salmonella positive. Herds with at least one resistant isolate were more likely to have used composted/dried manure for bedding relative to herds with only susceptible isolates (OR=3.6; CI: 1.2-11.0). These results can be useful to focus additional research aimed at decreasing the prevalence of Salmonella and AMR Salmonella on U.S. dairy herds.

  12. Detection of Salmonellae in the Environment

    PubMed Central

    Thomason, Berenice M.; Biddle, James W.; Cherry, William B.

    1975-01-01

    The incidence of salmonellae in contrasting environments was compared in this study. Samples collected from or near surface waters in a lush hardwood forest yielded four salmonellae serotypes from six culturally positive samples. A total of 76 samples collected from the top of a granite outcropping over a 3-month period yielded 10 positive samples. Only two salmonellae serotypes were isolated, and one of these was isolated only once. The nature of the sample material had no significant effect on the detection of salmonellae from the two sampling sites. However, the presence or absence of visible moisture in the sample significantly affected the recovery of salmonellae. The results showed that even a harsh environment such as that found on top of Stone Mountain may serve as an ecological niche for the survival and transmission of salmonellae. PMID:1106319

  13. Salmonella Infections - Multiple Languages

    MedlinePlus

    ... Are Here: Home → Multiple Languages → All Health Topics → Salmonella Infections URL of this page: https://medlineplus.gov/ ... V W XYZ List of All Topics All Salmonella Infections - Multiple Languages To use the sharing features ...

  14. Fecal shedding of Salmonella in exotic felids.

    PubMed

    Clyde, V L; Ramsay, E C; Bemis, D A

    1997-06-01

    Two collections of exotic felids were screened for the presence of Salmonella by selective fecal culture utilizing selenite broth and Hektoen enteric agar. In > 90% of the samples, Salmonella was isolated from a single culture. A commercial horsemeat-based diet was fed in both collections, and one collection also was fed raw chicken. Salmonella was cultured from the raw chicken and the horsemeat diet for both collections. Multiple Salmonella serotypes were identified, with S. typhimurium and S. typhimurium (copenhagen) isolated most frequently. Approximately half of the Salmonella isolates demonstrated multiple antibiotic resistance. The ability to harbor Salmonella as normal nonpathogenic bacteria of the gastrointestinal tract may be a physiological adaptation to carnivory. The high rate of fecal shedding of Salmonella in healthy individuals clouds the interpretation of a positive fecal culture in an ill felid, or one with diarrhea. All zoo employees having contact with cat feces or raw diets have a high rate of occupational exposure to Salmonella and should exercise appropriate hygienic precautions.

  15. Neural control of renal tubular sodium reabsorption of the dog.

    PubMed

    DiBona, G F

    1978-04-01

    The evidence supporting a role for direct neurogenic control of renal tubular sodium reabsorption is reviewed. Electron microscopic and fluorescence histochemical studies demonstrate adrenergic nerve terminals in direct contact with basement membranes of mammalian renal tubular epithelial cells. Low level direct or baroreceptor reflex stimulation of renal sympathetic nerves produces an increase in renal tubular sodium reabsorption without alterations in glomerular filtration rate, renal blood flow, or intrarenal distribution of blood flow. The antinatriuresis is prevented by prior treatment of the kidney with guanethidine or phenoxybenzamine. Possible indirect mediation of the antinatriuresis by other humoral agents known to be released from the kidney upon renal nerve stimulation (angiotensin II, prostaglandin) was excluded by experiments with appropriate blocking agents. Reflex diminutions in renal nerve activity (left atrial distention, stellate ganglion stimulation) produce a decrease in renal tubular sodium reabsorption independent of glomerular filtration rate or renal blood flow. The anatomically described adrenergic innervation of the renal tubules participates in the direct regulation of renal tubular sodium reabsorption.

  16. Distal renal tubular acidosis and hepatic lipidosis in a cat.

    PubMed

    Brown, S A; Spyridakis, L K; Crowell, W A

    1986-11-15

    Clinical and laboratory evidence of hepatic failure was found in a chronically anorectic cat. Simultaneous blood and urine pH determinations established a diagnosis of distal renal tubular acidosis. The cat did not respond to treatment. Necropsy revealed distal tubular nephrosis and hepatic lipidosis. The finding of distal renal tubular acidosis in a cat with hepatic lipidosis emphasizes the importance of complete evaluation of acid-base disorders in patients.

  17. Protective effect of hydroxytyrosol and its metabolite homovanillic alcohol on H(2)O(2) induced lipid peroxidation in renal tubular epithelial cells.

    PubMed

    Deiana, Monica; Incani, Alessandra; Rosa, Antonella; Corona, Giulia; Atzeri, Angela; Loru, Debora; Paola Melis, M; Assunta Dessì, M

    2008-09-01

    We investigated the capacity of hydroxytyrosol (HT), 3,4-dihydroxyphenylethanol, and homovanillic alcohol (HVA), 4-hydroxy-3-methoxy-phenylethanol, to inhibit H(2)O(2) induced oxidative damage in LLC-PK1, a porcine kidney epithelial cell line, studying the effect of H(2)O(2) on specific cell membrane lipid targets, unsaturated fatty acids and cholesterol. Exposure to H(2)O(2) induced a significant increase of the level of MDA together with a disruption of the membrane structure, with the loss of unsaturated fatty acids, cholesterol and alpha-tocopherol, and the formation of fatty acids hydroperoxides and 7-ketocholesterol. Pretreatment with HT protected renal cells from oxidative damage: the level of membrane lipids was preserved and there was no significant detection of oxidation products. HVA exerted a comparable activity, thus both HT and HVA were able to prevent in renal cells the lipid peroxidation process that plays a central role in tubular cell injury.

  18. Photo-induced Mass Transport through Polymer Networks

    NASA Astrophysics Data System (ADS)

    Meng, Yuan; Anthamatten, Mitchell

    2014-03-01

    Among adaptable materials, photo-responsive polymers are especially attractive as they allow for spatiotemporal stimuli and response. We have recently developed a macromolecular network capable of photo-induced mass transport of covalently bound species. The system comprises of crosslinked chains that form an elastic network and photosensitive fluorescent arms that become mobile upon irradiation. We form loosely crosslinked polymer networks by Michael-Addition between multifunctional thiols and small molecule containing acrylate end-groups. The arms are connected to the network by allyl sulfide, that undergoes addition-fragmentation chain transfer (AFCT) in the presence of free radicals, releasing diffusible fluorophore. The networks are loaded with photoinitiator to allow for spatial modulation of the AFCT reactions. FRAP experiments within bulk elastomers are conducted to establish correlations between the fluorophore's diffusion coefficient and experimental variables such as network architecture, temperature and UV intensity. Photo-induced mass transport between two contacted films is demonstrated, and release of fluorophore into a solvent is investigated. Spatial and temporal control of mass transport could benefit drug release, printing, and sensing applications.

  19. Phosphorylation of Stats at Ser727 in renal proximal tubular epithelial cells exposed to cadmium.

    PubMed

    Nakagawa, Junko; Nishitai, Gen; Inageda, Kiyoshi; Matsuoka, Masato

    2007-11-01

    The effects of cadmium exposure on serine phosphorylation of signal transducers and activators of transcription (Stats) and an upstream kinase were examined in renal proximal tubular cells. In porcine LLC-PK1 cells treated with cadmium, Stat1 and Stat3 proteins were phosphorylated at Ser727 without changing total Stat protein levels. While phosphorylated forms of the members of mitogen-activated protein kinases (MAPKs) increased in response to cadmium exposure, treatment with a p38 inhibitor, SB203580 reduced Ser727 phosphorylation of Stat1 and Stat3 markedly in LLC-PK1 cells. The expression of human matrix metalloproteinase-3 (MMP-3), a Stats-inducible gene, was found to be up-regulated in human HK-2 cells exposed to cadmium, and suppressed by preincubation with SB203580. These results suggest that cadmium might induce the phosphorylation of Stat1 and Stat3 at Ser727 via the p38 pathway at least in part, and modulate gene expression in these proximal tubular cells. Copyright © 2007 Elsevier B.V. All rights reserved.

  20. Survival of Salmonella Newport in oysters.

    PubMed

    Morrison, Christopher M; Armstrong, Alexandra E; Evans, Sanford; Mild, Rita M; Langdon, Christopher J; Joens, Lynn A

    2011-08-02

    Salmonella enterica is the leading cause of laboratory-confirmed foodborne illness in the United States and raw shellfish consumption is a commonly implicated source of gastrointestinal pathogens. A 2005 epidemiological study done in our laboratory by Brands et al., showed that oysters in the United States are contaminated with Salmonella, and in particular, a specific strain of the Newport serovar. This work sought to further investigate the host-microbe interactions between Salmonella Newport and oysters. A procedure was developed to reliably and repeatedly expose oysters to enteric bacteria and quantify the subsequent levels of bacterial survival. The results show that 10 days after an exposure to Salmonella Newport, an average concentration of 3.7 × 10(3)CFU/g remains within the oyster meat, and even after 60 days there still can be more than 10(2)CFU/g remaining. However, the strain of Newport that predominated in the market survey done by Brands et al. does not survive within oysters or the estuarine environment better than any other strains of Salmonella we tested. Using this same methodology, we compared Salmonella Newport's ability to survive within oysters to a non-pathogenic strain of E. coli and found that after 10 days the concentration of Salmonella was 200-times greater than that of E. coli. We also compared those same strains of Salmonella and E. coli in a depuration process to determine if a constant 120 L/h flux of clean seawater could significantly reduce the concentration of bacteria within oysters and found that after 3 days the oysters retained over 10(4)CFU/g of Salmonella while the oysters exposed to the non-pathogenic strain of E. coli contained 100-times less bacteria. Overall, the results of this study demonstrate that any of the clinically relevant serovars of Salmonella can survive within oysters for significant periods of time after just one exposure event. Based on the drastic differences in survivability between Salmonella and a non

  1. International outbreak of Salmonella Oranienburg due to German chocolate

    PubMed Central

    Werber, Dirk; Dreesman, Johannes; Feil, Fabian; van Treeck, Ulrich; Fell, Gerhard; Ethelberg, Steen; Hauri, Anja M; Roggentin, Peter; Prager, Rita; Fisher, Ian ST; Behnke, Susanne C; Bartelt, Edda; Weise, Ekkehard; Ellis, Andrea; Siitonen, Anja; Andersson, Yvonne; Tschäpe, Helmut; Kramer, Michael H; Ammon, Andrea

    2005-01-01

    Background This report describes a large international chocolate-associated Salmonella outbreak originating from Germany. Methods We conducted epidemiologic investigations including a case-control study, and food safety investigations. Salmonella (S.) Oranienburg isolates were subtyped by the use of pulsed-field gel electrophoresis (PFGE). Results From 1 October 2001 through 24 March 2002, an estimated excess of 439 S. Oranienburg notifications was registered in Germany. Simultaneously, an increase in S. Oranienburg infections was noted in other European countries in the Enter-net surveillance network. In a multistate matched case-control study in Germany, daily consumption of chocolate (matched odds ratio [MOR]: 4.8; 95% confidence interval [CI]: 1.3–26.5), having shopped at a large chain of discount grocery stores (MOR: 4.2; CI: 1.2–23.0), and consumption of chocolate purchased there (MOR: 5.0; CI: 1.1–47.0) were associated with illness. Subsequently, two brands from the same company, one exclusively produced for that chain, tested positive for S. Oranienburg. In two other European countries and in Canada chocolate from company A was ascertained that also contained S. Oranienburg. Isolates from humans and from chocolates had indistinguishable PFGE profiles. No source or point of contamination was identified. Epidemiological identification of chocolate as a vehicle of infections required two months, and was facilitated by proxy measures. Conclusions Despite the use of improved production technologies, the chocolate industry continues to carry a small risk of manufacturing Salmonella-containing products. Particularly in diffuse outbreak-settings, clear associations with surrogates of exposure should suffice to trigger public health action. Networks such as Enter-net have become invaluable for facilitating rapid and appropriate management of international outbreaks. PMID:15691371

  2. Three-dimensional tissue assemblies: novel models for the study of Salmonella enterica serovar Typhimurium pathogenesis

    NASA Technical Reports Server (NTRS)

    Nickerson, C. A.; Goodwin, T. J.; Terlonge, J.; Ott, C. M.; Buchanan, K. L.; Uicker, W. C.; Emami, K.; LeBlanc, C. L.; Ramamurthy, R.; Clarke, M. S.; hide

    2001-01-01

    The lack of readily available experimental systems has limited knowledge pertaining to the development of Salmonella-induced gastroenteritis and diarrheal disease in humans. We used a novel low-shear stress cell culture system developed at the National Aeronautics and Space Administration in conjunction with cultivation of three-dimensional (3-D) aggregates of human intestinal tissue to study the infectivity of Salmonella enterica serovar Typhimurium for human intestinal epithelium. Immunohistochemical characterization and microscopic analysis of 3-D aggregates of the human intestinal epithelial cell line Int-407 revealed that the 3-D cells more accurately modeled human in vivo differentiated tissues than did conventional monolayer cultures of the same cells. Results from infectivity studies showed that Salmonella established infection of the 3-D cells in a much different manner than that observed for monolayers. Following the same time course of infection with Salmonella, 3-D Int-407 cells displayed minimal loss of structural integrity compared to that of Int-407 monolayers. Furthermore, Salmonella exhibited significantly lower abilities to adhere to, invade, and induce apoptosis of 3-D Int-407 cells than it did for infected Int-407 monolayers. Analysis of cytokine expression profiles of 3-D Int-407 cells and monolayers following infection with Salmonella revealed significant differences in expression of interleukin 1alpha (IL-1alpha), IL-1beta, IL-6, IL-1Ra, and tumor necrosis factor alpha mRNAs between the two cultures. In addition, uninfected 3-D Int-407 cells constitutively expressed higher levels of transforming growth factor beta1 mRNA and prostaglandin E2 than did uninfected Int-407 monolayers. By more accurately modeling many aspects of human in vivo tissues, the 3-D intestinal cell model generated in this study offers a novel approach for studying microbial infectivity from the perspective of the host-pathogen interaction.

  3. Three-Dimensional Tissue Assemblies: Novel Models for the Study of Salmonella enterica Serovar Typhimurium Pathogenesis

    PubMed Central

    Nickerson, Cheryl A.; Goodwin, Thomas J.; Terlonge, Jacqueline; Ott, C. Mark; Buchanan, Kent L.; Uicker, William C.; Emami, Kamal; LeBlanc, Carly L.; Ramamurthy, Rajee; Clarke, Mark S.; Vanderburg, Charles R.; Hammond, Timothy; Pierson, Duane L.

    2001-01-01

    The lack of readily available experimental systems has limited knowledge pertaining to the development of Salmonella-induced gastroenteritis and diarrheal disease in humans. We used a novel low-shear stress cell culture system developed at the National Aeronautics and Space Administration in conjunction with cultivation of three-dimensional (3-D) aggregates of human intestinal tissue to study the infectivity of Salmonella enterica serovar Typhimurium for human intestinal epithelium. Immunohistochemical characterization and microscopic analysis of 3-D aggregates of the human intestinal epithelial cell line Int-407 revealed that the 3-D cells more accurately modeled human in vivo differentiated tissues than did conventional monolayer cultures of the same cells. Results from infectivity studies showed that Salmonella established infection of the 3-D cells in a much different manner than that observed for monolayers. Following the same time course of infection with Salmonella, 3-D Int-407 cells displayed minimal loss of structural integrity compared to that of Int-407 monolayers. Furthermore, Salmonella exhibited significantly lower abilities to adhere to, invade, and induce apoptosis of 3-D Int-407 cells than it did for infected Int-407 monolayers. Analysis of cytokine expression profiles of 3-D Int-407 cells and monolayers following infection with Salmonella revealed significant differences in expression of interleukin 1α (IL-1α), IL-1β, IL-6, IL-1Ra, and tumor necrosis factor alpha mRNAs between the two cultures. In addition, uninfected 3-D Int-407 cells constitutively expressed higher levels of transforming growth factor β1 mRNA and prostaglandin E2 than did uninfected Int-407 monolayers. By more accurately modeling many aspects of human in vivo tissues, the 3-D intestinal cell model generated in this study offers a novel approach for studying microbial infectivity from the perspective of the host-pathogen interaction. PMID:11598087

  4. Rice hull smoke extract protects mice against a salmonella lipopolysaccharide-induced endotoxemia

    USDA-ARS?s Scientific Manuscript database

    Rice hulls accounting for 20% of the rice crop are a byproduct of post-harvest rice processing. Endotoxemia (sepsis, septic shock) is an inflammatory, virulent often fatal disease that results mainly from infection with Salmonella and other Gram-negative bacteria. The present study investigated the...

  5. Very Long O-antigen Chains Enhance Fitness during Salmonella-induced Colitis by Increasing Bile Resistance

    PubMed Central

    Crawford, Robert W.; Keestra, A. Marijke; Winter, Sebastian E.; Xavier, Mariana N.; Tsolis, Renée M.; Tolstikov, Vladimir; Bäumler, Andreas J.

    2012-01-01

    Intestinal inflammation changes the luminal habitat for microbes through mechanisms that have not been fully resolved. We noticed that the FepE regulator of very long O-antigen chain assembly in the enteric pathogen Salmonella enterica serotype Typhimurium (S. Typhimurium) conferred a luminal fitness advantage in the mouse colitis model. However, a fepE mutant was not defective for survival in tissue, resistance to complement or resistance to polymyxin B. We performed metabolite profiling to identify changes in the luminal habitat that accompany S. Typhimurium-induced colitis. This analysis suggested that S. Typhimurium-induced colitis increased the luminal concentrations of total bile acids. A mutation in fepE significantly reduced the minimal inhibitory concentration (MIC) of S. Typhimurium for bile acids in vitro. Oral administration of the bile acid sequestrant cholestyramine resin lowered the concentrations of total bile acids in colon contents during S. Typhimurium infection and significantly reduced the luminal fitness advantage conferred by the fepE gene in the mouse colitis model. Collectively, these data suggested that very long O-antigen chains function in bile acid resistance of S. Typhimurium, a property conferring a fitness advantage during luminal growth in the inflamed intestine. PMID:23028318

  6. Tubular collagen scaffolds with radial elasticity for hollow organ regeneration.

    PubMed

    Versteegden, Luuk R; van Kampen, Kenny A; Janke, Heinz P; Tiemessen, Dorien M; Hoogenkamp, Henk R; Hafmans, Theo G; Roozen, Edwin A; Lomme, Roger M; van Goor, Harry; Oosterwijk, Egbert; Feitz, Wout F; van Kuppevelt, Toin H; Daamen, Willeke F

    2017-04-01

    Tubular collagen scaffolds have been used for the repair of damaged hollow organs in regenerative medicine, but they generally lack the ability to reversibly expand in radial direction, a physiological characteristic seen in many native tubular organs. In this study, tubular collagen scaffolds were prepared that display a shape recovery effect and therefore exhibit radial elasticity. Scaffolds were constructed by compression of fibrillar collagen around a star-shaped mandrel, mimicking folds in a lumen, a typical characteristic of empty tubular hollow organs, such as ureter or urethra. Shape recovery effect was introduced by in situ fixation using a star-shaped mandrel, 3D-printed clamps and cytocompatible carbodiimide crosslinking. Prepared scaffolds expanded upon increase of luminal pressure and closed to the star-shaped conformation after removal of pressure. In this study, we applied this method to construct a scaffold mimicking the dynamics of human urethra. Radial expansion and closure of the scaffold could be iteratively performed for at least 1000 cycles, burst pressure being 132±22mmHg. Scaffolds were seeded with human epithelial cells and cultured in a bioreactor under dynamic conditions mimicking urination (pulse flow of 21s every 2h). Cells adhered and formed a closed luminal layer that resisted flow conditions. In conclusion, a new type of a tubular collagen scaffold has been constructed with radial elastic-like characteristics based on the shape of the scaffold, and enabling the scaffold to reversibly expand upon increase in luminal pressure. These scaffolds may be useful for regenerative medicine of tubular organs. In this paper, a new type I collagen-based tubular scaffold is presented that possesses intrinsic radial elasticity. This characteristic is key to the functioning of a number of tubular organs including blood vessels and organs of the gastrointestinal and urogenital tract. The scaffold was given a star-shaped lumen by physical compression

  7. The Type VI Secretion System Encoded in Salmonella Pathogenicity Island 19 Is Required for Salmonella enterica Serotype Gallinarum Survival within Infected Macrophages

    PubMed Central

    Blondel, Carlos J.; Jiménez, Juan C.; Leiva, Lorenzo E.; Álvarez, Sergio A.; Pinto, Bernardo I.; Contreras, Francisca; Pezoa, David; Santiviago, Carlos A.

    2013-01-01

    Salmonella enterica serotype Gallinarum is the causative agent of fowl typhoid, a disease characterized by high morbidity and mortality that causes major economic losses in poultry production. We have reported that S. Gallinarum harbors a type VI secretion system (T6SS) encoded in Salmonella pathogenicity island 19 (SPI-19) that is required for efficient colonization of chicks. In the present study, we aimed to characterize the SPI-19 T6SS functionality and to investigate the mechanisms behind the phenotypes previously observed in vivo. Expression analyses revealed that SPI-19 T6SS core components are expressed and produced under in vitro bacterial growth conditions. However, secretion of the structural/secreted components Hcp1, Hcp2, and VgrG to the culture medium could not be determined, suggesting that additional signals are required for T6SS-dependent secretion of these proteins. In vitro bacterial competition assays failed to demonstrate a role for SPI-19 T6SS in interbacterial killing. In contrast, cell culture experiments with murine and avian macrophages (RAW264.7 and HD11, respectively) revealed production of a green fluorescent protein-tagged version of VgrG soon after Salmonella uptake. Furthermore, infection of RAW264.7 and HD11 macrophages with deletion mutants of SPI-19 or strains with genes encoding specific T6SS core components (clpV and vgrG) revealed that SPI-19 T6SS contributes to S. Gallinarum survival within macrophages at 20 h postuptake. SPI-19 T6SS function was not linked to Salmonella-induced cytotoxicity or cell death of infected macrophages, as has been described for other T6SS. Our data indicate that SPI-19 T6SS corresponds to a novel tool used by Salmonella to survive within host cells. PMID:23357385

  8. Performance of the chromID Salmonella Elite chromogenic agar in comparison with CHROMagar™ Salmonella, Oxoid™ Brilliance™ Salmonella and Hektoen agars for the isolation of Salmonella from stool specimens.

    PubMed

    Martiny, Delphine; Dediste, Anne; Anglade, Claire; Vlaes, Linda; Moens, Catherine; Mohamed, Souad; Vandenberg, Olivier

    2016-10-01

    chromID™ Salmonella Elite is compared with 3 culture media commonly used for Salmonella isolation from stool specimens. As results were equivalent to other chromogenic media (100% sensitivity, 98% specificity), only financial arguments should guide the choice for a medium with respect to another. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Evaluation of VIDAS Salmonella (SLM) easy Salmonella method for the detection of Salmonella in a variety of foods: collaborative study.

    PubMed

    Crowley, Erin; Bird, Patrick; Fisher, Kiel; Goetz, Katherine; Benzinger, M Joseph; Agin, James; Goins, David; Johnson, Ronald L

    2011-01-01

    The VIDAS Salmonella (SLM) Easy Salmonella method is a specific enzyme-linked fluorescent immunoassay performed in the automated VIDAS instrument. The VIDAS Easy Salmonella method is a simple 2-step enrichment procedure, using pre-enrichment followed by selective enrichment in a newly formulated broth, SX2 broth. This new method was compared in a multilaboratory collaborative study to the U.S. Food and Drug Administration's Bacteriological Analytical Manual, Chapter 5 method for five food matrixes (liquid egg, vanilla ice cream, spinach, raw shrimp, and peanut butter) and the U.S. Department of Agriculture's Microbiology Laboratory Guidebook 4.04 method for deli turkey. Each food type was artificially contaminated with Salmonella at three inoculation levels. A total of 15 laboratories representing government, academia, and industry, throughout the United States, participated. In this study, 1583 samples were analyzed, of which 792 were paired replicates and 791 were unpaired replicates. Of the 792 paired replicates, 285 were positive by both the VIDAS and reference methods. Of the 791 unpaired replicates, 341 were positive by the VIDAS method and 325 were positive by the cultural reference method. A Chi-square analysis of each of the six food types was performed at the three inoculation levels tested. For all foods evaluated, the VIDAS Easy SLM method demonstrated results comparable to those of the reference methods for the detection of Salmonella.

  10. Escherichia coli O157:H7 induces stronger plant immunity than Salmonella enterica Typhimurium SL1344.

    PubMed

    Roy, Debanjana; Panchal, Shweta; Rosa, Bruce A; Melotto, Maeli

    2013-04-01

    Consumption of fresh produce contaminated with bacterial human pathogens has resulted in various, sometimes deadly, disease outbreaks. In this study, we assessed plant defense responses induced by the fully pathogenic bacteria Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium SL1344 in both Arabidopsis thaliana and lettuce (Lactuca sativa). Unlike SL1344, O157:H7 induced strong plant immunity at both pre-invasion and post-invasion steps of infection. For instance, O157:H7 triggered stomatal closure even under high relative humidity, an environmental condition that generally weakens plant defenses against bacteria in the field and laboratory conditions. SL1344 instead induced a transient stomatal immunity. We also observed that PR1 gene expression was significantly higher in Arabidopsis leaves infected with O157:H7 compared with SL1344. These results suggest that plants may recognize and respond to some human pathogens more effectively than others. Furthermore, stomatal immunity can diminish the penetration of human pathogens through the leaf epidermis, resulting in low bacterial titers in the plant apoplast and suggesting that additional control measures can be employed to prevent food contamination. The understanding of how plant responses can diminish bacterial contamination is paramount in preventing outbreaks and improving the safety of food supplies.

  11. Salmonella L-forms: formation in human bile in vitro and isolation culture from patients' gallbladder samples by a non-high osmotic isolation technique.

    PubMed

    Wang, D N; Wu, W J; Wang, T; Pan, Y Z; Tang, K L; She, X L; Ding, W J; Wang, H

    2015-05-01

    Bacterial L-forms have always been considered as osmotic-pressure-sensitive cell-wall-deficient bacteria and isolation culture of L-forms must use media with high osmotic pressure. However, isolation culture of stable L-forms formed in humans and animals is very difficult because they have adapted to the physiological osmotic pressure condition of the host. We use a non-high osmotic isolation technique to isolate stable L-forms of Salmonella Typhi and Salmonella Paratyphi A from bile-inducer cultures in vitro and from patients' gallbladder specimens. Multiplex PCR assay for Salmonella-specific genes and nucleotide sequencing are used to identify the Salmonella L-forms in stable L-form isolates. Using this method, we confirmed that Salmonella Paratyphi A and Salmonella Typhi cannot be isolated from bile-inducer cultures cultured for 6 h or 48 h, but the L-forms can be isolated from 1 h to 45 days. In the 524 gallbladder samples, the positive rate for bacterial forms was 19.7% and the positive rate for Salmonella spp. was 0.6% by routine bacteriological methods. The positive rate for bacterial L-forms was 75.4% using non-high osmotic isolation culture. In the L-form isolates, the positive rate of Salmonella invA gene was 3.1%. In these invA-positive L-form isolates, four were positive for the invA and flic-d genes of Salmonella Typhi, and ten were positive for the invA and flic-a genes of Salmonella Paratyphi A. Copyright © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  12. Vaccines against invasive Salmonella disease

    PubMed Central

    MacLennan, Calman A; Martin, Laura B; Micoli, Francesca

    2014-01-01

    Though primarily enteric pathogens, Salmonellae are responsible for a considerable yet under-appreciated global burden of invasive disease. In South and South-East Asia, this manifests as enteric fever caused by serovars Typhi and Paratyphi A. In sub-Saharan Africa, a similar disease burden results from invasive nontyphoidal Salmonellae, principally serovars Typhimurium and Enteritidis. The existing Ty21a live-attenuated and Vi capsular polysaccharide vaccines target S. Typhi and are not effective in young children where the burden of invasive Salmonella disease is highest. After years of lack of investment in new Salmonella vaccines, recent times have seen increased interest in the area led by emerging-market manufacturers, global health vaccine institutes and academic partners. New glycoconjugate vaccines against S. Typhi are becoming available with similar vaccines against other invasive serovars in development. With other new vaccines under investigation, including live-attenuated, protein-based and GMMA vaccines, now is an exciting time for the Salmonella vaccine field. PMID:24804797

  13. Characterizing Salmonella Contamination in Two Rendering Processing Plants.

    PubMed

    Gong, Chao; Jiang, Xiuping

    2017-02-01

    A microbiological investigation on Salmonella contamination was conducted in two U.S. rendering plants to investigate the potential cross-contamination of Salmonella in the rendering processing environment. Sampling locations were predetermined at the areas where Salmonella contamination may potentially occur, including raw materials receiving, crax (rendered materials before grinding process) grinding, and finished meal loading-out areas. Salmonella was either enumerated directly on xylose lysine Tergitol 4 agar plates or enriched in Rappaport-Vassiliadis and tetrathionate broths. The presumptive Salmonella isolates were confirmed using CHROMagar plating and latex agglutination testing and then characterized using pulsed-field gel electrophoresis, serotyping, and biofilm-forming determination. Among 108 samples analyzed, 79 (73%) samples were Salmonella positive after enrichment. Selected Salmonella isolates (n = 65) were assigned to 31 unique pulsed-field gel electrophoresis patterns, with 16 Salmonella serotypes, including Typhimurium and Mbandaka, identified as predominant serotypes and 10 Salmonella strains determined as strong biofilm formers. Our results indicated that the raw materials receiving area was the primary source of Salmonella and that the surfaces surrounding crax grinding and finished meal loading-out areas harbor Salmonella in biofilms that may recontaminate the finished meals. The same Salmonella serotypes found in both raw materials receiving and the finished meal loading-out areas suggested a potential of cross-contamination between different areas in the rendering processing environment.

  14. Gene expression in the chicken caecum in response to infections with non-typhoid Salmonella.

    PubMed

    Rychlik, Ivan; Elsheimer-Matulova, Marta; Kyrova, Kamila

    2014-12-05

    Chickens can be infected with Salmonella enterica at any time during their life. However, infections within the first hours and days of their life are epidemiologically the most important, as newly hatched chickens are highly sensitive to Salmonella infection. Salmonella is initially recognized in the chicken caecum by TLR receptors and this recognition is followed by induction of chemokines, cytokines and many effector genes. This results in infiltration of heterophils, macrophages, B- and T-lymphocytes and changes in total gene expression in the caecal lamina propria. The highest induction in expression is observed for matrix metalloproteinase 7 (MMP7). Expression of this gene is increased in the chicken caecum over 4000 fold during the first 10 days after the infection of newly hatched chickens. Additional highly inducible genes in the caecum following S. Enteritidis infection include immune responsive gene 1 (IRG1), serum amyloid A (SAA), extracellular fatty acid binding protein (ExFABP), serine protease inhibitor (SERPINB10), trappin 6-like (TRAP6), calprotectin (MRP126), mitochondrial ES1 protein homolog (ES1), interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), avidin (AVD) and transglutaminase 4 (TGM4). The induction of expression of these proteins exceeds a factor of 50. Similar induction rates are also observed for chemokines and cytokines such as IL1β, IL6, IL8, IL17, IL18, IL22, IFNγ, AH221 or iNOS. Once the infection is under control, which happens approx. 2 weeks after infection, expression of IgY and IgA increases to facilitate Salmonella elimination from the gut lumen. This review outlines the function of individual proteins expressed in chickens after infection with non-typhoid Salmonella serovars.

  15. Salmonella enterica serovar Typhimurium adhesion and cytotoxicity during epithelial cell stress is reduced by Lactobacillus rhamnosus GG

    PubMed Central

    Burkholder, Kristin M; Bhunia, Arun K

    2009-01-01

    Background Physiological stressors may alter susceptibility of the host intestinal epithelium to infection by enteric pathogens. In the current study, cytotoxic effect, adhesion and invasion of Salmonella enterica serovar Typhimurium (S. Typhimurium) to Caco-2 cells exposed to thermal stress (41°C, 1 h) was investigated. Probiotic bacteria have been shown to reduce interaction of pathogens with the epithelium under non-stress conditions and may have a significant effect on epithelial viability during infection; however, probiotic effect on pathogen interaction with epithelial cells under physiological stress is not known. Therefore, we investigated the influence of Lactobacillus rhamnosus GG and Lactobacillus gasseri on Salmonella adhesion and Salmonella-induced cytotoxicity of Caco-2 cells subjected to thermal stress. Results Thermal stress increased the cytotoxic effect of both S. Typhimurium (P = 0.0001) and nonpathogenic E. coli K12 (P = 0.004) to Caco-2 cells, and resulted in greater susceptibility of cell monolayers to S. Typhimurium adhesion (P = 0.001). Thermal stress had no significant impact on inflammatory cytokines released by Caco-2 cells, although exposure to S. Typhimurium resulted in greater than 80% increase in production of IL-6 and IL-8. Blocking S. Typhimurium with anti-ShdA antibody prior to exposure of Salmonella decreased adhesion (P = 0.01) to non-stressed and thermal-stressed Caco-2 cells. Pre-exposure of Caco-2 cells to L. rhamnosus GG significantly reduced Salmonella-induced cytotoxicity (P = 0.001) and Salmonella adhesion (P = 0.001) to Caco-2 cells during thermal stress, while L. gasseri had no effect. Conclusion Results suggest that thermal stress increases susceptibility of intestinal epithelial Caco-2 cells to Salmonella adhesion, and increases the cytotoxic effect of Salmonella during infection. Use of L. rhamnosus GG as a probiotic may reduce the severity of infection during epithelial cell stress. Mechanisms by which thermal

  16. Pathogenesis of Salmonellosis: Salmonella Exotoxins

    DTIC Science & Technology

    1982-03-08

    of Salmonella enteritidis , which included 9630 serotype newport, 9136 serotype newport, 10016 serotype javiana, and 8832, serotype javiana were also...supplied by Dr. T. Huber. Additionally, four clinical isolates of Salmonella enteritidis , which included 986 serotype typhimurium, 2000 serotype...77Z7I AD _ REPORT NUMBER 3 0 Pathogenesis of Salmonellosis: Salmonella Exotoxins Annual Progress Report (9/1/79-8/31/80) M Johnny W. Peterson, Ph.D

  17. Pathogenesis of Salmonellosis: Salmonella Exotoxins

    DTIC Science & Technology

    1982-03-08

    membrane-as3ociated enterotowin produced by S. enteritidis and by S. typhimurium ; however they could find no similarities between their Salmonella ...AD. . 0 REPORT NUJMBER 1 Pathogenesis of Salmoneiliosis: Salmonella Exotoxins Annual Progress Report (12/1/77-9/1/78) Johnny W. Peterson. Ph.D. March...TYPE OF REPORT & PERIOD COVEREOD",- Uathogenesis of ,Salmonellosils: Salmonella Annual Progress Report Exotoxins 12/T/77 9/1/78 C. PERFORMCNG ORG

  18. Myosin XI-Dependent Formation of Tubular Structures from Endoplasmic Reticulum Isolated from Tobacco Cultured BY-2 Cells1[W][OA

    PubMed Central

    Yokota, Etsuo; Ueda, Haruko; Hashimoto, Kohsuke; Orii, Hidefumi; Shimada, Tomoo; Hara-Nishimura, Ikuko; Shimmen, Teruo

    2011-01-01

    The reticular network of the endoplasmic reticulum (ER) consists of tubular and lamellar elements and is arranged in the cortical region of plant cells. This network constantly shows shape change and remodeling motion. Tubular ER structures were formed when GTP was added to the ER vesicles isolated from tobacco (Nicotiana tabacum) cultured BY-2 cells expressing ER-localized green fluorescent protein. The hydrolysis of GTP during ER tubule formation was higher than that under conditions in which ER tubule formation was not induced. Furthermore, a shearing force, such as the flow of liquid, was needed for the elongation/extension of the ER tubule. The shearing force was assumed to correspond to the force generated by the actomyosin system in vivo. To confirm this hypothesis, the S12 fraction was prepared, which contained both cytosol and microsome fractions, including two classes of myosins, XI (175-kD myosin) and VIII (BY-2 myosin VIII-1), and ER-localized green fluorescent protein vesicles. The ER tubules and their mesh-like structures were arranged in the S12 fraction efficiently by the addition of ATP, GTP, and exogenous filamentous actin. The tubule formation was significantly inhibited by the depletion of 175-kD myosin from the S12 fraction but not BY-2 myosin VIII-1. Furthermore, a recombinant carboxyl-terminal tail region of 175-kD myosin also suppressed ER tubule formation. The tips of tubules moved along filamentous actin during tubule elongation. These results indicated that the motive force generated by the actomyosin system contributes to the formation of ER tubules, suggesting that myosin XI is responsible not only for the transport of ER in cytoplasm but also for the reticular organization of cortical ER. PMID:21427277

  19. Albumin Overload and PINK1/Parkin Signaling-Related Mitophagy in Renal Tubular Epithelial Cells.

    PubMed

    Tan, Jin; Xie, Qi; Song, Shuling; Miao, Yuyang; Zhang, Qiang

    2018-03-01

    BACKGROUND Albumin, as a major urinary protein component, is a risk factor for chronic kidney disease progression. Mitochondrial dysfunction is one of the main causes of albumin-induced proximal tubule cells injury. Mitophagy is considered as a pivotal protective mechanism for the elimination of dysfunctional mitochondria. The objective of this research was to determine whether albumin overload-induced mitochondrial dysfunction can activate PINK1/Parkin-mediated mitophagy in renal tubular epithelial cells (TECs). MATERIAL AND METHODS Immunofluorescence assay and Western blot assay were used to detect the effects of albumin overload on autophagy marker protein LC3. Transmission electron microscopy and Western blot assay were used to investigate the role of albumin in mitochondrial injury. Western blot assay and co-localization of acidic lysosomes and mitochondria assay were employed to detect the activation of mitophagy induced by albumin. Finally, we explored the role of PINK1/Parkin signaling in albumin-induced mitophagy by inhibiting mitophagy by knockdown of PARK2 (Parkin) level. RESULTS Immunofluorescence and Western blot results showed that the expression level of LC3-II increased, and the maximum increase point was observed after 8 h of albumin treatment. Transmission electron microscopy results demonstrated that albumin overload-induced mitochondrial injury and quantity of autophagosomes increased. Additionally, expression of PINK1 and cytosolic cytochrome C increased and mitochondria cytochrome C decreased in the albumin group. The co-localization of acidic lysosomes and mitochondria demonstrated that the number of albumin overload-induced mitophagy-positive dots increased. The transient transfection of PARK2 siRNA result showed knockdown of the expression level of PARK2 can inhibit mitophagy induced by albumin. CONCLUSIONS In conclusion, our study suggests that mitochondrial dysfunction activates the PINK1/Parkin signaling and mitophagy in renal tubular

  20. PCL-PGLA composite tubular scaffold preparation and biocompatibility investigation.

    PubMed

    Mo, X; Weber, H-J; Ramakrishna, S

    2006-08-01

    The objective of this paper was to fabricate a biodegradable tubular scaffold for small diameter (d<6 mm) blood vessel tissue engineering. The tube scaffold needed a porous wall for cell attachment, proliferation and tissue regeneration with its degradation. A novel method given in this paper was to coat a porous layer of poly (epsilon-caprolactone) (PCL) on the outside of a poly (glycolic-co-lactic acid) (PGLA with GA:LA=90:10) fiber braided tube to give a PCL-PGLA composite. The PGLA tube was fabricated using a braiding machine by inserting a Teflon tube with the desired diameter in center of the 20 spindles, which are the carriers of PGLA fibers. Changing the diameter of the Teflon tube can vary the inner diameter of a braided PGLA tube. Thermally induced phase separation method was used for PCL solution coating on the surface of the PGLA braided tube. Controlling the polymer concentration, non-solvent addition and quenching temperature generated the pore structures, with pore sizes ranging from 10-30 microm. The fibroblast cells were seeded on the tubular scaffold and cultured in vitro for the biocompatibility investigation. Histology results showed that the fibroblast cells proliferated on the interconnected pore of the PCL porous layer in 1 week.

  1. Impact of litter salmonella status during feed withdrawal on salmonella recovery from the broiler crop and ceca

    USDA-ARS?s Scientific Manuscript database

    Research was conducted to evaluate the impact of litter Salmonella status during feed withdrawal on Salmonella recovery from the crop and ceca following feed withdrawal. In 4 experiments, pens of broilers in separate rooms were challenged with marker strains of either Salmonella Montevideo or Salmon...

  2. Effect of Low Dose of Fumonisins on Pig Health: Immune Status, Intestinal Microbiota and Sensitivity to Salmonella

    PubMed Central

    Burel, Christine; Tanguy, Mael; Guerre, Philippe; Boilletot, Eric; Cariolet, Roland; Queguiner, Marilyne; Postollec, Gilbert; Pinton, Philippe; Salvat, Gilles; Oswald, Isabelle P.; Fravalo, Philippe

    2013-01-01

    The objective of this study was to measure the effects of chronic exposure to fumonisins via the ingestion of feed containing naturally contaminated corn in growing pigs infected or not with Salmonella spp. This exposure to a moderate dietary concentration of fumonisins (11.8 ppm) was sufficient to induce a biological effect in pigs (Sa/So ratio), but no mortality or pathology was observed over 63 days of exposure. No mortality or related clinical signs, even in cases of inoculation with Salmonella (5 × 104 CFU), were observed either. Fumonisins, at these concentrations, did not affect the ability of lymphocytes to proliferate in the presence of mitogens, but after seven days post-inoculation they led to inhibition of the ability of specific Salmonella lymphocytes to proliferate following exposure to a specific Salmonella antigen. However, the ingestion of fumonisins had no impact on Salmonella translocation or seroconversion in inoculated pigs. The inoculation of Salmonella did not affect faecal microbiota profiles, but exposure to moderate concentrations of fumonisins transiently affected the digestive microbiota balance. In cases of co-infection with fumonisins and Salmonella, the microbiota profiles were rapidly and clearly modified as early as 48 h post-Salmonella inoculation. Therefore under these experimental conditions, exposure to an average concentration of fumonisins in naturally contaminated feed had no effect on pig health but did affect the digestive microbiota balance, with Salmonella exposure amplifying this phenomenon. PMID:23612754

  3. Paradigm Diagnostics Salmonella Indicator Broth (PDX-SIB) for detection of Salmonella on selected environmental surfaces.

    PubMed

    Olstein, Alan; Griffith, Leena; Feirtag, Joellen; Pearson, Nicole

    2013-01-01

    The Paradigm Diagnostics Salmonella Indicator Broth (PDX-SIB) is intended as a single-step selective enrichment indicator broth to be used as a simple screening test for the presence of Salmonella spp. in environmental samples. This method permits the end user to avoid multistep sample processing to identify presumptively positive samples, as exemplified by standard U.S. reference methods. PDX-SIB permits the outgrowth of Salmonella while inhibiting the growth of competitive Gram-negative and -positive microflora. Growth of Salmonella-positive cultures results in a visual color change of the medium from purple to yellow when the sample is grown at 37 +/- 1 degree C. Performance of PDX-SIB has been evaluated in five different categories: inclusivity-exclusivity, methods comparison, ruggedness, lot-to-lot variability, and shelf stability. The inclusivity panel included 100 different Salmonella serovars, 98 of which were SIB-positive during the 30 to 48 h incubation period. The exclusivity panel included 33 different non-Salmonella microorganisms, 31 of which were SIB-negative during the incubation period. Methods comparison studies included four different surfaces: S. Newport on plastic, S. Anatum on sealed concrete, S. Abaetetuba on ceramic tile, and S. Typhimurium in the presence of 1 log excess of Citrobacter freundii. Results of the methods comparison studies demonstrated no statistical difference between the SIB method and the U.S. Food and Drug Administration-Bacteriological Analytical Manual reference method, as measured by the Mantel-Haenszel Chi-square test. Ruggedness studies demonstrated little variation in test results when SIB incubation temperatures were varied over a 34-40 degrees C range. Lot-to-lot consistency results suggest no detectable differences in manufactured goods using two reference Salmonella serovars and one non-Salmonella microorganism.

  4. The Tuberin/mTOR Pathway Promotes Apoptosis of Tubular Epithelial Cells in Diabetes

    PubMed Central

    Velagapudi, Chakradhar; Bhandari, Basant S.; Abboud-Werner, Sherry; Simone, Simona; Abboud, Hanna E.

    2011-01-01

    Apoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose (HG) induces apoptosis is not fully understood. Because the tuberin/mTOR pathway can modulate apoptosis, we studied the role of this pathway in apoptosis in type I diabetes and in cultured proximal tubular epithelial (PTE) cells exposed to HG. Compared with control rats, diabetic rats had more apoptotic cells in the kidney cortex. Induction of diabetes also increased phosphorylation of tuberin in association with mTOR activation (measured by p70S6K phosphorylation), inactivation of Bcl-2, increased cytosolic cytochrome c expression, activation of caspase 3, and cleavage of PARP; insulin treatment prevented these changes. In vitro, exposure of PTE cells to HG increased phosphorylation of tuberin and p70S6K, phosphorylation of Bcl-2, expression of cytosolic cytochrome c, and caspase 3 activity. High glucose induced translocation of the caspase substrate YY1 from the cytoplasm to the nucleus and enhanced cleavage of PARP. Pretreatment the cells with the mTOR inhibitor rapamycin reduced the number of apoptotic cells induced by HG and the downstream effects of mTOR activation noted above. Furthermore, gene silencing of tuberin with siRNA decreased cleavage of PARP. These data show that the tuberin/mTOR pathway promotes apoptosis of tubular epithelial cells in diabetes, mediated in part by cleavage of PARP by YY1. PMID:21289215

  5. Base structure consisting of an endothelialized vascular-tree network and hepatocytes for whole liver engineering.

    PubMed

    Shirakigawa, Nana; Takei, Takayuki; Ijima, Hiroyuki

    2013-12-01

    Reconstructed liver has been desired as a liver substitute for transplantation. However, reconstruction of a whole liver has not been achieved because construction of a vascular network at an organ scale is very difficult. We focused on decellularized liver (DC-liver) as an artificial scaffold for the construction of a hierarchical vascular network. In this study, we obtained DC-liver and the tubular network structure in which both portal vein and hepatic vein systems remained intact. Furthermore, endothelialization of the tubular structure in DC-liver was achieved, which prevented blood leakage from the tubular structure. In addition, hepatocytes suspended in a collagen sol were injected from the surroundings using a syringe as a suitable procedure for liver cell inoculation. In summary, we developed a base structure consisting of an endothelialized vascular-tree network and hepatocytes for whole liver engineering. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  6. New methods for the geometrical analysis of tubular organs.

    PubMed

    Grélard, Florent; Baldacci, Fabien; Vialard, Anne; Domenger, Jean-Philippe

    2017-12-01

    This paper presents new methods to study the shape of tubular organs. Determining precise cross-sections is of major importance to perform geometrical measurements, such as diameter, wall-thickness estimation or area measurement. Our first contribution is a robust method to estimate orthogonal planes based on the Voronoi Covariance Measure. Our method is not relying on a curve-skeleton computation beforehand. This means our orthogonal plane estimator can be used either on the skeleton or on the volume. Another important step towards tubular organ characterization is achieved through curve-skeletonization, as skeletons allow to compare two tubular organs, and to perform virtual endoscopy. Our second contribution is dedicated to correcting common defects of the skeleton by new pruning and recentering methods. Finally, we propose a new method for curve-skeleton extraction. Various results are shown on different types of segmented tubular organs, such as neurons, airway-tree and blood vessels. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Exosome production and its regulation of EGFR during wound healing in renal tubular cells.

    PubMed

    Zhou, Xiangjun; Zhang, Wei; Yao, Qisheng; Zhang, Hao; Dong, Guie; Zhang, Ming; Liu, Yutao; Chen, Jian-Kang; Dong, Zheng

    2017-06-01

    Kidney repair following injury involves the reconstitution of a structurally and functionally intact tubular epithelium. Growth factors and their receptors, such as EGFR, are important in the repair of renal tubules. Exosomes are cell-produced small (~100 nm in diameter) vesicles that contain and transfer proteins, lipids, RNAs, and DNAs between cells. In this study, we examined the relationship between exosome production and EGFR activation and the potential role of exosome in wound healing. EGFR activation occurred shortly after scratch wounding in renal tubular cells. Wound repair after scratching was significantly promoted by EGF and suppressed by EGFR inhibitor gefitinib. Interestingly, scratch wounding induced a significant increase of exosome production. The exosome production was decreased by EGF and increased by gefitinib, suggesting a suppressive role of EGFR signaling in exosome production. Conversely, inhibition of exosome release by GW4869 and manumycin A markedly increased EGFR activation and promoted wound healing. Moreover, exosomes derived from scratch-wounding cells could inhibit wound healing. Collectively, the results indicate that wound healing in renal tubular cells is associated with EGFR activation and exosome production. Although EGFR activation promotes wound healing, released exosomes may antagonize EGFR activation and wound healing. Copyright © 2017 the American Physiological Society.

  8. Nonlinear Analysis of Bonded Composite Tubular Lap Joints

    NASA Technical Reports Server (NTRS)

    Oterkus, E.; Madenci, E.; Smeltzer, S. S., III; Ambur, D. R.

    2005-01-01

    The present study describes a semi-analytical solution method for predicting the geometrically nonlinear response of a bonded composite tubular single-lap joint subjected to general loading conditions. The transverse shear and normal stresses in the adhesive as well as membrane stress resultants and bending moments in the adherends are determined using this method. The method utilizes the principle of virtual work in conjunction with nonlinear thin-shell theory to model the adherends and a cylindrical shear lag model to represent the kinematics of the thin adhesive layer between the adherends. The kinematic boundary conditions are imposed by employing the Lagrange multiplier method. In the solution procedure, the displacement components for the tubular joint are approximated in terms of non-periodic and periodic B-Spline functions in the longitudinal and circumferential directions, respectively. The approach presented herein represents a rapid-solution alternative to the finite element method. The solution method was validated by comparison against a previously considered tubular single-lap joint. The steep variation of both peeling and shearing stresses near the adhesive edges was successfully captured. The applicability of the present method was also demonstrated by considering tubular bonded lap-joints subjected to pure bending and torsion.

  9. Neural Network Model for Thermal Inactivation of Salmonella Typhimurium to Elimination in Ground Chicken: Acquisition of Data by Whole Sample Enrichment, Miniature Most-Probable-Number Method.

    PubMed

    Oscar, T P

    2017-01-01

    Predictive models are valuable tools for assessing food safety. Existing thermal inactivation models for Salmonella and ground chicken do not provide predictions above 71°C, which is below the recommended final cooked temperature of 73.9°C for chicken. They also do not predict when all Salmonella are eliminated without extrapolating beyond the data used to develop them. Thus, a study was undertaken to develop a model for thermal inactivation of Salmonella to elimination in ground chicken at temperatures above those of existing models. Ground chicken thigh portions (0.76 cm 3 ) in microcentrifuge tubes were inoculated with 4.45 ± 0.25 log most probable number (MPN) of a single strain of Salmonella Typhimurium (chicken isolate). They were cooked at 50 to 100°C in 2 or 2.5°C increments in a heating block that simulated two-sided pan frying. A whole sample enrichment, miniature MPN (WSE-mMPN) method was used for enumeration. The lower limit of detection was one Salmonella cell per portion. MPN data were used to develop a multiple-layer feedforward neural network model. Model performance was evaluated using the acceptable prediction zone (APZ) method. The proportion of residuals in an APZ (pAPZ) from -1 log (fail-safe) to 0.5 log (fail-dangerous) was 0.911 (379 of 416) for dependent data and 0.910 (162 of 178) for independent data for interpolation. A pAPZ ≥0.7 indicated that model predictions had acceptable bias and accuracy. There were no local prediction problems because pAPZ for individual thermal inactivation curves ranged from 0.813 to 1.000. Independent data for interpolation satisfied the test data criteria of the APZ method. Thus, the model was successfully validated. Predicted times for a 1-log reduction ranged from 9.6 min at 56°C to 0.71 min at 100°C. Predicted times for elimination ranged from 8.6 min at 60°C to 1.4 min at 100°C. The model will be a valuable new tool for predicting and managing this important risk to public health.

  10. RNA-seq analysis of prophage induction in multidrug-resistant salmonella enterica serovar typhimurium DT104 following exposure to the agricultural antibiotic carbadox

    USDA-ARS?s Scientific Manuscript database

    Non-typhoidal Salmonella is a leading cause of U.S. foodborne disease and food-related deaths. Multidrug-resistant (MDR) Salmonella Typhimurium DT104 contains 5 prophages in the genome that may be induced to produce phage under various environmental conditions, including antibiotic exposure. We inve...

  11. Meta-analysis of chicken--salmonella infection experiments.

    PubMed

    Te Pas, Marinus F W; Hulsegge, Ina; Schokker, Dirkjan; Smits, Mari A; Fife, Mark; Zoorob, Rima; Endale, Marie-Laure; Rebel, Johanna M J

    2012-04-24

    Chicken meat and eggs can be a source of human zoonotic pathogens, especially Salmonella species. These food items contain a potential hazard for humans. Chickens lines differ in susceptibility for Salmonella and can harbor Salmonella pathogens without showing clinical signs of illness. Many investigations including genomic studies have examined the mechanisms how chickens react to infection. Apart from the innate immune response, many physiological mechanisms and pathways are reported to be involved in the chicken host response to Salmonella infection. The objective of this study was to perform a meta-analysis of diverse experiments to identify general and host specific mechanisms to the Salmonella challenge. Diverse chicken lines differing in susceptibility to Salmonella infection were challenged with different Salmonella serovars at several time points. Various tissues were sampled at different time points post-infection, and resulting host transcriptional differences investigated using different microarray platforms. The meta-analysis was performed with the R-package metaMA to create lists of differentially regulated genes. These gene lists showed many similarities for different chicken breeds and tissues, and also for different Salmonella serovars measured at different times post infection. Functional biological analysis of these differentially expressed gene lists revealed several common mechanisms for the chicken host response to Salmonella infection. The meta-analysis-specific genes (i.e. genes found differentially expressed only in the meta-analysis) confirmed and expanded the biological functional mechanisms. The meta-analysis combination of heterogeneous expression profiling data provided useful insights into the common metabolic pathways and functions of different chicken lines infected with different Salmonella serovars.

  12. Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.

    PubMed

    Liang, Zhaofeng; Zhou, Guangping; Zhang, Yihui; Li, Zhengzhong; Lin, Shuyu

    2006-12-01

    A sort of tubular ultrasonic radiator used in ultrasonic liquid processing is studied. The frequency equation of the tubular radiator is derived, and its radiated sound field in cylindrical reactor is calculated using finite element method and recorded by means of aluminum foil erosion. The results indicate that sound field of tubular ultrasonic radiator in cylindrical reactor appears standing waves along both its radial direction and axial direction, and amplitudes of standing waves decrease gradually along its radial direction, and the numbers of standing waves along its axial direction are equal to the axial wave numbers of tubular radiator. The experimental results are in good agreement with calculated results.

  13. 78 FR 42526 - Salmonella

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-D-0254] Salmonella Contamination of Dry Dog Food; Withdrawal of Compliance Policy Guide AGENCY: Food and Drug... entitled ``Sec. 690.700 Salmonella Contamination of Dry Dog Food (CPG 690.700)'' on October 1, 1980. CPG...

  14. Low-Shear modeled microgravity alters the Salmonella enterica serovar typhimurium stress response in an RpoS-independent manner

    NASA Technical Reports Server (NTRS)

    Wilson, James W.; Ott, C. Mark; Ramamurthy, Rajee; Porwollik, Steffen; McClelland, Michael; Pierson, Duane L.; Nickerson, Cheryl A.

    2002-01-01

    We have previously demonstrated that low-shear modeled microgravity (low-shear MMG) serves to enhance the virulence of a bacterial pathogen, Salmonella enterica serovar Typhimurium. The Salmonella response to low-shear MMG involves a signaling pathway that we have termed the low-shear MMG stimulon, though the identities of the low-shear MMG stimulon genes and regulatory factors are not known. RpoS is the primary sigma factor required for the expression of genes that are induced upon exposure to different environmental-stress signals and is essential for virulence in mice. Since low-shear MMG induces a Salmonella acid stress response and enhances Salmonella virulence, we reasoned that RpoS would be a likely regulator of the Salmonella low-shear MMG response. Our results demonstrate that low-shear MMG provides cross-resistance to several environmental stresses in both wild-type and isogenic rpoS mutant strains. Growth under low-shear MMG decreased the generation time of both strains in minimal medium and increased the ability of both strains to survive in J774 macrophages. Using DNA microarray analysis, we found no evidence of induction of the RpoS regulon by low-shear MMG but did find that other genes were altered in expression under these conditions in both the wild-type and rpoS mutant strains. Our results indicate that, under the conditions of these studies, RpoS is not required for transmission of the signal that induces the low-shear MMG stimulon. Moreover, our studies also indicate that low-shear MMG can be added to a short list of growth conditions that can serve to preadapt an rpoS mutant for resistance to multiple environmental stresses.

  15. Autophagy Facilitates Salmonella Replication in HeLa Cells

    PubMed Central

    Yu, Hong B.; Croxen, Matthew A.; Marchiando, Amanda M.; Ferreira, Rosana B. R.; Cadwell, Ken; Foster, Leonard J.; Finlay, B. Brett

    2014-01-01

    ABSTRACT Autophagy is a process whereby a double-membrane structure (autophagosome) engulfs unnecessary cytosolic proteins, organelles, and invading pathogens and delivers them to the lysosome for degradation. We examined the fate of cytosolic Salmonella targeted by autophagy and found that autophagy-targeted Salmonella present in the cytosol of HeLa cells correlates with intracellular bacterial replication. Real-time analyses revealed that a subset of cytosolic Salmonella extensively associates with autophagy components p62 and/or LC3 and replicates quickly, whereas intravacuolar Salmonella shows no or very limited association with p62 or LC3 and replicates much more slowly. Replication of cytosolic Salmonella in HeLa cells is significantly decreased when autophagy components are depleted. Eventually, hyperreplication of cytosolic Salmonella potentiates cell detachment, facilitating the dissemination of Salmonella to neighboring cells. We propose that Salmonella benefits from autophagy for its cytosolic replication in HeLa cells. PMID:24618251

  16. In vitro studies of chicken egg yolk antibody (IgY) against Salmonella enteritidis and Salmonella typhimurium.

    PubMed

    Lee, E N; Sunwoo, H H; Menninen, K; Sim, J S

    2002-05-01

    Chicken egg yolk antibody (IgY) raised against Salmonella enteritidis or Salmonella typhimurium was found in highly specific activity levels by ELISA. S. enteritidis- and S. typhimurium-specific IgY powder, prepared by freeze-drying the egg yolk water-soluble fraction, contained 15.5 and 10.0% of specific IgY, respectively. Anti-S. enteritidis IgY cross-reacted 55.3% with S. typhimurium. The cross-reactivity of anti-S. typhimurium IgY with S. enteritidis was 42.4%. Salmonella-specific IgY was demonstrated to inhibit Salmonella growth in liquid medium. The growth rate of S. enteritidis incubated with S. enteritidis-specific IgY was fourfold less than that of the control group during a 4-to-6-h incubation. Cell counts of S. typhimurium incubated with S. typhimurium-specific IgY were reduced by 1.6 log cfu/mL in comparison to that of the control group after 6 h of incubation. The specific binding activity of IgY was further evaluated by using immunofluorescence and immunoelectron microscopy. It was found that Salmonella-specific IgY could bind to the antigens expressed on the Salmonella surface, resulting in structural alterations of the bacterial surface.

  17. Nerve regeneration using tubular scaffolds from biodegradable polyurethane.

    PubMed

    Hausner, T; Schmidhammer, R; Zandieh, S; Hopf, R; Schultz, A; Gogolewski, S; Hertz, H; Redl, H

    2007-01-01

    In severe nerve lesion, nerve defects and in brachial plexus reconstruction, autologous nerve grafting is the golden standard. Although, nerve grafting technique is the best available approach a major disadvantages exists: there is a limited source of autologous nerve grafts. This study presents data on the use of tubular scaffolds with uniaxial pore orientation from experimental biodegradable polyurethanes coated with fibrin sealant to regenerate a 8 mm resected segment of rat sciatic nerve. Tubular scaffolds: prepared by extrusion of the polymer solution in DMF into water coagulation bath. The polymer used for the preparation of tubular scaffolds was a biodegradable polyurethane based on hexamethylene diisocyanate, poly(epsilon-caprolactone) and dianhydro-D-sorbitol. EXPERIMENTAL MODEL: Eighteen Sprague Dawley rats underwent mid-thigh sciatic nerve transection and were randomly assigned to two experimental groups with immediate repair: (1) tubular scaffold, (2) 180 degrees rotated sciatic nerve segment (control). Serial functional measurements (toe spread test, placing tests) were performed weekly from 3rd to 12th week after nerve repair. On week 12, electrophysiological assessment was performed. Sciatic nerve and scaffold/nerve grafts were harvested for histomorphometric analysis. Collagenic connective tissue, Schwann cells and axons were evaluated in the proximal nerve stump, the scaffold/nerve graft and the distal nerve stump. The implants have uniaxially-oriented pore structure with a pore size in the range of 2 micorm (the pore wall) and 75 x 700 microm (elongated pores in the implant lumen). The skin of the tubular implants was nonporous. Animals which underwent repair with tubular scaffolds of biodegradable polyurethanes coated with diluted fibrin sealant had no significant functional differences compared with the nerve graft group. Control group resulted in a trend-wise better electrophysiological recovery but did not show statistically significant

  18. Media Ion Composition Controls Regulatory and Virulence Response of Salmonella in Spaceflight

    PubMed Central

    Wilson, James W.; Ott, C. Mark; Quick, Laura; Davis, Richard; zu Bentrup, Kerstin Höner; Crabbé, Aurélie; Richter, Emily; Sarker, Shameema; Barrila, Jennifer; Porwollik, Steffen; Cheng, Pui; McClelland, Michael; Tsaprailis, George; Radabaugh, Timothy; Hunt, Andrea; Shah, Miti; Nelman-Gonzalez, Mayra; Hing, Steve; Parra, Macarena; Dumars, Paula; Norwood, Kelly; Bober, Ramona; Devich, Jennifer; Ruggles, Ashleigh; CdeBaca, Autumn; Narayan, Satro; Benjamin, Joseph; Goulart, Carla; Rupert, Mark; Catella, Luke; Schurr, Michael J.; Buchanan, Kent; Morici, Lisa; McCracken, James; Porter, Marc D.; Pierson, Duane L.; Smith, Scott M.; Mergeay, Max; Leys, Natalie; Stefanyshyn-Piper, Heidemarie M.; Gorie, Dominic; Nickerson, Cheryl A.

    2008-01-01

    The spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and physiological phenotypes relevant to the infection process. Here we report that spaceflight-induced increases in Salmonella virulence are regulated by media ion composition, and that phosphate ion is sufficient to alter related pathogenesis responses in a spaceflight analogue model. Using whole genome microarray and proteomic analyses from two independent Space Shuttle missions, we identified evolutionarily conserved molecular pathways in Salmonella that respond to spaceflight under all media compositions tested. Identification of conserved regulatory paradigms opens new avenues to control microbial responses during the infection process and holds promise to provide an improved understanding of human health and disease on Earth. PMID:19079590

  19. Large axial actuation of pre-stretched tubular dielectric elastomer and use of oil encapsulation to enhance dielectric breakdown strength

    NASA Astrophysics Data System (ADS)

    Lau, Gih-Keong; Di-Teng Tan, Desmond; La, Thanh-Giang

    2015-04-01

    Rolled dielectric elastomer actuators (DEAs) are subjected to necking and non-uniform deformation upon pre-stress relaxation. Though rolled up from flat DEAs, they performed much poorer than the flat ones. Their electrically induced axial strains were previously reported as not more than 37.3%, while the flat ones produced greater than 100% strain. Often, the rolled DEAs succumb to premature breakdown before they can realize the full actuation potential like the flat ones do. This study shows that oil encapsulation, together with large hoop pre-stretch, helps single-wound rolled DEAs, which are also known as tubular DEAs, suppress premature breakdown. Consequently, the oil-encapsulated tubular DEAs can sustain higher electric fields, and thus produce larger isotonic strain and higher isometric stress change. Under isotonic testing, they sustained very high electric fields of up to 712.7 MV m-1, which is approximately 50% higher than those of the dry tubular DEAs. They produced up to 55.4% axial isotonic strain despite axially stiffening by the passive oil capsules. In addition, due to the use of large hoop pre-stretch, even the dry tubular DEAs without oil encapsulation achieved a very large axial strain of up to 84.2% compared to previous works. Under isometric testing, the oil-encapsulated tubular DEA with enhanced breakdown strength produced an axial stress change of up to nearly 0.6 MPa, which is 114% higher than that produced by the dry ones. In conclusion, the oil encapsulation and large pre-stretch help realize fuller actuation potential of tubular dielectric elastomer, which is subjected to initially non-uniform deformation.

  20. Mathematical modeling of methyl ester concentration distribution in a continuous membrane tubular reactor and comparison with conventional tubular reactor

    NASA Astrophysics Data System (ADS)

    Talaghat, M. R.; Jokar, S. M.; Modarres, E.

    2017-10-01

    The reduction of fossil fuel resources and environmental issues made researchers find alternative fuels include biodiesels. One of the most widely used methods for production of biodiesel on a commercial scale is transesterification method. In this work, the biodiesel production by a transesterification method was modeled. Sodium hydroxide was considered as a catalyst to produce biodiesel from canola oil and methanol in a continuous tubular ceramic membranes reactor. As the Biodiesel production reaction from triglycerides is an equilibrium reaction, the reaction rate constants depend on temperature and related linearly to catalyst concentration. By using the mass balance for a membrane tubular reactor and considering the variation of raw materials and products concentration with time, the set of governing equations were solved by numerical methods. The results clearly show the superiority of membrane reactor than conventional tubular reactors. Afterward, the influences of molar ratio of alcohol to oil, weight percentage of the catalyst, and residence time on the performance of biodiesel production reactor were investigated.

  1. Genetic and Dietary Iron Overload Differentially Affect the Course of Salmonella Typhimurium Infection

    PubMed Central

    Nairz, Manfred; Schroll, Andrea; Haschka, David; Dichtl, Stefanie; Tymoszuk, Piotr; Demetz, Egon; Moser, Patrizia; Haas, Hubertus; Fang, Ferric C.; Theurl, Igor; Weiss, Günter

    2017-01-01

    Genetic and dietary forms of iron overload have distinctive clinical and pathophysiological features. HFE-associated hereditary hemochromatosis is characterized by overwhelming intestinal iron absorption, parenchymal iron deposition, and macrophage iron depletion. In contrast, excessive dietary iron intake results in iron deposition in macrophages. However, the functional consequences of genetic and dietary iron overload for the control of microbes are incompletely understood. Using Hfe+/+ and Hfe−/− mice in combination with oral iron overload in a model of Salmonella enterica serovar Typhimurium infection, we found animals of either genotype to induce hepcidin antimicrobial peptide expression and hypoferremia following systemic infection in an Hfe-independent manner. As predicted, Hfe−/− mice, a model of hereditary hemochromatosis, displayed reduced spleen iron content, which translated into improved control of Salmonella replication. Salmonella adapted to the iron-poor microenvironment in the spleens of Hfe−/− mice by inducing the expression of its siderophore iron-uptake machinery. Dietary iron loading resulted in higher bacterial numbers in both WT and Hfe−/− mice, although Hfe deficiency still resulted in better pathogen control and improved survival. This suggests that Hfe deficiency may exert protective effects in addition to the control of iron availability for intracellular bacteria. Our data show that a dynamic adaptation of iron metabolism in both immune cells and microbes shapes the host-pathogen interaction in the setting of systemic Salmonella infection. Moreover, Hfe-associated iron overload and dietary iron excess result in different outcomes in infection, indicating that tissue and cellular iron distribution determines the susceptibility to infection with specific pathogens. PMID:28443246

  2. Field analysis & eddy current losses calculation in five-phase tubular actuator

    NASA Astrophysics Data System (ADS)

    Waindok, Andrzej; Tomczuk, Bronislaw

    2017-12-01

    Field analysis including eddy currents in the magnetic core of five-phase permanent magnet tubular linear actuator (TLA) has been carried out. The eddy currents induced in the magnetic core cause the losses which have been calculated. The results from 2D finite element (FE) analysis have been compared with those from 3D calculations. The losses in the mover of the five-phase actuator are much lower than the losses in its stator. That is why the former ones can be neglected in the computer aided designing. The calculation results have been verified experimentally

  3. A Multi-Omic View of Host-Pathogen-Commensal Interplay in Salmonella-Mediated Intestinal Infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Brooke LD; Li, Jie; Sanford, James A.

    The potential for commensal microorganisms indigenous to a host (the ‘microbiome’ or ‘microbiota’) to alter infection outcome by influencing host-pathogen interplay is largely unknown. We used a multi-omics “systems” approach, incorporating proteomics, metabolomics, glycomics, and metagenomics, to explore the molecular interplay between the murine host, the pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), and commensal gut microorganisms during intestinal infection with S. Typhimurium. We find proteomic evidence that S. Typhimurium thrives within the infected 129/SvJ mouse gut without antibiotic pre-treatment, inducing inflammation and disrupting the intestinal microbiome (e.g., suppressing Bacteroidetes and Firmicutes while promoting growth of Salmonella and Enterococcus). Alterationmore » of the host microbiome population structure was highly correlated with gut environmental changes, including the accumulation of metabolites normally consumed by commensal microbiota. Finally, the less characterized phase of S. Typhimurium’s lifecycle was investigated, and both proteomic and glycomic evidence suggests S. Typhimurium may take advantage of increased fucose moieties to metabolize fucose while growing in the gut. The application of multiple omics measurements to Salmonella-induced intestinal inflammation provides insights into complex molecular strategies employed during pathogenesis between host, pathogen, and the microbiome.« less

  4. Acute tubular necrosis (ATN) presenting with an unusually prolonged period of marked polyuria heralded by an abrupt oliguric phase.

    PubMed

    Ramoutar, Virin; Landa, Cristian; James, Leighton R

    2014-08-22

    A 50-year-old African-American man presented with acute tubular necrosis (ATN) secondary to hypotension from non-typhoid Salmonella gastroenteritis and bacteraemia. The oliguric phase lasted only 24 h followed by prolonged polyuria for 20 days, with urine output in excess of 16 L/day at maximum. As indexed in PubMed this is only the second published case of this nature since 1974, in which an abrupt oliguric phase of 24 h or less heralded prolonged polyuria in ATN. The diagnosis is challenging as fractional excretion of sodium early in the clinical course and rapid normalisation of serum creatinine with intravenous fluids (IVF) may point towards prerenal azotaemia resulting in a premature discharge from hospital. Patients with an abrupt oliguric phase may suffer a secondary renal insult from the profound fluid loss that is to follow and may need inpatient monitoring with supplemental IVF to prevent deleterious outcomes. 2014 BMJ Publishing Group Ltd.

  5. Acute tubular necrosis (ATN) presenting with an unusually prolonged period of marked polyuria heralded by an abrupt oliguric phase

    PubMed Central

    Ramoutar, Virin; Landa, Cristian; James, Leighton R

    2014-01-01

    A 50-year-old African-American man presented with acute tubular necrosis (ATN) secondary to hypotension from non-typhoid Salmonella gastroenteritis and bacteraemia. The oliguric phase lasted only 24 h followed by prolonged polyuria for 20 days, with urine output in excess of 16 L/day at maximum. As indexed in PubMed this is only the second published case of this nature since 1974, in which an abrupt oliguric phase of 24 h or less heralded prolonged polyuria in ATN. The diagnosis is challenging as fractional excretion of sodium early in the clinical course and rapid normalisation of serum creatinine with intravenous fluids (IVF) may point towards prerenal azotaemia resulting in a premature discharge from hospital. Patients with an abrupt oliguric phase may suffer a secondary renal insult from the profound fluid loss that is to follow and may need inpatient monitoring with supplemental IVF to prevent deleterious outcomes. PMID:25150229

  6. Functional Activity of Antibodies Directed towards Flagellin Proteins of Non-Typhoidal Salmonella

    PubMed Central

    Boyd, Mary A.; Wang, Jin Y.; Tulapurkar, Mohan E.; Pasetti, Marcela F.; Levine, Myron M.; Simon, Raphael

    2016-01-01

    Non-typhoidal Salmonella (NTS) serovars Typhimurium and Enteritidis are major causes of invasive bacterial infections in children under 5 years old in sub-Saharan Africa, with case fatality rates of ~20%. There are no licensed NTS vaccines for humans. Vaccines that induce antibodies against a Salmonella Typhi surface antigen, Vi polysaccharide, significantly protect humans against typhoid fever, establishing that immune responses to Salmonella surface antigens can be protective. Flagella proteins, abundant surface antigens in Salmonella serovars that cause human disease, are also powerful immunogens, but the functional capacity of elicited anti-flagellar antibodies and their role in facilitating bacterial clearance has been unclear. We examined the ability of anti-flagellar antibodies to mediate microbial killing by immune system components in-vitro and assessed their role in protecting mice against invasive Salmonella infection. Polyclonal (hyperimmune sera) and monoclonal antibodies raised against phase 1 flagellin proteins of S. Enteritidis and S. Typhimurium facilitated bacterial uptake and killing of the homologous serovar pathogen by phagocytes. Polyclonal anti-flagellar antibodies accompanied by complement also achieved direct bacterial killing. Serum bactericidal activity was restricted to Salmonella serovars expressing the same flagellin used as immunogen. Notably, individual anti-flagellin monoclonal antibodies with complement were not bactericidal, but this biological activity was restored when different monoclonal anti-flagellin antibodies were combined. Passive transfer immunization with a monoclonal IgG antibody specific for phase 1 flagellin from S. Typhimurium protected mice against lethal challenge with a representative African invasive S. Typhimurium strain. These findings have relevance for the use of flagellin proteins in NTS vaccines, and confirm the role of anti-flagellin antibodies as mediators of protective immunity. PMID:26998925

  7. 49 CFR 230.55 - Tubular type water and lubricator glasses and shields.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Tubular type water and lubricator glasses and... STANDARDS Boilers and Appurtenances Water Glasses and Gauge Cocks § 230.55 Tubular type water and lubricator glasses and shields. (a) Water glasses. Tubular type water glasses shall be renewed at each 92 service day...

  8. Effect of ionizing radiation on the quantitative detection of Salmonella using real-time PCR

    NASA Astrophysics Data System (ADS)

    Lim, Sangyong; Jung, Jinwoo; Kim, Minjeong; Ryu, Sangryeol; Kim, Dongho

    2008-09-01

    Food irradiation is an economically viable technology for inactivating foodborne pathogens, but irradiation can mask pathogens in unhygienically prepared food. The aim of this study was to investigate the effect of irradiation treatment on the detection of Salmonella using real-time PCR. Three commercially available kits were tested, of which the InstaGene Matrix procedure was most effective in preparing template DNA from Salmonella exposed to radiation in broth culture. The minimum level of detection by real-time PCR combined with InstaGene Matrix was 3 log units of Salmonella per milliliter. However, when pure cultures of Salmonella were irradiated at 3 and 5 kGy, the cycle threshold ( CT) increased 1-1.5-fold compared to irradiation at 0 and 1 kGy. This indicated that irradiation treatment may result in an underestimation of bacterial counts due to radiation-induced DNA lesions. We also compared CT values in inoculated chicken homogenates before and after irradiation, which in this model caused a 1.3-3.3-fold underestimation of bacterial counts with respect to irradiation dose.

  9. β-Galactomannan and Saccharomyces cerevisiae var. boulardii modulate the immune response against Salmonella enterica serovar Typhimurium in porcine intestinal epithelial and dendritic cells.

    PubMed

    Badia, Roger; Brufau, M Teresa; Guerrero-Zamora, Ana Maria; Lizardo, Rosil; Dobrescu, Irina; Martin-Venegas, Raquel; Ferrer, Ruth; Salmon, Henri; Martínez, Paz; Brufau, Joaquim

    2012-03-01

    Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that causes inflammation, necrosis, and diarrhea in pigs, as well as being an important source of food-borne diseases in humans. Probiotics and prebiotics are promising alternatives to antibiotics to control and prevent intestinal infections. The present work investigated a recently developed β-galactomannan (βGM) prebiotic compared to the proven probiotic Saccharomyces cerevisiae var. boulardii on porcine ileum intestinal epithelial cells (IECs) of the IPI-2I line and monocyte-derived dendritic cells (DCs) cocultured in vitro with Salmonella. We observed that both S. cerevisiae var. boulardii and βGM inhibited the association of Salmonella with IECs in vitro. Our data indicated that βGM has a higher ability than S. cerevisiae var. boulardii to inhibit Salmonella-induced proinflammatory mRNA (cytokines tumor necrosis factor alpha [TNF-α], interleukin-1α [IL-1α], IL-6, and granulocyte-macrophage colony-stimulating factor [GM-CSF] and chemokines CCL2, CCL20, and CXCL8) and at protein levels (IL-6 and CXCL8). Additionally, βGM and S. cerevisiae var. boulardii induced some effects on DCs that were not observed on IECs: βGM and S. cerevisiae var. boulardii showed slight upregulation of mRNA for TNF-α, GM-CSF, and CCR7 receptor on porcine monocyte-derived dendritic cells (DCs). Indeed, the addition of βGM or S. cerevisiae var. boulardii on DCs cocultured with Salmonella showed higher gene expression (mRNA) for TNF-α, GM-CSF, and CXCL8 compared to that of the control with Salmonella. In conclusion, the addition of βGM inhibits Salmonella-induced proinflammatory profiles in IECs but may promote DC activation, although associated molecular mechanisms remain to be elucidated.

  10. β-Galactomannan and Saccharomyces cerevisiae var. boulardii Modulate the Immune Response against Salmonella enterica Serovar Typhimurium in Porcine Intestinal Epithelial and Dendritic Cells

    PubMed Central

    Brufau, M. Teresa; Guerrero-Zamora, Ana Maria; Lizardo, Rosil; Dobrescu, Irina; Martin-Venegas, Raquel; Ferrer, Ruth; Salmon, Henri; Martínez, Paz

    2012-01-01

    Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that causes inflammation, necrosis, and diarrhea in pigs, as well as being an important source of food-borne diseases in humans. Probiotics and prebiotics are promising alternatives to antibiotics to control and prevent intestinal infections. The present work investigated a recently developed β-galactomannan (βGM) prebiotic compared to the proven probiotic Saccharomyces cerevisiae var. boulardii on porcine ileum intestinal epithelial cells (IECs) of the IPI-2I line and monocyte-derived dendritic cells (DCs) cocultured in vitro with Salmonella. We observed that both S. cerevisiae var. boulardii and βGM inhibited the association of Salmonella with IECs in vitro. Our data indicated that βGM has a higher ability than S. cerevisiae var. boulardii to inhibit Salmonella-induced proinflammatory mRNA (cytokines tumor necrosis factor alpha [TNF-α], interleukin-1α [IL-1α], IL-6, and granulocyte-macrophage colony-stimulating factor [GM-CSF] and chemokines CCL2, CCL20, and CXCL8) and at protein levels (IL-6 and CXCL8). Additionally, βGM and S. cerevisiae var. boulardii induced some effects on DCs that were not observed on IECs: βGM and S. cerevisiae var. boulardii showed slight upregulation of mRNA for TNF-α, GM-CSF, and CCR7 receptor on porcine monocyte-derived dendritic cells (DCs). Indeed, the addition of βGM or S. cerevisiae var. boulardii on DCs cocultured with Salmonella showed higher gene expression (mRNA) for TNF-α, GM-CSF, and CXCL8 compared to that of the control with Salmonella. In conclusion, the addition of βGM inhibits Salmonella-induced proinflammatory profiles in IECs but may promote DC activation, although associated molecular mechanisms remain to be elucidated. PMID:22301691

  11. Surveillance for human Salmonella infections in the United States.

    PubMed

    Swaminathan, Bala; Barrett, Timothy J; Fields, Patricia

    2006-01-01

    Surveillance for human Salmonella infections plays a critical role in understanding and controlling foodborne illness due to Salmonella. Along with its public health partners, the Centers for Disease Control and Prevention (CDC) has several surveillance systems that collect information on Salmonella infections in the United States. The National Salmonella Surveillance System, begun in 1962, receives reports of laboratory-confirmed Salmonella infections through state public health laboratories. Salmonella outbreaks are reported by state and local health departments through the Foodborne Disease Outbreak Reporting System, which became a Web-based, electronic system (eFORS) in 2001. PulseNet facilitates the detection of clusters of Salmonella infections through standardized molecular subtyping (DNA "fingerprinting") of isolates and maintenance of "fingerprint" databases. The National Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS) monitors antimicrobial resistance in Salmonella by susceptibility testing of every 20th Salmonella isolate received by state and local public health laboratories. FootNet is an active surveillance system that monitors Salmonella infections in sentinel areas, providing population-based estimates of infection rates. Efforts are underway to electronically link all of the Salmonella surveillance systems at CDC to facilitate optimum use of available data and minimize duplication.

  12. Mars Life? - Microscopic Tubular Structures

    NASA Image and Video Library

    1996-08-09

    This electron microscope image shows tubular structures of likely Martian origin. These structures are very similar in size and shape to extremely tiny microfossils found in some Earth rocks. http://photojournal.jpl.nasa.gov/catalog/PIA00287

  13. Testing Feeds for Salmonella.

    USDA-ARS?s Scientific Manuscript database

    Human salmonellosis outbreaks have been linked to contamination of animal feeds. Thus it is crucial to employ sensitive Salmonella detection methods for animal feeds. Based on a review of the literature, Salmonella sustains acid injury at about pH 4.0 to5.0. Low pH can also alter the metabolism of S...

  14. Acidic pH sensing in the bacterial cytoplasm is required for Salmonella virulence.

    PubMed

    Choi, Jeongjoon; Groisman, Eduardo A

    2016-09-01

    pH regulates gene expression, biochemical activities and cellular behaviors. A mildly acidic pH activates the master virulence regulatory system PhoP/PhoQ in the facultative intracellular pathogen Salmonella enterica serovar Typhimurium. The sensor PhoQ harbors an extracytoplasmic domain implicated in signal sensing, and a cytoplasmic domain controlling activation of the regulator PhoP. We now report that, surprisingly, a decrease in Salmonella's own cytoplasmic pH induces transcription of PhoP-activated genes even when the extracytoplasmic pH remains neutral. Amino acid substitutions in PhoQ's cytoplasmic domain hindered activation by acidic pH and attenuated virulence in mice, but did not abolish activation by low Mg(2+) or the antimicrobial peptide C18G. Conversely, removal of PhoQ's extracytoplasmic domains prevented the response to the latter PhoQ-activating signals but not to acidic pH. PhoP-dependent genes were minimally induced by acidic pH in the non-pathogenic species Salmonella bongori but were activated by low Mg(2+) and C18G as in pathogenic S. enterica. Our findings indicate that the sensor PhoQ enables S. enterica to respond to both host- and bacterial-derived signals that alter its cytoplasmic pH. © 2016 John Wiley & Sons Ltd.

  15. Elevated oxidized glutathione in cystinotic proximal tubular epithelial cells.

    PubMed

    Wilmer, Martijn J G; de Graaf-Hess, Adriana; Blom, Henk J; Dijkman, Henry B P M; Monnens, Leo A; van den Heuvel, Lambertus P; Levtchenko, Elena N

    2005-11-18

    Cystinosis, the most frequent cause of inborn Fanconi syndrome, is characterized by the lysosomal cystine accumulation, caused by mutations in the CTNS gene. To elucidate the pathogenesis of cystinosis, we cultured proximal tubular cells from urine of cystinotic patients (n = 9) and healthy controls (n = 9), followed by immortalization with human papilloma virus (HPV E6/E7). Obtained cell lines displayed basolateral polarization, alkaline phosphatase activity, and presence of aminopeptidase N (CD-13) and megalin, confirming their proximal tubular origin. Cystinotic cell lines exhibited elevated cystine levels (0.86 +/- 0.95 nmol/mg versus 0.09 +/- 0.01 nmol/mg protein in controls, p = 0.03). Oxidized glutathione was elevated in cystinotic cells (1.16 +/- 0.83 nmol/mg versus 0.29 +/- 0.18 nmol/mg protein, p = 0.04), while total glutathione, free cysteine, and ATP contents were normal in these cells. In conclusion, elevated oxidized glutathione in cystinotic proximal tubular epithelial cell lines suggests increased oxidative stress, which may contribute to tubular dysfunction in cystinosis.

  16. Salmonella-secreted Virulence Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heffron, Fred; Niemann, George; Yoon, Hyunjin

    In this short review we discuss secreted virulence factors of Salmonella, which directly affect Salmonella interaction with its host. Salmonella secretes protein to subvert host defenses but also, as discussed, to reduce virulence thereby permitting the bacteria to persist longer and more successfully disperse. The type III secretion system (TTSS) is the best known and well studied of the mechanisms that enable secretion from the bacterial cytoplasm to the host cell cytoplasm. Other secretion systems include outer membrane vesicles, which are present in all Gram-negative bacteria examined to date, two-partner secretion, and type VI secretion will also be addressed. Excellentmore » reviews of Salmonella secreted effectors have focused on themes such as actin rearrangements, vesicular trafficking, ubiquitination, and the activities of the virulence factors themselves. This short review is based on S. Typhimurium infection of mice because it is a model of typhoid like disease in humans. We have organized effectors in terms of events that happen during the infection cycle and how secreted effectors may be involved.« less

  17. Renal tubular function in children with tyrosinaemia type I treated with nitisinone.

    PubMed

    Santra, S; Preece, M A; Hulton, S-A; McKiernan, P J

    2008-06-01

    Tyrosinaemia type I (TTI) is an inherited deficiency in the enzyme fumarylacetoacetate hydrolase and is frequently complicated by renal tubular dysfunction which may persist in some patients after hepatic transplantation. Nitisinone has revolutionized the management of TTI but its effect on renal tubular dysfunction has not been described in a large cohort of patients. To document the incidence and progression of renal tubular dysfunction in children with TTI treated with nitisinone at a single centre. Twenty-one patients with TTI from a single centre were treated with nitisinone for at least 12 months. Median age at first treatment was 17 weeks (range 1 week to 27 months). Nine patients (43%) presented in acute liver failure, seven (33%) had a chronic presentation and five (24%) were detected pre-clinically. A retrospective case analysis of plasma phosphate, urinary protein/creatinine ratio and tubular reabsorption of phosphate was performed for all patients as markers of tubular function. Renal ultrasounds were examined for evidence of nephrocalcinosis and where available, skeletal radiographs for rickets. All patients had biochemical evidence of renal tubular dysfunction at presentation. After nitisinone and dietary treatment were started, all three markers normalized within one year. Four children had clinical rickets at presentation (which improved), of whom one had nephrocalcinosis, which did not reverse on nitisinone. No child redeveloped tubular dysfunction after commencing nitisinone. All patients with TTI had evidence of tubular dysfunction at presentation and in all cases this resolved with nitisinone and dietary control. The tubulopathy associated with TTI is reversible.

  18. Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence.

    PubMed

    Hicks, Kevin G; Delbecq, Scott P; Sancho-Vaello, Enea; Blanc, Marie-Pierre; Dove, Katja K; Prost, Lynne R; Daley, Margaret E; Zeth, Kornelius; Klevit, Rachel E; Miller, Samuel I

    2015-05-23

    Salmonella PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQ(W104C-A128C) is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQ(W104C-A128C) Salmonella enterica Typhimurium is virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence.

  19. Ultra-Fast and Sensitive Detection of Non-Typhoidal Salmonella Using Microwave-Accelerated Metal-Enhanced Fluorescence (“MAMEF”)

    PubMed Central

    Galen, James E.; Geddes, Chris D.; Levine, Myron M.

    2011-01-01

    Certain serovars of Salmonella enterica subsp. enterica cause invasive disease (e.g., enteric fever, bacteremia, septicemia, meningitis, etc.) in humans and constitute a global public health problem. A rapid, sensitive diagnostic test is needed to allow prompt initiation of therapy in individual patients and for measuring disease burden at the population level. An innovative and promising new rapid diagnostic technique is microwave-accelerated metal-enhanced fluorescence (MAMEF). We have adapted this assay platform to detect the chromosomal oriC locus common to all Salmonella enterica subsp. enterica serovars. We have shown efficient lysis of biologically relevant concentrations of Salmonella spp. suspended in bacteriological media using microwave-induced lysis. Following lysis and DNA release, as little as 1 CFU of Salmonella in 1 ml of medium can be detected in <30 seconds. Furthermore the assay is sensitive and specific: it can detect oriC from Salmonella serovars Typhi, Paratyphi A, Paratyphi B, Paratyphi C, Typhimurium, Enteritidis and Choleraesuis but does not detect Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pneumoniae, Haemophilus influenzae or Acinetobacter baumanii. We have also performed preliminary experiments using a synthetic Salmonella oriC oligonucleotide suspended in whole human blood and observed rapid detection when the sample was diluted 1∶1 with PBS. These pre-clinical data encourage progress to the next step to detect Salmonella in blood (and other ordinarily sterile, clinically relevant body fluids). PMID:21494634

  20. Suppression of Hepcidin Expression and Iron Overload Mediate Salmonella Susceptibility in Ankyrin 1 ENU-Induced Mutant

    PubMed Central

    Yuki, Kyoko E.; Eva, Megan M.; Richer, Etienne; Chung, Dudley; Paquet, Marilène; Cellier, Mathieu; Canonne-Hergaux, François; Vaulont, Sophie; Vidal, Silvia M.; Malo, Danielle

    2013-01-01

    Salmonella, a ubiquitous Gram-negative intracellular bacterium, is a food borne pathogen that infects a broad range of hosts. Infection with Salmonella Typhimurium in mice is a broadly recognized experimental model resembling typhoid fever in humans. Using a N-ethyl-N-nitrosurea (ENU) mutagenesis recessive screen, we report the identification of Ity16 (Immunity to Typhimurium locus 16), a locus responsible for increased susceptibility to infection. The position of Ity16 was refined on chromosome 8 and a nonsense mutation was identified in the ankyrin 1 (Ank1) gene. ANK1 plays an important role in the formation and stabilization of the red cell cytoskeleton. The Ank1Ity16/Ity16 mutation causes severe hemolytic anemia in uninfected mice resulting in splenomegaly, hyperbilirubinemia, jaundice, extramedullary erythropoiesis and iron overload in liver and kidneys. Ank1Ity16/Ity16 mutant mice demonstrated low levels of hepcidin (Hamp) expression and significant increases in the expression of the growth differentiation factor 15 (Gdf15), erythropoietin (Epo) and heme oxygenase 1 (Hmox1) exacerbating extramedullary erythropoiesis, tissue iron deposition and splenomegaly. As the infection progresses in Ank1Ity16/Ity16, the anemia worsens and bacterial load were high in liver and kidneys compared to wild type mice. Heterozygous Ank1+/Ity16 mice were also more susceptible to Salmonella infection although to a lesser extent than Ank1Ity16/Ity16 and they did not inherently present anemia and splenomegaly. During infection, iron accumulated in the kidneys of Ank1+/Ity16 mice where bacterial loads were high compared to littermate controls. The critical role of HAMP in the host response to Salmonella infection was validated by showing increased susceptibility to infection in Hamp-deficient mice and significant survival benefits in Ank1 +/Ity16 heterozygous mice treated with HAMP peptide. This study illustrates that the regulation of Hamp and iron balance are crucial in the host

  1. Performance of Serum Creatinine and Kidney Injury Biomarkers for Diagnosing Histologic Acute Tubular Injury.

    PubMed

    Moledina, Dennis G; Hall, Isaac E; Thiessen-Philbrook, Heather; Reese, Peter P; Weng, Francis L; Schröppel, Bernd; Doshi, Mona D; Wilson, F Perry; Coca, Steven G; Parikh, Chirag R

    2017-12-01

    The diagnosis of acute kidney injury (AKI), which is currently defined as an increase in serum creatinine (Scr) concentration, provides little information on the condition's actual cause. To improve phenotyping of AKI, many urinary biomarkers of tubular injury are being investigated. Because AKI cases are not frequently biopsied, the diagnostic accuracy of concentrations of Scr and urinary biomarkers for histologic acute tubular injury is unknown. Cross-sectional analysis from multicenter prospective cohort. Hospitalized deceased kidney donors on whom kidney biopsies were performed at the time of organ procurement for histologic evaluation. (1) AKI diagnosed by change in Scr concentration during donor hospitalization and (2) concentrations of urinary biomarkers (neutrophil gelatinase-associated lipocalin [NGAL], liver-type fatty acid-binding protein [L-FABP], interleukin 18 [IL-18], and kidney injury molecule 1 [KIM-1]) measured at organ procurement. Histologic acute tubular injury. Of 581 donors, 98 (17%) had mild acute tubular injury and 57 (10%) had severe acute tubular injury. Overall, Scr-based AKI had poor diagnostic performance for identifying histologic acute tubular injury and 49% of donors with severe acute tubular injury did not have AKI. The area under the receiver operating characteristic curve (AUROC) of change in Scr concentration for diagnosing severe acute tubular injury was 0.58 (95% CI, 0.49-0.67) and for any acute tubular injury was 0.52 (95% CI, 0.45-0.58). Compared with Scr concentration, NGAL concentration demonstrated higher AUROC for diagnosing both severe acute tubular injury (0.67; 95% CI, 0.60-0.74; P=0.03) and any acute tubular injury (0.60; 95% CI, 0.55-0.66; P=0.005). In donors who did not have Scr-based AKI, NGAL concentrations were higher with increasing severities of acute tubular injury (subclinical AKI). However, compared with Scr concentration, AUROCs for acute tubular injury diagnosis were not significantly higher for urinary L

  2. Highly resistant Salmonella Newport-MDRAmpC transmitted through the domestic US food supply: a FoodNet case-control study of sporadic Salmonella Newport infections, 2002-2003.

    PubMed

    Varma, Jay K; Marcus, Ruthanne; Stenzel, Sara A; Hanna, Samir S; Gettner, Sharmeen; Anderson, Bridget J; Hayes, Tameka; Shiferaw, Beletshachew; Crume, Tessa L; Joyce, Kevin; Fullerton, Kathleen E; Voetsch, Andrew C; Angulo, Frederick J

    2006-07-15

    A new multidrug-resistant (MDR) strain of Salmonella serotype Newport, Newport-MDRAmpC, has recently emerged. We sought to identify the medical, behavioral, and dietary risk factors for laboratory-confirmed Salmonella Newport infection, including that with Newport-MDRAmpC. A 12-month population-based case-control study was conducted during 2002-2003 in 8 sites of the Foodborne Diseases Active Surveillance Network (FoodNet), with 215 case patients with Salmonella Newport infection and 1154 healthy community control subjects. Case patients with Newport-MDRAmpC infection were more likely than control subjects to have taken an antimicrobial agent to which Newport-MDRAmpC is resistant during the 28 days before the onset of diarrheal illness (odds ratio [OR], 5.0 [95% confidence interval {CI}, 1.6-16]). Case patients with Newport-MDRAmpC infection were also more likely to have eaten uncooked ground beef (OR, 7.8 [95% CI, 1.4-44]) or runny scrambled eggs or omelets prepared in the home (OR, 4.9 [95% CI, 1.3-19]) during the 5 days before the onset of illness. International travel was not a risk factor for Newport-MDRAmpC infection but was a strong risk factor for pansusceptible Salmonella Newport infection (OR, 7.1 [95% CI, 2.0-24]). Case patients with pansusceptible infection were also more likely to have a frog or lizard in their household (OR, 2.9 [95% CI, 1.1-7.7]). Newport-MDRAmpC infection is acquired through the US food supply, most likely from bovine and, perhaps, poultry sources, particularly among persons already taking antimicrobial agents.

  3. Exploring the Therapeutic Mechanism of Desmodium styracifolium on Oxalate Crystal-Induced Kidney Injuries Using Comprehensive Approaches Based on Proteomics and Network Pharmacology.

    PubMed

    Hou, Jiebin; Chen, Wei; Lu, Hongtao; Zhao, Hongxia; Gao, Songyan; Liu, Wenrui; Dong, Xin; Guo, Zhiyong

    2018-01-01

    . The expressions of CTSD, p-p38 MAPK, and p-CDK-2 were shown to be increased in the oxalate group and decreased in kidney tissue by the DS treatment. Luteolin, apigenin, and genistein could protect oxalate-stimulated tubular cells as active components of DS. Conclusion: The potential targets including the CTSD, p38 MAPK, and CDK2 of DS in oxalate-induced kidney injuries and the active components (luteolin, apigenin, and genistein) of DS were successfully identified in this study by combining proteomics analysis, network pharmacology prediction, and experimental validation.

  4. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOEpatents

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  5. The mitochondria-targeted antioxidant MitoQ ameliorated tubular injury mediated by mitophagy in diabetic kidney disease via Nrf2/PINK1.

    PubMed

    Xiao, Li; Xu, Xiaoxuan; Zhang, Fan; Wang, Ming; Xu, Yan; Tang, Dan; Wang, Jiahui; Qin, Yan; Liu, Yu; Tang, Chengyuan; He, Liyu; Greka, Anna; Zhou, Zhiguang; Liu, Fuyou; Dong, Zheng; Sun, Lin

    2017-04-01

    Mitochondria play a crucial role in tubular injury in diabetic kidney disease (DKD). MitoQ is a mitochondria-targeted antioxidant that exerts protective effects in diabetic mice, but the mechanism underlying these effects is not clear. We demonstrated that mitochondrial abnormalities, such as defective mitophagy, mitochondrial reactive oxygen species (ROS) overexpression and mitochondrial fragmentation, occurred in the tubular cells of db/db mice, accompanied by reduced PINK and Parkin expression and increased apoptosis. These changes were partially reversed following an intraperitoneal injection of mitoQ. High glucose (HG) also induces deficient mitophagy, mitochondrial dysfunction and apoptosis in HK-2 cells, changes that were reversed by mitoQ. Moreover, mitoQ restored the expression, activity and translocation of HG-induced NF-E2-related factor 2 (Nrf2) and inhibited the expression of Kelch-like ECH-associated protein (Keap1), as well as the interaction between Nrf2 and Keap1. The reduced PINK and Parkin expression noted in HK-2 cells subjected to HG exposure was partially restored by mitoQ. This effect was abolished by Nrf2 siRNA and augmented by Keap1 siRNA. Transfection with Nrf2 siRNA or PINK siRNA in HK-2 cells exposed to HG conditions partially blocked the effects of mitoQ on mitophagy and tubular damage. These results suggest that mitoQ exerts beneficial effects on tubular injury in DKD via mitophagy and that mitochondrial quality control is mediated by Nrf2/PINK. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Insulin's acute effects on glomerular filtration rate correlate with insulin sensitivity whereas insulin's acute effects on proximal tubular sodium reabsorption correlation with salt sensitivity in normal subjects.

    PubMed

    ter Maaten, J C; Bakker, S J; Serné, E H; ter Wee, P M; Donker, A J; Gans, R O

    1999-10-01

    Insulin induces sodium retention by increasing distal tubular sodium reabsorption. Opposite effects of insulin to offset insulin-induced sodium retention are supposedly increases in glomerular filtration rate (GFR) and decreases in proximal tubular sodium reabsorption. Defects in these opposing effects could link insulin resistance to blood-pressure elevation and salt sensitivity. We assessed the relationship between the effects of sequential physiological and supraphysiological insulin dosages (50 and 150 mU/kg/h) on renal sodium handling, and insulin sensitivity and salt sensitivity using the euglycaemic clamp technique and clearances of [131I]hippuran, [125I]iothalamate, sodium, and lithium in 20 normal subjects displaying a wide range of insulin sensitivity. Time-control experiments were performed in the same subjects. Salt sensitivity was determined using a diet method. During the successive insulin infusions, GFR increased by 5.9% (P = 0.003) and 10.9% (P<0.001), while fractional sodium excretion decreased by 34 and 50% (both P<0.001). Distal tubular sodium reabsorption increased and proximal tubular sodium reabsorption decreased. Insulin sensitivity correlated with changes in GFR during physiological (r = 0.60, P = 0.005) and supraphysiological (r = 0.58, P = 0.007) hyperinsulinaemia, but not with changes in proximal tubular sodium reabsorption. Salt sensitivity correlated with changes in proximal tubular sodium reabsorption (r = 0.49, P = 0.028), but not in GFR, during physiological hyperinsulinaemia. Neither insulin sensitivity or salt sensitivity correlated with changes in overall fractional sodium excretion. Insulin sensitivity and salt sensitivity correlate with changes in different elements of renal sodium handling, but not with overall sodium excretion, during insulin infusion. The relevance for blood pressure regulation remains to be proved.

  7. Microalgae cultivation in a tubular bioreactor and utilization of their cells

    NASA Astrophysics Data System (ADS)

    Koyu, Hon-Nami; Shunji, Kunito

    1998-03-01

    In this study on the possiblities of microalgae technology as an option for CO2 mitigation, many microalgae were isolated from seawater. Some species of the isolates, Chlamydomonas sp. strain YA-SH-1, which accumulates starch in cells under light and ferment ethanol in dark and anaerobic condition, was grown outdoors by using 50-L tubular bioreactors in batch cultivation and harvested. Using these cells, the performance of ethanol production was examined quantitatively in a 0.5-L scale fermentor. Another species, Tetraselmis sp. strain Tt-1, was cultivated in a semi-batch manner by a similar type of tubular bioreactor indoors and examined for its utilization. Tests showed these cells could be used as partial substitute for wood and kenaf pulp for processing into paper. With the idea of making microalgae produce cellulose by genetic engineering in their minds, the authors studied the structure of bacterial cellulose synthase genes and the low temperature-induced, reversible flocculation in a thermophilic blue green alga (Cyanobacterium), Synechocystis vulcanus in order to examine the feasibility of using these genes as gene source and the cynanobacterium as host.

  8. Mars Life? - Microscopic Tubular Structures

    NASA Image and Video Library

    1996-08-09

    This electron microscope image shows extremely tiny tubular structures that are possible microscopic fossils of bacteria-like organisms that may have lived on Mars more than 3.6 billion years ago. http://photojournal.jpl.nasa.gov/catalog/PIA00285

  9. Assessment of Salmonella survival in dry-cured Italian salami.

    PubMed

    Bonardi, S; Bruini, I; Bolzoni, L; Cozzolino, P; Pierantoni, M; Brindani, F; Bellotti, P; Renzi, M; Pongolini, S

    2017-12-04

    The inactivation of Salmonella during curing of Italian traditional pork salami was investigated. A total of 150 batches of ground raw meat (GRM) used for salami manufacturing by four producers were tested for Salmonella by real-time PCR followed by ISO 6579 cultural confirmation and MPN enumeration. Salami produced with Salmonella positive GRMs were re-tested at the end of their curing period. Aw, pH and NaCl content were also measured. Detection of Salmonella was performed testing both 25 and 50g of the samples. By Real-Time PCR 37% of the GRMs resulted positive, but cultural detection of Salmonella was obtained in 14% of the samples only. Salmonella enumeration ranged from 31 MPN/g to <1.3 MPN/g. The difference between testing 50g and 25g of the samples was statistically significant (p value≤0.01). In particular, ISO-50g detected Salmonella in 100% of all positive samples, vs. 62% of ISO-25g. Salami made of the contaminated GRMs were 29% Salmonella-positive, as most batches of salami produced with Salmonella-positive GRMs resulted negative after regular curing (20-48days). Overall, 13% of salami produced with Salmonella-contaminated GRMs were positive. They belonged to six batches, which turned out negative after prolonged curing ranging between 49 and 86days. Salmonella enumeration in salami ranged from 8.7 MPN/g to <1.3 MPN/g. Unlike GRMs, no significant difference was observed between the ISO-50g and the ISO-25g in detecting Salmonella in cured salami (p value: >0.05). The most common Salmonella serovars in GRMs were Derby (52%), Typhimurium monophasic variant 4, (Barbuti et al., 1993), 12:i:- (19%) and Stanley (10%). Salmonella Derby (56%), London, Branderup, Panama (13%, respectively) and Goldcoast (6%) were most frequent in cured salami. The study showed negative correlation between real-time CT values and cultural confirmation of Salmonella, as well as the importance of sample size for Salmonella detection. Among considered factors with possible effect

  10. Mixed organic solvents induce renal injury in rats.

    PubMed

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2:2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5-6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli.

  11. Mixed Organic Solvents Induce Renal Injury in Rats

    PubMed Central

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2∶2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5–6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli. PMID:23029287

  12. Phage therapy reduces lairage-induced increases in Salmonella colonization in market weight pigs

    USDA-ARS?s Scientific Manuscript database

    Contamination of meat and meat products with foodborne pathogens usually results from the carcass coming in contact with the feces of an infected animal during processing. In the case of Salmonella, several recent studies have reported that pigs become rapidly infected with the organism during tran...

  13. MiR-30c regulates cisplatin-induced apoptosis of renal tubular epithelial cells by targeting Bnip3L and Hspa5

    PubMed Central

    Du, Bin; Dai, Xiao-meng; Li, Shuang; Qi, Guo-long; Cao, Guang-xu; Zhong, Ying; Yin, Pei-di; Yang, Xue-song

    2017-01-01

    As a common anticancer drug, cisplatin has been widely used for treating tumors in the clinic. However, its side effects, especially its nephrotoxicity, noticeably restrict the application of cisplatin. Therefore, it is imperative to investigate the mechanism of renal injury and explore the corresponding remedies. In this study, we showed the phenotypes of the renal tubules and epithelial cell death as well as elevated cleaved-caspase3- and TUNEL-positive cells in rats intraperitoneally injected with cisplatin. Similar cisplatin-induced cell apoptosis was found in HK-2 and NRK-52E cells exposed to cisplatin as well. In both models of cisplatin-induced apoptosis in vivo and in vitro, quantitative PCR data displayed reductions in miR-30a-e expression levels, indicating that miR-30 might be involved in regulating cisplatin-induced cell apoptosis. This was further confirmed when the effects of cisplatin-induced cell apoptosis were found to be closely correlated with alterations in miR-30c expression, which were manipulated by transfection of either the miR-30c mimic or miR-30c inhibitor in HK-2 and NRK-52E cells. Using bioinformatics tools, including TargetScan and a gene expression database (Gene Expression Omnibus), Adrb1, Bnip3L, Hspa5 and MAP3K12 were predicted to be putative target genes of miR-30c in cisplatin-induced apoptosis. Subsequently, Bnip3L and Hspa5 were confirmed to be the target genes after determining the expression of these putative genes following manipulation of miR-30c expression levels in HK-2 cells. Taken together, our current experiments reveal that miR-30c is certainly involved in regulating the renal tubular cell apoptosis induced by cisplatin, which might supply a new strategy to minimize cisplatin-induced nephrotoxicity. PMID:28796263

  14. MiR-30c regulates cisplatin-induced apoptosis of renal tubular epithelial cells by targeting Bnip3L and Hspa5.

    PubMed

    Du, Bin; Dai, Xiao-Meng; Li, Shuang; Qi, Guo-Long; Cao, Guang-Xu; Zhong, Ying; Yin, Pei-di; Yang, Xue-Song

    2017-08-10

    As a common anticancer drug, cisplatin has been widely used for treating tumors in the clinic. However, its side effects, especially its nephrotoxicity, noticeably restrict the application of cisplatin. Therefore, it is imperative to investigate the mechanism of renal injury and explore the corresponding remedies. In this study, we showed the phenotypes of the renal tubules and epithelial cell death as well as elevated cleaved-caspase3- and TUNEL-positive cells in rats intraperitoneally injected with cisplatin. Similar cisplatin-induced cell apoptosis was found in HK-2 and NRK-52E cells exposed to cisplatin as well. In both models of cisplatin-induced apoptosis in vivo and in vitro, quantitative PCR data displayed reductions in miR-30a-e expression levels, indicating that miR-30 might be involved in regulating cisplatin-induced cell apoptosis. This was further confirmed when the effects of cisplatin-induced cell apoptosis were found to be closely correlated with alterations in miR-30c expression, which were manipulated by transfection of either the miR-30c mimic or miR-30c inhibitor in HK-2 and NRK-52E cells. Using bioinformatics tools, including TargetScan and a gene expression database (Gene Expression Omnibus), Adrb1, Bnip3L, Hspa5 and MAP3K12 were predicted to be putative target genes of miR-30c in cisplatin-induced apoptosis. Subsequently, Bnip3L and Hspa5 were confirmed to be the target genes after determining the expression of these putative genes following manipulation of miR-30c expression levels in HK-2 cells. Taken together, our current experiments reveal that miR-30c is certainly involved in regulating the renal tubular cell apoptosis induced by cisplatin, which might supply a new strategy to minimize cisplatin-induced nephrotoxicity.

  15. pH measurement of tubular vacuoles of an arbuscular mycorrhizal fungus, Gigaspora margarita.

    PubMed

    Funamoto, Rintaro; Saito, Katsuharu; Oyaizu, Hiroshi; Aono, Toshihiro; Saito, Masanori

    2015-01-01

    Arbuscular mycorrhizal fungi play an important role in phosphate supply to the host plants. The fungal hyphae contain tubular vacuoles where phosphate compounds such as polyphosphate are accumulated. Despite their importance for the phosphate storage, little is known about the physiological properties of the tubular vacuoles in arbuscular mycorrhizal fungi. As an indicator of the physiological state in vacuoles, we measured pH of tubular vacuoles in living hyphae of arbuscular mycorrhizal fungus Gigaspora margarita using ratio image analysis with pH-dependent fluorescent probe, 6-carboxyfluorescein. Fluorescent images of the fine tubular vacuoles were obtained using a laser scanning confocal microscope, which enabled calculation of vacuolar pH with high spatial resolution. The tubular vacuoles showed mean pH of 5.6 and a pH range of 5.1-6.3. These results suggest that the tubular vacuoles of arbuscular mycorrhizal fungi have a mildly acidic pH just like vacuoles of other fungal species including yeast and ectomycorrhizal fungi.

  16. Cisplatin toxicity reduced in human cultured renal tubular cells by oxygen pretreatment.

    PubMed

    Kaeidi, Ayat; Rasoulian, Bahram; Hajializadeh, Zahra; Pourkhodadad, Soheila; Rezaei, Maryam

    2013-01-01

    Cisplatin is an effective and widely used chemotherapy agent and its side effects, particularly nephrotoxicity, limit its usage and related platinum-based drugs. Cisplatin nephrotoxicity is mainly due to extremely increase in reactive oxygen species (ROS) generation leading to kidney tubular cell death. Preconditioning with oxidative stress has been demonstrated to stimulate the cellular adaptation to subsequent severe oxidative stress. Short term oxygen pre-exposure as a mild oxidative stress may enhance some endogenous defense mechanisms, so its effect on Cisplatin induced cell death was investigated in present research. We studied the effects of hyperoxic environment pre-exposure on Cisplatin toxicity in an in-vitro model of cultured human embryonic tubular epithelial cells (AD293). Viability of AD293 cells, as evaluated by MTT-assay, was affected by Cisplatin in a time (1-4 h) dependent model. Biochemical markers of cell apoptosis were evaluated using immunoblotting. Pretreatment with nearly pure oxygen (≥90%) for 2 h significantly reduced the level of cell damage. Activated caspase 3 and Bax/Bcl-2 ratio were significantly increased in Cisplatin-treated cells. Oxygen pretreatment inhibited caspase 3 activation and decreased Bax/Bcl-2 ratio. Oxygen pre-treatment itself not showed any cytotoxicity in exposure times up to 3 h. Our data indicate that hyperoxic preconditioning reduces Cisplatin toxicity in cultured human tubular epithelial cells. The exact mechanism of protection is unclear, though enhancement of some endogenous defense mechanisms and subsequently scavenging of free oxygen radicals may play an important role.

  17. Comparison of CHROMagar Salmonella Medium and Hektoen Enteric Agar for Isolation of Salmonellae from Stool Samples

    PubMed Central

    Gaillot, Olivier; Di Camillo, Patrick; Berche, Patrick; Courcol, René; Savage, Colette

    1999-01-01

    CHROMagar Salmonella (CAS), a new chromogenic medium, was retrospectively compared to Hektoen enteric agar (HEA) with 501 Salmonella stock isolates and was then prospectively compared to HEA for the detection and presumptive identification of Salmonella spp. with 508 stool samples before and after enrichment. All stock cultures (100%), including cultures of H2S-negative isolates, yielded typical mauve colonies on CAS, while 497 (99%) isolates produced typical lactose-negative, black-centered colonies on HEA. Following overnight incubation at 37°C, a total of 20 Salmonella strains were isolated from the 508 clinical samples. Sensitivities for primary plating and after enrichment were 95% (19 isolates) and 100% (20 isolates), respectively, for CAS and 80% (16 isolates) and 100% (20 isolates), respectively, for HEA. The specificity of CAS (88.9%) was significantly higher than that of HEA (78.5%; P < 0.0001). On the basis of its good sensitivity and specificity, CAS medium can be recommended for use for primary plating when human stool samples are screened for Salmonella spp. PMID:9986847

  18. [Decursin reduces reactive oxygen species and inhibits cisplatin-induced apoptosis in rat renal tubular epithelial cells].

    PubMed

    Li, Cuiqiong; Li, Jianchun; Fan, Junming; Meng, Lifeng; Cao, Ling

    2017-10-01

    Objective To study the mechanism underlying the inhibitory effect of decursin on the apoptosis of rat renal tubular epithelial cells NRK-52E induced by cisplatin. Methods First, CCK-8 assay was used to detect the effects of 0, 10, 20, 40, 80, 100, 150, 200 μmol/L decursin and 0, 5, 10, 20, 30, 40, 50 μg/mL cispatin treatment for 24 hours on cell proliferation in NRK-52E cells via determining the half inhibitory concentration (IC 50 ). Then, NRK-52E cells were stimulated with 20 μg/mL cisplatin combined with 10, 50, 100 μmol/L decursin, and cell activity was detected by CCK-8 assay. The cells were divided into normal control group, 20 μg/mL cisplatin stimulation group, and 10, 50, 100 μmol/L decursin treated groups. Cell morphological changes was observed under inverted microscope, morphological changes of nucleus was detected by DAPI staining, cell apoptosis was detected by flow cytometry, the level of intracellular ROS was detected by DCFH-DA staining, and the apoptosis marker proteins cleaved-caspase-3 and cleaved-PARP were examined by Western blot analysis. Results Compared with the normal control group, cisplatin significantly inhibited the activity of the cells, and IC 50 was about 20 μg/mL; compared with the model group, in the decursin pretreatment groups, the level of intracellular ROS decreased remarkably, the expressions of cleaved-casspase-3 and cleaved-PARP proteins were reduced, and cell apoptosis was depressed. Conclusion Decursin can decrease the intracellular ROS level and inhibit the apoptosis of NRK-52E cells induced by cisplatin.

  19. A single-tube screen for Salmonella and Shigella.

    PubMed

    Procop, Gary W; Wallace, Jacqueline D; Tuohy, Marion J; Lasalvia, Margret M; Addison, Rachel M; Reller, L Barth

    2008-08-01

    Salmonella and Shigella species are routinely sought in stool specimens submitted for culture. It is a common practice to screen lactose-negative colonies by using triple sugar iron agar, lysine iron agar, and Christensen urea agar to determine if further identification is necessary. We designed and evaluated a novel combination of media, which are layered in a single tube, for screening isolates suspected to possibly represent Salmonella or Shigella. We tested this media combination with 106 Salmonella, 56 Shigella, and 56 other gram-negative bacilli. All Salmonella and Shigella isolates tested were appropriately characterized as possible Salmonella or Shigella by using an algorithm developed for use with this media combination. Similarly, 53 (95%) of 56 other gram-negative bacilli were appropriately screened as non -Salmonella and non -Shigella isolates. This unique media combination provides the most important biochemical reactions needed to screen for Salmonella and Shigella in a single-tube format, which decreases labor by two thirds (ie, 1 tube is inoculated vs 3).

  20. Tubular solid oxide fuel cell current collector

    DOEpatents

    Bischoff, Brian L.; Sutton, Theodore G.; Armstrong, Timothy R.

    2010-07-20

    An internal current collector for use inside a tubular solid oxide fuel cell (TSOFC) electrode comprises a tubular coil spring disposed concentrically within a TSOFC electrode and in firm uniform tangential electrical contact with the electrode inner surface. The current collector maximizes the contact area between the current collector and the electrode. The current collector is made of a metal that is electrically conductive and able to survive under the operational conditions of the fuel cell, i.e., the cathode in air, and the anode in fuel such as hydrogen, CO, CO.sub.2, H.sub.2O or H.sub.2S.

  1. Meta-analysis of Chicken – Salmonella infection experiments

    PubMed Central

    2012-01-01

    Background Chicken meat and eggs can be a source of human zoonotic pathogens, especially Salmonella species. These food items contain a potential hazard for humans. Chickens lines differ in susceptibility for Salmonella and can harbor Salmonella pathogens without showing clinical signs of illness. Many investigations including genomic studies have examined the mechanisms how chickens react to infection. Apart from the innate immune response, many physiological mechanisms and pathways are reported to be involved in the chicken host response to Salmonella infection. The objective of this study was to perform a meta-analysis of diverse experiments to identify general and host specific mechanisms to the Salmonella challenge. Results Diverse chicken lines differing in susceptibility to Salmonella infection were challenged with different Salmonella serovars at several time points. Various tissues were sampled at different time points post-infection, and resulting host transcriptional differences investigated using different microarray platforms. The meta-analysis was performed with the R-package metaMA to create lists of differentially regulated genes. These gene lists showed many similarities for different chicken breeds and tissues, and also for different Salmonella serovars measured at different times post infection. Functional biological analysis of these differentially expressed gene lists revealed several common mechanisms for the chicken host response to Salmonella infection. The meta-analysis-specific genes (i.e. genes found differentially expressed only in the meta-analysis) confirmed and expanded the biological functional mechanisms. Conclusions The meta-analysis combination of heterogeneous expression profiling data provided useful insights into the common metabolic pathways and functions of different chicken lines infected with different Salmonella serovars. PMID:22531008

  2. Role of systemic infection, cross contaminations and super-shedders in Salmonella carrier state in chicken.

    PubMed

    Menanteau, Pierrette; Kempf, Florent; Trotereau, Jerome; Virlogeux-Payant, Isabelle; Gitton, Edouard; Dalifard, Julie; Gabriel, Irene; Rychlik, Ivan; Velge, Philippe

    2018-06-19

    Carriage of Salmonella is often associated with a high level of bacterial excretion and generally occurs after a short systemic infection. However, we do not know whether this systemic infection is required or whether the carrier-state corresponds to continuous reinfection or real persistence in caecal tissue. The use of a Salmonella Enteritidis bamB mutant demonstrated that a carrier-state could be obtained in chicken in the absence of systemic infection. The development of a new infection model in isolator showed that a marked decrease in animal reinfection and host-to-host transmission between chicks led to a heterogeneity of S. Enteritidis excretion and colonization contrary to what was observed in cages. This heterogeneity of infection was characterized by the presence of super-shedders, which constantly disseminated Salmonella to the low-shedder chicks, mainly through airborne movements of contaminated dust particles. The presence of super-shedders, in the absence of host-to-host transmission, demonstrated that constant reinfection was not required to induce a carrier-state. Finally, our results suggest that low-shedder chicks do not have a higher capability to destroy Salmonella but instead can block initial Salmonella colonization. This new paradigm opens new avenues to improve understanding of the carrier-state mechanisms and to define new strategies to control Salmonella infections. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis

    PubMed Central

    2013-01-01

    The characterization of the immune response of chickens to Salmonella infection is usually limited to the quantification of expression of genes coding for cytokines, chemokines or antimicrobial peptides. However, processes occurring in the cecum of infected chickens are likely to be much more diverse. In this study we have therefore characterized the transcriptome and proteome in the chicken cecum after infection with Salmonella Enteritidis. Using a combination of 454 pyrosequencing, protein mass spectrometry and quantitative real-time PCR, we identified 48 down- and 56 up-regulated chicken genes after Salmonella Enteritidis infection. The most inducible gene was that coding for MMP7, exhibiting a 5952 fold induction 9 days post-infection. An induction of greater than 100 fold was observed for IgG, IRG1, SAA, ExFABP, IL-22, TRAP6, MRP126, IFNγ, iNOS, ES1, IL-1β, LYG2, IFIT5, IL-17, AVD, AH221 and SERPIN B. Since prostaglandin D2 synthase was upregulated and degrading hydroxyprostaglandin dehydrogenase was downregulated after the infection, prostaglandin must accumulate in the cecum of chickens infected with Salmonella Enteritidis. Finally, above mentioned signaling was dependent on the presence of a SPI1-encoded type III secretion system in Salmonella Enteritidis. The inflammation lasted for 2 weeks after which time the expression of the “inflammatory” genes returned back to basal levels and, instead, the expression of IgA and IgG increased. This points to an important role for immunoglobulins in the restoration of homeostasis in the cecum after infection. PMID:23687968

  4. Interaction of Saccharomyces boulardii with Salmonella enterica Serovar Typhimurium Protects Mice and Modifies T84 Cell Response to the Infection

    PubMed Central

    Martins, Flaviano S.; Dalmasso, Guillaume; Arantes, Rosa M. E.; Doye, Anne; Lemichez, Emmanuel; Lagadec, Patricia; Imbert, Veronique; Peyron, Jean-François; Rampal, Patrick; Nicoli, Jacques R.; Czerucka, Dorota

    2010-01-01

    Background Salmonella pathogenesis engages host cells in two-way biochemical interactions: phagocytosis of bacteria by recruitment of cellular small GTP-binding proteins induced by the bacteria, and by triggering a pro-inflammatory response through activation of MAPKs and nuclear translocation of NF-κB. Worldwide interest in the use of functional foods containing probiotic bacteria for health promotion and disease prevention has increased significantly. Saccharomyces boulardii is a non-pathogenic yeast used as a probiotic in infectious diarrhea. Methodology/Principal Findings In this study, we reported that S. boulardii (Sb) protected mice from Salmonella enterica serovar Typhimurium (ST)-induced death and prevented bacterial translocation to the liver. At a molecular level, using T84 human colorectal cancer cells, we demonstrate that incubation with Sb before infection totally abolished Salmonella invasion. This correlates with a decrease of activation of Rac1. Sb preserved T84 barrier function and decreased ST-induced IL-8 synthesis. This anti-inflammatory effect was correlated with an inhibitory effect of Sb on ST-induced activation of the MAPKs ERK1/2, p38 and JNK as well as on activation of NF-κB. Electron and confocal microscopy experiments showed an adhesion of bacteria to yeast cells, which could represent one of the mechanisms by which Sb exerts its protective effects. Conclusions Sb shows modulating effects on permeability, inflammation, and signal transduction pathway in T84 cells infected by ST and an in vivo protective effect against ST infection. The present results also demonstrate that Sb modifies invasive properties of Salmonella. PMID:20111723

  5. Development and characterization of hybrid tubular structure of PLCL porous scaffold with hMSCs/ECs cell sheet.

    PubMed

    Pangesty, Azizah Intan; Arahira, Takaaki; Todo, Mitsugu

    2017-09-15

    Tissue engineering offers an alternate approach to providing vascular graft with potential to grow similar with native tissue by seeding autologous cells into biodegradable scaffold. In this study, we developed a combining technique by layering a sheet of cells onto a porous tubular scaffold. The cell sheet prepared from co-culturing human mesenchymal stem cells (hMSCs) and endothelial cells (ECs) were able to infiltrate through porous structure of the tubular poly (lactide-co-caprolactone) (PLCL) scaffold and further proliferated on luminal wall within a week of culture. Moreover, the co-culture cell sheet within the tubular scaffold has demonstrated a faster proliferation rate than the monoculture cell sheet composed of MSCs only. We also found that the co-culture cell sheet expressed a strong angiogenic marker, including vascular endothelial growth factor (VEGF) and its receptor (VEGFR), as compared with the monoculture cell sheet within 2 weeks of culture, indicating that the co-culture system could induce differentiation into endothelial cell lineage. This combined technique would provide cellularization and maturation of vascular construct in relatively short period with a strong expression of angiogenic properties.

  6. Wild-type and mutant AvrA- Salmonella induce broadly similar immune pathways in the chicken ceca with key differences in signaling intermediates and inflammation

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar Typhimurium (ST) is a serious infectious disease throughout the world, and a major reservoir for Salmonella is chicken. Chicken infected with Salmonella do not develop clinical disease, this may be the result of important host interactions with key virulence proteins. T...

  7. Expression of cleaved caspase-3 in renal tubular cells in Plasmodium falciparum malaria patients.

    PubMed

    Wichapoon, Benjamas; Punsawad, Chuchard; Viriyavejakul, Parnpen

    2017-01-01

    In Plasmodium falciparum malaria, the clinical manifestation of acute kidney injury (AKI) is commonly associated with acute tubular necrosis (ATN) in the kidney tissues. Renal tubular cells often exhibit various degrees of cloudy swelling, cell degeneration, and frank necrosis. To study individual cell death, this study evaluates the degree of renal tubular necrosis in association with apoptosis in malarial kidneys. Kidney tissues from P. falciparum malaria with AKI (10 cases), and without AKI (10 cases) were evaluated for tubular pathology. Normal kidney tissues from 10 cases served as controls. Tubular necrosis was assessed quantitatively in kidney tissues infected with P. falciparum malaria, based on histopathological evaluation. In addition, the occurrence of apoptosis was investigated using cleaved caspase-3 marker. Correlation between tubular necrosis and apoptosis was analyzed. Tubular necrosis was found to be highest in P. falciparum malaria patients with AKI (36.44% ± 3.21), compared to non-AKI (15.88% ± 1.63) and control groups (2.58% ± 0.39) (all p < 0.001). In the AKI group, the distal tubules showed a significantly higher degree of tubular necrosis than the proximal tubules (p = 0.021) and collecting tubules (p = 0.033). Tubular necrosis was significantly correlated with the level of serum creatinine (r = 0.596, p = 0.006), and the occurrence of apoptosis (r = 0.681, p = 0.001). In malarial AKI, the process of apoptosis occurs in ATN. © 2016 Asian Pacific Society of Nephrology.

  8. [Clonal association of flat epithelial atypia and tubular breast cancer].

    PubMed

    Aulmann, S; Elsawaf, Z; Penzel, R; Schirmacher, P; Sinn, H P

    2008-11-01

    Flat epithelial atypia (FEA) of the breast has recently gained attention as a possible precursor lesion of highly differentiated breast cancer. Especially tubular carcinomas, with which FEA shares cytological features, often occur in close proximity to each other. To examine a possible clonal relationship, we analysed mutations of the highly variable region of the mitochondrial genome in a series of tubular carcinomas, associated FEA and normal glands. Multiple sequence alignment showed identical mtDNA mutations in approximately 50% of paired FEA and tumour samples, indicative of a clonal relationship. Our data indicate a possible precursor role of FEA in the development of tubular breast cancer.

  9. Salmonella: an ecological success story

    USDA-ARS?s Scientific Manuscript database

    Salmonella was first described in 1885 as a secondary pathogen in the infectious disease process. In 1929, a paper published in the Proceedings of the Royal Society of Medicine reported that Salmonella organisms were predominant in food borne outbreaks but acknowledged that the path of infection wa...

  10. Dynamic Modularity of Host Protein Interaction Networks in Salmonella Typhi Infection

    PubMed Central

    Dhal, Paltu Kumar; Barman, Ranjan Kumar; Saha, Sudipto; Das, Santasabuj

    2014-01-01

    Background Salmonella Typhi is a human-restricted pathogen, which causes typhoid fever and remains a global health problem in the developing countries. Although previously reported host expression datasets had identified putative biomarkers and therapeutic targets of typhoid fever, the underlying molecular mechanism of pathogenesis remains incompletely understood. Methods We used five gene expression datasets of human peripheral blood from patients suffering from S. Typhi or other bacteremic infections or non-infectious disease like leukemia. The expression datasets were merged into human protein interaction network (PIN) and the expression correlation between the hubs and their interacting proteins was measured by calculating Pearson Correlation Coefficient (PCC) values. The differences in the average PCC for each hub between the disease states and their respective controls were calculated for studied datasets. The individual hubs and their interactors with expression, PCC and average PCC values were treated as dynamic subnetworks. The hubs that showed unique trends of alterations specific to S. Typhi infection were identified. Results We identified S. Typhi infection-specific dynamic subnetworks of the host, which involve 81 hubs and 1343 interactions. The major enriched GO biological process terms in the identified subnetworks were regulation of apoptosis and biological adhesions, while the enriched pathways include cytokine signalling in the immune system and downstream TCR signalling. The dynamic nature of the hubs CCR1, IRS2 and PRKCA with their interactors was studied in detail. The difference in the dynamics of the subnetworks specific to S. Typhi infection suggests a potential molecular model of typhoid fever. Conclusions Hubs and their interactors of the S. Typhi infection-specific dynamic subnetworks carrying distinct PCC values compared with the non-typhoid and other disease conditions reveal new insight into the pathogenesis of S. Typhi. PMID:25144185

  11. Development of multiplex PCR assay for simultaneous detection of Salmonella genus, Salmonella subspecies I, Salm. Enteritidis, Salm. Heidelberg and Salm. Typhimurium.

    PubMed

    Park, S H; Ricke, S C

    2015-01-01

    The aim of this research was to develop multiplex PCR assay that could simultaneously detect Salmonella genus, Salmonella subsp. I, Salm. Enteritidis, Heidelberg and Typhimurium because these Salmonella serovars are the most common isolates associated with poultry products. Five primers were utilized to establish multiplex PCR and applied to Salmonella isolates from chickens and farm environments. These isolates were identified as Salmonella subsp. I and 16 of 66 isolates were classified as Salm. Enteritidis, while Heidelberg or Typhimurium was not detected. We also spiked three Salmonella strains on chicken breast meat to evaluate the specificity and sensitivity of multiplex PCR as well as qPCR to optimize quantification of Salmonella in these samples. The optimized multiplex PCR and qPCR could detect approx. 2·2 CFU of Salmonella per gram after 18 h enrichment. The multiplex PCR and qPCR would provide rapid and consistent results. Also, these techniques would be useful for the detection and quantification of Salmonella in contaminated poultry, foods and environmental samples. The strategy for the rapid detection of Salmonella serovars in poultry is needed to further reduce the incidence of salmonellosis in humans. The optimized multiplex PCR will be useful to detect prevalent Salmonella serovars in poultry products. © 2014 The Society for Applied Microbiology.

  12. The agricultural antibiotic carbadox induces prophage and antibiotic resistance gene transfer in multidrug-resistant salmonella enterica serovar typhimurium DT104

    USDA-ARS?s Scientific Manuscript database

    Non-typhoidal Salmonella strains cause ~1 million cases of foodborne disease each year in the U.S. and are a leading cause of food-related deaths. The prevalence of multidrug-resistant (MDR) Salmonella serovars has increased over the last few decades, and infection with these strains has an increase...

  13. Tubular Adenoma of the Breast: A Rare Presentation and Review of the Literature

    PubMed Central

    Salemis, Nikolaos S.; Gemenetzis, Georgios; Karagkiouzis, Gregorios; Seretis, Charalambos; Sapounas, Konstantinos; Tsantilas, Vlasios; Sambaziotis, Dimitrios; Lagoudianakis, Emmanuel

    2012-01-01

    Tubular adenomas, also known as pure adenomas, are rare epithelial tumors of the breast. Only a few cases have been reported in the literature, especially in young women of reproductive age. Postmenopausal women are very rarely affected. We describe here a very rare case of tubular breast adenoma in a postmenopausal woman who presented with a gradually enlarging breast lump. Clinical examination and imaging studies revealed a non-tender well circumscribed left breast tumor suggestive of a fibroadenoma. Due to the history of progressive enlargement of the breast lump, a surgical excision was performed. Histological findings were suggestive of a tubular breast adenoma. We conclude that although tubular breast adenoma is rare, it should always be considered in the differential diagnosis in postmenopausal patients presenting with a gradually enlarging breast mass. Preoperative diagnosis is difficult because tubular adenoma is indistinguishable from a fibroadenoma on physical examination and breast imaging. Surgical excision is necessary to establish a definitive diagnosis. Clinical presentation and management of our patient are discussed along with a review of the literature. Keywords Tubular adenoma; Breast; Breast mass. PMID:22383931

  14. Tubular adenoma of the breast: a rare presentation and review of the literature.

    PubMed

    Salemis, Nikolaos S; Gemenetzis, Georgios; Karagkiouzis, Gregorios; Seretis, Charalambos; Sapounas, Konstantinos; Tsantilas, Vlasios; Sambaziotis, Dimitrios; Lagoudianakis, Emmanuel

    2012-02-01

    Tubular adenomas, also known as pure adenomas, are rare epithelial tumors of the breast. Only a few cases have been reported in the literature, especially in young women of reproductive age. Postmenopausal women are very rarely affected. We describe here a very rare case of tubular breast adenoma in a postmenopausal woman who presented with a gradually enlarging breast lump. Clinical examination and imaging studies revealed a non-tender well circumscribed left breast tumor suggestive of a fibroadenoma. Due to the history of progressive enlargement of the breast lump, a surgical excision was performed. Histological findings were suggestive of a tubular breast adenoma. We conclude that although tubular breast adenoma is rare, it should always be considered in the differential diagnosis in postmenopausal patients presenting with a gradually enlarging breast mass. Preoperative diagnosis is difficult because tubular adenoma is indistinguishable from a fibroadenoma on physical examination and breast imaging. Surgical excision is necessary to establish a definitive diagnosis. Clinical presentation and management of our patient are discussed along with a review of the literature. Tubular adenoma; Breast; Breast mass.

  15. Salmonella Levels Associated with Skin of Turkey Parts.

    PubMed

    Peng, Ye; Deng, Xiang Y; Harrison, Mark A; Alali, Walid Q

    2016-05-01

    Turkey skin is used as a source of fat in finished ground turkey products. Salmonella-contaminated skin may potentially disseminate this pathogen to ground turkey. The objective of this study was to determine and compare Salmonella levels (presence and numbers) associated with the skin of turkey parts (i.e., drumstick, thigh, and wing). Over a 10-month period, 20 turkey flocks expected to be highly contaminated with Salmonella based on boot-sock testing data of turkey houses were sampled. A total of 300 samples per type of turkey part were collected postchill and were tested for Salmonella using the most-probable-number (MPN) and enrichment methods. Overall, Salmonella was detected in 13.7, 19.7, and 25.0% of drumstick skin, thigh skin, and wing skin samples, respectively. Salmonella prevalence from wing skin was significantly higher (P < 0.05) than in drumstick skin, but the difference was not significant (P > 0.05) when compared with thigh skin. Salmonella was 2.4 times more likely to be present from thigh skin (odds ratio = 2.4; P < 0.05) when the pathogen was found from wing skin. Salmonella mean numbers from drumstick, thigh, and wing were 1.18, 1.29, and 1.45 log MPN per sample, respectively; these values were not significantly different (P > 0.05). Based on our findings, the high prevalence of Salmonella associated with the skin of turkey parts could be a potential source for ground turkey contamination.

  16. A recurrent, multistate outbreak of salmonella serotype agona infections associated with dry, unsweetened cereal consumption, United States, 2008.

    PubMed

    Russo, Elizabeth T; Biggerstaff, Gwen; Hoekstra, R Michael; Meyer, Stephanie; Patel, Nehal; Miller, Benjamin; Quick, Rob

    2013-02-01

    An outbreak of Salmonella enterica serotype Agona infections associated with nationwide distribution of cereal from Company X was identified in April 2008. This outbreak was detected using PulseNet, the national molecular subtyping network for foodborne disease surveillance, which coincided with Company X's voluntary recall of unsweetened puffed rice and wheat cereals after routine product sampling yielded Salmonella Agona. A case patient was defined as being infected with the outbreak strain of Salmonella Agona, with illness onset from 1 January through 1 July 2008. Case patients were interviewed using a standard questionnaire, and the proportion of ill persons who reported eating Company X puffed rice cereal was compared with Company X's market share data using binomial testing. The Minnesota Department of Agriculture inspected the cereal production facility and collected both product and environmental swab samples. Routine surveillance identified 33 case patients in 17 states. Of 32 patients interviewed, 24 (83%) reported eating Company X puffed rice cereal. Company X puffed rice cereal represented 0.063% of the total ready-to-eat dry cereal market share in the United States at the time of the investigation. Binomial testing suggested that the proportion of exposed case patients would not likely occur by chance (P < 0.0001). Of 17 cereal samples collected from case patient homes for laboratory testing, 2 (12%) yielded Salmonella Agona indistinguishable from the outbreak strain. Twelve environmental swabs and nine product samples from the cereal plant yielded the outbreak strain of Salmonella Agona. Company X cereal was implicated in a similar outbreak of Salmonella Agona infection in 1998 with the same outbreak strain linked to the same production facility. We hypothesize that a recent construction project at this facility created an open wall near the cereal production area allowing reintroduction of Salmonella Agona into the product, highlighting the

  17. A Simple Tubular Reactor Experiment.

    ERIC Educational Resources Information Center

    Hudgins, Robert R.; Cayrol, Bertrand

    1981-01-01

    Using the hydrolysis of crystal violet dye by sodium hydroxide as an example, the theory, apparatus, and procedure for a laboratory demonstration of tubular reactor behavior are described. The reaction presented can occur at room temperature and features a color change to reinforce measured results. (WB)

  18. Factor h and properdin recognize different epitopes on renal tubular epithelial heparan sulfate.

    PubMed

    Zaferani, Azadeh; Vivès, Romain R; van der Pol, Pieter; Navis, Gerjan J; Daha, Mohamed R; van Kooten, Cees; Lortat-Jacob, Hugues; Seelen, Marc A; van den Born, Jacob

    2012-09-07

    During proteinuria, renal tubular epithelial cells become exposed to ultrafiltrate-derived serum proteins, including complement factors. Recently, we showed that properdin binds to tubular heparan sulfates (HS). We now document that factor H also binds to tubular HS, although to a different epitope than properdin. Factor H was present on the urinary side of renal tubular cells in proteinuric, but not in normal renal tissues and colocalized with properdin in proteinuric kidneys. Factor H dose-dependently bound to proximal tubular epithelial cells (PTEC) in vitro. Preincubation of factor H with exogenous heparin and pretreatment of PTECs with heparitinase abolished the binding to PTECs. Surface plasmon resonance experiments showed high affinity of factor H for heparin and HS (K(D) values of 32 and 93 nm, respectively). Using a library of HS-like polysaccharides, we showed that chain length and high sulfation density are the most important determinants for glycosaminoglycan-factor H interaction and clearly differ from properdin-heparinoid interaction. Coincubation of properdin and factor H did not hamper HS/heparin binding of one another, indicating recognition of different nonoverlapping epitopes on HS/heparin by factor H and properdin. Finally we showed that certain low anticoagulant heparinoids can inhibit properdin binding to tubular HS, with a minor effect on factor H binding to tubular HS. As a result, these heparinoids can control the alternative complement pathway. In conclusion, factor H and properdin interact with different HS epitopes of PTECs. These interactions can be manipulated with some low anticoagulant heparinoids, which can be important for preventing complement-derived tubular injury in proteinuric renal diseases.

  19. Salmonella serotype distribution in the Dutch broiler supply chain.

    PubMed

    van Asselt, E D; Thissen, J T N M; van der Fels-Klerx, H J

    2009-12-01

    Salmonella serotype distribution can give insight in contamination routes and persistence along a production chain. Therefore, it is important to determine not only Salmonella prevalence but also to specify the serotypes involved at the different stages of the supply chain. For this purpose, data from a national monitoring program in the Netherlands were used to estimate the serotype distribution and to determine whether this distribution differs for the available sampling points in the broiler supply chain. Data covered the period from 2002 to 2005, all slaughterhouses (n = 22), and the following 6 sampling points: departure from hatchery, arrival at the farm, departure from the farm, arrival at the slaughterhouse, departure from the slaughterhouse, and end of processing. Furthermore, retail data for 2005 were used for comparison with slaughterhouse data. The following serotypes were followed throughout the chain: Salmonella Enteritidis, Salmonella Typhimurium, Salmonella Paratyphi B var. Java (Salmonella Java), Salmonella Infantis, Salmonella Virchow, and Salmonella Mbandaka. Results showed that serotype distribution varied significantly throughout the supply chain (P < 0.05). Main differences were found at the farm and at the slaughterhouse (within one stage), and least differences were found between departure from one stage and arrival at the next stage. The most prominent result was the increase of Salmonella Java at farm level. This serotype remained the most prominent pathogen throughout the broiler supply chain up to the retail phase.

  20. Sources of salmonellae in an uninfected commercially-processed broiler flock.

    PubMed

    Rigby, C E; Pettit, J R; Baker, M F; Bentley, A H; Salomons, M O; Lior, H

    1980-07-01

    Cultural monitoring was used to study the incidence and sources of salmonellae in a 4160 bird broiler flock during the growing period, transport and processing in a commercial plant. No salmonellae were isolated from any of 132 litter samples of 189 chickens cultured during the seven-week growing period, even though nest litter samples from four of the eight parent flocks yielded salmonellae and Salmonella worthington was isolated from the meat meal component of the grower ration. On arrival at the plant, 2/23 birds sampled carried S. infantis on their feathers, although intestinal cultures failed to yield salmonellae. Three of 18 processed carcasses samples yielded salmonellae (S. infantis, S. heidelberg, S. typhimurium var copenhagen). The most likely source of these salmonellae was the plastic transport crates, since 15/107 sampled before the birds were loaded yielded salmonellae (S. infantis, S. typhimurium). The crate washer at the plant did not reduce the incidence of Salmonella-contaminated crates, since 16/116 sampled after washing yielded salmonellae (S. infantis, S. typhimurium, S. heidelberg, S. schwarzengrund, S. albany).

  1. Salmonella: A century old conundrum

    USDA-ARS?s Scientific Manuscript database

    In 1885 a new bacterial species, Salmonella cholerae suis which was thought to cause hog cholera. Interestingly, Salmonella cholerae suis was not the etiologic agent of hog cholera (which is caused by a virus), but it was observed to be a secondary pathogen in the infectious process. In 1929, a pa...

  2. Bmi-1 plays a critical role in the protection from acute tubular necrosis by mobilizing renal stem/progenitor cells.

    PubMed

    Lv, Xianhui; Yu, Zhenzhen; Xie, Chunfeng; Dai, Xiuliang; Li, Qing; Miao, Dengshun; Jin, Jianliang

    2017-01-22

    The regeneration of injured tubular cell occurs primarily from intrinsic renal stem/progenitor cells (RSCs) labeled with CD24 and CD133 after acute tubular necrosis (ATN). Bmi-1 plays a crucial role in regulating self-renewal, differentiation and aging of multiple adult stem cells and progenitor cells. Bmi-1 was rapidly elevated in the induction of adult kidney regeneration by renal injury. To determine whether Bmi-1 maintained mobilization of RSCs in the protection from ATN, glycerol-rhabdomyolysis-induced ATN were performed in wild type (WT) and Bmi-1-deficient (Bmi-1 -/- ) mice. Their ATN phenotypes were analyzed; CD24 and CD133 double positive (CD24 + CD133 + ) cells were measured; and the levels of serum urea nitrogen (SUN) and serum creatinine (SCr) were detected. We found that CD24 + CD133 + RSCs were mobilized in WT ATN mice with the increased expression of Bmi-1; Bmi-1 deficiency led to increased tubular cast formation and necrosis, elevated levels of SUN and SCr, decreased tubular proliferation, and immobilized ratio of RSCs in ATN. These findings indicated that Bmi-1 played a critical role in the protection from ATN by maintaining mobilization of RSCs and would be a novel therapeutic target for preventing the progression of ATN. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Bmi-1 plays a critical role in the protection from acute tubular necrosis by mobilizing renal stem/progenitor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Xianhui; Yu, Zhenzhen; Xie, Chunfeng

    The regeneration of injured tubular cell occurs primarily from intrinsic renal stem/progenitor cells (RSCs) labeled with CD24 and CD133 after acute tubular necrosis (ATN). Bmi-1 plays a crucial role in regulating self-renewal, differentiation and aging of multiple adult stem cells and progenitor cells. Bmi-1 was rapidly elevated in the induction of adult kidney regeneration by renal injury. To determine whether Bmi-1 maintained mobilization of RSCs in the protection from ATN, glycerol-rhabdomyolysis-induced ATN were performed in wild type (WT) and Bmi-1-deficient (Bmi-1{sup −/−}) mice. Their ATN phenotypes were analyzed; CD24 and CD133 double positive (CD24{sup +}CD133{sup +}) cells were measured; andmore » the levels of serum urea nitrogen (SUN) and serum creatinine (SCr) were detected. We found that CD24{sup +}CD133{sup +} RSCs were mobilized in WT ATN mice with the increased expression of Bmi-1; Bmi-1 deficiency led to increased tubular cast formation and necrosis, elevated levels of SUN and SCr, decreased tubular proliferation, and immobilized ratio of RSCs in ATN. These findings indicated that Bmi-1 played a critical role in the protection from ATN by maintaining mobilization of RSCs and would be a novel therapeutic target for preventing the progression of ATN.« less

  4. Genetics Home Reference: renal tubular dysgenesis

    MedlinePlus

    ... genetic condition? Genetic and Rare Diseases Information Center Frequency Renal tubular dysgenesis is a rare disorder, but ... of Medicine Lister Hill National Center for Biomedical Communications 8600 Rockville Pike, Bethesda, MD 20894, USA HONCode ...

  5. Survival of Salmonella during baking of peanut butter cookies.

    PubMed

    Lathrop, Amanda A; Taylor, Tiffany; Schnepf, James

    2014-04-01

    Peanuts and peanut-based products have been the source of recent Salmonella outbreaks worldwide. Because peanut butter is commonly used as an ingredient in baked goods, such as cookies, the potential risk of Salmonella remaining in these products after baking needs to be assessed. This research examines the potential hazard of Salmonella in peanut butter cookies when it is introduced via the peanut-derived ingredient. The survival of Salmonella during the baking of peanut butter cookies was determined. Commercial, creamy-style peanut butter was artificially inoculated with a five-strain Salmonella cocktail at a target concentration of 10(8) CFU/g. The inoculated peanut butter was then used to prepare peanut butter cookie dough following a standard recipe. Cookies were baked at 350 °F (177 °C) and were sampled after 10, 11, 12, 13, 14, and 15 min. Temperature profiles of the oven and cookies were monitored during baking. The water activity and pH of the inoculated and uninoculated peanut butter, raw dough, and baked cookies were measured. Immediately after baking, cookies were cooled, and the survival of Salmonella was determined by direct plating or enrichment. After baking cookies for 10 min, the minimum reduction of Salmonella observed was 4.8 log. In cookies baked for 13 and 14 min, Salmonella was only detectable by enrichment reflecting a Salmonella reduction in the range of 5.2 to 6.2 log. Cookies baked for 15 min had no detectable Salmonella. Results of this study showed that proper baking will reduce Salmonella in peanut butter cookies by 5 log or more.

  6. Isolation of Salmonella enterica serovar Enteritidis from houseflies (Musca domestica) found in rooms containing Salmonella serovar Enteritidis-challenged hens.

    PubMed

    Holt, Peter S; Geden, Christopher J; Moore, Randle W; Gast, Richard K

    2007-10-01

    Houseflies (Musca domestica) released into rooms containing hens challenged with Salmonella enterica serovar Enteritidis (Salmonella serovar Enteritidis) rapidly became contaminated with Salmonella serovar Enteritidis. Forty to 50% of the flies were contaminated at 48 h, and the percentage increased to 50 to 70% at 4 and 7 days postexposure and then decreased to 30% at day 15. Initial attempts at recovering surface organisms for culture using an aqueous rinse were largely unsuccessful, while cultures of internal contents readily recovered Salmonella serovar Enteritidis. However, when 0.5% detergent was incorporated into the rinse, high recovery levels of bacteria were observed from both external and internal culture regimens, indicating equal distribution of the organism on and in the fly and a tighter interaction of the organism with the host than previously thought. Salmonella serovar Enteritidis was isolated routinely from the fly gut, on rare occasions from the crop, and never from the salivary gland. Feeding contaminated flies to hens resulted in gut colonization of a third of the birds, but release of contaminated flies in a room containing previously unchallenged hens failed to result in colonization of any of the subject birds. These results indicate that flies exposed to an environment containing Salmonella serovar Enteritidis can become colonized with the organism and might serve as a source for transmission of Salmonella serovar Enteritidis within a flock situation.

  7. Isolation of Salmonella enterica Serovar Enteritidis from Houseflies (Musca domestica) Found in Rooms Containing Salmonella Serovar Enteritidis-Challenged Hens▿

    PubMed Central

    Holt, Peter S.; Geden, Christopher J.; Moore, Randle W.; Gast, Richard K.

    2007-01-01

    Houseflies (Musca domestica) released into rooms containing hens challenged with Salmonella enterica serovar Enteritidis (Salmonella serovar Enteritidis) rapidly became contaminated with Salmonella serovar Enteritidis. Forty to 50% of the flies were contaminated at 48 h, and the percentage increased to 50 to 70% at 4 and 7 days postexposure and then decreased to 30% at day 15. Initial attempts at recovering surface organisms for culture using an aqueous rinse were largely unsuccessful, while cultures of internal contents readily recovered Salmonella serovar Enteritidis. However, when 0.5% detergent was incorporated into the rinse, high recovery levels of bacteria were observed from both external and internal culture regimens, indicating equal distribution of the organism on and in the fly and a tighter interaction of the organism with the host than previously thought. Salmonella serovar Enteritidis was isolated routinely from the fly gut, on rare occasions from the crop, and never from the salivary gland. Feeding contaminated flies to hens resulted in gut colonization of a third of the birds, but release of contaminated flies in a room containing previously unchallenged hens failed to result in colonization of any of the subject birds. These results indicate that flies exposed to an environment containing Salmonella serovar Enteritidis can become colonized with the organism and might serve as a source for transmission of Salmonella serovar Enteritidis within a flock situation. PMID:17675422

  8. Vibration dampener for dampening vibration of a tubular member

    DOEpatents

    Obermeyer, F.D.; Middlebrooks, W.B.; DeMario, E.E.

    1994-10-18

    Vibration dampener for dampening vibration of a tubular member, such as an instrumentation tube of the type found in nuclear reactor pressure vessels is disclosed. The instrumentation tube is received in an outer tubular member, such as a guide thimble tube. The vibration dampener comprises an annular sleeve which is attachable to the inside surface of the guide thimble tube and which is sized to surround the instrumentation tube. Dimples are attached to the interior wall of the sleeve for radially supporting the instrumentation tube. The wall of the sleeve has a flexible spring member, which is formed from the wall, disposed opposite the dimples for biasing the instrumentation tube into abutment with the dimples. Flow-induced vibration of the instrumentation tube will cause it to move out of contact with the dimples and further engage the spring member, which will flex a predetermined amount and exert a reactive force against the instrumentation tube to restrain its movement. The amount by which the spring member will flex is less than the unrestrained amplitude of vibration of the instrumentation tube. The reactive force exerted against the instrumentation tube will be sufficient to return it to its original axial position within the thimble tube. In this manner, vibration of the instrumentation tube is dampened so that in-core physics measurements are accurate and so that the instrumentation tube will not wear against the inside surface of the guide thimble tube. 14 figs.

  9. Vibration dampener for dampening vibration of a tubular member

    DOEpatents

    Obermeyer, Franklin D.; Middlebrooks, Willis B.; DeMario, Edmund E.

    1994-01-01

    Vibration dampener for dampening vibration of a tubular member, such as an instrumentation tube of the type found in nuclear reactor pressure vessels. The instrumentation tube is received in an outer tubular member, such as a guide thimble tube. The vibration dampener comprises an annular sleeve which is attachable to the inside surface of the guide thimble tube and which is sized to surround the instrumentation tube. Dimples are attached to the interior wall of the sleeve for radially supporting the instrumentation tube. The wall of the sleeve has a flexible spring member, which is formed from the wall, disposed opposite the dimples for biasing the instrumentation tube into abutment with the dimples. Flow-induced vibration of the instrumentation tube will cause it to move out of contact with the dimples and further engage the spring member, which will flex a predetermined amount and exert a reactive force against the instrumentation tube to restrain its movement. The amount by which the spring member will flex is less than the unrestrained amplitude of vibration of the instrumentation tube. The reactive force exerted against the instrumentation tube will be sufficient to return it to its original axial position within the thimble tube. In this manner, vibration of the instrumentation tube is dampened so that in-core physics measurements are accurate and so that the instrumentation tube will not wear against the inside surface of the guide thimble tube.

  10. Live, attenuated Salmonella typhimurium vectoring Campylobacter antigens.

    PubMed

    Sizemore, Donata R; Warner, Beth; Lawrence, Julie; Jones, Amy; Killeen, Kevin P

    2006-05-01

    We describe the evaluation of three live, attenuated deltaphoP/Q Salmonella enteric serovar Typhimurium strains expressing PEB1 minus its signal sequence (PEB1-ss) from three different plasmids: a pBR-based asd plasmid, an arabinose-based runaway plasmid, which each expressed PEB1-ss in the bacterial cytosol, and a PEB1::HlyA fusion plasmid that directs secretion of PEB1-ss into the extracellular milieu. Serum IgG responses specific for PEB1-ss were induced by pBR-derived and runaway plasmids, with 100 and 90% seroconversion, respectively, at a 1:500 dilution of anti-sera as measured by Western blot analysis, while the PEB1-ss::HlyA fusion plasmid induced serum IgG in only 20% of the mice. Although significant levels of anti-PEB serum IgG were induced, no protection against oral Campylobacter jejuni challenge was observed.

  11. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cárdenas-González, Mariana C.; Del Razo, Luz M.; Barrera-Chimal, Jonatan

    2013-11-01

    Fluoride is usually found in groundwater at a very wide range of concentration between 0.5 and 25 ppm. At present, few studies have assessed the renal effects of fluoride at environmentally relevant concentrations. Furthermore, most of these studies have used insensitive and nonspecific biomarkers of kidney injury. The aim of this study was to use early and sensitive biomarkers to evaluate kidney injury after fluoride exposure to environmentally relevant concentrations. Recently weaned male Wistar rats were exposed to low (15 ppm) and high (50 ppm) fluoride concentrations in drinking water for a period of 40 days. At the end ofmore » the exposure period, kidney injury biomarkers were measured in urine and renal mRNA expression levels were assessed by real time RT-PCR. Our results showed that the urinary kidney injury molecule (Kim-1), clusterin (Clu), osteopontin (OPN) and heat shock protein 72 excretion rate significantly increased in the group exposed to the high fluoride concentration. Accordingly, fluoride exposure increased renal Kim-1, Clu and OPN mRNA expression levels. Moreover, there was a significant dose-dependent increase in urinary β-2-microglobulin and cystatin-C excretion rate. Additionally, a tendency towards a dose dependent increase of tubular damage in the histopathological light microscopy findings confirmed the preferential impact of fluoride on the tubular structure. All of these changes occurred at early stages in which, the renal function was not altered. In conclusion using early and sensitive biomarkers of kidney injury, we were able to found proximal tubular alterations in rats sub-chronically exposed to fluoride. - Highlights: • Exposure to low concentrations of fluoride induced proximal tubular injury • Increase in urinary Kim-1, Clu, OPN and Hsp72 in 50 ppm fluoride-exposed group • Increase in urinary B2M and CysC in 15 and 50 ppm fluoride-exposed groups • Fluoride exposure increased renal Kim, Clu and OPN mRNA expression

  12. Genetics Home Reference: tubular aggregate myopathy

    MedlinePlus

    ... in both type I and type II fibers, forming clumps of tube-like structures called tubular aggregates. ... Hyun C, Woo JS, Park CS, Kim do H, Lee EH. Stromal interaction molecule 1 (STIM1) regulates ...

  13. Bubble-Free Propulsion of Ultrasmall Tubular Nanojets Powered by Biocatalytic Reactions.

    PubMed

    Ma, Xing; Hortelao, Ana C; Miguel-López, Albert; Sánchez, Samuel

    2016-10-26

    The motion of self-propelled tubular micro- and nanojets has so far been achieved by bubble propulsion, e.g., O 2 bubbles formed by catalytic decomposition of H 2 O 2 , which renders future biomedical applications inviable. An alternative self-propulsion mechanism for tubular engines on the nanometer scale is still missing. Here, we report the fabrication and characterization of bubble-free propelled tubular nanojets (as small as 220 nm diameter), powered by an enzyme-triggered biocatalytic reaction using urea as fuel. We studied the translational and rotational dynamics of the nanojets as functions of the length and location of the enzymes. Introducing tracer nanoparticles into the system, we demonstrated the presence of an internal flow that extends into the external fluid via the cavity opening, leading to the self-propulsion. One-dimensional nanosize, longitudinal self-propulsion, and biocompatibility make the tubular nanojets promising for future biomedical applications.

  14. Salmonella

    USDA-ARS?s Scientific Manuscript database

    Salmonella are facultative anaerobic Gram-negative non-spore forming rods belonging to the family Enterobacteriaceae. Salmonellosis is a zoonotic and foodborne illness that is usually transmitted by the fecal-oral route estimated to be responsible for 1.4 million cases of human infections in 2009 in...

  15. Thermal inactivation of Salmonella spp. in pork burger patties.

    PubMed

    Gurman, P M; Ross, T; Holds, G L; Jarrett, R G; Kiermeier, A

    2016-02-16

    Predictive models, to estimate the reduction in Escherichia coli O157:H7 concentration in beef burgers, have been developed to inform risk management decisions; no analogous model exists for Salmonella spp. in pork burgers. In this study, "Extra Lean" and "Regular" fat pork minces were inoculated with Salmonella spp. (Salmonella 4,[5],12,i:-, Salmonella Senftenberg and Salmonella Typhimurium) and formed into pork burger patties. Patties were cooked on an electric skillet (to imitate home cooking) to one of seven internal temperatures (46, 49, 52, 55, 58, 61, 64 °C) and Salmonella enumerated. A generalised linear logistic regression model was used to develop a predictive model for the Salmonella concentration based on the internal endpoint temperature. It was estimated that in pork mince with a fat content of 6.1%, Salmonella survival will be decreased by -0.2407log10 CFU/g for a 1 °C increase in internal endpoint temperature, with a 5-log10 reduction in Salmonella concentration estimated to occur when the geometric centre temperature reaches 63 °C. The fat content influenced the rate of Salmonella inactivation (P=0.043), with Salmonella survival increasing as fat content increased, though this effect became negligible as the temperature approached 62 °C. Fat content increased the time required for patties to achieve a specified internal temperature (P=0.0106 and 0.0309 for linear and quadratic terms respectively), indicating that reduced fat pork mince may reduce the risk of salmonellosis from consumption of pork burgers. Salmonella serovar did not significantly affect the model intercepts (P=0.86) or slopes (P=0.10) of the fitted logistic curve. This predictive model can be applied to estimate the reduction in Salmonella in pork burgers after cooking to a specific endpoint temperature and hence to assess food safety risk. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  16. Characterisation of human tubular cell monolayers as a model of proximal tubular xenobiotic handling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Colin D.A.; Sayer, Rachel; Windass, Amy S.

    2008-12-15

    The aim of this study was to determine whether primary human tubular cell monolayers could provide a powerful tool with which to investigate the renal proximal tubular handling of xenobiotics. Human proximal and distal tubule/collecting duct cells were grown as monolayers on permeable filter supports. After 10 days in culture, proximal tubule cells remained differentiated and expressed a wide palette of transporters at the mRNA level including NaPi-IIa, SGLT1, SGLT2, OCT2, OCTN2, OAT1, OAT3, OAT4, MDR1, MRP2 and BCRP. At the protein level, the expression of a subset of transporters including NaPi-IIa, OAT1 and OAT3 was demonstrated using immunohistochemistry. Analysismore » of the expression of the ATP binding cassette efflux pumps MDR1, MRP2 and BCRP confirmed their apical membrane localisation. At the functional level, tubule cell monolayers retain the necessary machinery to mediate the net secretion of the prototypic substrates; PAH and creatinine. PAH secretion across the monolayer consisted of the uptake of PAH across the basolateral membrane by OAT1 and OAT3 and the apical exit of PAH by a probenecid and MK571-sensitive route consistent with actions of MRP2 or MRP4. Creatinine secretion was by OCT2-mediated uptake at the basolateral membrane and via MDR1 at the apical membrane. Functional expression of MDR1 and BCRP at the apical membrane was also demonstrated using a Hoechst 33342 dye. Similarly, measurement of calcein efflux demonstrated the functional expression of MRP2 at the apical membrane of cell monolayers. In conclusion, human tubular cell monolayers provide a powerful tool to investigate renal xenobiotic handling.« less

  17. Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells.

    PubMed

    García-Sánchez, Omar; López-Novoa, José Miguel; López-Hernández, Francisco J

    2014-01-01

    Chronic kidney disease (CKD) is a progressive deterioration of the kidney function, which may eventually lead to renal failure and the need for dialysis or kidney transplant. Whether initiated in the glomeruli or the tubuli, CKD is characterized by progressive nephron loss, for which the process of tubular deletion is of key importance. Tubular deletion results from tubular epithelial cell death and defective repair, leading to scarring of the renal parenchyma. Several cytokines and signaling pathways, including transforming growth factor-β (TGF-β) and the Fas pathway, have been shown to participate in vivo in tubular cell death. However, there is some controversy about their mode of action, since a direct effect on normal tubular cells has not been demonstrated. We hypothesized that epithelial cells would require specific priming to become sensitive to TGF-β or Fas stimulation and that this priming would be brought about by specific mediators found in the pathological scenario. Herein we studied whether the combined effect of several stimuli known to take part in CKD progression, namely TGF-β, tumor necrosis factor-α, interferon-γ (IFN-γ), and Fas stimulation, on primed resistant human tubular cells caused cell death or reduced proliferation. We demonstrate that these cytokines have no synergistic effect on the proliferation or viability of human kidney (HK2) cells. We also demonstrate that IFN-γ, but not the other stimuli, reduces the proliferation of cycloheximide-primed HK2 cells without affecting their viability. Our results point at a potentially important role of IFN-γ in defective repair, leading to nephron loss during CKD.

  18. Subinhibitory concentrations of phloretin repress the virulence of Salmonella typhimurium and protect against Salmonella typhimurium infection.

    PubMed

    Shuai-Cheng, Wu; Ben-Dong, Fu; Xiu-Ling, Chu; Jian-Qing, Su; Yun-Xing, Fu; Zhen-Qiang, Cui; Dao-Xiu, Xu; Zong-Mei, Wu

    2016-11-01

    Phloretin, a natural component of many fruits, exhibits anti-virulence effects and provides a new alternative to counter bacterial infection. The aim of this study was to determine the effect of subinhibitory concentrations of phloretin on the virulence of Salmonella typhimurium. At concentrations where growth of Salmonella was not inhibited, phloretin significantly inhibited bacteria biofilm formation and motility. Subinhibitory concentrations of phloretin repressed eight genes involved in the Salmonella pathogenicity island 1 and 3 genes involved in flagella production. Furthermore, subinhibitory concentrations of phloretin inhibited the adhesion and invasion of Salmonella in IEC-6 cells and reduced the LDH levels of S. typhimurium-infected IEC-6 cells. Additionally, phloretin significantly decreased the cecum bacterial loads of the mice infected with live S. typhimurium containing subinhibitory concentrations of phloretin by gavage. These results suggested that subinhibitory concentrations of phloretin attenuate the virulence of S. typhimurium and protect against S. typhimurium infection.

  19. Tubular localization of silent calcium channels in crustacean skeletal muscle fibers.

    PubMed

    Monterrubio, J; Ortiz, G; Orkand, P M; Zuazaga, C

    2002-01-01

    Ca2+-induced Ca2+ release (CICR) in the superficial abdominal flexor muscle of the crustacean Atya lanipes appears to be mediated by a local control mechanism similar to that of vertebrate cardiac muscle, but with an unusually high gain. Thus, Ca2+ influx increases sufficiently the local concentration of Ca2+ in the immediate vicinity of the sarcoplasmic reticulum Ca2+ release channels to trigger the highly amplified release of Ca2+ required for contraction, but is too low to generate a macroscopic inward current (i.e., the Ca2+ channels are silent). To determine the localization of the silent Ca2+ Channels, the mechanical, electrophysiological and ultrastructural properties of the muscle were examined before and after formamide treatment, a procedure that produces the disruption of transverse tubules of striated muscle. We found that tubular disruption decreased tension generation by about 90%; reduced inward current (measured as Vmax, the maximum rate of rise of Sr2+ action potentials) by about 80%; and decreased membrane capacitance by about 77%. The results suggest that ca. 80% of the silent Ca2+ channels are located in the tubular system. Thus, these studies provide further evidence to support the local control mechanism of CICR in crustacean skeletal muscle.

  20. Incidence of Salmonella contamination in broiler chickens in Saskatchewan.

    PubMed

    Bhargava, K K; O'Neil, J B; Prior, M G; Dunkelgod, K E

    1983-01-01

    The incidence of Salmonella contamination in ten Saskatchewan broiler flocks varying in size from 6 200 to 14 000 was investigated from February, 1977 to April, 1979. Prior to the initial chick placement, brooding equipment, feed, water and fresh litter samples were found to be free of Salmonellae. Samples obtained from the clean and disinfected processing plant equipment before the commencement of daily operation were negative except the isolation for Salmonella anatum from the fingers of the defeathering machine in flock 4. There was no evidence of Salmonella contamination in flocks 5, 6, 8 and 10. The incidence of Salmonella was lower when cloacal swabs were taken from day old chicks fasted for 48 hours than for the same groups of chicks when carcasses were blended in nutrient broth (flocks 7 and 9). The blending of such chicks appears to be a more critical test. The serotypes isolated from eviscerated birds were the same as those isolated from used litter samples. Salmonella saintpaul was isolated from a water sample at 53 days in flock 1 and the same serotype was recovered from the intestinal contents and skin of eviscerated birds. Salmonella typhimurium was recovered from the eviscerated birds and neck samples in flock 3. In flock 4, S. saintpaul and S. anatum were isolated from 13% of the eviscerated birds sampled. Salmonella thompson, Salmonella agona and Salmonella heidelberg were recovered from 61%, 5% and 1%, respectively, of the processed carcasses sampled in flock 7.

  1. Incidence of Salmonella Contamination in Broiler Chickens in Saskatchewan

    PubMed Central

    Bhargava, K.K.; O'Neil, J.B.; Prior, M.G.; Dunkelgod, K.E.

    1983-01-01

    The incidence of Salmonella contamination in ten Saskatchewan broiler flocks varying in size from 6 200 to 14 000 was investigated from February, 1977 to April, 1979. Prior to the initial chick placement, brooding equipment, feed, water and fresh litter samples were found to be free of Salmonellae. Samples obtained from the clean and disinfected processing plant equipment before the commencement of daily operation were negative except the isolation for Salmonella anatum from the fingers of the defeathering machine in flock 4. There was no evidence of Salmonella contamination in flocks 5, 6, 8 and 10. The incidence of Salmonella was lower when cloacal swabs were taken from day old chicks fasted for 48 hours than for the same groups of chicks when carcasses were blended in nutrient broth (flocks 7 and 9). The blending of such chicks appears to be a more critical test. The serotypes isolated from eviscerated birds were the same as those isolated from used litter samples. Salmonella saintpaul was isolated from a water sample at 53 days in flock 1 and the same serotype was recovered from the intestinal contents and skin of eviscerated birds. Salmonella typhimurium was recovered from the eviscerated birds and neck samples in flock 3. In flock 4, S. saintpaul and S. anatum were isolated from 13% of the eviscerated birds sampled. Salmonella thompson, Salmonella agona and Salmonella heidelberg were recovered from 61%, 5% and 1%, respectively, of the processed carcasses sampled in flock 7. PMID:6831304

  2. Intracellular Salmonella induces aggrephagy of host endomembranes in persistent infections

    PubMed Central

    López-Montero, Noelia; Ramos-Marquès, Estel; Risco, Cristina; García-del Portillo, Francisco

    2016-01-01

    ABSTRACT Xenophagy has been studied in epithelial cells infected with Salmonella enterica serovar Typhimurium (S. Typhimurium). Distinct autophagy receptors target this pathogen to degradation after interacting with ubiquitin on the surface of cytosolic bacteria, and the phagophore- and autophagosome-associated protein MAP1LC3/LC3. Glycans exposed in damaged phagosomal membranes and diacylglycerol accumulation in the phagosomal membrane also trigger S. Typhimurium xenophagy. How these responses control intraphagosomal and cytosolic bacteria remains poorly understood. Here, we examined S. Typhimurium interaction with autophagy in fibroblasts, in which the pathogen displays limited growth and does not escape into the cytosol. Live-cell imaging microscopy revealed that S. Typhimurium recruits late endosomal or lysosomal compartments that evolve into a membranous aggregate connected to the phagosome. Active dynamics and integrity of the phagosomal membrane are requisite to induce such aggregates. This membranous structure increases over time to become an aggresome that engages autophagy machinery at late infection times (> 6 h postentry). The newly formed autophagosome harbors LC3 and the autophagy receptor SQSTM1/p62 but is devoid of ubiquitin and the receptor CALCOCO2/NDP52. Live-cell imaging showed that this autophagosome captures and digests within the same vacuole the aggresome and some apposed intraphagosomal bacteria. Other phagosomes move away from the aggresome and avoid destruction. Thus, host endomembrane accumulation resulting from activity of intracellular S. Typhimurium stimulates a novel type of aggrephagy that acts independently of ubiquitin and CALCOCO2, and destroys only a few bacteria. Such selective degradation might allow the pathogen to reduce its progeny and, as a consequence, to establish persistent infections. PMID:27485662

  3. Cross talk between primary human renal tubular cells and endothelial cells in cocultures.

    PubMed

    Tasnim, Farah; Zink, Daniele

    2012-04-15

    Interactions between renal tubular epithelial cells and adjacent endothelial cells are essential for normal renal functions but also play important roles in renal disease and repair. Here, we investigated cocultures of human primary renal proximal tubular cells (HPTC) and human primary endothelial cells to address the cross talk between these cell types. HPTC showed improved proliferation, marker gene expression, and enzyme activity in cocultures. Also, the long-term maintenance of epithelia formed by HPTC was improved, which was due to the secretion of transforming growth factor-β1 and its antagonist α2-macroglobulin. HPTC induced endothelial cells to secrete increased amounts of these factors, which balanced each other functionally and only displayed in combination the observed positive effects. In addition, in the presence of HPTC endothelial cells expressed increased amounts of hepatocyte growth factor and vascular endothelial growth factor, which have well-characterized effects on renal tubular epithelial cells as well as on endothelial cells. Together, the results showed that HPTC stimulated endothelial cells to express a functionally balanced combination of various factors, which in turn improved the performance of HPTC. The results give new insights into the cross talk between renal epithelial and endothelial cells and suggest that cocultures could be also useful models for the analysis of cellular communication in renal disease and repair. Furthermore, the characterization of defined microenvironments, which positively affect HPTC, will be helpful for improving the performance of this cell type in in vitro applications including in vitro toxicology and kidney tissue engineering.

  4. Prevalence and antibiotic resistance of Salmonella Enteritidis and Salmonella Typhimurium in raw chicken meat at retail markets in Malaysia.

    PubMed

    Thung, T Y; Mahyudin, N A; Basri, D F; Wan Mohamed Radzi, C W J; Nakaguchi, Y; Nishibuchi, M; Radu, S

    2016-08-01

    Salmonellosis is one of the major food-borne diseases in many countries. This study was carried out to determine the occurrence of Salmonella spp., Salmonella Enteritidis, and Salmonella Typhimurium in raw chicken meat from wet markets and hypermarkets in Selangor, as well as to determine the antibiotic susceptibility profile of S. Enteritidis and S. Typhimurium. The most probable number (MPN) in combination with multiplex polymerase chain reaction (mPCR) method was used to quantify the Salmonella spp., S. Enteritidis, and S. Typhimurium in the samples. The occurrence of Salmonella spp., S. Enteritidis, and S. Typhimurium in 120 chicken meat samples were 20.80%, 6.70%, and 2.50%, respectively with estimated quantity varying from <3 to 15 MPN/g. The antibiogram testing revealed differential multi-drug resistance among S. Enteritidis and S. Typhimurium isolates. All the isolates were resistance to erythromycin, penicillin, and vancomycin whereas sensitivity was recorded for Amoxicillin/Clavulanic acid, Gentamicin, Tetracycline, and Trimethoprim. Our findings demonstrated that the retail chicken meat could be a source of multiple antimicrobial-resistance Salmonella and may constitute a public health concern in Malaysia. © 2016 Poultry Science Association Inc.

  5. Iron-Induced Virulence of Salmonella enterica Serovar Typhimurium at the Intestinal Epithelial Interface Can Be Suppressed by Carvacrol

    PubMed Central

    Kortman, Guus A. M.; Roelofs, Rian W. H. M.; Swinkels, Dorine W.; de Jonge, Marien I.; Burt, Sara A.

    2014-01-01

    Oral iron therapy can increase the abundance of bacterial pathogens, e.g., Salmonella spp., in the large intestine of African children. Carvacrol is a natural compound with antimicrobial activity against various intestinal bacterial pathogens, among which is the highly prevalent Salmonella enterica serovar Typhimurium. This study aimed to explore a presumed interaction between carvacrol and bacterial iron handling and to assess the potential of carvacrol in preventing the increase of bacterial pathogenicity during high iron availability. S. Typhimurium was cultured with increasing concentrations of iron and carvacrol to study the effects of these combined interventions on growth, adhesion to intestinal epithelial cells, and iron uptake/influx in both bacterial and epithelial cells. In addition, the ability of carvacrol to remove iron from the high-affinity ligand transferrin and an Fe-dye complex was examined. Carvacrol retarded growth of S. Typhimurium at all iron conditions. Furthermore, iron-induced epithelial adhesion was effectively reduced by carvacrol at high iron concentrations. The reduction of growth and virulence by carvacrol was not paralleled by a change in iron uptake or influx into S. Typhimurium. In contrast, bioavailability of iron for epithelial cells was moderately decreased under these conditions. Further, carvacrol was shown to lack the properties of an iron binding molecule; however, it was able to weaken iron-ligand interactions by which it may possibly interfere with bacterial virulence. In conclusion, our in vitro data suggest that carvacrol has the potential to serve as a novel dietary supplement to prevent pathogenic overgrowth and colonization in the large intestine during oral iron therapy. PMID:24379194

  6. Isolation and characterization of Salmonella enterica in day-old ducklings in Egypt

    PubMed Central

    Osman, Kamelia M; Marouf, Sherif H; Zolnikov, Tara R; AlAtfeehy, Nayerah

    2014-01-01

    Importing day-old ducklings (DOD) unknowingly infected with non-typhoid Salmonella (NTS) may be associated with disease risk. Domestic and international trade may enhance this risk. Salmonella enterica serovars, their virulence genes combinations and antibiotic resistance, garner attention for their potentiality to contribute to the adverse health effects on populations throughout the world. The aim of this study was to estimate the risk of imported versus domestic DOD as potential carriers of NTS. The results confirm the prevalence of salmonellosis in imported ducklings was 18.5% (25/135), whereas only 12% (9/75) of cases were determined in the domestic ducklings. Fourteen serovars (Salmonella enteritidis, Salmonella kisii, Salmonella typhimurium, Salmonella gaillac, Salmonella uno, Salmonella eingedi, Salmonella shubra, Salmonella bardo, Salmonella inganda, Salmonella kentucky, Salmonella stanley, Salmonella virchow, Salmonella haifa, and Salmonella anatum) were isolated from the imported ducklings, whereas only S. enteritidis, S. typhimurium, S. virchow, and S. shubra were isolated from the domestic ducklings. The isolated Salmonella serovars were 100% susceptible to only colistin sulphate and 100% resistant to lincomycin. The 14 Salmonella serovars were screened for 11 virulence genes (invA, avrA, ssaQ, mgtC, siiD, sopB, gipA, sodC1, sopE1, spvC, and bcfC) by PCR. The invA, sopB, and bcfC genes were detected in 100% of the Salmonella serovars; alternatively, the gipA gene was absent in all of the isolated Salmonella serovars. The 11 virulent genes were not detected in either of S. stanley or S. haifa serovars. The results confirm an association between antibiotic resistance and virulence of Salmonella in the DOD. This study confirms the need for a country adherence to strict public health and food safety regimes. PMID:24548159

  7. Salmonella spp. on chicken carcasses in processing plants in Poland.

    PubMed

    Mikołajczyk, Anita; Radkowski, Mieczysław

    2002-09-01

    Chickens at selected points in the slaughter process and after slaughter on the dressing line in poultry plants were sampled and analyzed for Salmonella. These chickens came from the northeast part of Poland. The examinations were carried out in quarters I, II, III, and IV of 1999. All the birds were determined to be healthy by a veterinary inspection. Swab samples were taken from the cloaca after stunning and from the skin surface and body cavity of the whole bird after evisceration, after rinsing at the final rinse station but before chilling in the spin-chiller, and after cooling in the continuous cooling plant at the end of the production day. In 1999, 400 whole chickens were examined. The percentage of these 400 chickens from which Salmonella spp. were isolated was relatively high (23.75%; Salmonella-positive results were observed in 95 cases). Salmonella spp. were found after stunning in 6% of the chickens (6 of 100 samples), after evisceration in 24% (24 of 100), before cooling in 52% (52 of 100), and after cooling in 13% (13 of 100). These results show that Salmonella spp. were found more often at some processing points than at others. The lowest Salmonella spp. contamination rate (6%) for slaughter birds was found after stunning, and the highest contamination rate was found before chilling (52%). The serological types of Salmonella spp. isolated from whole chickens were Salmonella Enteritidis, Salmonella Typhimurium, Salmonella Saintpaul, Salmonella Agona, and Salmonella Infantis. The results of these investigations indicate that Salmonella Enteritidis is the dominant serological type in infections of slaughter chickens, as it is in many countries.

  8. P1,P4-diadenosine tetraphosphate (Ap4A) inhibits proximal tubular reabsorption of sodium in rats.

    PubMed

    Stiepanow-Trzeciak, Anna; Jankowski, Maciej; Angielski, Stefan; Szczepanska-Konkel, Miroslawa

    2007-01-01

    P1,P4-diadenosine tetraphosphate (Ap4A) is a vasoactive dinucleotide possessing natriuretic activity. It is unclear, however, which part of the nephron is the target site of action for Ap4A. We evaluated the tubular sites of Ap4A action using the lithium clearance technique. Ap4A at a priming dose of 2 micromol/kg with subsequent infusion at 20 nmol/kg/min increased fractional water and sodium excretion 2.5- and 5.6-fold, respectively. Moreover, Ap4A increased lithium clearance 1.9-fold and fractional lithium excretion 2.8-fold. Fractional water and sodium excretion from distal nephron segments was not significantly affected by Ap4A. These results suggest that Ap4A induces natriuresis mainly through inhibition of proximal tubular reabsorption of sodium. Copyright 2007 S. Karger AG, Basel.

  9. 9 CFR 113.30 - Detection of Salmonella contamination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Detection of Salmonella contamination... REQUIREMENTS Standard Procedures § 113.30 Detection of Salmonella contamination. The test for detection of Salmonella contamination provided in this section shall be conducted when such a test is prescribed in an...

  10. 9 CFR 113.30 - Detection of Salmonella contamination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Detection of Salmonella contamination... REQUIREMENTS Standard Procedures § 113.30 Detection of Salmonella contamination. The test for detection of Salmonella contamination provided in this section shall be conducted when such a test is prescribed in an...

  11. The effects of ionizing irradiation on Salmonella inoculated on almonds and changes in sensory properties

    NASA Astrophysics Data System (ADS)

    Prakash, A.; Lim, F. T.; Duong, C.; Caporaso, F.; Foley, D.

    2010-04-01

    The goal of this study was to test the efficacy of irradiation on destroying Salmonella on raw almonds and evaluating the resultant sensory changes in the almonds. Raw almonds inoculated with various strains of Salmonella were irradiated at 5 dose levels up to 3 kGy and the D value was determined. The strain SEPT30 was the most resistant strain with a D value of 1.25 kGy indicating that a 4 log CFU/g reduction would require a dose of 5.0 kGy. Irradiation at 2.98 and 5.25 kGy induced significant sensory changes in almond nuts as manifested by intensity of chemical/metallic/rancid flavor ranked by a trained panel. A consumer panel found that samples treated with 5.25 kGy irradiation rendered the almonds unacceptable. Thus, irradiation by itself is unlikely to be a feasible method to eliminate Salmonella from raw almonds.

  12. Evaluation of 3M molecular detection assay (MDA) Salmonella for the detection of Salmonella in selected foods: collaborative study.

    PubMed

    Bird, Patrick; Fisher, Kiel; Boyle, Megan; Huffman, Travis; Benzinger, M Joseph; Bedinghaus, Paige; Flannery, Jonathan; Crowley, Erin; Agin, James; Goins, David; Benesh, DeAnn; David, John

    2013-01-01

    The 3M Molecular Detection Assay (MDA) Salmonella is used with the 3M Molecular Detection System for the detection of Salmonella spp. in food, food-related, and environmental samples after enrichment. The assay utilizes loop-mediated isothermal amplification to rapidly amplify Salmonella target DNA with high specificity and sensitivity, combined with bioluminescence to detect the amplification. The 3M MDA Salmonella method was compared using an unpaired study design in a multilaboratory collaborative study to the U.S. Department of Agriculture/Food Safety and Inspection Service-Microbiology Laboratory Guidebook (USDA/FSIS-MLG 4.05), Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg and Catfish Products for raw ground beef and the U.S. Food and Drug Administration/Bacteriological Analytical Manual (FDA/BAM) Chapter 5 Salmonella reference method for wet dog food following the current AOAC guidelines. A total of 20 laboratories participated. For the 3M MDA Salmonella method, raw ground beef was analyzed using 25 g test portions, and wet dog food was analyzed using 375 g test portions. For the reference methods, 25 g test portions of each matrix were analyzed. Each matrix was artificially contaminated with Salmonella at three inoculation levels: an uninoculated control level (0 CFU/test portion), a low inoculum level (0.2-2 CFU/test portion), and a high inoculum level (2-5 CFU/test portion). In this study, 1512 unpaired replicate samples were analyzed. Statistical analysis was conducted according to the probability of detection (POD). For the low-level raw ground beef test portions, the following dLPOD (difference between the POD of the reference and candidate method) values with 95% confidence intervals were obtained: -0.01 (-0.14, +0.12). For the low-level wet dog food test portions, the following dLPOD with 95% confidence intervals were obtained: -0.04 (-0.16, +0.09). No significant differences were observed in the number of positive

  13. The major sources of Salmonella enteritidis in Thailand.

    PubMed

    Sakai, T; Chalermchaikit, T

    1996-08-01

    The data of Salmonella serotypes during 1989-1993 from the World Health Organisation (WHO) National Salmonella and Shigella Center, Division of Clinical Pathology, Department of Medical Science, Ministry of Health, Thailand was analysed and found that the prevalence of Salmonella enteritidis had been dramatically increased since 1990. The average S. enteritidis isolates from human patient samples was 0.70% +/- 0.41% of the total reported Salmonella isolates during 1972-1989 and increased to 1.33%, 2.98%, 9.54%, and 16.98% in 1990, 1991, 1992, and 1993, respectively. The similar trend of S. enteritidis isolates from chicken meat samples were also observed. However, the conclusive epidemiological relationship between human and chicken S. enteritidis isolates needs to be proved by phage typing or other Salmonella typing methods.

  14. Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signaling network in Salmonella

    PubMed Central

    Solano, Cristina; García, Begoña; Latasa, Cristina; Toledo-Arana, Alejandro; Zorraquino, Violeta; Valle, Jaione; Casals, Joan; Pedroso, Enrique; Lasa, Iñigo

    2009-01-01

    Bacteria have developed an exclusive signal transduction system involving multiple diguanylate cyclase and phosphodiesterase domain-containing proteins (GGDEF and EAL/HD-GYP, respectively) that modulate the levels of the same diffusible molecule, 3′-5′-cyclic diguanylic acid (c-di-GMP), to transmit signals and obtain specific cellular responses. Current knowledge about c-di-GMP signaling has been inferred mainly from the analysis of recombinant bacteria that either lack or overproduce individual members of the pathway, without addressing potential compensatory effects or interferences between them. Here, we dissected c-di-GMP signaling by constructing a Salmonella strain lacking all GGDEF-domain proteins and then producing derivatives, each restoring 1 protein. Our analysis showed that most GGDEF proteins are constitutively expressed and that their expression levels are not interdependent. Complete deletion of genes encoding GGDEF-domain proteins abrogated virulence, motility, long-term survival, and cellulose and fimbriae synthesis. Separate restoration revealed that 4 proteins from Salmonella and 1 from Yersinia pestis exclusively restored cellulose synthesis in a c-di-GMP–dependent manner, indicating that c-di-GMP produced by different GGDEF proteins can activate the same target. However, the restored strain containing the STM4551-encoding gene recovered all other phenotypes by means of gene expression modulation independently of c-di-GMP. Specifically, fimbriae synthesis and virulence were recovered through regulation of csgD and the plasmid-encoded spvAB mRNA levels, respectively. This study provides evidence that the regulation of the GGDEF-domain proteins network occurs at 2 levels: a level that strictly requires c-di-GMP to control enzymatic activities directly, restricted to cellulose synthesis in our experimental conditions, and another that involves gene regulation for which c-di-GMP synthesis can be dispensable. PMID:19416883

  15. Expanding the RpoS/σS-Network by RNA Sequencing and Identification of σS-Controlled Small RNAs in Salmonella

    PubMed Central

    Lévi-Meyrueis, Corinne; Monteil, Véronique; Sismeiro, Odile; Dillies, Marie-Agnès; Monot, Marc; Jagla, Bernd; Coppée, Jean-Yves; Dupuy, Bruno; Norel, Françoise

    2014-01-01

    The RpoS/σS sigma subunit of RNA polymerase (RNAP) controls a global adaptive response that allows many Gram-negative bacteria to survive starvation and various stresses. σS also contributes to biofilm formation and virulence of the food-borne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). In this study, we used directional RNA-sequencing and complementary assays to explore the σS-dependent transcriptome of S. Typhimurium during late stationary phase in rich medium. This study confirms the large regulatory scope of σS and provides insights into the physiological functions of σS in Salmonella. Extensive regulation by σS of genes involved in metabolism and membrane composition, and down-regulation of the respiratory chain functions, were important features of the σS effects on gene transcription that might confer fitness advantages to bacterial cells and/or populations under starving conditions. As an example, we show that arginine catabolism confers a competitive fitness advantage in stationary phase. This study also provides a firm basis for future studies to address molecular mechanisms of indirect regulation of gene expression by σS. Importantly, the σS-controlled downstream network includes small RNAs that might endow σS with post-transcriptional regulatory functions. Of these, four (RyhB-1/RyhB-2, SdsR, SraL) were known to be controlled by σS and deletion of the sdsR locus had a competitive fitness cost in stationary phase. The σS-dependent control of seven additional sRNAs was confirmed in Northern experiments. These findings will inspire future studies to investigate molecular mechanisms and the physiological impact of post-transcriptional regulation by σS. PMID:24810289

  16. Comparison of Microbial Communities Isolated from Feces of Asymptomatic Salmonella-Shedding and Non-Salmonella Shedding Dairy Cows

    PubMed Central

    Haley, Bradd J.; Pettengill, James; Gorham, Sasha; Ottesen, Andrea; Karns, Jeffrey S.; Van Kessel, Jo Ann S.

    2016-01-01

    In the United States Salmonella enterica subsp. enterica serotypes Kentucky and Cerro are frequently isolated from asymptomatic dairy cows. However, factors that contribute to colonization of the bovine gut by these two serotypes have not been identified. To investigate associations between Salmonella status and bacterial diversity, as well as the diversity of the microbial community in the dairy cow hindgut, the bacterial and archaeal communities of fecal samples from cows on a single dairy farm were determined by high-throughput sequencing of 16S rRNA gene amplicons. Fecal grab samples were collected from two Salmonella-positive cows and two Salmonella-negative cows on five sampling dates (n = 20 cows), and 16S rRNA gene amplicons from these samples were sequenced on the Illumina MiSeq platform. A high level of alpha (within) and beta diversity (between) samples demonstrated that microbial profiles of dairy cow hindguts are quite diverse. To determine whether Salmonella presence, sampling year, or sampling date explained a significant amount of the variation in microbial diversity, we performed constrained ordination analyses (distance based RDA) on the unifrac distance matrix produced with QIIME. Results indicated that there was not a significant difference in the microbial diversity associated with Salmonella presence (P > 0.05), but there were significant differences between sampling dates and years (Pseudo-F = 2.157 to 4.385, P < 0.05). Based on these data, it appears that commensal Salmonella infections with serotypes Cerro and Kentucky in dairy cows have little or no association with changes in the abundance of major bacterial groups in the hindgut. Rather, our results indicated that temporal dynamics and other undescribed parameters associated with them were the most influential drivers of the differences in microbial diversity and community structure in the dairy cow hindgut. PMID:27313565

  17. Interactions of Salmonella with animals and plants.

    PubMed

    Wiedemann, Agnès; Virlogeux-Payant, Isabelle; Chaussé, Anne-Marie; Schikora, Adam; Velge, Philippe

    2014-01-01

    Salmonella enterica species are Gram-negative bacteria, which are responsible for a wide range of food- and water-borne diseases in both humans and animals, thereby posing a major threat to public health. Recently, there has been an increasing number of reports, linking Salmonella contaminated raw vegetables and fruits with food poisoning. Many studies have shown that an essential feature of the pathogenicity of Salmonella is its capacity to cross a number of barriers requiring invasion of a large variety of cells and that the extent of internalization may be influenced by numerous factors. However, it is poorly understood how Salmonella successfully infects hosts as diversified as animals or plants. The aim of this review is to describe the different stages required for Salmonella interaction with its hosts: (i) attachment to host surfaces; (ii) entry processes; (iii) multiplication; (iv) suppression of host defense mechanisms; and to point out similarities and differences between animal and plant infections.

  18. Prevalence of Salmonella in diverse environmental farm samples.

    PubMed

    Rodriguez, Andres; Pangloli, Philipus; Richards, Harold A; Mount, John R; Draughon, F Ann

    2006-11-01

    The development of suitable intervention strategies to control Salmonella populations at the farm level requires reliable data on the occurrence and prevalence of the pathogen. Previous studies on Salmonella prevalence have focused on acquiring data from specific farm types and/or selected regions. The purpose of this study was to evaluate the distribution of this pathogen across a variety of farm types and regions in order to generate comparative data from a diverse group of environmental samples. Farm samples (n = 2,496) were collected quarterly from 18 different farms across five states (Tennessee, North Carolina, Alabama, California, and Washington) over a 24-month period. The participating farms included beef and dairy cattle operations, swine production and farrowing facilities, and poultry farms (both broiler chicken and turkey). The samples were analyzed for the presence of Salmonella by means of the U.S. Food and Drug Administration's Bacteriological Analytical Manual methods optimized for farm samples. Salmonella isolates were characterized by automated riboprinting. Salmonella serovars were recovered from 4.7% of all samples. The majority of positive findings were isolated from swine farms (57.3%). The occurrence of Salmonella was lower on dairy farms (17.9%), poultry farms (16.2%), and beef cattle farms (8.5%). The most commonly isolated serovar was Salmonella Anatum (48.4%), which was isolated notably more frequently than the next most common Salmonella serovars, Arizonae (12.1%) and Javiana (8.8%). The results of this study suggest that significant reservoirs of Salmonella populations still exist on swine production facilities and to a lesser extent in other animal production facilities. Data showed that the surrounding farm environment could be an important source of contamination.

  19. Developmental changes in renal tubular transport - An overview

    PubMed Central

    Gattineni, Jyothsna; Baum, Michel

    2013-01-01

    The adult kidney maintains a constant volume and composition of extracellular fluid despite changes in water and salt intake. The neonate is born with a kidney that has a small fraction of the glomerular filtration rate of the adult and immature tubules that function at a lower capacity than that of the mature animal. None the less, the neonate is also able to maintain a constant extracellular fluid volume and composition. Postnatal renal tubular development was once thought to be due to an increase in the transporter abundance to meet the developmental increase in glomerular filtration rate. However, postnatal renal development of each nephron segment is quite complex. There are isoform changes of several transporters as well as developmental changes in signal transduction that affect the capacity of renal tubules to reabsorb solutes and water. This review will discuss neonatal tubular function with an emphasis on the differences that have been found between the neonate and adult. We will also discuss some of the factors that are responsible for the maturational changes in tubular transport that occur during postnatal renal development. PMID:24253590

  20. Developmental changes in renal tubular transport-an overview.

    PubMed

    Gattineni, Jyothsna; Baum, Michel

    2015-12-01

    The adult kidney maintains a constant volume and composition of extracellular fluid despite changes in water and salt intake. The neonate is born with a kidney that has a small fraction of the glomerular filtration rate of the adult and immature tubules that function at a lower capacity than that of the mature animal. Nonetheless, the neonate is also able to maintain a constant extracellular fluid volume and composition. Postnatal renal tubular development was once thought to be due to an increase in the transporter abundance to meet the developmental increase in glomerular filtration rate. However, postnatal renal development of each nephron segment is quite complex. There are isoform changes of several transporters as well as developmental changes in signal transduction that affect the capacity of renal tubules to reabsorb solutes and water. This review will discuss neonatal tubular function with an emphasis on the differences that have been found between the neonate and adult. We will also discuss some of the factors that are responsible for the maturational changes in tubular transport that occur during postnatal renal development.

  1. Salmonella in beef and produce from honduras.

    PubMed

    Maradiaga, Martha; Miller, Mark F; Thompson, Leslie; Pond, Ansen; Gragg, Sara E; Echeverry, Alejandro; Garcia, Lyda G; Loneragan, Guy H; Brashears, Mindy M

    2015-03-01

    Salmonella continues to cause a considerable number of foodborne illnesses worldwide. The sources of outbreaks include contaminated meat and produce. The purpose of this study was to establish an initial investigation of the burden of Salmonella in produce and beef from Honduras by sampling retail markets and abattoirs. Retail produce samples (cantaloupes, cilantro, cucumbers, leafy greens, peppers, and tomatoes; n = 573) were purchased in three major cities of Honduras, and retail whole-muscle beef (n = 555) samples were also purchased in four major cities. Additionally, both hide and beef carcass (n = 141) samples were collected from two Honduran abattoirs. Whole-muscle beef samples were obtained using a sponge hydrated with buffered peptone water, and 10 ml of the buffered peptone water rinsate of each produce sample was collected with a dry sponge and placed in a bag to be transported back to the United States. Salmonella was detected using a commercially available, closeplatform PCR system, and positive samples were subjected to culture on selective media to obtain isolates. Overall, the prevalence of Salmonella-positive samples, based on PCR detection in Honduras (n = 555) retail beef was 10.1% (95% confidence interval = 7.8, 12.9), whereas 7.8% (n = 141) of beef carcass and hides samples were positive in both beef plants. The overall Salmonella prevalence for all produce samples (n = 573) collected was 2.1% (95% confidence interval = 1.2, 3.6). The most common serotypes identified in Honduras were Salmonella Typhimurium followed by Derby. These results provide an indication of Salmonella contamination of beef and produce in Honduras. Developing a Salmonella baseline for Latin America through an initial investigation like the one presented here contributes to a broader global understanding of the potential exposure through food, thus providing insight into the needs for control strategies.

  2. A questionnaire study of associations between potential risk factors and salmonella status in Swedish dairy herds.

    PubMed

    Ågren, Estelle C C; Frössling, Jenny; Wahlström, Helene; Emanuelson, Ulf; Sternberg Lewerin, Susanna

    2017-08-01

    In this study associations between potential risk factors and salmonella status in Swedish dairy herds were investigated. A case-control study design was used, including existing as well as new cases. Herds were assigned a salmonella status on the basis of antibody analysis of bulk milk samples. Information on potential risk factors was collected from registry data and from farmers via a questionnaire. Univariable and multivariable logistic regression analyses were used to investigate associations between salmonella status and potential risk factors. In addition, multivariate analysis with Additive Bayesian Network (ABN) modelling was performed to improve understanding of the complex relationship between all the variables. Because of the difficulty in identifying associations between potential risk factors and infections with low prevalence and a large regional variation, exposure of potential risk factors in the high-prevalence region (Öland) were compared to exposure in other regions in Sweden. In total 483 of 996 (48%) farmers responded to the questionnaire, 69 herds had test-positive bulk milk samples. The strongest association with salmonella status was 'presence of salmonella test-positive herds <5 km' (OR 4.3, 95% CI 2.0-9.4). Associations with salmonella status were also seen between 'feeding calves residue milk only' (OR 2.4, 95% CI 1.2-4.6), 'certified organic herds' (OR 2.5, 95% CI 1.2-4.9) and 'frequently seeing signs of rodents' (OR 0.4, 95% CI 0.13-0.97). The ABN model showed associations between Öland and four of the variables: salmonella status, presence of test-positive herds <5km, shared pastures and providing protective clothing for visitors. The latter is probably a reflection of increased disease awareness in Öland. The ABN model showed associations between herd size and housing as well as several management procedures. This provides an explanation why herd size frequently has been identified as a risk factor for salmonella by other studies

  3. Immunity to Intracellular Salmonella Depends on Surface-associated Antigens

    PubMed Central

    Claudi, Beatrice; Mazé, Alain; Schemmer, Anne K.; Kirchhoff, Dennis; Schmidt, Alexander; Burton, Neil; Bumann, Dirk

    2012-01-01

    Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. PMID:23093937

  4. Salmonella prevalence in bovine lymph nodes differs among feedyards.

    PubMed

    Haneklaus, Ashley N; Harris, Kerri B; Griffin, Davey B; Edrington, Thomas S; Lucia, Lisa M; Savell, Jeffrey W

    2012-06-01

    Lymphatic tissue, specifically lymph nodes, is commonly incorporated into ground beef products as a component of lean trimmings. Salmonella and other pathogenic bacteria have been identified in bovine lymph nodes, which may impact compliance with the Salmonella performance standards for ground beef established by the U.S. Department of Agriculture. Although Salmonella prevalence has been examined among lymph nodes between animals, no data are currently available regarding feedyard origin of the cattle and Salmonella prevalence. Bovine lymph nodes (279 superficial cervical plus 28 iliofemoral = 307) were collected from beef carcasses at a commercial beef harvest and processing plant over a 3-month period and examined for the prevalence of Salmonella. Cattle processed were from seven feedyards (A through G). Salmonella prevalence was exceptionally low (0% of samples were positive ) in cattle from feedyard A and high (88.2%) in cattle from feedyard B. Prevalence in the remaining feedyards ranged widely: 40.0% in feedyard C, 4.0% in feedyard D, 24.0% in feedyard E, 42.9% in feedyard F, and 40.0% in feedyard G. These data indicate the range of differences in Salmonella prevalence among feedyards. Such information may be useful for developing interventions to reduce or eliminate Salmonella from bovine lymph nodes, which would assist in the reduction of Salmonella in ground beef.

  5. Boron--epoxy tubular structure members

    NASA Technical Reports Server (NTRS)

    Shakespeare, W. B. J.; Nelson, P. T.; Lindkvist, E. C.

    1973-01-01

    Composite materials fabricate thin-walled tubular members which have same load-carrying capabilities as aluminum, titanium, or other metals, but are lighter. Interface between stepped end fitting and tube lends itself to attachments by primary as well as secondary bonding. Interlaminar shear and hoop stress buildup in attachment at end fitting is avoided.

  6. Diversity of Salmonella isolates from central Florida surface waters.

    PubMed

    McEgan, Rachel; Chandler, Jeffrey C; Goodridge, Lawrence D; Danyluk, Michelle D

    2014-11-01

    Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608-3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:-. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella

  7. Diversity of Salmonella Isolates from Central Florida Surface Waters

    PubMed Central

    McEgan, Rachel; Chandler, Jeffrey C.; Goodridge, Lawrence D.

    2014-01-01

    Identification of Salmonella serotypes is important for understanding the environmental diversity of the genus Salmonella. This study evaluates the diversity of Salmonella isolates recovered from 165 of 202 Central Florida surface water samples and investigates whether the serotype of the environmental Salmonella isolates can be predicted by a previously published multiplex PCR assay (S. Kim, J. G. Frye, J. Hu, P. J. Fedorka-Cray, R. Gautom, and D. S. Boyle, J. Clin. Microbiol. 44:3608–3615, 2006, http://dx.doi.org/10.1128/JCM.00701-06). Multiplex PCR was performed on 562 Salmonella isolates (as many as 36 isolates per water sample) to predict serotypes. Kauffmann-White serogrouping was used to confirm multiplex PCR pattern groupings before isolates were serotyped, analyzed by pulsed-field gel electrophoresis, and assayed for antimicrobial susceptibility. In 41.2% of the Salmonella-positive water samples, all Salmonella isolates had identical multiplex PCR patterns; in the remaining 58.8%, two or more multiplex PCR patterns were identified. Within each sample, isolates with matching multiplex PCR patterns had matching serogroups. The multiplex patterns of 495 isolates (88.1%) did not match any previously reported pattern. The remaining 68 isolates matched reported patterns but did not match the serotypes for those patterns. The use of the multiplex PCR allowed the number of isolates requiring further analysis to be reduced to 223. Thirty-three Salmonella enterica serotypes were identified; the most frequent included serotypes Muenchen, Rubislaw, Anatum, Gaminara, and IV_50:z4,z23:−. A majority (141/223) of Salmonella isolates clustered into one genotypic group. Salmonella isolates in Central Florida surface waters are serotypically, genotypically, and phenotypically (in terms of antimicrobial susceptibility) diverse. While isolates could be grouped as different or potentially the same using multiplex PCR, the multiplex PCR pattern did not predict the Salmonella

  8. Salmonella Infections

    MedlinePlus

    ... reptiles like snakes, turtles, and lizards. Symptoms include Fever Diarrhea Abdominal cramps Headache Possible nausea, vomiting, and ... be serious. The usual treatment is antibiotics. Typhoid fever, a more serious disease caused by Salmonella, is ...

  9. Salmonella Isolates in the Introduced Asian House Gecko (Hemidactylus frenatus) with Emphasis on Salmonella Weltevreden, in Two Regions in Costa Rica.

    PubMed

    Jiménez, Randall R; Barquero-Calvo, Elías; Abarca, Juan G; Porras, Laura P

    2015-09-01

    The Asian house gecko Hemidactylus frenatus has been widely introduced in Costa Rica and tends to establish in human settlements. Some studies in other invaded countries have suggested that this gecko plays a significant role in the epidemiology of salmonellosis and it is of value to public health. To our knowledge, no studies have examined Salmonella from this species in Costa Rica. Therefore, we collected 115 geckos from houses in two Costa Rican regions. We examined gut contents for Salmonella through microbiological analysis. Presumptive Salmonella spp. were sent to a reference laboratory for serotyping and antimicrobial susceptibility testing. Molecular typing was also conducted with the main Salmonella isolates of zoonotic relevance in Costa Rica. H. frenatus was found in 95% of the houses surveyed. Salmonella was isolated in 4.3% of the samples, and four zoonotic serovars were detected. None of the isolates were resistant to the antibiotics most frequently used for salmonellosis treatment in Costa Rica. All Salmonella isolates from the lower gut of H. frenatus are associated with human salmonellosis. Pulsotypes from Salmonella enterica serotype Weltevreden were identical to the only clone previously reported from human samples in Costa Rica. Molecular typing of Salmonella Weltevreden suggested that H. frenatus harbors a serovar of public health importance in Costa Rica. Results demonstrated that H. frenatus plays a role in the epidemiology of human salmonellosis in two regions of Costa Rica. However, more detailed epidemiological studies are needed to understand better the role of the Asian house gecko with human salmonellosis, especially caused by Salmonella Weltevreden, and to quantify its risk in Costa Rica accurately.

  10. Method and tool for contracting tubular members by electro-hydraulic forming before hydroforming

    DOEpatents

    Golovashchenko, Sergey Fedorovich [Beverly Hills, MI

    2011-03-15

    A tubular preform is contracted in an electro-hydraulic forming operation. The tubular preform is wrapped with one or more coils of wire and placed in a chamber of an electro-hydraulic forming tool. The electro-hydraulic forming tool is discharged to form a compressed area on a portion of the tube. The tube is then placed in a hydroforming tool that expands the tubular preform to form a part.

  11. Prevalence of salmonella in neck skin and bone of chickens.

    PubMed

    Wu, Diezhang; Alali, W Q; Harrison, M A; Hofacre, C L

    2014-07-01

    Bone-in and boneless parts, such as drumsticks, are used in ground chicken production. In addition, neck skin is used as a source of fat in ground products. Contaminated chicken neck skin and bones containing internalized Salmonella are potential sources of this pathogen in ground chicken. This study determined the prevalence of Salmonella and serotype distribution in drumstick bones and neck skin of postchill chicken carcasses. One week prior to slaughter, chicken houses (n = 26) at nine farms were tested for the presence of Salmonella, using the boot sock method. Chicken flocks from these houses originated from Salmonella-positive breeders. Eight Salmonella-positive chicken flocks and one flock with undetermined Salmonella status were monitored through processing. Three hundred postchill drumsticks and 299 neck skin samples were analyzed for Salmonella prevalence. Skin samples were rinsed and stomached prior to analysis. Bones were extracted from the drumsticks, external surfaces were sterilized, and bones were crushed for analysis. One Salmonella isolate from each positive sample was serogrouped. Half of the isolates representing different sample types were serotyped. Overall, Salmonella was found in 0.8, 21.4, and 80.1% of bone marrow, neck skin, and farms, respectively. Prevalence of Salmonella on rinsed skin samples (2.3%) and stomached skin samples (20.7%) differed significantly (P ≤ 0.05). Serogroups B, C2, D, and E were found at 23.4, 31.9, 11.7, and 29.8%, respectively. Six Salmonella serotypes were identified: Liverpool (37.9%), Kentucky (27.6%), and Typhimurium (27.6%) were isolated most frequently from neck skin; the two bone isolates were Kentucky; and more than 50% of the farm isolates were Kentucky and Ouakam. Salmonella-contaminated neck skin might be a more significant source of this contamination in ground chicken than Salmonella internalized in bones.

  12. Interferon-γ Reduces the Proliferation of Primed Human Renal Tubular Cells

    PubMed Central

    García-Sánchez, Omar; López-Novoa, José Miguel; López-Hernández, Francisco J.

    2014-01-01

    Background/Aims Chronic kidney disease (CKD) is a progressive deterioration of the kidney function, which may eventually lead to renal failure and the need for dialysis or kidney transplant. Whether initiated in the glomeruli or the tubuli, CKD is characterized by progressive nephron loss, for which the process of tubular deletion is of key importance. Tubular deletion results from tubular epithelial cell death and defective repair, leading to scarring of the renal parenchyma. Several cytokines and signaling pathways, including transforming growth factor-β (TGF-β) and the Fas pathway, have been shown to participate in vivo in tubular cell death. However, there is some controversy about their mode of action, since a direct effect on normal tubular cells has not been demonstrated. We hypothesized that epithelial cells would require specific priming to become sensitive to TGF-β or Fas stimulation and that this priming would be brought about by specific mediators found in the pathological scenario. Methods Herein we studied whether the combined effect of several stimuli known to take part in CKD progression, namely TGF-β, tumor necrosis factor-α, interferon-γ (IFN-γ), and Fas stimulation, on primed resistant human tubular cells caused cell death or reduced proliferation. Results We demonstrate that these cytokines have no synergistic effect on the proliferation or viability of human kidney (HK2) cells. We also demonstrate that IFN-γ, but not the other stimuli, reduces the proliferation of cycloheximide-primed HK2 cells without affecting their viability. Conclusion Our results point at a potentially important role of IFN-γ in defective repair, leading to nephron loss during CKD. PMID:24575118

  13. Normal tubular regeneration and differentiation of the post-ischemic kidney in mice lacking vimentin.

    PubMed Central

    Terzi, F.; Maunoury, R.; Colucci-Guyon, E.; Babinet, C.; Federici, P.; Briand, P.; Friedlander, G.

    1997-01-01

    Proliferation and dedifferentiation of tubular cells are the hallmark of early regeneration after renal ischemic injury. Vimentin, a class III intermediate filament expressed only in mesenchymal cells of mature mammals, was shown to be transiently expressed in post-ischemic renal tubular epithelial cells. Vimentin re-expression was interpreted as a marker of cellular dedifferentiation, but its role in tubular regeneration after renal ischemia has also been hypothesized. This role was evaluated in mice bearing a null mutation of the vimentin gene. Expression of vimentin, proliferating cell nuclear antigen (a marker of cellular proliferation), and villin (a marker of differentiated brush-border membranes) was studied in wild-type (Vim+/+), heterozygous (Vim+/-), and homozygous (Vim-/-) mice subjected to transient ischemia of the left kidney. As expected, vimentin was detected by immunohistochemistry at the basal pole of proximal tubular cells from post-ischemic kidney in Vim+/+ and Vim+/- mice from day 2 to day 28. The expression of the reporter gene beta-galactosidase in Vim+/- and Vim-/- mice confirmed the tubular origin of vimentin. No compensatory expression of keratin could be demonstrated in Vim-/- mice. The intensity of proliferating cell nuclear antigen labeling and the pattern of villin expression were comparable in Vim-/-, Vim+/- and Vim+/+ mice at any time of the study. After 60 days, the structure of post-ischemic kidneys in Vim-/- mice was indistinguishable from that of normal non-operated kidneys in Vim+/+ mice. In conclusion, 1) the pattern of post-ischemic proximal tubular cell proliferation, differentiation, and tubular organization was not impaired in mice lacking vimentin and 2) these results suggest that the transient tubular expression of vimentin is not instrumental in tubular regeneration after renal ischemic injury. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 PMID:9094992

  14. Mechanisms of Plastic Deformation in Collagen Networks Induced by Cellular Forces.

    PubMed

    Ban, Ehsan; Franklin, J Matthew; Nam, Sungmin; Smith, Lucas R; Wang, Hailong; Wells, Rebecca G; Chaudhuri, Ovijit; Liphardt, Jan T; Shenoy, Vivek B

    2018-01-23

    Contractile cells can reorganize fibrous extracellular matrices and form dense tracts of fibers between neighboring cells. These tracts guide the development of tubular tissue structures and provide paths for the invasion of cancer cells. Here, we studied the mechanisms of the mechanical plasticity of collagen tracts formed by contractile premalignant acinar cells and fibroblasts. Using fluorescence microscopy and second harmonic generation, we quantified the collagen densification, fiber alignment, and strains that remain within the tracts after cellular forces are abolished. We explained these observations using a theoretical fiber network model that accounts for the stretch-dependent formation of weak cross-links between nearby fibers. We tested the predictions of our model using shear rheology experiments. Both our model and rheological experiments demonstrated that increasing collagen concentration leads to substantial increases in plasticity. We also considered the effect of permanent elongation of fibers on network plasticity and derived a phase diagram that classifies the dominant mechanisms of plasticity based on the rate and magnitude of deformation and the mechanical properties of individual fibers. Plasticity is caused by the formation of new cross-links if moderate strains are applied at small rates or due to permanent fiber elongation if large strains are applied over short periods. Finally, we developed a coarse-grained model for plastic deformation of collagen networks that can be employed to simulate multicellular interactions in processes such as morphogenesis, cancer invasion, and fibrosis. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Salmonella enterica Serovar Typhimurium Exploits Inflammation to Modify Swine Intestinal Microbiota.

    PubMed

    Drumo, Rosanna; Pesciaroli, Michele; Ruggeri, Jessica; Tarantino, Michela; Chirullo, Barbara; Pistoia, Claudia; Petrucci, Paola; Martinelli, Nicola; Moscati, Livia; Manuali, Elisabetta; Pavone, Silvia; Picciolini, Matteo; Ammendola, Serena; Gabai, Gianfranco; Battistoni, Andrea; Pezzotti, Giovanni; Alborali, Giovanni L; Napolioni, Valerio; Pasquali, Paolo; Magistrali, Chiara F

    2015-01-01

    Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria) normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.

  16. Salmonella enterica Serovar Typhimurium Exploits Inflammation to Modify Swine Intestinal Microbiota

    PubMed Central

    Drumo, Rosanna; Pesciaroli, Michele; Ruggeri, Jessica; Tarantino, Michela; Chirullo, Barbara; Pistoia, Claudia; Petrucci, Paola; Martinelli, Nicola; Moscati, Livia; Manuali, Elisabetta; Pavone, Silvia; Picciolini, Matteo; Ammendola, Serena; Gabai, Gianfranco; Battistoni, Andrea; Pezzotti, Giovanni; Alborali, Giovanni L.; Napolioni, Valerio; Pasquali, Paolo; Magistrali, Chiara F.

    2016-01-01

    Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria) normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota. PMID:26835435

  17. Worsening Renal Function in Patients With Acute Heart Failure Undergoing Aggressive Diuresis Is Not Associated With Tubular Injury.

    PubMed

    Ahmad, Tariq; Jackson, Keyanna; Rao, Veena S; Tang, W H Wilson; Brisco-Bacik, Meredith A; Chen, Horng H; Felker, G Michael; Hernandez, Adrian F; O'Connor, Christopher M; Sabbisetti, Venkata S; Bonventre, Joseph V; Wilson, F Perry; Coca, Steven G; Testani, Jeffrey M

    2018-05-08

    Worsening renal function (WRF) in the setting of aggressive diuresis for acute heart failure treatment may reflect renal tubular injury or simply indicate a hemodynamic or functional change in glomerular filtration. Well-validated tubular injury biomarkers, N -acetyl-β-d-glucosaminidase, neutrophil gelatinase-associated lipocalin, and kidney injury molecule 1, are now available that can quantify the degree of renal tubular injury. The ROSE-AHF trial (Renal Optimization Strategies Evaluation-Acute Heart Failure) provides an experimental platform for the study of mechanisms of WRF during aggressive diuresis for acute heart failure because the ROSE-AHF protocol dictated high-dose loop diuretic therapy in all patients. We sought to determine whether tubular injury biomarkers are associated with WRF in the setting of aggressive diuresis and its association with prognosis. Patients in the multicenter ROSE-AHF trial with baseline and 72-hour urine tubular injury biomarkers were analyzed (n=283). WRF was defined as a ≥20% decrease in glomerular filtration rate estimated with cystatin C. Consistent with protocol-driven aggressive dosing of loop diuretics, participants received a median 560 mg IV furosemide equivalents (interquartile range, 300-815 mg), which induced a urine output of 8425 mL (interquartile range, 6341-10 528 mL) over the 72-hour intervention period. Levels of N -acetyl-β-d-glucosaminidase and kidney injury molecule 1 did not change with aggressive diuresis (both P >0.59), whereas levels of neutrophil gelatinase-associated lipocalin decreased slightly (-8.7 ng/mg; interquartile range, -169 to 35 ng/mg; P <0.001). WRF occurred in 21.2% of the population and was not associated with an increase in any marker of renal tubular injury: neutrophil gelatinase-associated lipocalin ( P =0.21), N -acetyl-β-d-glucosaminidase ( P =0.46), or kidney injury molecule 1 ( P =0.22). Increases in neutrophil gelatinase-associated lipocalin, N -acetyl

  18. Chicken macrophages infected with Salmonella (S.) Enteritidis or S. heidelberg produce differential responses in immune and metabolic signaling pathways

    USDA-ARS?s Scientific Manuscript database

    Protein kinases act in coordination with phosphatases to control protein phosphorylation and regulate signaling pathways and cellular processes involved in nearly every functions of cell life. Salmonella are known to manipulate the host kinase network to gain entrance and survive inside host cells....

  19. Review: peripheral nerve regeneration using non-tubular alginate gel crosslinked with covalent bonds.

    PubMed

    Hashimoto, Tadashi; Suzuki, Yoshihisa; Suzuki, Kyoko; Nakashima, Toshihide; Tanihara, Masao; Ide, Chizuka

    2005-06-01

    We have developed a nerve regeneration material consisting of alginate gel crosslinked with covalent bonds. in the first part of this study, we attempted to analyze nerve regeneration through alginate gel in the early stages within 2 weeks. in the second part, we tried to regenerate cat peripheral nerve by using alginate tubular or non-tubular nerve regeneration devices, and compared their efficacies. Four days after surgery, regenerating axons grew without Schwann cell investment through the partially degraded alginate gel, being in direct contact with the alginate without a basal lamina covering. One to 2 weeks after surgery, regenerating axons were surrounded by common Schwann cells, forming small bundles, with some axons at the periphery being partly in direct contact with alginate. At the distal stump, numerous Schwann cells had migrated into the alginate 8-14 days after surgery. Remarkable restorations of the 50-mm gap in cat sciatic nerve were obtained after a long term by using tubular or non-tubular nerve regeneration material consisting mainly of alginate gel. However, there was no significant difference between both groups at electrophysiological and morphological evaluation. Although, nowadays, nerve regeneration materials being marketed mostly have a tubular structure, our results suggest that the tubular structure is not indispensable for peripheral nerve regeneration.

  20. Effect of treatment with interferon-gamma and concanavalin A on the course of infection of mice with Salmonella typhimurium strain LT-2

    NASA Technical Reports Server (NTRS)

    Gould, Cheryl L.; Sonnenfeld, Gerald

    1987-01-01

    The effect of pretreatment of mice with 34 units/day, for five days, of interferon-gamma (IFN-gamma) on the course of infection with LD50 of Salmonella typhimurium strain LT-2 was assessed, using two IFN preparations: (1) a hybridoma supernatant fluid containing concanavalin-A-induced IFN-gamma activity and (2) pure murine IFN-gamma produced by recombinant DNA technology. The hybridoma supernatant-treated Salmonella-infected mice were found to die faster than mice treated only with Salmonella. Pure murine IFN-gamma was found to protect infected mice significantly, with 95 percent of mice surviving LD50 infection. In contrast, the Salmonella-infected mice treated with hybridoma supernatant were found to die faster than the Salmonella-infected untreated controls. Mice treated with concanavalin A alone prior to infection with S. typhimurium died more quickly than the untreated infected controls, suggesting that contamination with concanavalin A had a detrimental effect on mice survival.

  1. Collaborative ring-trial of Dynabeads anti-Salmonella for immunomagnetic separation of stressed Salmonella cells from herbs and spices.

    PubMed

    Mansfield, L; Forsythe, S

    1996-02-01

    Eight laboratories participated in a Salmonella detection ring-trial which compared selective enrichment by conventional broths with immunomagnetic separation (IMS) using Dynabeads Anti-Salmonella. Laboratories analyzed six types of herbs and spices that were spiked with one of six freeze-dried Salmonella species. Each herb and spice analysis comprised of 12 samples (25 g each) which had been spiked at three different levels, plus a negative control and stored for one week prior to testing. Out of a total 468 samples analyzed, 195 (41.7%) were positive by both methods. Eighteen samples were positive only by IMS enrichment, in comparison with 19 positive samples by conventional enrichment broths and not IMS. These results confirm the potential use of IMS as an alternative to enrichment broths for Salmonella isolation.

  2. CRP-cAMP mediates silencing of Salmonella virulence at the post-transcriptional level

    PubMed Central

    El Mouali, Youssef; Gaviria-Cantin, Tania; Gibert, Marta; Westermann, Alexander J.; Vogel, Jörg

    2018-01-01

    Invasion of epithelial cells by Salmonella enterica requires expression of genes located in the pathogenicity island I (SPI-1). The expression of SPI-1 genes is very tightly regulated and activated only under specific conditions. Most studies have focused on the regulatory pathways that induce SPI-1 expression. Here, we describe a new regulatory circuit involving CRP-cAMP, a widely established metabolic regulator, in silencing of SPI-1 genes under non-permissive conditions. In CRP-cAMP-deficient strains we detected a strong upregulation of SPI-1 genes in the mid-logarithmic growth phase. Genetic analyses revealed that CRP-cAMP modulates the level of HilD, the master regulator of Salmonella invasion. This regulation occurs at the post-transcriptional level and requires the presence of a newly identified regulatory motif within the hilD 3’UTR. We further demonstrate that in Salmonella the Hfq-dependent sRNA Spot 42 is under the transcriptional repression of CRP-cAMP and, when this transcriptional repression is relieved, Spot 42 exerts a positive effect on hilD expression. In vivo and in vitro assays indicate that Spot 42 targets, through its unstructured region III, the 3’UTR of the hilD transcript. Together, our results highlight the biological relevance of the hilD 3’UTR as a hub for post-transcriptional control of Salmonella invasion gene expression. PMID:29879120

  3. Tubular Tissues and Organs of Human Body--Challenges in Regenerative Medicine.

    PubMed

    Góra, Aleksander; Pliszka, Damian; Mukherjee, Shayanti; Ramakrishna, Seeram

    2016-01-01

    Tissue engineering of tubular organs such as the blood vessel, trachea gastrointestinal tract, urinary tract are of the great interest due to the high amount of surgeries performed annually on those organs. Development in tissue engineering in recent years and promising results, showed need to investigate more complex constructs that need to be designed in special manner. Stent technology remain the most widely used procedure to restore functions of tubular tissues after cancer treatment, or after organ removal due to traumatic accidents. Tubular structures like blood vessels, intestines, and trachea have to work in specific environment at the boundary of the liquids, solids or air and surrounding tissues and ensure suitable separation between them. This brings additional challenges in tissue engineering science in order to construct complete organs by using combinations of various cells along with the support material systems. Here we give a comprehensive review of the tubular structures of the human body, in perspective of the current methods of treatment and progress in regenerative medicine that aims to develop fully functioning organs of tubular shape. Extensive analysis of the available literature has been done focusing on materials and methods of creations of such organs. This work describes the attempts to incorporate growth factors and drugs within the scaffolds to ensure localized drug release and enhance vascularization of the organ by attracting blood vessels to the site of implantation.

  4. Salmonella enterocolitis

    MedlinePlus

    ... you: Eat foods such as turkey, turkey dressing, chicken, or eggs that have not been cooked well or stored properly Are around family members with a recent salmonella infection Have been in or worked in a ...

  5. Effect of Pulsed Electric Field on Membrane Lipids and Oxidative Injury of Salmonella typhimurium

    PubMed Central

    Yun, Ou; Zeng, Xin-An; Brennan, Charles S.; Han, Zhong

    2016-01-01

    Salmonella typhimurium cells were subjected to pulsed electric field (PEF) treatment at 25 kV/cm for 0–4 ms to investigate the effect of PEF on the cytoplasmic membrane lipids and oxidative injury of cells. Results indicated that PEF treatment induced a decrease of membrane fluidity of Salmonella typhimurium (S. typhimuriumi), possibly due to the alterations of fatty acid biosynthesis-associated gene expressions (down-regulation of cfa and fabA gene expressions and the up-regulation of fabD gene expression), which, in turn, modified the composition of membrane lipid (decrease in the content ratio of unsaturated fatty acids to saturated fatty acids). In addition, oxidative injury induced by PEF treatment was associated with an increase in the content of malondialdehyde. The up-regulation of cytochrome bo oxidase gene expressions (cyoA, cyoB, and cyoC) indicated that membrane damage was induced by PEF treatment, which was related to the repairing mechanism of alleviating the oxidative injury caused by PEF treatment. Based on these results, we achieved better understanding of microbial injury induced by PEF, suggesting that micro-organisms tend to decrease membrane fluidity in response to PEF treatment and, thus, a greater membrane fluidity might improve the efficiency of PEF treatment to inactivate micro-organisms. PMID:27556460

  6. Ten years experience of Salmonella infections in Cambridge, UK.

    PubMed

    Matheson, Nicholas; Kingsley, Robert A; Sturgess, Katherine; Aliyu, Sani H; Wain, John; Dougan, Gordon; Cooke, Fiona J

    2010-01-01

    Review of all Salmonella infections diagnosed in the Cambridge area over 10 years. All Salmonella enterica isolated in the Clinical Microbiology Laboratory, Addenbrooke's Hospital between 1.1.1999 and 31.12.2008 were included. Patient demographics, serotype and additional relevant details (travel history, resistance-type, phage-type) were recorded. 1003 episodes of Salmonella gastroenteritis were confirmed by stool culture, representing 88 serotypes. Serotypes Enteritidis (59%), Typhimurium (4.7%), Virchow (2.6%), Newport (1.8%) and Braenderup (1.7%) were the 5 most common isolates. There were an additional 37 invasive Salmonella infections (32 blood cultures, 4 tissue samples, 1 CSF). 13/15 patients with Salmonella Typhi or Salmonella Paratyphi isolated from blood or faeces with an available travel history had returned from the Indian subcontinent. 8/10 S. Typhi or Paratyphi isolates tested had reduced susceptibility to fluoroquinolones (MIC > or = 0.125 mg/L). 7/21 patients with non-typhoidal Salmonella bacteraemia were known to be immunosuppressed. This study describes Salmonella serotypes circulating within a defined geographical area over a decade. Prospective molecular analysis of isolates of S. enterica by multi-locus sequence typing (MLST) and single nucleotide polymorphism (SNP) detection will determine the geo-phylogenetic relationship of isolates within our region. 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.

  7. Effects of various chemical compounds on spontaneous and hydrogen peroxide-induced reversion in strain TA104 of Salmonella typhimurium.

    PubMed

    Han, J S

    1992-04-01

    In experiments designed to determine which active oxygen species contribute to hydrogen peroxide (HP)-induced reversion in strain TA104 of Salmonella typhimurium, 1,10-phenanthroline (an iron chelator, which prevents the formation of hydroxyl radicals from HP and DNA-bound iron by the Fenton reaction), sodium azide (a singlet oxygen scavenger), and potassium iodide (an hydroxyl radical scavenger) inhibited HP-induced reversion. These results indicate that hydroxyl radicals generated from HP by the Fenton reaction, and perhaps singlet oxygen, contribute to HP-induced reversion in TA104. However, reduced glutathione (reduces Fe3+ to Fe2+ and/or HP to water), diethyldithiocarbamic acid (an inhibitor of superoxide dismutase), diethyl maleate (a glutathione scavenger), and 3-amino-1,2,4-triazole (an inhibitor of catalase) did not inhibit HP-induced reversion in TA104. Thus, superoxide radical anions and HP itself do not appear to be the cause of HP-induced reversion in this strain. In experiments on the effect of 5 common dietary compounds (beta-carotene, retinoic acid, and vitamins A, C and E), chlorophyllin (CHL), and ergothioneine, the frequency of revertants in TA104 increased above the spontaneous frequency in the presence of beta-carotene or vitamin C (about 2-fold) or vitamin A (about 3-fold). The 5 dietary antimutagens and CHL did not inhibit HP-induced reversion in TA104. However, L-ergothioneine inhibited HP-induced reversion in this strain. Therefore, it is likely that L-ergothioneine is a scavenger of hydroxyl radicals or an inhibitor of their formation, and perhaps of singlet oxygen, at the concentrations tested in TA104.

  8. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    NASA Astrophysics Data System (ADS)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-06-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  9. Empirical Approach for Determining Axial Strength of Circular Concrete Filled Steel Tubular Columns

    NASA Astrophysics Data System (ADS)

    Jayalekshmi, S.; Jegadesh, J. S. Sankar; Goel, Abhishek

    2018-03-01

    The concrete filled steel tubular (CFST) columns are highly regarded in recent years as an interesting option in the construction field by designers and structural engineers, due to their exquisite structural performance, with enhanced load bearing capacity and energy absorption capacity. This study presents a new approach to simulate the capacity of circular CFST columns under axial loading condition, using a large database of experimental results by applying artificial neural network (ANN). A well trained network is established and is used to simulate the axial capacity of CFST columns. The validation and testing of the ANN is carried out. The current study is focused on proposing a simplified equation that can predict the ultimate strength of the axially loaded columns with high level of accuracy. The predicted results are compared with five existing analytical models which estimate the strength of the CFST column. The ANN-based equation has good prediction with experimental data, when compared with the analytical models.

  10. A narrow open tubular column for high efficiency liquid chromatographic separation

    DOE PAGES

    Chen, Huang; Yang, Yu; Qiao, Zhenzhen; ...

    2018-01-01

    We report a great feature of open tubular liquid chromatography when it is run using an extremely narrow ( e.g. , 2 μm inner diameter) open tubular column: more than 10 million plates per meter can be achieved in less than 10 min and under an elution pressure of ca. 20 bar.

  11. A narrow open tubular column for high efficiency liquid chromatographic separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Huang; Yang, Yu; Qiao, Zhenzhen

    We report a great feature of open tubular liquid chromatography when it is run using an extremely narrow ( e.g. , 2 μm inner diameter) open tubular column: more than 10 million plates per meter can be achieved in less than 10 min and under an elution pressure of ca. 20 bar.

  12. Emergent patterns of collective cell migration under tubular confinement.

    PubMed

    Xi, Wang; Sonam, Surabhi; Beng Saw, Thuan; Ladoux, Benoit; Teck Lim, Chwee

    2017-11-15

    Collective epithelial behaviors are essential for the development of lumens in organs. However, conventional assays of planar systems fail to replicate cell cohorts of tubular structures that advance in concerted ways on out-of-plane curved and confined surfaces, such as ductal elongation in vivo. Here, we mimic such coordinated tissue migration by forming lumens of epithelial cell sheets inside microtubes of 1-10 cell lengths in diameter. We show that these cell tubes reproduce the physiological apical-basal polarity, and have actin alignment, cell orientation, tissue organization, and migration modes that depend on the extent of tubular confinement and/or curvature. In contrast to flat constraint, the cell sheets in a highly constricted smaller microtube demonstrate slow motion with periodic relaxation, but fast overall movement in large microtubes. Altogether, our findings provide insights into the emerging migratory modes for epithelial migration and growth under tubular confinement, which are reminiscent of the in vivo scenario.

  13. HER-2 amplification in tubular carcinoma of the breast.

    PubMed

    Oakley, Gerard J; Tubbs, Raymond R; Crowe, Joseph; Sebek, Bruce; Budd, G Thomas; Patrick, Rebecca J; Procop, Gary W

    2006-07-01

    The prognostic and therapeutic implications of HER-2 gene amplification and estrogen and progesterone receptor status in breast cancer are well described. To address the relative paucity of information concerning HER-2 amplification for tubular carcinomas, we assessed the frequency of gene amplification in 55 tubular carcinomas of the breast from 54 patients, 5 of which had axillary node metastases. The HER-2 gene copy number was assessed by fluorescence in situ hybridization for the majority of tumors analyzed, whereas estrogen and progesterone receptor status was achieved by immunohistochemical analysis. HER-2 gene amplification was not observed in any of the tumors examined, and most were estrogen receptor-positive. This HER-2 gene amplification frequency was significantly lower than the frequency of gene amplification previously reported for all invasive ductal carcinoma of no special type (P < .01). HER-2 gene amplification likely occurs infrequently, or not at all, in tubular carcinomas of the breast, whereas most express estrogen receptors.

  14. Preadaptation to Cold Stress in Salmonella enterica Serovar Typhimurium Increases Survival during Subsequent Acid Stress Exposure

    PubMed Central

    Shah, Jigna; Desai, Prerak T.; Chen, Dong; Stevens, John R.

    2013-01-01

    Salmonella is an important cause of bacterial food-borne gastroenteritis. Salmonella encounters multiple abiotic stresses during pathogen elimination methods used in food processing, and these stresses may influence its subsequent survivability within the host or in the environment. Upon ingestion, Salmonella is exposed to gastrointestinal acidity, a first line of the host innate defense system. This study tested the hypothesis that abiotic stresses encountered during food processing alter the metabolic mechanisms in Salmonella that enable survival and persistence during subsequent exposure to the host gastrointestinal acidic environment. Out of the four different abiotic stresses tested, viz., cold, peroxide, osmotic, and acid, preadaptation of the log-phase culture to cold stress (5°C for 5 h) significantly enhanced survival during subsequent acid stress (pH 4.0 for 90 min). The gene expression profile of Salmonella preadapted to cold stress revealed induction of multiple genes associated with amino acid metabolism, oxidative stress, and DNA repair, while only a few of the genes in the above-mentioned stress response and repair pathways were induced upon exposure to acid stress alone. Preadaptation to cold stress decreased the NAD+/NADH ratio and hydroxyl (OH·) radical formation compared with those achieved with the exposure to acid stress alone, indicating alteration of aerobic respiration and the oxidative state of the bacteria. The results from this study suggest that preadaptation to cold stress rescues Salmonella from the deleterious effect of subsequent acid stress exposure by induction of genes involved in stress response and repair pathways, by modification of aerobic respiration, and by redox modulation. PMID:24056458

  15. Autodisplay: Development of an Efficacious System for Surface Display of Antigenic Determinants in Salmonella Vaccine Strains

    PubMed Central

    Kramer, Uwe; Rizos, Konstantin; Apfel, Heiko; Autenrieth, Ingo B.; Lattemann, Claus T.

    2003-01-01

    To optimize antigen delivery by Salmonella vaccine strains, a system for surface display of antigenic determinants was established by using the autotransporter secretion pathway of gram-negative bacteria. A modular system for surface display allowed effective targeting of heterologous antigens or fragments thereof to the bacterial surface by the autotransporter domain of AIDA-I, the Escherichia coli adhesin involved in diffuse adherence. A major histocompatibility complex class II-restricted epitope, comprising amino acids 74 to 86 of the Yersinia enterocolitica heat shock protein Hsp60 (Hsp6074-86), was fused to the AIDA-I autotransporter domain, and the resulting fusion protein was expressed at high levels on the cell surface of E. coli and Salmonella enterica serovar Typhimurium. Colonization studies in mice vaccinated with Salmonella strains expressing AIDA-I fusion proteins demonstrated high genetic stability of the generated vaccine strain in vivo. Furthermore, a pronounced T-cell response against Yersinia Hsp6074-86 was induced in mice vaccinated with a Salmonella vaccine strain expressing the Hsp6074-86-AIDA-I fusion protein. This was shown by monitoring Yersinia Hsp60-stimulated IFN-γ secretion and proliferation of splenic T cells isolated from vaccinated mice. These results demonstrate that the surface display of antigenic determinants by the autotransporter pathway deserves special attention regarding the application in live attenuated Salmonella vaccine strains. PMID:12654812

  16. Autodisplay: development of an efficacious system for surface display of antigenic determinants in Salmonella vaccine strains.

    PubMed

    Kramer, Uwe; Rizos, Konstantin; Apfel, Heiko; Autenrieth, Ingo B; Lattemann, Claus T

    2003-04-01

    To optimize antigen delivery by Salmonella vaccine strains, a system for surface display of antigenic determinants was established by using the autotransporter secretion pathway of gram-negative bacteria. A modular system for surface display allowed effective targeting of heterologous antigens or fragments thereof to the bacterial surface by the autotransporter domain of AIDA-I, the Escherichia coli adhesin involved in diffuse adherence. A major histocompatibility complex class II-restricted epitope, comprising amino acids 74 to 86 of the Yersinia enterocolitica heat shock protein Hsp60 (Hsp60(74-86)), was fused to the AIDA-I autotransporter domain, and the resulting fusion protein was expressed at high levels on the cell surface of E. coli and Salmonella enterica serovar Typhimurium. Colonization studies in mice vaccinated with Salmonella strains expressing AIDA-I fusion proteins demonstrated high genetic stability of the generated vaccine strain in vivo. Furthermore, a pronounced T-cell response against Yersinia Hsp60(74-86) was induced in mice vaccinated with a Salmonella vaccine strain expressing the Hsp60(74-86)-AIDA-I fusion protein. This was shown by monitoring Yersinia Hsp60-stimulated IFN-gamma secretion and proliferation of splenic T cells isolated from vaccinated mice. These results demonstrate that the surface display of antigenic determinants by the autotransporter pathway deserves special attention regarding the application in live attenuated Salmonella vaccine strains.

  17. Salmonella Enteritidis flagellar mutants have a colonization benefit in the chicken oviduct.

    PubMed

    Kilroy, Sofie; Raspoet, Ruth; Martel, An; Bosseler, Leslie; Appia-Ayme, Corinne; Thompson, Arthur; Haesebrouck, Freddy; Ducatelle, Richard; Van Immerseel, Filip

    2017-02-01

    Egg borne Salmonella Enteritidis is still a major cause of human food poisoning. Eggs can become internally contaminated following colonization of the hen's oviduct. In this paper we aimed to analyze the role of flagella of Salmonella Enteritidis in colonization of the hen's oviduct. Using a transposon library screen we showed that mutants lacking functional flagella are significantly more efficient in colonizing the hen's oviduct in vivo. A micro-array analysis proved that transcription of a number of flagellar genes is down-regulated inside chicken oviduct cells. Flagella contain flagellin, a pathogen associated molecular pattern known to bind to Toll-like receptor 5, activating a pro-inflammatory cascade. In vitro tests using primary oviduct cells showed that flagellin is not involved in invasion. Using a ligated loop model, a diminished inflammatory reaction was seen in the oviduct resulting from injection of an aflagellated mutant compared to the wild-type. It is hypothesized that Salmonella Enteritidis downregulates flagellar gene expression in the oviduct and consequently prevents a flagellin-induced inflammatory response, thereby increasing its oviduct colonization efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. WAVE2 signaling mediates invasion of polarized epithelial cells by Salmonella typhimurium.

    PubMed

    Shi, Jing; Scita, Giorgio; Casanova, James E

    2005-08-19

    The bacterial pathogen Salmonella penetrates the intestinal epithelium by inducing its own phagocytosis into epithelial cells. The dramatic reorganization of the actin cytoskeleton required for internalization is driven by bacterial manipulation of host signaling pathways, including activation of the Rho family GTPase Rac1 and subsequent activation of the Arp2/3 complex. However, the mechanisms linking these two events remain poorly understood. Rac1 is thought to promote activation of the Arp2/3 complex through its interaction with suppressor of cAMP receptor/WASP family verprolin-homologous (SCAR/WAVE) family proteins, but this interaction is apparently indirect. Two different Rac1 effectors have been shown to bind WAVE2: IRSp53, the SH3 domain of which binds the WAVE2 proline-rich domain, and PIR121/Sra-1, which forms a pentameric complex containing WAVE, Abi1, Nap1, and HSPC300. However, the extent to which each of these complexes contributes to Arp2/3 complex activation in the context of Salmonella infection is unclear. Here, we show that WAVE2 is necessary for efficient invasion of epithelial cells by Salmonella typhimurium. We found that although Salmonella infection strongly promotes the formation of an IRSp53/WAVE2 complex, IRSp53 is not necessary for bacterial internalization. In contrast, disruption of the PIR121/Nap1/Abi1/WAVE2/HSPC300 complex potently inhibits bacterial uptake. These results indicate that WAVE2 is an important component in signaling pathways leading to Salmonella invasion. Although infection leads to the formation of an IRSp53/WAVE2 complex, it is the association of WAVE2 with the Abi1/Nap1/PIR121/HSPC300 complex that regulates bacterial internalization.

  19. [Acute renal failure and proximal renal tubular dysfuntion in a patient with acquired immunodeficiency syndrome treated with tenofovir].

    PubMed

    de la Prada, F J; Prados, A M; Tugores, A; Uriol, M; Saus, C; Morey, A

    2006-01-01

    Tenofovir, a new nucleotide reverse transcriptase inhibitor that has good antiviral activity against drug-resistant strains of HIV, is structurally similar to cidofovir and adefovir and seems to be less nephrotoxic. Nephrotoxicity of cidofovir and adefovir is well established and they have been associated with increase for acute renal insufficiency due to tubular toxicity, possibly induced via mitochondrial deplection. Tenofovir has little mithocondrial toxicity in in vitro assays and early clinical studies. However some cases of renal tubular dysfuntion and renal failure related to tenofovir treatment have been published recently. Increased plasma concentrations of didanosine were observed after the adition of tenofovir and protease inhibitors can interact with the renal transport of organic anions leading to proximal tubular intracellular accumulation of tenofovir, yield Fanconi syndrome-type tubulopathy. We present a case in wich acute renal failure and proximal tubular dysfunction developed after therapy with tenofovir in a patiente with HIV who had suffered from complications of didanosine treatment. Although nephrotoxicity certainly occurs much less frequently with tenofovir that it does with other nuclotide analogues, use of tenofovir by patients with underlying renal disfuntion, for longer durations and/or associated with didanosine or lopinavir-ritonavir, might be associated with renal toxicity. Patients receiving tenofovir must be monitored for sings of tubulopathy with simple tests such us glycosuria, phosphaturia, proteinuria, phosphoremia and renal function, as well as assessment for signs of mithocondrial toxicity when a nucleoside analogue is being administered, and therapy should be stopped to avoid the risk of definitive renal failure.

  20. Outer membrane vesicles from flagellin-deficient Salmonella enterica serovar Typhimurium induce cross-reactive immunity and provide cross-protection against heterologous Salmonella challenge.

    PubMed

    Liu, Qiong; Liu, Qing; Yi, Jie; Liang, Kang; Hu, Bo; Zhang, Xiangmin; Curtiss, Roy; Kong, Qingke

    2016-10-04

    Outer membrane vesicles (OMVs) isolated from Salmonella Typhimurium are potentially useful for developing subunit vaccines because of high immunogenicity and protective efficacy. However, flagella might remain in OMV pellets following OMV purification, resulting in non-essential immune responses and counteraction of bacterial protective immune responses when developing a vaccine against infection of multiple serotypes Salmonella. In this study, a flagellin-deficient S. Typhimurium mutant was constructed. Lipopolysaccharide profiles, protein profiles and cryo-electron microscopy revealed that there were no significant differences between the wild-type and mutant OMVs, with the exception of a large amount of flagellin in the wild-type OMVs. Neither the wild-type OMVs nor the non-flagellin OMVs were toxic to macrophages. Mice immunized with the non-flagellin OMVs produced high concentrations of IgG. The non-flagellin OMVs elicited strong mucosal antibody responses in mice when administered via the intranasal route in addition to provoking higher cross-reactive immune responses against OMPs isolated from S. Choleraesuis and S. Enteritidis. Both intranasal and intraperitoneal immunization with the non-flagellin OMVs provided efficient protection against heterologous S. Choleraesuis and S. Enteritidis challenge. Our results indicate that the flagellin-deficient OMVs may represent a new vaccine platform that could be exploited to facilitate the production of a broadly protective vaccine.

  1. Degree and wealth distribution in a network induced by wealth

    NASA Astrophysics Data System (ADS)

    Lee, Gyemin; Kim, Gwang Il

    2007-09-01

    A network induced by wealth is a social network model in which wealth induces individuals to participate as nodes, and every node in the network produces and accumulates wealth utilizing its links. More specifically, at every time step a new node is added to the network, and a link is created between one of the existing nodes and the new node. Innate wealth-producing ability is randomly assigned to every new node, and the node to be connected to the new node is chosen randomly, with odds proportional to the accumulated wealth of each existing node. Analyzing this network using the mean value and continuous flow approaches, we derive a relation between the conditional expectations of the degree and the accumulated wealth of each node. From this relation, we show that the degree distribution of the network induced by wealth is scale-free. We also show that the wealth distribution has a power-law tail and satisfies the 80/20 rule. We also show that, over the whole range, the cumulative wealth distribution exhibits the same topological characteristics as the wealth distributions of several networks based on the Bouchaud-Mèzard model, even though the mechanism for producing wealth is quite different in our model. Further, we show that the cumulative wealth distribution for the poor and middle class seems likely to follow by a log-normal distribution, while for the richest, the cumulative wealth distribution has a power-law behavior.

  2. Expanded plug method for developing circumferential mechanical properties of tubular materials

    DOEpatents

    Hendrich, William Ray; McAfee, Wallace Jefferson; Luttrell, Claire Roberta

    2006-11-28

    A method for determining the circumferential properties of a tubular product, especially nuclear fuel cladding, utilizes compression of a polymeric plug within the tubular product to determine strain stress, yield stress and other properties. The process is especially useful in the determination of aging properties such as fuel rod embrittlement after long burn-down.

  3. Salmonella surrogate reduction using industrial peanut dry roasting parameters

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted to evaluate the effectiveness of industrial peanut dry roasting parameters in Salmonella reduction using a Salmonella surrogate, Enterococcus faecium, which is slightly more heat tolerant than Salmonella. Runner-type peanuts were inoculated with E. faecium and roasted in a lab...

  4. Plastic deformation of tubular crystals by dislocation glide.

    PubMed

    Beller, Daniel A; Nelson, David R

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  5. Band gap in tubular pillar phononic crystal plate.

    PubMed

    Shu, Fengfeng; Liu, Yongshun; Wu, Junfeng; Wu, Yihui

    2016-09-01

    In this paper, a phononic crystal (PC) plate with tubular pillars is presented and investigated. The band structures and mode displacement profiles are calculated by using finite element method. The result shows that a complete band gap opens when the ratio of the pillar height to the plate thickness is about 1.6. However, for classic cylinder pillar structures, a band gap opens when the ratio is equal or greater than 3. A tubular pillar design with a void room in it enhances acoustic multiple scattering and gives rise to the opening of the band gap. In order to verify it, a PC structure with double tubular pillars different in size (one within the other) is introduced and a more than 2times band gap enlargement is observed. Furthermore, the coupling between the resonant mode and the plate mode around the band gap is characterized, as well as the effect of the geometrical parameters on the band gap. The behavior of such structure could be utilized to design a pillar PC with stronger structural stability and to enlarge band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Plastic deformation of tubular crystals by dislocation glide

    NASA Astrophysics Data System (ADS)

    Beller, Daniel A.; Nelson, David R.

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  7. Salmonella burden in Lebanon.

    PubMed

    Malaeb, M; Bizri, A R; Ghosn, N; Berry, A; Musharrafieh, U

    2016-06-01

    Salmonellosis is a disease that represents a major public health concern in both developing and developed countries. The aim of this article is to evaluate the public health burden of Salmonella illness in Lebanon. The current scope of the Salmonella infection problem was assessed in relation to disease incidence and distribution with respect to age, gender and district. Factors that provide a better understanding of the magnitude of the problem were explored and highlighted. Data reported to the Epidemiologic Surveillance Department at the Lebanese Ministry of Public Health between 2001 and 2013 was reviewed. Information obtained was compared to information reported regionally and globally. The estimated true incidence was derived using multipliers from the CDC and Jordan. A literature review of all published data from Lebanon about Salmonella susceptibility/resistance patterns and its serious clinical complications was conducted. The estimated incidence was 13·34 cases/100 000 individuals, most cases occurred in the 20-39 years age group with no significant gender variation. Poor and less developed districts of Lebanon had the highest number of cases and the peak incidence was in summer. Reflecting on the projected incidence derived from the use of multipliers indicates a major discrepancy between what is reported and what is estimated. We conclude that data about Salmonella infection in Lebanon and many Middle Eastern and developing countries lack crucial information and are not necessarily representative of the true incidence, prevalence and burden of illness.

  8. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: an alarming trend?

    PubMed

    Michael, G B; Schwarz, S

    2016-12-01

    Zoonotic bacteria of the genus Salmonella have acquired various antimicrobial resistance properties over the years. The corresponding resistance genes are commonly located on plasmids, transposons, gene cassettes, or variants of the Salmonella Genomic Islands SGI1 and SGI2. Human infections by nontyphoidal Salmonella isolates mainly result from ingestion of contaminated food. The two predominantly found Salmonella enterica subsp. enterica serovars in the USA and in Europe are S. Enteritidis and S. Typhimurium. Many other nontyphoidal Salmonella serovars have been implicated in foodborne Salmonella outbreaks. Summary reports of the antimicrobial susceptibility patterns of nontyphoidal Salmonella isolates over time suggest a moderate to low level of antimicrobial resistance and multidrug-resistance. However, serovar-specific analyses showed in part a steady state, a continuous decline, or a recent increase in resistance to certain antimicrobial agents. Resistance to critically important antimicrobial agents, e.g. third-generation cephalosporins and (fluoro)quinolones is part of many monitoring programmes and the corresponding results confirm that extended-spectrum β-lactamases are still rarely found in nontyphoidal Salmonella serovars, whereas resistance to (fluoro)quinolones is prevalent at variable frequencies among different serovars from humans and animals in different countries. Although it is likely that nontyphoidal Salmonella isolates from animals represent a reservoir for resistance determinants, it is mostly unknown where and when Salmonella isolates acquired resistance properties and which exchange processes have happened since then. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  9. Reduction of Salmonella in ground chicken using a bacteriophage.

    PubMed

    Grant, Ar'Quette; Parveen, Salina; Schwarz, Jurgen; Hashem, Fawzy; Vimini, Bob

    2017-08-01

    This study's goal was to ascertain the effectiveness of a commercially available Salmonella bacteriophage during ground chicken production focusing on: water source, different Salmonella serovars, and time. Salmonella-free boneless, skinless chicken meat was inoculated with 4.0 Log CFU/cm2 of either a cocktail of 3 Salmonella isolates derived from ground chicken (GC) or a cocktail of 3 Salmonella strains not isolated from ground chicken (non-GC). Bacteriophages were spread onto the chicken using sterile tap or filtered water for 30 min or 8 h. Salmonella was recovered using standard plating method. Greater Salmonella reduction was observed when the bacteriophage was diluted in sterile tap water than in sterile filtered water: 0.39 Log CFU/cm2 and 0.23 Log CFU/cm2 reduction after 30 min, respectively (P < 0.05). The non-GC isolates showed reductions of 0.71 Log CFU/cm2 and 0.90 Log CFU/cm2 after 30 min and 8 h, respectively (P < 0.05). The GC isolates were less sensitive to the bacteriophage: 0.39 Log CFU/cm2 and 0.67 Log CFU/cm2 reductions after 30 min and 8 h, respectively (P < 0.05). In conclusion, bacteriophage reduction was dependent on water used to dilute the bacteriophage, Salmonella's susceptibility to the bacteriophage, and treatment time. © 2017 Poultry Science Association Inc.

  10. Initial contamination of chicken parts with Salmonella at retail and cross-contamination of cooked chicken with Salmonella from raw chicken during meal preparation.

    PubMed

    Oscar, T P

    2013-01-01

    The current study was undertaken to acquire data on contamination of chicken parts with Salmonella at retail and to acquire data on cross-contamination of cooked chicken with Salmonella from raw chicken during meal preparation. Whole raw chickens (n = 31) were obtained from local retail stores and cut into two wings, two breasts without skin or bones, two thighs, and two drumsticks. Data for cross-contamination were obtained by cutting up a sterile, cooked chicken breast with the same board and knife used to cut up the raw chicken. The board, knife, and latex gloves used by the food handler were not rinsed or washed before cutting up the sterile, cooked chicken breast, thus providing a worst-case scenario for cross-contamination. Standard curves for the concentration of Salmonella bacteria in 400 ml of buffered peptone water after 6 h of incubation of chicken parts as a function of the initial log number of Salmonella bacteria inoculated onto chicken parts were developed and used to enumerate Salmonella bacteria. Standard curves were not affected by the type of chicken part but did differ (P < 0.05) among the five isolates of Salmonella examined. Consequently, Salmonella bacteria were enumerated on naturally contaminated chicken parts using a standard curve developed with the serotype of Salmonella that was isolated from the original sample. The prevalence of contamination was 3 % (4 of 132), whereas the incidence of cross-contamination was 1.8 % (1 of 57). The positive chicken parts were a thigh from chicken 4, which contained 3 CFU of Salmonella enterica serotype Kentucky, and both wings, one thigh, and one cooked breast portion from chicken 15, which all contained 1 CFU of serotype 8,20:-:z(6). These results indicated that the poultry industry is providing consumers in the studied area with chicken that has a low prevalence and low number of Salmonella bacteria at retail and that has a low incidence and low level of cross-contamination of cooked chicken with

  11. Continuous API-crystal coating via coacervation in a tubular reactor.

    PubMed

    Besenhard, M O; Thurnberger, A; Hohl, R; Faulhammer, E; Rattenberger, J; Khinast, J G

    2014-11-20

    We present a proof-of-concept study of a continuous coating process of single API crystals in a tubular reactor using coacervation as a microencapsulation technique. Continuous API crystal coating can have several advantages, as in a single step (following crystallization) individual crystals can be prepared with a functional coating, either to change the release behavior, to protect the API from gastric juice or to modify the surface energetics of the API (i.e., to tailor the hydrophobic/hydrophilic characteristics, flowability or agglomeration tendency, etc.). The coating process was developed for the microencapsulation of a lipophilic core material (ibuprofen crystals of 20 μm- to 100 μm-size), with either hypromellose phthalate (HPMCP) or Eudragit L100-55. The core material was suspended in an aqueous solution containing one of these enteric polymers, fed into the tubing and mixed continuously with a sodium sulfate solution as an antisolvent to induce coacervation. A subsequent temperature treatment was applied to optimize the microencapsulation of crystals via the polymer-rich coacervate phase. Cross-linking of the coating shell was achieved by mixing the processed material with an acidic solution (pH<3). Flow rates, temperature profiles and polymer-to-antisolvent ratios had to be tightly controlled to avoid excessive aggregation, leading to pipe plugging. This work demonstrates the potential of a tubular reactor design for continuous coating applications and is the basis for future work, combining continuous crystallization and coating. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Survival and growth of Salmonella in salsa and related ingredients.

    PubMed

    Ma, Li; Zhang, Guodong; Gerner-Smidt, Peter; Tauxe, Robert V; Doyle, Michael P

    2010-03-01

    A large outbreak of Salmonella Saintpaul associated with raw jalapeño peppers, serrano peppers, and possibly tomatoes was reported in the United States in 2008. During the outbreak, two clusters of illness investigated among restaurant patrons were significantly associated with eating salsa. Experiments were performed to determine the survival and growth characteristics of Salmonella in salsa and related major ingredients, i.e., tomatoes, jalapeño peppers, and cilantro. Intact and chopped vegetables and different formulations of salsas were inoculated with a five-strain mixture of Salmonella and then stored at 4, 12, and 21 degrees C for up to 7 days. Salmonella populations were monitored during storage. Salmonella did not grow, but survived on intact tomatoes and jalapeño peppers, whereas significant growth at 12 and 21 degrees C was observed on intact cilantro. In general, growth of Salmonella occurred in all chopped vegetables when stored at 12 and 21 degrees C, with chopped jalapeño peppers being the most supportive of Salmonella growth. Regardless of differences in salsa formulation, no growth of Salmonella (initial inoculation ca. 3 log CFU/g) was observed in salsa held at 4 degrees C; however, rapid or gradual decreases in Salmonella populations were only observed in formulations that contained both fresh garlic and lime juice. Salmonella grew at 12 and 21 degrees C in salsas, except for those formulations that contained both fresh garlic and lime juice, in which salmonellae were rapidly or gradually inactivated, depending on salsa formulation. These results highlight the importance of preharvest pathogen contamination control of fresh produce and proper formulation and storage of salsa.

  13. Direct feeding of microencapsulated bacteriophages to reduce Salmonella colonization in pigs

    USDA-ARS?s Scientific Manuscript database

    Salmonella shedding often increases in pigs following pre-slaughter transportation and/or lairage. We previously showed that administering anti-Salmonella bacteriophages to pigs by gavage significantly reduced Salmonella colonization when the pigs were exposed to a Salmonella-contaminated pen. In ...

  14. Modeling of Salmonella Contamination in the Pig Slaughterhouse.

    PubMed

    Swart, A N; Evers, E G; Simons, R L L; Swanenburg, M

    2016-03-01

    In this article we present a model for Salmonella contamination of pig carcasses in the slaughterhouse. This model forms part of a larger QMRA (quantitative microbial risk assessment) on Salmonella in slaughter and breeder pigs, which uses a generic model framework that can be parameterized for European member states, to describe the entire chain from farm-to-consumption and the resultant human illness. We focus on model construction, giving mathematical formulae to describe Salmonella concentrations on individual pigs and slaughter equipment at different stages of the slaughter process. Variability among individual pigs and over slaughterhouses is incorporated using statistical distributions, and simulated by Monte Carlo iteration. We present the results over the various slaughter stages and show that such a framework is especially suitable to investigate the effect of various interventions. In this article we present the results of the slaughterhouse module for two case study member states. The model outcome represents an increase in average prevalence of Salmonella contamination and Salmonella numbers at dehairing and a decrease of Salmonella numbers at scalding. These results show good agreement when compared to several other QMRAs and microbiological studies. © 2016 Society for Risk Analysis.

  15. Sources of Salmonellae in broiler chickens in Ontario.

    PubMed Central

    Hacking, W C; Mitchell, W R; Carlson, H C

    1978-01-01

    Sources of Salmonellae infecting broiler chicken flocks in Ontario were investigated from July, 1975 to April, 1976. Three broiler flocks were investigated on each of four farms which received chicks from a common hatchery. Samples of feed and new litter were preenriched in nonselective broth subcultured to Salmonella-selective enrichment broth and plated on Salmonella-selective differential agar.Samples of used litter, water, culled chicks, insects, mice, wild birds and environmental swabs were not cultured initially in the nonselective broth. Fecal samples from principal and occasional flock attendants were examined for Samonellae. Salmonella infection, as judged by contaminated flock litter was detected in six flocks on two of the farms while the flocks on the other farms remained negative. Salmonellae were isolated from 23 of 412 feed samples (nine serotypes), six of 35 new wood shaving samples (four serotypes), one of 29 pools of culled chick viscera (one serotype) and 44 of 267 used litter samples (14 serotypes). These results indicate that broiler chicken flocks were infected with diverse Salmonellae introduced in day old chicks, pelleted feeds, wood shavings and residual contamination from the preceding flock. PMID:743597

  16. Assessment of 2 Salmonella enterica serovar Typhimurium-based vaccines against necrotic enteritis in reducing colonization of chickens by Salmonella serovars of different serogroups.

    PubMed

    Jiang, Yanfen; Kulkarni, Raveendra R; Parreira, Valeria R; Poppe, Cornelius; Roland, Kenneth L; Prescott, John F

    2010-10-01

    This study assessed the protective efficacy of oral vaccination with 2 experimental attenuated Salmonella Typhimurium-vectored vaccines for necrotic enteritis in protecting chickens against intestinal colonization by common serovars of Salmonella belonging to the 4 major serogroups affecting chickens. Birds were vaccinated orally with 1 × 10⁸ colony-forming units (CFU) of 1 of the vaccine strains χ9241 and χ9352, which express a plasmid-encoded partial recombinant hypothetical protein gene (tHP) of Clostridium perfringens, at days 1 and 7 of age, and then were challenged at 14 d of age with 10⁶ CFU of Salmonella serovars Anatum, Enteritidis, Heidelberg, Kentucky, or Typhimurium (representative serovars of serogroups B, C, D, and E). Birds were necropsied at 4 wk of age, and samples were collected to determine reduction in tissue and intestinal colonization. The chickens vaccinated with χ9241-tHP showed reduced colonization by Salmonella Enteritidis (serogroup D) and by Salmonella Heidelberg and Salmonella Typhimurium (serogroup B) compared with the control birds. No reduction in colonization was observed in the chickens vaccinated with χ9352-tHP. There was an association between the efficacy of these vaccine strains in protecting against necrotic enteritis, assessed on an earlier occasion, and their efficacy in protecting against Salmonella colonization. Thus, the choice of an attenuated Salmonella Typhimurium vaccine vector for delivery of heterologous antigens to chickens should be based partly on the vaccine's value in protecting against colonization by serovars within serogroups B and D. Such vectors would have the additional benefit of reducing colonization of important Salmonella serovars.

  17. Assessment of 2 Salmonella enterica serovar Typhimurium-based vaccines against necrotic enteritis in reducing colonization of chickens by Salmonella serovars of different serogroups

    PubMed Central

    Jiang, Yanfen; Kulkarni, Raveendra R.; Parreira, Valeria R.; Poppe, Cornelius; Roland, Kenneth L.; Prescott, John F.

    2010-01-01

    This study assessed the protective efficacy of oral vaccination with 2 experimental attenuated Salmonella Typhimurium-vectored vaccines for necrotic enteritis in protecting chickens against intestinal colonization by common serovars of Salmonella belonging to the 4 major serogroups affecting chickens. Birds were vaccinated orally with 1 × 108 colony-forming units (CFU) of 1 of the vaccine strains χ9241 and χ9352, which express a plasmid-encoded partial recombinant hypothetical protein gene (tHP) of Clostridium perfringens, at days 1 and 7 of age, and then were challenged at 14 d of age with 106 CFU of Salmonella serovars Anatum, Enteritidis, Heidelberg, Kentucky, or Typhimurium (representative serovars of serogroups B, C, D, and E). Birds were necropsied at 4 wk of age, and samples were collected to determine reduction in tissue and intestinal colonization. The chickens vaccinated with χ9241-tHP showed reduced colonization by Salmonella Enteritidis (serogroup D) and by Salmonella Heidelberg and Salmonella Typhimurium (serogroup B) compared with the control birds. No reduction in colonization was observed in the chickens vaccinated with χ9352-tHP. There was an association between the efficacy of these vaccine strains in protecting against necrotic enteritis, assessed on an earlier occasion, and their efficacy in protecting against Salmonella colonization. Thus, the choice of an attenuated Salmonella Typhimurium vaccine vector for delivery of heterologous antigens to chickens should be based partly on the vaccine’s value in protecting against colonization by serovars within serogroups B and D. Such vectors would have the additional benefit of reducing colonization of important Salmonella serovars. PMID:21197226

  18. Coconut and Salmonella Infection

    PubMed Central

    Schaffner, Carl P.; Mosbach, Klaus; Bibit, Venuso C.; Watson, Colin H.

    1967-01-01

    Raw, unprocessed coconut supports the growth of salmonellae as well as that of other enteric bacteria, salmonellae being particularly resistant to subsequent desiccation. Original contamination is not due to carriers or to polluted water supplies, but to contact with bacteria-containing soils followed by dispersion via infected coconut milk and shells. Pasteurization of raw coconut meat in a water bath at 80 C for 8 to 10 min effectively killed such bacteria, did not injure the product, and provided a prophylactic method now widely used by the coconut industry. PMID:5340650

  19. Salmonella species isolated from animal feed in Iraq.

    PubMed Central

    Al-Hindawi, N; Taha, R R

    1979-01-01

    Of 700 animal feed samples, 32 (4.5%) harbored Salmonella. The highest percentage of contamination was found in sheep feed and local protein. A total of 17 Salmonella serotypes were identified. The most frequent serotypes were Salmonella meleagridis. S. bornum, S. montevideo, and S. drypool. S. bornum was isolated for the first time in Iraq and from both local feed and its ingredients. The common somatic group found was that of Salmonella group C; then came groups E, G, B, and D. Three serotypes (S. enteritidis, S. california, and S. muenchen) seemed to form a link of infection among feed, food, patients, and carriers. PMID:453836

  20. Salmonella Typhimurium pneumonia in a patient with multiple myeloma.

    PubMed

    Khan, Sadia; Kumar, V Anil; Sidharthan, Neeraj; Mehta, Asmita; Backer, Binita; Dinesh, Kavitha R

    2015-04-01

    Pneumonia due to non-typhoidal Salmonella is a rarely reported entity. A fatal case of Salmonella pneumonia is reported here where Salmonella Typhimurium was isolated from the endotracheal aspirate and blood culture. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.