Sample records for salmonicida induce protective

  1. Protection against atypical Aeromonas salmonicida infection in carp (Cyprinus carpio L.) by oral administration of humus extract.

    PubMed

    Kodama, Hiroshi; Denso; Nakagawa, Tsuyoshi

    2007-04-01

    Humic substances are formed during the decomposition of organic matter in humus, and are found in many natural environments in which organic materials and microorganisms have been present. In the present study, oral administration of humus extract to common carp (Cyprinus carpio L.) induced effective protection against experimental atypical Aeromonas salmonicida infection. Mortality of fish and development of skin lesions such as hemorrhages and ulcers were significantly suppressed in carp treated with 10%, 5% or 1% humus extract adsorbed on dry feeding pellets. The median surviving days was also greater in fish treated with 10% or 5% humus extract than in untreated fish. Atypical A. salmonicida was isolated from ulcerative lesions of part of dead fish, but Aeromonas hydrophila and Flavobacterium sp. were also isolated from these fish, verifying bacterial population changes during the progression of skin lesions. These results clearly show that treatment of fish with humus extract is effective in preventing A. salmonicida disease.

  2. Immunohistochemical study of inducible nitric oxide synthase and tumour necrosis factor alpha response in turbot (Scophthalmus maximus) experimentally infected with Aeromonas salmonicida subsp. salmonicida.

    PubMed

    Coscelli, Germán; Bermúdez, Roberto; Ronza, Paolo; Losada, Ana Paula; Quiroga, María Isabel

    2016-09-01

    Aeromonas salmonicida subsp. salmonicida represents one of the major threats in aquaculture, especially in salmonid fish and turbot farming. In order to fight bacterial infections, fish have an immune system composed by innate and specific cellular and humoral elements analogous to those present in mammals. However, innate immunity plays a primordial role against bacterial infections in teleost fish. Among these non-specific mechanisms, the production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) pathway and the tumour necrosis factor-alpha (TNFα) produced by mononuclear phagocytes, are two of the main immune effectors to eliminate bacterial pathogens. In this study, the distribution and kinetic of iNOS and TNFα-producing cells of kidney and spleen of turbot experimentally inoculated with A. salmonicida was assessed by immunohistochemistry. In control and challenged fish, individual iNOS(+) and TNFα(+) cells, showing a similar pattern of distribution, were detected. In challenged fish, the number of immunoreactive cells was significantly increased in the evaluated organs, as well as the melanomacrophage centres showed variable positivity for both antigens. These results indicate that A. salmonicida induced an immune response in challenged turbot, which involved the increase of the activity of iNOS and TNFα in the leukocytic population from kidney and spleen. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Expression of and secretion through the Aeromonas salmonicida type III secretion system.

    PubMed

    Ebanks, Roger O; Knickle, Leah C; Goguen, Michel; Boyd, Jessica M; Pinto, Devanand M; Reith, Michael; Ross, Neil W

    2006-05-01

    Aeromonas salmonicida subsp. salmonicida is the aetiological agent of furunculosis, a disease of farmed and wild salmonids. The type III secretion system (TTSS) is one of the primary virulence factors in A. salmonicida. Using a combination of differential proteomic analysis and reverse transcriptase (RT)-PCR, it is shown that A. salmonicida A449 induces the expression of TTSS proteins at 28 degrees C, but not at its more natural growth temperature of 17 degrees C. More modest increases in expression occur at 24 degrees C. This temperature-induced up-regulation of the TTSS in A. salmonicida A449 occurs within 30 min of a growth temperature increase from 16 to 28 degrees C. Growth conditions such as low-iron, low pH, low calcium, growth within the peritoneal cavity of salmon and growth to high cell densities do not induce the expression of the TTSS in A. salmonicida A449. The only other known growth condition that induces expression of the TTSS is growth of the bacterium at 16 degrees C in salt concentrations ranging from 0.19 to 0.38 M NaCl. It is also shown that growth at 28 degrees C followed by exposure to low calcium results in the secretion of one of the TTSS effector proteins. This study presents a simple in vitro model for the expression of TTSS proteins in A. salmonicida.

  4. Ulcer disease prophylaxis in koi carp by bath immersion with chicken egg yolk containing anti-Aeromonas salmonicida IgY.

    PubMed

    Gan, Hongjian; He, Haiwen; Sato, Atsushi; Hatta, Hajime; Nakao, Miki; Somamoto, Tomonori

    2015-04-01

    Ulcer disease, caused by atypical Aeromonas salmonicida, is a serious concern in ornamental koi carp, because it induces skin ulceration, disfiguring ornamental fish and causing economic loses. The present study aimed to establish a novel prophylaxis with chicken egg yolk immunoglobulin, IgY, against ulcer disease and to assess its feasibility in the ornamental fish industry. Addition of egg yolk powder containing anti-A. salmonicida IgY to rearing water provided significant protection against an A. salmonicida bath infection, whereas administration of non-specific IgY did not. Consecutive immersion of fish into rearing water containing specific IgY completely prevented ulcer disease resulting from cohabitation infection, indicating that this prophylaxis could prevent infection from such type of contact. Thus, passive immunization induced by immersing fish into aquarium water containing specific IgY is a prospective prophylaxis against diseases caused by pathogens that invade the skin and gills. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Antimicrobial effect of the Biotronic® Top3 supplement and efficacy in protecting rainbow trout (Oncorhynchus mykiss) from infection by Aeromonas salmonicida subsp. salmonicida.

    PubMed

    Menanteau-Ledouble, Simon; Krauss, Ines; Goncalves, Rui Alexandre; Weber, Barbara; Santos, Gonçalo Abreu; El-Matbouli, Mansour

    2017-10-01

    Demand for more environmentally friendly practices have led to the adoption of several feed supplements by the fish farming industry. In the present study, we investigated a commercially available formula that includes a mixture of three compounds: organic acids, a phytochemical and Biomin® Permeabilizing Complex. This mixture demonstrated antimicrobial properties in vitro and was able to inhibit growth of multiple species of aquatic bacterial pathogens, including Aeromonas salmonicida. Bacterial challenge was performed using A. salmonicida and three exposure routes: intra-peritoneal injection, immersion, and cohabitation. Mortality rates following infection by injection were significantly decreased in the fish that had received the supplemented feed. Fish infected through the other routes did not show a significant difference in mortality. In term of farming performance, while the fish that had received the feed supplement showed an improvement in weight gain and final weight, these changes were not found to be statistically significant. Similarly, no significant difference was observed in the feed conversion ratio. The results of this study suggest that this feed supplement may be effective at protecting rainbow trout from fish furunculosis. Copyright © 2017. Published by Elsevier Ltd.

  6. Subunit vaccine candidates against Aeromonas salmonicida in rainbow trout Oncorhynchus mykiss.

    PubMed

    Marana, Moonika Haahr; Jørgensen, Louise von Gersdorff; Skov, Jakob; Chettri, Jiwan Kumar; Holm Mattsson, Andreas; Dalsgaard, Inger; Kania, Per Walter; Buchmann, Kurt

    2017-01-01

    Aeromonas salmonicida subsp. salmonicida is the etiological agent of furunculosis and a major fish health problem in salmonid aquaculture worldwide. Injection vaccination with commercial mineral oil-adjuvanted bacterin vaccines has been partly successful in preventing the disease but in Danish rainbow trout (Oncorhynchus mykiss, Walbaum) aquaculture furunculosis outbreaks still occur. In this study we tested the efficacy of experimental subunit vaccines against A. salmonicida infection in rainbow trout. We utilized in silico screening of the proteome of A. salmonicida subsp. salmonicida strain A449 and identified potential protective protein antigens that were tested by in vivo challenge trial. A total of 14 proteins were recombinantly expressed in Escherichia coli and prepared in 3 different subunit vaccine combinations to immunize 3 groups of rainbow trout by intraperitoneal (i.p.) injection. The fish were exposed to virulent A. salmonicida 7 weeks after immunization. To assess the efficacy of the subunit vaccines we evaluated the immune response in fish after immunization and challenge infection by measuring the antibody levels and monitoring the survival of fish in different groups. The survival of fish at 3 weeks after challenge infection showed that all 3 groups of fish immunized with 3 different protein combinations exhibited significantly lower mortalities (17-30%) compared to the control groups (48% and 56%). The ELISA results revealed significantly elevated antibody levels in fish against several protein antigens, which in some cases were positively correlated to the survival.

  7. Serological comparison of selected isolates of Aeromonas salmonicida ssp. Salmonicida

    USGS Publications Warehouse

    Hahnel, G.B.; Gould, R.W.; Boatman, E.S.

    1983-01-01

    Eight isolates of Acronionus salmonicida ssp. salmonicida were collected during furunculosis epizootics in North American Pacific coast states and provinces. Both virulent and avirulent forms of each isolate, confirmed by challenge and electron microscopy, were examined. Serological comparisons by cross-absorption agglutination tests revealed no serological differences between isolates. Using the double diffusion precipitin test, a single band was observed when antigen from a sonicated virulent strain was reacted with antiserum against a sonicated, virulent strain absorbed with homologous, avirulent strain. The presence of the single band was eliminated by excess sonication.

  8. Infection of sea lamprey with an unusual strain of Aeromonas salmonicida

    USGS Publications Warehouse

    Diamanka, Arfang; Loch, Thomas P.; Cipriano, Rocco C.; Winters, Andrew D.; Faisal, Mohamed

    2014-01-01

    The invasion of the Laurentian Great Lakes by the fish-parasitic sea lamprey has led to catastrophic consequences, including the potential introduction of fish pathogens. Aeromonas salmonicida is a bacterial fish pathogen that causes devastating losses worldwide. Currently, there are five accepted subspecies of Aeromonas salmonicida: A. salmonicida subsp. salmonicida, masoucida, smithia, achromogenes, and pectinolytica. We discuss the discovery of an isolate of A. salmonicida that is pathogenic to rainbow trout (Oncorhynchus mykiss) and exhibits unique phenotypic and molecular characteristics. We examined 181 adult sea lamprey (Petromyzon marinus) from the Humber River (Lake Ontario watershed) and 162 adult sea lamprey from Duffins Creek (Lake Ontario watershed) during the spring seasons of 2005–11. Among those, 4/343 (1.2%) sea lamprey were culture positive for A. salmonicida, whereby biochemical and molecular studies identified three of the isolates as A. salmonicida subsp. salmonicida. The remaining isolate (As-SL1) recovered from Humber River sea lamprey was phenotypically more similar to A. salmonicida subsp. salmonicida than to the four other A. salmonicida subspecies. However, unlike A. salmonicida subsp. salmonicida, As-SL1 was sucrose positive, produced an acid-over-acid reaction on triple-sugar iron medium and did not amplify with A. salmonicida subsp. salmonicida specific primers. Phylogenetic analysis based on partial stretches of the 16S rRNA and DNA gyrase subunit B genes further confirmed that the As-SL1 isolate was not A. salmonicida subsp. masoucida, smithia, achromogenes, or pectinolytica. Based on our analyses, the As-SL1 isolate is either an unusual strain of A. salmonicida subsp. salmonicida or a novel A. salmonicida subspecies. The four A. salmonicida isolates that were recovered from sea lamprey were pathogenic to rainbow trout in experimental challenge studies. Our study also underscores the potential role of sea lamprey in the ecology of

  9. Infection of sea lamprey with an unusual strain of Aeromonas salmonicida.

    PubMed

    Diamanka, Arfang; Loch, Thomas P; Cipriano, Rocco C; Winters, Andrew D; Faisal, Mohamed

    2014-04-01

    The invasion of the Laurentian Great Lakes by the fish-parasitic sea lamprey has led to catastrophic consequences, including the potential introduction of fish pathogens. Aeromonas salmonicida is a bacterial fish pathogen that causes devastating losses worldwide. Currently, there are five accepted subspecies of Aeromonas salmonicida: A. salmonicida subsp. salmonicida, masoucida, smithia, achromogenes, and pectinolytica. We discuss the discovery of an isolate of A. salmonicida that is pathogenic to rainbow trout (Oncorhynchus mykiss) and exhibits unique phenotypic and molecular characteristics. We examined 181 adult sea lamprey (Petromyzon marinus) from the Humber River (Lake Ontario watershed) and 162 adult sea lamprey from Duffins Creek (Lake Ontario watershed) during the spring seasons of 2005-11. Among those, 4/343 (1.2%) sea lamprey were culture positive for A. salmonicida, whereby biochemical and molecular studies identified three of the isolates as A. salmonicida subsp. salmonicida. The remaining isolate (As-SL1) recovered from Humber River sea lamprey was phenotypically more similar to A. salmonicida subsp. salmonicida than to the four other A. salmonicida subspecies. However, unlike A. salmonicida subsp. salmonicida, As-SL1 was sucrose positive, produced an acid-over-acid reaction on triple-sugar iron medium and did not amplify with A. salmonicida subsp. salmonicida specific primers. Phylogenetic analysis based on partial stretches of the 16S rRNA and DNA gyrase subunit B genes further confirmed that the As-SL1 isolate was not A. salmonicida subsp. masoucida, smithia, achromogenes, or pectinolytica. Based on our analyses, the As-SL1 isolate is either an unusual strain of A. salmonicida subsp. salmonicida or a novel A. salmonicida subspecies. The four A. salmonicida isolates that were recovered from sea lamprey were pathogenic to rainbow trout in experimental challenge studies. Our study also underscores the potential role of sea lamprey in the ecology of

  10. Aeromonas salmonicida subsp. salmonicida strains isolated from Chinese freshwater fish contain a novel genomic island and possible regional-specific mobile genetic elements profiles.

    PubMed

    Long, Meng; Nielsen, Tue K; Leisner, Jørgen J; Hansen, Lars H; Shen, Zhi X; Zhang, Qian Q; Li, Aihua

    2016-09-01

    Two strains of Aeromonas salmonicida, YK and BG, were isolated from largemouth bronze gudgeon and northern whitefish in China, and identified as A. salmonicida subsp. salmonicida based on phylogenetic analysis of vapA and 16S rRNA gene sequences. YK and BG originated from freshwater fish, one of which belonged to the cyprinid family, and the strains showed a difference in virulence. Subsequently, we performed whole genome sequencing of the strains, and comparison of their genomic sequences to the genome of the A449 reference strain revealed various genomic rearrangements, including a new variant of the genomic island AsaGEI in BG, designated as AsaGEI2c This is the first report on a GEI of A. salmonicida strain from China. Furthermore, both YK and BG strains contained a Tn7 transposon inserted at the same position in the chromosome. Finally, IS-dependent rearrangements on pAsa5 are deemed likely to have occurred, with omission of the resD gene in both strains as well as omission of genes related to the IncF conjugal transfer system in the YK isolate. This study demonstrates that A. salmonicida subsp. salmonicida can infect non-salmonids (cyprinids) in addition to salmonids, and that AsaGEI2c might be useful as a geographical indicator of Chinese A. salmonicida subsp. salmonicida isolates. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Structural characterization of the lipid A region of Aeromonas salmonicida subsp. salmonicida lipopolysaccharide.

    PubMed

    Wang, Zhan; Li, Jianjun; Altman, Eleonora

    2006-12-11

    The lipid A components of Aeromonas salmonicida subsp. salmonicida from strains A449, 80204-1 and an in vivo rough isolate were isolated by mild acid hydrolysis of the lipopolysaccharide. Structural studies carried out by a combination of fatty acid, electrospray ionization-mass spectrometry and nuclear magnetic resonance analyses confirmed that the structure of lipid A was conserved among different isolates of A. salmonicida subsp. salmonicida. All analyzed strains contained three major lipid A molecules differing in acylation patterns corresponding to tetra-, penta- and hexaacylated lipid A species and comprising 4'-monophosphorylated beta-2-amino-2-deoxy-d-glucopyranose-(1-->6)-2-amino-2-deoxy-d-glucopyranose disaccharide, where the reducing end 2-amino-2-deoxy-d-glucose was present primarily in the alpha-pyranose form. Electrospray ionization-tandem mass spectrometry fragment pattern analysis, including investigation of the inner-ring fragmentation, allowed the localization of fatty acyl residues on the disaccharide backbone of lipid A. The tetraacylated lipid A structure containing 3-(dodecanoyloxy)tetradecanoic acid at N-2',3-hydroxytetradecanoic acid at N-2 and 3-hydroxytetradecanoic acid at O-3, respectively, was found. The pentaacyl lipid A molecule had a similar fatty acid distribution pattern and, additionally, carried 3-hydroxytetradecanoic acid at O-3'. In the hexaacylated lipid A structure, 3-hydroxytetradecanoic acid at O-3' was esterified with a secondary 9-hexadecenoic acid. Interestingly, lipid A of the in vivo rough isolate contained predominantly tetra- and pentaacylated lipid A species suggesting that the presence of the hexaacyl lipid A was associated with the smooth-form lipopolysaccharide.

  12. Contribution of type IV pili to the virulence of Aeromonas salmonicida subsp. salmonicida in Atlantic salmon (Salmo salar L.).

    PubMed

    Boyd, Jessica M; Dacanay, Andrew; Knickle, Leah C; Touhami, Ahmed; Brown, Laura L; Jericho, Manfred H; Johnson, Stewart C; Reith, Michael

    2008-04-01

    Aeromonas salmonicida subsp. salmonicida, a bacterial pathogen of Atlantic salmon, has no visible pili, yet its genome contains genes for three type IV pilus systems. One system, Tap, is similar to the Pseudomonas aeruginosa Pil system, and a second, Flp, resembles the Actinobacillus actinomycetemcomitans Flp pilus, while the third has homology to the mannose-sensitive hemagglutinin pilus of Vibrio cholerae. The latter system is likely nonfunctional since eight genes, including the gene encoding the main pilin subunit, are deleted compared with the orthologous V. cholerae locus. The first two systems were characterized to investigate their expression and role in pathogenesis. The pili of A. salmonicida subsp. salmonicida were imaged using atomic force microscopy and Tap- and Flp-overexpressing strains. The Tap pili appeared to be polar, while the Flp pili appeared to be peritrichous. Strains deficient in tap and/or flp were used in live bacterial challenges of Atlantic salmon, which showed that the Tap pilus made a moderate contribution to virulence, while the Flp pilus made little or no contribution. Delivery of the tap mutant by immersion resulted in reduced cumulative morbidity compared with the cumulative morbidity observed with the wild-type strain; however, delivery by intraperitoneal injection resulted in cumulative morbidity similar to that of the wild type. Unlike the pili of other piliated bacterial pathogens, A. salmonicida subsp. salmonicida type IV pili are not absolutely required for virulence in Atlantic salmon. Significant differences in the behavior of the two mutant strains indicated that the two pilus systems are not redundant.

  13. Immunization of pacific salmon: comparison of intraperitoneal injection and hyperosmotic infiltration of Vibrio anguillarum and Aeromonas salmonicida bacterins

    USGS Publications Warehouse

    Antipa, Ross; Amend, Donald F.

    1977-01-01

    Two methods of immunizing fish, intraperitoneal (i.p.) injection and hyperosmotic infiltration, were compared for control of vibriosis and furunculosis in pen-reared coho salmon (Oncorhynchus kisutch) and chinook salmon (O. tshawytscha). Both methods provided significant protection against vibriosis under field test conditions. In coho salmon, hyperosmotic infiltration provided the best protection and fastest rise in antibody titer of seven treatments tested. In chinook salmon, hyperosmotic infiltration of Vibrio anguillarum and Aeromonas salmonicida vaccines resulted in 83.3% survival in comparison with 28.7% survival in controls. Both i.p. injection and hyperosmotic infiltration of V. anguillarum and A. salmonicida bacterins resulted in production of serum antibodies specific for each respective pathogen. Vaccination with bivalent V. anguillarum–A.salmonicida vaccines produced antibodies to both pathogens, and provided protection against vibriosis. Growth rates of vaccinated coho salmon were not significantly different from controls.

  14. Differences in detection of Aeromonas salmonicida in covertly infected salmonid fishes by the stress-inducible furunculosis test and culture-based assays

    USGS Publications Warehouse

    Cipriano, R.C.; Ford, L.A.; Smith, D.R.; Schachte, J.H.; Petrie, C.J.

    1997-01-01

    Accurate detection of Aeromonas salmonicida subsp. salmonicida (the cause of furunculosis disease) in covertly infected salmonids is difficult and is a cause of concern for those involved in fish health inspection and resource management programs. In this study, we examined populations of brook trout Salvelinus fontinalis, Atlantic salmon Salmo salar, and lake trout Salvelinus namaycush that previously sustained natural episodes of furunculosis. Consequently, the sampled fish were presumed to harbor latent infections. Mucus, gill, liver, kidney, heart, spleen, and intestine samples (N = 100 fish per group sampled) were processed and examined by (1) direct dilution counts and (2) quadrant streaking after a 48-h pre-enrichment in trypticase soy broth (TSB). Another subsample of fish from each group was then subjected to stress-inducible furunculosis tests. Stress tests detected A. salmonicida in three of four groups of fish that were examined whereas the pathogen was detected in only two of the groups analyzed with culture-based assays. Although pre-enrichment in TSB enhanced detection within internal sampling sites including the liver, heart, spleen, and kidney, enrichment did not enhance detection from mucus, gill, or intestinal samples.

  15. Increasing genomic diversity and evidence of constrained lifestyle evolution due to insertion sequences in Aeromonas salmonicida.

    PubMed

    Vincent, Antony T; Trudel, Mélanie V; Freschi, Luca; Nagar, Vandan; Gagné-Thivierge, Cynthia; Levesque, Roger C; Charette, Steve J

    2016-01-12

    Aeromonads make up a group of Gram-negative bacteria that includes human and fish pathogens. The Aeromonas salmonicida species has the peculiarity of including five known subspecies. However, few studies of the genomes of A. salmonicida subspecies have been reported to date. We sequenced the genomes of additional A. salmonicida isolates, including three from India, using next-generation sequencing in order to gain a better understanding of the genomic and phylogenetic links between A. salmonicida subspecies. Their relative phylogenetic positions were confirmed by a core genome phylogeny based on 1645 gene sequences. The Indian isolates, which formed a sub-group together with A. salmonicida subsp. pectinolytica, were able to grow at either at 18 °C and 37 °C, unlike the A. salmonicida psychrophilic isolates that did not grow at 37 °C. Amino acid frequencies, GC content, tRNA composition, loss and gain of genes during evolution, pseudogenes as well as genes under positive selection and the mobilome were studied to explain this intraspecies dichotomy. Insertion sequences appeared to be an important driving force that locked the psychrophilic strains into their particular lifestyle in order to conserve their genomic integrity. This observation, based on comparative genomics, is in agreement with previous results showing that insertion sequence mobility induced by heat in A. salmonicida subspecies causes genomic plasticity, resulting in a deleterious effect on the virulence of the bacterium. We provide a proof-of-concept that selfish DNAs play a major role in the evolution of bacterial species by modeling genomes.

  16. Molecular Characterization of Plasmid-Mediated Oxytetracycline Resistance in Aeromonas salmonicida

    PubMed Central

    Adams, C. A.; Austin, B.; Meaden, P. G.; McIntosh, D.

    1998-01-01

    Using broth conjugation, we found that 19 of 29 (66%) oxytetracycline (OT)-resistant isolates of Aeromonas salmonicida transferred the OT resistance phenotype to Escherichia coli. The OT resistance phenotype was encoded by high-molecular-weight R-plasmids that were capable of transferring OT resistance to both environmental and clinical isolates of Aeromonas spp. The molecular basis for antibiotic resistance in OT-resistant isolates of A. salmonicida was determined. The OT resistance determinant from one plasmid (pASOT) of A. salmonicida was cloned and used in Southern blotting and hybridization experiments as a probe. The determinant was identified on a 5.4-kb EcoRI fragment on R-plasmids from the 19 OT-resistant isolates of A. salmonicida. Hybridization with plasmids encoding the five classes (classes A to E) of OT resistance determinants demonstrated that the OT resistance plasmids of the 19 A. salmonicida isolates carried the class A resistance determinant. Analysis of data generated from restriction enzyme digests showed that the OT resistance plasmids were not identical; three profiles were characterized, two of which showed a high degree of homology. PMID:9797265

  17. Quarantine of Aeromonas salmonicida-harboring ebonyshell mussels (Fusconaia ebena) prevents transmission of the pathogen to brook trout (Salvelinus fontinalis)

    USGS Publications Warehouse

    Starliper, C.E.

    2005-01-01

    Furunculosis, caused by the bacterium Aeromonas salmonicida, was artificially induced in brook trout (Salvelinus fontinalis) in an experimental tank. Ebonyshells (Fusconaia ebena) were placed to cohabit with these fish to acquire the pathogen through siphoning. After 2 wk of cohabitation, 10 of the mussels were assayed by bacterial culture and all were found to harbor A. salmonicida. The mean cell count from soft tissue homogenates was 1.84 ?? 105 cfu/g, which comprised an average 14.41% of the total bacteria isolated from tissues. From the fluids, a mean of 2.84 ?? 105 A. salmonicida cfu/mL was isolated, which comprised an average of 17.29% of the total bacterial flora. The mussels were removed from the cohabitation tank and distributed equally among five previously disinfected tanks, 35 per tank. The F. ebena in each tank were allowed to depurate A. salmonicida for various durations: 1, 5, 10, 15 or 30 days. After each group had depurated for their assigned time, 10 were assayed for bacteria, tank water was tested, and 20 pathogen-free bioindicator brook trout were added to cohabit with the remaining mussels. Depuration was considered successful if A. salmonicida was not isolated from tank water or the mussels, and there was no infection or mortality to bioindicator fish. After 1 day of depuration, A. salmonicida was not isolated from the soft tissues; however, it was isolated from one of the paired fluids (10% prevalence). The tank water tested positive, and the bioindicator fish became infected and died. From the 5-day depuration group, A. salmonicida was not isolated from soft tissues, but was isolated from three fluids (30%; mean = 1.56 ?? 102 cfu/mL). Tank water from the 5-day group was negative, and there was no mortality among the bioindicator fish. However, A. salmonicida was isolated from 2 of 20 fish at the end of the 14-day observation period. One F. ebena fluid sample was positive for A. salmonicida from the 10-day depuration group, but none of the

  18. Polyphasic characterization of Aeromonas salmonicida isolates recovered from salmonid and non-salmonid fish

    USGS Publications Warehouse

    Diamanka, A.; Loch, T.P.; Cipriano, R.C.; Faisal, M.

    2013-01-01

    Michigan's fisheries rely primarily upon the hatchery propagation of salmonid fish for release in public waters. One limitation on the success of these efforts is the presence of bacterial pathogens, including Aeromonas salmonicida, the causative agent of furunculosis. This study was undertaken to determine the prevalence of A. salmonicida in Michigan fish, as well as to determine whether biochemical or gene sequence variability exists among Michigan isolates. A total of 2202 wild, feral and hatchery-propagated fish from Michigan were examined for the presence of A. salmonicida. The examined fish included Chinook salmon, Oncorhynchus tshawytscha (Walbaum), coho salmon, O. kisutcha (Walbaum), steelhead trout, O. mykiss (Walbaum), Atlantic salmon, Salmo salar L., brook trout, Salvelinus fontinalis (Mitchill), and yellow perch, Perca flavescens (Mitchill). Among these, 234 fish yielded a brown pigment-producing bacterium that was presumptively identified as A. salmonicida. Further phenotypic and phylogenetic analyses identified representative isolates as Aeromonas salmonicida subsp. salmonicida and revealed some genetic and biochemical variability. Logistic regression analyses showed that infection prevalence varied according to fish species/strain, year and gender, whereby Chinook salmon and females had the highest infection prevalence. Moreover, this pathogen was found in six fish species from eight sites, demonstrating its widespread nature within Michigan.

  19. Effects of temperature on biochemical reactions and drug resistance of virulent and avirulent Aeromonas salmonicida

    USGS Publications Warehouse

    Hahnel, G.B.; Gould, R.W.

    1982-01-01

    Incubation temperatures of 11°, 18° and 28° did not substantially affect biochemical reactions of either virulent or avirulent forms of Aeromonas salmonicida subspecies salmonicida. The only change observed, amygdalin fermentation, was positive at 11° and 18° but negative at 28°C. Several isolates utilized sucrose, a characteristic not normally recognized for A. salmonicida subspecies salmonicida.Antimicrobial susceptibility screening indicated resistance to novobiocin increased at the higher incubation temperatures. Standardized drug sensitivity testing procedures and precise zone diameter interpretive standards for bacterial fish pathogens are needed.

  20. Antibiotic resistance due to an unusual ColE1-type replicon plasmid in Aeromonas salmonicida.

    PubMed

    Vincent, Antony T; Emond-Rheault, Jean-Guillaume; Barbeau, Xavier; Attéré, Sabrina A; Frenette, Michel; Lagüe, Patrick; Charette, Steve J

    2016-06-01

    Aeromonas salmonicida subsp. salmonicida is a fish pathogen known to have a rich plasmidome. In the present study, we discovered an isolate of this bacterium bearing an additional unidentified small plasmid. After having sequenced the DNA of that isolate by next-generation sequencing, it appeared that the new small plasmid is a ColE1-type replicon plasmid, named here pAsa7. This plasmid bears a functional chloramphenicol-acetyltransferase-encoding gene (cat-pAsa7) previously unknown in A. salmonicida and responsible for resistance to chloramphenicol. A comparison of pAsa7 with pAsa2, the only known ColE1-type replicon plasmid usually found in A. salmonicida subsp. salmonicida, revealed that even if both plasmids share a high structural similarity, it is still unclear if pAsa7 is a derivative of pAsa2 since they showed several mutations at the nucleotide level. Transcriptomic analysis revealed that the cat-pAsa4 gene, another chloramphenicol-acetyltransferase-encoding gene, found on the large plasmid pAsa4, was significantly more transcribed than cat-pAsa7. This was correlated with a higher chloramphenicol resistance for isolates bearing pAsa4 compared with the one having pAsa7. Finally, a phylogenetic analysis showed that both CAT-pAsa4 and CAT-pAsa7 proteins were in different clusters. The clustering was supported by the identity of residues involved in the catalytic site. In addition, to give a better understanding of the large drug-resistance panel of A. salmonicida, this study reinforces the hypothesis that A. salmonicida subsp. salmonicida is a considerable reservoir for mobile genetic elements such as plasmids.

  1. Comparative pathogenicity of Vibrio spp., Photobacterium damselae ssp. damselae and five isolates of Aeromonas salmonicida ssp. achromogenes in juvenile Atlantic halibut (Hippoglossus hippoglossus).

    PubMed

    Bowden, T J; Bricknell, I R; Preziosi, B M

    2018-01-01

    Juvenile Atlantic halibut (~100 mg, Hippoglossus hippoglossus) were exposed to Vibrio proteolyticus, a Vibrio spp. isolate, Photobacterium damselae ssp. damselae and five different isolates of Aeromonas salmonicida ssp. achromogenes via an hour-long bath immersion to ascertain their variation in pathogenicity to this fish species. Results were analysed using Kaplan-Meier survival analysis. Analysis of the data from challenges using A. salmonicida ssp. achromogenes revealed three survival values of zero and a spread of values from 0 to 28.43. Challenges using a Vibrio spp isolate, V. proteolyticus and P. damselae resulted in Kaplan-Meier survival estimates of 31.21, 50.41 and 57.21, respectively. As all bacterial species tested could induce juvenile halibut mortalities, they must all be considered as potential pathogens. However, the degree of pathogenicity of A. salmonicida is isolate dependent. © 2017 John Wiley & Sons Ltd.

  2. Effect of fish skin mucus on the soluble proteome of Vibrio salmonicida analysed by 2-D gel electrophoresis and tandem mass spectrometry.

    PubMed

    Raeder, Inger Lin Uttakleiv; Paulsen, Steinar M; Smalås, Arne O; Willassen, Nils Peder

    2007-01-01

    Vibrio salmonicida is the causative agent of cold-water vibriosis in farmed marine fish species. Adherence of pathogenic bacteria to mucosal surfaces is considered to be the first steps in the infective processes, and proteins involved are regarded as virulence factors. The global protein expression profile of V. salmonicida, grown with and without the presence of fish skin mucus in the synthetic media, was compared. Increased levels of proteins involved in motility, oxidative stress responses, and general stress responses were demonstrated as an effect of growth in the presence of mucus compared to non-mucus containing media. Enhanced levels of the flagellar proteins FlaC, FlaD and FlaE indicate increased motility capacity, while enhanced levels of the heat shock protein DnaK and the chaperonin GroEL indicate a general stress response. In addition, we observed that peroxidases, TPx.Grx and AhpC, involved in the oxidative stress responses, were induced by mucus proteins. The addition of mucus to the culture medium did not significantly alter the growth rate of V. salmonicida. An analysis of mucus proteins suggests that the mucus layer harbours a protein species that potentially possesses catalytic activity against DNA, and a protein with iron chelating activity. This study represents the first V. salmonicida proteomic analysis, and provides specific insight into the proteins necessary for the bacteria to challenge the skin mucus barrier of the fish.

  3. Aeromonas salmonicida Infection Only Moderately Regulates Expression of Factors Contributing to Toll-Like Receptor Signaling but Massively Activates the Cellular and Humoral Branches of Innate Immunity in Rainbow Trout (Oncorhynchus mykiss)

    PubMed Central

    Brietzke, Andreas; Korytář, Tomáš; Jaros, Joanna; Köllner, Bernd; Goldammer, Tom; Seyfert, Hans-Martin; Rebl, Alexander

    2015-01-01

    Toll-like receptors (TLRs) are known to detect a defined spectrum of microbial structures. However, the knowledge about the specificity of teleost Tlr factors for distinct pathogens is limited so far. We measured baseline expression profiles of 18 tlr genes and associated signaling factors in four immune-relevant tissues of rainbow trout Oncorhynchus mykiss. Intraperitoneal injection of a lethal dose of Aeromonas salmonicida subsp. salmonicida induced highly increased levels of cytokine mRNAs during a 72-hour postinfection (hpi) period. In contrast, only the fish-specific tlr22a2 and the downstream factor irak1 featured clearly increased transcript levels, while the mRNA concentrations of many other tlr genes decreased. Flow cytometry quantified cell trafficking after infection indicating a dramatic influx of myeloid cells into the peritoneum and a belated low level immigration of lymphoid cells. T and B lymphocytes were differentiated with RT-qPCR revealing that B lymphocytes emigrated from and T lymphocytes immigrated into head kidney. In conclusion, no specific TLR can be singled out as a dominant receptor for A. salmonicida. The recruitment of cellular factors of innate immunity rather than induced expression of pathogen receptors is hence of key importance for mounting a first immune defense against invading A. salmonicida. PMID:26266270

  4. The biofilteration ability of oysters (Crassostrea gigas) to reduce Aeromonas salmonicida in salmon culture.

    PubMed

    Ma, Xiaona; Li, Xian; Sun, Guoxiang; Sharawy, Zaki Zaki; Qiu, Tianlong; Du, Yishuai; Liu, Ying

    2017-07-01

    Pathogen contamination in the environment is inevitable with the rapid development of intensive aquaculture. Therefore, alternative ecofriendly biological strategies to control pathogenic bacteria are required. However, our aim was to investigate the ability of oysters (Crassostrea gigas) to filter the important opportunistic pathogen, Aeromonas salmonicida (strain C4), using a green fluorescent protein tag (GFP) in the Atlantic salmon (Salmo salar) farming wastewater. Hence, A. salmonicida removal efficiency and ingestion rate were detected in two different oyster stages (larvae and adults). To evaluate the practical performance of oysters as A. salmonicida biofilter, adult oysters were applied to an integrated constructed wetlands system (ICWS) and their long-term C4-GFP removal efficiency was recorded for 60 days. Overall, our results clearly indicated that oysters had substantial A. salmonicida removal ability via their ingestion process when observed under a fluorescent microscope. Approximately 88-95% of C4-GFP was removed by oyster larvae at an ingestion rate of 6.4 × 10 3 -6.2 × 10 5  CFU/h·ind, while 79-92% of C4-GFP was removed by adult oysters at an ingestion rate of 2.1 × 10 4 -3.1 × 10 6  CFU/h·ind. Furthermore, 57.9 ± 17.2% of C4-GFP removal efficiency was achieved when oysters were applied to ICWS. We, therefore, concluded that using oysters as a biofilter represents an effective alternative for removing A. salmonicida from aquaculture wastewater. However, the fate of oysters after ingesting the pathogenic bacteria, acting as a potential reservoir or vector for pathogens, is still debatable. This research provides the basis for the application of oysters as a biofilter to remove pathogens from aquaculture wastewater in industrialized production.

  5. Involvement of LuxS in Aeromonas salmonicida metabolism, virulence and infection in Atlantic salmon (Salmo salar L).

    PubMed

    Meng, Lingjie; Du, Yishuai; Liu, Pengfei; Li, Xian; Liu, Ying

    2017-05-01

    Quorum sensing is a bacterial density dependent communication system, which regarded to regulate co-operative behaviors of community and mediated by extracellular signal molecules named autoinducers (AI). Among various signals, autoinducer-2 (AI-2) is believed to be the messengers inter species and produced by LuxS. For Aeromonas salmonicida (A. salmonicida), an opportunistic pathogen to many cold-water teleost, little information has been known about the function of AI-2 and LuxS. Therefore, our aim was to preliminarily clarify the function of LuxS in A. salmonicida. The consequences demonstrated that wild type A. salmonicida exhibited AI-2 activity and luxS defective mutant strain fail to produce AI-2 signals. Furthermore, it was suggested that luxS deficiency could impact bacterial morphology, surface properties and virulence dramatically. Challenge experiment showed a tendency that immune factors expressed earlier when Atlantic salmon was infected with ΔluxS strain. Overall, we hypothesis that AI-2 quorum sensing could regulate the expression of A-layer protein coding gene vapA, and then influence bacterial survival ability when suffered from attack of the host immune system. Though additional studies are warranted, our study will supply a new thinking to control the damage caused by A. salmonicida. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Denaturing gradient gel electrophoresis for nonlethal detection of Aeromonas salmonicida in salmonid mucus and its potential for other bacterial fish pathogens.

    PubMed

    Quinn, Robert A; Stevenson, Roselynn M W

    2012-05-01

    Denaturing gradient gel electrophoresis (DGGE) of 16S rDNA was used to nonlethally detect Aeromonas salmonicida and other bacteria in salmonid skin mucus. Mucus samples from wild spawning coho salmon (Oncorhynchus kisutch) with endemic A. salmonicida and from cultured lake trout (Salvelinus namaycush) were tested by PCR-DGGE and were compared with mucus culture on Coomassie brilliant blue agar and internal organ culture. PCR-DGGE gave a highly reproducible 4-band pattern for 9 strains of typical A. salmonicida, which was different from other Aeromonas spp. Aeromonas salmonicida presence in mucus was evident as a band that comigrated with the bottom band of the A. salmonicida 4-band pattern and was verified by sequencing. PCR-DGGE found 36 of 52 coho salmon positive for A. salmonicida, compared with 31 positive by mucus culture and 16 by organ culture. Numerous other bacteria were detected in salmonid mucus, including Pseudomonas spp., Shewanella putrefaciens, Aeromonas hydrophila and other aeromonads. However, Yersinia ruckeri was not detected in mucus from 27 lake trout, but 1 fish had a sorbitol-positive Y. ruckeri isolated from organ culture. Yersinia ruckeri seeded into a mucus sample suggested that PCR-DGGE detection of this bacterium from mucus was possible. PCR-DGGE allows nonlethal detection of A. salmonicida in mucus and differentiation of some Aeromonas spp. and has the potential to allow simultaneous detection of other pathogens present in fish mucus.

  7. Evaluation of commercially prepared transport systems for nonlethal detection of Aeromonas salmonicida in salmonid fish

    USGS Publications Warehouse

    Cipriano, R.C.; Bullock, G.L.

    2001-01-01

    In vitro studies indicated that commercially prepared transport systems containing Amies, Stuart's, and Cary-Blair media worked equally well in sustaining the viability of the fish pathogen Aeromonas salmonicida, which causes furunculosis. The bacterium remained viable without significant increase or decrease in cell numbers for as long as 48 h of incubation at 18-20??C in Stuart's transport medium; consequently, obtaining mucus samples in such tubes were comparable to on-site detection of A. salmonicida by dilution plate counts on Coomassie Brilliant Blue agar. In three different assays of 100 samples of mucus from Atlantic salmon Salmo salar infected subclinically with A. salmonicida, dilution counts conducted on-site proved more reliable for detecting the pathogen than obtaining the samples in the transport system. In the on-site assays, dilution counts detected the pathogen in 34, 41, and 22 samples, whereas this was accomplished in only 15, 15, and 3 of the respective samples when the transport system was used. In an additional experiment, Arctic char Salvelinus alpinus sustaining a frank epizootic of furunculosis were sampled similarly. Here, too, dilution counts were more predictive of the prevalence of A. salmonicida and detected the pathogen in 46 mucus samples; in comparison, only 6 samples collected by using the transport system were positive. We also observed that the transport system supported the growth of the normal mucus bacterial flora. Particularly predominant among these were motile aeromonads and Pseudomonas fluorescens. In studies of mixed culture growth, two representatives of both of the latter genera of bacteria outgrew A. salmonicida - in some cases, to the total exclusion of the pathogen itself.

  8. Growth inhibition of Aeromonas salmonicida and Yersinia ruckeri by disinfectants containing peracetic acid.

    PubMed

    Meinelt, Thomas; Phan, Thy-My; Behrens, Sascha; Wienke, Andreas; Pedersen, Lars-Flemming; Liu, Dibo; Straus, David L

    2015-04-08

    Peracetic acid (PAA) is a therapeutic agent used for disinfection in aquaculture, but it must be investigated thoroughly in order to mitigate diseases without harming the fish. Successful disinfectants (like PAA) should not leave dangerous residues in the environment in order to successfully contribute to sustainable aquaculture. The aim of our study was to compare the effectiveness of 6 commercial PAA products with different molecular PAA:H2O2 ratios to reduce bacterial growth of Aeromonas salmonicida and Yersinia ruckeri and to determine effective concentrations and exposure times. All products reduced colony-forming units (CFUs) of A. salmonicida and Y. ruckeri. Products with higher molecular PAA:H2O2 ratios inhibited growth better than products with lower molecular PAA:H2O2 ratios at the same PAA concentration; this indicates that H2O2 is not the driving force in the reduction of A. salmonicida and Y. ruckeri growth by PAA in vitro. The practical application of the products with high molecular PAA:H2O2 ratios should be prioritized if these pathogens are diagnosed.

  9. The effect of Chaetoceros calcitrans extract on hematology common carp (Cyprinus carpio) infected by Aeromonas salmonicida

    NASA Astrophysics Data System (ADS)

    Maftuch; Wulan, N. D. A.; Suprastyani, H.; Wijayanto, E.; Noercholis, M.; Prihanto, A. A.; Kurniawan, A.

    2018-04-01

    The application of C. calcitrans extract in carp (C. carpio) is expected to inhibit the growth of A. salmonicida. A. salmonicida-infected common carp (C. carpio) were treated with the extract of C. calcitrans. Hematology, erythrocyte, leukocyte, hematocrit and hemoglobin test analysis was observed. The result indicated that the extract can be used to treat the infected fish. The best dose was treatment of D with 45.3 ppm.

  10. Functional Genomics of the Aeromonas salmonicida Lipopolysaccharide O-Antigen and A-Layer from Typical and Atypical Strains

    PubMed Central

    Merino, Susana; de Mendoza, Elena; Canals, Rocío; Tomás, Juan M.

    2015-01-01

    The A. salmonicida A450 LPS O-antigen, encoded by the wbsalmo gene cluster, is exported through an ABC-2 transporter-dependent pathway. It represents the first example of an O-antigen LPS polysaccharide with three different monosaccharides in their repeating unit assembled by this pathway. Until now, only repeating units with one or two different monosaccharides have been described. Functional genomic analysis of this wbsalmo region is mostly in agreement with the LPS O-antigen structure of acetylated l-rhamnose (Rha), d-glucose (Glc), and 2-amino-2-deoxy-d-mannose (ManN). Between genes of the wbsalmo we found the genes responsible for the biosynthesis and assembly of the S-layer (named A-layer in these strains). Through comparative genomic analysis and in-frame deletions of some of the genes, we concluded that all the A. salmonicida typical and atypical strains, other than A. salmonicida subsp. pectinolytica strains, shared the same wbsalmo and presence of A-layer. A. salmonicida subsp. pectinolytica strains lack wbsalmo and A-layer, two major virulence factors, and this could be the reason they are the only ones not found as fish pathogens. PMID:26082990

  11. Enhancement of anti-Aeromonas salmonicida activity in Atlantic salmon (Salmo salar) macrophages by a mannose-binding lectin

    USGS Publications Warehouse

    Ottinger, C.A.; Johnson, S.C.; Ewart, K.V.; Brown, L.L.; Ross, N.W.

    1999-01-01

    We investigated the effects of a calcium-dependent mannose-binding lectin isolated from the serum of Atlantic salmon on Aeromonassalmonicida viability and the anti-A. salmonicida activity of Atlantic salmon macrophages. In the absence of other factors, binding of this lectin at concentrations of 0.8, 4.0 and 20.0 ng ml−1 to virulent A. salmonicida failed to significantly reduce (P>0.05) cell viability. However, binding of the lectin to A. salmonicida did result in significant (P≤0.05) dose-dependent increases in phagocytosis, and bactericidal activity. Significant increases (P≤0.05) were also observed in phagocyte respiratory burst activity within the lectin concentration range of 4.0–20.0 ng ml−1 but the stimulation was not dose dependent at these lectin concentrations. At the lowest lectin concentration tested (0.32 ng ml−1), a significant decrease (P≤0.05) in respiratory burst was observed. The structure and activity of this lectin are similar to that of mammalian mannose-binding lectins, which are known to play a pivotal role in innate immunity. The presence of this lectin may be an important defense mechanism against Gram-negative bacteria such as A. salmonicida.

  12. Survival of two bacterial fish pathogens (Aeromonas salmonicida and the Enteric Redmouth Bacterium) in ozonated, chlorinated, and untreated waters

    USGS Publications Warehouse

    Wedemeyer, Gary A.; Nelson, Nancy C.

    1977-01-01

    Ozone and chlorine inactivation curves were determined in three water types at 20 °C for the destruction of the fish pathogens Aeromonas salmonicida, the etiologic agent of furunculosis, and the enteric redmouth bacterium (ERM). In phosphate-buffered distilled water, 0.01 mg/ℓ ozone inactivated 103 cells/ml of ERM and A. salmonicida in 1/2 and 10 min, respectively. Chlorine at this concentration had little effect on either pathogen and a residual of at least 0.05 mg/ℓ was needed to achieve a complete kill within a 10-min contact time. In soft lake water (30 mg/ℓ as CaCO3) a chlorine residual of 0.1 mg/ℓ rapidly  inactivated A. salmonicida and ERM but in hard water (120 mg/ℓ) A. salmonicida was more resistant and 0.2 mg/ℓ chlorine was required. Ozonation of the two lake waters at 90 mg O3∙h−1∙ℓ−1 (equivalent to a 0.01 mg/ℓ residual in ozone demand-free water) was required to destroy both pathogens within 10 min.In untreated soft lake water 103 cells/ml of A. salmonicida survived only 2 days, while the ERM bacterium (103 cells/ml) survived even after 20 day s in soft and hard untreated lake waters.

  13. The impact of Aeromonas salmonicida infection on innate immune parameters of Atlantic salmon (Salmo salar L).

    PubMed

    Du, Yishuai; Yi, Mengmeng; Xiao, Peng; Meng, Lingjie; Li, Xian; Sun, Guoxiang; Liu, Ying

    2015-05-01

    Enzyme activities and gene expression of a number of innate immune parameters in the serum, mucus and skin of Atlantic salmon (Salmo salar) were investigated after challenge with a pathogenic strain of Aeromonas salmonicida (A. salmonicida). Fish were injected in the dorsal muscle with either 100 μl bacterium solution, about 3.05 × 10(7) CFU/ml A. salmonicida, or 100 μl 0.9% NaCl (as control group) and tissue samples were collected at days 0, 2, 4 and 6 post-injection. Lysozyme (LSZ) and alkaline phosphatase (AKP) activities in serum, mucus and skin, and LSZ and AKP mRNA expression in skin of the challenged fish were higher than those of the control at most of the experimental time, with significant differences at several time points (P < 0.05), indicating the involvement of LSZ and AKP in the innate immunity of Atlantic salmon to A. salmonicida. Superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities in mucus and skin, along with the SOD, POD and CAT mRNA expression in skin significantly decreased at day 4 and 6, indicating the decreased antioxidant capacity of the challenged fish. Glutamate pyruvate transaminase (GPT) and glutamic oxalacetic transaminase (GOT) activities in serum, mucus and skin of the challenged group were all higher than those of the control after the injection, and at several time points significant differences were found between the two groups, suggesting organs of fish were impaired after the pathogen infection. The changes of the GPT and GOT activities could be used as potential biomarkers for the impairment of physiological functions caused by the pathogen infection. Identified biomarkers of the immune responses will contribute to the early-warning system of the disease. So this study will not only provide a theoretical basis for vaccine development, but also provide basic data for the establishment of early warning systems for diseases caused by A. salmonicida in Atlantic salmon rearing. Copyright © 2015 Elsevier

  14. Are all koi ulcer cases associated with infection by atypical Aeromonas salmonicida? Polymerase chain reaction assays of koi carp skin swabs submitted by hobbyists.

    PubMed

    Goodwin, Andrew E; Merry, Gwenn E

    2009-06-01

    Infection by atypical Aeromonas salmonicida is regarded as the cause of ulcer disease (KUD) in koi carp Cyprinus carpio and goldfish Carassius auratus. However, other causes--including parasites, viral infection, and fungi--have been proposed. In our diagnostic work, we often fail to isolate A. salmonicida even when clear clinical signs of KUD are present. This failure may be because these fastidious and slow-growing bacteria are difficult to isolate in culture or because the bacteria are not actually present in the lesions. In this study, we used polymerase chain reaction (PCR) to detect A. salmonicida in DNA samples swabbed from koi carp ulcers. These alcohol-preserved samples were collected and submitted by hobbyists and included 40 separate cases from 12 different states. We identified atypical A. salmonicida by PCR in 52 of 62 samples submitted and in 33 of 40 unique cases. The negative findings for A. salmonicida by PCR could all be attributed to high water temperatures, prior antibiotic use, poor sample quality, or misdiagnosis of columnaris disease as KUD. Tests for Aphanomyces invadans by PCR were negative in every case. This work confirms that A. salmonicda is still the predominant cause of KUD and that our negative culture results were most likely due to technical failures rather than an absence of A. salmonicda in the ulcer lesions.

  15. Historical record of Yersinia ruckeri and Aeromonas salmonicida among sea-run Atlantic salmon (Salmo salar) in the Penobscot River

    USGS Publications Warehouse

    Cipriano, R.C.; Coll, J.

    2005-01-01

    Despite restoration efforts, only about 2,000 Atlantic salmon (Salmo salar) salmon have annually returned to New England Rivers and more than 71% of these fish migrate to the Penobscot River alone. This report provides a historical compilation on the prevalence's of both Yersinia ruckeri, cause of enteric redmouth disease, and Aeromonas salmonicida, cause of furunculosis, among mature sea-run Atlantic salmon that returned to the Penobscot River from 1976 to 2003. Aeromonas salmonicida was detected in 28.6% and Yersinia ruckeri was detected among 50% of the yearly returns. Consequently, Atlantic salmon that return to the river are potential reservoirs of infection.

  16. Contribution of food deprivation to the immune response in rainbow trout (Oncorhynchus mykiss) vaccinated against Cryptobia salmositica and Aeromonas salmonicida.

    PubMed

    Nourollahi-Fard, Saeid Reza; Woo, Patrick T K

    2008-06-01

    The aims of the present study were to determine (a) the effectiveness of an attenuated live Cryptobia salmositica vaccine; (b) the effects of food deprivation on the immune response and its duration in rainbow trout (Oncorhynchus mykiss) immunised with a live C. salmositica vaccine or with a killed Aeromonas salmonicida vaccine. The fish were divided into three groups (I, II and III; 14 fish per group), those in Groups I and II were under food deprivation (0.40% of body weight), while Group III fish were fed to satiety. The study showed that the attenuated strain of C. salmositica did not cause anaemia and disease, and the fish were protected from clinical disease when they were challenged with virulent parasites. Parasitaemia in all fish vaccinated and challenged with virulent C. salmositica fluctuated and was relatively low; however, fish in Group III had higher parasitaemia than those in Groups I and II between weeks 8 and 14. The numbers of activated neutrophils increased [nitroblue tetrazolium (NBT) assay] after immunisation with both Cryptobia and Aeromonas vaccines and they remained high throughout the experiment. Antibody production (ELISA values) increased after vaccination and were slightly higher in Group III. ELISA titres against A. salmonicida increased after vaccination and decreased after 5 weeks. The titres increased again after the vaccinated fish were given booster, and they were higher than those in the first vaccinated fish.

  17. Crystallization and preliminary X-ray diffraction analysis of a cold-adapted catalase from Vibrio salmonicida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riise, Ellen Kristin; Lorentzen, Marit Sjo; Helland, Ronny

    2006-01-01

    Monoclinic (P2{sub 1}) crystals of a His-tagged form of V. salmonicida catalase without cofactor diffract X-rays to 1.96 Å. Catalase (EC 1.11.1.6) catalyses the breakdown of hydrogen peroxide to water and molecular oxygen. Recombinant Vibrio salmonicida catalase (VSC) possesses typical cold-adapted features, with higher catalytic efficiency, lower thermal stability and a lower temperature optimum than its mesophilic counterpart from Proteus mirabilis. Crystals of VSC were produced by the hanging-drop vapour-diffusion method using ammonium sulfate as precipitant. The crystals belong to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 98.15, b = 217.76, c = 99.28 Å, βmore » = 110.48°. Data were collected to 1.96 Å and a molecular-replacement solution was found with eight molecules in the asymmetric unit.« less

  18. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida.

    PubMed

    Viršek, Manca Kovač; Lovšin, Marija Nika; Koren, Špela; Kržan, Andrej; Peterlin, Monika

    2017-12-15

    Microplastics is widespread in the marine environment where it can cause numerous negative effects. It can provide space for the growth of organisms and serves as a vector for the long distance transfer of marine microorganisms. In this study, we examined the sea surface concentrations of microplastics in the North Adriatic and characterized bacterial communities living on the microplastics. DNA from microplastics particles was isolated by three different methods, followed by PCR amplification of 16S rDNA, clone libraries preparation and phylogenetic analysis. 28 bacterial species were identified on the microplastics particles including Aeromonas spp. and hydrocarbon-degrading bacterial species. Based on the 16S rDNA sequences the pathogenic fish bacteria Aeromonas salmonicida was identified for the first time on microplastics. Because A. salmonicida is responsible for illnesses in fish, it is crucial to get answers if and how microplastics pollution is responsible for spreading of diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The complete and fully assembled genome sequence of Aeromonas salmonicida subsp. pectinolytica and its comparative analysis with other Aeromonas species: investigation of the mobilome in environmental and pathogenic strains.

    PubMed

    Pfeiffer, Friedhelm; Zamora-Lagos, Maria-Antonia; Blettinger, Martin; Yeroslaviz, Assa; Dahl, Andreas; Gruber, Stephan; Habermann, Bianca H

    2018-01-05

    Due to the predominant usage of short-read sequencing to date, most bacterial genome sequences reported in the last years remain at the draft level. This precludes certain types of analyses, such as the in-depth analysis of genome plasticity. Here we report the finalized genome sequence of the environmental strain Aeromonas salmonicida subsp. pectinolytica 34mel, for which only a draft genome with 253 contigs is currently available. Successful completion of the transposon-rich genome critically depended on the PacBio long read sequencing technology. Using finalized genome sequences of A. salmonicida subsp. pectinolytica and other Aeromonads, we report the detailed analysis of the transposon composition of these bacterial species. Mobilome evolution is exemplified by a complex transposon, which has shifted from pathogenicity-related to environmental-related gene content in A. salmonicida subsp. pectinolytica 34mel. Obtaining the complete, circular genome of A. salmonicida subsp. pectinolytica allowed us to perform an in-depth analysis of its mobilome. We demonstrate the mobilome-dependent evolution of this strain's genetic profile from pathogenic to environmental.

  20. LitR of Vibrio salmonicida Is a Salinity-Sensitive Quorum-Sensing Regulator of Phenotypes Involved in Host Interactions and Virulence

    PubMed Central

    Bjelland, Ane Mohn; Sørum, Henning; Tegegne, Daget Ayana; Winther-Larsen, Hanne C.; Willassen, Nils Peder

    2012-01-01

    Vibrio (Aliivibrio) salmonicida is the causal agent of cold-water vibriosis, a fatal bacterial septicemia primarily of farmed salmonid fish. The molecular mechanisms of invasion, colonization, and growth of V. salmonicida in the host are still largely unknown, and few virulence factors have been identified. Quorum sensing (QS) is a cell-to-cell communication system known to regulate virulence and other activities in several bacterial species. The genome of V. salmonicida LFI1238 encodes products presumably involved in several QS systems. In this study, the gene encoding LitR, a homolog of the master regulator of QS in V. fischeri, was deleted. Compared to the parental strain, the litR mutant showed increased motility, adhesion, cell-to-cell aggregation, and biofilm formation. Furthermore, the litR mutant produced less cryptic bioluminescence, whereas production of acylhomoserine lactones was unaffected. Our results also indicate a salinity-sensitive regulation of LitR. Finally, reduced mortality was observed in Atlantic salmon infected with the litR mutant, implying that the fish were more susceptible to infection with the wild type than with the mutant strain. We hypothesize that LitR inhibits biofilm formation and favors planktonic growth, with the latter being more adapted for pathogenesis in the fish host. PMID:22371373

  1. Differential partition of virulent Aeromonas salmonicida and attenuated derivatives possessing specific cell surface alterations in polymer aqueous-phase systems

    NASA Technical Reports Server (NTRS)

    Van Alstine, J. M.; Trust, T. J.; Brooks, D. E.

    1986-01-01

    Two-polymer aqueous-phase systems in which partitioning of biological matter between the phases occurs according to surface properties such as hydrophobicity, charge, and lipid composition are used to compare the surface properties of strains of the fish pathogen Aeromonas salmonicida. The differential ability of strains to produce a surface protein array crucial to their virulence, the A layer, and to produce smooth lipopolysaccharide is found to be important in the partitioning behavior of Aeromonas salmonicida. The presence of the A layer is shown to decrease the surface hydrophilicity of the pathogen, and to increase specifically its surface affinity for fatty acid esters of polyethylene glycol. The method has application to the analysis of surface properties crucial to bacterial virulence, and to the selection of strains and mutants with specific surface characteristics.

  2. Plasma proteins of rainbow trout (Oncorhynchus mykiss) isolated by binding to lipopolysaccharide from Aeromonas salmonicida.

    PubMed

    Hoover, G J; el-Mowafi, A; Simko, E; Kocal, T E; Ferguson, H W; Hayes, M A

    1998-07-01

    In an attempt to find plasma proteins that might be involved in the constitutive resistance of rainbow trout to furunculosis, a disease caused by Aeromonas salmonicida (AS), we purified serum and plasma proteins based on their calcium- and carbohydrate-dependent affinity for A. salmonicida lipopolysaccharide (LPS) coupled to an epoxy-activated synthetic matrix (Toyopearl AF Epoxy 650M). A multimeric family of high molecular weight (96 to 200-kDa) LPS-binding proteins exhibiting both calcium and mannose dependent binding was isolated. Upon reduction the multimers collapsed to subunits of approximately 16-kDa as estimated by 1D-PAGE and exhibited pI values of 5.30 and 5.75 as estimated from 2D-PAGE. Their N-terminal sequences were related to rainbow trout ladderlectin (RT-LL), a Sepharose-binding protein. Polyclonal antibodies to the LPS-purified 16-kDa subunits recognized both the reduced 16-kDa subunits and the non-reduced multimeric forms. A calcium- and N-acetylglucosamine (GlcNAc)-dependent LPS-binding multimeric protein (approximately 207-kDa) composed of 34.5-kDa subunits was purified and found to be identical to trout serum amyloid P (SAP) by N-terminal sequence (DLQDLSGKVFV). A protein of 24-kDa, in reduced and non-reduced conditions, was isolated and had N-terminal sequence identity with a known C-reactive protein (CRP) homologue, C-polysaccharide-binding protein 2 (TCBP2) of rainbow trout. A novel calcium-dependent LPS-binding protein was purified and termed rainbow trout lectin 37 (RT-L37). This protein, composed of dimers, tetramers and pentamers of 37 kDa subunits (pI 5.50-6.10) with N-terminal sequence (IQE(D/N)GHAEAPGATTVLNEILR) showed no close homology to proteins known or predicted from cDNA sequences. These findings demonstrate that rainbow trout have several blood proteins with lectin properties for the LPS of A. salmonicida; the biological functions of these proteins in resistance to furunculosis are still unknown.

  3. Effect of a phytogenic feed additive on the susceptibility of Onchorhynchus mykiss to Aeromonas salmonicida.

    PubMed

    Menanteau-Ledouble, S; Krauss, I; Santos, G; Fibi, S; Weber, B; El-Matbouli, M

    2015-06-29

    In recent years, feed additives have increasingly been adopted by the aquaculture industry. These supplements not only offer an alternative to antibiotics but have also been linked to enhanced growth performance. However, the literature is still limited and provides contradictory information on their effectiveness. This is mainly due to the wide variety of available products and their complex mechanisms of action. Phytogenic feed additives have been shown to have antimicrobial effects and can improve growth performance. In the present study, we investigated the susceptibility of several fish pathogenic bacteria to a phytogenic essential oil product in vitro. In addition, we determined the protective effect of a commercial phytogenic feed additive containing oregano, anis and citrus oils on the resistance of rainbow trout Oncorhynchus mykiss to infection by Aeromonas salmonicida. The bacterium was administered through 3 different routes: intra-peritoneal injection, immersion in a bacterial solution and cohabitation with infected fish. Mortality rates were significantly lower in infected rainbow trout that had received the feed additive: the overall mortality rate across all routes of infection was 18% in fish fed a diet containing the additive compared to 37% in fish that received unsupplemented feed. The route of infection also significantly impacted mortality, with average mortality rates of 60, 17.5 and 5% for intra-peritoneal injection, immersion and cohabitation, respectively. In general, fish were better protected against infection by immersion than infection by injection.

  4. Recovery of a fish pathogenic bacterium, Aeromonas salmonicida, from ebonyshell mussels Fusconaia ebena using nondestructive sample collection procedures

    USGS Publications Warehouse

    Starliper, C.E.

    2008-01-01

    Refugia are increasingly being used to maintain and propagate imperiled freshwater mussels for future population augmentations. Success for this endeavor is dependent on good husbandry, including a holistic program of resource health management. A significant aspect to optimal health is the prevention or control of infectious diseases. Describing and monitoring pathogens and diseases in mussels involves examination of tissues or samples collected from an appropriate number of individuals that satisfies a certain confidence level for expected prevalences of infections. In the present study, ebonyshell mussels Fusconaia ebena were infected with a fish pathogenic bacterium, Aeromonas salmonicida, through their cohabitation with diseased brook trout Salvelinus fontinalis. At a 100% prevalence of infection, the F. ebena were removed from the cohabitation tank to clean tanks that were supplied with pathogen-free water, which initiated their depuration of A. salmonicida. Three samples (nondestructive fluid, mantle, hemolymph) collected using nondestructive procedures were compared with fluids and soft tissue homogenates collected after sacrificing the mussels for recovery of the bacterium during this period of depuration. Nondestructive sample collections, especially ND fluid, provide a comparable alternative to sacrificing mussels to determine pathogen status.

  5. Cold adapted features of Vibrio salmonicida catalase: characterisation and comparison to the mesophilic counterpart from Proteus mirabilis.

    PubMed

    Lorentzen, Marit Sjo; Moe, Elin; Jouve, Hélène Marie; Willassen, Nils Peder

    2006-10-01

    The gene encoding catalase from the psychrophilic marine bacterium Vibrio salmonicida LFI1238 was identified, cloned and expressed in the catalase-deficient Escherichia coli UM2. Recombinant catalase from V. salmonicida (VSC) was purified to apparent homogeneity as a tetramer with a molecular mass of 235 kDa. VSC contained 67% heme b and 25% protoporphyrin IX. VSC was able to bind NADPH, react with cyanide and form compounds I and II as other monofunctional small subunit heme catalases. Amino acid sequence alignment of VSC and catalase from the mesophilic Proteus mirabilis (PMC) revealed 71% identity. As for cold adapted enzymes in general, VSC possessed a lower temperature optimum and higher catalytic efficiency (k (cat)/K (m)) compared to PMC. VSC have higher affinity for hydrogen peroxide (apparent K (m)) at all temperatures. For VSC the turnover rate (k (cat)) is slightly lower while the catalytic efficiency is slightly higher compared to PMC over the temperature range measured, except at 4 degrees C. Moreover, the catalytic efficiency of VSC and PMC is almost temperature independent, except at 4 degrees C where PMC has a twofold lower efficiency compared to VSC. This may indicate that VSC has evolved to maintain a high efficiency at low temperatures.

  6. Optimization of nested polymerase chain reaction assays for identification of Aeromonas salmonicida, Yersinia ruckeri and Flavobacterium psychrophilum

    USGS Publications Warehouse

    Taylor, P.W.; Winton, J.R.

    2002-01-01

    Nested polymerase chain reaction (PCR) assays were developed using first-round primers complementary to highly conserved regions within the bacterial 16S ribosomal RNA (rRNA) gene (universal eubacterial primers) and second-round primers specific for sequences within the 16S rRNA genes of Aeromonas salmonicida, Yersinia ruckeri, andFlavobacterium psychrophilum. Following optimization of the MgCl2 concentration and primer annealing temperature, PCR employing the universal eubacterial primers was used to amplify a 1,500-base-pair (bp) product visible in agarose gels stained with ethidium bromide. The calculated detection limit of this single-round assay was less than 1.4 × 104 colony-forming units (CFU) per reaction for all bacterial species tested. Single-round PCR using primer sets specific for A. salmonicida, Y. ruckeri, and F. psychrophilumamplified bands of 271, 575, and 1,100 bp, respectively, with detection limits of less than 1.4 × 104, 1.4 × 105, and 1.4 × 105 CFU per reaction. Using the universal eubacterial primers in the first round and the species-specific primer sets in the second round of nested PCR assays improved the detection ability by approximately four orders of magnitude to fewer than 14 CFU per sample for each of the three bacterial species. Such nested assays could be adapted to a wide variety of bacterial fish pathogens for which 16S sequences are available.

  7. Bactericidal activity of juvenile chinook salmon macrophages against Aeromonas salmonicida after exposure to live or heat-killed Renibacterium salmoninarum or to soluble proteins produced by R. salmoninarum

    USGS Publications Warehouse

    Siegel, D.C.; Congleton, J.L.

    1997-01-01

    Macrophages isolated from the anterior kidney of juvenile chinook salmon Oncorhynchus tshawytscha in 96-well microtiter plates were exposed for 72 h to 0, 105, or 106 live or heat-killed Renibacterium salmoninarum cells per well or to 0, 0.1, 1.0, or 10 ??g/mL of R. salmoninarum soluble proteins. After treatment, the bactericidal activity of the macrophages against Aerornonas salmonicida was determined by a colorimetric assay based on the reduction of the tetrazolium dye MTT to formazan by viable bacteria. The MTT assay was modified to allow estimation of the percentage of bacteria killed by reference to a standard curve relating the number of bacteria added to microtiter wells to absorbance by formazan at 600 nm. The live and heat-killed R. salmoninarum treatments significantly (P < 0.001) increased killing of A. salmonicida by chinook salmon macrophages. In each of the five trials, significantly (P < 0.05) greater increases in killing occurred after exposure to 105 R. salmoninarum cells than to 106 R. salmoninarum cells per well. In contrast, treatment of macrophages with 10 ??g/mL R. salmoninarum soluble proteins significantly (P < 0.001) decreased killing of A. salmonicida, but treatment with lower doses did not. These results show that the bactericidal activity of chinook salmon macrophages is stimulated by exposure to R. salmoninarum cells at lower dose levels but inhibited by exposure to R. salmoninarum cells or soluble proteins at higher dose levels.

  8. Crystallization and preliminary X-ray diffraction analysis of a cold-adapted catalase from Vibrio salmonicida

    PubMed Central

    Riise, Ellen Kristin; Lorentzen, Marit Sjo; Helland, Ronny; Willassen, Nils Peder

    2006-01-01

    Catalase (EC 1.11.1.6) catalyses the breakdown of hydrogen peroxide to water and molecular oxygen. Recombinant Vibrio salmonicida catalase (VSC) possesses typical cold-adapted features, with higher catalytic efficiency, lower thermal stability and a lower temperature optimum than its mesophilic counterpart from Proteus mirabilis. Crystals of VSC were produced by the hanging-drop vapour-diffusion method using ammonium sulfate as precipitant. The crystals belong to the monoclinic space group P21, with unit-cell parameters a = 98.15, b = 217.76, c = 99.28 Å, β = 110.48°. Data were collected to 1.96 Å and a molecular-replacement solution was found with eight molecules in the asymmetric unit. PMID:16511268

  9. The reference strain Aeromonas hydrophicla CIP 57.50 should be reclassified as Aeromonas salmonicida CIP 57.50.

    PubMed

    Miñana-Galbis, David; Farfàn, Maribel; Lorén, J Gaspar; Fusté, M Carmen

    2010-03-01

    The use of reference strains is a critical element for the quality control of different assays, from the development of molecular methods to the evaluation of antimicrobial activities. Most of the strains used in these assays are not type strains and some of them are cited erroneously because of subsequent reclassifications and descriptions of novel species. In this study, we propose that the reference strain Aeromonas hydrophila CIP 57.50 be reclassified as Aeromonas salmonicida CIP 57.50 based on phenotypic characterization and sequence analyses of the cpn60, dnaJ, gyrB and rpoD genes.

  10. Expression profiling reveals Spot 42 small RNA as a key regulator in the central metabolism of Aliivibrio salmonicida

    PubMed Central

    2012-01-01

    Background Spot 42 was discovered in Escherichia coli nearly 40 years ago as an abundant, small and unstable RNA. Its biological role has remained obscure until recently, and is today implicated in having broader roles in the central and secondary metabolism. Spot 42 is encoded by the spf gene. The gene is ubiquitous in the Vibrionaceae family of gamma-proteobacteria. One member of this family, Aliivibrio salmonicida, causes cold-water vibriosis in farmed Atlantic salmon. Its genome encodes Spot 42 with 84% identity to E. coli Spot 42. Results We generated a A. salmonicida spf deletion mutant. We then used microarray and Northern blot analyses to monitor global effects on the transcriptome in order to provide insights into the biological roles of Spot 42 in this bacterium. In the presence of glucose, we found a surprisingly large number of ≥ 2X differentially expressed genes, and several major cellular processes were affected. A gene encoding a pirin-like protein showed an on/off expression pattern in the presence/absence of Spot 42, which suggests that Spot 42 plays a key regulatory role in the central metabolism by regulating the switch between fermentation and respiration. Interestingly, we discovered an sRNA named VSsrna24, which is encoded immediately downstream of spf. This new sRNA has an expression pattern opposite to that of Spot 42, and its expression is repressed by glucose. Conclusions We hypothesize that Spot 42 plays a key role in the central metabolism, in part by regulating the pyruvat dehydrogenase enzyme complex via pirin. PMID:22272603

  11. Efficacy of an extract from garlic, Allium sativum, against infection with the furunculosis bacterium, Aeromonas salmonicida, in rainbow trout, Oncorhynchus mykiss

    USGS Publications Warehouse

    Breyer, Kate E.; Getchell, Rodman G.; Cornwell, Emily R.; Wooster, Gregory A.; Ketola, H. George; Bowser, Paul R.

    2015-01-01

    Juvenile rainbow trout, Oncorhynchus mykiss, were fed diets containing 0, 0.5, 1.0, and 2.0% of a garlic extract, challenged with a modified 50% lethal dose of Aeromonas salmonicida and monitored for 28 d. There were significant increases in survival of trout fed 0.5 and 1.0% garlic extract as compared to the control and 2.0% garlic extract groups. A target animal safety study was performed at varying increments using the target dose of 0.5% garlic extract at 0× (0% garlic extract), 1× (0.5% garlic extract), 3× (1.5% garlic extract), and 5× (2.5% garlic extract) for 3× (6 wk) the duration of the original study. There was a significant increase in the level of circulating lymphocytes and a significant decrease in the level of circulating monocytes. The latter correlated to an increased level of pigment-containing macrophage centers within the renal tissue as garlic extract dosing increased, denoting a potential deleterious inflammatory effect as macrophage infiltration became severe at the highest dose. These studies suggest that feeding low-dose (0.5% or 1.0%) garlic extract improves survivability in rainbow trout when challenged with A. salmonicida and appears safe; however, higher levels do not appear to be effective and may cause deleterious effects on health.

  12. The Effect of X-Irradiation on Goldfish: I. The Effect of X-Irradiation on Survival and Susceptibility of the Goldfish, Carassius auratus, to Infection by Aeromonas salmonicida and Gyrodactylus spp.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shechmeister, I. L.; Watson, L. J.; Cole, V. W.

    1962-01-01

    Graded doses (l00 to l0000 r) of whole-body x radiation were administered to goldfish, Carassius auratus. The x ray LD/sub 50(30)/ was found to be 2315 r. Survival time decreased with increase in x-ray dose. Exposure to 100 r resulted in 100% mortality in 363 days; all fish exposed to l0,000 r succumbed in 11 to 14 days. Gross pathologic effects resulting from x irradiation are discussed. The transient phenomenon of external pigmentation development due to ionizing radiation was noted. The swim bladder, a hydrostatic organ, was frequently observed to be in a deflated condition after exposure to doses greatermore » than 500 r, resulting in loss of buoyancy. The increase in the susceptibility of irradiated animals to an experimentally induced bacterial infection, Aeromonas salmonicida, and to a naturally acquired ectoparasitic trematode, Gyrodactylus spp., was also observed. (auth)« less

  13. A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution

    PubMed Central

    Andersson, Jan O; Sjögren, Åsa M; Horner, David S; Murphy, Colleen A; Dyal, Patricia L; Svärd, Staffan G; Logsdon, John M; Ragan, Mark A; Hirt, Robert P; Roger, Andrew J

    2007-01-01

    Background Comparative genomic studies of the mitochondrion-lacking protist group Diplomonadida (diplomonads) has been lacking, although Giardia lamblia has been intensively studied. We have performed a sequence survey project resulting in 2341 expressed sequence tags (EST) corresponding to 853 unique clones, 5275 genome survey sequences (GSS), and eleven finished contigs from the diplomonad fish parasite Spironucleus salmonicida (previously described as S. barkhanus). Results The analyses revealed a compact genome with few, if any, introns and very short 3' untranslated regions. Strikingly different patterns of codon usage were observed in genes corresponding to frequently sampled ESTs versus genes poorly sampled, indicating that translational selection is influencing the codon usage of highly expressed genes. Rigorous phylogenomic analyses identified 84 genes – mostly encoding metabolic proteins – that have been acquired by diplomonads or their relatively close ancestors via lateral gene transfer (LGT). Although most acquisitions were from prokaryotes, more than a dozen represent likely transfers of genes between eukaryotic lineages. Many genes that provide novel insights into the genetic basis of the biology and pathogenicity of this parasitic protist were identified including 149 that putatively encode variant-surface cysteine-rich proteins which are candidate virulence factors. A number of genomic properties that distinguish S. salmonicida from its human parasitic relative G. lamblia were identified such as nineteen putative lineage-specific gene acquisitions, distinct mutational biases and codon usage and distinct polyadenylation signals. Conclusion Our results highlight the power of comparative genomic studies to yield insights into the biology of parasitic protists and the evolution of their genomes, and suggest that genetic exchange between distantly-related protist lineages may be occurring at an appreciable rate in eukaryote genome evolution. PMID

  14. Curculigo orchioides protects cisplatin-induced cell damage.

    PubMed

    Kang, Tong Ho; Hong, Bin Na; Jung, Su-Young; Lee, Jeong-Han; So, Hong-Seob; Park, Raekil; You, Yong-Ouk

    2013-01-01

    Cisplatin is commonly used as a chemotherapeutic agent against many human cancers. However, it generates reactive oxygen species (ROS) and has serious dose-limiting side effects, including ototoxicity. The roots of Curculigo orchioides (C. orchioides) have been used to treat auditory diseases such as tinnitus and hearing loss in Chinese traditional medicine. In the present study, we investigated the protective effects of an ethanol extract obtained from C. orchioides rhizome (COR) on cisplatin-induced cell damage in auditory cells (HEI-OC1). COR (2.5-25 μg/ml) inhibited cisplatin-induced HEI-OC1 cell damage in a dose-dependent manner. To investigate the protective mechanism of COR on cisplatin cytotoxicity in HEI-OC1 cells, we measured the effects of COR on ROS generation and lipid peroxidation in cisplatin-treated cells as well as its scavenging activities against superoxide radicals, hydroxyl radicals, hydrogen peroxide, and DPPH radicals. COR (1-25 μg/ml) had scavenging activities against superoxide radicals, hydroxyl radicals, hydrogen peroxide, and DPPH radicals, as well as reduced lipid peroxidation. In in vivo experiments, COR was shown to reduce cochlear and peripheral auditory function impairments through cisplatin-induced auditory damage in mice. These results indicate that COR protects from cisplatin-induced auditory damage by inhibiting lipid peroxidation and scavenging activities against free radicals.

  15. Osteoblasts Protect AML Cells from SDF-1-Induced Apoptosis

    PubMed Central

    Kremer, Kimberly N.; Dudakovic, Amel; McGee-Lawrence, Meghan E.; Philips, Rachael L.; Hess, Allan D.; Smith, B. Douglas; van Wijnen, Andre J.; Karp, Judith E.; Kaufmann, Scott H.; Westendorf, Jennifer J.; Hedin, Karen E.

    2014-01-01

    The bone marrow provides a protective environment for acute myeloid leukemia (AML) cells that often allows leukemic stem cells to survive standard chemotherapeutic regimens. Targeting these leukemic stem cells within the bone marrow is critical for preventing relapse. We recently demonstrated that SDF-1, a chemokine abundant in the bone marrow, induces apoptosis in AML cell lines and in patient samples expressing high levels of its receptor, CXCR4. Here we show that a subset of osteoblast lineage cells within the bone marrow can protect AML cells from undergoing apoptosis in response to the SDF-1 naturally present in that location. In co-culture systems, osteoblasts at various stages of differentiation protected AML cell lines and patient isolates from SDF-1-induced apoptosis. The differentiation of the osteoblast cell lines, MC3T3 and W-20-17, mediated this protection via a cell contact-independent mechanism. In contrast, bone marrow-derived mesenchymal cells, the precursors of osteoblasts, induced apoptosis in AML cells via a CXCR4-dependent mechanism and failed to protect AML cells from exogenously added SDF-1. These results indicate that osteoblasts in the process of differentiation potently inhibit the SDF-1-driven apoptotic pathway of CXCR4-expressing AML cells residing in the bone marrow. Drugs targeting this protective mechanism could potentially provide a new approach to treating AML by enhancing the SDF-1-induced apoptosis of AML cells residing within the bone marrow microenvironment. PMID:24851270

  16. Induced hypernatraemia is protective in acute lung injury.

    PubMed

    Bihari, Shailesh; Dixon, Dani-Louise; Lawrence, Mark D; Bersten, Andrew D

    2016-06-15

    Sucrose induced hyperosmolarity is lung protective but the safety of administering hyperosmolar sucrose in patients is unknown. Hypertonic saline is commonly used to produce hyperosmolarity aimed at reducing intra cranial pressure in patients with intracranial pathology. Therefore we studied the protective effects of 20% saline in a lipopolysaccharide lung injury rat model. 20% saline was also compared with other commonly used fluids. Following lipopolysaccharide-induced acute lung injury, male Sprague Dawley rats received either 20% hypertonic saline, 0.9% saline, 4% albumin, 20% albumin, 5% glucose or 20% albumin with 5% glucose, i.v. During 2h of non-injurious mechanical ventilation parameters of acute lung injury were assessed. Hypertonic saline resulted in hypernatraemia (160 (1) mmol/l, mean (SD)) maintained through 2h of ventilation, and in amelioration of lung oedema, myeloperoxidase, bronchoalveolar cell infiltrate, total soluble protein and inflammatory cytokines, and lung histological injury score, compared with positive control and all other fluids (p ≤ 0.001). Lung physiology was maintained (conserved PaO2, elastance), associated with preservation of alveolar surfactant (p ≤ 0.0001). Independent of fluid or sodium load, induced hypernatraemia is lung protective in lipopolysaccharide-induced acute lung injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Formalin-Inactivated Coxiella burnetii Phase I Vaccine-Induced Protection Depends on B Cells To Produce Protective IgM and IgG

    PubMed Central

    Peng, Ying; Schoenlaub, Laura; Elliott, Alexandra; Mitchell, William; Zhang, Yan

    2013-01-01

    To further understand the mechanisms of formalin-inactivated Coxiella burnetii phase I (PI) vaccine (PIV)-induced protection, we examined if B cell, T cell, CD4+ T cell, or CD8+ T cell deficiency in mice significantly affects the ability of PIV to confer protection against a C. burnetii infection. Interestingly, compared to wild-type (WT) mice, PIV conferred comparable levels of protection in CD4+ T cell- or CD8+ T cell-deficient mice and partial protection in T cell-deficient mice but did not provide measurable protection in B cell-deficient mice. These results suggest that PIV-induced protection depends on B cells. In addition, anti-PI-specific IgM was the major detectable antibody (Ab) in immune sera from PIV-vaccinated CD4+ T cell-deficient mice, and passive transfer of immune sera from PIV-vaccinated CD4+ T cell-deficient mice conferred significant protection. These results suggest that T cell-independent anti-PI-specific IgM may contribute to PIV-induced protection. Our results also suggested that PIV-induced protection may not depend on complement activation and Fc receptor-mediated effector functions. Furthermore, our results demonstrated that both IgM and IgG from PIV-vaccinated WT mouse sera were able to inhibit C. burnetii infection in vivo, but only IgM from PIV-vaccinated CD4+ T cell-deficient mouse sera inhibited C. burnetii infection. Collectively, these findings suggest that PIV-induced protection depends on B cells to produce protective IgM and IgG and that T cell-independent anti-PI-specific IgM may play a critical role in PIV-induced protection against C. burnetii infection. PMID:23545296

  18. Differential Requirements for T Cells in Viruslike Particle- and Rotavirus-Induced Protective Immunity▿

    PubMed Central

    Blutt, Sarah E.; Warfield, Kelly L.; Estes, Mary K.; Conner, Margaret E.

    2008-01-01

    Correlates of protection from rotavirus infection are controversial. We compared the roles of B and T lymphocytes in protective immunity induced either by intranasally administered nonreplicating viruslike particles or inactivated virus or by orally administered murine rotavirus. We found that protection induced by nonreplicating vaccines requires CD4+ T cells and CD40/CD40L. In contrast, T cells were not required for short-term protective immunity induced by infection, but both T-cell-dependent and -independent mechanisms contributed to long-term maintenance of protection. Our findings indicate that more than one marker of protective immunity exists and that these markers depend on the vaccine that is administered. PMID:18184712

  19. Protection from radiation-induced pneumonitis using cerium oxide nanoparticles.

    PubMed

    Colon, Jimmie; Herrera, Luis; Smith, Joshua; Patil, Swanand; Komanski, Chris; Kupelian, Patrick; Seal, Sudipta; Jenkins, D Wayne; Baker, Cheryl H

    2009-06-01

    In an effort to combat the harmful effects of radiation exposure, we propose that rare-earth cerium oxide (CeO(2)) nanoparticles (free-radical scavengers) protect normal tissue from radiation-induced damage. Preliminary studies suggest that these nanoparticles may be a therapeutic regenerative nanomedicine that will scavenge reactive oxygen species, which are responsible for radiation-induced cell damage. The effectiveness of CeO(2) nanoparticles in radiation protection in murine models during high-dose radiation exposure is investigated, with the ultimate goal of offering a new approach to radiation protection, using nanotechnology. We show that CeO(2) nanoparticles are well tolerated by live animals, and they prevent the onset of radiation-induced pneumonitis when delivered to live animals exposed to high doses of radiation. In the end, these studies provide a tremendous potential for radioprotection and can lead to significant benefits for the preservation of human health and the quality of life for humans receiving radiation therapy.

  20. Protective Efficacy of Selenite against Lead-Induced Neurotoxicity in Caenorhabditis elegans

    PubMed Central

    Tseng, I-Ling; Liao, Vivian Hsiu-Chuan

    2013-01-01

    Background Selenium is an essential micronutrient that has a narrow exposure window between its beneficial and toxic effects. This study investigated the protective potential of selenite (IV) against lead (Pb(II))-induced neurotoxicity in Caenorhabditis elegans. Principal Findings The results showed that Se(IV) (0.01 µM) pretreatment ameliorated the decline of locomotion behaviors (frequencies of body bends, head thrashes, and reversal ) of C. elegans that are damaged by Pb(II) (100 µM) exposure. The intracellular ROS level of C. elegans induced by Pb(II) exposure was significantly lowered by Se(IV) supplementation prior to Pb(II) exposure. Finally, Se(IV) protects AFD sensory neurons from Pb(II)-induced toxicity. Conclusions Our study suggests that Se(IV) has protective activities against Pb(II)-induced neurotoxicity through its antioxidant property. PMID:23638060

  1. Caffeic acid protects rat heart mitochondria against isoproterenol-induced oxidative damage

    PubMed Central

    Kumaran, Kandaswamy Senthil

    2010-01-01

    Cardiac mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. The protective effects of caffeic acid on mitochondrial dysfunction in isoproterenol-induced myocardial infarction were studied in Wistar rats. Rats were pretreated with caffeic acid (15 mg/kg) for 10 days. After the pretreatment period, isoproterenol (100 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days to induce myocardial infarction. Isoproterenol-induced rats showed considerable increased levels of serum troponins and heart mitochondrial lipid peroxidation products and considerable decreased glutathione peroxidase and reduced glutathione. Also, considerably decreased activities of isocitrate, succinate, malate, α-ketoglutarate, and NADH dehydrogenases and cytochrome-C-oxidase were observed in the mitochondria of myocardial-infarcted rats. The mitochondrial calcium, cholesterol, free fatty acids, and triglycerides were considerably increased and adenosine triphosphate and phospholipids were considerably decreased in isoproterenol-induced rats. Caffeic acid pretreatment showed considerable protective effects on all the biochemical parameters studied. Myocardial infarct size was much reduced in caffeic acid pretreated isoproterenol-induced rats. Transmission electron microscopic findings also confirmed the protective effects of caffeic acid. The possible mechanisms of caffeic acid on cardiac mitochondria protection might be due to decreasing free radicals, increasing multienzyme activities, reduced glutathione, and adenosine triphosphate levels and maintaining lipids and calcium. In vitro studies also confirmed the free-radical-scavenging activity of caffeic acid. Thus, caffeic acid protected rat’s heart mitochondria against isoproterenol-induced damage. This study may have a significant impact on myocardial-infarcted patients. PMID:20376586

  2. Caffeic acid protects rat heart mitochondria against isoproterenol-induced oxidative damage.

    PubMed

    Kumaran, Kandaswamy Senthil; Prince, Ponnian Stanely Mainzen

    2010-11-01

    Cardiac mitochondrial dysfunction plays an important role in the pathology of myocardial infarction. The protective effects of caffeic acid on mitochondrial dysfunction in isoproterenol-induced myocardial infarction were studied in Wistar rats. Rats were pretreated with caffeic acid (15 mg/kg) for 10 days. After the pretreatment period, isoproterenol (100 mg/kg) was subcutaneously injected to rats at an interval of 24 h for 2 days to induce myocardial infarction. Isoproterenol-induced rats showed considerable increased levels of serum troponins and heart mitochondrial lipid peroxidation products and considerable decreased glutathione peroxidase and reduced glutathione. Also, considerably decreased activities of isocitrate, succinate, malate, α-ketoglutarate, and NADH dehydrogenases and cytochrome-C-oxidase were observed in the mitochondria of myocardial-infarcted rats. The mitochondrial calcium, cholesterol, free fatty acids, and triglycerides were considerably increased and adenosine triphosphate and phospholipids were considerably decreased in isoproterenol-induced rats. Caffeic acid pretreatment showed considerable protective effects on all the biochemical parameters studied. Myocardial infarct size was much reduced in caffeic acid pretreated isoproterenol-induced rats. Transmission electron microscopic findings also confirmed the protective effects of caffeic acid. The possible mechanisms of caffeic acid on cardiac mitochondria protection might be due to decreasing free radicals, increasing multienzyme activities, reduced glutathione, and adenosine triphosphate levels and maintaining lipids and calcium. In vitro studies also confirmed the free-radical-scavenging activity of caffeic acid. Thus, caffeic acid protected rat's heart mitochondria against isoproterenol-induced damage. This study may have a significant impact on myocardial-infarcted patients.

  3. Lingonberry anthocyanins protect cardiac cells from oxidative-stress-induced apoptosis.

    PubMed

    Isaak, Cara K; Petkau, Jay C; Blewett, Heather; O, Karmin; Siow, Yaw L

    2017-08-01

    Lingonberry grown in northern Manitoba, Canada, contains exceptionally high levels of anthocyanins and other polyphenols. Previous studies from our lab have shown that lingonberry anthocyanins can protect H9c2 cells from ischemia-reperfusion injury and anthocyanin-rich diets have been shown to be associated with decreased cardiovascular disease and mortality. Oxidative stress can impair function and trigger apoptosis in cardiomyocytes. This study investigated the protective effects of physiologically relevant doses of lingonberry extracts and pure anthocyanins against hydrogen-peroxide-induced cell death. Apoptosis and necrosis were detected in H9c2 cells after hydrogen peroxide treatment via flow cytometry using FLICA 660 caspase 3/7 combined with YO-PRO-1 and then confirmed with Hoechst staining and fluorescence microscopy. Each of the 3 major anthocyanins found in lingonberry (cyanidin-3-galactoside, cyanidin-3-glucoside, and cyanidin-3-arabinoside) was protective against hydrogen-peroxide-induced apoptosis in H9c2 cells at 10 ng·mL -1 (20 nmol·L -1 ) and restored the number of viable cells to match the control group. A combination of the 3 anthocyanins was also protective and a lingonberry extract tested at 3 concentrations produced a dose-dependent protective effect. Lingonberry anthocyanins protected cardiac cells from oxidative-stress-induced apoptosis and may have cardioprotective effects as a dietary modification.

  4. Bacopa monnieri-Induced Protective Autophagy Inhibits Benzo[a]pyrene-Mediated Apoptosis.

    PubMed

    Das, Durgesh Nandini; Naik, Prajna Paramita; Nayak, Aditi; Panda, Prashanta Kumar; Mukhopadhyay, Subhadip; Sinha, Niharika; Bhutia, Sujit K

    2016-11-01

    Benzo[a]pyrene (B[a]P) is capable of inducing oxidative stress and cellular injuries leading to cell death and associates with a significant risk of cancer development. Prevention of B[a]P-induced cellular toxicity with herbal compound through regulation of mitochondrial oxidative stress might protect cell death and have therapeutic benefit to human health. In this study, we demonstrated the cytoprotective role of Bacopa monnieri (BM) against B[a]P-induced apoptosis through autophagy induction. Pretreatment with BM rescued the reduction in cell viability in B[a]P-treated human keratinocytes (HaCaT) cells indicating the cytoprotective potential of BM against B[a]P. Moreover, BM was found to inhibit B[a]P-mediated reactive oxygen species (ROS)-induced apoptosis activation in HaCaT cells. Furthermore, BM was found to preserve mitochondrial membrane potential and inhibited release of cytochrome c in B[a]P-treated HaCaT cells. Bacopa monnieri induced protective autophagy; we knocked down Beclin-1, and data showed that BM was unable to protect from B[a]P-induced mitochondrial ROS-mediated apoptosis in Beclin-1-deficient HaCaT cells. Moreover, we established that B[a]P-induced damaged mitochondria were found to colocalize and degraded within autolysosomes in order to protect HaCaT cells from mitochondrial injury. In conclusion, B[a]P-induced apoptosis was rescued by BM treatment and provided cytoprotection through Beclin-1-dependent autophagy activation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Influence of metal ions on flavonoid protection against asbestos-induced cell injury.

    PubMed

    Kostyuk, V A; Potapovich, A I; Vladykovskaya, E N; Korkina, L G; Afanas'ev, I B

    2001-01-01

    Influence of metal ions (Fe2+, Fe3+, Cu2+, Zn2+) on the protective effect of rutin, dihydroquercetin, and green tea epicatechins against in vitro asbestos-induced cell injury was studied. Metals have been found to increase the capacity of rutin and dihydroquercetin to protect peritoneal macrophages against chrysotile asbestos-induced injury. The data presented here show that this effect is due to the formation of flavonoid metal complexes, which turned out to be more effective radical scavengers than uncomplexed flavonoids. At the same time epicatechins and their metal complexes have similar antiradical properties and protective capacities against the asbestos induced injury of macrophages. Metal complexes of all flavonoids were found to be considerably more potent than parent flavonoids in protecting red blood cells against asbestos-induced injury. It was also found that the metal complexes of all flavonoids were absorbed by chrysotile asbestos fibers considerably better than uncomplexed compounds and probably for this reason flavonoid metal complexes have better protective properties against asbestos induced hemolysis. Thus, the results of the present study show that flavonoid metal complexes may be effective therapy for the inflammatory response associated with the inhalation of asbestos fiber. The advantage of their application could be the strong increase in ROS scavenging by flavonoids and finally a better cell protection under the conditions of cellular oxidative stress.

  6. Protection against cyanide-induced convulsions with alpha-ketoglutarate.

    PubMed

    Yamamoto, H

    1990-04-30

    Protection against convulsions induced by cyanide was observed after treatment with alpha-ketoglutarate, either alone or in combination with sodium thiosulfate, a classical antagonist for cyanide intoxication. However, sodium thiosulfate alone did not protect against cyanide (30 mg/kg)-induced convulsions. gamma-Aminobutyric acid (GABA) levels in brain were decreased by 31% in KCN-treated mice exhibiting convulsions. The combined administration of alpha-ketoglutarate and sodium thiosulfate completely abolished the decrease of GABA levels induced by cyanide. Furthermore, sodium thiosulfate alone also completely abolished the decrease of GABA levels. These results suggest that the depletion of brain GABA levels may not directly contribute to the development of convulsions induced by cyanide. On the other hand, cyanide increased calcium levels by 32% in brain crude mitochondrial fractions in mice with convulsions. The increased calcium levels were completely abolished by the combined administration of alpha-ketoglutarate and sodium thiosulfate, but not affected by sodium thiosulfate alone. These findings support the hypothesis proposed by Johnson et al. (Toxicol. Appl. Pharmacol., 84 (1986) 464) and Robinson et al. (Toxicology, 35 (1985) 59) that calcium may play an important role in mediating cyanide neurotoxicity.

  7. Arsenic-induced myocardial injury: protective role of Corchorus olitorius leaves.

    PubMed

    Das, Anup K; Sahu, Ranabir; Dua, Tarun K; Bag, Sujit; Gangopadhyay, Moumita; Sinha, Mohit K; Dewanjee, Saikat

    2010-05-01

    Groundwater arsenic contamination in Bangladesh and its adjoining part of West Bengal (India) is reported to be the biggest arsenic calamity in the world in terms of the affected population. Tossa jute, Corchorus olitorius is a popular crop of this arsenic prone population. The present study was undertaken to evaluate the protective effect of aqueous extract of C. olitorius leaves (AECO) against sodium arsenite (NaAsO(2)) induced cardiotoxicity in experimental rats. The animals exposed to NaAsO(2) (10mg/kg, p.o.) for 10days exhibited a significant inhibition (p<0.01) of superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase and reduced glutathione level in myocardial tissues of rats. In addition, it significantly increased (p<0.01) oxidized glutathione, malondialdehyde and protein carbonyl content in myocardial tissue. Treatment with AECO (50 and 100mg/kg, p.o.) for 15days prior to NaAsO(2)-intoxication significantly protected cardiac tissue against arsenic-induced oxidative impairment. In addition, AECO pretreatment significantly prevented NaAsO(2) induced hyperlipidemia, cardiac arsenic content and DNA fragmentation in experimental rats. Histological studies of myocardial tissue supported the protective activity of the AECO. The results concluded that the treatment with AECO prior to arsenic intoxication has significant protecting effect against arsenic-induced myocardial injury. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Protein Expression Modifications in Phage-Resistant Mutants of Aeromonas salmonicida after AS-A Phage Treatment

    PubMed Central

    Osório, Nádia; Pereira, Carla; Simões, Sara; Delgadillo, Ivonne

    2018-01-01

    The occurrence of infections by pathogenic bacteria is one of the main sources of financial loss for the aquaculture industry. This problem often cannot be solved with antibiotic treatment or vaccination. Phage therapy seems to be an alternative environmentally-friendly strategy to control infections. Recognizing the cellular modifications that bacteriophage therapy may cause to the host is essential in order to confirm microbial inactivation, while understanding the mechanisms that drive the development of phage-resistant strains. The aim of this work was to detect cellular modifications that occur after phage AS-A treatment in A. salmonicida, an important fish pathogen. Phage-resistant and susceptible cells were subjected to five successive streak-plating steps and analysed with infrared spectroscopy, a fast and powerful tool for cell study. The spectral differences of both populations were investigated and compared with a phage sensitivity profile, obtained through the spot test and efficiency of plating. Changes in protein associated peaks were found, and these results were corroborated by 1-D electrophoresis of intracellular proteins analysis and by phage sensitivity profiles. Phage AS-A treatment before the first streaking-plate step clearly affected the intracellular proteins expression levels of phage-resistant clones, altering the expression of distinct proteins during the subsequent five successive streak-plating steps, making these clones recover and be phenotypically more similar to the sensitive cells. PMID:29518018

  9. Active suppression induced by repetitive self-epitopes protects against EAE development.

    PubMed

    Puentes, Fabiola; Dickhaut, Katharina; Hofstätter, Maria; Falk, Kirsten; Rötzschke, Olaf

    2013-01-01

    Autoimmune diseases result from a breakdown in self-tolerance to autoantigens. Self-tolerance is induced and sustained by central and peripheral mechanisms intended to deviate harmful immune responses and to maintain homeostasis, where regulatory T cells play a crucial role. The use of self-antigens in the study and treatment of a range of autoimmune diseases has been widely described; however, the mechanisms underlying the induced protection by these means are unclear. This study shows that protection of experimental autoimmune disease induced by T cell self-epitopes in a multimerized form (oligomers) is mediated by the induction of active suppression. The experimental autoimmune encephalomyelitis (EAE) animal model for multiple sclerosis was used to study the mechanisms of protection induced by the treatment of oligomerized T cell epitope of myelin proteolipid protein (PLP139-151). Disease protection attained by the administration of oligomers was shown to be antigen specific and effective in both prevention and treatment of ongoing EAE. Oligomer mediated tolerance was actively transferred by cells from treated mice into adoptive hosts. The induction of active suppression was correlated with the recruitment of cells in the periphery associated with increased production of IL-10 and reduction of the pro-inflammatory cytokine TNF-α. The role of suppressive cytokines was demonstrated by the reversion of oligomer-induced protection after in vivo blocking of either IL-10 or TGF-β cytokines. This study strongly supports an immunosuppressive role of repeat auto-antigens to control the development of EAE with potential applications in vaccination and antigen specific treatment of autoimmune diseases.

  10. Dexmedetomidine Protects Neural Stem Cells from Ketamine-Induced Injury.

    PubMed

    Lu, Pan; Lei, Shan; Li, Weisong; Lu, Yang; Zheng, Juan; Wang, Ning; Xia, Yongjun; Lu, Haixia; Chen, Xinlin; Liu, Yong; Zhang, Peng-Bo

    2018-06-19

    Ketamine inhibits the proliferation of neural stem cells (NSCs) and disturbs normal neurogenesis. Dexmedetomidine provides neuroprotection against volatile anesthetic-induced neuroapoptosis and cognitive impairment in the developing brain. Whether it may protect NSCs from ketamine-induced injury remains unknown. In this study, we investigated the protective effects of dexmedetomidine on ketamine-exposed NSCs and explored the mechanisms potentially involved. Primary NSC cultures were characterized using immunofluorescence. Cell viability was determined using a Cell Counting Kit 8 assay. Proliferation and apoptosis were assessed with BrdU incorporation and TUNEL assays, respectively. Protein levels of cleaved caspase-3, phosphorylated protein kinase B (p-Akt), and glycogen synthase kinase-3β (p-GSK-3β) were quantified using western blotting. Ket-amine significantly decreased NSC viability and proliferation and increased their apoptosis. Dexmedetomidine increased NSC proliferation and decreased their apoptosis in a dose-dependent manner. Furthermore, dexmedetomidine pretreatment notably augmented the viability and proliferation of ketamine-exposed NSCs and reduced their apoptosis. Moreover, dexmedetomidine lessened caspase-3 activation and increased p-Akt and p-GSK-3β levels in NSCs exposed to ketamine. The protective effects of dexmedetomidine on ketamine-exposed NSCs could be partly reversed by the PI3K inhibitor LY294002. Collectively, these findings indicate that dexmedetomidine may protect NSCs from ketamine-induced injury via the PI3K/Akt/GSK-3β signaling pathway. © 2018 The Author(s). Published by S. Karger AG, Basel.

  11. Dietary Approaches to Protect Against Eye Blast Induced Oxidative Stress and Vision Loss

    DTIC Science & Technology

    2016-11-01

    supplementation of antioxidants and antioxidant enzymes. The ultimate goal of this study was to identify a dietary intervention that could protect...AWARD NUMBER: W81XWH-15-1-0096 TITLE: Dietary Approaches to Protect Against Eye Blast-Induced Oxidative Stress and Vision Loss PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Dietary Approaches to Protect Against Eye Blast-Induced Oxidative Stress and Vision Loss 5b. GRANT NUMBER

  12. Heat stress protects against mechanical ventilation-induced diaphragmatic atrophy.

    PubMed

    Ichinoseki-Sekine, Noriko; Yoshihara, Toshinori; Kakigi, Ryo; Sugiura, Takao; Powers, Scott K; Naito, Hisashi

    2014-09-01

    Mechanical ventilation (MV) is a life-saving intervention in patients who are incapable of maintaining adequate pulmonary gas exchange due to respiratory failure or other disorders. However, prolonged MV is associated with the development of respiratory muscle weakness. We hypothesized that a single exposure to whole body heat stress would increase diaphragm expression of heat shock protein 72 (HSP72) and that this treatment would protect against MV-induced diaphragmatic atrophy. Adult male Wistar rats (n = 38) were randomly assigned to one of four groups: an acutely anesthetized control group (CON) with no MV; 12-h controlled MV group (CMV); 1-h whole body heat stress (HS); or 1-h whole body heat stress 24 h prior to 12-h controlled MV (HSMV). Compared with CON animals, diaphragmatic HSP72 expression increased significantly in the HS and HSMV groups (P < 0.05). Prolonged MV resulted in significant atrophy of type I, type IIa, and type IIx fibers in the costal diaphragm (P < 0.05). Whole body heat stress attenuated this effect. In contrast, heat stress did not protect against MV-induced diaphragm contractile dysfunction. The mechanisms responsible for this heat stress-induced protection remain unclear but may be linked to increased expression of HSP72 in the diaphragm. Copyright © 2014 the American Physiological Society.

  13. Protection from glutamate-induced excitotoxicity by memantine

    PubMed Central

    Kutzing, Melinda K.; Luo, Vincent; Firestein, Bonnie L.

    2014-01-01

    This study investigates whether the uncompetitive NMDA receptor antagonist, memantine, is able to protect dissociated cortical neurons from glutamate-induced excitotoxicity (GIE). Treatment with glutamate resulted in a significant loss of synchronization of neuronal activity as well as a significant increase in the duration of synchronized bursting events (SBEs). By administering memantine at the same time as glutamate, we were able to completely prevent these changes to the neuronal activity. Pretreatment with memantine was somewhat effective in preventing changes to the culture synchronization but was unable to fully protect the synchronization of electrical activity between neurons that showed high levels of synchronization prior to injury. Additionally, memantine pretreatment was unable to prevent the increase in the duration of SBEs caused by GIE. Thus, the timing of memantine treatment is important for conferring neuroprotection against glutamate-induced neurotoxicity. Finally, we found that GIE leads to a significant increase in the burst duration. Our data suggest that this may be due to an alteration in the inhibitory function of the neurons. PMID:22203191

  14. Aged garlic extract protects against methotrexate-induced apoptotic cell injury of IEC-6 cells.

    PubMed

    Horie, Toshiharu; Li, Tiesong; Ito, Kousei; Sumi, Shin-ichiro; Fuwa, Toru

    2006-03-01

    Gastrointestinal toxicity is one of the most serious side effects of methotrexate (MTX) treatment. The side effects often disrupt the cancer chemotherapy. We previously reported that aged garlic extract (AGE) protects the small intestine of rats from MTX-induced damage. In this study, the protection of AGE against MTX-induced damage of IEC-6 cells originating from the rat jejunum crypt was investigated. MTX decreased the viability of IEC-6 cells, but this effect was prevented by AGE (0.5%). The MTX-induced apoptosis of IEC-6 cells was depressed by AGE. These results indicated that AGE protects IEC-6 cells from the MTX-induced damage. AGE may be useful in cancer chemotherapy with MTX because it reduces MTX-induced intestinal damage.

  15. Dietary spices protect against hydrogen peroxide-induced DNA damage and inhibit nicotine-induced cancer cell migration.

    PubMed

    Jayakumar, R; Kanthimathi, M S

    2012-10-01

    Spices are rich sources of antioxidants due to the presence of phenols and flavonoids. In this study, the DNA protecting activity and inhibition of nicotine-induced cancer cell migration of 9 spices were analysed. Murine fibroblasts (3T3-L1) and human breast cancer (MCF-7) cells were pre-treated with spice extracts and then exposed to H₂O₂ and nicotine. The comet assay was used to analyse the DNA damage. Among the 9 spices, ginger, at 50 μg/ml protected against 68% of DNA damage in 3T3-L1 cells. Caraway, cumin and fennel showed statistically significant (p<0.05) DNA protecting activity. Treatment of MCF-7 cells with nicotine induced cell migration, whereas pre-treatment with spices reduced this migration. Pepper, long pepper and ginger exhibited a high rate of inhibition of cell migration. The results of this study prove that spices protect DNA and inhibit cancer cell migration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Protective effects of melatonin on lipopolysaccharide-induced mastitis in mice.

    PubMed

    Shao, Guoxi; Tian, Yinggang; Wang, Haiyu; Liu, Fangning; Xie, Guanghong

    2015-12-01

    Melatonin, a secretory product of the pineal gland, has been reported to have antioxidant and anti-inflammatory effects. However, the protective effects of melatonin on lipopolysaccharide (LPS)-induced mastitis have not been reported. The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of melatonin on LPS-induced mastitis both in vivo and in vitro. In vivo, our results showed that melatonin attenuated LPS-induced mammary histopathologic changes and myeloperoxidase (MPO) activity. Melatonin also inhibited LPS-induced inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) production in mammary tissues. In vitro, melatonin was found to inhibit LPS-induced TNF-α and IL-6 production in mouse mammary epithelial cells. Melatonin also suppressed LPS-induced Toll-like receptor 4 (TLR4) expression and nuclear factor-kappaB (NF-κB) activation in a dose-dependent manner. In addition, melatonin was found to up-regulate the expression of PPAR-γ. Inhibition of PPAR-γ by GW9662 reduced the anti-inflammatory effects of melatonin. In conclusion, we found that melatonin, for the first time, had protective effects on LPS-induced mastitis in mice. The anti-inflammatory mechanism of melatonin was through activating PPAR-γ which subsequently inhibited LPS-induced inflammatory responses. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Melatonin protects against myocardial hypertrophy induced by lipopolysaccharide.

    PubMed

    Lu, Qi; Yi, Xin; Cheng, Xiang; Sun, Xiaohui; Yang, Xiangjun

    2015-04-01

    Melatonin is thought to have the ability of antiatherogenic, antioxidant, and vasodilatory. It is not only a promising protective in acute myocardial infarction but is also a useful tool in the treatment of pathological remodeling. However, its role in myocardial hypertrophy remains unclear. In this study, we investigated the protective effects of melatonin on myocardial hypertrophy induced by lipopolysaccharide (LPS) and to identify their precise mechanisms. The cultured myocardial cell was divided into six groups: control group, LPS group, LPS + ethanol (4%), LPS + melatonin (1.5 mg/ml) group, LPS + melatonin (3 mg/ml) group, and LPS + melatonin (6 mg/ml) group. The morphologic change of myocardial cell was observed by inverted phase contrast microscope. The protein level of myocardial cell was measured by Coomassie brilliant blue protein kit. The secretion level of tumor necrosis factor-α (TNF-α) was evaluated by enzyme-linked immunosorbent assay (ELISA). Ca(2+) transient in Fura-2/AM-loaded cells was measured by Till image system. The expression of Ca(2+)/calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) was measured by Western blot analysis. Our data demonstrated that LPS induced myocardial hypertrophy, promoted the secretion levels of TNF-α, and increased Ca(2+) transient level and the expression of CaMKII and CaN. Administration of melatonin 30 min prior to LPS stimulation dose-dependently attenuated myocardial hypertrophy. In conclusion, the results revealed that melatonin had the potential to protect against myocardial hypertrophy induced by LPS in vitro through downregulation of the TNF-α expression and retains the intracellular Ca(2+) homeostasis.

  18. Cranberry (Vaccinium macrocarpon) protects against doxorubicin-induced cardiotoxicity in rats.

    PubMed

    Elberry, Ahmed A; Abdel-Naim, Ashraf B; Abdel-Sattar, Essam A; Nagy, Ayman A; Mosli, Hisham A; Mohamadin, Ahmed M; Ashour, Osama M

    2010-05-01

    Doxorubicin (DOX) is a widely used cancer chemotherapeutic agent. However, it generates free oxygen radicals that result in serious dose-limiting cardiotoxicity. Supplementations with berries were proven effective in reducing oxidative stress associated with several ailments. The aim of the current study was to investigate the potential protective effect of cranberry extract (CRAN) against DOX-induced cardiotoxicity in rats. CRAN was given orally to rats (100mg/kg/day for 10 consecutive days) and DOX (15mg/kg; i.p.) was administered on the seventh day. CRAN protected against DOX-induced increased mortality and ECG changes. It significantly inhibited DOX-provoked glutathione (GSH) depletion and accumulation of oxidized glutathione (GSSG), malondialdehyde (MDA), and protein carbonyls in cardiac tissues. The reductions of cardiac activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) were significantly mitigated. Elevation of cardiac myeloperoxidase (MPO) activity in response to DOX treatment was significantly hampered. Pretreatment of CRAN significantly guarded against DOX-induced rise of serum lactate dehydrogenase (LDH), creatine phosphokinase (CK), creatine kinase-MB (CK-MB) as well as troponin I level. CRAN alleviated histopathological changes in rats' hearts treated with DOX. In conclusion, CRAN protects against DOX-induced cardiotoxicity in rats. This can be attributed, at least in part, to CRAN's antioxidant activity. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Ephedrine hydrochloride protects mice from staphylococcus aureus-induced peritonitis

    PubMed Central

    He, Weigang; Ma, Jinzhu; Chen, Yijian; Jiang, Xinru; Wang, Yuli; Shi, Ting; Zhang, Qingwen; Yang, Yang; Jiang, Xin; Yin, Shulei; Zheng, Aoxiang; Lu, Jie; Zheng, Yuejuan

    2018-01-01

    Staphylococcus aureus is a Gram-positive (G+) bacterium that causes a wide range of diseases in humans and livestock. Therefore, the development of innovative and effective therapies is essential for the treatment of S. aureus-induced severe infections. Ephedrine hydrochloride (EH) is a compound derived from ephedrine and is widely used for the management of cardiovascular diseases and hypotension. The results of our previous studies demonstrated that EH has anti-inflammatory activity in macrophages and protects against endotoxic shock. However, whether EH regulates the function of dendritic cells (DCs) and the immune response in S. aureus-induced infection is unknown. In this study, the anti-inflammatory and regulatory activity of EH on DCs was evaluated. EH increased the production of anti-inflammatory cytokine IL-10 and decreased the production of proinflammatory cytokines TNF-α and IL-12 in DCs stimulated with peptidoglycan (PGN), the main cell wall component in G+ bacteria. The PI3K/Akt and p38 MAPK signaling pathways controlled EH-induced IL-10 expression and EH-inhibited TNF-α expression, respectively. The PGN-induced expression of co-stimulatory molecules CD40, CD80, CD86, and MHC class II molecule Iab was down-regulated in DCs by EH. Furthermore, EH protected the liver and kidney and increased the survival rate of mice with S. aureus-induced peritonitis. In conclusion, EH helps to keep immune homeostasis and alleviate organ damage during S. aureus-induced peritonitis. Therefore, EH may be a promising drug candidate in the treatment of S. aureus-induced severe infections and other invasive G+ bacterial infections. PMID:29636858

  20. Protective effects of tenuigenin on Staphylococcus aureus-induced pneumonia in mice.

    PubMed

    Yu, Bin; Qiao, Jiutao; Shen, Yongbin; Li, Lianyong

    2017-09-01

    Pneumonia is the leading cause of death in infants and young children. Staphylococcus aureus (S.aureus) is one of the most important bacteria that leads to pneumonia. Tenuigenin (TGN), a major active component isolated from the root of the Chinese herb Polygala tenuifolia, has been known to have anti-inflammatory effect. In this study, we aimed to investigate the protective effects of TGN on S.aureus-induced pneumonia in mice. The results showed that TGN significantly attenuated S.aureus-induced lung histopathological changes. TGN also inhibited lung wet/dry (W/D) ratio, and inflammatory cytokines TNF-α and IL-1β production. Furthermore, S.aureus-induced NF-κB activation was significantly inhibited by the treatment of TGN. In conclusion, the results of this study showed that TGN protected against S.aureus-induced pneumonia by inhibiting NF-κB activation. TGN might be a potential agent in the treatment of pneumonia induced by S.aureus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Protective effects of platinum nanoparticles against UV-light-induced epidermal inflammation.

    PubMed

    Yoshihisa, Yoko; Honda, Ayumi; Zhao, Qing-Li; Makino, Teruhiko; Abe, Riichiro; Matsui, Kotaro; Shimizu, Hiroshi; Miyamoto, Yusei; Kondo, Takashi; Shimizu, Tadamichi

    2010-11-01

    Intracellular reactive oxygen species (ROS) and apoptosis play important roles in the ultraviolet (UV)-induced inflammatory responses in the skin. Metal nanoparticles have been developed to increase the catalytic activity of metals, which is because of the large surface area of smaller particles. Platinum nanoparticles (nano-Pt) protected by poly acrylic acid were manufactured by reduction with ethanol. A marked increase in ROS production was observed in UV-treated HaCaT keratinocytes cell lines, while a decrease in ROS production was observed in nano-Pt-treated cells. Pretreatment of the cells with nano-Pt also caused a significant inhibition of UVB- and UVC-induced apoptosis. Furthermore, we found that mice treated with nano-Pt gel prior to UV irradiation showed significant inhibition of UVB-induced inflammation and UVA-induced photoallergy compared to UV-irradiated control mice. These results suggest that nano-Pt effectively protects against UV-induced inflammation by decreasing ROS production and inhibiting apoptosis in keratinocytes. © 2010 John Wiley & Sons A/S.

  2. Pigment Epithelium Derived Factor Peptide Protects Murine Hepatocytes from Carbon Tetrachloride-Induced Injury

    PubMed Central

    Shih, Shou-Chuan; Ho, Tsung-Chuan; Chen, Show-Li; Tsao, Yeou-Ping

    2016-01-01

    Fibrogenesis is induced by repeated injury to the liver and reactive regeneration and leads eventually to liver cirrhosis. Pigment epithelium derived factor (PEDF) has been shown to prevent liver fibrosis induced by carbon tetrachloride (CCl4). A 44 amino acid domain of PEDF (44-mer) was found to have a protective effect against various insults to several cell types. In this study, we investigated the capability of synthetic 44-mer to protect against liver injury in mice and in primary cultured hepatocytes. Acute liver injury, induced by CCl4, was evident from histological changes, such as cell necrosis, inflammation and apoptosis, and a concomitant reduction of glutathione (GSH) and GSH redox enzyme activities in the liver. Intraperitoneal injection of the 44-mer into CCl4-treated mice abolished the induction of AST and ALT and markedly reduced histological signs of liver injury. The 44-mer treatment can reduce hepatic oxidative stress as evident from lower levels of lipid hydroperoxide, and higher levels of GSH. CCl4 caused a reduction of Bcl-xL, PEDF and PPARγ, which was markedly restored by the 44-mer treatment. Consequently, the 44-mer suppressed liver fibrosis induced by repeated CCl4 injury. Furthermore, our observations in primary culture of rat hepatocytes showed that PEDF and the 44-mer protected primary rat hepatocytes against apoptosis induced by serum deprivation and TGF-β1. PEDF/44-mer induced cell protective STAT3 phosphorylation. Pharmacological STAT3 inhibition prevented the antiapoptotic action of PEDF/44-mer. Among several PEDF receptor candidates that may be responsible for hepatocyte protection, we demonstrated that PNPLA2 was essential for PEDF/44-mer-mediated STAT3 phosphorylation and antiapoptotic activity by using siRNA to selectively knockdown PNPLA2. In conclusion, the PEDF 44-mer protects hepatocytes from single and repeated CCl4 injury. This protective effect may stem from strengthening the counter oxidative stress capacity and

  3. Protective effects of Asian green vegetables against oxidant induced cytotoxicity

    PubMed Central

    Rose, Peter; Ong, Choon Nam; Whiteman, Matt

    2005-01-01

    AIM: To evaluate the antioxidant and phase II detoxification enzyme inducing ability of green leaf vegetables consumed in Asia. METHODS: The antioxidant properties of six commonly consumed Asian vegetables were determined using the ABTS, DPPH, deoxyribose, PR bleaching and iron- ascorbate induced lipid peroxidation assay. Induce of phase II detoxification enzymes was also determined for each respective vegetable extract. Protection against authentic ONOO- and HOCl mediated cytotoxicity in human colon HCT116 cells was determined using the MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide) viability assay. RESULTS: All of the extracts derived from green leaf vegetables exhibited antioxidant properties, while also having cytoprotective effects against ONOO- and HOCl mediated cytotoxicity. In addition, evaluation of the phase II enzyme inducing ability of each extract, as assessed by quinone reductase and glutathione-S-transferase activities, showed significant variation between the vegetables analyzed. CONCLUSION: Green leaf vegetables are potential sources of antioxidants and phase II detoxification enzyme inducers in the Asian diet. It is likely that consumption of such vegetables is a major source of beneficial phytochemical constituents that may protect against colonic damage. PMID:16437686

  4. Protection of Flos Lonicerae against acetaminophen-induced liver injury and its mechanism.

    PubMed

    Jiang, Ping; Sheng, Yu-chen; Chen, Yu-hao; Ji, Li-li; Wang, Zheng-tao

    2014-11-01

    This study aims to observe the protective action of Flos Lonicerae (FL) aqueous extract against acetaminophen (AP)-induced liver injury and its mechanism. Results show that FL decreases AP-increased serum alanine/aspartate transaminases (ALT/AST) activity, as well as total bilirubin (TB) amount, in mice. Histological evaluation of the liver further confirms the protection of FL against AP-induced hepatotoxicity. TdT-mediated biotin-dUTP nick-end labeling (TUNEL) assay shows that FL reduces AP-increased apoptotic cells. Furthermore, AP-decreased liver glutamate-cysteine ligase (GCL) enzymatic activity and glutathione (GSH) amount are both reversed by FL because of the increased expression of the catalytic subunit of GCL (GCLC) protein. The amount of chlorogenic acid (CGA), caffeic acid, and luteolin, the main active compounds in FL, is detected by high-performance liquid chromatography (HPLC). In addition, cell viability assay demonstrates that polyphenols in FL, such as CGA, caffeic acid, as well as isochlorogenic acids A, B, and C, can reverse AP-induced cytotoxicity. In conclusion, FL can prevent AP-induced liver injury by inhibiting apoptosis. The cellular antioxidant enzyme GCL is also involved in such protection. Polyphenols may be the main active hepato-protective ingredients in FL. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Protective Effect of Bacoside-A against Morphine-Induced Oxidative Stress in Rats.

    PubMed

    Sumathi, T; Nathiya, V C; Sakthikumar, M

    2011-07-01

    In the present study, we investigated the protective effect of bacoside-A the active principle isolated from the plant Bacopa monniera against oxidative damage induced by morphine in rat brain. Morphine intoxicated rats received 10-160 mg/kg b.w. of morphine hydrochloride intraperitoneally for 21 days. Bacoside-A pretreated rats were administered with bacoside-A (10 mg/kg b.w/day) orally, 2 h before the injection of morphine for 21 days. Pretreatment with bacoside-A has shown to possess a significant protective role against morphine induced brain oxidative damage in the antioxidant status (total reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase and lipid peroxidation) and membrane bound ATP-ases(Na(+)/K(+)ATPase. Ca(2+) and Mg(2+) ATPases) activities in rat. The results of the present study indicate that bacoside-A protects the brain from oxidative stress induced by morphine.

  6. Creatine affords protection against glutamate-induced nitrosative and oxidative stress.

    PubMed

    Cunha, Mauricio P; Lieberknecht, Vicente; Ramos-Hryb, Ana Belén; Olescowicz, Gislaine; Ludka, Fabiana K; Tasca, Carla I; Gabilan, Nelson H; Rodrigues, Ana Lúcia S

    2016-05-01

    Creatine has been reported to exert beneficial effects in several neurodegenerative diseases in which glutamatergic excitotoxicity and oxidative stress play an etiological role. The purpose of this study was to investigate the protective effects of creatine, as compared to the N-Methyl-d-Aspartate (NMDA) receptor antagonist dizocilpine (MK-801), against glutamate or hydrogen peroxide (H2O2)-induced injury in human neuroblastoma SH-SY5Y cells. Exposure of cells to glutamate (60-80 mM) or H2O2 (200-300 μM) for 24 h decreased cellular viability and increased dichlorofluorescein (DCF) fluorescence (indicative of increased reactive oxygen species, ROS) and nitric oxide (NO) production (assessed by mono-nitrogen oxides, NOx, levels). Creatine (1-10 mM) or MK-801 (0.1-10 μM) reduced glutamate- and H2O2-induced toxicity. The protective effect of creatine against glutamate-induced toxicity involves its antioxidant effect, since creatine, similar to MK-801, prevented the increase on DCF fluorescence induced by glutamate or H2O2. Furthermore, creatine or MK-801 blocked glutamate- and H2O2-induced increases in NOx levels. In another set of experiments, the repeated, but not acute, administration of creatine (300 mg/kg, po) in mice prevented the decreases on cellular viability and mitochondrial membrane potential (assessed by tetramethylrhodamine ethyl ester, TMRE, probe) of hippocampal slices incubated with glutamate (10 mM). Creatine concentration-dependent decreased the amount of nitrite formed in the reaction of oxygen with NO produced from sodium nitroprusside solution, suggesting that its protective effect against glutamate or H2O2-induced toxicity might be due to its scavenger activity. Overall, the results suggest that creatine may be useful as adjuvant therapy for neurodegenerative disease treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Pre-Treatment with Amifostine Protects against Cyclophosphamide-Induced Disruption of Taste in Mice

    PubMed Central

    Mukherjee, Nabanita; Carroll, Brittany L.; Spees, Jeffrey L.; Delay, Eugene R.

    2013-01-01

    Cyclophosphamide (CYP), a commonly prescribed chemotherapy drug, has multiple adverse side effects including alteration of taste. The effects on taste are a cause of concern for patients as changes in taste are often associated with loss of appetite, malnutrition, poor recovery and reduced quality of life. Amifostine is a cytoprotective agent that was previously shown to be effective in preventing chemotherapy-induced mucositis and nephrotoxicity. Here we determined its ability to protect against chemotherapy-induced damage to taste buds using a mouse model of CYP injury. We conducted detection threshold tests to measure changes in sucrose taste sensitivity and found that administration of amifostine 30 mins prior to CYP injection protected against CYP-induced loss in taste sensitivity. Morphological studies showed that pre-treatment with amifostine prevented CYP-induced reduction in the number of fungiform taste papillae and increased the number of taste buds. Immunohistochemical assays for markers of the cell cycle showed that amifostine administration prevented CYP-induced inhibition of cell proliferation and also protected against loss of mature taste cells after CYP exposure. Our results indicate that treatment of cancer patients with amifostine prior to chemotherapy may improve their sensitivity for taste stimuli and protect the taste system from the detrimental effects of chemotherapy. PMID:23626702

  8. Congo red agar, a differential medium for Aeromonas salmonicida, detects the presence of the cell surface protein array involved in virulence.

    PubMed Central

    Ishiguro, E E; Ainsworth, T; Trust, T J; Kay, W W

    1985-01-01

    Strains of the fish pathogen Aeromonas salmonicida which possess the cell surface protein array known as the A-layer (A+) involved in virulence formed deep red colonies on tryptic soy agar containing 30 micrograms of Congo red per ml. These were readily distinguished from colorless or light orange colonies of avirulent mutants lacking A-layer (A-). The utility of Congo red agar for quantifying A+ and A- cells in the routine assessment of culture virulence was demonstrated. Intact A+ cells adsorbed Congo red, whereas A- mutants did not bind Congo red unless first permeabilized with EDTA. The dye-binding component of A+ cells was shown to be the 50,000-Mr A-protein component of the surface array. Purified A-protein avidly bound Congo red at a dye-to-protein molar ratio of about 30 by a nonspecific hydrophobic mechanism enhanced by high salt concentrations. Neither A+ nor A- cells adsorbed to Congo red-Sepharose columns at low salt concentrations. On the other hand, A+ (but not A-) cells were avidly bound at high salt concentrations. Images PMID:3934141

  9. Ischemia/reperfusion-induced injury of forebrain mitochondria and protection by ascorbate.

    PubMed

    Sciamanna, M A; Lee, C P

    1993-09-01

    Complete, reversible forebrain ischemia was induced with a seven-vessel occlusion rat model. Previous studies of ischemic (M. A. Sciamanna, J. Zinkel, A. Y. Fabi, and C. P. Lee, 1992, Biochim. Biophys. Acta 1134, 223-232) rat brain mitochondria (RBM) showed that ischemia of 30 min caused an approximately 60% decrease in State 3 respiratory rates with both succinate and NAD-linked substrates and also in energy-linked Ca2+ transport. No significant change was seen in the State 4 rates. The inhibition of respiration could be prevented by EGTA or ruthenium red. In this paper it is shown that reperfusion (5 h) following ischemia (30 min) further impaired RBM respiratory activities (succinate and NAD-linked substrates). The presence of EGTA or ruthenium red in the assay medium did not protect against ischemia/reperfusion-induced injury. The effects of ascorbate, an oxygen radical scavenger, were studied. RBM isolated from ascorbate-treated animals (0.8 mg ascorbate/kg body weight) after ischemia (30 min) alone showed only a slight increase in State 3 (approximately 25%) and a decrease in State 4 (approximately 20%) activities with succinate, when compared to untreated 30-min ischemic animals, whereas, with glutamate+malate little or no effect was seen. The respiratory activities of RBM from ascorbate-treated, ischemic/reperfused (30 min/5 h) rats were restored to approximately 65% of controls levels. Ascorbate protection was dose-dependent with maximum protection at 0.8 mg ascorbate/kg body weight of rat. The k of succinate oxidase-supported Ca2+ uptake also returned to 62% of control values. Protection by ascorbate was most effective when administered prior to the onset of ischemia and provided partial protection when administered after the onset of reperfusion. These results suggest that ischemia-induced injury is primarily mediated by disruption of cellular Ca2+ homeostasis, and reperfusion-induced injury by peroxidative events.

  10. Ovariectomized Highly Fit Rats Are Protected against Diet-Induced Insulin Resistance.

    PubMed

    Park, Young-Min; Kanaley, Jill A; Zidon, Terese M; Welly, Rebecca J; Scroggins, Rebecca J; Britton, Steven L; Koch, Lauren G; Thyfault, John P; Booth, Frank W; Padilla, Jaume; Vieira-Potter, Victoria J

    2016-07-01

    In the absence of exercise training, rats selectively bred for high intrinsic aerobic capacity (high-capacity running (HCR)) are protected against ovariectomy (OVX)-induced insulin resistance (IR) and obesity compared with those bred for low intrinsic aerobic capacity (low-capacity running (LCR)). This study determined whether OVX HCR rats remain protected with exposure to high-fat diet (HFD) compared with OVX LCR rats. Female HCR and LCR rats (n = 36; age, 27-33 wk) underwent OVX and were randomized to a standard chow diet (NC, 5% kcal fat) or HFD (45% kcal fat) ad libitum for 11 wk. Total energy expenditure, resting energy expenditure, spontaneous physical activity (SPA), and glucose tolerance were assessed midway, whereas fasting circulating metabolic markers, body composition, adipose tissue distribution, and skeletal muscle adenosine monophosphate-activated protein kinase (AMPK), and mitochondrial markers were assessed at sacrifice. Both HCR and LCR rats experienced HFD-induced increases in total and visceral adiposity after OVX. Despite similar gains in adiposity, HCR rats were protected from HFD-induced IR and reduced total energy expenditure observed in LCR rats (P < 0.05). This metabolic protection was likely attributed to a compensatory increase in SPA and associated preservation of skeletal muscle AMPK activity in HCR; however, HFD significantly reduced SPA and AMPK activity in LCR (P < 0.05). In both lines, HFD reduced citrate synthase activity, gene expression of markers of mitochondrial biogenesis (tFAM, NRF1, and PGC-1α), and protein levels of mitochondrial oxidative phosphorylation complexes I, II, IV, and V in skeletal muscle (all P < 0.05). After OVX, HCR and LCR rats differentially respond to HFD such that HCR increase while LCR decrease SPA. This "physical activity compensation" likely confers protection from HFD-induced IR and reduced energy expenditure in HCR rats.

  11. Peptide-Induced Antiviral Protection by Cytotoxic T Cells

    NASA Astrophysics Data System (ADS)

    Schulz, Manfred; Zinkernagel, Rolf M.; Hengartner, Hans

    1991-02-01

    A specific antiviral cytotoxic immune response in vivo could be induced by the subcutaneous injection of the T-cell epitope of the lymphocytic choriomeningitis virus (LCMV) nucleoprotein as an unmodified free synthetic peptide (Arg-Pro-Gln-Ala-Ser-Gly-Val-Tyr-Met-Gly-Asn-Leu-Thr-Ala-Gln) emulsified in incomplete Freund's adjuvant. This immunization rendered mice into a LCMV-specific protective state as shown by the inhibition of LCMV replication in spleens of such mice. The protection level of these mice correlated with the ability to respond to the peptide challenge by CD8^+ virus-specific cytotoxic T cells. This is a direct demonstration that peptide vaccines can be antivirally protective in vivo, thus encouraging further search for appropriate mixtures of stable peptides that may be used as T-cell vaccines.

  12. Sulforaphane protects Microcystin-LR-induced toxicity through activation of the Nrf2-mediated defensive response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan Nanqin; Mi Lixin; Sun Xiaoyun

    2010-09-01

    Microcystins (MCs), a cyclic heptapeptide hepatotoxins, are mainly produced by the bloom-forming cyanobacerium Microcystis, which has become an environmental hazard worldwide. Long term consumption of MC-contaminated water may induce liver damage, liver cancer, and even human death. Therefore, in addition to removal of MCs in drinking water, novel strategies that prevent health damages are urgently needed. Sulforaphane (SFN), a natural-occurring isothiocyanate from cruciferous vegetables, has been reported to reduce and eliminate toxicities from xenobiotics and carcinogens. The purpose of the present study was to provide mechanistic insights into the SFN-induced antioxidative defense system against MC-LR-induced cytotoxicity. We performed cell viabilitymore » assays, including MTS assay, colony formation assay and apoptotic cell sorting, to study MC-LR-induced cellular damage and the protective effects by SFN. The results showed that SFN protected MC-LR-induced damages at a nontoxic and physiological relevant dose in HepG2, BRL-3A and NIH 3 T3 cells. The protection was Nrf2-mediated as evident by transactivation of Nrf2 and activation of its downstream genes, including NQO1 and HO-1, and elevated intracellular GSH level. Results of our studies indicate that pretreatment of cells with 10 {mu}M SFN for 12 h significantly protected cells from MC-LR-induced damage. SFN-induced protective response was mediated through Nrf2 pathway.« less

  13. Protective Effect of Bacoside-A against Morphine-Induced Oxidative Stress in Rats

    PubMed Central

    Sumathi, T.; Nathiya, V. C.; Sakthikumar, M.

    2011-01-01

    In the present study, we investigated the protective effect of bacoside-A the active principle isolated from the plant Bacopa monniera against oxidative damage induced by morphine in rat brain. Morphine intoxicated rats received 10-160 mg/kg b.w. of morphine hydrochloride intraperitoneally for 21 days. Bacoside-A pretreated rats were administered with bacoside-A (10 mg/kg b.w/day) orally, 2 h before the injection of morphine for 21 days. Pretreatment with bacoside-A has shown to possess a significant protective role against morphine induced brain oxidative damage in the antioxidant status (total reduced glutathione, superoxide dismutase, catalase, glutathione peroxidase and lipid peroxidation) and membrane bound ATP-ases(Na+/K+ATPase. Ca2+ and Mg2+ ATPases) activities in rat. The results of the present study indicate that bacoside-A protects the brain from oxidative stress induced by morphine. PMID:22707825

  14. Creatine protects against mitochondrial dysfunction associated with HIV-1 Tat-induced neuronal injury

    PubMed Central

    Stevens, Patrick R.; Gawryluk, Jeremy W.; Hui, Liang; Chen, Xuesong; Geiger, Jonathan D.

    2015-01-01

    HIV-1 infected individuals are living longer but experiencing a prevalence rate of over 50% for HIV-1 associated neurocognitive disorders (HAND) for which no effective treatment is available. Viral and cellular factors secreted by HIV-1 infected cells leads to neuronal injury and HIV-1 Tat continues to be implicated in the pathogenesis of HAND. Here we tested the hypothesis that creatine protected against HIV-1 Tat-induced neuronal injury by preventing mitochondrial bioenergetic crisis and/or redox catastrophe. Creatine blocked HIV-1 Tat1-72-induced increases in neuron cell death and synaptic area loss. Creatine protected against HIV-1 Tat-induced decreases in ATP. Creatine and creatine plus HIV-1 Tat increased cellular levels of creatine, and creatine plus HIV-1 Tat further decreased ratios of phosphocreatine to creatine observed with creatine or HIV-1 Tat treatments alone. Additionally, creatine protected against HIV-1 Tat-induced mitochondrial hypopolarization and HIV-1 Tat-induced mitochondrial permeability transition pore opening. Thus, creatine may be a useful adjunctive therapy against HAND. PMID:25613139

  15. Creatine protects against mitochondrial dysfunction associated with HIV-1 Tat-induced neuronal injury.

    PubMed

    Stevens, Patrick R; Gawryluk, Jeremy W; Hui, Liang; Chen, Xuesong; Geiger, Jonathan D

    2014-01-01

    HIV-1 infected individuals live longer but experience a prevalence rate of over 50% for HIV-1 associated neurocognitive disorders (HAND) for which no effective treatment is available. Viral and cellular factors secreted by HIV-1 infected cells lead to neuronal injury and HIV-1 Tat continues to be implicated in the pathogenesis of HAND. Here we tested the hypothesis that creatine protected against HIV-1 Tat-induced neuronal injury by preventing mitochondrial bioenergetic crisis and/or redox catastrophe. Creatine blocked HIV-1 Tat(1-72)-induced increases in neuron cell death and synaptic area loss. Creatine protected against HIV-1 Tat-induced decreases in ATP. Creatine and creatine plus HIV-1 Tat increased cellular levels of creatine, and creatine plus HIV-1 Tat further decreased ratios of phosphocreatine to creatine observed with creatine or HIV-1 Tat treatments alone. Additionally, creatine protected against HIV-1 Tat-induced mitochondrial hypopolarization and HIV-1 Tat-induced mitochondrial permeability transition pore opening. Thus, creatine may be a useful adjunctive therapy against HAND.

  16. FGF21 is induced in cisplatin nephrotoxicity to protect against kidney tubular cell injury.

    PubMed

    Li, Fanghua; Liu, Zhiwen; Tang, Chengyuan; Cai, Juan; Dong, Zheng

    2018-01-22

    Cisplatin, a widely used cancer therapy drug, induces nephrotoxicity or acute kidney injury (AKI), but the underlying mechanism remains unclear, and renal protective approaches are not available. Fibroblast growth factor (FGF)21 is an endocrine factor that regulates glucose uptake, metabolism, and energy expenditure. However, recent work has also implicated FGF21 in cellular stress response under pathogenic conditions. The role and regulation of FGF21 in AKI are unclear. Here, we show that FGF21 was dramatically induced during cisplatin treatment of renal tubular cells in vitro and mouse kidneys in vivo. The inductive response was suppressed by pifithrin (a pharmacological inhibitor of P53), suggesting a role of P53 in FGF21 induction. In cultured renal tubular cells, knockdown of FGF21 aggravated cisplatin-induced apoptosis, whereas supplementation of recombinant FGF21 was protective. Consistently, recombinant FGF21 alleviated cisplatin-induced kidney dysfunction, tissue damage, and tubular apoptosis in mice. Mechanistically, FGF21 suppressed P53 induction and activation during cisplatin treatment. Together, these results indicate that FGF21 is induced during cisplatin nephrotoxicity to protect renal tubules, and recombinant FGF21 may have therapeutic potential.-Li, F., Liu, Z., Tang, C., Cai, J., Dong, Z. FGF21 is induced in cisplatin nephrotoxicity to protect against kidney tubular cell injury.

  17. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy.

    PubMed

    Blakely, Collin M; Stoddard, Alexander J; Belka, George K; Dugan, Katherine D; Notarfrancesco, Kathleen L; Moody, Susan E; D'Cruz, Celina M; Chodosh, Lewis A

    2006-06-15

    Women who have their first child early in life have a substantially lower lifetime risk of breast cancer. The mechanism for this is unknown. Similar to humans, rats exhibit parity-induced protection against mammary tumorigenesis. To explore the basis for this phenomenon, we identified persistent pregnancy-induced changes in mammary gene expression that are tightly associated with protection against tumorigenesis in multiple inbred rat strains. Four inbred rat strains that exhibit marked differences in their intrinsic susceptibilities to carcinogen-induced mammary tumorigenesis were each shown to display significant protection against methylnitrosourea-induced mammary tumorigenesis following treatment with pregnancy levels of estradiol and progesterone. Microarray expression profiling of parous and nulliparous mammary tissue from these four strains yielded a common 70-gene signature. Examination of the genes constituting this signature implicated alterations in transforming growth factor-beta signaling, the extracellular matrix, amphiregulin expression, and the growth hormone/insulin-like growth factor I axis in pregnancy-induced alterations in breast cancer risk. Notably, related molecular changes have been associated with decreased mammographic density, which itself is strongly associated with decreased breast cancer risk. Our findings show that hormone-induced protection against mammary tumorigenesis is widely conserved among divergent rat strains and define a gene expression signature that is tightly correlated with reduced mammary tumor susceptibility as a consequence of a normal developmental event. Given the conservation of this signature, these pathways may contribute to pregnancy-induced protection against breast cancer.

  18. Pharmacological Protection From Radiation {+-} Cisplatin-Induced Oral Mucositis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cotrim, Ana P.; Yoshikawa, Masanobu; Department of Clinical Pharmacology, Tokai University School of Medicine, Kanagawa

    Purpose: To evaluate if two pharmacological agents, Tempol and D-methionine (D-met), are able to prevent oral mucositis in mice after exposure to ionizing radiation {+-} cisplatin. Methods and Materials: Female C3H mice, {approx}8 weeks old, were irradiated with five fractionated doses {+-} cisplatin to induce oral mucositis (lingual ulcers). Just before irradiation and chemotherapy, mice were treated, either alone or in combination, with different doses of Tempol (by intraperitoneal [ip] injection or topically, as an oral gel) and D-met (by gavage). Thereafter, mice were sacrificed and tongues were harvested and stained with a solution of Toluidine Blue. Ulcer size andmore » tongue epithelial thickness were measured. Results: Significant lingual ulcers resulted from 5 Multiplication-Sign 8 Gy radiation fractions, which were enhanced with cisplatin treatment. D-met provided stereospecific partial protection from lingual ulceration after radiation. Tempol, via both routes of administration, provided nearly complete protection from lingual ulceration. D-met plus a suboptimal ip dose of Tempol also provided complete protection. Conclusions: Two fairly simple pharmacological treatments were able to markedly reduce chemoradiation-induced oral mucositis in mice. This proof of concept study suggests that Tempol, alone or in combination with D-met, may be a useful and convenient way to prevent the severe oral mucositis that results from head-and-neck cancer therapy.« less

  19. Bile-acid-induced cell injury and protection

    PubMed Central

    Perez, Maria J; Briz, Oscar

    2009-01-01

    Several studies have characterized the cellular and molecular mechanisms of hepatocyte injury caused by the retention of hydrophobic bile acids (BAs) in cholestatic diseases. BAs may disrupt cell membranes through their detergent action on lipid components and can promote the generation of reactive oxygen species that, in turn, oxidatively modify lipids, proteins, and nucleic acids, and eventually cause hepatocyte necrosis and apoptosis. Several pathways are involved in triggering hepatocyte apoptosis. Toxic BAs can activate hepatocyte death receptors directly and induce oxidative damage, thereby causing mitochondrial dysfunction, and induce endoplasmic reticulum stress. When these compounds are taken up and accumulate inside biliary cells, they can also cause apoptosis. Regarding extrahepatic tissues, the accumulation of BAs in the systemic circulation may contribute to endothelial injury in the kidney and lungs. In gastrointestinal cells, BAs may behave as cancer promoters through an indirect mechanism involving oxidative stress and DNA damage, as well as acting as selection agents for apoptosis-resistant cells. The accumulation of BAs may have also deleterious effects on placental and fetal cells. However, other BAs, such as ursodeoxycholic acid, have been shown to modulate BA-induced injury in hepatocytes. The major beneficial effects of treatment with ursodeoxycholic acid are protection against cytotoxicity due to more toxic BAs; the stimulation of hepatobiliary secretion; antioxidant activity, due in part to an enhancement in glutathione levels; and the inhibition of liver cell apoptosis. Other natural BAs or their derivatives, such as cholyl-N-methylglycine or cholylsarcosine, have also aroused pharmacological interest owing to their protective properties. PMID:19360911

  20. Levetiracetam protects against kainic acid-induced toxicity.

    PubMed

    Marini, Herbert; Costa, Cinzia; Passaniti, Maria; Esposito, Maria; Campo, Giuseppe M; Ientile, Riccardo; Adamo, Elena Bianca; Marini, Rolando; Calabresi, Paolo; Altavilla, Domenica; Minutoli, Letteria; Pisani, Francesco; Squadrito, Francesco

    2004-01-23

    We investigated the Levetiracetam (LVT) ability to protect the brain against kainic acid (KA) induced neurotoxicity. Brain injury was induced by intraperitoneal administration of KA (10 mg/kg). Sham brain injury rats were used as controls. Animals were randomized to receive either LVT (50 mg/kg) or its vehicle (1 ml/kg) 30 min. before KA administration. Animals were sacrificed 6 hours after KA injection to measure brain malonildialdehyde (MDA), glutathione levels (GSH) and the mRNA for interleukin-1beta (IL-1beta) in the cortex and in the diencephalon. Behavioral changes were also monitored. Intraperitoneal administration of LVT decreased significantly MDA in the cortex (KA + vehicle = 0.25 +/- 0.03 nmol/mg protein; KA + LVT = 0.13 +/- 0.01 nmol/mg protein; P < 0.005), and in the diencephalons (KA + vehicle = 1,01 +/- 0.2 nmol/mg protein; KA + LVT = 0,33 +/- 0,08 nmol/mg protein; P < 0.005), prevented the brain loss of GSH in both cortex (KA + vehicle = 5 +/- 1 micromol/g protein; KA + LVT = 15 +/- 2 micromol/g protein; P < 0.005) and diencephalons (KA + vehicle = 9 +/- 0.8 micromol/g protein; KA + LVT = 13 +/- 0.3 micromol/g protein; P < 0.05), reduced brain IL-1beta mRNA and markedly controlled seizures. Histological analysis showed a reduction of cell damage in LVT treated samples. The present data indicate that LVT displays neuro-protective effects against KA induced brain toxicity and suggest that these effects are mediated, at least in part, by inhibition of lipid peroxidation.

  1. Hypoxia-inducible factor prolyl hydroxylase inhibitor roxadustat (FG-4592) protects against cisplatin-induced acute kidney injury.

    PubMed

    Yang, Yunwen; Yu, Xiaowen; Zhang, Yue; Ding, Guixia; Zhu, Chunhua; Huang, Songming; Jia, Zhanjun; Zhang, Aihua

    2018-04-16

    Renal hypoxia occurs in acute kidney injury (AKI) of various etiologies. Activation of hypoxia-inducible transcription factor (HIF) has been identified as an important mechanism of cellular adaptation to low oxygen. Preconditional HIF activation protects against AKI, suggesting a new approach in AKI treatment. HIF is degraded under normoxic conditions mediated by oxygen-dependent hydroxylation of specific prolyl residues of the regulative α-subunits by HIF prolyl hydroxylases (PHD). FG-4592 is a novel, orally active, small-molecule HIF PHD inhibitor for the treatment of anemia in patients with chronic kidney disease (CKD). The current study aimed to evaluate the effect of FG-4592 (Roxadustat) on cis -diamminedichloroplatinum (cisplatin)-induced kidney injury. In mice, pretreatment with FG-4592 markedly ameliorated cisplatin-induced kidney injury as shown by the improved renal function (blood urea nitrogen (BUN), serum creatinine (Scr), and cystatin C) and kidney morphology (periodic acid-Schiff (PAS) staining) in line with a robust blockade of renal tubular injury markers of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Meanwhile, the renal apoptosis and inflammation induced by cisplatin were also strikingly attenuated in FG-4592-treated mice. Along with the protective effects shown above, FG-4592 pretreatment strongly enhanced HIF-1α in tubular cells, as well as the expressions of HIF target genes. FG-4592 alone did not affect the renal function and morphology in mice. In vitro , FG-4592 treatment significantly up-regulated HIF-1α and protected the tubular cells against cisplatin-induced apoptosis. In summary, FG-4592 treatment remarkably ameliorated the cisplatin-induced kidney injury possibly through the stabilization of HIF. Thus, besides the role in treating CKD anemia, the clinical use of FG-4592 also could be extended to AKI. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical

  2. Lycium barbarum polysaccharide protects human keratinocytes against UVB-induced photo-damage.

    PubMed

    Li, Huaping; Li, Zhenjie; Peng, Liqian; Jiang, Na; Liu, Qing; Zhang, Erting; Liang, Bihua; Li, Runxiang; Zhu, Huilan

    2017-02-01

    Ultraviolet B (UVB) irradiation plays a key role in skin damage, which induces oxidative and inflammatory damages, thereby causing photoaging or photocarcinogenesis. Lycium barbarum polysaccharide (LBP), the most biologically active fraction of wolfberry, possesses significant antioxidative and anti-inflammatory effects on multiple tissues. In the present study, the photoprotective effects and potential underlying molecular mechanisms of LBP against UVB-induced photo-damage were investigated in immortalized human keratinocytes (HaCaT cells). The data indicated that pretreatment with LBP significantly attenuated UVB-induced decrease in cell viability, increase in ROS production and DNA damage. LBP also significantly suppressed UVB-induced p38 MAPK activation, and subsequently reversed caspase-3 activation and MMP-9 expression. Notably, LBP was found to induce Nrf2 nuclear translocation and increase the expression of Nrf2-dependent ARE target genes. Furthermore, the protective effects of LBP were abolished by siRNA-mediated Nrf2 silencing. These results showed that the antioxidant LBP could partially protect against UVB irradiation-induced photo-damage through activation of Nrf2/ARE pathway, thereby scavenging ROS and reducing DNA damage, and subsequently suppressing UVB-induced p38 MAP pathway. Thus, LBP can be potentially used for skincare against oxidative damage from environmental insults.

  3. Inducing a visceral organ to protect a peripheral capillary bed: stabilizing hepatic HIF-1α prevents oxygen-induced retinopathy.

    PubMed

    Hoppe, George; Lee, Tamara J; Yoon, Suzy; Yu, Minzhong; Peachey, Neal S; Rayborn, Mary; Zutel, M Julieta; Trichonas, George; Au, John; Sears, Jonathan E

    2014-06-01

    Activation of hypoxia-inducible factor (HIF) can prevent oxygen-induced retinopathy in rodents. Here we demonstrate that dimethyloxaloylglycine (DMOG)-induced retinovascular protection is dependent on hepatic HIF-1 because mice deficient in liver-specific HIF-1α experience hyperoxia-induced damage even with DMOG treatment, whereas DMOG-treated wild-type mice have 50% less avascular retina (P < 0.0001). Hepatic HIF stabilization protects retinal function because DMOG normalizes the b-wave on electroretinography in wild-type mice. The localization of DMOG action to the liver is further supported by evidence that i) mRNA and protein erythropoietin levels within liver and serum increased in DMOG-treated wild-type animals but are reduced by 60% in liver-specific HIF-1α knockout mice treated with DMOG, ii) triple-positive (Sca1/cKit/VEGFR2), bone-marrow-derived endothelial precursor cells increased twofold in DMOG-treated wild-type mice (P < 0.001) but are unchanged in hepatic HIF-1α knockout mice in response to DMOG, and iii) hepatic luminescence in the luciferase oxygen-dependent degradation domain mouse was induced by subcutaneous and intraperitoneal DMOG. These findings uncover a novel endocrine mechanism for retinovascular protection. Activating HIF in visceral organs such as the liver may be a simple strategy to protect capillary beds in the retina and in other peripheral tissues. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Obeticholic acid protects mice against lipopolysaccharide-induced liver injury and inflammation.

    PubMed

    Xiong, Xi; Ren, Yuqian; Cui, Yun; Li, Rui; Wang, Chunxia; Zhang, Yucai

    2017-12-01

    Cholestasis, as a main manifestation, induces liver injury during sepsis. The farnesoid X receptor (FXR) plays an important role in regulating bile acid homeostasis. Whether FXR activation by its agonist obeticholic acid (OCA) is contributed to improve sepsis-induced liver injury remains unknown. The aim of the present study was to investigate the effect of OCA on lipopolysaccharide (LPS)-induced acute liver injury in mice. 8-week old male C57BL/6J mice were randomly divided into control group, LPS group, oral OCA group and LPS plus oral OCA (LPS + OCA) group. The serum and livers were collected for further analysis. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and total bilirubin (TBIL) were measured at indicated time after LPS administration. Liver sections were stained with hematoxylin & eosin (H&E). Orally OCA pretreatment stimulated the expression of FXR and BSEP in livers and protected mice from LPS-induced hepatocyte apoptosis and inflammatory infiltration. Consistently, LPS-induced higher serum levels of ALT, AST, TBA and TBIL were significantly reversed by OCA administration. Meanwhile, the mRNA levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α) and IL-6 were decreased in livers of mice in LPS + OCA group compared with LPS group. Further investigation indicated that the higher expression of ATF4 and LC3II/I were associated with the protective effect of OCA on LPS-induced liver injury. Orally OCA pretreatment protects mice from LPS-induced liver injury possibly contributed by improved bile acid homeostasis, decreased inflammatory factors and ATF4-mediated autophagy activity in hepatocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Exercise-induced circulating extracellular vesicles protect against cardiac ischemia-reperfusion injury.

    PubMed

    Bei, Yihua; Xu, Tianzhao; Lv, Dongchao; Yu, Pujiao; Xu, Jiahong; Che, Lin; Das, Avash; Tigges, John; Toxavidis, Vassilios; Ghiran, Ionita; Shah, Ravi; Li, Yongqin; Zhang, Yuhui; Das, Saumya; Xiao, Junjie

    2017-07-01

    Extracellular vesicles (EVs) serve an important function as mediators of intercellular communication. Exercise is protective for the heart, although the signaling mechanisms that mediate this cardioprotection have not been fully elucidated. Here using nano-flow cytometry, we found a rapid increase in plasma EVs in human subjects undergoing exercise stress testing. We subsequently identified that serum EVs were increased by ~1.85-fold in mice after 3-week swimming. Intramyocardial injection of equivalent quantities of EVs from exercised mice and non-exercised controls provided similar protective effects against acute ischemia/reperfusion (I/R) injury in mice. However, injection of exercise-induced EVs in a quantity equivalent to the increase seen with exercise (1.85 swim group) significantly enhanced the protective effect. Similarly, treatment with exercise-induced increased EVs provided additional anti-apoptotic effect in H 2 O 2 -treated H9C2 cardiomyocytes mediated by the activation of ERK1/2 and HSP27 signaling. Finally, by treating H9C2 cells with insulin-like growth factor-1 to mimic exercise stimulus in vitro, we found an increased release of EVs from cardiomyocytes associated with ALIX and RAB35 activation. Collectively, our results show that exercise-induced increase in circulating EVs enhances the protective effects of endogenous EVs against cardiac I/R injury. Exercise-derived EVs might serve as a potent therapy for myocardial injury in the future.

  6. RAGE deficiency attenuates the protective effect of Lidocaine against sepsis-induced acute lung injury.

    PubMed

    Zhang, Zhuo; Zhou, Jie; Liao, Changli; Li, Xiaobing; Liu, Minghua; Song, Daqiang; Jiang, Xian

    2017-04-01

    Lidocaine (Lido) is reported to suppress inflammatory responses and exhibit a therapeutic effect in models of cecal ligation and puncture (CLP)-induced acute lung injury (ALI). The receptor for advanced glycation end product (RAGE) exerts pro-inflammatory effects by enhancing pro-inflammatory cytokine production. However, the precise mechanism by which Lido confers protection against ALI is not clear. ALI was induced in RAGE WT and RAGE knockout (KO) rats using cecal ligation and puncture (CLP) operations for 24 h. The results showed that Lido significantly inhibited CLP-induced lung inflammation and histopathological lung injury. Furthermore, Lido significantly reduced CLP-induced upregulation of HMGB1 and RAGE expression and activation of the NF-κB and MAPK signaling pathways. With the use of RAGE KO rats, we demonstrate here that RAGE deficiency attenuates the protective effect of Lido against CLP-induced lung inflammatory cell infiltration and histopathological lung injury. These results suggest that RAGE deficiency attenuates the protective effect of Lido against CLP-induced ALI by attenuating the pro-inflammatory cytokines production.

  7. Ginkgolide B preconditioning protects neurons against ischaemia-induced apoptosis.

    PubMed

    Wu, Xiaomei; Qian, Zhongming; Ke, Ya; Du, Fang; Zhu, Li

    2009-01-01

    Ischaemic preconditioning (IP) has been reported to protect the brain against subsequent lethal ischaemia, but it has not been used clinically to prevent ischaemic injury because of safety concerns. The aim of the present study was to see whether Ginkgolide B (GB) is capable of preconditioning as IP to protect neurons against ischaemic injury; if so, which mechanism is involved. Cultured mouse cortical neurons at day 8 were pre-treated with GB (120 micromol/l) for 24 hrs or exposed to short-term ischaemia (1 hr) followed by 24-hr normal culture to induce IP before being treated with severe ischaemia (5 hrs). GB and IP significantly increased cell viability, expression of hypoxia-inducible factor-1 alpha (HIF-1alpha), erythropoietin (EPO), phosphorylated Bad at serine 136 (136p-Bad) and phosphorylated glycogen synthase kinase- 3beta at serine 9 (p-GSK-3beta), and decreased the percentage of apoptotic cells and the level of active caspase-3 in severely ischaemic neurons. Moreover, LY294002 that is a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) significantly reduced the enhanced expression of HIF-1alpha, EPO and 136p-Bad induced by GB and IP. These results suggest that GB, like IP in neurons, is capable of preconditioning against ischaemia-induced apoptosis, the mechanism of which may involve the PI3K signalling pathway.

  8. Ginkgolide B preconditioning protects neurons against ischaemia-induced apoptosis

    PubMed Central

    Wu, Xiaomei; Qian, Zhongming; Ke, Ya; Du, Fang; Zhu, Li

    2009-01-01

    Ischaemic preconditioning (IP) has been reported to protect the brain against subsequent lethal ischaemia, but it has not been used clinically to prevent ischaemic injury because of safety concerns. The aim of the present study was to see whether Ginkgolide B (GB) is capable of preconditioning as IP to protect neurons against ischaemic injury; if so, which mechanism is involved. Cultured mouse cortical neurons at day 8 were pre-treated with GB (120 μmol/l) for 24 hrs or exposed to short-term ischaemia (1 hr) followed by 24-hr normal culture to induce IP before being treated with severe ischaemia (5 hrs). GB and IP significantly increased cell viability, expression of hypoxia-inducible factor-1 alpha (HIF-1α), erythropoietin (EPO), phosphorylated Bad at serine 136 (136p-Bad) and phosphorylated glycogen synthase kinase- 3β at serine 9 (p-GSK-3β), and decreased the percentage of apoptotic cells and the level of active caspase-3 in severely ischaemic neurons. Moreover, LY294002 that is a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) significantly reduced the enhanced expression of HIF-1α, EPO and 136p-Bad induced by GB and IP. These results suggest that GB, like IP in neurons, is capable of preconditioning against ischaemia-induced apoptosis, the mechanism of which may involve the PI3K signalling pathway. PMID:19602048

  9. Sepsis-induced myocardial dysfunction and myocardial protection from ischemia/reperfusion injury.

    PubMed

    McDonough, Kathleen H; Virag, Jitka Ismail

    2006-01-01

    Sepsis, bacteremia and inflammation cause myocardial depression. The mechanism of the dysfunction is not clearly established partly because dysfunction can be elicited by many different mechanisms which can all manifest in disruption of myocardial mechanical function. In addition the models of sepsis and bacteremia and inflammation may vary drastically in the sequence of the coordinated immune response to the inflammatory or septic stimulus. Patterns of cytokine expression can vary as can other responses of the immune system. Patterns of neurohumoral activation in response to the stress of sepsis or bacteremia or inflammation can also vary in both magnitude of response and temporal sequence of response. Stress induced activation of the sympathetic nervous system and humoral responses to stress have a wide range of intensity that can be elicited. The fairly uniform response of the myocardium indicating cardiac dysfunction is surprisingly constant. Systolic performance, as measured by stroke volume or cardiac output and pressure work as estimated by ventricular pressure, are impaired when myocardial contraction is compromised. At times, diastolic function, assessed by ventricular relaxation and filling, is impaired. In addition to the dysfunction that occurs, there is a longer term response of the myocardium to sepsis, and this response is similar to that which is elicited in the heart by multiple brief ischemia/reperfusion episodes and by numerous pharmacological agents as well as heat stress and modified forms of lipopolysaccharide. The myocardium develops protection after an initial stress such that during a second stress, the myocardium does not exhibit as much damage as does a non-protected heart. Many agents can induce this protection which has been termed preconditioning. Both early preconditioning (protection that is measurable min to hours after the initial stimulus) and late preconditioning (protection that is measurable hours to days after the initial

  10. Doxycycline protects against ROS-induced mitochondrial fragmentation and ISO-induced heart failure

    PubMed Central

    Riba, Adam; Deres, Laszlo; Eros, Krisztian; Szabo, Aliz; Magyar, Klara; Sumegi, Balazs; Toth, Kalman; Halmosi, Robert; Szabados, Eszter

    2017-01-01

    In addition to their anti-bacterial action, tetracyclines also have complex biological effects, including the modification of mitochondrial protein synthesis, metabolism and gene-expression. Long-term clinical studies have been performed using tetracyclines, without significant side effects. Previous studies demonstrated that doxycycline (DOX), a major tetracyclin antibiotic, exerted a protective effect in animal models of heart failure; however, its exact molecular mechanism is still unknown. Here, we provide the first evidence that DOX reduces oxidative stress—induced mitochondrial fragmentation and depolarization in H9c2 cardiomyocytes and beneficially alters the expression of Mfn-2, OPA-1 and Drp-1 –the main regulators of mitochondrial fusion and fission—in our isoproterenol (ISO)–induced heart failure model, ultimately decreasing the severity of heart failure. In mitochondria, oxidative stress causes a shift toward fission which leads to mitochondrial fragmentation and cell death. Protecting mitochondria from oxidative stress, and the regulation of mitochondrial dynamics by drugs that shift the balance toward fusion, could be a novel therapeutic approach for heart failure. On the basis of our findings, we raise the possibility that DOX could be a novel therapeutic agent in the future treatment of heart failure. PMID:28384228

  11. Protective Effects of Lemon Juice on Alcohol-Induced Liver Injury in Mice.

    PubMed

    Zhou, Tong; Zhang, Yu-Jie; Xu, Dong-Ping; Wang, Fang; Zhou, Yue; Zheng, Jie; Li, Ya; Zhang, Jiao-Jiao; Li, Hua-Bin

    2017-01-01

    Chronic excessive alcohol consumption (more than 40-80 g/day for males and more than 20-40 g/day for females) could induce serious liver injury. In this study, effects of lemon juice on chronic alcohol-induced liver injury in mice were evaluated. The serum biochemical profiles and hepatic lipid peroxidation levels, triacylglycerol (TG) contents, antioxidant enzyme activities, and histopathological changes were examined for evaluating the hepatoprotective effects of lemon juice in mice. In addition, the in vitro antioxidant capacities of lemon juice were determined. The results showed that lemon juice significantly inhibited alcohol-induced increase of alanine transaminase (ALT), aspartate transaminase (AST), hepatic TG, and lipid peroxidation levels in a dose-dependent manner. Histopathological changes induced by alcohol were also remarkably improved by lemon juice treatment. These findings suggest that lemon juice has protective effects on alcohol-induced liver injury in mice. The protective effects might be related to the antioxidant capacity of lemon juice because lemon juice showed in vitro antioxidant capacity.

  12. Protection against methamphetamine-induced neurotoxicity to neostriatal dopaminergic neurons by adenosine receptor activation.

    PubMed

    Delle Donne, K T; Sonsalla, P K

    1994-12-01

    Methamphetamine (METH)-induced neurotoxicity to nigrostriatal dopaminergic neurons in experimental animals appears to have a glutamatergic component because blockade of N-methyl-D-aspartate receptors prevents the neuropathologic consequences. Because adenosine affords neuroprotection against various forms of glutamate-mediated neuronal damage, the present studies were performed to investigate whether adenosine plays a protective role in METH-induced toxicity. METH-induced decrements in neostriatal dopamine content and tyrosine hydroxylase activity in mice were potentiated by concurrent treatment with caffeine, a nonselective adenosine antagonist that blocks both A1 and A2 adenosine receptors. In contrast, chronic treatment of mice with caffeine through their drinking water for 4 weeks, which increased the number of adenosine A1 receptors in the neostriatum and frontal cortex, followed by drug washout, prevented the neurochemical changes produced by the treatment of mice with METH treatment. In contrast, this treatment did not prevent 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine-induced dopaminergic neurotoxicity. Furthermore, concurrent administration of cyclopentyladenosine, an adenosine A1 receptor agonist, attenuated the METH-induced neurochemical changes. This protection by cyclopentyladenosine was blocked by cyclopentyltheophylline, an A1 receptor antagonist. These results indicate that activation of A1 receptors can protect against METH-induced neurotoxicity in mice.

  13. Protective effect of natural honey against acetic acid-induced colitis in rats.

    PubMed

    Mahgoub, A A; el-Medany, A H; Hagar, H H; Sabah, D M

    2002-01-01

    The protective effects of natural honey against acetic acid-induced colitis were investigated in rats. Honey and glucose, fructose, sucrose, maltose mixture were administered, orally and rectally, daily for a period of 4 days. Induction of colitis was done on the third day using 3% acetic acid. Animals were killed on day 4 two hours after administration of the dose and colonic biopsies were taken for macroscopic scoring, histopathological and biochemical studies. Honey dose-dependently afforded protection against acetic acid-induced colonic damage. There was almost 100% protection with the highest dose (5 g/kg) used while glucose, fructose, sucrose, maltose mixture produced no significant protective effect. Also, honey prevented the depletion of the antioxidant enzymes reduced glutathione and catalase and restored the lipid peroxide malondialdehyde towards normal levels. Further studies are required to explore the active ingredients responsible for the antioxidant effect of honey and its therapeutic potential in humans.

  14. Protective effects of N-acetylcysteine against monosodium glutamate-induced astrocytic cell death.

    PubMed

    Park, Euteum; Yu, Kyoung Hwan; Kim, Do Kyung; Kim, Seung; Sapkota, Kumar; Kim, Sung-Jun; Kim, Chun Sung; Chun, Hong Sung

    2014-05-01

    Monosodium glutamate (MSG) is a flavor enhancer, largely used in the food industry and it was reported to have excitotoxic effects. Higher amounts of MSG consumption have been related with increased risk of many diseases, including Chinese restaurant syndrome and metabolic syndromes in human. This study investigated the protective effects of N-acetylcysteine (NAC) on MSG-induced cytotoxicity in C6 astrocytic cells. MSG (20 mM)-induced reactive oxygen species (ROS) generation and apoptotic cell death were significantly attenuated by NAC (500 μM) pretreatment. NAC effectively inhibited the MSG-induced mitochondrial membrane potential (MMP) loss and intracellular reduced glutathione (GSH) depletion. In addition, NAC significantly attenuated MSG-induced endoplasmic reticulum (ER) stress markers, such as XBP1 splicing and CHOP, PERK, and GRP78 up-regulation. Furthermore, NAC prevented the changes of MSG-induced Bcl-2 expression level. These results suggest that NAC can protect C6 astrocytic cells against MSG-induced oxidative stress, mitochondrial dysfunction, and ER stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Diadenosine tetraphosphate protects against injuries induced by ischemia and 6-hydroxydopamine in rat brain.

    PubMed

    Wang, Yun; Chang, Chen-Fu; Morales, Marisela; Chiang, Yung-Hsiao; Harvey, Brandon K; Su, Tsung-Ping; Tsao, Li-I; Chen, Suyu; Thiemermann, Christoph

    2003-08-27

    Diadenosine tetraphosphate (AP4A), an endogenous diadenosine polyphosphate, reduces ischemic injury in the heart. In this study, we report the potent and protective effects of AP4A in rodent models of stroke and Parkinson's disease. AP4A, given intracerebroventricularly before middle cerebral artery (MCA) ligation, reduced cerebral infarction size and enhanced locomotor activity in adult rats. The intravenous administration of AP4A also induced protection when given early after MCA ligation. AP4A suppressed terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL) induced by hypoxia/reperfusion in primary cortical cultures, and reduced both ischemia-induced translocation of mitochondrial cytochrome c and the increase in cytoplasmic caspase-3 activity in vivo. The purinergic P2/P4 antagonist di-inosine pentaphosphate or P1-receptor antagonist sulfonylphenyl theophylline, but not the P2-receptor antagonist suramin, antagonized the effect of AP4A, suggesting that the observed protection is mediated through an anti-apoptotic mechanism and the activation of P1- and P4-purinergic receptors. AP4A also afforded protection from toxicity induced by unilateral medial forebrain bundle injection of 6-hydroxydopamine (6-OHDA). One month after lesioning, vehicle-treated rats exhibited amphetamine-induced rotation. Minimal tyrosine hydroxylase immunoreactivity was detected in the lesioned nigra or striatum. No KCl-induced dopamine release was found in the lesioned striatum. All of these indices of dopaminergic degeneration were attenuated by pretreatment with AP4A. In addition, AP4A reduced TUNEL in the lesioned nigra 2 d after 6-OHDA administration. Collectively, our data suggest that AP4A is protective against neuronal injuries induced by ischemia or 6-OHDA through the inhibition of apoptosis. We propose that AP4A may be a potentially useful target molecule in the therapy of stroke and Parkinson's disease.

  16. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

    PubMed

    Schur, Rebecca M; Gao, Songqi; Yu, Guanping; Chen, Yu; Maeda, Akiko; Palczewski, Krzysztof; Lu, Zheng-Rong

    2018-01-24

    No clinically approved therapies are currently available that prevent the onset of photoreceptor death in retinal degeneration. Signaling between retinal neurons is regulated by the release and uptake of neurotransmitters, wherein GABA is the main inhibitory neurotransmitter. In this work, novel 3-chloropropiophenone derivatives and the clinical anticonvulsants tiagabine and vigabatrin were tested to modulate GABA signaling and protect against light-induced retinal degeneration. Abca4 -/- Rdh8 -/- mice, an accelerated model of retinal degeneration, were exposed to intense light after prophylactic injections of one of these compounds. Imaging and functional assessments of the retina indicated that these compounds successfully protected photoreceptor cells from degeneration to maintain a full-visual-field response. Furthermore, these compounds demonstrated a strong safety profile in wild-type mice and did not compromise visual function or damage the retina, despite repeated administration. These results indicate that modulating inhibitory GABA signaling can offer prophylactic protection against light-induced retinal degeneration.-Schur, R. M., Gao, S., Yu, G., Chen, Y., Maeda, A., Palczewski, K., Lu, Z.-R. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.

  17. Protective effect of metronidazole on uncoupling mitochondrial oxidative phosphorylation induced by NSAID: a new mechanism.

    PubMed

    Leite, A Z; Sipahi, A M; Damião, A O; Coelho, A M; Garcez, A T; Machado, M C; Buchpiguel, C A; Lopasso, F P; Lordello, M L; Agostinho, C L; Laudanna, A A

    2001-02-01

    The pathogenesis of non-steroidal anti-inflammatory drug (NSAID) enteropathy is complex. It involves uncoupling of mitochondrial oxidative phosphorylation which alters the intercellular junction and increases intestinal permeability with consequent intestinal damage. Metronidazole diminishes the inflammation induced by indomethacin but the mechanisms remain speculative. A direct effect on luminal bacteria has traditionally been thought to account for the protective effect of metronidazole. However, a protective effect of metronidazole on mitochondrial oxidative phosphorylation has never been tested. To assess the protective effect of metronidazole on mitochondrial uncoupling induced by indomethacin and also on the increased intestinal permeability and macroscopic damage. The protective effect of metronidazole was evaluated in rats given indomethacin; a macroscopic score was devised to quantify intestinal lesions, and intestinal permeability was measured by means of (51)Cr-ethylenediaminetetraacetic acid. The protective effect of metronidazole against mitochondrial uncoupling induced by indomethacin was assessed using isolated coupled rat liver mitochondria obtained from rats pretreated with metronidazole or saline. Metronidazole significantly reduced the macroscopic intestinal damage and increase in intestinal permeability induced by indomethacin; furthermore, at the mitochondrial level, it significantly reduced the increase in oxygen consumption in state 4 induced by indomethacin and caused less reduction of the respiratory control rate. Our study confirmed the beneficial effects of metronidazole on intestinal damage and intestinal permeability, and demonstrated, for the first time, a direct protective effect of metronidazole on uncoupling of mitochondrial oxidative phosphorylation caused by NSAIDs.

  18. First description of atypical furunculosis in freshwater farmed Atlantic salmon, Salmo salar L., in Chile.

    PubMed

    Godoy, M; Gherardelli, V; Heisinger, A; Fernández, J; Olmos, P; Ovalle, L; Ilardi, P; Avendaño-Herrera, R

    2010-05-01

    We report the first isolation, identification and characterization of a group of Chilean strains of atypical Aeromonas salmonicida isolated from freshwater farmed Atlantic salmon, Salmo salar. Affected fish showed superficial ulcers and pale liver with or without petechial haemorrhages. Outbreaks of the disease occurred in two farms in the south of Chile about 2200 km apart. Five strains were isolated in pure culture and identified by serological assays and immunofluorescence tests as belonging to Aeromonas salmonicida. Although the bacterial isolates were phenotypically homogeneous, minor differences with the reference strain A. salmonicida subsp. salmonicida ATCC 33658 were noted. Three specific primer sets and partial 16S rRNA gene sequencing allowed the identification of the Chilean isolates as atypical A. salmonicida, with A. salmonicida subsp. achromogenes and A. salmonicida subsp. masoucida as their closest relatives (100% sequence similarity). Molecular typing indicated that the atypical isolates belong to two genetic groups that were associated with the geographical origin.

  19. UV-blocking spectacle lens protects against UV-induced decline of visual performance.

    PubMed

    Liou, Jyh-Cheng; Teng, Mei-Ching; Tsai, Yun-Shan; Lin, En-Chieh; Chen, Bo-Yie

    2015-01-01

    Excessive exposure to sunlight may be a risk factor for ocular diseases and reduced visual performance. This study was designed to examine the ability of an ultraviolet (UV)-blocking spectacle lens to prevent visual acuity decline and ocular surface disorders in a mouse model of UVB-induced photokeratitis. Mice were divided into 4 groups (10 mice per group): (1) a blank control group (no exposure to UV radiation), (2) a UVB/no lens group (mice exposed to UVB rays, but without lens protection), (3) a UVB/UV400 group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [UV400 coating]), and (4) a UVB/photochromic group (mice exposed to UVB rays and protected using the CR-39™ spectacle lens [photochromic coating]). We investigated UVB-induced changes in visual acuity and in corneal smoothness, opacity, and lissamine green staining. We also evaluated the correlation between visual acuity decline and changes to the corneal surface parameters. Tissue sections were prepared and stained immunohistochemically to evaluate the structural integrity of the cornea and conjunctiva. In blank controls, the cornea remained undamaged, whereas in UVB-exposed mice, the corneal surface was disrupted; this disruption significantly correlated with a concomitant decline in visual acuity. Both the UVB/UV400 and UVB/photochromic groups had sharper visual acuity and a healthier corneal surface than the UVB/no lens group. Eyes in both protected groups also showed better corneal and conjunctival structural integrity than unprotected eyes. Furthermore, there were fewer apoptotic cells and less polymorphonuclear leukocyte infiltration in corneas protected by the spectacle lenses. The model established herein reliably determines the protective effect of UV-blocking ophthalmic biomaterials, because the in vivo protection against UV-induced ocular damage and visual acuity decline was easily defined.

  20. Chlorogenic acid protects mice against lipopolysaccharide-induced acute lung injury.

    PubMed

    Zhang, Xu; Huang, Huang; Yang, Tingting; Ye, Yin; Shan, Jianhua; Yin, Zhimin; Luo, Lan

    2010-07-01

    Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in human diet. Our previous in vitro study demonstrates that CGA presents anti-inflammatory activities in RAW 264.7 cells. Here we show that CGA protects mice against lipopolysaccharide (LPS)-induced acute lung injury (ALI). We treated mice with CGA (5, 20 and 50 mg/kg body weight) 30 min or 3 h after intratracheal administration of LPS. The histological results showed that CGA, at dose of 50 mg/kg, protected mice from LPS-induced ALI which displayed by edema, haemorrhage, blood vessel and alveolar structural damage. CGA inhibited LPS-increased pulmonary MPO activity and migration of polymorphonuclear neutrophils (PMNs) into bronchoalveolar lavage fluid (BALF). Furthermore, CGA markedly decreased the activity of inducible nitric oxide synthase (iNOS) in lung tissues and thus prevented nitric oxide (NO) release in response to LPS challenge. In conclusion, these results indicated that CGA was greatly effective in inhibiting ALI and might act as a potential therapeutic reagent for treating ALI in the future. 2010 Elsevier Ltd. All rights reserved.

  1. Protective effect of Panax ginseng in cisplatin-induced cachexia in rats.

    PubMed

    Lobina, Carla; Carai, Mauro A M; Loi, Barbara; Gessa, Gian Luigi; Riva, Antonella; Cabri, Walter; Petrangolini, Giovanna; Morazzoni, Paolo; Colombo, Giancarlo

    2014-05-01

    This study investigated the protective effect of a standardized extract of Panax ginseng on multiple cisplatin-induced 'sickness behaviors' (model of cancer-induced cachexia) in rats. Cisplatin was administered twice weekly (1-2 mg/kg, intraperitoneal) for 5 consecutive weeks. Panax ginseng extract (0, 25 and 50 mg/kg, intragastric) was administered daily over the 5-week period of cisplatin exposure. Malaise, bodyweight and temperature, pain sensitivity, and endurance running were recorded at baseline and at 5 weekly intervals. Treatment with cisplatin produced severe signs of malaise, marked loss of bodyweight, hypothermia, hyperalgesia and reduction in running time. Treatment with Panax ginseng extract completely prevented all cisplatin-induced alterations. These data indicate that treatment with Panax ginseng extract exerted a protective effect in a rat model of cachexia and suggest that Panax ginseng extract may be a therapeutic promising tool for supportive care in oncology.

  2. Protective effects of C-phycocyanin on alcohol-induced acute liver injury in mice

    NASA Astrophysics Data System (ADS)

    Xia, Dong; Liu, Bing; Luan, Xiying; Sun, Junyan; Liu, Nana; Qin, Song; Du, Zhenning

    2016-03-01

    Excessive alcohol consumption leads to liver disease. Extensive evidence suggests that C-phycocyanin (C-PC), a chromophore phycocyanobilin derived from Spirulina platensis, exerts protective effects against chemical-induced organ damage. In this study, we investigated whether C-PC could protect against ethanol-induced acute liver injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (CHOL), low-density lipoprotein (LDL), liver homogenate malondialdehyde (MDA), superoxide dismutase (SOD) content were measured, and pathological examination of liver sections were examined. C-PC showed obvious inhibitory effects on serum ALT, AST, TG, CHOL, LDL and MDA, and SOD content significantly increased in the liver. The structure of hepatic lobules was clear, liver sinus returned to normal, and liver cell cords were arranged in neat rows. Cloudiness, swelling, inflammatory cell infiltration and spotty necrosis of liver cells were significantly reduced. Therefore, C-PC can significantly protect against ethanol-induced acute liver injury.

  3. Establishment of a methodology for investigating protectants against ethanol-induced hepatotoxicity.

    PubMed

    Ruan, Xueqing; Shen, Chong; Meng, Qin

    2010-05-01

    Ethanol-induced liver injury has been extensively reported in clinic, but still lacks an efficient in vitro platform for investigating its hepatotoxicity and protectants. This study aimed to establish a methodology on the culture conditions regarding the sealability against evaporation of ethanol, culture medium and 2D/3D culture of hepatocytes. Based on the experimental findings, it was indicated that the ethanol evaporation from culture plates was a severe problem reducing its toxicity in hepatocyte. According to the detected ethanol toxic response marked by reduced cell viability, 3D cultured hepatocytes in gel entrapment were suggested to be better than 2D hepatocyte in monolayer, but the cultures in either William's Medium E or DMEM exhibited comparable sensitivity to ethanol toxicity. Subsequently, 3D cultured hepatocytes with Parafilm sealing were systematically illustrated to well reflect the ethanol-induced lipid accumulation, reactive oxygen species/malondialdehyde generation, glutathione depletion and cytochrome 2E1 induction. Finally, such hepatocyte models were proposed as a platform for screening of herbal component against ethanol hepatotoxicity. Nano-silibinin, for the first time, found to perform significant protection against ethanol-induced hepatotoxicity while silibinin in normal particles could not inhibit such toxicity. This protection of nano-silibinin might relate to its improved bioavailability compared to normal insoluble silibinin and could act as an anti-oxidative and anti-steatosis agent against ethanol-induced hepatotoxicity. Copyright (c) 2010. Published by Elsevier Ltd.

  4. The protective effect of ebselen on radiocontrast-induced nephrotoxicity.

    PubMed

    Ozgur, Tumay; Tutanc, Murat; Zararsiz, Ismail; Motor, Sedat; Ozturk, Oktay Hasan; Yaldiz, Mehmet; Kurtgoz, Ozgur Yildirim

    2012-01-01

    Radiocontrast-induced nephropathy has become one of the most important causes of renal acute failure. The most effective management of reducing the incidence of contrast nephropathy is to understand and prevent its causes. We aimed to investigate the protective role of ebselen against radiocontrast-induced nephrotoxicity in terms of tissue oxidant/antioxidant parameters and light microscopy in rats. Albino Wistar rats were randomly separated into four groups. The Group 1 rats were treated with sodium chloride as the control group, Group 2 with radiocontrast, Group 3 with radiocontrast plus ebselen, and Group 4 with ebselen alone. After 24 h, the animals over the experimental period were euthanized and blood samples were analyzed for blood urea nitrogen (BUN) and serum creatinine (Cr) levels. Kidney sections were analyzed for malondialdehyde (MDA) levels and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities, as well as histopathological changes. In the radiocontrast group, BUN, MDA, and GSH-Px levels increased while SOD activity decreased compared with the control group. These decays were improved by ebselen administration in the radiocontrast group. Significant histological deteriorations were observed in the radiocontrast group. We noted improvement in the histologic findings with ebselen administration. These results indicate that ebselen might produce a protective mechanism against radiocontrast-induced nephrotoxicity.

  5. [The Spectral Analysis of Laser-Induced Plasma in Laser Welding with Various Protecting Conditions].

    PubMed

    Du, Xiao; Yang, Li-jun; Liu, Tong; Jiao, Jiao; Wang, Hui-chao

    2016-01-01

    The shielding gas plays an important role in the laser welding process and the variation of the protecting conditions has an obvious effect on the welding quality. This paper studied the influence of the change of protecting conditions on the parameters of laser-induced plasma such as electron temperature and electron density during the laser welding process by designing some experiments of reducing the shielding gas flow rate step by step and simulating the adverse conditions possibly occurring in the actual Nd : YAG laser welding process. The laser-induced plasma was detected by a fiber spectrometer to get the spectral data. So the electron temperature of laser-induced plasma was calculated by using the method of relative spectral intensity and the electron density by the Stark Broadening. The results indicated that the variation of protecting conditions had an important effect on the electron temperature and the electron density in the laser welding. When the protecting conditions were changed, the average electron temperature and the average electron density of the laser-induced plasma would change, so did their fluctuation range. When the weld was in a good protecting condition, the electron temperature, the electron density and their fluctuation were all low. Otherwise, the values would be high. These characteristics would have contribution to monitoring the process of laser welding.

  6. Protective Effects of Lemon Juice on Alcohol-Induced Liver Injury in Mice

    PubMed Central

    Zhang, Yu-Jie; Xu, Dong-Ping; Wang, Fang; Zhou, Yue; Zheng, Jie; Li, Ya; Zhang, Jiao-Jiao

    2017-01-01

    Chronic excessive alcohol consumption (more than 40–80 g/day for males and more than 20–40 g/day for females) could induce serious liver injury. In this study, effects of lemon juice on chronic alcohol-induced liver injury in mice were evaluated. The serum biochemical profiles and hepatic lipid peroxidation levels, triacylglycerol (TG) contents, antioxidant enzyme activities, and histopathological changes were examined for evaluating the hepatoprotective effects of lemon juice in mice. In addition, the in vitro antioxidant capacities of lemon juice were determined. The results showed that lemon juice significantly inhibited alcohol-induced increase of alanine transaminase (ALT), aspartate transaminase (AST), hepatic TG, and lipid peroxidation levels in a dose-dependent manner. Histopathological changes induced by alcohol were also remarkably improved by lemon juice treatment. These findings suggest that lemon juice has protective effects on alcohol-induced liver injury in mice. The protective effects might be related to the antioxidant capacity of lemon juice because lemon juice showed in vitro antioxidant capacity. PMID:28567423

  7. Creatine phosphate disodium salt protects against Dox-induced cardiotoxicity by increasing calumenin.

    PubMed

    Wang, Yu; Sun, Ying; Guo, Xin; Fu, Yao; Long, Jie; Wei, Cheng-Xi; Zhao, Ming

    2018-06-01

    Inhibiting endoplasmic reticulum stress (ERS)-induced apoptosis may be a new therapeutic target in cardiovascular diseases. Creatine phosphate disodium salt (CP) has been reported to have cardiovascular protective effect, but its effects on ERS are unknown. The aim of this study was to identify the mechanism by which CP exerts its cardioprotection in doxorubicin (Dox)-induced cardiomyocytes injury. In our study, neonatal rats cardiomyocytes (NRC) was randomly divided into control group, model group, and treatment group. The cell viability and apoptosis were detected. grp78, grp94, and calumenin of the each group were monitored. To investigate the role of calumenin, Dox-induced ERS was compared in control and down-regulated calumenin cardiomyocytes. Our results showed that CP decreased Dox-induced apoptosis and relieved ERS. We found calumenin increased in Dox-induced apoptosis with CP. ERS effector C/EBP homologous protein was down-regulated by CP and it was influenced by calumenin. CP could protect NRC by inhibiting ERS, this mechanisms may be associated with its increasing of calumenin.

  8. Decursinol and decursin protect primary cultured rat cortical cells from glutamate-induced neurotoxicity.

    PubMed

    Kang, So Young; Kim, Young Choong

    2007-06-01

    We previously reported six neuroprotective decursinol derivatives, coumarins from Angelica gigas (Umbelliferae) roots. To elucidate the action patterns of decursinol derivatives, we investigated the neuroprotective effects of decursinol and decursin, which showed highly significant activity and were major constituents of A. gigas, using primary cultures of rat cortical cells in-vitro. At concentrations of 0.1-10.0 microM, both decursinol and decursin exerted a significant neuroprotective activity pretreatment and throughout treatment. In addition, decursin had a neuroprotective impact in the post-treatment paradigm implying that decursin might possess different action mechanisms from that of decursinol in the protection of neurons against glutamate injury. Both decursinol and decursin effectively reduced the glutamate-induced increased intracellular calcium ([Ca(2+)](i)) in cortical cells, suggesting that these two coumarins may exert neuroprotection by reducing calcium influx by overactivation of glutamate receptors. This suggestion was supported by the result that decursinol and decursin protected neurons against kainic acid (KA)-induced neurotoxicity better than against that induced by N-methyl-D-aspartate (NMDA). Moreover, both decursinol and decursin significantly prevented glutamate-induced decreases in glutathione, a cellular antioxidant, and glutathione peroxidase activity. In addition, both compounds efficiently reduced the overproduction of cellular peroxide in glutamate-injured cortical cells. These results suggested that both decursinol and decursin protected primary cultured rat cortical cells against glutamate-induced oxidative stress by both reducing calcium influx and acting on the cellular antioxidative defence system. Moreover, decursin is considered to probably have a different action mechanism from that of decursinol in protecting cortical cells against glutamate injury.

  9. Acorus tatarinowii Schott extract protects PC12 cells from amyloid-beta induced neurotoxicity.

    PubMed

    An, Hong-Mei; Li, Guo-Wen; Lin, Chen; Gu, Chao; Jin, Miao; Sun, Wen-Xian; Qiu, Ming-Feng; Hu, Bing

    2014-05-01

    Amyloid-beta induced neurotoxicity has been identified as a major cause of Alzheimer's disease. Acorus tatarinowii Schott is one of the most frequently used Chinese herbs for Alzheimer's disease treatment. However, the effects of Acorus tatarinowii Schott on amyloid-beta mediated nerve cell damage remains unknown. In the present study, neuronal differentiated PC12 cells were used as a model to evaluate the effects of A. tatarinowii Schott extract (ATSE) against Abeta25-35 induced neurotoxicity. The results showed pretreatment with ATSE significantly protected PC12 cells from Abeta25-35 induced cell death, lactate dehydrogenase release, DNA damage, mitochondrial dysfunction and cytochrome c release from mitochondria. In addition, pretreatment with ATSE also significantly inhibited Abeta25-35 induced caspase-3 activation and reactive oxygen species generation in PC12 cells. These observations suggested that ATSE protects PC12 cells from amyloid-beta induced neurotoxicity.

  10. The protective effects of ginsenosides on human erythrocytes against hemin-induced hemolysis.

    PubMed

    Li, Guo-Xiang; Liu, Zai-Qun

    2008-03-01

    Panax ginseng has been used in traditional Chinese medicine to enhance stamina and capacity to deal with fatigue and physical stress. Many reports have been devoted to the effects of ginsenosides on many in vitro or in vivo experimental systems. The major aim of this work is to investigate the protective effects of 12 individual ginsenosides including Rb1, Rb3, Rc, Rd, Re, Rg1, Rg2, Rg3, Rh1, Rh2, R1 and pseudoginsenoside F11, together with the central structures of aforementioned ginsenosides, 20(S)-protopanaxadiol (PD) and 20(S)-protopanaxatriol (PT), on hemin-induced hemolysis of human erythrocytes. This is because hemin can induce hemolysis by accelerating the potassium leakage, dissociating skeletal proteins and prohibiting some enzymes in the membrane of erythrocyte. Thus, the structure-activity-relationship (SAR) between ginsenosides and protective effects has been screened in this in vitro experimental system. It is found that Rh2 and Rg3 intensify hemolysis in the presence of hemin, and initiate hemolysis even in the absence of hemin. All the other ginsenosides protect human erythrocytes against hemin-induced hemolysis more or less. The overall sequence is Rc>Rd>Re approximately Rb1>Rg1 approximately Rh1>Rb3 approximately Rg2 approximately R1 approximately F11 approximately PT. In addition, the protective effects of PD and PT have been detected, and found that PD promotes hemolysis appreciably, whereas PT protects erythrocytes efficiently. Moreover, the protective effects of PT ginsenosides are similar to PT itself, and the protective effects of PD ginsenosides vary remarkably, demonstrating that the positions of the sugar moieties make the protective activities of ginsenosides complicated. Especially, sugar moiety at 20-position is critical for PD ginsenosides to inhibit hemolysis, whereas hydroxyl group at 3-position is important for PT ginsenosides. The present result may be useful for understanding the SAR of ginsenosides.

  11. Protective Effect of Bauhinia purpurea on Gentamicin-induced Nephrotoxicity in Rats

    PubMed Central

    Lakshmi, B. V. S.; Neelima, N.; Kasthuri, N.; Umarani, V.; Sudhakar, M.

    2009-01-01

    The present study was undertaken to evaluate the ethanol extract of leaves of Bauhinia purpurea and unripe pods of Bauhinia purpurea for its protective effects on gentamicin-induced nephrotoxicity in rats. Nephrotoxicity was induced in Wistar rats by intraperitoneal administration of gentamicin 100 mg/kg/d for eight days. Effect of concurrent administration of ethanol extract of leaves of Bauhinia purpurea and unripe pods of Bauhinia purpurea at a dose of 300 mg/kg/d given by oral route was determined using serum creatinine, serum uric acid, blood urea nitrogen and serum urea as indicators of kidney damage. The study groups contained six rats in each group. It was observed that the ethanol extract of leaves of Bauhinia purpurea and unripe pods of Bauhinia purpurea significantly protect rat kidneys from gentamicin-induced histopathological changes. Gentamicin-induced glomerular congestion, blood vessel congestion, epithelial desquamation, accumulation of inflammatory cells and necrosis of the kidney cells were found to be reduced in the groups receiving the leaf and unripe pods extract of Bauhinia purpurea along with gentamicin. The extracts also normalized the gentamicin-induced increase in serum creatinine, serum uric acid and blood urea nitrogen levels. This is also evidenced by the histopathological studies. PMID:20502576

  12. Increasing Optimism Protects Against Pain-Induced Impairment in Task-Shifting Performance.

    PubMed

    Boselie, Jantine J L M; Vancleef, Linda M G; Peters, Madelon L

    2017-04-01

    Persistent pain can lead to difficulties in executive task performance. Three core executive functions that are often postulated are inhibition, updating, and shifting. Optimism, the tendency to expect that good things happen in the future, has been shown to protect against pain-induced performance deterioration in executive function updating. This study tested whether this protective effect of a temporary optimistic state by means of a writing and visualization exercise extended to executive function shifting. A 2 (optimism: optimism vs no optimism) × 2 (pain: pain vs no pain) mixed factorial design was conducted. Participants (N = 61) completed a shifting task once with and once without concurrent painful heat stimulation after an optimism or neutral manipulation. Results showed that shifting performance was impaired when experimental heat pain was applied during task execution, and that optimism counteracted pain-induced deterioration in task-shifting performance. Experimentally-induced heat pain impairs shifting task performance and manipulated optimism or induced optimism counteracted this pain-induced performance deterioration. Identifying psychological factors that may diminish the negative effect of persistent pain on the ability to function in daily life is imperative. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  13. Mycobacterium smegmatis proteoliposome induce protection in a murine progressive pulmonary tuberculosis model.

    PubMed

    Tirado, Yanely; Puig, Alina; Alvarez, Nadine; Borrero, Reinier; Aguilar, Alicia; Camacho, Frank; Reyes, Fatima; Fernandez, Sonsire; Perez, Jose Luis; Acevedo, Reynaldo; Mata Espinoza, Dulce; Payan, Jorge Alberto Barrios; Garcia, Maria de Los A; Kadir, Ramlah; Sarmiento, María E; Hernandez-Pando, Rogelio; Norazmi, Mohd-Nor; Acosta, Armando

    2016-12-01

    Tuberculosis (TB) remains an important cause of mortality and morbidity. The TB vaccine, BCG, is not fully protective against the adult form of the disease and is unable to prevent its transmission although it is still useful against severe childhood TB. Hence, the search for new vaccines is of great interest. In a previous study, we have shown that proteoliposomes obtained from Mycobacterium smegmatis (PLMs) induced cross reactive humoral and cellular response against Mycobacterium tuberculosis (Mtb) antigens. With the objective to evaluate the protective capability of PLMs, a murine model of progressive pulmonary TB was used. Animals immunized with PLMs with and without alum (PLMs/PLMsAL respectively) showed protection compared to non-immunized animals. Mice immunized with PLMsAL induced similar protection as that of BCG. Animals immunized with BCG, PLMs and PLMsAL showed a significant decrease in tissue damage (percentage of pneumonic area/lung) compared to non-immunized animals, with a more prominent effect in BCG vaccinated mice. The protective effect of the administration of PLMs in mice supports its future evaluation as experimental vaccine candidate against Mtb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. The lipid lowering drug lovastatin protects against doxorubicin-induced hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henninger, Christian; Institute of Toxicology, University Duesseldorf, Medical Faculty, Universitätsstrasse 1, D-40225 Duesseldorf; Huelsenbeck, Johannes

    2012-05-15

    Liver is the main detoxifying organ and therefore the target of high concentrations of genotoxic compounds, such as environmental carcinogens and anticancer drugs. Here, we investigated the usefulness of lovastatin, which is nowadays widely used for lipid lowering purpose, as a hepatoprotective drug following the administration of the anthracycline derivative doxorubicin in vivo. To this end, BALB/c mice were exposed to either a single high dose or three consecutive low doses of doxorubicin. Acute and subacute hepatotoxicities were analyzed with or without lovastatin co-treatment. Lovastatin protected the liver against doxorubicin-induced acute pro-inflammatory and pro-fibrotic stress responses as indicated by anmore » attenuated mRNA expression of tumor necrosis factor alpha (TNFα) and connective tissue growth factor (CTGF), respectively. Hepatoprotection by lovastatin was due to a reduced induction of DNA damage following doxorubicin treatment. The statin also mitigated subacute anthracycline-provoked hepatotoxicity as shown on the level of doxorubicin- and epirubicin-stimulated CTGF mRNA expression as well as histopathologically detectable fibrosis and serum concentration of marker enzymes of hepatotoxicity (GPT/GLDH). Kidney damage following doxorubicin exposure was not detectable under our experimental conditions. Moreover, lovastatin showed multiple inhibitory effects on doxorubicin-triggered hepatic expression of genes involved in oxidative stress response, drug transport, DNA repair, cell cycle progression and cell death. Doxorubicin also stimulated the formation of ceramides. Ceramide production, however, was not blocked by lovastatin, indicating that hepatoprotection by lovastatin is independent of the sphingolipid metabolism. Overall, the data show that lovastatin is hepatoprotective following genotoxic stress induced by anthracyclines. Based on the data, we hypothesize that statins might be suitable to lower hepatic injury following anthracycline

  15. Quercitrin Protects Skin from UVB-induced Oxidative Damage

    PubMed Central

    Yin, Yuanqin; Li, Wenqi; Son, Yong-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-01-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. PMID:23545178

  16. Experimental stroke protection induced by 4-hydroxybenzyl alcohol is cancelled by bacitracin.

    PubMed

    Descamps, Elodie; Petrault-Laprais, Maud; Maurois, Pierre; Pages, Nicole; Bac, Pierre; Bordet, Régis; Vamecq, Joseph

    2009-06-01

    Induction of protein disulfide isomerase (PDI) is validated as a main mechanism by which 4-hydroxybenzyl alcohol (4-HBA), an active principle of Gastrodia elata Blume, reduces cerebral infarct volumes in a murine model of focal brain ischemia/reperfusion. In contrast to its position isomers, i.e. 3-hydroxybenzyl alcohol (3-HBA) and 2-hydroxybenzyl alcohol (2-HBA), and to aliphatic diols (1,4-butanediol and 1,5-pentanediol), 4-HBA administered intravenously at 25 mg/kg protected mice, significantly reducing total, cortical and sub-cortical infarct volumes by 42, 28 and 55%, respectively. All compounds, 4-HBA included, were devoid of antioedematous properties. Only the stroke protective 4-HBA, but neither 3-HBA nor 2-HBA, was capable of significantly inducing PDI in intact mouse brains. Stroke protection was fully prevented by bacitracin (500 mg/kg), a known inhibitor of PDI, which, without affecting basal brain PDI levels, altered the ability of 4-HBA to induce significantly PDI in intact brains. Taken as a whole, our data indicate that stroke protection induced by 4-HBA involves PDI as a key player, making this protein a valuable target to control brain injury disorders. The fact that 4-HBA, at doses up to 200mg/kg, was devoid of neurotoxicity in the rotarod test is also a decisive element to promote the neuroprotective use of this plant compound.

  17. Protective Effect of Morocco Carob Honey Against Lead-Induced Anemia and Hepato-Renal Toxicity.

    PubMed

    Fihri, Aicha Fassi; Al-Waili, Noori S; El-Haskoury, Redouan; Bakour, Meryem; Amarti, Afaf; Ansari, Mohammad J; Lyoussi, Badiaa

    2016-01-01

    Natural honey has many biological activities including protective effect against toxic materials. The aim of this study was to evaluate the protective effect of carob honey against lead-induced hepato-renal toxicity and lead-induced anemia in rabbits. Twenty four male rabbits were allocated into four groups six rabbits each; group 1: control group, received distilled water (0.1 ml / kg.b.wt /daily); group 2: received oral lead acetate (2 g/kg.b.wt/daily); group 3: treated with oral honey (1g /kg.b.wt/daily) and oral lead (2 g/kg.b.wt/daily), and group 4: received oral honey (1 g/kg.b.wt/daily). Honey and lead were given daily during 24 days of experimentation. Laboratory tests and histopathological evaluations of kidneys were done. Oral administration of lead induced hepatic and kidney injury and caused anemia during three weeks of the exposure. Treatment with honey prevented hepato-renal lead toxicity and ameliorated lead-induced anemia when honey was given to animals during lead exposure. It might be concluded that honey has a protective effect against lead-induced blood, hepatic and renal toxic effects. © 2016 The Author(s) Published by S. Karger AG, Basel.

  18. Estrogen Protects Lenses against Cataract Induced by Transforming Growth Factor-β (TGFβ)

    PubMed Central

    Hales, Angela M.; Chamberlain, Coral G.; Murphy, Christopher R.; McAvoy, John W.

    1997-01-01

    Cataract, already a major cause of visual impairment and blindness, is likely to become an increasing problem as the world population ages. In a previous study, we showed that transforming growth factor-β (TGFβ) induces rat lenses in culture to develop opacities and other changes that have many features of human subcapsular cataracts. Here we show that estrogen protects against cataract. Lenses from female rats are more resistant to TGFβ-induced cataract than those from males. Furthermore, lenses from ovariectomized females show increased sensitivity to the damaging effects of TGFβ and estrogen replacement in vivo, or exposure to estrogen in vitro, restores resistance. Sex-dependent and estrogen-related differences in susceptibility to cataract formation, consistent with a protective role for estrogen, have been noted in some epidemiological studies. The present study in the rat indicates that estrogen provides protection against cataract by countering the damaging effects of TGFβ. It also adds to an increasing body of evidence that hormone replacement therapy protects postmenopausal women against various diseases. PMID:9016876

  19. Protection against radiation-induced oxidative stress in cultured human epithelial cells by treatment with antioxidant agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, X. Steven; Ware, Jeffrey H.; Zhou, Zhaozong

    2006-04-01

    Purpose: To evaluate the protective effects of antioxidant agents against space radiation-induced oxidative stress in cultured human epithelial cells. Methods and Materials: The effects of selected concentrations of N-acetylcysteine, ascorbic acid, sodium ascorbate, co-enzyme Q10, {alpha}-lipoic acid, L-selenomethionine, and vitamin E succinate on radiation-induced oxidative stress were evaluated in MCF10 human breast epithelial cells exposed to radiation with X-rays, {gamma}-rays, protons, or high mass, high atomic number, and high energy particles using a dichlorofluorescein assay. Results: The results demonstrated that these antioxidants are effective in protecting against radiation-induced oxidative stress and complete or nearly complete protection was achieved by treatingmore » the cells with a combination of these agents before and during the radiation exposure. Conclusion: The combination of antioxidants evaluated in this study is likely be a promising countermeasure for protection against space radiation-induced adverse biologic effects.« less

  20. Magnolol protects pancreatic β-cells against methylglyoxal-induced cellular dysfunction.

    PubMed

    Suh, Kwang Sik; Chon, Suk; Jung, Woon-Won; Choi, Eun Mi

    2017-11-01

    Chronic hyperglycemia aggravates insulin resistance, in part due to increased formation of advanced glycation end-products (AGEs). Methylglyoxal (MG), a major precursor of AGEs, accumulates abnormally in various tissues and organs and participates in oxidative damage. We investigated the insulinotropic benefits of magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, in pancreatic β-cells exposed to MG in vitro. When exposed to cytotoxic levels of MG for 48 h, RIN-m5F β-cells exhibited a significant loss of viability and impaired insulin secretion, whereas pretreatment with magnolol protected against MG-induced cell death and decreased insulin secretion. Moreover, magnolol increased the expression of genes involved in β-cell survival and function, including Ins2 and PDX1. Furthermore, magnolol increased the levels of AMPK phosphorylation, SIRT1, and PGC1α in RIN-5F β-cells. In addition, magnolol increased the activity of glyoxalase I and decreased the levels of MG-modified protein adducts, which suggests that magnolol protects against MG-induced protein glycation. Taken together, the results indicate the potential application of magnolol as an intervention against MG-induced hyperglycemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Melatonin protects against taurolithocholic-induced oxidative stress in rat liver.

    PubMed

    Fuentes-Broto, Lorena; Miana-Mena, Francisco J; Piedrafita, Eduardo; Berzosa, César; Martínez-Ballarín, Enrique; García-Gil, Francisco A; Reiter, Russel J; García, Joaquín J

    2010-08-01

    Cholestasis, encountered in a variety of clinical disorders, is characterized by intracellular accumulation of toxic bile acids in the liver. Furthermore, oxidative stress plays an important role in the pathogenesis of bile acids. Taurolithocholic acid (TLC) was revealed in previous studies as the most pro-oxidative bile acid. Melatonin, a well-known antioxidant, is a safe and widely used therapeutic agent. Herein, we investigated the hepatoprotective role of melatonin on lipid and protein oxidation induced by TLC alone and in combination with FeCl(3) and ascorbic acid in rat liver homogenates and hepatic membranes. The lipid peroxidation products, malondialdehyde and 4-hydroxyalkenals (MDA + 4-HDA), and carbonyl levels were quantified as indices of oxidative damage to hepatic lipids and proteins, respectively. In the current study, the rise in MDA + 4-HDA levels induced by TLC was inhibited by melatonin in a concentration-dependent manner in both liver homogenates and in hepatic membranes. Melatonin also had protective effects against structural damage to proteins induced by TLC in membranes. These results suggest that the indoleamine melatonin may potentially act as a protective agent in the therapy of those diseases that involve bile acid toxicity. Published 2010 Wiley-Liss, Inc.

  2. The C-terminal region of alpha-crystallin: involvement in protection against heat-induced denaturation

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Emmons, T.; Horwitz, J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Recent studies have demonstrated that the alpha-crystallins can protect other proteins against heat-induced denaturation and aggregation. To determine the possible involvement of the C-terminal region in this activity, the alpha-crystallins were subjected to limited tryptic digestion, and the amount of cleavage from the N-terminal and C-terminal regions of the alpha-A and alpha-B crystallin chains was assessed using antisera specific for these regions. Limited tryptic digestion resulted in cleavage only from the C-terminal region of alpha-A crystallin. This trypsin-treated alpha-A crystallin preparation showed a decreased ability to protect proteins from heat-induced aggregation using an in vitro assay. Together, these results demonstrate that the C-terminal region of alpha-A crystallin is important for its ability to protect against heat-induced aggregation, which is consistent with the hypothesis that post-translational changes that are known to occur at the C-terminal region may have significant effects on the ability of alpha-A crystallin to protect against protein denaturation in vivo.

  3. Skin protection against UVA-induced iron damage by multiantioxidants and iron chelating drugs/prodrugs.

    PubMed

    Reelfs, Olivier; Eggleston, Ian M; Pourzand, Charareh

    2010-03-01

    In humans, prolonged sunlight exposure is associated with various pathological states. The continuing drive to develop improved skin protection involves not only approaches to reduce DNA damage by solar ultraviolet B (UVB) but also the development of methodologies to provide protection against ultraviolet A (UVA), the oxidising component of sunlight. Furthermore identification of specific cellular events following ultraviolet (UV) irradiation is likely to provide clues as to the mechanism of the development of resulting pathologies and therefore strategies for protection. Our discovery that UVA radiation, leads to an immediate measurable increase in 'labile' iron in human skin fibroblasts and keratinocytes provides a new insight into UVA-induced skin damage, since iron is a catalyst of biological oxidations. The main purpose of this overview is to bring together some of the new findings related to mechanisms underlying UVA-induced iron release and to discuss novel approaches based on the use of multiantioxidants and light-activated caged-iron chelators for efficient protection of skin cells against UVA-induced iron damage.

  4. Hybrid phage displaying SLAQVKYTSASSI induces protection against Candida albicans challenge in BALB/c mice.

    PubMed

    Wang, Yicun; Su, Quanping; Dong, Shuai; Shi, Hongxi; Gao, Xiang; Wang, Li

    2014-01-01

    The polymorphic fungus Candida albicans (C. albicans) can live as an aggressive pathogen and cause many diseases in hosts, for which no effective vaccine exists. The secreted aspartyl proteinase 2 (Sap2) plays a protective role in systemically infected BALB/c mice. Protective cellular immune responses can be preferentially induced when antigens are displayed on small particles. Therefore, the emphasis is placed on developing new phage vaccine to inhibit C. albicans infection. In this study, the ability of the hybrid phage displaying the epitope SLAQVKYTSASSI and recombinant protein of Sap2 (rSap2) for inducing immune protective responses against C. albicans infection was evaluated by lymphoproliferative assay, to gather cytokine and antibody measurements in BALB/c mice. Our results showed that, strong cellular and humoral immune responses were induced in a mouse model immunized with hybrid phage or rSap2. Furthermore, the protection against lethal challenge with C. albicans was observed in mice vaccinated hybrid phage without adjuvant. These findings demonstrate that the hybrid phage displaying the epitope SLAQVKYTSASSI might be a potential vaccine against C. albicans infections.

  5. Britanin Ameliorates Cerebral Ischemia-Reperfusion Injury by Inducing the Nrf2 Protective Pathway.

    PubMed

    Wu, Guozhen; Zhu, Lili; Yuan, Xing; Chen, Hao; Xiong, Rui; Zhang, Shoude; Cheng, Hao; Shen, Yunheng; An, Huazhang; Li, Tiejun; Li, Honglin; Zhang, Weidong

    2017-10-10

    Oxidative stress is considered the major cause of tissue injury after cerebral ischemia. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is one of the most important defensive mechanisms against oxidative stresses and has been confirmed as a target for stroke treatment. Thus, we desired to find new Nrf2 activators and test their neuronal protective activity both in vivo and in vitro. The herb-derived compound, Britanin, is a potent inducer of the Nrf2 system. Britanin can induce the expression of protective enzymes and reverse oxygen-glucose deprivation, followed by reperfusion (OGD-R)-induced neuronal injury in primary cortical neurons in vitro. Furthermore, the administration of Britanin significantly ameliorated middle cerebral artery occlusion-reperfusion (MCAO-R) insult in vivo. We report here the crystal structure of the complex of Britanin and the BTB domain of Keap1. Britanin selectively binds to a conserved cysteine residue, cysteine 151, of Keap1 and inhibits Keap1-mediated ubiquitination of Nrf2, leading to induction of the Nrf2 pathway. Britanin is a potent inducer of Nrf2. The complex crystal structure of Britanin and the BTB domain of Keap1 help clarify the mechanism of Nrf2 induction. Britanin was proven to protect primary cortical neurons against OGD-R-induced injury in an Nrf2-dependant way. Additionally, Britanin had excellent cerebroprotective effect in an MCAO-R model. Our results demonstrate that the natural product Britanin with potent Nrf2-activating and neural protective activities both in vitro and in vivo could be developed into a cerebroprotective therapeutic agent. Antioxid. Redox Signal. 27, 754-768.

  6. Protective effects of ebselen on sodium-selenite-induced experimental cataract in rats.

    PubMed

    Aydemir, Orhan; Güler, Mete; Kaya, Mehmet Kaan; Deniz, Nurettin; Üstündağ, Bilal

    2012-12-01

    To determine whether ebselen has a protective effect or antioxidative potential in a sodium-selenite-induced experimental cataract model. Fırat University, Elazığ, Turkey. Experimental study. Twenty-one Sprague-Dawley rat pups were randomly divided into a control group, a sodium-selenite-induced-cataract group, and an ebselen-treated group; each group contained 7 rat pups. Rats in the control group received dimethyl sulfoxide (DMSO) intraperitoneally only and rats in the sodium-selenite-induced-cataract group received 30 nmol/g body weight sodium selenite subcutaneously and DMSO intraperitoneally 10 days postpartum. Rats in the ebselen group received 30 nmol/g body weight sodium selenite subcutaneously 10 days postpartum and were treated with 5 mg/kg body weight ebselen once a day for 4 consecutive days. Cataract development was assessed weekly for 3 weeks by slitlamp examination and graded using a scale. Reduced glutathione (GSH), total nitrite, and malondialdehyde (MDA) levels in lens supernatants were measured at the end of 3 weeks. In the control group, all lenses were clear. In the ebselen-treated group, the mean cataract stage was significantly lower than in the sodium-selenite-induced-cataract group (P = .022). The GSH levels were significantly lower in the sodium-selenite-induced-cataract group than in the control and ebselen groups (P < .001). The MDA levels were lower in the ebselen group than in the sodium-selenite-induced-cataract group (P < .001). The mean total nitrite level was significantly lower in the sodium-selenite-induced-cataract group than in the ebselen group (P = .001). Ebselen had a protective effect on cataract development in a sodium-selenite-induced experimental model. The protective effect of ebselen appears to be due to inhibition of oxidative stress. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Protective effects from Houttuynia cordata aqueous extract against acetaminophen-induced liver injury.

    PubMed

    Chen, Wei-Ting; Yang, Chieh-Ling; Yin, Mei-Chin

    2014-01-01

    Protective effects of Houttuynia cordata aqueous extract (HCAE) against acetaminophen-induced hepatotoxicity in Balb/cA mice were examined. HCAE, at 1 or 2 g/L, was added into the drinking water for 4 weeks. Acute liver injury was induced by acetaminophen treatment intraperitoneally (350 mg/kg body weight). Acetaminophen treatment significantly depleted hepatic glutathione (GSH) content, increased hepatic malonyldialdehyde (MDA), reactive oxygen species (ROS) and oxidized glutathione (GSSG) levels, and decreased hepatic activity of glutathione peroxidase (GPX), catalase and superoxide dismutase (SOD) ( p <0.05). The pre-intake of HCAE alleviated acetaminophen-induced oxidative stress by retaining GSH content, decreasing MDA, ROS and GSSG production, and maintaining activity of GPX, catalase and SOD in liver ( p <0.05). The pre-intake of HCAE also significantly lowered acetaminophen-induced increase in cytochrome P450 2E1 activity ( p <0.05). Acetaminophen treatment increased hepatic release of interleukin (IL)-6, IL-10, tumor necrosis factor (TNF)-alpha and monocyte chemoattractant protein-1 ( p <0.05). HCAE intake significantly diminished acetaminophen-induced elevation of these cytokines ( p <0.05). These results support that HCAE could provide hepato-protection.

  8. Intramuscular delivery of adenovirus serotype 5 vector expressing humanized protective antigen induces rapid protection against anthrax that may bypass intranasally originated preexisting adenovirus immunity.

    PubMed

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; Yi, Shaoqiong; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie; Hou, Lihua; Chen, Wei

    2014-02-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a single dose of 10⁸ infectious units of Ad5-PAopt achieved 100% protection from challenge with 10 times the 50% lethal dose (LD₅₀) of anthrax lethal toxin 7 days after vaccination. Although preexisting intranasally induced immunity to Ad5 slightly weakened the humoral and cellular immune responses to Ad5-PAopt via intramuscular inoculation, 100% protection was achieved 15 days after vaccination in Fisher 344 rats. The protective efficacy conferred by intramuscular vaccination in the presence of preexisting intranasally induced immunity was significantly better than that of intranasal delivery of Ad5-PAopt and intramuscular injection with recombinant PA and aluminum adjuvant without preexisting immunity. As natural Ad5 infection often occurs via the mucosal route, the work here largely illuminates that intramuscular inoculation with Ad5-PAopt can overcome the negative effects of immunity induced by prior adenovirus infection and represents an efficient approach for protecting against emerging anthrax.

  9. Intramuscular Delivery of Adenovirus Serotype 5 Vector Expressing Humanized Protective Antigen Induces Rapid Protection against Anthrax That May Bypass Intranasally Originated Preexisting Adenovirus Immunity

    PubMed Central

    Wu, Shipo; Zhang, Zhe; Yu, Rui; Zhang, Jun; Liu, Ying; Song, Xiaohong; Yi, Shaoqiong; Liu, Ju; Chen, Jianqin; Yin, Ying; Xu, Junjie

    2014-01-01

    Developing an effective anthrax vaccine that can induce a rapid and sustained immune response is a priority for the prevention of bioterrorism-associated anthrax infection. Here, we developed a recombinant replication-deficient adenovirus serotype 5-based vaccine expressing the humanized protective antigen (Ad5-PAopt). A single intramuscular injection of Ad5-PAopt resulted in rapid and robust humoral and cellular immune responses in Fisher 344 rats. Animals intramuscularly inoculated with a single dose of 108 infectious units of Ad5-PAopt achieved 100% protection from challenge with 10 times the 50% lethal dose (LD50) of anthrax lethal toxin 7 days after vaccination. Although preexisting intranasally induced immunity to Ad5 slightly weakened the humoral and cellular immune responses to Ad5-PAopt via intramuscular inoculation, 100% protection was achieved 15 days after vaccination in Fisher 344 rats. The protective efficacy conferred by intramuscular vaccination in the presence of preexisting intranasally induced immunity was significantly better than that of intranasal delivery of Ad5-PAopt and intramuscular injection with recombinant PA and aluminum adjuvant without preexisting immunity. As natural Ad5 infection often occurs via the mucosal route, the work here largely illuminates that intramuscular inoculation with Ad5-PAopt can overcome the negative effects of immunity induced by prior adenovirus infection and represents an efficient approach for protecting against emerging anthrax. PMID:24307239

  10. Protective effects of escin against indomethacin-induced gastric ulcer in mice.

    PubMed

    Wang, Tian; Zhao, Shanshan; Wang, Yucun; Yang, Yujiao; Yao, Le; Chu, Liuxiang; Du, Hanhan; Fu, Fenghua

    2014-12-01

    Escin, a natural mixture of triterpenoid saponin isolated from the seed of the horse chestnut, is reported to have a potent antiulcer activity against ethanol-induced gastric mucosal lesions. This study investigated the possible mechanisms underlying the gastroprotective effect of escin against indomethacin-induced gastric ulcer in mice. Gastric ulceration was induced by a single intragastric administration of indomethacin (18 mg/kg). The mice underwent intragastric treatment with escin at doses of 0.45, 0.9 or 1.8 mg/kg. Gastric lesion was estimated morphometrically and histopathologically 6 h after the indomethacin administration. The antioxidative parameters in gastric mucosa were measured. Moreover, the activity of myeloperoxidase and the contents of TNF-α, P-selectin and VCAM-1 in gastric tissues were determined. The results showed that escin protected gastric tissues against indomethacin-induced gastropathy as demonstrated from a reduction in the ulcer index and an attenuation of histopathologic changes. Escin caused significant reductions of the contents of malondialdehyde, TNF-α, P-selectin, VCAM-1 and myeloperoxidase activity. The altered activities of superoxide dismutase, catalase and glutathione peroxidase in the stomach tissues were also ameliorated by escin treatment. The present study demonstrated that escin had a protective effect against indomethacin-induced gastric ulcer in mice, not only by virtue of its antioxidant potential, but also due to its anti-inflammatory effect.

  11. TVP1022 Protects Neonatal Rat Ventricular Myocytes against Doxorubicin-Induced Functional Derangements

    PubMed Central

    Berdichevski, Alexandra; Meiry, Gideon; Milman, Felix; Reiter, Irena; Sedan, Oshra; Eliyahu, Sivan; Duffy, Heather S.; Youdim, Moussa B.; Binah, Ofer

    2010-01-01

    Our recent studies demonstrated that propargylamine derivatives such as rasagiline (Azilect, Food and Drug Administration-approved anti-Parkinson drug) and its S-isomer TVP1022 protect cardiac and neuronal cell cultures against apoptotic-inducing stimuli. Studies on structure-activity relationship revealed that their neuroprotective effect is associated with the propargylamine moiety, which protects mitochondrial viability and prevents apoptosis by activating Bcl-2 and protein kinase C-ε and by down-regulating the proapoptotic protein Bax. Based on the established cytoprotective and neuroprotective efficacies of propargylamine derivatives, as well as on our recent study showing that TVP1022 attenuates serum starvation-induced and doxorubicin-induced apoptosis in neonatal rat ventricular myocytes (NRVMs), we tested the hypothesis that TVP1022 will also provide protection against doxorubicin-induced NRVM functional derangements. The present study demonstrates that pretreatment of NRVMs with TVP1022 (1 μM, 24 h) prevented doxorubicin (0.5 μM, 24 h)-induced elevation of diastolic [Ca2+]i, the slowing of [Ca2+]i relaxation kinetics, and the decrease in the rates of myocyte contraction and relaxation. Furthermore, pretreatment with TVP1022 attenuated the doxorubicin-induced reduction in the protein expression of sarco/endoplasmic reticulum calcium (Ca2+) ATPase, Na+/Ca2+ exchanger 1, and total connexin 43. Finally, TVP1022 diminished the inhibitory effect of doxorubicin on gap junctional intercellular coupling (measured by means of Lucifer yellow transfer) and on conduction velocity, the amplitude of the activation phase, and the maximal rate of activation (dv/dtmax) measured by the Micro-Electrode-Array system. In summary, our results indicate that TVP1022 acts as a novel cardioprotective agent against anthracycline cardiotoxicity, and therefore potentially can be coadmhence, the inistered with doxorubicin in the treatment of malignancies in humans. PMID:19915070

  12. Ketoconazole, an antifungal agent, protects against adiposity induced by a cafeteria diet.

    PubMed

    Campión, J; Martínez, J A

    2004-07-01

    Ketoconazole, an anti-glucocorticoid agent, is widely used in humans as an antifungal agent. It inhibits ergosterol synthesis and reduces cortisol levels in the treatment of Cushing's Syndrome. The aim of this work was to study the drug's preventive potential against adiposity induced by a high-fat cafeteria diet in rats. Female Wistar rats were fed on standard pelleted diet or cafeteria diet during 42 days in the presence or absence of an oral treatment with ketoconazole (24 mg/kg of body weight). The cafeteria diet increased energy intake and body weight. In addition, this high-fat diet increased body-fat weight and adipose tissue depots analyzed. Interestingly, ketoconazole was able to protect against increased total body fat and adipose depot enlargement induced after cafeteria-diet feeding. Moreover, ex vivo isoproterenol-induced lipolysis was reduced in adipocytes from cafeteria-fed animals; this decrease was reverted by treatment with ketoconazole. Thus, ketoconazole was able to protect against adiposity induced by a cafeteria diet, revealing an interaction between fat intake and glucocorticoids on adipose deposition.

  13. Hypoxic preconditioning protects photoreceptors against light damage independently of hypoxia inducible transcription factors in rods.

    PubMed

    Kast, Brigitte; Schori, Christian; Grimm, Christian

    2016-05-01

    Hypoxic preconditioning protects photoreceptors against light-induced degeneration preserving retinal morphology and function. Although hypoxia inducible transcription factors 1 and 2 (HIF1, HIF2) are the main regulators of the hypoxic response, photoreceptor protection does not depend on HIF1 in rods. Here we used rod-specific Hif2a single and Hif1a;Hif2a double knockout mice to investigate the potential involvement of HIF2 in rods for protection after hypoxic preconditioning. To identify potential HIF2 target genes in rods we determined the retinal transcriptome of hypoxic control and rod-specific Hif2a knockouts by RNA sequencing. We show that rods do not need HIF2 for hypoxia-induced increased survival after light exposure. The transcriptomic analysis revealed a number of genes that are potentially regulated by HIF2 in rods; among those were Htra1, Timp3 and Hmox1, candidates that are interesting due to their connection to human degenerative diseases of the retina. We conclude that neither HIF1 nor HIF2 are required in photoreceptors for protection by hypoxic preconditioning. We hypothesize that HIF transcription factors may be needed in other cells to produce protective factors acting in a paracrine fashion on photoreceptor cells. Alternatively, hypoxic preconditioning induces a rod-intrinsic response that is independent of HIF transcription factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Oxaloacetate and adipose stromal cells-conditional medium synergistically protected potassium/serum deprivation-induced neuronal apoptosis.

    PubMed

    Liu, Qingpeng; Zhao, Gang; Zhou, Changwei; Farlow, Martin R; Du, Yansheng; Xu, Guangxu; Gu, Huiying

    2017-01-01

    Adipose stromal cells conditioned media (ASC-CM) protect neurons in a variety of neuronal death models including potassium/serum deprivation-induced neuronal apoptosis. In this study, we found that ASC-CM contained glutamate oxaloacetate transaminase and its substrate, oxaloacetate (OAA) directly protected cerebellar granule neurons (CGN) from apoptosis induced by serum and potassium deprivation. Additionally, OAA inhibited serum and potassium deprivation-induced caspase 3 activation. ASC-CM and OAA in combination had a synergistic neuroprotective effect. Clearly, different from ASC-CM-induced neuroprotection, OAA-induced neuroprotection was Akt- independent but JNK-dependent. These data establish a mechanistic basis supporting that the application of ASC-CM for neuroprotective treatments could be significantly enhanced by addition of OAA. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. MK-801 and dextromethorphan block microglial activation and protect against methamphetamine-induced neurotoxicity.

    PubMed

    Thomas, David M; Kuhn, Donald M

    2005-07-19

    Methamphetamine causes long-term toxicity to dopamine nerve endings of the striatum. Evidence is emerging that microglia can contribute to the neuronal damage associated with disease, injury, or inflammation, but their role in methamphetamine-induced neurotoxicity has received relatively little attention. Lipopolysaccharide (LPS) and the neurotoxic HIV Tat protein, which cause dopamine neuronal toxicity after direct infusion into brain, cause activation of cultured mouse microglial cells as evidenced by increased expression of intracellular cyclooxygenase-2 and elevated secretion of tumor necrosis factor-alpha. MK-801, a non-competitive NMDA receptor antagonist that is known to protect against methamphetamine neurotoxicity, prevents microglial activation by LPS and HIV Tat. Dextromethorphan, an antitussive agent with NMDA receptor blocking properties, also prevents microglial activation. In vivo, MK-801 and dextromethorphan reduce methamphetamine-induced activation of microglia in striatum and they protect dopamine nerve endings against drug-induced nerve terminal damage. The present results indicate that the ability of MK-801 and dextromethorphan to protect against methamphetamine neurotoxicity is related to their common property as blockers of microglial activation.

  16. Mulberry Fruit Extract Affords Protection against Ethyl Carbamate-Induced Cytotoxicity and Oxidative Stress.

    PubMed

    Chen, Wei; Li, Yuting; Bao, Tao; Gowd, Vemana

    2017-01-01

    Ethyl carbamate (EC) is a food and environmental toxicant and is a cause of concern for human exposure. Several studies indicated that EC-induced toxicity was associated with oxidative stress. Mulberry fruits are reported to have a wide range of bioactive compounds and pharmacological activities. The present study was therefore aimed to investigate the protective property of mulberry fruit extract (MFE) on EC-induced cytotoxicity and oxidative stress. Chemical composition analysis showed that total phenolic content and total flavonoid content in MFE were 502.43 ± 5.10 and 219.12 ± 4.45 mg QE/100 g FW. Cyanidin -3-O- glucoside and cyanidin -3-O- rutinoside were the major anthocyanins in MFE. In vitro antioxidant studies (DPPH, ABTS, and FRAP assays) jointly exhibited the potent antioxidant capacity of MFE. Further study indicated that MFE protected human liver HepG2 cells from EC-induced cytotoxicity by scavenging overproduced cellular ROS. EC treatment promoted intracellular glutathione (GSH) depletion and caused mitochondrial membrane potential (MMP) collapse, as well as mitochondrial membrane lipid peroxidation, whereas MFE pretreatment significantly inhibited GSH depletion and restored the mitochondrial membrane function. Overall, our study suggested that polyphenolic-rich MFE could afford a potent protection against EC-induced cytotoxicity and oxidative stress.

  17. Mulberry Fruit Extract Affords Protection against Ethyl Carbamate-Induced Cytotoxicity and Oxidative Stress

    PubMed Central

    Li, Yuting; Bao, Tao; Gowd, Vemana

    2017-01-01

    Ethyl carbamate (EC) is a food and environmental toxicant and is a cause of concern for human exposure. Several studies indicated that EC-induced toxicity was associated with oxidative stress. Mulberry fruits are reported to have a wide range of bioactive compounds and pharmacological activities. The present study was therefore aimed to investigate the protective property of mulberry fruit extract (MFE) on EC-induced cytotoxicity and oxidative stress. Chemical composition analysis showed that total phenolic content and total flavonoid content in MFE were 502.43 ± 5.10 and 219.12 ± 4.45 mg QE/100 g FW. Cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside were the major anthocyanins in MFE. In vitro antioxidant studies (DPPH, ABTS, and FRAP assays) jointly exhibited the potent antioxidant capacity of MFE. Further study indicated that MFE protected human liver HepG2 cells from EC-induced cytotoxicity by scavenging overproduced cellular ROS. EC treatment promoted intracellular glutathione (GSH) depletion and caused mitochondrial membrane potential (MMP) collapse, as well as mitochondrial membrane lipid peroxidation, whereas MFE pretreatment significantly inhibited GSH depletion and restored the mitochondrial membrane function. Overall, our study suggested that polyphenolic-rich MFE could afford a potent protection against EC-induced cytotoxicity and oxidative stress. PMID:28819542

  18. E-p-Methoxycinnamic acid protects cultured neuronal cells against neurotoxicity induced by glutamate

    PubMed Central

    Kim, So Ra; Sung, Sang Hyun; Jang, Young Pyo; Markelonis, George J; Oh, Tae H; Kim, Young Choong

    2002-01-01

    We previously reported that four new phenylpropanoid glycosides and six known cinnamate derivatives isolated from roots of Scrophularia buergeriana Miquel (Scrophulariaceae) protected cultured cortical neurons from neurotoxicity induced by glutamate. Here, we have investigated the structure-activity relationships in the phenylpropanoids using our primary culture system. The α,β-unsaturated ester moiety and the para-methoxy group in the phenylpropanoids appeared to play a vital role in neuroprotective activity. This suggested that E-p-methoxycinnamic acid (E-p-MCA) might be a crucial component for their neuroprotective activity within the phenylpropanoid compounds. E-p-MCA significantly attenuated glutamate-induced neurotoxicity when added prior to an excitotoxic glutamate challenge. The neuroprotective activity of E-p-MCA appeared to be more effective in protecting neurons against neurotoxicity induced by NMDA than from that induced by kainic acid. E-p-MCA inhibited the binding of [propyl-2,3-3H]-CGP39653 and [2-3H]-glycine to their respective binding sites on rat cortical membranes. However, even high concentrations of E-p-MCA failed to inhibit completely [propyl-2,3-3H]-CGP39653 and [2-3H]-glycine binding. Indeed, E-p-MCA diminished the calcium influx that routinely accompanies glutamate-induced neurotoxicity, and inhibited the subsequent overproduction of nitric oxide and cellular peroxide in glutamate-injured neurons. Thus, our results suggest that E-p-MCA exerts significant protective effects against neurodegeneration induced by glutamate in primary cultures of cortical neurons by an action suggestive of partial glutamatergic antagonism. PMID:11877337

  19. Quercitrin protects skin from UVB-induced oxidative damage.

    PubMed

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Cocoa flavonoids protect hepatic cells against high-glucose-induced oxidative stress: relevance of MAPKs.

    PubMed

    Cordero-Herrera, Isabel; Martín, María Angeles; Goya, Luis; Ramos, Sonia

    2015-04-01

    Oxidative stress plays a main role in the pathogenesis of type 2 diabetes mellitus. Cocoa and (-)-epicatechin (EC), a main cocoa flavanol, have been suggested to exert beneficial effects in type 2 diabetes mellitus because of their protective effects against oxidative stress and insulin-like properties. In this study, the protective effect of EC and a cocoa phenolic extract (CPE) against oxidative stress induced by a high-glucose challenge, which causes insulin resistance, was investigated on hepatic HepG2 cells. Oxidative status, phosphorylated mitogen-activated protein kinases (MAPKs), nuclear factor E2 related factor 2 (Nrf2) and p-(Ser)-IRS-1 expression, and glucose uptake were evaluated. EC and CPE regulated antioxidant enzymes and activated extracellular-regulated kinase and Nrf2. EC and CPE pre-treatment prevented high-glucose-induced antioxidant defences and p-MAPKs, and maintained Nrf2 stimulation. The presence of selective MAPK inhibitors induced changes in redox status, glucose uptake, p-(Ser)- and total IRS-1 levels that were observed in CPE-mediated protection. EC and CPE recovered redox status of insulin-resistant HepG2 cells, suggesting that the functionality in EC- and CPE-treated cells was protected against high-glucose-induced oxidative insult. CPE beneficial effects on redox balance and insulin resistance were mediated by targeting MAPKs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents.

    PubMed

    Albers, D S; Sonsalla, P K

    1995-12-01

    Neurotoxic doses of methamphetamine (METH) can cause hyperthermia in experimental animals. Damage sustained to dopaminergic nerve terminals by this stimulant can be reduced by environmental cooling or by pharmacological manipulation which attenuates the hyperthermia. Many pharmacological agents with very diverse actions protect against METH-induced neuropathology. Several of these compounds, as well as drugs which do not protect, were investigated to determine if there was a relationship between protection and METH-induced hyperthermia. Mice received METH with or without concurrent administration of other drugs and core (i.e., colonic) temperature was monitored during treatment. The animals were sacrificed > or = 5 days later and neostriatal tyrosine hydroxylase activity and dopamine were measured. Core temperature was significantly elevated (> or = 2 degrees C) in mice treated with doses of METH which produced > or = 90% losses in striatal dopamine but not in mice less severally affected (only 50% loss of dopamine). Concurrent treatment of mice with METH and pharmacological agents which protected partially or completely from METH-induced toxicity also prevented the hyperthermic response (i.e., dopamine receptor antagonists, fenfluramine, dizocilpine, alpha-methyl-p-tyrosine, phenytoin, aminooxyacetic acid and propranol). These findings are consistent with the hypothesis that the hyperthermia produced by METH contributes to its neuropathology. However, studies with reserpine, a compound which dramatically lowers core temperature, demonstrated that hyperthermia per se is not a requirement for METH-induced neurotoxicity. Although core temperature was elevated in reserpinized mice treated with METH as compared with reserpinized control mice, their temperatures remained significantly lower than in nonreserpinized control mice. However, the hypothermic state produced in the reserpinized mice did not provide protection from METH-induced toxicity. These data demonstrate

  2. Centella asiatica Leaf Extract Protects Against Indomethacin-Induced Gastric Mucosal Injury in Rats.

    PubMed

    Zheng, Hong-Mei; Choi, Myung-Joo; Kim, Jae Min; Cha, Kyung Hoi; Lee, Kye Wan; Park, Yu Hwa; Hong, Soon-Sun; Lee, Don Haeng

    2016-01-01

    The present study evaluated the protective effect of Centella asiatica (gotu kola) leaf extract (CAE) against indomethacin (IND)-induced gastric mucosal injury in rats. Gastric mucosal injury was induced by the oral administration of IND to the rats after a 24 h fast. CAE (50 or 250 mg/kg) or lansoprazole (a reference drug) was orally administrated 30 min before the IND administration, and 5 h later, the stomachs were removed to quantify the lesions. Orally administered CAE significantly reduced IND-induced gastric injury. The histopathological observations (hematoxylin-eosin and Periodic acid-Schiff staining) confirmed the protection against gastric mucosal injury. Also, CAE decreased the malondialdehyde content compared to the control group. Moreover, pretreatment with CAE resulted in a significant reduction in the elevated expression of tumor necrosis factor, Cyclooxygenase (COX)-2, and inducible nitric oxide synthase. These results suggested that CAE possesses gastroprotective effects against IND-induced gastric mucosal injury, which could be attributed to its ability to inhibit lipid peroxidation and stimulate gastric mucus secretion in the rat gastric mucosa.

  3. Protective effects of Moringa oleifera Lam. leaves against arsenic-induced toxicity in mice

    PubMed Central

    Sheikh, Afzal; Yeasmin, Fouzia; Agarwal, Smita; Rahman, Mashiur; Islam, Khairul; Hossain, Ekhtear; Hossain, Shakhawoat; Karim, Md Rezaul; Nikkon, Farjana; Saud, Zahangir Alam; Hossain, Khaled

    2014-01-01

    Objective To evaluate the protective role of leaves of Moringa oleifera (M. oleifera) Lam. against arsenic-induced toxicity in mice. Methods Swiss albino male mice were divided into four groups. The first group was used as non-treated control group while, the second, third, and fourth groups were treated with M. oleifera leaves (50 mg/kg body weight per day), sodium arsenite (10 mg/kg body weight per day) and sodium arsenite plus M. oleifera leaves, respectively. Serum indices related to cardiac, liver and renal functions were analyzed to evaluate the protective effect of Moringa leaves on arsenic-induced effects in mice. Results It revealed that food supplementation of M. oleifera leaves abrogated the arsenic-induced elevation of triglyceride, glucose, urea and the activities of alkaline phospatase, aspartate aminotransferase and alanine aminotransferase in serum. M. oleifera leaves also prevented the arsenic-induced perturbation of serum butyryl cholinesterase activity, total cholesterol and high density lipoprotein cholesterol. Conclusions The results indicate that the leaves of M. oleifera may be useful in reducing the effects of arsenic-induced toxicity. PMID:25183111

  4. 19-Hydroxyeicosatetraenoic acid and isoniazid protect against angiotensin II-induced cardiac hypertrophy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkhatali, Samya; El-Sherbeni, Ahmed A.; Elshenawy, Osama H.

    We have recently demonstrated that 19-hydroxyeicosatetraenoic acid (19-HETE) is the major subterminal-HETE formed in the heart tissue, and its formation was decreased during cardiac hypertrophy. In the current study, we examined whether 19-HETE confers cardioprotection against angiotensin II (Ang II)-induced cardiac hypertrophy. The effect of Ang II, with and without 19-HETE (20 μM), on the development of cellular hypertrophy in cardiomyocyte RL-14 cells was assessed by real-time PCR. Also, cardiac hypertrophy was induced in Sprague–Dawley rats by Ang II, and the effect of increasing 19-HETE by isoniazid (INH; 200 mg/kg/day) was assessed by heart weight and echocardiography. Also, alterations inmore » cardiac cytochrome P450 (CYP) and their associated arachidonic acid (AA) metabolites were determined by real-time PCR, Western blotting and liquid-chromatography–mass-spectrometry. Our results demonstrated that 19-HETE conferred a cardioprotective effect against Ang II-induced cellular hypertrophy in vitro, as indicated by the significant reduction in β/α-myosin heavy chain ratio. In vivo, INH improved heart dimensions, and reversed the increase in heart weight to tibia length ratio caused by Ang II. We found a significant increase in cardiac 19-HETE, as well as a significant reduction in AA and its metabolite, 20-HETE. In conclusion, 19-HETE, incubated with cardiomyocytes in vitro or induced in the heart by INH in vivo, provides cardioprotection against Ang II-induced hypertrophy. This further confirms the role of CYP, and their associated AA metabolites in the development of cardiac hypertrophy. - Highlights: • We found 19-hydroxy arachidonic acid to protect cardiomyocytes from hypertrophy. • We validated the use of isoniazid as a cardiac 19-hydroxy arachidonic acid inducer. • We found isoniazid to increase protective and inhibit toxic eicosanoides. • We found isoniazid to protect against angiotensin-induced cardiac hypertrophy. • This will help

  5. Protective effect of magnolol on lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Ni, Yun Feng; Jiang, Tao; Cheng, Qing Shu; Gu, Zhong Ping; Zhu, Yi Fang; Zhang, Zhi Pei; Wang, Jian; Yan, Xiao Long; Wang, Wu Ping; Ke, Chang Kang; Han, Yong; Li, Xiao Fei

    2012-12-01

    Magnolol, a tradition Chinese herb, displays an array of activities including antifungal, antibacterial, and antioxidant effects. To investigate the protective effect of magnolol on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. ALI was induced in mice by intratracheal instillation of LPS (1 mg/kg). The mice received intratracheal instillation of magnolol (5 μg/kg) 30 min before LPS administration. Pulmonary histological changes were evaluated by hematoxylin-eosin stain and lung wet/dry weight ratios were observed. Concentrations of tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and myeloperoxidase (MPO) activity were measured by enzyme-linked immunosorbent assay. Expression of cyclooxygenase (COX)-2 in lung tissues was determined by Western blot analysis. Magnolol pretreatment significantly attenuated the severity of lung injury and inhibited the production of TNF-α and IL-1β in mice with ALI. After LPS administration, the lung wet/dry weight ratios, as an index of lung edema, and MPO activity were also markedly reduced by magnolol pretreatment. The expression of COX-2 was significantly suppressed by magnolol pretreatment. Magnolol potently protected against LPS-induced ALI and the protective effects of magnolol may attribute partly to the suppression of COX-2 expression.

  6. Rosiglitazone protects human neuroblastoma SH-SY5Y cells against acetaldehyde-induced cytotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Tae Woo; Lee, Ji Young; Shim, Wan Sub

    2006-02-03

    Acetaldehyde, an inhibitor of mitochondrial function, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome with elevation of the intracellular reactive oxygen species level and apoptosis. Rosiglitazone, a peroxisome proliferator-activated receptor-{gamma} agonist, has been known to show various non-hypoglycemic effects, including anti-inflammatory, anti-atherogenic, and anti-apoptotic. In this study, we investigated the protective effects of rosiglitazone on acetaldehyde-induced apoptosis in human neuroblastoma SH-SY5Y cells and attempted to examine its mechanism. Acetaldehyde-induced apoptosis was moderately reversed by rosiglitazone treatment. Our results suggest that the protective effects of rosiglitazone on acetaldehyde-induced apoptosis may be ascribed to abilitymore » to induce the expression of anti-oxidant enzymes and to regulate Bcl-2 and Bax expression. These data indicate that rosiglitazone may provide a useful therapeutic strategy for the prevention of progressive neurodegenerative disease such as Parkinson's disease.« less

  7. H2S protects against methionine-induced oxidative stress in brain endothelial cells.

    PubMed

    Tyagi, Neetu; Moshal, Karni S; Sen, Utpal; Vacek, Thomas P; Kumar, Munish; Hughes, William M; Kundu, Soumi; Tyagi, Suresh C

    2009-01-01

    Homocysteine (Hcy) causes cerebrovascular dysfunction by inducing oxidative stress. However, to date, there are no strategies to prevent Hcy-induced oxidative damage. Hcy is an H2S precursor formed from methionine (Met) metabolism. We aimed to investigate whether H2S ameliorated Met-induced oxidative stress in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to Met treatment in the presence or absence of NaHS (donor of H2S). Met-induced cell toxicity increased the levels of free radicals in a concentration-dependent manner. Met increased NADPH-oxidase-4 (NOX-4) expression and mitigated thioredxion-1(Trx-1) expression. Pretreatment of bEnd3 with NaHS (0.05 mM) attenuated the production of free radicals in the presence of Met and protected the cells from oxidative damage. Furthermore, NaHS enhanced inhibitory effects of apocynin, N-acetyl-l-cysteine (NAC), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), Nomega-nitro-l-arginine methyl ester (L-NAME) on ROS production and redox enzymes levels induced by Met. In conclusion, the administration of H2S protected the cells from oxidative stress induced by hyperhomocysteinemia (HHcy), which suggested that NaHS/H2S may have therapeutic potential against Met-induced oxidative stress.

  8. Suramin protects from cisplatin-induced acute kidney injury

    PubMed Central

    Dupre, Tess V.; Doll, Mark A.; Shah, Parag P.; Sharp, Cierra N.; Kiefer, Alex; Scherzer, Michael T.; Saurabh, Kumar; Saforo, Doug; Siow, Deanna; Casson, Lavona; Arteel, Gavin E.; Jenson, Alfred Bennett; Megyesi, Judit; Schnellmann, Rick G.; Beverly, Levi J.

    2015-01-01

    Cisplatin, a commonly used cancer chemotherapeutic, has a dose-limiting side effect of nephrotoxicity. Approximately 30% of patients administered cisplatin suffer from kidney injury, and there are limited treatment options for the treatment of cisplatin-induced kidney injury. Suramin, which is Federal Drug Administration-approved for the treatment of trypanosomiasis, improves kidney function after various forms of kidney injury in rodent models. We hypothesized that suramin would attenuate cisplatin-induced kidney injury. Suramin treatment before cisplatin administration reduced cisplatin-induced decreases in kidney function and injury. Furthermore, suramin attenuated cisplatin-induced expression of inflammatory cytokines and chemokines, endoplasmic reticulum stress, and apoptosis in the kidney cortex. Treatment of mice with suramin 24 h after cisplatin also improved kidney function, suggesting that the mechanism of protection is not by inhibition of tubular cisplatin uptake or its metabolism to nephrotoxic species. If suramin is to be used in the context of cancer, then it cannot prevent cisplatin-induced cytotoxicity of cancer cells. Suramin did not alter the dose-response curve of cisplatin in lung adenocarcinoma cells in vitro. In addition, suramin pretreatment of mice harboring lung adenocarcinomas did not alter the initial cytotoxic effects of cisplatin (DNA damage and apoptosis) on tumor cells. These results provide evidence that suramin has potential as a renoprotective agent for the treatment/prevention of cisplatin-induced acute kidney injury and justify future long-term preclinical studies using cotreatment of suramin and cisplatin in mouse models of cancer. PMID:26661653

  9. Quercitrin protects skin from UVB-induced oxidative damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Yuanqin; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY; Li, Wenqi

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidativemore » damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.« less

  10. Protective effects of pseudoginsenoside-F11 on methamphetamine-induced neurotoxicity in mice.

    PubMed

    Wu, Chun Fu; Liu, Yan Li; Song, Ming; Liu, Wen; Wang, Jin Hui; Li, Xian; Yang, Jing Yu

    2003-08-01

    In the present study, pseudoginsenoside-F(11) (PF(11)), a saponin that existed in American ginseng, was studied on its protective effect on methamphetamine (MA)-induced behavioral and neurochemical toxicities in mice. MA was intraperitoneally administered at the dose of 10 mg/kg four times at 2-h intervals, and PF(11) was orally administered at the doses of 4 and 8 mg/kg two times at 4-h intervals, 60 min prior to MA administration. The results showed that PF(11) did not significantly influence, but greatly ameliorated, the anxiety-like behavior induced by MA in the light-dark box task. In the forced swimming task, PF(11) significantly shortened the prolonged immobility time induced by MA. In the appetitively motivated T-maze task, PF(11) greatly shortened MA-induced prolonged latency and decreased the error counts. Similar results were also observed in the Morris water maze task. PF(11) significantly shortened the escape latency prolonged by MA. There were significant decreases in the contents of dopamine (DA), 3,4-dihydroxyphenacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoacetic acid (5-HIAA) in the brain of MA-treated mice. PF(11) could partially, but significantly, antagonize MA-induced decreases of DA. The above results demonstrate that PF(11) is effective in protection of MA-induced neurotoxicity and also suggest that natural products, such as ginseng, might be potential candidates for the prevention and treatment of the neurological disorders induced by MA abuse.

  11. Triglyceride accumulation protects against fatty acid-induced lipotoxicity

    PubMed Central

    Listenberger, Laura L.; Han, Xianlin; Lewis, Sarah E.; Cases, Sylvaine; Farese, Robert V.; Ory, Daniel S.; Schaffer, Jean E.

    2003-01-01

    Excess lipid accumulation in non-adipose tissues is associated with insulin resistance, pancreatic β-cell apoptosis and heart failure. Here, we demonstrate in cultured cells that the relative toxicity of two common dietary long chain fatty acids is related to channeling of these lipids to distinct cellular metabolic fates. Oleic acid supplementation leads to triglyceride accumulation and is well tolerated, whereas excess palmitic acid is poorly incorporated into triglyceride and causes apoptosis. Unsaturated fatty acids rescue palmitate-induced apoptosis by channeling palmitate into triglyceride pools and away from pathways leading to apoptosis. Moreover, in the setting of impaired triglyceride synthesis, oleate induces lipotoxicity. Our findings support a model of cellular lipid metabolism in which unsaturated fatty acids serve a protective function against lipotoxicity though promotion of triglyceride accumulation. PMID:12629214

  12. Heme Oxygenase-1 Protects Corexit 9500A-Induced Respiratory Epithelial Injury across Species

    PubMed Central

    Oliva, Octavio M.; Karki, Suman; Surolia, Ranu; Wang, Zheng; Watson, R. Douglas; Thannickal, Victor J.; Powell, Mickie; Watts, Stephen; Kulkarni, Tejaswini; Batra, Hitesh; Bolisetty, Subhashini; Agarwal, Anupam; Antony, Veena B.

    2015-01-01

    The effects of Corexit 9500A (CE) on respiratory epithelial surfaces of terrestrial mammals and marine animals are largely unknown. This study investigated the role of CE-induced heme oxygenase-1 (HO-1), a cytoprotective enzyme with anti-apoptotic and antioxidant activity, in human bronchial airway epithelium and the gills of exposed aquatic animals. We evaluated CE-mediated alterations in human airway epithelial cells, mice lungs and gills from zebrafish and blue crabs. Our results demonstrated that CE induced an increase in gill epithelial edema and human epithelial monolayer permeability, suggesting an acute injury caused by CE exposure. CE induced the expression of HO-1 as well as C-reactive protein (CRP) and NADPH oxidase 4 (NOX4), which are associated with ROS production. Importantly, CE induced caspase-3 activation and subsequent apoptosis of epithelial cells. The expression of the intercellular junctional proteins, such as tight junction proteins occludin, zonula occludens (ZO-1), ZO-2 and adherens junctional proteins E-cadherin and Focal Adhesion Kinase (FAK), were remarkably inhibited by CE, suggesting that these proteins are involved in CE-induced increased permeability and subsequent apoptosis. The cytoskeletal protein F-actin was also disrupted by CE. Treatment with carbon monoxide releasing molecule-2 (CORM-2) significantly inhibited CE-induced ROS production, while the addition of HO-1 inhibitor, significantly increased CE-induced ROS production and apoptosis, suggesting a protective role of HO-1 or its reaction product, CO, in CE-induced apoptosis. Using HO-1 knockout mice, we further demonstrated that HO-1 protected against CE-induced inflammation and cellular apoptosis and corrected CE-mediated inhibition of E-cadherin and FAK. These observations suggest that CE activates CRP and NOX4-mediated ROS production, alters permeability by inhibition of junctional proteins, and leads to caspase-3 dependent apoptosis of epithelial cells, while HO-1 and its

  13. The first structure of a cold-active catalase from Vibrio salmonicida at 1.96 A reveals structural aspects of cold adaptation.

    PubMed

    Riise, Ellen Kristin; Lorentzen, Marit Sjo; Helland, Ronny; Smalås, Arne O; Leiros, Hanna-Kirsti S; Willassen, Nils Peder

    2007-02-01

    The cold-adapted catalase from the fish-pathogenic bacterium Vibrio salmonicida (VSC) has recently been characterized and shown to be two times more catalytically efficient compared with catalase from the mesophilic human pathogen Proteus mirabilis [PMC; Lorentzen et al. (2006), Extremophiles, 10, 427-440]. VSC is also less temperature-stable, with a half-life of 5 min at 333 K compared with 50 min for PMC. This was the background for solving the crystal structure of the cold-adapted VSC to 1.96 A and performing an extensive structural comparison of VSC and PMC. The comparison revealed that the entrance (the major channel) leading to the catalytically essential haem group, is locally more flexible and slightly wider in VSC. This might explain the enhanced catalytic efficiency of the nearly diffusion-controlled degradation of hydrogen peroxide into water and molecular oxygen in VSC. The reduced thermal stability of the cold-adapted VSC may be explained by a reduced number of ion-pair networks. The four C-terminal alpha-helices are displaced in the structures, probably owing to missing ionic interactions in VSC compared with PMC, and this is postulated as an initiation site for unfolding the cold-adapted enzyme. VSC is the first crystal structure reported of a cold-adapted monofunctional haem-containing catalase.

  14. Cebpd Is Essential for Gamma-Tocotrienol Mediated Protection against Radiation-Induced Hematopoietic and Intestinal Injury

    PubMed Central

    Banerjee, Sudip; Shah, Sumit K.; Melnyk, Stepan B.; Hauer-Jensen, Martin

    2018-01-01

    Gamma-tocotrienol (GT3) confers protection against ionizing radiation (IR)-induced injury. However, the molecular targets that underlie the protective functions of GT3 are not yet known. We have reported that mice lacking CCAAT enhancer binding protein delta (Cebpd−/−) display increased mortality to IR due to injury to the hematopoietic and intestinal tissues and that Cebpd protects from IR-induced oxidative stress and cell death. The purpose of this study was to investigate whether Cebpd mediates the radio protective functions of GT3. We found that GT3-treated Cebpd−/− mice showed partial recovery of white blood cells compared to GT3-treated Cebpd+/+ mice at 2 weeks post-IR. GT3-treated Cebpd−/− mice showed an increased loss of intestinal crypt colonies, which correlated with increased expression of inflammatory cytokines and chemokines, increased levels of oxidized glutathione (GSSG), S-nitrosoglutathione (GSNO) and 3-nitrotyrosine (3-NT) after exposure to IR compared to GT3-treated Cebpd+/+ mice. Cebpd is induced by IR as well as a combination of IR and GT3 in the intestine. Studies have shown that granulocyte-colony stimulating factor (G-CSF), mediates the radioprotective functions of GT3. Interestingly, we found that IR alone as well as the combination of IR and GT3 caused robust augmentation of plasma G-CSF in both Cebpd+/+ and Cebpd−/− mice. These results identify a novel role for Cebpd in GT3-mediated protection against IR-induced injury, in part via modulation of IR-induced inflammation and oxidative/nitrosative stress, which is independent of G-CSF. PMID:29642403

  15. Inducible Lung Epithelial Resistance Requires Multisource Reactive Oxygen Species Generation To Protect against Viral Infections

    PubMed Central

    2018-01-01

    ABSTRACT Viral pneumonias cause profound worldwide morbidity, necessitating novel strategies to prevent and treat these potentially lethal infections. Stimulation of intrinsic lung defenses via inhalation of synergistically acting Toll-like receptor (TLR) agonists protects mice broadly against pneumonia, including otherwise-lethal viral infections, providing a potential opportunity to mitigate infectious threats. As intact lung epithelial TLR signaling is required for the inducible resistance and as these cells are the principal targets of many respiratory viruses, the capacity of lung epithelial cells to be therapeutically manipulated to function as autonomous antiviral effectors was investigated. Our work revealed that mouse and human lung epithelial cells could be stimulated to generate robust antiviral responses that both reduce viral burden and enhance survival of isolated cells and intact animals. The antiviral protection required concurrent induction of epithelial reactive oxygen species (ROS) from both mitochondrial and dual oxidase sources, although neither type I interferon enrichment nor type I interferon signaling was required for the inducible protection. Taken together, these findings establish the sufficiency of lung epithelial cells to generate therapeutically inducible antiviral responses, reveal novel antiviral roles for ROS, provide mechanistic insights into inducible resistance, and may provide an opportunity to protect patients from viral pneumonia during periods of peak vulnerability. PMID:29764948

  16. Interface-Induced Zeeman-Protected Superconductivity in Ultrathin Crystalline Lead Films

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Wang, Ziqiao; Zhang, Xuefeng; Liu, Chaofei; Liu, Yongjie; Zhou, Zhimou; Wang, Junfeng; Wang, Qingyan; Liu, Yanzhao; Xi, Chuanying; Tian, Mingliang; Liu, Haiwen; Feng, Ji; Xie, X. C.; Wang, Jian

    2018-04-01

    Two-dimensional (2D) superconducting systems are of great importance for exploring exotic quantum physics. The recent development of fabrication techniques has stimulated studies of high-quality single-crystalline 2D superconductors, where intrinsic properties give rise to unprecedented physical phenomena. Here, we report the observation of Zeeman-type spin-orbit interaction protected superconductivity (Zeeman-protected superconductivity) in 4-monolayer (ML) to 6-ML crystalline Pb films grown on striped incommensurate Pb layers on Si(111) substrates by molecular beam epitaxy. An anomalously large in-plane critical field far beyond the Pauli limit is detected, which can be attributed to the Zeeman-protected superconductivity due to the in-plane inversion symmetry breaking at the interface. Our work demonstrates that, in superconducting heterostructures, the interface can induce Zeeman-type spin-orbit interactions and modulate the superconductivity.

  17. Dietary selenium protects adiponectin knockout mice against chronic inflammation induced colon cancer.

    PubMed

    Saxena, Arpit; Fayad, Raja; Kaur, Kamaljeet; Truman, Samantha; Greer, Julian; Carson, James A; Chanda, Anindya

    2017-04-03

    Selenium (Se) is an essential dietary micronutrient that has been examined for protection against different types of cancers including colon cancer. Despite an established inverse association between Se and chronic inflammation induced colon cancer (CICC), the mechanistic understanding of Se's protective effects requires additional in-vivo studies using preclinical animal models of CICC. Adiponectin (APN) is an adipocytokine that is protective against CICC as well. However, its role in the anti-mutagenic effects of the Se-diet remains unknown. To address this knowledge gap, here we examine the ability of dietary Se in reducing CICC in APN knockout mice (KO) and its wild-type C57BL/6. CICC was induced with the colon cancer agent 1,2 dimethyl hydrazine (DMH) along with dextran sodium sulfate (DSS). Se-enhanced diet increased selenoproteins, Gpx-1 and Gpx-2, in the colon tissues, thereby reducing oxidative stress. Se-mediated reduction of CICC was evident from the histopathological studies in both mouse models. In both mice, reduction in inflammation and tumorigenesis associated well with reduced p65 phosphorylation and elevated 53 phosphorylation. Finally, we show that in both models Se-administration promotes goblet cell differentiation with a concomitant increase in the levels of associated proteins, Muc-2 and Math-1. Our findings suggest that Se's protection against CICC involves both colonic epithelial protection and anti-tumor effects that are independent of APN.

  18. Active immunity induced by passive IgG post-exposure protection against ricin.

    PubMed

    Hu, Charles Chen; Yin, Junfei; Chau, Damon; Cherwonogrodzky, John W; Hu, Wei-Gang

    2014-01-21

    Therapeutic antibodies can confer an instant protection against biothreat agents when administered. In this study, intact IgG and F(ab')2 from goat anti-ricin hyperimmune sera were compared for the protection against lethal ricin mediated intoxication. Similar ricin-binding affinities and neutralizing activities in vitro were observed between IgG and F(ab')2 when compared at the same molar concentration. In a murine ricin intoxication model, both IgG and F(ab')2 could rescue 100% of the mice by one dose (3 nmol) administration of antibodies 1 hour after 5 × LD50 ricin challenge. Nine days later, when the rescued mice received a second ricin challenge (5 × LD50), only the IgG-treated mice survived; the F(ab')2-treated mice did not. The experimental design excluded the possibility of residual goat IgG responsible for the protection against the second ricin challenge. Results confirmed that the active immunity against ricin in mice was induced quickly following the passive delivery of a single dose of goat IgG post-exposure. Furthermore, it was demonstrated that the induced active immunity against ricin in mice lasted at least 5 months. Therefore, passive IgG therapy not only provides immediate protection to the victim after ricin exposure, but also elicits an active immunity against ricin that subsequently results in long term protection.

  19. Active Immunity Induced by Passive IgG Post-Exposure Protection against Ricin

    PubMed Central

    Hu, Charles Chen; Yin, Junfei; Chau, Damon; Cherwonogrodzky, John W.; Hu, Wei-Gang

    2014-01-01

    Therapeutic antibodies can confer an instant protection against biothreat agents when administered. In this study, intact IgG and F(ab’)2 from goat anti-ricin hyperimmune sera were compared for the protection against lethal ricin mediated intoxication. Similar ricin-binding affinities and neutralizing activities in vitro were observed between IgG and F(ab’)2 when compared at the same molar concentration. In a murine ricin intoxication model, both IgG and F(ab’)2 could rescue 100% of the mice by one dose (3 nmol) administration of antibodies 1 hour after 5 × LD50 ricin challenge. Nine days later, when the rescued mice received a second ricin challenge (5 × LD50), only the IgG-treated mice survived; the F(ab’)2-treated mice did not. The experimental design excluded the possibility of residual goat IgG responsible for the protection against the second ricin challenge. Results confirmed that the active immunity against ricin in mice was induced quickly following the passive delivery of a single dose of goat IgG post-exposure. Furthermore, it was demonstrated that the induced active immunity against ricin in mice lasted at least 5 months. Therefore, passive IgG therapy not only provides immediate protection to the victim after ricin exposure, but also elicits an active immunity against ricin that subsequently results in long term protection. PMID:24451844

  20. Protective effects of apomorphine against zinc-induced neurotoxicity in cultured cortical neurons.

    PubMed

    Hara, Hirokazu; Maeda, Asuka; Kamiya, Tetsuro; Adachi, Tetsuo

    2013-01-01

    There is evidence that excessive zinc (Zn(2+)) release from presynaptic terminals following brain injuries such as ischemia and severe epileptic seizures induces neuronal cell death. Apomorphine (Apo), a dopamine receptor agonist, has been shown to have pleiotropic biological functions. In this study, we investigated whether Apo protects cultured cortical neurons from neurotoxicity provoked by excessive Zn(2+) exposure. Pretreatment with Apo dose- and time-dependently ameliorated Zn(2+) neurotoxicity. In addition, pretreatment with Apo prevented intracellular nicotinamide adenine dinucleotide (NAD(+)) and ATP depletion caused by Zn(2+) exposure. Dopamine receptor antagonists did not influence Apo protection against Zn(2+) neurotoxicity. Apo is shown to be autoxidized to produce oxidized products such as reactive oxygen species and quinones. N-Acetylcysteine, a thiol compound, partially reduced Apo protection. Entry of Zn(2+) into neurons is thought to be a critical step of Zn(2+) neurotoxicity. Interestingly, we found that pretreatment with Apo decreased elevation of intracellular Zn(2+) levels after Zn(2+) exposure and induced mRNA expression of the zinc transporter ZnT1, which transports intracellular Zn(2+) out of cells, and metallothionein. Taken together, these results suggest that the protective effects of Apo are regulated, at least in part, by its oxidized products, and preventing intracellular accumulation of Zn(2+) contributes to Apo protection against Zn(2+) neurotoxicity.

  1. AT1 receptor blocker losartan protects against mechanical ventilation-induced diaphragmatic dysfunction

    PubMed Central

    Kwon, Oh Sung; Smuder, Ashley J.; Wiggs, Michael P.; Hall, Stephanie E.; Sollanek, Kurt J.; Morton, Aaron B.; Talbert, Erin E.; Toklu, Hale Z.; Tumer, Nihal

    2015-01-01

    Mechanical ventilation is a life-saving intervention for patients in respiratory failure. Unfortunately, prolonged ventilator support results in diaphragmatic atrophy and contractile dysfunction leading to diaphragm weakness, which is predicted to contribute to problems in weaning patients from the ventilator. While it is established that ventilator-induced oxidative stress is required for the development of ventilator-induced diaphragm weakness, the signaling pathway(s) that trigger oxidant production remain unknown. However, recent evidence reveals that increased plasma levels of angiotensin II (ANG II) result in oxidative stress and atrophy in limb skeletal muscles. Using a well-established animal model of mechanical ventilation, we tested the hypothesis that increased circulating levels of ANG II are required for both ventilator-induced diaphragmatic oxidative stress and diaphragm weakness. Cause and effect was determined by administering an angiotensin-converting enzyme inhibitor (enalapril) to prevent ventilator-induced increases in plasma ANG II levels, and the ANG II type 1 receptor antagonist (losartan) was provided to prevent the activation of ANG II type 1 receptors. Enalapril prevented the increase in plasma ANG II levels but did not protect against ventilator-induced diaphragmatic oxidative stress or diaphragm weakness. In contrast, losartan attenuated both ventilator-induced oxidative stress and diaphragm weakness. These findings indicate that circulating ANG II is not essential for the development of ventilator-induced diaphragm weakness but that activation of ANG II type 1 receptors appears to be a requirement for ventilator-induced diaphragm weakness. Importantly, these experiments provide the first evidence that the Food and Drug Administration-approved drug losartan may have clinical benefits to protect against ventilator-induced diaphragm weakness in humans. PMID:26359481

  2. Hypoxic pretreatment protects against neuronal damage of the rat hippocampus induced by severe hypoxia.

    PubMed

    Gorgias, N; Maidatsi, P; Tsolaki, M; Alvanou, A; Kiriazis, G; Kaidoglou, K; Giala, M

    1996-04-01

    The present study investigates whether under conditions of successive hypoxic exposures pretreatment with mild (15% O(2)) or moderate (10% O(2)) hypoxia, protects hippocampal neurones against damage induced by severe (3% O(2)) hypoxia. The ultrastructural findings were also correlated with regional superoxide dismutase (SOD) activity changes. In unpretreated rats severe hypoxia induced ultrastructural changes consistent with the aspects of delayed neuronal death (DND). However, in preexposed animals hippocampal damage was attenuated in an inversely proportional way with the severity of the hypoxic pretreatment. The ultrastructural hypoxic tolerance findings were also closely related to increased regional SOD activity levels. Thus the activation of the endogenous antioxidant defense by hypoxic preconditioning, protects against hippocampal damage induced by severe hypoxia. The eventual contribution of increased endogenous adenosine and/or reduced excitotoxicity to induce hypoxic tolerance is discussed.

  3. Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2-mediated protective pathways

    PubMed Central

    Singh, Bhupendra; Shoulson, Rivka; Chatterjee, Anwesha; Ronghe, Amruta; Bhat, Nimee K.; Dim, Daniel C.; Bhat, Hari K.

    2014-01-01

    The importance of estrogens in the etiology of breast cancer is widely recognized. Estrogen-induced oxidative stress has been implicated in this carcinogenic process. Resveratrol (Res), a natural antioxidant phytoestrogen has chemopreventive effects against a variety of illnesses including cancer. The objective of the present study was to characterize the mechanism(s) of Res-mediated protection against estrogen-induced breast carcinogenesis. Female August Copenhagen Irish rats were treated with 17β-estradiol (E2), Res and Res + E2 for 8 months. Cotreatment of rats with Res and E2 inhibited E2-mediated proliferative changes in mammary tissues and significantly increased tumor latency and reduced E2-induced breast tumor development. Resveratrol treatment alone or in combination with E2 significantly upregulated expression of nuclear factor erythroid 2-related factor 2 (NRF2) in mammary tissues. Expression of NRF2-regulated antioxidant genes NQO1, SOD3 and OGG1 that are involved in protection against oxidative DNA damage was increased in Res- and Res + E2-treated mammary tissues. Resveratrol also prevented E2-mediated inhibition of detoxification genes AOX1 and FMO1. Inhibition of E2-mediated alterations in NRF2 promoter methylation and expression of NRF2 targeting miR-93 after Res treatment indicated Res-mediated epigenetic regulation of NRF2 during E2-induced breast carcinogenesis. Resveratrol treatment also induced apoptosis and inhibited E2-mediated increase in DNA damage in mammary tissues. Increased apoptosis and decreased DNA damage, cell migration, colony and mammosphere formation in Res- and Res + E2-treated MCF-10A cells suggested a protective role of Res against E2-induced mammary carcinogenesis. Small-interfering RNA-mediated silencing of NRF2 inhibited Res-mediated preventive effects on the colony and mammosphere formation. Taken together, these results suggest that Res inhibits E2-induced breast carcinogenesis via induction of NRF2-mediated protective

  4. Melatonin protects bone marrow mesenchymal stem cells against iron overload-induced aberrant differentiation and senescence.

    PubMed

    Yang, Fan; Yang, Lei; Li, Yuan; Yan, Gege; Feng, Chao; Liu, Tianyi; Gong, Rui; Yuan, Ye; Wang, Ning; Idiiatullina, Elina; Bikkuzin, Timur; Pavlov, Valentin; Li, Yang; Dong, Chaorun; Wang, Dawei; Cao, Yang; Han, Zhenbo; Zhang, Lai; Huang, Qi; Ding, Fengzhi; Bi, Zhengang; Cai, Benzhi

    2017-10-01

    Bone marrow mesenchymal stem cells (BMSCs) are an expandable population of stem cells which can differentiate into osteoblasts, chondrocytes and adipocytes. Dysfunction of BMSCs in response to pathological stimuli contributes to bone diseases. Melatonin, a hormone secreted from pineal gland, has been proved to be an important mediator in bone formation and mineralization. The aim of this study was to investigate whether melatonin protected against iron overload-induced dysfunction of BMSCs and its underlying mechanisms. Here, we found that iron overload induced by ferric ammonium citrate (FAC) caused irregularly morphological changes and markedly reduced the viability in BMSCs. Consistently, osteogenic differentiation of BMSCs was significantly inhibited by iron overload, but melatonin treatment rescued osteogenic differentiation of BMSCs. Furthermore, exposure to FAC led to the senescence in BMSCs, which was attenuated by melatonin as well. Meanwhile, melatonin was able to counter the reduction in cell proliferation by iron overload in BMSCs. In addition, protective effects of melatonin on iron overload-induced dysfunction of BMSCs were abolished by its inhibitor luzindole. Also, melatonin protected BMSCs against iron overload-induced ROS accumulation and membrane potential depolarization. Further study uncovered that melatonin inhibited the upregulation of p53, ERK and p38 protein expressions in BMSCs with iron overload. Collectively, melatonin plays a protective role in iron overload-induced osteogenic differentiation dysfunction and senescence through blocking ROS accumulation and p53/ERK/p38 activation. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Cannabidiol protects oligodendrocyte progenitor cells from inflammation-induced apoptosis by attenuating endoplasmic reticulum stress

    PubMed Central

    Mecha, M; Torrao, A S; Mestre, L; Carrillo-Salinas, F J; Mechoulam, R; Guaza, C

    2012-01-01

    Cannabidiol (CBD) is the most abundant cannabinoid in Cannabis sativa that has no psychoactive properties. CBD has been approved to treat inflammation, pain and spasticity associated with multiple sclerosis (MS), of which demyelination and oligodendrocyte loss are hallmarks. Thus, we investigated the protective effects of CBD against the damage to oligodendrocyte progenitor cells (OPCs) mediated by the immune system. Doses of 1 μM CBD protect OPCs from oxidative stress by decreasing the production of reactive oxygen species. CBD also protects OPCs from apoptosis induced by LPS/IFNγ through the decrease of caspase 3 induction via mechanisms that do not involve CB1, CB2, TRPV1 or PPARγ receptors. Tunicamycin-induced OPC death was attenuated by CBD, suggesting a role of endoplasmic reticulum (ER) stress in the mode of action of CBD. This protection against ER stress-induced apoptosis was associated with reduced phosphorylation of eiF2α, one of the initiators of the ER stress pathway. Indeed, CBD diminished the phosphorylation of PKR and eiF2α induced by LPS/IFNγ. The pro-survival effects of CBD in OPCs were accompanied by decreases in the expression of ER apoptotic effectors (CHOP, Bax and caspase 12), and increased expression of the anti-apoptotic Bcl-2. These findings suggest that attenuation of the ER stress pathway is involved in the ‘oligoprotective' effects of CBD during inflammation. PMID:22739983

  6. Enhancement of endocannabinoid signaling protects against cocaine-induced neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilela, Luciano R.; Gobira, Pedro H.; Viana, Thercia G.

    Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. Themore » molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB{sub 1} receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB{sub 1} receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity. - Highlights: • Cocaine toxicity is characterized by seizures and hippocampal cell death. • The endocannabinoid anandamide acts as a brain protective mechanism. • Inhibition of anandamide

  7. Nicotinamide riboside, a form of vitamin B3, protects against excitotoxicity-induced axonal degeneration.

    PubMed

    Vaur, Pauline; Brugg, Bernard; Mericskay, Mathias; Li, Zhenlin; Schmidt, Mark S; Vivien, Denis; Orset, Cyrille; Jacotot, Etienne; Brenner, Charles; Duplus, Eric

    2017-12-01

    NAD + depletion is a common phenomenon in neurodegenerative pathologies. Excitotoxicity occurs in multiple neurologic disorders and NAD + was shown to prevent neuronal degeneration in this process through mechanisms that remained to be determined. The activity of nicotinamide riboside (NR) in neuroprotective models and the recent description of extracellular conversion of NAD + to NR prompted us to probe the effects of NAD + and NR in protection against excitotoxicity. Here, we show that intracortical administration of NR but not NAD + reduces brain damage induced by NMDA injection. Using cortical neurons, we found that provision of extracellular NR delays NMDA-induced axonal degeneration (AxD) much more strongly than extracellular NAD + Moreover, the stronger effect of NR compared to NAD + depends of axonal stress since in AxD induced by pharmacological inhibition of nicotinamide salvage, both NAD + and NR prevent neuronal death and AxD in a manner that depends on internalization of NR. Taken together, our findings demonstrate that NR is a better neuroprotective agent than NAD + in excitotoxicity-induced AxD and that axonal protection involves defending intracellular NAD + homeostasis.-Vaur, P., Brugg, B., Mericskay, M., Li, Z., Schmidt, M. S., Vivien, D., Orset, C., Jacotot, E., Brenner, C., Duplus, E. Nicotinamide riboside, a form of vitamin B 3 , protects against excitotoxicity-induced axonal degeneration. © FASEB.

  8. Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death

    PubMed Central

    Kenyon, Emma J.; Kirkwood, Nerissa K.; Kitcher, Siân R.; O’Reilly, Molly; Cantillon, Daire M.; Goodyear, Richard J.; Secker, Abigail; Baxendale, Sarah; Bull, James C.; Waddell, Simon J.; Whitfield, Tanya T.; Ward, Simon E.; Kros, Corné J.; Richardson, Guy P.

    2017-01-01

    Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red–conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem. PMID:29263311

  9. Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death.

    PubMed

    Kenyon, Emma J; Kirkwood, Nerissa K; Kitcher, Siân R; O'Reilly, Molly; Derudas, Marco; Cantillon, Daire M; Goodyear, Richard J; Secker, Abigail; Baxendale, Sarah; Bull, James C; Waddell, Simon J; Whitfield, Tanya T; Ward, Simon E; Kros, Corné J; Richardson, Guy P

    2017-12-21

    Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red-conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem.

  10. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Da-Gang

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl{sub 4})-induced acute liver injury. Mice were intraperitoneally injected with CCl{sub 4} (0.15 ml/kg). In CCl{sub 4} + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl{sub 4}. As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl{sub 4}-induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatmentmore » inhibited CCl{sub 4}-induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl{sub 4}-induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl{sub 4}-induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl{sub 4}-induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl{sub 4}-induced acute liver injury. These results suggest that OCA protects against CCl{sub 4}-induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl{sub 4}-induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl{sub 4}-induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.« less

  11. Chlorella protects against hydrogen peroxide-induced pancreatic β-cell damage.

    PubMed

    Lin, Chia-Yu; Huang, Pei-Jane; Chao, Che-Yi

    2014-12-01

    Oxidative stress has been implicated in the etiology of pancreatic β-cell dysfunction and diabetes. Studies have shown that chlorella could be important in health promotion or disease prevention through its antioxidant capacity. However, whether chlorella has a cytoprotective effect in pancreatic β-cells remains to be elucidated. We investigated the protective effects of chlorella on H2O2-induced oxidative damage in INS-1 (832/13) cells. Chlorella partially restored cell viability after H2O2 toxicity. To further investigate the effects of chlorella on mitochondria function and cellular oxidative stress, we analyzed mitochondria membrane potential, ATP concentrations, and cellular levels of reactive oxygen species (ROS). Chlorella prevented mitochondria disruption and maintained cellular ATP levels after H2O2 toxicity. It also normalized intracellular levels of ROS to that of control in the presence of H2O2. Chlorella protected cells from apoptosis as indicated by less p-Histone and caspase 3 activation. In addition, chlorella not only enhanced glucose-stimulated insulin secretion (GSIS), but also partially restored the reduced GSIS after H2O2 toxicity. Our results suggest that chlorella is effective in amelioration of cellular oxidative stress and destruction, and therefore protects INS-1 (832/13) cells from H2O2-induced apoptosis and increases insulin secretion. Chlorella should be studied for use in the prevention or treatment of diabetes.

  12. 6-Gingerol induces autophagy to protect HUVECs survival from apoptosis.

    PubMed

    Wang, Shaopeng; Sun, Xiance; Jiang, Liping; Liu, Xiaofang; Chen, Min; Yao, Xiaofeng; Sun, Qinghua; Yang, Guang

    2016-08-25

    6-Gingerol, the major pharmacologically-active component of ginger, has the potential to prevent heart disease. However, the mechanisms are not well understood. In this study, the protective effect of 6-gingerol against hydrogen peroxide-induced apoptosis in human umbilical vein endothelial cells (HUVECs) was investigated. Apoptosis was detected by Hoechst 33342 and Flow cytometry analysis. To further elucidate the crosstalk between apoptosis and autophagy, we tested the expression of autophagy related proteins, LC3B, Bcl-2, Beclin1, AKT, p-AKT, mechanistic target of rapamycin (mTOR), and p-mTOR. Furthermore, mitochondrial membrane potential and the intracellular generation of reactive oxygen species (ROS) were also investigated. Our data revealed that 6-gingerol significantly reduced apoptosis by inducing autophagy. It has been demonstrated that 6-gingerol suppressed the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling pathway, increased the expression of Beclin1 to promote autophagy, and increased Bcl-2 expression to inhibit apoptosis. In addition, the damage of mitochondrial was protected, and ROS level was decreased by 6-gingerol. These firmly indicate 6-gingerol has a strong protective ability against the apoptosis caused by oxidative stress in HUVECs, and the mechanism may relate to the induction of autophagy. Our data suggest 6-gingerol may be beneficial in the prevention of atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Pathway-specific effect of caffeine on protection against UV irradiation-induced apoptosis in corneal epithelial cells.

    PubMed

    Wang, Ling; Lu, Luo

    2007-02-01

    To define the role of molecular interaction between the UV-induced JNK (c-Jun N-terminal kinase) cascade and corneal epithelial cell apoptosis and protection against apoptosis by caffeine. Rabbit and human corneal epithelial cells were cultured in DMEM/F12 medium containing 10% FBS and 5 microg/mL insulin at 37 degrees C in 5% CO(2). DNA fragmentation and ethidium bromide/acridine orange (EB/AO) nuclear staining were performed to detect cell death. Western blot, immunoprecipitation, and kinase assays were used to measure UV-induced mitogen-activated protein (MAP) kinase activity. UV irradiation-induced apoptosis through apoptosis signal-regulating kinase 1 (ASK1) and MAKK4 (SEK1) upstream from JNK was caffeine sensitive. Caffeine (1,3,7-trimethylxanthine), an agent that is one of the most popular additions to food consumed in the world and a potential enhancer of chemotherapy, effectively protected corneal epithelial cells against apoptosis by its specific effect on the JNK cascade. Theophylline (1,3-dimethylxanthine) exhibited an effect similar to that of caffeine on prevention of UV irradiation-induced apoptosis. However, alterations of either intracellular cAMP or Ca(2+) levels did not alter the effect of caffeine on the JNK signaling pathway. In addition, the blockade of PI3K-like kinases by wortmannin had no impact on the protective effect of caffeine against UV irradiation-induced apoptosis, suggesting that the protective effect of caffeine acts through a specific mechanism involving UV irradiation-induced activation of ASK1 and SEK1. In contrast, caffeine had no effects on melphalan-, hyperosmotic stress-, or IL-1beta-induced activation of the JNK signaling pathway in these cells. UV irradiation stress-induced activation of the ASK1-SEK1-JNK signaling pathway leading to apoptosis is a caffeine-sensitive process, and caffeine, as a multifunctional agent in cells, can specifically interact with the pathway to protect against apoptosis.

  14. Antidepressant Imipramine Protects Bupivacaine-Induced Neurotoxicity in Dorsal Root Ganglion Neurons Through Coactivation of TrkA and TrkB.

    PubMed

    Guo, Jianrong; Wang, Huan; Tao, Qiang; Sun, Shiyu; Liu, Li; Zhang, Jianping; Yang, Dawei

    2017-11-01

    In our work, we used an in vitro culture model to investigate whether antidepressant imipramine (Ip) may protect bupivacaine (Bv)-induced neurotoxicity in mouse dorsal root ganglion (DRG). Adult mouse DRG was treated with 5 mM Bv in vitro to induce neurotoxicity. DRG was then pre-treated with Ip, prior to Bv, to examine its effects on protecting Bv-induced DRG apoptosis and neurite degeneration. Ip-induced dynamic changes in Trk receptors, including TrkA/B/C and phosphor (p-)TrkA/B/C, were examined by qPCR and Western blot. TrkA and TrkB were inhibited by siRNAs to further investigate their functional role in Ip- and Bv-treated DRG. Ip protected Bv-induced apoptosis and neurite loss in DRG. Ip did not alter TrkA/B/C expressions, whereas significantly augmented protein productions of p-TrkA and p-TrkB, but not p-TrkC. SiRNA-mediated TrkA or TrkB downregulation inhibited Trk receptors, and reduced p-TrkA and p-TrkB in DRG. TrkA or TrkB downregulation alone had no effect on Ip-induced protection in Bv-injured DRG. However, co-inhibition of TrkA and TrkB significantly ameliorated the protective effect of Ip on Bv-induced apoptosis and neurite loss in DRG. Imipramine protected bupivacaine-induced neurotoxicity in DRG, likely via the co-activation of TrkA and TrkB signaling pathways. J. Cell. Biochem. 118: 3960-3967, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Orally administered adenoviral-based vaccine induces respiratory mucosal memory and protection against RSV infection in cotton rats.

    PubMed

    Joyce, Christina; Scallan, Ciaran D; Mateo, Roberto; Belshe, Robert B; Tucker, Sean N; Moore, Anne C

    2018-06-09

    A vaccine against Respiratory Syncytial Virus (RSV) is a major unmet need to prevent the significant morbidity and mortality that it causes in society. In addition to efficacy, such a vaccine must not induce adverse events, as previously occurred with a formalin-inactivated vaccine (FI-RSV). In this study, the safety, immunogenicity and efficacy of a molecularly adjuvanted adenovirus serotype 5 based RSV vaccine encoding the fusion (F) protein (Ad-RSVF) is demonstrated in cotton rats. Protective immunity to RSV was induced by Ad-RSVF when administered by an oral route as well as by intranasal and intramuscular routes. Compared to FI-RSV, the Ad-RSVF vaccine induced significantly greater neutralizing antibody responses and protection against RSV infection. Significantly, oral or intranasal immunization each induced protective multi-functional effector and memory B cell responses in the respiratory tract. This study uniquely demonstrates the capacity of an orally administered adenovirus vaccine to induce protective immunity in the respiratory tract against RSV in a pre-clinical model and supports further clinical development of this oral Ad-RSVF vaccine strategy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Dapsone protects brain microvascular integrity from high-fat diet induced LDL oxidation.

    PubMed

    Zhan, Rui; Zhao, Mingming; Zhou, Ting; Chen, Yue; Yu, Weiwei; Zhao, Lei; Zhang, Tao; Wang, Hecheng; Yang, Huan; Jin, Yinglan; He, Qihua; Yang, Xiaoda; Guo, Xiangyang; Willard, Belinda; Pan, Bing; Huang, Yining; Chen, Yingyu; Chui, Dehua; Zheng, Lemin

    2018-06-07

    Atherosclerosis was considered to induce many vascular-related complications, such as acute myocardial infarction and stroke. Abnormal lipid metabolism and its peroxidation inducing blood-brain barrier (BBB) leakage were associated with the pre-clinical stage of stroke. Dapsone (DDS), an anti-inflammation and anti-oxidation drug, has been found to have protective effects on vascular. However, whether DDS has a protective role on brain microvessels during lipid oxidation had yet to be elucidated. We investigated brain microvascular integrity in a high-fat diet (HFD) mouse model. We designed this study to explore whether DDS had protective effects on brain microvessels under lipid oxidation and tried to explain the underlying mechanism. In our live optical study, we found that DDS significantly attenuated brain microvascular leakage through reducing serum oxidized low-density lipoprotein (oxLDL) in HFD mice (p < 0.001), and DDS significantly inhibited LDL oxidation in vitro (p < 0.001). Our study showed that DDS protected tight junction proteins: ZO-1 (p < 0.001), occludin (p < 0.01), claudin-5 (p < 0.05) of microvascular endothelial cells in vivo and in vitro. DDS reversed LAMP1 aggregation in cytoplasm, and decreased the destruction of tight junction protein: ZO-1 in vitro. We first revealed that DDS had a protective role on cerebral microvessels through preventing tight junction ZO-1 from abnormal degradation by autophagy and reducing lysosome accumulation. Our findings suggested the significance of DDS in protecting brain microvessels under lipid metabolic disorders, which revealed a novel potential therapeutic strategy in brain microvascular-related diseases.

  17. Mentha longifolia protects against acetic-acid induced colitis in rats.

    PubMed

    Murad, Hussam A S; Abdallah, Hossam M; Ali, Soad S

    2016-08-22

    Mentha longifolia L (Wild Mint or Habak) (ML) is used in traditional medicine in treatment of many gastrointestinal disorders. This study aimed to evaluate potential protecting effect of ML and its major constituent, eucalyptol, against acetic acid-induced colitis in rats, a model of human inflammatory bowel disease (IBD). Rats were divided into ten groups (n=8) given orally for three days (mg/kg/day) the following: normal control, acetic acid-induced colitis (un-treated, positive control), vehicle (DMSO), sulfasalazine (500), ML extract (100, 500, 1000), and eucalyptol (100, 200, 400). After 24h-fasting, two ML of acetic acid (3%) was administered intrarectally. On the fifth day, serum and colonic biochemical markers, and histopathological changes were evaluated. Colitis significantly increased colonic myeloperoxidase activity and malonaldehyde level, and serum tumor necrosis factor-α, interleukin-6, and malonaldehyde levels while significantly decreased colonic and serum glutathione levels. All treatments (except ML 100, ML 1000, and eucalyptol 100) significantly reversed these changes where eucalyptol (400) showed the highest activity in a dose-dependent manner. The colitis-induced histopathological changes were mild in sulfasalazine and eucalyptol 400 groups, moderate in ML 500 and eucalyptol 200 groups, and severe in ML 100, ML 1000, and eucalyptol 100 groups nearly similar to colitis-untreated rats. ML (in moderate doses) and eucalyptol (dose-dependently) exerted protective effects against acetic acid-induced colitis in rats possibly through antioxidant and antiinflammatory properties suggesting a potential benefit in treatments of IBD. To our knowledge this is the first report addressing this point. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Puerarin protects against lead-induced cytotoxicity in cultured primary rat proximal tubular cells.

    PubMed

    Liu, Gang; Li, Zifa; Wang, Jinqiu; Wang, Hong; Wang, Zhenyong; Wang, Lin

    2014-10-01

    Puerarin, a potent free radicals scavenger, has been demonstrated to have protective efficacy in oxidative damage induced by nephrotoxins. In the present study, the attenuating effect of puerarin (PU) on lead (Pb)-induced apoptosis and oxidative stress was investigated in cultured primary rat proximal tubular (rPT) cells. Results showed that exposure to 0.5 µM Pb induced a decrease in cell viability accompanied with obvious cellular morphological alterations and caused an increase in apoptotic rate and apoptotic morphological changes. Simultaneously, depletion of mitochondrial membrane potential (ΔΨ) and intracellular glutathione (GSH); elevation of caspase-3 activity, intracellular reactive oxygen species, and malondialdehyde levels; and inhibition of GSH peroxidase (GSH-Px) activity were revealed in the cells exposed to Pb alone. However, simultaneous supplementation with PU (50 and 100 µM) protected rPT cells from Pb-induced cytotoxicity through inhibiting apoptosis, attenuating lipid peroxidation, renewing mitochondrial function, and elevating the intracellular antioxidants (nonenzymatic and enzymic) levels. In conclusion, these findings suggested that PU, as a widely distributed dietary antioxidant, contributes potentially to inhibition of Pb-induced cytotoxicity in rPT cells. © The Author(s) 2014.

  19. Chemically Attenuated Blood-Stage Plasmodium yoelii Parasites Induce Long-Lived and Strain-Transcending Protection

    PubMed Central

    Raja, Amber I.; Cai, Yeping; Reiman, Jennifer M.; Groves, Penny; Chakravarty, Sumana; McPhun, Virginia; Doolan, Denise L.; Cockburn, Ian; Hoffman, Stephen L.; Stanisic, Danielle I.

    2016-01-01

    The development of a vaccine is essential for the elimination of malaria. However, despite many years of effort, a successful vaccine has not been achieved. Most subunit vaccine candidates tested in clinical trials have provided limited efficacy, and thus attenuated whole-parasite vaccines are now receiving close scrutiny. Here, we test chemically attenuated Plasmodium yoelii 17X and demonstrate significant protection following homologous and heterologous blood-stage challenge. Protection against blood-stage infection persisted for at least 9 months. Activation of both CD4+ and CD8+ T cells was shown after vaccination; however, in vivo studies demonstrated a pivotal role for both CD4+ T cells and B cells since the absence of either cell type led to loss of vaccine-induced protection. In spite of significant activation of circulating CD8+ T cells, liver-stage immunity was not evident. Neither did vaccine-induced CD8+ T cells contribute to blood-stage protection; rather, these cells contributed to pathogenesis, since all vaccinated mice depleted of both CD4+ and CD8+ T cells survived a challenge infection. This study provides critical insight into whole-parasite vaccine-induced immunity and strong support for testing whole-parasite vaccines in humans. PMID:27245410

  20. H2S Protects Against Methionine–Induced Oxidative Stress in Brain Endothelial Cells

    PubMed Central

    Tyagi, Neetu; Moshal, Karni S.; Sen, Utpal; Vacek, Thomas P.; Kumar, Munish; Hughes, William M.; Kundu, Soumi

    2009-01-01

    Abstract Homocysteine (Hcy) causes cerebrovascular dysfunction by inducing oxidative stress. However, to date, there are no strategies to prevent Hcy-induced oxidative damage. Hcy is an H2S precursor formed from methionine (Met) metabolism. We aimed to investigate whether H2S ameliorated Met-induced oxidative stress in mouse brain endothelial cells (bEnd3). The bEnd3 cells were exposed to Met treatment in the presence or absence of NaHS (donor of H2S). Met-induced cell toxicity increased the levels of free radicals in a concentration-dependent manner. Met increased NADPH-oxidase-4 (NOX-4) expression and mitigated thioredxion-1(Trx-1) expression. Pretreatment of bEnd3 with NaHS (0.05 mM) attenuated the production of free radicals in the presence of Met and protected the cells from oxidative damage. Furthermore, NaHS enhanced inhibitory effects of apocynin, N-acetyl-l-cysteine (NAC), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), Nω-nitro-l-arginine methyl ester (L-NAME) on ROS production and redox enzymes levels induced by Met. In conclusion, the administration of H2S protected the cells from oxidative stress induced by hyperhomocysteinemia (HHcy), which suggested that NaHS/H2S may have therapeutic potential against Met-induced oxidative stress. Antioxid. Redox Signal. 11, 25–33. PMID:18837652

  1. Protective effect of arctigenin on ethanol-induced neurotoxicity in PC12 cells.

    PubMed

    Huang, Jia; Xiao, Lan; Wei, Jing-Xiang; Shu, Ya-Hai; Fang, Shi-Qi; Wang, Yong-Tang; Lu, Xiu-Min

    2017-04-01

    As a neurotropic substance, ethanol can damage nerve cells through an increase in the production of free radicals, interference of neurotrophic factor signaling pathways, activation of endogenous apoptotic signals and other molecular mechanisms. Previous studies have revealed that a number of natural drugs extracted from plants offer protection of nerve cells from damage. Among these, arctigenin (ATG) is a lignine extracted from Arctium lappa (L.), which has been found to exert a neuroprotective effect on scopolamine‑induced memory deficits in mice with Alzheimer's disease and glutamate-induced neurotoxicity in primary neurons. As a result, it may offer beneficial effects on ethanol-induced neurotoxicity. However, the effects of ATG on ethanol‑induced nerve damage remain to be elucidated. To address this issue, the present study used rat pheochromocytoma PC12 cells to investigate the neuroprotective effects of ATG on ethanol-induced cell damage by performing an MTT reduction assay, cell cycle analysis, Hoechst33342/propidium iodide fluorescence staining and flow cytometry to examine apoptosis. The results showed that 10 µM ATG effectively promoted the proliferation of damaged cells, and increased the distribution ratio of the cells at the G2/M and S phases (P<0.05). In addition, the apoptosis and necrosis of the PC12 cells were significantly decreased following treatment with ATG. Therefore, it was concluded that 10 µM ATG had a protective effect on ethanol‑induced injury in PC12 cells.

  2. Alpha-crystallin-mediated protection of lens cells against heat and oxidative stress-induced cell death.

    PubMed

    Christopher, Karen L; Pedler, Michelle G; Shieh, Biehuoy; Ammar, David A; Petrash, J Mark; Mueller, Niklaus H

    2014-02-01

    In addition to their key role as structural lens proteins, α-crystallins also appear to confer protection against many eye diseases, including cataract, retinitis pigmentosa, and macular degeneration. Exogenous recombinant α-crystallin proteins were examined for their ability to prevent cell death induced by heat or oxidative stress in a human lens epithelial cell line (HLE-B3). Wild type αA- or αB-crystallin (WT-αA and WT-αB) and αA- or αB-crystallins, modified by the addition of a cell penetration peptide (CPP) designed to enhance the uptake of proteins into cells (gC-αB, TAT-αB, gC-αA), were produced by recombinant methods. In vitro chaperone-like assays were used to assay the ability of α-crystallins to protect client proteins from chemical or heat induced aggregation. In vivo viability assays were performed in HLE-B3 to determine whether pre-treatment with α-crystallins reduced death after exposure to oxidative or heat stress. Most of the five recombinant α-crystallin proteins tested conferred some in vitro protection from protein aggregation, with the greatest effect seen with WT-αB and gC-αB. All α-crystallins displayed significant protection to oxidative stress induced cell death, while only the αB-crystallins reduced cell death induced by thermal stress. Our findings indicate that the addition of the gC tag enhanced the protective effect of αB-crystallin against oxidative but not thermally-induced cell death. In conclusion, modifications that increase the uptake of α-crystallin proteins into cells, without destroying their chaperone-like activity and anti-apoptotic functions, create the potential to use these proteins therapeutically. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Evaluation of the persistence of vaccine-induced protection with human vaccines.

    PubMed

    Vidor, E

    2010-01-01

    The persistence of protection induced by vaccines is a key aspect of the implementation of human vaccination policies, particularly for ageing populations. At the time of initial licensure, the duration of protection induced by a vaccine is generally only documented by longitudinal follow up of cohorts of subjects enrolled in the pre-licensure trials over a period of 1-5 years. The follow up of these cohorts provides two types of data: antibody kinetics (or another clinically relevant immunological parameter) over time and the disease incidence. Generally, the latter trials, if implemented during the pre-licensure period, are designed to follow-up cohorts in order to demonstrate vaccine efficacy above the minimal level required for the license. For vaccines already licensed, additional tools exist. The use of immunological surrogate markers of protection is a practical way to monitor the duration of protection. Measuring the persistence of circulating antibodies is widely used in human vaccines. For several vaccines, observed data have allowed the creation of mathematical models to predict the antibody persistence over periods of time longer than those effectively documented. Clinical trials assessing the capacity of the immune system to mount a quick anamnestic response upon re-stimulation a long time after initial priming (measurement of immune memory) is also a tool employed to document the duration of protection. The waning of protection can also be demonstrated by an increase of disease incidence in the subsequent 'time-to-last-vaccine administration' age segments. Seroprevalence studies in a given age group of people that were vaccinated under real-life conditions are another way to document the persistence of protection. Finally, case-control studies in outbreak situations or in situations of persisting endemicity can also be used to document the persistence of the vaccine efficacy. All of these tools are used in the development of new vaccines, and also

  4. An oral vaccine based on U-Omp19 induces protection against B. abortus mucosal challenge by inducing an adaptive IL-17 immune response in mice.

    PubMed

    Pasquevich, Karina A; Ibañez, Andrés E; Coria, Lorena M; García Samartino, Clara; Estein, Silvia M; Zwerdling, Astrid; Barrionuevo, Paula; Oliveira, Fernanda S; Seither, Christine; Warzecha, Heribert; Oliveira, Sergio C; Giambartolomei, Guillermo H; Cassataro, Juliana

    2011-01-14

    As Brucella infections occur mainly through mucosal surfaces, the development of mucosal administered vaccines could be radical for the control of brucellosis. In this work we evaluated the potential of Brucella abortus 19 kDa outer membrane protein (U-Omp19) as an edible subunit vaccine against brucellosis. We investigated the protective immune response elicited against oral B. abortus infection after vaccination of mice with leaves from transgenic plants expressing U-Omp19; or with plant-made or E. coli-made purified U-Omp19. All tested U-Omp19 formulations induced protection against Brucella when orally administered without the need of adjuvants. U-Omp19 also induced protection against a systemic challenge when parenterally administered. This built-in adjuvant ability of U-Omp19 was independent of TLR4 and could be explained at least in part by its capability to activate dendritic cells in vivo. While unadjuvanted U-Omp19 intraperitoneally administered induced a specific Th1 response, following U-Omp19 oral delivery a mixed specific Th1-Th17 response was induced. Depletion of CD4(+) T cells in mice orally vaccinated with U-Omp19 resulted in a loss of the elicited protection, indicating that this cell type mediates immune protection. The role of IL-17 against Brucella infection has never been explored. In this study, we determined that if IL-17A was neutralized in vivo during the challenge period, the mucosal U-Omp19 vaccine did not confer mucosal protection. On the contrary, IL-17A neutralization during the infection did not influence at all the subsistence and growth of this bacterium in PBS-immunized mice. All together, our results indicate that an oral unadjuvanted vaccine based on U-Omp19 induces protection against a mucosal challenge with Brucella abortus by inducing an adaptive IL-17 immune response. They also indicate different and important new aspects i) IL-17 does not contribute to reduce the bacterial burden in non vaccinated mice and ii) IL-17 plays

  5. A single vaccination with non-replicating MVA at birth induces both immediate and long-term protective immune responses.

    PubMed

    Cheminay, Cédric; Körner, Jana; Bernig, Constanze; Brückel, Michael; Feigl, Markus; Schletz, Martin; Suter, Mark; Chaplin, Paul; Volkmann, Ariane

    2018-04-25

    Newborns are considered difficult to protect against infections shortly after birth, due to their ineffective immune system that shows quantitative and qualitative differences compared to adults. However, here we show that a single vaccination of mice at birth with a replication-deficient live vaccine Modified Vaccinia Ankara [MVA] efficiently induces antigen-specific B- and T-cells that fully protect against a lethal Ectromelia virus challenge. Protection was induced within 2 weeks and using genetically modified mice we show that this protection was mainly T-cell dependent. Persisting immunological T-cell memory and neutralizing antibodies were obtained with the single vaccination. Thus, MVA administered as early as at birth induced immediate and long-term protection against an otherwise fatal disease and appears attractive as a new generation smallpox vaccine that is effective also in children. Moreover, it may have the potential to serve as platform for childhood vaccines as indicated by measles specific T- and B-cell responses induced in newborn mice vaccinated with recombinant MVA expressing measles antigens. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Outer membrane vesicles of Gallibacterium anatis induce protective immunity in egg-laying hens.

    PubMed

    Pors, Susanne E; Pedersen, Ida J; Skjerning, Ragnhild Bager; Thøfner, Ida C N; Persson, Gry; Bojesen, Anders M

    2016-11-15

    Gallibacterium anatis causes infections in the reproductive tract of egg-laying hens and induce increased mortality and decreased egg production. New prophylactic measures are needed in order to improve animal welfare and production efficiency. Bacterial outer membrane vesicles (OMVs) have previously shown promising results in protection against infections and we hypothesized that OMVs could serve as an immunogen to protect egg-laying hens against G. anatis. To investigate the immunogenic potential of G. anatis OMVs, two in vivo studies in egg-laying hens were made. The trials assessedthe degree of protection provided by immunization with G. anatis OMV against challenge and the IgY responses in serum after immunization and challenge, respectively. A total of 64 egg-laying hens were included in the trials. OMVs for immunization were produced and purified from a high-producing G. anatis ΔtolR mutant. Challenge was done with G. anatis 12656-12 and evaluated by scoring lesions and bacterial re-isolation rates from peritoneum. Finally, levels of OMV-specific IgY in sera were assayed by ELISA. Immunization with OMVs decreased the lesions scores significantly, while the bacterial re-isolation remained unchanged. Furthermore, a high OMV-specific IgY response was induced by immunization and subsequent challenge of the hens. The results strongly indicate that immunization with G. anatis OMVs provides significant protection against G. anatis challenge and induces specific antibody responses with high titers of OMV-specific IgY in serum. The results therefore show great promise for OMV based vaccines aiming at providing protecting against G. anatis in egg-laying hens. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. UVA-induced protection of skin through the induction of heme oxygenase-1.

    PubMed

    Xiang, Yuancai; Liu, Gang; Yang, Li; Zhong, Julia Li

    2011-12-01

    UVA (320-400 nm) and UVB (290-320 nm) are the major components of solar UV irradiation, which is associated with various pathological conditions. UVB causes direct damage to DNA of epidermal cells and is mainly responsible for erythema, immunosuppression, photoaging, and skin cancer. UVA has oxidizing properties that can cause damage or enhance UVB damaging effects on skin. On the other hand, UVA can also lead to high levels of heme oxygenase-1 (HO-1) expression of cells that can provide an antioxidant effect on skin as well as anti-inflammatory properties in mammals and rodents. Therefore, this review focuses on the potential protection of UVA wavebands for the skin immune response, instead of mechanisms that underlie UVA-induced damage. Also, the role of HO-1 in UVA-mediated protection against UVB-induced immunosuppression in skin will be summarized. Thus, this review facilitates further understanding of potential beneficial mechanisms of UVA irradiation, and using the longer UVA (UVA1, 340-400 nm) in combination with HO-1 for phototherapy and skin protection against sunlight exposure.

  8. Protective effect of lipoic acid on cyclophosphamide-induced testicular toxicity.

    PubMed

    Selvakumar, Elangovan; Prahalathan, Chidambaram; Sudharsan, Periyasamy Thandavan; Varalakshmi, Palaninathan

    2006-05-01

    Cyclophosphamide (CP), a widely used anticancer and immunosuppressive drug causes severe testicular toxicity. We investigated the protective effect of lipoic acid in CP-induced testicular toxicity. Two groups of male Wistar rats (140+/-20 g) were administered CP (15 mg/kg body weight, oral gavage) once a week for 10 weeks to induce testicular toxicity; one of these groups received lipoic acid treatment (35 mg/kg body weight, i.p., 24 h prior to CP administration) once a week for 10 weeks. A vehicle treated control and a lipoic acid control groups were also included. The untreated CP exposed rats showed a significant increase in testicular reactive oxygen species (ROS) level, along with a significant decrease in cellular thiol levels. The activities of testicular marker enzymes such as gamma-glutamyl transferase, beta-glucuronidase, acid phosphatase and alkaline phosphatase were increased whereas the activities of sorbitol dehydrogenase and lactate dehydrogenase-X were decreased significantly in the animals treated with CP. In contrast, rats pretreated with lipoic acid showed normal marker enzymic patterns and normal levels of ROS and thiols. Testicular protection by lipoic acid is further substantiated by the normal histologic findings as against shrunken seminiferous tubules with impaired spermatogenesis in the CP administered rats. By the reversal of biochemical and morphological changes towards normalcy, the cytoprotective role of lipoic acid is illuminated in CP-induced testicular toxicity.

  9. Protective effects of granulocyte colony-stimulating factor on endotoxin shock in mice with retrovirus-induced immunodeficiency syndrome.

    PubMed

    Toki, S; Hiromatsu, K; Aoki, Y; Makino, M; Yoshikai, Y

    1997-10-01

    Mice with retrovirus-induced murine acquired immunodeficiency syndrome (MAIDS) were hypersensitive to lipopolysaccharide (LPS)-induced lethal shock accompanied by marked elevations of systematic interleukin 1beta (IL-beta) and interferon gamma (IFN-gamma) after LPS challenge. Pretreatment with 10 microg of recombinant human granulocyte colony-stimulating factor (rhG-CSF) protected MAIDS mice from hypersensitivity to LPS-induced lethal shock and this protection was concomitant with suppression of IFN-gamma production. Copyright 1997 Academic Press Limited.

  10. CCL2 is induced by chemotherapy and protects prostate cancer cells from docetaxel - induced cytotoxicity

    PubMed Central

    Qian, David Z.; Rademacher, Brooks L.S.; Pittsenbarger, Janet; Huang, Chung-Ying; Myrthue, Anne; Higano, Celestia S.; Garzotto, Mark; Nelson, Peter S.; Beer, Tomasz M.

    2010-01-01

    Background Metastatic prostate cancer is either inherently resistant to chemotherapy or rapidly acquires this phenotype after chemotherapy exposure. In this study, we identified a docetaxel-induced resistance mechanism centered on CCL2. Methods we compared the gene expression profiles in individual human prostate cancer specimens before and after exposure to chemotherapy collected from previously untreated patients who participated in a clinical trial of preoperative chemotherapy. Subsequently, we used the gain- and loss- of function approach in vitro to identify a potential mechanism underlying chemotherapy resistance. Results Among the molecular signatures associated with treatment, several genes that regulate the inflammatory response and chemokine activity were upregulated including a significant increase in transcripts encoding the CC chemokine CCL2. Docetaxel increased CCL2 expression in prostate cancer cell lines in vitro. CCL2 specific siRNA inhibited LNCaP and LAPC4 cell proliferation and enhanced the growth inhibitory effect of low-dose docetaxel. In contrast, overexpression of CCL2 or recombinant CCL2 protein stimulated prostate cancer cell proliferation and rescued cells from docetaxel-induced cytotoxicity. This protective effect of CCL2 was associated with activation of the ERK/MAP kinase and PI3K/AKT, inhibition of docetaxel-induced Bcl2 phosphorylation at serine 70, phosphorylation of Bad, and activation of caspase-3. The addition of a PI3K/AKT inhibitor Ly294002 reversed the CCL2 protection, and was additive to docetaxel induced toxicity. Conclusion These results support a mechanism of chemotherapy resistance mediated by cellular stress responses involving the induction of CCL2 expression, and suggest that inhibiting CCL2 activity could enhance therapeutic responses to taxane-based therapy. PMID:19866475

  11. Protective effect of esculin against prooxidant aflatoxin B1-induced nephrotoxicity in mice.

    PubMed

    Naaz, Farah; Abdin, M Z; Javed, Saleem

    2014-02-01

    The study was designed to investigate the protective effect of esculin against pro-oxidant aflatoxin B1 (AFB1)-induced nephrotoxicity in mice. In this study toxicity was developed by oral administration of AFB1 at a dose of 66.60 μg/kg bw/day for 90 days in male Swiss albino mice. Esculin (150 mg/kg bw/0.2 ml/day) and standard compound ascorbic acid (300 mg/kg bw/0.2 ml/day) was given after 30 min of AFB1 administration for 90 days. Protective efficacy was assessed by measuring the levels of lipid peroxidation (LPO) and non-enzymatic antioxidants such as reduced glutathione (GSH) and also by measuring activities of enzymatic antioxidants such as glutathione peroxidase (GPX), glutathione-S-transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT) in kidney. Results were analysed at the 30(th), 60(th) and 90(th) day of the daily treatments, which showed a decrease in the level of LPO and an increase in the levels of enzymatic and non-enzymatic antioxidants. The protective effect of esculin was further proved by histopathological findings as it exhibited regenerative activities in mice renal tubules against AFB1-induced nephrotoxicity. The results obtained clearly demonstrate that the protective efficacy of esculin against pro-oxidant AFB1-induced nephrotoxicity in mice might be due to its antioxidants and free radical scavenging properties.

  12. Protective Effect of Piper aduncum Capsule on DMBA-induced Breast Cancer in Rats

    PubMed Central

    Arroyo-Acevedo, J; Chávez-Asmat, RJ; Anampa-Guzmán, A; Donaires, R; Ráez-Gonzáles, José

    2015-01-01

    The possible protective effect of Piper aduncum capsule on DMBA (dimethylbenz[α]anthracene)-induced breast cancer in rats was assessed by monitoring the tumor and lung metastases incidence and recording hematological and biochemical parameters and frequency of micronuclei. Mammary carcinogenesis was induced in 36 female Holtzman rats by providing a single subcutaneous injection of DMBA. Oral administration of P. aduncum capsule lowered adenocarcinoma and lymph node metastases incidence. Pulmonary metastasis was significantly lowered (P < 0.05). Hematological indicators showed that the triglyceride level was significantly lowered (P < 0.01) and high-density lipoprotein (HDL) level was significantly increased (P < 0.01). Also, P. aduncum capsule significantly lowered the C reactive protein (CRP) level (P < 0.01) and malondialdehyde level (P < 0.05). There was a significant decrease in the frequency of DMBA-induced micronucleated polychromatic erythrocyte (P < 0.01). Considering the antitumorigenic, hypolipidemic, anti-inflammatory, antioxidant, and antigenotoxic properties of P. aduncum capsule, we conclude that it has a protective effect on DMBA-induced breast cancer in rats. PMID:26157333

  13. Protective Effect of Piper aduncum Capsule on DMBA-induced Breast Cancer in Rats.

    PubMed

    Arroyo-Acevedo, J; Chávez-Asmat, R J; Anampa-Guzmán, A; Donaires, R; Ráez-Gonzáles, José

    2015-01-01

    The possible protective effect of Piper aduncum capsule on DMBA (dimethylbenz[α]anthracene)-induced breast cancer in rats was assessed by monitoring the tumor and lung metastases incidence and recording hematological and biochemical parameters and frequency of micronuclei. Mammary carcinogenesis was induced in 36 female Holtzman rats by providing a single subcutaneous injection of DMBA. Oral administration of P. aduncum capsule lowered adenocarcinoma and lymph node metastases incidence. Pulmonary metastasis was significantly lowered (P < 0.05). Hematological indicators showed that the triglyceride level was significantly lowered (P < 0.01) and high-density lipoprotein (HDL) level was significantly increased (P < 0.01). Also, P. aduncum capsule significantly lowered the C reactive protein (CRP) level (P < 0.01) and malondialdehyde level (P < 0.05). There was a significant decrease in the frequency of DMBA-induced micronucleated polychromatic erythrocyte (P < 0.01). Considering the antitumorigenic, hypolipidemic, anti-inflammatory, antioxidant, and antigenotoxic properties of P. aduncum capsule, we conclude that it has a protective effect on DMBA-induced breast cancer in rats.

  14. Protective effect of histamine H2 receptor antagonist ranitidine against rotenone-induced apoptosis.

    PubMed

    Park, Hae Jeong; Kim, Hak Jae; Park, Hyun-Kyung; Chung, Joo-Ho

    2009-11-01

    Histamine H(2) receptor antagonists have been reported to improve the motor symptoms of Parkinson's disease (PD) patients and to exert neuroprotective effects. In this study, we investigated the protective effects of the H(2) receptor antagonist ranitidine on rotenone-induced apoptosis in human dopaminergic SH-SY5Y cells, focusing on mitogen-activated protein kinases (MAPKs) and caspases (CASPs)-mediated apoptotic events. Ranitidine blocked the rotenone-induced phosphorylation of c-Jun NH(2)-terminal protein kinase (JNK) and P38 MAPK (P38), and promoted the phosphorylation of extracellular signal-regulated protein kinase (ERK). Ranitidine also prevented the down-regulation of B-cell CLL/lymphoma 2 (BCL2) and the up-regulation of BCL2-associated X protein (BAX) by rotenone. Furthermore, ranitidine not only attenuated rotenone-induced cleavages of CASP9, poly(ADP-ribose) polymerase-1 (PARP) and CASP3, but also suppressed CASP3 enzyme activity. These results indicate that ranitidine protects against rotenone-induced apoptosis, inhibiting phosphorylation of JNK and P38, and activation of CASPs in human dopaminergic SH-SY5Y cells.

  15. Histaminergic regulation of NK-cells: protection against monocyte-induced apoptosis.

    PubMed

    Hansson, M; Asea, A; Hermodsson, S; Hellstrand, K

    1996-08-01

    Human natural killer (NK) cells (with CD3-/56+ phenotype) acquired features characteristic of apoptosis after incubation with autologous monocytes, as revealed by apoptotic nuclear morphology and degradation of DNA into oligonucleosomal fragments. The monocyte-induced apoptosis in NK-cells was prevented by the biogenic amine histamine at concentrations exceeding 0.1 microM. The protective effect of histamine was blocked by the H2-receptor (H2R) antagonist ranitidine but not by AH202399 A, a chemical control to ranitidine devoid of H2R affinity. It is concluded that histaminergic mechanisms may serve to protect NK cells from damage inflicted by products of the oxidative metabolism of monocytes.

  16. Collagen gel protects L929 cells from TNFα-induced death by activating NF-κB.

    PubMed

    Wang, Hong-Ju; Li, Meng-Qi; Liu, Wei-Wei; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2017-09-01

    Type I collagen is one of the most abundant components of extracellular matrix. We previously illustrated that murine fibrosarcoma L929 cells grew well on type I collagen gel and escaped from TNFα-induced cell death. In this study, we investigated the mechanism underlying the protective effect of collagen gel. We used western blot, confocal microscopy, MTT assay and flow cytometry by introducing fluorescence staining to determine the expression levels of nuclear factor kappa B (NF-κB), inhibitory ratio and autophagy. L929 cells on collagen gel showed higher expression of NF-κB in the nucleus. Inhibition of NF-κB with pyrrolidine dithiocarbamate hydrochloride (PDTC) or knockdown by NF-κB-siRNA canceled the protective effect of collagen gel on L929 cells from TNFα-induced death, suggesting for the role of NF-κB in the protection from cell death. We found a new aspect of the effect of PDTC on L929 cells cultured on collagen gel. PDTC alone without TNFα induced apoptosis in the L929 cells cultured on collagen gel but not the cells on plastic dish. The apoptosis induction of the L929 cells cultured on collagen gel with PDTC was repressed by inhibiting autophagy with chloroquine, an autophagy inhibitor, suggesting that autophagy contributes to the death induced by the treatment with PDTC. Possible underlying mechanism of this finding is discussed. NF-κB played an important role in protecting the L929 cells cultured on collagen gel from TNFα-induced death.

  17. Protection against acetaminophen-induced liver injury by allopurinol is dependent on aldehyde oxidase-mediated liver preconditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C. David; McGill, Mitchell R.; Lebofsky, Margitta

    2014-02-01

    Acetaminophen (APAP) overdose causes severe and occasionally fatal liver injury. Numerous drugs that attenuate APAP toxicity have been described. However these compounds frequently protect by cytochrome P450 inhibition, thereby preventing the initiating step of toxicity. We have previously shown that pretreatment with allopurinol can effectively protect against APAP toxicity, but the mechanism remains unclear. In the current study, C3HeB/FeJ mice were administered allopurinol 18 h or 1 h prior to an APAP overdose. Administration of allopurinol 18 h prior to APAP overdose resulted in an 88% reduction in liver injury (serum ALT) 6 h after APAP; however, 1 h pretreatmentmore » offered no protection. APAP-cysteine adducts and glutathione depletion kinetics were similar with or without allopurinol pretreatment. The phosphorylation and mitochondrial translocation of c-jun-N-terminal-kinase (JNK) have been implicated in the progression of APAP toxicity. In our study we showed equivalent early JNK activation (2 h) however late JNK activation (6 h) was attenuated in allopurinol treated mice, which suggests that later JNK activation is more critical for the toxicity. Additional mice were administered oxypurinol (primary metabolite of allopurinol) 18 h or 1 h pre-APAP, but neither treatment protected. This finding implicated an aldehyde oxidase (AO)-mediated metabolism of allopurinol, so mice were treated with hydralazine to inhibit AO prior to allopurinol/APAP administration, which eliminated the protective effects of allopurinol. We evaluated potential targets of AO-mediated preconditioning and found increased hepatic metallothionein 18 h post-allopurinol. These data show metabolism of allopurinol occurring independent of P450 isoenzymes preconditions the liver and renders the animal less susceptible to an APAP overdose. - Highlights: • 18 h allopurinol pretreatment protects against acetaminophen-induced liver injury. • 1 h allopurinol pretreatment does not protect

  18. Inactivated rotavirus vaccine induces protective immunity in gnotobiotic piglets.

    PubMed

    Wang, Yuhuan; Azevedo, Marli; Saif, Linda J; Gentsch, Jon R; Glass, Roger I; Jiang, Baoming

    2010-07-26

    Live oral rotavirus vaccines that are effective in middle and high income countries have been much less immunogenic and effective among infants in resource-limited settings. Several hypotheses might explain this difference, including neutralization of the vaccine by high levels of maternal antibody in serum and breast milk, severe malnutrition, and interference by other flora and viruses in the gut. We have pursued development of an alternative parenteral rotavirus vaccine with the goal of inducing comparable levels of immunogenicity and efficacy in populations throughout the world regardless of their income levels. In the present study, we assessed the immunogenicity and protection of a candidate inactivated rotavirus vaccine (IRV), the human strain CDC-9 (G1P[8]) formulated with aluminum phosphate, against rotavirus infection in gnotobiotic piglets. Three doses of IRV induced high titers of rotavirus-specific IgG and neutralizing activity in the sera of gnotobiotic piglets and protection against shedding of rotavirus antigen following oral challenge with a homologous virulent human strain Wa (G1P[8]). Our findings demonstrate the proof of concept for an IRV in a large animal model and provide evidence and justification for further clinical development as an alternative candidate vaccine. Published by Elsevier Ltd.

  19. Spirulina platensis protects against gentamicin-induced nephrotoxicity in rats.

    PubMed

    Karadeniz, Ali; Yildirim, Abdulkadir; Simsek, Nejdet; Kalkan, Yildiray; Celebi, Fikret

    2008-11-01

    The present study aimed to investigate the protective effect of Spirulina platensis (SP) on gentamicin sulphate (GS)-induced changes in the levels of lipid peroxidation and endogenous antioxidants in the kidney of rats. Sprague-Dawley rats were treated in separate groups as follows for 7 consecutive days: control (C), gentamicin sulphate (100 mg/kg i.p.) (GS), Spirulina platensis (1000 mg/kg orally) (SP) and Spirulina platensis (1000 mg/kg orally) plus gentamicin sulphate (100 mg/kg i.p.) (SP + GS). The degree of protection was evaluated by determining the effects of Spirulina platensis on malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPX) and nitric oxide (NO), and plasma creatinine and urea levels were estimated in kidney homogenates to evaluate antioxidant activity, and the kidney was histologically examined as well. Spirulina platensis elicited significant nephroprotective activity by decreasing lipid peroxidation (MDA) and elevated the levels of GSH, SOD, GPX, NO, creatinine and urea. Furthermore, these biochemical observations were supplemented by histological examination of the rat kidneys. In conclusion, the present study indicates a very important role of reactive oxygen species (ROS) and the relation to renal dysfunction and point to the therapeutic potential of Spirulina platensis in gentamicin sulphate induced nephrotoxicity.

  20. A small-molecule inhibitor of NF-κB-inducing kinase (NIK) protects liver from toxin-induced inflammation, oxidative stress, and injury.

    PubMed

    Ren, Xiaomeng; Li, Xinzhi; Jia, Linna; Chen, Deheng; Hou, Hai; Rui, Liangyou; Zhao, Yujun; Chen, Zheng

    2017-02-01

    Potent and selective chemical probes are valuable tools for discovery of novel treatments for human diseases. NF-κB-inducing kinase (NIK) is a key trigger in the development of liver injury and fibrosis. Whether inhibition of NIK activity by chemical probes ameliorates liver inflammation and injury is largely unknown. In this study, a small-molecule inhibitor of NIK, B022, was found to be a potent and selective chemical probe for liver inflammation and injury. B022 inhibited the NIK signaling pathway, including NIK-induced p100-to-p52 processing and inflammatory gene expression, both in vitro and in vivo Furthermore, in vivo administration of B022 protected against not only NIK but also CCl 4 -induced liver inflammation and injury. Our data suggest that inhibition of NIK is a novel strategy for treatment of liver inflammation, oxidative stress, and injury.-Ren, X., Li, X., Jia, L., Chen, D., Hou, H., Rui, L., Zhao, Y., Chen, Z. A small-molecule inhibitor of NF-κB-inducing kinase (NIK) protects liver from toxin-induced inflammation, oxidative stress, and injury. © FASEB.

  1. Novel sila-amide derivatives of N-acetylcysteine protects platelets from oxidative stress-induced apoptosis.

    PubMed

    Paul, Manoj; Thushara, Ram M; Jagadish, Swamy; Zakai, Uzma I; West, Robert; Kemparaju, Kempaiah; Girish, Kesturu S

    2017-02-01

    Oxidative stress-induced platelet apoptosis is one among the many causes for the development and progression of many disorders like cardiovascular diseases, arthritis, Alzheimer's disease and many chronic inflammatory responses. Many studies have demonstrated the less optimal effect of N-acetyl cysteine (NAC) in oxidative stress-induced cellular damage. This could be due to its less lipophilicity which makes it difficult to enter the cellular membrane. Therefore in the present study, lipophilic sila-amide derivatives (6a and 6b) synthesized through the reaction of NAC with 3-Aminopropyltrimethylsilane and aminomethyltrimethylsilane were used to determine their protective property against oxidative stress-induced platelet apoptosis. At a concentration of 10 µM, compound 6a and 6b were able to significantly inhibit Rotenone/H 2 O 2 induced platelet apoptotic markers like reactive oxygen species, intracellular calcium level, mitochondrial membrane potential, cytochrome c release from mitochondrial to the cytosol, caspase-9 and -3 activity and phosphatidylserine externalization. Therefore, the compounds can be extrapolated as therapeutic agents to protect platelets from oxidative stress-induced platelet apoptosis and its associated complications.

  2. MiRNA-21 has effects to protect kidney injury induced by sepsis.

    PubMed

    Fu, Dian; Dong, Jie; Li, Ping; Tang, Chaopeng; Cheng, Wen; Xu, Zhenyu; Zhou, Wenquan; Ge, Jingping; Xia, Chen; Zhang, Zhengyu

    2017-10-01

    To investigate the miRNA-21 over-expression in the acute kidney injury induced by sepsis, we developed a sepsis induced in vitro model by lip polysaccharide (LPS) and in vovo model by cecal ligation and puncture (CLP) surgery. LPS or CLP surgery induced kidney cell apoptosis increasing. However, the kidney injury indexes of miRNA groups which were transfected with miRNA-21 were significantly suppressed. In further study, the relative proteins expressions were evaluated to explain the miRNA-21 mechanism to improve sepsis induced kidney cell apoptosis. The results were shown that miRNA-21 over-expression had effects to protect kidney cell apoptosis induced by sepsis via PTEN/PI3K/AKT signaling pathway. Copyright © 2017. Published by Elsevier Masson SAS.

  3. Protective effects of silymarin against acetaminophen-induced hepatotoxicity and nephrotoxicity in mice.

    PubMed

    Bektur, Nuriye Ezgi; Sahin, Erhan; Baycu, Cengiz; Unver, Gonul

    2016-04-01

    This study was designed to estimate protective effects of silymarin on acetaminophen (N-acetyl-p-aminophenol, paracetamol; APAP)-induced hepatotoxicity and nephrotoxicity in mice. Treatment of mice with overdose of APAP resulted in the elevation of aspartate aminotransferase (AST), alanine transaminase (ALT), blood urea nitrogen (BUN), and serum creatinine (SCr) levels in serum, liver, and kidney nitric oxide (NO) levels and significant histological changes including decreased body weight, swelling of hepatocytes, cell infiltration, dilatation and congestion, necrosis and apoptosis in liver, and dilatation of Bowman's capsular space and glomerular capillaries, pale-stained tubules epithelium, cell infiltration, and apoptosis in kidney. Posttreatment with silymarin 1 h after APAP injection for 7 days, however, significantly normalized the body weight, histological damage, serum ALT, AST, BUN, SCr, and tissue NO levels. Our observation suggested that silymarin ameliorated the toxic effects of APAP-induced hepatotoxicity and nephrotoxicity in mice. The protective role of silymarin against APAP-induced damages might result from its antioxidative and anti-inflammatory effects. © The Author(s) 2013.

  4. Graphene coatings for protection against microbiologically induced corrosion

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Ajay

    Microbiologically induced corrosion (MIC) is a special form of electrochemical corrosion where micro-organisms affect the local environmental conditions at the metal-electrolyte interface by forming a stable biofilm. The biofilm introduces localized concentration cells, which accelerate the electrochemical corrosion rates. MIC has been found to affect many industrial systems such as sewage waste water pipes, heat exchangers, ships, underwater pipes etc. It has been traditionally eradicated by physical, biochemical and surface protection methods. The cleaning methods and the biocidal deliveries are required periodically and don't provide a permanent solution to the problem. Further, the use of biocides has been harshly criticized by environmentalists due to safety concerns associated with their usage. Surface based coatings have their own drawback of rapid degradation under harsh microbial environments. This has led to the exploration of thin, robust, inert, conformal passivation coatings for the protection of metallic surfaces from microbiologically induced corrosion. Graphene is a 2D arrangement of carbon atoms in a hexagonal honeycomb lattice. The carbon atoms are bonded to one another by sp2 hybridization and each layer of the carbon ring arrangement spans to a thickness of less than a nm. Due to its unique 2D arrangement of carbon atoms, graphene exhibits interesting in-plane and out of plane properties that have led to it being considered as the material for the future. Its excellent thermal, mechanical, electrical and optical properties are being explored in great depth to understand and realize potential applications in various technological realms. Early studies have shown the ability of bulk and monolayer graphene to protect metallic surfaces from air oxidation and solution based galvanic corrosion processes for short periods. However, the role of graphene in resisting MIC is yet to be determined, particularly over the long time spans characteristic of

  5. Protective effect of Growth Hormone-Releasing Hormone agonist in bacterial toxin-induced pulmonary barrier dysfunction.

    PubMed

    Czikora, Istvan; Sridhar, Supriya; Gorshkov, Boris; Alieva, Irina B; Kasa, Anita; Gonzales, Joyce; Potapenko, Olena; Umapathy, Nagavedi S; Pillich, Helena; Rick, Ferenc G; Block, Norman L; Verin, Alexander D; Chakraborty, Trinad; Matthay, Michael A; Schally, Andrew V; Lucas, Rudolf

    2014-01-01

    Antibiotic treatment of patients infected with G(-) or G(+) bacteria promotes release of the toxins lipopolysaccharide (LPS) and pneumolysin (PLY) in their lungs. Growth Hormone-releasing Hormone (GHRH) agonist JI-34 protects human lung microvascular endothelial cells (HL-MVEC), expressing splice variant 1 (SV-1) of the receptor, from PLY-induced barrier dysfunction. We investigated whether JI-34 also blunts LPS-induced hyperpermeability. Since GHRH receptor (GHRH-R) signaling can potentially stimulate both cAMP-dependent barrier-protective pathways as well as barrier-disruptive protein kinase C pathways, we studied their interaction in GHRH agonist-treated HL-MVEC, in the presence of PLY, by means of siRNA-mediated protein kinase A (PKA) depletion. Barrier function measurements were done in HL-MVEC monolayers using Electrical Cell substrate Impedance Sensing (ECIS) and VE-cadherin expression by Western blotting. Capillary leak was assessed by Evans Blue dye (EBD) incorporation. Cytokine generation in broncho-alveolar lavage fluid (BALF) was measured by multiplex analysis. PKA and PKC-α activity were assessed by Western blotting. GHRH agonist JI-34 significantly blunts LPS-induced barrier dysfunction, at least in part by preserving VE-cadherin expression, while not affecting inflammation. In addition to activating PKA, GHRH agonist also increases PKC-α activity in PLY-treated HL-MVEC. Treatment with PLY significantly decreases resistance in control siRNA-treated HL-MVEC, but does so even more in PKA-depleted monolayers. Pretreatment with GHRH agonist blunts PLY-induced permeability in control siRNA-treated HL-MVEC, but fails to improve barrier function in PKA-depleted PLY-treated monolayers. GHRH signaling in HL-MVEC protects from both LPS and PLY-mediated endothelial barrier dysfunction and concurrently induces a barrier-protective PKA-mediated and a barrier-disruptive PKC-α-induced pathway in the presence of PLY, the former of which dominates the latter.

  6. Protective effect of ferulic acid on cisplatin induced nephrotoxicity in rats.

    PubMed

    Bami, Erliasa; Ozakpınar, Ozlem Bingol; Ozdemir-Kumral, Zarife Nigar; Köroglu, Kutay; Ercan, Feriha; Cirakli, Zeynep; Sekerler, Turgut; Izzettin, Fikret Vehbi; Sancar, Mesut; Okuyan, Betul

    2017-09-01

    This study aims to determine the potential protective effects of ferulic acid against cisplatin-induced nephrotoxicity and to compare its effect with curcumin, a well-known protective agent against cisplatin- induced toxicity in rats. Administration of cisplatin resulted in high BUN (Blood Urea Nitrogen), creatinine, MDA (Malondialdehyde), MPO (Myeloperoxidase), TOS (Total Oxidative Status), PtNT (Protein Nitrotyrosine) levels (p<0.05). Histological observations showed abnormal morphology of kidney; in addition with appearance of TUNEL positive cells indicating apoptosis in cisplatin administered group. HO-1 (Heme Oxygenase-1) levels measured by RT-PCR (Real Time Polymerase Chain Reaction), and TAS (Total Antioxidative Status) revealed antioxidant depletion due to cisplatin toxicity in animals (p<0.05). All parameters showed improvement in groups treated with ferulic acid (p<0.05). Ferulic acid treatment was found significant in preventing oxidative stress, increasing antioxidative status and regaining histological parameters to normal, indicating nephroprotective and antioxidant effects of this phenolic compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Blackberry subjected to in vitro gastrointestinal digestion affords protection against Ethyl Carbamate-induced cytotoxicity.

    PubMed

    Chen, Wei; Xu, Yang; Zhang, Lingxia; Su, Hongming; Zheng, Xiaodong

    2016-12-01

    Ethyl Carbamate (EC) was detected in many fermented foods. Previous studies indicated that frequent exposure to ethyl carbamate may increase the risk to suffer from cancers. Blackberry is rich in polyphenols and possesses potent antioxidant activity. This study aims to investigate the protective effect of blackberry homogenates produced before (BH) and after in vitro simulated gastrointestinal digestion (BD) on EC-induced toxicity in Caco-2 cells. Our results showed that blackberry homogenates after digestion (BD) was more effective than that before digestion (BH) in ameliorating EC-induced toxicity in Caco-2 cells. Further investigation revealed that BD remarkably attenuated EC-induced toxicity through restoring mitochondrial function, inhibiting glutathione depletion and decreasing overproduction of intracellular reactive oxygen species. Additionally, LC-MS result implied that the better protective capacity of BD may be related to the increased content of two anthocyanins (cyanidin-3-glucoside and cyanidin-3-dioxalyglucoside). Overall, the present study may give implication to prevent EC-induced health problem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Histone deacetylase inhibitors protect against cisplatin-induced acute kidney injury by activating autophagy in proximal tubular cells.

    PubMed

    Liu, Jing; Livingston, Man J; Dong, Guie; Tang, Chengyuan; Su, Yunchao; Wu, Guangyu; Yin, Xiao-Ming; Dong, Zheng

    2018-02-23

    Histone deacetylase inhibitors (HDACi) have therapeutic effects in models of various renal diseases including acute kidney injury (AKI); however, the underlying mechanism remains unclear. Here we demonstrate that two widely tested HDACi (suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA)) protect the kidneys in cisplatin-induced AKI by enhancing autophagy. In cultured renal proximal tubular cells, SAHA and TSA enhanced autophagy during cisplatin treatment. We further verified the protective effect of TSA against cisplatin-induced apoptosis in these cells. Notably, inhibition of autophagy by chloroquine or by autophagy gene 7 (Atg7) ablation diminished the protective effect of TSA. In mice, TSA increased autophagy in renal proximal tubules and protected against cisplatin-induced AKI. The in vivo effect of TSA was also abolished by chloroquine and by Atg7 knockout specifically from renal proximal tubules. Mechanistically, TSA stimulated AMPK and inactivated mTOR during cisplatin treatment of proximal tubule cells and kidneys in mice. Together, these results suggest that HDACi may protect kidneys by activating autophagy in proximal tubular cells.

  9. Glucagon receptor knockout mice are protected against acute olanzapine-induced hyperglycemia.

    PubMed

    Castellani, Laura N; Peppler, Willem T; Sutton, Charles D; Whitfield, Jamie; Charron, Maureen J; Wright, David C

    2017-08-01

    To determine if glucagon is involved in mediating the increase in blood glucose levels caused by the second-generation antipsychotic drug olanzapine. Whole body glucagon receptor deficient mice (Gcgr -/- ) or WT littermate controls were injected with olanzapine (5mg/kg BW IP) and changes in blood glucose measured over the following 120min. Separate cohorts of mice were treated with olanzapine and changes in pyruvate tolerance, insulin tolerance and whole body substrate oxidation were determined. Olanzapine treatment increased serum glucagon and lead to rapid increases in blood glucose concentrations in WT mice. Gcgr -/- mice were protected against olanzapine-induced increases in blood glucose but this was not explained by differences in terminal serum insulin concentrations, enhanced AKT phosphorylation in skeletal muscle, adipose tissue or liver or differences in RER. In both genotypes olanzapine induced an equivalent degree of insulin resistance as measured using an insulin tolerance test. Olanzapine treatment led to an exaggerated glucose response to a pyruvate challenge in WT but not Gcgr -/- mice and this was paralleled by reductions in the protein content of PEPCK and G6Pase in livers from Gcgr -/- mice. Gcgr -/- mice are protected against olanzapine-induced increases in blood glucose. This is likely a result of reductions in liver glucose output, perhaps secondary to decreases in PEPCK and G6Pase protein content. Our findings highlight the central role of the liver in mediating olanzapine-induced disturbances in glucose homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Taraxacum officinale protects against lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Liu, Liben; Xiong, Huanzhang; Ping, Jiaqi; Ju, Yulin; Zhang, Xuemei

    2010-07-20

    Taraxacum officinale has been frequently used as a remedy for inflammatory diseases. In the present study, we investigated the in vivo protective effect of Taraxacum officinale on acute lung injury (ALI) induced by lipopolysaccharide (LPS) in mice. Taraxacum officinale at 2.5, 5 and 10 mg/kg was orally administered once per day for 5 days consecutively, followed by 500 microg/kg LPS was instilled intranasally. The lung wet/dry weight (W/D) ratio, protein concentration and the number of inflammatory cells in bronchoalveolar lavage fluid (BALF) were determined. Superoxidase dismutase (SOD) and myeloperoxidase (MPO) activities, and histological change in the lungs were examined. The levels of inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in the BALF were measured using ELISA. We found that Taraxacum officinale decreased the lung W/D ratio, protein concentration and the number of neutrophils in the BALF at 24 h after LPS challenge. Taraxacum officinale decreased LPS-induced MPO activity and increased SOD activity in the lungs. In addition, histopathological examination indicated that Taraxacum officinale attenuated tissue injury of the lungs in LPS-induced ALI. Furthermore, Taraxacum officinale also inhibited the production of inflammatory cytokines TNF-alpha and IL-6 in the BALF at 6h after LPS challenge in a dose-dependent manner. These results suggest that Taraxacum officinale protects against LPS-induced ALI in mice. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Protective Effects of Resveratrol against UVA-Induced Damage in ARPE19 Cells

    PubMed Central

    Chan, Chi-Ming; Huang, Cheng-Hua; Li, Hsin-Ju; Hsiao, Chien-Yu; Su, Ching-Chieh; Lee, Pei-Lan; Hung, Chi-Feng

    2015-01-01

    Ultraviolet radiation, especially UVA, can penetrate the lens, reach the retina, and induce oxidative stress to retinal pigment epithelial (RPE) cells. Even though it is weakly absorbed by protein and DNA, it may trigger the production of reactive oxygen species (ROS) and generate oxidative injury; oxidative injury to the retinal pigment epithelium has been implicated to play a contributory role in age-related macular degeneration (AMD). Studies showed that resveratrol, an abundant and active component of red grapes, can protect several cell types from oxidative stress. In this study, adult RPE cells being treated with different concentrations of resveratrol were used to evaluate the protective effect of resveratrol on RPE cells against UVA-induced damage. Cell viability assay showed that resveratrol reduced the UVA-induced decrease in RPE cell viability. Through flow cytometry analysis, we found that the generation of intracellular H2O2 induced by UVA irradiation in RPE cells could be suppressed by resveratrol in a concentration-dependent manner. Results of Western blot analysis demonstrated that resveratrol lowered the activation of UVA-induced extracellular signal-regulated kinase, c-jun-NH2 terminal kinase and p38 kinase in RPE cells. In addition, there was also a reduction in UVA-induced cyclooxygenase-2 (COX-2) expression in RPE cells pretreated with resveratrol. Our observations suggest that resveratrol is effective in preventing RPE cells from being damaged by UVA radiation, and is worth considering for further development as a chemoprotective agent for the prevention of early AMD. PMID:25775159

  12. Protective effects of resveratrol against UVA-induced damage in ARPE19 cells.

    PubMed

    Chan, Chi-Ming; Huang, Cheng-Hua; Li, Hsin-Ju; Hsiao, Chien-Yu; Su, Ching-Chieh; Lee, Pei-Lan; Hung, Chi-Feng

    2015-03-12

    Ultraviolet radiation, especially UVA, can penetrate the lens, reach the retina, and induce oxidative stress to retinal pigment epithelial (RPE) cells. Even though it is weakly absorbed by protein and DNA, it may trigger the production of reactive oxygen species (ROS) and generate oxidative injury; oxidative injury to the retinal pigment epithelium has been implicated to play a contributory role in age-related macular degeneration (AMD). Studies showed that resveratrol, an abundant and active component of red grapes, can protect several cell types from oxidative stress. In this study, adult RPE cells being treated with different concentrations of resveratrol were used to evaluate the protective effect of resveratrol on RPE cells against UVA-induced damage. Cell viability assay showed that resveratrol reduced the UVA-induced decrease in RPE cell viability. Through flow cytometry analysis, we found that the generation of intracellular H2O2 induced by UVA irradiation in RPE cells could be suppressed by resveratrol in a concentration-dependent manner. Results of Western blot analysis demonstrated that resveratrol lowered the activation of UVA-induced extracellular signal-regulated kinase, c-jun-NH2 terminal kinase and p38 kinase in RPE cells. In addition, there was also a reduction in UVA-induced cyclooxygenase-2 (COX-2) expression in RPE cells pretreated with resveratrol. Our observations suggest that resveratrol is effective in preventing RPE cells from being damaged by UVA radiation, and is worth considering for further development as a chemoprotective agent for the prevention of early AMD.

  13. Beta-carotene and lutein protect HepG2 human liver cells against oxidant-induced damage.

    PubMed

    Martin, K R; Failla, M L; Smith, J C

    1996-09-01

    Numerous epidemiological studies support a strong inverse relationship between consumption of carotenoid-rich fruits and vegetables and the incidence of some degenerative diseases. One proposed mechanism of protection by carotenoids centers on their putative antioxidant activity, although direct evidence in support of this contention is limited at the cellular level. The antioxidant potential of beta-carotene (BC) and lutein (LUT), carotenoids with or without provitamin A activity, respectively, was evaluated using the human liver cell line HepG2. Pilot studies showed that a 90-min exposure of confluent cultures to 500 mumol/L tert-butylhydroperoxide (TBHP) at 37 degrees C significantly (P < 0.05) increased lipid peroxidation and cellular leakage of lactate dehydrogenase (LDH), and decreased the uptake of 3H-alpha-aminoisobutyric acid and 3H-2-deoxyglucose. Protein synthesis, mitochondrial activity and glucose oxidation were not affected by TBHP treatment, suggesting that the plasma membrane was the primary site of TBHP-induced damage. Overnight incubation of cultures with > or = 1 mumol/L dl-alpha-tocopherol protected cells against oxidant-induced changes. In parallel studies, overnight incubation of HepG2 in medium containing micelles with either BC or LUT (final concentrations of 1.1 and 10.9 mumol/L, respectively), the cell content of the carotenoids increased from < 0.04 to 0.32 and 3.39 nmol/mg protein, respectively. Carotenoid-loaded cells were partially or completely protected against oxidant-induced changes in lipid peroxidation, LDH release and amino acid and deoxyglucose transport. These data demonstrate that BC and LUT or their metabolites protect HepG2 cells against oxidant-induced damage and that the protective effect is independent of provitamin A activity.

  14. Total Leishmania antigens with Poly(I:C) induce Th1 protective response.

    PubMed

    Sanchez, M V; Eliçabe, R J; Di Genaro, M S; Germanó, M J; Gea, S; García Bustos, M F; Salomón, M C; Scodeller, E A; Cargnelutti, D E

    2017-11-01

    Our proposal was to develop a vaccine based on total Leishmania antigens (TLA) adjuvanted with polyinosinic-polycytidylic acid [Poly(I:C)] able to induce a Th1 response which can provide protection against Leishmania infection. Mice were vaccinated with two doses of TLA-Poly(I:C) administered by subcutaneous route at 3-week interval. Humoral and cellular immune responses induced by the immunization were measured. The protective efficacy of the vaccine was evaluated by challenging mice with infective promastigotes of Leishmania (Leishmania) amazonensis into the footpad. Mice vaccinated with TLA-Poly(I:C) showed a high anti-Leishmania IgG titre, as well as increased IgG1 and IgG2a subclass titres compared with mice vaccinated with the TLA alone. The high IgG2a indicated a Th1 bias response induced by the TLA-Poly(I:C) immunization. Accordingly, the cellular immune response elicited by the formulation was characterized by an increased production of IFN-γ and no significant production of IL-4. The TLA-Poly(I:C) immunization elicited good protection, which was associated with decreased footpad swelling, a lower parasite load and a reduced histopathological alteration in the footpad. Our findings demonstrate a promising vaccine against cutaneous leishmaniasis that is relatively economic and easy to develop and which should be taken into account for preventing leishmaniasis in developing countries. © 2017 John Wiley & Sons Ltd.

  15. Baicalin Scavenged Reactive Oxygen Species and Protected Human Keratinocytes Against UVB-induced Cytotoxicity.

    PubMed

    Chang, Wen-Shin; Lin, En-Yuan; Hsu, Shih-Wei; Hu, Pei-Shin; Chuang, Chin-Liang; Liao, Cheng-Hsi; Fu, Chun-Kai; Su, Chung-Hao; Gong, Chi-Li; Hsiao, Chieh-Lun; Bau, DA-Tian; Tsai, Chia-Wen

    Ultraviolet B (UVB), with a wavelength of 280-320 nm, represents one of the most important environmental factors for skin disorders, including sunburn, hyperpigmentation, solar keratosis, solar elastosis and skin cancer. Therefore, protection against excessive UVA-induced damage is useful for prevention of sunburn and other human diseases. Baicalin, a major component of traditional Chinese medicine Scutellaria baicalensis, has been reported to possess antioxidant and cytostatic capacities. In this study, we examined whether baicalin is also capable of protecting human keratinocytes from UVB irradiation. The results showed that baicalin effectively scavenged reactive oxygen species (ROS) elevated within 4 h after UVB radiation and reversed the UVB-suppressed cell viability and UVB-induced apoptosis after 24 h. Our results demonstrated the utility of baicalin to complement the contributions of traditional Chinese medicine in UVB-induced damage to skin and suggested their potential application as pharmaceutical agents in long-term sun-shining injury prevention. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Protective effect of thymoquinone against lead-induced hepatic toxicity in rats.

    PubMed

    Mabrouk, Aymen; Bel Hadj Salah, Imen; Chaieb, Wafa; Ben Cheikh, Hassen

    2016-06-01

    Lead (Pb) intoxication is a worldwide health problem which frequently affects the liver. This study was carried out to investigate the potential protective effect of thymoquinone (TQ), the major active ingredient of volatile oil of Nigella sativa seeds, against Pb-induced liver damage. Adult male rats were randomized into four groups: Control group received no treatment, Pb group was exposed to 2000 ppm Pb acetate in drinking water, Pb-TQ group was cotreated with Pb plus TQ (5 mg/kg/day, per orally), and TQ group receiving only TQ. All treatments were applied for 5 weeks. Results indicated that Pb exposure increased hepatic Pb content, damaged hepatic histological structure (necrotic foci, hepatic strands disorganization, hypertrophied hepatocytes, cytoplasmic vacuolization, cytoplasmic loss, chromatin condensation, mononuclear cell infiltration, congestion, centrilobular swelling), and changed liver function investigated by plasma biochemical parameters (AST, ALT, ALP, γ-GT, LDH). Pb treatment also decreased total antioxidant status level and increased lipid peroxidation in the liver. Supplementation with TQ remarkably improved the Pb-induced adverse effects without significantly reducing the metal accumulation in the liver. In conclusion, our results indicate, for the first time, a protective effect of TQ against Pb-induced hepatotoxicity and suggest that this component might be clinically useful in Pb intoxication.

  17. The ζ toxin induces a set of protective responses and dormancy.

    PubMed

    Lioy, Virginia S; Machon, Cristina; Tabone, Mariangela; Gonzalez-Pastor, José E; Daugelavicius, Rimantas; Ayora, Silvia; Alonso, Juan C

    2012-01-01

    The ζε module consists of a labile antitoxin protein, ε, which in dimer form (ε(2)) interferes with the action of the long-living monomeric ζ phosphotransferase toxin through protein complex formation. Toxin ζ, which inhibits cell wall biosynthesis and may be bactericide in nature, at or near physiological concentrations induces reversible cessation of Bacillus subtilis proliferation (protective dormancy) by targeting essential metabolic functions followed by propidium iodide (PI) staining in a fraction (20-30%) of the population and selects a subpopulation of cells that exhibit non-inheritable tolerance (1-5×10(-5)). Early after induction ζ toxin alters the expression of ∼78 genes, with the up-regulation of relA among them. RelA contributes to enforce toxin-induced dormancy. At later times, free active ζ decreases synthesis of macromolecules and releases intracellular K(+). We propose that ζ toxin induces reversible protective dormancy and permeation to PI, and expression of ε(2) antitoxin reverses these effects. At later times, toxin expression is followed by death of a small fraction (∼10%) of PI stained cells that exited earlier or did not enter into the dormant state. Recovery from stress leads to de novo synthesis of ε(2) antitoxin, which blocks ATP binding by ζ toxin, thereby inhibiting its phosphotransferase activity.

  18. Protective effects of red wine flavonols on 4-hydroxynonenal-induced apoptosis in PC12 cells.

    PubMed

    Jang, Young Jin; Kang, Nam Joo; Lee, Ki Won; Lee, Hyong Joo

    2009-08-01

    There is accumulating evidence that a moderate consumption of red wine has health benefits, such as the inhibition of neurodegenerative diseases. Although this is generally attributed to resveratrol, the protective mechanisms and the active substance(s) remain unclear. We examined whether and how red wine extract (RWE) and red wine flavonols quercetin and myricetin inhibited 4-hydroxynonenal (HNE)-induced apoptosis of rat pheochromocytoma PC12 cells. RWE attenuated HNE-induced PC12 cell death in a dose-dependent manner. HNE induced cleavage of poly(ADP-ribose) polymerase, which is involved in DNA repair in the nucleus, and this was inhibited by RWE treatment. Treatment with RWE also inhibited HNE-induced nuclear condensation in PC12 cells. Data of 2',7'-dichlorofluorescin diacetate showed that RWE protected against apoptosis of PC12 cells by attenuating intracellular reactive oxygen species. The cytoprotective effects on HNE-induced cell death were stronger for quercetin and myricetin than for resveratrol. HNE-induced nuclear condensation was attenuated by quercetin and myricetin. These results suggest that the neuroprotective potential of red wine is attributable to flavonols rather than to resveratrol.

  19. The protection of glycyrrhetinic acid (GA) towards acetaminophen (APAP)-induced toxicity partially through fatty acids metabolic pathway.

    PubMed

    Yang, Hua; Jiang, Tingshu; Li, Ping; Mao, Qishan

    2015-09-01

    Acetaminophen (APAP)-induced liver toxicity remains the key factor limiting the clinical application of APAP, and herbs are the important sources for isolation of compounds preventing APAP-induced toxicity. To investigate the protection mechanism of glycyrrhetinic acid towards APAP-induced liver damage using metabolomics method. APAP-induced liver toxicity model was made through intraperitoneal injection (i.p.) of APAP (400 mg/kg). Glycyrrhetinic acid was dissolved in corn oil, and intraperitoneal injection (i.p.) of glycyrrhetinic acid (500 mg/kg body weight) was performed for 20 days before the injection of APAP. UPLC-ESI-QTOF MS was employed to analyze the metabolomic profile of serum samples. The pre-treatment of glycyrrhetinic acid significantly protected APAP-induced toxicity, indicated by the histology of liver, the activity of ALT and AST. Metabolomics showed that the level of palmtioylcarnitine and oleoylcarnitine significantly increased in serum of APAP-treated mice, and the pre-treatment with GA can prevent this elevation of these two fatty acid-carnitines. Reversing the metabolism pathway of fatty acid is an important mechanism for the protection of glycyrrhetinic acid towards acetaminophen-induced liver toxicity.

  20. Concerted action of p62 and Nrf2 protects cells from palmitic acid-induced lipotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jeong Su; Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752; Kang, Dong Hoon

    Nonalcoholic fatty liver disease (NAFLD), frequently associated with obesity and diabetes mellitus, is caused by the accumulation of excess fatty acids within liver cells. Palmitic acid (PA), a common saturated fatty acid found in mammals, induces the generation of reactive oxygen species (ROS) and elicits apoptotic cell death, known as lipotoxicity. However, protective mechanisms against PA-induced lipotoxicity have not been elucidated. In this study, we aimed to clarify the role of p62, an adapter protein in the autophagic process, as well as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in protecting cells from PA-inducedmore » lipotoxicity. The Nrf2-Keap1 pathway is essential for the protection of cells from oxidative stress. p62 enhances its binding to Keap1 and leads to Nrf2 activation. Here, we show that PA potentiates Keap1 degradation and thereby activates the transcription of Nrf2 target genes partially through autophagy. Furthermore, this PA-mediated Keap1 degradation depends on p62. Correspondingly, a lack of p62 attenuates the PA-mediated Nrf2 activation and increases the susceptibility of cells to oxidative stress. These results indicate that p62 plays an important role in protecting cells against lipotoxicity through Keap1 degradation-mediated Nrf2 activation. - Highlights: • PA induces Keap1 downregulation and activates Nrf2 target gene transcription. • PA-induced Keap1 degradation is partly mediated by the autophagic pathway. • PA-induced Keap1 degradation depends on p62. • Ablation of p62 exacerbates PA-mediated apoptotic cell death.« less

  1. The protective effects of resveratrol on Schwann cells with toxicity induced by ethanol in vitro.

    PubMed

    Yuan, Hongtu; Zhang, Jingfen; Liu, Huaxiang; Li, Zhenzhong

    2013-09-01

    Schwann cells (SCs) are the myelin forming cells in the peripheral nervous system, they play a key role in the pathology of various polyneuropathies and provide trophic support to axons via expression of various neurotrophic factors, such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). Ethanol (EtOH) adversely affected both SCs proliferation and myelin formation in culture. Resveratrol (Res) has been shown to regulate many cellular processes and to display multiple protective and therapeutic effects. Whether Res has protective effects on SCs with EtOH-induced toxicity is still unclear. The protective efficacy of Res on EtOH-treated SCs in vitro was investigated in the present study. Res improved cell viability of the EtOH-treated SCs. Hoechst 33342 staining and terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate nick-end labeling analysis showed that the EtOH-induced apoptosis was inhibited by Res. The effects of Res were blocked by the 5'-adenosine monophosphate-activated protein kinase inhibitor Compound C and the silencing information regulator T1 inhibitor nicotinamide. Res could increase the mRNA and protein levels of BDNF and GDNF in the EtOH-treated SCs. However, the EtOH-induced increase of NGF in the SCs is inhibited by Res. The data from the present study indicate that Res protects SCs from EtOH-induced cell death and regulates the expression of neurotrophicfactors. Res and its derivative may be effective for the treatment of neuropathic diseases induced by EtOH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. The use of suction blisters to measure sunscreen protection against UVR-induced DNA damage.

    PubMed

    Josse, Gwendal; Douki, Thierry; Le Digabel, Jimmy; Gravier, Eleonore; Questel, Emmanuel

    2018-02-01

    The formation of DNA photoproducts caused by solar UVR exposure needs to be investigated in-vivo and in particular in order to assess sunscreens' level of protection against solar genotoxicity. The study's purposes were: i) to evaluate if the roof of suction blisters is an appropriate sampling method for measuring photoproducts, and ii) to measure in-vivo sunscreen protection against cyclobutane pyrimidine dimers. Skin areas on the interior forearms of eight healthy volunteers were exposed in-vivo to 2 MED of simulated solar radiation (SSR) and to 15 MED on a sunscreen protected area. After irradiation, six suction blisters were induced and the blister roofs were collected. Analysis of SSR-induced CPDs was performed by two independent methods: a chromatography coupled to mass spectroscopy (HPLC-MS/MS) approach and a 3D-imaging of CPD immunostaining by multiphoton microscopy on floating epidermal sheets. HPLC-MS/MS analyses showed that SSR-unexposed skin presented no CPD dimers, whereas 2 MED SSR-exposed skin showed a significant number of TT-CPD. The sunscreen covered skin exposed to 15 MED appeared highly protected from DNA damage, as the amount of CPD-dimers remained below the detection limit. The multiphoton-immunostaining analysis consistently showed that no CPD staining was observed on the non-SSR-exposed skin. A significant increase of CPD staining intensity and number of CPD-positive cells were observed on the 2 MED SSR-exposed skin. Sunscreen protected skin presented a very low staining intensity and the number of CPD-positive cells remained very close to non-SSR-exposed skin. This study showed that suction blister samples are very appropriate for measuring CPD dimers in-vivo, and that sunscreens provide high protection against UVR-induced DNA damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Targeting of rotavirus VP6 to DEC-205 induces protection against the infection in mice.

    PubMed

    Badillo-Godinez, O; Gutierrez-Xicotencatl, L; Plett-Torres, T; Pedroza-Saavedra, A; Gonzalez-Jaimes, A; Chihu-Amparan, L; Maldonado-Gama, M; Espino-Solis, G; Bonifaz, L C; Esquivel-Guadarrama, F

    2015-08-20

    Rotavirus (RV) is the primary etiologic agent of severe gastroenteritis in human infants. Although two attenuated RV-based vaccines have been licensed to be applied worldwide, they are not so effective in low-income countries, and the induced protection mechanisms have not been clearly established. Thus, it is important to develop new generation vaccines that induce long lasting heterotypic immunity. VP6 constitutes the middle layer protein of the RV virion. It is the most conserved protein and it is the target of protective T-cells; therefore, it is a potential candidate antigen for a new generation vaccine against the RV infection. We determined whether targeting the DEC-205 present in dendritic cells (DCs) with RV VP6 could induce protection at the intestinal level. VP6 was cross-linked to a monoclonal antibody (mAb) against murine DEC-205 (αDEC-205:VP6), and BALB/c mice were inoculated subcutaneously (s.c.) twice with the conjugated containing 1.5 μg of VP6 in the presence of polyinosinic-polycytidylic acid (Poly I:C) as adjuvant. As controls and following the same protocol, mice were immunized with ovalbumin (OVA) cross-linked to the mAb anti-DEC-205 (αDEC-205:OVA), VP6 cross-linked to a control isotype mAb (Isotype:VP6), 3 μg of VP6 alone, Poly I:C or PBS. Two weeks after the last inoculation, mice were orally challenged with a murine RV. Mice immunized with α-DEC-205:VP6 and VP6 alone presented similar levels of serum Abs to VP6 previous to the virus challenge. However, after the virus challenge, only α-DEC-205:VP6 induced up to a 45% IgA-independent protection. Memory T-helper (Th) cells from the spleen and the mesenteric lymph node (MLN) showed a Th1-type response upon antigen stimulation in vitro. These results show that when VP6 is administered parenterally targeting DEC-205, it can induce protection at the intestinal level at a very low dose, and this protection may be Th1-type cell dependent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Protective Effect of Anthocyanins Extract from Blueberry on TNBS-Induced IBD Model of Mice

    PubMed Central

    Wu, Lin-Hua; Xu, Zeng-Lai; Dong, Di; He, Shan-An; Yu, Hong

    2011-01-01

    This study was carried out to evaluate the protective effect of anthocyanins extract of blueberry on trinitrobenzene sulfonic acid (TNBS)-induced inflammatory bowel disease (IBD) model of mice. The study employed female C57BL/6 mice (n = 50), and colitis was induced by intracolonic injection of 0.5 mg of TNBS dissolved in 50% ethanol–phosphate buffered solution. The mice were divided into five groups (n = 10): vehicle, TNBS control and anthocyanins groups that received different doses of anthocyanins extract (10, 20 and 40 mg kg−1) daily for 6 days. Both increase in body weight and diarrhea symptoms were monitored each day. After 6 days, the animals were killed, and the following parameters were assessed: colon length, morphological score, histological score and biochemical assay (NO, myeloperoxidase (MPO), interleukin (IL)-12, IL-10, tumor necrosis factor (TNF)-α and interferon (IFN)-γ). The results showed that the anthocyanins extract of blueberry rendered strong protection against TNBS-induced colonic damage at a dosage of 40 mg kg−1. When compared with the control, anthocyanins extract significantly prevented loss of body weight and ameliorated the scores of diarrhea, morphology and histology. Treatment with anthocyanins extract restored IL-10 excretion, as well as caused reduction in the levels of NO, MPO, IL-12, TNF-α and IFN-γ. Our research revealed the protective effect of anthocyanins extract from blueberry on TNBS-induced experimental colitis in mice, as well as examined whether high levels of dietary blueberries would lower the risk or have protective effects on human IBD, which may require further investigation. PMID:21785630

  5. α-Lipoic acid protects against cholecystokinin-induced acute pancreatitis in rats

    PubMed Central

    Park, Sung-Joo; Seo, Sang-Wan; Choi, Ok-Sun; Park, Cheung-Seog

    2005-01-01

    AIM: α-Lipoic acid (ALA) has been used as an antioxidant. The aim of this study was to investigate the effect of α-lipoic acid on cholecystokinin (CCK)-octapeptide induced acute pancreatitis in rats. METHODS: ALA at 1 mg/kg was intra-peritoneally injected, followed by 75 μg/kg CCK-octapeptide injected thrice subcutaneously after 1, 3, and 5 h. This whole procedure was repeated for 5 d. We checked the pancreatic weight/body weight ratio, the secretion of pro-inflammatory cytokines and the levels of lipase, amylase of serum. Repeated CCK octapeptide treatment resulted in typical laboratory and morphological changes of experimentally induced pancreatitis. RESULTS: ALA significantly decreased the pancreatic weight/body weight ratio and serum amylase and lipase in CCK octapeptide-induced acute pancreatitis. However, the secretion of IL-1β, IL-6, and TNF-α were comparable in CCK octapeptide-induced acute pancreatitis. CONCLUSION: ALA may have a protective effect against CCK octapeptide-induced acute pancreatitis. PMID:16097064

  6. Cannabidiol protects liver from binge alcohol-induced steatosis by mechanisms including inhibition of oxidative stress and increase in autophagy

    PubMed Central

    Yang, Lili; Rozenfeld, Raphael; Wu, Defeng; Devi, Lakshmi A.; Zhang, Zhenfeng; Cederbaum, Arthur

    2014-01-01

    Acute alcohol drinking induces steatosis, and effective prevention of steatosis can protect liver from progressive damage caused by alcohol. Increased oxidative stress has been reported as one mechanism underlying alcohol-induced steatosis. We evaluated whether cannabidiol, which has been reported to function as an antioxidant, can protect the liver from alcohol-generated oxidative stress-induced steatosis. Cannabidiol can prevent acute alcohol-induced liver steatosis in mice, possibly by preventing the increase in oxidative stress and the activation of the JNK MAPK pathway. Cannabidiol per se can increase autophagy both in CYP2E1-expressing HepG2 cells and in mouse liver. Importantly, cannabidiol can prevent the decrease in autophagy induced by alcohol. In conclusion, these results show that cannabidiol protects mouse liver from acute alcohol-induced steatosis through multiple mechanisms including attenuation of alcohol-mediated oxidative stress, prevention of JNK MAPK activation, and increasing autophagy. PMID:24398069

  7. Isoliquiritigenin protects against sepsis-induced lung and liver injury by reducing inflammatory responses.

    PubMed

    Chen, Xiong; Cai, Xueding; Le, Rongrong; Zhang, Man; Gu, Xuemei; Shen, Feixia; Hong, Guangliang; Chen, Zimiao

    2018-02-05

    Sepsis, one of the most fatal diseases worldwide, often leads to multiple organ failure, mainly due to uncontrolled inflammatory responses. Despite accumulating knowledge obtained in recent years, effective drugs to treat sepsis in the clinic are still urgently needed. Isoliquiritigenin (ISL), a chalcone compound, has been reported to exert anti-inflammatory properties. However, little is known about the effects of ISL on sepsis and its related complications. In this study, we investigated the potential protective effects of ISL on lipopolysaccharide (LPS)-induced injuries and identified the mechanisms underlying these effects. ISL inhibited inflammatory cytokine expression in mouse primary peritoneal macrophages (MPMs) exposed to LPS. In an acute lung injury (ALI) mouse model, ISL prevented LPS-induced structural damage and inflammatory cell infiltration. Additionally, pretreatment with ISL attenuated sepsis-induced lung and liver injury, accompanied by a reduction in inflammatory responses. Moreover, these protective effects were mediated by the nuclear factor kappa B (NF-κB) pathway-mediated inhibition of inflammatory responses in vitro and in vivo. Our study suggests that ISL may be a potential therapeutic agent for sepsis-induced injuries. Copyright © 2017. Published by Elsevier Inc.

  8. Poly(ADP-ribose) polymerase-1 protects from oxidative stress induced endothelial dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhard, Catherine; Staehli, Barbara E.; Zurich Center for Integrative Human Physiology

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer The nuclear enzyme PARP-1 is a downstream effector of oxidative stress. Black-Right-Pointing-Pointer PARP-1 protects from oxidative stress induced endothelial dysfunction. Black-Right-Pointing-Pointer This effect is mediated through inhibition of vasoconstrictor prostanoid production. Black-Right-Pointing-Pointer Thus, PARP-1 may play a protective role as antioxidant defense mechanism. -- Abstract: Background: Generation of reactive oxygen species (ROS) is a key feature of vascular disease. Activation of the nuclear enzyme poly (adenosine diphosphate [ADP]-ribose) polymerase-1 (PARP-1) is a downstream effector of oxidative stress. Methods: PARP-1(-/-) and PARP-1(+/+) mice were injected with paraquat (PQ; 10 mg/kg i.p.) to induce intracellular oxidative stress. Aortic rings weremore » suspended in organ chambers for isometric tension recording to analyze vascular function. Results: PQ treatment markedly impaired endothelium-dependent relaxations to acetylcholine in PARP-1(-/-), but not PARP-1(+/+) mice (p < 0.0001). Maximal relaxation was 45% in PQ treated PARP-1(-/-) mice compared to 79% in PARP-1(+/+) mice. In contrast, endothelium-independent relaxations to sodium nitroprusside (SNP) were not altered. After PQ treatment, L-NAME enhanced contractions to norepinephrine by 2.0-fold in PARP-1(-/-) mice, and those to acetylcholine by 3.3-fold, respectively, as compared to PARP-1(+/+) mice. PEG-superoxide dismutase (SOD) and PEG-catalase prevented the effect of PQ on endothelium-dependent relaxations to acetylcholine in PARP-1(-/-) mice (p < 0.001 vs. PQ treated PARP-1(+/+) mice. Indomethacin restored endothelium-dependent relaxations to acetylcholine in PQ treated PARP-1(-/-) mice (p < 0.05 vs. PQ treated PARP-1(+/+). Conclusion: PARP-1 protects from acute intracellular oxidative stress induced endothelial dysfunction by inhibiting ROS induced production of vasoconstrictor prostanoids.« less

  9. Possible mechanism of PNS protection against cisplatin-induced nephrotoxicity in rat models.

    PubMed

    Liu, Xinwen; Huang, Zhenguang; Zou, Xiaoqin; Yang, Yufang; Qiu, Yue; Wen, Yan

    2015-01-01

    This study investigates the mechanism of the protective effect of Panax notoginsenosides (PNS) against cisplatin-induced nephrotoxicity via the hypoxia inducible factor 1 (HIF-1)/Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) pathway of autophagy. The rats underwent intraperitoneal injection with a single dose of cisplatin and a subset of rats were also intraperitoneally injected with 31.35 mg/kg PNS once a day. After 24 h exposure to cisplatin, the concentrations of urinary N-acetyl-β-D-glucosaminidase (NAG), blood urea nitrogen (BUN) and serum creatinine (Scr) were determined. The rat renal tissue was examined using H&E-staining, and the mitochondria of renal tubular epithelial cells were observed using transmission electron microscopy. The expressions of microtubule-associated protein-1 light chain (LC)3, autophagy-related gene (Atg)5, Beclin-1 and BNIP3 in rat renal tissue were detected using western blotting. The expression of HIF-1 was detected by immunohistochemistry. The results showed that PNS significantly protected against cisplatin-induced nephrotoxicity, as evidenced by decreasing the concentration of blood BUN and Scr, the attenuation of renal histopathological changes and the mitochondrial damages of renal cells, and the increase of mitochondria autophagosome in renal tubular epithelial cells. Additionally, PNS significantly increased the expression of LC3 and the ratio of LC3II/LC3I in rat renal tissue. Moreover, PNS significantly increased the expression of HIF-1α, BNIP3, Atg5 and Beclin-1 in rat renal tissue. In conclusion, the protective effect of PNS on cisplatin-induced nephrotoxicity was mainly due to its ability to enhancing the mitochondrial autophagy of renal tissue via the HIF-1α/BNIP3 pathway, and here is the first demonstration about it.

  10. Strategies to induce broadly protective antibody responses to viral glycoproteins.

    PubMed

    Krammer, F

    2017-05-01

    Currently, several universal/broadly protective influenza virus vaccine candidates are under development. Many of these vaccines are based on strategies to induce protective antibody responses against the surface glycoproteins of antigenically and genetically diverse influenza viruses. These strategies might also be applicable to surface glycoproteins of a broad range of other important viral pathogens. Areas covered: Common strategies include sequential vaccination with divergent antigens, multivalent approaches, vaccination with glycan-modified antigens, vaccination with minimal antigens and vaccination with antigens that have centralized/optimized sequences. Here we review these strategies and the underlying concepts. Furthermore, challenges, feasibility and applicability to other viral pathogens are discussed. Expert commentary: Several broadly protective/universal influenza virus vaccine strategies will be tested in humans in the coming years. If successful in terms of safety and immunological readouts, they will move forward into efficacy trials. In the meantime, successful vaccine strategies might also be applied to other antigenically diverse viruses of concern.

  11. Influenza Virus-Like Particles Containing M2 Induce Broadly Cross Protective Immunity

    PubMed Central

    Song, Jae-Min; Wang, Bao-Zhong; Park, Kyoung-Mi; Van Rooijen, Nico; Quan, Fu-Shi; Kim, Min-Chul; Jin, Hyun-Tak; Pekosz, Andrew; Compans, Richard W.; Kang, Sang-Moo

    2011-01-01

    Background Current influenza vaccines based on the hemagglutinin protein are strain specific and do not provide good protection against drifted viruses or emergence of new pandemic strains. An influenza vaccine that can confer cross-protection against antigenically different influenza A strains is highly desirable for improving public health. Methodology/Principal Findings To develop a cross protective vaccine, we generated influenza virus-like particles containing the highly conserved M2 protein in a membrane-anchored form (M2 VLPs), and investigated their immunogenicity and breadth of cross protection. Immunization of mice with M2 VLPs induced anti-M2 antibodies binding to virions of various strains, M2 specific T cell responses, and conferred long-lasting cross protection against heterologous and heterosubtypic influenza viruses. M2 immune sera were found to play an important role in providing cross protection against heterosubtypic virus and an antigenically distinct 2009 pandemic H1N1 virus, and depletion of dendritic and macrophage cells abolished this cross protection, providing new insight into cross-protective immune mechanisms. Conclusions/Significance These results suggest that presenting M2 on VLPs in a membrane-anchored form is a promising approach for developing broadly cross protective influenza vaccines. PMID:21267073

  12. Decay Accelerating Factor (CD55) Protects Neuronal Cells from Chemical Hypoxia-Induced Injury

    DTIC Science & Technology

    2010-04-09

    Pavlakovic G, Isom GE: Dopaminergic neurotoxicity of cyanide: neurochemical, histological and behavioral characterization. Toxicol Appl Pharmacol...provided the original work is properly cited. ResearchDecay accelerating factor (CD55) protects neuronal cells from chemical hypoxia-induced injury...deposition of C3a/C5a and membrane attack complex (MAC or C5b-9) production. The present study investigates the ability of DAF to protect primary cultured

  13. Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis.

    PubMed

    Vordermeier, H Martin; Villarreal-Ramos, Bernardo; Cockle, Paul J; McAulay, Martin; Rhodes, Shelley G; Thacker, Tyler; Gilbert, Sarah C; McShane, Helen; Hill, Adrian V S; Xing, Zhou; Hewinson, R Glyn

    2009-08-01

    Previous work with small-animal laboratory models of tuberculosis has shown that vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacillus Calmette-Guérin (BCG) to prime and modified vaccinia virus Ankara strain (MVA85A) or recombinant attenuated adenoviruses (Ad85A) expressing the mycobacterial antigen Ag85A to boost may increase the protective efficacy of BCG. Here we report the first efficacy data on using these vaccines in cattle, a natural target species of tuberculous infection. Protection was determined by measuring development of disease as an end point after M. bovis challenge. Either Ad85A or MVA85A boosting resulted in protection superior to that given by BCG alone: boosting BCG with MVA85A or Ad85A induced significant reduction in pathology in four/eight parameters assessed, while BCG vaccination alone did so in only one parameter studied. Protection was particularly evident in the lungs of vaccinated animals (median lung scores for naïve and BCG-, BCG/MVA85A-, and BCG/Ad85A-vaccinated animals were 10.5, 5, 2.5, and 0, respectively). The bacterial loads in lymph node tissues were also reduced after viral boosting of BCG-vaccinated calves compared to those in BCG-only-vaccinated animals. Analysis of vaccine-induced immunity identified memory responses measured by cultured enzyme-linked immunospot assay as well as in vitro interleukin-17 production as predictors of vaccination success, as both responses, measured before challenge, correlated positively with the degree of protection. Therefore, this study provides evidence of improved protection against tuberculosis by viral booster vaccination in a natural target species and has prioritized potential correlates of vaccine efficacy for further evaluation. These findings also have implications for human tuberculosis vaccine development.

  14. Administration of the antitumor drug mitoguazone protects normal thymocytes against spontaneous and etoposide-induced apoptosis.

    PubMed

    Ferioli, M E; Bottone, M G; Soldani, C; Pellicciari, C

    2004-11-01

    The suggestion has been made that polyamines may be involved in the control of cell death, since exceedingly high or low levels induce apoptosis in different cell systems. For a deeper insight into the relationship between apoptosis and polyamine metabolism, we investigated in vitro the effect on rat thymocytes of mitoguazone (MGBG, which inhibits S-adenosylmethionine decarboxylase, i.e. a key enzyme in the polyamine biosynthetic pathway). Thymocytes were selected as an especially suitable model system, since they undergo spontaneous apoptosis in vivo and can be easily induced to apoptose in vitro by etoposide, used here as an apoptogenic agent. MGBG protected thymocytes from both spontaneous and drug-induced apoptosis, and this protective effect was associated with a decrease in polyamine oxidase activity and total polyamine levels.

  15. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid

    PubMed Central

    Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R.; Masliah, Eliezer; Lipton, Stuart A.

    2015-01-01

    Cyanide is a life threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species (ROS). This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain-barrier to upregulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human induced pluripotent stem cell (hiPSC)-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino (NSA) mouse model of cyanide poisoning that simulates damage observed in the human brain. PMID:25692407

  16. Rodent malaria: BCG-induced protection and immunosuppression. [Mice, gamma radiation, Plasmodium berghei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smrkovski, L.L.; Strickland, G.T.

    1978-10-01

    One dose of 10/sup 7/ viable units of Mycobacterium bovis, strain BCG, protected a significant number of Swiss mice from a primary challenge with 10/sup 4/ thoracic sporozoites of Plasmodium berghei. Immunization with irradiated sporozoites induced greater protection than that observed in BCG-treated animals. Mice treated with BCG and surviving a primary sporozoite challenge were not protected from rechallenge, whereas mice immunized with irradiated sporozoites and surviving initial challenge of sporozoites were solidly immune to further challenge. Immunizing mice with BCG and irradiated sporozoites simulataneously resulted in a synergistic effect of increased protection against a primary challenge of sporozoites onlymore » if the two immunogens were administered on the same day and if the mice were challenged 1 to 3 days later. Mice given BCG and irradiated sporozoites and surviving a primary challenge of sporozoites were unable to survive rechallenge. BCG given to mice previously immunized with irradiated sporozoites suppressed their protective immunity against sporozoite challenge.« less

  17. Comparison of Heterosubtypic Protection in Ferrets and Pigs Induced by a Single-Cycle Influenza Vaccine.

    PubMed

    Holzer, Barbara; Morgan, Sophie B; Matsuoka, Yumi; Edmans, Matthew; Salguero, Francisco J; Everett, Helen; Brookes, Sharon M; Porter, Emily; MacLoughlin, Ronan; Charleston, Bryan; Subbarao, Kanta; Townsend, Alain; Tchilian, Elma

    2018-06-15

    Influenza is a major health threat, and a broadly protective influenza vaccine would be a significant advance. Signal Minus FLU (S-FLU) is a candidate broadly protective influenza vaccine that is limited to a single cycle of replication, which induces a strong cross-reactive T cell response but a minimal Ab response to hemagglutinin after intranasal or aerosol administration. We tested whether an H3N2 S-FLU can protect pigs and ferrets from heterosubtypic H1N1 influenza challenge. Aerosol administration of S-FLU to pigs induced lung tissue-resident memory T cells and reduced lung pathology but not the viral load. In contrast, in ferrets, S-FLU reduced viral replication and aerosol transmission. Our data show that S-FLU has different protective efficacy in pigs and ferrets, and that in the absence of Ab, lung T cell immunity can reduce disease severity without reducing challenge viral replication. Copyright © 2018 The Authors.

  18. Comparison of Heterosubtypic Protection in Ferrets and Pigs Induced by a Single-Cycle Influenza Vaccine

    PubMed Central

    Holzer, Barbara; Morgan, Sophie B.; Edmans, Matthew; Everett, Helen; Brookes, Sharon M.; Charleston, Bryan

    2018-01-01

    Influenza is a major health threat, and a broadly protective influenza vaccine would be a significant advance. Signal Minus FLU (S-FLU) is a candidate broadly protective influenza vaccine that is limited to a single cycle of replication, which induces a strong cross-reactive T cell response but a minimal Ab response to hemagglutinin after intranasal or aerosol administration. We tested whether an H3N2 S-FLU can protect pigs and ferrets from heterosubtypic H1N1 influenza challenge. Aerosol administration of S-FLU to pigs induced lung tissue-resident memory T cells and reduced lung pathology but not the viral load. In contrast, in ferrets, S-FLU reduced viral replication and aerosol transmission. Our data show that S-FLU has different protective efficacy in pigs and ferrets, and that in the absence of Ab, lung T cell immunity can reduce disease severity without reducing challenge viral replication. PMID:29703861

  19. Albumin-induced podocyte injury and protection are associated with regulation of COX-2.

    PubMed Central

    Agrawal, Shipra; Guess, Adam J.; Chanley, Melinda A.; Smoyer, and William E.

    2014-01-01

    Albuminuria is both a hallmark and a risk factor for progressive glomerular disease, and results in increased exposure of podocytes to serum albumin with its associated factors. Here in vivo and in vitro models of serum albumin overload were used to test the hypothesis that albumin-induced proteinuria and podocyte injury directly correlate with COX-2 induction. Albumin induced COX-2, MCP-1, CXCL1 and the stress protein HSP25 in both rat glomeruli and cultured podocytes, while B7-1 and HSP70i were also induced in podocytes. Podocyte exposure to albumin induced both mRNA and protein and enhanced the mRNA stability of COX-2, a key regulator of renal hemodynamics and inflammation, which renders podocytes susceptible to injury. Podocyte exposure to albumin also stimulated several kinases (p38 MAPK, MK2, JNK/SAPK and ERK1/2), inhibitors of which (except JNK/SAPK) down-regulated albumin-induced COX-2. Inhibition of AMPK, PKC and NFκB also down-regulated albumin-induced COX-2. Critically, albumin-induced COX-2 was also inhibited by glucocorticoids and thiazolidinediones, both of which directly protect podocytes against injury. Furthermore, specific albumin-associated fatty acids were identified as important contributors to COX-2 induction, podocyte injury and proteinuria. Thus, COX-2 is associated with podocyte injury during albuminuria, as well as with the known podocyte protection imparted by glucocorticoids and thiazolidinediones. Moreover, COX-2 induction, podocyte damage and albuminuria appear mediated largely by serum albumin-associated fatty acids. PMID:24918154

  20. Tocotrienol vitamin E protects against preclinical canine ischemic stroke by inducing arteriogenesis.

    PubMed

    Rink, Cameron; Christoforidis, Greg; Khanna, Savita; Peterson, Laura; Patel, Yojan; Khanna, Suchin; Abduljalil, Amir; Irfanoglu, Okan; Machiraju, Raghu; Bergdall, Valerie K; Sen, Chandan K

    2011-11-01

    Vitamin E consists of tocopherols and tocotrienols, in which α-tocotrienol is the most potent neuroprotective form that is also effective in protecting against stroke in rodents. As neuroprotective agents alone are insufficient to protect against stroke, we sought to test the effects of tocotrienol on the cerebrovascular circulation during ischemic stroke using a preclinical model that enables fluoroscopy-guided angiography. Mongrel canines (mean weight=26.3±3.2 kg) were supplemented with tocotrienol-enriched (TE) supplement (200 mg b.i.d, n=11) or vehicle placebo (n=9) for 10 weeks before inducing transient middle cerebral artery (MCA) occlusion. Magnetic resonance imaging was performed 1 hour and 24 hours post reperfusion to assess stroke-induced lesion volume. Tocotrienol-enriched supplementation significantly attenuated ischemic stroke-induced lesion volume (P<0.005). Furthermore, TE prevented loss of white matter fiber tract connectivity after stroke as evident by probabilistic tractography. Post hoc analysis of cerebral angiograms during MCA occlusion revealed that TE-supplemented canines had improved cerebrovascular collateral circulation to the ischemic MCA territory (P<0.05). Tocotrienol-enriched supplementation induced arteriogenic tissue inhibitor of metalloprotease 1 and subsequently attenuated the activity of matrix metalloproteinase-2. Outcomes of the current preclinical trial set the stage for a clinical trial testing the effects of TE in patients who have suffered from transient ischemic attack and are therefore at a high risk for stroke.

  1. Protective effects of Aloe sterols against UVB-induced photoaging in hairless mice.

    PubMed

    Misawa, Eriko; Tanaka, Miyuki; Saito, Marie; Nabeshima, Kazumi; Yao, Ruiqing; Yamauchi, Kouji; Abe, Fumiaki; Yamamoto, Yuki; Furukawa, Fukumi

    2017-03-01

    Aloe vera is a traditional medical plant whose gel has been widely used in skin care. Previously, we have identified Aloe sterols from Aloe vera as active ingredients. This study investigated the protective effects of Aloe sterols without polysaccharides, against ultraviolet B (UVB)-induced skin photoaging in mice using Aloe vera gel extract (AVGE) obtained by supercritical fluid extraction. Aloe vera gel extract was supplemented in the diet (12 or 120 ppm), and HR-1 hairless mice were exposed to UVB irradiation for 7 weeks. Skin measurements and histological and analytical studies were performed. Repeated UVB irradiation induced rough wrinkling of skin with water content reduction and hyperkeratosis. AVGE administration resulted in the significant improvement of UVB-induced skin dryness, epidermal thickness, and wrinkle formation. The AVGE group also suppressed the degenerations of dermal collagen fibers and the appearance of cutaneous apoptosis cells induced by UVB. Furthermore, AVGE administration reduced the excess elevation of pro-inflammatory cytokines (IL-1β and TNF-α) and matrix metalloproteinases (MMP-2, MMP-9, MMP-12, and MMP-13) in UVB-exposed skin. The dietary ingestion of Aloe sterols protected against chronic UVB damage in mouse skin, and our results suggest that Aloe sterols may prevent skin photoaging through the anti-inflammation and MMP regulation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Drp1-dependent mitophagy protects against cisplatin-induced apoptosis of renal tubular epithelial cells by improving mitochondrial function

    PubMed Central

    Qi, Jia; Duan, Suyan; Huang, Zhimin; Zhang, Chengning; Wu, Lin; Zeng, Ming; Zhang, Bo; Wang, Ningning; Mao, Huijuan; Zhang, Aihua; Xing, Changying; Yuan, Yanggang

    2017-01-01

    Cisplatin chemotherapy often causes acute kidney injury (AKI) in cancer patients. There is increasing evidence that mitochondrial dysfunction plays an important role in cisplatin-induced nephrotoxicity. Degradation of damaged mitochondria is carried out by mitophagy. Although mitophagy is considered of particular importance in protecting against AKI, little is known of the precise role of mitophagy and its molecular mechanisms during cisplatin-induced nephrotoxicity. Also, evidence that activation of mitophagy improved mitochondrial function is lacking. Furthermore, several evidences have shown that mitochondrial fission coordinates with mitophagy. The aim of this study was to investigate whether activation of mitophagy protects against mitochondrial dysfunction and renal proximal tubular cells injury during cisplatin treatment. The effect of mitochondrial fission on mitophagy was also investigated. In cultured human renal proximal tubular cells, we observed that 3-methyladenine, a pharmacological inhibitor of autophagy, blocked mitophagy and exacerbated cisplatin-induced mitochondrial dysfunction and cells injury. In contrast, autophagy activator rapamycin enhanced mitophagy and protected against the harmful effects of cisplatin on mitochondrial function and cells viability. Suppression of mitochondrial fission by knockdown of its main regulator dynamin-related protein-1 (Drp1) decreased cisplatin-induced mitophagy. Meanwhile, Drp1 suppression protected against cisplatin-induced cells injury by inhibiting mitochondrial dysfunction. Our results provide evidence that Drp1-depedent mitophagy has potential as renoprotective targets for the treatment of cisplatin-induced AKI. PMID:28423497

  3. Protective Effect of Selenium on Aflatoxin B1-Induced Testicular Toxicity in Mice.

    PubMed

    Cao, Zheng; Shao, Bing; Xu, Feibo; Liu, Yunfeng; Li, Yanfei; Zhu, Yanzhu

    2017-12-01

    Aflatoxins have been considered as one of the major risk factors of male infertility, and aflatoxin B1 (AFB1) is the most highly toxic and prevalent member of the aflatoxins family. Selenium (Se), an essential nutritional trace mineral for normal testicular development and male fertility, has received extensive intensive on protective effects of male reproductive system due to its potential antioxidant and activating testosterone synthesis. To investigate the protective effect of Se on AFB1-induced testicular toxicity, the mice were orally administered with AFB1 (0.75 mg/kg) and Se (0.2 mg/kg or 0.4 mg/kg) for 45 days. We found that that Se elevated testes index, sperm functional parameters (concentration, malformation, and motility), and the level of serum testosterone in AFB1-exposed mice. Moreover, our results showed that Se attenuated the AFB1-induced oxidative stress and the reduction of testicular testosterone synthesis enzyme protein expression such as steroidogenic acute regulatory protein (StAR), P450 side-chain cleavage (P450scc), and 17β-hydroxysteroid dehydrogenase (17β-HSD) in AFB1-exposed mice. These results demonstrated that Se conferred protection against AFB1-induced testicular toxicity and can be attributed to its antioxidant and increased testosterone level by stimulating protein expression of StAR and testosterone synthetic enzymes.

  4. Study of the protective effect of dexamethasone on cisplatin-induced ototoxicity in rats.

    PubMed

    Capelo, Isabelle Oliveira Jatai; Batista, Avner Marcos Alves; Brito, Yuri Neyson Ferreira; Diniz, Krissia Braga; Brito, Gerly Anne de Castro; Freitas, Marcos Rabelo de

    2017-10-01

    To evaluate the ability of dexamethasone to protect against cisplatin (CDDP)-induced ototoxicity. Male Wistar rats were divided into the following three groups: 1) Control (C): 6 animals received intraperitoneal (IP) saline solution, 8 ml/kg/day for four days; 2) C + CDDP: 11 animals received 8 ml/kg/day of IP saline and, 90 min after saline administration, 8 mg/kg/day of IP CDDP for four days; and 3) DEXA15 + CDDP: 11 animals received IP dexamethasone 15 mg/kg/day and, 90 min after dexamethasone administration, received 8 mg/kg/day of IP CDDP for four days. It was found that dexamethasone did not protect against weight loss in CDDP-exposed animals. The mortality rate was comparable with that previously reported in the literature. The auditory threshold of animals in the DEXA15 + CDDP group was not significantly altered after exposure to CDDP. The stria vascularis of animals in the DEXA15 + CDDP group was partially preserved after CDDP exposure. Dexamethasone at the dose of 15 mg/kg/day partially protected against CDDP-induced ototoxicity, based on functional evaluation by brainstem evoked response audiontry (BERA) and morphological evaluation by optical microscopy. However, dexamethasone did not protect against systemic toxicity.

  5. Reduction in radiation-induced brain injury by use of pentobarbital or lidocaine protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldfield, E.H.; Friedman, R.; Kinsella, T.

    1990-05-01

    To determine if barbiturates would protect brain at high doses of radiation, survival rates in rats that received whole-brain x-irradiation during pentobarbital- or lidocaine-induced anesthesia were compared with those of control animals that received no medication and of animals anesthetized with ketamine. The animals were shielded so that respiratory and digestive tissues would not be damaged by the radiation. Survival rates in rats that received whole-brain irradiation as a single 7500-rad dose under pentobarbital- or lidocaine-induced anesthesia was increased from between from 0% and 20% to between 45% and 69% over the 40 days of observation compared with the othermore » two groups (p less than 0.007). Ketamine anesthesia provided no protection. There were no notable differential effects upon non-neural tissues, suggesting that pentobarbital afforded protection through modulation of ambient neural activity during radiation exposure. Neural suppression during high-dose cranial irradiation protects brain from acute and early delayed radiation injury. Further development and application of this knowledge may reduce the incidence of radiation toxicity of the central nervous system (CNS) and may permit the safe use of otherwise unsafe doses of radiation in patients with CNS neoplasms.« less

  6. Rasagiline protects against alpha-synuclein induced sensitivity to oxidative stress in dopaminergic cells

    PubMed Central

    Chau, K.Y.; Cooper, J.M.; Schapira, A.H.V.

    2010-01-01

    Rasagiline is a propargylamine and irreversible monoamine oxidase (MAO) B inhibitor used for the treatment of Parkinson's disease (PD). It has demonstrated neuroprotective properties in laboratory studies. Current concepts of PD aetiopathogenesis include the role of alpha-synuclein, protein aggregation, free radical metabolism and mitochondrial dysfunction in contributing to cell death. We have used a combination of alpha-synuclein and free radical mediated toxicity in a dopaminergic cell line to provide a model of nigral toxicity in order to investigate the potential molecular mechanisms that mediate rasagiline protection. We demonstrate that rasagiline protects against cell death induced by the combination of free radicals generated by paraquat and either wild-type or A53T mutant alpha-synuclein over-expression. This protection was associated with a reduction in caspase 3 activation, a reduction in superoxide generation and a trend to ameliorate the fall in mitochondrial membrane potential. Rasagiline induced an increase in cellular glutathione levels. The results support a role for rasagiline in protecting dopaminergic cells against free radical mediated damage and apoptosis in the presence of alpha-synuclein over-expression. The data are of relevance to the interpretation of the potential mechanisms of action of rasagiline in explaining the results of disease modification trials in PD. PMID:20624440

  7. Vaccine-Induced Immunogenicity and Protection Against Pneumocystis Pneumonia in a Nonhuman Primate Model of HIV and Pneumocystis Coinfection

    PubMed Central

    Kling, Heather M.; Norris, Karen A.

    2016-01-01

    Background. The ubiquitous opportunistic pathogen Pneumocystis jirovecii causes pneumonia in immunocompromised individuals, including human immunodeficiency virus (HIV)–infected individuals, and pulmonary colonization with P. jirovecii is believed to be a cofactor in the development of chronic obstructive pulmonary disease. There is no vaccine for P. jirovecii; however, most adults are seropositive, indicating natural immune priming to this pathogen. We have shown that humoral response to a recombinant subunit of the P. jirovecii protease kexin (KEX1) correlates with protection from P. jirovecii colonization and pneumonia. Methods. Here we evaluated the immunogenicity and protective capacity of the recombinant KEX1 peptide vaccine in a preclinical, nonhuman primate model of HIV-induced immunosuppression and Pneumocystis coinfection. Results. Immunization with KEX1 induced a robust humoral response remained at protective levels despite chronic simian immunodeficiency virus/HIV–induced immunosuppression. KEX1-immunized macaques were protected from Pneumocystis pneumonia, compared with mock-immunized animals (P = .047), following immunosuppression and subsequent natural, airborne exposure to Pneumocystis. Conclusions. These data support the concept that stimulation of preexisting immunological memory to Pneumocystis with a recombinant KEX1 vaccine prior to immunosuppression induces durable memory responses and protection in the context of chronic, complex immunosuppression. PMID:26823337

  8. Taraxacum officinale protects against cholecystokinin-induced acute pancreatitis in rats

    PubMed Central

    Seo, Sang-Wan; Koo, Hyun-Na; An, Hyo-Jin; Kwon, Kang-Beom; Lim, Byung-Cheal; Seo, Eun-A; Ryu, Do-Gon; Moon, Goo; Kim, Hong-Yeoul; Kim, Hyung-Min; Hong, Seung-Heon

    2005-01-01

    AIM: Taraxacum officinale (TO) has been frequently used as a remedy for inflammatory diseases. The aim of this study was to investigate the effect of TO on cholecystokinin (CCK)-octapeptide-induced acute pancreatitis in rats. METHODS: TO at 10 mg/kg was orally administered, followed by 75 μg/kg CCK octapeptide injected subcutaneously three times after 1, 3 and 5 h. This whole procedure was repeated for 5 d. We determined the pancreatic weight/body weight ratio, the levels of pancreatic HSP60 and HSP72, and the secretion of pro-inflammatory cytokines. Repeated CCK octapeptide treatment resulted in typical laboratory and morphological changes of experimentally-induced pancreatitis. RESULTS: TO significantly decreased the pancreatic weight/body weight ratio in CCK octapeptide-induced acute pancreatitis. TO also increased the pancreatic levels of HSP60 and HSP72. Additionally, the secretion of IL-6 and TNF-α decreased in the animals treated with TO. CONCLUSION: TO may have a protective effect against CCK octapeptide-induced acute pancreatitis. PMID:15641154

  9. Protective effect of U74500A on phorbol myristate acetate-induced acute lung injury.

    PubMed

    Chu, Shi-Jye; Chang, Deh-Ming; Wang, David; Lin, Hen-I; Lin, Shih-Hua; Hsu, Kang

    2004-08-01

    1. The present study was designed to determine whether U74500A could ameliorate acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in our rat isolated lung model compared with any amelioration induced by dimethylthiourea (DMTU), superoxide dismutase (SOD) and catalase. 2. Acute lung injury was induced successfully by PMA during 60 min of observation. At 2 microg/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, the lung weight/bodyweight ratio, pulmonary arterial pressure and protein concentration of the bronchoalveolar lavage fluid. 3. Pretreatment with 1.5 mg/kg U74500A significantly attenuated ALI; there was no significant increase in any parameters measured, except for pulmonary arterial pressure. The protective effect of U74500A was approximately the same as that of 600 mg/kg DMTU. However, 6000 U/kg SOD, 50,000 U/kg catalase and 6000 U/kg SOD + 50,000 U/kg catalase had no protective effect. 4. These experimental data suggest that U74500A significantly ameliorates ALI induced by PMA in rats.

  10. Nanoliposomes protect against AL amyloid light chain protein-induced endothelial injury.

    PubMed

    Truran, Seth; Weissig, Volkmar; Ramirez-Alvarado, Marina; Franco, Daniel A; Burciu, Camelia; Georges, Joseph; Murarka, Shishir; Okoth, Winter A; Schwab, Sara; Hari, Parameswaran; Migrino, Raymond Q

    2014-03-01

    A newly-recognized pathogenic mechanism underlying light chain amyloidosis (AL) involves endothelial dysfunction and cell injury caused by misfolded light chain proteins (LC). Nanoliposomes (NL) are artificial phospholipid vesicles that could attach to misfolded proteins and reduce tissue injury. To test whether co-treatment with NL reduces LC-induced endothelial dysfunction and cell death. Abdominal subcutaneous adipose arterioles from 14 non-AL subjects were cannulated; dilator response to acetylcholine and papaverine were measured at baseline and following 1-hour exposure to LC (20 µg/mL, 2 purified from AL subjects' urine, 1 from human recombinant LC [AL-09]) ± NL (phosphatidylcholine/cholesterol/phosphatidic acid 70/25/5 molar ratio) or NL alone. Human aortic artery endothelial cells (HAEC) were exposed to Oregon Green-labeled LC ± NL for 24 hours and intracellular LC and apoptosis (Hoechst stain) were measured. Circular dichroism spectroscopy was performed on AL-09 LC ± NL to follow changes in secondary structure and protein thermal stability. LC caused impaired dilation to acetylcholine that was restored by NL (control - 94.0 ± 1.8%, LC - 65.0 ± 7.1%, LC + NL - 95.3 ± 1.8%, p ≤ 0.001 LC versus control or LC + NL). NL protection was inhibited by L-NG-nitroarginine methyl ester. NL increased the beta sheet structure of LC, reduced endothelial cell internalization of LC and protected against LC-induced endothelial cell death. LC induced human adipose arteriole endothelial dysfunction and endothelial cell death, which were reversed by co-treatment with NL. This protection may partly be due to enhancing LC protein structure and reducing LC internalization. Nanoliposomes represent a promising new class of agents to ameliorate tissue injury from protein misfolding diseases such as AL.

  11. Sirtuin1 and autophagy protect cells from fluoride-induced cell stress.

    PubMed

    Suzuki, Maiko; Bartlett, John D

    2014-02-01

    Sirtuin1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase functioning in the regulation of metabolism, cell survival and organismal lifespan. Active SIRT1 regulates autophagy during cell stress, including calorie restriction, endoplasmic reticulum (ER) stress and oxidative stress. Previously, we reported that fluoride induces ER-stress in ameloblasts responsible for enamel formation, suggesting that ER-stress plays a role in dental fluorosis. However, the molecular mechanism of how cells respond to fluoride-induced cell stress is unclear. Here, we demonstrate that fluoride activates SIRT1 and initiates autophagy to protect cells from fluoride exposure. Fluoride treatment of ameloblast-derived cells (LS8) significantly increased Sirt1 expression and induced SIRT1 phosphorylation resulting in the augmentation of SIRT1 deacetylase activity. To demonstrate that fluoride exposure initiates autophagy, we characterized the expression of autophagy related genes (Atg); Atg5, Atg7 and Atg8/LC3 and showed that both their transcript and protein levels were significantly increased following fluoride treatment. To confirm that SIRT1 plays a protective role in fluoride toxicity, we used resveratrol (RES) to augment SIRT1 activity in fluoride treated LS8 cells. RES increased autophagy, inhibited apoptosis, and decreased fluoride cytotoxicity. Rats treated with fluoride (0, 50, 100 and 125ppm) in drinking water for 6weeks had significantly elevated expression levels of Sirt1, Atg5, Atg7 and Atg8/LC3 in their maturation stage enamel organs. Increased protein levels of p-SIRT1, ATG5 and ATG8/LC3 were present in fluoride-treated rat maturation stage ameloblasts. Therefore, the SIRT1/autophagy pathway may play a critical role as a protective response to help prevent dental fluorosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Sirtuin1 and autophagy protect cells from fluoride-induced cell stress

    PubMed Central

    Suzuki, Maiko; Bartlett, John D.

    2014-01-01

    Sirtuin1 (SIRT1) is an (NAD+)-dependent deacetylase functioning in the regulation of metabolism, cell survival and organismal lifespan. Active SIRT1 regulates autophagy during cell stress, including calorie restriction, endoplasmic reticulum stress and oxidative stress. Previously, we reported that fluoride induces endoplasmic reticulum (ER) stress in ameloblasts responsible for enamel formation, suggesting that ER-stress plays a role in dental fluorosis. However, the molecular mechanism of how cells respond to fluoride-induced cell stress is unclear. Here, we demonstrate that fluoride activates SIRT1 and initiates autophagy to protect cells from fluoride exposure. Fluoride treatment of ameloblast-derived cells (LS8) significantly increased Sirt1 expression and induced SIRT1 phosphorylation resulting in the augmentation of SIRT1 deacetylase activity. To demonstrate that fluoride exposure initiates autophagy, we characterized the expression of autophagy related genes (Atg); Atg5, Atg7 and Atg8/LC3 and showed that both their transcript and protein levels were significantly increased following fluoride treatment. To confirm that SIRT1 plays a protective role in fluoride toxicity, we used resveratrol (RES) to augmented SIRT1 activity in fluoride treated LS8 cells. RES increased autophagy, inhibited apoptosis, and decreased fluoride cytotoxicity. Rats treated with fluoride (0, 50 and 100 ppm) in drinking water for 6 weeks had significantly elevated expression levels of Sirt1, Atg5, Atg7 and Atg8/LC3 in their maturation stage enamel organs. Increased protein levels of p-SIRT1, ATG5 and ATG8/LC3 were present in fluoride-treated rat maturation stage ameloblasts. Therefore, the SIRT1/autophagy pathway may play a critical role as a protective response to help prevent dental fluorosis. PMID:24296261

  13. Resveratrol protects bupivacaine-induced neuro-apoptosis in dorsal root ganglion neurons via activation on tropomyosin receptor kinase A.

    PubMed

    Guo, Zhiliang; Liu, Yuanyuan; Cheng, Min

    2018-07-01

    General anesthesia in spinal cord may lead to unexpected but irreversible neurotoxicity. We investigated whether resveratrol (RSV) may protect bupivacaine (BUP)-induced neuro-apoptosis in spinal cord dorsal root ganglia (DRG). Mouse DRG cells were cultured in vitro, pre-treated with RSV and then 5 mM BUP. A concentration-dependent effect of RSV on reducing BUP-induced apoptosis of DRG neurons (DRGNs) was evaluated using a TUNEL assay. QRT-PCR and western blot assays were also conducted to evaluate gene and protein expressions of tropomyosin receptor kinase A/B/C (TrkA/B/C) and activated (phosphorylated) Trk receptors, phospho-TrkA/B/C. In addition, a functional TrkA blocking antibody MNAC13 was applied in DRG culture to further measure the functional role of Trk receptor in RSV-initiated apoptotic protection on BUP-damaged DRGNs. BUP promoted significant apoptosis in DRG. RSV exhibited protective effects against BUP-induced neuro-apoptosis in a concentration-dependent manner. qRT-PCR and western blot showed that RSV did not alter TrkA/B/C gene or protein expression, but significantly upregulated phospho-TrkA. Conversely, application of MNAC13 decreased phospho-TrkA and reversed RSV-initiated neuro-protection on BUP-induced DRGN apoptosis. Resveratrol may protect anesthesia-induced DRG neuro-apoptosis, and activation of TrkA signaling pathway may be the underlying mechanism in this process. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  14. Protective effects of L-carnosine on CCl4 -induced hepatic injury in rats.

    PubMed

    Alsheblak, Mehyar Mohammad; Elsherbiny, Nehal M; El-Karef, Amro; El-Shishtawy, Mamdouh M

    2016-03-01

    The present study was undertaken to investigate the possible protective effect of L-carnosine (CAR), an endogenous dipeptide of alanine and histidine, on carbon tetrachloride (CCl4)-induced hepatic injury. Liver injury was induced in male Sprague-Dawley rats by intraperitoneal (i.p.) injections of CCl4, twice weekly for six weeks. CAR was administered to rats daily, at dose of 250 mg/kg, i.p. At the end of six weeks, blood and liver tissue specimens were collected. Results show that CAR treatment attenuated the hepatic morphological changes, necroinflammation and fibrosis induced by CCl4, as indicated by hepatic histopathology scoring. In addition, CAR treatment significantly reduced the CCl4-induced elevation of liver-injury parameters in serum. CAR treatment also combatted oxidative stress; possibly by restoring hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) levels. Moreover, CAR treatment prevented the activation of hepatic stellate cells (HSCs), as indicated by reduced α-smooth muscle actin (α-SMA) expression in the liver, and decreased hepatic inflammation as demonstrated by a reduction in hepatic tumor necrosis factor-α (TNF-α) and restoration of interleukin-10 (IL-10) levels. In conclusion, CCl4-induced hepatic injury was alleviated by CAR treatment. The results suggest that these beneficial, protective effects are due, at least in part, to its anti-oxidant, anti-inflammatory and anti-fibrotic activities.

  15. Dietary honey and ginseng protect against carbon tetrachloride-induced hepatonephrotoxicity in rats.

    PubMed

    El Denshary, Ezzeldeen S; Al-Gahazali, Mohammad A; Mannaa, Fathia A; Salem, Hesham A; Hassan, Nabila S; Abdel-Wahhab, Mosaad A

    2012-11-01

    Liver diseases are amongst the most serious health problems in the world today and hepatocellular carcinoma is one of the world's deadliest cancers. The aim of the current study was to evaluate the protective effect of sider honey and/or Korean ginseng extract (KGE) against carbon tetrachloride (CCl(4))-induced hepato-nephrotoxicity in rat. Eighty male Sprague-Dawley (SD) rats were allocated into different groups and over a 4-week period, they orally received honey and/or KGE or were treated either with CCl(4) alone (100 mg/kg b.w) or with CCl(4) after a pretreatment period with honey, KGE or a combination of both. Clinical, clinico-pathological and histopathological evaluations were done and CCl(4)-treated groups were compared with rats receiving no treatment and with rats given honey, KGE or a combination of these substances. The results indicated that oral administration of CCl(4) induced severe hepatic and kidney injury associated with oxidative stress. The combined treatment with CCl(4) plus honey and/or KGE resulted in a significant improvement in all evaluated parameters. This improvement was prominent in the group receiving CCl(4) after combined pretreatment with honey and KGE. Animals receiving honey and/or KGE (without CCl(4)-treatment) were comparable to the control untreated group. It could be concluded that honey and KGE protect SD rats against the severe CCl(4)-induced hepatic and renal toxic effects. Our results suggest that the protective activity of honey and KGE may have been related to their antioxidant properties. Copyright © 2011 Elsevier GmbH. All rights reserved.

  16. Hyperoside protects against hypoxia/reoxygenation induced injury in cardiomyocytes by suppressing the Bnip3 expression.

    PubMed

    Xiao, Rui; Xiang, An-Li; Pang, Hong-Bo; Liu, Ke-Qiang

    2017-09-20

    Role of hyperoside in protecting cardiomyocytes from ischemia/reperfusion induced injury has been proved. However, possible protecting mechanisms remain unclear. To fix the problem, an essential pro-apoptotic protein Bnip3 was studied in our experiments. Neonatal rat cardiomyocytes were used and submitted to hypoxia for 8h followed by reoxygenation for 2h to simulate the ischemia/reperfusion injury. Hypoxia/reoxygenation(H/R) induced damage to cardiomyocytes and the protective effect of hyperoside were examined by means of MTT assay. H/R-induced apoptosis was assessed by Terminal-deoxynucleoitidyl Transferase Mediated Nick End Labeling(TUNEL) and DNA Ladder assay. mRNA expression of Bnip3 was determined by use of quantitative real-time reverse transcription polymerase chain reaction assay. Protein levels of Bnip3, Bax, Bcl-2 and cleaved caspase-3 were examined using western-blot assay. Our results showed that H/R caused great damage to cardiomyocytes, upregulated the protein expressions of Bnip3, Bax, cleaved caspase3, and decreased the expression of the anti-apoptotic protein of Bcl-2. Whereas, compared with the H/R group, a decrease in activities of Bnip3, Bax, cleaved caspase3, and a promoting expression of Bcl-2 were detected in the H/R goup pretreated with hyperoside. It was concluded in our study that H/R-induced apoptotic effect in cardiomyocytes could be attenuated by hyperoside, and the protective role of hyperoside, if not completely, could be partly through the suppression of the pro-apoptotic gene Bnip3. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions.

    PubMed

    Haces, María L; Hernández-Fonseca, Karla; Medina-Campos, Omar N; Montiel, Teresa; Pedraza-Chaverri, José; Massieu, Lourdes

    2008-05-01

    Ketone bodies play a key role in mammalian energy metabolism during the suckling period. Normally ketone bodies' blood concentration during adulthood is very low, although it can rise during starvation, an exogenous infusion or a ketogenic diet. Whenever ketone bodies' levels increase, their oxidation in the brain rises. For this reason they have been used as protective molecules against refractory epilepsy and in experimental models of ischemia and excitotoxicity. The mechanisms underlying the protective effect of these compounds are not completely understood. Here, we studied a possible antioxidant capacity of ketone bodies and whether it contributes to the protection against oxidative damage induced during hypoglycemia. We report for the first time the scavenging capacity of the ketone bodies, acetoacetate (AcAc) and both the physiological and non-physiological isomers of beta-hydroxybutyrate (D- and L-BHB, respectively), for diverse reactive oxygen species (ROS). Hydroxyl radicals (.OH) were effectively scavenged by D- and L-BHB. In addition, the three ketone bodies were able to reduce cell death and ROS production induced by the glycolysis inhibitor, iodoacetate (IOA), while only D-BHB and AcAc prevented neuronal ATP decline. Finally, in an in vivo model of insulin-induced hypoglycemia, the administration of D- or L-BHB, but not of AcAc, was able to prevent the hypoglycemia-induced increase in lipid peroxidation in the rat hippocampus. Our data suggest that the antioxidant capacity contributes to protection of ketone bodies against oxidative damage in in vitro and in vivo models associated with free radical production and energy impairment.

  18. Probiotics Protect Mice from Ovariectomy-Induced Cortical Bone Loss

    PubMed Central

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H.; Farman, Helen H.; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice. PMID:24637895

  19. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    PubMed

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H; Farman, Helen H; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  20. Protection from radiation-induced damage to spermatogenesis by hormone treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurdoglu, B.; Wilson, G.; Parchuri, N.

    1994-07-01

    Infertility caused by killing of the spermatogonial stem cells occurs frequently in men treated for cancer with radiotherapy and chemotherapy. We investigated whether pretreatment of rats with testosterone plus estradiol, which reversibly inhibits the completion of spermatogenesis and protects spermatogonial stem cells from procarbazine-induced damage, would also protect these cells from radiation. Adult male LBNF rats were implanted for 6 weeks with capsules containing testosterone and estradiol and then irradiated with doses from 2.5-7.0 Gy. Controls were irradiated with 1.8-3.5 Gy. Implants were removed 1 day after irradiation, and all animals were killed 10 weeks later for assessment of stemmore » cell survival by counting repopulating tubules in histological sections and by sperm head counts. At doses of 2.5 and 3.5 Gy the repopulation indices and sperm head counts were significantly higher (P < 0.001) in the rats treated with testosterone and estradiol than in the controls. Protection factors calculated from the dose-response curves were in the range of 1.5-2.2. Elucidation of the mechanism of protection is essential to apply it to clinical situations. The fact that the spermatogonia are protected against radiation as well as procarbazine indicates that the mechanism does not involve drug delivery or metabolism. 32 refs., 3 figs.« less

  1. The Dynamics of Interleukin-10-Afforded Protection during Dextran Sulfate Sodium-Induced Colitis

    PubMed Central

    Cardoso, Ana; Gil Castro, Antonio; Martins, Ana Catarina; Carriche, Guilhermina M.; Murigneux, Valentine; Castro, Isabel; Cumano, Ana; Vieira, Paulo; Saraiva, Margarida

    2018-01-01

    Inflammatory bowel disease encompasses a group of chronic-inflammatory conditions of the colon and small intestine. These conditions are characterized by exacerbated inflammation of the organ that greatly affects the quality of life of patients. Molecular mechanisms counteracting this hyperinflammatory status of the gut offer strategies for therapeutic intervention. Among these regulatory molecules is the anti-inflammatory cytokine interleukin (IL)-10, as shown in mice and humans. Indeed, IL-10 signaling, particularly in macrophages, is essential for intestinal homeostasis. We sought to investigate the temporal profile of IL-10-mediated protection during chemical colitis and which were the underlying mechanisms. Using a novel mouse model of inducible IL-10 overexpression (pMT-10), described here, we show that mice preconditioned with IL-10 for 8 days before dextran sulfate sodium (DSS) administration developed a milder colitic phenotype. In IL-10-induced colitic mice, Ly6C cells isolated from the lamina propria showed a decreased inflammatory profile. Because our mouse model leads to transcription of the IL-10 transgene in the bone marrow and elevated seric IL-10 concentration, we investigated whether IL-10 could imprint immune cells in a long-lasting way, thus conferring sustained protection to colitis. We show that this was not the case, as IL-10-afforded protection was only observed if IL-10 induction immediately preceded DSS-mediated colitis. Thus, despite the protection afforded by IL-10 in colitis, novel strategies are required, specifically to achieve long-lasting protection. PMID:29545807

  2. Hesperidin protects against cyclophosphamide-induced hepatotoxicity by upregulation of PPARγ and abrogation of oxidative stress and inflammation.

    PubMed

    Mahmoud, Ayman M

    2014-09-01

    The most important reason for the non-approval and withdrawal of drugs by the Food and Drug Administration is hepatotoxicity. Therefore, this study was undertaken to evaluate the protective effects of hesperidin against cyclophosphamide (CYP)-induced hepatotoxicity in Wistar rats. The rats received a single intraperitoneal dose of CYP of 200 mg/kg body mass, followed by treatment with hesperidin, orally, at doses of 25 and 50 mg/kg for 11 consecutive days. CYP induced hepatic damage, as evidenced by the significantly elevated levels of serum pro-inflammatory cytokines, serum transaminases, liver lipid peroxidation, and nitric oxide. As a consequence, there was reduced glutathione content, and the activities of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, were markedly reduced. In addition, CYP administration induced a considerable downregulation of peroxisome proliferator activated receptor gamma (PPARγ) and upregulation of nuclear factor-kappa B (NF-κB) and inducible nitric oxide synthase (iNOS) mRNA expression. Hesperidin, in a dose-dependent manner, rejuvenated the altered markers to an almost normal state. In conclusion, hesperidin showed a potent protective effect against CYP-induced oxidative stress and inflammation leading to hepatotoxicity. The study suggests that hesperidin exerts its protective effect against CYP-induced hepatotoxicity through upregulation of hepatic PPARγ expression and abrogation of inflammation and oxidative stress.

  3. Protective effect of carbachol postconditioning on hypoxia/reoxygenation-induced injury in human gastric epithelial cells.

    PubMed

    Han, Hongxia; Yang, Jun; Fei, Sujuan; Liu, Zhangbo; Zhu, Shengping; Dong, Qiuju; Gao, Zhifeng; Wang, Shihui; Zhang, Jianfu

    2016-01-01

    We investigated the protective effects of carbachol postconditioning (CAR-P) on acute gastric mucosal injury induced by hypoxia/reoxygenation (H/R) and its possible mechanisms. Cell viability was detected by methyl thiazolyl tetrazolium (MTT). The apoptotic cells were examined by Hoechst 33258 staining. Flow cytometric analysis, lactate dehydrogenate (LDH) release assay, immunocytochemistry, and western blotting were used to investigate the effects of CAR-P on acute gastric mucosal injury induced by H/R. The model of H/R was established by hypoxia induction(94% N2+1% O2+5% CO2 for 2 h) and reoxygenation (normoxic condition for 4 h, 8 h and 16 h). Our study observed the protective effect of carbachol postconditioning on H/R-induced injury in human gastric epithelial cell lines (hGES-1) cells, which is achieved by direct activation of vanilloid receptor subtype 1 (VR1) and production of calcitonin gene-related peptide (CGRP), and in the inhibition of cell apoptosis. In the study, we demonstrate that CAR-P has protective effects on the H/R-induced injury in hGES-1 cells, and these effects are associated with cholinergic muscarinic receptors (CMR), VR1, and extracellular signal-regulated kinase (ERK) signaling pathway. Our findings might provide a new and improved understanding of CAR-P function and an effective treatment strategy for acute gastric mucosal injury induced by H/R. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Chitosan nanoparticles from marine squid protect liver cells against N-diethylnitrosoamine-induced hepatocellular carcinoma.

    PubMed

    Subhapradha, Namasivayam; Shanmugam, Vairamani; Shanmugam, Annaian

    2017-09-01

    Rationale of this study was framed to investigate the protective effect and anti-cancer property of nanoparticles based on chitosan isolated from squid, Sepioteuthis lessoniana, on hepatic cells in N-Nitrosodiethylamine-induced hepatocellular carcinoma in rats. The results conferred that the chitosan nanoparticle supplementation had a protective effect on liver cells by reducing the levels of marker enzymes and bilirubin and thus increasing the albumin levels. The level of reduced glutathione, ascorbic acid and α-tocopherol significantly increased in both post- and pre-treatment with chitosan nanoparticles. The levels of antioxidant enzymes were enhanced and lipid peroxidation products were diminished while treating nitrosodiethylamine-induced hepatocellular carcinoma with chitosan nanoparticles. Supplementation of chitosan nanoparticles had potent anti-hyperlipidemic property that was evidenced by monitoring the serum lipid levels and its components. Animals pre-treated with chitosan nanoparticles along with nitrosodiethylamine showed a significant reduction in the total cholesterol and triglycerides levels with increase in the levels of phospholipids and free fatty acids. Chitosan nanoparticles treated rats showed significant increment in high-density lipoprotein cholesterol and reduction in low-density lipoprotein and very low-density lipoprotein cholesterol when compared with levels in nitrosodiethylamine-induced hepatocellular carcinoma. Nitrosodiethylamine-induced carcinoma changes on circulation and hepatic antioxidant defense mechanism were regulated by chitosan nanoparticles, concluding that the chitosan nanoparticles have a potent protective effect on liver cells which might be due to its robust antioxidant and anti-lipidemic property. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The ζ Toxin Induces a Set of Protective Responses and Dormancy

    PubMed Central

    Tabone, Mariangela; Gonzalez-Pastor, José E.; Daugelavicius, Rimantas; Ayora, Silvia; Alonso, Juan C.

    2012-01-01

    The ζε module consists of a labile antitoxin protein, ε, which in dimer form (ε2) interferes with the action of the long-living monomeric ζ phosphotransferase toxin through protein complex formation. Toxin ζ, which inhibits cell wall biosynthesis and may be bactericide in nature, at or near physiological concentrations induces reversible cessation of Bacillus subtilis proliferation (protective dormancy) by targeting essential metabolic functions followed by propidium iodide (PI) staining in a fraction (20–30%) of the population and selects a subpopulation of cells that exhibit non-inheritable tolerance (1–5×10−5). Early after induction ζ toxin alters the expression of ∼78 genes, with the up-regulation of relA among them. RelA contributes to enforce toxin-induced dormancy. At later times, free active ζ decreases synthesis of macromolecules and releases intracellular K+. We propose that ζ toxin induces reversible protective dormancy and permeation to PI, and expression of ε2 antitoxin reverses these effects. At later times, toxin expression is followed by death of a small fraction (∼10%) of PI stained cells that exited earlier or did not enter into the dormant state. Recovery from stress leads to de novo synthesis of ε2 antitoxin, which blocks ATP binding by ζ toxin, thereby inhibiting its phosphotransferase activity. PMID:22295078

  6. Protective Effect of a Mitochondria-Targeted Peptide against the Development of Chemotherapy-Induced Peripheral Neuropathy in Mice.

    PubMed

    Toyama, Satoshi; Shimoyama, Naohito; Szeto, Hazel H; Schiller, Peter W; Shimoyama, Megumi

    2018-04-18

    Several chemotherapeutic agents used for cancer treatment induce dose-limiting peripheral neuropathy that compromises patients' quality of life and limits cancer treatment. Recently, mitochondrial dysfunction has been shown to be involved in the mechanism of chemotherapy-induced peripheral neuropathy. SS-20 is a mitochondria-targeted peptide that promotes mitochondrial respiration and restores mitochondrial bioenergetics. In the present study, we examined the protective effect of SS-20 against the development of chemotherapy-induced peripheral neuropathy utilizing a murine model of peripheral neuropathy induced by oxaliplatin, a first-line chemotherapy agent for colon cancer. Weekly administrations of oxaliplatin induced peripheral neuropathy as demonstrated by the development of neuropathic pain and loss of intraepidermal nerve fibers in the hind paw. Continuous administration of SS-20 protected against the development of oxaliplatin-induced neuropathic pain and mitigated the loss of intraepidermal nerve fibers to normal levels. Our findings suggest that SS-20 may be a drug candidate for the prevention of chemotherapy-induced peripheral neuropathy.

  7. Prickly Pear Cactus (Opuntia ficus indica var. saboten) Protects Against Stress-Induced Acute Gastric Lesions in Rats

    PubMed Central

    Kim, Seung Hyun; Jeon, Byung Ju; Kim, Dae Hyun; Kim, Tae Il; Lee, Hee Kyoung; Han, Dae Seob; Lee, Jong-Hwan; Kim, Tae Bum; Kim, Jung Wha

    2012-01-01

    Abstract The protective activity of prickly pear cactus (Opuntia ficus indica var. saboten) fruit juice and its main constituent, betanin, were evaluated against stress-induced acute gastric lesions in rats. After 6 h of water immersion restraint stress (WIRS), gastric mucosal lesions with bleeding were induced in Sprague–Dawley rats. Pretreatment of a lyophilized powder containing O. ficus indica var. saboten fruit juice and maltodextrin (OFSM) and betanin significantly reduced stress lesions (800–1600 mg/kg). Both OFSM and betanin effectively prevented the decrease in gastric mucus content as detected by alcian blue staining. In addition, OFSM significantly suppressed WIRS-induced increases in the level of gastric mucosal tumor necrosis factor-α and myeloperoxidase (MPO). Betanin alone was only effective in decreasing MPO. These results revealed the protective activity of OFSM against stress-induced acute gastric lesions and that betanin may contribute to OFSM's gastric protective activity, at least in part. When OFSM and betanin were taken together, OFSM exerted gastroprotective activity against stress-induced gastric lesions by maintaining gastric mucus, which might be related to the attenuation of MPO-mediated damage and proinflammatory cytokine production. PMID:23062184

  8. Prickly pear cactus (Opuntia ficus indica var. saboten) protects against stress-induced acute gastric lesions in rats.

    PubMed

    Kim, Seung Hyun; Jeon, Byung Ju; Kim, Dae Hyun; Kim, Tae Il; Lee, Hee Kyoung; Han, Dae Seob; Lee, Jong-Hwan; Kim, Tae Bum; Kim, Jung Wha; Sung, Sang Hyun

    2012-11-01

    The protective activity of prickly pear cactus (Opuntia ficus indica var. saboten) fruit juice and its main constituent, betanin, were evaluated against stress-induced acute gastric lesions in rats. After 6 h of water immersion restraint stress (WIRS), gastric mucosal lesions with bleeding were induced in Sprague-Dawley rats. Pretreatment of a lyophilized powder containing O. ficus indica var. saboten fruit juice and maltodextrin (OFSM) and betanin significantly reduced stress lesions (800-1600 mg/kg). Both OFSM and betanin effectively prevented the decrease in gastric mucus content as detected by alcian blue staining. In addition, OFSM significantly suppressed WIRS-induced increases in the level of gastric mucosal tumor necrosis factor-α and myeloperoxidase (MPO). Betanin alone was only effective in decreasing MPO. These results revealed the protective activity of OFSM against stress-induced acute gastric lesions and that betanin may contribute to OFSM's gastric protective activity, at least in part. When OFSM and betanin were taken together, OFSM exerted gastroprotective activity against stress-induced gastric lesions by maintaining gastric mucus, which might be related to the attenuation of MPO-mediated damage and proinflammatory cytokine production.

  9. Valsartan Protects Against Contrast-Induced Acute Kidney Injury in Rats by Inhibiting Endoplasmic Reticulum Stress-Induced Apoptosis.

    PubMed

    Sun, Yan; Peng, Ping-An; Ma, Yue; Liu, Xiao-Li; Yu, Yi; Jia, Shuo; Xu, Xiao-Han; Wu, Si-Jing; Zhou, Yu-Jie

    2017-01-01

    Contrast-induced acute kidney injury (CI-AKI) is a serious complication of the administration of iodinated contrast media (CM) for diagnostic and interventional cardiovascular procedures and is associated with substantial morbidity and mortality. While the preventative measures can mitigate the risk of CI-AKI, there remains a need for novel and effective therapeutic approaches. The pathogenesis of CI-AKI is complex and not completely understood. CM-induced renal tubular cell apoptosis caused by the activation of endoplasmic reticulum (ER) stress is involved in CIAKI. We previously demonstrated that valsartan alleviated CM-induced human renal tubular cell apoptosis by inhibiting ER stress in vitro. However, the nephroprotective effect of valsartan on CI-AKI in vivo has not been investigated. Therefore, the aim of this study was to explore the protective effect of valsartan in a rat model of CI-AKI by measuring the amelioration of renal damage and the changes in ER stressrelated biomarkers. Our results showed that the radiocontrast agent meglumine diatrizoate caused significant renal insufficiency, renin-angiotensin system (RAS) activation, and renal tubular apoptosis by triggering ER stress through activation of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), caspase 12, CCAAT/enhancer-binding protein-homologous protein (CHOP) and c-Jun N-terminal protein kinase (JNK) (P<0.05; n=6 in each group). Pre-treatment with valsartan significantly alleviated renal dysfunction, pathological injury, and apoptosis along with the inhibition of ER stressrelated biomarkers (P<0.05; n=8 in each group). Valsartan could protect against meglumine diatrizoate-induced kidney injury in rats by inhibiting the ER stress-induced apoptosis, making it a promising strategy for preventing CI-AKI. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Temporal and genetic influences on protection against noise-induced hearing loss by hypoxic preconditioning in mice.

    PubMed

    Gagnon, Patricia M; Simmons, Dwayne D; Bao, Jianxin; Lei, Debin; Ortmann, Amanda J; Ohlemiller, Kevin K

    2007-04-01

    The protective benefits of hypoxic preconditioning (HPC) against permanent noise-induced hearing loss (NIHL) were investigated in mice. Hypoxia induced by exposure to 8% O2 for 4 h conferred significant protection against damaging broadband noise delivered 24-48 h later in male and female CBA/J (CBA) and CBA/CaJ mice. No protection was found in C57BL/6 (B6) mice, their B6.CAST-Cdh23(CAST) (B6.CAST) congenics, or in CBAxB6 F1 hybrid mice over the same interval, suggesting that the potential for HPC depends on one or a few autosomal recessive alleles carried by CBA-related strains, and is not influenced by the Cdh23 locus. Protection against NIHL in CBA mice was associated with significant up-regulation of hypoxia-inducible factor-1alpha (HIF-1alpha) within the organ of Corti, not found in B6.CAST. In both CBA and B6.CAST mice, some hypoxia-noise intervals shorter than 24 h were associated with exacerbation of NIHL. Cellular cascades underlying the early exacerbation of NIHL by hypoxia are therefore common to both strains, and not mechanistically linked to later protection. Elucidation of the events that underlie HPC, and how these are impacted by genetics, may lead to pharmacologic approaches to mimic HPC, and may help identify individuals with elevated risk of NIHL.

  11. Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies.

    PubMed

    Kamal, Ram P; Blanchfield, Kristy; Belser, Jessica A; Music, Nedzad; Tzeng, Wen-Pin; Holiday, Crystal; Burroughs, Ashley; Sun, Xiangjie; Maines, Taronna R; Levine, Min Z; York, Ian A

    2017-10-15

    Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutination inhibition (HI) and microneutralization (MN) assays, H7 viruses and vaccines are found to induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate prepandemic vaccines. We have previously shown that purified recombinant H7 HA appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. In this study, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and neuraminidase (NA) from 3 different H7 viruses [A/Shanghai/2/2013(H7N9), A/Netherlands/219/2003(H7N7), and A/New York/107/2003(H7N2)] or with human A(H1N1)pdm09 (A/California/07/2009-like) or A(H3N2) (A/Perth16/2009) viruses. Mice produced equivalent titers of antibodies to all viruses as measured by enzyme-linked immunosorbent assay (ELISA). However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for prepandemic vaccines. IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of prepandemic vaccines. For seasonal influenza viruses, protection is correlated with antibody

  12. Inactivated H7 Influenza Virus Vaccines Protect Mice despite Inducing Only Low Levels of Neutralizing Antibodies

    PubMed Central

    Blanchfield, Kristy; Belser, Jessica A.; Music, Nedzad; Tzeng, Wen-Pin; Holiday, Crystal; Burroughs, Ashley; Sun, Xiangjie; Maines, Taronna R.; Levine, Min Z.; York, Ian A.

    2017-01-01

    ABSTRACT Avian influenza viruses of the H7 hemagglutinin (HA) subtype present a significant public health threat, as evidenced by the ongoing outbreak of human A(H7N9) infections in China. When evaluated by hemagglutination inhibition (HI) and microneutralization (MN) assays, H7 viruses and vaccines are found to induce lower level of neutralizing antibodies (nAb) than do their seasonal counterparts, making it difficult to develop and evaluate prepandemic vaccines. We have previously shown that purified recombinant H7 HA appear to be poorly immunogenic in that they induce low levels of HI and MN antibodies. In this study, we immunized mice with whole inactivated reverse genetics reassortant (RG) viruses expressing HA and neuraminidase (NA) from 3 different H7 viruses [A/Shanghai/2/2013(H7N9), A/Netherlands/219/2003(H7N7), and A/New York/107/2003(H7N2)] or with human A(H1N1)pdm09 (A/California/07/2009-like) or A(H3N2) (A/Perth16/2009) viruses. Mice produced equivalent titers of antibodies to all viruses as measured by enzyme-linked immunosorbent assay (ELISA). However, the antibody titers induced by H7 viruses were significantly lower when measured by HI and MN assays. Despite inducing very low levels of nAb, H7 vaccines conferred complete protection against homologous virus challenge in mice, and the serum antibodies directed against the HA head region were capable of mediating protection. The apparently low immunogenicity associated with H7 viruses and vaccines may be at least partly related to measuring antibody titers with the traditional HI and MN assays, which may not provide a true measure of protective immunity associated with H7 immunization. This study underscores the need for development of additional correlates of protection for prepandemic vaccines. IMPORTANCE H7 avian influenza viruses present a serious risk to human health. Preparedness efforts include development of prepandemic vaccines. For seasonal influenza viruses, protection is correlated with

  13. Hemin induction of HO-1 protects against LPS-induced septic ileus.

    PubMed

    Bortscher, Stephan; Chang, Johannes; Vilz, Tim O; Schäfer, Nico; Sommer, Nils; Wehner, Sven; Kalff, Jörg C; Overhaus, Marcus

    2012-12-01

    Heme oxygenase (HO-1) protects against inflammation. In this study, we investigated the protective function of hemin-induced HO-1 against lipopolysaccharide (LPS)-induced ileus. Rats received LPS intraperitoneally 24 h after intraperitoneal hemin pretreatment or placebo. We also injected zinc protoporphyrin (ZnPP, 3rd group), an inhibitor of HO-1, intraperitoneally 2 h before LPS administration. To assess intestinal muscle function, we examined muscularis strip contractility in an organ bath and measured gastrointestinal transit in vivo. We investigated inflammation within the muscularis using polymerase chain reaction (interleukin [IL]-6, inducible nitric oxide synthase (iNOS), HO-1 and IL-10) 6 and 24 h after LPS. Hemin significantly improved in vitro intestinal muscularis contractility (P < 0.001). In addition, hemin prevented LPS-induced dysmotility in vivo (gastrointestinal transit, geometric center: 8.39 ± 0.33 versus 5.68 ± 0.44; P < 0.001). In Zinc protoporphyrin (ZnPP)-treated animals, both parameters were significantly decreased compared with the hemin group. Messenger RNA expression demonstrated a significant reduction in IL-6 (6 h, hemin: 127.6 ± 36.7 versus LPS: 14,431 ± 5407; 24 h: 1.58 ± 0.39 versus 11.15 ± 2.59; P < 0.01) and iNOS (6 h: 2516 ± 985 versus 50,771 ± 13,321; 24 h: 55.11 ± 10.55 versus 257.1 ± 43.18; P < 0.001) in hemin-treated animals. Anti-inflammatory HO-1 messenger RNA levels (6 h, hemin: 116.3 ± 18.55 versus LPS: 26.02 ± 3.64; 24 h: 18.46 ± 2.69 versus 2.80 ± 0.32; P < 0.001) were increased. There was no significant difference in IL-10 levels at 6 and 24 h. ZnPP reversed the anti-inflammatory hemin effects. Hemin induction of HO-1 diminishes LPS-induced sepsis. Heme oxygenase-1 has a central role in preventing sepsis-induced ileus. This benefit is reversed by HO-1 inhibition with ZnPP. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. High-density lipoproteins protect endothelial cells from tumor necrosis factor-alpha-induced apoptosis.

    PubMed

    Sugano, M; Tsuchida, K; Makino, N

    2000-06-16

    High-density lipoproteins (HDL) levels have been shown to be inversely correlated with coronary heart disease, but the mechanisms of the direct protective effect of HDL on endothelial cells are not fully understood. The apoptosis of endothelial cells induced by cytokines and/or oxidized low-density lipoproteins, etc. may provide a mechanistic clue to the "response-to-injury" hypothesis of atherogenesis. Here we report that HDL prevent the apoptosis of human umbilical venous endothelial cells (HUVECs) induced by tumor necrosis factor-alpha (TNF-alpha) via an inhibition of CPP32-like protease activity. The incubation of HUVECs with TNF-alpha significantly increased the CPP32-like protease activity, and induced apoptosis. Preincubation of HUVECs with HDL before incubation with TNF-alpha significantly suppressed the increase in the CPP32-like protease activity, preventing apoptosis in a concentration-dependent manner. These results suggest that HDL prevent the suicide pathway leading to apoptosis of endothelial cells by decreasing the CPP32-like protease activity and that HDL thus play a protective role against the "response-to-injury" hypothesis of atherogenesis. Copyright 2000 Academic Press.

  15. Gastrointestinal protective effect of dietary spices during ethanol-induced oxidant stress in experimental rats.

    PubMed

    Prakash, Usha N S; Srinivasan, Krishnapura

    2010-04-01

    Spices are traditionally known to have digestive stimulant action and to cure digestive disorders. In this study, the protective effect of dietary spices with respect to activities of antioxidant enzymes in gastric and intestinal mucosa was examined. Groups of Wistar rats were fed for 8 weeks with diets containing black pepper (0.5%), piperine (0.02%), red pepper (3.0%), capsaicin (0.01%), and ginger (0.05%). All these spices significantly enhanced the activities of antioxidant enzymes--superoxide dismutase, catalase, glutathione reductase, and glutathione-S-transferase--in both gastric and intestinal mucosa, suggesting a gastrointestinal protective role for these spices. In a separate study, these dietary spices were found to alleviate the diminished activities of antioxidant enzymes in gastric and intestinal mucosa under conditions of ethanol-induced oxidative stress. The gastroprotective effect of the spices was also reflected in their positive effect on mucosal glycoproteins, thereby lowering mucosal injury. The amelioration of the ethanol-induced decrease in the activities of antioxidant enzymes in gastric and intestinal mucosa by dietary spices suggests their beneficial gastrointestinal protective role. This is the first report on the gastrointestinal protective potential of dietary spices.

  16. Protective effect of Corchorus olitorius leaves on sodium arsenite-induced toxicity in experimental rats.

    PubMed

    Das, Anup K; Bag, Sujit; Sahu, Ranabir; Dua, Tarun K; Sinha, Mohit K; Gangopadhyay, Moumita; Zaman, Kamaruz; Dewanjee, Saikat

    2010-01-01

    The present study was undertaken to evaluate the protective effect of aqueous extract of Corchorus olitorius leaves (AECO) against sodium arsenite-induced toxicity in experimental rats. The animals exposed to sodium arsenite at a dose of 10mg/kg body weight p.o. for 10days exhibited a significant inhibition (p<0.01) of hepatic and renal antioxidant enzymes namely superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase and glutathione reductase. In addition, arsenic intoxication significantly decreased (p<0.01) the level of reduced glutathione and increased (p<0.01) the levels of oxidized glutathione and thiobarbituric acid reactive substances in selected tissues. Treatment with AECO at doses of 50 and 100mg/kg body weight p.o. for 15days prior to arsenic intoxication significantly improved hepatic and renal antioxidant markers in a dose dependant manner. AECO treatment also significantly reduced the arsenic-induced DNA fragmentation of hepatic and renal tissues. Histological studies on the ultrastructural changes of liver and kidney supported the protective activity of the AECO. The results concluded that the treatment with AECO prior to arsenic intoxication has significant role in protecting animals from arsenic-induced hepatic and renal toxicity. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Kainic Acid-Induced Excitotoxicity Experimental Model: Protective Merits of Natural Products and Plant Extracts

    PubMed Central

    Mohd Sairazi, Nur Shafika; Sirajudeen, K. N. S.; Asari, Mohd Asnizam; Muzaimi, Mustapha; Mummedy, Swamy; Sulaiman, Siti Amrah

    2015-01-01

    Excitotoxicity is well recognized as a major pathological process of neuronal death in neurodegenerative diseases involving the central nervous system (CNS). In the animal models of neurodegeneration, excitotoxicity is commonly induced experimentally by chemical convulsants, particularly kainic acid (KA). KA-induced excitotoxicity in rodent models has been shown to result in seizures, behavioral changes, oxidative stress, glial activation, inflammatory mediator production, endoplasmic reticulum stress, mitochondrial dysfunction, and selective neurodegeneration in the brain upon KA administration. Recently, there is an emerging trend to search for natural sources to combat against excitotoxicity-associated neurodegenerative diseases. Natural products and plant extracts had attracted a considerable amount of attention because of their reported beneficial effects on the CNS, particularly their neuroprotective effect against excitotoxicity. They provide significant reduction and/or protection against the development and progression of acute and chronic neurodegeneration. This indicates that natural products and plants extracts may be useful in protecting against excitotoxicity-associated neurodegeneration. Thus, targeting of multiple pathways simultaneously may be the strategy to maximize the neuroprotection effect. This review summarizes the mechanisms involved in KA-induced excitotoxicity and attempts to collate the various researches related to the protective effect of natural products and plant extracts in the KA model of neurodegeneration. PMID:26793262

  18. Inducible 70 kDa Heat Shock Proteins Protect Embryos from Teratogen-Induced Exencephaly: Analysis using Hspa1a/a1b Knockout Mice

    EPA Science Inventory

    Background: It is well known that a variety of teratogens induce neural tube defects in animals; however, less is known about proteins that play a role in protecting embryos from teratogen-induced neural tube defects. Previously, our lab has shown that embryos over-expressing th...

  19. Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats.

    PubMed

    Ince, Sinan; Kucukkurt, Ismail; Demirel, Hasan Huseyin; Acaroz, Damla Arslan; Akbel, Erten; Cigerci, Ibrahim Hakki

    2014-08-01

    The aim of the present study was to evaluate the possible protective effect of boron (B) on cyclophosphamide (CYC) induced oxidative stress in rats. Totally, thirty Wistar albino male rats were fed standard rodent diet and divided into 5 equal groups: physiological saline was given intraperitoneally (i.p.) to the control group (vehicle treated), to the second group only 75 mg kg(-1) CYC was given i.p. on the 14th d, and boron was administered (5, 10, and 20 mg kg(-1), i.p.) to the other groups for 14 d and CYC (75 mg kg(-1), i.p.) on the 14th d. CYC caused increase of malondialdehyde and decrease of glutathione levels, decrease of superoxide dismutase activities in erythrocyte and tissues, decrease of erythrocyte, heart, lung, and brain catalase, and plasma antioxidant activities. Also, CYC treatment caused to DNA damage in mononuclear leukocytes. Moreover, B exhibited protective action against the CYC-induced histopathological changes in tissues. However, treatment of B decreased severity of CYC-induced lipid peroxidation and genotoxicity on tissues. In conclusion, B has ameliorative effects against CYC-induced lipid peroxidation and genotoxicity by enhancing antioxidant defence mechanism in rat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Melatonin protects chondrocytes from impairment induced by glucocorticoids via NAD+-dependent SIRT1.

    PubMed

    Yang, Wei; Kang, Xiaomin; Qin, Na; Li, Feng; Jin, Xinxin; Ma, Zhengmin; Qian, Zhuang; Wu, Shufang

    2017-10-01

    Intra-articular injection of glucocorticoids is used to relieve pain and inflammation in osteoarthritis patients, which is occasionally accompanied with the serious side effects of glucocorticoids in collagen-producing tissue. Melatonin is the major hormone released from the pineal gland and its beneficial effects on cartilage has been suggested. In the present study, we investigated the protective role of melatonin on matrix degeneration in chondrocytes induced by dexamethasone (Dex). The chondrocytes isolated from mice knee joint were treated with Dex, melatonin, EX527 and siRNA targeted for SIRT6, respectively. Dex treatment induced the loss of the extracellular matrix, NAD + /NADH ratio and NADPH concentration in chondrocytes. Melatonin alone have no effect on the quantity of proteoglycans and collagen type IIa1, however, the pretreatment of melatonin reversed the negative effects induced by Dex. Meanwhile, the significant decrease in NAD + /NADH ratio and NADPH concentration in Dex group were up-regulated by pretreatment of melatonin. Furthermore, it was revealed that inhibition of SIRT1 blocked the protective effects of melatonin. The enhancement of NAD + -dependent SIRT1 activity contributes to the chondroprotecfive effects of melatonin, which has a great benefit to prevent dexamethasone-induced chondrocytes impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Protection of Clitoria ternatea flower petal extract against free radical-induced hemolysis and oxidative damage in canine erythrocytes.

    PubMed

    Phrueksanan, Wathuwan; Yibchok-anun, Sirinthorn; Adisakwattana, Sirichai

    2014-10-01

    The present study assessed the antioxidant activity and protective ability of Clitoria ternatea flower petal extract (CTE) against in vitro 2,2'-azobis-2-methyl-propanimidamide dihydrochloride (AAPH)-induced hemolysis and oxidative damage of canine erythrocytes. From the phytochemical analysis, CTE contained phenolic compounds, flavonoids, and anthocyanins. In addition, CTE showed antioxidant activity as measured by oxygen radical absorbance capacity (ORAC) method and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. CTE (400 µg/ml) remarkably protected erythrocytes against AAPH-induced hemolysis at 4 h of incubation. Moreover, CTE (400 µg/ml) reduced membrane lipid peroxidation and protein carbonyl group formation and prevented the reduction of glutathione concentration in AAPH-induced oxidation of erythrocytes. The AAPH-induced morphological alteration of erythrocytes from a smooth discoid to an echinocytic form was effectively protected by CTE. The present results contribute important insights that CTE may have the potential to act as a natural antioxidant to prevent free radical-induced hemolysis, protein oxidation and lipid peroxidation in erythrocytes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Grape seed and skin extract protects kidney from doxorubicin-induced oxidative injury.

    PubMed

    Mokni, Meherzia; Hamlaoui, Sonia; Kadri, Safwen; Limam, Ferid; Amri, Mohamed; Marzouki, Lamjed; Aouani, Ezzedine

    2016-05-01

    The study investigated the protective effect of grape seed and skin extract (GSSE) against doxorubicin-induced renal toxicity in healthy rats. Animals were treated with GSSE or not (control), for 8 days, administered with doxorubicin (20mg/kg) in the 4th day, and renal function as well as oxidative stress parameters were evaluated. Data showed that doxorubicin induced renal toxicity by affecting renal architecture and plasma creatinine. Doxorubicin also induced an oxidative stress characterized by an increase in malondialdehyde (MDA), calcium and H(2)O(2) and a decrease in catalase (CAT) and superoxide dismutase (SOD). Unexpectedly doxorubicin increased peroxidase (POD) and decreased carbonyl protein and plasma urea. Treatment with GSSE counteracted almost all adverse effects induced by doxorubicin. Data suggest that doxorubicin induced an oxidative stress into rat kidney and GSSE exerted antioxidant properties, which seem to be mediated by the modulation of intracellular calcium.

  3. Allicin protects against cisplatin-induced vestibular dysfunction by inhibiting the apoptotic pathway.

    PubMed

    Wu, Xianmin; Cai, Jing; Li, Xiaofei; Li, He; Li, Jianfeng; Bai, Xiaohui; Liu, Wenwen; Han, Yuechen; Xu, Lei; Zhang, Daogong; Wang, Haibo; Fan, Zhaomin

    2017-06-15

    Cisplatin is an anticancer drug that causes the impairment of inner ear function as side effects, including hearing loss and balance dysfunction. The purpose of this study was to investigate the effects of allicin against cisplatin-induced vestibular dysfunction in mice and to make clear the mechanism underlying the protective effects of allicin on oto-vestibulotoxicity. Mice intraperitoneally injected with cisplatin exhibited vestibular dysfunction in swimming test, which agreed with impairment in vestibule. However, these impairments were significantly prevented by pre-treatment with allicin. Allicin markedly reduced cisplatin-activated expression of cleaved-caspase-3 in hair cells and vascular layer cells of utricule, saccule and ampulla, but also decreased AIF nuclear translocation of hair cells in utricule, saccule and ampulla. These results showed that allicin played an effective role in protecting vestibular dysfunction induced by cisplatin via inhibiting caspase-dependent and caspase-independent apoptotic pathways. Therefore, allicin may be useful in preventing oto-vestibulotoxicity mediated by cisplatin. Copyright © 2017. Published by Elsevier B.V.

  4. Naphthazarin protects against glutamate-induced neuronal death via activation of the Nrf2/ARE pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Tae Gen; Kawamoto, Elisa M.; Yu, Qian-Sheng

    2013-04-19

    Highlights: •Naphthazarin activates the Nrf2/ARE pathway. •Naphthazarin induces Nrf2-driven genes in neurons and astrocytes. •Naphthazarin protects neurons against excitotoxicity. -- Abstract: Nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) pathway is an important cellular stress response pathway involved in neuroprotection. We previously screened several natural phytochemicals and identified plumbagin as a novel activator of the Nrf2/ARE pathway that can protect neurons against ischemic injury. Here we extended our studies to natural and synthetic derivatives of plumbagin. We found that 5,8-dimethoxy-1,4-naphthoquinone (naphthazarin) is a potent activator of the Nrf2/ARE pathway, up-regulates the expression of Nrf2-driven genes in primary neuronal andmore » glial cultures, and protects neurons against glutamate-induced excitotoxicity.« less

  5. Presence of encircling granulosa cells protects against oxidative stress-induced apoptosis in rat eggs cultured in vitro.

    PubMed

    Tiwari, Meenakshi; Tripathi, Anima; Chaube, Shail K

    2017-01-01

    Increased oxidative stress (OS) due to in vitro culture conditions can affect the quality of denuded eggs during various assisted reproductive technologies (ARTs). Presence of intact granulosa cells may protect eggs from OS damage under in vitro culture conditions. The present study was aimed to investigate whether encircling granulosa cells could protect against hydrogen peroxide (H 2 O 2 )-induced egg apoptosis in ovulated cumulus oocyte complexes (COCs) cultured in vitro. The OS was induced by exposing COCs as well as denuded eggs with various concentrations of H 2 O 2 for 3 h in vitro. The morphological changes, total reactive oxygen species (ROS) as well as catalase expression, Bax/Bcl-2, cytochrome c levels and DNA fragmentation were analysed in COCs as well as denuded eggs. Our results suggest that H 2 O 2 treatment induced morphological apoptotic features in a concentration-dependent manner in denuded eggs cultured in vitro. The 20 µM of H 2 O 2 treatment induced OS by elevating total ROS level, reduced catalase and Bcl-2 expression levels with overexpression of Bax and cytochrome c and induced DNA fragmentation in denuded eggs cultured in vitro. The presence of encircling granulosa cells protected H 2 O 2 -induced morphological apoptotic features by preventing the increase of Bax, cytochrome c expression levels and DNA fragmentation in associated egg. However, 20 µM of H 2 O 2 was sufficient to induce peripheral granulosa cell apoptosis in COCs and degeneration in few denuded eggs cultured in vitro. Taken together our data suggest that the presence of encircling granulosa cells could be beneficial to protect ovulated eggs from OS damage under in vitro culture conditions during various ART programs.

  6. Sarcandra glabra combined with lycopene protect rats from lipopolysaccharide induced acute lung injury via reducing inflammatory response.

    PubMed

    Liu, Tian-Yin; Chen, Shi-Biao

    2016-12-01

    Sarcandra glabra (Chinese name, Zhongjiefeng) is an important herb widely used in traditional Chinese medicine. Lycopene has been shown to be a powerful antioxidant. This study aims to test the hypothesis that Sarcandra glabra combined with lycopene protect rats from lipopolysaccharide (LPS) induced acute lung injury (ALI). Metabolomics approach combined with pathological inspection, serum biochemistry examination, enzyme-linked immunosorbent assay and western blotting were used to explore the protective effects of Sarcandra glabra and lycopene on LPS-induced ALI, and to elucidate the underlying mechanisms. Results showed that Sarcandra glabra and lycopene could significantly ameliorate LPS-induced histopathological injuries, improve the anti-oxidative activities of rats, decrease the levels of TNF-α and IL-6, suppress the activations of MAPK and transcription factor NF-κB and reverse the disturbed metabolism towards the normal status. Taken together, this integrated study revealed that Sarcandra glabra combined with lycopene had great potential in protecting rats from LPS-induced ALI, which would be helpful to guide the clinical medication. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Dopamine agonist 3-PPP fails to protect against MPTP-induced toxicity.

    PubMed

    Muralikrishnan, Dhanasekaran; Ebadi, Manuchair; Brown-Borg, Holly M

    2004-02-01

    We investigated the neuroprotective effect of the dopamine agonist, 3-PPP [3-(3-hydroxyphenyl)-N-propylpiperidine] against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. MPTP (30 mg/kg, i.p., twice, 16 h apart) causes significant dopamine depletion in nucleus caudatus putamen (NCP) by 1 week. 3-PPP had no effect on the monoamine oxidase-B activity (MAO-B) activity in NCP. 3-PPP did not affect dopamine uptake, whereas mazindol significantly blocked the uptake of dopamine dose dependently. MPTP-induced behavioral changes in mice were not reduced by pretreatment with 3-PPP. This dopamine agonist did not prevent dopamine depletion caused by MPTP. MPP+ (20 microM) significantly inhibited the cell proliferation of SH-SY5Y dopaminergic neuronal cells. 3-PPP had no effect on the SH-SY5Y neuronal cell growth in culture and did not block the MPP(+)-induced cytotoxicity. This study shows that the dopamine agonist 3-PPP failed to protect against MPTP-induced dopaminergic neurotoxicity.

  8. Protective Effect of Unacylated Ghrelin on Compression-Induced Skeletal Muscle Injury Mediated by SIRT1-Signaling

    PubMed Central

    Ugwu, Felix N.; Yu, Angus P.; Sin, Thomas K.; Tam, Bjorn T.; Lai, Christopher W.; Wong, S. C.; Siu, Parco M.

    2017-01-01

    Unacylated ghrelin, the predominant form of circulating ghrelin, protects myotubes from cell death, which is a known attribute of pressure ulcers. In this study, we investigated whether unacylated ghrelin protects skeletal muscle from pressure-induced deep tissue injury by abolishing necroptosis and apoptosis signaling and whether these effects were mediated by SIRT1 pathway. Fifteen adult Sprague Dawley rats were assigned to receive saline or unacylated ghrelin with or without EX527 (a SIRT1 inhibitor). Animals underwent two 6-h compression cycles with 100 mmHg static pressure applied over the mid-tibialis region of the right limb whereas the left uncompressed limb served as the intra-animal control. Muscle tissues underneath the compression region, and at the similar region of the opposite uncompressed limb, were collected for analysis. Unacylated ghrelin attenuated the compression-induced muscle pathohistological alterations including rounding contour of myofibers, extensive nucleus accumulation in the interstitial space, and increased interstitial space. Unacylated ghrelin abolished the increase in necroptosis proteins including RIP1 and RIP3 and attenuated the elevation of apoptotic proteins including p53, Bax, and AIF in the compressed muscle. Furthermore, unacylated ghrelin opposed the compression-induced phosphorylation and acetylation of p65 subunit of NF-kB. The anti-apoptotic effect of unacylated ghrelin was shown by a decrease in apoptotic DNA fragmentation and terminal dUTP nick-end labeling index in the compressed muscle. The protective effects of unacylated ghrelin vanished when co-treated with EX527. Our findings demonstrated that unacylated ghrelin protected skeletal muscle from compression-induced injury. The myoprotective effects of unacylated ghrelin on pressure-induced tissue injury were associated with SIRT1 signaling. PMID:29225581

  9. Protective Role of Mitochondrial Peroxiredoxin III against UVB-Induced Apoptosis of Epidermal Keratinocytes.

    PubMed

    Baek, Jin Young; Park, Sujin; Park, Jiyoung; Jang, Ji Yong; Wang, Su Bin; Kim, Sin Ri; Woo, Hyun Ae; Lim, Kyung Min; Chang, Tong-Shin

    2017-06-01

    UVB light induces generation of reactive oxygen species, ultimately leading to skin cell damage. Mitochondria are a major source of reactive oxygen species in UVB-irradiated skin cells, with increased levels of mitochondrial reactive oxygen species having been implicated in keratinocyte apoptosis. Peroxiredoxin III (PrxIII) is the most abundant and potent H 2 O 2 -removing enzyme in the mitochondria of most cell types. Here, the protective role of PrxIII against UVB-induced apoptosis of epidermal keratinocytes was investigated. Mitochondrial H 2 O 2 levels were differentiated from other types of ROS using mitochondria-specific fluorescent H 2 O 2 indicators. Upon UVB irradiation, PrxIII-knockdown HaCaT human keratinocytes and PrxIII-deficient (PrxIII -/- ) mouse primary keratinocytes exhibited enhanced accumulation of mitochondrial H 2 O 2 compared with PrxIII-expressing controls. Keratinocytes lacking PrxIII were subsequently sensitized to apoptosis through mitochondrial membrane potential loss, cardiolipin oxidation, cytochrome c release, and caspase activation. Increased UVB-induced epidermal tissue damage in PrxIII -/- mice was attributable to increased caspase-dependent keratinocyte apoptosis. Our findings show that mitochondrial H 2 O 2 is a key mediator in UVB-induced apoptosis of keratinocytes and that PrxIII plays a critical role in protecting epidermal keratinocytes against UVB-induced apoptosis through eliminating mitochondrial H 2 O 2 . These findings support the concept that reinforcing mitochondrial PrxIII defenses may help prevent UVB-induced skin damage such as inflammation, sunburn, and photoaging. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Protective effects of aerosolized scopolamine against soman-induced acute respiratory toxicity in guinea pigs.

    PubMed

    Perkins, Michael W; Pierre, Zdenka; Rezk, Peter; Song, Jian; Oguntayo, Samuel; Morthole, Venee; Sciuto, Alfred M; Doctor, Bhupendra P; Nambiar, Madhusoodana P

    2011-12-01

    The protective efficacy of the antimuscarinic agent scopolamine was evaluated against soman (o-pinacolyl methylphosphonofluoridate [GD])-induced respiratory toxicity in guinea pigs. Anesthetized animals were exposed to GD (841 mg/m(3)) by microinstillation inhalation exposure and treated 30 seconds later with endotracheally aerosolized scopolamine (0.25 mg/kg) and allowed to recover for 24 hours. Treatment with scopolamine significantly increased survival and reduced clinical signs of toxicity and body weight loss in GD-exposed animals. Analysis of bronchoalveolar lavage (BAL) fluid showed normalization of GD-induced increased cell death, total cell count, and protein following scopolamine treatment. The BAL fluid acetylcholinesterase and butyrylcholinesterase levels were also increased by scopolamine treatment. Respiratory dynamics parameters were normalized at 4 and 24 hours post-GD exposure in scopolamine-treated animals. Lung histology showed that scopolamine treatment reduced bronchial epithelial and subepithelial inflammation and multifocal alveolar septal edema. These results suggest that aerosolized scopolamine considerably protects against GD-induced respiratory toxicity.

  11. Vaccine-Induced Immunogenicity and Protection Against Pneumocystis Pneumonia in a Nonhuman Primate Model of HIV and Pneumocystis Coinfection.

    PubMed

    Kling, Heather M; Norris, Karen A

    2016-05-15

    The ubiquitous opportunistic pathogen Pneumocystis jirovecii causes pneumonia in immunocompromised individuals, including human immunodeficiency virus (HIV)-infected individuals, and pulmonary colonization with P. jirovecii is believed to be a cofactor in the development of chronic obstructive pulmonary disease. There is no vaccine for P. jirovecii; however, most adults are seropositive, indicating natural immune priming to this pathogen. We have shown that humoral response to a recombinant subunit of the P. jirovecii protease kexin (KEX1) correlates with protection from P. jirovecii colonization and pneumonia. Here we evaluated the immunogenicity and protective capacity of the recombinant KEX1 peptide vaccine in a preclinical, nonhuman primate model of HIV-induced immunosuppression and Pneumocystis coinfection. Immunization with KEX1 induced a robust humoral response remained at protective levels despite chronic simian immunodeficiency virus/HIV-induced immunosuppression. KEX1-immunized macaques were protected from Pneumocystis pneumonia, compared with mock-immunized animals (P= .047), following immunosuppression and subsequent natural, airborne exposure to Pneumocystis These data support the concept that stimulation of preexisting immunological memory to Pneumocystis with a recombinant KEX1 vaccine prior to immunosuppression induces durable memory responses and protection in the context of chronic, complex immunosuppression. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  12. Hydrogen protects auditory hair cells from cisplatin-induced free radicals.

    PubMed

    Kikkawa, Yayoi S; Nakagawa, Takayuki; Taniguchi, Mirei; Ito, Juichi

    2014-09-05

    Cisplatin is a widely used chemotherapeutic agent for the treatment of various malignancies. However, its maximum dose is often limited by severe ototoxicity. Cisplatin ototoxicity may require the production of reactive oxygen species (ROS) in the inner ear by activating enzymes specific to the cochlea. Molecular hydrogen was recently established as an antioxidant that selectively reduces ROS, and has been reported to protect the central nervous system, liver, kidney and cochlea from oxidative stress. The purpose of this study was to evaluate the potential of molecular hydrogen to protect cochleae against cisplatin. We cultured mouse cochlear explants in medium containing various concentrations of cisplatin and examined the effects of hydrogen gas dissolved directly into the media. Following 48-h incubation, the presence of intact auditory hair cells was assayed by phalloidin staining. Cisplatin caused hair cell loss in a dose-dependent manner, whereas the addition of hydrogen gas significantly increased the numbers of remaining auditory hair cells. Additionally, hydroxyphenyl fluorescein (HPF) staining of the spiral ganglion showed that formation of hydroxyl radicals was successfully reduced in hydrogen-treated cochleae. These data suggest that molecular hydrogen can protect auditory tissues against cisplatin toxicity, thus providing an additional strategy to protect against drug-induced inner ear damage. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Tocotrienol vitamin E protects against preclinical canine ischemic stroke by inducing arteriogenesis

    PubMed Central

    Rink, Cameron; Christoforidis, Greg; Khanna, Savita; Peterson, Laura; Patel, Yojan; Khanna, Suchin; Abduljalil, Amir; Irfanoglu, Okan; Machiraju, Raghu; Bergdall, Valerie K; Sen, Chandan K

    2011-01-01

    Vitamin E consists of tocopherols and tocotrienols, in which α-tocotrienol is the most potent neuroprotective form that is also effective in protecting against stroke in rodents. As neuroprotective agents alone are insufficient to protect against stroke, we sought to test the effects of tocotrienol on the cerebrovascular circulation during ischemic stroke using a preclinical model that enables fluoroscopy-guided angiography. Mongrel canines (mean weight=26.3±3.2 kg) were supplemented with tocotrienol-enriched (TE) supplement (200 mg b.i.d, n=11) or vehicle placebo (n=9) for 10 weeks before inducing transient middle cerebral artery (MCA) occlusion. Magnetic resonance imaging was performed 1 hour and 24 hours post reperfusion to assess stroke-induced lesion volume. Tocotrienol-enriched supplementation significantly attenuated ischemic stroke-induced lesion volume (P<0.005). Furthermore, TE prevented loss of white matter fiber tract connectivity after stroke as evident by probabilistic tractography. Post hoc analysis of cerebral angiograms during MCA occlusion revealed that TE-supplemented canines had improved cerebrovascular collateral circulation to the ischemic MCA territory (P<0.05). Tocotrienol-enriched supplementation induced arteriogenic tissue inhibitor of metalloprotease 1 and subsequently attenuated the activity of matrix metalloproteinase-2. Outcomes of the current preclinical trial set the stage for a clinical trial testing the effects of TE in patients who have suffered from transient ischemic attack and are therefore at a high risk for stroke. PMID:21673716

  14. Neuronal erythropoietin overexpression is protective against kanamycin-induced hearing loss in mice.

    PubMed

    Bächinger, David; Horvath, Lukas; Eckhard, Andreas; Goosmann, Madeline M; Honegger, Tim; Gassmann, Max; Vogel, Johannes; Naldi, Arianne Monge

    2018-07-01

    Aminoglycosides have detrimental effects on the hair cells of the inner ear, yet these agents indisputably are one of the cornerstones in antibiotic therapy. Hence, there is a demand for strategies to prevent aminoglycoside-induced ototoxicity, which are not available today. In vitro data suggests that the pleiotropic growth factor erythropoietin (EPO) is neuroprotective against aminoglycoside-induced hair cell loss. Here, we use a mouse model with EPO-overexpression in neuronal tissue to evaluate whether EPO could also in vivo protect from aminoglycoside-induced hearing loss. Auditory brainstem response (ABR) thresholds were measured in 12-weeks-old mice before and after treatment with kanamycin for 15 days, which resulted in both C57BL/6 and EPO-transgenic animals in a high-frequency hearing loss. However, ABR threshold shifts in EPO-transgenic mice were significantly lower than in C57BL/6 mice (mean difference in ABR threshold shift 13.6 dB at 32 kHz, 95% CI 3.8-23.4 dB, p = 0.003). Correspondingly, quantification of hair cells and spiral ganglion neurons by immunofluorescence revealed that EPO-transgenic mice had a significantly lower hair cell and spiral ganglion neuron loss than C57BL/6 mice. In conclusion, neuronal overexpression of EPO is protective against aminoglycoside-induce hearing loss, which is in accordance with its known neuroprotective effects in other organs, such as the eye or the brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Nrf2 inhibits oxaliplatin-induced peripheral neuropathy via protection of mitochondrial function.

    PubMed

    Yang, Yang; Luo, Lan; Cai, Xueting; Fang, Yuan; Wang, Jiaqi; Chen, Gang; Yang, Jie; Zhou, Qian; Sun, Xiaoyan; Cheng, Xiaolan; Yan, Huaijiang; Lu, Wuguang; Hu, Chunping; Cao, Peng

    2018-05-20

    Oxaliplatin-induced peripheral neuropathy (OIPN) is a severe, dose-limiting toxicity associated with cancer chemotherapy. The efficacy of antioxidant administration in OIPN is debatable, as the promising preliminary results obtained with a number of antioxidants have not been confirmed in larger clinical trials. Besides its antioxidant activity, the transcription factor, nuclear factor-erythroid 2 (NF-E2) p45-related factor 2 (Nrf2) plays a crucial role in the maintenance of mitochondrial homeostasis, and mitochondrial dysfunction is a key contributor to OIPN. Here, we have investigated the protective properties of Nrf2 in OIPN. Nrf2 -/- mice displayed severe mechanical allodynia and cold sensitivity and thus experienced increased peripheral nervous system injury compared to Nrf2 +/+ mice. Furthermore, Nrf2 knockout aggravated oxaliplatin-induced reactive oxygen species production, decreased the mitochondrial membrane potential, led to abnormal intracellular calcium levels, and induced cytochrome c-related apoptosis and overexpression of the TRP protein family. Sulforaphane-induced activation of the Nrf2 signaling pathway alleviated morphological alterations, mitochondrial dysfunction in dorsal root ganglion neurons, and nociceptive sensations in mice. Our findings reveal that Nrf2 may play a critical role in ameliorating OIPN, through protection of mitochondrial function by alleviating oxidative stress and inhibiting TRP protein family expression. This suggests that pharmacological or therapeutic activation of Nrf2 may be used to prevent or slow down the progression of OIPN. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Protective effect of δ-amyrone against ethanol-induced gastric ulcer in mice.

    PubMed

    Li, Weifeng; Yao, Huan; Niu, Xiaofeng; Wang, Yu; Zhang, Hailin; Li, Huani; Mu, Qingli

    2015-06-01

    The purpose of this study is to examine the protective effect of δ-amyrone on ethanol-induced gastric ulcer in mice. The mice intragastric administration 75% (0.5 mL/100g) ethanol was pretreated with δ-amyrone (4 and 8 mg/kg) and cimetidine (100 mg/kg) or vehicles in different experimental groups for a continuous three-day, and animals were euthanized 3h after ethanol ingestion. The gastric lesions were significantly attenuated by δ-amyrone (4 and 8 mg/kg) as compared to the ulcer control group. Pre-treatment with δ-amyrone prevented the myeloperoxidase (MPO) activity, production of nitric oxide (NO) in serum, expression of inducible nitric oxide synthase (iNOS) and nuclear factor kappa B (NF-κB) p65 protein expression. Analysis of cytokines in gastric tissue and serum of ethanol-induced mice showed the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) were decreased by δ-amyrone in response to NF-κB p65. These results suggested that δ-amyrone exerts its protective effect on experimental gastric ulcer by inhibiting NF-κB signaling pathways, which subsequently reduces overproduction of the inducible enzymes iNOS and suppresses the release of the inflammatory factors TNF-α, IL-6 and NO. Thus, δ-amyrone shows promise as a therapeutic agent in experimental gastric ulcer. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Insulin/NFκB protects against ischemia-induced necrotic cardiomyocyte death.

    PubMed

    Díaz, Ariel; Humeres, Claudio; González, Verónica; Gómez, María Teresa; Montt, Natalia; Sanchez, Gina; Chiong, Mario; García, Lorena

    2015-11-13

    In the heart, insulin controls key functions such as metabolism, muscle contraction and cell death. However, all studies have been focused on insulin action during reperfusion. Here we explore the cardioprotective action of this hormone during ischemia. Rat hearts were perfused ex vivo with an ischemia/reperfusion Langendorff model in absence or presence of insulin. Additionally, cultured rat cardiomyocytes were exposed to simulated ischemia in the absence or presence of insulin. Cytoprotective effects were measured by myocardial infarct size, trypan blue exclusion, released LDH and DNA fragmentation by flow cytometry. We found that insulin protected against cardiac ischemia ex vivo and in vitro. Moreover, insulin protected cardiomyocytes from simulated ischemia by reducing necrotic cell death. Protective effects of insulin were dependent of Akt and NFκB. These novel results show that insulin reduces ischemia-induced cardiomyocyte necrosis through an Akt/NF-κB dependent mechanism. These novel findings clarify the role of insulin during ischemia and further support its use in early GIK perfusion to treat myocardial infarction. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Agmatine protection against chlorpromazine-induced forebrain cortex injury in rats.

    PubMed

    Dejanovic, Bratislav; Stevanovic, Ivana; Ninkovic, Milica; Stojanovic, Ivana; Lavrnja, Irena; Radicevic, Tatjana; Pavlovic, Milos

    2016-03-01

    This study was conducted to investigate whether agmatine (AGM) provides protection against oxidative stress induced by treatment with chlorpromazine (CPZ) in Wistar rats. In addition, the role of reactive oxygen species and efficiency of antioxidant protection in the brain homogenates of forebrain cortexes prepared 48 h after treatment were investigated. Chlorpromazine was applied intraperitoneally (i.p.) in single dose of 38.7 mg/kg body weight (BW) The second group was treated with both CPZ and AGM (75 mg/kg BW). The control group was treated with 0.9% saline solution in the same manner. All tested compounds were administered i.p. in a single dose. Rats were sacrificed by decapitation 48 h after treatment Treatment with AGM significantly attenuated the oxidative stress parameters and restored antioxidant capacity in the forebrain cortex. The data indicated that i.p. administered AGM exerted antioxidant action in CPZ-treated animals. Moreover, reactive astrocytes and microglia may contribute to secondary nerve-cell damage and participate in the balance of destructive vs. protective actions involved in the pathogenesis after poisoning.

  19. Agmatine protection against chlorpromazine-induced forebrain cortex injury in rats

    PubMed Central

    Stevanovic, Ivana; Ninkovic, Milica; Stojanovic, Ivana; Lavrnja, Irena; Radicevic, Tatjana; Pavlovic, Milos

    2016-01-01

    This study was conducted to investigate whether agmatine (AGM) provides protection against oxidative stress induced by treatment with chlorpromazine (CPZ) in Wistar rats. In addition, the role of reactive oxygen species and efficiency of antioxidant protection in the brain homogenates of forebrain cortexes prepared 48 h after treatment were investigated. Chlorpromazine was applied intraperitoneally (i.p.) in single dose of 38.7 mg/kg body weight (BW) The second group was treated with both CPZ and AGM (75 mg/kg BW). The control group was treated with 0.9% saline solution in the same manner. All tested compounds were administered i.p. in a single dose. Rats were sacrificed by decapitation 48 h after treatment Treatment with AGM significantly attenuated the oxidative stress parameters and restored antioxidant capacity in the forebrain cortex. The data indicated that i.p. administered AGM exerted antioxidant action in CPZ-treated animals. Moreover, reactive astrocytes and microglia may contribute to secondary nerve-cell damage and participate in the balance of destructive vs. protective actions involved in the pathogenesis after poisoning. PMID:27051340

  20. Protective effect of Holothurian intestine against indomethacin induced gastric mucosal damage in rats

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Qiao, Xuejing; Zhang, Cuiping; Gao, Hua; Niu, Qinghui; Wu, Tong; Zhang, Qi; Tian, Zibin

    2017-06-01

    Our study aimed to investigate the protective effects of Holothurian intestines (HI) on NSAIDs-induced gastric mucosal damage and the possible mechanism. At first, 60 male Wistar rats were induced of gastric lesions with indomethacin (IDM, 30 mg kg-1). The rats were pretreated for 15 consecutive days with saline, sucralfate, or HI (0.4 g kg-1d-1, 0.8 g kg-1d-1 and 1.6 g kg-1d-1) prior to IDM treatment, followed by evaluations of macroscopic damage and microscopic features; and investigation of the levels of inflammatory cytokines, oxidative stress parameters, gastric mucosal prostaglandin E2 (PGE2) and total hexosamine in tissues. The expression of COX-1 and COX-2 mRNA in the gastric tissue were determined by quantitative polymerase chain reaction (qPCR). Pathological gastric ulcer indexes, levels of pro-inflammatory cytokines (IL-1β, IL-17, TNF-α) and lipid peroxidation were significantly decreased in HI-treated groups, whereas the levels of protective factors (TGF-β, GSH, SOD activity and PGE2) were significantly elevated especially in the group with HI 1.6 g kg-1d-1 ( P < 0.05). Furthermore, the expression of COX-2 mRNA decreased significantly in HI groups ( P < 0.05). The study investigates that holothurian intestines may act as a kind of marine medicine which have protective effect on IDM-induced gastric ulcer, which could be a dietary preventive agent for the prevention of gastric damage.

  1. 7, 8, 3′-Trihydroxyflavone Promotes Neurite Outgrowth and Protects Against Bupivacaine-Induced Neurotoxicity in Mouse Dorsal Root Ganglion Neurons

    PubMed Central

    Shi, Haohong; Luo, Xingjing

    2016-01-01

    Background 7, 8, 3′-trihydroxyflavone (THF) is a novel pro-neuronal small molecule that acts as a TrkB agonist. In this study, we examined the effect of THF on promoting neuronal growth and protecting anesthetics-induced neurotoxicity in dorsal root ganglion (DRG) neurons in vitro. Material/Methods Neonatal mouse DRG neurons were cultured in vitro and treated with various concentrations of THF. The effect of THF on neuronal growth was investigated by neurite outgrowth assay and Western blot. In addition, the protective effects of THF on bupivacaine-induced neurotoxicity were investigated by apoptosis TUNEL assay, neurite outgrowth assay, and Western blot, respectively. Results THF promoted neurite outgrowth of DRG neurons in dose-dependent manner, with an EC50 concentration of 67.4 nM. Western blot analysis showed THF activated TrkB signaling pathway by inducing TrkB phosphorylation. THF also rescued bupivacaine-induced neurotoxicity by reducing apoptosis and protecting neurite retraction in DRG neurons. Furthermore, the protection of THF in bupivacaine-injured neurotoxicity was directly associated with TrkB phosphorylation in a concentration-dependent manner in DRG neurons. Conclusions THF has pro-neuronal effect on DRG neurons by promoting neurite growth and protecting against bupivacaine-induced neurotoxicity, likely through TrkB activation. PMID:27371503

  2. Protective effect of 4,4'-diaminodiphenylsulfone against paraquat-induced mouse lung injury

    PubMed Central

    Cho, Sung Chun; Rhim, Ji Heon; Choi, Hae Ri; Son, Young Hoon; Lee, Seok Jin; Song, Kye-Yong

    2011-01-01

    Although 4,4'-diaminodiphenylsulfone (DDS, dapsone) has been used to treat several dermatologic conditions, including Hansen disease, for the past several decades, its mode of action has remained a topic of debate. We recently reported that DDS treatment significantly extends the lifespan of the nematode C. elegans by decreasing the generation of reactive oxygen species. Additionally, in in vitro experiments using non-phagocytic human fibroblasts, we found that DDS effectively counteracted the toxicity of paraquat (PQ). In the present study, we extended our work to test the protective effect of DDS against PQ in vivo using a mouse lung injury model. Oral administration of DDS to mice significantly attenuated the lung tissue damage caused by subsequent administration of PQ. Moreover, DDS reduced the local expression of mRNA transcripts encoding inflammation-related molecules, including endothelin-1 (ET-1), macrophage inflammatory protein-1α (MIP-1α), and transforming growth factor-β (TGF-β). In addition, DDS decreased the PQ-induced expression of NADPH oxidase mRNA and activation of protein kinase Cµ (PKCµ). DDS treatment also decreased the PQ-induced generation of superoxide anions in mouse lung fibroblasts. Taken together, these data suggest the novel efficacy of DDS as an effective protective agent against oxidative stress-induced tissue damages. PMID:21765237

  3. Chitooligosaccharides protect human embryonic hepatocytes against oxidative stress induced by hydrogen peroxide.

    PubMed

    Xu, Qingsong; Ma, Pan; Yu, Weiting; Tan, Chengyu; Liu, Hongtao; Xiong, Chuannan; Qiao, Ying; Du, Yuguang

    2010-06-01

    Chitooligosaccharides (COS) has many biological activities, such as antitumor activity and hepatoprotective effect. Herein, we investigated the protective effect of COS against hydrogen peroxide (H2O2)-induced oxidative stress on human embryonic hepatocytes (L02 cells) and its scavenging activity against the 1,1-diphenyl-2-picrylhydrazyl radical in vitro. The results showed that the lost cell viability induced by H2O2 was markedly restored after 24 h pre-incubation with COS (0.1-0.4 mg/ml). This rescue effect could be related to the antioxidant property of COS, in which we showed that the radical scavenging activity of COS reached 80% at concentration of 2 mg/ml. In addition, COS could prevent cell apoptosis induced by H2O2, as shown by the inhibition of the cleavage of poly (adenosine diphosphate-ribose) polymerase and increased expression of the anti-apoptotic protein Bcl-xL. Furthermore, we have utilized confocal laser microscopy to observe cellular uptake of COS, an important step for COS to exert its effects on target cells. Taken together, our findings suggested that COS could effectively protect L02 cells against oxidative stress, which might be useful in clinical setting during the treatment of oxidative stress-related liver damages.

  4. Correlates of Vaccine-Induced Protection against Mycobacterium tuberculosis Revealed in Comparative Analyses of Lymphocyte Populations

    PubMed Central

    Kurtz, Sherry L.

    2015-01-01

    A critical hindrance to the development of a novel vaccine against Mycobacterium tuberculosis is a lack of understanding of protective correlates of immunity and of host factors involved in a successful adaptive immune response. Studies from our group and others have used a mouse-based in vitro model system to assess correlates of protection. Here, using this coculture system and a panel of whole-cell vaccines with varied efficacy, we developed a comprehensive approach to understand correlates of protection. We compared the gene and protein expression profiles of vaccine-generated immune peripheral blood lymphocytes (PBLs) to the profiles found in immune splenocytes. PBLs not only represent a clinically relevant cell population, but comparing the expression in these populations gave insight into compartmentally specific mechanisms of protection. Additionally, we performed a direct comparison of host responses induced when immune cells were cocultured with either the vaccine strain Mycobacterium bovis BCG or virulent M. tuberculosis. These comparisons revealed host-specific and bacterium-specific factors involved in protection against virulent M. tuberculosis. Most significantly, we identified a set of 13 core molecules induced in the most protective vaccines under all of the conditions tested. Further validation of this panel of mediators as a predictor of vaccine efficacy will facilitate vaccine development, and determining how each promotes adaptive immunity will advance our understanding of antimycobacterial immune responses. PMID:26269537

  5. Stability of sublethal acid stress adaptaion and induced cross protection against lauric arginate in Listeria monocytogenes

    USDA-ARS?s Scientific Manuscript database

    The stability of acid stress adaptation in Listeria monocytogenes and its induced cross protection effect against GRAS (generally recognized as safe) antimicrobial compounds has never been investigated before. In the present study, the acid stress adaptation in L. monocytogenes was initially induced...

  6. Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice.

    PubMed

    Shen, Hai-Ying; He, Jin-Cai; Wang, Yumei; Huang, Qing-Yuan; Chen, Jiang-Fan

    2005-12-02

    As key molecular chaperone proteins, heat shock proteins (HSPs) represent an important cellular protective mechanism against neuronal cell death in various models of neurological disorders. In this study, we investigated the effect as well as the molecular mechanism of geldanamycin (GA), an inhibitor of Hsp90, on 1-methyl-4-pheny-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity, a mouse model of Parkinson disease. Neurochemical analysis showed that pretreatment with GA (via intracerebral ventricular injection 24 h prior to MPTP treatment) increased residual dopamine content and tyrosine hydroxylase immunoreactivity in the striatum 24 h after MPTP treatment. To dissect out the molecular mechanism underlying this neuroprotection, we showed that the GA-mediated protection against MPTP was associated with a reduction of cytosolic Hsp90 and an increase in Hsp70, with no significant changes in Hsp40 and Hsp25 levels. Furthermore, in parallel with the induction of Hsp70, striatal nuclear HSF1 levels and HSF1 binding to heat shock element sites in the Hsp70 promoter were significantly enhanced by the GA pretreatment. Together these results suggested that the molecular cascade leading to the induction of Hsp70 is critical to the neuroprotection afforded by GA against MPTP-induced neurotoxicity in the brain and that pharmacological inhibition of Hsp90 may represent a potential therapeutic strategy for Parkinson disease.

  7. Naringin protects human adipose-derived mesenchymal stem cells against hydrogen peroxide-induced inhibition of osteogenic differentiation.

    PubMed

    Wang, Lei; Zhang, Yu-Ge; Wang, Xiu-Mei; Ma, Long-Fei; Zhang, Yuan-Min

    2015-12-05

    Extensive evidence indicates that oxidative stress plays a pivotal role in the development of osteoporosis. We show that naringin, a natural antioxidant and anti-inflammatory compound, effectively protects human adipose-derived mesenchymal stem cells (hADMSCs) against hydrogen peroxide (H2O2)-induced inhibition of osteogenic differentiation. Naringin increased viability of hAMDSCs and attenuated H2O2-induced cytotoxicity. Naringin also reversed H2O2-induced oxidative stress. Oxidative stress induced by H2O2 inhibits osteogenic differentiation by decreasing alkaline phosphatase (ALP) activity, calcium content and mRNA expression levels of osteogenesis marker genes RUNX2 and OSX in hADMSCs. However, addition of naringin leads to a significant recovery, suggesting the protective effects of naringin against H2O2-induced inhibition of osteogenic differentiation. Furthermore, the H2O2-induced decrease of protein expressions of β-catenin and clyclin D1, two important transcriptional regulators of Wnt-signaling, was successfully rescued by naringin treatment. Also, in the presence of Wnt inhibitor DKK-1, naringin is no longer effective in stimulating ALP activity, increasing calcium content and mRNA expression levels of RUNX2 and OSX in H2O2-exposed hADMSCs. These data clearly demonstrates that naringin protects hADMSCs against oxidative stress-induced inhibition of osteogenic differentiation, which may involve Wnt signaling pathway. Our work suggests that naringin may be a useful addition to the treatment armamentarium for osteoporosis and activation of Wnt signaling may represent attractive therapeutic strategy for the treatment of degenerative disease of bone tissue. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Parkinson Disease Protein DJ-1 Binds Metals and Protects against Metal-induced Cytotoxicity*

    PubMed Central

    Björkblom, Benny; Adilbayeva, Altynai; Maple-Grødem, Jodi; Piston, Dominik; Ökvist, Mats; Xu, Xiang Ming; Brede, Cato; Larsen, Jan Petter; Møller, Simon Geir

    2013-01-01

    The progressive loss of motor control due to reduction of dopamine-producing neurons in the substantia nigra pars compacta and decreased striatal dopamine levels are the classically described features of Parkinson disease (PD). Neuronal damage also progresses to other regions of the brain, and additional non-motor dysfunctions are common. Accumulation of environmental toxins, such as pesticides and metals, are suggested risk factors for the development of typical late onset PD, although genetic factors seem to be substantial in early onset cases. Mutations of DJ-1 are known to cause a form of recessive early onset Parkinson disease, highlighting an important functional role for DJ-1 in early disease prevention. This study identifies human DJ-1 as a metal-binding protein able to evidently bind copper as well as toxic mercury ions in vitro. The study further characterizes the cytoprotective function of DJ-1 and PD-mutated variants of DJ-1 with respect to induced metal cytotoxicity. The results show that expression of DJ-1 enhances the cells' protective mechanisms against induced metal toxicity and that this protection is lost for DJ-1 PD mutations A104T and D149A. The study also shows that oxidation site-mutated DJ-1 C106A retains its ability to protect cells. We also show that concomitant addition of dopamine exposure sensitizes cells to metal-induced cytotoxicity. We also confirm that redox-active dopamine adducts enhance metal-catalyzed oxidation of intracellular proteins in vivo by use of live cell imaging of redox-sensitive S3roGFP. The study indicates that even a small genetic alteration can sensitize cells to metal-induced cell death, a finding that may revive the interest in exogenous factors in the etiology of PD. PMID:23792957

  9. Methylene chloride protects against cecal ligation and puncture-induced acute lung injury by modulating inflammatory mediators.

    PubMed

    Pang, Qingfeng; Dou, Lidong; Pan, Xiuhua; Zeng, Si; He, Jun; Xu, Wenli; Zeng, Yinming

    2010-08-01

    Recent studies suggest that exogenously administered CO is beneficial for the resolution of acute pulmonary inflammation. In this study, we assessed the role of CO donor, methylene chloride (MC), on modulation of lung inflammation during sepsis. Acute lung injury in Sprague-Dawley rats was induced by cecal ligation and perforation (CLP). MC (100mg/kg) was intragastrically administered 2h before CLP induction. Lung tissues and lavage samples were isolated for biochemical determinations and histological measurements 10h after CLP operation. In addition, we investigated survival rate with the other 40 rats. Intragastric administration with MC significantly decreased morbidity and mortality of CLP-induced ALI as confirmed by blinded histological changes, myeloperoxidase activity, mortality, and the content of TNF-alpha and IL-10. This protective effect could be abolished by an MC inhibitor, disulfiram. These results suggested that MC has obvious protective effects against CLP-induced ALI in rats. The mechanism of the protective effects partly involves modulating inflammatory mediators. (c) 2010 Elsevier B.V. All rights reserved.

  10. Hyperoside protects cortical neurons from oxygen-glucose deprivation-reperfusion induced injury via nitric oxide signal pathway.

    PubMed

    Liu, Rui-Li; Xiong, Qiu-Ju; Shu, Qing; Wu, Wen-Ning; Cheng, Jin; Fu, Hui; Wang, Fang; Chen, Jian-Guo; Hu, Zhuang-Li

    2012-08-21

    Hyperoside is a flavonoid compound and widely used in clinic to relieve pain and improve cardiovascular functions. However, the effects of hyperoside on ischemic neurons and the molecular mechanisms remain unclear. Here, we used an in vitro ischemic model of oxygen-glucose deprivation followed by reperfusion (OGD-R) to investigate the protective effects of hyperoside on ischemic neuron injury and further explore the possible related mechanisms. Our results demonstrated that hyperoside protected cultured cortical neurons from OGD-R injury, it also relieved glutamate-induced neuronal injury and NMDA-induced [Ca(2+)](i) elevation. As for the mechanisms, hyperoside firstly attenuated the phosphorylation of CaMKII caused by OGD-R lesions. Meanwhile, hyperoside lessened iNOS expression induced by OGD-R via inhibition of NF-κB activation. Furthermore, ameliorating of ERK, JNK and Bcl-2 family-related apoptotic signaling pathways were also involved in the neuroprotection of hyperoside. Taken together, these studies revealed that hyperoside had protective effects on neuronal ischemia-reperfusion impairment, which was related to the regulation of nitric oxide signaling pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Therapeutic inducers of the HSP70/HSP110 protect mice against traumatic brain injury.

    PubMed

    Eroglu, Binnur; Kimbler, Donald E; Pang, Junfeng; Choi, Justin; Moskophidis, Demetrius; Yanasak, Nathan; Dhandapani, Krishnan M; Mivechi, Nahid F

    2014-09-01

    Traumatic brain injury (TBI) induces severe harm and disability in many accident victims and combat-related activities. The heat-shock proteins Hsp70/Hsp110 protect cells against death and ischemic damage. In this study, we used mice deficient in Hsp110 or Hsp70 to examine their potential requirement following TBI. Data indicate that loss of Hsp110 or Hsp70 increases brain injury and death of neurons. One of the mechanisms underlying the increased cell death observed in the absence of Hsp110 and Hsp70 following TBI is the increased expression of reactive oxygen species-induced p53 target genes Pig1, Pig8, and Pig12. To examine whether drugs that increase the levels of Hsp70/Hsp110 can protect cells against TBI, we subjected mice to TBI and administered Celastrol or BGP-15. In contrast to Hsp110- or Hsp70i-deficient mice that were not protected following TBI and Celastrol treatment, there was a significant improvement of wild-type mice following administration of these drugs during the first week following TBI. In addition, assessment of neurological injury shows significant improvement in contextual and cued fear conditioning tests and beam balance in wild-type mice that were treated with Celastrol or BGP-15 following TBI compared to TBI-treated mice. These studies indicate a significant role of Hsp70/Hsp110 in neuronal survival following TBI and the beneficial effects of Hsp70/Hsp110 inducers toward reducing the pathological consequences of TBI. Our data indicate that loss of Hsp110 or Hsp70 in mice increases brain injury following TBI. (a) One of the mechanisms underlying the increased cell death observed in the absence of these Hsps following TBI is the increased expression of ROS-induced p53 target genes known as Pigs. In addition, (b) using drugs (Celastrol or BGP-15) to increase Hsp70/Hsp110 levels protect cells against TBI, suggesting the beneficial effects of Hsp70/Hsp110 inducers to reduce the pathological consequences of TBI. © 2014 International Society

  12. Propofol and sodium thiopental protect against MK-801-induced neuronal necrosis in the posterior cingulate/retrosplenial cortex.

    PubMed

    Jevtovic-Todorovic, V; Wozniak, D F; Powell, S; Olney, J W

    2001-09-21

    N-Methyl-D-aspartate (NMDA) antagonists act by an anti-excitotoxic action to provide neuroprotection against acute brain injury, but these agents can also cause toxic effects. In low doses they induce reversible neuronal injury, but in higher doses they cause irreversible degeneration of cerebrocortical neurons. GABAmimetic drugs protect against the reversible neurotoxic changes in rat brain. Here we show that two GABAmimetic anesthetic agents--propofol and sodium thiopental--protect against the irreversible neurodegenerative reaction induced by the powerful NMDA antagonist, MK-801.

  13. Gemfibrozil pretreatment proved protection against acute restraint stress-induced changes in the male rats' hippocampus.

    PubMed

    Khalaj, Leila; Nejad, Sara Chavoshi; Mohammadi, Marzieh; Zadeh, Sadaf Sarraf; Pour, Marieh Hossein; Ahmadiani, Abolhassan; Khodagholi, Fariba; Ashabi, Ghorbangol; Alamdary, Shabnam Zeighamy; Samami, Elham

    2013-08-21

    Stress predisposes the brain to various neuropathological disorders. Fibrates like gemfibrozil, commonly used for hyperlipidemia, have not yet been examined for their protective/deteriorative potential against restraint stress-induced disturbances. Pretreatment of rats with a range of gemfibrozil concentrations showed significant protection against stress consequences at 90 mg/kg of gemfibrozil, as it resulted in the highest level of antioxidant defense system potentiation among other doses. It also reduced plasma corticosterone compared with the stressed animals. Administration of gemfibrozil (90 mg/kg) before stress induction was able to significantly induce the protein levels of some protective factors including hemeoxygenase-1 (HO-1) and NAD(P)H dehydrogenase quinone-1 (NQO-1) in the antioxidant nuclear factor erythroid-derived 2-like 2 (Nrf-2) pathway, as well as mitochondrial pro-survival proteins, including peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and nuclear respiratory factor 1 (NRF-1). In parallel, the level of cleaved caspase-3 and apoptosis-inducing factor (AIF), two proteins involved in apoptotic cell death, and the number of damaged neurons detected in hematoxylin-eosin (H&E) stained hippocampus sections were suppressed in the presence of gemfibrozil. Herein, although gemfibrozil demonstrated protection against the restraint stress, considering its dose and context-dependent effects reported in the previous studies, as well as its common application in clinic, further investigations are essential to unravel its exact beneficial/deleterious effects in various neuronal contexts. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Huperzine A derivative M3 protects PC12 cells against sodium nitroprusside-induced apoptosis

    PubMed Central

    Ning, Na; Hu, Jin-feng; Yuan, Yu-he; Zhang, Xin-yuan; Dai, Jun-gui; Chen, Nai-hong

    2012-01-01

    Aim: To investigate the effects of M3, a derivative of huperzine A, on the apoptosis induced by sodium nitroprusside (SNP) in PC12 cells. Methods: Cell viability was detected using MTT method. Apoptosis was examined with annexin V/prodium iodide (PI) stain. The levels of reactive oxygen species (ROS) were measured using fluorophotometric quantitation. The amount of malonaldehyde (MDA) was determined with MDA detection kits. The expression of caspase-3 and Hsp70 were analyzed using Western blotting. Results: Exposure of PC12 cells to SNP (200 μmol/L) for 24 h decreased the cell viability to 69.0% of that in the control group. Pretreatment with M3 (10 μmol/L) or huperzine A (10 μmol/L) significantly protected the cells against SNP-induced injury and apoptosis; the ratio of apoptotic bodies in PC12 cells was decreased from 27.3% to 15.0%. Pretreatment with M3 (10 μmol/L) significantly decreased ROS and MDA levels, and increased the expression of Hsp70 in the cells. Quercetin (10 μmol/L) blocked the protective effect of M3, while did not influence on that of huperzine A. Conclusion: M3 protects PC12 cells against SNP-induced apoptosis, possible due to ROS scavenging and Hsp70 induction. PMID:22120967

  15. Turmeric extract and its active compound, curcumin, protect against chronic CCl4-induced liver damage by enhancing antioxidation.

    PubMed

    Lee, Hwa-Young; Kim, Seung-Wook; Lee, Geum-Hwa; Choi, Min-Kyung; Jung, Han-Wool; Kim, Young-Jun; Kwon, Ho-Jeong; Chae, Han-Jung

    2016-08-26

    Curcumin, a major active component of turmeric, has previously been reported to alleviate liver damage. Here, we investigated the mechanism by which turmeric and curcumin protect the liver against carbon tetrachloride (CCl4)-induced injury in rats. We hypothesized that turmeric extract and curcumin protect the liver from CCl4-induced liver injury by reducing oxidative stress, inhibiting lipid peroxidation, and increasing glutathione peroxidase activation. Chronic hepatic stress was induced by a single intraperitoneal injection of CCl4 (0.1 ml/kg body weight) into rats. Turmeric extracts and curcumin were administered once a day for 4 weeks at three dose levels (100, 200, and 300 mg/kg/day). We performed ALT and AST also measured of total lipid, triglyceride, cholesterol levels, and lipid peroxidation. We found that turmeric extract and curcumin significantly protect against liver injury by decreasing the activities of serum aspartate aminotransferase and alanine aminotransferase and by improving the hepatic glutathione content, leading to a reduced level of lipid peroxidase. Our data suggest that turmeric extract and curcumin protect the liver from chronic CCl4-induced injury in rats by suppressing hepatic oxidative stress. Therefore, turmeric extract and curcumin are potential therapeutic antioxidant agents for the treatment of hepatic disease.

  16. Ticagrelor protects against AngII-induced endothelial dysfunction by alleviating endoplasmic reticulum stress.

    PubMed

    Wang, Xiaoyu; Han, Xuejie; Li, Minghui; Han, Yu; Zhang, Yun; Zhao, Shiqi; Li, Yue

    2018-05-16

    Ticagrelor has been reported to decrease cardiovascular mortality compared with clopidogrel. This benefit cannot be fully explained by the more efficient platelet inhibition. Many studies demonstrated that ticagrelor improved endothelial function, leaving the mechanism elusive though. The present study aims to investigate whether ticagrelor protects against endothelial dysfunction induced by angiotensinII (AngII) through alleviating endoplasmic reticulum (ER) stress. Male Sprague Dawley rats were infused with AngII or vehicle and administrated with ticagrelor or vehicle for 14 days. Reactive oxygen species (ROS) was detected. Aortas from normal mice were incubated with endoplasmic reticulum stress inducer tunicamycin with or without ticagrelor. Vasorecactivity was measured on wire myography. Rat aortic endothelial cells (RAECs) were pretreated with ticagrelor followed by AngII or tunicamycin. Endothelial nitric oxide synthase (eNOS) phosphorylation and ER stress markers were determined by western blotting. Impaired endothelial function, induction of ER stress, reduced eNOS phosphorylation and elevated ROS generation was restored by ticagrelor treatment in vivo. In addition, tunicamycin induced endothelial dysfunction was improved by ticagrelor. In vitro, the induction of ER stress and inhibited eNOS phosphorylation in REACs exposed to AngII as well as tunicamycin was reversed by co-culturing with ticagrelor. In conclusion, ticagrelor protects against AngII-induced endothelial dysfunction via alleviating ER stress. Copyright © 2017. Published by Elsevier Inc.

  17. Microsomal Glutathione Transferase 1 Protects Against Toxicity Induced by Silica Nanoparticles but Not by Zinc Oxide Nanoparticles

    PubMed Central

    2012-01-01

    Microsomal glutathione transferase 1 (MGST1) is an antioxidant enzyme located predominantly in the mitochondrial outer membrane and endoplasmic reticulum and has been shown to protect cells from lipid peroxidation induced by a variety of cytostatic drugs and pro-oxidant stimuli. We hypothesized that MGST1 may also protect against nanomaterial-induced cytotoxicity through a specific effect on lipid peroxidation. We evaluated the induction of cytotoxicity and oxidative stress by TiO2, CeO2, SiO2, and ZnO in the human MCF-7 cell line with or without overexpression of MGST1. SiO2 and ZnO nanoparticles caused dose- and time-dependent toxicity, whereas no obvious cytotoxic effects were induced by nanoparticles of TiO2 and CeO2. We also noted pronounced cytotoxicity for three out of four additional SiO2 nanoparticles tested. Overexpression of MGST1 reversed the cytotoxicity of the main SiO2 nanoparticles tested and for one of the supplementary SiO2 nanoparticles but did not protect cells against ZnO-induced cytotoxic effects. The data point toward a role of lipid peroxidation in SiO2 nanoparticle-induced cell death. For ZnO nanoparticles, rapid dissolution was observed, and the subsequent interaction of Zn2+ with cellular targets is likely to contribute to the cytotoxic effects. A direct inhibition of MGST1 by Zn2+ could provide a possible explanation for the lack of protection against ZnO nanoparticles in this model. Our data also showed that SiO2 nanoparticle-induced cytotoxicity is mitigated in the presence of serum, potentially through masking of reactive surface groups by serum proteins, whereas ZnO nanoparticles were cytotoxic both in the presence and in the absence of serum. PMID:22303956

  18. Zinc supplementation during pregnancy protects against lipopolysaccharide-induced fetal growth restriction and demise through its anti-inflammatory effect.

    PubMed

    Chen, Yuan-Hua; Zhao, Mei; Chen, Xue; Zhang, Ying; Wang, Hua; Huang, Ying-Ying; Wang, Zhen; Zhang, Zhi-Hui; Zhang, Cheng; Xu, De-Xiang

    2012-07-01

    LPS is associated with adverse developmental outcomes, including preterm delivery, fetal death, teratogenicity, and intrauterine growth restriction (IUGR). Previous reports showed that zinc protected against LPS-induced teratogenicity. In the current study, we investigated the effects of zinc supplementation during pregnancy on LPS-induced preterm delivery, fetal death and IUGR. All pregnant mice except controls were i.p. injected with LPS (75 μg/kg) daily from gestational day (GD) 15 to GD17. Some pregnant mice were administered zinc sulfate through drinking water (75 mg elemental Zn per liter) throughout the pregnancy. As expected, an i.p. injection with LPS daily from GD15 to GD17 resulted in 36.4% (4/11) of dams delivered before GD18. In dams that completed the pregnancy, 63.2% of fetuses were dead. Moreover, LPS significantly reduced fetal weight and crown-rump length. Of interest, zinc supplementation during pregnancy protected mice from LPS-induced preterm delivery and fetal death. In addition, zinc supplementation significantly alleviated LPS-induced IUGR and skeletal development retardation. Further experiments showed that zinc supplementation significantly attenuated LPS-induced expression of placental inflammatory cytokines and cyclooxygenase-2. Zinc supplementation also significantly attenuated LPS-induced activation of NF-κB and MAPK signaling in mononuclear sinusoidal trophoblast giant cells of the labyrinth zone. It inhibited LPS-induced placental AKT phosphorylation as well. In conclusion, zinc supplementation during pregnancy protects against LPS-induced fetal growth restriction and demise through its anti-inflammatory effect.

  19. 5-Aminolevulinic acid with sodium ferrous citrate induces autophagy and protects cardiomyocytes from hypoxia-induced cellular injury through MAPK-Nrf-2-HO-1 signaling cascade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Mingyi; Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou; Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha

    Background: Hypoxia causes cardiac disease via oxidative stress and mitochondrial dysfunction. 5-Aminolevulinic acid in combination with sodium ferrous citrate (ALA/SFC) has been shown to up-regulate heme oxygenase-1 (HO-1) and decrease macrophage infiltration and renal cell apoptosis in renal ischemia injury mice. However, its underlying mechanism remains largely unknown. The aim of this study was to investigate whether ALA/SFC could protect cardiomyocytes from hypoxia-induced apoptosis by autophagy via HO-1 signaling. Materials & methods: Murine atrial cardiomyocyte HL-1 cells were pretreated with ALA/SFC and then exposed to hypoxia. Results: ALA/SFC pretreatment significantly attenuated hypoxia-induced cardiomyocyte apoptosis, reactive oxygen species production, and mitochondrial injury,more » while it increased cell viability and autophagy levels. HO-1 expression by ALA/SFC was associated with up-regulation and nuclear translocation of Nrf-2, whereas Nrf-2 siRNA dramatically reduced HO-1 expression. ERK1/2, p38, and SAPK/JNK pathways were activated by ALA/SFC and their specific inhibitors significantly reduced ALA/SFC-mediated HO-1 upregulation. Silencing of either Nrf-2 or HO-1and LY294002, inhibitor of autophagy, abolished the protective ability of ALA/AFC against hypoxia-induced injury and reduced ALA/SFC-induced autophagy. Conclusion: Taken together, our data suggest that ALA/SFC induces autophagy via activation of MAPK/Nrf-2/HO-1 signaling pathway to protect cardiomyocytes from hypoxia-induced apoptosis. - Highlights: • ALA/SFC attenuates hypoxia-induced cardiomyocyte apoptosis, reactive oxygen species production, and mitochondrial injury. • ALA/SFC increases the heme oxygenase-1 expression via Nrf-2 and ERK1/2, p38, and SAPK/JNK pathways. • ALA/SFC induces autophagy and inhibition of autophagy prevent ALA/SFC-mediated suppression of hypoxia-induced injury.« less

  20. Melatonin protect the development of preimplantation mouse embryos from sodium fluoride-induced oxidative injury.

    PubMed

    Zhao, Jiamin; Fu, Beibei; Peng, Wei; Mao, Tingchao; Wu, Haibo; Zhang, Yong

    2017-09-01

    Recently study shows that melatonin can protect embryos from the culture environment oxidative stress. However, the protective effect of melatonin on the mouse development of preimplantation embryos under sodium fluoride (NaF) induced oxidative stress is still unclear. Here, we showed that exposure to NaF significantly increased the reactive oxygen species (ROS) level, decreased the blastocyst formation rates, and increased the fragmentation, apoptosis and retardation of blastocysts in the development of mouse preimplantation embryos. However, the protective of melatonin remarkable increased the of blastocyst formation rates, maintained mitochondrial function and total antioxidant capacity by clearing ROS. Importantly the data showed that melatonin improved the activity of enzymatic antioxidants, including glutathione(GSH), superoxide dismutase(SOD), and malonaldehyde (MDA), and increased the expression levels of antioxidative genes. Taken together, our results indicate that melatonin prevent NaF-induced oxidative damage to mouse preimplantation embryo through down regulation of ROS level, stabilization of mitochondrial function and modulation of the activity of antioxidases and antioxidant genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Protective effect of Corchorus olitorius leaves against arsenic-induced oxidative stress in rat brain.

    PubMed

    Das, Anup K; Dewanjee, Saikat; Sahu, Ranabir; Dua, Tarun K; Gangopadhyay, Moumita; Sinha, Mohit K

    2010-01-01

    The present study was undertaken to evaluate the protective effect of an aqueous extract of Corchorus olitorius leaves (AECO) against NaAsO(2) induced brain toxicity in experimental rats. The animals exposed to NaAsO(2) (10mg/kg, p.o.) for 10 days exhibited a significant inhibition (p<0.01) of superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase and reduced glutathione levels in rat brain. In addition, the toxin increased (p<0.01) the levels of oxidized glutathione and thiobarbituric acid reactive substances in the brain tissue of experimental rats. Treatment with AECO (50 and 100mg/kg, p.o.) for 15 days prior to arsenic intoxication significantly improved antioxidant markers in a dose dependant manner. Histological studies on the ultrastructural changes of brain tissue supported the protective activity of the AECO. The results suggest that treatment with AECO prior to arsenic intoxication has a significant role in protecting animals from arsenic-induced toxicity. Copyright © 2009 Elsevier B.V. All rights reserved.

  2. Licorice Pretreatment Protects Against Brain Damage Induced by Middle Cerebral Artery Occlusion in Mice.

    PubMed

    Lim, Chiyeon; Lim, Sehyun; Lee, Byoungho; Kim, Buyeo; Cho, Suin

    2018-05-01

    Licorice is extracted from the roots of plants in the Glycyrrhiza genus, especially Glycyrrhiza uralensis in China and Korea. It has several pharmacological activities, including neuro-protective, anti-fungal, and anti-cariogenic effects. Ischemia/reperfusion-induced brain injury is a leading cause of adult disability and death; thus, the identification of anti-apoptotic, neuro-protective therapeutic agents is viewed as an attractive drug development strategy. Infarct volumes and the expression of several apoptosis-related proteins, including Bcl-xL, Bcl-2, caspase-8, and caspase-9, were evaluated by western blotting in the brains of mice subjected to middle cerebral artery occlusion (MCAO). Three consecutive days of oral pretreatment with the methanol extract of licorice (GRex) significantly reduced infarct volumes 24 h after MCAO. In addition, GRex effectively inhibited the activation of caspase-9 by upregulating protein expression of Bcl-xL and Bcl-2. The neuro-protective effect of licorice was due to its regulation of apoptosis-related proteins. These data suggest that licorice could be a potential candidate for the treatment of ischemia-induced brain damage.

  3. Coenzyme Q10 Protects Human Endothelial Cells from β-Amyloid Uptake and Oxidative Stress-Induced Injury

    PubMed Central

    Durán-Prado, Mario; Frontiñán, Javier; Santiago-Mora, Raquel; Peinado, Juan Ramón; Parrado-Fernández, Cristina; Gómez-Almagro, María Victoria; Moreno, María; López-Domínguez, José Alberto; Villalba, José Manuel; Alcaín, Francisco J.

    2014-01-01

    Neuropathological symptoms of Alzheimer's disease appear in advances stages, once neuronal damage arises. Nevertheless, recent studies demonstrate that in early asymptomatic stages, ß-amyloid peptide damages the cerebral microvasculature through mechanisms that involve an increase in reactive oxygen species and calcium, which induces necrosis and apoptosis of endothelial cells, leading to cerebrovascular dysfunction. The goal of our work is to study the potential preventive effect of the lipophilic antioxidant coenzyme Q (CoQ) against ß-amyloid-induced damage on human endothelial cells. We analyzed the protective effect of CoQ against Aβ-induced injury in human umbilical vein endothelial cells (HUVECs) using fluorescence and confocal microscopy, biochemical techniques and RMN-based metabolomics. Our results show that CoQ pretreatment of HUVECs delayed Aβ incorporation into the plasma membrane and mitochondria. Moreover, CoQ reduced the influx of extracellular Ca2+, and Ca2+ release from mitochondria due to opening the mitochondrial transition pore after β-amyloid administration, in addition to decreasing O2 .− and H2O2 levels. Pretreatment with CoQ also prevented ß-amyloid-induced HUVECs necrosis and apoptosis, restored their ability to proliferate, migrate and form tube-like structures in vitro, which is mirrored by a restoration of the cell metabolic profile to control levels. CoQ protected endothelial cells from Aβ-induced injury at physiological concentrations in human plasma after oral CoQ supplementation and thus could be a promising molecule to protect endothelial cells against amyloid angiopathy. PMID:25272163

  4. Antioxidant protective effect of honey in cigarette smoke-induced testicular damage in rats.

    PubMed

    Mohamed, Mahaneem; Sulaiman, Siti Amrah; Jaafar, Hasnan; Sirajudeen, Kuttulebbai Nainamohamed Salam

    2011-01-01

    Cigarette smoke (CS) can cause testicular damage and we investigated the possible protective effect of honey against CS-induced testicular damage and oxidative stress in rats. CS exposure (8 min, 3 times daily) and honey supplementation (1.2 g/kg daily) were given for 13 weeks. Rats exposed to CS significantly had smaller seminiferous tubules diameter and epithelial height, lower Leydig cell count and increased percentage of tubules with germ cell loss. CS also produced increased lipid peroxidation (TBARS) and glutathione peroxidase (GPx) activity, as well as reduced total antioxidant status (TAS) and activities of superoxide dismutase (SOD) and catalase (CAT). However, supplementation of honey significantly reduced histological changes and TBARS level, increased TAS level, as well as significantly restored activities of GPx, SOD and CAT in rat testis. These findings may suggest that honey has a protective effect against damage and oxidative stress induced by CS in rat testis.

  5. Protective effect of Heliotropium eichwaldi against cisplatin-induced nephrotoxicity in mice.

    PubMed

    Sharma, Surendra Kr; Goyal, Naveen

    2012-05-01

    The aim of the present study was to evaluate the nephroprotective effect of methanolic extract of Heliotropium eichwaldii (MHE) in mice with cisplatin-induced acute renal damage. Nephrotoxicity was induced by a single intraperitoneal injection of cisplatin (16mg/kg). Swiss albino mice were injected with vehicle, cisplatin, cisplatin plus MHE 200 mg/kg and cisplatin plus MHE 400mg/kg, respectively. MHE was administered for 7 d at a dose of 200 and 400 mg/kg per day orally starting 4 d before cisplatin injection. Animals were sacrificed 3d after treatment and blood as well as kidney tissue was isolated and analyzed. The various parameters such as blood urea nitrogen (BUN), serum creatinine (CRE), malondialdehyde (MDA), and catalase (CAT) and superoxide dismutase (SOD) activities were analyzed. MHE treatment significantly reduced BUN and serum CRE levels elevated by cisplatin administration (P<0.05). Also, it significantly attenuated cisplatin-induced increase in MDA level and improved the decreased CAT and SOD activities in renal cortical homogenates (P<0.05). Additionally, histopathological examination and scoring showed that MHE markedly ameliorated cisplatin-induced renal tubular necrosis. MHE can be considered a potential candidate for protection of nephrotoxicity induced by cisplatin.

  6. Rebamipide induces the gastric mucosal protective factor, cyclooxygenase-2, via activation of 5'-AMP-activated protein kinase.

    PubMed

    Lee, Sunyoung; Jeong, Seongkeun; Kim, Wooseong; Kim, Dohoon; Yang, Yejin; Yoon, Jeong-Hyun; Kim, Byung Joo; Min, Do Sik; Jung, Yunjin

    2017-01-29

    Rebamipide, an amino acid derivative of 2(1H)-quinolinone, has been used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. Induction of cyclooxygenase (COX)-2, a gastric mucosal protective factor, by rebamipide has been suggested as the major mechanism of the drug action. However, how rebamipide induces COX-2 at the molecular level needs further investigation. In this study, the molecular mechanism underlying the induction of COX-2 by rebamipide was investigated. In gastric carcinoma cells and macrophage cells, rebamipide induced phosphorylation of AMP-activated protein kinase (AMPK), leading to phosphorylation of acetyl-CoA carboxylase (ACC), a substrate of AMPK. The induction of COX-2 by rebamipide was dependent on AMPK activation because compound C, an AMPK inhibitor, abolished COX-2 induction by rebamipide. In a mouse ulcer model, rebamipide protected against hydrochloric acid/ethanol-induced gastric ulcer, and these protective effects were deterred by co-administration of compound C. In parallel, in the gastric tissues, rebamipide increased the phosphorylation AMPK, whereas compound C reduced the levels of COX-2 and phosphorylated ACC, which were increased by rebamipide. Taken together, the activation of AMPK by rebamipide may be a molecular mechanism that contributes to induction of COX-2, probably resulting in protection against gastric ulcers. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Protective effect of oligomeric proanthocyanidins against alcohol-induced liver steatosis and injury in mice.

    PubMed

    Wang, Zhiguo; Su, Bo; Fan, Sumei; Fei, Haixia; Zhao, Wei

    2015-03-20

    The long-term consumption of alcohol has been associated with multiple pathologies at all levels, such as alcoholism, chronic pancreatitis, malnutrition, alcoholic liver disease (ALD) and cancer. In the current study, we investigated the protective effect of oligomeric proanthocyanidins (OPC) against alcohol-induced liver steatosis and injury and the possible mechanisms using ethanol-induced chronic liver damage mouse models. The results showed that OPC significantly improved alcohol-induced dyslipidemia and alleviated liver steatosis by reducing levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total triglyceride (TG), total cholesterol (TC), low-density cholesterol (LDL-c) and liver malondialdehyde (MDA), and increasing levels of serum high-density lipoprotein (HDL-c), liver superoxide dismutase (SOD). Further investigation indicated that OPC markedly decreased the expressions of lipid synthesis genes and inflammation genes such as sterol regulatory element-binding protein-1c (Srebp-1c), protein-2 (Srebp2), interleukin IL-1β, IL-6 and TNF-α. Furthermore, AML-12 cells line was used to investigate the possible mechanisms which indicated that OPC might alleviate liver steatosis and damage through AMP-activated protein kinase (AMPK) activation involving oxidative stress. In conclusion, our study demonstrated excellent protective effect of OPC against alcohol-induced liver steatosis and injury, which could a potential drug for the treatment of alcohol-induced liver injury in the future. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. IGF-1 protects intestinal epithelial cells from oxidative stress-induced apoptosis.

    PubMed

    Baregamian, Naira; Song, Jun; Jeschke, Marc G; Evers, B Mark; Chung, Dai H

    2006-11-01

    Reactive oxygen species (ROS) are involved in the pathogenesis of necrotizing enterocolitis (NEC) in premature infants. We have recently found that activation of multiple cellular signaling transduction pathways occurs during ROS-induced intestinal cell apoptosis; the phosphatidylinositol 3-kinase (PI3-K) pathway plays an anti-apoptotic role during this process. Insulin-like growth factor (IGF)-1 activates PI3-K pathway to promote cell survival; however, the effects of IGF-1 treatment during gut injury are not clearly defined. The purpose of this study was to determine whether IGF-1 protects intestinal cells from ROS-induced apoptosis. Rat intestinal epithelial (RIE)-1 cells were treated with either IGF-1 (100 nm), hydrogen peroxide (H2O2; 500 microm), or combination. Western blotting was performed to assess phosphorylation of Akt, a downstream effector of PI3-K. Cell Death Detection ELISA, DCHF, and JC-1 assays were performed to demonstrate protective effects of IGF-1. Wortmannin, an inhibitor of PI3-K, was used to show PI3-K-dependent mechanism of action for IGF-1. H2O2 treatment resulted in increased intestinal epithelial cell apoptosis with intracellular ROS generation and mitochondrial membrane depolarization; IGF-1 pre-treatment attenuated this response without affecting ROS production. H2O2-induced phosphorylation of Akt was further increased with IGF-1 treatment; wortmannin abolished these effects in RIE-1 cells. PI3-K pathway is activated during ROS-induced intestinal epithelial cell injury; IGF-1 exerted an anti-apoptotic effect during this response by PI3-K activation. A better understanding of the exact role of IGF-1-mediated activation of PI3-K may allow us to facilitate the development of novel therapy against NEC.

  9. Protective effects of hydroxytyrosol on gentamicin induced nephrotoxicity in mice.

    PubMed

    Chashmi, Nooshin Ahmadian; Emadi, Sarvenaz; Khastar, Hossein

    2017-01-22

    Gentamicin (GM) is an effective and common antibiotic against severe gram-negative infections. However, its nephrotoxic action has limited the extent of its use. The aim of this study was to investigate the protective effects of hydroxytyrosol (HT) on gentamicin induced nephrotoxicity in mice. Male mice (n = 27) were randomly assigned to three groups: (1) Sham, (2) GM (100 mg/kg for 7 days) (3) GM + HT (2 mg/kg BW; gastric gavages, for 7 days). 24-h urine samples were collected on day 8 and then animal were anesthetized. The blood and kidney tissue samples were collected. Gentamicin led to increase in plasma BUN and creatinine, fractional excretion of sodium and potassium and decrease in creatinine clearance and urine flow rate. SOD and GSH levels were reduced and MDA was increased in the GM group compared with the sham group. In GM + HT group, plasma BUN and creatinine, fractional excretion of Na, creatinine clearance and urine flow rate were decreased in contrast to GM group. Increase in SOD and GSH activity and decrease in MDA compared to GM group were seen. Findings suggest that HT partly protected the kidneys from gentamicin induced nephrotoxicity and it is partly due to antioxidant effect of HT. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. In vitro gastrointestinal digestion promotes the protective effect of blackberry extract against acrylamide-induced oxidative stress

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Su, Hongming; Xu, Yang; Jin, Chao

    2017-01-01

    Acrylamide (AA)-induced toxicity has been associated with accumulation of excessive reactive oxygen species. The present study was therefore undertaken to investigate the protective effect of blackberry digests produced after (BBD) in vitro gastrointestinal (GI) digestion against AA-induced oxidative damage. The results indicated that the BBD (0.5 mg/mL) pretreatment significantly suppressed AA-induced intracellular ROS generation (56.6 ± 2.9% of AA treatment), mitochondrial membrane potential (MMP) decrease (297 ± 18% of AA treatment) and glutathione (GSH) depletion (307 ± 23% of AA treatment), thereby ameliorating cytotoxicity. Furthermore, LC/MS/MS analysis identified eight phenolic compounds with high contents in BBD, including ellagic acid, ellagic acid pentoside, ellagic acid glucuronoside, methyl-ellagic acid pentoside, methyl-ellagic acid glucuronoside, cyanidin glucoside, gallic acid and galloyl esters, as primary active compounds responsible for antioxidant action. Collectively, our study uncovered that the protective effect of blackberry was reserved after gastrointestinal digestion in combating exogenous pollutant-induced oxidative stress.

  11. UNG protects B cells from AID-induced telomere loss

    PubMed Central

    Cortizas, Elena M.; Zahn, Astrid; Safavi, Shiva

    2016-01-01

    Activation-induced deaminase (AID) initiates antibody gene diversification by creating G:U mismatches in the immunoglobulin loci. However, AID also deaminates nonimmunoglobulin genes, and failure to faithfully repair these off-target lesions can cause B cell lymphoma. In this study, we identify a mechanism by which processing of G:U produced by AID at the telomeres can eliminate B cells at risk of genomic instability. We show that telomeres are off-target substrates of AID and that B cell proliferation depends on protective repair by uracil-DNA glycosylase (UNG). In contrast, in the absence of UNG activity, deleterious processing by mismatch repair leads to telomere loss and defective cell proliferation. Indeed, we show that UNG deficiency reduces B cell clonal expansion in the germinal center in mice and blocks the proliferation of tumor B cells expressing AID. We propose that AID-induced damage at telomeres acts as a fail-safe mechanism to limit the tumor promoting activity of AID when it overwhelms uracil excision repair. PMID:27697833

  12. Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation.

    PubMed

    Huang, Tai-Chun; Lu, Kwok-Tung; Wo, Yu-Yuan Peter; Wu, Yao-Ju; Yang, Yi-Ling

    2011-01-01

    Alzheimer disease (AD) is an age-dependent neurodegenerative disease characterized by the formation of β-amyloid (Aβ)-containing senile plaque. The disease could be induced by the administration of Aβ peptide, which was also known to upregulate inducible nitric oxide synthase (iNOS) and stimulate neuronal apoptosis. The present study is aimed to elucidate the cellular effect of resveratrol, a natural phytoestrogen with neuroprotective activities, on Aβ-induced hippocampal neuron loss and memory impairment. On adult Sprague-Dawley rats, we found the injection of Aβ could result in a significant impairment in spatial memory, a marked increase in the cellular level of iNOS and lipid peroxidation, and an apparent decrease in the expression of heme oxygenase-1 (HO-1). By combining the treatment with Aβ, resveratrol was able to confer a significant improvement in spatial memory, and protect animals from Aβ-induced neurotoxicity. These neurological protection effects of resveratrol were associated with a reduction in the cellular levels of iNOS and lipid peroxidation and an increase in the production of HO-1. Moreover, the similar neurological and cellular response were also observed when Aβ treatment was combined with the administration of a NOS inhibitor, N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME). These findings strongly implicate that iNOS is involved in the Aβ-induced lipid peroxidation and HO-1 downregulation, and resveratrol protects animals from Aβ-induced neurotoxicity by suppressing iNOS production.

  13. Resveratrol Protects Rats from Aβ-induced Neurotoxicity by the Reduction of iNOS Expression and Lipid Peroxidation

    PubMed Central

    Wo, Yu-Yuan Peter; Wu, Yao-Ju; Yang, Yi-Ling

    2011-01-01

    Alzheimer disease (AD) is an age-dependent neurodegenerative disease characterized by the formation of β–amyloid (Aβ)-containing senile plaque. The disease could be induced by the administration of Aβ peptide, which was also known to upregulate inducible nitric oxide synthase (iNOS) and stimulate neuronal apoptosis. The present study is aimed to elucidate the cellular effect of resveratrol, a natural phytoestrogen with neuroprotective activities, on Aβ-induced hippocampal neuron loss and memory impairment. On adult Sprague-Dawley rats, we found the injection of Aβ could result in a significant impairment in spatial memory, a marked increase in the cellular level of iNOS and lipid peroxidation, and an apparent decrease in the expression of heme oxygenase-1 (HO-1). By combining the treatment with Aβ, resveratrol was able to confer a significant improvement in spatial memory, and protect animals from Aβ-induced neurotoxicity. These neurological protection effects of resveratrol were associated with a reduction in the cellular levels of iNOS and lipid peroxidation and an increase in the production of HO-1. Moreover, the similar neurological and cellular response were also observed when Aβ treatment was combined with the administration of a NOS inhibitor, N(G)-nitro-L-arginine methyl ester hydrochloride (L-NAME). These findings strongly implicate that iNOS is involved in the Aβ-induced lipid peroxidation and HO-1 downregulation, and resveratrol protects animals from Aβ-induced neurotoxicity by suppressing iNOS production. PMID:22220203

  14. Sulforaphane Protects against High Cholesterol-Induced Mitochondrial Bioenergetics Impairments, Inflammation, and Oxidative Stress and Preserves Pancreatic β-Cells Function.

    PubMed

    Carrasco-Pozo, Catalina; Tan, Kah Ni; Gotteland, Martin; Borges, Karin

    2017-01-01

    Cholesterol plays an important role in inducing pancreatic β -cell dysfunction, leading to an impaired insulin secretory response to glucose. This study aimed to determine the protective effects of sulforaphane, a natural isothiocyanate Nrf2-inducer, against cholesterol-induced pancreatic β -cells dysfunction, through molecular and cellular mechanisms involving mitochondrial bioenergetics. Sulforaphane prevented cholesterol-induced alterations in the coupling efficiency of mitochondrial respiration, improving ATP turnover and spare capacity, and averted the impairment of the electron flow at complexes I, II, and IV. Sulforaphane also attenuated the cholesterol-induced activation of the NF κ B pathway, normalizing the expression of pro- and anti-inflammatory cytokines. In addition, it also inhibited the decrease in sirtuin 1 expression and greatly increased Pgc-1α expression in Min6 cells. Sulforaphane increased the expression of antioxidant enzymes downstream of the Nrf2 pathway and prevented lipid peroxidation induced by cholesterol. The antioxidant and anti-inflammatory properties of sulforaphane and its ability to protect and improve mitochondrial bioenergetic function contribute to its protective action against cholesterol-induced pancreatic β -cell dysfunction. Our data provide a scientifically tested foundation upon which sulforaphane can be developed as nutraceutical to preserve β -cell function and eventually control hyperglycemia.

  15. Sulforaphane Protects against High Cholesterol-Induced Mitochondrial Bioenergetics Impairments, Inflammation, and Oxidative Stress and Preserves Pancreatic β-Cells Function

    PubMed Central

    Tan, Kah Ni; Gotteland, Martin

    2017-01-01

    Cholesterol plays an important role in inducing pancreatic β-cell dysfunction, leading to an impaired insulin secretory response to glucose. This study aimed to determine the protective effects of sulforaphane, a natural isothiocyanate Nrf2-inducer, against cholesterol-induced pancreatic β-cells dysfunction, through molecular and cellular mechanisms involving mitochondrial bioenergetics. Sulforaphane prevented cholesterol-induced alterations in the coupling efficiency of mitochondrial respiration, improving ATP turnover and spare capacity, and averted the impairment of the electron flow at complexes I, II, and IV. Sulforaphane also attenuated the cholesterol-induced activation of the NFκB pathway, normalizing the expression of pro- and anti-inflammatory cytokines. In addition, it also inhibited the decrease in sirtuin 1 expression and greatly increased Pgc-1α expression in Min6 cells. Sulforaphane increased the expression of antioxidant enzymes downstream of the Nrf2 pathway and prevented lipid peroxidation induced by cholesterol. The antioxidant and anti-inflammatory properties of sulforaphane and its ability to protect and improve mitochondrial bioenergetic function contribute to its protective action against cholesterol-induced pancreatic β-cell dysfunction. Our data provide a scientifically tested foundation upon which sulforaphane can be developed as nutraceutical to preserve β-cell function and eventually control hyperglycemia. PMID:28386307

  16. Clusterin protects H9c2 cardiomyocytes from oxidative stress-induced apoptosis via Akt/GSK-3β signaling pathway

    PubMed Central

    Jun, Hyoung-Oh; Kim, Dong-hun; Lee, Sae-Won; Lee, Hye Shin; Seo, Ji Hae; Kim, Jeong Hun; Kim, Jin Hyoung; Yu, Young Suk; Min, Bon Hong

    2011-01-01

    Clusterin is a secretory glycoprotein, which is highly up-regulated in a variety of normal and injury tissues undergoing apoptosis including infarct region of the myocardium. Here, we report that clusterin protects H9c2 cardiomyocytes from H2O2-induced apoptosis by triggering the activation of Akt and GSK-3β. Treatment with H2O2 induces apoptosis of H9c2 cells by promoting caspase cleavage and cytochrome c release from mitochondria. However, co-treatment with clusterin reverses the induction of apoptotic signaling by H2O2, thereby recovers cell viability. The protective effect of clusterin on H2O2-induced apoptosis is impaired by PI3K inhibitor LY294002, which effectively suppresses clusterin-induced activation of Akt and GSK-3β. In addition, the protective effect of clusterin is independednt on its receptor megalin, because inhibition of megalin has no effect on clusturin-mediated Akt/GSK-3β phosphoylation and H9c2 cell viability. Collectively, these results suggest that clusterin has a role protecting cardiomyocytes from oxidative stress and the Akt/GSK-3β signaling mediates anti-apoptotic effect of clusterin. PMID:21270507

  17. Downregulation of Lysyl Oxidase Protects Retinal Endothelial Cells From High Glucose-Induced Apoptosis.

    PubMed

    Kim, Dongjoon; Mecham, Robert P; Trackman, Philip C; Roy, Sayon

    2017-05-01

    To investigate the effect of reducing high glucose (HG)-induced lysyl oxidase (LOX) overexpression and increased activity on retinal endothelial cell apoptosis. Rat retinal endothelial cells (RRECs) were grown in normal (N) or HG (30 mM glucose) medium for 7 days. In parallel, RRECs were grown in HG medium and transfected with LOX small interfering RNA (siRNA), scrambled siRNA as control, or exposed to β-aminopropionitrile (BAPN), a LOX inhibitor. LOX expression, AKT activation, and caspase-3 activity were determined by Western blot (WB) analysis and apoptosis by differential dye staining assay. Moreover, to determine whether diabetes-induced LOX overexpression alters AKT activation and promotes apoptosis, changes in LOX expression, AKT phosphorylation, caspase-3 activation, and Bax expression were assessed in retinas of streptozotocin (STZ)-induced diabetic mice and LOX heterozygous knockout (LOX+/-) mice. WB analysis indicated significant LOX overexpression and reduced AKT activation under HG condition in RRECs. Interestingly, when cells grown in HG were transfected with LOX siRNA or exposed to BAPN, the number of apoptotic cells was significantly decreased concomitant with increased AKT phosphorylation. Diabetic mouse retinas exhibited LOX overexpression, decreased AKT phosphorylation, and increased Bax and caspase-3 activation compared to values in nondiabetic mice. In LOX+/- mice, reduced LOX levels were observed with increased AKT activity, and reduced Bax and caspase-3 activity. Furthermore, decreased levels of LOX in the LOX+/- mice was protective against diabetes-induced apoptosis. Findings from this study indicate that preventing LOX overexpression may be protective against HG-induced apoptosis in retinal vascular cells associated with diabetic retinopathy.

  18. Alpha-synuclein functions in the nucleus to protect against hydroxyurea-induced replication stress in yeast

    PubMed Central

    Liu, Xianpeng; Lee, Yong Joo; Liou, Liang-Chun; Ren, Qun; Zhang, Zhaojie; Wang, Shaoxiao; Witt, Stephan N.

    2011-01-01

    Hydroxyurea (HU) inhibits ribonucleotide reductase (RNR), which catalyzes the rate-limiting synthesis of deoxyribonucleotides for DNA replication. HU is used to treat HIV, sickle-cell anemia and some cancers. We found that, compared with vector control cells, low levels of alpha-synuclein (α-syn) protect S. cerevisiae cells from the growth inhibition and reactive oxygen species (ROS) accumulation induced by HU. Analysis of this effect using different α-syn mutants revealed that the α-syn protein functions in the nucleus and not the cytoplasm to modulate S-phase checkpoint responses: α-syn up-regulates histone acetylation and RNR levels, maintains helicase minichromosome maintenance protein complexes (Mcm2–7) on chromatin and inhibits HU-induced ROS accumulation. Strikingly, when residues 2–10 or 96–140 are deleted, this protective function of α-syn in the nucleus is abolished. Understanding the mechanism by which α-syn protects against HU could expand our knowledge of the normal function of this neuronal protein. PMID:21642386

  19. The protective role of isorhamnetin on human brain microvascular endothelial cells from cytotoxicity induced by methylglyoxal and oxygen-glucose deprivation.

    PubMed

    Li, Wenlu; Chen, Zhigang; Yan, Min; He, Ping; Chen, Zhong; Dai, Haibin

    2016-02-01

    As the first target of stroke, cerebral endothelial cells play a key role in brain vascular repair and maintenance, and their function is impeded in diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, accumulates in diabetic patients. MGO and MGO-induced advanced glycation end-products (AGEs) could ameliorate stroke-induced brain vascular damage, closely related with ECs dysfunction. Using MGO plus oxygen-glucose deprivation (OGD) to mimic diabetic stroke, we reported the protective effect of isorhamnetin on OGD-induced cytotoxicity after MGO treatment on primary human brain microvascular endothelial cells (HBMEC) and explored the underlying mechanisms. Treatment of MGO for 24 h significantly enhanced 3-h OGD-induced HBMEC toxic effect, which was inhibited by pretreatment of isorhamnetin (100 μmol/L). Moreover, the protective effect of isorhamnetin is multiple function dependent, which includes anti-inflammation, anti-oxidative stress and anti-apoptosis effects. Besides its well-known inhibition on the mitochondria-dependent or intrinsic apoptotic pathway, isorhamnetin also reduced activation of the extrinsic apoptotic pathway, as characterized by the decreased expression and activity of caspase 3 and caspase 8. Furthermore, pretreatment with isorhamnetin specifically inhibited FAS/FASL expression and suppressed nuclear factor-kappa B nuclear translocation. Taken together, our results indicated that isorhamnetin protected against OGD-induced cytotoxicity after MGO treatment in cultured HBMEC due to its multiple protective effects and could inhibit Fas-mediated extrinsic apoptosis. Therefore, isorhamnetin is a promising reagent for the treatment of hyperglycemia and ischemia-induced cerebral vascular degeneration. A proposed model of the potential protective mechanism of isorhamnetin, a metabolite of quercetin, on methylglyoxal (MGO) treatment plus oxygen-glucose deprivation (OGD) exposure-induced cytotoxicity in cultured human

  20. Lycium barbarum Polysaccharides Protect Rat Corneal Epithelial Cells against Ultraviolet B-Induced Apoptosis by Attenuating the Mitochondrial Pathway and Inhibiting JNK Phosphorylation.

    PubMed

    Du, Shaobo; Han, Biao; Li, Kang; Zhang, Xuan; Sha, Xueli; Gao, Lan

    2017-01-01

    Lycium barbarum polysaccharides (LBPs) have been shown to play a key role in protecting the eyes by reducing the apoptosis induced by certain types of damage. However, it is not known whether LBPs can protect damaged corneal cells from apoptosis. Moreover, no reports have focused on the role of LBPs in guarding against ultraviolet B- (UVB-) induced apoptosis. The present study aimed to investigate the protective effect and underlying mechanism of LBPs against UVB-induced apoptosis in rat corneal epithelial (RCE) cells. The results showed that LBPs significantly prevented the loss of cell viability and inhibited cell apoptosis induced by UVB in RCE cells. LBPs also inhibited UVB-induced loss of mitochondrial membrane potential, downregulation of Bcl-2 , and upregulation of Bax and caspase-3. Finally, LBPs attenuated the phosphorylation of c-Jun NH 2 -terminal kinase (JNK) triggered by UVB. In summary, LBPs protect RCE cells against UVB-induced damage and apoptosis, and the underlying mechanism involves the attenuation of the mitochondrial apoptosis pathway and the inhibition of JNK phosphorylation.

  1. Protective effects of tropisetron on cerulein-induced acute pancreatitis in mice.

    PubMed

    Rahimian, Reza; Zirak, Mohammad Reza; Seyedabadi, Mohammad; Keshavarz, Mojtaba; Rashidian, Amir; Kazmi, Sareh; Jafarian, Amir Hossein; Karimi, Gholamreza; Mousavizadeh, Kazem

    2017-09-01

    Acute pancreatitis (AP) causes morbidity and mortality. The aim of the present study was to investigate the protective effect of tropisetron against AP induced by cerulein. Cerulein (50μg/kg, 5 doses) was used to induce AP in mice. Six hours after final cerulein injection, animals were decapitated. Hepatic/pancreatic enzymes in the serum, pancreatic content of malondialdehyde (MDA), pro-inflammatory cytokines and myeloperoxidase (MPO) activity were measured. Tropisetron significantly attenuated pancreatic injury markers and decreased the amount of elevated serum amylase, lipase, alanine aminotransferase (ALT), aspartate aminotransferase (AST), MPO activities and pro-inflammatory cytokines levels caused by AP in mice. Tropisetron didn't affect the pancreatic levels of MDA. Our results suggest that tropisetron could attenuate cerulein-induced AP by combating inflammatory signaling. Further clinical studies are needed to confirm its efficacy in patients with AP. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Lipopolysaccharide-induced dopaminergic cell death in rat midbrain slice cultures: role of inducible nitric oxide synthase and protection by indomethacin.

    PubMed

    Shibata, Haruki; Katsuki, Hiroshi; Nishiwaki, Mayumi; Kume, Toshiaki; Kaneko, Shuji; Akaike, Akinori

    2003-09-01

    Glial cell activation associated with inflammatory reaction may contribute to pathogenic processes of neurodegenerative disorders, through production of several cytotoxic molecules. We investigated the consequences of glial activation by interferon-gamma (IFN-gamma)/lipopolysaccharide (LPS) in rat midbrain slice cultures. Application of IFN-gamma followed by LPS caused dopaminergic cell death and accompanying increases in nitrite production and lactate dehydrogenase release. Aminoguanidine, an inhibitor of inducible nitric oxide synthase (iNOS), or SB203580, an inhibitor of p38 mitogen-activated protein kinase, prevented dopaminergic cell loss as well as nitrite production. SB203580 also suppressed expression of iNOS and cyclooxygenase-2 (COX-2) induced by IFN-gamma/LPS. A COX inhibitor indomethacin protected dopaminergic neurons from IFN-gamma/LPS-induced injury, whereas selective COX-2 inhibitors such as NS-398 and nimesulide did not. Notably, indomethacin was able to attenuate neurotoxicity of a nitric oxide (NO) donor. Neutralizing antibodies against tumour necrosis factor-alpha and interleukin-1beta did not inhibit dopaminergic cell death caused by IFN-gamma/LPS, although combined application of these antibodies blocked lactate dehydrogenase release and decrease in the number of non-dopaminergic neurons. These results indicate that iNOS-derived NO plays a crucial role in IFN-gamma/LPS-induced dopaminergic cell death, and that indomethacin exerts protective effect by mechanisms probably related to NO neurotoxicity rather than through COX inhibition.

  3. Methamphetamine induces apoptosis in immortalized neural cells: protection by the proto-oncogene, bcl-2.

    PubMed

    Cadet, J L; Ordonez, S V; Ordonez, J V

    1997-02-01

    Methamphetamine (METH) is an amphetamine analog that produces degeneration of the dopaminergic system in mammals. The neurotoxic effects of the drug are thought to be mediated by oxygen-based free radicals. In the present report, we have used immortalized neural cells obtained from rat mesencephalon in order to further assess the role of oxidative stress in METH-induced neurotoxicity. We thus tested if the anti-death proto-oncogene, bcl-2 could protect against METH-induced cytotoxicity. METH caused dose-dependent loss of cellular viability in control cells while bcl-2-expressing cells were protected against these deleterious effects. Using flow cytometry, immunofluorescent staining, and DNA electrophoresis, we also show that METH exposure can cause DNA strand breaks, chromatin condensation, nuclear fragmentation, and DNA laddering. All these changes were prevented by bcl-2 expression. These observations provide further support for the involvement of oxidative stress in the toxic effects of amphetamine analogs. They also document that METH-induced cytotoxicity is secondary to apoptosis. These findings may be of relevance to the cause(s) of Parkinson's disease which involves degeneration of the nigrostriatal dopaminergic pathway.

  4. Protection of cadmium chloride induced DNA damage by Lamiaceae plants

    PubMed Central

    Thirugnanasampandan, Ramaraj; Jayakumar, Rajarajeswaran

    2011-01-01

    Objective To analyze the total phenolic content, DNA protecting and radical scavenging activity of ethanolic leaf extracts of three Lamiaceae plants, i.e. Anisomelos malabarica (A. malabarica), Leucas aspera (L. aspera) and Ocimum basilicum (O. basilicum). Methods The total polyphenols and flavonoids were analyzed in the ethanolic leaf extracts of the lamiaceae plants. To determine the DNA protecting activity, various concentrations of the plant extracts were prepared and treated on cultured HepG2 human lung cancer cells. The pretreated cells were exposed to H2O2 to induce DNA damage through oxidative stress. Comet assay was done and the tail length of individual comets was measured. Nitric oxide and superoxide anion scavenging activities of lamiaceae plants were analyzed. Results Among the three plant extracts, the highest amount of total phenolic content was found in O. basilicum (189.33 mg/g), whereas A. malabarica showed high levels of flavonoids (10.66 mg/g). O. basilicum also showed high levels of DNA protecting (85%) and radical scavenging activity. Conclusions The results of this study shows that bioactive phenols present in lamiaceae plants may prevent carcinogenesis through scavenging free radicals and inhibiting DNA damage. PMID:23569799

  5. Protection against neo-formed contaminants (NFCs)-induced toxicity by phytochemicals.

    PubMed

    Zhao, Mengyao; Wang, Pengpu; Li, Daotong; Shang, Jin; Hu, Xiaosong; Chen, Fang

    2017-10-01

    Neo-formed compounds (NFCs) are commonly found in all kinds of foods due to the complex reaction between components during processing. Acrylamide, benzo(a)pyrene and heterocyclic aromatic amines are the main types of NFCs in foods enriched with carbohydrate, fats and proteins, respectively. They have exhibited diverse toxicity, such as neurotoxicity, genotoxicity, potentially carcinogenic and reproductive toxicity. In recent years, various phytochemicals have been found to be effective in alleviation of their related toxicities both in vitro and in vivo. This review provides evidences on the protection roles of phytochemicals against the diverse toxicity induced by three NFCs. Moreover, the prevention mechanisms of phytochemicals are summarized. Three potential aspects involving excellent antioxidant activity, DNA protection and enzyme induction contribute to the successful protection mechanism. Meanwhile, the limitations from existing knowledge have been illustrated and the possible perspectives for the further study have also been considered. The information from this review would be useful to provide an easier and better way to improve human health when considering the possibility of using foods enriched with phytochemicals for prevention of the toxicity of exogenous pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Acute Stress-Induced Epigenetic Modulations and Their Potential Protective Role Toward Depression.

    PubMed

    Rusconi, Francesco; Battaglioli, Elena

    2018-01-01

    Psychiatric disorders entail maladaptive processes impairing individuals' ability to appropriately interface with environment. Among them, depression is characterized by diverse debilitating symptoms including hopelessness and anhedonia, dramatically impacting the propensity to live a social and active life and seriously affecting working capability. Relevantly, besides genetic predisposition, foremost risk factors are stress-related, such as experiencing chronic psychosocial stress-including bullying, mobbing and abuse-, and undergoing economic crisis or chronic illnesses. In the last few years the field of epigenetics promised to understand core mechanisms of gene-environment crosstalk, contributing to get into pathogenic processes of many disorders highly influenced by stressful life conditions. However, still very little is known about mechanisms that tune gene expression to adapt to the external milieu. In this Perspective article, we discuss a set of protective, functionally convergent epigenetic processes induced by acute stress in the rodent hippocampus and devoted to the negative modulation of stress-induced immediate early genes (IEGs) transcription, hindering stress-driven morphostructural modifications of corticolimbic circuitry. We also suggest that chronic stress damaging protective epigenetic mechanisms, could bias the functional trajectory of stress-induced neuronal morphostructural modification from adaptive to maladaptive, contributing to the onset of depression in vulnerable individuals. A better understanding of the epigenetic response to stress will be pivotal to new avenues of therapeutic intervention to treat depression, especially in light of limited efficacy of available antidepressant drugs.

  7. Calcineurin inhibitors cyclosporin A and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models

    PubMed Central

    Shen, Xiujin; Jiang, Hong; Ying, Meike; Xie, Zhoutao; Li, Xiayu; Wang, Haibing; Zhao, Jie; Lin, Chuan; Wang, Yucheng; Feng, Shi; Shen, Jia; Weng, Chunhua; Lin, Weiqiang; Wang, Huiping; Zhou, Qin; Bi, Yan; Li, Meng; Wang, Lingyan; Zhu, Tongyu; Huang, Xiaoru; Lan, Hui-Yao; Zhou, Jing; Chen, Jianghua

    2016-01-01

    Podocyte injury and the appearance of proteinuria are features of minimal-change disease (MCD). Cyclosporin A (CsA) and tacrolimus (FK506) has been reported to reduce proteinuria in patients with nephrotic syndrome, but mechanisms remain unknown. We, therefore, investigated the protective mechanisms of CsA and FK506 on proteinuria in a rat model of MCD induced by puromycin aminonucleoside (PAN) and in vitro cultured mouse podocytes. Our results showed that CsA and FK506 treatment decreased proteinuria via a mechanism associated to a reduction in the foot-process fusion and desmin, and a recovery of synaptopodin and podocin. In PAN-treated mouse podocytes, pre-incubation with CsA and FK506 restored the distribution of the actin cytoskeleton, increased the expression of synaptopodin and podocin, improved podocyte viability, and reduced the migrating activities of podocytes. Treatment with CsA and FK506 also inhibited PAN-induced podocytes apoptosis, which was associated with the induction of Bcl-xL and inhibition of Bax, cleaved caspase 3, and cleaved PARP expression. Further studies revealed that CsA and FK506 inhibited PAN-induced p38 and JNK signaling, thereby protecting podocytes from PAN-induced injury. In conclusion, CsA and FK506 inhibit proteinuria by protecting against PAN-induced podocyte injury, which may be associated with inhibition of the MAPK signaling pathway. PMID:27580845

  8. Inactivation of kupffer cells by gadolinium chloride protects murine liver from radiation-induced apoptosis.

    PubMed

    Du, Shi-Suo; Qiang, Min; Zeng, Zhao-Chong; Ke, Ai-Wu; Ji, Yuan; Zhang, Zheng-Yu; Zeng, Hai-Ying; Liu, Zhongshan

    2010-03-15

    To determine whether the inhibition of Kupffer cells before radiotherapy (RT) would protect hepatocytes from radiation-induced apoptosis. A single 30-Gy fraction was administered to the upper abdomen of Sprague-Dawley rats. The Kupffer cell inhibitor gadolinium chloride (GdCl3; 10 mg/kg body weight) was intravenously injected 24 h before RT. The rats were divided into four groups: group 1, sham RT plus saline (control group); group 2, sham RT plus GdCl3; group 3, RT plus saline; and group 4, RT plus GdCl3. Liver tissue was collected for measurement of apoptotic cytokine expression and evaluation of radiation-induced liver toxicity by analysis of liver enzyme activities, hepatocyte micronucleus formation, apoptosis, and histologic staining. The expression of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha was significantly attenuated in group 4 compared with group 3 at 2, 6, 24, and 48 h after injection (p <0.05). At early points after RT, the rats in group 4 exhibited significantly lower levels of liver enzyme activity, apoptotic response, and hepatocyte micronucleus formation compared with those in group 3. Selective inactivation of Kupffer cells with GdCl3 reduced radiation-induced cytokine production and protected the liver against acute radiation-induced damage. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Partial protection from organophosphate-induced cholinesterase inhibition by metyrapone treatment.

    PubMed

    Swiercz, Radosław; Lutz, Piotr; Gralewicz, Sławomir; Grzelińska, Zofia; Piasecka-Zelga, Joanna; Wąsowicz, Wojciech

    2013-08-01

    Organophosphates are cholinesterase (ChE) inhibitors with worldwide use as insecticides. Stress response, evidenced by a dramatic and relatively long-lasting (several hours) rise in the plasma glucocorticoid concentration is an integral element of the organophosphate (OP) poisoning symptomatology. In rodents, corticosterone (CORT) is the main glucocorticoid. There are several reports suggesting a relationship between the stressor-induced rise in CORT concentration (the CORT response) and the activity of the cerebral and peripheral ChE. Thus, it seems reasonable to presume that, in OP intoxication, the rise in plasma CORT concentration may somehow affect the magnitude of the OP-induced ChE inhibition. Metyrapone (MET) [2-methyl-1,2-di(pyridin-3-yl)propan-1-one] blocks CORT synthesis by inhibiting steroid 11β-hydroxylase, thereby preventing the CORT response. Chlorfenvinphos (CVP) [2-chloro-1-(2,4-dichlorophenyl) ethenyl diethyl phosphate] is an organophosphate insecticide still in use in some countries. The purpose of the present work was to compare the CVP-induced effects - the rise of the plasma CORT concentration and the reduction in ChE activity - in MET-treated and MET-untreated rats. Chlorfenvinphos was administered once at 0.0, 0.5, 1.0 and 3.0 mg/kg i.p. Metyrapone, at 100 mg/kg i.p., was administered five times, at 24-h intervals. The first MET dose was given two hours before CVP. The following was observed in the MET-treated rats: i) no rise in plasma CORT concentration after the CVP administration, ii) a reduced inhibition and a faster restitution of blood and brain ChE activities. The results suggest that MET treatment may confer significant protection against at least some effects of OP poisoning. The likely mechanism of the protective MET action has been discussed.

  10. Subunit Rotavirus Vaccine Administered Parenterally to Rabbits Induces Active Protective Immunity

    PubMed Central

    Ciarlet, Max; Crawford, Sue E.; Barone, Christopher; Bertolotti-Ciarlet, Andrea; Ramig, Robert F.; Estes, Mary K.; Conner, Margaret E.

    1998-01-01

    Virus-like particles (VLPs) are being evaluated as a candidate rotavirus vaccine. The immunogenicity and protective efficacy of different formulations of VLPs administered parenterally to rabbits were tested. Two doses of VLPs (2/6-, G3 2/6/7-, or P[2], G3 2/4/6/7-VLPs) or SA11 simian rotavirus in Freund’s adjuvants, QS-21 (saponin adjuvant), or aluminum phosphate (AlP) were administered. Serological and mucosal immune responses were evaluated in all vaccinated and control rabbits before and after oral challenge with 103 50% infective doses of live P[14], G3 ALA lapine rotavirus. All VLP- and SA11-vaccinated rabbits developed high levels of rotavirus-specific serum and intestinal immunoglobulin G (IgG) antibodies but not intestinal IgA antibodies. SA11 and 2/4/6/7-VLPs afforded similar but much higher mean levels of protection than 2/6/7- or 2/6-VLPs in QS-21. The presence of neutralizing antibodies to VP4 correlated (P < 0.001, r = 0.55; Pearson’s correlation coefficient) with enhanced protection rates, suggesting that these antibodies are important for protection. Although the inclusion of VP4 resulted in higher mean protection levels, high levels of protection (87 to 100%) from infection were observed in individual rabbits immunized with 2/6/7- or 2/6-VLPs in Freund’s adjuvants. Therefore, neither VP7 nor VP4 was absolutely required to achieve protection from infection in the rabbit model when Freund’s adjuvant was used. Our results show that VLPs are immunogenic when administered parenterally to rabbits and that Freund’s adjuvant is a better adjuvant than QS-21. The use of the rabbit model may help further our understanding of the critical rotavirus proteins needed to induce active protection. VLPs are a promising candidate for a parenterally administered subunit rotavirus vaccine. PMID:9765471

  11. Protective effect of ethanolic extract of polyherbal formulation on carbon tetrachloride induced liver injury

    PubMed Central

    Gurusamy, K; Kokilavani, R; Arumugasamy, K; Sowmia, C

    2009-01-01

    Protective effect of ethanolic extract of polyherbalformulation (PHF) of three medicinalplants was studied on carbon tetrachloride induced liver damage in rats. Treatment with 250mg I kg b.w. of ethanolic extract of PHF protected rats against carbon tetrachloride liver injury by significantly lowering 5’NT, GGF, GDH and SDH and bilirubin levels compared to control group of rats. Normalising the effect of these parameters indicates strong hepatoprotective property of the PHF extract. PMID:22557313

  12. “Parasite-induced aposematism” protects entomopathogenic nematode parasites against invertebrate enemies

    PubMed Central

    Fenton, Andy; Speed, Michael P.

    2016-01-01

    Aposematism is a well-known strategy in which prey defend themselves from predation by pairing defenses such as toxins, with warning signals that are often visually conspicuous color patterns. Here, we examine the possibility that aposematism can be induced in a host by colonies of infectious parasites in order to protect the parasites from the consequences of attacks on the host. Earlier studies show that avian predators are reluctant to feed on carcasses of host prey that are infected with the entomopathogenic nematode, Heterorhabditis bacteriophora. As the age of infection increases, the parasites kill and preserve the host and subsequently cause its color to change, becoming bright pink then red. Nematode colonies in dead hosts may also be vulnerable, however, to nocturnally active foragers that do not use vision in prey detection. Here, then we test a novel hypothesis that the nematode parasites also produce a warning odor, which functions to repel nocturnally active predators (in this case, the beetle Pterostichus madidus). We show that beetles decrease their feeding on infected insect prey as the age of infection increases and that olfactory cues associated with the infections are effective mechanisms for deterring beetle predation, even at very early stages of infection. We propose that “parasite-induced aposematism” from the nematodes serves to replace the antipredator defenses of the recently killed host. Because sessile carcasses are exposed to a greater range of predators than the live hosts, several alternative defense mechanisms are required to protect the colony, hence aposematic signals are likely diverse in such “parasite-induced aposematism.” PMID:27004015

  13. Protective effects of edaravone combined puerarin on inhalation lung injury induced by black gunpowder smog.

    PubMed

    Wang, Zhengguan; Li, Ruibing; Liu, Yifan; Liu, Xiaoting; Chen, Wenyan; Xu, Shumin; Guo, Yuni; Duan, Jinyang; Chen, Yihong; Wang, Chengbin

    2015-05-01

    The present study aimed to investigate the combined effects of puerarin with edaravone on inhalation lung injury induced by black gunpowder smog. Male Wistar rats were divided into five groups (control group, edaravone group, puerarin group, edaravone combined with puerarin group and inhalation group). The severity of pulmonary injuries was evaluated after inducing acute lung injury. Arterial blood gas, inflammatory cytokines, biochemical, parameters, cell counting, W/D weight ratio and histopathology were analyzed. Results in lung tissues, either edaravone or puerarin treatment alone showed significant protective effects against neutrophil infiltration and tissue injury, as demonstrated by myeloperoxidase activity and histopathological analysis (all p<0.05). In addition, combined treatment with both edaravone and puerarin demonstrated additive protective effects on smog-induced lung injury, compared with single treatment. Combination of edaravone and puerarin shows promise as a new treatment option for acute lung injury/acute respiratory distress syndrome patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Sulforaphane protects against acrolein-induced oxidative stress and inflammatory responses: modulation of Nrf-2 and COX-2 expression.

    PubMed

    Qin, Wang-Sen; Deng, Yu-Hui; Cui, Fa-Cai

    2016-08-01

    Acrolein (2-propenal) is a reactive α, β-unsaturated aldehyde which causes a health hazard to humans. The present study focused on determining the protection offered by sulforaphane against acrolein-induced damage in peripheral blood mononuclear cells (PBMC). Acrolein-induced oxidative stress was determined through evaluating the levels of reactive oxygen species, protein carbonyl and sulfhydryl content, thiobarbituric acid reactive species, total oxidant status and antioxidant status (total antioxidant capacity, glutathione, superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase activity). Also, Nrf-2 expression levels were determined using western blot analysis. Acrolein-induced inflammation was determined through analyzing expression of cyclooxygenase-2 by western blot and PGE2 levels by ELISA. The protection offered by sulforaphane against acrolein-induced oxidative stress and inflammation was studied. Acrolein showed a significant (p < 0.001) increase in the levels of oxidative stress parameters and down-regulated Nrf-2 expression. Acrolein-induced inflammation was observed through upregulation (p < 0.001) of COX-2 and PGE2 levels. Pretreatment with sulforaphane enhanced the antioxidant status through upregulating Nrf-2 expression (p < 0.001) in PBMC. Acrolein-induced inflammation was significantly inhibited through suppression of COX-2 (p < 0.001) and PGE2 levels (p < 0.001). The present study provides clear evidence that pre-treatment with sulforaphane completely restored the antioxidant status and prevented inflammatory responses mediated by acrolein. Thus the protection offered by sulforaphane against acrolein-induced damage in PBMC is attributed to its anti-oxidant and anti-inflammatory potential.

  15. Antioxidant Protective Effect of Honey in Cigarette Smoke-Induced Testicular Damage in Rats

    PubMed Central

    Mohamed, Mahaneem; Sulaiman, Siti Amrah; Jaafar, Hasnan; Sirajudeen, Kuttulebbai Nainamohamed Salam

    2011-01-01

    Cigarette smoke (CS) can cause testicular damage and we investigated the possible protective effect of honey against CS-induced testicular damage and oxidative stress in rats. CS exposure (8 min, 3 times daily) and honey supplementation (1.2 g/kg daily) were given for 13 weeks. Rats exposed to CS significantly had smaller seminiferous tubules diameter and epithelial height, lower Leydig cell count and increased percentage of tubules with germ cell loss. CS also produced increased lipid peroxidation (TBARS) and glutathione peroxidase (GPx) activity, as well as reduced total antioxidant status (TAS) and activities of superoxide dismutase (SOD) and catalase (CAT). However, supplementation of honey significantly reduced histological changes and TBARS level, increased TAS level, as well as significantly restored activities of GPx, SOD and CAT in rat testis. These findings may suggest that honey has a protective effect against damage and oxidative stress induced by CS in rat testis. PMID:22016605

  16. Protective effect of Cassia fistula fruit extract on bromobenzene-induced nephrotoxicity in mice.

    PubMed

    Kalantari, Heibatullah; Jalali, Mohammadtaha; Jalali, Amir; Salimi, Abobakr; Alhalvachi, Foad; Varga, Balazs; Juhasz, Bela; Jakab, Anita; Kemeny-Beke, Adam; Gesztelyi, Rudolf; Tosaki, Arpad; Zsuga, Judit

    2011-10-01

    The efficacy of a crude hydro-alcoholic extract of Cassia fistula (golden shower tree) fruit to protect the kidney against bromobenzene-induced toxicity was studied. Negative control mice received normal saline; positive control mice were given 460 mg/kg of bromobenzene; Cassia fistula treated mice received 200, 400, 600 and 800 mg/kg of Cassia fistula fruit extract followed by 460 mg/kg bromobenzene (daily by oral gavage for 10 days). On the 11th day, the mice were sacrificed, blood samples were obtained to assess blood urea nitrogen (BUN) and creatinine levels, and kidneys were removed for histological examination. We found that bromobenzene induced significant nephrotoxicity reflected by an increase in levels of BUN and creatinine that was dose dependently prevented by the Cassia fistula fruit extract. The nephroprotective effect of the Cassia fistula fruit extract was confirmed by the histological examination of the kidneys. To the best of our knowledge, this is the first study to demonstrate the protective effect of Cassia fistula in nephrotoxicity.

  17. TNF-α dependent production of inducible nitric oxide is involved in PGE1 protection against acute liver injury

    PubMed Central

    Muntane, J; Rodriguez, F; Segado, O; Quintero, A; Lozano, J; Siendones, E; Pedraza, C; Delgado, M; O'Valle, F; Garcia, R; Montero, J; De la Mata, M; Mino, G

    2000-01-01

    BACKGROUND—Tumour necrosis factor α (TNF-α) and nitric oxide modulate damage in several experimental models of liver injury. We have previously shown that protection against D-galactosamine (D-GalN) induced liver injury by prostaglandin E1 (PGE1) was accompanied by an increase in TNF-α and nitrite/nitrate in serum.
AIMS—The aim of the present study was to evaluate the role of TNF-α and nitric oxide during protection by PGE1 of liver damage induced by D-GalN.
METHODS—Liver injury was induced in male Wistar rats by intraperitoneal injection of 1 g/kg of D-GalN. PGE1 was administered 30 minutes before D-GalN. Inducible nitric oxide synthase (iNOS) was inhibited by methylisothiourea (MT), and TNF-α concentration in serum was lowered by administration of anti-TNF-α antibodies. Liver injury was evaluated by alanine aminotransferase activity in serum, and histological examination and DNA fragmentation in liver. TNF-α and nitrite/nitrate concentrations were determined in serum. Expression of TNF-α and iNOS was also assessed in liver sections.
RESULTS—PGE1 decreased liver injury and increased TNF-α and nitrite/nitrate concentrations in serum of rats treated with D-GalN. PGE1 protection was related to enhanced expression of TNF-α and iNOS in hepatocytes. Administration of anti-TNF-α antibodies or MT blocked the protection by PGE1 of liver injury induced by D-GalN.
CONCLUSIONS—This study suggests that prior administration of PGE1 to D-GalN treated animals enhanced expression of TNF-α and iNOS in hepatocytes, and that this was causally related to protection by PGE1 against D-GalN induced liver injury.


Keywords: tumour necrosis factor α; nitric oxide; prostaglandin E1; methylisothiourea; D-galactosamine; liver injury PMID:10986217

  18. Central endogenous angiotensin-(1-7) protects against aldosterone/NaCl-induced hypertension in female rats.

    PubMed

    Xue, Baojian; Zhang, Zhongming; Johnson, Ralph F; Guo, Fang; Hay, Meredith; Johnson, Alan Kim

    2013-09-01

    In comparison to male rodents, females are protected against angiotensin (ANG) II- and aldosterone (Aldo)-induced hypertension. However, the mechanisms underlying this protective effect are not well understood. ANG-(1-7) is formed from ANG II by angiotensin-converting enzyme 2 (ACE2) and has an antihypertensive effect in the central nervous system (CNS). The present study tested the hypothesis that central ANG-(1-7) plays an important protective role in attenuating the development of Aldo/NaCl-hypertension in female rats. Systemic infusion of Aldo into intact female rats with 1% NaCl as their sole drinking fluid resulted in a slight increase in blood pressure (BP). Intracerebroventricular (icv) infusion of A-779, an ANG-(1-7) receptor (Mas-R) antagonist, significantly augmented the pressor effects of Aldo/NaCl. In contrast, systemic Aldo/NaCl induced a significant increase in BP in ovariectomized (OVX) female rats, and central infusion of ANG-(1-7) significantly attenuated this Aldo/NaCl pressor effect. The inhibitory effect of ANG-(1-7) on the Aldo/NaCl pressor effect was abolished by concurrent infusion of A-779. RT-PCR analyses showed that there was a corresponding change in mRNA expression of several renin-angiotensin system components, estrogen receptors and an NADPH oxidase subunit in the lamina terminalis. Taken together these results suggest that female sex hormones regulate an antihypertensive axis of the brain renin-angiotensin system involving ACE2/ANG-(1-7)/Mas-R that plays an important counterregulatory role in protecting against the development of Aldo/NaCl-induced hypertension.

  19. Protective effects of Sesamum indicum extract against oxidative stress induced by vanadium on isolated rat hepatocytes.

    PubMed

    Hosseini, Mir-Jamal; Shahraki, Jafar; Tafreshian, Saman; Salimi, Ahmad; Kamalinejad, Mohammad; Pourahmad, Jalal

    2016-08-01

    Vanadium toxicity is a challenging problem to human and animal health with no entirely understanding cytotoxic mechanisms. Previous studies in vanadium toxicity showed involvement of oxidative stress in isolated liver hepatocytes and mitochondria via increasing of ROS formation, release of cytochrome c and ATP depletion after incubation with different concentrations (25-200 µM). Therefore, we aimed to investigate the protective effects of Sesamum indicum seed extract (100-300 μg/mL) against oxidative stress induced by vanadium on isolated rat hepatocytes. Our results showed that quite similar to Alpha-tocopherol (100 µM), different concentrations of extract (100-300 μg/mL) protected the isolated hepatocyte against all oxidative stress/cytotoxicity markers induced by vanadium in including cell lysis, ROS generation, mitochondrial membrane potential decrease and lysosomal membrane damage. Besides, vanadium induced mitochondrial/lysosomal toxic interaction and vanadium reductive activation mediated by glutathione in vanadium toxicity was significantly (P < 0.05) ameliorated by Sesamum indicum extracts. These findings suggested a hepato-protective role for extracts against liver injury resulted from vanadium toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 979-985, 2016. © 2015 Wiley Periodicals, Inc.

  20. Protective effect of vilva juice on glycoconjugate levels in experimentally induced constipation in rats.

    PubMed

    Padmini, R; Sabitha, K E; Devi, C S Shyamala

    2004-10-01

    Efficacy of vilva, a polyherbal formulation was evaluated in morphine induced constipated rats. Vilva juice, at a dose of 1.5 ml/100 g body wt was given orally for a period of 7 days. Morphine sulfate was injected to induce constipation on 8th day, 45 min before the experiments. Protein bound glycoconjungates were estimated in intestinal tissue. Altered levels of glycoconjugates were maintained at near normalcy when pretreated with vilva juice in morphine induced rats. Histological changes were observed in the colon tissue. The damage to crypts of Liberkunn in constipated rats were found to be reduced in vilva pretreated rats. Vilva, thus, offered significant protection against morphine induced constipation by way of augmenting mucus secretion.

  1. The protective effects of magnolol on acute trinitrobenzene sulfonic acid‑induced colitis in rats.

    PubMed

    Zhang, Yong; Fu, Li-Tang; Tang, Fang

    2018-03-01

    The present study aimed to investigate the protective effects of magnolol on acute 2,4,6-trinitrobenzene sulfonic acid (TNBS)‑induced colitis, and its underlying mechanisms. Experimental colitis was induced by intracolonic administration of TNBS/ethanol into rats. The model rats were randomly assigned into groups: TNBS, magnolol (high, medium and low doses), and salazosulfapyridine (positive control). All intervention regimens were administered by oral gavage, once a day for 7 consecutive days, 24 h after colitis induction. Histological and biochemical changes in colonic inflammation were evaluated by hematoxylin and eosin and immunohistochemistry, respectively. Rats treated with all doses of magnolol exhibited decreased colonic myeloperoxidase activity (P<0.05 vs. TNBS), reduced serum levels of proinflammatory cytokines [including interleukin (IL)‑6 and IL‑17], and downregulated Toll‑like receptor-4 (TLR‑4) mRNA expression. Histological analysis revealed that medium and high doses of magnolol conferred an anti‑inflammatory effect, which was indicated by a decrease in disease activity index, an increase in thymus index, and downregulation of nuclear factor (NF)‑κB p65 mRNA and TLR‑4 protein expression. However, only high‑dose magnolol significantly ameliorated the elevated colon weight/length ratio. The results of the present study indicate that magnolol exerts protective effects against acute TNBS‑induced colitis in rats, and the TLR‑4/NF‑κB signaling pathway‑mediated inhibitory effect on inflammatory cascades may contribute to the protective activity of magnolol.

  2. Protective Effects of Quercetin against Dimethoate-Induced Cytotoxicity and Genotoxicity in Allium sativum Test

    PubMed Central

    Ahmad, Waseem; Shaikh, Sibhghatulla; Nazam, Nazia; Lone, Mohammad Iqbal

    2014-01-01

    The present investigation was directed to study the possible protective activity of quercetin—a natural antioxidant against dimethoate-induced cyto- and genotoxicity in meristematic cells of Allium sativum. So far there is no report on the biological properties of quercetin in plant test systems. Chromosome breaks, multipolar anaphase, stick chromosome, and mitotic activity were undertaken in the current study as markers of cyto- and genotoxicity. Untreated control, quercetin controls (@ 5, 10 and 20 μg/mL for 3 h), and dimethoate exposed groups (@ 100 and 200 μg/mL for 3 h) were maintained. For protection against cytogenotoxicity, the root tip cells treated with dimethoate at 100 and 200 μg/mL for 3 h and quercetin treatment at 5, 10, and 20 μg/mL for 16 h, prior to dimethoate treatment, were undertaken. Quercetin was found to be neither cytotoxic nor genotoxic in Allium sativum control at these doses. A significant increase (P < 0.05) in chromosomal aberrations was noted in dimethoate treated Allium. Pretreatment of Allium sativum with quercetin significantly (P < 0.05) reduced dimethoate-induced genotoxicity and cytotoxicity in meristematic cells, and these effects were dose dependent. In conclusion, quercetin has a protective role in the abatement of dimethoate-induced cyto- and genotoxicity in the meristematic cells of Allium sativum that resides, at least in part, on its antioxidant effects. PMID:27379342

  3. Protective Effects of Quercetin against Dimethoate-Induced Cytotoxicity and Genotoxicity in Allium sativum Test.

    PubMed

    Ahmad, Waseem; Shaikh, Sibhghatulla; Nazam, Nazia; Lone, Mohammad Iqbal

    2014-01-01

    The present investigation was directed to study the possible protective activity of quercetin-a natural antioxidant against dimethoate-induced cyto- and genotoxicity in meristematic cells of Allium sativum. So far there is no report on the biological properties of quercetin in plant test systems. Chromosome breaks, multipolar anaphase, stick chromosome, and mitotic activity were undertaken in the current study as markers of cyto- and genotoxicity. Untreated control, quercetin controls (@ 5, 10 and 20 μg/mL for 3 h), and dimethoate exposed groups (@ 100 and 200 μg/mL for 3 h) were maintained. For protection against cytogenotoxicity, the root tip cells treated with dimethoate at 100 and 200 μg/mL for 3 h and quercetin treatment at 5, 10, and 20 μg/mL for 16 h, prior to dimethoate treatment, were undertaken. Quercetin was found to be neither cytotoxic nor genotoxic in Allium sativum control at these doses. A significant increase (P < 0.05) in chromosomal aberrations was noted in dimethoate treated Allium. Pretreatment of Allium sativum with quercetin significantly (P < 0.05) reduced dimethoate-induced genotoxicity and cytotoxicity in meristematic cells, and these effects were dose dependent. In conclusion, quercetin has a protective role in the abatement of dimethoate-induced cyto- and genotoxicity in the meristematic cells of Allium sativum that resides, at least in part, on its antioxidant effects.

  4. Microneedle delivery of trivalent influenza vaccine to the skin induces long-term cross-protection.

    PubMed

    Kim, Yeu-Chun; Lee, Su-Hwa; Choi, Won-Hyung; Choi, Hyo-Jick; Goo, Tae-Won; Lee, Ju-Hie; Quan, Fu-Shi

    2016-12-01

    A painless self-immunization method with effective and broad cross-protection is urgently needed to prevent infections against newly emerging influenza viruses. In this study, we investigated the cross-protection efficacy of trivalent influenza vaccine containing inactivated A/PR/8/34 (H1N1), A/Hong Kong/68 (H3N2) and B/Lee/40 after skin vaccination using microneedle patches coated with this vaccine. Microneedle vaccination of mice in the skin provided 100% protection against lethal challenges with heterologous pandemic strain influenza A/California/04/09, heterogeneous A/Philippines/2/82 and B/Victoria/287 viruses 8 months after boost immunization. Cross-reactive serum IgG antibody responses against heterologous influenza viruses A/California/04/09, A/Philippines/2/82 and B/Victoria/287 were induced at high levels. Hemagglutination inhibition titers were also maintained at high levels against these heterogeneous viruses. Microneedle vaccination induced substantial levels of cross-reactive IgG antibody responses in the lung and cellular immune responses, as well as cross-reactive antibody-secreting plasma cells in the spleen. Viral loads in the lung were significantly (p < 0.05) reduced. All mice survived after viral challenges. These results indicate that skin vaccination with trivalent vaccine using a microneedle array could provide protection against seasonal epidemic or new pandemic strain of influenza viruses.

  5. De Novo Synthesized Estradiol Protects against Methylmercury-Induced Neurotoxicity in Cultured Rat Hippocampal Slices

    PubMed Central

    Ishihara, Yasuhiro; Komatsu, Shota; Munetsuna, Eiji; Onizaki, Masahiro; Ishida, Atsuhiko; Kawato, Suguru; Mukuda, Takao

    2013-01-01

    Background Estrogen, a class of female sex steroids, is neuroprotective. Estrogen is synthesized in specific areas of the brain. There is a possibility that the de novo synthesized estrogen exerts protective effect in brain, although direct evidence for the neuroprotective function of brain-synthesized estrogen has not been clearly demonstrated. Methylmercury (MeHg) is a neurotoxin that induces neuronal degeneration in the central nervous system. The neurotoxicity of MeHg is region-specific, and the molecular mechanisms for the selective neurotoxicity are not well defined. In this study, the protective effect of de novo synthesized 17β-estradiol on MeHg-induced neurotoxicity in rat hippocampus was examined. Methodology/Principal Findings Neurotoxic effect of MeHg on hippocampal organotypic slice culture was quantified by propidium iodide fluorescence imaging. Twenty-four-hour treatment of the slices with MeHg caused cell death in a dose-dependent manner. The toxicity of MeHg was attenuated by pre-treatment with exogenously added estradiol. The slices de novo synthesized estradiol. The estradiol synthesis was not affected by treatment with 1 µM MeHg. The toxicity of MeHg was enhanced by inhibition of de novo estradiol synthesis, and the enhancement of toxicity was recovered by the addition of exogenous estradiol. The neuroprotective effect of estradiol was inhibited by an estrogen receptor (ER) antagonist, and mimicked by pre-treatment of the slices with agonists for ERα and ERβ, indicating the neuroprotective effect was mediated by ERs. Conclusions/Significance Hippocampus de novo synthesized estradiol protected hippocampal cells from MeHg-induced neurotoxicity via ERα- and ERβ-mediated pathways. The self-protective function of de novo synthesized estradiol might be one of the possible mechanisms for the selective sensitivity of the brain to MeHg toxicity. PMID:23405170

  6. Rebamipide suppresses diclofenac-induced intestinal permeability via mitochondrial protection in mice.

    PubMed

    Diao, Lei; Mei, Qiao; Xu, Jian-Ming; Liu, Xiao-Chang; Hu, Jing; Jin, Juan; Yao, Qiang; Chen, Mo-Li

    2012-03-14

    To investigate the protective effect and mechanism of rebamipide on small intestinal permeability induced by diclofenac in mice. Diclofenac (2.5 mg/kg) was administered once daily for 3 d orally. A control group received the vehicle by gavage. Rebamipide (100 mg/kg, 200 mg/kg, 400 mg/kg) was administered intragastrically once a day for 3 d 4 h after diclofenac administration. Intestinal permeability was evaluated by Evans blue and the FITC-dextran method. The ultrastructure of the mucosal barrier was evaluated by transmission electron microscopy (TEM). Mitochondrial function including mitochondrial swelling, mitochondrial membrane potential, mitochondrial nicotinamide adenine dinucleotide-reduced (NADH) levels, succinate dehydrogenase (SDH) and ATPase activities were measured. Small intestinal mucosa was collected for assessment of malondialdehyde (MDA) content and myeloperoxidase (MPO) activity. Compared with the control group, intestinal permeability was significantly increased in the diclofenac group, which was accompanied by broken tight junctions, and significant increases in MDA content and MPO activity. Rebamipide significantly reduced intestinal permeability, improved inter-cellular tight junctions, and was associated with decreases in intestinal MDA content and MPO activity. At the mitochondrial level, rebamipide increased SDH and ATPase activities, NADH level and decreased mitochondrial swelling. Increased intestinal permeability induced by diclofenac can be attenuated by rebamipide, which partially contributed to the protection of mitochondrial function.

  7. Genistein protects hematopoietic stem cells against G-CSF-induced DNA damage.

    PubMed

    Souza, Liliana R; Silva, Erica; Calloway, Elissa; Kucuk, Omer; Rossi, Michael; McLemore, Morgan L

    2014-05-01

    Granulocyte colony-stimulating factor (G-CSF) has been used to treat neutropenia in various clinical settings. Although clearly beneficial, there are concerns that the chronic use of G-CSF in certain conditions increases the risk of myelodysplastic syndrome (MDS) and/or acute myeloid leukemia (AML). The most striking example is in severe congenital neutropenia (SCN). Patients with SCN develop MDS/AML at a high rate that is directly correlated to the cumulative lifetime dosage of G-CSF. Myelodysplastic syndrome and AML that arise in these settings are commonly associated with chromosomal deletions. We have demonstrated in this study that chronic G-CSF treatment in mice results in expansion of the hematopoietic stem cell (HSC) population. In addition, primitive hematopoietic progenitors from G-CSF-treated mice show evidence of DNA damage as demonstrated by an increase in double-strand breaks and recurrent chromosomal deletions. Concurrent treatment with genistein, a natural soy isoflavone, limits DNA damage in this population. The protective effect of genistein seems to be related to its preferential inhibition of G-CSF-induced proliferation of HSCs. Importantly, genistein does not impair G-CSF-induced proliferation of committed hematopoietic progenitors, nor diminishes neutrophil production. The protective effect of genistein was accomplished with plasma levels that are attainable through dietary supplementation.

  8. Protective effects of Korean red ginseng against radiation-induced apoptosis in human HaCaT keratinocytes

    PubMed Central

    Chang, Jae Won; Park, Keun Hyung; HWANG, Hye Sook; Shin, Yoo Seob; Oh, Young-Taek; Kim, Chul-Ho

    2014-01-01

    Radiation-induced oral mucositis is a dose-limiting toxic side effect for patients with head and neck cancer. Numerous attempts at improving radiation-induced oral mucositis have not produced a qualified treatment. Ginseng polysaccharide has multiple immunoprotective effects. Our aim was to investigate the effectiveness of Korean red ginseng (KRG) on radiation-induced damage in the human keratinocyte cell line HaCaT and in an in vivo zebrafish model. Radiation inhibited HaCaT cell proliferation and migration in a cell viability assay and wound healing assay, respectively. KRG protected against these effects. KRG attenuated the radiation-induced embryotoxicity in the zebrafish model. Irradiation of HaCaT cells caused apoptosis and changes in mitochondrial membrane potential (MMP). KRG inhibited the radiation-induced apoptosis and intracellular generation of reactive oxygen species (ROS), and stabilized the radiation-induced loss of MMP. Western blots revealed KRG-mediated reduced expression of ataxia telangiectasia mutated protein (ATM), p53, c-Jun N-terminal kinase (JNK), p38 and cleaved caspase-3, compared with their significant increase after radiation treatment. The collective results suggest that KRG protects HaCaT cells by blocking ROS generation, inhibiting changes in MMP, and inhibiting the caspase, ATM, p38 and JNK pathways. PMID:24078877

  9. Protective effects of Korean red ginseng against radiation-induced apoptosis in human HaCaT keratinocytes.

    PubMed

    Chang, Jae Won; Park, Keun Hyung; Hwang, Hye Sook; Shin, Yoo Seob; Oh, Young-Taek; Kim, Chul-Ho

    2014-03-01

    Radiation-induced oral mucositis is a dose-limiting toxic side effect for patients with head and neck cancer. Numerous attempts at improving radiation-induced oral mucositis have not produced a qualified treatment. Ginseng polysaccharide has multiple immunoprotective effects. Our aim was to investigate the effectiveness of Korean red ginseng (KRG) on radiation-induced damage in the human keratinocyte cell line HaCaT and in an in vivo zebrafish model. Radiation inhibited HaCaT cell proliferation and migration in a cell viability assay and wound healing assay, respectively. KRG protected against these effects. KRG attenuated the radiation-induced embryotoxicity in the zebrafish model. Irradiation of HaCaT cells caused apoptosis and changes in mitochondrial membrane potential (MMP). KRG inhibited the radiation-induced apoptosis and intracellular generation of reactive oxygen species (ROS), and stabilized the radiation-induced loss of MMP. Western blots revealed KRG-mediated reduced expression of ataxia telangiectasia mutated protein (ATM), p53, c-Jun N-terminal kinase (JNK), p38 and cleaved caspase-3, compared with their significant increase after radiation treatment. The collective results suggest that KRG protects HaCaT cells by blocking ROS generation, inhibiting changes in MMP, and inhibiting the caspase, ATM, p38 and JNK pathways.

  10. Homologous Recombination Repair Protects Against Particulate Chromate-induced Chromosome Instability in Chinese Hamster Cells

    PubMed Central

    Stackpole, Megan M.; Wise, Sandra S.; Duzevik, Eliza Grlickova; Munroe, Ray C.; Thompson, W. Douglas; Thacker, John; Thompson, Larry H.; Hinz, John M.; Wise, John Pierce

    2008-01-01

    Particulate hexavalent chromium [Cr(VI)] compounds are well-established human carcinogens. Cr(VI)-induced tumors are characterized by chromosomal instability (CIN); however, the mechanisms of this effect are unknown. We investigated the hypothesis that homologous recombination (HR) repair of DNA double strand breaks protect cells from Cr(VI)-induced CIN by focusing on the XRCC3 and RAD51C genes, which play an important role in cellular resistance to DNA double strand breaks. We used Chinese hamster cells defective in each HR gene (irs3 for RAD51C and irs1SF for XRCC3) and compared with their wildtype parental and cDNA-complemented controls. We found that the intracellular Cr ion levels varied among the cell lines after particulate chromate treatment. Importantly, accounting for differences in Cr ion levels, we discovered that XRCC3 and RAD51C cells treated with lead chromate had increased cytotoxicity and chromosomal aberrations, relative to wild-type and cDNA-complimented cells. We also observed the emergence of high levels of chromatid exchanges in the two mutant cell lines. For example, 1 ug/cm2 lead chromate induced 20 and 32 exchanges in XRCC3- and RAD51C-deficient cells, respectively, whereas no exchanges were detected in the wildtype and cDNA-complemented cells. These observations suggest that HR protects cells from Cr(VI)-induced CIN, consistent with the ability of particulate Cr(VI) to induce double strand breaks. PMID:17662313

  11. G protein-coupled receptor kinase-2-deficient mice are protected from dextran sodium sulfate-induced acute colitis.

    PubMed

    Steury, Michael D; Kang, Ho Jun; Lee, Taehyung; Lucas, Peter C; McCabe, Laura R; Parameswaran, Narayanan

    2018-06-01

    G protein-coupled receptor kinase 2 (GRK2) is a serine/threonine kinase and plays a key role in different disease processes. Previously, we showed that GRK2 knockdown enhances wound healing in colonic epithelial cells. Therefore, we hypothesized that ablation of GRK2 would protect mice from dextran sodium sulfate (DSS)-induced acute colitis. To test this, we administered DSS to wild-type (GRK2 +/+ ) and GRK2 heterozygous (GRK +/- ) mice in their drinking water for 7 days. As predicted, GRK2 +/- mice were protected from colitis as demonstrated by decreased weight loss (20% loss in GRK2 +/+ vs. 11% loss in GRK2 +/- ). lower disease activity index (GRK2 +/+ 9.1 vs GRK2 +/- 4.1), and increased colon lengths (GRK2 +/+ 4.7 cm vs GRK2 +/- 5.3 cm). To examine the mechanisms by which GRK2 +/- mice are protected from colitis, we investigated expression of inflammatory genes in the colon as well as immune cell profiles in colonic lamina propria, mesenteric lymph node, and in bone marrow. Our results did not reveal differences in immune cell profiles between the two genotypes. However, expression of inflammatory genes was significantly decreased in DSS-treated GRK2 +/- mice compared with GRK2 +/+ . To understand the mechanisms, we generated myeloid-specific GRK2 knockout mice and subjected them to DSS-induced colitis. Similar to whole body GRK2 heterozygous knockout mice, myeloid-specific knockout of GRK2 was sufficient for the protection from DSS-induced colitis. Together our results indicate that deficiency of GRK2 protects mice from DSS-induced colitis and further suggests that the mechanism of this effect is likely via GRK2 regulation of inflammatory genes in the myeloid cells.

  12. Nitroxides protect horseradish peroxidase from H2O2-induced inactivation and modulate its catalase-like activity.

    PubMed

    Samuni, Amram; Maimon, Eric; Goldstein, Sara

    2017-08-01

    Horseradish peroxidase (HRP) catalyzes H 2 O 2 dismutation while undergoing heme inactivation. The mechanism underlying this process has not been fully elucidated. The effects of nitroxides, which protect metmyoglobin and methemoglobin against H 2 O 2 -induced inactivation, have been investigated. HRP reaction with H 2 O 2 was studied by following H 2 O 2 depletion, O 2 evolution and heme spectral changes. Nitroxide concentration was followed by EPR spectroscopy, and its reactions with the oxidized heme species were studied using stopped-flow. Nitroxide protects HRP against H 2 O 2 -induced inactivation. The rate of H 2 O 2 dismutation in the presence of nitroxide obeys zero-order kinetics and increases as [nitroxide] increases. Nitroxide acts catalytically since its oxidized form is readily reduced to the nitroxide mainly by H 2 O 2 . The nitroxide efficacy follows the order 2,2,6,6-tetramethyl-piperidine-N-oxyl (TPO)>4-OH-TPO>3-carbamoyl proxyl>4-oxo-TPO, which correlates with the order of the rate constants of nitroxide reactions with compounds I, II, and III. Nitroxide catalytically protects HRP against inactivation induced by H 2 O 2 while modulating its catalase-like activity. The protective role of nitroxide at μM concentrations is attributed to its efficient oxidation by P940, which is the precursor of the inactivated form P670. Modeling the dismutation kinetics in the presence of nitroxide adequately fits the experimental data. In the absence of nitroxide the simulation fits the observed kinetics only if it does not include the formation of a Michaelis-Menten complex. Nitroxides catalytically protect heme proteins against inactivation induced by H 2 O 2 revealing an additional role played by nitroxide antioxidants in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Protective Effects of Curcumin on Manganese-Induced BV-2 Microglial Cell Death.

    PubMed

    Park, Euteum; Chun, Hong Sung

    2017-08-01

    Curcumin, a bioactive component in tumeric, has been shown to exert antioxidant, anti-inflammatory, anticarcinogenic, hepatoprotective, and neuroprotective effects, but the effects of curcumin against manganese (Mn)-mediated neurotoxicity have not been studied. This study examined the protective effects of curcumin on Mn-induced cytotoxicity in BV-2 microglial cells. Curcumin (0.1-10 µM) dose-dependently prevented Mn (250 µM)-induced cell death. Mn-induced mitochondria-related apoptotic characteristics, such as caspase-3 and -9 activation, cytochrome c release, Bax increase, and Bcl-2 decrease, were significantly suppressed by curcumin. In addition, curcumin significantly increased intracellular glutathione (GSH) and moderately potentiated superoxide dismutase (SOD), both which were diminished by Mn treatment. Curcumin pretreatment effectively suppressed Mn-induced upregulation of malondialdehyde (MDA), total reactive oxygen species (ROS). Moreover, curcumin markedly inhibited the Mn-induced mitochondrial membrane potential (MMP) loss. Furthermore, curcumin was able to induce heme oxygenase (HO)-1 expression. Curcumin-mediated inhibition of ROS, down-regulation of caspases, restoration of MMP, and recovery of cell viability were partially reversed by HO-1 inhibitor (SnPP). These results suggest the first evidence that curcumin can prevent Mn-induced microglial cell death through the induction of HO-1 and regulation of oxidative stress, mitochondrial dysfunction, and apoptotic events.

  14. Characterization of antigenic determinants in ApxIIA exotoxin capable of inducing protective immunity to Actinobacillus pleuropneumoniae challenge.

    PubMed

    Seo, Ki-Weon; Kim, Dong-Heon; Kim, Ah Hyun; Yoo, Han-Sang; Lee, Kyung-Yeol; Jang, Yong-Suk

    2011-01-01

    Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia. Among the virulence factors of the pathogen, ApxIIA, a bacterial exotoxin, is expressed by many serotypes and presents a plausible target for vaccine development. We characterized the region within ApxIIA that induces a protective immune response against bacterial infection using mouse challenge model. Recombinant proteins spanning the length of ApxIIA were produced and antiserum to the full-length ApxIIA was induced in mice. This antiserum recognized fragments #2, #3 and #5 with high binding specificity, but showed poor recognition for fragments #1 and #4. Of the antisera induced in mice by injection of each fragments, only the antiserum to fragment #4 failed to efficiently recognize the full-length antigen, although the individual antisera recognized their cognate antigens with almost equal efficiency. The protective potency of the immunogenic proteins against a challenge injection of bacteria in vivo correlated well with the antibody titer. Fragment #5 induced the highest level of protective activity, comparable to that by the full-length protein. These results support the use of fragment #5 to produce a vaccine against A. pleuropneumoniae challenge, since the small antigen peptide is easier to handle than is the full-length protein and can be expressed efficiently in heterologous expression systems.

  15. Protective effects of amphetamine on gastric ulcerations induced by indomethacin in rats

    PubMed Central

    Sandor, Vlaicu; Cuparencu, Barbu; Dumitrascu, Dan L; Birt, Mircea A; Krausz, Tibor L

    2006-01-01

    AIM: To study the effects of amphetamine, an indirect-acting adrenomimetic compound on the indomethacin-induced gastric ulcerations in rats. METHODS: Male Wistar-Bratislava rats were randomly divided into four groups: Group 1 (control), received an ulcerogenic dose of indomethacin (50 μmol/kg) and Groups 2, 3 and 4, treated with amphetamine (10, 25 and 50 μmol/kg). The drug was administered simultaneously with indomethacin and once again 4 h later. The animals were sacrificed 8 h after indomethacin treatment. The stomachs were opened and the incidence, the number of lesions and their severity were evaluated. The results were expressed as percentage and as mean ± standard error (mean ± SE). RESULTS: The incidence of ulceration in the control group was 100%. Amphetamine, at doses of 10, 25 and 50 μmol/kg, lowered the incidence to 88.89%, 77.78% and 37.5% respectively. The protection ratio was positive: 24.14%, 55.17% and 80.6% respectively. The total number of ulcerations/rat was 12.44 ± 3.69 in the control group. It decreased to 7.33 ± 1.89, 5.33 ± 2.38 and 2.25 ± 1.97 under the effects of the above-mentioned doses of amphetamine. CONCLUSION: Amphetamine affords a significant dose-dependent protection against the indomethacin-induced gastric ulcerations in rats. It is suggested that the adrenergic system is involved in the gastric mucosa protection. PMID:17131481

  16. Nitric oxide protects anterior pituitary cells from cadmium-induced apoptosis.

    PubMed

    Poliandri, Ariel H B; Velardez, Miguel O; Cabilla, Jimena P; Bodo, Cristian C A; Machiavelli, Leticia I; Quinteros, Alnilan F; Duvilanski, Beatriz H

    2004-11-01

    Cadmium (Cd2+) is a potent toxic metal for both plants and animals. Chronic exposure to low doses of Cd2+ results in damage to several organs. We have previously reported that Cd2+ induces apoptosis in anterior pituitary cells by a caspase- and oxidative stress-dependent mechanism. Nitric oxide (NO) synthesis is affected by Cd2+ in several systems. NO has been shown to be either cytoprotective or cytotoxic in many systems. The aim of this study was to evaluate the possible participation of NO in the cytotoxic effect of Cd2+ on rat anterior pituitary cells. Cell viability was evaluated by mitochondrial dehydrogenase activity assay and confirmed by microscopy, studying nuclear morphology. Here we show that DETA NONOate ((Z)-1-[2 (2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate), a long-term NO donor, at concentrations below 0.5 mM, reduces nuclear condensation and fragmentation and reverses the decrease in cellular activity induced by Cd2+. Cd2+, by itself, induced NO synthesis, and inhibition of this synthesis enhanced Cd2+ cytotoxicity. NO also prevented caspase-3 activation and lipidic peroxidation induced by Cd2+. The NO/cGMP pathway does not seem to be involved in the cytoprotective effect of NO. These results indicate that NO has a cytoprotective role in Cd2+ -induced apoptosis, suggesting that endogenous NO could have a physiological role in protecting anterior pituitary cells.

  17. Estrogen-Dependent Nrf2 Expression Protects Against Reflux-Induced Esophagitis.

    PubMed

    Torihata, Yudai; Asanuma, Kiyotaka; Iijima, Katsunori; Mikami, Tetsuhiko; Hamada, Shin; Asano, Naoki; Koike, Tomoyuki; Imatani, Akira; Masamune, Atsushi; Shimosegawa, Tooru

    2018-02-01

    Gastroesophageal reflux disease is more common in males than in females. The enhanced antioxidative capacity of estrogen in females might account for the gender difference. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a pivotal role in the host defense mechanism against oxidative stress. This study aimed to clarify the role of Nrf2 in reflux-induced esophageal inflammation, focusing on the gender difference and nitric oxide. Gastroesophageal reflux was surgically induced in male and female rats. Nitrite and ascorbic acid were administered for 1 week to provoke nitric oxide in the esophageal lumen. Male rats with gastroesophageal reflux were supplemented with 17β-estradiol or tert-butylhydroquinone, an Nrf2-inducing reagent. Esophageal squamous cell carcinoma KYSE30 cells were treated with 17β-estradiol. Nrf2 expression was examined by Western blotting and quantitative real-time PCR. Antioxidant gene expression profiles were examined by a PCR array. In the presence of nitric oxide, reflux-induced esophageal damage was less evident, whereas esophageal expression of Nrf2 and its target genes such as Nqo1 was more evident in female or male rats supplemented with 17β-estradiol than in male rats. 17β-Estradiol increased nuclear Nrf2 expression in KYSE30 cells. tert-Butylhydroquinone increased tissue Nqo1 mRNA expression, leading to a reduction in reflux-induced esophageal damage. Estrogen-dependent Nrf2 expression might contribute to protection against the development of gastroesophageal reflux disease in females.

  18. Protective effects of resveratrol against cisplatin-induced testicular and epididymal toxicity in rats.

    PubMed

    Reddy, K Pratap; Madhu, P; Reddy, P Sreenivasula

    2016-05-01

    This study investigated the probable protective effect of resveratrol against cisplatin-induced testicular and epididymal toxicity in rats. Body weights of the animals showed no significant changes after cisplatin administration. Conversely, the weights of testis, and accessory sex organs reduced significantly. The daily sperm production and epididymal sperm quantity and quality were decreased in cisplatin treated rats. The circulatory levels of testosterone and activity levels of testicular 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase were significantly decreased after cisplatin treatment. The activity levels of superoxide dismutase and catalase were decreased with an increase in the levels of lipid peroxidation and H2O2 generation in the testis and epididymis of cisplatin treated rats, suggesting the cisplatin-induced oxidative stress. The biochemical findings were supplemented by histological examination of testis. Reduced tubular size, decreased spermatogenesis and deterioration in architecture were observed after cisplatin treatment. Administration of resveratrol alone has no significant effect on testicular and epididymal metabolism. On the other hand, administration of resveratrol ameliorated cisplatin-induced alterations in testicular and epididymal oxidative damage, suppressed steroiodgenesis and spermatogenesis and restored testicular architecture. In conclusion, resveratrol possesses multimechanistic protective activity that can be attributed to its steroidogenic and antioxidant actions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Protective effect of geranylgeranylacetone against loxoprofen sodium-induced small intestinal lesions in rats.

    PubMed

    Iwai, Tomohisa; Ichikawa, Takafumi; Kida, Mitsuhiro; Goso, Yukinobu; Kurihara, Makoto; Koizumi, Wasaburo; Ishihara, Kazuhiko

    2011-02-10

    Nonsteroidal anti-inflammatory drugs induce small intestinal ulcers but the preventive measures against it remain unknown. So we evaluated the effect of geranylgeranylacetone (GGA), a mucosal protectant, on both the mucus content and loxoprofen sodium-induced lesions in the rat small intestine. Normal male Wistar rats were given GGA (200 or 400mg/kg p.o.) and euthanized 3h later for measurement of mucin content and immunoreactivity. Other Wistar rats were given loxoprofen sodium (30mg/kg s.c.) and euthanized 24h later. GGA (30-400mg/kg p.o.) was administered twice: 30min before and 6h after loxoprofen sodium. The total mucin content of the small intestinal mucosa increased, especially the ratio of sialomucin, which increased approximately 20% more than the control level after a single dose of GGA. Loxoprofen sodium provoked linear ulcers along the mesenteric margin of the distal jejunum, accompanied by an increase in enterobacterial translocation. Treatment of the animals with GGA dose-dependently prevented the development of intestinal lesions, and bacterial translocation following loxoprofen sodium was also significantly decreased. GGA protects the small intestine against loxoprofen sodium-induced lesions, probably by inhibiting enterobacterial invasion of the mucosa as a result of the increase in the mucosal barrier. 2010 Elsevier B.V. All rights reserved.

  20. Aldose reductase deficiency protects from autoimmune- and endotoxin-induced uveitis in mice.

    PubMed

    Yadav, Umesh C S; Shoeb, Mohammed; Srivastava, Satish K; Ramana, Kota V

    2011-10-17

    To investigate the effect of aldose reductase (AR) deficiency in protecting the chronic experimental autoimmune (EAU) and acute endotoxin-induced uveitis (EIU) in c57BL/6 mice. The WT and AR-null (ARKO) mice were immunized with human interphotoreceptor retinoid-binding peptide (hIRPB-1-20), to induce EAU, or were injected subcutaneously with lipopolysaccharide (LPS; 100 μg) to induce EIU. The mice were killed on day 21 for EAU and at 24 hours for EIU, when the disease was at its peak, and the eyes were immediately enucleated for histologic and biochemical studies. Spleen-derived T-lymphocytes were used to study the antigen-specific immune response in vitro and in vivo. In WT-EAU mice, severe damage to the retinal wall, especially to the photoreceptor layer was observed, corresponding to a pathologic score of ∼2, which was significantly prevented in the ARKO or AR inhibitor-treated mice. The levels of cytokines and chemokines increased markedly in the whole-eye homogenates of WT-EAU mice, but not in ARKO-EAU mice. Further, expression of inflammatory marker proteins such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, and vascular cell adhesion molecule (VCAM)-1 was increased in the WT-EIU mouse eyes but not in the ARKO-EIU eyes. The T cells proliferated vigorously when exposed to the hIRPB antigen in vitro and secreted various cytokines and chemokines, which were significantly inhibited in the T cells isolated from the ARKO mice. These findings suggest that AR-deficiency/inhibition protects against acute as well as chronic forms of ocular inflammatory complications such as uveitis.

  1. Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-κB-mediated inflammatory responses.

    PubMed

    Guo, Ruo-Bing; Wang, Guo-Feng; Zhao, An-Peng; Gu, Jun; Sun, Xiu-Lan; Hu, Gang

    2012-01-01

    Paeoniflorin (PF), the principal component of Paeoniae Radix prescribed in traditional Chinese medicine, has been reported to exhibit many pharmacological effects including protection against ischemic injury. However, the mechanisms underlying the protective effects of PF on cerebral ischemia are still under investigation. The present study showed that PF treatment for 14 days could significantly inhibit transient middle cerebral artery occlusion (MCAO)-induced over-activation of astrocytes and microglia, and prevented up-regulations of pro-inflamamtory mediators (TNFα, IL-1β, iNOS, COX(2) and 5-LOX) in plasma and brain. Further study demonstrated that chronic treatment with PF suppressed the activations of JNK and p38 MAPK, but enhanced ERK activation. And PF could reverse ischemia-induced activation of NF-κB signaling pathway. Moreover, our in vitro study revealed that PF treatment protected against TNFα-induced cell apoptosis and neuronal loss. Taken together, the present study demonstrates that PF produces a delayed protection in the ischemia-injured rats via inhibiting MAPKs/NF-κB mediated peripheral and cerebral inflammatory response. Our study reveals that PF might be a potential neuroprotective agent for stroke.

  2. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: prevention by thiol group protecting agents.

    PubMed

    Custódio, José B A; Cardoso, Carla M P; Santos, Maria S; Almeida, Leonor M; Vicente, Joaquim A F; Fernandes, Maria A S

    2009-05-02

    Cisplatin (CisPt) is the most important platinum anticancer drug widely used in the treatment of head, neck, ovarian and testicular cancers. However, the mechanisms by which CisPt induces cytotoxicity, namely hepatotoxicity, are not completely understood. The goal of this study was to investigate the influence of CisPt on rat liver mitochondrial functions (Ca(2+)-induced mitochondrial permeability transition (MPT), mitochondrial bioenergetics, and mitochondrial oxidative stress) to better understand the mechanism underlying its hepatotoxicity. The effect of thiol group protecting agents and some antioxidants against CisPt-induced mitochondrial damage was also investigated. Treatment of rat liver mitochondria with CisPt (20nmol/mg protein) induced Ca(2+)-dependent mitochondrial swelling, depolarization of membrane potential (DeltaPsi), Ca(2+) release, and NAD(P)H fluorescence intensity decay. These effects were prevented by cyclosporine A (CyA), a potent and specific inhibitor of the MPT. In the concentration range of up to 40nmol/mg protein, CisPt slightly inhibited state 3 and stimulated state 2 and state 4 respiration rates using succinate as respiratory substrate. The respiratory indexes, respiratory control ratio (RCR) and ADP/O ratios, the DeltaPsi, and the ADP phosphorylation rate were also depressed. CisPt induced mitochondrial inner membrane permeabilization to protons (proton leak) but did not induce significant changes on mitochondrial H(2)O(2) generation. All the effects induced by CisPt on rat liver mitochondria were prevented by thiol group protecting agents namely, glutathione (GSH), dithiothreitol (DTT), N-acetyl-L-cysteine (NAC) and cysteine (CYS), whereas superoxide-dismutase (SOD), catalase (CAT) and ascorbate (ASC) were without effect. In conclusion, the anticancer drug CisPt: (1) increases the sensitivity of mitochondria to Ca(2+)-induced MPT; (2) interferes with mitochondrial bioenergetics by increasing mitochondrial inner membrane

  3. Tamoxifen protects male mice nigrostriatal dopamine against methamphetamine-induced toxicity.

    PubMed

    Bourque, Mélanie; Liu, Bin; Dluzen, Dean E; Di Paolo, Thérèse

    2007-11-01

    The selective estrogen receptor modulator tamoxifen and estradiol were shown to protect nigrostriatal dopamine concentration loss by methamphetamine in female mice whereas male mice were protected only by tamoxifen. The present study examined the protective properties of tamoxifen in male mice on several nigrostriatal dopaminergic markers and body temperature. Intact male mice were administered 12.5 or 50 microg tamoxifen 24 h before methamphetamine treatment. Basal body temperatures of male mice remained unchanged by the tamoxifen treatment. Methamphetamine reduced striatal dopamine and its metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid concentrations, striatal and substantia nigra dopamine and vesicular monoamine transporter specific binding as well substantia nigra dopamine and vesicular monoamine transporter mRNA levels and increased striatal preproenkephalin mRNA levels. These methamphetamine effects were not altered by 12.5 microg tamoxifen except for increased striatal dopamine metabolites and turnover. Tamoxifen at 50 microg reduced the methamphetamine effect on striatal dopamine concentration, dopamine transporter specific binding and prevented the increase in preproenkephalin mRNA levels; in the substantia nigra tamoxifen prevented the decrease of dopamine transporter mRNA levels. The present results show a tamoxifen dose-dependent prevention of loss of various dopaminergic markers against methamphetamine-induced toxicity in male mice. Since this is the only known hormonal protection of male mice against methamphetamine toxicity, these findings provide important new information on specific parameters of nigrostriatal dopaminergic function preserved by tamoxifen.

  4. S-Enantiomer of 19-Hydroxyeicosatetraenoic Acid Preferentially Protects Against Angiotensin II-Induced Cardiac Hypertrophy.

    PubMed

    Shoieb, Sherif M; El-Kadi, Ayman O S

    2018-06-07

    We have recently demonstrated that the racemic mixture of 19-hydroxyeicosatetraenoic acid (19-HETE) protects against angiotensin II (Ang II) induced cardiac hypertrophy. Therefore, the purpose of this study was to investigate whether R- or S-enantiomer of 19-HETE confers cardioprotection against Ang II-induced cellular hypertrophy in RL-14 and H9c2 cells. Both cell lines were treated with vehicle or 10 μM Ang II in the absence and presence of 20 &#[mu]M 19(R)-HETE or 19(S)-HETE for 24 h. Thereafter, the level of mid-chain HETEs was determined using liquid chromatography - mass spectrometry (LC/MS). Gene and protein expression levels were measured using real-time PCR and Western blot analysis, respectively. The results showed that both 19(R)-HETE and 19(S)-HETE significantly decreased the metabolite formation rate of midchain HETEs namely 8-, 9-, 12- and 15-HETE compared to control group while the level of 5-HETE was selectively decreased by S-enantiomer. Moreover, both 19(R)-HETE and 19(S)-HETE significantly inhibited the catalytic activity of CYP1B1 and decreased the protein expression of 5- and 12-lipoxxygenase (LOX) as well as cyclooxygenase-2 (COX-2). Notably, the decrease in 15-LOX protein expression was only mediated by 19(S)-HETE. Moreover, both enantiomers protected against Ang II-induced cellular hypertrophy as evidenced by a significant decrease in mRNA expression of β/α-myosin heavy chain ratio, ANP, IL-6 and IL-8. Our data demonstrated that S-enantiomer of 19-HETE preferentially protected against Ang II-induced cellular hypertrophy via decreasing the level of mid-chain HETEs, inhibiting catalytic activity of CYP1B1, decreasing protein expression of LOX and COX-2 enzymes and decreasing mRNA expression of IL-6 and IL-8. The American Society for Pharmacology and Experimental Therapeutics.

  5. Recreation-induced changes in boreal bird communities in protected areas.

    PubMed

    Kangas, K; Luoto, M; Ihantola, A; Tomppo, E; Siikamäki, P

    2010-09-01

    The impacts of human-induced disturbance on birds have been studied in growing extent, but there are relatively few studies about the effects of recreation on forest bird communities in protected areas. In this paper, the relative importance of recreation as well as environmental variables on bird communities in Oulanka National Park, in northeastern Finland, was investigated using general additive models (GAM). Bird data collected using the line transect method along hiking trails and in undisturbed control areas were related to number of visits, area of tourism infrastructure, and habitat variables. We further examined the impact of spatial autocorrelation by calculating an autocovariate term for GAMs. Our results indicate that number of visits affects the occurrence and composition of bird communities, but it had no impact on total species richness. Open-cup nesters breeding on the ground showed strongest negative response to visitor pressure, whereas the open-cup nesters nesting in trees and shrubs were more tolerant. For cavity-nesting species, recreation had no significant impact. The contribution of the number of visits was generally low also in models in which it was selected, and the occurrence of birds was mainly determined by habitat characteristics of the area. However, our results show that the recreation-induced disturbance with relatively low visitor pressure can have negative impacts on some bird species and groups of species and should be considered in management of protected areas with recreational activities.

  6. Angiotensin-(1-7) protects from brain damage induced by shiga toxin 2-producing enterohemorrhagic Escherichia coli.

    PubMed

    Goldstein, Jorge; Carden, Tomás R; Perez, María J; Taira, Carlos A; Höcht, Christian; Gironacci, Mariela M

    2016-12-01

    Shiga toxin 2 (Stx2)-producing enterohemorrhagic induced brain damage. Since a cerebroprotective action was reported for angiotensin (Ang)-(1-7), our aim was to investigate whether Ang-(1-7) protects from brain damage induced by Stx2-producing enterohemorrhagic Escherichia coli The anterior hypothalamic area of adult male Wistar rats was injected with saline solution or Stx2 or Stx2 plus Ang-(1-7) or Stx2 plus Ang-(1-7) plus A779. Rats received a single injection of Stx2 at the beginning of the experiment, and Ang-(1-7), A779, or saline was administered daily in a single injection for 8 days. Cellular ultrastructural changes were analyzed by transmission electron microscopy. Stx2 induced neurodegeneration, axonal demyelination, alterations in synapse, and oligodendrocyte and astrocyte damage, accompanied by edema. Ang-(1-7) prevented neuronal damage triggered by the toxin in 55.6 ± 9.5% of the neurons and the Stx2-induced synapse dysfunction was reversed. In addition, Ang-(1-7) blocked Stx2-induced demyelination in 92 ± 4% of the axons. Oligodendrocyte damage caused by Stx2 was prevented by Ang-(1-7) but astrocytes were only partially protected by the peptide (38 ± 5% of astrocytes were preserved). Ang-(1-7) treatment resulted in 50% reduction in the number of activated microglial cells induced by Stx2, suggesting an anti-inflammatory action. All these beneficial effects elicited by Ang-(1-7) were blocked by the Mas receptor antagonist and thus it was concluded that Ang-(1-7) protects mainly neurons and oligodendrocytes, and partially astrocytes, in the central nervous system through Mas receptor stimulation. Copyright © 2016 the American Physiological Society.

  7. A bacterial cocaine esterase protects against cocaine-induced epileptogenic activity and lethality.

    PubMed

    Jutkiewicz, Emily M; Baladi, Michelle G; Cooper, Ziva D; Narasimhan, Diwahar; Sunahara, Roger K; Woods, James H

    2009-09-01

    Cocaine toxicity results in cardiovascular complications, seizures, and death and accounts for approximately 20% of drug-related emergency department visits every year. Presently, there are no treatments to eliminate the toxic effects of cocaine. The present study hypothesizes that a bacterial cocaine esterase with high catalytic efficiency would provide rapid and robust protection from cocaine-induced convulsions, epileptogenic activity, and lethality. Cocaine-induced paroxysmal activity and convulsions were evaluated in rats surgically implanted with radiotelemetry devices (N=6 per treatment group). Cocaine esterase was administered 1 minute after a lethal dose of cocaine or after cocaine-induced convulsions to determine the ability of the enzyme to prevent or reverse, respectively, the effects of cocaine. The cocaine esterase prevented all cocaine-induced electroencephalographic changes and lethality. This effect was specific for cocaine because the esterase did not prevent convulsions and death induced by a cocaine analog, (-)-2beta-carbomethoxy-3beta-phenyltropane. The esterase prevented lethality even after cocaine-induced convulsions occurred. In contrast, the short-acting benzodiazepine, midazolam, prevented cocaine-induced convulsions but not the lethal effects of cocaine. The data showed that cocaine esterase successfully degraded circulating cocaine to prevent lethality and that cocaine-induced convulsions alone are not responsible for the lethal effects of cocaine in this model. Therefore, further investigation into the use of cocaine esterase for treating cocaine overdose and its toxic effects is warranted.

  8. Autophagy protects gastric mucosal epithelial cells from ethanol-induced oxidative damage via mTOR signaling pathway

    PubMed Central

    Chang, Weilong; Bai, Jie; Tian, Shaobo; Ma, Muyuan; Li, Wei; Yin, Yuping; Deng, Rui; Cui, Jinyuan; Li, Jinjin; Wang, Guobin; Tao, Kaixiong

    2017-01-01

    Alcohol abuse is an important cause of gastric mucosal epithelial cell injury and gastric ulcers. A number of studies have demonstrated that autophagy, an evolutionarily conserved cellular mechanism, has a protective effect on cell survival. However, it is not known whether autophagy can protect gastric mucosal epithelial cells against the toxic effects of ethanol. In the present study, gastric mucosal epithelial cells (GES-1 cells) and Wistar rats were treated with ethanol to detect the adaptive response of autophagy. Our results demonstrated that ethanol exposure induced gastric mucosal epithelial cell damage, which was accompanied by the downregulation of mTOR signaling pathway and activation of autophagy. Suppression of autophagy with pharmacological agents resulted in a significant increase of GES-1 cell apoptosis and gastric mucosa injury, suggesting that autophagy could protect cells from ethanol toxicity. Furthermore, we evaluated the cellular oxidative stress response following ethanol treatment and found that autophagy induced by ethanol inhibited generation of reactive oxygen species and degradation of antioxidant and lipid peroxidation. In conclusion, these findings provide evidence that ethanol can activate autophagy via downregulation of the mTOR signaling pathway, serving as an adaptive mechanism to ameliorate oxidative damage induced by ethanol in gastric mucosal epithelial cells. Therefore, modifying autophagy may provide a therapeutic strategy against alcoholic gastric mucosa injury. Impact statement The effect and mechanism of autophagy on ethanol-induced cell damage remain controversial. In this manuscript, we report the results of our study demonstrating that autophagy can protect gastric mucosal epithelial cells against ethanol toxicity in vitro and in vivo. We have shown that ethanol can activate autophagy via downregulation of the mTOR signaling pathway, serving as an adaptive mechanism to ameliorate ethanol-induced oxidative damage in

  9. GPER activation is effective in protecting against inflammation-induced nigral dopaminergic loss and motor function impairment.

    PubMed

    Mendes-Oliveira, Julieta; Lopes Campos, Filipa; Videira, Rita Alexandra; Baltazar, Graça

    2017-08-01

    Increasing evidence suggest that excessive inflammatory responses from overactivated microglia play a critical role in Parkinson's disease (PD), contributing to, or exacerbating, nigral dopaminergic (DA) degeneration. Recent results from our group and others demonstrated that selective activation of G protein-coupled estrogen receptor (GPER) with the agonist G1 can protect DA neurons from 1-methyl-4-phenylpyridinium (MPP + ) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxins. However, it is not known whether modulation of microglial responses is one of the mechanisms by which G1 exerts its DA neuroprotective effects. We analyzed, in the N9 microglial cell line, the effect of G1 on microglial activation induced by lipopolysaccharide (LPS) exposure. The results revealed that G1 significantly decrease phagocytic activity, expression of inducible nitric oxide synthase (iNOS) and release of nitric oxide (NO) induced by LPS. To determine the relevance of this anti-inflammatory effect to the protection of nigral DA cells, the effect of G1 was analyzed in male mice injected unilaterally in the substantia nigra (SN) with LPS. Although G1 treatment did not decrease LPS-induced increase of ionized calcium binding adaptor molecule 1 (iba-1) positive cells it significantly reduced interleukin-1beta (IL-1β), cluster of differentiation 68 (CD68) and iNOS mRNA levels, and totally inhibited nigral DA cell loss and, as a consequence, protected the motor function. In summary, our findings demonstrated that the G1 agonist is able to modulate microglial responses and to protect DA neurons and motor functions against a lesion induced by an inflammatory insult. Since G1 lacks the feminizing effects associated with agonists of the classical estrogen receptors (ERs), the use of G1 to selectively activate the GPER may be a promising strategy for the development of new therapeutics for the treatment of PD and other neuroinflammatory diseases. Copyright © 2017 Elsevier Inc

  10. Protective immunity spectrum induced by immunization with a vaccine from the TBEV strain Sofjin.

    PubMed

    Chernokhaeva, L L; Rogova, Yu V; Vorovitch, M F; Romanova, L Iu; Kozlovskaya, L I; Maikova, G B; Kholodilov, I S; Karganova, G G

    2016-04-29

    Tick-borne encephalitis (TBE) circulates widely in the territory of Eurasia with up to 10,000 cases registered annually. The TBE virus (TBEV) includes three main subtypes: European, Siberian and Far-Eastern, and two new Asiatic variants, phylogenetically distant from the others. The inactivated antigen of European or Far-Eastern strains is used in commercial TBE vaccines. A set of 14 TBEV strains, isolated in 1937-2008, with different passage histories, representing all subtypes and variants, was used in this work. The chosen set covers almost all the TBE area. Sera of mice, immunized with the TBE vaccine Moscow, prepared from the TBEV strain Sofjin, were studied in a plaque neutralization test against the set of TBEV strains. The vaccine induced antibodies at a protective titer against all TBEV strains and Omsk hemorrhagic fever virus (OHFV) with Е protein amino acid distances of 0.008-0.069, but not against Powassan virus. We showed that after a course of two immunizations, factors such as the period between vaccinations (1-4 weeks), the challenging virus dose (30-1000 LD50) and terms of challenge (1-4 weeks after the last immunization) did not significantly affect the assessment of protective efficacy of the vaccine in vivo. The protective effect of the TBE vaccine Moscow against the set of TBEV strains and the OHFV was demonstrated in in vivo experiments. TBE vaccine Moscow did not protect mice against 10 LD50 of the Powassan virus. We showed that this range of Е protein amino acid distances between the vaccine strain and challenging virus do not have a decisive impact on the TBE vaccine protective effect in vitro and in vivo. Moreover, the TBE vaccine Moscow induces an immune response protective against a wide range of TBEV variants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Bacterial β-glucuronidase inhibition protects mice against enteropathy induced by indomethacin, ketoprofen or diclofenac: mode of action and pharmacokinetics

    PubMed Central

    Saitta, Kyle S.; Zhang, Carmen; Lee, Kang Kwang; Fujimoto, Kazunori; Redinbo, Matthew R.; Boelsterli, Urs A.

    2014-01-01

    We have previously demonstrated that a small molecule inhibitor of bacterial β-glucuronidase (Inh-1; [1-((6,8-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)-3-(4-ethoxyphenyl)-1-(2-hydroxyethyl)thiourea]) protected mice against diclofenac (DCF)-induced enteropathy. Here we report that Inh-1 was equally protective against small intestinal injury induced by other carboxylic acid-containing non-steroidal anti-inflammatory drugs (NSAIDs), indomethacin (10 mg/kg, ip) and ketoprofen (100 mg/kg, ip).Inh-1 provided complete protection if given prior to DCF (60 mg/kg, ip), and partial protection if administered 3-h post-DCF, suggesting that the temporal window of mucosal protection can be extended for drugs undergoing extensive enterohepatic circulation.Pharmacokinetic analysis of Inh-1 revealed an absolute bioavailability (F) of 21% and a short t1/2 of <1 h. This low F was shown to be due to hepatic first-pass metabolism, as confirmed with the pan-CYP inhibitor, 1-aminobenzotriazole.Using the fluorescent probe 5 (and 6)-carboxy-2′,7′-dichlorofluorescein, we demonstrated that Inh-1 did not interfere with hepatobiliary export of glucuronides in gall bladder-cannulated mice.These data are compatible with the hypothesis that pharmacological inhibition of bacterial β-glucuronidase-mediated cleavage of NSAID glucuronides in the small intestinal lumen can protect against NSAID-induced enteropathy caused by locally high concentrations of NSAID aglycones. PMID:23829165

  12. Melatonin protects against clomiphene citrate-induced generation of hydrogen peroxide and morphological apoptotic changes in rat eggs.

    PubMed

    Tripathi, Anima; PremKumar, Karuppanan V; Pandey, Ashutosh N; Khatun, Sabana; Mishra, Surabhi Kirti; Shrivastav, Tulsidas G; Chaube, Shail K

    2011-09-30

    The present study was aimed to determine whether clomiphene citrate-induces generation of hydrogen peroxide in ovary, if so, whether melatonin could scavenge hydrogen peroxide and protect against clomiphene citrate-induced morphological apoptotic changes in rat eggs. For this purpose, forty five sexually immature female rats were given single intramuscular injection of 10 IU pregnant mare's serum gonadotropin for 48 h followed by single injections of 10 IU human chorionic gonadotropin and clomiphene citrate (10 mg/kg bw) with or without melatonin (20 mg/kg bw) for 16 h. The histology of ovary, ovulation rate, hydrogen peroxide concentration and catalase activity in ovary and morphological changes in ovulated eggs were analyzed. Co-administration of clomiphene citrate along with human chorionic gonadotropin significantly increased hydrogen peroxide concentration and inhibited catalase activity in ovary, inhibited ovulation rate and induced egg apoptosis. Supplementation of melatonin reduced hydrogen peroxide concentration and increased catalase activity in the ovary, delayed meiotic cell cycle progression in follicular oocytes as well as in ovulated eggs since extrusion of first polar body was still in progress even after ovulation and protected against clomiphene citrate-induced egg apoptosis. These results clearly suggest that the melatonin reduces oxidative stress by scavenging hydrogen peroxide produced in the ovary after clomiphene citrate treatment, slows down meiotic cell cycle progression in eggs and protects against clomiphene citrate-induced apoptosis in rat eggs. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jintao; Zhu, Dexiao; Zhang, Jing

    Methamphetamine (MA) is neurotoxic, especially in dopaminergic neurons. Long-lasting exposure to MA causes psychosis and increases the risk of Parkinson's disease. Lithium (Li) is a known mood stabilizer and has neuroprotective effects. Previous studies suggest that MA exposure decreases the phosphorylation of Akt/GSK3β pathway in vivo, whereas Li facilitates the phosphorylation of Akt/GSK3β pathway. Moreover, GSK3β and mTOR are implicated in the locomotor sensitization induced by psychostimulants and mTOR plays a critical role in MA induced toxicity. However, the effect of MA on Akt/GSK3β/mTOR pathway has not been fully investigated in vitro. Here, we found that MA exposure significantly dephosphorylated Akt/GSK3β/mTOR pathwaymore » in PC12 cells. In addition, Li remarkably attenuated the dephosphorylation effect of MA exposure on Akt/GSK3β/mTOR pathway. Furthermore, Li showed obvious protective effects against MA toxicity and LY294002 (Akt inhibitor) suppressed the protective effects of Li. Together, MA exposure dephosphorylates Akt/GSK3β/mTOR pathway in vitro, while lithium protects against MA-induced neurotoxicity via phosphorylation of Akt/GSK3β/mTOR pathway. - Highlights: • Lithium protects against methamphetamine-induced neurotoxicity in vitro. • Methamphetamine exposure dephosphorylates Akt/GSK3β/mTOR pathway. • Lithium attenuates methamphetamine-induced toxicity via phosphorylating Akt/GSK3β/mTOR pathway.« less

  14. Hepato- and neuro-protective influences of biopropolis on thioacetamide-induced acute hepatic encephalopathy in rats.

    PubMed

    Mostafa, Rasha E; Salama, Abeer A A; Abdel-Rahman, Rehab F; Ogaly, Hanan A

    2017-05-01

    Hepatic encephalopathy (HE) is a neuropsychiatric syndrome that ultimately occurs as a complication of acute or chronic liver failure; accompanied by hyperammonemia. This study aimed to evaluate the potential of biopropolis as a hepato- and neuro-protective agent using thioacetamide (TAA)-induced acute HE in rats as a model. Sixty Wistar rats were divided into 5 groups: Group 1 (normal control) received only saline and paraffin oil. Group 2 (hepatotoxic control) received TAA (300 mg/kg, once). Groups 3, 4, and 5 received TAA followed by vitamin E (100 mg/kg) and biopropolis (100 and 200 mg/kg), respectively, daily for 30 days. Evidences of HE were clearly detected in TAA-hepatotoxic group including significant elevation in the serum level of ammonia, liver functions, increased oxidative stress in liver and brain, apoptotic DNA fragmentation and overexpression of iNOS gene in brain tissue. The findings for groups administered biopropolis, highlighted its efficacy as a hepato- and neuro-protectant through improving the liver functions, oxidative status and DNA fragmentation as well as suppressing the brain expression of iNOS gene. In conclusion, biopropolis, at a dose of 200 mg/kg per day protected against TAA-induced HE through its antioxidant and antiapoptotic influence; therefore, it can be used as a protective natural product.

  15. Protective effect of alprazolam against sleep deprivation-induced behavior alterations and oxidative damage in mice.

    PubMed

    Singh, Anant; Kumar, Anil

    2008-04-01

    Sleep deprivation is considered as a risk factor for various diseases. Sleep deprivation leads to behavioral, hormonal, neurochemical and biochemical alterations in the animals. The present study was designed to explore the possible involvement of GABAergic mechanism in protective effect of alprazolam against 72h sleep deprivation-induced behavior alterations and oxidative damage in mice. In the present study, sleep deprivation caused anxiety-like behavior, weight loss, impaired ambulatory movements and oxidative damage as indicated by increase in lipid peroxidation, nitrite level and depletion of reduced glutathione and catalase activity in sleep-deprived mice brain. Treatment with alprazolam (0.25 and 0.5 mg/kg, ip) significantly improved behavioral alterations. Biochemically, alprazolam treatment significantly restored depleted reduced glutathione, catalase activity, reversed raised lipid peroxidation and nitrite level. Combination of flumazenil (0.5 mg/kg) and picrotoxin (0.5 mg/kg) with lower dose of alprazolam (0.25mg/kg) significantly antagonized protective effect of alprazolam. However, combination of muscimol (0.05 mg/kg) with alprazolam (0.25 mg/kg, ip) potentiated protective effect of alprazolam. On the basis of these results, it might be suggested that alprazolam might produce protective effect by involving GABAergic system against sleep deprivation-induced behavior alterations and related oxidative damage.

  16. Protective effect of crocin on ultraviolet B‑induced dermal fibroblast photoaging.

    PubMed

    Deng, Mingwu; Li, Dong; Zhang, Yichen; Zhou, Guangdong; Liu, Wei; Cao, Yilin; Zhang, Wenjie

    2018-06-11

    Ultraviolet B (UVB) radiation induces the production of reactive oxygen species (ROS), resulting in the aging of dermal fibroblasts. Crocin, a bioactive constituent of Crocus sativus, possesses anti‑oxidation effects. The purpose of the present study was to evaluate the protective effect of crocin on UVB‑induced dermal fibroblast photoaging. Human dermal fibroblasts were isolated and cultured with different concentrations of crocin prior to and following exposure to UVB irradiation. The senescent phenotypes of cells were evaluated, including cell proliferation, cell cycle, senescence‑associated β‑galactosidase (SA‑β‑gal) expression, intracellular ROS, expression of antioxidant protein glutathione peroxidase 1 (GPX‑1) and extracellular matrix protein collagen type 1 (Col‑1). Crocin rescued the cell proliferation inhibited by UVB irradiation, prevented cell cycle arrest and markedly decreased the number of SA‑β‑gal‑positive cells. In addition, crocin reduced UVB‑induced ROS by increasing GPX‑1 expression and other direct neutralization effects. Furthermore, crocin promoted the expression of the extracellular matrix protein Col‑1. Crocin could effectively prevent UVB‑induced cell damage via the reduction of intracellular ROS; thus, it could potentially be used in the prevention of skin photoaging.

  17. Potential protective effect of honey against paracetamol-induced hepatotoxicity.

    PubMed

    Galal, Reem M; Zaki, Hala F; Seif El-Nasr, Mona M; Agha, Azza M

    2012-11-01

    Paracetamol overdose causes severe hepatotoxicity that leads to liver failure in both humans and experimental animals. The present study investigates the protective effect of honey against paracetamol-induced hepatotoxicity in Wistar albino rats. We have used silymarin as a standard reference hepatoprotective drug. Hepatoprotective activity was assessed by measuring biochemical parameters such as the liver function enzymes, serum alanine aminotransferase (ALT) and serum aspartate aminotransferase (AST). Equally, comparative effects of honey on oxidative stress biomarkers such as malondialdyhyde (MDA), reduced glutathione (GSH) and glutathione peroxidase (GPx) were also evaluated in the rat liver homogenates.  We estimated the effect of honey on serum levels and hepatic content of interleukin-1beta (IL-1β) because the initial event in paracetamol-induced hepatotoxicity has been shown to be a toxic-metabolic injury that leads to hepatocyte death, activation of the innate immune response and upregulation of inflammatory cytokines. Paracetamol caused marked liver damage as noted by significant increased activities of serum AST and ALT as well as the level of Il-1β. Paracetamol also resulted in a significant decrease in liver GSH content and GPx activity which paralleled an increase in Il-1β and MDA levels. Pretreatment with honey and silymarin prior to the administration of paracetamol significantly prevented the increase in the serum levels of hepatic enzyme markers, and reduced both oxidative stress and inflammatory cytokines. Histopathological evaluation of the livers also revealed that honey reduced the incidence of paracetamol-induced liver lesions. Honey can be used as an effective hepatoprotective agent against paracetamol-induced liver damage.

  18. Acute Stress-Induced Epigenetic Modulations and Their Potential Protective Role Toward Depression

    PubMed Central

    Rusconi, Francesco; Battaglioli, Elena

    2018-01-01

    Psychiatric disorders entail maladaptive processes impairing individuals’ ability to appropriately interface with environment. Among them, depression is characterized by diverse debilitating symptoms including hopelessness and anhedonia, dramatically impacting the propensity to live a social and active life and seriously affecting working capability. Relevantly, besides genetic predisposition, foremost risk factors are stress-related, such as experiencing chronic psychosocial stress—including bullying, mobbing and abuse—, and undergoing economic crisis or chronic illnesses. In the last few years the field of epigenetics promised to understand core mechanisms of gene-environment crosstalk, contributing to get into pathogenic processes of many disorders highly influenced by stressful life conditions. However, still very little is known about mechanisms that tune gene expression to adapt to the external milieu. In this Perspective article, we discuss a set of protective, functionally convergent epigenetic processes induced by acute stress in the rodent hippocampus and devoted to the negative modulation of stress-induced immediate early genes (IEGs) transcription, hindering stress-driven morphostructural modifications of corticolimbic circuitry. We also suggest that chronic stress damaging protective epigenetic mechanisms, could bias the functional trajectory of stress-induced neuronal morphostructural modification from adaptive to maladaptive, contributing to the onset of depression in vulnerable individuals. A better understanding of the epigenetic response to stress will be pivotal to new avenues of therapeutic intervention to treat depression, especially in light of limited efficacy of available antidepressant drugs. PMID:29904343

  19. Oxidative Stress Response Induced by Butachlor in Zebrafish Embryo/Larvae: The Protective Effect of Vitamin C.

    PubMed

    Xiang, Qingqing; Xu, Bofan; Ding, Yilun; Liu, Xiaoyi; Zhou, Ying; Ahmad, Farooq

    2018-02-01

    The widespread contamination and persistence of the herbicide butachlor in the environment resulted in the exposure of non-target organisms. The present study investigated the toxicity effect of butachlor (1-15 µmol/L) and the protective effect of vitamin C (VC) against butachlor-induced toxicity in zebrafish. It was found that butachlor significantly increased the mortality and malformation rates in a dose-dependent manner, which caused elevation in reactive oxygen species (ROS) and malondialdehyde (MDA) after 72 h exposure. Compared with butachlor treatment group, the protective effect of VC against butachlor-induced toxicity were observed after adding 40, 80 mg/L VC respectively. VC significantly decreased the mortality, malformation rates, ROS, MDA, and normalized antioxidant enzymes activities of zebrafish after 72 h exposure. The result shows VC has mitigative effect on butachlor-induced toxicity and it can be used as an effective antioxidant in aquaculture.

  20. Puerarin protects against CCl4-induced liver fibrosis in mice: possible role of PARP-1 inhibition.

    PubMed

    Wang, Shuai; Shi, Xiao-Lei; Feng, Min; Wang, Xun; Zhang, Zhi-Heng; Zhao, Xin; Han, Bing; Ma, Hu-Cheng; Dai, Bo; Ding, Yi-Tao

    2016-09-01

    Liver fibrosis, which is the pathophysiologic process of the liver due to sustained wound healing in response to chronic liver injury, will eventually progress to cirrhosis. Puerarin, a bioactive isoflavone glucoside derived from the traditional Chinese medicine pueraria, has been reported to have many anti-inflammatory and anti-fibrosis properties. However, the detailed mechanisms are not well studied yet. This study aimed to investigate the effects of puerarin on liver function and fibrosis process in mice induced by CCl4. C57BL/6J mice were intraperitoneally injected with 10% CCl4 in olive oil(2mL/kg) with or without puerarin co-administration (100 and 200mg/kg intraperitoneally once daily) for four consecutive weeks. As indicated by the ameliorative serum hepatic enzymes and the reduced histopathologic abnormalities, the data collected showed that puerarin can protect against CCl4-induced chronic liver injury. Moreover, CCl4-induced development of fibrosis, as evidenced by increasing expression of alpha smooth muscle actin(α-SMA), collagen-1, transforming growth factor (TGF)-β and connective tissue growth factor(CTGF) in liver, were suppressed by puerarin. Possible mechanisms related to these suppressive effects were realized by inhibition on NF-κB signaling pathway, reactive oxygen species(ROS) production and mitochondrial dysfunction in vivo. In addition, these protective inhibition mentioned above were driven by down-regulation of PARP-1 due to puerarin because puerarin can attenuate the PARP-1 expression in CCl4-damaged liver and PJ34, a kind of PARP-1 inhibitor, mimicked puerarin's protection. In conclusion, puerarin played a protective role in CCl4-induced liver fibrosis probably through inhibition of PARP-1 and subsequent attenuation of NF-κB, ROS production and mitochondrial dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Procyanidins protect Fao cells against hydrogen peroxide-induced oxidative stress.

    PubMed

    Roig, Roser; Cascón, Esther; Arola, Lluis; Bladé, Cinta; Salvadó, M Josepa

    2002-08-15

    In this paper, we evaluate the extent to which flavonoids in red wine (catechin, epicatechin, quercetin and procyanidins) protect against hydrogen peroxide-induced oxidative stress in Fao cells. When cells were exposed to H(2)O(2), malondialdehyde (MDA) levels, oxidized glutathione (GSSG) levels and lactate dehydrogenase (LDH) release increased, indicating membrane damage and oxidative stress. All the flavonoids studied, and in particular epicatechin and quercetin, protected the plasma membrane. Only procyanidins lowered MDA levels and LDH leakage, maintained a higher reduced/oxidized glutathione ratio, and increased catalase/superoxide dismutase and glutathione peroxidase/superoxide dismutase ratios, and glutathione reductase and glutathione transferase activities. These results show that the procyanidin mixture has a greater antioxidant effect than the individual flavonoids studied, probably due to its oligomer content and/or the additive/synergistic effect of its compounds. This suggests that the mixture of flavonoids found in wine has a greater effect than individual phenols, which may explain many of the healthy effects attributed to wine.

  2. Protective effect of dammarane sapogenins against chemotherapy-induced myelosuppression in mice.

    PubMed

    Yang, Yanyan; Xu, Shuping; Xu, Qiuxia; Liu, Xinmin; Gao, Yue; Steinmetz, Andre; Wang, Ning; Wang, Tianshan; Qiu, Guosong

    2011-06-01

    Chemotherapy is the most common way to treat malignancies, but myelosuppression, one of its common side-effects, is a formidable problem. The present study described the protective role of dammarane sapogenins (DS), an active fraction from oriental ginseng, on myelosuppression induced by cyclophosphamide (CP) in mice. DS was orally administered at different dosages (37.5, 75, and 150 mg/kg) for 10 d after CP administration (200 mg/kg intraperitoneally). The results showed that DS increased the number of white blood cells (WBC) on day 3 and day 7 (P < 0.05), such that WBC levels were increased by 105.7 ± 29.5% at 75 mg/kg of DS on day 3 (P < 0.05, compared with the CP group). Similar results were observed in red blood cells and platelets in DS-treated groups. The colony-forming assay demonstrated that the depressed numbers of CFU-GM (colony-forming unit-granulocyte and macrophage), CFU-E (colony-forming unit-erythroid), BFU-E (burst-forming unit-erythroid), CFU-Meg (colony-forming unit-megakaryocyte) and CFU-GEMM (colony-forming unit-granulocyte, -erythrocyte, -monocyte and -megakaryocyte) induced by CP were significantly reversed after DS treatment. Moreover, the ameliorative effect of DS on myelosuppression was also observed in the femur by hematoxylin/eosin staining. In DS-treated groups, ConA-induced splenocyte proliferation was enhanced significantly at all the doses (37.5, 75, 150 mg/kg) on day 3 at the rate of 50.3 ± 8.0%, 77.6 ± 8.5% and 44.5 ± 8.4%, respectively, while lipopolysaccharide-induced proliferation was increased mainly on day 7 (P < 0.01), with an increased rate of 39.8 ± 5.6%, 34.9 ± 6.6% and 38.3 ± 7.3%, respectively. The thymus index was also markedly increased by 70.4% and 36.6% at 75 mg/kg on days 3 and 7, respectively, as compared with the CP group. In summary, DS has a protective function against CP-induced myelosuppression. Its mechanism might be related to stimulating hematopoiesis recovery, as well as enhancing the immunological

  3. LPS from Escherichia coli protects against indomethacin-induced gastropathy in rats--role of ATP-sensitive potassium channels.

    PubMed

    Gomes, Antoniella S; Lima, Lívia M F; Santos, Camila L; Cunha, Fernando Q; Ribeiro, Ronaldo A; Souza, Marcellus H L P

    2006-10-10

    The effect of lipopolysaccharide (LPS) in gastric protection has not been elucidated, but ATP-sensitive potassium (K(ATP)) channels are known to be involved in gastric defense. We evaluated the effect of LPS administration on indomethacin-induced gastropathy, and the role of K(ATP) channels in this event. Rats received intravenous (i.v.) LPS administration. After 1/2, 6, 24 or 48 h, indomethacin was injected. 3H later, gastric damage and myeloperoxidase activity were determined. Another group received LPS and 5 h later, glibenclamide, diazoxide or glibenclamide plus diazoxide. After 1 h, the rats received indomethacin and 3 h later, gastric damage and myeloperoxidase activity were evaluated. LPS reduced dose dependently gastric damage and myeloperoxidase activity induced by indomethacin. Glibenclamide reversed this LPS effect on indomethacin-induced gastropathy. Glibenclamide plus diazoxide administration did not change this LPS effect. Thus LPS has a protective effect against indomethacin-induced gastropathy, probably through activation of K(ATP) channels.

  4. Hyperin protects against LPS-induced acute kidney injury by inhibiting TLR4 and NLRP3 signaling pathways

    PubMed Central

    Chunzhi, Gong; Zunfeng, Li; Chengwei, Qin; Xiangmei, Bu; Jingui, Yu

    2016-01-01

    Hyperin is a flavonoid compound derived from Ericaceae, Guttifera, and Celastraceae that has been shown to have various biological effects, such as anti-inflammatory and anti-oxidant effects. However, there is no evidence to show the protective effects of hyperin on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). Therefore, we investigated the protective effects and mechanism of hyperin on LPS-induced AKI in mice. The levels of TNF-α, IL-6, and IL-1β were tested by ELISA. The effects of hyperin on blood urea nitrogen (BUN) and serum creatinine were also detected. In addition, the expression of TLR4, NF-κB, and NLRP3 were detected by western blot analysis. The results showed that hyperin significantly inhibited LPS-induced TNF-α, IL-6, and IL-1β production. The levels of BUN and creatinine were also suppressed by hyperin. Furthermore, LPS-induced TLR4 expression and NF-κB activation were also inhibited by hyperin. In addition, treatment of hyperin dose-dependently inhibited LPS-induced NLRP3 signaling pathway. In conclusion, the results showed that hyperin inhibited LPS-induced inflammatory response by inhibiting TLR4 and NLRP3 signaling pathways. Hyperin has potential application prospects in the treatment of sepsis-induced AKI. PMID:27813491

  5. [Protective effects of polysacchride of Spirulina platensis and Sargassum thunbeergii on vascular of alloxan induced diabetic rats].

    PubMed

    Huang, Zhi-xuan; Mei, Xue-ting; Xu, Dong-hui; Xu, Shi-bo; Lv, Jun-yi

    2005-02-01

    To study the protective effects of polysaccharide of Spirulina platensis and Sargassum thunbeergii on vascular of alloxan (ALX) induced diabetic rats. With the doses of polysaccharide of Spirulina platensis (PSP) and Sargassum thunbeergii (PST) compound (1:1) 12.261, 36.783, 110.349 mg x kg(-1) by i.g. administration to alloxan induced diabetic rats respectively for 6 weeks. Then the blood glucose and the TC, HDL-C, TG, NO, ET in serum were detected. The contraction and relaxation response to NE and ACh in aortic rings of the alloxan induced diabetic rats has been studied. The results showed the compound of PSP and PST could decrease the blood glucose and the TC, TG, NO, ET in serum and increase HDL-C than in the alloxan induced diabetic rats. The contraction responses to NE in aortic rings of the alloxan induced diabetic rats were significantly elevated in the normal rats, and the responses to ACh were significantly lower. PSP and PST compound could significantly lower the responses to NE and significantly elevate the responses to ACh in aortic rings of the alloxan induced diabetic rats. PSP and PST compound could decrease blood glucose and could protect the vascular of alloxan induced diabetic rats.

  6. Resveratrol Confers Protection against Rotenone-Induced Neurotoxicity by Modulating Myeloperoxidase Levels in Glial Cells

    PubMed Central

    Chang, Chi Young; Choi, Dong-Kug; Lee, Dae Kee; Hong, Young Jun; Park, Eun Jung

    2013-01-01

    Myeloperoxidase (MPO) functions as a key molecular component of the host defense system against diverse pathogens. We have previously reported that increased MPO levels and activity is a distinguishing feature of rotenone-exposed glial cells, and that either overactivation or deficiency of MPO leads to pathological conditions in the brain. Here, we provide that modulation of MPO levels in glia by resveratrol confers protective effects on rotenone-induced neurotoxicity. We show that resveratrol significantly reduced MPO levels but did not trigger abnormal nitric oxide (NO) production in microglia and astrocytes. Resveratrol-induced down-regulation of MPO, in the absence of an associated overproduction of NO, markedly attenuated rotenone-triggered inflammatory responses including phagocytic activity and reactive oxygen species production in primary microglia and astrocytes. In addition, impaired responses of primary mixed glia from Mpo −/− mice to rotenone were relieved by treatment with resveratrol. We further show that rotenone-induced neuronal injury, particularly dopaminergic cell death, was attenuated by resveratrol in neuron-glia co-cultures, but not in neurons cultured alone. Similar regulatory effects of resveratrol on MPO levels were observed in microglia treated with MPP+, another Parkinson’s disease-linked neurotoxin, supporting the beneficial effects of resveratrol on the brain. Collectively, our findings provide that resveratrol influences glial responses to rotenone by regulating both MPO and NO, and thus protects against rotenone-induced neuronal injury. PMID:23593274

  7. Disaccharides Protect Antigens from Drying-Induced Damage in Routinely Processed Tissue Sections

    PubMed Central

    Boi, Giovanna; Scalia, Carla Rossana; Gendusa, Rossella; Ronchi, Susanna; Cattoretti, Giorgio

    2015-01-01

    Drying of the tissue section, partial or total, during immunostaining negatively affects both the staining of tissue antigens and the ability to remove previously deposited antibody layers, particularly during sequential rounds of de-staining and re-staining for multiple antigens. The cause is a progressive loss of the protein-associated water up to the removal of the non-freezable water, a step which abolishes the immunoavailability of the epitope. In order to describe and prevent these adverse effects, we tested, among other substances, sugars, which are known to protect unicellular organisms from freezing and dehydration, and stabilize drugs and reagents in solid state form in medical devices. Disaccharides (lactose, sucrose) prevented the air drying-induced antigen masking and protected tissue-bound antigens and antibodies from air drying-induced damage. Complete removal of the bound antibody layers by chemical stripping was permitted if lactose was present during air drying. Lactose, sucrose and other disaccharides prevent air drying artifacts, allow homogeneous, consistent staining and the reuse of formalin-fixed, paraffin-embedded tissue sections for repeated immunostaining rounds by guaranteeing constant staining quality in suboptimal hydration conditions. PMID:26487185

  8. Protective Effect of Sundarban Honey against Acetaminophen-Induced Acute Hepatonephrotoxicity in Rats

    PubMed Central

    Tanvir, E. M.; Gan, Siew Hua; Parvez, Mashud; Aminul Islam, Md.; Khalil, Md. Ibrahim

    2014-01-01

    Honey, a supersaturated natural product of honey bees, contains complex compounds with antioxidant properties and therefore has a wide a range of applications in both traditional and modern medicine. In the present study, the protective effects of Sundarban honey from Bangladesh against acetaminophen- (APAP-) induced hepatotoxicity and nephrotoxicity in experimental rats were investigated. Adult male Wistar rats were pretreated with honey (5 g/kg) for 4 weeks, followed by the induction of hepatotoxicity and nephrotoxicity via the oral administration of a single dose of APAP (2 g/kg). Organ damage was confirmed by measuring the elevation of serum alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST), total protein (TP), total bilirubin (TB), urea, creatinine, and malondialdehyde (MDA). Histopathological alterations observed in the livers and the kidneys further confirmed oxidative damage to these tissues. Animals pretreated with Sundarban honey showed significantly markedly reduced levels of all of the investigated parameters. In addition, Sundarban honey ameliorated the altered hepatic and renal morphology in APAP-treated rats. Overall, our findings indicate that Sundarban honey protects against APAP-induced acute hepatic and renal damage, which could be attributed to the honey's antioxidant properties. PMID:25530774

  9. Proanthocyanidin-rich date seed extract protects against chemically induced hepatorenal toxicity.

    PubMed

    Ahmed, Atallah F; Al-Qahtani, Jawaher H; Al-Yousef, Hanan M; Al-Said, Mansour S; Ashour, AbdelKader E; Al-Sohaibani, Mohammed; Rafatullah, Syed

    2015-03-01

    A hydroacetone extract was prepared from seeds of Phoenix dactylifera L. var. Khalas, which is an industrial by-product of date processing. The proanthocyanidin nature of the extract (coded as DTX) was characterized by phytochemical and nuclear magnetic resonance (NMR) analyses. The total phenol/proanthocyanidin content and antioxidant activity of DTX were estimated by Folin-Ciocalteu, vanillin-sulfuric acid, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays, respectively. The hepatorenal protective activity of DTX was evaluated using CCl4-induced toxicity model in rats, in comparison with silymarin (SYL). Results of the histopathological examination and measurements of various hepatorenal serum indices and tissue biochemical markers demonstrated that DTX displayed marked protective potential against CCl4-induced liver and kidney injury at 100 mg/kg/rat. Relative to the control CCl4-intoxicated group, pretreatment with DTX significantly (P<.001) suppressed the elevated serum levels of alanine aminotransferase and aspartate aminotransferase (ALT and AST), alkaline phosphatase (ALP), γ-glutamyl transferase (GGT), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), bilirubin, creatinine, and calcium, whereas it significantly (P<.001) increased the diminished serum levels of high-density lipoprotein cholesterol (HDL-C) and total protein (TP). Moreover, DTX significantly decreased malondialdehyde (MDA) formation and increased TP synthesis in hepatorenal tissues compared with the intoxicated control. The improvement in biochemical parameters by DTX was observed in a dose-dependent manner and confirmed by restoration of normal histological features. The acute toxicity test of DTX in rats revealed safety of the extract. This study reveals that DTX enhances the recovery from xenobiotics-induced toxicity initiated by free radicals.

  10. Type I collagen gel protects murine fibrosarcoma L929 cells from TNFα-induced cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hong-Ju; He, Wen-Qi; Chen, Ling

    Murine fibrosarcoma L929 cells have been used to test efficacy of proinflammatory cytokine TNFα. In the present study, we reported on protective effect of type I collagen gel used as L929 cell culture. L929 cell grew and proliferated well on collagen gel. However, the L929 cells exhibited cobblestone-like morphology which was much different from the spread fusiform shape when cultured on conventional cell dishes as well as the cells tended to aggregate. On conventional cell culture dishes, the cells treated with TNFα became round in shape and eventually died in a necroptotic manner. The cells cultured on collagen gel, however,more » were completely unaffected. TNFα treatment was reported to induce autophagy in L929 cells on the plastic dish, and therefore we investigated the effect of collagen gel on induction of autophagy. The results indicated that autophagy induced by TNFα treatment was much reduced when the cells were cultured on collagen gel. In conclusion, type I collagen gel protected L929 cell from TNFα-induced cell death. - Highlights: • Collagen gel culture changed the morphology of L929 cells. • L929 cell cultured on collagen gel were resistant to TNFα-induced cell death. • Collagen gel culture inhibited TNFα-induced autophagy in L929 cells.« less

  11. Quercetin protects human peripheral blood mononuclear cells from OTA-induced oxidative stress, genotoxicity, and inflammation.

    PubMed

    Periasamy, Ramyaa; Kalal, Iravathy Goud; Krishnaswamy, Rajashree; Viswanadha, VijayaPadma

    2016-07-01

    Ochratoxin A (OTA) is one of the most abundant food-contaminating mycotoxins world wide, and is detrimental to human and animal health. This study evaluated the protective effect of quercetin against OTA-induced cytotoxicity, genotoxicity, and inflammatory response in lymphocytes. Cytotoxicity determined by MTT assay revealed IC20 value of OTA to be 20 µM, which was restored to near control values by pretreatment with quercetin. Oxidative stress parameters such as antioxidant enzymes, LPO and PCC levels indicated that quercetin exerted a protective effect on OTA-induced oxidative stress. Quercetin exerted an antigenotoxic effect on OTA-induced genotoxicity, by significantly reducing the number of structural aberrations in chromosomes and comet parameters like, % olive tail moment from 2.76 ± 0.02 to 0.56 ± 0.02 and % tail DNA from 56.23 ± 2.56 to 12.36 ± 0.56 as determined by comet assay. OTA-induced NO, TNF-α, IL-6, and IL-8 were significantly reduced in the quercetin pretreated samples indicating its anti-inflammatory role. Our results demonstrate for the first time that quercetin exerts a cytoprotective effect against OTA-induced oxidative stress, genotoxicity, and inflammation in lymphocytes. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 855-865, 2016. © 2014 Wiley Periodicals, Inc.

  12. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced hepatic steatosis by suppressing hepatic PPAR-γ expression.

    PubMed

    Mwangi, Simon Musyoka; Peng, Sophia; Nezami, Behtash Ghazi; Thorn, Natalie; Farris, Alton B; Jain, Sanjay; Laroui, Hamed; Merlin, Didier; Anania, Frank; Srinivasan, Shanthi

    2016-01-15

    Glial cell line-derived neurotrophic factor (GDNF) protects against high-fat diet (HFD)-induced hepatic steatosis in mice, however, the mechanisms involved are not known. In this study we investigated the effects of GDNF overexpression and nanoparticle delivery of GDNF in mice on hepatic steatosis and fibrosis and the expression of genes involved in the regulation of hepatic lipid uptake and de novo lipogenesis. Transgenic overexpression of GDNF in liver and other metabolically active tissues was protective against HFD-induced hepatic steatosis. Mice overexpressing GDNF had significantly reduced P62/sequestosome 1 protein levels suggestive of accelerated autophagic clearance. They also had significantly reduced peroxisome proliferator-activated receptor-γ (PPAR-γ) and CD36 gene expression and protein levels, and lower expression of mRNA coding for enzymes involved in de novo lipogenesis. GDNF-loaded nanoparticles were protective against short-term HFD-induced hepatic steatosis and attenuated liver fibrosis in mice with long-standing HFD-induced hepatic steatosis. They also suppressed the liver expression of steatosis-associated genes. In vitro, GDNF suppressed triglyceride accumulation in Hep G2 cells through enhanced p38 mitogen-activated protein kinase-dependent signaling and inhibition of PPAR-γ gene promoter activity. These results show that GDNF acts directly in the liver to protect against HFD-induced cellular stress and that GDNF may have a role in the treatment of nonalcoholic fatty liver disease.

  13. Protective effects of epigallocatechin gallate (EGCG) on streptozotocin-induced diabetic nephropathy in mice.

    PubMed

    Yoon, Sang Pil; Maeng, Young Hee; Hong, Ran; Lee, Byung Rai; Kim, Chong Gue; Kim, Hyun Lee; Chung, Jong Hoon; Shin, Byung Chul

    2014-10-01

    There is increasing evidence suggesting that antioxidants in green tea extracts may protect kidneys on the progression of end-stage renal disease. We investigated the protective impacts of (-)-epigallocatechin 3-O-gallate (EGCG) against streptozotocin (STZ)-induced diabetic nephropathy in mice. The mice were divided into 5 groups (n=10 per group): control (saline, i.p.), STZ (200mg/kg, i.p.), EGCG50 (50mg/kg, S.Q.), EGCG100 (100mg/kg, S.Q.), and EGCG200 (200mg/kg, S.Q.). Animals were sacrificed at scheduled times after EGCG administration and then quantitative and qualitative analysis were performed. Compared with the control group, the STZ group showed an increase in levels of blood glucose, blood urea nitrogen, creatinine and urine protein amounts with a decrease in body weight. All the above parameters were significantly reversed with EGCG treatment, especially in the EGCG100 group. After STZ injection, there was a mesangial proliferation with increased renal osteopontin accumulation and its protein expression in the glomeruli and the proximal tubules. Mice kidneys after EGCG-treatment showed a reduced expression of above parameters and relatively improved histopathological findings. These results indicated that EGCG 100mg/kg might provide an effective protection against STZ-induced diabetic nephropathy in mice by osteopontin suppression. Copyright © 2014 Elsevier GmbH. All rights reserved.

  14. Protective effect of the edible brown alga Ecklonia stolonifera on doxorubicin-induced hepatotoxicity in primary rat hepatocytes.

    PubMed

    Jung, Hyun Ah; Kim, Jae-I; Choung, Se Young; Choi, Jae Sue

    2014-08-01

    As part of our efforts to isolate anti-hepatotoxic agents from marine natural products, we screened the ability of 14 edible varieties of Korean seaweed to protect against doxorubicin-induced hepatotoxicity in primary rat hepatocytes. Among the crude extracts of two Chlorophyta (Codium fragile and Capsosiphon fulvescens), seven Phaeophyta (Undaria pinnatifida, Sargassum thunbergii, Pelvetia siliquosa, Ishige okamurae, Ecklonia cava, Ecklonia stolonifera and Eisenia bicyclis), five Rhodophyta (Chondrus ocellatus, Gelidium amansii, Gracilaria verrucosa, Symphycladia latiuscula and Porphyra tenera), and the extracts of Ecklonia stolonifera, Ecklonia cava, Eisenia bicyclis and Pelvetia siliquosa exhibited significant protective effects on doxorubicin-induced hepatotoxicity, with half maximal effective concentration (EC50) values of 2.0, 2.5, 3.0 and 15.0 μg/ml, respectively. Since Ecklonia stolonifera exhibits a significant protective potential and is frequently used as foodstuff, we isolated six phlorotannins, including phloroglucinol (1), dioxinodehydroeckol (2), eckol (3), phlorofucofuroeckol A (4), dieckol (5) and triphloroethol-A (6). Phlorotannins 2 ∼ 6 exhibited potential protective effects on doxorubicin-induced hepatotoxicity, with corresponding EC50 values of 3.4, 8.3, 4.4, 5.5 and 11.5 μg/ml, respectively. The results clearly demonstrated that the anti-hepatotoxic effects of Ecklonia stolonifera and its isolated phlorotannins are useful for further exploration and development of therapeutic modalities for treatment of hepatotoxicity. © 2014 Royal Pharmaceutical Society.

  15. Understanding Key Mechanisms of Exercise-Induced Cardiac Protection to Mitigate Disease: Current Knowledge and Emerging Concepts.

    PubMed

    Bernardo, Bianca C; Ooi, Jenny Y Y; Weeks, Kate L; Patterson, Natalie L; McMullen, Julie R

    2018-01-01

    The benefits of exercise on the heart are well recognized, and clinical studies have demonstrated that exercise is an intervention that can improve cardiac function in heart failure patients. This has led to significant research into understanding the key mechanisms responsible for exercise-induced cardiac protection. Here, we summarize molecular mechanisms that regulate exercise-induced cardiac myocyte growth and proliferation. We discuss in detail the effects of exercise on other cardiac cells, organelles, and systems that have received less or little attention and require further investigation. This includes cardiac excitation and contraction, mitochondrial adaptations, cellular stress responses to promote survival (heat shock response, ubiquitin-proteasome system, autophagy-lysosomal system, endoplasmic reticulum unfolded protein response, DNA damage response), extracellular matrix, inflammatory response, and organ-to-organ crosstalk. We summarize therapeutic strategies targeting known regulators of exercise-induced protection and the challenges translating findings from bench to bedside. We conclude that technological advancements that allow for in-depth profiling of the genome, transcriptome, proteome and metabolome, combined with animal and human studies, provide new opportunities for comprehensively defining the signaling and regulatory aspects of cell/organelle functions that underpin the protective properties of exercise. This is likely to lead to the identification of novel biomarkers and therapeutic targets for heart disease.

  16. Protective Effect of 4-(3,4-Dihydroxyphenyl)-3-Buten-2-One from Phellinus linteus on Naproxen-Induced Gastric Antral Ulcers in Rats.

    PubMed

    Kim, Jeong-Hwan; Kwon, Hyun Ju; Kim, Byung Woo

    2016-05-28

    The present study investigated the protective effect of naturally purified 4-(3,4- dihydroxyphenyl)-3-buten-2-one (DHP) from Phellinus linteus against naproxen-induced gastric antral ulcers in rats. To verify the protective effect of DHP on naproxen-induced gastric antral ulcers, various doses (1, 5, and 10 μg/kg) of DHP were pretreated for 3 days, and then gastric damage was caused by 80 mg/kg naproxen applied for 3 days. DHP prevented naproxen-induced gastric antral ulcers in a dose-dependent manner. In particular, 10 μg/kg DHP showed the best protective effect against naproxen-induced gastric antral ulcers. Moreover, DHP significantly attenuated the naproxen-induced lipid peroxide level in gastric mucosa and increased the activities of radical scavenging enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, in a dose-dependent manner. A histological examination clearly demonstrated that the gastric antral ulcer induced by naproxen nearly disappeared after the pretreatment of DHP. These results suggest that DHP can inhibit naproxen-induced gastric antral ulcers through prevention of lipid peroxidation and activation of radical scavenging enzymes.

  17. Yersinia pestis with regulated delayed attenuation as a vaccine candidate to induce protective immunity against plague.

    PubMed

    Sun, Wei; Roland, Kenneth L; Kuang, Xiaoying; Branger, Christine G; Curtiss, Roy

    2010-03-01

    Two mutant strains of Yersinia pestis KIM5+, a Deltacrp mutant and a mutant with arabinose-dependent regulated delayed-shutoff crp expression (araC P(BAD) crp), were constructed, characterized in vitro, and evaluated for virulence, immunogenicity, and protective efficacy in mice. Both strains were highly attenuated by the subcutaneous (s.c.) route. The 50% lethal doses (LD(50)s) of the Deltacrp and araC P(BAD) crp mutants were approximately 1,000,000-fold and 10,000-fold higher than those of Y. pestis KIM5+, respectively, indicating that both strains were highly attenuated. Mice vaccinated s.c. with 3.8 x 10(7) CFU of the Deltacrp mutant developed high anti-Y. pestis and anti-LcrV serum IgG titers, both with a strong Th2 bias, and induced protective immunity against subcutaneous challenge with virulent Y. pestis (80% survival) but no protection against pulmonary challenge. Mice vaccinated with 3.0 x 10(4) CFU of the araC P(BAD) crp mutant also developed high anti-Y. pestis and anti-LcrV serum IgG titers but with a more balanced Th1/Th2 response. This strain induced complete protection against s.c. challenge and partial protection (70% survival) against pulmonary challenge. Our results demonstrate that arabinose-dependent regulated crp expression is an effective strategy to attenuate Y. pestis while retaining strong immunogenicity, leading to protection against the pneumonic and bubonic forms of plague.

  18. Tualang honey protects keratinocytes from ultraviolet radiation-induced inflammation and DNA damage.

    PubMed

    Ahmad, Israr; Jimenez, Hugo; Yaacob, Nik Soriani; Yusuf, Nabiha

    2012-01-01

    Malaysian tualang honey possesses strong antioxidant and anti-inflammatory properties. Here, we evaluated the effect of tualang honey on early biomarkers of photocarcinogenesis employing PAM212 mouse keratinocyte cell line. Keratinocytes were treated with tualang honey (1.0%, v/v) before a single UVB (150 mJ cm(-2) ) irradiation. We found that the treatment of tualang honey inhibited UVB-induced DNA damage, and enhanced repair of UVB-mediated formation of cyclobutane pyrimidine dimers and 8-oxo-7,8-dihydro-2'-deoxyguanosine. Treatment of tualang honey inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in murine keratinocyte cell line. The treatment of tualang honey also inhibited UVB-induced inflammatory cytokines and inducible nitric oxide synthase protein expression. Furthermore, the treatment of tualang honey inhibited UVB-induced COX-2 expression and PGE2 production. Taken together, we provide evidence that the treatment of tualang honey to keratinocytes affords substantial protection from the adverse effects of UVB radiation via modulation in early biomarkers of photocarcinogenesis and provide suggestion for its photochemopreventive potential. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  19. Protective efficacy of 2-PAMCl, atropine and curcumin against dichlorvos induced toxicity in rats

    PubMed Central

    Yadav, Preeti; Jadhav, Sunil E.; Kumar, Vinesh; Kaul, Kirtee K.; Pant, Satish C.; Flora, Swaran J.S.

    2012-01-01

    The effect of 2- pyridine aldoxime methyl chloride (2-PAMCl) and atropine with or without curcumin was investigated in dichlorvos (2,2-dichlorovinyl dimethyl phosphate; DDVP) induced toxicity in rats. Rats were exposed to DDVP (2 mg/kg sub-cutaneously) once daily for the period of 21 days. Post DDVP exposure, rats were further treated with 2-PAMCl (50 mg/kg intramuscular, once daily) + atropine (10 mg/kg, i.m. once daily) with or without curcumin (200 mg/kg; oral; once daily) for further 21 days. We observed a significant increase in lipid peroxidation (LPO), reactive oxygen species (ROS), oxidized glutathione (GSSG), while there was a significant decrease in antioxidant enzymes, brain acetylcholinesterase (AChE) and 5-hydroxy tryptamine (5-HT) activity on DDVP exposure of rats. These alterations were restored significantly by co-administration of 2-PAMCl + atropine in DDVP exposed rats. Curcumin when co-supplemented with 2-PAMCl + atropine also significantly protected serum aspartate aminotransferase (AST) and restored brain AChE activity and 5-HT level in animals sub-chronically exposed to DDVP. Histopathological observations along with biochemical changes in rat blood and tissues revealed significant protection offered by 2-PAMCl + atropine against DDVP. The results indicate that DDVP-induced toxicity can be significantly protected by co-administration of 2-PAMCl + atropine individually, however, curcumin co-supplementation with 2-PAMCl + atropine provides more pronounced protection, concerning particularly neurological disorders. PMID:22783142

  20. [Protective effect of amlodipine on the cytotoxicity induced by contrast media in human kidney cells].

    PubMed

    Zhou, Xiao-rong; Duan, Shao-bin; Peng, You-ming; Liu, Fu-you; Ye, Yun; Liu, Rui-hong; Li, Gui-yuan

    2007-10-01

    To explore the protective effect of amlodipine on the cytotoxicity induced by contrast media (meglumine diatrizoate) in human kidney cells (HKC). An HKC line was used. The experiment was divided into 4 groups: a model group (diatrizoate 111g/L), a prevention group (diatrizoate 111g/L+amlodipine 10(-5)mol/L), an amlodipine control group (amlodipine 10(-5)mol/L), and a culture medium control group (simple none blood serum DMEM-F12 medium). Cytotoxicity induced by meglumine diatrizoate was analysed by methyl thiazolyl tetrazolium (MTT) test, lactate dehydrogenase (LDH) assay, Hochest33258 fluorescence stained cytospins, and flow cytometric DNA analysis. The protein expression of Bax was determined by Western blot, and caspase-3 activity was examined by fluorometric method. In the prevention group, the cell viability increased significantly (P<0.05), LDH levels decreased (P<0.05), and the apoptosis was lower than that of the model group (P<0.05) .Bax protein expression and caspase 3 activity decreased (P<0.05). Amlodipine can inhibit the HKC apoptosis and protect the renal tubule cell from injury induced by meglumine diatrizoate.

  1. rBCG30-Induced Immunity and Cross-Protection against Mycobacterium leprae Challenge Are Enhanced by Boosting with the Mycobacterium tuberculosis 30-Kilodalton Antigen 85B

    PubMed Central

    Gillis, Thomas P.; Tullius, Michael V.

    2014-01-01

    Leprosy remains a major global health problem and typically occurs in regions in which tuberculosis is endemic. Vaccines are needed that protect against both infections and do so better than the suboptimal Mycobacterium bovis BCG vaccine. Here, we evaluated rBCG30, a vaccine previously demonstrated to induce protection superior to that of BCG against Mycobacterium tuberculosis and Mycobacterium bovis challenge in animal models, for efficacy against Mycobacterium leprae challenge in a murine model of leprosy. rBCG30 overexpresses the M. tuberculosis 30-kDa major secretory protein antigen 85B, which is 85% homologous with the M. leprae homolog (r30ML). Mice were sham immunized or immunized intradermally with BCG or rBCG30 and challenged 2.5 months later by injection of viable M. leprae into each hind footpad. After 7 months, vaccine efficacy was assessed by enumerating the M. leprae bacteria per footpad. Both BCG and rBCG30 induced significant protection against M. leprae challenge. In the one experiment in which a comparison between BCG and rBCG30 was feasible, rBCG30 induced significantly greater protection than did BCG. Immunization of mice with purified M. tuberculosis or M. leprae antigen 85B also induced protection against M. leprae challenge but less so than BCG or rBCG30. Notably, boosting rBCG30 with M. tuberculosis antigen 85B significantly enhanced r30ML-specific immune responses, substantially more so than boosting BCG, and significantly augmented protection against M. leprae challenge. Thus, rBCG30, a vaccine that induces improved protection against M. tuberculosis, induces cross-protection against M. leprae that is comparable or potentially superior to that induced by BCG, and boosting rBCG30 with antigen 85B further enhances immune responses and protective efficacy. PMID:25001602

  2. rBCG30-induced immunity and cross-protection against Mycobacterium leprae challenge are enhanced by boosting with the Mycobacterium tuberculosis 30-kilodalton antigen 85B.

    PubMed

    Gillis, Thomas P; Tullius, Michael V; Horwitz, Marcus A

    2014-09-01

    Leprosy remains a major global health problem and typically occurs in regions in which tuberculosis is endemic. Vaccines are needed that protect against both infections and do so better than the suboptimal Mycobacterium bovis BCG vaccine. Here, we evaluated rBCG30, a vaccine previously demonstrated to induce protection superior to that of BCG against Mycobacterium tuberculosis and Mycobacterium bovis challenge in animal models, for efficacy against Mycobacterium leprae challenge in a murine model of leprosy. rBCG30 overexpresses the M. tuberculosis 30-kDa major secretory protein antigen 85B, which is 85% homologous with the M. leprae homolog (r30ML). Mice were sham immunized or immunized intradermally with BCG or rBCG30 and challenged 2.5 months later by injection of viable M. leprae into each hind footpad. After 7 months, vaccine efficacy was assessed by enumerating the M. leprae bacteria per footpad. Both BCG and rBCG30 induced significant protection against M. leprae challenge. In the one experiment in which a comparison between BCG and rBCG30 was feasible, rBCG30 induced significantly greater protection than did BCG. Immunization of mice with purified M. tuberculosis or M. leprae antigen 85B also induced protection against M. leprae challenge but less so than BCG or rBCG30. Notably, boosting rBCG30 with M. tuberculosis antigen 85B significantly enhanced r30ML-specific immune responses, substantially more so than boosting BCG, and significantly augmented protection against M. leprae challenge. Thus, rBCG30, a vaccine that induces improved protection against M. tuberculosis, induces cross-protection against M. leprae that is comparable or potentially superior to that induced by BCG, and boosting rBCG30 with antigen 85B further enhances immune responses and protective efficacy. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Protective effect of scutellarin on myocardial infarction induced by isoprenaline in rats

    PubMed Central

    Huang, Haibo; Geng, Qianqian; Yao, Hong; Shen, Zhenhuang; Wu, Zhenhong; Miao, Xiaoqing; Shi, Peiying

    2018-01-01

    Objective(s): Scutellarin (Scu) is the main effective constituent of Erigeron breviscapus which has anti-oxidant, anti-apoptotic, anti-inflammatory and other therapeutic properties. The purpose of this study was to investigate the protective effect of Scu on myocardial infarction (MI) induced by isoprenaline (ISO). Materials and Methods: The rats were subcutaneously injected with ISO (45 mg/kg) on the first day, then single tail-intravenously injected with different doses of Scu (10 mg/kg, 20 mg/kg, 40 mg/kg) for 7 consecutive days. The protective effect of Scu on ISO-induced MI was evaluated by measuring markers of heart injury in serum, levels of lipid peroxidation, and antioxidants in heart tissue, observing pathological changes of tissue, and detecting quantified expression of apoptotic-related family members and inflammation. Results: Compared with the model group, the concentration of troponin T (CTn-T) and troponin I (CTn-I), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) in the serum all decreased in the Scu high dose group. The activities of superoxide dismutase (SOD), catalase (CAT), and the content of reduced glutathione (GSH) in heart increased, and the content of malondialdehyde (MDA) and inducible nitric oxide synthase (iNOS) decreased. In addition, the histopathologic aspects showed that pathological heart change was found in the model group, and was reduced to varying degrees in the Scu group. Moreover, the expression of Bax, P53, Caspase3, Caspase9, cytochrome C, NGAL, NFκB, IL-1β and IL-6 in the heart decreased, while the expression of Bcl2 increased. Conclusion: Scu could reduce the degree of MI induced by ISO by improving the antioxidant, anti-apoptotic, and anti-inflammatory capacities of the body. PMID:29511493

  4. 9-Cis retinoic acid protects against methamphetamine-induced neurotoxicity in nigrostriatal dopamine neurons.

    PubMed

    Reiner, David J; Yu, Seong-Jin; Shen, Hui; He, Yi; Bae, Eunkyung; Wang, Yun

    2014-04-01

    Methamphetamine (MA) is a drug of abuse as well as a dopaminergic neurotoxin. 9-Cis retinoic acid (9cRA), a biologically active derivative of vitamin A, has protective effects against damage caused by H(2)O(2) and oxygen-glucose deprivation in vitro as well as infarction and terminal deoxynucleotidyl transferase-mediated dNTP nick-end labeling (TUNEL) labeling in ischemic brain. The purpose of this study was to examine if there was a protective role for 9cRA against MA toxicity in nigrostriatal dopaminergic neurons. Primary dopaminergic neurons, prepared from rat embryonic ventral mesencephalic tissue, were treated with MA. High doses of MA decreased tyrosine hydroxylase (TH) immunoreactivity while increasing TUNEL labeling. These toxicities were significantly reduced by 9cRA. 9cRA also inhibited the export of Nur77 from nucleus to cytosol, a response that activates apoptosis. The interaction of 9cRA and MA in vivo was next examined in adult rats. 9cRA was delivered intracerebroventricularly; MA was given (5 mg/kg, 4×) one day later. Locomotor behavior was measured 2 days after surgery for a period of 48 h. High doses of MA significantly reduced locomotor activity and TH immunoreactivity in striatum. Administration of 9cRA antagonized these changes. Previous studies have shown that 9cRA can induce bone morphogenetic protein-7 (BMP7) expression and that administration of BMP7 attenuates MA toxicity. We demonstrated that MA treatment significantly reduced BMP7 mRNA expression in nigra. Noggin (a BMP antagonist) antagonized 9cRA-induced behavioral recovery and 9cRA-induced normalization of striatal TH levels. Our data suggest that 9cRA has a protective effect against MA-mediated neurodegeneration in dopaminergic neurons via upregulation of BMP.

  5. 9-cis retinoic acid protects against methamphetamine-induced neurotoxicity in nigrostriatal dopamine neurons

    PubMed Central

    Reiner, David J; Yu, Seong-Jin; Shen, Hui; He, Yi; Bae, Eunkyung; Wang, Yun

    2013-01-01

    Methamphetamine (MA) is a drug of abuse as well as a dopaminergic neurotoxin. 9-cis retinoic acid (9cRA), a biologically active derivative of vitamin A, has protective effects against damage caused by H2O2 and oxygen-glucose deprivation in vitro as well as infarction and TUNEL labeling in ischemic brain. The purpose of this study was to examine if there was a protective role for 9cRA against MA toxicity in nigrostriatal dopaminergic neurons. Primary dopaminergic neurons, prepared from rat embryonic ventral mesencephalic tissue, were treated with MA. High doses of MA decreased tyrosine hydroxylase (TH) immunoreactivity while increasing TUNEL labeling. These toxicities were significantly reduced by 9cRA. 9cRA also inhibited the export of Nur77 from nucleus to cytosol, a response that activates apoptosis. The interaction of 9cRA and MA in vivo was next examined in adult rats. 9cRA was delivered intracerebroventricularly; MA was given (5 mg/kg, 4x) one day later. Locomotor behavior was measured two days after surgery for a period of 48 hours. High doses of MA significantly reduced locomotor activity and TH immunoreactivity in striatum. Administration of 9cRA antagonized these changes. Previous studies have shown that 9cRA can induce bone morphogenetic protein-7 (BMP7) expression and that administration of BMP7 attenuates MA toxicity. We demonstrated that MA treatment significantly reduced BMP7 mRNA expression in nigra. Noggin (a BMP antagonist) antagonized 9cRA-induced behavioral recovery and 9cRA-induced normalization of striatal TH levels. Our data suggest that 9cRA has a protective effect against MA -mediated neurodegeneration in dopaminergic neurons via upregulation of BMP. PMID:23884514

  6. A brain-targeted ampakine compound protects against opioid-induced respiratory depression.

    PubMed

    Dai, Wei; Xiao, Dian; Gao, Xiang; Zhou, Xin-Bo; Fang, Tong-Yu; Yong, Zheng; Su, Rui-Bin

    2017-08-15

    The use of opioid drugs for pain relief can induce life-threatening respiratory depression. Although naloxone effectively counteracts opioid-induced respiratory depression, it diminishes the efficacy of analgesia. Our studies indicate that ampakines, in particular, a brain-targeted compound XD-8-17C, are able to reverse respiratory depression without affecting analgesia at relatively low doses. Mice and rats were subcutaneously or intravenously injected with the opioid agonist TH-030418 to induce moderate or severe respiratory depression. XD-8-17C was intravenously administered before or after TH-030418. The effect of XD-8-17C on opioid-induced respiratory depression was evaluated in terms of the opioid-induced acute death rate, arterial blood gas analysis and pulmonary function tests. In addition, the hot-plate test was conducted to investigate whether XD-8-17C influenced opioid-induced analgesia. Pre-treatment with XD-8-17C significantly reduced opioid-induced acute death, and increased the median lethal dose of TH-030418 by 4.7-fold. Blood gas analysis and pulmonary function tests demonstrated that post-treatment with XD-8-17C alleviated respiratory depression, as indicated by restoration of arterial blood gas (pO 2 , sO 2 , cK + ) and lung function parameters (respiratory frequency, minute ventilation) to the normal range. The hot-plate test showed that XD-8-17C had no impact on the antinociceptive efficacy of morphine. The ability of XD-8-17C to reverse opioid-induced respiratory depression has the potential to increase the safety and convenience of opioid treatment. These findings contribute to the discovery of novel therapeutic agents that protect against opioid-induced respiratory depression without loss of analgesia. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Protective effects of α-mangostin against acetaminophen-induced acute liver injury in mice.

    PubMed

    Fu, Tianhua; Wang, Shijie; Liu, Jinping; Cai, Enbo; Li, Haijun; Li, Pingya; Zhao, Yan

    2018-05-15

    The purpose of this study was to evaluate the protective effects of α-mangostin against acetaminophen (APAP)-induced acute liver injury and discover its potential mechanisms in mice. Mice were continuously treated with α-mangostin (12.5 and 25 mg/kg) by intragastric administration once daily for 6 days, and injected intraperitoneally with APAP (300 mg/kg) after 1 h of α-mangostin administration on the last day. After APAP exposure for 24 h, the liver and serum were gathered to evaluate the hepatotoxicity. The results showed that α-mangostin effectively decreased the serum levels of alanine aminotransferase, aspartate transaminase, tumor necrosis factor (TNF-α), interleukin-1β and 6 (IL-1β, IL-6), and hepatic malondialdehyde level; and recovered hepatic glutathione (GSH), superoxide dismutase and catalase activities. Liver histopathological observation provided further evidence that α-mangostin pretreatment significantly inhibited APAP-induced hepatocellular necrosis, infiltration of inflammatory cell and hyperemia. According to the analysis of western-blot and RT-PCR detection, α-mangostin pretreatment validly inhibited the phosphorylation of ERK, JNK and p38 MAPK induced by APAP, which was consistent with the changes of TNF-α, IL-6 and IL-1β levels; the phosphorylation of IκBα and the translocation of NF-κBp65 were also attenuated by α-mangostin. These results provided a new mechanism for the protective effects of α-mangostin against APAP-induced acute liver injury. α-Mangostin significantly restrainted the oxidative stress induced by APAP. Moreover, the anti-inflammatory property of α-mangostin, which is mediated by the NF-κB and MAPK signaling pathways, also contributed to its hepatoprotective effect. Taken together, we believed that α-mangostin might be a potential material for drug development against drug-related hepatotoxicity. Copyright © 2018. Published by Elsevier B.V.

  8. Protective effect of T-type calcium channel blocker flunarizine on cisplatin-induced death of auditory cells.

    PubMed

    So, Hong-Seob; Park, Channy; Kim, Hyung-Jin; Lee, Jung-Han; Park, Sung-Yeol; Lee, Jai-Hyung; Lee, Zee-Won; Kim, Hyung-Min; Kalinec, Federico; Lim, David J; Park, Raekil

    2005-06-01

    Changes in intracellular Ca2+ level are involved in a number of intracellular events, including triggering of apoptosis. The role of intracellular calcium mobilization in cisplatin-induced hair cell death, however, is still unknown. In this study, the effect of calcium channel blocker flunarizine (Sibelium), which is used to prescribe for vertigo and tinnitus, on cisplatin-induced hair cell death was investigated in a cochlear organ of Corti-derived cell line, HEI-OC1, and the neonatal (P2) rat organ of Corti explant. Cisplatin induced apoptotic cell death showing nuclear fragmentation, DNA ladder, and TUNEL positive in both HEI-OC1 and primary organ of Corti explant. Flunarizine significantly inhibited the cisplatin-induced apoptosis. Unexpectedly, flunarizine increased the intracellular calcium ([Ca2+]i) levels of HEI-OC1. However, the protective effect of flunarizine against cisplatin was not mediated by modulation of intracellular calcium level. Treatment of cisplatin resulted in ROS generation and lipid peroxidation in HEI-OC1. Flunarizine did not attenuate ROS production but inhibited lipid peroxidation and mitochondrial permeability transition in cisplatin-treated cells. This result suggests that the protective mechanism of flunarizine on cisplatin-induced cytotoxicity is associated with direct inhibition of lipid peroxidation and mitochondrial permeability transition.

  9. GENO PROTECTIVE AND ANTI-APOPTOTIC EFFECT OF GREEN TEA AGAINST PERINATAL LIPOPOLYSACCHARIDE-EXPOSURE INDUCED LIVER TOXICITY IN RAT NEWBORNS

    PubMed Central

    Allam, Ahmed A.; Gabr, Sami A.; Ajarem, Jamaan; Alghadir, Ahmad H.; Sekar, Revathi; Chow, Billy KC

    2017-01-01

    Background: This study aims to examine the protective effect of green tea on the disturbances in oxidative stress and apoptosis related factors, mostly produced due to perinatal lipopolysaccharide (LPS) exposure, that subsequently induces liver cell damage. Materials and Methods: Anti-free radical, Antioxidant, scavenging, geno-protective, and antiapoptotic activity of aqueous green tea extract (AGTE) were assessed against LPS-induced hepatic dysfunction in newborn-rats. AGTE at doses of 100 & 200 mg/kg was orally administered daily to rat dams, during gestation and lactation. Results: AGTE was observed to exhibit protective effects by significantly attenuating LPS-induced alterations in serum AST, ALT, bilirubin, and albumin levels. Significant increase in the total antioxidant capacity (TAC), DNA contents, and reduction in nitric oxide (NO) levels were observed in AGTE treated rats comparing LPS-toxicated ones. Additionally, AGTE treatment significantly down-regulated apoptotic markers and this effect was directly correlated to the degree of hepatic fibrosis. The possible mechanisms of the potential therapeutic-liver protective effect of AGTE could be due to free radical scavenging potential and antiapoptotic properties caused by the presence of antioxidant polyphenolic components in AGTE. Conclusion: We thereby propose, based on our findings, that the anti-free radical and anti-apoptotic inducing properties of AGTE active constituents attribute to its functional efficacy as anti-fibrotic agent. PMID:28573233

  10. The protective effects of Mucuna pruriens seed extract against histopathological changes induced by Malayan cobra (Naja sputatrix) venom in rats.

    PubMed

    Fung, S Y; Tan, N H; Liew, S H; Sim, S M; Aguiyi, J C

    2009-04-01

    Seed of Mucuna pruriens (Velvet beans) has been prescribed by traditional medicine practitioners in Nigeria as a prophylactic oral antisnake remedy. In the present studies, we investigated the protective effects of M. pruriens seed extract (MPE) against histopathological changes induced by intravenous injection of Naja sputatrix (Malayan cobra) venom in rats pretreated with the seed extract. Examination by light microscope revealed that the venom induced histopathological changes in heart and blood vessels in liver, but no effect on brain, lung, kidney and spleen. The induced changes were prevented by pretreatment of the rats with MPE. Our results suggest that MPE pretreatment protects rat heart and liver blood vessels against cobra venom-induced damages.

  11. Rebamipide suppresses diclofenac-induced intestinal permeability via mitochondrial protection in mice

    PubMed Central

    Diao, Lei; Mei, Qiao; Xu, Jian-Ming; Liu, Xiao-Chang; Hu, Jing; Jin, Juan; Yao, Qiang; Chen, Mo-Li

    2012-01-01

    AIM: To investigate the protective effect and mechanism of rebamipide on small intestinal permeability induced by diclofenac in mice. METHODS: Diclofenac (2.5 mg/kg) was administered once daily for 3 d orally. A control group received the vehicle by gavage. Rebamipide (100 mg/kg, 200 mg/kg, 400 mg/kg) was administered intragastrically once a day for 3 d 4 h after diclofenac administration. Intestinal permeability was evaluated by Evans blue and the FITC-dextran method. The ultrastructure of the mucosal barrier was evaluated by transmission electron microscopy (TEM). Mitochondrial function including mitochondrial swelling, mitochondrial membrane potential, mitochondrial nicotinamide adenine dinucleotide-reduced (NADH) levels, succinate dehydrogenase (SDH) and ATPase activities were measured. Small intestinal mucosa was collected for assessment of malondialdehyde (MDA) content and myeloperoxidase (MPO) activity. RESULTS: Compared with the control group, intestinal permeability was significantly increased in the diclofenac group, which was accompanied by broken tight junctions, and significant increases in MDA content and MPO activity. Rebamipide significantly reduced intestinal permeability, improved inter-cellular tight junctions, and was associated with decreases in intestinal MDA content and MPO activity. At the mitochondrial level, rebamipide increased SDH and ATPase activities, NADH level and decreased mitochondrial swelling. CONCLUSION: Increased intestinal permeability induced by diclofenac can be attenuated by rebamipide, which partially contributed to the protection of mitochondrial function. PMID:22416180

  12. Protection of radiation induced DNA and membrane damages by total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst.

    PubMed

    Smina, T P; Maurya, D K; Devasagayam, T P A; Janardhanan, K K

    2015-05-25

    The total triterpenes isolated from the fruiting bodies of Ganoderma lucidum was examined for its potential to prevent γ-radiation induced membrane damage in rat liver mitochondria and microsomes. The effects of total triterpenes on γ-radiation-induced DNA strand breaks in pBR 322 plasmid DNA in vitro and human peripheral blood lymphocytes ex vivo were evaluated. The protective effect of total triterpenes against γ-radiation-induced micronuclei formations in mice bone marrow cells in vivo were also evaluated. The results indicated the significant effectiveness of Ganoderma triterpenes in protecting the DNA and membrane damages consequent to the hazardous effects of radiation. The findings suggest the potential use of Ganoderma triterpenes in radio therapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. A Bacterial Cocaine Esterase Protects Against Cocaine-Induced Epileptogenic Activity and Lethality

    PubMed Central

    Jutkiewicz, Emily M.; Baladi, Michelle G.; Cooper, Ziva D.; Narasimhan, Diwahar; Sunahara, Roger K.; Woods, James H.

    2012-01-01

    Study objective Cocaine toxicity results in cardiovascular complications, seizures, and death and accounts for approximately 20% of drug-related emergency department visits every year. Presently, there are no treatments to eliminate the toxic effects of cocaine. The present study hypothesizes that a bacterial cocaine esterase with high catalytic efficiency would provide rapid and robust protection from cocaine-induced convulsions, epileptogenic activity, and lethality. Methods Cocaine-induced paroxysmal activity and convulsions were evaluated in rats surgically implanted with radiotelemetry devices (N=6 per treatment group). Cocaine esterase was administered 1 minute after a lethal dose of cocaine or after cocaine-induced convulsions to determine the ability of the enzyme to prevent or reverse, respectively, the effects of cocaine. Results The cocaine esterase prevented all cocaine-induced electroencephalographic changes and lethality. This effect was specific for cocaine because the esterase did not prevent convulsions and death induced by a cocaine analog, (−)-2β-carbomethoxy-3β-phenyltropane. The esterase prevented lethality even after cocaine-induced convulsions occurred. In contrast, the short-acting benzodiazepine, midazolam, prevented cocaine-induced convulsions but not the lethal effects of cocaine. Conclusion The data showed that cocaine esterase successfully degraded circulating cocaine to prevent lethality and that cocaine-induced convulsions alone are not responsible for the lethal effects of cocaine in this model. Therefore, further investigation into the use of cocaine esterase for treating cocaine overdose and its toxic effects is warranted. PMID:19013687

  14. Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation.

    PubMed

    Zhang, Da-Gang; Zhang, Cheng; Wang, Jun-Xian; Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua; Lu, Yan; Tao, Li; Wang, Jian-Qing; Chen, Xi; Xu, De-Xiang

    2017-01-01

    The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl 4 )-induced acute liver injury. Mice were intraperitoneally injected with CCl 4 (0.15ml/kg). In CCl 4 +OCA group, mice were orally with OCA (5mg/kg) 48, 24 and 1h before CCl 4 . As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl 4 -induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl 4 -induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl 4 -induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl 4 -induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl 4 -induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl 4 -induced acute liver injury. These results suggest that OCA protects against CCl 4 -induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Toxoplasma gondii Antigen-Pulsed-Dendritic Cell-Derived Exosomes Induce a Protective Immune Response against T. gondii Infection

    PubMed Central

    Aline, Fleur; Bout, Daniel; Amigorena, Sébastian; Roingeard, Philippe; Dimier-Poisson, Isabelle

    2004-01-01

    It was previously demonstrated that immunizing mice with spleen dendritic cells (DCs) that had been pulsed ex vivo with Toxoplasma gondii antigens triggers a systemic Th1-biased specific immune response and induces protection against infection. T. gondii can cause severe sequelae in the fetuses of mothers who acquire the infection during pregnancy, as well as life-threatening neuropathy in immunocompromised patients, in particular those with AIDS. Here, we investigate the efficacy of a novel cell-free vaccine composed of DC exosomes, which are secreted antigen-presenting vesicles that express functional major histocompatibility complex class I and II and T-cell-costimulatory molecules. They have already been shown to induce potent antitumor immune responses. We investigated the potential of DC2.4 cell line-derived exosomes to induce protective immunity against toxoplasmosis. Our data show that most adoptively transferred T. gondii-pulsed DC-derived exosomes were transferred to the spleen, elicited a strong systemic Th1-modulated Toxoplasma-specific immune response in vivo, and conferred good protection against infection. These findings support the possibility that DC-derived exosomes can be used for T. gondii immunoprophylaxis and for immunoprophylaxis against many other pathogens. PMID:15213158

  16. Protective effect of red orange extract supplementation against UV-induced skin damages: photoaging and solar lentigines.

    PubMed

    Puglia, Carmelo; Offerta, Alessia; Saija, Antonella; Trombetta, Domenico; Venera, Cardile

    2014-06-01

    Exposure of the skin to solar ultraviolet (UV) radiations causes important oxidative damages that result in clinical and hystopathological changes, contributing to premature skin aging. Hyperpigmented lesions, also known as age spots, are one of the most visible alterations in skin photoaging. Skin is naturally equipped with antioxidant systems against UV-induced ROS generation; however, these antioxidant defenses are not completely efficient during exposure to sunlight. Oral antioxidants are able to counteract the harmful effects of UV radiation and to strengthen the physiological skin antioxidant defenses. The present study was performed to evaluate the in vivo skin photo-protecting and anti-aging effects of a red orange (Citrus sinensis varieties Moro, Tarocco and Sanguinello) extract supplementation. Previous studies showed that red orange extracts possess strong in vitro free radical scavenging/antioxidant activity and photo-protective effects on human skin. The photo-protective effects of red orange extract intake against UV-induced skin erythema and melanin production in solar lentigo was evaluated on healthy volunteers by an objective instrumental method (reflectance spectrophotometry). Data obtained from in vivo studies showed that supplementation of red orange extract (100 mg/daily) for 15 days brought a significant reduction in the UV-induced skin erythema degree. Moreover, skin age spots pigmentation (melanin content) decreased from 27% to 7% when subjects were exposed to solar lamp during red orange extract supplementation. Red orange extract intake can strengthen physiological antioxidant skin defenses, protecting skin from the damaging processes involved in photo-aging and leading to an improvement in skin appearance and pigmentation. © 2014 Wiley Periodicals, Inc.

  17. Nitric oxide protects murine embryonic liver cells (BNL CL.2) from cytotoxicity induced by glucose deprivation.

    PubMed

    Pae, H O; Kim, H G; Paik, Y S; Paik, S G; Kim, Y M; Oh, G S; Chung, H T

    2000-03-01

    We investigated the protective effects of nitric oxide on cell death of murine embryonic liver cells (BNL CL.2) after glucose deprivation. Endogenous nitric oxide production by BNL CL.2 cells was induced by 6 hr pretreatment with interferon-gamma and lipopolysaccharide. We used sodium nitroprusside and S-nitroso-L-glutathione as exogenous nitric oxide-generating compounds. All agents were used at doses that did not show direct cytotoxicity as measured by crystal violet staining assay. In the BNL CL.2 cells, the viability dropped very steeply after 24 hr incubation with glucose-free media. Endogenous nitric oxide produced by treatment of the cells with interferon-gamma and lipopolysaccharide protected the cells from glucose deprivation-induced cytotoxicity, but did not protect them in the presence of the nitric oxide synthesis inhibitor, N(G)-monomethyl-L-arginine. Exogenous nitric oxide protected the cells from glucose deprivation-induced cytotoxicity in a concentration-dependent manner. Cytoprotection by nitric oxide donors was abolished by the use of nitric oxide scavenger, 2-phenyl-4,4,5,5,-tetramethylimidazole, but not by the soluble guanosine cyclase inhibitor, 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one. In addition, cytoprotective effects comparable to endogenous or exogenous nitric oxide were not observed when the cells were incubated with dibutyl guanosine 3',5'-cyclic monophosphate. Based upon these results, we suggest that nitric oxide may enhance the cell survival of BNL CL.2 cells after glucose deprivation via a guanosine 3',5'-cyclic monophosphate-independent pathway.

  18. Protective effects of grape stem extract against UVB-induced damage in C57BL mice skin.

    PubMed

    Che, Denis Nchang; Xie, Guang Hua; Cho, Byoung Ok; Shin, Jae Young; Kang, Hyun Ju; Jang, Seon Il

    2017-08-01

    Humans have become exposed to another form of a trait which is ultraviolet B (UVB) radiation reaching the earth's surface. This has become a major source of oxidative stress that ultimately leads to inflammation, DNA damage, photoaging and pigmentation disorders etc. Although several studies have shown the photo-protective role of different grape parts like the fruits and seeds, little or no data demonstrating the in vivo photo-protective role of grape stem, which is the most discarded part of the grape are available. We evaluated the protective influence of grape stem extract against UVB-induced oxidative damage in C57BL mice characterized by epidermal hyperplasia, pigmentation, collagen degradation and inflammation. Grape stem extract was administered topically 1week before UVB irradiation (120mJ/cm 2 ) and continued until the termination of the experiment. A group of non-irradiated mice and a group of irradiated mice topically administered with propylene were used as a negative and positive control. Epidermal thickness, pigmentation, erythema, mast cell and neutrophil infiltration, collagen degradation and COX-2, Nrf2, and HO-1 expressions were evaluated. Grape stem extract markedly recovered skin damage induced by the UVB radiation through the prevention of epidermal hyperplasia, pigmentation, erythema, mast cell and neutrophil infiltrations, collagen degradation and COX-2, Nrf2, and HO-1 expressions. Our study demonstrated for the first time in C57BL mice that grape stem extract reduces UVB-induced oxidative damage and hence can play a protective role in skin photo-damage. Copyright © 2017. Published by Elsevier B.V.

  19. Isorhynchophylline Protects PC12 Cells Against Beta-Amyloid-Induced Apoptosis via PI3K/Akt Signaling Pathway

    PubMed Central

    Xian, Yan-Fang; Lin, Zhi-Xiu; Mao, Qing-Qiu; Chen, Jian-Nan; Su, Zi-Ren; Lai, Xiao-Ping; Ip, Paul Siu-Po

    2013-01-01

    The neurotoxicity of amyloid-β (Aβ) has been implicated as a critical cause of Alzheimer's disease. Isorhynchophylline (IRN), an oxindole alkaloid isolated from Uncaria rhynchophylla, exerts neuroprotective effect against Aβ 25–35-induced neurotoxicity in vitro. However, the exact mechanism for its neuroprotective effect is not well understood. The present study aimed to investigate the molecular mechanisms underlying the protective action of IRN against Aβ 25–35-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. Pretreatment with IRN significantly increased the cell viability, inhibited the release of lactate dehydrogenase and the extent of DNA fragmentation in Aβ 25–35-treated cells. IRN treatment was able to enhance the protein levels of phosphorylated Akt (p-Akt) and glycogen synthase kinase-3β (p-GSK-3β). Lithium chloride blocked Aβ 25–35-induced cellular apoptosis in a similar manner as IRN, suggesting that GSK-3β inhibition was involved in neuroprotective action of IRN. Pretreatment with LY294002 completely abolished the protective effects of IRN. Furthermore, IRN reversed Aβ 25–35-induced attenuation in the level of phosphorylated cyclic AMP response element binding protein (p-CREB) and the effect of IRN could be blocked by the PI3K inhibitor. These experimental findings unambiguously suggested that the protective effect of IRN against Aβ 25–35-induced apoptosis in PC12 cells was associated with the enhancement of p-CREB expression via PI3K/Akt/GSK-3β signaling pathway. PMID:24319473

  20. The protective role of the immunomodulator AS101 against chemotherapy-induced alopecia studies on human and animal models.

    PubMed

    Sredni, B; Xu, R H; Albeck, M; Gafter, U; Gal, R; Shani, A; Tichler, T; Shapira, J; Bruderman, I; Catane, R; Kaufman, B; Whisnant, J K; Mettinger, K L; Kalechman, Y

    1996-01-03

    The immunomodulator AS101 has been demonstrated to exhibit radioprotective and chemoprotective effects in mice. Following phase-I studies, preliminary results from phase-II clinical trials on non-small-cell-lung-cancer patients showed a reduction in the severity of alopecia in patients treated with AS101 in combination with chemotherapy. To further substantiate these findings, the present study was extended to include 58 patients treated either with the optimal dose of 3 mg/m2 AS101 combined with carboplatin and VP-16, or with chemotherapy alone. As compared with patients treated with chemotherapy alone, there was a significant decrease in the level of alopecia in patients receiving the combined therapy. The newly developed rat model was used to elucidate the protective mechanism involved in this effect. We show that significant prevention of chemotherapy-induced alopecia is obtained in rats treated with Ara-C combined with AS101, administered i.p. or s.c. or applied topically to the dorsal skin. We show that this protection by AS101 is mediated by macrophage-derived factors induced by AS101. Protection by AS101 can be ascribed, at least in part, to IL-1, since treatment of rats with IL-1 RA largely abrogated the protective effect of AS101. Moreover, we demonstrate that in humans there is an inverse correlation between the grade of alopecia and the increase in IL-1 alpha. In addition, protection by AS101 could be related to PGE2 secretion, since injection of indomethacin before treatment with AS101 and Ara-C partly abrogated the protective effect of AS101. To assess the ability of AS101 to protect against chemotherapy-induced alopecia, phase-II clinical trials have been initiated with cancer patients suffering from various malignancies.

  1. Sildenafil protects against bile duct ligation induced hepatic fibrosis in rats: Potential role for silent information regulator 1 (SIRT1).

    PubMed

    Abd El Motteleb, Dalia M; Ibrahim, Islam A A E-H; Elshazly, Shimaa M

    2017-11-15

    Hepatic fibrosis is a potential health problem that may end with life-threatening cirrhosis and primary liver cancer. Recent studies point out to the protective effects of silent information regulator1 (SIRT1), against different models of organs fibrosis. This work aimed to investigate the possible protective effect of sildenafil (SIRT1 activator) against hepatic fibrosis induced by bile duct ligation (BDL). Firstly, three different doses of sildenafil (5, 10, 20mg/kg/day) were investigated; to detect the most protective one against BDL induced liver dysfunction and hepatic fibrosis. The most protective dose is then used; to study its effect on BDL induced SIRT1 downregulation, imbalance of oxidant/antioxidant status, increased inflammatory cytokines and fibrosis. Sildenafil (20mg/kg/day) was the most protective one, it caused upregulation of SIRT1, reduction of hepatic malondialdehyde (MDA) content, increase in expression of nuclear factor erythroid 2-related factor 2 (Nrf2), hemeoxygenease (HO)-1, reduced glutathione (GSH) content and superoxide dismutase (SOD) activity. Hepatic content of tumor necrosis factor-α (TNF-α) and nuclear factor κB (NFκB) expression & content displayed significant reductions with sildenafil treatment, Furthermore, sildenafil caused marked reductions of transforming growth factor (TGF)-β content, expression of plasminogen activator inhibitor-1 (PAI-1), matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1), α-smooth muscle actin (α-SMA), fibronectin, collagen I (α1) and hydroxyproline content. However, sildenafil protective effects were significantly reduced by co-administration of EX527 (SIRT1 inhibitor). Our work showed, for the first time that, sildenafil has promising protective effects against BDL induced liver dysfunction and hepatic fibrosis. These effects may be, in part, mediated by up regulation of SIRT1. Copyright © 2017. Published by Elsevier Inc.

  2. Protective Effect of Procyanidin B2 against CCl4-Induced Acute Liver Injury in Mice.

    PubMed

    Yang, Bing-Ya; Zhang, Xiang-Yu; Guan, Sheng-Wen; Hua, Zi-Chun

    2015-07-03

    Procyanidin B2 has demonstrated several health benefits and medical properties. However, its protective effects against CCl4-induced hepatotoxicity have not been clarified. The present study aimed to investigate the hepatoprotective effects of procyanidin B2 in CCl4-treated mice. Our data showed that procyanidin B2 significantly decreased the CCl4-induced elevation of serum alanine aminotransferase activities, as well as improved hepatic histopathological abnormalities. Procyanidin B2 also significantly decreased the content of MDA but enhanced the activities of antioxidant enzymes SOD, CAT and GSH-Px. Further research demonstrated that procyanidin B2 decreased the expression of TNF-α, IL-1β, cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as inhibited the translocation of nuclear factor-kappa B (NF-κB) p65 from the cytosol to the nuclear fraction in mouse liver. Moreover, CCl4-induced apoptosis in mouse liver was measured by (terminal-deoxynucleotidyl transferase mediated nick end labeling) TUNEL assay and the cleaved caspase-3. Meanwhile, the expression of apoptosis-related proteins Bax and Bcl-xL was analyzed by Western blot. Results showed that procyanidin B2 significantly inhibited CCl4-induced hepatocyte apoptosis, markedly suppressed the upregulation of Bax expression and restored the downregulation of Bcl-xL expression. Overall, the findings indicated that procyanidin B2 exhibited a protective effect on CCl4-induced hepatic injury by elevating the antioxidative defense potential and consequently suppressing the inflammatory response and apoptosis of liver tissues.

  3. Protection of MPTP-induced neuroinflammation and neurodegeneration by Pycnogenol

    PubMed Central

    Khan, Mohammad Moshahid; Kempuraj, Duraisamy; Thangavel, Ramasamy; Zaheer, Asgar

    2013-01-01

    Oxidative stress and inflammation play a crucial role in Parkinson’s disease (PD) pathogenesis and may represent a target for treatment. Current PD drugs provide only symptomatic relief and have limitations in terms of adverse effects and inability to prevent neurodegeneration. Flavonoids have been suggested to exert human health benefits by its anti-oxidant and anti-inflammatory properties. Therefore, in the present study, using 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydro pyridine (MPTP)-induced mouse model of Parkinsonism, we investigated the neuroprotective potential of bioflavonoid compound Pycnogenol® (PYC), an extract of Pinus maritime bark. MPTP injected mice developed significantly severe oxidative stress and impaired motor coordination at day 1 and day 7 postinjection. This was associated with significantly increased inflammatory responses of astrocyte and microglia as assessed by ionized calcium binding adaptor molecule 1 (Iba 1) and glial fibrillary acidic protein (GFAP) immunohistochemistry, and nuclear transcription factor-κB (NF-kB), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in the striata by Western blot. Additionally, there was significant upregulation of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) expression in the striata of MPTP injected mice compared to saline controls. The MPTP-induced neuroinflammation, neurodegeneration and behavioral impairments were markedly repudiated by treatment with PYC. These results suggest that PYC protects dopaminergic neurons from MPTP toxicity in the mouse model of PD. Thus, the present finding of PYC-induced adaptation to oxidative stress and inflammation could suggest a novel avenue for clinical intervention in neurodegenerative diseases including PD. PMID:23391521

  4. Protective Effects of Houttuynia cordata Thunb. on Gentamicin-induced Oxidative Stress and Nephrotoxicity in Rats

    PubMed Central

    Kang, Changgeun; Lee, Hyungkyoung; Hah, Do-Yun; Heo, Jung Ho; Kim, Chung Hui; Kim, Euikyung

    2013-01-01

    Development of a therapy providing protection from, or reversing gentamicin-sulfate (GS)-induced oxidative stress and nephrotoxicity would be of great clinical significance. The present study was designed to investigate the protective effects of Houttuynia cordata Thunb. (HC) against gentamicin sulfate-induced renal damage in rats. Twenty-eight Sprague-Dawley rats were divided into 4 equal groups as follows: group 1, control; group 2, GS 100 mg/kg/d, intraperitoneal (i.p.) injection; group 3, GS 100 mg/kg/d, i.p. + HC 500 mg/kg/d, oral; and group 4, GS 100 mg/kg/d i.p. + HC 1000 mg/kg/d, oral administration). Treatments were administered once daily for 12 d. After 12 d, biochemical and histopathological analyses were conducted to evaluate oxidative stress and renal nephrotoxicity. Serum levels of creatinine, malondialdehyde (MDA), and blood urea nitrogen (BUN), together with renal levels of MDA, glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) were quantified to evaluate antioxidant activity. Animals treated with GS alone showed a significant increase in serum levels of creatinine, BUN, and MDA, with decreased renal levels of GSH, SOD, and CAT. Treatment of rats with HC showed significant improvement in renal function, presumably as a result of decreased biochemical indices and oxidative stress parameters associated with GS-induced nephrotoxicity. Histopathological examination of the rat kidneys confirmed these observations. Therefore, the novel natural antioxidant HC may protect against GSinduced nephrotoxicity and oxidative stress in rats. PMID:24278630

  5. Protective Effects of Houttuynia cordata Thunb. on Gentamicin-induced Oxidative Stress and Nephrotoxicity in Rats.

    PubMed

    Kang, Changgeun; Lee, Hyungkyoung; Hah, Do-Yun; Heo, Jung Ho; Kim, Chung Hui; Kim, Euikyung; Kim, Jong Shu

    2013-03-01

    Development of a therapy providing protection from, or reversing gentamicin-sulfate (GS)-induced oxidative stress and nephrotoxicity would be of great clinical significance. The present study was designed to investigate the protective effects of Houttuynia cordata Thunb. (HC) against gentamicin sulfate-induced renal damage in rats. Twenty-eight Sprague-Dawley rats were divided into 4 equal groups as follows: group 1, control; group 2, GS 100 mg/kg/d, intraperitoneal (i.p.) injection; group 3, GS 100 mg/kg/d, i.p. + HC 500 mg/kg/d, oral; and group 4, GS 100 mg/kg/d i.p. + HC 1000 mg/kg/d, oral administration). Treatments were administered once daily for 12 d. After 12 d, biochemical and histopathological analyses were conducted to evaluate oxidative stress and renal nephrotoxicity. Serum levels of creatinine, malondialdehyde (MDA), and blood urea nitrogen (BUN), together with renal levels of MDA, glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) were quantified to evaluate antioxidant activity. Animals treated with GS alone showed a significant increase in serum levels of creatinine, BUN, and MDA, with decreased renal levels of GSH, SOD, and CAT. Treatment of rats with HC showed significant improvement in renal function, presumably as a result of decreased biochemical indices and oxidative stress parameters associated with GS-induced nephrotoxicity. Histopathological examination of the rat kidneys confirmed these observations. Therefore, the novel natural antioxidant HC may protect against GSinduced nephrotoxicity and oxidative stress in rats.

  6. Normal Cellular Prion Protein Protects against Manganese-induced Oxidative Stress and Apoptotic Cell Death

    PubMed Central

    Choi, Christopher J.; Anantharam, Vellareddy; Saetveit, Nathan J.; Houk, Robert. S.; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2012-01-01

    The normal prion protein is abundantly expressed in the CNS, but its biological function remains unclear. The prion protein has octapeptide repeat regions that bind to several divalent metals, suggesting that the prion proteins may alter the toxic effect of environmental neurotoxic metals. In the present study, we systematically examined whether prion protein modifies the neurotoxicity of manganese (Mn) by comparing the effect of Mn on mouse neural cells expressing prion protein (PrPC -cells) and prion-knockout (PrPKO -cells). Exposure to Mn (10 μM-1 mM) for 24 hr produced a dose-dependent cytotoxic response in both PrPC -cells and PrPKO -cells. Interestingly, PrPC -cells (EC50 117.6μM) were more resistant to Mn-induced cytotoxicity, as compared to PrPKO -cells (EC50 59.9μM), suggesting a protective role for PrPC against Mn neurotoxicity. Analysis of intracellular Mn levels showed less Mn accumulation in PrPC -cells as compared to PrPKO -cells. Furthermore, Mn-induced mitochondrial depolarization and ROS generation were significantly attenuated in PrPC -cells as compared to PrPKO -cells. Measurement of antioxidant status revealed similar basal levels of glutathione (GSH) in PrPC -cells and PrPKO -cells; however, Mn treatment caused greater depletion of GSH in PrPKO -cells. Mn-induced mitochondrial depolarization and ROS production were followed by time- and dose-dependent activation of the apoptotic cell death cascade involving caspase-9 and -3. Notably, DNA fragmentation induced by both Mn treatment and oxidative stress-inducer hydrogen peroxide (100μM) was significantly suppressed in PrPC -cells as compared to PrPKO -cells. Together, these results demonstrate that prion protein interferes with divalent metal Mn uptake and protects against Mn-induced oxidative stress and apoptotic cell death. PMID:17483122

  7. Phenylbutyric acid protects against carbon tetrachloride-induced hepatic fibrogenesis in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian-Qing; Second Affiliated Hospital, Anhui Medical University, Hefei 230601; Chen, Xi

    2013-01-15

    }-induced hepatic NF-κB activation and ERK and JNK phosphorylation. ► PBA effectively protects against CCl{sub 4}-induced HSC activation and hepatic fibrosis. ► ER stress is involved in CCl{sub 4}-induced hepatic inflammation and fibrogenesis.« less

  8. Protective effect of Korean Red Ginseng against chemotherapeutic drug-induced premature catagen development assessed with human hair follicle organ culture model

    PubMed Central

    Keum, Dong In; Pi, Long-Quan; Hwang, Sungjoo Tommy; Lee, Won-Soo

    2015-01-01

    Background Chemotherapy-induced alopecia (CIA) is one of the most distressing side effects for patients undergoing chemotherapy. This study evaluated the protective effect of Korean Red Ginseng (KRG) on CIA in a well-established in vitro human hair follicle organ culture model as it occurs in vivo. Methods We examined whether KRG can prevent premature hair follicle dystrophy in a human hair follicle organ culture model during treatment with a key cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). Results 4-HC inhibited human hair growth, induced premature catagen development, and inhibited proliferation and stimulated apoptosis of hair matrix keratinocytes. In addition, 4-HC increased p53 and Bax protein expression and decreased Bcl2 protein expression. Pretreatment with KRG protected against 4-HC-induced hair growth inhibition and premature catagen development. KRG also suppressed 4-HC-induced inhibition of matrix keratinocyte proliferation and stimulation of matrix keratinocyte apoptosis. Moreover, KRG restored 4-HC-induced p53 and Bax/Bcl2 expression. Conclusion Overall, our results indicate that KRG may protect against 4-HC-induced premature catagen development through modulation of p53 and Bax/Bcl2 expression. PMID:27158238

  9. Protective effect of Korean Red Ginseng against chemotherapeutic drug-induced premature catagen development assessed with human hair follicle organ culture model.

    PubMed

    Keum, Dong In; Pi, Long-Quan; Hwang, Sungjoo Tommy; Lee, Won-Soo

    2016-04-01

    Chemotherapy-induced alopecia (CIA) is one of the most distressing side effects for patients undergoing chemotherapy. This study evaluated the protective effect of Korean Red Ginseng (KRG) on CIA in a well-established in vitro human hair follicle organ culture model as it occurs in vivo. We examined whether KRG can prevent premature hair follicle dystrophy in a human hair follicle organ culture model during treatment with a key cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). 4-HC inhibited human hair growth, induced premature catagen development, and inhibited proliferation and stimulated apoptosis of hair matrix keratinocytes. In addition, 4-HC increased p53 and Bax protein expression and decreased Bcl2 protein expression. Pretreatment with KRG protected against 4-HC-induced hair growth inhibition and premature catagen development. KRG also suppressed 4-HC-induced inhibition of matrix keratinocyte proliferation and stimulation of matrix keratinocyte apoptosis. Moreover, KRG restored 4-HC-induced p53 and Bax/Bcl2 expression. Overall, our results indicate that KRG may protect against 4-HC-induced premature catagen development through modulation of p53 and Bax/Bcl2 expression.

  10. MicroRNA-7 Promotes Glycolysis to Protect against 1-Methyl-4-phenylpyridinium-induced Cell Death.

    PubMed

    Chaudhuri, Amrita Datta; Kabaria, Savan; Choi, Doo Chul; Mouradian, M Maral; Junn, Eunsung

    2015-05-08

    Parkinson disease is associated with decreased activity of the mitochondrial electron transport chain. This defect can be recapitulated in vitro by challenging dopaminergic cells with 1-methyl-4-phenylpyridinium (MPP(+)), a neurotoxin that inhibits complex I of electron transport chain. Consequently, oxidative phosphorylation is blocked, and cells become dependent on glycolysis for ATP production. Therefore, increasing the rate of glycolysis might help cells to produce more ATP to meet their energy demands. In the present study, we show that microRNA-7, a non-coding RNA that protects dopaminergic neuronal cells against MPP(+)-induced cell death, promotes glycolysis in dopaminergic SH-SY5Y and differentiated human neural progenitor ReNcell VM cells, as evidenced by increased ATP production, glucose consumption, and lactic acid production. Through a series of experiments, we demonstrate that targeted repression of RelA by microRNA-7, as well as subsequent increase in the neuronal glucose transporter 3 (Glut3), underlies this glycolysis-promoting effect. Consistently, silencing Glut3 expression diminishes the protective effect of microRNA-7 against MPP(+). Further, microRNA-7 fails to prevent MPP(+)-induced cell death when SH-SY5Y cells are cultured in a low glucose medium, as well as when differentiated ReNcell VM cells or primary mouse neurons are treated with the hexokinase inhibitor, 2-deoxy-d-glucose, indicating that a functional glycolytic pathway is required for this protective effect. In conclusion, microRNA-7, by down-regulating RelA, augments Glut3 expression, promotes glycolysis, and subsequently prevents MPP(+)-induced cell death. This protective effect of microRNA-7 could be exploited to correct the defects in oxidative phosphorylation in Parkinson disease. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. [Protective effect of compound bismuth and magnesium granules on aspirin-induced gastric mucosal injury in rats].

    PubMed

    Mu, F H; Hu, F L; Wei, H; Zhang, Y Y; Yang, G B; Lei, X Y; Yang, Y P; Sun, W N; Cui, M H

    2016-02-01

    To investigate the protective effect of compound bismuth and magnesium granules on aspirin-induced gastric mucosal injury in rats and its possible mechanism. Acute gastric mucosal injury model was developed with intraperitoneal injection of aspirin in Wistar rats. The rats were divided into normal control group, injury group, sucralfate protection group, compound bismuth and magnesium granules protection group and its herbal components protection group(each group 12 rats). In the protection groups, drugs as mentioned above were administered by gavage before treated with intraperitoneal injection of aspirin. To evaluate the extent of gastric mucosal injury and the protective effect of drugs, gastric mucosal lesion index, gastric mucosal blood flow, content of gastric mucosal hexosamine, prostaglandins (PG), nitric oxide(NO), tumor necrosis factor (TNF), and interleukin (IL) -1, 2, 8 were measured in each group, and histological changes were observed by gross as well as under microscope and electron microscope. Contents of hexosamine, NO, and PG in all the protection groups were significantly higher than those in the injury group (all P<0.01), and content of NO in the compound bismuth and magnesium granules group was significantly higher than that in the sucralfate group ((11.29±0.51) vs(10.80±0.36)nmol/ml, P<0.05). The gastric mucosal lesion index, contents of TNF, and IL-1, 2, 8 were significantly lower in all the protection groups than in the injury group (all P<0.01), and contents of IL-2 and IL-8 in the compound bismuth and magnesium granules group were significantly lower than those in the sucralfate group ((328.17±6.56) vs(340.23±8.05)pg/ml, P<0.01; (170.82±7.31) vs(179.31±7.80)pg/ml, P<0.05). Tissue injury and inflammatory reaction in all the protection groups were obviously mitigated compared with the injury group. Compound bismuth and magnesium granules and its herbal components may have significant protective effect on aspirin-induced gastric mucosal

  12. The protective effect of grape seed procyanidin extract against cadmium-induced renal oxidative damage in mice.

    PubMed

    Chen, Qing; Zhang, Rong; Li, Wei-min; Niu, Yu-jie; Guo, Hui-cai; Liu, Xue-hui; Hou, Yu-chun; Zhao, Li-juan

    2013-11-01

    As an important environmental pollutant, cadmium (Cd) can lead to serious renal damage. Grape seed procyanidins extract (GSPE), a biological active component of grape seed, has been shown to possess antioxidative effects. Here, we assessed the protective effect of GSPE on Cd-induced renal damage using animal experiment. After 30 days, the oxidative damage of kidney was evaluated through measurement of superoxide dismutase (SOD), glutathione peroxidation (GSH-Px) and malondialdehyde (MDA). Since, oxidative stress could lead to apoptosis, the renal apoptosis was measured using flow cytometer. Moreover, the expression of apoptosis-related protein Bax and Bcl-2 was analyzed by immunohistochemistry and Western blot. The results showed that Cd led to the decrease of SOD and GSH-Px activities, and the increase of MDA level, induced renal apoptosis. However, the coadministration of GSPE attenuated Cd-induced lipid peroxidation, and antagonized renal apoptosis, probably associated with the expression of Bax and Bcl-2. These data suggested that GSPE has protective effect against renal oxidative damage induced by Cd, which provide a potential natural chemopreventive agent against Cd-poisoning. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. MK-801 protection against methamphetamine-induced striatal dopamine terminal injury is associated with attenuated dopamine overflow.

    PubMed

    Weihmuller, F B; O'Dell, S J; Marshall, J F

    1992-06-01

    Repeated administrations of methamphetamine (m-AMPH) produce high extracellular levels of dopamine (DA) and subsequent striatal DA terminal damage. Pharmacological blockade of N-methyl-D-aspartate (NMDA) receptors has been shown previously to prevent m-AMPH-induced striatal DA terminal injury, but the mechanism for this protection is unclear. In the present study, in vivo microdialysis was used to determine the effects of blockade of NMDA receptors with the noncompetitive antagonist MK-801 on m-AMPH-induced striatal DA overflow. Four injections of MK-801 (0.5 mg/kg, ip) alone did not significantly change extracellular striatal DA concentrations from pretreatment values. Four treatments with m-AMPH (4.0 mg/kg, sc at 2-hr intervals) increased striatal DA overflow, and the overflow was particularly extensive following the fourth injection. This m-AMPH regimen produced a 40% reduction in striatal DA tissue content 1 week later. Treatment with MK-801 15 min before each of the four m-AMPH injections or prior to only the last two m-AMPH administrations attenuated the m-AMPH-induced increase in striatal DA overflow and protected completely against striatal DA depletions. Other MK-801 treatment regimens less effectively reduced the m-AMPH-induced striatal DA efflux and were ineffective in protecting against striatal DA depletions. Linear regression analysis indicated that cumulative DA overflow was strongly predictive (r = -.68) of striatal DA tissue levels measured one week later. These findings suggest that the extensive DA overflow seen during a neurotoxic regimen of m-AMPH is a crucial component of the subsequent neurotoxicity.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Role of eicosanoids, nitric oxide, and afferent neurons in antacid induced protection in the rat stomach.

    PubMed Central

    Lambrecht, N; Trautmann, M; Korolkiewicz, R; Liszkay, M; Peskar, B M

    1993-01-01

    The mechanism underlying the mucosal protective effect of antacids is still unclear. This study shows that in rats the aluminum containing antacid, hydrotalcit, induces dose dependent protection against gastric mucosal damage caused by ethanol or indomethacin which is considerably enhanced by acidification. Hydrotalcit did not increase gastric mucosal formation or the intraluminal release of prostaglandins, and did not prevent the increase in mucosal leukotriene C4 formation in response to ethanol. Pretreatment with indomethacin did not attenuate the protective effect of unmodified or acidified hydrotalcit. Furthermore, hydrotalcit significantly reduced the gastric damage caused by indomethacin even when it was administered up to 2 hours after the ulcerogen. In indomethacin treated rats, simultaneous administration of hydrotalcit did not affect the concentrations of indomethacin in serum or inflammatory exudates nor did it attenuate the inhibition of prostaglandin release into the exudates. In hydrotalcit treated rats there was no attenuation of the increase in sulphidopeptide leukotriene release or decrease in leukocyte influx into inflammatory exudates elicited by indomethacin administration. Functional ablation of afferent neurons and inhibition of endogenous nitric oxide partially antagonised the protective effect of unmodified, but not of acidified, hydrotalcit. It is concluded that (i) the protective effect of unmodified and acidified hydrotalcit is independent of the eicosanoid system; (ii) protection against indomethacin induced gastric lesions does not require treatment before dosing of the ulcerogen and does not interfere with absorption and anti-inflammatory actions of indomethacin; (iii) endogenous nitric oxide and afferent neurons contribute partly to the effect of unmodified, but not of acidified, hydrotalcit suggesting that different mechanisms mediate their mucosal protective activity. PMID:8472979

  15. Protection from JP-8 jet fuel induced immunotoxicity by administration of aerosolized substance P.

    PubMed

    Harris, D T; Sakiestewa, D; Robledo, R F; Witten, M

    1997-01-01

    Chronic exposure to jet fuel has been shown to cause human liver dysfunction, emotional dysfunction, abnormal electroencephalograms, shortened attention spans, and decreased sensorimotor speed. The United States Air Force has decided to implement the widespread use of JP-8 jet fuel in its operations, although a thorough understanding of its potential effects upon exposed personnel is unclear. Exposure to potential environment toxicants such as JP-8 may have significant effects on host physiology. Previous studies in mice have shown that short-term, low concentration JP-8 exposure had significant effects on the immune system; e.g., decreased viable immune cell numbers, decreased immune organ weights, and loss on immune function that persisted for extended periods of time (i.e., up to 4 weeks post-exposure). Previous studies have shown that JP-8 induced pulmonary dysfunction was associated with a decrease in levels of the neuropeptide substance P (SP) in lung lavage fluids. It was found that administration of aerosolized SP was able to protect exposed animals from such JP-8 induced pulmonary changes. In the current study, aerosolized SP was analyzed for its effects on JP-i induced immunotoxicity in exposed mice. It was observed that SP administration could protect JP-8 exposed animals from losses of viable immune cell numbers, but not losses in immune organ weights. Further, exposure of animals to SP inhibitors generally increased the immunotoxicity of JP-8 exposure. SP appeared to act on all immune cell populations equally as analyzed by flow cytometry, as no one immune cell population appeared to be preferentially protected by SP. Also, SP administration was capable of protecting JP-8 exposed animals from loss of immune function at all concentrations of JP-8 utilized (250-2500 mg/m3). Significantly, SP only needed to be administered for 15 minutes after JP-8 exposure, and was active at both 1 microM and 1 nM concentrations. Thus, SP administration appears to be a

  16. Protective effect of curcumin against ultraviolet A irradiation‑induced photoaging in human dermal fibroblasts.

    PubMed

    Liu, Xiaoming; Zhang, Ruizhi; Shi, Haixia; Li, Xiaobo; Li, Yanhong; Taha, Ahmad; Xu, Chunxing

    2018-05-01

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in skin, resulting in photoaging. Natural botanicals have gained considerable attention due to their beneficial protection against the harmful effects of UV irradiation. The present study aimed to evaluate the ability of curcumin (Cur) to protect human dermal fibroblasts (HDFs) against ultraviolet A (UVA)‑induced photoaging. HDFs were treated with 0‑10 µM Cur for 2 h and subsequently exposed to various intensities of UVA irradiation. The cell viability and apoptotic rate of HDFs were investigated by MTT and flow cytometry assays, respectively. The effect of UVA and Cur on the formation of reactive oxygen species (ROS), malondialdehyde levels, which are an indicator of ROS, and the levels/activity of antioxidative defense proteins, including glutathione, superoxide dismutase and catalase, were evaluated using 2',7'-dichlorofluorescin diacetate and commercial assay kits. Furthermore, western blotting was performed to determine the levels of proteins associated with endoplasmic reticulum (ER) stress, the apoptotic pathway, inflammation and the collagen synthesis pathway. The results demonstrated that Cur reduced the accumulation of ROS and restored the activity of antioxidant defense enzymes, indicating that Cur minimized the damage induced by UVA irradiation in HDFs. Furthermore, western blot analysis demonstrated that Cur may attenuate UVA‑induced ER stress, inflammation and apoptotic signaling by downregulating the protein expression of glucose‑regulated protein 78, C/EBP‑homologous protein, nuclear factor‑κB and cleaved caspase‑3, while upregulating the expression of Bcl‑2. Additionally, it was demonstrated that Cur may regulate collagen metabolism by decreasing the protein expression of matrix metalloproteinase (MMP)‑1 and MMP‑3, and may promote the repair of cells damaged as a result of UVA irradiation through increasing the protein expression of

  17. Protective effect of curcumin against ultraviolet A irradiation-induced photoaging in human dermal fibroblasts

    PubMed Central

    Liu, Xiaoming; Zhang, Ruizhi; Shi, Haixia; Li, Xiaobo; Li, Yanhong; Taha, Ahmad; Xu, Chunxing

    2018-01-01

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in skin, resulting in photoaging. Natural botanicals have gained considerable attention due to their beneficial protection against the harmful effects of UV irradiation. The present study aimed to evaluate the ability of curcumin (Cur) to protect human dermal fibroblasts (HDFs) against ultraviolet A (UVA)-induced photoaging. HDFs were treated with 0–10 µM Cur for 2 h and subsequently exposed to various intensities of UVA irradiation. The cell viability and apoptotic rate of HDFs were investigated by MTT and flow cytometry assays, respectively. The effect of UVA and Cur on the formation of reactive oxygen species (ROS), malondialdehyde levels, which are an indicator of ROS, and the levels/activity of antioxidative defense proteins, including glutathione, superoxide dismutase and catalase, were evaluated using 2′,7′-dichlorofluorescin diacetate and commercial assay kits. Furthermore, western blotting was performed to determine the levels of proteins associated with endoplasmic reticulum (ER) stress, the apoptotic pathway, inflammation and the collagen synthesis pathway. The results demonstrated that Cur reduced the accumulation of ROS and restored the activity of antioxidant defense enzymes, indicating that Cur minimized the damage induced by UVA irradiation in HDFs. Furthermore, western blot analysis demonstrated that Cur may attenuate UVA-induced ER stress, inflammation and apoptotic signaling by downregulating the protein expression of glucose-regulated protein 78, C/EBP-homologous protein, nuclear factor-κB and cleaved caspase-3, while upregulating the expression of Bcl-2. Additionally, it was demonstrated that Cur may regulate collagen metabolism by decreasing the protein expression of matrix metalloproteinase (MMP)-1 and MMP-3, and may promote the repair of cells damaged as a result of UVA irradiation through increasing the protein expression of transforming

  18. Monocyte chemoattractant protein-induced protein 1 targets hypoxia-inducible factor 1α to protect against hepatic ischemia/reperfusion injury.

    PubMed

    Sun, Peng; Lu, Yue-Xin; Cheng, Daqing; Zhang, Kuo; Zheng, Jilin; Liu, Yupeng; Wang, Xiaozhan; Yuan, Yu-Feng; Tang, Yi-Da

    2018-05-09

    Sterile inflammation is an essential factor causing hepatic ischemia/reperfusion (I/R) injury. As a critical regulator of inflammation, the role of monocyte chemoattractant protein-induced protein 1 (MCPIP1) in hepatic I/R injury remains undetermined. In this study, we discovered that MCPIP1 downregulation was associated with hepatic I/R injury in liver transplant patients and a mouse model. Hepatocyte-specific Mcpip1 gene knockout (HKO) and transgenic (HTG) mice demonstrated that MCPIP1 functions to ameliorate liver damage, reduce inflammation, prevent cell death, and promote regeneration. A mechanistic study revealed that MCPIP1 interacted with and maintained hypoxia-inducible factor 1α (HIF-1α) expression by deubiquitinating HIF-1α. Notably, HIF-1α inhibitor reversed the protective effect of MCPIP1, while HIF-1α activator compensated for the detrimental effect of MCPIP1 deficiency. Thus, we identified the MCPIP1-HIF-1α axis as a critical pathway that may be a good target for intervention in hepatic I/R injury. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  19. Protective Effect of Korean Red Ginseng against Aflatoxin B1-Induced Hepatotoxicity in Rat

    PubMed Central

    Kim, Yong-Seong; Kim, Yong-Hoon; Noh, Jung-Ran; Cho, Eun-Sang; Park, Jong-Ho; Son, Hwa-Young

    2011-01-01

    Korean red ginseng (KRG), the steamed root of Panax ginseng Meyer, has a variety of biological properties, including anti-inflammatory, antioxidant and anticancer effects. Aflatoxin B1 (AFB1) produced by the Aspergillus spp. causes acute hepatotoxicity by lipid peroxidation and oxidative DNA damage, and induces liver carcinoma in humans and laboratory animals. This study was performed to examine the protective effects of KRG against hepatotoxicity induced by AFB1 using liver-specific serum marker analysis, histopathology, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling. In addition, to elucidate the possible mechanism of hepatoprotective effects, superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde were analyzed. Rats were treated with 250 mg/kg of KRG (KRG group) or saline (AFB1 group) for 4 weeks and then received 150 μg/kg of AFB1 intraperitoneally for 3 days. Rats were sacrificed at 12 h, 24 h, 48 h, 72 h, or 1 wk after AFB1 treatment. In the KRG pre-treatment group, serum alanine aminotransferase, aspartate aminotransferase, and malondialdehyde levels were low, but superoxide dismutase, catalase, and glutathione peroxidase activities were high as compared to the AFB1 alone group. Histopathologically, AFB1 treatment induced necrosis and apoptosis in hepatocytes, and led to inflammatory cells infiltration in the liver. KRG pre-treatment ameliorated these changes. These results indicate that KRG may have protective effects against hepatotoxicity induced by AFB1 that involve the antioxidant properties of KRG. PMID:23717067

  20. n-Butanol extract from Folium isatidis inhibits lipopolysaccharide-induced inflammatory cytokine production in macrophages and protects mice against lipopolysaccharide-induced endotoxic shock

    PubMed Central

    Jiang, Lili; Lu, Yili; Jin, Jiahui; Dong, Lili; Xu, Fengli; Chen, Shuangshuang; Wang, Zhanyue; Liang, Guang; Shan, Xiaoou

    2015-01-01

    Sepsis, which is caused by severe infection, is an important cause of mortality, but effective clinical treatment against sepsis is extremely limited. As the main component of the outer membrane of Gram-negative bacteria, lipopolysaccharide (LPS) plays a major role in inflammatory responses. Studies have shown beneficial pharmacological effects for Folium isatidis. The present study further illuminated the effects of n-butanol extract from Folium isatidis in LPS-induced septic shock and identified the main active chemical components. Our study showed that pretreatment with n-butanol extract from Folium isatidis not only significantly inhibited LPS-induced tumor necrosis factor-α and interleukin-6 production but also markedly and dose dependently enhanced the recruitment of MyD88, the phosphorylation of extracellular signal-regulated kinase, and the degradation of IκB-α. Additionally, the extract exhibited dramatic protective effects against lung injury and death in mice with septic shock. Eight main active compounds were identified, including organic acids, glycoside, indolinones, and flavonoids. These findings provide a perspective on the respiratory protection offered by n-butanol extract from Folium isatidis in LPS-induced sepsis and outline a novel therapeutic strategy for the treatment of sepsis. PMID:26491261

  1. Methionine sulfoxide reductase A protects hepatocytes against acetaminophen-induced toxicity via regulation of thioredoxin reductase 1 expression.

    PubMed

    Singh, Mahendra Pratap; Kwak, Geun-Hee; Kim, Ki Young; Kim, Hwa-Young

    2017-06-03

    Thioredoxin reductase 1 (TXNRD1) is associated with susceptibility to acetaminophen (APAP)-induced liver damage. Methionine sulfoxide reductase A (MsrA) is an antioxidant and protein repair enzyme that specifically catalyzes the reduction of methionine S-sulfoxide residues. We have previously shown that MsrA deficiency exacerbates acute liver injury induced by APAP. In this study, we used primary hepatocytes to investigate the underlying mechanism of the protective effect of MsrA against APAP-induced hepatotoxicity. MsrA gene-deleted (MsrA -/- ) hepatocytes showed higher susceptibility to APAP-induced cytotoxicity than wild-type (MsrA +/+ ) cells, consistent with our previous in vivo results. MsrA deficiency increased APAP-induced glutathione depletion and reactive oxygen species production. APAP treatment increased Nrf2 activation more profoundly in MsrA -/- than in MsrA +/+ hepatocytes. Basal TXNRD1 levels were significantly higher in MsrA -/- than in MsrA +/+ hepatocytes, while TXNRD1 depletion in both MsrA -/- and MsrA +/+ cells resulted in increased resistance to APAP-induced cytotoxicity. In addition, APAP treatment significantly increased TXNRD1 expression in MsrA -/- hepatocytes, while no significant change was observed in MsrA +/+ cells. Overexpression of MsrA reduced APAP-induced cytotoxicity and TXNRD1 expression levels in APAP-treated MsrA -/- hepatocytes. Collectively, our results suggest that MsrA protects hepatocytes from APAP-induced cytotoxicity through the modulation of TXNRD1 expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Antioxidant activity and protective effect of Clitoria ternatea flower extract on testicular damage induced by ketoconazole in rats.

    PubMed

    Iamsaard, Sitthichai; Burawat, Jaturon; Kanla, Pipatpong; Arun, Supatcharee; Sukhorum, Wannisa; Sripanidkulchai, Bungorn; Uabundit, Nongnut; Wattathorn, Jintanaporn; Hipkaeo, Wiphawi; Fongmoon, Duriya; Kondo, Hisatake

    2014-06-01

    Ketoconazole (KET), an antifungal drug, has adverse effects on the male reproductive system. Pre-treatments with antioxidant plant against testicular damage induced by KET are required. The flowers of Clitoria ternatea (CT) are proven to have hepatoprotective potential. However, the protective effect on KET-induced testicular damage has not been reported. To investigate the protective effect of CT flower extracts with antioxidant activity on male reproductive parameters including sperm concentration, serum testosterone level, histopathology of the testis, and testicular tyrosine phosphorylation levels in rats induced with KET. The antioxidant activity of CT flower extracts was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. Male rats were treated with CT flower extracts (10, 50, or 100 mg/kg BW) or distilled water via a gastric tube for 28 d (preventive period: Days 1-21) and induced by KET (100 mg/kg BW) via intraperitoneal injection for 7 d (induction period: Days 22-28). After the experiment, all animals were examined for the weights of the testis, epididymis plus vas deferens and seminal vesicle, serum testosterone levels, sperm concentration, histological structures and diameter of testis, and testicular tyrosine phosphorylation levels by immunoblotting. The CT flower extracts had capabilities for DPPH scavenging and high reducing power. At 100 mg/kg BW, the extract had no toxic effects on the male reproductive system. Significantly, in CT+KET groups, CT flower extracts (50 and 100 mg/kg BW) alleviated the reduction of reproductive organ weight parameters, testosterone levels, and sperm concentration. In addition, CT flower extracts gave protection from testicular damage in KET-induced rats. Moreover, in the CT100+KET group, CT flower extracts significantly enhanced the expression of a testicular 50-kDa tyrosine phosphorylated protein compared with that of other groups. C. ternatea flower extracts

  3. Cisplatin-Induced Nephrotoxicity; Protective Supplements and Gender Differences

    PubMed Central

    Nematbakhsh, Mehdi; Pezeshki, Zahra; Jazi, Fatemeh Eshraghi; Mazaheri, Bahar; Moeini, Maryam; Safari, Tahereh; Azarkish, Fariba; Moslemi, Fatemeh; Maleki, Maryam; Rezaei, Alireza; Saberi, Shadan; Dehghani, Aghdas; Malek, Maryam; Mansouri, Azam; Ghasemi, Marzieh; Zeinali, Farzaneh; Zamani, Zohreh; Navidi, Mitra; Jilanchi, Sima; Shirdavani, Soheyla; Ashrafi, Farzaneh

    2017-01-01

    Cisplatin (CDDP) has been widely used as a chemotherapeutic agent for solid tumors. The most common side effect of CDDP is nephrotoxicity, and many efforts have been made in the laboratory and the clinic to employ candidate adjuvants to CDDP to minimize this adverse influence. Many synthetic and herbal antioxidants as well as trace elements have been investigated for this purpose in recent years and a variety of positive and negative results have been yielded. However, no definitive supplement has so far been proposed to prevent CDDP-induced nephrotoxicity; however, this condition is gender related and the sex hormone estrogen may protect the kidney against CDDP damage. In this review, the results of research related to the effect of different synthetic and herbal antioxidants supplements are presented and discussed with suggestions included for future work. PMID:28345324

  4. Protective effects of Sonchus asper against KBrO3 induced lipid peroxidation in rats

    PubMed Central

    2012-01-01

    Background Sonchus asper is traditionally used in Pakistan for the treatment of reproductive dysfunction and oxidative stress. The present investigation was aimed to evaluate chloroform extract of Sonchus asper (SACE) against potassium bromate-induced reproductive stress in male rats. Methods 20 mg/kg body weight (b.w.) potassium bromate (KBrO3) was induced in 36 rats for four weeks and checked the protective efficacy of SACE at various hormonal imbalances, alteration of antioxidant enzymes, and DNA fragmentation levels. High performance chromatography (HPLC) was used for determination of bioactive constituents responsible. Results The level of hormonal secretion was significantly altered by potassium bromate. DNA fragmentation%, activity of antioxidant enzymes; catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and phase II metabolizing enzymes viz; glutathione reductase (GSR), glutathione peroxidase (GSHpx), glutathione-S-tansase (GST) and reduced glutathione (GSH) was decreased while hydrogen per oxide contents and thiobarbituric acid reactive substances (TBARS) were increased with KBrO3 treatment. Treatment with SACE effectively ameliorated the alterations in the biochemical markers; hormonal and molecular levels while HPLC characterization revealed the presence of catechin, kaempferol, rutin and quercetin. Conclusion Protective effects of Sonchus asper vs. KBrO3 induced lipid peroxidation might be due to bioactive compound present in SACE. PMID:23186106

  5. Protective effects of Sonchus asper against KBrO3 induced lipid peroxidation in rats.

    PubMed

    Khan, Rahmat Ali; Khan, Muhammad Rashid; Sahreen, Sumaira

    2012-11-27

    Sonchus asper is traditionally used in Pakistan for the treatment of reproductive dysfunction and oxidative stress. The present investigation was aimed to evaluate chloroform extract of Sonchus asper (SACE) against potassium bromate-induced reproductive stress in male rats. 20 mg/kg body weight (b.w.) potassium bromate (KBrO3) was induced in 36 rats for four weeks and checked the protective efficacy of SACE at various hormonal imbalances, alteration of antioxidant enzymes, and DNA fragmentation levels. High performance chromatography (HPLC) was used for determination of bioactive constituents responsible. The level of hormonal secretion was significantly altered by potassium bromate. DNA fragmentation%, activity of antioxidant enzymes; catalase (CAT), peroxidase (POD), superoxide dismutase (SOD) and phase II metabolizing enzymes viz; glutathione reductase (GSR), glutathione peroxidase (GSHpx), glutathione-S-tansase (GST) and reduced glutathione (GSH) was decreased while hydrogen per oxide contents and thiobarbituric acid reactive substances (TBARS) were increased with KBrO3 treatment. Treatment with SACE effectively ameliorated the alterations in the biochemical markers; hormonal and molecular levels while HPLC characterization revealed the presence of catechin, kaempferol, rutin and quercetin. Protective effects of Sonchus asper vs. KBrO3 induced lipid peroxidation might be due to bioactive compound present in SACE.

  6. Protective effect of hawthorn extract against genotoxicity induced by methyl methanesulfonate in human lymphocytes.

    PubMed

    Hosseinimehr, Seyed Jalal; Azadbakht, Mohammad; Tanha, Mohammad; Mahmodzadeh, Aziz; Mohammadifar, Sohila

    2011-05-01

    The preventive effect of hawthorn (Crataegus microphylla) fruit extract against genotoxicity induced by methyl methanesulfonate (MMS) has been investigated in human cultured blood lymphocytes. Peripheral blood samples were collected from human volunteers at 0 (10 minutes before), and at 1 and 2 hours after a single oral ingestion of 1 g hawthorn powder extract. At each time point, the whole blood was treated in vitro with MMS (200 µmol) at 24 hours after cell culture, and then the lymphocytes were cultured with mitogenic stimulation to determine the micronuclei in cytokinesis-blocked binucleated cells. The lymphocytes treated with hawthorn and MMS to exhibit a significant decreasing in the incidence of micronucleated binucleated cells, as compared with similarly MMS-treated lymphocytes from blood samples collected at 0 hour. The maximum protection and decreasing in frequency of micronuclei (36%) was observed at 1 hour after ingestion of hawthorn extract. The high performance liquid chromatography (HPLC) analysis showed that hawthorn contained chlorogenic acid, epicatechin and hyperoside. It is obvious that hawthorn, particularly flavonoids constituents with antioxidative activity, reduced the oxidative stress and genotoxicity induced by toxic compounds. This set of data may have an important application for the protection of human lymphocyte from the genetic damage and side effects induced by chemicals hazardous in people.

  7. Notch3/Akt signaling contributes to OSM-induced protection against cardiac ischemia/reperfusion injury.

    PubMed

    Zhang, Mingming; Wang, Chen; Hu, Jianqiang; Lin, Jie; Zhao, Zhijing; Shen, Min; Gao, Haokao; Li, Na; Liu, Min; Zheng, Pengfei; Qiu, Cuiting; Gao, Erhe; Wang, Haichang; Sun, Dongdong

    2015-09-01

    Oncostatin M (OSM) exhibits many unique biological activities by activating the Oβ receptor. However, its role in myocardial ischemia/reperfusion injury (I/R injury) in mice remains unknown. We investigated whether Notch3/Akt signaling is involved in the regulation of OSM-induced protection against cardiac I/R injury. The effects of OSM were assessed in mice that underwent myocardial I/R injury by OSM treatment or by genetic deficiency of the OSM receptor Oβ. We investigated its effects on cardiomyocyte apoptosis and mitochondrial biogenesis and whether Notch3/Akt signaling was involved in the regulation of OSM-induced protection against cardiac I/R injury. The mice underwent 30 min of ischemia followed by 3 h of reperfusion and were randomized to be treated with Notch3 siRNA (siNotch3) or lentivirus carrying Notch3 cDNA (Notch3) 72 h before coronary artery ligation. Myocardial infarct size, cardiac function, cardiomyocyte apoptosis and mitochondria morphology in mice that underwent cardiac I/R injury were compared between groups. OSM alleviated cardiac I/R injury by inhibiting cardiomyocyte apoptosis through promotion of Notch3 production, thus activating the PI3K/Akt pathway. OSM enhanced mitochondrial biogenesis and mitochondrial function in mice subjected to cardiac I/R injury. In contrast, OSM receptor Oβ knock out exacerbated cardiac I/R injury, decreased Notch3 production, enhanced cardiomyocyte apoptosis, and impaired mitochondrial biogenesis in cardiac I/R injured mice. The mechanism of OSM on cardiac I/R injury is partly mediated by the Notch3/Akt pathway. These results suggest a novel role of Notch3/Akt signaling that contributes to OSM-induced protection against cardiac I/R injury.

  8. Pink1/Parkin-mediated mitophagy play a protective role in cisplatin induced renal tubular epithelial cells injury.

    PubMed

    Zhao, Chuanyan; Chen, Zhuyun; Xu, Xueqiang; An, Xiaofei; Duan, Suyan; Huang, Zhimin; Zhang, Chengning; Wu, Lin; Zhang, Bo; Zhang, Aihua; Xing, Changying; Yuan, Yanggang

    2017-01-15

    Cisplatin often causes acute kidney injury (AKI) in the treatment of a wide variety of malignancies. Mitochondrial dysfunction is one of the main reasons for cisplatin nephrotoxicity. Previous study showed that Pink1 and Parkin play central roles in regulating the mitophagy, which is a key protective mechanism by specifically eliminating dysfunctional or damaged mitochondria. However, the mechanisms that modulate mitophagy in cisplatin induced nephrotoxicity remain to be elucidated. The purpose of this study was to investigate the effects of Pink1/Parkin pathway in mitophagy, mitochondrial dysfunction and renal proximal tubular cells injury during cisplatin treatment. In cultured human renal proximal tubular cells, we found that knockdown of Pink1/Parkin induced the aggravation of mitochondrial function, leading to the increase of cell injury through inhibition of mitophagy. Additionally, the overexpression of Pink1/Parkin protected against cisplatin-induced mitochondrial dysfunction and cell injury by promoting mitophagy. Our results provide clear evidence that Pink1/Parkin-dependent mitophagy has identified potential targets for the treatment of cisplatin-induced AKI. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Indole-3-carbinol protects against cisplatin-induced acute nephrotoxicity: role of calcitonin gene-related peptide and insulin-like growth factor-1.

    PubMed

    El-Naga, Reem N; Mahran, Yasmen F

    2016-07-15

    Nephrotoxicity associated with the clinical use of the anticancer drug cisplatin is a limiting problem. Thus, searching for new protective measures is required. Indole-3-carbinol is a powerful anti-oxidant, anti-inflammatory and anti-tumor agent. The present study aimed to investigate the potential protective effect of indole-3-carbinol against cisplatin-induced acute nephrotoxicity in rats. Rats were pre-treated with 20 mg/kg indole-3-carbinol orally before giving cisplatin (7 mg/kg). Cisplatin-induced acute nephrotoxicity was demonstrated where relative kidney weight, BUN and serum creatinine were significantly increased. Increased oxidative stress was evident in cisplatin group where GSH and SOD tissue levels were significantly depleted. Also, lipid peroxidation and NOX-1 were increased as compared to the control. Additionally, renal expression of pro-inflammatory mediators was induced by cisplatin. Cisplatin-induced cell death was shown by increased caspase-3 and decreased expression of EGF, IGF-1 and IGF-1 receptor. Nephrotoxicity, oxidative stress, inflammation and apoptotic effects induced by cisplatin were significantly ameliorated by indole-3-carbinol pre-treatment. Besides, the role of CGRP in cisplatin-induced nephrotoxicity was explored. Furthermore, cisplatin cytotoxic activity was significantly enhanced by indole-3-carbinol pre-treatment in vitro. In conclusion, indole-3-carbinol provides protection against cisplatin-induced nephrotoxicity. Also, reduced expression of CGRP may play a role in the pathogenesis of cisplatin-induced renal injury.

  10. Heme oxygenase-1 expression protects the heart from acute injury caused by inducible Cre recombinase

    PubMed Central

    Hull, Travis D.; Bolisetty, Subashini; DeAlmeida, Angela; Litovsky, Silvio H.; Prabhu, Sumanth D.; Agarwal, Anupam; George, James F.

    2013-01-01

    The protective effect of heme oxygenase-1 (HO-1) expression in cardiovascular disease has been previously demonstrated using transgenic animal models in which HO-1 is constitutively overexpressed in the heart. However, the temporal requirements for protection by HO-1 induction relative to injury have not been investigated, but are essential to employ HO-1 as a therapeutic strategy in human cardiovascular disease states. Therefore, we generated mice with cardiac-specific, tamoxifen (TAM)-inducible overexpression of a human HO-1 (hHO-1) transgene (MHC-HO-1 mice) by breeding mice with cardiac-specific expression of a TAM-inducible Cre recombinase (MHC-Cre mice) with mice containing an hHO-1 transgene preceded by a floxed stop signal (CBA-flox mice). MHC-HO-1 overexpress the HO-1 gene and enzymatically protein following TAM administration (40 mg/kg body weight on two consecutive days). In MHC-Cre controls, TAM administration leads to severe, acute cardiac toxicity, cardiomyocyte necrosis, and 80% mortality by day 3. This cardiac toxicity is accompanied by a significant increase in inflammatory cells in the heart that are predominantly neutrophils. In MHC-HO-1 mice, HO-1 overexpression ameliorates the depression of cardiac function and high mortality rate observed in MHC-Cre mice following TAM administration and attenuates cardiomyocyte necrosis and neutrophil infiltration. These results highlight that HO-1 induction is sufficient to prevent the depression of cardiac function observed in mice with TAM-inducible Cre recombinase expression by protecting the heart from necrosis and neutrophil infiltration. These findings are important because MHC-Cre mice are widely used in cardiovascular research despite the limitations imposed by Cre-induced cardiac toxicity and also because inflammation is an important pathological component of many human cardiovascular diseases. PMID:23732814

  11. Heme oxygenase-1 expression protects the heart from acute injury caused by inducible Cre recombinase.

    PubMed

    Hull, Travis D; Bolisetty, Subhashini; DeAlmeida, Angela C; Litovsky, Silvio H; Prabhu, Sumanth D; Agarwal, Anupam; George, James F

    2013-08-01

    The protective effect of heme oxygenase-1 (HO-1) expression in cardiovascular disease has been previously demonstrated using transgenic animal models in which HO-1 is constitutively overexpressed in the heart. However, the temporal requirements for protection by HO-1 induction relative to injury have not been investigated, but are essential to employ HO-1 as a therapeutic strategy in human cardiovascular disease states. Therefore, we generated mice with cardiac-specific, tamoxifen (TAM)-inducible overexpression of a human HO-1 (hHO-1) transgene (myosin heavy chain (MHC)-HO-1 mice) by breeding mice with cardiac-specific expression of a TAM-inducible Cre recombinase (MHC-Cre mice), with mice containing an hHO-1 transgene preceded by a floxed-stop signal. MHC-HO-1 mice overexpress HO-1 mRNA and the enzymatically active protein following TAM administration (40 mg/kg body weight on 2 consecutive days). In MHC-Cre controls, TAM administration leads to severe, acute cardiac toxicity, cardiomyocyte necrosis, and 80% mortality by day 3. This cardiac toxicity is accompanied by a significant increase in inflammatory cells in the heart that are predominantly neutrophils. In MHC-HO-1 mice, HO-1 overexpression ameliorates the depression of cardiac function and high mortality rate observed in MHC-Cre mice following TAM administration and attenuates cardiomyocyte necrosis and neutrophil infiltration. These results highlight that HO-1 induction is sufficient to prevent the depression of cardiac function observed in mice with TAM-inducible Cre recombinase expression by protecting the heart from necrosis and neutrophil infiltration. These findings are important because MHC-Cre mice are widely used in cardiovascular research despite the limitations imposed by Cre-induced cardiac toxicity, and also because inflammation is an important pathological component of many human cardiovascular diseases.

  12. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

    PubMed

    Bedarida, Tatiana; Domingues, Alison; Baron, Stephanie; Ferreira, Chrystophe; Vibert, Francoise; Cottart, Charles-Henry; Paul, Jean-Louis; Escriou, Virginie; Bigey, Pascal; Gaussem, Pascale; Leguillier, Teddy; Nivet-Antoine, Valerie

    2018-06-01

    Although thioredoxin-interacting protein (TXNIP) is involved in a variety of biologic functions, the contribution of endothelial TXNIP has not been well defined. To investigate the endothelial function of TXNIP, we generated a TXNIP knockout mouse on the Cdh5-cre background (TXNIP fl/fl cdh5 cre ). Control (TXNIP fl/fl ) and TXNIP fl/fl cdh5 cre mice were fed a high protein-low carbohydrate (HP-LC) diet for 3 mo to induce metabolic stress. We found that TXNIP fl/fl and TXNIP fl/fl cdh5 cre mice on an HP-LC diet displayed impaired glucose tolerance and dyslipidemia concretizing the metabolic stress induced. We evaluated the impact of this metabolic stress on mice with reduced endothelial TXNIP expression with regard to arterial structure and function. TXNIP fl/fl cdh5 cre mice on an HP-LC diet exhibited less endothelial dysfunction than littermate mice on an HP-LC diet. These mice were protected from decreased aortic medial cell content, impaired aortic distensibility, and increased plasminogen activator inhibitor 1 secretion. This protective effect came with lower oxidative stress and lower inflammation, with a reduced NLRP3 inflammasome expression, leading to a decrease in cleaved IL-1β. We also show the major role of TXNIP in inflammation with a knockdown model, using a TXNIP-specific, small interfering RNA included in a lipoplex. These findings demonstrate a key role for endothelial TXNIP in arterial impairments induced by metabolic stress, making endothelial TXNIP a potential therapeutic target.-Bedarida, T., Domingues, A., Baron, S., Ferreira, C., Vibert, F., Cottart, C.-H., Paul, J.-L., Escriou, V., Bigey, P., Gaussem, P., Leguillier, T., Nivet-Antoine, V. Reduced endothelial thioredoxin-interacting protein protects arteries from damage induced by metabolic stress in vivo.

  13. Protection from radiation-induced apoptosis by the radioprotector amifostine (WR-2721) is radiation dose dependent.

    PubMed

    Ormsby, Rebecca J; Lawrence, Mark D; Blyth, Benjamin J; Bexis, Katrina; Bezak, Eva; Murley, Jeffrey S; Grdina, David J; Sykes, Pamela J

    2014-02-01

    The radioprotective agent amifostine is a free radical scavenger that can protect cells from the damaging effects of ionising radiation when administered prior to radiation exposure. However, amifostine has also been shown to protect cells from chromosomal mutations when administered after radiation exposure. As apoptosis is a common mechanism by which cells with mutations are removed from the cell population, we investigated whether amifostine stimulates apoptosis when administered after radiation exposure. We chose to study a relatively low dose which is the maximum radiation dose for radiation emergency workers (0.25 Gy) and a high dose relevant to radiotherapy exposures (6 Gy). Mice were administered 400 mg/kg amifostine 30 min before, or 3 h after, whole-body irradiation with 0.25 or 6 Gy X-rays and apoptosis was analysed 3 or 7 h later in spleen and bone marrow. We observed a significant increase in radiation-induced apoptosis in the spleen of mice when amifostine was administered before or after 0.25 Gy X-rays. In contrast, when a high dose of radiation was used (6 Gy), amifostine caused a reduction in radiation-induced apoptosis 3 h post-irradiation in spleen and bone marrow similar to previously published studies. This is the first study to investigate the effect of amifostine on radiation-induced apoptosis at a relatively low radiation dose and the first to demonstrate that while amifostine can reduce apoptosis from high doses of radiation, it does not mediate the same effect in response to low-dose exposures. These results suggest that there may be a dose threshold at which amifostine protects from radiation-induced apoptosis and highlight the importance of examining a range of radiation doses and timepoints.

  14. Protective Effects of Lithospermum erythrorhizon Against Cerulein-Induced Acute Pancreatitis.

    PubMed

    Choi, Sun Bok; Bae, Gi-Sang; Jo, Il-Joo; Seo, Seung-Hee; Kim, Dong-Goo; Shin, Joon-Yeon; Hong, Seung-Heon; Choi, Byung-Min; Park, Sang-Hyun; Song, Ho-Joon; Park, Sung-Joo

    2015-01-01

    We aimed to evaluate the anti-inflammatory and inhibitory effects of Lithospermum erythrorhizon (LE) on cerulein-induced acute pancreatitis (AP) in a mouse model. Acute pancreatitis was induced via intraperitoneal injection of cerulein (50 μg/kg) every hour for 6 times. In the LE, water extract (100, 250, or 500 mg/kg) was administered intraperitoneally 1 hour before the first injection of cerulein. Six hours after AP, blood, the pancreas, and the lung were harvested for further examination. In addition, pancreatic acinar cells were isolated using a collagenase method, and then, we investigated the acinar cell viability and cytokine productions. Treatment with LE reduced pancreatic damage and AP-associated lung injury and attenuated the severity of AP, as evidenced by the reduction in neutrophil infiltration, serum amylase and lipase levels, trypsin activity, and proinflammatory cytokine expression. In addition, treatment with LE inhibited high mobility group box 1 expression in the pancreas during AP. In accordance with in vivo data, LE inhibited the cerulein-induced acinar cell death, cytokine productions, and high-mobility group box 1 expression. Furthermore, LE also inhibited the activation of p38 mitogen-activated protein kinases. These results suggest that LE plays a protective role during the development of AP by inhibiting the activation of p38.

  15. Chromium-picolinate induced ocular changes: Protective role of ascorbic acid.

    PubMed

    Mahmoud, Amany A; Karam, Sawsan H; Abdel-Wahhab, Mosaad A

    2006-09-21

    Chromium-picolinate (Cr-picolinate) is a popular nutritional supplement; however its safety has been questioned with regard to its ability to act as a clastogen. The aim of the present work was to evaluate the biochemical, histological and morphological changes in the cornea and lens following oral administration of Cr-picolinate and the possible protective effect of Vitamin C. Ninety male Sprague-Dawley rats were divided into five groups included the control group, the groups treated with Cr-picolinate (0.8 and 1.5 mg/100 g b.w.) alone or in combination with Vitamin C (0.5 mg/100 g b.w.) for 8 weeks. The results indicated that the high dose of Cr-picolinate induced a significant decrease in SOD, GSH, Na(+)-, K(+)-ATPase levels, and a significant increase in MDA level. Severe morphological and histological changes in the cornea and lens accompanied with a decrease in the total soluble protein of the lens homogenate and changes in the crystalline fractions in lens. Vitamin C supplementation succeeded to restore these changes to great extent. It could be concluded that consumption of Cr-picolinate for a long time induced several hazards to cornea and lens. Supplementation with extra amounts of Vitamin C may be useful to restrain the Cr-picolinate induced ocular changes.

  16. Mucosal BCG Vaccination Induces Protective Lung-Resident Memory T Cell Populations against Tuberculosis

    PubMed Central

    Perdomo, Carolina; Zedler, Ulrike; Kühl, Anja A.; Lozza, Laura; Saikali, Philippe; Sander, Leif E.; Vogelzang, Alexis; Kupz, Andreas

    2016-01-01

    ABSTRACT Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T (TRM) cells have been implicated in protective immune responses against viral infections, but the role of TRM cells following mycobacterial infection is unknown. Using a mouse model of TB, we compared protection and lung cellular infiltrates of parenteral and mucosal BCG vaccination. Adoptive transfer and gene expression analyses of lung airway cells were performed to determine the protective capacities and phenotypes of different memory T cell subsets. In comparison to subcutaneous vaccination, intratracheal and intranasal BCG vaccination generated T effector memory and TRM cells in the lung, as defined by surface marker phenotype. Adoptive mucosal transfer of these airway-resident memory T cells into naive mice mediated protection against TB. Whereas airway-resident memory CD4+ T cells displayed a mixture of effector and regulatory phenotype, airway-resident memory CD8+ T cells displayed prototypical TRM features. Our data demonstrate a key role for mucosal vaccination-induced airway-resident T cells in the host defense against pulmonary TB. These results have direct implications for the design of refined vaccination strategies. PMID:27879332

  17. Short- and long-term immunogenicity and protection induced by non-replicating smallpox vaccine candidates in mice and comparison with the traditional 1st generation vaccine.

    PubMed

    Ferrier-Rembert, Audrey; Drillien, Robert; Tournier, Jean-Nicolas; Garin, Daniel; Crance, Jean-Marc

    2008-03-25

    This study assessed three non-replicating smallpox vaccine candidates (modified vaccinia Ankara (MVA), NYVAC and HR) for their immunogenicity and ability to protect mice against an intranasal cowpox virus challenge and compared them with the traditional replicating vaccine. A single immunisation with the non-replicating vaccines induced a complete protection from death at short-term, but was not fully protective when mice were challenged 150 days post-vaccination with protection correlated with the specific neutralizing antibodies and CD4(+) T-cells responses. Prime-boost vaccination enabled effective long-term protection from death for mice vaccinated with MVA, but protection from disease and CD4(+) T-cell level were lower than the ones induced by the traditional vaccine over the long-term period. Further investigations are necessary with MVA to determine the optimal conditions of immunisation to induce at long-term immunogenicity and protection observed with the 1st generation smallpox vaccine.

  18. Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.

    PubMed

    Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R; Masliah, Eliezer; Lipton, Stuart A

    2015-06-01

    Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2). © 2015 International Society for Neurochemistry.

  19. Fluoxetine protects against IL-1β-induced neuronal apoptosis via downregulation of p53.

    PubMed

    Shan, Han; Bian, Yaqi; Shu, Zhaoma; Zhang, Linxia; Zhu, Jialei; Ding, Jianhua; Lu, Ming; Xiao, Ming; Hu, Gang

    2016-08-01

    Fluoxetine, a selective serotonin reuptake inhibitor, exerts neuroprotective effects in a variety of neurological diseases including stroke, but the underlying mechanism remains obscure. In the present study, we addressed the molecular events in fluoxetine against ischemia/reperfusion-induced acute neuronal injury and inflammation-induced neuronal apoptosis. We showed that treatment of fluoxetine (40 mg/kg, i.p.) with twice injections at 1 h and 12 h after transient middle cerebral artery occlusion (tMCAO) respectively alleviated neurological deficits and neuronal apoptosis in a mouse ischemic stroke model, accompanied by inhibiting interleukin-1β (IL-1β), Bax and p53 expression and upregulating anti-apoptotic protein Bcl-2 level. We next mimicked neuroinflammation in ischemic stroke with IL-1β in primary cultured cortical neurons and found that pretreatment with fluoxetine (1 μM) prevented IL-1β-induced neuronal apoptosis and upregulation of p53 expression. Furthermore, we demonstrated that p53 overexpression in N2a cell line abolished the anti-apoptotic effect of fluoxetine, indicating that p53 downregulation is required for the protective role of fluoxetine in IL-1β-induced neuronal apoptosis. Fluoxetine downregulating p53 expression could be mimicked by SB203580, a specific inhibitor of p38, but blocked by anisomycin, a p38 activator. Collectively, our findings have revealed that fluoxetine protects against IL-1β-induced neuronal apoptosis via p38-p53 dependent pathway, which give us an insight into the potential of fluoxetine in terms of opening up novel therapeutic avenues for neurological diseases including stroke. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Protective Effects of Apigenin Against Paraquat-Induced Acute Lung Injury in Mice.

    PubMed

    Luan, Rui-Ling; Meng, Xiang-Xi; Jiang, Wei

    2016-04-01

    This study aimed to investigate the protective effects of apigenin against paraquat (PQ)-induced acute lung injury (ALI) in mice. Male Kunming mice were randomly divided into five groups: group 1 (control), group 2 (PQ), group 3 (PQ + apigenin 25 mg/kg), group 4 (PQ + apigenin 50 mg/kg), and group 5 (PQ + apigenin 100 mg/kg). The PQ + apigenin group received apigenin by gavage daily for consecutive 7 days, respectively, while the mice in control and PQ groups were given an equivalent volume of saline. We detected the lung wet/dry weight ratios and the histopathology of the lung. The levels of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined using enzyme-linked immunosorbent assay (ELISA) kits. The activity of nuclear factor (NF)-κB was also determined. The results indicated that apigenin administration decreased biochemical parameters of inflammation and oxidative stress, and improved oxygenation and lung edema in a dose-dependent manner. These protective effects of apigenin were associated with inhibition of NF-κB. In conclusion, apigenin reduces PQ-induced ALI by inhibition of inflammation and oxidative stress.