Sample records for salt creek field

  1. Ecosystem engineers drive creek formation in salt marshes.

    PubMed

    Vu, Huy D; Wie Ski, Kazimierz; Pennings, Steven C

    2017-01-01

    Ecosystem engineers affect different organisms and processes in multiple ways at different spatial scales. Moreover, similar species may differ in their engineering effects for reasons that are not always clear. We examined the role of four species of burrowing crabs (Sesarma reticulatum, Eurytium limosum, Panopeus herbstii, Uca pugnax) in engineering tidal creek networks in salt marshes experiencing sea level rise. In the field, crab burrows were associated with heads of eroding creeks and the loss of plant (Spartina alterniflora) stems. S. reticulatum was closely associated with creek heads, but densities of the other crab species did not vary across marsh zones. In mesocosm experiments, S. reticulatum excavated the most soil and strongly reduced S. alterniflora biomass. The other three species excavated less and did not affect S. alterniflora. Creek heads with vegetation removed to simulate crab herbivory grew significantly faster than controls. Percolation rates of water into marsh sediments were 10 times faster at creek heads than on the marsh platform. Biomass decomposed two times faster at creek heads than on the marsh platform. Our results indicate that S. reticulatum increases creek growth by excavating sediments and by consuming plants, thereby increasing water flow and erosion at creek heads. Moreover, it is possible that S. reticulatum burrows also increase creek growth by increasing surface and subsurface erosion, and by increasing decomposition of organic matter at creek heads. Our results show that the interaction between crab and plant ecosystem engineers can have both positive and negative effects. At a small scale, in contrast to other marsh crabs, S. reticulatum harms rather than benefits plants, and increases erosion rather than marsh growth. At a large scale, however, S. reticulatum facilitates the drainage efficiency of the marsh through the expansion of tidal creek networks, and promotes marsh health. © 2016 by the Ecological Society

  2. Fish assemblages in Tanzanian mangrove creek systems influenced by solar salt farm constructions

    NASA Astrophysics Data System (ADS)

    Mwandya, Augustine W.; Gullström, Martin; Öhman, Marcus C.; Andersson, Mathias H.; Mgaya, Yunus D.

    2009-04-01

    Deforestation of mangrove forests is common occurrence worldwide. We examined fish assemblage composition in three mangrove creek systems in Tanzania (East Africa), including two creeks where the upper parts were partly clear-cut of mangrove forest due to the construction of solar salt farms, and one creek with undisturbed mangrove forest. Fish were caught monthly for one year using a seine net (each haul covering 170 m 2) within three locations in each creek, i.e. at the upper, intermediate and lower reaches. Density, biomass and species number of fish were lower in the upper deforested sites compared to the mangrove-fringed sites at the intermediate and lower parts in the two creeks affected by deforestation, whereas there were no differences among the three sites in the undisturbed mangrove creek system. In addition, multivariate analyses showed that the structure of fish assemblages varied between forested and clear-cut sites within the two disturbed creeks, but not within the undisturbed creek. Across the season, we found no significant differences except for a tendency of a minor increase in fish densities during the rainy season. At least 75% of the fishes were juveniles and of commercial interest for coastal fisheries and/or aquaculture. Mugil cephalus, Gerres oyena and Chanos chanos were the most abundant species in the forested sites. The dominant species in the clear-cut areas were M. cephalus and Elops machnata, which were both found in relatively low abundances compared to the undisturbed areas. The conversion of mangrove forests into solar salt farms not only altered fish assemblage composition, but also water and sediment conditions. In comparison with undisturbed areas, the clear-cut sites showed higher salinity, water temperature as well as organic matter and chlorophyll a in the sediments. Our results suggest that mangrove habitat loss and changes in environmental conditions caused by salt farm developments will decrease fish densities, biomass

  3. 78 FR 33282 - Endangered and Threatened Wildlife and Plants; Revision of Critical Habitat for Salt Creek Tiger...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ... habitat includes saline wetlands and streams associated with Little Salt Creek and encompasses all three habitat areas occupied by the subspecies at the time of listing. It also includes saline wetlands and... beetle is endemic to saline wetlands associated with the Salt Creek watershed and some of its tributaries...

  4. Influence of the Onion Creek salt diapir on the late Cenozoic history of Fisher Valley, southeastern Utah.

    USGS Publications Warehouse

    Colman, Steven M.

    1983-01-01

    Apparently, several pulses of salt flowed into the diapir between about 2-3 and 0.25Myr ago, and the diapir may still be active. The rising salt diapir impeded the flow of ancestral Fisher Creek, causing deposition of more than 125m of basin-fill sediments, and eventually diverted the creek down Cottonwood graben to the Dolores River about 0.25Myr ago. Onion Creek has eroded headward from the Colorado River, through both the diapir and the basin-fill sediments, and is about to capture Fisher Creek, restoring the original drainage course. -from Author

  5. Salt transport in a tidal canal, West Neck Creek, Virginia

    USGS Publications Warehouse

    Bales, Jerad D.; Skrobialowski, Stanley C.; ,

    1993-01-01

    Flow and stability were monitored during 1989-92 in West Neck Creek, Virginia, which provides a direct hydraulic connection between the saline waters of Chesapeake Bay and the relatively fresh waters of Currituck Sound, North Carolina. Flow in the tidal creek was to the south 64 percent of the time, but 80 percent of the southward flows were less than 40 cubic feet per second. The highest flows were associated with rain storms. Salinity ranged from 0.1 parts per thousand to 24.5 per thousand, and the highest salinities were observed during periods of sustained, strong northerly winds. Salt loads ranged from 302 tons per day to the north to 4,500 tons per day to the south.

  6. The biology of Salt Wells Creek and its tributaries, southwestern Wyoming

    USGS Publications Warehouse

    Engelke, Morris J.

    1978-01-01

    A description of aquatic organisms and biological communities is presented for Salt Wells Creek, a plains stream in the Green River basin. The description includes seasonal population fluctuations of benthic organisms and algae, the food pyramid, and nutrient relations between various types of plants and animals. The algae and stream invertebrates were studied to determine baseline data and biological indicators of water quality. (Woodard-USGS).

  7. Flood-Inundation Maps for a 1.6-Mile Reach of Salt Creek, Wood Dale, Illinois

    USGS Publications Warehouse

    Soong, David T.; Murphy, Elizabeth A.; Sharpe, Jennifer B.

    2012-01-01

    Digital flood-inundation maps for a 1.6-mile reach of Salt Creek from upstream of the Chicago, Milwaukee, St. Paul & Pacific Railroad to Elizabeth Drive, Wood Dale, Illinois, were created by the U.S. Geological Survey (USGS) in cooperation with the DuPage County Stormwater Management Division. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ depict estimates of the areal extent of flooding corresponding to selected water levels (gage heights) at the USGS streamgage on Salt Creek at Wood Dale, Illinois (station number 05531175). Current conditions at the USGS streamgage may be obtained on the Internet at http://waterdata.usgs.gov/usa/nwis/uv?05531175. In this study, flood profiles were computed for the stream reach by means of a one-dimensional unsteady flow Full EQuations (FEQ) model. The unsteady flow model was verified by comparing the rating curve output for a September 2008 flood event to discharge measurements collected at the Salt Creek at Wood Dale gage. The hydraulic model was then used to determine 14 water-surface profiles for gage heights at 0.5-ft intervals referenced to the streamgage datum and ranging from less than bankfull to approximately the highest recorded water level at the streamgage. The simulated water-surface profiles were then combined with a Geographic Information System (GIS) Digital Elevation Model (DEM) (derived from Light Detection and Ranging (LiDAR) data) in order to delineate the area flooded at each water level. The areal extent of the inundation was verified with high-water marks from a flood in July 2010 with a peak gage height of 14.08 ft recorded at the Salt Creek at Wood Dale gage. The availability of these maps along with Internet information regarding current gage height from USGS streamgages provide emergency management personnel and residents with information that is critical for flood response activities such as

  8. Water in urban planning, Salt Creek Basin, Illinois water management as related to alternative land-use practices

    USGS Publications Warehouse

    Spieker, Andrew Maute

    1970-01-01

    Water management can be an integral part of urban comprehensive planning in a large metropolitan area. Water both imposes constraints on land use and offers opportunities for coordinated land and water management. Salt Creek basin in Cook and Du Page Counties of the Chicago metropolitan area is typical of rapidly developing suburban areas and has been selected to illustrate some of these constraints and opportunities and to suggest the effects of alternative solutions. The present study concentrates on the related problems of ground-water recharge, water quality, management of flood plains, and flood-control measures. Salt Creek basin has a drainage area of 150 square miles. It is in flat to. gently rolling terrain, underlain by glacial drift as much as 200 feet thick which covers a dolomite aquifer. In 1964, the population of the basin was about 400,000, and 40 percent of the land was in urban development. The population is expected to number 550,000 to 650,000 by 1990, and most of the land will be taken by urban development. Salt Creek is a sluggish stream, typical of small drainage channels in the headwaters area of northeastern Illinois. Low flows of 15 to 25 cubic feet per second in the lower part of the basin consist largely of sewage effluent. Nearly all the public water supplies in the basin depend on ground water. Of the total pumpage of 27.5 million gallons per day, 17.5 million gallons per day is pumped from the deep (Cambrian-Ordovician) aquifers and 10 million gallons per day is pumped from the shallow (Silurian dolomite and glacial drift) aquifers. The potential yield of the shallow aquifers, particularly glacial drift in the northern part of the basin, far exceeds present use. The largest concentration of pumpage from the shallow ,aquifers is in the Hinsdale-La Grange area. Salt Creek serves as an important source of recharge to these supplies, particularly just east of Hinsdale. The entire reach of Salt Creek south and east of Elmhurst can be

  9. Nekton use of intertidal creek edges in low salinity salt marshes of the Yangtze River estuary along a stream-order gradient

    NASA Astrophysics Data System (ADS)

    Jin, Binsong; Qin, Haiming; Xu, Wang; Wu, Jihua; Zhong, Junsheng; Lei, Guangchun; Chen, Jiakuan; Fu, Cuizhang

    2010-07-01

    Non-vegetated creek edges were investigated to explore spatial nekton use patterns in a low salinity intertidal salt marsh creek network of the Yangtze River estuary along a stream-order gradient with four creek orders. Non-vegetated creek edges were arbitrarily defined as the approximately 3 m extending from the creek bank (the marsh-creek interface) into open water. Nekton was sampled using seine nets during daytime high slack water during spring tides for two or three days each in May through July 2008. Twenty-three nekton species (16 fishes and 7 crustaceans) were caught during the study. Fishes were dominated by gobies ( Mugilogobius abei, Periophthalmus magnuspinnatus, Periophthalmus modestus, Synechogobius ommaturus), mullets ( Chelon haematocheilus, Liza affinis) and Chinese sea bass ( Lateolabrax maculatus). Crustaceans were dominated by mud crab ( Helice tientsinensis) and white prawn ( Exopalaemon carinicauda). Rank abundance curves revealed higher evenness of nekton assemblages in lower-order creeks compared to higher-order creeks. Fish abundance tended to increase with increasing creek order. Crustacean abundance was higher in the first-third order creeks than in the fourth-order creek. Dominant nekton species displayed various trends in abundance and length-frequency distributions along the stream-order gradient. The spatial separation of nekton assemblages between the first-third order creeks and the fourth-order creek could be attributed to geomorphological factors (distance to mouth and cross-sectional area). These findings indicate that both lower- and higher-order creek edges play important yet different roles for nekton species and life history stages in salt marshes.

  10. 33 CFR 334.855 - Salt River, Rolling Fork River, Otter Creek; U.S. Army Garrison, Fort Knox Military Reservation...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Otter Creek; U.S. Army Garrison, Fort Knox Military Reservation; Fort Knox, Kentucky; danger zone. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.855 Salt River, Rolling Fork River, Otter Creek; U.S. Army Garrison, Fort Knox Military Reservation; Fort Knox, Kentucky; danger zone. (a...

  11. 33 CFR 334.855 - Salt River, Rolling Fork River, Otter Creek; U.S. Army Garrison, Fort Knox Military Reservation...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Otter Creek; U.S. Army Garrison, Fort Knox Military Reservation; Fort Knox, Kentucky; danger zone. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.855 Salt River, Rolling Fork River, Otter Creek; U.S. Army Garrison, Fort Knox Military Reservation; Fort Knox, Kentucky; danger zone. (a...

  12. 33 CFR 334.855 - Salt River, Rolling Fork River, Otter Creek; U.S. Army Garrison, Fort Knox Military Reservation...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Otter Creek; U.S. Army Garrison, Fort Knox Military Reservation; Fort Knox, Kentucky; danger zone. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.855 Salt River, Rolling Fork River, Otter Creek; U.S. Army Garrison, Fort Knox Military Reservation; Fort Knox, Kentucky; danger zone. (a...

  13. 33 CFR 334.855 - Salt River, Rolling Fork River, Otter Creek; U.S. Army Garrison, Fort Knox Military Reservation...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Otter Creek; U.S. Army Garrison, Fort Knox Military Reservation; Fort Knox, Kentucky; danger zone. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.855 Salt River, Rolling Fork River, Otter Creek; U.S. Army Garrison, Fort Knox Military Reservation; Fort Knox, Kentucky; danger zone. (a...

  14. 33 CFR 334.855 - Salt River, Rolling Fork River, Otter Creek; U.S. Army Garrison, Fort Knox Military Reservation...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Otter Creek; U.S. Army Garrison, Fort Knox Military Reservation; Fort Knox, Kentucky; danger zone. 334..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.855 Salt River, Rolling Fork River, Otter Creek; U.S. Army Garrison, Fort Knox Military Reservation; Fort Knox, Kentucky; danger zone. (a...

  15. Flood-inundation maps for North Fork Salt Creek at Nashville, Indiana

    USGS Publications Warehouse

    Martin, Zachary W.

    2017-11-13

    Digital flood-inundation maps for a 3.2-mile reach of North Fork Salt Creek at Nashville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Department of Transportation. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science website at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding that correspond to selected water levels (stages) at the North Fork Salt Creek at Nashville, Ind., streamgage (USGS station number 03371650). Real-time stages at this streamgage may be obtained from the USGS National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also shows observed USGS stages at the same site as the USGS streamgage (NWS site NFSI3).Flood profiles were computed for the stream reach by means of a one-dimensional, step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current (2015) stage-discharge rating at the USGS streamgage 03371650, North Fork Salt Creek at Nashville, Ind. The hydraulic model was then used to compute 12 water-surface profiles for flood stages at 1-foot (ft) intervals, except for the highest profile of 22.9 ft, referenced to the streamgage datum ranging from 12.0 ft (the NWS “action stage”) to 22.9 ft, which is the highest stage of the current (2015) USGS stage-discharge rating curve and 1.9 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a geographic information system digital elevation model (derived from light detection and ranging data having a 0.98-ft vertical accuracy and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability of these maps, along with information regarding current stage from the USGS

  16. Degradation in Rush, Wildhorse, and Salt Creeks of Washita River in Oklahoma for transportation planning.

    DOT National Transportation Integrated Search

    2010-03-01

    The purpose of this research is to analyze the flow line data and relate it to the degradation of the Rush, Wildhorse and Salt Creeks at bridge location in the Washita River tributaries. This information may then be used to replace or rehabilitate th...

  17. Tidal Flooding and Vegetation Patterns in a Salt Marsh Tidal Creek Imaged by Low-altitude Balloon Aerial Photography

    NASA Astrophysics Data System (ADS)

    White, S. M.; Madsen, E.

    2013-12-01

    Inundation of marsh surfaces by tidal creek flooding has implications for the headward erosion of salt marsh creeks, effect of rising sea levels, biological zonation, and marsh ecosystem services. The hydroperiod; as the frequency, duration, depth and flux of water across the marsh surface; is a key factor in salt marsh ecology, but remains poorly understood due to lack of data at spatial scales relevant to tracking the spatial movement of water across the marsh. This study examines how hydroperiod, drainage networks, and tidal creek geomorphology on the vegetation at Crab Haul Creek. Crab Haul Creek is the farthest landward tidal basin in North Inlet, a bar-built estuary in South Carolina. This study measures the hydroperiod in the headwaters Crab Haul Creek with normal and near-IR photos from a helium balloon Helikite at 75-100 m altitude. Photos provide detail necessary to resolve the waterline and delineate the hydroperiod during half tidal cycles by capturing the waterline hourly from the headwaters to a piezometer transect 260 meters north. The Helikite is an ideal instrument for local investigations of surface hydrology due to its maneuverability, low cost, ability to remain aloft for extended time over a fixed point, and ability to capture high-resolution images. Photographs taken from aircraft do not provide the detail necessary to determine the waterline on the marsh surface. The near-IR images make the waterline more distinct by increasing the difference between wet and dry ground. In the headwaters of Crab Haul Creek, individual crab burrows are detected by automated image classification and the number of crab burrows and their spatial density is tracked from January-August. Crab burrows are associated with the unvegetated region at the creek head, and we relate their change over time to the propagation of the creek farther into the tidal basin. Plant zonation is influenced by the hydroperiod, but also may be affected by salinity, water table depth, and

  18. Forensic Analysis of the May 2014 West Salt Creek Rock Avalanche in Western Colorado

    NASA Astrophysics Data System (ADS)

    Coe, J. A.; Baum, R. L.; Allstadt, K.; Kochevar, B. F.; Schmitt, R. G.; Morgan, M. L.; White, J. L.; Stratton, B. T.; Hayashi, T. A.; Kean, J. W.

    2015-12-01

    The rain-on-snow induced West Salt Creek rock avalanche occurred on May 25, 2014 on the northern flank of Grand Mesa. The avalanche was rare for the contiguous U.S. because of its large size (59 M m3) and high mobility (Length/Height=7.2). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, Unmanned Aircraft System (UAS) imagery as a base for our field mapping and analyzed seismic data from 22 broadband stations (distances <656 km) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with a landslide/debris flow that started about 10 hours before the main avalanche. The main avalanche lasted just over 3 minutes and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich, strike-slip bound core continued to move slowly. Following movement of the core, numerous shallow landslides, rock slides, and rock falls created new structures and modified topography. Mobility of the main avalanche and central core were likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a liquefied basal layer; and a thicker and stronger overriding layer.

  19. Miller Creek Demonstration Forest ecology activities - a teachers supplement to the field guide

    Treesearch

    Bill Schustrom; Reed Kuennen; Raymond C. Shearer

    1998-01-01

    Miller Creek, on the Flathead National Forest in northwestern Montana, is a demonstration forest, showing up to 30 years of forest change. This teachers supplement to the educational field guide (Miller Creek Demonstration Forest - a forest born of fire: a field guide; Gen. Tech. Rep. RMRS-GTR-7, 1998) outlines eight field and classroom activities that teach students a...

  20. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado

    USGS Publications Warehouse

    Coe, Jeffrey A.; Baum, Rex L.; Allstadt, Kate E.; Kochevar, Bernard; Schmitt, Robert G.; Morgan, Matthew L.; White, Jonathan L.; Stratton, Benjamin T.; Hayashi, Timothy A.; Kean, Jason W.

    2016-01-01

    On 25 May 2014, a rain-on-snow–induced rock avalanche occurred in the West Salt Creek valley on the northern flank of Grand Mesa in western Colorado (United States). The avalanche mobilized from a preexisting rock slide in the Green River Formation and traveled 4.6 km down the confined valley, killing three people. The avalanche was rare for the contiguous United States because of its large size (54.5 Mm3) and high mobility (height/length = 0.14). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, unmanned aircraft system imagery as a base for field mapping, and analyzed seismic data from 22 broadband stations (distances < 656 km from the rock-slide source area) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with an early morning landslide/debris flow that started ∼10 h before the main avalanche. The main avalanche lasted ∼3.5 min and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich core continued to move slowly. Since 25 May 2014, numerous shallow landslides, rock slides, and rock falls have created new structures and modified avalanche topography. Mobility of the main avalanche and central core was likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional

  1. The Effect of Source Suspended Sediment Concentration on the Sediment Dynamics of a Macrotidal Creek and Salt Marsh

    NASA Astrophysics Data System (ADS)

    Poirier, E.; van Proosdij, D.; Milligan, T. G.

    2017-12-01

    Seasonal variability in the sediment dynamics of a Bay of Fundy tidal creek and salt marsh system was analyzed to better understand the ecomorphodynamics of a high suspended sediment concentration intertidal habitat. Data were collected over 62 tides for velocity, suspended sediment concentration, deposition, and grain size at four stations from the creek thalweg to the marsh surface. Five topographic surveys were also conducted throughout the 14-month study. Deposition rates per tide varied spatially from 56.4 g·m-2 at the creek thalweg to 15.3 g·m-2 at the marsh surface. Seasonal variations in deposition in the creek and marsh surface were from 38.0 g·m-2 to 97.7 g·m-2 and from 12.2 g·m-2 to 19.6 g·m-2 respectively. Deposition and erosion were greatest in late fall and winter. This seasonal change, led by higher suspended sediment concentrations, was observed in the creek and at the marsh bank but notably absent from the marsh edge and marsh surface. Sediments were predominantly deposited in floc form (76-83%). Because of high floc content, higher suspended sediment concentrations led to more rapid loss of sediment from suspension. With increasing sediment concentration, deposition increased in the tidal creek and at the marsh bank but not at the marsh edge or marsh surface. This suggests that in highly flocculated environments the water column clears fast enough that very little sediment remains in suspension when the water reaches the marsh and that the sediment concentration during marsh inundation is independent of the initial concentration in the creek.

  2. The effect of source suspended sediment concentration on the sediment dynamics of a macrotidal creek and salt marsh

    NASA Astrophysics Data System (ADS)

    Poirier, Emma; van Proosdij, Danika; Milligan, Timothy G.

    2017-09-01

    Seasonal variability in the sediment dynamics of a Bay of Fundy tidal creek and salt marsh system was analyzed to better understand the ecomorphodynamics of a high suspended sediment concentration intertidal habitat. Data were collected over 62 tides for velocity, suspended sediment concentration, deposition, and grain size at four stations from the creek thalweg to the marsh surface. Five topographic surveys were also conducted throughout the 14-month study. Deposition rates per tide varied spatially from 56.4 g m-2 at the creek thalweg to 15.3 g m-2 at the marsh surface. Seasonal variations in deposition in the creek and marsh surface were from 38.0 g m-2 to 97.7 g m-2 and from 12.2 g m-2 to 19.6 g m-2 respectively. Deposition and erosion were greatest in late fall and winter. This seasonal change, led by higher suspended sediment concentrations, was observed in the creek and at the marsh bank but notably absent from the marsh edge and marsh surface. Sediments were predominantly deposited in floc form (76-83%). Because of high floc content, higher suspended sediment concentrations led to more rapid loss of sediment from suspension. With increasing sediment concentration, deposition increased in the tidal creek and at the marsh bank but not at the marsh edge or marsh surface. This suggests that in highly flocculated environments the water column clears fast enough that very little sediment remains in suspension when the water reaches the marsh and that the sediment concentration during marsh inundation is independent of the initial concentration in the creek.

  3. Depositional environments, sequence stratigraphy, and trapping mechanisms of Fall River Formation in Donkey Creek and Coyote Creek oil fields, Powder River basin, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, P.R.

    1989-09-01

    Donkey Creek and Coyote Creek fields contain combined reserves of approximately 35 million bbl of oil and are within a trend of fields on the eastern flank of the Powder River basin that totals over 100 million bbl of reserves. The principal producing formation is the Lower Cretaceous Fall River Sandstone. A study of 45 cores and 248 logs from the three pools in the Donkey Creek and Coyote fields has shown that the Fall River is composed of three progradational deltaic units deposited during a period of rising relative sea level. These are locally eroded and are filled bymore » a fluvial point-bar complex deposited following a lowering of relative sea level. Four important depositional facies have been recognized: the delta-front and distributary-channel sandstone of the highstand deltaic sequence and the point-bar sandstone and channel-abandonment of the lowstand fluvial sequence. Stratigraphic traps in Coyote Creek and south Donkey Creek pools are the result of permeable (250 md) point-bar sandstone (250 bbl oil/day ip) bounded updip by impermeable (0.1 md) channel abandonment mudstone. Most of the oil in the central Donkey Creek pool is produced from permeable (76 md) distributary-channel sandstone (150 bbl oil/day ip), which is restricted to the western flank of a structural nose. Lesser production, on the crest and upper western flank of the structure, is obtained from the less permeable (2.8 md) delta-front sandstone (50 bbl oil/day ip). Production is possibly limited to the crest and western flank by hydrodynamic processes.« less

  4. An Assessment of Cultural Resources in the Salt Creek Basin, Butler, Cass, Lancaster, Saunders, and Seward Counties, Nebraska.

    DTIC Science & Technology

    1983-10-01

    modified over time by various forms of erosion and other geomorphological activities. The stream gradient is low and the stream pattern is a dendritic... megafauna (Sanders and Marino 1970:27). The Paleoindian period is subdivided into three phases, which S..o are recognized by stylistic and technological...9,000 - 10,000 B.C. The Pleistocene megafauna became extinct during this increasingly drier shift in the climate. Two sites in the Salt Creek basin

  5. Tar Creek study, Sargent oil field, Santa Clara County, California

    USGS Publications Warehouse

    Wagner, David L.; Fedasko, Bill; Carnahan, J.R.; Brunetti, Ross; Magoon, Leslie B.; Lillis, Paul G.; Lorenson, T.D.; Stanley, Richard G.

    2002-01-01

    Field work in the Tar Creek area of Sargent oil field was performed June 26 to 28, 2000. The Santa Clara County study area is located in Sections, 30, 31, and 32, Township 11 South, Range 4 East, M.D.B&M; and in Sections 25 and 36, Township 11 South, Range 3 East, M.D.B.&M., north and south of Tar Creek, west of Highway 101. The work was a cooperative effort of the California Department of Conservation's Division of Oil, Gas, and Geothermal Resources (DOGGR), California Geological Survey (CGS), and the United States Geological Survey (USGS). The purpose of the project was to map the stratigraphy and geologic structure (David Wagner, CGS); sample oil for age dating (Les Magoon, USGS); and search for undocumented wells plus conduct a GPS survey of the area (Bill Fedasko, J.P. Carnahan, and Ross Brunetti, DOGGR)

  6. The influence of neap-spring tidal variation and wave energy on sediment flux in salt marsh tidal creeks

    USGS Publications Warehouse

    Lacy, Jessica; Ferner, Matthew C.; Callaway, John C.

    2018-01-01

    Sediment flux in marsh tidal creeks is commonly used to gage sediment supply to marshes. We conducted a field investigation of temporal variability in sediment flux in tidal creeks in the accreting tidal marsh at China Camp State Park adjacent to northern San Francisco Bay. Suspended-sediment concentration (SSC), velocity, and depth were measured near the mouths of two tidal creeks during three six-to-ten-week deployments: two in winter and one in summer. Currents, wave properties and SSC were measured in the adjacent shallows. All deployments spanned the largest spring tides of the season. Results show that tidally-averaged suspended-sediment flux (SSF) in the tidal creeks decreased with increasing tidal energy, and SSF was negative (bayward) for tidal cycles with maximum water surface elevation above the marsh plain. Export during the largest spring tides dominated the cumulative SSF measured during the deployments. During ebb tides following the highest tides, velocities exceeded 1 m/s in the narrow tidal creeks, resulting in negative tidally-averaged water flux, and mobilizing sediment from the creek banks or bed. Storm surge also produced negative SSF. Tidally-averaged SSF was positive in wavey conditions with moderate tides. Spring-tide sediment export was about 50% less at a station 130 m further up the tidal creek than at the creek mouth. The negative tidally-averaged water flux near the creek mouth during spring tides indicates that in the lower marsh, some of the water flooding directly across the bay--marsh interface drains through the tidal creeks, and suggests that this interface may be a pathway for sediment supply to the lower marsh as well.

  7. Flocculation and sediment deposition in a hypertidal creek

    NASA Astrophysics Data System (ADS)

    O'Laughlin, C.; van Proosdij, D.; Milligan, T. G.

    2014-07-01

    In the hypertidal Bay of Fundy, environmental impacts in response to commercial-scale tidal power development remain to be fully understood. The extraction of tidal energy may impact sediment dynamics in far-field environments, such as the intertidal zone, through potential alterations to tidal amplitude in the Minas Basin. Tidal conditions (e.g. current velocity, turbulence, suspended sediment concentration) were monitored in a sheltered salt marsh creek over 18 tidal cycles in various stages of the spring-neap cycle. Samples of deposited and suspended sediments were collected and analyzed for grain size using a Beckman Coulter Multisizer III. Results suggest that the flocculated component of both deposited and suspended sediment is consistently high over a wide range of tidal conditions. A routinely high incoming concentration of highly-flocculated material results in large amounts of sediment deposition in tidal creeks in response to individual tidal cycles. Resuspension and removal of newly deposited material is shown to vary with over-marsh, bankfull and channel-restricted tides. Disruption of the tidal regime due to a reduction in Minas Basin tidal amplitude may lessen the cumulative export capacity of tidal channels over time, potentially leading to gradual infilling of tidal creeks. The long-term effects of tidal power development on intertidal areas are generally unknown.

  8. Potential effects of surface coal mining on the hydrology of the Corral Creek area, Hanging Woman Creek coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1984-01-01

    The Corral Creek area of the Hanging Woman Creek coal field, 9 miles east of the Decker coal mines near the Tongue River, contains large reserves of Federal coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and to study assess potential impacts of surface coal mining on local water resources. Hydrogeologic data collected indicate that aquifers are coal and sandstone beds within the Tongue River Member of the Fort Union Formation (Paleocene age) and sand and gravel in valley alluvium (Pleistocene and Holocene age). Surface-water resources are limited to a few spring-fed stock ponds in the higher parts of the area and the intermittent flow of Corral Creek near the mouth. Most of the stock ponds in the area become dry by midsummer. Mining of the Anderson coal bed would remove three stock wells and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Corral Creek and South Fork would be removed. Although mining would alter the existing hydrologic systems and remove several shallow wells, alternative ground-water supplies are available that could be developed to replace those lost by mining. (USGS)

  9. The coal deposits of the Alkali Butte, the Big Sand Draw, and the Beaver Creek fields, Fremont County, Wyoming

    USGS Publications Warehouse

    Thompson, Raymond M.; White, Vincent L.

    1952-01-01

    Large coal reserves are present in three areas located between 12 and 20 miles southeast of Riverton, Fremont County, central Wyoming. Coal in two of these areas, the Alkali Butte coal field and the Big Sand Draw coal field, is exposed on the surface and has been developed to some extent by underground mining. The Beaver Creek coal field is known only from drill cuttings and cores from wells drilled for oil and gas in the Beaver Creek oil and gas field.These three coal areas can be reached most readily from Riverton, Wyo. State Route 320 crosses Wind River about 1 mile south of Riverton. A few hundred yards south of the river a graveled road branches off the highway and extends south across the Popo Agie River toward Sand Draw oil and gas field. About 8 miles south of the highway along the Sand Draw road, a dirt road bears east and along this road it is about 12 miles to the Bell coal mine in the Alkali Butte coal field. Three miles southeast of the Alkali Butte turn-off, 3 miles of oiled road extends southwest into the Beaver Creek oil and gas field. About 6 miles southeast of the Beaver Creek turn-off, in the valley of Little Sand Draw Creek, a dirt road extends east 1. mile and then southeast 1 mile to the Downey mine in the Big Sand Draw coal field. Location of these coal fields is shown on figure 1 with their relationship to the Wind River basin and other coal fields, place localities, and wells mentioned in this report. The coal in the Alkali Butte coal field is exposed partly on the Wind River Indian Reservation in Tps. 1 and 2 S., R. 6 E., and partly on public land. Coal in the Beaver Creek and Big Sand Draw coal fields is mainly on public land. The region has a semiarid climate with rainfall averaging less than 10 in. per year. When rain does fall the sandy-bottomed stream channels fill rapidly and are frequently impassable for a few hours. Beaver Creek, Big Sand Draw, Little Sand Draw, and Kirby Draw and their smaller tributaries drain the area and flow

  10. A surface vitrinite reflectance anomaly related to Bell Creek oil field, Montana, U.S.A.

    USGS Publications Warehouse

    Barker, C.E.; Dalziel, M.C.; Pawlewicz, M.J.

    1983-01-01

    Vitrinite reflectance measurements from surface samples of mudrock and coal show anomalously high values over the Bell Creek oil field. The average vitrinite reflectance (Rm) increases to a maximum of 0.9 percent over the field against background values of about 0.3 percent. The Rm anomaly coincides with a geochemical anomaly indicated by diagenetic magnetite in surface rocks and a geobiologic anomaly indicated by ethane-consuming bacteria. These samples were taken from the Upper Cretaceous Hell Creek and Paleocene Fort Union Formations which form an essentially conformable sequence. The depositional environment is similar in both formations, and we expect little variation in the source and composition of the organic matter. The surface R m should be approximately constant because of a uniform thermal history across the field. Temperature studies over local oil fields with similar geology suggest the expected thermal anomaly would be less than 10?C (50?F), which is too small to account for the significantly higher rank over the field. Coal clinkers are rare in the vicinity of Bell Creek and an Rm anomaly caused by burning of the thin, discontinuous coal seams is unlikely. The limited topographic relief, less than 305 m (1,000 ft), over the shallow-dipping homoclinal structure and the poor correlation between Rm and sample locality elevation (r = -0.2) indicate that the Rm anomaly is not due to burial, deformation and subsequent erosion. We conjecture that activity by petroleum-metabolizing bacteria is a possible explanation of the Rm anomaly. Microseepage from oil reservoirs supports large colonies of these organisms, some of which can produce enzymes that can cleave hydrocarbon side-chains on the kerogen molecule. The loss of these side chains causes condensation of the ring structures (Stach and others, 1982) and consequently increases its reflectance. These data indicate that vitrinite reflectance may be a useful tool to explore for stratigraphic traps in the

  11. Field performance of timber bridges. 11, Spearfish Creek stress-laminated box-beam bridge

    Treesearch

    J. P. Wacker; M. A. Ritter; K. Stanfill-McMillan

    The Spearfish Creek bridge was constructed in 1992 in Spearfish, South Dakota. It is a single-span, stress-laminated, box-beam superstructure. Performance of the bridge is being monitored for 5 years, beginning at installation. This report summarizes results for the first 3-1/2 years of monitoring and includes information on the design, construction, and field...

  12. Geohydrology and simulations of ground-water flow at Verona well field, Battle Creek, Michigan, 1988

    USGS Publications Warehouse

    Lynch, E.A.; Grannemann, N.G.

    1997-01-01

    Public water supply for the city of Battle Creek, Mich. is withdrawn from the Marshall Sandstone through wells at the Verona well field. Analysis of borehole acoustic televiewer, gamma, and single-point-resistance logs from wells in Bailey Park, near the well field, indicates 12 fracture zones in the Marshall Sandstone. Further interpretation of flow-meter and temperature logs from the same wells indicates that the fracture zones are locally interconnected but appear to remain isolated over a lateral distance of 3,000 feet. Organic chemicals were detected in water samples collected from water-supply wells in the Verona well field in 1981. In 1985, six water-supply wells were converted to purge wells to intercept organic chemicals and divert them from the remaining water-supply wells. Removal of these wells from service resulted in a water-supply shortage. A proposal in which an alternative purge system could be installed so that wells that are out of service may be reactivated was examined. A ground-water-flow model developed for this study indicates that, under the current purge configuration, most water from contaminant-source areas either is captured by purge wells or flows to the Battle Creek River. Some water, however, is captured by three water-supply wells. Model simulations indicate that with the addition of eight purge wells, the well field would be protected from contamination, most water from the contaminant-source areas would be captured by the purge system, and only a small portion would flow to the Battle Creek River. In an effort to augment the city's water supply, the potential for expansion of the Verona well field to the northeast also was investigated. Because of the addition of three municipal wells northeast of the well field, some water from the site of a gasoline spill may be captured by two water-supply wells. Ground water in the area northeast of Verona well field contains significantly lower concentrations of iron, manganese, and calcium

  13. Sequential development of structural heterogeneity in the Granny Creek oil field of West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, T.H.; Zheng, L.; Shumaker, R.C.

    1993-08-01

    Analysis of Vibroseis and weight-drop seismic data over the Granny Creek oil field in the Appalachian foreland of West Virginia indicates that the field's development has been effected by episodic Paleozoic reactivation of fault blocks rooted in the Precambrian crystalline basement. The imprint of structures associated with the Rome trough penetrates the overlying Paleozoic sedimentary cover. Reactivation histories of individual fault blocks vary considerably throughout the Paleozoic. In general, the relative displacement of these basement fault blocks decrease exponentially during the Paleozoic; however, this pattern is interrupted by periods of increased tectonic activity and relative inversion of offsets along somemore » faults. The distribution of late-stage detached structures during the Alleghenian orogeny also appears, in part, to be controlled by mechanical anisotrophy within the detached section related to the reactivation of deeper structures in the crystalline basement. The net effect is a complex time-variable pattern of structures that partly controls the location of the reservoir and heterogeneity within the geometric framework of the reservoir. Structural heterogeneity in the Granny Creek area is subdivided on the basis of scale into structures associated with variations of oil production within the reservoir. Variations of production within the field are related, in part, to small detached structures and reactivated basement faults.« less

  14. Floods in Starkweather Creek basin, Madison, Wisconsin

    USGS Publications Warehouse

    Lawrence, Carl L.; Holmstrom, Barry K.

    1972-01-01

    The reaches evaluated are (1) Starkweather Creek and West Branch Starkweather Creek, for a distance of 6.0 river miles from the mouth at Lake Monona upstream to the U.S. Highway 51 crossing north of Truax Field; and (2) East Branch Starkweather Creek (2.8 river miles), from its confluence with the West Branch near Milwaukee Street upstream to a point near the Interstate Highway 90-94 crossing.

  15. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal.more » These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs.« less

  16. 77 FR 42714 - Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC; Notice of Application...: Eagle Creek Hydropower, LLC; Eagle Creek Land Resources, LLC; and Eagle Creek Water Resources, LLC. e... Contact: Robert Gates, Senior Vice President-- Operations, Eagle Creek Hydropower, LLC, Eagle Creek Water...

  17. Aerial population estimates of wild horses (Equus caballus) in the adobe town and salt wells creek herd management areas using an integrated simultaneous double-count and sightability bias correction technique

    USGS Publications Warehouse

    Lubow, Bruce C.; Ransom, Jason I.

    2007-01-01

    An aerial survey technique combining simultaneous double-count and sightability bias correction methodologies was used to estimate the population of wild horses inhabiting Adobe Town and Salt Wells Creek Herd Management Areas, Wyoming. Based on 5 surveys over 4 years, we conclude that the technique produced estimates consistent with the known number of horses removed between surveys and an annual population growth rate of 16.2 percent per year. Therefore, evidence from this series of surveys supports the validity of this survey method. Our results also indicate that the ability of aerial observers to see horse groups is very strongly dependent on skill of the individual observer, size of the horse group, and vegetation cover. It is also more modestly dependent on the ruggedness of the terrain and the position of the sun relative to the observer. We further conclude that censuses, or uncorrected raw counts, are inadequate estimates of population size for this herd. Such uncorrected counts were all undercounts in our trials, and varied in magnitude from year to year and observer to observer. As of April 2007, we estimate that the population of the Adobe Town /Salt Wells Creek complex is 906 horses with a 95 percent confidence interval ranging from 857 to 981 horses.

  18. Can Thin-lipped Mullet Directly Exploit the Primary and Detritic Production of European Macrotidal Salt Marshes?

    NASA Astrophysics Data System (ADS)

    Laffaille, P.; Feunteun, E.; Lefebvre, C.; Radureau, A.; Sagan, G.; Lefeuvre, J.-C.

    2002-04-01

    Juveniles and adults (>100 mm) of Liza ramada colonize macrotidal salt marsh creeks of Mont Saint-Michel bay (France) between March and November, during spring tide floods (43% of the tides) and return to coastal waters during the ebb. This fish species actively feeds during its short stay in the creek (from 1 to 2 h). On average, each fish swallows sediment including living and inert organic matter, which amounts to 8% of its fresh body weight. Their diet is dominated by small benthic items (especially diatoms and salt marsh plant detritus), that correspond to the primary and detritic production of this macrotidal salt marsh creek. Despite very short submersion periods, mullets filter and ingest large quantities of sediment and concentrated organic matter (on average organic matter in stomach content is 31%) produced by these coastal wetlands. European salt marshes are thus shown to act as trophic areas for mullets, which are well adapted to this constraining habitat which is only flooded for short periods during spring tides.

  19. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehgartner, Brian L.; Park, Byoung Yoon

    2009-03-01

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parametersmore » and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.« less

  20. Dissolved-solids transport in surface water of the Muddy Creek Basin, Utah

    USGS Publications Warehouse

    Gerner, Steven J.

    2008-01-01

    Muddy Creek is located in the southeastern part of central Utah and is a tributary of the Dirty Devil River, which, in turn, is a tributary of the Colorado River. Dissolved solids transported from the Muddy Creek Basin may be stored in the lower Dirty Devil River Basin, but are eventually discharged to the Colorado River and impact downstream water users. This study used selected dissolved-solids measurements made by various local, State, and Federal agencies from the 1970s through 2006, and additional dissolved-solids data that were collected by the U.S. Geological Survey during April 2004 through November 2006, to compute dissolved-solids loads, determine the distribution of dissolved-solids concentrations, and identify trends in dissolved-solids concentration in surface water of the Muddy Creek Basin. The dissolved-solids concentration values measured in water samples collected from Muddy Creek during April 2004 through October 2006 ranged from 385 milligrams per liter (mg/L) to 5,950 mg/L. The highest dissolved-solids concentration values measured in the study area were in water samples collected at sites in South Salt Wash (27,000 mg/L) and Salt Wash (4,940 to 6,780 mg/L). The mean annual dissolved-solids load in Muddy Creek for the periods October 1976 to September 1980 and October 2005 to September 2006 was smallest at a site near the headwaters (9,670 tons per year [tons/yr]) and largest at a site at the mouth (68,700 tons/yr). For this period, the mean annual yield of dissolved solids from the Muddy Creek Basin was 44 tons per square mile. During October 2005 to September 2006, direct runoff transported as much as 45 percent of the annual dissolved-solids load at the mouth of Muddy Creek. A storm that occurred during October 5?7, 2006 resulted in a peak streamflow at the mouth of Muddy Creek of 7,150 cubic feet per second (ft3/s) and the transport of an estimated 35,000 tons of dissolved solids, which is about 51 percent of the average annual dissolved

  1. Combined effects of tides, evaporation and rainfall on the soil conditions in an intertidal creek-marsh system

    NASA Astrophysics Data System (ADS)

    Xin, Pei; Zhou, Tingzhang; Lu, Chunhui; Shen, Chengji; Zhang, Chenming; D'Alpaos, Andrea; Li, Ling

    2017-05-01

    Salt marshes, distributed globally at the land-ocean interface, are a highly productive eco-system with valuable ecological functions. While salt marshes are affected by various eco-geo-hydrological processes and factors, soil moisture and salinity affect plant growth and play a key role in determining the structure and functions of the marsh ecosystem. To examine the variations of both soil parameters, we simulated pore-water flow and salt transport in a creek-marsh system subjected to spring-neap tides, evaporation and rainfall. The results demonstrated that within a sandy-loam marsh, the tide-induced pore-water circulation averted salt build-up due to evaporation in the near-creek area. In the marsh interior where the horizontal drainage was weak, density-driven flow was responsible for dissipating salt accumulation in the shallow soil layer. In the sandy-loam marsh, the combined influences of spring-neap tides, rainfall and evaporation led to the formation of three characteristic zones, c.f., a near-creek zone with low soil water saturation (i.e., well-aerated) and low pore-water salinity as affected by the semi-diurnal spring tides, a less well-aerated zone with increased salinity where drainage occurred during the neap tides, and an interior zone where evaporation and rainfall infiltration regulated the soil conditions. These characteristics, however, varied with the soil type. In low-permeability silt-loam and clay-loam marshes, the tide-induced drainage weakened and the soil conditions over a large area became dominated by evaporation and rainfall. Sea level rise was found to worsen the soil aeration condition but inhibit salt accumulation due to evaporation. These findings shed lights on the soil conditions underpinned by various hydrogeological processes, and have important implications for further investigations on marsh plant growth and ecosystem functions.

  2. Horizontal drilling potential of the Cane Creek Shale, Paradox Formation, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, C.D.; Chidsey, T.C.

    1991-06-01

    The Cane Creek shale of the Pennsylvanian Paradox Formation is a well-defined target for horizontal drilling. This unit is naturally fractures and consists of organic-rich marine shale with interbedded dolomitic siltstone and anhydrite. Six fields have produced oil from the Cane Creek shale in the Paradox basin fold-and-fault belt. The regional structural trend is north-northwest with productive fractures occurring along the crest and flanks of both the larger and more subtle smaller anticlines. The Long Canyon, Cane Creek, Bartlett Flat, and Shafer Canyon fields are located on large anticlines, while Lion Mesa and Wilson Canyon fields produce from subtle structuralmore » noses. The Cane Creek shale is similar to the highly productive Bakken Shale in the Williston basin. Both are (1) proven producers of high-gravity oil, (2) highly fractured organic-rich source rocks, (3) overpressured, (4) regionally extensive, and (5) solution-gas driven with little or no associated water. Even though all production from the Cane Creek shale has been from conventional vertical wells, the Long Canyon 1 well has produced nearly 1 million bbl of high-gravity, low-sulfur oil. Horizontal drilling may result in the development of new fields, enhance recovery in producing fields, and revive production in abandoned fields. In addition, several other regionally extensive organic-rich shale beds occur in the Paradox Formation. The Gothic and Chimney Rock shales for example, offer additional potential lying above the Cane Creek shale.« less

  3. How well do force fields capture the strength of salt bridges in proteins?

    PubMed Central

    Ahmed, Mustapha Carab; Papaleo, Elena

    2018-01-01

    Salt bridges form between pairs of ionisable residues in close proximity and are important interactions in proteins. While salt bridges are known to be important both for protein stability, recognition and regulation, we still do not have fully accurate predictive models to assess the energetic contributions of salt bridges. Molecular dynamics simulation is one technique that may be used study the complex relationship between structure, solvation and energetics of salt bridges, but the accuracy of such simulations depends on the force field used. We have used NMR data on the B1 domain of protein G (GB1) to benchmark molecular dynamics simulations. Using enhanced sampling simulations, we calculated the free energy of forming a salt bridge for three possible lysine-carboxylate ionic interactions in GB1. The NMR experiments showed that these interactions are either not formed, or only very weakly formed, in solution. In contrast, we show that the stability of the salt bridges is overestimated, to different extents, in simulations of GB1 using seven out of eight commonly used combinations of fixed charge force fields and water models. We also find that the Amber ff15ipq force field gives rise to weaker salt bridges in good agreement with the NMR experiments. We conclude that many force fields appear to overstabilize these ionic interactions, and that further work may be needed to refine our ability to model quantitatively the stability of salt bridges through simulations. We also suggest that comparisons between NMR experiments and simulations will play a crucial role in furthering our understanding of this important interaction.

  4. The Influence of Water Circulation on Dissolved Organic Matter Dynamics in Bald Head Creek

    NASA Astrophysics Data System (ADS)

    Lebrasse, M. C.; Osburn, C. L.; Bohnenstiehl, D. R.; He, R.

    2016-12-01

    Dissolved organic matter (DOM) plays an important role in biogeochemical cycles in estuaries such as tidal creeks draining coastal wetlands such as salt marshes. However, significant knowledge gaps remain regarding the quantity and quality of the DOM that tidally exchanges between salt marshes and their adjacent estuaries. Tidal movements play a central role in lateral exchanges of materials and bidirectional flow results in the mixing of DOM from marsh plants and estuarine DOM. The aim of this study was to better understand the role of water circulation on the distribution and quality of DOM in Bald Head Creek, a tributary to the Cape Fear River estuary in eastern North Carolina. Dissolved organic carbon (DOC) concentration, stable carbon isotopes, and chromophoric DOM (CDOM) absorbance at 254 nm (a254) were used to distinguish between DOM quantity and quality at three locations along the creek: Site 3 (upstream), Site 2 (middle stream), and Site 1 (near the creek mouth). Samples were collected over four tidal cycles between March-August 2016 and compared to time series data collected approximately weekly from 2014-2016. DOM characteristics differed substantially over the tidal cycle. Higher CDOM and DOC concentration were observed at low tide than at high tide at all three sites, suggesting greater export of carbon from the marsh into the creek as the tides recede. Analysis of CDOM quality based on specific UV absorbance at 254 nm (SUVA254) and spectral slope ratio (SR) showed that the marsh end-member (Site 3) source of DOM had greater aromaticity and higher molecular weight. Site 1 showed greater variability over the tidal cycle most likely due to a greater tidal influence, being closer to the mouth. Additionally, an unmanned surface vehicle (USV) and a hydrodynamic model were used to map water circulation and DOC concentration along the creek to compute exchanges with the adjacent estuary. Results suggest that estuarine OM dynamics are strongly controlled by

  5. Wallace Creek Virtual Field Trip: Teaching Geoscience Concepts with LiDAR

    NASA Astrophysics Data System (ADS)

    Robinson, S. E.; Arrowsmith, R.; Crosby, C. J.

    2009-12-01

    Recently available data such as LiDAR (Light Detection and Ranging) high-resolution topography can assist students to better visualize and understand geosciences concepts. It is important to bring these data into geosciences curricula as teaching aids while ensuring that the visualization tools, virtual environments, etc. do not serve as barriers to student learning. As a Southern California Earthquake Center ACCESS-G intern, I am creating a “virtual field trip” to Wallace Creek along the San Andreas Fault (SAF) using Google Earth as a platform and the B4 project LiDAR data. Wallace Creek is an excellent site for understanding the centennial-to-millennial record of SAF slip because of its dramatic stream offsets. Using the LiDAR data instead of, or alongside, traditional visualizations and teaching methods enhances a student’s ability to understand plate tectonics, the earthquake cycle, strike-slip faults, and geomorphology. Viewing a high-resolution representation of the topography in Google Earth allows students to analyze the landscape and answer questions about the behavior of the San Andreas Fault. The activity guides students along the fault allowing them to measure channel offsets using the Google Earth measuring tool. Knowing the ages of channels, they calculate slip rate. They look for the smallest channel offsets around Wallace Creek in order to determine the slip per event. At both a “LiDAR and Education” workshop and the Cyberinfrastructure Summer Institute for Geoscientists (CSIG), I presented the Wallace Creek activity to high school and college earth science teachers. The teachers were positive in their responses and had numerous important suggestions including the need for a teacher’s manual for instruction and scientific background, and that the student goals and science topics should be specific and well-articulated for the sake of both the teacher and the student. The teachers also noted that the technology in classrooms varies

  6. Seasonal habitat-use patterns of nekton in a tide-restricted and unrestricted New England salt marsh

    USGS Publications Warehouse

    Raposa, K.B.; Roman, C.T.

    2001-01-01

    Many New England salt marshes remain tide-restricted or are undergoing tidal restoration. Hydrologic manipulation of salt marshes affects marsh biogeochemistry and vegetation patterns, but responses by fishes and decapod crustaceans (nekton) remain unclear, This study examines nekton habitat-use patterns in the tide-restricted Hatches Harbor salt marsh (Provincetown, Massachusetts) relative to a downstream, unrestricted marsh. Nekton assemblages were sampled in tidal creek, marsh pool, and salt marsh surface habitats. Pools and creeks were sampled every two weeks for one year to account for seasonal variability, and the marsh surface was sampled at two-week intervals in summer and fall. Density, richness, and community composition of nekton in creek and marsh surface habitats were similar between the unrestricted and restricted marsh, but use of pools differed drastically on the two sides of the tide-restricting dike. In 95% of the cases tested, restricted marsh habitats provided equal or greater habitat value for nekton than the same habitat in the unrestricted marsh (based on density), suggesting that the restricted marsh did not provide a degraded habitat for most species. For some species, the restricted marsh provided nursery, breeding, and overwintering habitat during different seasons, and tidal restoration of this salt marsh must be approached with care to prevent losses of these valuable marsh functions.

  7. Unsupervised detection of salt marsh platforms: a topographic method

    NASA Astrophysics Data System (ADS)

    Goodwin, Guillaume C. H.; Mudd, Simon M.; Clubb, Fiona J.

    2018-03-01

    Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level rise and anthropogenic modification. The sustained existence of the salt marsh ecosystem depends on the topographic evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable landscapes. The determination of platform boundaries currently relies on supervised classification methods requiring near-infrared data to detect vegetation, or demands labour-intensive field surveys and digitisation. We propose a novel, unsupervised method to reproducibly isolate salt marsh scarps and platforms from a digital elevation model (DEM), referred to as Topographic Identification of Platforms (TIP). Field observations and numerical models show that salt marshes mature into subhorizontal platforms delineated by subvertical scarps. Based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six salt marshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and unsupervised classification exceeds 94 % for DEM resolutions of 1 m, with all but one site maintaining an accuracy superior to 90 % for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the TIP method are comparable in surface area to digitised platforms and have similar elevation distributions. We also find that our method allows for the accurate detection of local block failures as small as 3 times the DEM resolution. Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, unsupervised classification categorises them as part of the tidal flat, causing an increase in false negatives and overall platform

  8. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ...; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land Resources, LLC; Notice... 24, 2012, AER NY-Gen, LLC (transferor), Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources.... Cherry, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources...

  9. Hydrology and Flood Profiles of Duck Creek and Jordan Creek Downstream from Egan Drive, Juneau, Alaska

    USGS Publications Warehouse

    Curran, Janet H.

    2007-01-01

    Hydrologic and hydraulic updates for Duck Creek and the lower part of Jordan Creek in Juneau, Alaska, included computation of new estimates of peak streamflow magnitudes and new water-surface profiles for the 10-, 50-, 100-, and 500-year floods. Computations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence interval flood magnitudes for both streams used data from U.S. Geological Survey stream-gaging stations weighted with regional regression equations for southeast Alaska. The study area for the hydraulic model consisted of three channels: Duck Creek from Taku Boulevard near the stream's headwaters to Radcliffe Road near the end of the Juneau International Airport runway, an unnamed tributary to Duck Creek from Valley Boulevard to its confluence with Duck Creek, and Jordan Creek from a pedestrian bridge upstream from Egan Drive to Crest Street at Juneau International Airport. Field surveys throughout the study area provided channel geometry for 206 cross sections, and geometric and hydraulic characteristics for 29 culverts and 15 roadway, driveway, or pedestrian bridges. Hydraulic modeling consisted of application of the U.S. Army Corps of Engineers' Hydrologic Engineering Center River Analysis System (HEC-RAS) for steady-state flow at the selected recurrence intervals using an assumed high tide of 20 feet and roughness coefficients refined by calibration to measured water-surface elevations from a 2- to 5-year flood that occurred on November 21, 2005. Model simulation results identify inter-basin flow from Jordan Creek to the southeast at Egan Drive and from Duck Creek to Jordan Creek downstream from Egan Drive at selected recurrence intervals.

  10. 75 FR 27332 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... 9690-106] AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek... Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC (transferees) filed an.... Paul Ho, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources...

  11. Coastal eutrophication as a driver of salt marsh loss.

    PubMed

    Deegan, Linda A; Johnson, David Samuel; Warren, R Scott; Peterson, Bruce J; Fleeger, John W; Fagherazzi, Sergio; Wollheim, Wilfred M

    2012-10-18

    Salt marshes are highly productive coastal wetlands that provide important ecosystem services such as storm protection for coastal cities, nutrient removal and carbon sequestration. Despite protective measures, however, worldwide losses of these ecosystems have accelerated in recent decades. Here we present data from a nine-year whole-ecosystem nutrient-enrichment experiment. Our study demonstrates that nutrient enrichment, a global problem for coastal ecosystems, can be a driver of salt marsh loss. We show that nutrient levels commonly associated with coastal eutrophication increased above-ground leaf biomass, decreased the dense, below-ground biomass of bank-stabilizing roots, and increased microbial decomposition of organic matter. Alterations in these key ecosystem properties reduced geomorphic stability, resulting in creek-bank collapse with significant areas of creek-bank marsh converted to unvegetated mud. This pattern of marsh loss parallels observations for anthropogenically nutrient-enriched marshes worldwide, with creek-edge and bay-edge marsh evolving into mudflats and wider creeks. Our work suggests that current nutrient loading rates to many coastal ecosystems have overwhelmed the capacity of marshes to remove nitrogen without deleterious effects. Projected increases in nitrogen flux to the coast, related to increased fertilizer use required to feed an expanding human population, may rapidly result in a coastal landscape with less marsh, which would reduce the capacity of coastal regions to provide important ecological and economic services.

  12. The Taylor Creek Rhyolite of New Mexico: a rapidly emplaced field of lava domes and flows

    USGS Publications Warehouse

    Duffield, W.A.; Dalrymple, G.B.

    1990-01-01

    The Tertiary Taylor Creek Rhyolite of southwest New Mexico comprises at least 20 lava domes and flows. Each of the lavas was erupted from its own vent, and the vents are distributed throughout a 20 km by 50 km area. The volume of the rhyolite and genetically associated pyroclastic deposits is at least 100 km3 (denserock equivalent). The rhyolite contains 15%-35% quartz, sanidine, plagioclase, ??biotite, ??hornblende phenocrysts. Quartz and sanidine account for about 98% of the phenocrysts and are present in roughly equal amounts. With rare exceptions, the groundmass consists of intergrowths of fine-grained silica and alkali feldspar. Whole-rock major-element composition varies little, and the rhyolite is metaluminous to weakly peraluminous; mean SiO2 content is about 77.5??0.3%. Similarly, major-element compositions of the two feldsparphenocryst species also are nearly constant. However, whole-rock concentrations of some trace-elements vary as much as several hundred percent. Initial radiometric age determinations, all K-Ar and fission track, suggest that the rhyolite lava field grew during a period of at least 2 m.y. Subsequent 40Ar/39Ar ages indicate that the period of growth was no more than 100 000 years. The time-space-composition relations thus suggest that the Taylor Creek Rhyolite was erupted from a single magma reservoir whose average width was at least 30 km, comparable in size to several penecontemporaneous nearby calderas. However, this rhyolite apparently is not related to a caldera structure. Possibly, the Taylor Creek Phyolite magma body never became sufficiently volatile rich to produce a large-volume pyroclastic eruption and associated caldera collapse, but instead leaked repeatedly to feed many relatively small domes and flows. The new 40Ar/39Ar ages do not resolve preexisting unknown relative-age relations among the domes and flows of the lava field. Nonetheless, the indicated geologically brief period during which Taylor Creek Rhyolite magma was

  13. Analysis of Dust Samples Collected from an Unused Spent Nuclear Fuel Interim Storage Container at Hope Creek, Delaware.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Enos, David

    In July, 2014, the Electric Power Research Institute and industry partners sampled dust on the surface of an unused canister that had been stored in an overpack at the Hope Creek Nuclear Generating Station for approximately one year. The foreign material exclusion (FME) cover that had been on the top of the canister during storage, and a second recently - removed FME cover, were also sampled. This report summarizes the results of analyses of dust samples collected from the unused Hope Creek canister and the FME covers. Both wet and dry samples of the dust/salts were collected, using SaltSmart(TM) sensorsmore » and Scotch - Brite(TM) abrasive pads, respectively. The SaltSmart(TM) samples were leached and the leachate analyzed chemically to determine the composition and surface load per unit area of soluble salts present on the canister surface. The dry pad samples were analyzed by X-ray fluorescence and by scanning electron microscopy to determine dust texture and mineralogy; and by leaching and chemical analysis to deter mine soluble salt compositions. The analyses showed that the dominant particles on the canister surface were stainless steel particles, generated during manufacturing of the canister. Sparse environmentally - derived silicates and aluminosilicates were also present. Salt phases were sparse, and consisted of mostly of sulfates with rare nitrates and chlorides. On the FME covers, the dusts were mostly silicates/aluminosilicates; the soluble salts were consistent with those on the canister surface, and were dominantly sulfates. It should be noted that the FME covers were w ashed by rain prior to sampling, which had an unknown effect of the measured salt loads and compositions. Sulfate salts dominated the assemblages on the canister and FME surfaces, and in cluded Ca - SO 4 , but also Na - SO 4 , K - SO 4 , and Na - Al - SO 4 . It is likely that these salts were formed by particle - gas conversion reactions, either prior to, or after, deposition

  14. 78 FR 64003 - Notice of Availability of the Final Environmental Impact Statement for the Jump Creek, Succor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... Cow Creek Watersheds Grazing Permit Renewal, Owyhee County, ID AGENCY: Bureau of Land Management... Field Office Jump Creek, Succor Creek and Cow Creek Watersheds grazing permit renewal, and by this... in the Federal Register. ADDRESSES: Copies of the Jump Creek, Succor Creek and Cow Creek Watersheds...

  15. Dissolution of Permian salt and Mesozoic depositional trends, Powder River basin, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmussen, D.L.; Bean, D.W.

    1983-08-01

    Salt deposits in the Powder River basin of Wyoming occur in the Late Permian Ervay Member of the Goose Egg Formation which was deposited in a redbed-evaporite trend extending from the Williston basin of North Dakota to the Alliance basin of Nebraska and Wyoming. However, only remnants of the once extensive Ervay salt remain in the Powder River basin, with major salt dissolution events occurring during Late Jurassic and Early Cretaceous. Subsidence and deposition at the surface were contemporaneous with subsurface salt dissolution except in areas where uplift and erosion were occurring. Earliest dissolution of the Ervay salt occurred inmore » the Jurassic, during regional uplift and erosion of the overlying Triassic Chugwater Formation in the present Hartville uplift and southeastern Powder River basin areas. Thickness variations of the Canyon Springs and Stockade Beaver members of the early Late Jurassic Sundance Formation, which unconformably overlie the deeply eroded Chugwater Formation, may be related in part to dissolution of the Ervay salt. Extensive salt dissolution, synsubsidence, and syndeposition occurred throughout most of the Powder River basin during the latest Jurassic and Early Cretaceous. Many producing fields from the Mowry, Muddy, and Dakota formations exhibit either rapid stratigraphic changes syndepositional to salt collapse or fracture-enhanced reservoir quality due to postdepositional salt collapse. Major Muddy accumulations occurring in areas of local Ervay salt collapse include Kitty, Hilight, Fiddler Creek, and Clareton which have produced jointly over 172 million bbl of oil. The relationship of Ervay salt dissolution to Lower Cretaceous deposition can be exploited as an effective exploration tool.« less

  16. Field and Laboratory Data From an Earthquake History Study of Scarps of the Lake Creek-Boundary Creek Fault Between the Elwha River and Siebert Creek, Clallam County, Washington

    USGS Publications Warehouse

    Nelson, Alan R.; Personius, Stephen F.; Buck, Jason; Bradley, Lee-Ann; Wells, Ray E.; Schermer, Elizabeth R.

    2007-01-01

    Fault scarps recently discovered on Airborne Laser Swath Mapping (ALSM; also known as LiDAR) imagery show Holocene movement on the Lake Creek-Boundary Creek fault on the north flank of the Olympic Mountains of northwestern Washington State. Such recent movement suggests the fault is a potential source of large earthquakes. As part of the effort to assess seismic hazard in the Puget Sound region, we map scarps on ALSM imagery and show primary field and laboratory data from backhoe trenches across scarps that are being used to develop a latest Pleistocene and Holocene history of large earthquakes on the fault. Although some scarp segments 0.5-2 km long along the fault are remarkably straight and distinct on shaded ASLM imagery, most scarps displace the ground surface <1 m, and, therefore, are difficult to locate in dense brush and forest. We are confident of a surface-faulting or folding origin and a latest Pleistocene to Holocene age only for scarps between Lake Aldwell and the easternmost fork of Siebert Creek, a distance of 22 km. Stratigraphy in five trenches at four sites help determine the history of surface-deforming earthquakes since glacier recession and alluvial deposition 11-17 ka. Although the trend and plunge of indicators of fault slip were measured only in the weathered basalt exposed in one trench, upward-splaying fault patterns and inconsistent displacement of successive beds along faults in three of the five trenches suggest significant lateral as well as vertical slip during the surface-faulting or folding earthquakes that produced the scarps. Radiocarbon ages on fragments of wood charcoal from two wedges of scarp-derived colluvium in a graben-fault trench suggest two surface-faulting earthquakes between 2,000 and 700 years ago. The three youngest of nine radiocarbon ages on charcoal fragments from probable scarp-derived colluvum in a fold-scarp trench 1.2 km to the west suggest a possible earlier surface-faulting earthquake less than 5,000 years

  17. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Enos, David George

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor componentmore » of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.« less

  18. A geostatistical analysis of small-scale spatial variability in bacterial abundance and community structure in salt marsh creek bank sediments

    NASA Technical Reports Server (NTRS)

    Franklin, Rima B.; Blum, Linda K.; McComb, Alison C.; Mills, Aaron L.

    2002-01-01

    Small-scale variations in bacterial abundance and community structure were examined in salt marsh sediments from Virginia's eastern shore. Samples were collected at 5 cm intervals (horizontally) along a 50 cm elevation gradient, over a 215 cm horizontal transect. For each sample, bacterial abundance was determined using acridine orange direct counts and community structure was analyzed using randomly amplified polymorphic DNA fingerprinting of whole-community DNA extracts. A geostatistical analysis was used to determine the degree of spatial autocorrelation among the samples, for each variable and each direction (horizontal and vertical). The proportion of variance in bacterial abundance that could be accounted for by the spatial model was quite high (vertical: 60%, horizontal: 73%); significant autocorrelation was found among samples separated by 25 cm in the vertical direction and up to 115 cm horizontally. In contrast, most of the variability in community structure was not accounted for by simply considering the spatial separation of samples (vertical: 11%, horizontal: 22%), and must reflect variability from other parameters (e.g., variation at other spatial scales, experimental error, or environmental heterogeneity). Microbial community patch size based upon overall similarity in community structure varied between 17 cm (vertical) and 35 cm (horizontal). Overall, variability due to horizontal position (distance from the creek bank) was much smaller than that due to vertical position (elevation) for both community properties assayed. This suggests that processes more correlated with elevation (e.g., drainage and redox potential) vary at a smaller scale (therefore producing smaller patch sizes) than processes controlled by distance from the creek bank. c2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

  19. Spatial patterns in salt marsh porewater dissolved organic matter over a spring-neap tidal cycle: insight to the impact of hydrodynamics on lateral carbon fluxes

    NASA Astrophysics Data System (ADS)

    Guimond, J. A.; Yu, X.; Duque, C.; Michael, H. A.

    2016-12-01

    Salt marshes are a hydrologically complex ecosystem. Tides deliver saline surface water to salt marshes via tidal creeks, and freshwater is introduced through lateral groundwater flow and vertical infiltration from precipitation. Locally, sediment heterogeneity, tides, weather, and topography introduce spatial and temporal complexities in groundwater-surface water interactions, which, in turn, can have a large impact on salt marsh biogeochemistry and the lateral fluxes of nutrients and carbon between the marsh platform and tidal creek. In this study, we investigate spatial patterns of porewater fluorescent dissolved organic matter (fDOM) and redox potential over a spring-neap tidal cycle in a mid-latitude tidal salt marsh in Dover, Delaware. Porewater samplers were used in conjunction with a peristaltic pump and YSI EXO Sonde to measure porewater fDOM, electrical conductivity, redox potential and pH from 0.5, 1.0, 1.5, 2.0, and 2.3 meters deep, as well as surface water from the creek and marsh platform. Eh was also measured continuously every 15 minutes with multi-level in-situ redox sensors at 0, 3, and 5m from the tidal creek, and water level and salinity were measured every 15 minutes continuously in 6 wells equipped with data loggers. Preliminary analyses indicate porewater salinity is dependent on the slope of the marsh platform, the elevation of the sample location, and the distance from a tidal creek. Near-creek redox analyses show tidal oscillations up to 300 mV; redox oscillations in the marsh interior show longer timescale changes. The observed redox oscillations coincide with the water level fluctuations at these locations. Therefore, lateral transport of carbon is determined by both hydrologic flow and biogeochemical processes. Results from this study provide insight into the timescales over which salt marsh hydrology impacts porewater biogeochemistry and the mechanisms controlling regional carbon cycling.

  20. A mangrove creek restoration plan utilizing hydraulic modeling.

    PubMed

    Marois, Darryl E; Mitsch, William J

    2017-11-01

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. Urban development has been a primary cause for mangrove destruction and deterioration in south Florida USA for the last several decades. As a result, the restoration of mangrove forests has become an important topic of research. Using field sampling and remote-sensing we assessed the past and present hydrologic conditions of a mangrove creek and its connected mangrove forest and brackish marsh systems located on the coast of Naples Bay in southwest Florida. We concluded that the hydrology of these connected systems had been significantly altered from its natural state due to urban development. We propose here a mangrove creek restoration plan that would extend the existing creek channel 1.1 km inland through the adjacent mangrove forest and up to an adjacent brackish marsh. We then tested the hydrologic implications using a hydraulic model of the mangrove creek calibrated with tidal data from Naples Bay and water levels measured within the creek. The calibrated model was then used to simulate the resulting hydrology of our proposed restoration plan. Simulation results showed that the proposed creek extension would restore a twice-daily flooding regime to a majority of the adjacent mangrove forest and that there would still be minimal tidal influence on the brackish marsh area, keeping its salinity at an acceptable level. This study demonstrates the utility of combining field data and hydraulic modeling to aid in the design of mangrove restoration plans.

  1. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  2. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  3. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  4. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  5. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek...

  6. 3-D reservoir characterization of the House Creek oil field, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Higley, Debra K.; Pantea, Michael P.; Slatt, Roger M.

    1997-01-01

    This CD-ROM is intended to serve a broad audience. An important purpose is to explain geologic and geochemical factors that control petroleum production from the House Creek Field. This information may serve as an analog for other marine-ridge sandstone reservoirs. The 3-D slide and movie images are tied to explanations and 2-D geologic and geochemical images to visualize geologic structures in three dimensions, explain the geologic significance of porosity/permeability distribution across the sandstone bodies, and tie this to petroleum production characteristics in the oil field. Movies, text, images including scanning electron photomicrographs (SEM), thin-section photomicrographs, and data files can be copied from the CD-ROM for use in external mapping, statistical, and other applications.

  7. Potential effects of surface coal mining on the hydrology of the upper Otter Creek-Pasture Creek Area, Moorehead coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.; Moreland, J.A.

    1988-01-01

    The combined upper Otter Creek-Pasture Creek area, south of Ashland, Montana, contains large reserves of Federal coal for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic systems and generalized groundwater quality, to assess potential effects of surface mining on local water resources, and to evaluate the potential for reclamation of those water resources. Principal aquifers are coal beds and sandstone in the upper Tongue River Member of the Fort Union Formation (Paleocene age), and sand and gravel in alluvium (Pleistocene and Holocene age). Hydraulic conductivity determined from aquifer tests was about 0.004 to 16 ft/d for coal or sandstone aquifers and 1 to 290 ft/d for alluvial aquifers. Dissolved-solids concentrations in water from bedrock ranged from 1,160 to 4,390 mg/L. In alluvium, the concentrations were 1,770 to 12,600 mg/L. Surface water is available from interrupted flow along downstream reaches of Otter and Pasture Creeks, from stock ponds, and from springs. Most stock ponds are dry by midsummer. Mining of coal in the Anderson, Dietz, and Canyon beds would lower the potentiometric surface within coal and sandstone aquifers. Alluvium along Otter Creek, its main tributaries, and Pasture Creek would be removed at the mines. Planned structuring of the spoils and reconstruction of alluvial aquifers could minimize downstream changes in water quality. Although mining would alter the existing hydrologic systems and destroy several shallow wells and stock ponds, alternative water supplies are available. (USGS)

  8. Multiple resource evaluations on the Beaver Creek watershed: An Annotated Bibliography (1956-1996)

    Treesearch

    M. B. Baker; P. F. Ffolliott

    1998-01-01

    The Beaver Creek experimental watershed, located in north-central Arizona, was established in 1956 in response to public concerns that the flow of streams and the amount of livestock forage on watersheds in the Salt-Verde River Basins were being reduced by increasing densities of ponderosa pine saplings and pinyon-juniper trees. Natural resource responses to the...

  9. Watershed Data Management (WDM) Database for Salt Creek Streamflow Simulation, DuPage County, Illinois

    USGS Publications Warehouse

    Murphy, Elizabeth A.; Ishii, Audrey L.

    2006-01-01

    The U.S. Geological Survey (USGS), in cooperation with DuPage County Department of Engineering, Stormwater Management Division, maintains a database of hourly meteorologic and hydrologic data for use in a near real-time streamflow simulation system, which assists in the management and operation of reservoirs and other flood-control structures in the Salt Creek watershed in DuPage County, Illinois. The majority of the precipitation data are collected from a tipping-bucket rain-gage network located in and near DuPage County. The other meteorologic data (wind speed, solar radiation, air temperature, and dewpoint temperature) are collected at Argonne National Laboratory in Argonne, Illinois. Potential evapotranspiration is computed from the meteorologic data. The hydrologic data (discharge and stage) are collected at USGS streamflow-gaging stations in DuPage County. These data are stored in a Watershed Data Management (WDM) database. This report describes a version of the WDM database that was quality-assured and quality-controlled annually to ensure the datasets were complete and accurate. This version of the WDM database contains data from January 1, 1997, through September 30, 2004, and is named SEP04.WDM. This report provides a record of time periods of poor data for each precipitation dataset and describes methods used to estimate the data for the periods when data were missing, flawed, or snowfall-affected. The precipitation dataset data-filling process was changed in 2001, and both processes are described. The other meteorologic and hydrologic datasets in the database are fully described in the annual U.S. Geological Survey Water Data Report for Illinois and, therefore, are described in less detail than the precipitation datasets in this report.

  10. Stripping-coal deposits on lower Lignite Creek, Nenana coal field, Alaska

    USGS Publications Warehouse

    Wahrhaftig, Clyde; Birman, Joseph H.

    1954-01-01

    Stripping-coal reserves in an area of about 9.4 square miles extending from the Nenana River about 6 miles up the valley of Lignite Creek are estimated to amount to about 95, 000, 000 tons. The stripping-coal reserves are located in the lower and middle members of the Tertiary coal-bearing formation. Five continuous beds in the middle member range in thickness from 5 to 30 feet, and a discontinuous bed at the base of the lower member is about 60 feet thick. Analyses of outcrop samples, as received at the laboratory, show a heating content of 7,500--8,200 Btu, an ash content of 6 to 14 percent, and a moisture content of 25 percent. The reserve estimate is based on a maximum thickness of overburden of 200 feet. Coal below the level of Lignite Creek or its major tributaries was not considered as it was assumed that stripping would be by hydraulic methods. Uncertainties regarding the position of the coal outcrops and the extent of burning of the coal beds are the basis for a recommendation that, where possible, the stripping reserves be tested by drilling. Overburden consists largely of weakly consolidated sandstone and includes some coarse gravel and a few boulders 20 feet or more in diameter. Water for hydraulic mining can be obtained from the Nenana River. Lignite Creek does not appear to be a dependable source. Disposal of debris may affect the channel of the Nenana River causing damage to railroads and structures. Landslides are common in the valley of Lignite Creek and will affect mining operations and transportation routes.

  11. Brine Migration in Heated Salt: Lessons Learned from Field Experiments

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Matteo, E. N.; Mills, M.

    2017-12-01

    We summarize several interesting brine migration related phenomena hinted at in field experiments from field testing related to salt radioactive waste repositories in Germany and the US. Past heater tests in salt have shown 1) thermal-hydrological-mechanical coupling is quite strong during both heating and cooling; 2) chemical composition of brine evolves during heating, and comprises a mix of several water sources; and 3) acid gas (HCl) generation has been observed during past heater tests and may have multiple mechanisms for formation. We present a heated brine migration test design, formulated with these complexities in mind. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  12. Traveltime characteristics of Gore Creek and Black Gore Creek, upper Colorado River basin, Colorado

    USGS Publications Warehouse

    Gurdak, Jason J.; Spahr, Norman E.; Szmajter, Richard J.

    2002-01-01

    In the Rocky Mountains of Colorado, major highways are often constructed in stream valleys. In the event of a vehicular accident involving hazardous materials, the close proximity of highways to the streams increases the risk of contamination entering the streams. Recent population growth has contributed to increased traffic volume along Colorado highways and has resulted in increased movement of hazardous materials, particularly along Interstate 70. Gore Creek and its major tributary, Black Gore Creek, are vulnerable to such contamination from vehicular accidents along Interstate 70. Gore Creek, major tributary of the Eagle River, drains approximately 102 square miles, some of which has recently undergone significant urban development. The headwaters of Gore Creek originate in the Gore Range in the eastern part of the Gore Creek watershed. Gore Creek flows west to the Eagle River. Beginning at the watershed boundary on Vail Pass, southeast of Vail Ski Resort, Interstate 70 parallels Black Gore Creek and then closely follows Gore Creek the entire length of the watershed. Interstate 70 crosses Gore Creek and tributaries 20 times in the watershed. In the event of a vehicular accident involving a contaminant spill into Gore Creek or Black Gore Creek, a stepwise procedure has been developed for water-resource managers to estimate traveltimes of the leading edge and peak concentration of a conservative contaminant. An example calculating estimated traveltimes for a hypothetical contaminant release in Black Gore Creek is provided. Traveltime measurements were made during May and September along Black Gore Creek and Gore Creek from just downstream from the Black Lakes to the confluence with the Eagle River to account for seasonal variability in stream discharge. Fluorometric dye injection of rhodamine WT and downstream dye detection by fluorometry were used to measure traveltime characteristics of Gore Creek and Black Gore Creek. During the May traveltime measurements

  13. New England salt marsh pools: A quantitative analysis of geomorphic and geographic features

    USGS Publications Warehouse

    Adamowicz, S.C.; Roman, C.T.

    2005-01-01

    New England salt marsh pools provide important wildlife habitat and are the object of on-going salt marsh restoration projects; however, they have not been quantified in terms of their basic geomorphic and geographic traits. An examination of 32 ditched and unditched salt marshes from the Connecticut shore of Long Island Sound to southern Maine, USA, revealed that pools from ditched and unditched marshes had similar average sizes of about 200 m2, averaged 29 cm in depth, and were located about 11 m from the nearest tidal flow. Unditched marshes had 3 times the density (13 pools/ha), 2.5 times the pool coverage (83 m pool/km transect), and 4 times the total pool surface area per hectare (913 m2 pool/ha salt marsh) of ditched sites. Linear regression analysis demonstrated that an increasing density of ditches (m ditch/ha salt marsh) was negatively correlated with pool density and total pool surface area per hectare. Creek density was positively correlated with these variables. Thus, it was not the mere presence of drainage channels that were associated with low numbers of pools, but their type (ditch versus creek) and abundance. Tidal range was not correlated with pool density or total pool surface area, while marsh latitude had only a weak relationship to total pool surface area per hectare. Pools should be incorporated into salt marsh restoration planning, and the parameters quantified here may be used as initial design targets.

  14. Geochemical Transformation of Cadmium (Cd) from Creek to Paddy Fields in W Thailand

    NASA Astrophysics Data System (ADS)

    Kosolsaksakul, Peerapat; Graham, Margaret; Farmer, John

    2013-04-01

    Extensive Cd contamination of paddy soils in Tak Province, western Thailand, a consequence of Zn mining activities, was first established in 2005 and medical studies showed that the health of local communities was being impaired. Mae Tao, Tak Province, comprising many paddy fields and irrigation canals, has been selected for this study of the geochemical transformation of Cd from the contamination source in the mountainous region to the east of the study site through the community irrigation system to the paddy soils. The aim of this research is to (i) investigate the geochemical transformation of Cd as it is transported from the main irrigation creek through the canals and to the paddy fields, (ii) assess the availability of Cd to rice plants, which may be affected by both chemical and physical factors, and (iii) trial some practical treatments to minimise Cd concentrations in rice grains. Soils, irrigation canal sediments and water samples were collected during the dry season and at the onset of the rainy season. Rice samples were collected at harvesting time and samples of soil fertiliser were also obtained. Water samples were filtered, ultrafiltered and analysed by ICP-MS whilst sub-samples of dried, ground soils and sediments were first subjected to micro-wave assisted acid digestion (modified US EPA method 3052). XRD and SEM-EDX methods were used for mineralogical characterisation and selective chemical extractions have assisted in the characterisation of solid phase Cd associations. Soil Cd concentrations were in the range 2.5-87.6 µg g-1, with higher values being obtained for fields furthest from the main creek. Although current irrigation water Cd inputs are low (mean 1.9 μg L-1; flood period), high loads of suspended particles still contribute additional Cd (4.2-9.8 µg L-1) to the paddy fields. For bioavailability assessment by a 3-step BCR sequential extraction, 70-90% Cd was in the exchangeable; HOAc-extractable fraction. That indicated that most of

  15. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  16. Surface-water quality in the Lycoming Creek watershed, north-central Pennsylvania, August 1–3, 2011

    USGS Publications Warehouse

    Risser, Dennis W.; Conlon, Matthew D.

    2018-05-17

    This report presents the methodology and results for a study of surface-water quality of the Lycoming Creek watershed in north-central Pennsylvania during August 1–3, 2011. The study was done in cooperation with the Williamsport Municipal Water Authority and the Pennsylvania Department of Environmental Protection. Samples of stream water were collected from 31 sites in an area of exploration and production of natural gas from the Marcellus Shale – 5 sites on the main stem of Lycoming Creek and 26 sites on tributary streams. The samples provide a snapshot of the base-flow water-quality conditions, which helps document the spatial variability in water-quality and could be useful for assessing future changes.The 272-square mile Lycoming Creek watershed is located within Lycoming, Tioga, and Sullivan Counties in north-central Pennsylvania. Lycoming Creek flows 37.5 miles to its confluence with the West Branch Susquehanna River in the city of Williamsport. A well field that supplies water for Williamsport captures some water that has infiltrated the streambed of Lycoming Creek. Because the stream provides a source of water to the well field, this study focused on the stream-water quality as it relates to drinking-water standards as opposed to aquatic life.Surface-water samples collected at 20 sites by the U.S. Geological Survey and 11 sites by the Pennsylvania Department of Environmental Protection were analyzed by each agency for a suite of constituents that included major ions, trace metals, nutrients, and radiochemicals. None of the analytical results failed to meet standards set by the U.S. Environmental Protection Agency as maximum contaminant levels for drinking water.Results of the sampling show the substantial spatial variability in base-flow water quality within the Lycoming Creek watershed caused by the interrelated effects of physiography, geology and land use. Dissolved-solids concentrations ranged from less than the laboratory reporting level of 12

  17. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretz, Justin K.; Olson, Jill M.

    2003-03-01

    In 2002 the Idaho Fisheries Resource Office continued working as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, broodstock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate the project data points and augment past data. Supplementation treatments included the release of 51,329 left ventral-clipped smolts into Clear Creek (750 were PIT tagged), and 12,000 unmarked coded-wire tagged parr into Pete King Creek (998 were PIT tagged). Using juvenile collection methods, Idaho Fisheries Resource Officemore » staff PIT tagged and released 579 naturally produced spring chinook juveniles in Clear Creek, and 54 on Pete King Creek, for minimum survival estimates to Lower Granite Dam. For Clear Creek, minimum survival estimates to Lower Granite Dam of hatchery produced supplementation and naturally produced PIT tagged smolts, were 36.0%, and 53.1%, respectively. For Pete King Creek, minimum survival estimates to Lower Granite Dam, of hatchery produced supplementation smolts and naturally produced smolts PIT tagged as parr and presmolts, were 18.8%, and 8.3%, respectively. Adults collected for broodstock in 2002 represented the final adult broodstock group collected for the ISS project. Twenty-six ventral clipped, and 28 natural adult spring chinook were transported above the weir. Monitoring and evaluation of spawning success was continued on Clear and Pete King creeks. A total of 69 redds were counted and 79 carcasses were recovered on Clear Creek. Two redds were observed and no carcasses were collected on Pete King Creek.« less

  18. Selenium in the Blackfoot, Salt, and Bear River Watersheds

    USGS Publications Warehouse

    Hamilton, S.J.; Buhl, K.J.

    2005-01-01

    Nine stream sites in the Blackfoot River, Salt River, and Bear River watersheds in southeast Idaho, USA were sampled in May 2001 for water, surficial sediment, aquatic plants, aquatic invertebrates, and fish. Selenium was measured in these aquatic ecosystem components, and a hazard assessment was performed on the data. Water quality characteristics such as pH, hardness, and specific conductance were relatively uniform among the nine sites. Of the aquatic components assessed, water was the least contaminated with selenium because measured concentrations were below the national water quality criterion of 5 μ g/L at eight of the nine sites. In contrast, selenium was elevated in sediment, aquatic plants, aquatic invertebrates, and fish from several sites, suggesting deposition in sediments and food web cycling through plants and invertebrates. Selenium was elevated to concentrations of concern in fish at eight sites (> 4 μ g/g in whole body). A hazard assessment of selenium in the aquatic environment suggested a moderate hazard at upper Angus Creek (UAC) and Smoky Creek (SC), and high hazard at Little Blackfoot River (LiB), Blackfoot River gaging station (BGS), State Land Creek (SLC), upper (UGC) and lower Georgetown Creek (LGC), Deer Creek (DC), and Crow Creek (CC). The results of this study indicate that selenium concentrations from the phosphate mining area of southeast Idaho were sufficiently elevated in several ecosystem components to cause adverse effects to aquatic resources in southeastern Idaho.

  19. 2. 'SANTA ANA RIVER AT CHINO CREEK, RIVERSIDE COUNTY.' This ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. 'SANTA ANA RIVER AT CHINO CREEK, RIVERSIDE COUNTY.' This is an oblique aerial view to the north, looking over the flooded fields between Chino Creek and the Santa Ana River, just upstream of the Prado Dam site. File number written on negative: R & H 80 024. - Prado Dam, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  20. Evidence for gap flows in the Birch Creek Valley, Idaho

    Treesearch

    D. Finn; B. Reese; B. Butler; N. Wagenbrenner; K. L. Clawson; J. Rich; E. Russell; Z. Gao; H. Liu

    2016-01-01

    A field study was conducted of flows in the Birch Creek Valley in eastern Idaho. There is a distinct topographic constriction in the Birch Creek Valley that creates two subbasins: an upper and lower valley. The data were classified into one of three groups based on synoptic influence (weak/absent, high wind speeds, and other evidence of synoptic influence). Gap flows...

  1. Restoring Fossil Creek

    ERIC Educational Resources Information Center

    Flaccus, Kathleen; Vlieg, Julie; Marks, Jane C.; LeRoy, Carri J.

    2004-01-01

    Fossil Creek had been dammed for the past 90 years, and plans were underway to restore the stream. The creek runs through Central Arizona and flows from the high plateaus to the desert, cutting through the same formations that form the Grand Canyon. This article discusses the Fossil Creek monitoring project. In this project, students and teachers…

  2. A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley

    PubMed Central

    Tavakkoli, Ehsan; Fatehi, Foad; Rengasamy, Pichu; McDonald, Glenn K.

    2012-01-01

    Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na+, Cl–, and K+ at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at ECe 7.2 [Spearman’s rank correlation (rs)=0.79] and ECe 15.3 (rs=0.82) and the crucial parameter of leaf Na+ (rs=0.72) and Cl– (rs=0.82) concentrations at ECe 7.2 dS m−1. This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of salt

  3. Water-quality appraisal. Mammoth Creek and Hot Creek, Mono County, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setmire, J.G.

    1984-06-01

    A late summer reconnaissance in 1981 and a spring high-flow sampling in 1982 of Mammoth Creek and Hot Creek, located in the Mammoth crest area of the Sierra Nevada, indicated that three water-quality processes were occurring: (1) mineralization; (2) eutrophication; and (3) sedimentation. Limited areas of fecal contamination were also observed. Mineralization due primarily to geothermal springs increased dissolved-solids concentration downstream, which changed the chemical composition of the water. The percentage of calcium decreased gradually, the percentage of magnesium and sodium increased, and the percentage of fluoride, sulfate, and chloride fluctuated, but increased overall. These changes produced water quality inmore » Mammoth Creek similar to that of the springs forming Hot Creek. Twin Lakes and the reach of Hot Creek below the fish hatchery showed evidence of eutrophication. Twin Lakes had floating mats of algae and a high dissolved-oxygen saturation of 147% at a pH of 9.2. Hot Creek had abundant growth of aquatic vascular plants and algae, dissolved-oxygen saturations ranging from 65% to 200%, algal growth potential of 30 milligrams per liter, nitrate concentration of 0.44 milligram per liter, and phosphate concentration of 0.157 milligram per liter. Sediment deposition was determined from detailed observations of bed-material composition, which showed that fine material was deposited at Sherwin Creek Road and downstream. Fecal contamination was indicated by fecal-coliform bacteria counts of 250 colonies per 100 milliliters and fecal-streptococcal bacteria counts greater than 1000 colonies per 100 milliliters. Although bacterial sampling was sporadic and incomplete, it did indicate adverse effects on water quality for the following beneficial uses that have been identified for Mammoth Creek and Hot Creek: (1) municipal supply; (2) cold-water habitat; and (3) contact and noncontact water recreation. 6 refs., 15 figs., 15 tabs.« less

  4. AmeriFlux US-ICh Imnavait Creek Watershed Heath Tundra

    DOE Data Explorer

    Bret-Harte, Syndonia [University of Alaska Fairbanks; Euskirchen, Eugenie [University of Alaska Fairbanks; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ICh Imnavait Creek Watershed Heath Tundra. Site Description - The Imnavait Creek Watershed Heath Tundra (Ridge Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Ridge Station was deployed at the end of Summer 2007.

  5. Water-quality appraisal, Mammoth Creek and Hot Creek, Mono County, California

    USGS Publications Warehouse

    Setmire, J.G.

    1984-01-01

    A late summer reconnaissance in 1981 and a spring high-flow sampling in 1982 of Mammoth Creek and Hot Creek, located in the Mammoth crest area of the Sierra Nevada, indicated that mineralization, eutrophication, sedimentation, and limited areas of fecal contamination were occurring. Mineralization, indicated by a downstream increase in dissolved-solids concentration, was due primarily to geothermal springs that gradually decreased in the percentage of calcium, increased in the percentage of magnesium and sodium, and caused fluctuating, but overall increasing percentage of fluoride, sulfate, and chloride. Resulting water quality in Mammoth Creek was similar to that of the springs forming Hot Creek. Eutrophication was observed in Twin Lakes and the reach of Hot Creek below the fish hatchery. Twin Lakes had floating mats of algae and a high dissolved-oxygen saturation of 147 percent at a pH of 9.2. Hot Creek had excessive aquatic vascular plant and algae growth, dissolved-oxygen saturations ranging from 65 to 200 percent, algal growth potential of 30 milligrams per liter, and nitrates and phosphates of 0.44 and 0.157 milligrams per liter. Sedimentation was noted in observations of bed-material composition showing the presence of fine material beginning at Sherwin Creek Road. Fecal contamination was indicated by fecal coliform counts of 250 colonies per 100 milliliters and fecal streptococcal counts greater than 1,000 colonies per 100 milliliters. (USGS)

  6. A Kirkwood-Buff derived force field for alkaline earth halide salts

    NASA Astrophysics Data System (ADS)

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E.

    2018-06-01

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl-, Br-, I-, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  7. A Kirkwood-Buff derived force field for alkaline earth halide salts.

    PubMed

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E

    2018-06-14

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX 2 ), where M = Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ and X = Cl - , Br - , I - , which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  8. Lower Walnut Creek Restoration

    EPA Pesticide Factsheets

    Lower Walnut Creek Restoration Project will restore and enhance coastal wetlands along southern shoreline of Suisun Bay from Suisun Bay upstream along Walnut Creek, improving habitat quality, diversity, and connectivity along three miles of creek channel.

  9. Salt-dome-related diagenesis of Miocene sediment, Black Bayou field, Cameron Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leger, W.R.

    1988-09-01

    The Black Bayou field is associated with a salt dome that pierces Miocene sediment and rises to within 900 ft (275 m) of the surface. The Louisiana Gulf Coast regional geothermal gradient is locally affected by the salt dome. The gradient increases to values greater than the regional gradient, 1.26/degrees/F/100 ft (23/degrees/C/km), near the dome. Local effects of the salt dome on clastic diagenesis have been determined by studying sandstone samples adjacent to and away from the salt dome within Miocene sediment. Sample depths range from 4155 to 6145 ft (1266 to 1873 m). Distances of samples from the edgemore » of the dome range from 82 to 820 ft (25 to 250 m).« less

  10. Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers.

    PubMed

    Luo, Meijie; Zhao, Yanxin; Zhang, Ruyang; Xing, Jinfeng; Duan, Minxiao; Li, Jingna; Wang, Naishun; Wang, Wenguang; Zhang, Shasha; Chen, Zhihui; Zhang, Huasheng; Shi, Zi; Song, Wei; Zhao, Jiuran

    2017-08-15

    Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown. To map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL. The detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance.

  11. Balanced sediment fluxes in southern California’s Mediterranean-climate zone salt marshes

    USGS Publications Warehouse

    Rosencranz, Jordan A.; Ganju, Neil K.; Ambrose, Richard F.; Brosnahan, Sandra M.; Dickhudt, Patrick J.; Guntenspergen, Glenn R.; MacDonald, Glen M.; Takekawa, John Y.; Thorne, Karen M.

    2016-01-01

    Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.

  12. Arsenic and lead concentrations in the Pond Creek and Fire Clay coal beds, eastern Kentucky coal field

    USGS Publications Warehouse

    Hower, J.C.; Robertson, J.D.; Wong, A.S.; Eble, C.F.; Ruppert, L.F.

    1997-01-01

    The Middle Pennsylvanian Breathitt Formation (Westphalian B) Pond Creek and Fire Clay coal beds are the 2 largest producing coal beds in eastern Kentucky. Single channel samples from 22 localities in the Pond Creek coal bed were obtained from active coal mines in Pike and Martin Countries, Kentucky, and a total of 18 Fire Clay coal bed channel samples were collected from localities in the central portion of the coal field. The overall objective of this study was to investigate the concentration and distribution of potentially hazardous elements in the Fire Clay and Pond Creek coal beds, with particular emphasis on As and Pb, 2 elements that are included in the 1990 Clean Air Act Amendments as potential air toxics. The 2 coals are discussed individually as the depositional histories are distinct, the Fire Clay coal bed having more sites where relatively high-S lithologies are encountered. In an effort to characterize these coals, 40 whole channel samples, excluding 1-cm partings, were analyzed for major, minor and trace elements by X-ray fluorescence and proton-induced X-ray emission spectroscopy. Previously analyzed samples were added to provide additional geographic coverage and lithotype samples from one site were analyzed in order to provide detail of vertical elemental trends. The As and Pb levels in the Fire Clay coal bed tend to be higher than in the Pond Creek coal bed. One whole channel sample of the Fire Clay coal bed contains 1156 ppm As (ash basis), with a single lithotype containing 4000 ppm As (ash basis). Most of the As and Pb appears to be associated with pyrite, which potentially can be removed in beneficiation (particularly coarser pyrite). Disseminated finer pyrite may not be completely removable by cleaning. In the examination of pyrite conducted in this study, it does not appear that significant concentration of As or Pb occurs in the finer pyrite forms. The biggest potential problem of As- or Pb-enriched pyrite is, therefore, one of refuse

  13. Salmon Supplementation Studies in Idaho Rivers; Field Activities Conducted on Clear and Pete King Creeks, 2001 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gass, Carrie; Olson, Jim M.

    2004-11-01

    In 2001 the Idaho Fisheries Resource Office continued as a cooperator on the Salmon Supplementation Studies in Idaho Rivers (ISS) project on Pete King and Clear creeks. Data relating to supplementation treatment releases, juvenile sampling, juvenile PIT tagging, brood stock spawning and rearing, spawning ground surveys, and snorkel surveys were used to evaluate project data points and augment past data. Due to low adult spring Chinook returns to Kooskia National Fish Hatchery (KNFH) in brood year 1999 there was no smolt supplementation treatment release into Clear Creek in 2001. A 17,014 spring Chinook parr supplementation treatment (containing 1000 PIT tags)more » was released into Pete King Creek on July 24, 2001. On Clear Creek, there were 412 naturally produced spring Chinook parr PIT tagged and released. Using juvenile collection methods, Idaho Fisheries Resource Office staff PIT tagged and released 320 naturally produced spring Chinook pre-smolts on Clear Creek, and 16 natural pre-smolts on Pete King Creek, for minimum survival estimates to Lower Granite Dam. There were no PIT tag detections of brood year 1999 smolts from Clear or Pete King creeks. A total of 2261 adult spring Chinook were collected at KNFH. Forty-three females were used for supplementation brood stock, and 45 supplementation (ventral fin-clip), and 45 natural (unmarked) adults were released upstream of KNFH to spawn naturally. Spatial and temporal distribution of 37 adults released above the KNFH weir was determined through the use of radio telemetry. On Clear Creek, a total of 166 redds (8.2 redds/km) were observed and data was collected from 195 carcasses. Seventeen completed redds (2.1 redds/km) were found, and data was collected data from six carcasses on Pete King Creek.« less

  14. Generating Electric Fields in PDMS Microfluidic Devices with Salt Water Electrodes

    PubMed Central

    Sciambi, Adam; Abate, Adam R.

    2014-01-01

    Droplet merging and sorting in microfluidic devices usually rely on electric fields generated by solid metal electrodes. We show that simpler and more reliable salt water electrodes, despite their lower conductivity, can perform the same droplet manipulations at the same voltages. PMID:24671446

  15. Investigating the Maya Polity at Lower Barton Creek Cayo, Belize

    NASA Astrophysics Data System (ADS)

    Kollias, George Van, III

    The objectives of this research are to determine the importance of Lower Barton Creek in both time and space, with relation to other settlements along the Belize River Valley. Material evidence recovered from field excavations and spatial information developed from Lidar data were employed in determining the socio-political nature and importance of this settlement, so as to orient its existence within the context of ancient socio-political dynamics in the Belize River Valley. Before the investigations detailed in this thesis no archaeological research had been conducted in the area, the site of Lower Barton Creek itself was only recently identified via the 2013 West-Central Belize LiDAR Survey (WCBLS 2013). Previously, the southern extent of the Barton Creek area represented a major break in our knowledge not only of the Barton Creek area, but the southern extent of the Belize River Valley. Conducting research at Lower Barton Creek has led to the determination of the polity's temporal existence and allowed for a greater and more complex understanding of the Belize River Valley's interaction with regions abutting the Belize River Valley proper.

  16. AmeriFlux US-ICt Imnavait Creek Watershed Tussock Tundra

    DOE Data Explorer

    Bret-Harte, Syndonia [University of Alaska Fairbanks; Euskirchen, Eugenie [University of Alaska Fairbanks; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ICt Imnavait Creek Watershed Tussock Tundra. Site Description - The Imnavait Creek Watershed Tussock Tundra (Biocomplexity Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Biocomplexity Station was deployed in 2004, and it has been in operation during the melt seasons ever since.

  17. The ebb and flood of Silica: Quantifying dissolved and biogenic silica fluxes from a temperate salt marsh

    NASA Astrophysics Data System (ADS)

    Vieillard, Amanda M.; Fulweiler, Robinson W.; Hughes, Zoe J.; Carey, Joanna C.

    2011-12-01

    Salt marshes are widely studied due to the broad range of ecosystem services they provide including serving as crucial wildlife habitat and as hotspots for biogeochemical cycling. Nutrients such as nitrogen (N), phosphorus (P), and carbon (C) are well studied in these systems. However, salt marshes may also be important environments for the cycling of another key nutrient, silica (Si). Found at the land-sea interface, these systems are silica replete with large stocks in plant biomass, sediments, and porewater, and therefore, have the potential to play a substantial role in the transformation and export of silica to coastal waters. In an effort to better understand this role, we measured the fluxes of dissolved (DSi) and biogenic (BSi) silica into and out of two tidal creeks in a temperate, North American (Rowley, Massachusetts, USA) salt marsh. One of the creeks has been fertilized from May to September for six years allowing us to examine the impacts of nutrient addition on silica dynamics within the marsh. High-resolution sampling in July 2010 showed no significant differences in Si concentrations between the fertilized and reference creeks with dissolved silica ranging from 0.5 to 108 μM and biogenic from 2.0 to 56 μM. Net fluxes indicated that the marsh is a point source of dissolved silica to the estuary in the summer with a net flux of approximately 169 mol h -1, demonstrating that this system exports DSi on the same magnitude as some nearby, mid-sized rivers. If these findings hold true for all salt marshes, then these already valuable regions are contributing yet another ecosystem service that has been previously overlooked; by exporting DSi to coastal receiving waters, salt marshes are actively providing this important nutrient for coastal primary productivity.

  18. Simulation of streamflow and estimation of recharge to the Edwards aquifer in the Hondo Creek, Verde Creek, and San Geronimo Creek watersheds, south-central Texas, 1951-2003

    USGS Publications Warehouse

    Ockerman, Darwin J.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the San Antonio Water System, constructed three watershed models using the Hydrological Simulation Program—FORTRAN (HSPF) to simulate streamflow and estimate recharge to the Edwards aquifer in the Hondo Creek, Verde Creek, and San Geronimo Creek watersheds in south-central Texas. The three models were calibrated and tested with available data collected during 1992–2003. Simulations of streamflow and recharge were done for 1951–2003. The approach to construct the models was to first calibrate the Hondo Creek model (with an hourly time step) using 1992–99 data and test the model using 2000–2003 data. The Hondo Creek model parameters then were applied to the Verde Creek and San Geronimo Creek watersheds to construct the Verde Creek and San Geronimo Creek models. The simulated streamflows for Hondo Creek are considered acceptable. Annual, monthly, and daily simulated streamflows adequately match measured values, but simulated hourly streamflows do not. The accuracy of streamflow simulations for Verde Creek is uncertain. For San Geronimo Creek, the match of measured and simulated annual and monthly streamflows is acceptable (or nearly so); but for daily and hourly streamflows, the calibration is relatively poor. Simulated average annual total streamflow for 1951–2003 to Hondo Creek, Verde Creek, and San Geronimo Creek is 45,400; 32,400; and 11,100 acre-feet, respectively. Simulated average annual streamflow at the respective watershed outlets is 13,000; 16,200; and 6,920 acre-feet. The difference between total streamflow and streamflow at the watershed outlet is streamflow lost to channel infiltration. Estimated average annual Edwards aquifer recharge for Hondo Creek, Verde Creek, and San Geronimo Creek watersheds for 1951–2003 is 37,900 acrefeet (5.04 inches), 26,000 acre-feet (3.36 inches), and 5,940 acre-feet (1.97 inches), respectively. Most of the recharge (about 77 percent for the three watersheds

  19. AmeriFlux US-ICs Imnavait Creek Watershed Wet Sedge Tundra

    DOE Data Explorer

    Bret-Harte, Syndonia [University of Alaska Fairbanks; Euskirchen, Eugenie [University of Alaska Fairbanks; Shaver, Gaius [Marine Biological Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ICs Imnavait Creek Watershed Wet Sedge Tundra. Site Description - The Imnavait Creek Watershed Wet Sedge Tundra (Fen Station) is located near Imnavait Creek in Alaska, north of the Brooks Range in the Kuparuk basin near Lake Toolik and the Toolik Field Station. The Kuparuk River has its headwaters in the Brooks Range and drains through northern Alaska into the Arctic Ocean. Within these headwaters lies the Imnavait basin at an average elevation of 930 m. Water tracks run down the hill in parallel zones with a spacing of approximately 10 m. The Fen Station was deployed at the end of Summer 2007.

  20. Salt marsh sediment bacteria: their distribution and response to external nutrient inputs.

    PubMed

    Bowen, Jennifer L; Crump, Byron C; Deegan, Linda A; Hobbie, John E

    2009-08-01

    A primary focus among microbial ecologists in recent years has been to understand controls on the distribution of microorganisms in various habitats. Much less attention has been paid to the way that environmental disturbance interacts with processes that regulate bacterial community composition. We determined how human disturbance affected the distribution and community structure of salt marsh sediment bacteria by using denaturing gradient gel electrophoresis of 16S rRNA in five different habitats in each of four salt marshes located in northeastern Massachusetts, USA. Two of the four marsh creeks were experimentally enriched 15 x above background by the addition of nitrogen and phosphorus fertilizers for two or more growing seasons. Our results indicate that extrinsic factors acting at broad scales do not influence the distribution of salt marsh sediment bacteria. Intrinsic factors, controlled by local-scale environmental heterogeneity, do play a role in structuring these sediment microbial communities, although nutrient enrichment did not have a consequential effect on the microbial community in most marsh habitats. Only in one habitat, a region of the marsh creek wall that is heavily colonized by filamentous algae, did we see any effect of fertilization on the microbial community structure. When similar habitats were compared among marshes, there was considerable convergence in the microbial community composition during the growing season. Environmental factors that correlated best with microbial community composition varied with habitat, suggesting that habitat-specific intrinsic forces are primarily responsible for maintaining microbial diversity in salt marsh sediments.

  1. Bonanza Creek Experimental Forest & Caribou-Poker Creeks Research Watershed.

    Treesearch

    Valerie Rapp

    2003-01-01

    Bonanza Creek Experimental Forest and Caribou-Poker Creeks Research Watershed are located in the boreal forest of interior Alaska. Research focuses on basic ecological processes, hydrology, disturbance regimes, and climate change in the boreal forest region. Interior Alaska lies between the Alaska Range to the south and the Brooks Range to the north and covers an area...

  2. Magnetic properties of a new obsidian source, west Antelope Creek, Grant County, New Mexico

    NASA Astrophysics Data System (ADS)

    Sternberg, R. S.; Samuels, R.; Feinberg, J. M.; Shackley, M. S.

    2013-12-01

    This work is part of a Keck Geology Consortium project on characterizing obsidian sources in New Mexico using magnetic and geochemical properties. We collected over 3,000 samples, many of which were georeferenced, from 10 obsidian sources at three locales - Mule creek, Mt. Taylor, and Valles Caldera. One of the Mule Creek sources, herein called the west Antelope Creek (wAC) source, was previously unknown. The 143 samples collected at this source covered about 1 km2, but were not individually georeferenced. We plan to characterize the magnetic and chemical properties of this source to see if it is distinguishable from other nearby sources and useful for provenancing archaeological obsidians. Initial measurements on 34 specimens from 20 samples show NRM values range from 1-80 Am2/kg, and low-field susceptibilities range from 1.2-96 x 10-8 mass specific SI units. When there were two specimens from the same sample, results were in good agreement. The measurements define a rather broad field in NRM-susceptibility space compared to other Southwestern sources examined to date, and a considerably larger field than from the nearby Antelope Creek (AC) source. The previously measured NRM and susceptibility values from AC are all in the high end on both dimensions of the wAC field, so that these fields overlap but in many cases could be distinguished.

  3. Nonpoint Source Road Salt Pollution from Urban Stormwater

    NASA Astrophysics Data System (ADS)

    DeGaetano, S.; Walter, M. T.

    2014-12-01

    In colder climates, such as the Northeast, road salts are commonly applied to deice roads in order to increase pedestrian and driver safety. This study was conducted to establish the mass if NaCl entering the local aquatic systems from Cornell's campus. Using trail cameras, two typical storm water pipes (draining into Cascadilla Creek) were monitored to determine the volume of runoff on an hourly bases. Grab samples were taken three times a week obtain storm water chloride concentration. In general, the average measured salt concentration was found to be 3.61 g/L, while high precipitation events Cl- concentration spiked to levels exceeding 12 g/L (≈ 20 g/L of salt). Combining runoff volumes and salt concentration values, a mass per drainage area was calculated for each monitored pipe. Outfall #1, located just upstream from the Wilson Synchrotron Module, expelled 262,300 kg of salt over a 42-day period of data collection while Outfall#2 discharged 4160 kg during the same period. These results were averaged and then applied to the total impervious area on Cornell's campus to approximate the total mass of sodium chloride leaving campus during the period of data collection.

  4. Water quality of the Swatara Creek Basin, PA

    USGS Publications Warehouse

    McCarren, Edward F.; Wark, J.W.; George, J.R.

    1964-01-01

    The Swatara Creek of the Susquehanna River Basin is the farthest downstream sub-basin that drains acid water (pH of 4.5 or less) from anthracite coal mines. The Swatara Creek drainage area includes 567 square miles of parts of Schuylkill, Berks, Lebanon, and Dauphin Counties in Pennsylvania.To learn what environmental factors and dissolved constituents in water were influencing the quality of Swatara Creek, a reconnaissance of the basin was begun during the summer of 1958. Most of the surface streams and the wells adjacent to the principal tributaries of the Creek were sampled for chemical analysis. Effluents from aquifers underlying the basin were chemically analyzed because ground water is the basic source of supply to surface streams in the Swatara Creek basin. When there is little runoff during droughts, ground water has a dominating influence on the quality of surface water. Field tests showed that all ground water in the basin was non-acidic. However, several streams were acidic. Sources of acidity in these streams were traced to the overflow of impounded water in unworked coal mines.Acidic mine effluents and washings from coal breakers were detected downstream in Swatara Creek as far as Harper Tavern, although the pH at Harper Tavern infrequently went below 6.0. Suspended-sediment sampling at this location showed the mean daily concentration ranged from 2 to 500 ppm. The concentration of suspended sediment is influenced by runoff and land use, and at Harper Tavern it consisted of natural sediments and coal wastes. The average daily suspended-sediment discharge there during the period May 8 to September 30, 1959, was 109 tons per day, and the computed annual suspended-sediment load, 450 tons per square mile. Only moderate treatment would be required to restore the quality of Swatara Creek at Harper Tavern for many uses. Above Ravine, however, the quality of the Creek is generally acidic and, therefore, of limited usefulness to public supplies, industries and

  5. Assessment of aquatic macroinvertebrate communities in the Autauga Creek watershed, Autauga County, Alabama, 2009

    USGS Publications Warehouse

    Mooty, Will S.; Gill, Amy C.

    2011-01-01

    Only four families within the Ephemeroptera, Plecoptera, and Trichoptera orders were found during a 1999 survey of aquatic macroinvertebrates in Autauga Creek, Autauga County, Alabama, by the Alabama Department of Environmental Management. The low number of taxa of Ephemeroptera, Plecoptera, and Trichoptera families indicated that the aquatic macroinvertebrate community was in poor condition, and the creek was placed on the Alabama Department of Environmental Management 303(d) list. The U.S. Geological Survey conducted a study in 2009 to provide data for the Alabama Department of Environmental Management and other water management agencies to re-evaluate aquatic macroinvertebrate communities in Autauga Creek to see if they meet Alabama Department of Environmental Management water-quality criteria. Aquatic macroinvertebrate communities were evaluated at three sites in the Autauga Creek watershed. Macroinvertebrates were sampled at two sites on Autauga Creek and one on Bridge Creek, the largest tributary to Autauga Creek. Water-quality field parameters were assessed at 11 sites. During the 2009 sampling, 12 families within the orders of Ephemeroptera, Plecoptera, Trichoptera were found at the Alabama Department of Environmental Management's assessment site whereas only four were found in 1999. The upstream site on Autauga Creek had consistently higher numbers of taxa than the Bridge Creek site and the lower site on Autauga Creek which is the Alabama Department of Environmental Management's assessment site. Chironomid richness was noticeably higher on the two Autauga Creek sites than the Bridge Creek site.

  6. Hydrogeology and ground-water flow in the carbonate rocks of the Little Lehigh Creek basin, Lehigh County, Pennsylvania

    USGS Publications Warehouse

    Sloto, R.A.; Cecil, L.D.; Senior, L.A.

    1991-01-01

    -water underflow from the Little Lehigh Creek basin to the Cedar Creek basin is 4.04 inches per year. For steady-state calibration, the root-mean-squared difference between observed and simulated heads was 21.19 feet. The effects of increased ground-water development on base flow and underflow out of the Little Lehigh Creek basin for average and drought conditions were simulated by locating a hypothetical well field in different parts of the basin. Steady-state simulations were used to represent equilibrium conditions, which would be the maximum expected long-term effect. Increased ground-water development was simulated as hypothetical well fields pumping at the rate of 15, 25, and 45 million gallons per day in addition to existing ground-water withdrawals. Four hypothetical well fields were located near and away from Little Lehigh Creek in upstream and downstream areas. The effects of pumping a well field in different parts of the Little Lehigh Creek basin were compared. Pumping a well field located near the headwaters of Little Lehigh Creek and away from the stream would have greatest effect on inducing underflow from the Sacony Greek basin and the least effect on reducing base flow and underflow to the Ceda^r Creek basin. Pumping a well field located near the headwaters of Little Leh|igh Creek near the stream would have less impact on inducing underflow from|the Sacony Creek basin and a greater impact on reducing the base flow of Little Lehigh Creek because more of the pumpage would come from diverted base flow. Pumping a well field located in the downstream area of the Little Lehigh Creek basin away from the stream would have the greatest effect on the underflow to the Cedar Creek basin. Pumping a well field located in the downstream area of the Little Lehigh Creek basin near the stream would have the greatest effect on reducing the base flow of Little Lehigh Cteek. Model simulations show that groundwater withdrawals do not cause a proportional reduction in base flow. Under

  7. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    USGS Publications Warehouse

    Peters, Arin J.; Studley, Seth E.

    2016-01-25

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  8. Electric Field Strength Of Coherent Radio Emission In Rock Salt Concerning Ultra High-Energy Neutrino Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Y.; Chiba, M.; Yasuda, O.

    2006-07-12

    Detection possibility of ultra high-energy (UHE) neutrino (E >1015 eV) in natural huge rock salt formation has been studied. Collision between the UHE neutrino and the rock salt produces electromagnetic (EM) shower. Charge difference (excess electrons) between electrons and positrons in EM shower radiates radio wave coherently (Askar'yan effect). Angular distribution and frequency spectrum of electric field strength of radio wave radiated from 3-dimensional EM shower in rock salt are presented.

  9. Water-quality variations in Antelope Creek and Deadmans Run, Lincoln, Nebraska

    USGS Publications Warehouse

    Pettijohn, R.A.; Engberg, R.A.

    1985-01-01

    Eleven sets of samples from five sites on Antelope Creek and Dead Man 's Run in Lincoln, Nebraska, were collected from December 1982 through June 1983 to study water-quality variations. Specific-conductance values generally were similar for Antelope Creek at 52nd Street and 27th Street, but during a low-flow survey of December 1 they increased from 974 to 8,700 microsiemens per centimeter at 25 C from 27th Street to Court Street. Seepage of saline water from underlying bedrock to the stream occurs in this reach. Specific-conductance values were less variable for Dead Man 's Run, increasing an average of only 47 percent from 66th Street to U.S. Highway 6. Specific-conductance values were less at high flows in Antelope Creek, except in samples collected on January 6, 1983, which contained runoff from salted streets. Sodium and chloride concentrations in these samples were from 5 to 10 times greater than those measured in any other samples. Stray-current corrosion occurs when current flows between dissimilar metals. Zinc-coated wire of channel-stabilization structures (gabions) may be an anode and material within the stream banks may be a cathode. Dissolution of the zinc coating by this type of corrosion may be a cause for gabion deterioration in both streams. (USGS)

  10. Sessile multidroplets and salt droplets under high tangential electric fields

    PubMed Central

    Xie, Guoxin; He, Feng; Liu, Xiang; Si, Lina; Guo, Dan

    2016-01-01

    Understanding the interaction behaviors between sessile droplets under imposed high voltages is very important in many practical situations, e.g., microfluidic devices and the degradation/aging problems of outdoor high-power applications. In the present work, the droplet coalescence, the discharge activity and the surface thermal distribution response between sessile multidroplets and chloride salt droplets under high tangential electric fields have been investigated with infrared thermography, high-speed photography and pulse current measurement. Obvious polarity effects on the discharge path direction and the temperature change in the droplets in the initial stage after discharge initiation were observed due to the anodic dissolution of metal ions from the electrode. In the case of sessile aligned multidroplets, the discharge path direction could affect the location of initial droplet coalescence. The smaller unmerged droplet would be drained into the merged large droplet as a result from the pressure difference inside the droplets rather than the asymmetric temperature change due to discharge. The discharge inception voltages and the temperature variations for two salt droplets closely correlated with the ionization degree of the salt, as well as the interfacial electrochemical reactions near the electrodes. Mechanisms of these observed phenomena were discussed. PMID:27121926

  11. Three-Dimensional Numerical Modelling of Flow and Sediment Transport for Field Scale Application of Stream Barbs at Sawmill Creek, Ottawa

    NASA Astrophysics Data System (ADS)

    Jamieson, E. C.; Rennie, C. D.; Townsend, R. D.

    2009-05-01

    towards the centre of the channel, away from the outside bank. Sawmill Creek has the added complexity of having predominately clay bed and banks. The erosional behaviour of cohesive sediments such as clay is difficult to model correctly, due to the complex site-specific physio- chemical properties of clay particles. Following the construction of the proposed barbs at our field test site this summer (2009), and data collection the following spring and summer, we hope to advance the current knowledge of cohesive sediment transport processes in a complicated three-dimensional turbulent flow field. For the present modelling effort, erodibility of the consolidated clay bed and bank material was estimated based on establishing an entrainment threshold at near-bankfull conditions. The focus of this research is on (i) the unique site conditions and environmental protection requirements, (ii) design methodology, and (iii) results of the numerical simulation. The three-dimensional numerical model was capable of reproducing the expected distribution of secondary flow in a channel bend, the unique three- dimensional flow field resulting from a series of submerged structures and the associated patterns of soil erosion and deposition. The numerical modelling also demonstrated to be a useful tool for optimizing barb design for stream bank protection at the proposed field test site. Modelling results confirmed that in the vicinity of the barbs, the addition of the proposed barb layout achieved substantial reduction in erosion (up to 98 %), bed shear stress (up to 59 %) and streamwise velocity (up to 51 %).

  12. Pore Pressure and Field stress variation from Salt Water Injection; A case Study from Beaver Lodge Field in Williston Basin

    NASA Astrophysics Data System (ADS)

    Mohammed, R. A.; Khatibi, S.

    2017-12-01

    One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.

  13. Composition of Fish Communities in a European Macrotidal Salt Marsh (the Mont Saint-Michel Bay, France)

    NASA Astrophysics Data System (ADS)

    Laffaille, P.; Feunteun, E.; Lefeuvre, J.-C.

    2000-10-01

    At least 100 fish species are known to be present in the intertidal areas (estuaries, mudflats and salt marshes) of Mont Saint-Michel Bay. These and other comparable shallow marine coastal waters, such as estuaries and lagoons, play a nursery role for many fish species. However, in Europe little attention has been paid to the value of tidal salt marshes for fishes. Between March 1996 and April 1999, 120 tides were sampled in a tidal creek. A total of 31 species were caught. This community was largely dominated by mullets ( Liza ramada represent 87% of the total biomass) and sand gobies ( Pomatoschistus minutus and P. lozanoi represent 82% of the total numbers). These species and also Gasterosteus aculeatus , Syngnathus rostellatus, Dicentrarchus labrax, Mugil spp., Liza aurata and Sprattus sprattus were the most frequent species (>50% of monthly frequency of occurrence). In Europe, salt marshes and their creeks are flooded only during high spring tides. So, fishes only invade this environment during short immersion periods, and no species can be considered as marsh resident. But, the salt marsh was colonized by fish every time the tide reached the creek, and during the short time of flood, dominant fishes fed actively and exploited the high productivity. Nevertheless, this study shows that there is little interannual variation in the fish community and there are three ' seasons ' in the fish fauna of the marsh. Marine straggler and marine estuarine dependent species colonize marshes between spring (recruitment period in the bay) and autumn before returning into deeper adjacent waters. Estuarine fishes are present all year round with maximum abundances in the end of summer. The presence of fishes confirms that this kind of wetland plays an important trophic and nursery role for these species. Differences in densities and stages distribution of these species into Mont Saint-Michel systems (tidal mudflats, estuaries and tidal salt marshes) can reduce the trophic

  14. Reservoir sedimentology of the Big Injun sandstone in Granny Creek field, West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Xiangdong; Donaldson, K.; Donaldson, A.C.

    1992-01-01

    Big Injun sandstones of Granny Creek oil field (WV) are interpreted as fluvial-deltaic deposits from core and geophysical log data. The reservoir consists of two distinctive lithologies throughout the field; fine-grained sandstones overlain by pebbly and coarse-grained sandstones. Lower fine-grained sandstones were deposited in westward prograding river-mouth bars, where distal, marine-dominant proximal, and fluvial-dominant proximal bar subfacies are recognized. Principal pay is marine-influenced proximal bar, where porosity ranges from 13 to 23% and permeability, up to 24 md. Thin marine transgressive shales and their laterally equivalent low-permeability sandstones bound time-rock sequences generally less than 10 meters thick. Where field mapped,more » width of prograding bar sequence is approximately 2.7 km (dip trend), measured from truncated eastern edge (pre-coarse-grained member erosional surface) to distal western margin. Dip-trending elongate lobes occur within marine-influenced proximal mouth-bar area, representing thickest part of tidally influenced preserved bar. Upper coarse-grained part of reservoir consists of pebbly sandstones of channel fill from bedload streams. Laterally persistent low permeability cemented interval in lower part commonly caps underlying pay zone and probably serves as seal to vertical oil migration. Southwest paleoflow trends based on thickness maps of unit portent emergence of West Virginia dome, which influences erosion patterns of pre-Greenbrier unconformity for this combination oil trap.« less

  15. Joint Geophysical and Hydrologic Constraints on Shallow Groundwater Flow Systems in Clastic Salt Marshes of the South Atlantic Bight

    NASA Astrophysics Data System (ADS)

    Ruppel, C.; Fulton, P.; Schultz, G. M.; Castillo, L.; Bartlett, J.; Sibley, S.

    2005-12-01

    Salt marsh systems play a critical role in buffering upland coastal areas from the influence of open saltwater bodies and in filtering contaminants that originate offshore or are flushed from uplands. For these reasons, it is important to understand the salt marsh hydrologic cycle, especially the interaction of groundwater and surface water across low-lying coastal fringes and the changes in physical, chemical, and ecological parameters across salinity gradients extending from upland to tidal creek to open water. For the past 5 years, we have conducted hydrogeophysical surveys (inductive EM and DC resistivity) and collected limited, coincident groundwater hydrologic data in clastic salt marshes throughout the South Atlantic Bight (SAB), stretching from South Carolina on the north to the Georgia-Florida border on the south. All of the marshes are dominated by Spartina and Juncus grasses and are cut by tidally-influenced creeks, but both the lithology and age of the marshes vary widely. For example, one highly homogeneous marsh study site has formed only within the past century, while most sites have existed for thousands of years and have laterally and vertically heterogeneous lithology. Geophysical images of the marsh subsurface and coincident monitoring of groundwater temperature, water level, and/or chemistry consistently show that marshes in the mixed energy environment of the middle part of the SAB (GCE LTER) tend to be dominated by submarsh discharge of freshwater to adjacent tidal creeks. In the South Carolina part of the SAB, we have greater evidence for seepage, particularly through biologically-created macropore networks and permeable sediment bodies that intersect tidal creeks. It is possible though that the South Carolina results are not so much 'universal' as reflective of local lithology. In a very young marsh near the Florida border, geophysical imaging implies a mixture of seepage and submarsh flow, and hydrologic data provide unequivocal proof that

  16. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 3730-005] Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have...

  17. Doping Polymer Semiconductors by Organic Salts: Toward High-Performance Solution-Processed Organic Field-Effect Transistors.

    PubMed

    Hu, Yuanyuan; Rengert, Zachary D; McDowell, Caitlin; Ford, Michael J; Wang, Ming; Karki, Akchheta; Lill, Alexander T; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2018-04-24

    Solution-processed organic field-effect transistors (OFETs) were fabricated with the addition of an organic salt, trityl tetrakis(pentafluorophenyl)borate (TrTPFB), into thin films of donor-acceptor copolymer semiconductors. The performance of OFETs is significantly enhanced after the organic salt is incorporated. TrTPFB is confirmed to p-dope the organic semiconductors used in this study, and the doping efficiency as well as doping physics was investigated. In addition, systematic electrical and structural characterizations reveal how the doping enhances the performance of OFETs. Furthermore, it is shown that this organic salt doping method is feasible for both p- and n-doping by using different organic salts and, thus, can be utilized to achieve high-performance OFETs and organic complementary circuits.

  18. The Boulder Creek Batholith, Front Range, Colorado

    USGS Publications Warehouse

    Gable, Dolores J.

    1980-01-01

    the country rock, suggesting that emplacement was controlled by preexisting structures in the country rock. On a gross scale, chemical equilibrium in the Boulder Creek Granodiorite is expressed by a near 1:1 ratio, or straight-line relationship in the distribution of iron, magnesium, and manganese in biotite and hornblende. General mineralogical trends in the Boulder Creek Granodiorite indicate that modal biotite, hornblende, and plagioclase tend to increase and quartz and microcline tend to decrease as CaO increases. These trends were not found in the Twin Spruce Quartz Monzonite. Differentiation is believed to have played a major role and assimilation a minor role in the development of the Boulder Creek batholith. The Boulder Creek Granodiorite is of probable mantle or lower crust origin, and, based on the scant data available, the Twin Spruce Quartz Monzonite may be of crustal origin, but the magma was extensively altered by contaminants of ambiguous origin. Mafic inclusions, possibly derived from a dioritic magma which was an early differentiate associated temporally with the Boulder Creek Granodiorite and (or) the Twin Spruce Quartz Monzonite, were in jected into the Boulder Creek Granodiorite during the mush stage and before the batholith was completely crystallized. Biotite, hornblende, and potassium feldspar were studied extensively. Their chemistry and petrology indicate a homogeneity throughout the batholith not believed possible by a casual observance of the batholithic rocks in the field. The accessory minerals, where investigated, also tend to indicate this same pervasive homogeneity.

  19. Gold Creek: Preserving an Environmental Studies Center.

    ERIC Educational Resources Information Center

    Brooks, Suzanne

    In response to a Board of Trustees request for information and recommendations concerning the future use of the Gold Creek property owned by the Los Angeles Community College District, this report emphasizes that the use of this site for instructional field experiences enhances the quality of environmental education for the district's diverse…

  20. Sensitivity of potential evapotranspiration and simulated flow to varying meteorological inputs, Salt Creek watershed, DuPage County, Illinois

    USGS Publications Warehouse

    Whitbeck, David E.

    2006-01-01

    The Lamoreux Potential Evapotranspiration (LXPET) Program computes potential evapotranspiration (PET) using inputs from four different meteorological sources: temperature, dewpoint, wind speed, and solar radiation. PET and the same four meteorological inputs are used with precipitation data in the Hydrological Simulation Program-Fortran (HSPF) to simulate streamflow in the Salt Creek watershed, DuPage County, Illinois. Streamflows from HSPF are routed with the Full Equations (FEQ) model to determine water-surface elevations. Consequently, variations in meteorological inputs have potential to propagate through many calculations. Sensitivity of PET to variation was simulated by increasing the meteorological input values by 20, 40, and 60 percent and evaluating the change in the calculated PET. Increases in temperatures produced the greatest percent changes, followed by increases in solar radiation, dewpoint, and then wind speed. Additional sensitivity of PET was considered for shifts in input temperatures and dewpoints by absolute differences of ?10, ?20, and ?30 degrees Fahrenheit (degF). Again, changes in input temperatures produced the greatest differences in PET. Sensitivity of streamflow simulated by HSPF was evaluated for 20-percent increases in meteorological inputs. These simulations showed that increases in temperature produced the greatest change in flow. Finally, peak water-surface elevations for nine storm events were compared among unmodified meteorological inputs and inputs with values predicted 6, 24, and 48 hours preceding the simulated peak. Results of this study can be applied to determine how errors specific to a hydrologic system will affect computations of system streamflow and water-surface elevations.

  1. Watershed Data Management (WDM) database for Salt Creek streamflow simulation, DuPage County, Illinois, water years 2005-11

    USGS Publications Warehouse

    Bera, Maitreyee

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with DuPage County Stormwater Management Division, maintains a USGS database of hourly meteorologic and hydrologic data for use in a near real-time streamflow simulation system, which assists in the management and operation of reservoirs and other flood-control structures in the Salt Creek watershed in DuPage County, Illinois. Most of the precipitation data are collected from a tipping-bucket rain-gage network located in and near DuPage County. The other meteorologic data (wind speed, solar radiation, air temperature, and dewpoint temperature) are collected at Argonne National Laboratory in Argonne, Ill. Potential evapotranspiration is computed from the meteorologic data. The hydrologic data (discharge and stage) are collected at USGS streamflow-gaging stations in DuPage County. These data are stored in a Watershed Data Management (WDM) database. An earlier report describes in detail the WDM database development including the processing of data from January 1, 1997, through September 30, 2004, in SEP04.WDM database. SEP04.WDM is updated with the appended data from October 1, 2004, through September 30, 2011, water years 2005–11 and renamed as SEP11.WDM. This report details the processing of meteorologic and hydrologic data in SEP11.WDM. This report provides a record of snow affected periods and the data used to fill missing-record periods for each precipitation site during water years 2005–11. The meteorologic data filling methods are described in detail in Over and others (2010), and an update is provided in this report.

  2. Shell Creek Summers

    ERIC Educational Resources Information Center

    Seier, Mark; Goedeken, Suzy

    2005-01-01

    In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided…

  3. 76 FR 35379 - Archers Creek, Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island, SC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ..., Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island, SC; Danger Zone AGENCY... use these portions of Archers Creek, Ribbon Creek, and the Broad River when the rifle and pistol.... 334.480 to read as follows: Sec. 334.480 Archers Creek, Ribbon Creek, and Broad River; U.S. Marine...

  4. Water flow statistics: SRP creeks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lower, M.W.

    1982-08-26

    For a number of environmental studies it is necessary to know the water flow rates and variations in the SRP streams. The objective of this memorandum is to pull together and present a number of statistical analyses for Upper Three Runs Creek, Four Mile Creek and Lower Three Runs Creek. The data basis covers 8 USGS stream gage stations for the years 1972 - 1981. The average flow rates over a ten-year period along Upper Three Runs Creek were determined to be 114 cfs at US Route 278, 193 cfs at Road C, and 265 cfs at Road A. Alongmore » Four Mile Creek the average flow rates over a ten-year period doubled from 9 cfs prior to F-Area discharges to 18 cfs prior to cooling water discharges from C-Area Reactor. Finally, average flow rates along Lower Three Runs Creek over a ten-year period tripled from 32 cfs at Par Pond to 96 cfs near Snelling, South Carolina. 1 figure, 9 tables.« less

  5. Perovskite nickelates as electric-field sensors in salt water

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri; Kotiuga, Michele; Dura, Joseph A.; Cherukara, Mathew; Zhou, Hua; Freeland, John W.; Li, Jiarui; Sutarto, Ronny; He, Feizhou; Wu, Chongzhao; Zhu, Jiaxin; Sun, Yifei; Ramadoss, Koushik; Nonnenmann, Stephen S.; Yu, Nanfang; Comin, Riccardo; Rabe, Karin M.; Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram

    2018-01-01

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications. The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO3. This prototypical strongly correlated quantum material is stable in salt water, does not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures.

  6. Water quality in Gaines Creek and Gaines Creek arm of Eufaula Lake, Oklahoma

    USGS Publications Warehouse

    Kurklin, J.K.

    1990-01-01

    Based on samples collected from May 1978 to May 1980 and analyzed for major anions, nitrogen, trace elements, phytoplankton, and bacteria, the water in Gaines Creek and the Gaines Creek arm of Eufaula Lake was similar with respect to suitability for municipal use. Water from Gaines Creek had a pH range of 5.7 to 7.6 and a maximum specific conductance of 97 microsiemens per centimeter at 25o Celsius, whereas water from the Gaines Creek arm of Eufaula Lake had a pH range of 6.0 to 9.2 and a maximum specific conductance of 260 microsiemens per centimeter at 25o Celsius. Dissolved oxygen, pH, temperature, and specific conductance values for the lake varied with depth. With the exceptions of cadmium, iron, lead, and manganese, trace-element determinations of samples were within recommended national primary and secondary drinking-water standards. When compared to the National Academy of Sciences water-quality criteria, phytoplankton and bacteria counts exceeded recommendations; however, water from either Gaines Creek or Eufaula Lake could be treated similarly and used as a municipal water supply.

  7. Remediation System Evaluation, Bog Creek Farm Superfund Site

    EPA Pesticide Factsheets

    The Bog Creek Farm Superfund site is located in Howell Township, Monmouth County, New Jersey onCounty Road 547. The site is bordered by two residences to the west, the north branch of SquankumBrook to the north, and open fields to the south and east.

  8. Quality of water and time-of-travel in Bakers Creek near Clinton, Mississippi. [Bakers Creek

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalkhoff, S.J.

    1982-01-01

    A short-term intensive quality-of-water study was conducted during a period of generally low streamflow in Bakers Creek and its tributary, Lindsey Creek, near Clinton, Mississippi. During the September 15-18, 1980 study, dissolved oxygen concentrations in Bakers Creek were less than 5 milligrams per liter. The specific conductance, 5-day biochemical oxygen demand, nutrient concentrations, and bacteria densities in Bakers Creek decreased downstream through the study reach. The mean specific conductance decreased from 670 to 306 microhms per centimeter. The 5-day biochemical oxygen demand decreased from 19 to 2.8 milligrams per liter. The mean total nitrogen and phosphorous concentrations decreased from 10more » and 7.1 to 1.0 and 0.87 milligram per litter, respectively. The maximum fecal bacteria decreased from 7200 to 400 colonies per 100 milliliter. The concentrations of mercury, iron, and manganese in a sample collected at the downstream site exceeded recommended limits. Diazinon and 2,4-D were also present in the water. A bottom material sample contained DDD (2.5 micrograms per kilogram), DDE (2.7 micrograms per kilogram), and DDT (.3 micrograms per kilogram). The tributary inflow from Lindsey Creek did not improve the water quality of Bakers Creek. The dissolved oxygen concentrations were generally less than 5.0 milligrams per liter at the sampling site on Lindsey Creek. The 5-day biochemical oxygen demand, the mean specific conductance, and fecal coliform densities were greater in the tributary than at the downstream site on Bakers Creek. The average rate of travel through a 1.8-mile reach of Bakers Creek was 0.06 foot per second or 0.04 miles per hour. 6 references, 9 figures, 2 tables.« less

  9. Use of PIT tag and underwater video recording in assessing estuarine fish movement in a high intertidal mangrove and salt marsh creek

    NASA Astrophysics Data System (ADS)

    Meynecke, Jan-Olaf; Poole, Geoffrey C.; Werry, Jonathan; Lee, Shing Yip

    2008-08-01

    We assessed movement patterns in relation to habitat availability (reflected by the extent of tidal flooding) for several commercially and recreationally important species in and out of a small mangrove creek within the subtropical Burrum River estuary (25°10'S 152°37'E) in Queensland, Australia. Movement patterns of Acanthopagrus australis, Pomadasys kaakan, Lutjanus russelli and Mugil cephalus were examined between December 2006 and April 2007 using a stationary passive integrated transponder (PIT) system adapted for saline environments (30-38 ppt) and underwater digital video cameras (DVCs). This is the second known application of a stationary PIT tag system to studying fish movement in estuarine environments. The transponder system was set in place for 104 days and recorded >5000 detections. Overall 'recapture' rate of tagged fish by the transponder system was >40%. We used PIT tags implanted in a total of 75 fish from a tidal creek connected to the main channel of the estuary. We also developed a high-resolution digital elevation (2.5 m cell size) model of the estuary derived from airborne light detection and ranging (LIDAR) and aerial imagery to estimate inundation dynamics within the tidal creek, and related the timing of inundation in various habitats to the timing of fish immigration to and emigration from the creek. Over 50% of all tagged fish were moving in and out of the creek at a threshold level when 50% of the mangrove forest became flooded. Individuals of all four species moved into and out of the tidal creek repeatedly at different times depending on species and size, indicating strong residential behaviour within the estuary. The main activity of fishes was at night time. Manual interpretation of video from >700 fish sightings at three different mangrove sites confirmed the findings of the stationary PIT system, that the function of shelter vs food in mangrove habitat may be size dependent. Our established techniques assess the spatial ecology

  10. Thermo-mechanical and optical optimization of the molten salt receiver for a given heliostat field

    NASA Astrophysics Data System (ADS)

    Augsburger, Germain; Das, Apurba K.; Boschek, Erik; Clark, Michael M.

    2016-05-01

    The tower type molten salt solar thermal power plant has proven to be advantageous over other utility scale solar power plant configurations due to its scalability and provision of storage, thereby improving the dispatchability. The configuration consists of a molten salt central receiver (MSCR) located atop an optimally located tower within a heliostat field with thousands of mirrors. The MSCR receives the concentrated energy from the heliostat field which heats a molten salt heat transfer fluid for thermal storage and utilization in producing steam as and when required for power generation. The MSCR heat transfer surface consists of banks of tangent tubes arranged in panels. The combined cost of the heliostat field and the receiver is 40%-50% of the total plant cost, which calls for optimization to maximize their utilization. Several previous studies have looked into the optimum solar power plant size based on various site conditions. However, the combined optimization of the receiver and the heliostat field has not been reported before. This study looks into the optimum configuration of the receiver for a given heliostat field. An in-house tool has been developed to select and rank a few receiver surface configurations (typically <50) from a list of hundreds of thousands of possible options. The operating limits which the heliostat field needs to obey are defined for the ranked surface configurations based on several different design considerations (e.g. mechanical integrity, corrosion limits). The thermal output of the receiver configurations for a given heliostat field is maximized. A combined rank indicating the optimum configurations in descending order of preference is presented based on the performance and various other practical considerations (e.g. total surface area, cost of material, ability of aiming strategies to distribute the flux). The methodology thus provided can be used as a guideline to arrive at an optimum receiver configuration for a given

  11. Health hazard evaluation report HETA 81-472-1380, Pennsylvania Power and Light, Martins Creek Steam Electric Station, Martins Creek, Pennsylvania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, F.A.

    1983-10-01

    In August 1980, the National Institute for Occupational Safety and Health (NIOSH) received a request from the International Brotherhood of Electrical Workers Local 1600 for a Health Hazard Evaluation at the Pennsylvania Power and Light Company's Martins Creek Steam Electric Station in Martins Creek, Pennsylvania. The union was concerned about potential health and explosion hazards to employees from coal dust in Units 1 and 2 and the coal field. Based on environmental studies conducted at the time of the survey, NIOSH has determined that a potential health hazard may have existed due to exposure to respirable coal dust and quartz.more » Recommendations were made to ensure that potential health and explosion hazards are avoided in the future.« less

  12. Evaluation of the composite wing girder bridge at Bear Creek.

    DOT National Transportation Integrated Search

    1984-11-01

    This report documents the construction monitoring and subsequent field testing : to evaluate the performance of an innovative nloose-fit" composite post-tensioned : concrete wing girder bridge constructed over Bear Creek, south of Austin, Texas. : Th...

  13. The Beaver Creek story

    USGS Publications Warehouse

    Doyle, W.H.; Whitworth, B.G.; Smith, G.F.; Byl, T.D.

    1996-01-01

    Beaver Creek watershed in West Tennessee includes about 95,000 acres of the Nation's most productive farmland and most highly erodible soils. In 1989 the U.S. Geological Survey, in cooperation with the Tennessee Department of Agriculture, began a study to evaluate the effect of agricultural activities on water quality in the watershed and for best management practices designed to reduce agricultural nonpoint-source pollution. Agrichemical monitoring included testing the soils, ground water, and streams at four farm sites ranging from 27 to 420 acres. Monitoring stations were operated downstream to gain a better understanding of the water chemistry as runoff moved from small ditches into larger streams to the outlet of the Beaver Creek watershed. Prior to the implementation of best management practices at one of the farm study sites, some storms produced an average suspended-sediment concentration of 70,000 milligrams per liter. After the implementation of BMP's, however, the average value never exceeded 7,000 milligrams per liter. No-till crop production was the most effective best management practice for conserving soil on the farm fields tested. A natural bottomland hardwood wetland and a constructed wetland were evaluated as instream resource-management systems. The wetlands improved water quality downstream by acting as a filter and removing a significant amount of nonpoint-source pollution from the agricultural runoff. The constructed wetland reduced the sediment, pesticide, and nutrient load by approximately 50 percent over a 4-month period. The results of the Beaver Creek watershed study have increased the understanding of the effects of agriculture on water resources. Study results also demonstrated that BMP's do protect and improve water quality.

  14. Supai salt karst features: Holbrook Basin, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, J.T.

    1994-12-31

    More than 300 sinkholes, fissures, depressions, and other collapse features occur along a 70 km (45 mi) dissolution front of the Permian Supai Formation, dipping northward into the Holbrook Basin, also called the Supai Salt Basin. The dissolution front is essentially coincident with the so-called Holbrook Anticline showing local dip reversal; rather than being of tectonic origin, this feature is likely a subsidence-induced monoclinal flexure caused by the northward migrating dissolution front. Three major areas are identified with distinctive attributes: (1) The Sinks, 10 km WNW of Snowflake, containing some 200 sinkholes up to 200 m diameter and 50 mmore » depth, and joint controlled fissures and fissure-sinks; (2) Dry Lake Valley and contiguous areas containing large collapse fissures and sinkholes in jointed Coconino sandstone, some of which drained more than 50 acre-feet ({approximately}6 {times} 10{sup 4} m{sup 3}) of water overnight; and (3) the McCauley Sinks, a localized group of about 40 sinkholes 15 km SE of Winslow along Chevelon Creek, some showing essentially rectangular jointing in the surficial Coconino Formation. Similar salt karst features also occur between these three major areas. The range of features in Supai salt are distinctive, yet similar to those in other evaporate basins. The wide variety of dissolution/collapse features range in development from incipient surface expression to mature and old age. The features began forming at least by Pliocene time and continue to the present, with recent changes reportedly observed and verified on airphotos with 20 year repetition. The evaporate sequence along interstate transportation routes creates a strategic location for underground LPG storage in leached caverns. The existing 11 cavern field at Adamana is safely located about 25 miles away from the dissolution front, but further expansion initiatives will require thorough engineering evaluation.« less

  15. On the Lateral Retreat of Salt Marshes: Field Monitoring in the Venice Lagoon (Italy)

    NASA Astrophysics Data System (ADS)

    Solari, L.; Bendoni, M.; Mel, R.; Oumeraci, H.; Francalanci, S.; Lanzoni, S.

    2014-12-01

    Salt marshes are geomorphic structures located in ecotone environments such as lagoon and estuaries, providing lot of ecosystem services to local population. In the last decades they are disappearing due to several factors such as sea level rise, subsidence and edge erosion due to surface waves. The latter is likely the chief mechanism modeling marsh boundaries and leading to the loss of wide marsh areas. In the case of the Venice Lagoon, from the beginning of the last century, the whole salt marsh surface has more than halved and trends indicate that the salt marshes might completely disappear over the next 50 years. Here, we present a field monitoring activity that we are currently carrying out on a retreating salt marsh located in the north part of the Lagoon of Venice (Italy). The marsh is subject to North-East (Bora) wind. Marsh area loss during the last decades has been documented through the comparison of georeferenced aerial photographs showing a retreat rate of the order of 1 m/year. Field measurements started by the end of November 2013 and consist of: salt marsh bank geometry at different cross-sections and wave climate in the lagoon about 30 m in front of the salt marsh. Erosion data are obtained by means of erosion pins located horizontally on the marsh scarp; at higher banks (about 0.9 m), two pins are located along the same vertical direction, for lower banks (about 0.4m), only one pin is employed. Significant wave height has been measured during three storm surges by means of pressure transducers (Pts). The measured wave climate in front of the bank was then put into relationship with the offshore wave climate estimated using wind data (intensity and direction) and bathymetric data. Wind intensity and direction is measured hourly by several measurement stations located in the Lagoon of Venice. In this way, it is possible to extrapolate wave climate hourly at the monitored marsh and calculate the wave power that acted on the bank in a given time

  16. An analysis of stream channel cross section technique as a means to determine anthropogenic change in second order streams at the Tenderfoot Creek Experimental Forest, Meagher County, Montana

    Treesearch

    Jeff Boice

    1999-01-01

    Five second order tributaries to Tenderfoot Creek were investigated: Upper Tenderfoot Creek, Sun Creek, Spring Park Creek, Bubbling Creek, and Stringer Creek. Second order reaches were initially located on 7.5 minute topographic maps using techniques first applied by Strahler (1952). Reach breaks were determined in the field through visual inspection. Vegetation type (...

  17. 33 CFR 334.480 - Archers Creek, Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Broad River; U.S. Marine Corps Recruit Depot, Parris Island, South Carolina; danger zones. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek, and Broad River... danger zone on Archers Creek (between the Broad River and Beaufort River), Ribbon Creek, and the Broad...

  18. 33 CFR 334.480 - Archers Creek, Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Broad River; U.S. Marine Corps Recruit Depot, Parris Island, South Carolina; danger zones. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek, and Broad River... danger zone on Archers Creek (between the Broad River and Beaufort River), Ribbon Creek, and the Broad...

  19. 33 CFR 334.480 - Archers Creek, Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Broad River; U.S. Marine Corps Recruit Depot, Parris Island, South Carolina; danger zones. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek, and Broad River... danger zone on Archers Creek (between the Broad River and Beaufort River), Ribbon Creek, and the Broad...

  20. METHODS OF EXPLORING METABOLIC STRUCTURE AND TAXONOMIC DIVERSITY RELATIONSHIPS BETWEEN BACTERIOPLANKTON AND PHYTOPLANKTON IN SALT MARSH TIDAL CREEKS

    EPA Science Inventory

    Bacterial metabolic diversity and phytoplankton community diversity were examined in eight shallow tidal creeks over a two-year period (1997-1998) within North Inlet estuary, South Carolina. The BIOLOG 96-well microplate method was used to assess metabolic diversity of bacteria, ...

  1. Perovskite nickelates as electric-field sensors in salt water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications(1-4). The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO35-7. This prototypical strongly correlated quantum material is stable in salt water, doesmore » not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures« less

  2. Field testing of the Wolf Creek curved girder bridge : part I : vibration tests.

    DOT National Transportation Integrated Search

    2009-01-01

    The Wolf Creek Bridge is a curved, multi-girder three span steel composite bridge located south of Narrows, Virginia, that was completed in 2006. A finite element model of the bridge revealed that pier flexibility may be important in modeling the bri...

  3. Field testing of the Wolf Creek curved girder bridge : part II : strain measurements.

    DOT National Transportation Integrated Search

    2009-01-01

    The Wolf Creek Bridge is a curved, multi-girder three span steel composite bridge located south of Narrows, Virginia, that was completed in 2006. A finite element (FE) model of the bridge revealed that pier flexibility may be important in modeling th...

  4. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek...

  5. Selected hydrologic data for Fountain Creek and Monument Creek basins, east-central Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard; Ortiz, Roderick F.

    1989-01-01

    Selected hydrologic data were collected during 1986, 1987, and 1988 by the U.S. Geological Survey for the Fountain Creek and Monument Creek basins, east-central Colorado. The data were obtained as part of a study to determine the present and projected effects of wastewater discharges on the two creeks. The data, which are available for 129 surface-water sites, include: (1) About 1,100 water quality analyses; (2) about 420 measurements of discharge, (3) characteristics of about 50 dye clouds associated with measurements of traveltime and reaeration , and (4) about 360 measurements of channel geometry. (USGS)

  6. 78 FR 5798 - Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of Petition for Enforcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. El13-39-000, QF11-32-001, QF11-33-001] Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of Petition for... Policies Act of 1978 (PURPA), Grouse Creek Wind Park, LLC and Grouse Creek Wind Park II, LLC filed a...

  7. Miller Creek Demonstration Forest - a forest born of fire: A field guide

    Treesearch

    Penelope A. Latham; Raymond C. Shearer; Kevin L. O' Hara

    1998-01-01

    Miller Creek, on the Flathead National Forest in northwest Montana, is a demonstration forest, showing up to 30 years of forest change after clearcutting and a wide range of fire treatments in 1967 and 1968. Differences in tree regeneration and vegetation development are explained for units that were clearcut and prescribed burned, clearcut and burned by wildfire,...

  8. The Prehistory and Paleoenvironment of Hominy Creek Valley. 1979 Field Season,

    DTIC Science & Technology

    1982-01-01

    study of Hiominy Creek Valley (Henry, 1977a:1-5). The program focuses on the definition of adaptive strate- gies throughout the prehistoric occupation...area of the shelter is estimated 75m 2 with approximately one-fifth of this area covered by rockfall . The cellng is generally level with a height...greater rates of deposition than fewer numbers Gi occupants. These open floodplain sites may LW -98- well have represented alternative encampments to the

  9. Digital-model simulation of the glacial-outwash aquifer, Otter Creek-Dry Creek basin, Cortland County, New York

    USGS Publications Warehouse

    Cosner, O.J.; Harsh, J.F.

    1978-01-01

    The city of Cortland, New York, and surrounding areas obtain water from the highly productive glacial-outwash aquifer underlying the Otter Creek-Dry Creek basin. Pumpage from the aquifer in 1976 was approximately 6.3 million gallons per day and is expected to increase as a result of population growth and urbanization. A digital ground-water model that uses a finite-difference approximation technique to solve partial differential equations of flow through a porous medium was used to simulate the movement of water within the aquifer. The model was calibrated to equilibrium conditions by comparing water levels measured in the aquifer in March 1976 with those computed by the model. Then, from the simulated water-level surface for March, a transient-condition run was made to simulate the surface as measured in September 1976. Computed water levels presented as contours are generally in close agreement with potentiometric-surface maps prepared from field measurements of March and September 1976. (Woodard-USGS)

  10. New operating strategies for molten salt in line focusing solar fields - Daily drainage and solar receiver preheating

    NASA Astrophysics Data System (ADS)

    Eickhoff, Martin; Meyer-Grünefeldt, Mirko; Keller, Lothar

    2016-05-01

    Nowadays molten salt is efficiently used in point concentrating solar thermal power plants. Line focusing systems still have the disadvantage of elevated heat losses at night because of active freeze protection of the solar field piping system. In order to achieve an efficient operation of line focusing solar power plants using molten salt, a new plant design and a novel operating strategy is developed for Linear Fresnel- and Parabolic Trough power plants. Daily vespertine drainage of the solar field piping and daily matutinal refilling of the solar preheated absorber tubes eliminate the need of nocturnal heating of the solar field and reduce nocturnal heat losses to a minimum. The feasibility of this new operating strategy with all its sub-steps has been demonstrated experimentally.

  11. The reclamation of Indian and Abrams creeks in Great Smoky Mountains National Park

    USGS Publications Warehouse

    Lennon, Robert E.; Parker, Phillip S.

    1959-01-01

    A complete program of stream reclamation was developed and applied on Indian and Abrams creeks in Great Smoky Mountains National Park. A salt-resistivity technique was used to estimate the dilution and velocity of a toxicant in running water. Streamside toxicity trials on resident fishes established minimal, effective concentrations of the rotenone material. The successful removals of undesirable fish were followed by restocking with selected strains of eastern brook trout and rainbow trout. Post-reclamation observations demonstrated enhanced survival, growth, reproduction, and catch of trout. Factors which might limit the effectiveness of stream reclamation programs ar e discussed.

  12. Limited Influence of Urban Stormwater Runoff on Salt Marsh Platform and Marsh Creek Oxygen Dynamics in Coastal Georgia.

    PubMed

    Savidge, William B; Brink, Jonathan; Blanton, Jackson O

    2016-12-01

    Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.

  13. Limited Influence of Urban Stormwater Runoff on Salt Marsh Platform and Marsh Creek Oxygen Dynamics in Coastal Georgia

    NASA Astrophysics Data System (ADS)

    Savidge, William B.; Brink, Jonathan; Blanton, Jackson O.

    2016-12-01

    Oxygen concentrations and oxygen utilization rates were monitored continuously for 23 months on marsh platforms and in small tidal creeks at two sites in coastal Georgia, USA, that receive urban stormwater runoff via an extensive network of drainage canals. These data were compared to nearby control sites that receive no significant surface runoff. Overall, rainfall and runoff per se were not associated with differences in the oxygen dynamics among the different locations. Because of the large tidal range and long tidal excursions in coastal Georgia, localized inputs of stormwater runoff are rapidly mixed with large volumes of ambient water. Oxygen concentrations in tidal creeks and on flooded marsh platforms were driven primarily by balances of respiration and photosynthesis in the surrounding regional network of marshes and open estuarine waters. Local respiration, while measurable, was of relatively minor importance in determining oxygen concentrations in tidal floodwaters. Water residence time on the marshes could explain differences in oxygen concentration between the runoff-influenced and control sites.

  14. 75 FR 5631 - Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 50-482; NRC-2010-0032] Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Environmental Assessment and Finding of No Significant Impact The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an exemption, pursuant to Title...

  15. Surface water of Beaver Creek Basin, in South-Central Oklahoma

    USGS Publications Warehouse

    Laine, L.L.; Murphy, J.J.

    1962-01-01

    Annual discharge from Beaver Creek basin is estimated to have averaged 217,000 acre-feet during a 19-year base period, water years 1938-56, equivalent to an average annual runoff depth of 4.7 inches over the 857 square-mile drainage area. About 55,000 acre-feet per year comes from Little Beaver Creek basin, a tributary drainage of 195 square miles. Yearly streamflow is highly variable. The discharge of Little Beaver Creek near Duncan during 13-year period of record (water years 1949-61) has ranged from 86,530 acre-feet in calendar year 1957 to 4,880 acre-feet in 1956, a ratio of almost 18 to 1. Highest runoff within a year tends to occur in the spring months of May and June, a 2-month period that, on the average, accounts for more than half of the annual discharge of Little Beaver Creek near Duncan. The average monthly runoff during record was lowest in January. Variation in daily streamflow is such that while the average discharge for the 13-year period of record was 50.1 cfs (cubic feet per second), the daily discharge was more than 6 cfs only about half of the time. There was no flow at the site 19 percent of the time during the period. Some base runoff usually exists in the headwaters of Beaver and Little Beaver Creeks, and in the lower reaches of Beaver Creek. Low flow in Cow Creek tends to be sustained by waste water from Duncan, where water use in 1961 averaged 4 million gallons per day. In the remainder of the basin, periods of no flow occur in most years. The surface water of Beaver Creek basin is very hard but in general is usable for municipal, agricultural and industrial purposes. The chemical character of the water is predominantly a calcium, magnesium bicarbonate type of water in the lower three quarters of the basin, except in Cow Creek where oil-field brines induce a distinct sodium, calcium chloride characteristic at low and medium flows. A calcium sulfate type of water occurs in most of the northern part of the basin except in headwater areas

  16. Measuring salt retention.

    DOT National Transportation Integrated Search

    2013-03-01

    This research developed and completed a field evaluation of salt distribution equipment. The evaluation provides a direct comparison of three different types of salt spreaders at three different truck speeds and brine rates. A rubber mat was divided ...

  17. Hydrodynamics of a small trained tidal inlet (Currumbin Creek, Australia)

    NASA Astrophysics Data System (ADS)

    Shaeri, S.; Tomlinson, R. B.; Etemad-Shahidi, A.; Strauss, D.; Hughes, L. P.

    2014-04-01

    Small tidal inlets are important features of coastal areas, in terms of provision of access from a back barrier water-body to the ocean as well as periodic circulation of fresh nutrients for the local ecology. Usually, dimensional and geometrical characteristics contribute significantly to morphological stability or instability of a particular inlet and necessitate an individual investigation of any desired location. In other words, generalized usage of previous empirical and experimental research of a different position can hardly be used for other places. In this regard, one of the powerful tools to understand the physical processes of a particular region is to collect as much field data as possible. Such a dataset is used to further analyse and explore the governing processes and can also be used for building a numerical computer model for supplementary studies. In this research, the results of a comprehensive field measurement at Currumbin Creek, Queensland, Australia are presented. This study is part of broader research to investigate the long term evolution of the Currumbin entrance and its adjacent beaches. Currently, an annual dredging campaign is needed to reduce the risk of flooding due to excess rainfall inundations and to maintain water quality. The majority of data were collected over a three month period consistent with the time of the 2012 dredging operation. However, due to the loss of some instrumentation, data collection for some of the parameters was repeated till the middle of May 2013. All collected data included: (1) nearshore waves and tide; (2) creek tidal variation; (3) creek flow discharge and velocity; (4) bathymetric survey of the creek; (5) beach profile evolution survey; and (6) sediment sampling. The measurement showed that the creek entrance is tidally dominated, with flood events having a major role in sediment transport into the creek. The nearshore stations' wave data illustrated the marginal effect of the beach curvature between

  18. Sedimentation in Hot Creek in vicinity of Hot Creek Fish Hatchery, Mono County, California

    USGS Publications Warehouse

    Burkham, D.E.

    1978-01-01

    An accumulation of fine-grained sediment in Hot Creek downstream from Hot Creek Fish Hatchery, Mono County, Calif., created concern that the site may be deteriorating as a habitat for trout. The accumulation is a phenomenon that probably occurs naturally in the problem reach. Fluctuation in the weather probably is the basic cause of the deposition of fine-grained sediment that has occurred since about 1970. Man 's activities and the Hot Creek Fish Hatchery may have contributed to the problem; the significance of these factors, however, probably was magnified because of drought conditions in 1975-77. (Woodard-USGS)

  19. Changes in methanogenic substrate utilization and communities with depth in a salt-marsh, creek sediment in southern England

    NASA Astrophysics Data System (ADS)

    John Parkes, R.; Brock, Fiona; Banning, Natasha; Hornibrook, Edward R. C.; Roussel, Erwan G.; Weightman, Andrew J.; Fry, John C.

    2012-01-01

    A combined biogeochemical and molecular genetic study of creek sediments (down to 65 cm depth) from Arne Peninsula salt-marsh (Dorset, UK) determined the substrates used for methanogenesis and the distribution of the common methanogens, Methanosarcinales and Methanomicrobiales capable of metabolising these substrates. Methane concentrations increased by 11 cm, despite pore water sulphate not being removed until 45 cm. Neither upward methane diffusion or anaerobic oxidation of methane seemed to be important in this zone. In the near-surface sulphate-reduction zone (5-25 cm) turnover time to methane for the non-competitive methanogenic substrate trimethylamine was most rapid (80 days), and were much longer for acetate (7900 days), methanol (40,500 days) and bicarbonate (361,600 days). Methylamine-utilizing Methanosarcinales were the dominant (60-95%) methanogens in this zone. In deeper sediments rates of methanogenesis from competitive substrates increased substantially, with acetate methanogenic rates becoming ˜100 times greater than H 2/CO 2 methanogenesis below 50 cm. In addition, there was a dramatic change in methanogen diversity with obligate acetate-utilizing, Methanosaeta related sequences being dominant. At a similar depth methanol turnover to methane increased to its most rapid (1700 days). This activity pattern is consistent with deeper methanogen populations (55 cm) being dominated by acetate-utilizing Methanosaeta with H 2/CO 2 and alcohol-utilizing Methanomicrobiales also present. Hence, there is close relationship between the depth distribution of methanogenic substrate utilization and specific methanogens that can utilize these compounds. It is unusual for acetate to be the dominant methanogenic substrate in coastal sediments and δ13C-CH 4 values (-74 to -71‰) were atypical for acetate methanogenesis, suggesting that common stable isotope proxy models may not apply well in this type of dynamic anoxic sediment, with multiple methanogenic substrates.

  20. Geophysical Characterization of the Hilton Creek Fault System

    NASA Astrophysics Data System (ADS)

    Lacy, A. K.; Macy, K. P.; De Cristofaro, J. L.; Polet, J.

    2016-12-01

    The Long Valley Caldera straddles the eastern edge of the Sierra Nevada Batholith and the western edge of the Basin and Range Province, and represents one of the largest caldera complexes on Earth. The caldera is intersected by numerous fault systems, including the Hartley Springs Fault System, the Round Valley Fault System, the Long Valley Ring Fault System, and the Hilton Creek Fault System, which is our main region of interest. The Hilton Creek Fault System appears as a single NW-striking fault, dipping to the NE, from Davis Lake in the south to the southern rim of the Long Valley Caldera. Inside the caldera, it splays into numerous parallel faults that extend toward the resurgent dome. Seismicity in the area increased significantly in May 1980, following a series of large earthquakes in the vicinity of the caldera and a subsequent large earthquake swarm which has been suggested to be the result of magma migration. A large portion of the earthquake swarms in the Long Valley Caldera occurs on or around the Hilton Creek Fault splays. We are conducting an interdisciplinary geophysical study of the Hilton Creek Fault System from just south of the onset of splay faulting, to its extension into the dome of the caldera. Our investigation includes ground-based magnetic field measurements, high-resolution total station elevation profiles, Structure-From-Motion derived topography and an analysis of earthquake focal mechanisms and statistics. Preliminary analysis of topographic profiles, of approximately 1 km in length, reveals the presence of at least three distinct fault splays within the caldera with vertical offsets of 0.5 to 1.0 meters. More detailed topographic mapping is expected to highlight smaller structures. We are also generating maps of the variation in b-value along different portions of the Hilton Creek system to determine whether we can detect any transition to more swarm-like behavior towards the North. We will show maps of magnetic anomalies, topography

  1. Northeastern Florida Bay estuarine creek data, water years 1996-2000

    USGS Publications Warehouse

    Hittle, Clinton D.; Zucker, Mark A.

    2004-01-01

    From October 1995 to September 2000 (water years 1996-2000), continuous 15-minute stage, water velocity, salinity, and water temperature data were collected at seven estuarine creeks that flow into northeastern Florida Bay. These creeks include West Highway Creek, Stillwater Creek, Trout Creek, Mud Creek, Taylor River, Upstream Taylor River, and McCormick Creek. Discharge was computed at 15-minute intervals using mean water velocity and the cross-sectional area of the channel. Fifteen-minute unit values are presented for comparison of the quantity, quality, timing, and distribution of flows through the creeks. Revised discharge estimation formulas are presented for three noninstrumented sites (East Highway Creek, Oregon Creek and Stillwater Creek) that utilize an improved West Highway discharge rating. Stillwater Creek and Upstream Taylor River were originally noninstrumented sites; both were fully instrumented in 1999. Discharge rating equations are presented for these sites and were developed using a simple linear regression.

  2. Boulder Creek: A stream ecosystem in an urban landscape

    USGS Publications Warehouse

    Verplanck, Philip L.; Murphy, Sheila F.; Birkeland, Peter W.; Pitlick,; Barber, Larry B.; Schmidt, Travis S.; Raynolds, Robert G.H.

    2008-01-01

    The Boulder Creek Watershed, within the Front Range region of Colorado, is typical of many western watersheds because it is composed of a high-gradient upper reach mostly fed by snowmelt, a substantial change in gradient at the range front, and an urban corridor within the lower gradient section. A stream ecosystem within an urban landscape not only can provide water for municipal, industrial, and agricultural needs, but also can be utilized for recreation, esthetic enjoyment, and wastewater disposal. The purpose of this 26 km bicycle field trip is to explore the hydrology and geochemistry of Boulder and South Boulder Creeks and to discuss topics including flood frequency and hazards, aqueous geochemistry of the watershed, and potential impacts of invasive species and emerging contaminants on stream ecology.

  3. Analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek (ID-111-006), Big Jacks Creek (ID-111-007C), Duncan Creek (ID-111-0007B), and Upper Deep Creek (ID-111-044) Wilderness Study Areas, Owyhee County, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, M.S.; Gent, C.A.; Bradley, L.A.

    1989-01-01

    A U.S. Geological Survey report detailing the analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek, Big Jacks Creek, Duncan Creek, and Upper Deep Creek Wilderness Study Areas, Owyhee County, Idaho

  4. Faulted shoreline and tidal deposits in the Moenkopi Formation of the Grassy Trail Creek field, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, M.L.; Lutz, S.J.

    1991-06-01

    The Grassy Trail Creek field produces 40{degrees} API oil and minor gas from shallow marine sandstones of the Triassic Moenkopi Formation on the north-plunging nose of the San Rafael swell in central Utah. Production is controlled by a combination of stratigraphic variations and minor north-south-trending faults. Although fracture permeability enhances production of the reservoir, some faults act as barriers to fluid migration, segmenting the area into productive and dry fault blocks. Horizontal drilling techniques developed in this field in the early 1980s resulted in significantly better production. Log analyses indicate the main reservoir is a complex stack of this thinmore » tidal channel sandstones. Isochore maps of the A and B zones indicate thickened meanders that form localized reservoir pods that are vertically offset. The distribution of isochore thicks appears to represent deposition along a northwest-southeast-trending shoreline fed by sediments from the northeast. There is potential for field extensions in similar deposits along this paleoshoreline. The Moenkopi Formation, long thought to be self-sourcing, may contain oil generated in Precambrian sediments equivalent to the Late Proterozoic Chuar Group. Presence of this older oil would have required migration from Precambrian sedimentary rocks surrounding the San Rafael swell.« less

  5. Hydrology of the Johnson Creek Basin, Oregon

    USGS Publications Warehouse

    Lee, Karl K.; Snyder, Daniel T.

    2009-01-01

    The Johnson Creek basin is an important resource in the Portland, Oregon, metropolitan area. Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the cities of Milwaukie, Portland, and Gresham, and rural and agricultural areas of Multnomah and Clackamas Counties. The basin has changed as a result of agricultural and urban development, stream channelization, and construction of roads, drains, and other features characteristic of human occupation. Flooding of Johnson Creek is a concern for the public and for water management officials. The interaction of the groundwater and surface-water systems in the Johnson Creek basin also is important. The occurrence of flooding from high groundwater discharge and from a rising water table prompted this study. As the Portland metropolitan area continues to grow, human-induced effects on streams in the Johnson Creek basin will continue. This report provides information on the groundwater and surface-water systems over a range of hydrologic conditions, as well as the interaction these of systems, and will aid in management of water resources in the area. High and low flows of Crystal Springs Creek, a tributary to Johnson Creek, were explained by streamflow and groundwater levels collected for this study, and results from previous studies. High flows of Crystal Springs Creek began in summer 1996, and did not diminish until 2000. Low streamflow of Crystal Springs Creek occurred in 2005. Flow of Crystal Springs Creek related to water-level fluctuations in a nearby well, enabling prediction of streamflow based on groundwater level. Holgate Lake is an ephemeral lake in Southeast Portland that has inundated residential areas several times since the 1940s. The water-surface elevation of the lake closely tracked the elevation of the water table in a nearby well, indicating that the occurrence of the lake is an expression of the water table. Antecedent conditions of the groundwater level and autumn

  6. 75 FR 40034 - Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... shoreline along these reservoirs. Existing land uses around the reservoirs include TVA project operations... TENNESSEE VALLEY AUTHORITY Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort Patrick Henry, South Holston, Watauga, and Wilbur Reservoirs, Tennessee and...

  7. 33 CFR 334.480 - Archers Creek, Ribbon Creek and Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and pistol ranges, Parris Island. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek and Broad River... navigation: (1) At the rifle range. Archers Creek between Broad River and Beaufort River and Ribbon Creek...

  8. 33 CFR 334.480 - Archers Creek, Ribbon Creek and Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Broad River, S.C.; U.S. Marine Corps Recruit Depot rifle and pistol ranges, Parris Island. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek and Broad River... navigation: (1) At the rifle range. Archers Creek between Broad River and Beaufort River and Ribbon Creek...

  9. The Collins Creek and Pleasant Creek Formations: Two new upper cretaceous subsurface units in the Carolina/Georgia Coastal Plain

    USGS Publications Warehouse

    ,; Prowell, D.C.; Christopher, R.A.

    2004-01-01

    This paper formally defines two new Upper Cretaceous subsurface units in the southern Atlantic Coastal Plain of North Carolina, South Carolina and Georgia: the Collins Creek Formation and the Pleasant Creek Formation. These units are confined to the subsurface of the outer Coastal Plain, and their type sections are established in corehole CHN-820 from Charleston County, S.C. The Collins Creek Formation consists of greenish-gray lignitic sand and dark-greenish-gray sandy clay and is documented in cores from Allendale, Beaufort, Berkeley, Dorchester, Jasper and Marion Counties, South Carolina, and from Screven County, Georgia. Previously, Collins Creek strata had been incorrectly assigned to the Middendorf Formation. These sediments occupy a stratigraphic position between the Turonian/Coniacian Cape Fear Formation (?) below and the proposed upper Coniacian to middle Santonian Pleasant Creek Formation above. The Collins Creek Formation is middle and late Coniacian in age on the basis of calcareous nannofossil and palynomorph analyses. The Pleasant Creek Formation consists of olive-gray sand and dark-greenish-gray silty to sandy clay and is documented in cores from New Hanover County, North Carolina, and Berkeley, Charleston, Dorchester, Horry and Marion Counties, South Carolina. The strata of this unit previously were assigned incorrectly to the Middendorf Formation and (or) the Cape Fear Formation. These sediments occupy a stratigraphic position between the proposed Collins Creek Formation below and the Shepherd Grove Formation above. The Pleasant Creek Formation is late Coniacian and middle Santonian in age, on the basis of its calcareous nannofossil and palynomorph assemblages.

  10. 6. West elevation of Drift Creek Bridge, view looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. West elevation of Drift Creek Bridge, view looking east from new alignment of Drift Creek Road - Drift Creek Bridge, Spanning Drift Creek on Drift Creek County Road, Lincoln City, Lincoln County, OR

  11. Does the invasive plant Elymus athericus modify fish diet in tidal salt marshes?

    NASA Astrophysics Data System (ADS)

    Laffaille, P.; Pétillon, J.; Parlier, E.; Valéry, L.; Ysnel, F.; Radureau, A.; Feunteun, E.; Lefeuvre, J.-C.

    2005-12-01

    The invasion of Mont-Saint-Michel Bay salt marshes (France) by a grass species ( Elymus athericus) has led to important changes in vegetation cover, which is likely to modify the habitat for many invertebrates. Some of them constitute the main food items for several fish species, such as young sea bass ( Dicentrarchus labrax) and sand goby ( Pomatoschistus minutus), that feed in salt marsh creeks during high tides. As a result, fish nursery functions of salt marshes could be modified by the E. athericus invasion. In order to test this hypothesis, gut contents of the two most abundant fish species (sea bass and sand goby) were compared before and after E. athericus invasion in the same salt marsh creek and using the same methodology. The accessibility and availability of the main food item, the semi-terrestrial amphipod Orchestia gammarella, were estimated and compared between invaded (dominated by E. athericus) and original areas (dominated by Atriplex portulacoides). Gut content analysis showed a significantly greater percentage of fish leaving with empty guts from E. athericus areas than from A. portulacoides areas. The sea bass diet composition study showed a major shift in the relative importance of the main food items: before E. athericus invasion, diets were dominated by the semi-terrestrial species O. gammarella, whereas after the E. athericus invasion they were dominated by a marine mysid Neomysis integer. The same trend was found for sand gobies, with a shift of the main food item from O. gammarella before invasion to the polychaete Hediste diversicolor after invasion. These trophic changes may be explained by the lower accessibility and availability of O. gammarella in invaded communities than in natural ones. The E. athericus invasion, observed throughout northern Europe, is thus likely to disturb trophic function of natural salt marshes for fish. This preliminary study of the E. athericus invasion is also an illustration that invasive species are an

  12. Herbivory Drives the Spread of Salt Marsh Die-Off

    PubMed Central

    Bertness, Mark D.; Brisson, Caitlin P.; Bevil, Matthew C.; Crotty, Sinead M.

    2014-01-01

    Salt marsh die-off is a Western Atlantic conservation problem that has recently spread into Narragansett Bay, Rhode Island, USA. It has been hypothesized to be driven by: 1) eutrophication decreasing plant investment into belowground biomass causing plant collapse, 2) boat wakes eroding creek banks, 3) pollution or disease affecting plant health, 4) substrate hardness controlling herbivorous crab distributions and 5) trophic dysfunction releasing herbivorous crabs from predator control. To distinguish between these hypotheses we quantified these variables at 14 Narragansett Bay salt marshes where die-off intensity ranged from <5% to nearly 98%. Nitrogen availability, wave intensity and plant growth did not explain any variation in die-off. Herbivory explained 73% of inter-site variation in die-off and predator control of herbivores and substrate hardness also varied significantly with die-off. This suggests that salt marsh die-off is being largely driven by intense herbivory via the release of herbivorous crabs from predator control. Our results and those from other marsh systems suggest that consumer control may not simply be a factor to consider in marsh conservation, but with widespread predator depletion impacting near shore habitats globally, trophic dysfunction and runaway consumption may be the largest and most urgent management challenge for salt marsh conservation. PMID:24651837

  13. Trends in Streamflow Characteristics of Selected Sites in the Elkhorn River, Salt Creek, and Lower Platte River Basins, Eastern Nebraska, 1928-2004, and Evaluation of Streamflows in Relation to Instream-Flow Criteria, 1953-2004

    USGS Publications Warehouse

    Dietsch, Benjamin J.; Godberson, Julie A.; Steele, Gregory V.

    2009-01-01

    (06800000), Elkhorn River at Waterloo (06800500), Salt Creek at Greenwood (06803555), and Platte River at Louisville (06805500). In general, sites in the Elkhorn River Basin upstream from Norfolk showed fewer significant trends than did sites downstream from Norfolk and sites in the Platte River and Salt Creek basins, where trends in low flows also were positive. Historical Platte River streamflow records for the streamflow-gaging station at Louisville, Nebraska, were used to determine the number of days per water year (Sept. 30 to Oct. 1) when flows failed to satisfy the minimum criteria of the instream-flow appropriation prior to its filing in 1993. Before 1993, the median number of days the criteria were not satisfied was about 120 days per water year. During 1993 through 2004, daily mean flows at Louisville, Nebraska, have failed to satisfy the criteria for 638 days total (median value equals 21.5 days per year). Most of these low-flow intervals occurred in summer through early fall. For water years 1953 through 2004, of the discrete intervals when flow was less that the criteria levels, 61 percent were 3 days or greater in duration, and 38 percent were 7 days or greater in duration. The median duration of intervals of flow less than the criteria levels was 4 consecutive days during 1953 through 2004.

  14. Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress.

    PubMed

    Radhakrishnan, Ramalingam; Leelapriya, Thasari; Kumari, Bollipo Diana Ranjitha

    2012-12-01

    The effects of magnetic field (MF) treatments of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress were investigated under controlled conditions. Soybean seeds were exposed to a 1.0 Hz sinusoidal uniform pulsed magnetic field (PMF) of 1.5 µT for 5 h/day for 20 days. Non-treated seeds were considered as controls. For callus regeneration, the embryonic axis explants were taken from seeds and inoculated in a saline medium with a concentration of 10 mM NaCl for calli growth analysis and biochemical changes. The combined treatment of MF and salt stress was found to significantly increase calli fresh weight, total soluble sugar, total protein, and total phenol contents, but it decreased the ascorbic acid, lipid peroxidation, and catalase activity of calli from magnetically exposed seeds compared to the control calli. PMF treatment significantly improved calli tolerance to salt stress in terms of an increase in flavonoid, flavone, flavonole, alkaloid, saponin, total polyphenol, genistein, and daidzein contents under salt stress. The results suggest that PMF treatment of soybean seeds has the potential to counteract the adverse effects of salt stress on calli growth by improving primary and secondary metabolites under salt stress conditions. Copyright © 2012 Wiley Periodicals, Inc.

  15. Relating salt marsh pore water geochemistry patterns to vegetation zones and hydrologic influences

    NASA Astrophysics Data System (ADS)

    Moffett, Kevan B.; Gorelick, Steven M.

    2016-03-01

    Physical, chemical, and biological factors influence vegetation zonation in salt marshes and other wetlands, but connections among these factors could be better understood. If salt marsh vegetation and marsh pore water geochemistry coorganize, e.g., via continuous plant water uptake and persistently unsaturated sediments controlling vegetation zone-specific pore water geochemistry, this could complement known physical mechanisms of marsh self-organization. A high-resolution survey of pore water geochemistry was conducted among five salt marsh vegetation zones at the same intertidal elevation. Sampling transects were arrayed both parallel and perpendicular to tidal channels. Pore water geochemistry patterns were both horizontally differentiated, corresponding to vegetation zonation, and vertically differentiated, relating to root influences. The geochemical patterns across the site were less broadly related to marsh hydrology than to vegetation zonation. Mechanisms contributing to geochemical differentiation included: root-induced oxidation and nutrient (P) depletion, surface and creek-bank sediment flushing by rainfall or tides, evapotranspiration creating aerated pore space for partial sediment flushing in some areas while persistently saturated conditions hindered pore water renewal in others, and evapoconcentration of pore water solutes overall. The concentrated pore waters draining to the tidal creeks accounted for 41% of ebb tide solutes (median of 14 elements), including being a potentially toxic source of Ni but a slight sink for Zn, at least during the short, winter study period in southern San Francisco Bay. Heterogeneous vegetation effects on pore water geochemistry are not only significant locally within the marsh but may broadly influence marsh-estuary solute exchange and ecology.

  16. Effects of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida

    USGS Publications Warehouse

    Langevin, Christian D.; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise.

  17. Simulation of Water Quality in the Tull Creek and West Neck Creek Watersheds, Currituck Sound Basin, North Carolina and Virginia

    USGS Publications Warehouse

    Garcia, Ana Maria

    2009-01-01

    A study of the Currituck Sound was initiated in 2005 to evaluate the water chemistry of the Sound and assess the effectiveness of management strategies. As part of this study, the Soil and Water Assessment Tool (SWAT) model was used to simulate current sediment and nutrient loadings for two distinct watersheds in the Currituck Sound basin and to determine the consequences of different water-quality management scenarios. The watersheds studied were (1) Tull Creek watershed, which has extensive row-crop cultivation and artificial drainage, and (2) West Neck Creek watershed, which drains urban areas in and around Virginia Beach, Virginia. The model simulated monthly streamflows with Nash-Sutcliffe model efficiency coefficients of 0.83 and 0.76 for Tull Creek and West Neck Creek, respectively. The daily sediment concentration coefficient of determination was 0.19 for Tull Creek and 0.36 for West Neck Creek. The coefficient of determination for total nitrogen was 0.26 for both watersheds and for dissolved phosphorus was 0.4 for Tull Creek and 0.03 for West Neck Creek. The model was used to estimate current (2006-2007) sediment and nutrient yields for the two watersheds. Total suspended-solids yield was 56 percent lower in the urban watershed than in the agricultural watershed. Total nitrogen export was 45 percent lower, and total phosphorus was 43 percent lower in the urban watershed than in the agricultural watershed. A management scenario with filter strips bordering the main channels was simulated for Tull Creek. The Soil and Water Assessment Tool model estimated a total suspended-solids yield reduction of 54 percent and total nitrogen and total phosphorus reductions of 21 percent and 29 percent, respectively, for the Tull Creek watershed.

  18. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island... line 100 feet from and parallel to the shore of the creek to its intersection with the south property...

  19. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island... line 100 feet from and parallel to the shore of the creek to its intersection with the south property...

  20. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island... line 100 feet from and parallel to the shore of the creek to its intersection with the south property...

  1. Field performance of timber bridges. 5, Little Salmon Creek stress-laminated deck bridge

    Treesearch

    M. A. Ritter; J. A. Kainz; G. J. Porter

    The Little Salmon Creek bridge was constructed in November 1988 on the Allegheny National Forest in Pennsylvania. The bridge is a simple span, single-lane, stress-laminated deck superstructure that is approximately 26-ft long and 16-ft wide. The bridge is unique in that it is the first known stress-laminated timber bridge to be constructed of hardwood lumber. The...

  2. Microsatellite analyses of San Franciscuito Creek rainbow trout

    USGS Publications Warehouse

    Nielsen, Jennifer L.

    2000-01-01

    Microsatellite genetic diversity found in San Francisquito Creek rainbow trout support a close genetic relationship with rainbow trout (Oncorhynchus mykiss) from another tributary of San Francisco Bay, Alameda Creek, and coastal trout found in Lagunitas Creek, Marin County, California. Fish collected for this study from San Francisquito Creek showed a closer genetic relationship to fish from the north-central California steelhead ESU than for any other listed group of O. mykiss. No significant genotypic or allelic frequency associations could be drawn between San Francisquito Creek trout and fish collected from the four primary rainbow trout hatchery strains in use in California, i.e. Whitney, Mount Shasta, Coleman, and Hot Creek hatchery fish. Indeed, genetic distance analyses (δµ2) supported separation between San Francisquito Creek trout and all hatchery trout with 68% bootstrap values in 1000 replicate neighbor-joining trees. Not surprisingly, California hatchery rainbow trout showed their closest evolutionary relationships with contemporary stocks derived from the Sacramento River. Wild collections of rainbow trout from the Sacramento-San Joaquin basin in the Central Valley were also clearly separable from San Francisquito Creek fish supporting separate, independent ESUs for two groups of O. mykiss (one coastal and one Central Valley) with potentially overlapping life histories in San Francisco Bay. These data support the implementation of management and conservation programs for rainbow trout in the San Francisquito Creek drainage as part of the central California coastal steelhead ESU.

  3. Ground water in Creek County, Oklahoma

    USGS Publications Warehouse

    Cady, Richard Carlysle

    1937-01-01

    Creek County has been designated as a problem area by the Land Use Planning Section of the Resettlement Administration. Some of the earliest oil fields to brought into production were situated in and near this county, and new fields have been opened from time to time during the ensuing years. The production of the newer fields, however, has not kept pace with the exhaustion of the older fields, and the county now presents an excellent picture of the problems involved in adjusting a population to lands that are nearly depleted of their mineral wealth. Values of land have been greatly depressed; tax collection is far in arrears; tenancy is widespread; and in addition more people will apparently be forced to depend on the income from agriculture than the land seems capable of supporting. The county as a whole is at best indifferently suitable for general farming. The Land Use planning Section proposes to study the present and seemingly immanent maladjustments of population to the resources of the land, and make recommendations for their correction. The writer was detailed to the Land Use Planning Section of Region VIII for the purposes of making studies of ground water problems in the region. In Creek County two investigations were made. In September, 1936, the writer spent about ten days investigating the availability of ground water for the irrigation of garden crops during drouths. If it proved feasible to do this generally throughout the county, the Land Use Planning Section might be able to encourage this practice. The second investigation made by the writer was in regard to the extent to which ground water supplies have been damaged by oil well brines. He was in county for four days late in January 1937, and again in March, 1937. During part of the second field trip he was accompanied by R.M. Dixon, sanitary engineer of the Water Utilization Unit of the Resettlement Administration. (available as photostat copy only)

  4. In-situ sediment oxygen demand rates in Hammonton Creek, Hammonton, New Jersey, and Crosswicks Creek, near New Egypt, New Jersey, August-October 2009

    USGS Publications Warehouse

    Wilson, Timothy P.

    2014-01-01

    Sediment oxygen demand rates were measured in Hammonton Creek, Hammonton, New Jersey, and Crosswicks Creek, near New Egypt, New Jersey, during August through October 2009. These rates were measured as part of an ongoing water-quality monitoring program being conducted in cooperation with the New Jersey Department of Environmental Protection. Oxygen depletion rates were measured using in-situ test chambers and a non-consumptive optical electrode sensing technique for measuring dissolved oxygen concentrations. Sediment oxygen demand rates were calculated on the basis of these field measured oxygen depletion rates and the temperature of the stream water at each site. Hammonton Creek originates at an impoundment, then flows through pine forest and agricultural fields, and receives discharge from a sewage-treatment plant. The streambed is predominantly sand and fine gravel with isolated pockets of organic-rich detritus. Sediment oxygen demand rates were calculated at four sites on Hammonton Creek and were found to range from -0.3 to -5.1 grams per square meter per day (g/m2/d), adjusted to 20 degrees Celsius. When deployed in pairs, the chambers produced similar values, indicating that the method was working as expected and yielding reproducible results. At one site where the chamber was deployed for more than 12 hours, dissolved oxygen was consumed linearly over the entire test period. Crosswicks Creek originates in a marshy woodland area and then flows through woodlots and pastures. The streambed is predominantly silt and clay with some bedrock exposures. Oxygen depletion rates were measured at three sites within the main channel of the creek, and the calculated sediment oxygen demand rates ranged from -0.33 to -2.5 g/m2/d, adjusted to 20 degrees Celsius. At one of these sites sediment oxygen demand was measured in both a center channel flowing area of a pond in the stream and in a stagnant non-flowing area along the shore of the pond where organic-rich bottom

  5. Coyote Creek Trash Reduction Project: Clean Creeks, Healthy Communities

    EPA Pesticide Factsheets

    Information about the SFBWQP Coyote Creek Trash Reduction Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  6. Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-10-01

    The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, propertymore » ownership, and surface geology, and a geologic cross section were presented for each dome.« less

  7. Environmental Setting of the Morgan Creek Basin, Maryland, 2002-04

    USGS Publications Warehouse

    Hancock, Tracy Connell; Brayton, Michael J.

    2006-01-01

    The Morgan Creek Basin is a 31-square-kilometer watershed in Kent County, Maryland on the Delmarva Peninsula. The Delmarva Peninsula covers about 15,500 square kilometers and includes most of the State of Delaware and parts of Maryland and Virginia east of the Chesapeake Bay. The Morgan Creek Basin is one of five sites selected for the study of sources, transport, and fate by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program's: Agricultural Chemicals: Sources, Transport and Fate study team (Agricultural Chemicals Team, ACT). A key component of the study is identifying the natural factors and human influences affecting water quality in the Morgan Creek Basin. The Morgan Creek Basin is in the Coastal Plain Physiographic Province, which is a nearly level seaward-sloping lowland with areas of moderate topographic relief. The study area lies within a well-drained upland region with permeable and porous soils and aquifer sediments. The soils are well suited to most field crops. Agriculture is the principal land use in the Morgan Creek Basin, as well as throughout the entire Delmarva Peninsula. Most agricultural land is used for row crops such as corn, soybeans, and small grains, and slightly less land is used for pasture and hay production involving alfalfa, clover, and various perennial grasses. There are several animal operations in the study area. Farm management practices include fertilizer and herbicide applications, different tillage practices, addition of lime, forested riparian buffers, grassed waterways, and sediment retention ponds. Irrigation in the study area is minimal. The climate of the Morgan Creek Basin is humid and subtropical, with an average annual precipitation of 1.12 meters. Overall annual precipitation is evenly distributed throughout the year, from 76 to 101 millimeters per month; however, the spring and summer (March - September) tend to be slightly wetter than the autumn and winter (October - February

  8. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  9. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  10. The Blacktail Creek Tuff: an analytical and experimental study of rhyolites from the Heise volcanic field, Yellowstone hotspot system

    NASA Astrophysics Data System (ADS)

    Bolte, Torsten; Holtz, Francois; Almeev, Renat; Nash, Barbara

    2015-02-01

    The magma storage conditions of the 6.62 Ma Blacktail Creek Tuff eruption, belonging to the Heise volcanic field (6.62-4.45 Ma old) of the Yellowstone hotspot system, have been investigated by combining thermobarometric and experimental approaches. The results from different geothermometers (e.g., Fe-Ti oxides, feldspar pairs, apatite and zircon solubility, and Ti in quartz) indicate a pre-eruptive temperature in the range 825-875 °C. The temperature estimated using two-pyroxene pairs varies in a range of 810-950 °C, but the pyroxenes are probably not in equilibrium with each other, and the analytical results of melt inclusion in pyroxenes indicate a complex history for clinopyroxene, which hosts two compositionally different inclusion types. One natural Blacktail Creek Tuff rock sample has been used to determine experimentally the equilibrium phase assemblages in the pressure range 100-500 MPa and a water activity range 0.1-1.0. The experiments have been performed at fluid-present conditions, with a fluid phase composed of H2O and CO2, as well as at fluid-absent conditions. The stability of the quartzo-feldspathic phases is similar in both types of experiments, but the presence of mafic minerals such as biotite and clinopyroxene is strongly dependent on the experimental approach. Possible explanations are given for this discrepancy which may have strong impacts on the choice of appropriate experimental approaches for the determination of magma storage conditions. The comparison of the composition of natural phases and of experimentally synthesized phases confirms magma storage temperatures of 845-875 °C. Melt water contents of 1.5-2.5 wt% H2O are required to reproduce the natural Blacktail Creek Tuff mineral assemblage at these temperatures. Using the Ti-in-quartz barometer and the Qz-Ab-Or proportions of natural matrix glasses, coexisting with quartz, plagioclase and sanidine, the depth of magma storage is estimated to be in a pressure range between 130 and

  11. Lagrangian sampling of wastewater treatment plant effluent in Boulder Creek, Colorado, and Fourmile Creek, Iowa, during the summer of 2003 and spring of 2005--Hydrological and chemical data

    USGS Publications Warehouse

    Barber, Larry B.; Keefe, Steffanie H.; Kolpin, Dana W.; Schnoebelen, Douglas J.; Flynn, Jennifer L.; Brown, Gregory K.; Furlong, Edward T.; Glassmeyer, Susan T.; Gray, James L.; Meyer, Michael T.; Sandstrom, Mark W.; Taylor, Howard E.; Zaugg, Steven D.

    2011-01-01

    This report presents methods and data for a Lagrangian sampling investigation into chemical loading and in-stream attenuation of inorganic and organic contaminants in two wastewater treatment-plant effluent-dominated streams: Boulder Creek, Colorado, and Fourmile Creek, Iowa. Water-quality sampling was timed to coincide with low-flow conditions when dilution of the wastewater treatment-plant effluent by stream water was at a minimum. Sample-collection times corresponded to estimated travel times (based on tracer tests) to allow the same "parcel" of water to reach downstream sampling locations. The water-quality data are linked directly to stream discharge using flow- and depth-integrated composite sampling protocols. A range of chemical analyses was made for nutrients, carbon, major elements, trace elements, biological components, acidic and neutral organic wastewater compounds, antibiotic compounds, pharmaceutical compounds, steroid and steroidal-hormone compounds, and pesticide compounds. Physical measurements were made for field conditions, stream discharge, and time-of-travel studies. Two Lagrangian water samplings were conducted in each stream, one in the summer of 2003 and the other in the spring of 2005. Water samples were collected from five sites in Boulder Creek: upstream from the wastewater treatment plant, the treatment-plant effluent, and three downstream sites. Fourmile Creek had seven sampling sites: upstream from the wastewater treatment plant, the treatment-plant effluent, four downstream sites, and a tributary. At each site, stream discharge was measured, and equal width-integrated composite water samples were collected and split for subsequent chemical, physical, and biological analyses. During the summer of 2003 sampling, Boulder Creek downstream from the wastewater treatment plant consisted of 36 percent effluent, and Fourmile Creek downstream from the respective wastewater treatment plant was 81 percent effluent. During the spring of 2005

  12. Measuring salt retention : [summary].

    DOT National Transportation Integrated Search

    2013-03-01

    This project involves measuring and reporting the retention of salt and brine on the roadway as a result of using different salt spreaders, application speeds, and brine quantities. The research develops an evaluation methodology, directs the field c...

  13. Fermilab | Tritium at Fermilab | Ferry Creek Results

    Science.gov Websites

    newsletter Ferry Creek Results chart This chart (click chart for larger version) shows the levels of tritium following the detection of low levels of tritium in Indian Creek in November 2005. The levels of tritium in . Fermilab continues to monitor the ponds and creeks on its site and take steps to keep the levels of tritium

  14. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    USGS Publications Warehouse

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  15. Deception Creek Experimental Forest (Idaho)

    Treesearch

    Russell T. Graham; Theresa B. Jain

    2004-01-01

    Deception Creek Experimental Forest is located in one of the most productive forests of the Rocky Mountains. When the forest was established in 1933, large, old western white pines were important for producing lumber products, matches, and toothpicks. Deception Creek is located in the heart of the western white pine forest type, allowing researchers to focus on the...

  16. Water quality, sediment quality, and stream-channel classification of Rock Creek, Washington, D.C., 1999-2000

    USGS Publications Warehouse

    Anderson, Anita L.; Miller, Cherie V.; Olsen, Lisa D.; Doheny, Edward J.; Phelan, Daniel J.

    2002-01-01

    Rock Creek Park is within the National Capital Region in Washington, D.C., and is maintained by the National Park Service. Part of Montgomery County, Maryland, and part of the District of Columbia drain into Rock Creek, which is a tributary of the Potomac River. Water quality in Rock Creek is important to biotic life in and near the creek, and in the Potomac River Basin and the Chesapeake Bay. The water quality of the Rock Creek Basin has been affected by continued urban and agricultural growth and development. The U.S. Geological Survey, in cooperation with the National Park Service, investigated water quality and sediment quality in Rock Creek over a 2-year period (1998?2000), and performed a stream-channel classification to determine the distribution of bottom sediment in Rock Creek. This report presents and evaluates water quality and bottom sediment in Rock Creek for water years 1999 (October 1, 1998 to September 30, 1999) and 2000 (October 1, 1999 to September 30, 2000). A synoptic surface-water assessment was conducted at five stations from June 23 to June 25, 1999, a temporal surface-water assessment was conducted at one station from February 18, 1999 to September 26, 2000, and bed-sediment samples were collected and assessed from three stations from August 17 to August 19, 1999. The synoptic surface-water assessment included pesticides (parent compounds and selected transformation products), field parameters, nutrients, and major ions. The temporal surface-water assessment included pesticides (parent compounds and selected transformation products) and field parameters. The bed-sediment assessment included trace elements and organic compounds (including low- and high-molecular weight polycyclic aromatic hydrocarbons, poly-chlorinated biphenyls, pesticides, and phthalates). Some, but not all, of the pesticides known to be used in the area were included in the synoptic water-quality assessment, the temporal water-quality assessment, and the bed

  17. 1. Deep Creek Road, picnic pavilion Great Smoky Mountains ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Deep Creek Road, picnic pavilion - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  18. Effect of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida.

    PubMed

    Langevin, Christian D; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  19. 2. Deep Creek Road, old bridge at campground entrance. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Deep Creek Road, old bridge at campground entrance. - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  20. Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

    USGS Publications Warehouse

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase

  1. Surface waters of North Boggy Creek basin in the Muddy Boggy Creek basin in Oklahoma

    USGS Publications Warehouse

    Laine, L.L.

    1958-01-01

    Analysis of short-term streamflow data in North Boggy Creek basin indicates that the average runoff in this region is substantial. The streamflow is highly variable from year to year and from month to month. The estimated total yield from the North Boggy Creek watershed of 231 square miles averages 155,000 acre-feet annually, equivalent to an average runoff depth of 12 1/2 inches. Almost a fourth of the annual volume is contributed by Chickasaw Creek basin, where about 35,000 acre-feet runs off from 46 square miles. Two years of records show a variation in runoff for the calendar year 1957 in comparison to 1956 in a ratio of 13 to 1 for the station on North Boggy Creek and a ratio of 18 to 1 for the station on Chickasaw Creek. In a longer-term record downstream on Muddy Boggy Creek near Farris, the corresponding range was 17 to 1, while the calendar years 1945 and 1956 show a 20-fold variation in runoff. Within a year the higher runoff tends to occur in the spring months, April to June, a 3-month period that, on the average, accounts for at least half of the annual flow. High runoff may occur during any month in the year, but in general, the streamflow is relatively small in the summer. Records for the gaging stations noted indicate that there is little or no base flow in the summer, and thus there will be periods of no flow at times in most years. The variation in runoff during a year is suggested by a frequency analysis of low flows at the reference station on Muddy Boggy Creek near Farris. Although the mean flow at that site is 955 cfs (cubic feet per second), the median daily flow is only 59 cfs and the lowest 30-day flow in a year will average less than 1 cfs in 4 out of 10 years on the average. The estimated mean flow on North Boggy Creek near Stringtown is 124 cfs, but the estimated median daily flow is only 3 1/2 cfs. Because of the high variability in streamflow, development of storage by impoundment will be necessary to attain maximum utilization of the

  2. Coarse-scale movement patterns of a small-bodied fish inhabiting a desert stream

    USGS Publications Warehouse

    Dzul, M.C.; Quist, M.C.; Dinsmore, S.J.; Gaines, D.B.; Bower, M.R.

    2013-01-01

    Located on the floor of Death Valley (CA, USA), Salt Creek harbors a single fish species, the Salt Creek pupfish, Cyprinodon salinus salinus, which has adapted to this extremely harsh environment. Salt Creek is fed by an underground spring and is comprised of numerous pools, runs, and marshes that exhibit substantial variability in temperature, salinity, and dissolved oxygen concentrations. In addition, the wetted area of Salt Creek is reduced throughout the summer months due to high rates of evaporation, with some reaches drying completely. Therefore, it seems logical that short- and long-term movement patterns may play an important role in Salt Creek pupfish population dynamics. The objective of this study was to describe coarse-scale movements of Salt Creek pupfish in Salt Creek during their breeding season from March to May. Sex ratios and length–frequency distributions varied spatially within Salt Creek, suggesting population segregation during the breeding season. Long-distance movements were generally rare, although two fish moved more than 1.2 km. Movement in upstream reaches was rare or absent, in contrast to the greater movement observed in downstream reaches (29% of recaptures). Temporal trends and demographic patterns in movement were not observed. Because the two most downstream habitats dry up in the summer, our results indicate that coarse-scale movements that re-populate downstream reaches likely occur during other times of year. Consequently, the importance of small- and large-scale movements is influenced by season. Further assessment of Salt Creek movement patterns conducted during other times of year may better illuminate long-distance movement patterns and source-sink dynamics.

  3. Potential effects of surface coal mining on the hydrology of the Little Bear Creek area, Moorhead coal field, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1986-01-01

    The Little Bear Creek area of the Moorhead Coal Field, 27 miles south of Ashland, Montana, contains large reserves of Federally owned coal that have been identified for potential lease sale. A hydrologic study was conducted in the area to describe existing hydrologic system and to assess potential effects of surface mining on local water resources. Hydrologic data collected from private wells, observation wells, test holes and springs indicate that the aquifers are coal and sandstone beds in the upper part of the Tongue River Member, Fort Union Formation (Paleocene age), and sand and gravel layers of valley alluvium (Pleistocene and Holocene age). Surface water is available from ephemeral flow along stretches of the main streams, and from stock ponds throughout the area. Mining the Anderson and Dietz coal beds would destroy one stock well and several stock ponds, would possibly interfere with the flow of one spring, and would lower the potentiometric surface within the coal and sandstone aquifers. The alluvial aquifer beneath Little Bear Creek and Davidson Draw would be removed at the mine site, as would sandstone and coal aquifers above the mine floor. Although mining would alter existing hydrologic systems, alternative water supplies are available. Planned structuring of the spoils and reconstruction of the alluvial aquifers could minimize downstream water-quality degradation. (USGS)

  4. CEAP in the Cedar Creek watershed

    USDA-ARS?s Scientific Manuscript database

    This publication provides research updates from the Conservation Effects Assessment Project (CEAP) in the Cedar Creek watershed in Indiana. In this inaugural issue, we explain the CEAP and why the National Soil Erosion Research Lab is doing research in Cedar Creek. It also includes a 'Research Featu...

  5. 33 CFR 117.809 - Tonawanda Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tonawanda Creek. 117.809 Section 117.809 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.809 Tonawanda Creek. The draw of the...

  6. 33 CFR 117.555 - College Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false College Creek. 117.555 Section 117.555 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.555 College Creek. The draws of the...

  7. 33 CFR 117.231 - Brandywine Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Brandywine Creek. 117.231 Section 117.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.231 Brandywine Creek. The draw of the...

  8. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile...

  9. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile...

  10. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  11. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  12. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  13. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  14. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of...

  15. Walnut Creek and Squaw Creek Watersheds, Iowa: National Institute of Food and Agriculture-Conservation Effects Assessment Project

    USDA-ARS?s Scientific Manuscript database

    The Walnut Creek Watershed NIFA-CEAP Watershed project was designed to assess water quality benefits and economic costs from the adoption of a prairie ecosystem (conservation practice implementation) at a watershed scale. This chapter describes and summarizes the paired watershed (Walnut Creek and S...

  16. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  17. 33 CFR 117.401 - Trail Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Trail Creek. 117.401 Section 117.401 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Indiana § 117.401 Trail Creek. (a) The draw of the Franklin...

  18. 33 CFR 117.233 - Broad Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Broad Creek. 117.233 Section 117.233 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.233 Broad Creek. (a) The draw of the Conrail...

  19. 33 CFR 117.233 - Broad Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Broad Creek. 117.233 Section 117.233 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.233 Broad Creek. (a) The draw of the Conrail...

  20. 33 CFR 117.233 - Broad Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Broad Creek. 117.233 Section 117.233 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.233 Broad Creek. (a) The draw of the Conrail...

  1. 33 CFR 117.233 - Broad Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Broad Creek. 117.233 Section 117.233 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.233 Broad Creek. (a) The draw of the Conrail...

  2. 33 CFR 117.233 - Broad Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Broad Creek. 117.233 Section 117.233 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.233 Broad Creek. (a) The draw of the Conrail...

  3. 81. PHOTOCOPY OF PHOTOGRAPH SHOWING NEW CREEK CHANNEL UNDER CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. PHOTOCOPY OF PHOTOGRAPH SHOWING NEW CREEK CHANNEL UNDER CONSTRUCTION AT P STREET BEND, FROM 1940 REPORT ON PROPOSED DEVELOPMENT OF ROCK CREEK AND POTOMAC PARKWAY, SECTION II (ROCK CREEK AND POTOMAC PARKWAY FILE, HISTORY DEPARTMENT ARCHIVES, NATIONAL PARK SERVICE, WASHINGTON, DC). - Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  4. 1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING BUILDING 108 AT PHOTO RIGHT AND BUILDING 105 AT PHOTO CENTER BEHIND TREE. RUSH CREEK POWERHOUSE IS PARTIALLY VISIBLE AT EXTREME PHOTO LEFT). VIEW TO WEST. - Rush Creek Hydroelectric System, Clubhouse Cottage, Rush Creek, June Lake, Mono County, CA

  5. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  6. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0...

  7. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the S117-S133...

  8. 33 CFR 117.571 - Spa Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Spa Creek. 117.571 Section 117.571 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 4.0, at...

  9. 33 CFR 117.571 - Spa Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Spa Creek. 117.571 Section 117.571 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 4.0, at...

  10. Water Quality of Camp Creek, Costello Creek, and Other Selected Streams on the South Side of Denali National Park and Preserve, Alaska

    USGS Publications Warehouse

    Brabets, Timothy P.; Whitman, Matthew S.

    2002-01-01

    The Camp and Costello Creek watersheds are located on the south side of Denali National Park and Preserve. The Dunkle Mine, an abandoned coal mine, is located near the mouth of Camp Creek. Due to concern about runoff from the mine and its possible effects on the water quality and aquatic habitat of Camp Creek and its receiving stream, Costello Creek, these two streams were studied during the summer runoff months (June to September) in 1999 and 2000 as part of a cooperative study with the National Park Service. Since the south side of Denali National Park and Preserve is part of the U.S. Geological Survey?s National Water-Quality Assessment Cook Inlet Basin study unit, an additional part of this study included analysis of existing water-quality data at 23 sites located throughout the south side of Denali National Park and Preserve to compare with the water quality of Camp and Costello Creeks and to obtain a broader understanding of the water quality in this area of the Cook Inlet Basin. Analysis of water column, bed sediment, fish, invertebrate, and algae data indicate no effects on the water quality of Camp Creek from the Dunkle Mine. Although several organic compounds were found in the streambed of Camp Creek, all concentrations were below recommended levels for aquatic life and most of the concentrations were below the minimum reporting level of 50 ?g/kg. Trace element concentrations of arsenic, chromium, and nickel in the bed sediments of Camp Creek exceeded threshold effect concentrations (TEC), but concentrations of these trace elements were also exceeded in streambed sediments of Costello Creek above Camp Creek. Since the percent organic carbon in Camp Creek is relatively high, the toxicity quotient of 0.55 is only slightly above the threshold value of 0.5. Costello Creek has a relatively low organic carbon content and has a higher toxicity quotient of 1.19. Analysis of the water-quality data for other streams located in the south side of Denali National Park

  11. 77 FR 75946 - Radio Broadcasting Services; Dove Creek, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ...]. Radio Broadcasting Services; Dove Creek, CO AGENCY: Federal Communications Commission. ACTION: Proposed... service at Dove Creek, Colorado. Channel 229C3 can be allotted at Dove Creek, Colorado, in compliance with the Commission's minimum distance separation requirements, at the proposed reference coordinates: 37...

  12. A Creek to Bay Biological Assessment in Oakland, California

    NASA Astrophysics Data System (ADS)

    Ahumada, E.; Ramirez, N.; Lopez, A.; Avila, M.; Ramirez, J.; Arroyo, D.; Bracho, H.; Casanova, A.; Pierson, E.

    2011-12-01

    In 2007, the Surface Water Ambient Monitoring Program (SWAMP) assessed the impact of trash on water quality in the Peralta Creek which is located in the Fruitvale district of Oakland, CA. This 2011 follow-up study will take further steps in evaluating the physical and biological impacts of pollution and human development on Peralta Creek and in the San Leandro Bay, where the Creek empties into the larger San Francisco Bay estuary. This study will utilize two forms of biological assessment in order to determine the level of water quality and ecosystem health of Peralta Creek and San Leandro Bay in Oakland, California. A Rapid Bioassesment Protocal (RBP) will be used as the method of biological assessment for Peralta Creek. RBP uses a biotic index of benthic macroinvertebrates to provide a measure of a water body's health. Larval trematodes found in two mud snails (Ilynassa obsoleta and Cerithidea californica) will be used to evaluate the health of the San Leandro Bay. Due to the complex life cycle of trematodes, the measure of trematode diversity and richness in host species serves as an indicator of estuarine health (Huspeni 2005). We have completed the assessment of one section of Peralta Creek, located at 2465 34th Avenue, Oakland, CA 94601. Abundance results indicate a moderately healthy creek because there were high levels of pollution tolerant benthic macroinvertebrates. The tolerant group of benthic macroinvertebrates includes such organisms as flatworms, leeches, and scuds. This is possibly due to this section of the creek being pumped up to the surface from culverts impacting the macroinvertebrate's life cycle. Another contributing factor to creek health is the amount of organic debris found in the creek, which inhibits the flow and oxygenation of the water, allowing for more pollution tolerant aquatic insects to persist. Further investigation is being conducted to fully assess the Peralta Creek watershed; from the preliminary results one can surmise that

  13. Comparative Validation of Five Quantitative Rapid Test Kits for the Analysis of Salt Iodine Content: Laboratory Performance, User- and Field-Friendliness

    PubMed Central

    Rohner, Fabian; Kangambèga, Marcelline O.; Khan, Noor; Kargougou, Robert; Garnier, Denis; Sanou, Ibrahima; Ouaro, Bertine D.; Petry, Nicolai; Wirth, James P.; Jooste, Pieter

    2015-01-01

    Background Iodine deficiency has important health and development consequences and the introduction of iodized salt as national programs has been a great public health success in the past decades. To render national salt iodization programs sustainable and ensure adequate iodization levels, simple methods to quantitatively assess whether salt is adequately iodized are required. Several methods claim to be simple and reliable, and are available on the market or are in development. Objective This work has validated the currently available quantitative rapid test kits (quantRTK) in a comparative manner for both their laboratory performance and ease of use in field settings. Methods Laboratory performance parameters (linearity, detection and quantification limit, intra- and inter-assay imprecision) were conducted on 5 quantRTK. We assessed inter-operator imprecision using salt of different quality along with the comparison of 59 salt samples from across the globe; measurements were made both in a laboratory and a field setting by technicians and non-technicians. Results from the quantRTK were compared against iodometric titration for validity. An ‘ease-of-use’ rating system was developed to identify the most suitable quantRTK for a given task. Results Most of the devices showed acceptable laboratory performance, but for some of the devices, use by non-technicians revealed poorer performance when working in a routine manner. Of the quantRTK tested, the iCheck® and I-Reader® showed most consistent performance and ease of use, and a newly developed paper-based method (saltPAD) holds promise if further developed. Conclusions User- and field-friendly devices are now available and the most appropriate quantRTK can be selected depending on the number of samples and the budget available. PMID:26401655

  14. Nutrients and organic compounds in Deer Creek and south branch Plum Creek in southwestern Pennsylvania, April 1996 through September 1998

    USGS Publications Warehouse

    Williams, D.R.; Clark, M.E.

    2001-01-01

    This report presents results of an analysis of nutrient and pesticide data from two surface-water sites and volatile organic compound (VOC) data from one of the sites that are within the Allegheny and Monongahela River Basins study unit of the National Water-Quality Assessment Program of the U.S. Geological Survey. The Deer Creek site was located in a 27.0 square-mile basin within the Allegheny River Basin in Allegheny County. The primary land uses consist of small urban areas, large areas of residential housing, and some agricultural land in the upper part of the basin. The South Branch Plum Creek site was located in a 33.3 square-mile basin within the Allegheny River Basin in Indiana County. The primary land uses throughout this basin are mostly agriculture and forestland.Water samples for analysis of nutrients were collected monthly and during high-flow events from April 1996 through September 1998. Concentrations of dissolved nitrite, dissolved ammonia plus organic nitrogen, and dissolved phosphorus were less than the method detection limits in more than one-half of the samples collected. The median concentration of dissolved nitrite plus nitrate in South Branch Plum Creek was 0.937 mg/L and 0.597 mg/L in Deer Creek. The median concentration of dissolved orthophosphate was 0.01 mg/L in both streams. High loads of nitrate were measured in both streams from March to June. Concentrations of dissolved ammonia nitrogen, dissolved nitrate, and total phosphorus were lower during the summer months. Measured concentrations of nitrate nitrogen in both streams were well below the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 10 mg/L.Water samples for analysis of pesticides were collected throughout 1997 in both streams and during a storm event on August 25-26, 1998, in Deer Creek. Samples were collected monthly at both sites and more frequently during the spring and early summer months to coincide with application of pesticides. Seventy

  15. Prioritizing Restoration in the Hangman Creek Watershed: Predicting Baseflow through Sub-basin Modeling

    NASA Astrophysics Data System (ADS)

    Navickis-Brasch, A. S.; Fiedler, F. R.

    2013-12-01

    Land use changes since European settlement have significantly impaired the beneficial uses of Coeur d'Alene (CDA) Tribe water bodies in the Hangman Creek watershed. The cumulative impacts have resulted in a 303 (d) designation by the Environmental Protection Agency (EPA), extirpated the only salmon run on the reservation, and reduced tributary connectivity by isolating many native fish populations. Considering salmon were an essential part of tribal identity and cultural activities, the tribe initiated a 100-year management plan to restore the 155,000-acre portion of the Hangman Creek watershed located on the CDA reservation. The restoration management plan focuses on sustaining subsistence and cultural activities by reestablishing stream connectivity and providing sustainable aquatic habitats as well as restoring watershed processes and improving water quality. Ultimately, the restoration goal is to improve the habitat suitability of Hangman Creek for the eventual return of salmon. To accomplish these goals, it is essential to prioritize and sequence activities that most effectively support restoration. While watershed modeling provides a commonly accepted holistic approach to simulating watershed responses, it appears the effectiveness of models in predicting restoration success, particularly with respect to the effects of restoration on baseflow, have not been well documented. In addition, creating a representative watershed model capable of accounting for a watershed scale spatial and temporal variability generally requires extensive field measurements. This presents a challenge for developing a model of Hangman Creek, since the watershed is mostly ungauged with only limited data available at a few monitoring sites. Our approach to developing a restoration prioritization plan is to first model a subbasin in the watershed with similar characteristics and restoration goals, then utilize the subbasin model to project future baseflow responses in the larger

  16. Geology of the Right Stepover region between the Rodgers Creek, Healdsburg, and Maacama faults, northern San Francisco Bay region: a contribution to Northern California Geological Society Field Trip Guide, June 6-8, 2003

    USGS Publications Warehouse

    McLaughlin, Robert J.; Sarna-Wojcicki, Andrei

    2003-01-01

    This Open file report was written as part of a two-day field trip on June 7 and 8, 2003, conducted for the Northern California Geological Society. The first day of this field trip (June 7) was led by McLaughlin and Sarna-Wojcicki in the area of the right- step between the Rodgers Creek- Healdsburg fault zone and the Maacama fault. The second day of the trip (June 8), was led by David Wagner of the California Geological Survey and students having recently completed MS theses at San Jose State University (James Allen) and San Francisco State University (Carrie Randolph-Loar), as well as a student from San Francisco State University whose MS thesis was in progress in June 2003 (Eric Ford). The second day covered the Rodgers Creek fault zone and related faults of the Petaluma Valley area (the Tolay and Petaluma Valley fault zones).

  17. Regional-Scale Salt Tectonics Modelling: Bench-Scale Validation and Extension to Field-Scale

    NASA Astrophysics Data System (ADS)

    Crook, A. J. L.; Yu, J. G.; Thornton, D. A.

    2010-05-01

    The role of salt in the evolution of the West African continental margin, and in particular its impact on hydrocarbon migration and trap formation, is an important research topic. It has attracted many researchers who have based their research on bench-scale experiments, numerical models and seismic observations. This research has shown that the evolution is very complex. For example, regional analogue bench-scale models of the Angolan margin (Fort et al., 2004) indicate a complex system with an upslope extensional domain with sealed tilted blocks, growth fault and rollover systems and extensional diapers, and a downslope contractional domain with squeezed diapirs, polyharmonic folds and thrust faults, and late-stage folding and thrusting. Numerical models have the potential to provide additional insight into the evolution of these salt driven passive margins. The longer-term aim is to calibrate regional-scale evolution models, and then to evaluate the effect of the depositional history on the current day geomechanical and hydrogeologic state in potential target hydrocarbon reservoir formations adjacent to individual salt bodies. To achieve this goal the burial and deformational history of the sediment must be modelled from initial deposition to the current-day state, while also accounting for the reaction and transport processes occurring in the margin. Accurate forward modeling is, however complex, and necessitates advanced procedures for the prediction of fault formation and evolution, representation of the extreme deformations in the salt, and for coupling the geomechanical, fluid flow and temperature fields. The evolution of the sediment due to a combination of mechanical compaction, chemical compaction and creep relaxation must also be represented. In this paper ongoing research on a computational approach for forward modelling complex structural evolution, with particular reference to passive margins driven by salt tectonics is presented. The approach is an

  18. A Structural and Paleomagnetic Analysis of the Basalts of Summit Creek, central Cascades, Washington

    NASA Astrophysics Data System (ADS)

    Fetrow, A. C.; Valentine, M. J.

    2013-12-01

    This study is a detailed analysis of the structural geology and paleomagnetism of the Basalts of Summit Creek. Located southeast of Mount Rainier, this section of layered basaltic flows formed during the Eocene Epoch (55 to 45 Ma). During the Eocene, this region underwent a time of unique volcanism that has shaped the modern landscape of the Pacific Northwest. Over the course of the available field season, five excursions were taken into the field to conduct structural mapping and paleomagnetic core drilling. Although exposure is limited by vegetation, nineteen sites were mapped and ten of those were drilled for cores. Cores were analyzed using alternating field demagnetization and thermal demagnetization. Mapping data was integrated into a preliminary structural map of the section. This study attempts to provide a greater understanding of the emplacement and deformation of the Basalts of the Summit Creek and any possible relationship with the Crescent Basalts located in the Olympic Peninsula of Washington state. Once paleomagnetic directions were corrected for core orientation and bedding tilt, none of the flows yielded orientations consistent enough to provide reliable magnetic directions for the section. This scatter is believed to be due, in part, to hydrothermal alteration that has subsequently influenced the Basalts of the Summit Creek. The scattered magnetic orientations are quite similar to those observed in the Crescent Basalts. This is does not demonstrate a definite connection between the two chemically similar Eocene volcanic sequences, but it does provide another similarity on the growing list. The lava flows along the north, middle, and south of the area and, with a few exceptions, have a northeast strike and a northwest dip. Along the middle transect of the section, nearest to Pony Creek and Carleton Ridge, bedding orientation has greater variability and suggests that there may still be unidentified structures that are influencing the area. Reflected

  19. 1. DEADWOOD CREEK BRIDGE FACING SOUTHWEST. MOUNT RAINIER AND EMMONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. DEADWOOD CREEK BRIDGE FACING SOUTHWEST. MOUNT RAINIER AND EMMONS GLACIER VISIBLE IN BACKGROUND. - Deadwood Creek Bridge, Spanning Deadwood Creek on Mather Memorial Parkway, Longmire, Pierce County, WA

  20. Perspective view of span over French Creek and east abutment, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of span over French Creek and east abutment, looking NW. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  1. 3. DEADWOOD CREEK BRIDGE, VIEW BELOW DECK SHOWING OPEN SPANDREL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DEADWOOD CREEK BRIDGE, VIEW BELOW DECK SHOWING OPEN SPANDREL ARCH CONSTRUCTION AND ARCH RIBS - Deadwood Creek Bridge, Spanning Deadwood Creek on Mather Memorial Parkway, Longmire, Pierce County, WA

  2. Effects of potential surface coal mining on dissolved solids in Otter Creek and in the Otter Creek alluvial aquifer, southeastern Montana

    USGS Publications Warehouse

    Cannon, M.R.

    1985-01-01

    Otter Creek drains an area of 709 square miles in the coal-rich Powder River structural basin of southeastern Montana. The Knobloch coal beds in the Tongue River Member of the Paleocene Fort Union Formation is a shallow aquifer and a target for future surface mining in the downstream part of the Otter Creek basin. A mass-balance model was used to estimate the effects of potential mining on the dissolved solids concentration in Otter Creek and in the alluvial aquifer in the Otter Creek valley. With extensive mining of the Knobloch coal beds, the annual load of dissolved solids to Otter Creek at Ashland at median streamflow could increase by 2,873 tons, or a 32-percent increase compared to the annual pre-mining load. Increased monthly loads of Otter Creek, at the median streamflow, could range from 15 percent in February to 208 percent in August. The post-mining dissolved solids load to the subirrigated part of the alluvial valley could increase by 71 percent. The median dissolved solids concentration in the subirrigated part of the valley could be 4,430 milligrams per liter, compared to the pre-mining median concentration of 2,590 milligrams per liter. Post-mining loads from the potentially mined landscape were calculated using saturated-paste-extract data from 506 overburdened samples collected from 26 wells and test holes. Post-mining loads to the Otter Creek valley likely would continue at increased rates for hundreds of years after mining. If the actual area of Knobloch coal disturbed by mining were less than that used in the model, post-mining loads to the Otter Creek valley would be proportionally smaller. (USGS)

  3. Seasonal Variation in the Quality of Dissolved and Particulate Organic Matter Exchanged Between a Salt Marsh and Its Adjacent Estuary

    NASA Astrophysics Data System (ADS)

    Osburn, C. L.; Mikan, M.; Etheridge, J. R.; Burchell, M. R.; Birgand, F.

    2015-12-01

    Salt marshes are transitional ecosystems between terrestrial and marine environments. Along with mangroves and other vegetated coastal habitats, salt marshes rank among the most productive ecosystems on Earth, with critical global importance for the planet's carbon cycle. Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October of 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components modeled, we used multiple linear regression to identify tracers for recalcitrant DOM; labile soil-derived source DOM; detrital POM; and planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Using the DOM and POM quality results obtained via fluorescence measurements and scaling up to global salt marsh area, we estimated that the potential release of CO2 from the respiration of salt marsh DOC and POC transported to estuaries could be 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.

  4. Baseline Characteristics of Jordan Creek, Juneau, Alaska

    USGS Publications Warehouse

    Host, Randy H.; Neal, Edward G.

    2004-01-01

    Anadromous fish populations historically have found healthy habitat in Jordan Creek, Juneau, Alaska. Concern regarding potential degradation to the habitat by urban development within the Mendenhall Valley led to a cooperative study among the City and Borough of Juneau, Alaska Department of Environmental Conservation, and the U.S. Geological Survey, that assessed current hydrologic, water-quality, and physical-habitat conditions of the stream corridor. Periods of no streamflow were not uncommon at the Jordan Creek below Egan Drive near Auke Bay stream gaging station. Additional flow measurements indicate that periods of no flow are more frequent downstream of the gaging station. Although periods of no flow typically were in March and April, streamflow measurements collected prior to 1999 indicate similar periods in January, suggesting that no flow conditions may occur at any time during the winter months. This dewatering in the lower reaches likely limits fish rearing and spawning habitat as well as limiting the migration of juvenile salmon out to the ocean during some years. Dissolved-oxygen concentrations may not be suitable for fish survival during some winter periods in the Jordan Creek watershed. Dissolved-oxygen concentrations were measured as low as 2.8 mg/L at the gaging station and were measured as low as 0.85 mg/L in a tributary to Jordan Creek. Intermittent measurements of pH and dissolved-oxygen concentrations in the mid-reaches of Jordan Creek were all within acceptable limits for fish survival, however, few measurements of these parameters were made during winter-low-flow conditions. One set of water quality samples was collected at six different sites in the Jordan Creek watershed and analyzed for major ions and dissolved nutrients. Major-ion chemistry showed Jordan Creek is calcium bicarbonate type water with little variation between sampling sites.

  5. Sources of baseflow for the Minnehaha Creek Watershed, Minnesota, US

    NASA Astrophysics Data System (ADS)

    Nieber, J. L.; Moore, T. L.; Gulliver, J. S.; Magner, J. A.; Lahti, L. B.

    2013-12-01

    Minnehaha Creek is among the most valued surface water features in the Minneapolis, MN metro area, with a waterfall as it enters the Minnehaha Creek park. Flow in Minnehaha Creek is heavily dependent on discharge from the stream's origin, Lake Minnetonka, the outlet of which is closed during drought periods to maintain water elevations in the lake resulting in low- (or no-) flow conditions in the creek. Stormwater runoff entering directly to the creek from the creek's largely urbanized watershed exacerbates extremes in flow conditions. Given the cultural and ecological value of this stream system, there is great interest in enhancing the cultural and ecosystem services provided by Minnehaha Creek through improvements in streamflow regime by reducing flashiness and sustaining increased low-flows. Determining the potential for achieving improvements in flow requires first that the current sources of water contributing to low-flows in the creek be identified and quantified. Work on this source identification has involved a number of different approaches, including analyses of the streamflow record using a hydrologic system model framework, examination of the Quaternary and bedrock geology of the region, estimation of groundwater-surface water exchange rates within the channel using hyporheic zone temperature surveys and flux meter measurements, and analyses of the stable isotopes of oxygen and hydrogen in samples of stream water, groundwater, and rainfall. Analysis of baseflow recessions using the method of Brutsaert and Nieber (1977) indicates that only a small portion of the catchment, probably the riparian zone, contributes to baseflows. This result appears to be supported by the observation that the limestone/shale bedrock layer underlying the surficial aquifer has a non-zero permeability, and in a significant portion of the watershed the layer has been eroded away leaving the surficial aquifer ';bottomless' and highly susceptible to vertical (down) water loss

  6. 1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING THE RUSH CREEK POWERHOUSE AT PHOTO RIGHT (TAILRACE IN FOREGROUND), BUILDING 106 NEXT TO THE POWERHOUSE AT PHOTO LEFT CENTER, AND BUILDING 103 AT UPPER PHOTO LEFT ABOVE AND BEHIND BUILDING 106. VIEW TO SOUTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  7. Integrated Geophysical Monitoring Program to Study Flood Performance and Incidental CO2 Storage Associated with a CO2 EOR Project in the Bell Creek Oil Field

    NASA Astrophysics Data System (ADS)

    Burnison, S. A.; Ditty, P.; Gorecki, C. D.; Hamling, J. A.; Steadman, E. N.; Harju, J. A.

    2013-12-01

    The Plains CO2 Reduction (PCOR) Partnership, led by the Energy & Environmental Research Center, is working with Denbury Onshore LLC to determine the effect of a large-scale injection of carbon dioxide (CO2) into a deep clastic reservoir for the purpose of simultaneous CO2 enhanced oil recovery (EOR) and to study incidental CO2 storage at the Bell Creek oil field located in southeastern Montana. This project will reduce CO2 emissions by more than 1 million tons a year while simultaneously recovering an anticipated 30 million barrels of incremental oil. The Bell Creek project provides a unique opportunity to use and evaluate a comprehensive suite of technologies for monitoring, verification, and accounting (MVA) of CO2 on a large-scale. The plan incorporates multiple geophysical technologies in the presence of complementary and sometimes overlapping data to create a comprehensive data set that will facilitate evaluation and comparison. The MVA plan has been divided into shallow and deep subsurface monitoring. The deep subsurface monitoring plan includes 4-D surface seismic, time-lapse 3-D vertical seismic profile (VSP) surveys incorporating a permanent borehole array, and baseline and subsequent carbon-oxygen logging and other well-based measurements. The goal is to track the movement of CO2 in the reservoir, evaluate the recovery/storage efficiency of the CO2 EOR program, identify fluid migration pathways, and determine the ultimate fate of injected CO2. CO2 injection at Bell Creek began in late May 2013. Prior to injection, a monitoring and characterization well near the field center was drilled and outfitted with a distributed temperature-monitoring system and three down-hole pressure gauges to provide continuous real-time data of the reservoir and overlying strata. The monitoring well allows on-demand access for time-lapse well-based measurements and borehole seismic instrumentation. A 50-level permanent borehole array of 3-component geophones was installed in a

  8. Assessment of volatile organic compounds in surface water at West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 1999

    USGS Publications Warehouse

    Olsen, Lisa D.; Spencer, Tracey A.

    2000-01-01

    The U.S. Geological Survey (USGS) collected 13 surface-water samples and 3 replicates from 5 sites in the West Branch Canal Creek area at Aberdeen Proving Ground from February through August 1999, as a part of an investigation of ground-water contamination and natural attenuation processes. The samples were analyzed for volatile organic compounds, including trichloroethylene, 1,1,2,2-tetrachloroethane, carbon tetrachloride, and chloroform, which are the four major contaminants that were detected in ground water in the Canal Creek area in earlier USGS studies. Field blanks were collected during the sampling period to assess sample bias. Field replicates were used to assess sample variability, which was expressed as relative percent difference. The mean variability of the surface-water replicate analyses was larger (35.4 percent) than the mean variability of ground-water replicate analyses (14.6 percent) determined for West Branch Canal Creek from 1995 through 1996. The higher variability in surface-water analyses is probably due to heterogeneities in the composition of the surface water rather than differences in sampling or analytical procedures. The most frequently detected volatile organic compound was 1,1,2,2- tetrachloroethane, which was detected in every sample and in two of the replicates. The surface-water contamination is likely the result of cross-media transfer of contaminants from the ground water and sediments along the West Branch Canal Creek. The full extent of surface-water contamination in West Branch Canal Creek and the locations of probable contaminant sources cannot be determined from this limited set of data. Tidal mixing, creek flow patterns, and potential effects of a drought that occurred during the sampling period also complicate the evaluation of surface-water contamination.

  9. "Visit to Caspar Creek, northern California"

    Treesearch

    Nick Schofield

    1989-01-01

    As part of a brief study tour in California, I had the good fortune of spending a very pleasant day on the Caspar Creek watershed, ably guided by Peter Cafferata and Liz Keppeler. Amongst the many notable achievements of the Caspar Creek Study is its longevity. The study started in 1962 and has evolved over time

  10. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Swan Creek. 9.211 Section 9.211 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural are...

  11. Approach view of the Spring Creek Bridge, view looking south. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking south. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  12. Elevation view of the Spring Creek Bridge, view looking east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  13. Approach view of the Spring Creek Bridge, view looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking north. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  14. General perspective view of the Marion Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Marion Creek Bridge, view looking southwest. - Marion Creek Bridge, Spanning Marion Creek at Milepoint 66.42 on North Santiam Highway (OR-22), Marion Forks, Linn County, OR

  15. General perspective view of the Marion Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Marion Creek Bridge, view looking southeast. - Marion Creek Bridge, Spanning Marion Creek at Milepoint 66.42 on North Santiam Highway (OR-22), Marion Forks, Linn County, OR

  16. 8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN BRIDGE CO., CONTRACTOR, ARKANSAS STATE HIGHWAY DEPARTMENT, 1928' - Harp Creek Bridge, Spans Harp Creek at State Highway 7, Harrison, Boone County, AR

  17. Fisheries and aquatic resources of Prairie Creek, Redwood National Park

    USGS Publications Warehouse

    Wilzbach, Peggy; Ozaki, Vicki

    2017-01-01

    This report synthesizes information on the status of fisheries and aquatic resources in the Prairie Creek sub-basin of Redwood Creek in Humboldt County in northern California, founded on a bibliographic search we conducted of historic and current datasets, unpublished reports, theses, and publications. The compiled Prairie Creek Fisheries Bibliography is available at https://irma.nps.gov/DataStore/. This report describes life histories and population status of the salmonid fishes, and species occurrence of non-salmonid fishes, amphibians, macroinvertebrates, and common benthic algae in Prairie Creek. We assessed habitat conditions that may limit salmonid production in relation to recovery targets established by the National Marine Fisheries Service and the State of California. Although salmon abundance has decreased from historic levels, production of juvenile salmonids in Prairie Creek is relatively stable and robust in comparison with the rest of the Redwood Creek Basin. Carrying capacity likely differs between the undisturbed upper reaches of Prairie Creek and reaches in the lower creek, the latter of which are affected by legacy impacts from timber and agricultural activities. Increased sediment supply and lack of channel structure and floodplain connection in lower Prairie Creek appear to be the greatest stressors to salmonid production. Existing datasets on aquatic resources and environmental variables are listed, and subject areas where few data are available are identified.

  18. 2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP AND CHIMNEY COMPANY IN BACKGROUND. - Bridgeport Lamp Chimney Company, Simpson Creek Bridge, Spanning Simpson Creek, State Route 58 vicinity, Bridgeport, Harrison County, WV

  19. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking southeast. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  20. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking northwest. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  1. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  2. Watershed Landscape Ecology: Interdisciplinary and Field-based Learning in the Northeast Creek Watershed, Mount Desert Island, Maine

    NASA Astrophysics Data System (ADS)

    Hall, S. R.; Anderson, J.; Rajakaruna, N.; Cass, D.

    2014-12-01

    At the College of the Atlantic, Bar Harbor, Maine, undergraduate students have the opportunity to design their own curriculum within a major of "Human Ecology." To enable students to have early research experiences, we developed a field-based interdisciplinary program for students to learn and practice field methods in a variety of disciplines, Earth Science, Botany, Chemistry, and Wildlife Biology at three specific field sites within a single watershed on Mt. Desert Island. As the Northeast Creek watershed was the site of previous water quality studies, this program of courses enabled continued monitoring of portions of the watershed. The program includes 4 new courses: Critical Zone 1, Critical Zone 2, Wildlife Biology, and Botany. In Critical Zone 1 students are introduced to general topics in Earth Science and learn to use ArcGIS to make basic maps. In Critical Zone 2, Wildlife Biology, and Botany, students are in the field every week using classic field tools and methods. All three of these courses use the same three general field areas: two with working farms at the middle and lower portion of the watershed and one uninhabited forested property in the higher relief headwaters of the watershed. Students collect daily surface water chemistry data at five stream sites within the watershed, complete basic geologic bedrock and geomorphic mapping, conduct wildlife surveys, botanical surveys, and monitor weather patterns at each of the main sites. Beyond the class data collected and synthesized, students also complete group independent study projects at focused field sites, some of which have turned into much larger research projects. This program is an opportunity for students and faculty with varied interests and expertise to work together to study a specific field locality over multiple years. We see this model as enhancing a number of positive education components: field-based learning, teamwork, problem solving, interdisciplinary discussion, multiple faculty

  3. Environmental assessment of water, sediment, and biota collected from the Bear Creek watershed, Colusa County, California

    USGS Publications Warehouse

    Rytuba, James J.; Hothem, Roger L.; Brussee, Brianne E.; Goldstein, Daniel; May, Jason T.

    2015-01-01

    mandated to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) - Removal Site Investigation (RSI). The RSI applies to the possible removal of Hg-contaminated mine waste from Bear Creek. This report summarizes data obtained from field sampling of water, sediment, and biota in Bear Creek, above input from the mine area and downstream from the Rathburn-Petray mine area to the confluence with Cache Creek. Our results permit a preliminary assessment of the chemical constituents that could elevate levels of monomethyl Hg (MMeHg) in Bear Creek and its uptake by biota and provide baseline information for comparison to conditions after mine remediation is completed.

  4. 1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING THE RUSH CREEK POWERHOUSE AT PHOTO RIGHT, BUILDING 106 NEXT TO THE POWERHOUSE AT PHOTO CENTER, BUILDING 103 AT UPPER PHOTO LEFT, AND BUILDING 104 ABOVE BUILDING 106 PARTIALLY OBSCURED BEHIND TREE AT UPPER PHOTO CENTER. VIEW TO SOUTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  5. 1. Topographic view of the Rocky Creek Bridge and the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Topographic view of the Rocky Creek Bridge and the Oregon coast, view looking east - Rocky Creek Bridge, Spanning Rocky Creek on Oregon Coast Highway (U.S. Route 101), Depoe Bay, Lincoln County, OR

  6. Description and correlation of reservoir heterogenity within the Big Injun sandstone, Granny Creek field, West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargo, A.; McDowell, R.; Matchen, D.

    1992-01-01

    The Granny Creek field (approximately 6 sq. miles in area), located in Clay and Roane counties, West Virginia, produces oil from the Big Injun sandstone (Lower Mississippian). Analysis of 15 cores, 22 core analyses, and approximately 400 wireline logs (gamma ray and bulk density) show that the Big Injun (approximately 12 to 55 feet thick) can be separated into an upper, coarse-grained sandstone and a lower, fine-grained sandstone. The Big Injun is truncated by an erosional unconformity of Early to Middle Mississippian age which removes the coarse-grain upper unit in the northwest portion of the field. The cores show nodulesmore » and zones (1 inch to 6 feet thick) of calcite and siderite cement. Where the cements occur as zones, porosity and permeability are reduced. Thin shales (1 inch to 1 foot thick) are found in the coarse-grained member of the Big Injun, whereas the bottom of the fine-grained, lower member contains intertongues of dark shale which cause pinchouts in porosity at the bottom of the reservoir. Calcite and siderite cement are recognized on wireline logs as high bulk density zones that form horizontal, inclined, and irregular pods of impermeable sandstone. At a 400 foot well spacing, pods may be confined to a single well or encompass as many as 30 wells creating linear and irregular barriers to flow. These pods increase the length of the fluid flow path and may divide the reservoir into discrete compartments. The combination of sedimentologic and diagenetic features contribute to the heterogeneity observed in the field.« less

  7. +2 Valence Metal Concentrations in Lion Creek, Oakland, California

    NASA Astrophysics Data System (ADS)

    Vazquez, P.; Zedd, T.; Chagolla, R.; Dutton-Starbuck, M.; Negrete, A.; Jinham, M.; Lapota, M.

    2012-12-01

    Seven major creeks exist within the City of Oakland, California. These creeks all flow in the southwest direction from forested hills down through densely populated streets where they become susceptible to urban runoff. Lion Creek has been diverted to engineered channels and underground culverts and runs directly under our school (Roots International) before flowing into the San Leandro Bay. One branch of the creek begins near an abandoned sulfur mine. Previous studies have shown that extremely high levels of lead, arsenic and iron exist in this portion of the creek due to acid mine drainage. In this study +2 valence heavy metals concentration data was obtained from samples collected from a segment of the creek located approximately 2.8 miles downstream from the mine. Concentrations in samples collected at three different sites along this segment ranged between 50 ppb and 100 ppb. We hypothesize that these levels are related to the high concentration of +2 valence heavy metals at the mining site. To test this hypothesis, we have obtained samples from various locations along the roughly 3.75 miles of Lion Creek that are used to assess changes in heavy metals concentration levels from the mining site to the San Leandro Bay.

  8. 7. Cable Creek Bridge after completion. Zion National Park negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Cable Creek Bridge after completion. Zion National Park negative number 1485, classification series 002, 12. - Floor of the Valley Road, Cable Creek Bridge, Spanning Cable Creek on Floor of Valley, Springdale, Washington County, UT

  9. Topographic view of the Marion Creek Bridge, view looking westbound ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the Marion Creek Bridge, view looking westbound on the Santiam Highway. - Marion Creek Bridge, Spanning Marion Creek at Milepoint 66.42 on North Santiam Highway (OR-22), Marion Forks, Linn County, OR

  10. Evaluation of Lower East Fork Poplar Creek Mercury Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, David B.; Brooks, Scott C.; Mathews, Teresa J.

    This report summarizes a 3-year research project undertaken to better understand the nature and magnitude of mercury (Hg) fluxes in East Fork Poplar Creek (EFPC). This project addresses the requirements of Action Plan 1 in the 2011 Oak Ridge Reservation-wide Comprehensive Environmental Response, Compensation, and Liability Act Five Year Review (FYR). The Action Plan is designed to address a twofold 2011 FYR issue: (1) new information suggests mobilization of mercury from the upper and lower EFPC streambeds and stream banks is the primary source of mercury export during high-flow conditions, and (2) the current Record of Decision did not addressmore » the entire hydrologic system and creek bank or creek bed sediments. To obtain a more robust watershed-scale understanding of mercury sources and processes in lower EFPC (LEFPC), new field and laboratory studies were coupled with existing data from multiple US Department of Energy programs to develop a dynamic watershed and bioaccumulation model. LEFPC field studies for the project focused primarily on quantification of streambank erosion and an evaluation of mercury dynamics in shallow groundwater adjacent to LEFPC and potential connection to the surface water. The approach to the stream bank study was innovative in using imagery from kayak floats’ surveys from the headwaters to the mouth of EFPC to estimate erosion, coupled with detailed bank soil mercury analyses. The goal of new field assessments and modeling was to generate a more holistic and quantitative understanding of the watershed and the sources, flux, concentration, transformation, and bioaccumulation of inorganic mercury (IHg) and methylmercury (MeHg). Model development used a hybrid approach that dynamically linked a spreadsheet-based physical and chemical watershed model to a systems dynamics, mercury bioaccumulation model for key fish species. The watershed model tracks total Hg and MeHg fluxes and concentrations by examining upstream inputs

  11. Topographic view of the Spring Creek Bridge and Collier State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the Spring Creek Bridge and Collier State Park, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  12. Freshwater flow from estuarine creeks into northeastern Florida Bay

    USGS Publications Warehouse

    Hittle, Clinton; Patino, Eduardo; Zucker, Mark A.

    2001-01-01

    Water-level, water-velocity, salinity, and temperature data were collected from selected estuarine creeks to compute freshwater flow into northeastern Florida Bay. Calibrated equations for determining mean velocity from acoustic velocity were obtained by developing velocity relations based on direct acoustic measurements, acoustic line velocity, and water level. Three formulas were necessary to describe flow patterns for all monitoring sites, with R2 (coefficient of determination) values ranging from 0.957 to 0.995. Cross-sectional area calculations were limited to the main channel of the creeks and did not include potential areas of overbank flow. Techniques also were used to estimate discharge at noninstrumented sites by establishing discharge relations to nearby instrumented sites. Results of the relation between flows at instrumented and noninstrumented sites varied with R2 values ranging from 0.865 to 0.99. West Highway Creek was used to estimate noninstrumented sites in Long Sound, and Mud Creek was used to estimate East Creek in Little Madeira Bay. Mean monthly flows were used to describe flow patterns and to calculate net flow along the northeastern coastline. Data used in the study were collected from October 1995 through September 1999, which includes the El Nino event of 1998. During this period, about 80 percent of the freshwater flowing into the bay occurred during the wet season (May-October). The mean freshwater discharge for all five instrumented sites during the wet season from 1996 to 1999 is 106 cubic feet per second. The El Nino event caused a substantial increase (654 percent) in mean flows during the dry season (November-April) at the instrumented sites, ranging from 8.5 cubic feet per second in 1996-97 to 55.6 cubic feet per second in 1997-98. Three main flow signatures were identified when comparing flows at all monitoring stations. The most significant was the magnitude of discharges at Trout Creek, which carries about 50 percent of the

  13. Hulburt Creek Hydrology, Southwestern Wisconsin

    USGS Publications Warehouse

    Gebert, Warren A.

    1971-01-01

    The purpose of this study was to determine the hydrologic characteristics of Hulburt Creek, Sauk County, Wis., in order to evaluate a proposed reservoir. The streamflow characteristics estimated are the low flow, monthly flow, and inflow flood. The study was done by the U.S. Geological Survey in cooperation with the Wisconsin Department of Natural Resources. The following estimates are for the point on Hulburt Creek at the proposed Dell Lake damsite near Wisconsin Dells. The drainage area is 11.2 square miles.

  14. Approach view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the North Fork Butter Creek Bridge, view looking south - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  15. Elevation view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation view of the North Fork Butter Creek Bridge, view looking west - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  16. Approach view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the North Fork Butter Creek Bridge, view looking north - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  17. Sediment Loading from Crab Creek and Other Sources to Moses Lake, Washington, 2007 and 2008

    USGS Publications Warehouse

    Magirl, Christopher S.; Cox, Stephen E.; Mastin, Mark C.; Huffman, Raegan L.

    2010-01-01

    The average sediment-accumulation rate on the bed of Moses Lake since 1980, based on the identification of Mount St. Helens ash in lakebed cores, was 0.24 inches per year. Summed over the lake surface area, the average sediment-accumulation rate on the lakebed is 190,000 tons per year. Based on USGS stream-gaging station data, the average annual sediment load to Moses Lake from Crab Creek was 32,000 tons per year between 1943 and 2008; the post Mount St. Helens eruption annual load from Crab Creek was calculated to be 13,000 tons per year. The total mass input from Crab Creek and other fluvially derived sediment sources since 1980 has been about 20,000 tons per year. Eolian sediment loading to Moses Lake was about 50,000 tons per year before irrigation and land-use development largely stabilized the Moses Lake dune field. Currently, eolian input to the lake is less than 2,000 tons per year. Considering all sediment sources to the lake, most (from 80 to 90 percent) of post-1980 lakebed-sediment accumulation is from autochthonous, or locally formed, mineral matter, including diatom frustuals and carbonate shells, derived from biogenic production in phytoplankton and zooplankton. Suspended-sediment samples collected from Crab Creek and similar nearby waterways in 2007 and 2008 combined with other USGS data from the region indicated that a proposed Bureau of Reclamation supplemental feed of as much as 650 cubic feet per second through Crab Creek might initially contain a sediment load of as much as 1,500 tons per day. With time, however, this sediment load would decrease to about 10 tons per day in the sediment-supply-limited creek as available sediment in the channel is depleted. Sediment loads in the supplemental feed ultimately would be similar to loads in other bypass canals near Moses Lake. Considering the hydrology and geomorphology of the creek over multiple years, there is little evidence that the proposed supplemental feed would substantially increase the

  18. Estimating pothole wetland connectivity to Pipestem Creek ...

    EPA Pesticide Factsheets

    Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding how reliant stream flow is on wetlands within their watershed. We used the isotopic evaporation signal in water to examine hydrologic connectivity within Pipestem Creek, North Dakota, with a watershed dominated by prairie potholes. During a decadal period of wet conditions, Pipestem Creek contained evaporated water that had approximately half the isotopic evaporative enrichment signal found in most evaporated permanent wetlands. If evaporation was mainly occurring within the stream, we expected the evaporation signal to increase from the headwaters with distance downstream. However, the signal either remained similar or decreased downstream over the two years of sampling. Groundwater measured at the water table adjacent to Pipestem Creek had isotopic values that indicated recharge from winter precipitation and had no significant evaporation. Using isotopic theory and discharge data, we estimated the surface area of open water necessary to generate the evaporation signal found within Pipestem Creek over time. The range of evaporating surface-area estimates was highly dynamic, spanning from 43 to 2653 ha and varying primarily with discharge. The average value (just over 600 ha) was well above the surface area of Pipestem Creek network (245 ha). This estimate of contributing area indicated that Prairie Pothole wetlands were important sources of stream fl

  19. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking southwest - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  20. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking north - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  1. Detail perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail perspective view of the North Fork Butter Creek Bridge, view looking southwest - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  2. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking south - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  3. Water quality, sources of nitrate, and chemical loadings in the Geronimo Creek and Plum Creek watersheds, south-central Texas, April 2015–March 2016

    USGS Publications Warehouse

    Lambert, Rebecca B.; Opsahl, Stephen P.; Musgrove, MaryLynn

    2017-12-22

    Located in south-central Texas, the Geronimo Creek and Plum Creek watersheds have long been characterized by elevated nitrate concentrations. From April 2015 through March 2016, an assessment was done by the U.S. Geological Survey, in cooperation with the Guadalupe-Blanco River Authority and the Texas State Soil and Water Conservation Board, to characterize nitrate concentrations and to document possible sources of elevated nitrate in these two watersheds. Water-quality samples were collected from stream, spring, and groundwater sites distributed across the two watersheds, along with precipitation samples and wastewater treatment plant (WWTP) effluent samples from the Plum Creek watershed, to characterize endmember concentrations and isotopic compositions from April 2015 through March 2016. Stream, spring, and groundwater samples from both watersheds were collected during four synoptic sampling events to characterize spatial and temporal variations in water quality and chemical loadings. Water-quality and -quantity data from the WWTPs and stream discharge data also were considered. Samples were analyzed for major ions, selected trace elements, nutrients, and stable isotopes of water and nitrate.The dominant land use in both watersheds is agriculture (cultivated crops, rangeland, and grassland and pasture). The upper part of the Plum Creek watershed is more highly urbanized and has five major WWTPs; numerous smaller permitted wastewater outfalls are concentrated in the upper and central parts of the Plum Creek watershed. The Geronimo Creek watershed, in contrast, has no WWTPs upstream from or near the sampling sites.Results indicate that water quality in the Geronimo Creek watershed, which was evaluated only during base-flow conditions, is dominated by groundwater, which discharges to the stream by numerous springs at various locations. Nitrate isotope values for most Geronimo Creek samples were similar, which indicates that they likely have a common source (or

  4. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. BUILDING 122 IS VISIBLE AT PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  5. View looking Eastnortheast at French Creek trestle, which appears at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking Eastnortheast at French Creek trestle, which appears at left center of frame. Bridge in foreground is west entrance to abandoned Phoenix iron works. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  6. 33 CFR 117.153 - Corte Madera Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Corte Madera Creek. 117.153 Section 117.153 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.153 Corte Madera Creek. The draw of...

  7. 33 CFR 117.153 - Corte Madera Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Corte Madera Creek. 117.153 Section 117.153 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.153 Corte Madera Creek. The draw of...

  8. Habitat requirements of the endangered California freshwater shrimp (Syncaris pacifica) in lagunitas and Olema creeks, Marin County, California, USA

    USGS Publications Warehouse

    Martin, Barbara A.; Saiki, Michael K.; Fong, Darren

    2009-01-01

    This study was conducted to better understand the habitat requirements and environmental limiting factors of Syncaris pacifica, the California freshwater shrimp. This federally listed endangered species is native to perennial lowland streams in a few watersheds in northern California. Field sampling occurred in Lagunitas and Olema creeks at seasonal intervals from February 2003 to November 2004. Ten glides, five pools, and five riffles served as fixed sampling reaches, with eight glides, four pools, and four riffles located in Lagunitas Creek and the remainder in Olema Creek. A total of 1773 S. pacifica was counted during this study, all of which were captured along vegetated banks in Lagunitas Creek. Syncaris pacifica was most numerous in glides (64), then in pools (31), and lastly in riffles (5). According to logistic regression analysis, S. pacifica was mostly associated with submerged portions of streambank vegetation (especially overhanging vegetation such as ferns and blackberries, emergent vegetation such as sedge and brooklime, and fine roots associated with water hemlock, willow, sedge, and blackberries) along with low water current velocity and a sandy substrate. These seemingly favorable habitat conditions for S. pacifica were present in glides and pools in Lagunitas Creek, but not in Olema Creek. ?? 2009 The Crustacean Society.

  9. Methane flux from coastal salt marshes

    NASA Technical Reports Server (NTRS)

    Bartlett, K. B.; Harriss, R. C.; Sebacher, D. I.

    1985-01-01

    It is thought that biological methanogenesis in natural and agricultural wetlands and enteric fermentation in animals are the dominant sources of global tropospheric methane. It is pointed out that the anaerobic soils and sediments, where methanogenesis occurs, predominate in coastal marine wetlands. Coastal marine wetlands are generally believed to be approximately equal in area to freshwater wetlands. For this reason, coastal marine wetlands may be a globally significant source of atmospheric methane. The present investigation is concerned with the results of a study of direct measurements of methane fluxes to the atmosphere from salt marsh soils and of indirect determinations of fluxes from tidal creek waters. In addition, measurements of methane distributions in coastal marine wetland sediments and water are presented. The results of the investigation suggest that marine wetlands provide only a minor contribution to atmospheric methane on a global scale.

  10. 20. DISTANT HELICOPTER VIEW TO SOUTHEAST UP LITTLE ROCK CREEK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DISTANT HELICOPTER VIEW TO SOUTHEAST UP LITTLE ROCK CREEK CANYON, WITH DAM AND RESERVOIR AT RIGHT CENTER. PALMDALE-LITTLEROCK DITCH, MARKED BY DENSE VEGETATION, CROSSES ROAD AT LOWER CENTER - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  11. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. BUILDING 113 IS VISIBLE AT RIGHT PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  12. Topographic view of the North Fork Butter Creek Bridge (located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the North Fork Butter Creek Bridge (located center of frame), view looking west - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  13. Structure of the Hat Creek graben region: Implications for the structure of the Hat Creek graben and transfer of right-lateral shear from the Walker Lane north of Lassen Peak, northern California, from gravity and magnetic anomalies

    USGS Publications Warehouse

    Langenheim, Victoria; Jachens, Robert C.; Clynne, Michael A.; Muffler, L. J. Patrick

    2016-01-01

    Interpretation of magnetic and new gravity data provides constraints on the geometry of the Hat Creek Fault, the amount of right-lateral offset in the area between Mt. Shasta and Lassen Peak, and confirmation of the influence of pre-existing structure on Quaternary faulting. Neogene volcanic rocks coincide with short-wavelength magnetic anomalies of both normal and reversed polarity, whereas a markedly smoother magnetic field occurs over the Klamath Mountains and its Paleogene cover. Although the magnetic field over the Neogene volcanic rocks is complex, the Hat Creek Fault, which is one of the most prominent normal faults in the region and forms the eastern margin of the Hat Creek Valley, is marked by the eastern edge of a north-trending magnetic and gravity high 20-30 km long. Modeling of these anomalies indicates that the fault is a steeply dipping (~75-85°) structure. The spatial relationship of the fault as modeled by the potential-field data, the youngest strand of the fault, and relocated seismicity suggests that deformation continues to step westward across the valley, consistent with a component of right-lateral slip in an extensional environment. Filtered aeromagnetic data highlight a concealed magnetic body of Mesozoic or older age north of Hat Creek Valley. The body’s northwest margin strikes northeast and is linear over a distance of ~40 km. Within the resolution of the aeromagnetic data (1-2 km), we discern no right-lateral offset of this body. Furthermore, Quaternary faults change strike or appear to end, as if to avoid this concealed magnetic body and to pass along its southeast edge, suggesting that pre-existing crustal structure influenced younger faulting, as previously proposed based on gravity data.

  14. 33 CFR 117.1001 - Cat Point Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cat Point Creek. 117.1001 Section 117.1001 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1001 Cat Point Creek. The draw of the...

  15. 33 CFR 117.800 - Mill Neck Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Mill Neck Creek. 117.800 Section 117.800 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.800 Mill Neck Creek. The draw of the...

  16. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of the...

  17. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of the...

  18. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Potomac River, Mattawoman Creek..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.240 Potomac River, Mattawoman Creek...) The danger zone. Beginning at a point on the easterly shore of the Potomac River at latitude 38°36′00...

  19. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Potomac River, Mattawoman Creek..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.240 Potomac River, Mattawoman Creek...) The danger zone. Beginning at a point on the easterly shore of the Potomac River at latitude 38°36′00...

  20. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Potomac River, Mattawoman Creek..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.240 Potomac River, Mattawoman Creek...) The danger zone. Beginning at a point on the easterly shore of the Potomac River at latitude 38°36′00...

  1. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Potomac River, Mattawoman Creek..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.240 Potomac River, Mattawoman Creek...) The danger zone. Beginning at a point on the easterly shore of the Potomac River at latitude 38°36′00...

  2. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Potomac River, Mattawoman Creek..., DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.240 Potomac River, Mattawoman Creek...) The danger zone. Beginning at a point on the easterly shore of the Potomac River at latitude 38°36′00...

  3. Calibration of streamflow gauging stations at the Tenderfoot Creek Experimental Forest

    Treesearch

    Scott W. Woods

    2007-01-01

    We used tracer based methods to calibrate eleven streamflow gauging stations at the Tenderfoot Creek Experimental Forest in western Montana. At six of the stations the measured flows were consistent with the existing rating curves. At Lower and Upper Stringer Creek, Upper Sun Creek and Upper Tenderfoot Creek the published flows, based on the existing rating curves,...

  4. Persistence of the longnose darter (P. nasuta) in Lee Creek, Oklahoma

    USGS Publications Warehouse

    Gatlin, Michael R.; Long, James M.

    2011-01-01

    Lee Creek is one of Oklahoma’s six rivers designated as "scenic" by the Oklahoma Legislature. Lee Creek is located on the Oklahoma-Arkansas border in far eastern Oklahoma. The headwaters originate in northwestern Arkansas and flow south towards the Arkansas River. While the majority of the stream is in Arkansas, a portion flows into Oklahoma northwest of Uniontown, AR and continues for 28.2 river-km before crossing back into Arkansas near Van Buren, AR. The hydrology of lower Lee Creek has been altered by Lee Creek Reservoir near Van Buren, AR. It was believed that pre-impounded Lee Creek had the largest existing population of longnose darters (8). However, the most recent fish surveys in Lee Creek were conducted approximately twenty years ago. Robinson (8) surveyed Lee Creek in Arkansas, upstream of the Oklahoma border, and found longnose darters upstream of Natural Dam, AR. Wagner et al. (10) were the last to document longnose darter presence in the Oklahoma segment of Lee Creek. No efforts to collect this species in Oklahoma have occurred since the completion of Lee Creek Reservoir. Our objective was to determine whether the species persist in this segment of its historic range since impoundment.

  5. Impact of slope inclination on salt accumulation

    NASA Astrophysics Data System (ADS)

    Nachshon, Uri

    2017-04-01

    Field measurements indicated on high variability in salt accumulation along natural and cultivated slopes, even for relatively homogeneous soil conditions. It was hypothesised that slope inclination has an impact on the location of salt accumulation along the slope. A set of laboratory experiments and numerical models were used to explore the impact of slope inclination on salt accumulation. It was shown, experimentally, that for conditions of saline water source at the lower boundary of the slope - salt accumulates in low concentrations and homogeneously along the entire slope, for moderate slopes. However, as inclination increases high salt concentrations were observed at the upper parts of the slope, leaving the lower parts of the slope relatively free of salt. The traditional flow and transport models did not predict the experimental observations as they indicated also for the moderate slopes on salt accumulation in the elevated parts of the slope, away of the saline water source. Consequently - a conceptual model was raised to explain the laboratory observations. It was suggested that the interactions between slope angle, evaporation rates, hydraulic conductivity of the medium and distribution of wetness along the slope affect the saline water flow path through the medium. This lead to preferential flow path close to the soil-atmosphere interface for the steep slopes, which leads to constant wash of the salts from the evaporation front upward towards the slope upper parts, whereas for the moderate slopes, flow path is below the soil-atmosphere interface, therefore salt that accumulates at the evaporation front is not being transported upward. Understanding of salt dynamics along slopes is important for agricultural and natural environments, as well as for civil engineering purposes. Better understanding of the salt transport processes along slopes will improve our ability to minimize and to cope with soil salinization processes. The laboratory experiments and

  6. From Creeks to the Classroom: Hands-on Curriculum Units on the Web

    NASA Astrophysics Data System (ADS)

    Salter, I. Y.

    2005-12-01

    Archway School is in the process of developing 6 curriculum units to teach middle school students about the ecology and environmental science of the San Francisco Bay Area. This is being accomplished through integrated classroom, field trip, and creek restoration project activities. The creek where restoration work takes place becomes an outdoor laboratory for a wide array of classroom lessons tied to both National and California Science Education Standards. The entire curriculum, including all lesson plans, assessments, and examples of student work are being made available, free of charge, to teachers and educators via the Internet. Although the units were initially developed to teach about the natural and geological history of the San Francisco Bay Area, classroom activities are structured such that they could be used at any school and restoration work could be undertaken at any creek in the country. This presentation will showcase the curriculum and provide information so that educators may bring it home to their own institutions. Teachers will get a "tour" of 3 of the 6 curriculum units (Ecology, Watersheds, Earth History) and then have an opportunity to view activities that highlight the strengths of the program.

  7. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ROOF OF BUILDING 105 IS VISIBLE IN UPPER PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  8. Field-assisted nanopatterning of metals, metal oxides and metal salts

    NASA Astrophysics Data System (ADS)

    Liu, Jun-Fu; Miller, Glen P.

    2009-02-01

    The tip-based nanofabrication method called field-assisted nanopatterning or FAN has now been extended to the transfer of metals, metal oxides and metal salts onto various receiving substrates including highly ordered pyrolytic graphite, passivated gold and indium-tin oxide. Standard atomic force microscope tips were first dip-coated using suspensions of inorganic compounds in solvent. The films prepared in this manner were non-uniform and contained inorganic nanoparticles. Tip-based nanopatterning on chosen substrates was conducted under high electric field conditions. The same tip was used for both nanofabrication and imaging. Arbitrary patterns were formed with dimensions that ranged from tens of microns to sub-20 nm and were controlled by tuning the tip bias during fabrication. Most tip-based nanopatterning techniques are limited in terms of the type of species that can be deposited and the type of substrates onto which the deposition occurs. With the successful deposition of inorganic species reported here, FAN is demonstrated to be a truly versatile tip-based nanofabrication technique that is useful for the deposition of a wide variety of both organic and inorganic species including small molecules, large molecules and polymers.

  9. Comparative Performance of Multivariable Agro-Physiological Parameters for Detecting Salt Tolerance of Wheat Cultivars under Simulated Saline Field Growing Conditions

    PubMed Central

    El-Hendawy, Salah E.; Hassan, Wael M.; Al-Suhaibani, Nasser A.; Refay, Yahya; Abdella, Kamel A.

    2017-01-01

    Field-based trials are crucial for successfully achieving the goals of plant breeding programs aiming to screen and improve the salt tolerance of crop genotypes. In this study, simulated saline field growing conditions were designed using the subsurface water retention technique (SWRT) and three saline irrigation levels (control, 60, and 120 mM NaCl) to accurately appraise the suitability of a set of agro-physiological parameters including shoot biomass, grain yield, leaf water relations, gas exchange, chlorophyll fluorescence, and ion accumulation as screening criteria to establish the salt tolerance of the salt-tolerant (Sakha 93) and salt-sensitive (Sakha 61) wheat cultivars. Shoot dry weight and grain yield per hectare were substantially reduced by salinity, but the reduction was more pronounced in Sakha 61 than in Sakha 93. Increasing salinity stress caused a significant decrease in the net photosynthesis rate and stomatal conductance of both cultivars, although their leaf turgor pressure increased. The accumulation of toxic ions (Na+ and Cl-) was higher in Sakha 61, but the accumulation of essential cations (K+ and Ca2+) was higher in Sakha 93, which could be the reason for the observed maintenance of the higher leaf turgor of both cultivars in the salt treatments. The maximum quantum PSII photochemical efficiency (Fv/Fm) and the PSII quantum yield (ΦPSII) decreased with increasing salinity levels in Sakha 61, but they only started to decline at the moderate salinity condition in Sakha 93. The principle component analysis successfully identified the interrelationships between all parameters. The parameters of leaf water relations and toxic ion concentrations were significantly related to each other and could identify Sakha 61 at mild and moderate salinity levels, and, to a lesser extent, Sakha 93 at the moderate salinity level. Both cultivars under the control treatment and Sakha 93 at the mild salinity level were identified by most of the other parameters

  10. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Blackhole Creek, Md. 110.72 Section 110.72 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72 Blackhole Creek, Md. The waters on the west side of...

  11. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Blackhole Creek, Md. 110.72 Section 110.72 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.72 Blackhole Creek, Md. The waters on the west side of...

  12. Tidal creek changes at the Sonoma Baylands restoration site

    USGS Publications Warehouse

    Dingler, John R.; Cacchione, David A.; ,

    1998-01-01

    Over the past 150 years, human activity has had a major impact on tidal wetlands adjoining the San Francisco Bay-Delta estuary Growing concern about the effect of this change on the ecology of the estuary has prompted Bay area managers to attempt to reclaim tidal wetlands. The Sonoma Baylands Restoration Project is designed to use dredge material to convert 348 acres from farmland to wetland. This paper describes changes to a tidal creek that flows from that restoration site to San Pablo Bay (north San Francisco Bay) through an existing tidal wetland during different phases of the project. Hydrologic measurements near the bottom of the creek and cross-creek profiles show how the creek responded to non-tidal flow conditions introduced by filling the site with dredge materials. At the time of this study, the creek had deepened by approximately 40 cm but had not widened.

  13. Environmental flow studies of the Fort Collins Science Center, U.S. Geological Survey-Cherry Creek, Arizona

    USGS Publications Warehouse

    Waddle, Terry J.; Bovee, Ken D.

    2010-01-01

    At the request of the U.S. Forest Service, an instream flow assessment was conducted at Cherry Creek, Ariz., to investigate habitat for native and introduced fish species and to describe the beneficial use of a possible instream flow water right. The U.S. Geological Survey (USGS) Fort Collins Science Center performed an intensive field study of two sections of Cherry Creek in September 2008 to provide base data for hydrodynamic simulation of the flow conditions in the stream. The USGS Arizona Cooperative Fish and Wildlife Research Unit, at the University of Arizona School of Natural Resources, conducted a survey of the habitat requirements of the resident fish species in Cherry Creek and provided the habitat suitability criteria used in this study. The habitat suitability criteria were combined with hydrodynamic simulation results to quantify fish habitat for the full range of daily flow experienced in the creek and to produce maps of habitat occurrence for those flows. The flow record at the Cherry Creek stream gage was used to generate habitat response values over time. The long-term habitat response was incorporated into an Excel (Registered) spreadsheet to allow evaluation of habitat occurrence with and without an instream water right under different hypothetical water withdrawal scenarios. The spreadsheet displays information about the time sequence of habitat events, the duration of critical events, and habitat retention.

  14. Fault pattern at the northern end of the Death Valley - Furnace Creek fault zone, California and Nevada

    NASA Technical Reports Server (NTRS)

    Liggett, M. A. (Principal Investigator); Childs, J. F.

    1974-01-01

    The author has identified the following significant results. The pattern of faulting associated with the termination of the Death Valley-Furnace Creek Fault Zone in northern Fish Lake Valley, Nevada was studied in ERTS-1 MSS color composite imagery and color IR U-2 photography. Imagery analysis was supported by field reconnaissance and low altitude aerial photography. The northwest-trending right-lateral Death Valley-Furnace Creek Fault Zone changes northward to a complex pattern of discontinuous dip slip and strike slip faults. This fault pattern terminates to the north against an east-northeast trending zone herein called the Montgomery Fault Zone. No evidence for continuation of the Death Valley-Furnace Creek Fault Zone is recognized north of the Montgomery Fault Zone. Penecontemporaneous displacement in the Death Valley-Furnace Creek Fault Zone, the complex transitional zone, and the Montgomery Fault Zone suggests that the systems are genetically related. Mercury mineralization appears to have been localized along faults recognizable in ERTS-1 imagery within the transitional zone and the Montgomery Fault Zone.

  15. Caspar Creek

    Treesearch

    Robert R. Ziemer

    2001-01-01

    The USDA Forest Service Pacific Southwest Research Station and the California Department of Forestry and Fire Protection have gauged streamflow, and suspended sediment and precipitation since 1962 in the 473 ha North Fork and the 424 ha South Fork of the 2167 ha Caspar Creek in the Jackson Demonstation State Forest in northwestern California. Within the two Caspar...

  16. Characterization of Fish Creek, Teton County, Wyoming, 2004-08

    USGS Publications Warehouse

    Eddy-Miller, Cheryl A.; Peterson, David A.; Wheeler, Jerrod D.; Leemon, Daniel J.

    2010-01-01

    Fish Creek, a tributary to the Snake River, is about 15 river miles long and is located in Teton County in western Wyoming near the town of Wilson (fig. 1). Public concern about nuisance growths of aquatic plants in Fish Creek has been increasing since the early 2000s. To address this concern, the U.S. Geological Survey, in cooperation with the Teton Conservation District, began studying Fish Creek in 2004 to describe the hydrology of the creek and later (2007?08) to characterize the water quality and the biological communities. The purpose of this fact sheet is to summarize the study results from 2004 to 2008.

  17. Estimating pothole wetland connectivity to Pipestem Creek ...

    EPA Pesticide Factsheets

    Understanding hydrologic connectivity between wetlands and perennial streams is critical to understanding how reliant stream flow is on wetlands within their watershed. We used the isotopic evaporation signal in water to examine wetland-stream hydrologic connectivity within the Pipestem Creek watershed, North Dakota, a watershed dominated by prairie-pothole wetlands. During a wetter-than-normal decade, Pipestem Creek exhibited an evaporated-water signal that had approximately half the isotopic-enrichment signal found in most evaporatively enriched pothole wetlands. If evaporation was mainly occurring within the stream, we expected the evaporation signal to increase from upstream towards downstream. However, the signal either remained similar or decreased downstream over the two years of sampling. Groundwater measured at the water table adjacent to Pipestem Creek had isotopic values that indicated recharge from winter precipitation and had no significant evaporative enrichment. Using isotopic theory and discharge data, we estimated the surface area of open water necessary to generate the evaporation signal found within Pipestem Creek over time. The range of evaporating surface-area estimates was highly dynamic, spanning from 35 to 2380 ha of open water contributing to streamflow over time, and varied primarily with the amount of discharge. The median value (417 ha) was well above the surface area of the Pipestem Creek network (245 ha), and only two periods

  18. Environmental setting of Maple Creek watershed, Nebraska

    USGS Publications Warehouse

    Fredrick, Brian S.; Linard, Joshua I.; Carpenter, Jennifer L.

    2006-01-01

    The Maple Creek watershed covers a 955-square-kilometer area in eastern Nebraska, which is a region dominated by agricultural land use. The Maple Creek watershed is one of seven areas currently included in a nationwide study of the sources, transport, and fate of water and chemicals in agricultural watersheds. This study, known as the topical study of 'Agricultural Chemicals: Sources, Transport, and Fate' is part of the National Water-Quality Assessment Program being conducted by the U.S. Geological Survey. The Program is designed to describe water-quality conditions and trends based on representative surface- and ground-water resources across the Nation. The objective of the Agricultural Chemicals topical study is to investigate the sources, transport, and fate of selected agricultural chemicals in a variety of agriculturally diverse environmental settings. The Maple Creek watershed was selected for the Agricultural Chemicals topical study because its watershed represents the agricultural setting that characterizes eastern Nebraska. This report describes the environmental setting of the Maple Creek watershed in the context of how agricultural practices, including agricultural chemical applications and irrigation methods, interface with natural settings and hydrologic processes. A description of the environmental setting of a subwatershed within the drainage area of Maple Creek is included to improve the understanding of the variability of hydrologic and chemical cycles at two different scales.

  19. Bioassays and field immersion tests: a comparison of the antifouling activity of copper-free poly(methacrylic)-based coatings containing tertiary amines and ammonium salt groups.

    PubMed

    Bressy, C; Hellio, C; Marechal, J P; Tanguy, B; Margaillan, A

    2010-10-01

    This paper focuses on the activity spectrum of three dimethylalkyl tertiary amines as potential active molecules and the corresponding ammonium salt-based antifouling (AF) paints. Bioassays (using marine bacteria, microalgae and barnacles) and field tests were combined to assess the AF activity of coatings. Bioassay results demonstrated that the ammonium salt-based paints did not inhibit the growth of microorganisms (except the dimethyldodecylammonium-based coatings) and that the tertiary amines were potent towards bacteria, diatoms, and barnacle larvae at non-toxic concentrations (therapeutic ratio, LC50/EC50, <1). The results from field tests indicated that the ammonium salt-based coatings inhibited the settlement of macrofouling and the dimethylhexadecylammonium-based coatings provided protection against slime in comparison with PVC blank panels. Thus, results from laboratory assays did not fully concur with the AF activity of the paints in the field trial.

  20. Hydrologic data from the study of acidic contamination in the Miami Wash-Pinal Creek area, Arizona, water years 1992-93

    USGS Publications Warehouse

    Gellenbeck, D.J.; Hunter, Yvonne R.

    1994-01-01

    Since 1984, hydrologic data have been collected as part of a U.S. Geological Survey study of the occurrence and movement of acidic contamination in the aquifer and streams of the Pinal Creek drainage basin near Globe, Arizona. Ground-water data from that study are presented for water years 1992 and 1993 and include location, construction information, site plans, water levels, chemical and physical field measurements, and selected chemical analyses of water samples for 10 monitoring well groups. During January 1993, a flood occurred in Pinal Creek that resulted in a record peak discharge of 5,700 cubic feet per second. During this flood, well group 450 was destroyed. Surface-water data are presented for 13 sites and include discharge measurements, chemical and physical field measure- ments, and chemical analyses of water. Data from a solute-transport study that was conducted in November 1992 are presented for shallow ground-water and surface-water sites along Pinal Creek. During this study, variations in metal chemistry with distance along Pinal Creek and depth below the streambed were determined and two filter sizes were used to quantify the partitioning of metals between dissolved and particulate phases. Monthly precipi- tation data and long-term precipitation statistics are presented for two sites.

  1. 1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING BUILDING 108 AT PHOTO RIGHT AND BUILDING 105 AT PHOTO CENTER BEHIND SWITCHRACKS AND TREE. POWERHOUSE IS AT EXTREME PHOTO LEFT. VIEW TO WEST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  2. SEASONAL CHANGES IN THE AMPHIPOD FAUNA OF 'MICROCIONA PROLIFERA' (ELLIS AND SOLANDER) (PORIFERA: DEMOSPONGIA) AND ASSOCIATED SPONGES IN A SHALLOW SALT-MARSH CREEK

    EPA Science Inventory

    Between September 1976 and August 1978, samples of four species of sponge, Microciona prolifera, Haliclona loosanoffi, Lissodendoryx, and Halichondria bowerbanki were collected from subtidal shell debris in a North Edisto River, South Carolina saltmarsh creek and associated amphi...

  3. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract.

    PubMed

    Sun, Chengsan; Hummler, Edith; Hill, David L

    2017-01-18

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent "pruning" of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case sodium salt taste, play a role

  4. Selective Deletion of Sodium Salt Taste during Development Leads to Expanded Terminal Fields of Gustatory Nerves in the Adult Mouse Nucleus of the Solitary Tract

    PubMed Central

    Sun, Chengsan; Hummler, Edith

    2017-01-01

    Neuronal activity plays a key role in the development of sensory circuits in the mammalian brain. In the gustatory system, experimental manipulations now exist, through genetic manipulations of specific taste transduction processes, to examine how specific taste qualities (i.e., basic tastes) impact the functional and structural development of gustatory circuits. Here, we used a mouse knock-out model in which the transduction component used to discriminate sodium salts from other taste stimuli was deleted in taste bud cells throughout development. We used this model to test the hypothesis that the lack of activity elicited by sodium salt taste impacts the terminal field organization of nerves that carry taste information from taste buds to the nucleus of the solitary tract (NST) in the medulla. The glossopharyngeal, chorda tympani, and greater superficial petrosal nerves were labeled to examine their terminal fields in adult control mice and in adult mice in which the α-subunit of the epithelial sodium channel was conditionally deleted in taste buds (αENaC knockout). The terminal fields of all three nerves in the NST were up to 2.7 times greater in αENaC knock-out mice compared with the respective field volumes in control mice. The shapes of the fields were similar between the two groups; however, the density and spread of labels were greater in αENaC knock-out mice. Overall, our results show that disruption of the afferent taste signal to sodium salts disrupts the normal age-dependent “pruning” of all terminal fields, which could lead to alterations in sensory coding and taste-related behaviors. SIGNIFICANCE STATEMENT Neural activity plays a major role in the development of sensory circuits in the mammalian brain. To date, there has been no direct test of whether taste-elicited neural activity has a role in shaping central gustatory circuits. However, recently developed genetic tools now allow an assessment of how specific taste stimuli, in this case

  5. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Dry Creek Valley. 9.64 Section 9.64 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.64 Dry Creek Valley. (a) Name. The name of the...

  6. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Dry Creek Valley. 9.64 Section 9.64 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.64 Dry Creek Valley. (a) Name. The name of the...

  7. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Dry Creek Valley. 9.64 Section 9.64 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.64 Dry Creek Valley. (a) Name. The name of the...

  8. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Dry Creek Valley. 9.64 Section 9.64 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.64 Dry Creek Valley. (a) Name. The name of the...

  9. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Dry Creek Valley. 9.64 Section 9.64 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.64 Dry Creek Valley. (a) Name. The name of the...

  10. Hydrogeochemical and stream sediment special reconnaissance report for the Deep Creek Mountains, Nevada and Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qualheim, B.

    1979-04-01

    This report represents the results of the reconnaissance sampling of the Deep Creek Mountains of western Utah. The Deep Creek range is located in the northwest corner of the Delta NTMS 1:250,000 and the southwestern corner of the Tooele NTMS 1:250,000 sheets and covers an area of 1750 km/sup 2/. Samples collected in this study include dry and wet stream sediments and water from available streams, wells, and springs. The samples were analyzed for uranium, as well as 15 to 20 trace elements, using neutron activation techniques. In addition, field and laboratory measurements were made on the water samples. Analyticalmore » data and field measurements are presented in tabular hard copy and fiche format. Water-sample site locations, water-sample uranium concentrations, sediment-sample site locations, and sediment-sample uranium concentrations are shown on separate overlays.« less

  11. Return Spawning/Rearing Habitat to Anadromous/Resident Fish within the Fishing Creek to Legendary Bear Creek Analysis Area Watersheds; 2002-2003 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Jr., Emmit E.

    2004-03-01

    This project is a critical component of currently on-going watershed restoration effort in the Lochsa River Drainage, including the Fishing (Squaw) Creek to Legendary Bear (Papoose) Creek Watersheds Analysis Area. In addition, funding for this project allowed expansion of the project into Pete King Creek and Cabin Creek. The goal of this project is working towards the re-establishment of healthy self-sustaining populations of key fisheries species (spring Chinook salmon, steelhead, bull trout, and westslope cutthroat trout) through returning historic habitat in all life stages (spawning, rearing, migration, and over-wintering). This was accomplished by replacing fish barrier road crossing culverts withmore » structures that pass fish and accommodate site conditions.« less

  12. Long Term Analysis of Deformations in Salt Mines: Kłodawa Salt Mine Case Study, Central Poland

    NASA Astrophysics Data System (ADS)

    Cała, Marek; Tajduś, Antoni; Andrusikiewicz, Wacław; Kowalski, Michał; Kolano, Malwina; Stopkowicz, Agnieszka; Cyran, Katarzyna; Jakóbczyk, Joanna

    2017-09-01

    Located in central Poland, the Kłodawa salt dome is 26 km long and about 2 km wide. Exploitation of the dome started in 1956, currently rock salt extraction is carried out in 7 mining fields and the 12 mining levels at the depth from 322 to 625 meters below sea level (m.b.s.l.). It is planned to maintain the mining activity till 2052 and extend rock salt extraction to deeper levels. The dome is characterised by complex geological structure resulted from halokinetic and tectonic processes. Projection of the 3D numerical analysis took into account the following factors: mine working distribution within the Kłodawa mine (about 1000 rooms, 350 km of galleries), complex geological structure of the salt dome, complicated structure and geometry of mine workings and distinction in rocks mechanical properties e.g. rock salt and anhydrite. Analysis of past mine workings deformation and prediction of future rock mass behaviour was divided into four stages: building of the 3D model (state of mine workings in year 2014), model extension of the future mine workings planned for extraction in years 2015-2052, the 3D model calibration and stability analysis of all mine workings. The 3D numerical model of Kłodawa salt mine included extracted and planned mine workings in 7 mining fields and 14 mining levels (about 2000 mine workings). The dimensions of the model were 4200 m × 4700 m × 1200 m what was simulated by 33 million elements. The 3D model was calibrated on the grounds of convergence measurements and laboratory tests. Stability assessment of mine workings was based on analysis of the strength/stress ratio and vertical stress. The strength/stress ratio analysis enabled to indicate endangered area in mine workings and can be defined as the factor of safety. Mine workings in state close to collapse are indicated by the strength/stress ratio equals 1. Analysis of the vertical stress in mine workings produced the estimation of current state of stress in comparison to initial

  13. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... DEPARTMENT OF AGRICULTURE Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest... Rangeland Project area. The analysis will determine if a change in management direction for livestock grazing is needed to move existing resource conditions within the Monitor-Hot Creek Rangeland Project area...

  14. Soil health research in the Goodwater Creek Experimental Watershed Long-Term Agroecosystem Research site

    USDA-ARS?s Scientific Manuscript database

    The Goodwater Creek Experimental Watershed (GCEW) is located in the Central Claypan Region in NE Missouri. Within GCEW, a field and plot research site has been operated by the USDA-Agricultural Research Service (ARS) Cropping Systems and Water Quality Research Unit since 1991. The GCEW site joined t...

  15. Geologic framework, regional aquifer properties (1940s-2009), and spring, creek, and seep properties (2009-10) of the upper San Mateo Creek Basin near Mount Taylor, New Mexico

    USGS Publications Warehouse

    Langman, Jeff B.; Sprague, Jesse E.; Durall, Roger A.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Forest Service, examined the geologic framework, regional aquifer properties, and spring, creek, and seep properties of the upper San Mateo Creek Basin near Mount Taylor, which contains areas proposed for exploratory drilling and possible uranium mining on U.S. Forest Service land. The geologic structure of the region was formed from uplift of the Zuni Mountains during the Laramide Orogeny and the Neogene volcanism associated with the Mount Taylor Volcanic Field. Within this structural context, numerous aquifers are present in various Paleozoic and Mesozoic sedimentary formations and the Quaternary alluvium. The distribution of the aquifers is spatially variable because of the dip of the formations and erosion that produced the current landscape configuration where older formations have been exhumed closer to the Zuni Mountains. Many of the alluvial deposits and formations that contain groundwater likely are hydraulically connected because of the solid-matrix properties, such as substantive porosity, but shale layers such as those found in the Mancos Formation and Chinle Group likely restrict vertical flow. Existing water-level data indicate topologically downgradient flow in the Quaternary alluvium and indiscernible general flow patterns in the lower aquifers. According to previously published material and the geologic structure of the aquifers, the flow direction in the lower aquifers likely is in the opposite direction compared to the alluvium aquifer. Groundwater within the Chinle Group is known to be confined, which may allow upward migration of water into the Morrison Formation; however, confining layers within the Chinle Group likely retard upward leakage. Groundwater was sodium-bicarbonate/sulfate dominant or mixed cation-mixed anion with some calcium/bicarbonate water in the study area. The presence of the reduction/oxidation-sensitive elements iron and manganese in groundwater indicates reducing

  16. Naturally Occurring Asbestos in Washington State: Swift Creek at the Intersection of Science, Law, and Risk Perception

    NASA Astrophysics Data System (ADS)

    Melious, J. O.

    2012-12-01

    In the northwestern corner of Washington state, a large landslide on Sumas Mountain deposits more than 100,000 cubic yards of soil containing asbestos fibers and heavy metals into Swift Creek every year. Engineers predict that asbestos-laden soils will slide into Swift Creek for at least the next 400 years. Swift Creek joins the Sumas River, which crosses the border into Canada, serving as an international delivery system for asbestos-laden soils. When the rivers flood, as happens regularly, they deliver asbestos into field, yards, and basements. The tools available to address the Swift Creek situation are at odds with the scope and nature of the problem. Asbestos regulation primarily addresses occupational settings, where exposures can be estimated. Hazardous waste regulation primarily addresses liability for abandoned waste products from human activities. Health and environmental issues relating to naturally occurring asbestos (NOA) are fundamentally different from either regulatory scheme. Liability is not a logical lever for a naturally occurring substance, the existence of which is nobody's fault, and exposures to NOA in the environment do not necessarily resemble occupational exposures. The gaps and flaws in the legal regime exacerbate the uncertainties created by uncertainties in the science. Once it is assumed that no level of exposure is safe, legal requirements adopted in very different contexts foreclose the options for addressing the Swift Creek problem. This presentation will outline the applicable laws and how they intersect with issues of risk perception, uncertainty and politics in efforts to address the Swift Creek NOA site.

  17. Will fluctuations in salt marsh–mangrove dominance alter vulnerability of a subtropical wetland to sea‐level rise?

    USGS Publications Warehouse

    Mckee, Karen L.; Vervaeke, William

    2018-01-01

    To avoid submergence during sea-level rise, coastal wetlands build soil surfaces vertically through accumulation of inorganic sediment and organic matter. At climatic boundaries where mangroves are expanding and replacing salt marsh, wetland capacity to respond to sea-level rise may change. To compare how well mangroves and salt marshes accommodate sea-level rise, we conducted a manipulative field experiment in a subtropical plant community in the subsiding Mississippi River Delta. Experimental plots were established in spatially equivalent positions along creek banks in monospecific stands of Spartina alterniflora (smooth cordgrass) or Avicennia germinans (black mangrove) and in mixed stands containing both species. To examine the effect of disturbance on elevation dynamics, vegetation in half of the plots was subjected to freezing (mangrove) or wrack burial (salt marsh), which caused shoot mortality. Vertical soil development was monitored for 6 years with the surface elevation table-marker horizon system. Comparison of land movement with relative sea-level rise showed that this plant community was experiencing an elevation deficit (i.e., sea level was rising faster than the wetland was building vertically) and was relying on elevation capital (i.e., relative position in the tidal frame) to survive. Although Avicennia plots had more elevation capital, suggesting longer survival, than Spartina or mixed plots, vegetation type had no effect on rates of accretion, vertical movement in root and sub-root zones, or net elevation change. Thus, these salt marsh and mangrove assemblages were accreting sediment and building vertically at equivalent rates. Small-scale disturbance of the plant canopy also had no effect on elevation trajectories—contrary to work in peat-forming wetlands showing elevation responses to changes in plant productivity. The findings indicate that in this deltaic setting with strong physical influences controlling elevation (sediment

  18. Recovery of a PCB-Contaminated Creek Fish Community

    EPA Science Inventory

    Polychlorinated Biphenyls (PCBs) from the Sangamo-Weston Superfund Site near Clemson, South Carolina, USA, were released into the Twelvemile Creek until the early 1990s. PCB concentrations in fish in this creek have remained elevated: levels in six target fish species are still a...

  19. Altered tuffaceous rocks of the Green River Formation in the Piceance Creek Basin, Colorado

    USGS Publications Warehouse

    Griggs, Roy Lee

    1968-01-01

    More than 50 ash-fall tuff beds which have altered to analcitized or feldspathized rocks have been found in the upper 500-600 feet of the Parachute Creek Member of the Green River Formation in the Piceance Creek Basin of northwestern Colorado. Similarly altered water-washed tuff occurs as tongues in the uppermost part of this member, and forms most of the lower 400-600 feet of the overlying Evacuation Creek Member of the Green River Formation. 'The altered ash-fall beds of the Parachute Creek Member are all thin and show a characteristic pattern of alteration. Most beds range in thickness from a fraction of an inch to a few inches. One bed reaches a maximum thickness of 5 feet, and, unlike the other beds, is composed of several successive ash falls. The pattern of alteration changes from the outer part to the center of the basin. Most beds in the outer part of the basin contain about 50 to 65 percent analcite,with the interstices between the crystals filled mainly by microlites of feldspar, opal, and quartz, and small amounts of carbonate. At the center of the basin .essentially all the beds -are composed of microlites of feldspar, opal, and quartz, and small amounts of carbonate. The tongues of water-washed tuff in the uppermost part of the Parachute Creek Member and the similar rocks composing the lower 400-600 feet of the Evacuation Creek Mewber are feldspathized rocks composed mainly of microlites of feldspar, opal, and quartz, varying amounts of carbonate, and in some specimens tiny subrounded crystals of analcite. The general trend in alteration of the tuffaceous rocks from analcitization near the margin to feidspathization near the center of the Piceance Creek Basin is believed to have taken place at shallow depth during diagenesis , as indicated by field observations and laboratory work. It is believed that during sedimentation and diagenesis the waters of the central part of the basin were more alkaline and following the breakdown of the original

  20. Water Quality in Courtland Creek, East Oakland, California

    NASA Astrophysics Data System (ADS)

    Bracho, H.; Ahumada, A.; Hernandez, G.; Quintero, D.; Ramirez, J.; Ramirez, L.; Pham, T.; Holt, J.; Johnson, A.; Rubio, E.; Ponce, X.; Medina, S.; Limon, S.

    2013-12-01

    Courtland Creek is a tributary of the larger East Creek system that runs southeast from the Oakland Hills down to the San Leandro Bay in Oakland, California. In an effort to assess the overall health of Courtland Creek our team conducted a water quality research study. Stream water samples were collected from 4 sites between MacArthur Avenue (describe geographically as not all readers are familiar with Oakland geography) and Thompson Avenue (describe geographically as not all readers are familiar with Oakland geography) at accessible sections of this largely culverted stream. Dissolved oxygen, ammonia, nitrite, nitrate, phosphate, and chlorine concentrations in were measured using wet chemistry procedures. Analysis of collected samples indicates that dissolved oxygen levels in the stream are sufficient for invertebrates, ranging from 5 and 9 parts per million (ppm). Nitrate levels were significantly high, with concentrations ranging from 15 and 40 ppm. Other chemical species associated with waste products--ammonia, nitrite, and phosphate--also were present, but at low concentrations. Small amounts of chlorine also were found in waters of the creek system. The presence of high concentrations of nitrate, together with chlorine, suggests that untreated sewage may be leaking into Courtland Creek at an unidentified location.

  1. Scotch Creek Wildlife Area 2007-2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Jim

    The Scotch Creek Wildlife Area is a complex of 6 separate management units located in Okanogan County in North-central Washington State. The project is located within the Columbia Cascade Province (Okanogan sub-basin) and partially addresses adverse impacts caused by the construction of Chief Joseph and Grand Coulee hydroelectric dams. With the acquisition of the Eder unit in 2007, the total size of the wildlife area is now 19,860 acres. The Scotch Creek Wildlife Area was approved as a wildlife mitigation project in 1996 and habitat enhancement efforts to meet mitigation objectives have been underway since the spring of 1997 onmore » Scotch Creek. Continuing efforts to monitor the threatened Sharp-tailed grouse population on the Scotch Creek unit are encouraging. The past two spring seasons were unseasonably cold and wet, a dangerous time for the young of the year. This past spring, Scotch Creek had a cold snap with snow on June 10th, a critical period for young chicks just hatched. Still, adult numbers on the leks have remained stable the past two years. Maintenance of BPA funded enhancements is necessary to protect and enhance shrub-steppe and to recover and sustain populations of Sharp-tailed grouse and other obligate species.« less

  2. A dolichopodid hotspot: Montana's Milligan Creek Canyon

    Treesearch

    Justin B. Runyon

    2016-01-01

    In southwest Montana, near the town of Three Forks, Milligan Creek cuts a small and seemingly mundane notch through dry limestone hills. Milligan Creek is unassuming and small enough to be effortlessly stepped over in most places. In fact, it flows underground for much of its 4-5 mile journey to the Jefferson River. Incredibly, forty-nine species of long-legged flies (...

  3. Final Environmental Assessment, Horse Creek Bridge Replacement

    DTIC Science & Technology

    2010-10-01

    Final Environmental Assessment Horse Creek Bridge Replacement 78th Civil Engineer Group...Final Environmental Assessment Horse Creek Bridge Replacement 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 FINDING OF NO SIGNIFICANT IMPACT (FONSI)/ FINDING OF NO PRACTICABLE ALTERNATIVE (FONP A) HORSE

  4. Ecology of irregularly flooded salt marshes of the northeastern Gulf of Mexico: a community profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stout, J.P.

    1984-12-01

    The salt marshes of the northeastern Gulf of Mexico are distinguished by irregular flooding, low energy wave and tidal action, and long periods of exposure. The plant community is most often dominated by black needlerush (Juncus roemerianus), the species of focus in this synthesis. Distinct marsh zones include those dominated by Juncus and Spartina alterniflora at low elevations, sparsely vegetated salt flats, and higher elevation salt meadows of Juncus and Spartina patens. A diverse microbial and algal assemblage is also present. A diverse fauna has adapted to the physical rigors of these marshes. Zooplankton are dominated by the larvae ofmore » fiddler crabs and other decapods. The meiofauna consist primarily of nematodes and harpacticoid copepods. Macroinvertebrates are represented by crustaceans (especially mollusks and crabs), annelids, and insects. Grass shrimp, blue crabs, and other crustaceans are seasonally abundant in marsh creeks, as are a number of resident and migratory fish species. Birds comprise one of the larger herbivore groups and are also significant at higher tropic levels as top carnivores. Muskrat and nutria are important mammals. 43 figs., 38 tabs.« less

  5. Geohydrology of the stratified-drift aquifer system in the lower Sixmile Creek and Willseyville Creek trough, Tompkins County, New York

    USGS Publications Warehouse

    Miller, Todd S.; Karig, Daniel E.

    2010-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Tompkins County Planning Department began a series of studies of the stratified-drift aquifers in Tompkins County to provide geohydrologic data for planners to develop a strategy to manage and protect their water resources. This aquifer study in lower Sixmile Creek and Willseyville Creek trough is the second in a series of aquifer studies in Tompkins County. The study area is within the northern area of the Appalachian Plateau and extends about 9 miles from the boundary between Tompkins County and Tioga County in the south to just south of the City of Ithaca in the north. In lower Sixmile Creek and Willseyville Creek trough, confined sand and gravel aquifers comprise the major water-bearing units while less extensive unconfined units form minor aquifers. About 600 people who live in lower Sixmile Creek and Willseyville Creek trough rely on groundwater from the stratified-drift aquifer system. In addition, water is used by non-permanent residents such as staff at commercial facilities. The estimated total groundwater withdrawn for domestic use is about 45,000 gallons per day (gal/d) or 0.07 cubic foot per second (ft3/s) based on an average water use of 75 gal/d per person for self-supplied water systems in New York. Scouring of bedrock in the preglacial lower Sixmile Creek and Willseyville Creek valleys by glaciers and subglacial meltwaters truncated hillside spurs, formed U-shaped, transverse valley profiles, smoothed valley walls, and deepened the valleys by as much as 300 feet (ft), forming a continuous trough. The unconsolidated deposits in the study area consist mostly of glacial drift, both unstratified drift (till) and stratified drift (laminated lake, deltaic, and glaciofluvial sediments), as well as some post-glacial stratified sediments (lake-bottom sediments that were deposited in reservoirs, peat and muck that were deposited in wetlands, and alluvium deposited by streams). Multiple advances and

  6. Water resources of Bannock Creek basin, southeastern Idaho

    USGS Publications Warehouse

    Spinazola, Joseph M.; Higgs, B.D.

    1997-01-01

    The potential for development of water resources in the Bannock Creek Basin is limited by water supply. Bannock Creek Basin covers 475 square miles in southeastern Idaho. Shoshone-Bannock tribal lands on the Fort Hall Indian Reservation occupy the northern part of the basin; the remainder of the basin is privately owned. Only a small amount of information on the hydrologic and water-quality characteristics of Bannock Creek Basin is available, and two previous estimates of water yield from the basin ranged widely from 45,000 to 132,500 acre-feet per year. The Shoshone-Bannock Tribes need an accurate determination of water yield and baseline water-quality characteristics to plan and implement a sustainable level of water use in the basin. Geologic setting, quantities of precipitation, evapotranspiration, surface-water runoff, recharge, and ground-water underflow were used to determine water yield in the basin. Water yield is the annual amount of surface and ground water available in excess of evapotranspiration by crops and native vegetation. Water yield from Bannock Creek Basin was affected by completion of irrigation projects in 1964. Average 1965-89 water yield from five subbasins in Bannock Creek Basin determined from water budgets was 60,600 acre-feet per year. Water yield from the Fort Hall Indian Reservation part of Bannock Creek Basin was estimated to be 37,700 acre-feet per year. Water from wells, springs, and streams is a calcium bicarbonate type. Concentrations of dissolved nitrite plus nitrate as nitrogen and fluoride were less than Maximum Contaminant Levels for public drinking-water supplies established by the U.S. Environmental Protection Agency. Large concentrations of chloride and nitrogen in water from several wells, springs, and streams likely are due to waste from septic tanks or stock animals. Estimated suspended-sediment load near the mouth of Bannock Creek was 13,300 tons from December 1988 through July 1989. Suspended-sediment discharge was

  7. Calibration of a field-scale Soil and Water Assessment Tool (SWAT) model with field placement of best management practices in Alger Creek, Michigan

    USGS Publications Warehouse

    Merriman-Hoehne, Katherine R.; Russell, Amy M.; Rachol, Cynthia M.; Daggupati, Prasad; Srinivasan, Raghavan; Hayhurst, Brett A.; Stuntebeck, Todd D.

    2018-01-01

    Subwatersheds within the Great Lakes “Priority Watersheds” were targeted by the Great Lakes Restoration Initiative (GLRI) to determine the effectiveness of the various best management practices (BMPs) from the U.S. Department of Agriculture-Natural Resources Conservation Service National Conservation Planning (NCP) Database. A Soil and Water Assessment Tool (SWAT) model is created for Alger Creek, a 50 km2 tributary watershed to the Saginaw River in Michigan. Monthly calibration yielded very good Nash–Sutcliffe efficiency (NSE) ratings for flow, sediment, total phosphorus (TP), dissolved reactive phosphorus (DRP), and total nitrogen (TN) (0.90, 0.79, 0.87, 0.88, and 0.77, respectively), and satisfactory NSE rating for nitrate (0.51). Two-year validation results in at least satisfactory NSE ratings for flow, sediment, TP, DRP, and TN (0.83, 0.54, 0.73, 0.53, and 0.60, respectively), and unsatisfactory NSE rating for nitrate (0.28). The model estimates the effect of BMPs at the field and watershed scales. At the field-scale, the most effective single practice at reducing sediment, TP, and DRP is no-tillage followed by cover crops (CC); CC are the most effective single practice at reducing nitrate. The most effective BMP combinations include filter strips, which can have a sizable effect on reducing sediment and phosphorus loads. At the watershed scale, model results indicate current NCP BMPs result in minimal sediment and nutrient reductions (<10%).

  8. Valuing water quality in urban watersheds: A comparative analysis of Johnson Creek, Oregon, and Burnt Bridge Creek, Washington

    NASA Astrophysics Data System (ADS)

    Netusil, Noelwah R.; Kincaid, Michael; Chang, Heejun

    2014-05-01

    This study uses the hedonic price method to investigate the effect of five water quality parameters on the sale price of single-family residential properties in two urbanized watersheds in the Portland, Oregon-Vancouver, Washington metropolitan area. Water quality parameters include E. coli or fecal coliform, which can affect human health, decrease water clarity and generate foul odors; pH, dissolved oxygen, and stream temperature, which can impact fish and wildlife populations; and total suspended solids, which can affect water clarity, aquatic life, and aesthetics. Properties within ¼ mile, ½, mile, one mile, or more than one mile from Johnson Creek are estimated to experience an increase in sale price of 13.71%, 7.05%, 8.18%, and 3.12%, respectively, from a one mg/L increase in dissolved oxygen levels during the dry season (May-October). Estimates for a 100 count per 100 mL increase in E. coli during the dry season are -2.81% for properties within ¼ mile of Johnson Creek, -0.86% (½ mile), -1.19% (one mile), and -0.71% (greater than one mile). Results for properties in Burnt Bridge Creek include a significantly positive effect for a one mg/L increase in dissolved oxygen levels during the dry season for properties within ½ mile (4.49%), one mile (2.95%), or greater than one mile from the creek (3.17%). Results for other water quality parameters in Burnt Bridge Creek are generally consistent with a priori expectations. Restoration efforts underway in both study areas might be cost justified based on their estimated effect on property sale prices.

  9. 33 CFR 117.115 - Three Mile Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Three Mile Creek. 117.115 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.115 Three Mile Creek. (a) The draw of the US43 bridge, mile 1.0 at Mobile, need not be opened from 7 a.m. to 9 a.m. and from 4:30 p.m. to 6...

  10. 33 CFR 117.115 - Three Mile Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Three Mile Creek. 117.115 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.115 Three Mile Creek. (a) The draw of the US43 bridge, mile 1.0 at Mobile, need not be opened from 7 a.m. to 9 a.m. and from 4:30 p.m. to 6...

  11. 33 CFR 117.115 - Three Mile Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Three Mile Creek. 117.115 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.115 Three Mile Creek. (a) The draw of the US43 bridge, mile 1.0 at Mobile, need not be opened from 7 a.m. to 9 a.m. and from 4:30 p.m. to 6...

  12. 33 CFR 117.115 - Three Mile Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Three Mile Creek. 117.115 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.115 Three Mile Creek. (a) The draw of the US43 bridge, mile 1.0 at Mobile, need not be opened from 7 a.m. to 9 a.m. and from 4:30 p.m. to 6...

  13. 33 CFR 117.115 - Three Mile Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Three Mile Creek. 117.115 Section... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.115 Three Mile Creek. (a) The draw of the US43 bridge, mile 1.0 at Mobile, need not be opened from 7 a.m. to 9 a.m. and from 4:30 p.m. to 6...

  14. AmeriFlux US-OWC Old Woman Creek

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohrer, Gil

    This is the AmeriFlux version of the carbon flux data for the site US-OWC Old Woman Creek. Site Description - Old Woman Creek is a natural freshwater estuary connected to Lake Erie in northern Ohio. It is one of few natuaral estuary systems left in Ohio. The site is permanently flooded and contains a mixture of wetland vegetation, open water, and mud flats.

  15. Laboratory and field testing of an accelerated bridge construction demonstration bridge : US Highway 6 bridge over Keg Creek.

    DOT National Transportation Integrated Search

    2013-04-01

    The US Highway 6 Bridge over Keg Creek outside of Council Bluffs, Iowa is a demonstration bridge site chosen to put into practice : newly-developed Accelerated Bridge Construction (ABC) concepts. One of these new concepts is the use of prefabricated ...

  16. Surface-water quality of coal-mine lands in Raccoon Creek Basin, Ohio

    USGS Publications Warehouse

    Wilson, K.S.

    1985-01-01

    The Ohio Department of Natural Resources, Division of Reclamation, plans to reclaim abandoned surface mines in the Raccoon Creek watershed in southern Ohio. Historic water-quality data collected between 1975 and 1983 were complied and analyzed in terms of eight selected mine-drainage characteristics to develop a data base for individual subbasin reclamation projects. Areas of mine drainage affecting Raccoon Creek basin, the study Sandy Run basin, the Hewett Fork basin, and the Little raccoon Creek basin. Surface-water-quality samples were collected from a 41-site network from November 1 through November 3, 1983, Results of the sampling reaffirmed that the major sources of mine drainage to Raccoon Creek are in the Little Raccoon Creek basin, and the Hewett Fork basin. However, water quality at the mouth of Sandy Run indicated that it is not a source of mine drainage to Raccoon Creek. Buffer Run, Goose Run, an unnamed tributary to Little Raccoon Creek, Mulga Run, and Sugar Run were the main sources of mine drainage sampled in the Little Raccoon Creek basin. All sites sampled in the East Branch Raccoon Creek basin were affected by mine drainage. This information was used to prepare a work plan for additional data collection before, during, and after reclamation. The data will be used to define the effectiveness of reclamation effects in the basin.

  17. 75 FR 68780 - Cedar Creek Wind Energy, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RC11-1-000] Cedar Creek Wind Energy, LLC; Notice of Filing November 2, 2010. Take notice that on October 27, 2010, Cedar Creek Wind Energy, LLC (Cedar Creek) filed an appeal with the Federal Energy Regulatory Commission (Commission) of...

  18. Mining geology of the Pond Creek seam, Pikeville Formation, Middle Pennsylvanian, in part of the Eastern Kentucky Coal Field, USA

    USGS Publications Warehouse

    Greb, S.F.; Popp, J.T.

    1999-01-01

    The Pond Creek seam is one of the leading producers of coal in the Eastern Kentucky Coal Field. The geologic factors that affect mining were investigated in several underground mines and categorized in terms of coal thickness, coal quality, and roof control. The limits of mining and thick coal are defined by splitting along the margin of the coal body. Within the coal body, local thickness variation occurs because of (1) leader coal benches filling narrow, elongated depressions, (2) rider coal benches coming near to or merging with the main bench, (3) overthrust coal benches being included along paleochannel margins, (4) cutouts occuring beneath paleochannels, and (5) very hard and unusual rock partings occuring along narrow, elongated trends. In the study area, the coal is mostly mined as a compliance product: sulfur contents are less than 1% and ash yields are less than 10%. Local increases in sulfur occur beneath sandstones, and are inferred to represent post-depositional migration of fluids through porous sands into the coal. Run-of-mine quality is also affected by several mine-roof conditions and trends of densely concentrated rock partings, which lead to increased in- and out-of-seam dilution and overall ash content of the mined coal. Roof control is largely a function of a heterolithic facies mosaic of coastal-estuarine origin, regional fracture trends, and unloading stress related to varying mine depth beneath the surface. Lateral variability of roof facies is the rule in most mines. The largest falls occur beneath modern valleys and parallel fractures, along paleochannel margins, within tidally affected 'stackrock,' and beneath rider coals. Shale spalling, kettlebottoms, and falls within other more isolated facies also occur. Many of the lithofacies, and falls related to bedding weaknesses within or between lithofacies, occur along northeast-southwest trends, which can be projected in advance of mining. Fracture-related falls occur independently of

  19. San Mateo Creek Basin

    EPA Pesticide Factsheets

    The San Mateo Creek Basin comprises approximately 321 square miles within the Rio San Jose drainage basin in McKinley and Cibola counties, New Mexico. This basin is located within the Grants Mining District (GMD).

  20. Partridge Creek Diversion Project

    EPA Pesticide Factsheets

    Goal: prevent mercury contamination by keeping the creek from flowing through a mine pit. The project improved brook trout habitat, green infrastructure, the local economy, and decreased human health risks. Includes before-and-after photos.

  1. Fast-growing willow shrub named `Fish Creek`

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-08

    A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

  2. Rock Creek and Potomac Parkway / Waterside Drive Sycamore and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rock Creek and Potomac Parkway / Waterside Drive Sycamore and White Ash Trees, Rock Creek and Potomac Parkway, median between northbound and southbound lanes near the Waterside Drive exit and entrance ramps., Washington, District of Columbia, DC

  3. Hydrology of Bishop Creek, California: An Isotopic Analysis

    Treesearch

    Michael L. Space; John W. Hess; Stanley D. Smith

    1989-01-01

    Five power generation plants along an eleven kilometer stretch divert Bishop Creek water for hydro-electric power. Stream diversion may be adversely affecting the riparian vegetation. Stable isotopic analysis is employed to determine surface water/ground-water interactions along the creek. surface water originates primarily from three headwater lakes. Discharge into...

  4. Field-trip guide to subaqueous volcaniclastic facies in the Ancestral Cascades arc in southern Washington State—The Ohanapecosh Formation and Wildcat Creek beds

    USGS Publications Warehouse

    Jutzeler, Martin; McPhie, Jocelyn

    2017-06-27

    Partly situated in the idyllic Mount Rainier National Park, this field trip visits exceptional examples of Oligocene subaqueous volcaniclastic successions in continental basins adjacent to the Ancestral Cascades arc. The >800-m-thick Ohanapecosh Formation (32–26 Ma) and the >300-m-thick Wildcat Creek (27 Ma) beds record similar sedimentation processes from various volcanic sources. Both show evidence of below-wave-base deposition, and voluminous accumulation of volcaniclastic facies from subaqueous density currents and suspension settling. Eruption-fed facies include deposits from pyroclastic flows that crossed the shoreline, from tephra fallout over water, and from probable Surtseyan eruptions, whereas re-sedimented facies comprise subaqueous density currents and debris flow deposits.

  5. Hydrogeology and steady-state numerical simulation of groundwater flow in the Lost Creek Designated Ground Water Basin, Weld, Adams, and Arapahoe Counties, Colorado

    USGS Publications Warehouse

    Arnold, L.R.

    2010-01-01

    The Lost Creek Designated Ground Water Basin (Lost Creek basin) is an important alluvial aquifer for irrigation, public supply, and domestic water uses in northeastern Colorado. Beginning in 2005, the U.S. Geological Survey, in cooperation with the Lost Creek Ground Water Management District and the Colorado Water Conservation Board, collected hydrologic data and constructed a steady-state numerical groundwater flow model of the Lost Creek basin. The model builds upon the work of previous investigators to provide an updated tool for simulating the potential effects of various hydrologic stresses on groundwater flow and evaluating possible aquifer-management strategies. As part of model development, the thickness and extent of regolith sediments in the basin were mapped, and data were collected concerning aquifer recharge beneath native grassland, nonirrigated agricultural fields, irrigated agricultural fields, and ephemeral stream channels. The thickness and extent of regolith in the Lost Creek basin indicate the presence of a 2- to 7-mile-wide buried paleovalley that extends along the Lost Creek basin from south to north, where it joins the alluvial valley of the South Platte River valley. Regolith that fills the paleovalley is as much as about 190 ft thick. Average annual recharge from infiltration of precipitation on native grassland and nonirrigated agricultural fields was estimated by using the chloride mass-balance method to range from 0.1 to 0.6 inch, which represents about 1-4 percent of long-term average precipitation. Average annual recharge from infiltration of ephemeral streamflow was estimated by using apparent downward velocities of chloride peaks to range from 5.7 to 8.2 inches. Average annual recharge beneath irrigated agricultural fields was estimated by using passive-wick lysimeters and a water-balance approach to range from 0 to 11.3 inches, depending on irrigation method, soil type, crop type, and the net quantity of irrigation water applied

  6. Marsh Pool and Tidal Creek Morphodynamics: Dynamic Equilibrium of New England Saltmarshes?

    NASA Astrophysics Data System (ADS)

    Wilson, C.; FitzGerald, D. M.; Hughes, Z. J.

    2012-12-01

    Under natural conditions, high saltmarsh platforms in New England exhibit poor drainage, creating waterlogged pannes (where short-form Spartina alterniflora dominates) and stagnant pools that experience tidal exchange only during spring tides and storm-induced flooding events. It is well accepted that a legacy of ditching practices (either for agriculture or mosquito control purposes) provide "overdrainage" of saltmarshes (after Redfield, 1972) and a shift in biogeochemical conditions: lowering of groundwater tables, aeration of soil, and decrease in preserved belowground biomass. Analysis of historical imagery in the Plum Island Estuary of Massachusetts reveals closure and decrease in length of anthropogenic ditches in recent decades is closely linked to marsh pool evolution. Field analyses including stratigraphic transects and elevation surveys suggest these marshes are reverting to natural drainage conditions. Further, an important dynamic interaction exists between saltmarsh pools and natural tidal creeks: creeks incise into pool areas, causing drainage of the pools, and formation of an unvegetated mudflat which can be rapidly recolonized by halophytic Spartina alterniflora vegetation. It was determined that pool and creek dynamics are cyclic in nature. The marsh platform is in dynamic equilibrium with respect to elevation and sea-level whereby marsh elevation may be lost (due to degradation of organic matter and formation of a pool) however may be regained (by creek incision into pools, restoration of tidal exchange, and rapid vertical accretion with Spartina alterniflora recolonization. Since vertical accretion in saltmarshes is a function of both organic and inorganic contributions to the marsh subsurface, it is hypothesized that cannibalization of existing muds is supplying inorganic material in this sediment starved system.

  7. Ghaba salt basin province and Fahud salt basin province, Oman; geological overview and total petroleum systems

    USGS Publications Warehouse

    Pollastro, R.M.

    1999-01-01

    Natih limestones account for most of the production in the Fahud Salt Basin with about 50 percent of the basin's production from porous, fractured Shu'aiba limestones in Yibal field, thus the name North Oman Huqf ? Shu'aiba(!) TPS. Deep gas is produced mainly from Middle Cambrian to Lower Ordovician clastic reservoirs of the Haima Supergroup. Traps in nearly all hydrocarbon accumulations of these petroleum systems are mainly structural and were formed by one or more mechanisms. These trap-forming mechanisms were mainly periodic halokinesis of the thick Cambrian Ara Salt and consequent folding and faulting from basin loading, rifting, or other major tectonic events, particularly those events forming the Oman Mountains and associated foreland-basin system during the Late Cretaceous and Late Tertiary. Many of the future new-field targets will likely be low-relief, subtle structures, as many of the large structures have been drilled. Oman's recent interest and commitments to liquid natural gas export make deep gas a primary objective in the two North Oman Huqf petroleum systems. New-field exploration of deep gas and exploring deeper targets for gas in existing fields will likely identify a significant gas resource in the next thirty years. Moreover, salt-diapir flank traps in these two North Oman Huqf petroleum systems and salt basin provinces have gone essentially untested and will likely be targeted in the near-future. The Middle Cretaceous Natih(!) TPS is a small efficient system of the Fahud Salt Basin. Natih source rocks are only mature in the Late Cretaceous/Tertiary foredeep and production is primarily from Natih reservoirs; minor production from the Shu'aiba limestone is documented along fault-dip structures. Most traps are structural and are related to development of the foreland basin and formation of the Oman Mountains. Future targets of the Natih TPS will be less obvious than those of Fahud and Natih fields and likely includ

  8. Sources and distribution of sedimentary organic matter along the Andong salt marsh, Hangzhou Bay

    NASA Astrophysics Data System (ADS)

    Yuan, Hong-Wei; Chen, Jian-Fang; Ye, Ying; Lou, Zhang-Hua; Jin, Ai-Min; Chen, Xue-Gang; Jiang, Zong-Pei; Lin, Yu-Shih; Chen, Chen-Tung Arthur; Loh, Pei Sun

    2017-10-01

    Lignin oxidation products, δ13C values, C/N ratios and particle size were used to investigate the sources, distribution and chemical stability of sedimentary organic matter (OM) along the Andong salt marsh located in the southwestern end of Hangzhou Bay, China. Terrestrial OM was highest at the upper marshes and decreased closer to the sea, and the distribution of sedimentary total organic carbon (TOC) was influenced mostly by particle size. Terrestrial OM with a C3 signature was the predominant source of sedimentary OM in the Spartina alterniflora-dominated salt marsh system. This means that aside from contributions from the local marsh plants, the Andong salt marsh received input mostly from the Qiantang River and the Changjiang Estuary. Transect C, which was situated nearer to the Qiantang River mouth, was most likely influenced by input from the Qiantang River. Likewise, a nearby creek could be transporting materials from Hangzhou Bay into Transect A (farther east than Transect C), as Transect A showed a signal resembling that of the Changjiang Estuary. The predominance of terrestrial OM in the Andong salt marsh despite overall reductions in sedimentary and terrestrial OM input from the rivers is most likely due to increased contributions of sedimentary and terrestrial OM from erosion. This study shows that lower salt marsh accretion due to the presence of reservoirs upstream may be counterbalanced by increased erosion from the surrounding coastal areas.

  9. The Quaternary Silver Creek Fault Beneath the Santa Clara Valley, California

    USGS Publications Warehouse

    Wentworth, Carl M.; Williams, Robert A.; Jachens, Robert C.; Graymer, Russell W.; Stephenson, William J.

    2010-01-01

    The northwest-trending Silver Creek Fault is a 40-km-long strike-slip fault in the eastern Santa Clara Valley, California, that has exhibited different behaviors within a changing San Andreas Fault system over the past 10-15 Ma. Quaternary alluvium several hundred meters thick that buries the northern half of the Silver Creek Fault, and that has been sampled by drilling and imaged in a detailed seismic reflection profile, provides a record of the Quaternary history of the fault. We assemble evidence from areal geology, stratigraphy, paleomagnetics, ground-water hydrology, potential-field geophysics, and reflection and earthquake seismology to determine the long history of the fault in order to evaluate its current behavior. The fault formed in the Miocene more than 100 km to the southeast, as the southwestern fault in a 5-km-wide right step to the Hayward Fault, within which the 40-km-long Evergreen pull-apart basin formed. Later, this basin was obliquely cut by the newly recognized Mt. Misery Fault to form a more direct connection to the Hayward Fault, although continued growth of the basin was sufficient to accommodate at least some late Pliocene alluvium. Large offset along the San Andreas-Calaveras-Mt Misery-Hayward Faults carried the basin northwestward almost to its present position when, about 2 Ma, the fault system was reorganized. This led to near abandonment of the faults bounding the pull-apart basin in favor of right slip extending the Calaveras Fault farther north before stepping west to the Hayward Fault, as it does today. Despite these changes, the Silver Creek Fault experienced a further 200 m of dip slip in the early Quaternary, from which we infer an associated 1.6 km or so of right slip, based on the ratio of the 40-km length of the strike-slip fault to a 5-km depth of the Evergreen Basin. This dip slip ends at a mid-Quaternary unconformity, above which the upper 300 m of alluvial cover exhibits a structural sag at the fault that we interpret as

  10. Potential effects of surface coal mining on the hydrology of the West Otter area, Ashland and Birney-Broadus coal fields, southeastern Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1984-01-01

    Shallow aquifers exist primarily within the Tongue River Member of the Paleocene Fort Union Formation and within valley alluvium. Sandstone beds are the principal aquifers for domestic supply and livestock watering, with the Knobloch coal bed being a secondary source of supply. Surface-water resources consist principally of perennial flow in Otter Creek and intermittent flow in eight small drainage basins. The small streams are generally dry at their mouth, except after intense rainfall or sudden snowmelt. Otter Creek is used for livestock watering and, during spring floods, for irrigating alfalfa fields. The water supplied by wells generally is a sodium bicarbonate type. Dissolved-solids concentrations of water samples ranged from 480 to 3,460 milligrams per liter in sandstone beds and from 910 to 6,260 milligrams per liter in the Knobloch coal bed. Water in Otter Creek contains principally sodium, magnesium, and sulfate ions. The dissolved-solids concentration ranged from 2,050 to 2 ,950 milligrams per liter. Mining of the Knobloch coal bed would remove three private wells and adversely affect the yield of two other wells. After mining, water in the alluvium of Otter Creek might show long-term degradation in water quality as a result of waters leaching the soluble salts from the spoils material used to backfill the mine pits. Although mining would alter the existing hydrologic systems and remove several shallow wells, alternative ground-water supplies are available from deeper aquifers that could be developed to replace those lost by mining. (USGS)

  11. Effects of best-management practices in Eagle and Joos Valley Creeks in the Waumandee Creek Priority Watershed, Wisconsin, 1990-2007

    USGS Publications Warehouse

    Graczyk, David J.; Walker, John F.; Bannerman, Roger T.; Rutter, Troy D.

    2012-01-01

    In many watersheds, nonpoint-source contamination is a major contributor to water-quality problems. In response to the recognition of the importance of nonpoint sources, the Wisconsin Nonpoint Source Water Pollution Abatement Program (Nonpoint Program) was enacted in 1978. This report summarizes the results of a study to assess the effectiveness of watershed-management practices for controlling nonpoint-source contamination for the Eagle Creek and Joos Valley Creek Watersheds. Streamflow-gaging stations equipped for automated sample collection and continuous recording of stream stage were installed in July 1990 at Eagle and Joos Valley Creeks and were operated through September 2007. In October 1990, three rain gages were installed in each watershed and were operated through September 2007. Best-Management Practices (BMPs) were installed during 1993 to 2000 in Eagle and Joos Valley Creeks and were tracked throughout the study period. By the year 2000, a majority of the BMPs were implemented in the two watersheds and goals set by the Wisconsin Department of Natural Resources and the local Land Conservation Department had been achieved for the two study watersheds (Wisconsin Department of Natural Resources, 1990). The distributions of the rainstorms that produced surface runoff and storm loads were similar in the pre-BMP (1990-93) and post-BMP implementation (2000-07) periods for both Eagle and Joos Valley Creeks. The highest annual streamflow occurred at both sites in water year 1993, which corresponded to the greatest above normal nonfrozen precipitation measured at two nearby NOAA weather stations. The minimum streamflow occurred in water year 2007 at both sites. Base-flow and stormwater samples were collected and analyzed for suspended solids, total phosphorus, and ammonia nitrogen. For both Eagle and Joos Valley Creeks the median concentrations of suspended solids and total phosphorus in base flow were lower during the post-BMP period compared to the pre

  12. 4. GENERAL VIEW SHOWING INDIAN CREEK (FOREGROUND) AND CULVERT. AQUEDUCT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. GENERAL VIEW SHOWING INDIAN CREEK (FOREGROUND) AND CULVERT. AQUEDUCT PASSES ABOVE CULVERT. - Old Croton Aqueduct, Indian Creek Culvert, Reservoir & Quaker Bridge Roads, Crotonville, Ossining, Westchester County, NY

  13. Streamflow conditions along Soldier Creek, Northeast Kansas

    USGS Publications Warehouse

    Juracek, Kyle E.

    2017-11-14

    The availability of adequate water to meet the present (2017) and future needs of humans, fish, and wildlife is a fundamental issue for the Prairie Band Potawatomi Nation in northeast Kansas. Because Soldier Creek flows through the Prairie Band Potawatomi Nation Reservation, it is an important tribal resource. An understanding of historical Soldier Creek streamflow conditions is required for the effective management of tribal water resources, including drought contingency planning. Historical data for six selected U.S. Geological Survey (USGS) streamgages along Soldier Creek were used in an assessment of streamflow characteristics and trends by Juracek (2017). Streamflow data for the period of record at each streamgage were used to compute annual mean streamflow, annual mean base flow, mean monthly flow, annual peak flow, and annual minimum flow. Results of the assessment are summarized in this fact sheet.

  14. Fast-growing willow shrub named `Fish Creek`

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrahamson, Lawrence P; Kopp, Richard F; Smart, Lawrence B

    2007-05-08

    A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. Themore » stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.« less

  15. Paleomagnetism of the Miocene intrusive suite of Kidd Creek: Timing of deformation in the Cascade arc, southern Washington

    USGS Publications Warehouse

    Hagstrum, J.T.; Swanson, D.A.; Snee, L.W.

    1998-01-01

    Paleomagnetic study of the intrusive suite of Kidd Creek in the southern Washington Cascades (23 sites in dikes and sills) was undertaken to help determine if these rocks are comagmatic and whether they postdate regional folding of the volcanic arc. Fission track and 40Ar-39Ar age determinations indicate an age of ???12.7 Ma (middle Miocene) for these rocks. The similarity of normal-polarity characteristic directions for most samples corroborate the available geochemical data indicating that these rocks are most likely comagmatic. Reversed-polarity directions for samples from four sites, however, show that emplacement of Kidd Creek intrusions spanned at least one reversal of the geomagnetic field. The paleomagnetic directions for the dikes and sills fail a fold test at the 99% confidence level indicating that the Kidd Creek rocks postdate regional folding. The mean in situ direction also indicates that the Kidd Creek and older rocks have been rotated 22?? ?? 6?? clockwise about a vertical or near-vertical axis from the expected Miocene direction. Compression and regional folding of the Cascade arc in southern Washington therefore had ended by ???12 Ma prior to the onset of deformation resulting in rotation of these rocks.

  16. View of deck truss span over creek and adjacent trestle, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of deck truss span over creek and adjacent trestle, looking due south. - Pennsylvania Railroad, Brandywine Valley Viaduct, Spanning Brandywine Creek & U.S. Route 322, Downingtown, Chester County, PA

  17. Lorentz Force on Sodium and Chlorine Ions in a Salt Water Solution Flow under a Transverse Magnetic Field

    ERIC Educational Resources Information Center

    De Luca, R.

    2009-01-01

    It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity v[subscript A] under the influence of a transverse magnetic field B[subscript 0], an electromotive force generator can be conceived. In fact, the Lorentz force…

  18. Floods of 1971 and 1972 on Glover Creek and Little River in southeastern Oklahoma

    USGS Publications Warehouse

    Thomas, Wilbert O.; Corley, Robert K.

    1973-01-01

    Heavy rains of December 9-10, 1971, and Oct. 30-31, 1972, caused outstanding floods on Glover Creek and Little River in McCurtain County in southeastern Oklahoma. This report presents hydrologic data that document the extent of flooding, flood profiles, and frequency of flooding on reaches of both streams. The data presented provide a technical basis for formulating effective flood-plain zoning that will minimize existing and future flood problems. The report also can be useful for locating waste-disposal and water-treatment facilities, and for the development of recreational areas. The area studied includes the reach of Little River on the Garvin and Idabel 7 1/2-minute quadrangles (sheet 1) and the reach of Glover Creek on the southwest quarter of the Golden 15-minute quadrangle (sheet 2). The flood boundaries delineated on the maps are the limits of flooding during the December 1971 and October 1972 floods. Any attempt to delineate the flood boundaries on streams in the study area other than Glover Creek and Little River was considered to be beyond the scope of this report. The general procedure used in defining the flood boundaries was to construct the flood profiles from high-water marks obtained by field surveys and by records at three stream-gaging stations (two on Little River and one on Glover Creek.). The extent of flooding was delineated on the topographic maps by using the flood profiles to define the flood elevations at various points along the channel and locating the elevations on the map by interpolating between contours (lines of equal ground elevation). In addition, flood boundaries were defined in places by field survey, aerial photographs, and information from local residents. The accuracy of the flood boundaries is consistent with the scale and contour interval of the maps (1 inch = 2,000 feet; contour interval 10 and 20 feet), which means the flood boundaries are drawn as accurately as possible on maps having 10- and 20-foot contour intervals.

  19. Genotype, soil type, and locale effects on reciprocal transplant vigor, endophyte growth, and microbial functional diversity of a narrow sagebrush hybrid zone in Salt Creek Canyon, Utah

    USGS Publications Warehouse

    Miglia, K.J.; McArthur, E.D.; Redman, R.S.; Rodriguez, R.J.; Zak, J.C.; Freeman, D.C.

    2007-01-01

    When addressing the nature of ecological adaptation and environmental factors limiting population ranges and contributing to speciation, it is important to consider not only the plant's genotype and its response to the environment, but also any close interactions that it has with other organisms, specifically, symbiotic microorganisms. To investigate this, soils and seedlings were reciprocally transplanted into common gardens of the big sagebrush hybrid zone in Salt Creek Canyon, Utah, to determine location and edaphic effects on the fitness of parental and hybrid plants. Endophytic symbionts and functional microbial diversity of indigenous and transplanted soils and sagebrush plants were also examined. Strong selection occurred against the parental genotypes in the middle hybrid zone garden in middle hybrid zone soil; F1 hybrids had the highest fitness under these conditions. Neither of the parental genotypes had superior fitness in their indigenous soils and habitats; rather F1 hybrids with the nonindigenous maternal parent were superiorly fit. Significant garden-by-soil type interactions indicate adaptation of both plant and soil microorganisms to their indigenous soils and habitats, most notably in the middle hybrid zone garden in middle hybrid zone soil. Contrasting performances of F1 hybrids suggest asymmetrical gene flow with mountain, rather than basin, big sagebrush acting as the maternal parent. We showed that the microbial community impacted the performance of parental and hybrid plants in different soils, likely limiting the ranges of the different genotypes.

  20. "Bridge #6 Rock Creek: Castiron 48" pipe lines to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "Bridge #6 - Rock Creek: Cast-iron 48" pipe lines to Gravity - 1859." Construction photo of Pennsylvania Avenue Bridge, 1859. Photograph courtesy Washington Aqueduct Division, U.S. Army Corps of Engineers - Pennsylvania Avenue Bridge, Spanning Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  1. Dynamic modelling and simulation of linear Fresnel solar field model based on molten salt heat transfer fluid

    NASA Astrophysics Data System (ADS)

    Hakkarainen, Elina; Tähtinen, Matti

    2016-05-01

    Demonstrations of direct steam generation (DSG) in linear Fresnel collectors (LFC) have given promising results related to higher steam parameters compared to the current state-of-the-art parabolic trough collector (PTC) technology using oil as heat transfer fluid (HTF). However, DSG technology lacks feasible solution for long-term thermal energy storage (TES) system. This option is important for CSP technology in order to offer dispatchable power. Recently, molten salts have been proposed to be used as HTF and directly as storage medium in both line-focusing solar fields, offering storage capacity of several hours. This direct molten salt (DMS) storage concept has already gained operational experience in solar tower power plant, and it is under demonstration phase both in the case of LFC and PTC systems. Dynamic simulation programs offer a valuable effort for design and optimization of solar power plants. In this work, APROS dynamic simulation program is used to model a DMS linear Fresnel solar field with two-tank TES system, and example simulation results are presented in order to verify the functionality of the model and capability of APROS for CSP modelling and simulation.

  2. Missing link between the Hayward and Rodgers Creek faults

    PubMed Central

    Watt, Janet; Ponce, David; Parsons, Tom; Hart, Patrick

    2016-01-01

    The next major earthquake to strike the ~7 million residents of the San Francisco Bay Area will most likely result from rupture of the Hayward or Rodgers Creek faults. Until now, the relationship between these two faults beneath San Pablo Bay has been a mystery. Detailed subsurface imaging provides definitive evidence of active faulting along the Hayward fault as it traverses San Pablo Bay and bends ~10° to the right toward the Rodgers Creek fault. Integrated geophysical interpretation and kinematic modeling show that the Hayward and Rodgers Creek faults are directly connected at the surface—a geometric relationship that has significant implications for earthquake dynamics and seismic hazard. A direct link enables simultaneous rupture of the Hayward and Rodgers Creek faults, a scenario that could result in a major earthquake (M = 7.4) that would cause extensive damage and loss of life with global economic impact. PMID:27774514

  3. Missing link between the Hayward and Rodgers Creek faults

    USGS Publications Warehouse

    Watt, Janet; Ponce, David A.; Parsons, Thomas E.; Hart, Patrick E.

    2016-01-01

    The next major earthquake to strike the ~7 million residents of the San Francisco Bay Area will most likely result from rupture of the Hayward or Rodgers Creek faults. Until now, the relationship between these two faults beneath San Pablo Bay has been a mystery. Detailed subsurface imaging provides definitive evidence of active faulting along the Hayward fault as it traverses San Pablo Bay and bends ~10° to the right toward the Rodgers Creek fault. Integrated geophysical interpretation and kinematic modeling show that the Hayward and Rodgers Creek faults are directly connected at the surface—a geometric relationship that has significant implications for earthquake dynamics and seismic hazard. A direct link enables simultaneous rupture of the Hayward and Rodgers Creek faults, a scenario that could result in a major earthquake (M = 7.4) that would cause extensive damage and loss of life with global economic impact.

  4. Elevation of deck truss span over creek, looking NW along ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation of deck truss span over creek, looking NW along U.S. route 322. - Pennsylvania Railroad, Brandywine Valley Viaduct, Spanning Brandywine Creek & U.S. Route 322, Downingtown, Chester County, PA

  5. Timber Creek bunkhouse and mess hall, Rocky Mountain National Park. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Timber Creek bunkhouse and mess hall, Rocky Mountain National Park. Interior, kitchen and dining area, viewing north. - Timber Creek Bunkhouse & Mess Hall, Trail Ridge Road, Grand Lake, Grand County, CO

  6. The Clear Creek Envirohydrologic Observatory: From Vision Toward Reality

    NASA Astrophysics Data System (ADS)

    Just, C.; Muste, M.; Kruger, A.

    2007-12-01

    ) measurements has been finalized. The software package provides mean flow field and turbulence characteristics obtained by operating the ADCP at fixed points or using the moving-boat approach. Current Work: The current development work is focused on extracting and populating the Clear Creek database with in-situ measurements acquired and transmitted in real time with sensors deployed in the Clear Creek watershed.

  7. Brine formation via deliquescence by salts found near Don Juan Pond, Antarctica: Laboratory experiments and field observational results

    NASA Astrophysics Data System (ADS)

    Gough, R. V.; Wong, J.; Dickson, J. L.; Levy, J. S.; Head, J. W.; Marchant, D. R.; Tolbert, M. A.

    2017-10-01

    The observed darkening of water tracks near Don Juan Pond (DJP) as well as the formation of wet patches elsewhere in the McMurdo Dry Valleys is attributed at least partially to deliquescence, a process by which salts absorb atmospheric water vapor and form brine, coupled with liquid-phase growth when the atmospheric relative humidity exceeds the water activity. Here we perform laboratory experiments to investigate the temperature and relative humidity conditions necessary for deliquescence to occur in calcium chloride-rich sediments collected from the DJP watershed. We use a Raman microscope equipped with an environmental cell to study both deliquescence and efflorescence (recrystallization) of the soluble salt component of DJP soils between -30 and +15 °C. In this temperature range, we find that the soluble salt component of the DJP sediments begins to deliquesce between 19 and 46% RH, slightly higher than the deliquescence relative humidity of the primary pure component, calcium chloride. We find a limited hysteresis between deliquescence and efflorescence, but much greater supersaturation of the salt brine can occur at temperatures above 0 °C. The relative humidity conditions were varied either slowly (over ∼8 h) to observe near-equilibrium phases or rapidly (over <1 h) to better mimic Antarctic conditions and no differences in deliquescence relative humidity or efflorescence relative humidity were noted. The results of this work can help predict when deliquescence could be actively occurring in the soils near Don Juan Pond and explain darkening of the salt pan after a high humidity period. In tandem with field data, our experimental results suggest that brines can be generated near Don Juan Pond via deliquescence frequently during the southern summer and autumn. Additionally, the soluble salts may persist in the aqueous phase continuously for several months during the southern summer. This work also suggests that salt deliquescence could be impacting the

  8. 78 FR 65356 - Notice of Mailing/Street Address Change for the BLM-Utah West Desert District and Salt Lake Field...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...The mailing/street address for the Bureau of Land Management (BLM), West Desert District and Salt Lake Field Offices will be changing from 2370 South 2300 West, Salt Lake City, UT 84119-2022, to 2370 South Decker Lake Blvd., West Valley City, UT 84119-2022. Persons who use a telecommunications device for the deaf (TDD) may call the Federal Information Relay Service (FIRS) at 1-800-877-8339 to leave a message or question for the above individual. The FIRS is available 24 hours a day, seven days a week. Replies are provided during normal business hours.

  9. Testing the sensitivity of pumpage to increases in surficial aquifer system heads in the Cypress Creek well-field area, West-Central Florida : an optimization technique

    USGS Publications Warehouse

    Yobbi, Dann K.

    2002-01-01

    Tampa Bay depends on ground water for most of the water supply. Numerous wetlands and lakes in Pasco County have been impacted by the high demand for ground water. Central Pasco County, particularly the area within the Cypress Creek well field, has been greatly affected. Probable causes for the decline in surface-water levels are well-field pumpage and a decade-long drought. Efforts are underway to increase surface-water levels by developing alternative sources of water supply, thus reducing the quantity of well-field pumpage. Numerical ground-water flow simulations coupled with an optimization routine were used in a series of simulations to test the sensitivity of optimal pumpage to desired increases in surficial aquifer system heads in the Cypress Creek well field. The ground-water system was simulated using the central northern Tampa Bay ground-water flow model. Pumping solutions for 1987 equilibrium conditions and for a transient 6-month timeframe were determined for five test cases, each reflecting a range of desired target recovery heads at different head control sites in the surficial aquifer system. Results are presented in the form of curves relating average head recovery to total optimal pumpage. Pumping solutions are sensitive to the location of head control sites formulated in the optimization problem and as expected, total optimal pumpage decreased when desired target head increased. The distribution of optimal pumpage for individual production wells also was significantly affected by the location of head control sites. A pumping advantage was gained for test-case formulations where hydraulic heads were maximized in cells near the production wells, in cells within the steady-state pumping center cone of depression, and in cells within the area of the well field where confining-unit leakance is the highest. More water was pumped and the ratio of head recovery per unit decrease in optimal pumpage was more than double for test cases where hydraulic heads

  10. Dry Creek Joint Elementary School District. Educational Specifications: Dry Creek Middle School.

    ERIC Educational Resources Information Center

    Dry Creek Joint Elementary School District, Roseville, CA.

    An Educational Specification Committee was convened to determine the design specifications required for a new middle school in Roseville, California's Dry Creek District. This report presents revisions to an earlier document that examined school room specifications for each grade level and administrative area. Specification considerations are…

  11. Boulder Creek Study

    ERIC Educational Resources Information Center

    Bingaman, Deirdre; Eitel, Karla Bradley

    2010-01-01

    Boulder Creek runs literally in the backyard of Donnelly Elementary School and happens to be on the EPA list of impaired water bodies. Therefore, a unique opportunity for problem solving opened the door to an exciting chance for students to become scientists, while also becoming active in their community. With the help of the Idaho Department of…

  12. Detail view of Fanno Creek trestle, showing trestle substructure, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of Fanno Creek trestle, showing trestle substructure, view looking north - Oregon Electric Railroad, Fanno Creek Trestle, Garden Home to Wilsonville Segment, Milepost 34.7, Garden Home, Washington County, OR

  13. Evaluation of Lower East Fork Poplar Creek Mercury Sources - Model Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketelle, Richard; Brandt, Craig C.; Peterson, Mark J.

    The purpose of this report is to assess new data that has become available and provide an update to the evaluations and modeling presented in the Oak Ridge National Laboratory (ORNL) Technical Manuscript Evaluation of lower East Fork Poplar Creek (LEFPC) Mercury Sources (Watson et al., 2016). Primary sources of field and laboratory data for this update include multiple US Department of Energy (DOE) programs including Environmental Management (EM; e.g., Biological Monitoring and Abatement Program, Mercury Remediation Technology Development [TD], and Applied Field Research Initiative), Office of Science (Mercury Science Focus Areas [SFA] project), and the Y-12 National Security Complexmore » (Y-12) Compliance Department.« less

  14. Analysis of AIS data of the Bonanza Creek Experimental Forest, Alaska

    NASA Technical Reports Server (NTRS)

    Spanner, M. A.; Peterson, D. L.

    1986-01-01

    Airborne Imaging Spectrometer (AIS) data were acquired in 1985 over the Bonanza Creek Experimental Forest, Alaska for the analysis of canopy characteristics including biochemistry. Concurrent with AIS overflights, foliage from fifteen coniferous and deciduous forest stands were analyzed for a variety of biochemical constituents including nitrogen, lignin, protein, and chlorophyll. Preliminary analysis of AIS spectra indicates that the wavelength region between 1450 to 1800 namometers (nm) displays distinct differences in spectral response for some of the forest stands. A flat field subtraction (forest stand spectra - flat field spectra) of the AIS spectra assisted in the interpretation of features of the spectra that are related to biology.

  15. 78 FR 26065 - Notice of Availability of the Draft Environmental Impact Statement for the Jump Creek, Succor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Cow Creek Watersheds Grazing Permit Renewal, ID AGENCY: Bureau of Land Management, Interior. ACTION... the Jump Creek, Succor Creek, and Cow Creek Watersheds Grazing Permit Renewal and by this notice is... receive written comments on the Draft EIS for the Jump Creek, Succor Creek, and Cow Creek Watersheds...

  16. Respirators, internal dose, and Oyster Creek

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michal, R.

    1996-06-01

    This article looks at the experience of Oyster Creek in relaxing the requirements for the use of respirators in all facets of plant maintenance, on the overall dose received by plant maintenance personnel. For Roger Shaw, director of radiological controls for three years at GPU Nuclear Corporation`s Oyster Creek nuclear plant the correct dose balance is determined on a job-by-job basis: Does the job require a respirator, which is an effective means of decreasing worker inhalation of airborne radioactive particles? Will wearing a respirator slow down a worker, consequently increasing whole body radiation exposure by prolonging the time spent inmore » fields of high external radiation? How does respiratory protection affect worker safety and to what degree? While changes to the Nuclear Regulatory Commission`s 10CFR20 have updated the radiation protection requirements for the nuclear industry, certain of the revisions have been directed specifically at reducing worker dose, Shaw said. {open_quotes}It basically delineates that dose is dose,{close_quotes} Shaw said, {open_quotes}regardless of whether it is acquired externally or internally.{close_quotes} The revision of Part 20 changed the industry`s attitude toward internal dose, which had always been viewed negatively. {open_quotes}Internal dose was always seen as preventable by wearing respirators and by using engineering techniques such as ventilation control and decontamination,{close_quotes} Shaw said, {open_quotes}whereas external dose, although reduced where practical, was seen as a fact of the job.{close_quotes}« less

  17. Surface geophysics and porewater evaluation at the Lower Darby Creek Area Superfund Site, Philadelphia, Pennsylvania, 2013

    USGS Publications Warehouse

    Walker, Charles W.; Degnan, James R.; Brayton, Michael J.; Cruz, Roberto M.; Lorah, Michelle M.

    2015-01-01

    In cooperation with the U.S. Environmental Protection Agency (EPA), Region 3, the U.S. Geological Survey (USGS) is participating in an ongoing study to aid in the identification of subsurface heterogeneities that may act as preferential pathways for contaminant transport in and around the Lower Darby Creek Area (LDCA) Superfund Site, Philadelphia Pa. Lower Darby Creek, which flows into the Delaware River, borders the western part of the former landfill site. In 2013, the USGS conducted surface geophysics measurements and stream porewater sampling to provide additional data for EPA’s site characterization. This report contains data collected from field measurements of direct current (DC) resistivity, frequency-domain electromagnetic (FDEM) surveys, and stream porewater specific conductance (SC).

  18. Surficial geology of the Cane Creek basin, Lauderdale County, Tennessee

    USGS Publications Warehouse

    Miller, J.H.

    1991-01-01

    The surficial geology of the Cane Creek basin, in Lauderdale County, West Tennessee, was studied from 1985-88. Peoria Loess is the parent material from which soils in the Cane Creek drainage basin were derived. In general, a brown silt grades into a gray silt from 5 to I7 feet below ground surface. This color change probably represents depth to water table prior to the channelization of Cane Creek. Only at river mile 11.9 does rock outcrop near the main channel. Lower reaches of major tributaries have surficial geology similar to the main channel. In upper reaches of Hyde Creek and Fain Spring Creek, the sequence from the St&ace is sand and gravels, red-brown sandstone, sand and clay layers, and then, an orange sand layer. Coarse-grained deposits are found most often along the northern boundary of the basin and only occasionally in areas to the west and south of the main channel. Depth to sand or gravel ranges from about 0 to 158 feet in the uplands, and generally deeper than 40 feet near the main channel.

  19. Sediment-transport characteristics of Cane Creek, Lauderdale County, Tennessee

    USGS Publications Warehouse

    Carey, W.P.

    1993-01-01

    An investigation of the sediment-transport characteristics of Cane Creek in Lauderdale County, Tennessee, was conducted from 1985-88 to evaluate the potential for channel erosion induced by modifications (realignment and enlargement) and the potential ability of different flows to move bed and bank stabilizing material. Frequently occurring flows in Cane Creek are capable of moving sand-size material (0.0625 - 4.0 millimeters). During floods that equal or exceed the 2-year flood, Cane Creek is capable of moving very coarse gravel (32 - 64 millimeters). Boundary-shear values at bridges, where flow contractions occur, correspond to critical diameters in excess of 100 millimeters. Thus, the areas near bridges, where channel stability is most critical, are the areas where erosive power is greatest. Deepening and widening of Cane Creek has exposed large areas of channel boundary that are a significant source of raindrop-detached sediment during the early stages of a storm before stream flow increases signifi- cantly. This causes suspended-sediment concentration to peak while the flow hydrograph is just beginning to rise. For basins like Cane Creek, where runoff events commonly last less than a day and where variation in discharge and sediment concentrations are large, an estimate of sediment yield based on periodic observations of instantaneous values is subject to considerable uncertainty.

  20. Investigating organic matter in Fanno Creek, Oregon, Part 2 of 3: Sources, sinks, and transport of organic matter with fine sediment

    NASA Astrophysics Data System (ADS)

    Keith, Mackenzie K.; Sobieszczyk, Steven; Goldman, Jami H.; Rounds, Stewart A.

    2014-11-01

    Organic matter (OM) is abundant in Fanno Creek, Oregon, USA, and has been tied to a variety of water-quality concerns, including periods of low dissolved oxygen downstream in the Tualatin River, Oregon. The key sources of OM in Fanno Creek and other Tualatin River tributaries have not been fully identified, although isotopic analyses from previous studies indicated a predominantly terrestrial source. This study investigates the role of fine sediment erosion and deposition (mechanisms and spatial patterns) in relation to OM transport. Geomorphic mapping within the Fanno Creek floodplain shows that a large portion (approximately 70%) of the banks are eroding or subject to erosion, likely as a result of the imbalance caused by anthropogenic alteration. Field measurements of long- and short-term bank erosion average 4.2 cm/year and average measurements of deposition for the watershed are 4.8 cm/year. The balance between average annual erosion and deposition indicates an export of 3,250 metric tons (tonnes, t) of fine sediment to the Tualatin River-about twice the average annual export of 1,880 t of sediment at a location 2.4 km from the creek's mouth calculated from suspended sediment load regressions from continuous turbidity data and suspended sediment samples. Carbon content from field samples of bank material, combined with fine sediment export rates, indicates that about 29-67 t of carbon, or about 49-116 t of OM, from bank sediment may be exported to the Tualatin River from Fanno Creek annually, an estimate that is a lower bound because it does not account for the mass wasting of organic-rich O and A soil horizons that enter the stream.

  1. 14. VIEW OF CEDAR MILL CREEK TRESTLE FROM TRESTLE OVER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF CEDAR MILL CREEK TRESTLE FROM TRESTLE OVER CEDAR MILL CREEK ON SPUR LINE, FACING SOUTHWEST - Oregon Electric Railway Westside Corridor, Between Watson & 185th Avenues, Beaverton, Washington County, OR

  2. Flood-inundation maps for Suwanee Creek from the confluence of Ivy Creek to the Noblin Ridge Drive bridge, Gwinnett County, Georgia

    USGS Publications Warehouse

    Musser, Jonathan W.

    2012-01-01

    Digital flood-inundation maps for a 6.9-mile reach of Suwanee Creek, from the confluence of Ivy Creek to the Noblin Ridge Drive bridge, were developed by the U.S. Geological Survey (USGS) in cooperation with Gwinnett County, Georgia. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage at Suwanee Creek at Suwanee, Georgia (02334885). Current stage at this USGS streamgage may be obtained at http://waterdata.usgs.gov/ and can be used in conjunction with these maps to estimate near real-time areas of inundation. The National Weather Service (NWS) is incorporating results from this study into the Advanced Hydrologic Prediction Service (AHPS) flood-warning system (http://water.weather.gov/ahps/). The NWS forecasts flood hydrographs at many places that commonly are collocated at USGS streamgages. The forecasted peak-stage information for the USGS streamgage at Suwanee Creek at Suwanee (02334885), available through the AHPS Web site, may be used in conjunction with the maps developed in this study to show predicted areas of flood inundation. A one-dimensional step-backwater model was developed using the U.S. Army Corps of Engineers HEC-RAS software for Suwanee Creek and was used to compute flood profiles for a 6.9-mile reach of the creek. The model was calibrated using the most current stage-discharge relations at the Suwanee Creek at Suwanee streamgage (02334885). The hydraulic model was then used to determine 19 water-surface profiles for flood stages at the Suwanee Creek streamgage at 0.5-foot intervals referenced to the streamgage. The profiles ranged from just above bankfull stage (7.0 feet) to approximately 1.7 feet above the highest recorded water level at the streamgage (16.0 feet). The simulated water-surface profiles were then combined

  3. WILLOW CREEK RECLAMATION PROJECT

    EPA Science Inventory

    Working in cooperation with the EPA, Colorado Division of Minerals and Geology, and others, the Willow Creek Reclamation Committee (WCRC) will investigate the sources and character of water entering the mine workings on the Amethyst vein near the town of Creede, Colorado. Activi...

  4. 75 FR 3195 - Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Mill Creek; Allotment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ...; Oregon; Mill Creek; Allotment Management Plans EIS AGENCY: Forest Service, USDA. ACTION: Notice of intent... allotments on the Lookout Mountain Ranger District. These four allotments are: Cox, Craig, Mill Creek, and..., Mill Creek and Old Dry Creek allotments. The responsible official will also decide how to mitigate...

  5. Distribution of selenium in soils of agricultural fields, western San Joaquin Valley, California

    USGS Publications Warehouse

    Fujii, Roger; Deverel, S.J.; Hatfield, D.B.

    1988-01-01

    Soils from three agricultural fields in the Panoche Creek alluvial fan area in the western San Joaquin Valley, California, were analyzed for soluble, adsorbed, and total concentrations of selenium (Se) to assess the distribution and forms of Se in relation to the leaching of Se from soils. This assessment is needed to evaluate the importance of soil Se in affecting ground water concentrations. Soil samples were collected from three fields with drainage systems of different ages (6, 15, 1.5 yr) and different Se concentrations in drain water (58, 430, 3700 µg L−1, respectively). Concentrations of soluble Se and salinity were highest in soils from the field drained for 1.5 yr and lowest in the field drained for 6 yr. Of the total concentration of soil Se from all three fields, the proportion of adsorbed and soluble Se ranged from 1 to 11% and 2 > 0.68) in saturation extracts of soils sampled from below the water table. In contrast, most soluble salts and Se apparently have been leached from the unsaturated soils in the fields drained for 6 and 15 yr. For the leached soils, dissolution and precipitation of evaporite minerals containing Se may no longer control concentrations of soluble Se.

  6. 76 FR 24015 - Ryckman Creek Resources, LLC; Notice of Availability of the Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... a central gas/liquids separation and storage facility (Ryckman Plant) where all of the pipelines meet, containing oil, water and gas handling, and natural gas liquids (NGL) storage equipment; and it... as the Ryckman Creek (Nugget Unit), into a new interstate natural gas storage field. The Project is...

  7. Data visualization, time-series analysis, and mass-balance modeling of hydrologic and water-quality data for the McTier Creek watershed, South Carolina, 2007-2009

    USGS Publications Warehouse

    Benedict, Stephen T.; Conrads, Paul; Feaster, Toby D.; Journey, Celeste A.; Golden, Heather E.; Knightes, Christopher D.; Davis, Gary M.; Bradley, Paul M.

    2012-01-01

    The McTier Creek watershed is located in the headwaters of the Edisto River Basin, which is in the Coastal Plain region of South Carolina. The Edisto ecosystem has some of the highest recorded fish-tissue mercury concentrations in the United States. In an effort to advance the understanding of the fate and transport of mercury in stream ecosystems, the U.S. Geological Survey, as part of its National Water-Quality Assessment Program, initiated a field investigation of mercury in the McTier Creek watershed in 2006. The initial efforts of the investigation included the collection of extensive hydrologic and water-quality field data, along with the development of several hydrologic and water-quality models. This series of measured and modeled data forms the primary source of information for this investigation to assess the fate and transport of mercury within the McTier Creek watershed.

  8. Seasonal variation in the quality of dissolved and particulate organic matter exchanged between a salt marsh and its adjacent estuary

    NASA Astrophysics Data System (ADS)

    Osburn, Christopher L.; Mikan, Molly P.; Etheridge, J. Randall; Burchell, Michael R.; Birgand, François

    2015-07-01

    Fluorescence was used to examine the quality of dissolved and particulate organic matter (DOM and POM) exchanging between a tidal creek in a created salt marsh and its adjacent estuary in eastern North Carolina, USA. Samples from the creek were collected hourly over four tidal cycles in May, July, August, and October 2011. Absorbance and fluorescence of chromophoric DOM (CDOM) and of base-extracted POM (BEPOM) served as the tracers for organic matter quality while dissolved organic carbon (DOC) and base-extracted particulate organic carbon (BEPOC) were used to compute fluxes. Fluorescence was modeled using parallel factor analysis (PARAFAC) and principle components analysis (PCA) of the PARAFAC results. Of nine PARAFAC components (C) modeled, C3 represented recalcitrant DOM and C4 represented fresher soil-derived source DOM. Component 1 represented detrital POM, and C6 represented planktonic POM. Based on mass balance, recalcitrant DOC export was 86 g C m-2 yr-1 and labile DOC export was 49 g C m-2 yr-1; no planktonic DOC was exported. The marsh also exported 41 g C m-2 yr-1 of detrital terrestrial POC, which likely originated from lands adjacent to the North River estuary. Planktonic POC export from the marsh was 6 g C m-2 yr-1. Assuming the exported organic matter was oxidized to CO2 and scaled up to global salt marsh area, respiration of salt marsh DOC and POC transported to estuaries could amount to a global CO2 flux of 11 Tg C yr-1, roughly 4% of the recently estimated CO2 release for marshes and estuaries globally.

  9. Effects of wastewater effluent discharge on stream quality in Indian Creek, Johnson County, Kansas

    USGS Publications Warehouse

    Graham, Jennifer L.; Foster, Guy M.

    2014-01-01

    Contaminants from point and other urban sources affect stream quality in Indian Creek, which is one of the most urban drainage basins in Johnson County, Kansas. The Johnson County Douglas L. Smith Middle Basin and Tomahawk Creek Wastewater Treatment Facilities discharge to Indian Creek. Data collected by the U.S. Geological Survey, in cooperation with Johnson County Wastewater, during June 2004 through June 2013 were used to evaluate stream quality in Indian Creek. This fact sheet summarizes the effects of wastewater effluent discharge on physical, chemical, and biological conditions in Indian Creek downstream from the Douglas L. Smith Middle Basin and Tomahawk Creek Wastewater Treatment Facilities.

  10. Suspended-sediment and turbidity responses to sediment and turbidity reduction projects in the Beaver Kill, Stony Clove Creek, and Warner Creek, Watersheds, New York, 2010–14

    USGS Publications Warehouse

    Siemion, Jason; McHale, Michael R.; Davis, Wae Danyelle

    2016-12-05

    Suspended-sediment concentrations (SSCs) and turbidity were monitored within the Beaver Kill, Stony Clove Creek, and Warner Creek tributaries to the upper Esopus Creek in New York, the main source of water to the Ashokan Reservoir, from October 1, 2010, through September 30, 2014. The purpose of the monitoring was to determine the effects of suspended-sediment and turbidity reduction projects (STRPs) on SSC and turbidity in two of the three streams; no STRPs were constructed in the Beaver Kill watershed. During the study period, four STRPs were completed in the Stony Clove Creek and Warner Creek watersheds. Daily mean SSCs decreased significantly for a given streamflow after the STRPs were completed. The most substantial decreases in daily mean SSCs were measured at the highest streamflows. Background SSCs, as measured in water samples collected in upstream reference stream reaches, in all three streams in this study were less than 5 milligrams per liter during low and high streamflows. Longitudinal stream sampling identified stream reaches with failing hillslopes in contact with the stream channel as the primary sediment sources in the Beaver Kill and Stony Clove Creek watersheds.

  11. 13. VIEW FROM CEDAR MILL CREEK TRESTLE NEAR MERLO ROAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW FROM CEDAR MILL CREEK TRESTLE NEAR MERLO ROAD TOWARD TRESTLE ON SPUR TRACK OVER CEDAR MILL CREEK, FACING NORTHEAST - Oregon Electric Railway Westside Corridor, Between Watson & 185th Avenues, Beaverton, Washington County, OR

  12. 76 FR 9968 - Drawbridge Operation Regulation; Chickasaw Creek, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ... Creek, mile 0.0, in Mobile, Alabama. The deviation is necessary to replace railroad ties on the bridge...-9826. SUPPLEMENTARY INFORMATION: CSX Transportation requested a temporary deviation from the operating schedule for the Swing Span Bridge across Chickasaw Creek, mile 0.0, in Mobile, Alabama. The bridge has a...

  13. Alameda Creeks Healthy Watersheds Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Alameda Creeks Healthy Watersheds Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resour

  14. Mathematical model of salt cavern leaching for gas storage in high-insoluble salt formations.

    PubMed

    Li, Jinlong; Shi, Xilin; Yang, Chunhe; Li, Yinping; Wang, Tongtao; Ma, Hongling

    2018-01-10

    A mathematical model is established to predict the salt cavern development during leaching in high-insoluble salt formations. The salt-brine mass transfer rate is introduced, and the effects of the insoluble sediments on the development of the cavern are included. Considering the salt mass conservation in the cavern, the couple equations of the cavern shape, brine concentration and brine velocity are derived. According to the falling and accumulating rules of the insoluble particles, the governing equations of the insoluble sediments are deduced. A computer program using VC++ language is developed to obtain the numerical solution of these equations. To verify the proposed model, the leaching processes of two salt caverns of Jintan underground gas storage are simulated by the program, using the actual geological and technological parameters. The same simulation is performed by the current mainstream leaching software in China. The simulation results of the two programs are compared with the available field data. It shows that the proposed software is more accurate on the shape prediction of the cavern bottom and roof, which demonstrates the reliability and applicability of the model.

  15. Dry Creek Joint Elementary School District. Educational Specifications: Dry Creek Elementary School.

    ERIC Educational Resources Information Center

    Dry Creek Joint Elementary School District, Roseville, CA.

    An Educational Specification Committee was convened to determine the design specifications required for a new K-5 (and temporarily 6-8 grade) elementary school in Roseville, California's Dry Creek District. This report, the result of the committee's efforts, examines school room specifications for each grade level and administrative area.…

  16. Salt Weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    2006-12-01

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  17. 1. HEAD GATE OF THE SAND CREEK LATERAL AT THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. HEAD GATE OF THE SAND CREEK LATERAL AT THE HIGH LINE CANAL ON THE SOUTH END OF THE PEORIA STREET BRIDGE. - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  18. Water-quality monitoring for a pilot piling removal field evaluation, Coal Creek Slough, Washington, 2008-09

    USGS Publications Warehouse

    Nilsen, Elena B.; Alvarez, David A.

    2011-01-01

    Significant Findings Water and sediment quality monitoring was conducted before and after the removal of a piling field located in Coal Creek Slough near Longview, Washington. Passive chemical samplers and continuous water-quality monitoring instruments were deployed at the piling removal site, Coal Creek Slough Site 1 (CCS1), and at a comparison site, Coal Creek Slough Site 2 (CCS2), before (2008) and after (2009) piling removal. Surface and subsurface (core) sediment samples were collected before and after piling removal and were analyzed for grain size, organic carbon content, and chemicals of concern. Significant findings from this study include: * Phenanthrene was the only compound detected in wood piling samples analyzed for a large suite of semivolatile organic compounds and polycyclic aromatic hydrocarbons (PAHs). Metals potentially associated with wood treatment were detected in the wood piling samples at low concentrations. * Organic carbon was slightly lower in core samples from CCS1 in pre-removal (2008) and post-removal (2009) samples than in surface samples from both sites in both years. * Grain-size class distributions were relatively uniform between sites and years. * Thirty-four out of 110 chemicals of concern were detected in sediments. Eight of those detected were anthropogenic waste indicator (AWI) compounds, 18 were PAHs, 4 were sterols, and 4 were metals potentially associated with wood treatment. * Nearly all reported concentrations of chemicals of concern in sediments are qualified as estimates, primarily due to interferences in extracts resulting from complex sample matrices. Indole, perylene, and fluoranthene are reported without qualification for some of the samples, and the metals are reported without qualification for all samples. * The highest frequency of detection of chemicals of concern was seen in the pre-removal surface samples at both sites. * AWI compounds were detected less frequently and at lower concentrations during the post

  19. Peak discharge, flood frequency, and peak stage of floods on Big Cottonwood Creek at U.S. Highway 50 near Coaldale, Colorado, and Fountain Creek below U.S. Highway 24 in Colorado Springs, Colorado, 2016

    USGS Publications Warehouse

    Kohn, Michael S.; Stevens, Michael R.; Mommandi, Amanullah; Khan, Aziz R.

    2017-12-14

    period of 1 year, or the 1-year storm), which is a statistically common (high probability) storm. The Big Cottonwood Creek site is downstream from the Hayden Pass Fire burn area, which dramatically altered the hydrology of the watershed and caused this statistically rare (low probability) flood from a statistically common (high probability) storm. The peak flood stage at the cross section closest to the U.S. Highway 50 culvert was 6,438.32 feet (ft) above the North American Datum of 1988 (NAVD 88).The August 29, 2016, flood at the Fountain Creek site had an estimated annual exceedance probability of 0.5505 (return period equal to the 1.8-year flood). The August 29, 2016, flood event was caused by a precipitation event having an annual exceedance probability of 1.0 (return period of 1 year, or the 1-year storm). The peak stage during this flood at the cross section closest to the U.S. Highway 24 bridge was 5,832.89 ft (NAVD 88).Slope-area indirect discharge measurements were carried out at the Big Cottonwood Creek and Fountain Creek sites to estimate peak discharge of the August 23, 2016, flood and August 29, 2016, flood, respectively. The USGS computer program Slope-Area Computation Graphical User Interface was used to compute the peak discharge by adding the surveyed cross sections with Manning roughness coefficient assignments to the high-water marks. The Manning roughness coefficients for each cross section were estimated in the field using the Cowan method.

  20. 33 CFR 110.71a - Cabin Creek, Grasonville, Md.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cabin Creek, Grasonville, Md. 110.71a Section 110.71a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.71a Cabin Creek, Grasonville, Md. The waters...

  1. 33 CFR 110.71a - Cabin Creek, Grasonville, Md.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Cabin Creek, Grasonville, Md. 110.71a Section 110.71a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.71a Cabin Creek, Grasonville, Md. The waters...

  2. 33 CFR 110.71a - Cabin Creek, Grasonville, Md.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Cabin Creek, Grasonville, Md. 110.71a Section 110.71a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.71a Cabin Creek, Grasonville, Md. The waters...

  3. 33 CFR 110.71a - Cabin Creek, Grasonville, Md.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Cabin Creek, Grasonville, Md. 110.71a Section 110.71a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.71a Cabin Creek, Grasonville, Md. The waters...

  4. 33 CFR 110.71a - Cabin Creek, Grasonville, Md.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Cabin Creek, Grasonville, Md. 110.71a Section 110.71a Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.71a Cabin Creek, Grasonville, Md. The waters...

  5. 76 FR 3837 - Drawbridge Operation Regulation; Chickasaw Creek, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... Creek, mile 0.0, in Mobile, Alabama. The deviation is necessary to replace railroad ties on the bridge... INFORMATION: The CSX Transportation has requested a temporary deviation from the operating schedule for the Swing Span Bridge across Chickasaw Creek, mile 0.0, in Mobile, Alabama. The bridge has a vertical...

  6. AmeriFlux US-Rws Reynolds Creek Wyoming big sagebrush

    DOE Data Explorer

    Flerchinger, Gerald [USDA Agricultural Research Service

    2017-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Rws Reynolds Creek Wyoming big sagebrush. Site Description - The site is located on the USDA-ARS's Reynolds Creek Experimental Watershed. It is dominated by Wyoming big sagebrush on land managed by USDI Bureau of Land Management.

  7. Concentrations of fecal coliform bacteria in creeks, Anchorage, Alaska, August and September 1998

    USGS Publications Warehouse

    Dorava, Joseph M.; Love, Andra

    1999-01-01

    Water samples were collected from five creeks in undeveloped, semi-developed, and developed areas of Anchorage, Alaska, during August and September 1998 to determine concentrations of fecal coliform bacteria. In undeveloped areas of Ship, Chester, and Campbell Creeks, and the semi-developed area of Rabbit Creek, concentrations of fecal coliform bacteria ranged from less than 1 to 16 colonies per 100 milliliters of water. In the semi-developed area of Little Rabbit Creek, concentrations ranged from 30 to 860 colonies per 100 milliliters of water. In developed areas of the creeks, concentrations of fecal coliform bacteria ranged from 6 to 80 colonies per 100 milliliters of water.

  8. 76 FR 6114 - Lincoln National Forest, New Mexico, North Fork Eagle Creek Wells Special Use Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... groundwater drawdown from this well field to maintain surface flows and protect water-dependent ecosystems.... The United States Geological Survey (USGS) conducted the independent study from 2007-2009 to determine... during both time periods, there were no days of zero flow recorded at the Eagle Creek gage from 1969-1980...

  9. The Patroon Creek Contamination Migration Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufek, K.; Zafran, A.; Moore, J.T.

    2006-07-01

    Shaw performed a Site Investigation (SI) for sediment within the Unnamed Tributary of the Patroon Creek, a section of the Patroon Creek, and the Three Mile Reservoir as part of the overall contract with the United States Army Corps of Engineers (USACE) to remediate the Colonie Formerly Utilized Sites Remedial Action Program (FUSRAP) Site. The Unnamed Tributary formerly flowed through the former Patroon Lake, which was located on the main site property and was used as a landfill for radiological and chemical wastes. The objective of the investigation was to determine the absence/presence of radioactive contamination within the three Areasmore » of Concern (AOC). In order to accomplish this objective, Shaw assembled a team to produce a Technical Memorandum that provided an in-depth understanding of the environmental conditions related to the Patroon Creek. Upon completion and analysis of the Technical Memorandum, a Conceptual Site Model (CSM) was constructed and a Technical Planning Program (TPP) was held to develop a Sediment Investigation Work Plan and Sediment Investigation Sampling and Analysis Plan. A total of 32 sample locations were analyzed using on-site direct gamma scans with a Pancake Geiger-Mueller (PGM) instrument for screening purposes and samples were analyzed at on-site and off-site laboratories. The highest interval from each core scan was selected for on-site analysis utilizing a High Purity Germanium (HPGe) detector. Eight of these samples were sent off-site for gamma/alpha spectroscopy confirmation. The data collected during the SI indicated that the U-238 cleanup criterion was exceeded in sediment samples collected from two locations within the Unnamed Tributary but not in downstream sections of Patroon Creek or Three Mile Reservoir. Future actions for impacted sediment in the Unnamed Tributary will be further evaluated. Concentrations of U-238 and Th-232 in all other off-site sediment samples collected from the Unnamed Tributary, Patroon Creek

  10. Channel stability of Turkey Creek, Nebraska

    USGS Publications Warehouse

    Rus, David L.; Soenksen, Philip J.

    1998-01-01

    Channelization on Turkey Creek and its receiving stream, the South Fork Big Nemaha River, has disturbed the equilibrium of Turkey Creek and has led to channel-stability problems, such as degradation and channel widening, which pose a threat to bridges and land adjacent to the stream. As part of a multiagency study, the U.S. Geological Survey assessed channel stability at two bridge sites on upper and middle portions of Turkey Creek by analyzing streambed-elevation data for gradation changes, comparing recent cross-section surveys and historic accounts, identifying bank-failure blocks, and analyzing tree-ring samples. These results were compared to gradation data and trend results for a U.S. Geological Survey streamflow-gaging station near the mouth of Turkey Creek from a previous study. Examination of data on streambed elevations reveals that degradation has occurred. The streambed elevation declined 0.5 m at the upper site from 1967-97. The streambed elevation declined by 3.2 m at the middle site from 1948-97 and exposed 2 m of the pilings of the Nebraska Highway 8 bridge. Channel widening could not be verified at the two sites from 1967-97, but a historic account indicates widening at the middle site to be two to three times that of the 1949 channel width. Small bank failures were evident at the upper site and a 4-m-wide bank failure occurred at the middle site in 1987 according to tree ring analyses. Examination of streambed-elevation data from a previous study at the lower site reveals a statistically significant aggrading trend from 1958-93. Further examination of these data suggests minor degradation occurred until 1975, followed by aggradation.

  11. Ghaba salt basin province and Fahud salt basin province, Oman; geological overview and total petroleum systems

    USGS Publications Warehouse

    Pollastro, Richard M.

    1999-01-01

    Natih limestones account for most of the production in the Fahud Salt Basin with about 50 percent of the basin?s production from porous, fractured Shu?aiba limestones in Yibal field, thus the name North Oman Huqf? Shu?aiba(!) TPS. Deep gas is produced mainly from Middle Cambrian to Lower Ordovician clastic reservoirs of the Haima Supergroup. Traps in nearly all hydrocarbon accumulations of these petroleum systems are mainly structural and were formed by one or more 3 mechanisms. These trap-forming mechanisms were mainly periodic halokinesis of the thick Cambrian Ara Salt and consequent folding and faulting from basin loading, rifting, or other major tectonic events, particularly those events forming the Oman Mountains and associated foreland-basin system during the Late Cretaceous and late Tertiary. Many of the future new-field targets will likely be low-relief, subtle structures, as many of the large structures have been drilled. Oman?s recent interest and commitments to liquid natural gas export make deep gas a primary objective in the two North Oman Huqf petroleum systems. New-field exploration of deep gas and exploring deeper targets for gas in existing fields will likely identify a significant gas resource in the next 30 years. Moreover, salt-diapir flank traps in these two North Oman Huqf petroleum systems and salt basin provinces have gone essentially untested and will likely be targeted in the near future. The middle Cretaceous Natih(!) TPS is a small efficient system of the Fahud Salt Basin. Natih source rocks are only mature in the Late Cretaceous/Tertiary foredeep and production is primarily from Natih reservoirs; minor production from the Shu?aiba limestone is documented along fault-dip structures. Most traps are structural and are related to development of the foreland basin and formation of the Oman Mountains. Future targets of the Natih TPS will be less obvious

  12. The Wells Creek Meteorite Impact Site and Changing Views on Impact Cratering

    NASA Astrophysics Data System (ADS)

    Ford, J. R. H.; Orchiston, Wayne; Clendening, Ron

    2012-11-01

    Wells Creek is a confirmed meteorite impact site in Tennessee, USA. The Wells Creek structure was first noticed by railroad surveyors around 1855 and brought to the attention of J.M. Safford, Tennessee's State Geologist. He included an insert in the 1869 Geologic Map of Tennessee, which is the first known map to include the structure. The origin of the Wells Creek structure was controversial, and was interpreted as being either the result of volcanic steam explosion or meteorite impact. It was only in the 1960s that Wilson and Stearns were able to state that the impact hypothesis was preferred. Evidence for a Wells Creek meteorite impact includes drill core results, extreme brecciation and shatter cones, while a local lack of volcanic material is telling. Just to the north of the Wells Creek Basin are three small basins that Wilson concluded were associated with the Wells Creek impact event, but evidence regarding the origin of the Austin, Indian Mound and Cave Spring Hollow sites is not conclusive.

  13. 76 FR 60732 - Drawbridge Operation Regulation; Chickasaw Creek, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... Creek, mile 0.0, at Mobile, Alabama. The deviation is necessary to repair structural members of the... requested a temporary deviation from the operating schedule for the Swing Span Bridge across Chickasaw Creek, mile 0.0, in Mobile, Alabama. The bridge has a vertical clearance of 6 feet above mean high water in...

  14. 1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, AND FROM SANTA ANA RIVER THROUGH TUNNEL #0 AT RIGHT. VIEW TO NORTHEAST. - Santa Ana River Hydroelectric System, Bear Creek Diversion Dam & Confluence Pool, Redlands, San Bernardino County, CA

  15. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present:more » Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.« less

  16. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-01-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present:more » Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.« less

  17. Water-budgets and recharge-area simulations for the Spring Creek and Nittany Creek Basins and parts of the Spruce Creek Basin, Centre and Huntingdon Counties, Pennsylvania, Water Years 2000–06

    USGS Publications Warehouse

    Fulton, John W.; Risser, Dennis W.; Regan, R. Steve; Walker, John F.; Hunt, Randall J.; Niswonger, Richard G.; Hoffman, Scott A.; Markstrom, Steven

    2015-08-17

    This report describes the results of a study by the U.S. Geological Survey in cooperation with ClearWater Conservancy and the Pennsylvania Department of Environmental Protection to develop a hydrologic model to simulate a water budget and identify areas of greater than average recharge for the Spring Creek Basin in central Pennsylvania. The model was developed to help policy makers, natural resource managers, and the public better understand and manage the water resources in the region. The Groundwater and Surface-water FLOW model (GSFLOW), which is an integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Groundwater Flow Model (MODFLOW-NWT), was used to simulate surface water and groundwater in the Spring Creek Basin for water years 2000–06. Because the groundwater and surface-water divides for the Spring Creek Basin do not coincide, the study area includes the Nittany Creek Basin and headwaters of the Spruce Creek Basin. The hydrologic model was developed by the use of a stepwise process: (1) develop and calibrate a PRMS model and steady-state MODFLOW-NWT model; (2) re-calibrate the steady-state MODFLOW-NWT model using potential recharge estimates simulated from the PRMS model, and (3) integrate the PRMS and MODFLOW-NWT models into GSFLOW. The individually calibrated PRMS and MODFLOW-NWT models were used as a starting point for the calibration of the fully coupled GSFLOW model. The GSFLOW model calibration was done by comparing observations and corresponding simulated values of streamflow from 11 streamgages and groundwater levels from 16 wells. The cumulative water budget and individual water budgets for water years 2000–06 were simulated by using GSFLOW. The largest source and sink terms are represented by precipitation and evapotranspiration, respectively. For the period simulated, a net surplus in the water budget was computed where inflows exceeded outflows by about 1.7 billion cubic feet (0.47 inches per year over the basin area

  18. 8. CLOSEUP OF THE GATES ON THE TOBY CREEK OUTLET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. CLOSEUP OF THE GATES ON THE TOBY CREEK OUTLET AND THE OUTLET OF THE PUMP DISCHARGE CHANNEL, LOOKING NORTHEAST. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  19. Big Creek Hydroelectric System, East & West Transmission Line, 241mile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Big Creek Hydroelectric System, East & West Transmission Line, 241-mile transmission corridor extending between the Big Creek Hydroelectric System in the Sierra National Forest in Fresno County and the Eagle Rock Substation in Los Angeles, California, Visalia, Tulare County, CA

  20. Flood hydrology for Dry Creek, Lake County, Northwestern Montana

    USGS Publications Warehouse

    Parrett, C.; Jarrett, R.D.

    2004-01-01

    Dry Creek drains about 22.6 square kilometers of rugged mountainous terrain upstream from Tabor Dam in the Mission Range near St. Ignatius, Montana. Because of uncertainty about plausible peak discharges and concerns regarding the ability of the Tabor Dam spillway to safely convey these discharges, the flood hydrology for Dry Creek was evaluated on the basis of three hydrologic and geologic methods. The first method involved determining an envelope line relating flood discharge to drainage area on the basis of regional historical data and calculating a 500-year flood for Dry Creek using a regression equation. The second method involved paleoflood methods to estimate the maximum plausible discharge for 35 sites in the study area. The third method involved rainfall-runoff modeling for the Dry Creek basin in conjunction with regional precipitation information to determine plausible peak discharges. All of these methods resulted in estimates of plausible peak discharges that are substantially less than those predicted by the more generally applied probable maximum flood technique. Copyright ASCE 2004.

  1. Salt

    USGS Publications Warehouse

    Franson, J.C.; Friend, M.

    1999-01-01

    Animals become victims of salt poisoning or toxicosis when toxic levels of sodium and chloride accumulate in the blood after they ingest large amounts of salt or, in some species, are deprived of water. For birds, salt sources may include saline water and road salt.Normally, the salt glands of birds (Fig. 47.1) excrete sodium and chloride to maintain the proper physiologic chemical balance. However, when there has been insufficient time for acclimation of the salt gland to the saline environment, or when salt gland function is compromised by exposure to certain pesticides or oil, the electrolyte balance of the blood may be upset by the excess sodium and chloride, resulting in toxicosis. Salt accumulation on the outside of the body, or salt encrustation, is a greater problem for waterbirds that use very saline waters than is salt toxicosis. Salt encrustation can lead to exertion, acute muscle degeneration, and eventual drowning during the struggle to escape entrapment.

  2. Factors affecting the hydrochemistry of a mangrove tidal creek, sepetiba bay, Brazil

    NASA Astrophysics Data System (ADS)

    Ovalle, A. R. C.; Rezende, C. E.; Lacerda, L. D.; Silva, C. A. R.

    1990-11-01

    We studied the porewater chemistry, and spatial and temporal variation of mangrove creek hydrochemistry. Except for nitrate porewater, the concentrations of nutrients we analysed were higher than for creek water. Groundwater is a source of silica and phosphate, whereas total alkalinity and ammonium are related to mangrove porewater migration to the creek. Open bay waters contribute chlorine, dissolved oxygen and elevated pH. The results also suggest that nitrate is related to nitrification inside the creek. During flood tides, salinity, chlorine, dissolved oxygen and pH increase, whereas total alkalinity decreases. This pattern is reversed at ebb tides. Silica, phosphate, nitrate and ammonium show an erratic behaviour during the tidal cycle. Tidal dynamics, precipitation events and nitrification inside the creek were identified as major control factors and an estimate of tidal exchanges indicate that the system is in an equilibrium state.

  3. WATER QUALITY STATUS REPORT, VINYARD CREEK, JEROME COUNTY, IDAHO. 1986

    EPA Science Inventory

    During 1986, a survey was done on Vinyard Creek (17040212) to assess water quality conditions and beneficial use impairment due to agricultural pollutants. During the 1986 irrigation season, Vinyard Creek transported an estimated 780 tons of sediment to the Snake River. Most of...

  4. 121. MCMULLEN CREEK DRAW, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. MCMULLEN CREEK DRAW, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; OUTLET SIDE OF CREEK, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  5. 103. DRY CREEK SPILL, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    103. DRY CREEK SPILL, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; INLET SIDE TO DRY CREEK, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  6. 119. COTTONWOOD CREEK SIPHON, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    119. COTTONWOOD CREEK SIPHON, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; INLET SIDE OF COTTONWOOD CREEK, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  7. Depositional patterns and structural styles - Hackberry Salt Dome, Cameron Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, J.A.; Sharpe, C.L.; Gillham, T.H.

    The west and east Hackberry fields of north-central Cameron Parish, Louisiana, are associated with a large southeast-plunging salt ridge. Episodes of salt movement influenced the depositional patterns and reservoir trap styles of the Oligocene and Miocene age section. The Oligocene lower Hackberry channels were influenced by the salt, resulting in the {open_quotes}Manchester-Holmwood{close_quotes} channel system skirting the east and south flanks of the salt and the {open_quotes}Choupique{close_quotes} channel system skirting the west flank of the salt. The depositional patterns and structural bed dips of the younger Oligocene Camerina (A) to Marginulina section demonstrate a major period of salt movement and erosion.more » The resulting truncation of the Camerina (A) sands, sealed by overlying shales, provides the dominant trap style for the majority of the fields` reservoirs. This same general period of salt movement influenced the orientation of the Oligocene Camerina (A) - Miogypsinoides expansion fault systems of the prolific Miogypsinoides embayment. The Sweet Lake salt dome, downthrown to this expansion system, probably represents a southeast extension of this ancestral salt ridge.« less

  8. Caspar Creek project stream ecology phase progress report, July 1, 1965 - June 30, 1966

    Treesearch

    Richard L. Ridenhour

    1966-01-01

    A preliminary progress report of the research on the stream ecology of Caspar Creek by Humboldt State College was submitted by Dr. John DeWitt in December,1965, (DeWitt 1965). Further analyses of data collected during the summer of 1965 allows a more complete report to be made at this time. Although the contract was for the period July 1, 1965 to June 30, 1966, field...

  9. Geophysical investigations of geology and structure at the Martis Creek Dam, Truckee, California

    USGS Publications Warehouse

    Bedrosian, P.A.; Burton, B.L.; Powers, M.H.; Minsley, B.J.; Phillips, J.D.; Hunter, L.E.

    2012-01-01

    A recent evaluation of Martis Creek Dam highlighted the potential for dam failure due to either seepage or an earthquake on nearby faults. In 1972, the U.S. Army Corps of Engineers constructed this earthen dam, located within the Truckee Basin to the north of Lake Tahoe, CA for water storage and flood control. Past attempts to raise the level of the Martis Creek Reservoir to its design level have been aborted due to seepage at locations downstream, along the west dam abutment, and at the base of the spillway. In response to these concerns, the U.S. Geological Survey has undertaken a comprehensive suite of geophysical investigations aimed at understanding the interplay between geologic structure, seepage patterns, and reservoir and groundwater levels. This paper concerns the geologic structure surrounding Martis Creek Dam and emphasizes the importance of a regional-scale understanding to the interpretation of engineering-scale geophysical data. Our studies reveal a thick package of sedimentary deposits interbedded with Plio-Pleistocene volcanic flows; both the deposits and the flows are covered by glacial outwash. Magnetic field data, seismic tomography models, and seismic reflections are used to determine the distribution and chronology of the volcanic flows. Previous estimates of depth to basement (or the thickness of the interbedded deposits) was 100 m. Magnetotelluric soundings suggest that electrically resistive bedrock may be up to 2500 m deep. Both the Polaris Fault, identified outside of the study area using airborne LiDAR, and the previously unnamed Martis Creek Fault, have been mapped through the dam area using ground and airborne geophysics. Finally, as determined by direct-current resistivity imaging, time-domain electromagnetic sounding, and seismic refraction, the paleotopography of the interface between the sedimentary deposits and the overlying glacial outwash plays a principal role both in controlling groundwater flow and in the distribution of the

  10. The effects of crab bioturbation on Mid-Atlantic saltmarsh tidal creek extension: Geotechnical and geochemical changes

    NASA Astrophysics Data System (ADS)

    Wilson, C. A.; Hughes, Z. J.; FitzGerald, D. M.

    2012-06-01

    Understanding saltmarsh response to sea-level rise is critical for management and mitigation of these valuable coastal areas. However, comprehensive field studies of sea-level driven changes to the marsh landscape that consider combined biological, geological, and hydrodynamic interactions are rare. This study analyzes ecophysical feedbacks from crab colonization and bioturbation on geotechnical and geochemical properties of the soil in a Mid-Atlantic Spartina alterniflora saltmarsh. The study area is within a marsh that is experiencing creek extension due to accelerated sea-level rise and increasing periods of marsh inundation. Measurements of redox potential, pH, belowground biomass, and soil strength reveal that intense crab bioturbation by Sesarma reticulatum significantly changes the biogeochemical properties of the soil. Oxidized conditions in the upper 10-15 cm of the marsh induced by burrowing causes enhanced degradation of S. alterniflora belowground biomass (roots and rhizomes, reduction from 1.9 ± 0.6 kg/m2 to 1.1 ± 0.4 kg/m2), which reduces the structural integrity of the soil. This process ultimately increases the erosion potential of the sediment in creek head areas (documented by a reduction in shear strength from 10 ± 7 kPa to 2 ± 1 kPa), facilitating creek extension in order to accommodate tidal flows. The pervasiveness of similar tidal creek morphology in southeast Atlantic saltmarshes suggests this process is occurring in other marshes with a moderate tidal range undergoing sea-level rise.

  11. NPDES Permit for Soap Creek Associates Wastewater Treatment Facility in Montana

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number MT-0023183, Soap Creek Associates, Inc. is authorized to discharge from its wastewater treatment facility located in West, Bighorn County, Montana, to Soap Creek.

  12. 101. DRY CREEK SPILL, MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. DRY CREEK SPILL, MURTAUGH LAKE, TWIN FALLS COUNTY, SOUTH OF MURTAUGH, IDAHO; NORTHEAST VIEW OF DRY CREEK OUTLET. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  13. Evolution of salt and hydrocarbon migration: Sweet Lake area, Cameron Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, J.A.; Sharpe, C.L.

    The interpretation of seismic, gravity, and well data in northern Cameron Parish, Louisiana suggest that lateral salt flow has influenced the area`s structural evolution, depositional patterns, and hydrocarbon migration. Sweet Lake Field has produced over 46 MMBO and 15 BCFG from Middle Miocene deltaic sands. The structural closure is a downthrown anticline on a fault controlled by the underlying salt feature. Sweet Lake Field overlies an allochthonous salt mass that was probably once part of an ancestral salt ridge extending from Hackberry to Big Lake fields. Nine wells encountering top of salt and several seismic lines define a detached saltmore » feature underlying over twenty square miles at depths from 8500-18,000 ft. Salt withdrawal in the East Hackberry-Big Lake area influenced the depositional patterns of the Oligocene lower Hackberry channel systems. Progradation of thick Middle Oligocene Camerina (A) and Miogypsinoides sands into the area caused salt thinning and withdrawal resulting in the development and orientation of the large Marginulina-Miogypsinoides growth fault northwest of Sweet Lake. Additional evidence for the southeast trend of the salt is a well approximately two miles southeast of Sweet Lake which encountered salt at approximately 19,800 ft. High quality 2-D and 3-D seismic data will continue to enhance the regional understanding of the evolving salt structures in the onshore Gulf Coast and the local understanding of hydrocarbon migration. Additional examples of lateral salt flow will be recognized and some may prove to have subsalt hydrocarbon potential.« less

  14. GIS Spatial Analysis of Water Quality at Courtland Creek in Oakland, California

    NASA Astrophysics Data System (ADS)

    Matias, F.; Perez, L.; Martinez, E.; Rivera Soto, E.; McDonald, K.; Garcia, D.; Ruiz, I.

    2015-12-01

    Courtland Creek is a channelized stream that traverses residential and industrial sections of East Oakland, California. Segments of the creek are exposed on the surface and have been designated as City of Oakland park land. Since 2012, the quality of creek waters has been monitored through measurement and analysis of nutrient and other possible contaminant levels in samples collected in these exposed segments. Throughout the three-year period during which monitoring efforts have been undertaken, high concentration levels of nitrate have been observed. The primary aim of our research is to gain an overall indication of creek health in relation to its surrounding environment through the use of Geographic Information Systems (GIS) analysis of nutrient concentrations at the four sites. Investigating the relationship between Courtland Creek and the environmental factors influencing its health will enable us to develop a better sense of the actions that can be taken by the City of Oakland to create sustainable park land and healthy communities. During the summer of 2015, our group continued to monitor levels of ammonia, phosphate and nitrate at four different sites along the creek, and benthic macroinvertebrates were sampled at one of these sites. Preliminary analysis of benthic macroinvertebrate data indicates that Courtland Creek is in poor health ecologically. Nitrate concentration levels measured during the study period were lower than those detected in previous years but still indicate inputs other than those associated with natural processes. The high nitrate concentration levels may be the result of human and animal waste pollution, as supported by data obtained during a recent Environmental Protection Agency (EPA) - led E. coli survey that included the watershed within which Courtland Creek is situated.

  15. Salt drying: a low-cost, simple and efficient method for storing plants in the field and preserving biological repositories for DNA diversity research.

    PubMed

    Carrió, Elena; Rosselló, Josep A

    2014-03-01

    Although a variety of methods have been optimized for the collection and storage of plant specimens, most of these are not suited for field expeditions for a variety of logistic reasons. Drying specimens with silica gel in polyethylene bags is currently the standard for field-sampling methods that are suitable for subsequent DNA extraction. However, silica-gel repositories are not readily available in remote areas, and its use is not very cost-effective for the long-term storage of collections or in developing countries with limited research budgets. Salting is an ancient and traditional drying process that preserves food samples by dehydrating tissues and inhibiting water-dependent cellular metabolism. We compared salt and silica-gel drying methods with respect to dehydration rates overtime, DNA quality and polymerase chain reaction(PCR) success to assess whether dry salting can be used as an effective plant preservation method for DNA analysis. Specimens from eleven plant species covering a variety of leaf structures, leaf thicknesses and water contents were analysed. Experimental work indicated that (i) levels of dehydration in sodium chloride were usually comparable to those obtained when silica gel was used, (ii) no spoilage, fungal or bacterial growth was observed for any of the species with all drying treatments and (iii) good yields of quality genomic DNA suitable for PCR applications were obtained in the salt-drying treatments. The preservation of plant tissues in commercial table salt appears to be a satisfactory, and versatile method that may be suitable in remote areas where cryogenic resources and silica repositories are not available. © 2013 John Wiley & Sons Ltd.

  16. 33 CFR 165.509 - Security Zone; Severn River and College Creek, Annapolis, MD.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... College Creek, Annapolis, MD. 165.509 Section 165.509 Navigation and Navigable Waters COAST GUARD... § 165.509 Security Zone; Severn River and College Creek, Annapolis, MD. (a) Definitions. For purposes of... the Naval Academy waterfront. This security zone includes the waters of College Creek eastward of the...

  17. Re-Introduction of Lower Columbia River Chum Salmon into Duncan Creek, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hillson, Todd D.

    2004-09-01

    Currently, two methods of reintroduction are being simultaneously evaluated at Duncan Creek. Recolonization is occurring by introducing adult chum salmon from the Lower Gorge (LG) population into Duncan Creek and allowing them to naturally reproduce. The supplementation strategy required adults to be collected and artificially spawned, incubated, reared, and released at the mouth of Duncan Creek. All eggs from the artificial crossings at Washougal Hatchery were incubated and the fry reared to release size at the hatchery. The Duncan Creek chum salmon project was very successful in 2003-04, providing knowledge and experience that will improve program execution in future years.more » The gear used to collect adult brood stock was changed from tangle nets to beach seines. This increased efficiency and the speed at which adults could be processed in the field, and most likely reduced stress on the adults handled. Certain weaknesses exposed in past seasons still exist and new ones were exposed (e.g. inadequate incubation and rearing space at Washougal Hatchery for any large salvage operation and having to move the rearing troughs outside the raceway in 2004). Egg-to-fry survival rates of 64% and 58% showed that the channels are functioning at the upper end of what can be expected from them. Possibly the most important event this season was the ability to strontium mark and release all naturally-produced fry from the spawning channels. Channel and floodplain modifications reduced the likelihood that floods will damage the channels and negatively impact survival rates.« less

  18. 11. A VIEW LOOKING WEST/SOUTHWEST AND DOWNSTREAM ALONG LEATHERWOOD CREEK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. A VIEW LOOKING WEST/SOUTHWEST AND DOWNSTREAM ALONG LEATHERWOOD CREEK, WAS TAKEN FROM THE BRIDGE ROADWAY. - Cement Plant Road Bridge, Spanning Leatherwood Creek on County Road 50 South, Bedford, Lawrence County, IN

  19. Progress in modeling solidification in molten salt coolants

    NASA Astrophysics Data System (ADS)

    Tano, Mauricio; Rubiolo, Pablo; Doche, Olivier

    2017-10-01

    Molten salts have been proposed as heat carrier media in the nuclear and concentrating solar power plants. Due to their high melting temperature, solidification of the salts is expected to occur during routine and accidental scenarios. Furthermore, passive safety systems based on the solidification of these salts are being studied. The following article presents new developments in the modeling of eutectic molten salts by means of a multiphase, multicomponent, phase-field model. Besides, an application of this methodology for the eutectic solidification process of the ternary system LiF-KF-NaF is presented. The model predictions are compared with a newly developed semi-analytical solution for directional eutectic solidification at stable growth rate. A good qualitative agreement is obtained between the two approaches. The results obtained with the phase-field model are then used for calculating the homogenized properties of the solid phase distribution. These properties can then be included in a mixture macroscale model, more suitable for industrial applications.

  20. Tilted lake shorelines record the onset of motion along the Hilton Creek fault adjacent to Long Valley caldera, CA, USA

    NASA Astrophysics Data System (ADS)

    Perkins, J. P.; Finnegan, N. J.; Cervelli, P. F.; Langbein, J. O.

    2010-12-01

    Prominent normal faults occur within and around Long Valley caldera, in the eastern Sierra Nevada of California. However, their relationship to both the magmatic and tectonic evolution of the caldera since the 760 ka eruption of the Bishop Tuff remains poorly understood. In particular, in the Mono-Inyo Craters north of Long Valley, extensional faulting appears to be replaced by dike intrusion where magma is available in the crust. However, it is unclear whether extensional faults in Long Valley caldera have been active since the eruption of the Bishop Tuff (when the current topography was established) or are a relatively young phenomenon owing to the cooling and crystallization of the Long Valley magma reservoir. Here we use GPS geodesy and geomorphology to investigate the evolution of the Hilton Creek fault, the primary range-front fault bounding Long Valley caldera to the southwest. Our primary goals are to determine how long the Hilton Creek fault has been active and whether slip rates have been constant over that time interval. To characterize the modern deformation field, we capitalize on recently (July, 2010) reoccupied GPS benchmarks first established in 1999-2000. These fixed-array GPS data show no discernible evidence for recent slip on the Hilton Creek fault, which further highlights the need for longer-term constraints on fault motion. To establish a fault slip history, we rely on a suite of five prominent shorelines from Pleistocene Long Valley Lake whose ages are well constrained based on field relationships to dated lavas, and that are tilted southward toward the Hilton Creek fault. A preliminary analysis of shoreline orientations using GPS surveys and a 5-m-resolution Topographic Synthetic Aperture Radar (TOPSAR) digital elevation model shows that lake shorelines tilt towards the Hilton Creek fault at roughly parallel gradients (~ 0.6%). The measured shorelines range in inferred age from 100 ka to 500 ka, which constrain recent slip on the Hilton

  1. Investigating organic matter in Fanno Creek, Oregon, Part 1 of 3: estimating annual foliar biomass for a deciduous-dominant urban riparian corridor

    USGS Publications Warehouse

    Sobieszczyk, Steven; Keith, Mackenzie K.; Rounds, Stewart A.; Goldman, Jami H.

    2014-01-01

    For this study, we explored the amount, type, and distribution of foliar biomass that is deposited annually as leaf litter to Fanno Creek and its floodplain in Portland, Oregon, USA. Organic matter is a significant contributor to the decreased dissolved oxygen concentrations observed in Fanno Creek each year and leaf litter is amongst the largest sources of organic matter to the stream channel and floodplain. Using a combination of field measurements and light detection and ranging (LiDAR) point cloud data, the annual foliar biomass was estimated for 13 stream reaches along the creek. Biomass estimates were divided into two sets: (1) the annual foliage available from the entire floodplain overstory canopy, and (2) the annual foliage overhanging the stream, which likely contributes leaf litter directly to the creek each year. Based on these computations, an estimated 991 (±22%) metric tons (tonnes, t) of foliar biomass is produced annually above the floodplain, with about 136 t (±24%) of that foliage falling directly into Fanno Creek. The distribution of foliar biomass varies by reach, with between 150 and 640 t/km2 produced along the floodplain and between 400 and 1100 t/km2 available over the channel. Biomass estimates vary by reach based primarily on the density of tree cover, with forest-dominant reaches containing more mature deciduous trees with broader tree canopies than either wetland or urban-dominant reaches, thus supplying more organic material to the creek. By quantifying the foliar biomass along Fanno Creek we have provided a reach-scale assessment of terrestrial organic matter loading, thereby providing land managers useful information for planning future restoration efforts.

  2. Investigating organic matter in Fanno Creek, Oregon, Part 1 of 3: Estimating annual foliar biomass for a deciduous-dominant urban riparian corridor

    NASA Astrophysics Data System (ADS)

    Sobieszczyk, Steven; Keith, Mackenzie K.; Rounds, Stewart A.; Goldman, Jami H.

    2014-11-01

    For this study, we explored the amount, type, and distribution of foliar biomass that is deposited annually as leaf litter to Fanno Creek and its floodplain in Portland, Oregon, USA. Organic matter is a significant contributor to the decreased dissolved oxygen concentrations observed in Fanno Creek each year and leaf litter is amongst the largest sources of organic matter to the stream channel and floodplain. Using a combination of field measurements and light detection and ranging (LiDAR) point cloud data, the annual foliar biomass was estimated for 13 stream reaches along the creek. Biomass estimates were divided into two sets: (1) the annual foliage available from the entire floodplain overstory canopy, and (2) the annual foliage overhanging the stream, which likely contributes leaf litter directly to the creek each year. Based on these computations, an estimated 991 (±22%) metric tons (tonnes, t) of foliar biomass is produced annually above the floodplain, with about 136 t (±24%) of that foliage falling directly into Fanno Creek. The distribution of foliar biomass varies by reach, with between 150 and 640 t/km2 produced along the floodplain and between 400 and 1100 t/km2 available over the channel. Biomass estimates vary by reach based primarily on the density of tree cover, with forest-dominant reaches containing more mature deciduous trees with broader tree canopies than either wetland or urban-dominant reaches, thus supplying more organic material to the creek. By quantifying the foliar biomass along Fanno Creek we have provided a reach-scale assessment of terrestrial organic matter loading, thereby providing land managers useful information for planning future restoration efforts.

  3. Bent Creek demonstration program

    Treesearch

    Erik C. Berg

    1997-01-01

    Bent Creek Research and Demonstration Forest scientists have transferred the results of research on the ecology and management of Southern Appalachian hardwoods since 1925. Since 1989, a full-time technology transfer specialist has led demonstration efforts. The demonstration program was designed to quickly transfer research results to interested users and to free...

  4. Bent Creek demonstration program

    Treesearch

    Erik C. Berg

    1997-01-01

    Bent Creek Research and Demonstration Forest scientists have transferred the results of research on the ecology and management of Southern Appalachian hardwoods since 1925. Since 1989, a full-time technology transfer specialist has led demonstration efforts. The demonstration program was designed to quickly transfer research results to interested users, and free-up...

  5. 33. Site Plan: Custer Air Force Station, Battle Creek, Michigan, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Site Plan: Custer Air Force Station, Battle Creek, Michigan, FD Radar Facilities-FPS-27, Electrical Plot Plan and Duet Details, USACOE, not date. - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  6. 115. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    115. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; WEST VIEW OF SIPHON CROSSING ROCK CREEK. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  7. Arsenic loads in Spearfish Creek, western South Dakota, water years 1989-91

    USGS Publications Warehouse

    Driscoll, Daniel G.; Hayes, Timothy S.

    1995-01-01

    Numerous small tributaries on the eastern flank of Spearfish Creek originate within a mineralized area with a long history of gold-mining activity. Some streams draining this area are known to have elevated concentrations of arsenic. One such tributary is Annie Creek, where arsenic concentrations regularly approach the Maximum Contaminant Level of 50 mg/L (micrograms per liter) established by the U.S. Environmental Protection Agency. A site on Annie Creek was proposed for inclusion on the National Priorities List by the Environmental Protection Agency in 1991. This report presents information about arsenic loads and concentrations in Spearfish Creek and its tributaries, including Annie Creek. Stream types were classified according to geologic characteris- tics and in-stream arsenic concentrations. The first type includes streams that lack significant arsenic sources and have low in-stream arsenic concentra- tions. The second type has abundant arsenic sources and high in-stream concentrations. The third type has abundant arsenic sources but only moderate in-stream concentrations. The fourth type is a mixture of the first three types. Annual loads of dissolved arsenic were calculated for two reaches of Spearfish Creek to quantify arsenic loads at selected gaging stations during water years 1989-91. Mass-balance calculations also were performed to estimate arsenic concentrations for ungaged inflows to Spearfish Creek. The drainage area of the upstream reach includes significant mineralized areas, whereas the drainage area of the downstream reach generally is without known arsenic sources. The average load of dissolved arsenic transported from the upstream reach of Spearfish Creek, which is representative of a type 4 stream, was 158 kilograms per year, calculated for station 06430900, Spearfish Creek above Spearfish. Gaged headwater tributaries draining unmineralized areas (type 1) contributed only 16 percent of the arsenic load in 63 percent of the discharge. Annie

  8. Redbank and Fancher Creeks, California: General Design Memorandum

    DTIC Science & Technology

    1986-02-01

    agricultural areas not adjacent to mainstream channels. The runoff for these areas, which are downstream of the Enterprise Canal, was assumed to be zero ...for Dry Creek near Lemon Cove. The skews were negative for all the shorter durations and approached a skew of zero for the Dry Creek at Academy and...potentially non-conservative. However, since the cohesion intercept for the design "R" strength was set equal to zero , the impervious fill design strength

  9. 75 FR 16728 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... manner that increases resiliency of the Beaver Creek Landscape Management Project area ecosystem to... requirements to require. The Beaver Creek Landscape Management Project includes treatments previously proposed...

  10. 123. MCMULLEN CREEK, HIGH LINE CANAL, TWIN FALLS COUNTY, SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    123. MCMULLEN CREEK, HIGH LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; SOUTH VIEW OF THE CREEK EMPTYING INTO THE HIGH LINE CANAL. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  11. 122. MCMULLEN CREEK, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    122. MCMULLEN CREEK, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; INLET SIDE OF THE CREEK, ENTRANCE INTO THE HIGH LINE CANAL, SOUTH VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  12. 78 FR 938 - Burton Creek Hydro Inc., Sollos Energy, LLC'

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... Hydro Inc., Sollos Energy, LLC' Notice of Transfer of Exemption 1. By letter filed December 19, 2012, Burton Creek Hydro Inc. informed the Commission that its exemption from licensing for the Burton Creek Hydro Project, FERC No. 7577, originally issued September 25, 1985,\\1\\ has been transferred to Sollos...

  13. Effects of urbanization on water quality in the Kansas River, Shunganunga Creek Basin, and Soldier Creek, Topeka, Kansas, October 1993 through September 1995

    USGS Publications Warehouse

    Pope, L.M.; Putnam, J.E.

    1997-01-01

    A study of urban-related water-qulity effects in the Kansas River, Shunganunga Creek Basin, and Soldier Creek in Topeka, Kansas, was conducted from October 1993 through September 1995. The purpose of this report is to assess the effects of urbanization on instream concentrations of selected physical and chemical constituents within the city of Topeka. A network of seven sampling sites was established in the study area. Samples principally were collected at monthly intervals from the Kansas River and from the Shunganunga Creek Basin, and at quarterly intervals from Soldier Creek. The effects of urbanization werestatistically evaluated from differences in constituent concentrations between sites on the same stream. No significant differences in median concentrations of dissolved solids, nutrients, or metals and trace elements, or median densities offecal bacteria were documented between sampling sites upstream and downstream from the major urbanized length of the Kansas River in Topeka.Discharge from the city's primary wastewater- treatment plant is the largest potential source of contamination to the Kansas River. This discharge increased concentrations of dissolved ammonia, totalphosphorus, and densities of fecal bacteria.Calculated dissolved ammonia as nitrogen concentrations in water from the Kansas River ranged from 0.03 to 1.1 milligrams per liter after receiving treatment-plant discharge. However, most of the calculated concentrations wereconsiderably less than 50 percent of Kansas Department of Health and Environment water- quality criteria, with a median value of 20 percent.Generally, treatment-plant discharge increased calculated total phosphorus concentrations in water from the Kansas River by 0.01 to 0.04 milligrams per liter, with a median percentage increase of 7.6 percent. The calculated median densities of fecal coliform and fecal Streptococci bacteria in water from the Kansas River increased from 120 and 150colonies per 100 milliliters of water

  14. Tenderfoot Creek Experimental Forest

    Treesearch

    Ward W. McCaughey

    1996-01-01

    The Tenderfoot Creek Experimental Forest, established in 1961, is representative of the vast expanses of lodgepole pine (Pinus contorta) found east of the Continental Divide in Montana, southwest Alberta, and Wyoming. Discrete generations of even-age lodgepole stands form a mosaic typical of the fireprone forests at moderate to high altitudes in the Northern Rocky...

  15. 76 FR 13344 - Beaver Creek Landscape Management Project, Ashland Ranger District, Custer National Forest...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-11

    ... DEPARTMENT OF AGRICULTURE Forest Service Beaver Creek Landscape Management Project, Ashland Ranger... Impact Statement for the Beaver Creek Landscape Management Project was published in the Federal Register... Responsible Official for the Beaver Creek Landscape Management Project. DATES: The Final Environmental Impact...

  16. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    Water chemistry in Boulder Creek, Colorado, shows significant variation as the Creek flows through the City of Boulder [Barber et al., 2006]. This variation is partially due to ground water inputs, which are not quantitatively understood. The purpose of this study is (1) to understand ground water movement in a shallow alluvial aquifer system and (2) to assess surface water/ground water interaction. The study area, encompassing an area of 1 mi2, is located at the Sawhill and Walden Ponds area in Boulder. This area was reclaimed by the City of Boulder and Boulder County after gravel mining operations ceased in the 1970's. Consequently, ground water has filled in the numerous gravel pits allowing riparian vegetation regrowth and replanting. An integrated approach is used to examine the shallow ground water and surface water of the study area through field measurements, water table mapping, graphical data analysis, and numerical modeling. Collected field data suggest that lateral heterogeneity exists throughout the unconsolidated sediment. Alluvial hydraulic conductivities range from 1 to 24 ft/day and flow rates range from 0.01 to 2 ft/day. Preliminary data analysis suggests that ground water movement parallels surface topography and does not noticeably vary with season. Recharge via infiltrating precipitation is dependent on evapotranspiration (ET) demands and is influenced by preferential flow paths. During the growing season when ET demand exceeds precipitation rates, there is little recharge; however recharge occurs during cooler months when ET demand is insignificant. Preliminary data suggest that the Boulder Creek is gaining ground water as it traverses the study area. Stream flow influences the water table for distances up to 400 feet. The influence of stream flow is reflected in the zones relatively low total dissolved solids concentration. A modeling study is being conducted to synthesize aquifer test data, ground water levels, and stream flow data. The

  17. Salt weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  18. 77 FR 47761 - Honoring the Victims of the Tragedy in Oak Creek, Wisconsin

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... Victims of the Tragedy in Oak Creek, Wisconsin Proclamation 8847--National Health Center Week, 2012 #0; #0... of August 6, 2012 Honoring the Victims of the Tragedy in Oak Creek, Wisconsin By the President of the... violence perpetrated on August 5, 2012, in Oak Creek, Wisconsin, by the authority vested in me as President...

  19. Biomonitoring of fish communities, using the Index of Biotic Integrity (IBI) in Rabbit Creek-Cat Creek Watershed, Summer 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    The Index of Biotic Integrity (IBI) is a method for evaluating the health of water bodies and watersheds by analyzing sample catches of fishes. Sites are scored on a numerical scale of 12--60 and on that basis assigned to a ``bioclass`` ranging from ``very poor`` to ``excellent.`` Overall, the major causes of depressed IBI scores in the Rabbit Creek watershed would appear to be: Organic pollution, mostly from livestock, but also from agricultural runoff and possible septic tank failures; sedimentation, principally from stream bank damage by cattle, also possibly from agriculture and construction; toxic pollution from agrochemicals applied to Hollymore » Springs Golf course and agricultural fields` and Warming of water and evaporation loss due to elimination of shade on stream banks and construction of ponds.« less

  20. Salting Constants of Small Organic Molecules in Aerosol-Relevant Salts and Application to Aerosol Formation in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Carlton, A. M. G.; Ziemann, P. J.; Volkamer, R. M.

    2014-12-01

    Secondary organic aerosol (SOA) formation from small water-soluble molecules such as glyoxal and methyl glyoxal is a topic of emerging interest. Results from recent field campaigns, e.g. Waxman et al. (2013, GRL) and Knote et al. (2014, ACP), show that these molecules can form significant SOA mass as a result of 'salting-in'. Salting-in happens when a molecule's solubility increases with salt concentration and salting-out is the reverse. Salting effects modify the solubility exponentially with increasing salt concentration, and thus the effective Henry's law constant can strongly modify partitioning, and multiphase chemical reaction rates in aerosol water. Moreover, the solubility in aerosol water cannot easily inferred based on the solubility in cloud water, as the salting effects could change the solubility by a factor of 104 or more. In this work, we have devised and applied a novel experimental setup to measure salting constants using an ion trap mass spectrometer. We focus on small, water soluble molecules like methyl glyoxal and similar compounds and measure salting constants for aerosol-relevant salts including ammonium sulfate, ammonium nitrate, and sodium chloride. The Setschenow salting-constant values are then used to parameterize the effects of salting in CMAQ. We present a series of sensitivity studies of the effects that inorganic aerosols have on the SOA formation from small soluble molecules in the southeastern United States.

  1. Analysis of Enterococci and Bacteriodales Fecal Indicator Bacteria in a Lake Michigan Tributary by Real-Time Quantitative PCR

    EPA Science Inventory

    The Salt Creek watershed in northwest Indiana drains into Lake Michigan near several heavily used recreational beaches. This study aimed to investigate the levels of fecal indicator bacteria, enterococci and Bacteroidales, in Salt Creek using real-time quantitative PCR (qPCR) an...

  2. New mapping near Iron Creek, Talkeetna Mountains, indicates presence of Nikolai greenstone

    USGS Publications Warehouse

    Schmidt, Jeanine M.; Werdon, Melanie B.; Wardlaw, Bruce R.

    2003-01-01

    Detailed geologic mapping in the Iron Creek area, Talkeetna Mountains B-5 Quadrangle, has documented several intrusive bodies and rock units not previously recognized and has extended the geologic history of the area through the Mesozoic and into the Tertiary era. Greenschist-facies metabasalt and metagabbro previously thought to be Paleozoic are intruded by Late Cretaceous to Paleocene dioritic to granitic plutons. The metabasalts are massive to amygdaloidal, commonly contain abundant magnetite, and large areas are patchily altered to epidote ± quartz. They host numerous copper oxide–copper sulfide–quartz–hematite veins and amygdule fillings. These lithologic features, recognized in the field, suggested a correlation of the metamafic rocks with the Late Triassic Nikolai Greenstone, which had not previously been mapped in the Iron Creek area. Thin, discontinuous metalimestones that overlie the metabasalt sequence had previously been assigned a Pennsylvanian(?) and Early Permian age on the basis of correlation with marbles to the north, which yielded Late Paleozoic or Permian macrofossils, or both. Three new samples from the metalimestones near Iron Creek yielded Late Triassic conodonts, which confirms the correlation of the underlying metamafic rocks with Nikolai Greenstone. These new data extend the occurrence of Nikolai Greenstone about 70 km southwest of its previously mapped extent.Five to 10 km north of the conodont sample localities, numerous microgabbro and diabase sills intrude siliceous and locally calcareous metasedimentary rocks of uncertain age. These sills probably represent feeder zones to the Nikolai Greenstone. In the Mt. Hayes quadrangle 150 km to the northeast, large sill-form mafic and ultramafic feeders (for example, the Fish Lake complex) to the Nikolai Greenstone in the Amphitheatre Mountains host magmatic sulfide nickel–copper–platinum-group-element (PGE) mineralization. This new recognition of Nikolai Greenstone and possible

  3. Impact of urbanization on flood of Shigu creek in Dongguan city

    NASA Astrophysics Data System (ADS)

    Pan, Luying; Chen, Yangbo; Zhang, Tao

    2018-06-01

    Shigu creek is a highly urbanized small watershed in Dongguan City. Due to rapid urbanization, quick flood response has been observed, which posted great threat to the flood security of Dongguan City. To evaluate the impact of urbanization on the flood changes of Shigu creek is very important for the flood mitigation of Shigu creek, which will provide insight for flood planners and managers for if to build a larger flood mitigation system. In this paper, the Land cover/use changes of Shigu creek from 1987-2015 induced by urbanization was first extracted from a local database, then, the Liuxihe model, a physically based distributed hydrological model, is employed to simulate the flood processes impacted by urbanization. Precipitation of 3 storms was used for flood processes simulation. The results show that the runoff coefficient and peak flow have increased sharply.

  4. Spring runoff water-chemistry data from the Standard Mine and Elk Creek, Gunnison County, Colorado, 2010

    USGS Publications Warehouse

    Manning, Andrew H.; Verplanck, Philip L.; Mast, M. Alisa; Marsik, Joseph; McCleskey, R. Blaine

    2011-01-01

    Water samples were collected approximately every two weeks during the spring of 2010 from the Level 1 portal of the Standard Mine and from two locations on Elk Creek. The objective of the sampling was to: (1) better define the expected range and timing of variations in pH and metal concentrations in Level 1 discharge and Elk Creek during spring runoff; and (2) further evaluate possible mechanisms controlling water quality during spring runoff. Samples were analyzed for major ions, selected trace elements, and stable isotopes of oxygen and hydrogen (oxygen-18 and deuterium). The Level 1 portal sample and one of the Elk Creek samples (EC-CELK1) were collected from the same locations as samples taken in the spring of 2007, allowing comparison between the two different years. Available meteorological and hydrologic data suggest that 2010 was an average water year and 2007 was below average. Field pH and dissolved metal concentrations in Level 1 discharge had the following ranges: pH, 2.90 to 6.23; zinc, 11.2 to 26.5 mg/L; cadmium, 0.084 to 0.158 mg/L; manganese, 3.23 to 10.2 mg/L; lead, 0.0794 to 1.71 mg/L; and copper, 0.0674 to 1.14 mg/L. These ranges were generally similar to those observed in 2007. Metal concentrations near the mouth of Elk Creek (EC-CELK1) were substantially lower than in 2007. Possible explanations include remedial efforts at the Standard Mine site implemented after 2007 and greater dilution due to higher Elk Creek flows in 2010. Temporal patterns in pH and metal concentrations in Level 1 discharge were similar to those observed in 2007, with pH, zinc, cadmium, and manganese concentrations generally decreasing, and lead and copper generally increasing during the snowmelt runoff period. Zinc and cadmium concentrations were inversely correlated with flow and thus apparently dilution-controlled. Lead and copper concentrations were inversely correlated with pH and thus apparently pH-controlled. Zinc, cadmium, and manganese concentrations near the

  5. Deception Creek Experimental Forest

    Treesearch

    Theresa B. Jain; Russell T. Graham

    1996-01-01

    Deception Creek Experimental Forest is in one of the most productive forests in the Rocky Mountains. When the forest was established in 1933, large, old-age western white pine (Pinus monticola) were important for producing lumber products. The forest, located in the Coeur d'Alene Mountains, is in the heart of the western white pine forest type. Therefore, research...

  6. ROCK CREEK, IDAHO RURAL CLEAN WATER PROGRAM, 1987 ANNUAL PROGRESS REPORT

    EPA Science Inventory

    Goals of the Rock Creek, Idaho (17040212) Rural Clean Water Program are to significantly reduce the amount of sediment, sediment related pollutants, and animal waste discharging into Rock Creek. Weekly water quality sampling was done through the irrigation season (April - Octobe...

  7. Floods on Roseberry Creek, Wacker Branch, and three unnamed tributaries to Roseberry Creek in the vicinity of Scottsboro, Alabama. Flood report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-10-01

    The study was requested by the city to provide information reflecting current flood conditions in order for the community to better administer its floodplain management program and to qualify for participation in the regular phase of the National Flood Insurance Program (NFIP). This report updates and expands the coverage of a previous TVA report published in April 1967. Profiles and flooded area and floodway maps are provided for Roseberry Creek, Wacker Branch, and three previously unstudied tributaries to Roseberry Creek.

  8. Controllable deformation of salt water-filled carbon nanotubes using an electric field with application to molecular sieving

    NASA Astrophysics Data System (ADS)

    Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen

    2016-08-01

    Precisely controlling the deformation of carbon nanotubes (CNTs) has practical application in the development of nanoscale functional devices, although it is a challenging task. Here, we propose a novel method to guide the deformation of CNTs through filling them with salt water and applying an electric field. With the electric field along the axial direction, the height of CNTs is enlarged by the axial electric force due to the internal ions and polar water molecules. Under an electric field with two mutually orthogonal components, the transverse electric force could further induce the bending deformation of CNTs. Based on the classical rod and beam theories, two mechanical models are constructed to verify and quantitatively describe the relationships between the tension and bending deformations of CNTs and the electric field intensity. Moreover, by means of the electric field-driven tension behavior of CNTs, we design a stretchable molecular sieve to control the flow rate of mixed gas and collect a single high-purity gas. The present work opens up new avenues in the design and fabrication of nanoscale controlling units.

  9. 75 FR 34639 - Safety Zone; Reedville July 4th Celebration, Cockrell's Creek, Reedville, VA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ...-AA00 Safety Zone; Reedville July 4th Celebration, Cockrell's Creek, Reedville, VA AGENCY: Coast Guard... Cockrell's Creek in the vicinity of Reedville, Virginia in support of the Reedville July 4th Celebration... notice of proposed rulemaking (NPRM) entitled Reedville July 4th Celebration, Cockrell's Creek, Reedville...

  10. Caspar Creek study completion report

    Treesearch

    C. S. Kabel; E. R. German

    1967-01-01

    The Department of Fish and Game assisted in an interagency study on Caspar Creek, a small coastal stream in Mendocino County. This study included the effects of logging on the stream and its population of silver salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdnerii).

  11. BANNOCK CREEK, POWER COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1980 - 1981

    EPA Science Inventory

    Bannock Creek, Idaho (17040206) is a small agricultural watershed. The basin is partially on the Fort Hall Reservation. Several large farms and leases of reservation land are active in the watershed. Bannock Creek and its tributaries were sampled for suspended sediment load an...

  12. Environmental Impact of the Helen, Research, and Chicago Mercury Mines on Water, Sediment, and Biota in the Upper Dry Creek Watershed, Lake County, California

    USGS Publications Warehouse

    Rytuba, James J.; Hothem, Roger L.; May, Jason T.; Kim, Christopher S.; Lawler, David; Goldstein, Daniel; Brussee, Brianne E.

    2009-01-01

    The Helen, Research, and Chicago mercury (Hg) deposits are among the youngest Hg deposits in the Coast Range Hg mineral belt and are located in the southwestern part of the Clear Lake volcanic field in Lake County, California. The mine workings and tailings are located in the headwaters of Dry Creek. The Helen Hg mine is the largest mine in the watershed having produced about 7,600 flasks of Hg. The Chicago and Research Hg mines produced only a small amount of Hg, less than 30 flasks. Waste rock and tailings have eroded from the mines, and mine drainage from the Helen and Research mines contributes Hg-enriched mine wastes to the headwaters of Dry Creek and contaminate the creek further downstream. The mines are located on federal land managed by the U.S. Bureau of Land Management (USBLM). The USBLM requested that the U.S. Geological Survey (USGS) measure and characterize Hg and geochemical constituents in tailings, sediment, water, and biota at the Helen, Research, and Chicago mines and in Dry Creek. This report is made in response to the USBLM request to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA - Removal Site Investigation (RSI). The RSI applies to removal of Hg-contaminated mine waste from the Helen, Research, and Chicago mines as a means of reducing Hg transport to Dry Creek. This report summarizes data obtained from field sampling of mine tailings, waste rock, sediment, and water at the Helen, Research, and Chicago mines on April 19, 2001, during a storm event. Further sampling of water, sediment, and biota at the Helen mine area and the upper part of Dry Creek was completed on July 15, 2003, during low-flow conditions. Our results permit a preliminary assessment of the mining sources of Hg and associated chemical constituents that could elevate levels of monomethyl Hg (MMeHg) in the water, sediment, and biota that are impacted by historic mining.

  13. Magnetic properties of four Cu(ii)-amino acid salts

    NASA Astrophysics Data System (ADS)

    Calvo, Rafael

    1984-03-01

    We report a comparative study of magnetic properties of the Cu(II) salts of the amino acids l-alanine, dl-α-amino-n-butyric acid, α-amino isobutyric acid, and l-isoleucine. The position of the EPR lines of these quasi-two-dimensional magnetic systems was measured as a function of temperature T between 293 and 1.5 K, at 9.3 GHz and for magnetic fields applied along three axes of single crystal samples. Large changes of the gyromagnetic factor with T have been observed. They are attributed to an internal mean field, proportional to the applied field, which appears when the temperature is lowered due to short range magnetic order in the paramagnetic phase of the salts. The problem of short range magnetic order and g shifts in Cu-amino acid salts is discussed and compared with previous observations in Mn one-dimensional systems.

  14. Tertiary geology and oil-shale resources of the Piceance Creek basin between the Colorado and White Rivers, northwestern Colorado

    USGS Publications Warehouse

    Donnell, John R.

    1961-01-01

    several key beds and zones which can be traced throughout most of the mapped area. One of these, the Mahogany ledge or zone, is a group of very rich oil-shale beds at the base of the upper oil-shale zone. Drilling for oil and gas in the northeastern part of the area has revealed rich oil-shale zones in the Garden Gulch member also.Local unconformities within and at the base of the Evacuation Creek member are exposed at several places along Piceance Creek and at one place near the mouth of Yellow Creek; otherwise, the rock sequence is conformable. The mapped area is the major part of a large syncline, modified by numerous smaller structural features. Fractures, probably associated genetically with the minor structural features, are present in the central part of the area. These fractures are high-angle normal faults with small displacement. They occur in pairs with the intervening block downdropped. Two sets of joints are prominent, one trending northwest and the other northeast. The joint systems control the drainage pattern in the south-central part of the area. More than 20,000 feet of sedimentary rocks underlies the area. Many of the formations yield oil or gas in northwestern Colorado, northeastern Utah, and southwestern Wyoming. The Piceance Creek gas field, in which gas occurs in the Douglas Creek member of the Green River formation, is the largest oil or gas field discovered thus far within the area. About 7,000 million barrels of oil is contained in oil shale that yields an average of 45 gallons per ton from a continuous sequence 5 or more feet thick in the Mahogany zone. Oil shale in the Mahogany zone and adjacent beds that yields an average of 30 gallons of oil per ton from a continuous sequence 15 or more feet thick contains about 91,000 million barrels of oil. Similar shale in deeper zones in the northern part of the area, for which detailed estimates have not been prepared, are now known to contain at least an additional 72,000 million barrels of oil. Oil

  15. 75 FR 33656 - Exelon Generation Company, LLC Oyster Creek Nuclear Generating Station Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... Oyster Creek Nuclear Generating Station Environmental Assessment and Finding of No Significant Impact The... Company, LLC (the licensee), for operation of the Oyster Creek Nuclear Generating Station (Oyster Creek), located in Ocean County, New Jersey. Therefore, as required by 10 CFR Section 51.21, the NRC performed an...

  16. Water quality in three creeks in the backcountry of Grand Teton National Park, USA

    USGS Publications Warehouse

    Farag, A.M.; Goldstein, J.N.; Woodward, D.F.

    2001-01-01

    This study was conducted in Grand Teton National Park during the summers of 1996 and 1997 to investigate the water quality in two high human use areas: Garnet Canyon and lower Cascade Canyon. To evaluate the water quality in these creeks, fecal coliform, Giardia lamblia, coccidia, and microparticulates were measured in water samples. No evidence of fecal coliform, Giardia lamblia, or coccidia, was found in Garnet Creek. The water quality and general water chemistry of Garnet Creek was similar to the reference site. No Giardia lamblia or coccidia were found in Cascade Creek, but fecal coliforms were present. The isolated colonies of Escherichia coli from Cascade Creek matched the ribosome patterns of avian, deer, canine, elk, rodent, and human coliforms.

  17. Geologic sources and concentrations of selenium in the West-Central Denver Basin, including the Toll Gate Creek watershed, Aurora, Colorado, 2003-2007

    USGS Publications Warehouse

    Paschke, Suzanne S.; Walton-Day, Katherine; Beck, Jennifer A.; Webbers, Ank; Dupree, Jean A.

    2014-01-01

    concentrations were greatest in samples containing indications of reducing conditions and organic matter (dark gray to black claystones and lignite horizons). The Toll Gate Creek watershed is situated in a unique hydrogeologic setting in the west-central part of the Denver Basin such that weathering of Cretaceous- to Tertiary-aged, non-marine, selenium-bearing rocks releases selenium to groundwater and surface water under present-day semi-arid environmental conditions. The Denver Formation contains several known and suspected geologic sources of selenium including: (1) lignite deposits; (2) tonstein partings; (3) organic-rich bentonite claystones; (4) salts formed as secondary weathering products; and possibly (5) the Cretaceous-Tertiary boundary. Organically complexed selenium and/or selenium-bearing pyrite in the enclosing claystones are likely the primary mineral sources of selenium in the Denver Formation, and correlations between concentration of dissolved selenium and dissolved organic carbon in groundwater indicate weathering and dissolution of organically complexed selenium from organic-rich claystone is a primary process mobilizing selenium. Secondary salts accumulated along fractures and bedding planes in the weathered zone are another potential geologic source of selenium, although their composition was not specifically addressed by the solids analyses. Results from this and previous work indicate that shallow groundwater and streams similarly positioned over Denver Formation claystone units at other locations in the Denver Basin also may contain concentrations of dissolved selenium greater than the Colorado aquatic-life standard or the drinking- water standard.

  18. News and Updates from Proctor Creek

    EPA Pesticide Factsheets

    This page contains news and updates from the Proctor Creek Urban Waters Partnership location. They span ongoing projects, programs, and initiatives that this Atlanta-based partnership is taking on in its work plan.

  19. Trout Creek 1999 Burn

    Treesearch

    Sherel Goodrich

    2008-01-01

    A small prescribed fire near the mouth of Trout Creek in Strawberry Valley, Wasatch County, Utah, on the Uinta National Forest provided an opportunity to compare production and vascular plant composition in unburned and burned areas. At four years post burn, production of herbaceous plants was about four times greater in the burned area than in the unburned area. Most...

  20. Brood Year 2004: Johnson Creek Chinook Salmon Supplementation Report, June 2004 through March 2006.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gebhards, John S.; Hill, Robert; Daniel, Mitch

    The Nez Perce Tribe, through funding provided by the Bonneville Power Administration, has implemented a small scale chinook salmon supplementation program on Johnson Creek, a tributary in the South Fork of the Salmon River, Idaho. The Johnson Creek Artificial Propagation Enhancement project was established to enhance the number of threatened Snake River spring/summer chinook salmon (Oncorhynchus tshawytscha) returning to Johnson Creek to spawn through artificial propagation. This was the sixth season of adult chinook broodstock collection in Johnson Creek following collections in 1998, 2000, 2001, 2002, and 2003. Weir installation was completed on June 21, 2004 with the first chinookmore » captured on June 22, 2004 and the last fish captured on September 6, 2004. The weir was removed on September 18, 2004. A total of 338 adult chinook, including jacks, were captured during the season. Of these, 211 were of natural origin, 111 were hatchery origin Johnson Creek supplementation fish, and 16 were adipose fin clipped fish from other hatchery operations and therefore strays into Johnson Creek. Over the course of the run, 57 natural origin Johnson Creek adult chinook were retained for broodstock, transported to the South Fork Salmon River adult holding and spawning facility and held until spawned. The remaining natural origin Johnson Creek fish along with all the Johnson Creek supplementation fish were released upstream of the weir to spawn naturally. Twenty-seven Johnson Creek females were artificially spawned with 25 Johnson Creek males. Four females were diagnosed with high bacterial kidney disease levels resulting in their eggs being culled. The 27 females produced 116,598 green eggs, 16,531 green eggs were culled, with an average eye-up rate of 90.6% resulting in 90,647 eyed eggs. Juvenile fish were reared indoors at the McCall Fish Hatchery until November 2005 and then transferred to the outdoor rearing facilities during the Visual Implant Elastomer tagging