Sample records for salt crystallisation fouling

  1. Thermodynamic modelling of a membrane distillation crystallisation process for the treatment of mining wastewater.

    PubMed

    Nathoo, Jeeten; Randall, Dyllon Garth

    2016-01-01

    Membrane distillation (MD) could be applicable in zero liquid discharge applications. This is due to the fact that MD is applicable at high salinity ranges which are generally outside the scope of reverse osmosis (RO) applications, although this requires proper management of precipitating salts to avoid membrane fouling. One way of managing these salts is with MD crystallisation (MDC). This paper focuses on the applicability of MDC for the treatment of mining wastewater by thermodynamically modelling the aqueous chemistry of the process at different temperatures. The paper is based on the typical brine generated from an RO process in the South African coal mining industry and investigates the effect water recovery and operating temperature have on the salts that are predicted to crystallise out, the sequence in which they will crystallise out and purities as a function of the water recovery. The study confirmed the efficacy of using thermodynamic modelling as a tool for investigating and predicting the crystallisation aspects of the MDC process. The key finding from this work was that, for an MDC process, a purer product can be obtained at higher operating temperatures and recoveries because of the inverse solubility of calcium sulphate.

  2. Inefficacy of osmotic backwash induced by sodium chloride salt solution in controlling SWRO membrane fouling

    NASA Astrophysics Data System (ADS)

    Farooque, A. Mohammed; Al-Jeshi, Subhi; Saeed, Mohamed O.; Alreweli, Ali

    2014-12-01

    A study was conducted to evaluate the efficacy of osmotic backwash induced by high salt (NaCl) concentration solution on feed side of seawater reverse osmosis (SWRO) membranes, online and offline, in controlling membrane fouling and therefore minimizing/eliminating the need for chemical cleaning. SWRO membranes were deliberately fouled by feeding seawater from an open intake located on the Arabian Gulf Coast without dosing chemicals. The fouled membranes were subjected to offline cleaning with the salt solution of up to 25 % concentration. Despite the partial removal of foulants from the membrane surface, SWRO membrane performance could not be restored, indicating the ineffectiveness of osmotic backwash in aiding offline salt cleaning. Similarly, online osmotic backwash was found to be not only ineffective in removing foulants from membrane surfaces but actually increased the fouling rate, as indicated by faster fouling rates compared to other cases. Although the driving force required for the osmotic backwash existed, the generated back flow proved to be insufficient to detach foulants from membrane surfaces. During the study period, the average SWRO membrane flux was maintained between 19 and 23 LMH, whereas the average generated back flow flux by high salt concentration solution was only 11 LMH, which was not adequate to remove foulants from membrane surfaces. Moreover, it seems that the membrane configuration as well as inherent microstructure of SWRO membrane places certain constraints on the osmotic backwash process and renders osmotic backwash ineffective in tackling SWRO membrane fouling. Hence, chemical cleaning is essential to restore SWRO membrane performance whenever fouling occurs, and the use of highly concentrated salt solution does not have any significant benefit. Membrane autopsy revealed only an insignificant accumulation of biofouling layer despite the absence of disinfection. However, it was shown that culturable biofilm bacteria species

  3. Drowning-out crystallisation of sodium sulphate using aqueous two-phase systems.

    PubMed

    Taboada, M E; Graber, T A; Asenjo, J A; Andrews, B A

    2000-06-23

    A novel method to obtain crystals of pure, anhydrous salt, using aqueous two-phase systems was studied. A concentrated salt solution is mixed with polyethylene glycol (PEG), upon which three phases are formed: salt crystals, a PEG-rich liquid and a salt-rich liquid. After removal of the solid salt, a two-phase system is obtained. Both liquid phases are recycled, allowing the design of a continuous process, which could be exploited industrially. The phase diagram of the system water-Na2SO4-PEG 3350 at 28 degrees C was used. Several process alternatives are proposed and their economic potential is discussed. The process steps needed to produce sodium sulphate crystals include mixing, crystallisation, settling and, optionally, evaporation of water. The yield of sodium sulphate increases dramatically if an evaporation step is used.

  4. Experimental study of fouling and cleaning of sintered stainless steel membrane in electro-microfiltration of calcium salt particles.

    PubMed

    Qin, Frank G F; Mawson, John; Zeng, Xin An

    2011-05-30

    Sintered stainless steel (SSS) microfiltration membranes, which served as electrode directly, were used for the experiment of separating Alamin, a calcium salt and protein containing particles, found in dairy processing. Fouling and cleaning of the SSS membranes under the application of an external electric field were studied. The imposed electric field was found, diverging the pH of permeate and retentate. This in turn altered the solubility of the calcium salt and impacted the performance of electro microfiltration membrane. Using electric field as an enhanced cleaning-in-place (CIP) method in back flushing SSS membrane was also studied.

  5. Experimental Study of Fouling and Cleaning of Sintered Stainless Steel Membrane in Electro-Microfiltration of Calcium Salt Particles

    PubMed Central

    Qin, Frank G. F.; Mawson, John; Zeng, Xin An

    2011-01-01

    Sintered stainless steel (SSS) microfiltration membranes, which served as electrode directly, were used for the experiment of separating Alamin, a calcium salt and protein containing particles, found in dairy processing. Fouling and cleaning of the SSS membranes under the application of an external electric field were studied. The imposed electric field was found, diverging the pH of permeate and retentate. This in turn altered the solubility of the calcium salt and impacted the performance of electro microfiltration membrane. Using electric field as an enhanced cleaning-in-place (CIP) method in back flushing SSS membrane was also studied. PMID:24957615

  6. Sodium sulfate crystallisation monitoring using IR thermography

    NASA Astrophysics Data System (ADS)

    Vazquez, P.; Thomachot-Schneider, C.; Mouhoubi, K.; Bodnar, J.-L.; Avdelidis, N. P.; Charles, D.; Benavente, D.

    2018-03-01

    In this work, the evaporation of sodium sulfate droplets with different concentrations and at different temperatures were studied using infrared thermography (IRT). IRT allows to detect the evaporation evolution, the crystal growth and for the first time, to observe in vivo the heat release related to sodium sulfate crystallisation. A detailed study revealed that dendritic Thenardite III crystals appeared at the edge of all the crystallised droplets, though they showed a fast increase of temperature related to crystallisation only when a hydrated phase crystallised also from the droplet. The observation of the heat of crystallisation is thus directly related to the supersaturation of the droplet and consequently to temperature. In addition, IRT detection is circumscribed by the location of crystallisation. The heat can be observed and measured only when the crystallisation occurs in the interface solution - air.

  7. Colloidal Fouling of Nanofiltration Membranes: Development of a Standard Operating Procedure

    PubMed Central

    Al Mamun, Md Abdullaha; Bhattacharjee, Subir; Pernitsky, David; Sadrzadeh, Mohtada

    2017-01-01

    Fouling of nanofiltration (NF) membranes is the most significant obstacle to the development of a sustainable and energy-efficient NF process. Colloidal fouling and performance decline in NF processes is complex due to the combination of cake formation and salt concentration polarization effects, which are influenced by the properties of the colloids and the membrane, the operating conditions of the test, and the solution chemistry. Although numerous studies have been conducted to investigate the influence of these parameters on the performance of the NF process, the importance of membrane preconditioning (e.g., compaction and equilibrating with salt water), as well as the determination of key parameters (e.g., critical flux and trans-membrane osmotic pressure) before the fouling experiment have not been reported in detail. The aim of this paper is to present a standard experimental and data analysis protocol for NF colloidal fouling experiments. The developed methodology covers preparation and characterization of water samples and colloidal particles, pre-test membrane compaction and critical flux determination, measurement of experimental data during the fouling test, and the analysis of that data to determine the relative importance of various fouling mechanisms. The standard protocol is illustrated with data from a series of flat sheet, bench-scale experiments. PMID:28106775

  8. Mitigating external and internal cathode fouling using a polymer bonded separator in microbial fuel cells.

    PubMed

    Yang, Wulin; Rossi, Ruggero; Tian, Yushi; Kim, Kyoung-Yeol; Logan, Bruce E

    2018-02-01

    Microbial fuel cell (MFC) cathodes rapidly foul when treating domestic wastewater, substantially reducing power production over time. Here a wipe separator was chemically bonded to an activated carbon air cathode using polyvinylidene fluoride (PVDF) to mitigate cathode fouling and extend cathode performance over time. MFCs with separator-bonded cathodes produced a maximum power density of 190 ± 30 mW m -2 after 2 months of operation using domestic wastewater, which was ∼220% higher than controls (60 ± 50 mW m -2 ) with separators that were not chemically bonded to the cathode. Less biomass (protein) was measured on the bonded separator surface than the non-bonded separator, indicating chemical bonding reduced external bio-fouling. Salt precipitation that contributed to internal fouling was also reduced using separator-bonded cathodes. Overall, the separator-bonded cathodes showed better performance over time by mitigating both external bio-fouling and internal salt fouling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Optical system for the Protein Crystallisation Diagnostics Facility (PCDF) on board the ISS

    NASA Astrophysics Data System (ADS)

    Joannes, Luc; Dupont, Olivier; Dewandel, Jean-Luc; Ligot, Renaud; Algrain, Hervé

    2004-06-01

    The Protein Crystallisation Diagnostic Facility (PCDF) is a multi-user facility to study the protein crystallisation under the conditions of micro-gravity onboard the International Space Station (ISS) Columbus facility. Large size protein crystals will growth under reduced gravity in thermally controlled reactors. A combination of diagnostic tools like video system, microscope, interferometer, and light scattering device shall help to understand the growth phenomena. Common methods of protein crystallisation shall be performed in PCDF: Dialysis where the protein solution and the salt solution are separated by a semi-permeable membrane. Extended Length Dialysis Batch where the saturation to get crystals is achieved by changing the concentration of the protein in the sample liquid. The overall ESA project is leaded by EADS Space Transportation, Friedrichshafen, Germany. Lambda-X is responsible for the Optical System (OS), with Verhaert Design and Development as sub-contractor for the mechanical design. The OS includes different compact parts: Original illumination systems based on LEDs of difference colours; Quantitative Mach-Zehnder interferometers to measure the concentration distribution around crystals; Imaging assemblies to visualize the protein volume with different field of views. The paper concentrates on the description of each part, and in particular on the imaging assembly which allow switching from one field of view to another by passive elements only.

  10. Crystallising Experiences among Young Elite Dancers

    ERIC Educational Resources Information Center

    Pickard, Angela; Bailey, Richard

    2009-01-01

    Crystallising experiences are defined as memorable reactions an individual has to some quality or feature of an activity or domain that yields a long-term change in the individual performance and their view of themselves (Walters & Gardner, 1986; Freeman, 1999). This paper explores the nature and consequences of crystallising experiences from…

  11. The degassing and crystallisation behaviour of basaltic lavas

    NASA Astrophysics Data System (ADS)

    Applegarth, L. J.; Tuffen, H.; Pinkerton, H.; James, M. R.

    2010-12-01

    Degassing is a fundamental volcanic process that can play a major role in controlling eruptive styles. Volatile loss during magma ascent and decompression increases the liquidus temperature of the residual melt, resulting in undercooling that can trigger crystallisation (1,2). Late-stage crystallisation and vesiculation are significant factors in controlling the eruptive behaviour of volcanoes of intermediate composition (2), but their effects on basaltic volcanic activity have yet to be fully investigated. We present the results of experiments designed to measure the degassing and crystallisation behaviour of volcanic rocks at temperatures up to 1250°C, using thermo-gravimetric analysis coupled with differential scanning calorimetry and mass spectrometry (TGA-DSC-MS). During TGA-DSC-MS analysis, volatiles released from a sample under a controlled heating programme are identified in a mass spectrometer whilst changes to the sample weight and heat flow are simultaneously recorded. By subjecting samples of basaltic lava and bombs to two heating cycles, we have shown that the onset of degassing (mass loss) is systematically followed by crystallisation (exothermic events) on the first heating cycle. During the second cycle, when the sample has been fully degassed, no mass loss or crystallisation are recorded. Our results also highlight complexities in the processes; in some cases up to four pulses of degassing and crystallisation have been identified during a single heating cycle. Our results allow us to measure the total volatile content of samples, the onset temperatures of degassing and crystallisation and the time lag between the two processes, and the enthalpy, hence percentage, of crystallisation taking place. These results have important implications for our understanding of basaltic volcanic eruptions. During effusive basaltic eruptions, lava can travel many kilometres, threatening property and infrastructure. The final areal flow extent is partly dependent on

  12. Formation of fouling deposits on a carbon steel surface from Colombian heavy crude oil under preheating conditions

    NASA Astrophysics Data System (ADS)

    Muñoz Pinto, D. A.; Cuervo Camargo, S. M.; Orozco Parra, M.; Laverde, D.; García Vergara, S.; Blanco Pinzon, C.

    2016-02-01

    Fouling in heat exchangers is produced by the deposition of undesired materials on metal surfaces. As fouling progresses, pressure drop and heat transfer resistance is observed and therefore the overall thermal efficiency of the equipment diminishes. Fouling is mainly caused by the deposition of suspended particles, such as those from chemical reactions, crystallization of certain salts, and some corrosion processes. In order to understand the formation of fouling deposits from Colombian heavy oil (API≈12.3) on carbon steel SA 516 Gr 70, a batch stirred tank reactor was used. The reactor was operated at a constant pressure of 340psi while varying the temperature and reaction times. To evaluate the formation of deposits on the metal surfaces, the steel samples were characterized by gravimetric analysis and Scanning Electron Microscopy (SEM). On the exposed surfaces, the results revealed an increase in the total mass derived from the deposition of salt compounds, iron oxides and alkaline metals. In general, fouling was modulated by both the temperature and the reaction time, but under the experimental conditions, the temperature seems to be the predominant variable that controls and accelerates fouling.

  13. A Short Review of Membrane Fouling in Forward Osmosis Processes

    PubMed Central

    Chun, Youngpil; Mulcahy, Dennis; Zou, Linda; Kim, In S.

    2017-01-01

    Interest in forward osmosis (FO) research has rapidly increased in the last decade due to problems of water and energy scarcity. FO processes have been used in many applications, including wastewater reclamation, desalination, energy production, fertigation, and food and pharmaceutical processing. However, the inherent disadvantages of FO, such as lower permeate water flux compared to pressure driven membrane processes, concentration polarisation (CP), reverse salt diffusion, the energy consumption of draw solution recovery and issues of membrane fouling have restricted its industrial applications. This paper focuses on the fouling phenomena of FO processes in different areas, including organic, inorganic and biological categories, for better understanding of this long-standing issue in membrane processes. Furthermore, membrane fouling monitoring and mitigation strategies are reviewed. PMID:28604649

  14. Fouling and the inhibition of salt corrosion. [hot corrosion of superalloys

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1980-01-01

    In an attempt to reduce fouling while retaining the beneficial effects of alkaline earth inhibitors on the hot corrosion of superalloys, the use of both additives and the intermittent application of the inhibitors were evaluated. Additions of alkaline earth compounds to combustion gases containing sodium sulfate were shown to inhibit hot corrosion. However, sulfate deposits can lead to turbine fouling in service. For that reason, dual additives and intermittant inhibitor applications were evaluated to reduce such deposit formation. Silicon in conjunction with varium showed some promise. Total deposition was apparently reduced while the inhibition of hot corrosion by barium was unimpaired. The intermittant application of the inhibitor was found to be more effective and controllable.

  15. An Investigation of the Effects of Self-Assembled Monolayers on Protein Crystallisation

    PubMed Central

    Zhang, Chen-Yan; Shen, He-Fang; Wang, Qian-Jin; Guo, Yun-Zhu; He, Jin; Cao, Hui-Ling; Liu, Yong-Ming; Shang, Peng; Yin, Da-Chuan

    2013-01-01

    Most protein crystallisation begins from heterogeneous nucleation; in practice, crystallisation typically occurs in the presence of a solid surface in the solution. The solid surface provides a nucleation site such that the energy barrier for nucleation is lower on the surface than in the bulk solution. Different types of solid surfaces exhibit different surface energies, and the nucleation barriers depend on the characteristics of the solid surfaces. Therefore, treatment of the solid surface may alter the surface properties to increase the chance to obtain protein crystals. In this paper, we propose a method to modify the glass cover slip using a self-assembled monolayer (SAM) of functional groups (methyl, sulfydryl and amino), and we investigated the effect of each SAM on protein crystallisation. The results indicated that both crystallisation success rate in a reproducibility study, and crystallisation hits in a crystallisation screening study, were increased using the SAMs, among which, the methyl-modified SAM demonstrated the most significant improvement. These results illustrated that directly modifying the crystallisation plates or glass cover slips to create surfaces that favour heterogeneous nucleation can be potentially useful in practical protein crystallisation, and the utilisation of a SAM containing a functional group can be considered a promising technique for the treatment of the surfaces that will directly contact the crystallisation solution. PMID:23749116

  16. Do "inhibitors of crystallisation" play any role in the prevention of kidney stones? A critique.

    PubMed

    Robertson, William G

    2017-02-01

    A critical examination of data in the literature and in as yet unpublished laboratory records on the possible role of so-called inhibitors of crystallisation in preventing the formation of calcium-containing kidney stones leads to the following conclusions. So-called inhibitors of spontaneous "self-nucleation" are unlikely to play any role in the initiation of the crystallisation of CaOx or CaP in urine because excessive urinary supersaturation of urine with respect to these salts dominates the onset of "self-nucleation" within the normal time frame of the transit of tubular fluid through the nephron (3-4 min). Inhibitors of the crystal growth of CaOx crystals may or may not play a significant role in the prevention of CaOx stone-formation since once again excessive supersaturation of urine can overwhelm any potential effect of the inhibitors on the growth process. However, they may play a role as inhibitors of crystal growth at lower levels of metastable supersaturation when the balance between supersaturation and inhibitors is more equal. Inhibitors of CaOx crystal aggregation may play a significant role in the prevention of stones, since they do not appear to be strongly affected by excessive supersaturation, either in vitro or in vivo. Inhibitors of CaOx crystal binding to renal tubular epithelium may exist but further studies are necessary to elucidate their importance in reducing the risk of initiating stones in the renal tubules. Inhibitors of CaOx crystal binding to Randall's Plaques and Randall's Plugs may exist but further studies are necessary to elucidate their importance in reducing the risk of initiating stones on renal papillae. There may be an alternative explanation other than a deficiency in the excretion of inhibitors for the observations that there is a difference between CaOx crystal size and degree of aggregation in the fresh, warm urines of normal subjects compared those in urine from patients with recurrent CaOx stones. This difference may

  17. Flow induced crystallisation of penetrable particles

    NASA Astrophysics Data System (ADS)

    Scacchi, Alberto; Brader, Joseph M.

    2018-03-01

    For a system of Brownian particles interacting via a soft exponential potential we investigate the interaction between equilibrium crystallisation and spatially varying shear flow. For thermodynamic state points within the liquid part of the phase diagram, but close to the crystallisation phase boundary, we observe that imposing a Poiseuille flow can induce nonequilibrium crystalline ordering in regions of low shear gradient. The physical mechanism responsible for this phenomenon is shear-induced particle migration, which causes particles to drift preferentially towards the center of the flow channel, thus increasing the local density in the channel center. The method employed is classical dynamical density functional theory.

  18. Flow induced crystallisation of penetrable particles.

    PubMed

    Scacchi, Alberto; Brader, Joseph M

    2018-03-07

    For a system of Brownian particles interacting via a soft exponential potential we investigate the interaction between equilibrium crystallisation and spatially varying shear flow. For thermodynamic state points within the liquid part of the phase diagram, but close to the crystallisation phase boundary, we observe that imposing a Poiseuille flow can induce nonequilibrium crystalline ordering in regions of low shear gradient. The physical mechanism responsible for this phenomenon is shear-induced particle migration, which causes particles to drift preferentially towards the center of the flow channel, thus increasing the local density in the channel center. The method employed is classical dynamical density functional theory.

  19. Inorganic fouling mitigation by salinity cycling in batch reverse osmosis.

    PubMed

    Warsinger, David M; Tow, Emily W; Maswadeh, Laith A; Connors, Grace B; Swaminathan, Jaichander; Lienhard V, John H

    2018-06-15

    Enhanced fouling resistance has been observed in recent variants of reverse osmosis (RO) desalination which use time-varying batch or semi-batch processes, such as closed-circuit RO (CCRO) and pulse flow RO (PFRO). However, the mechanisms of batch processes' fouling resistance are not well-understood, and models have not been developed for prediction of their fouling performance. Here, a framework for predicting reverse osmosis fouling is developed by comparing the fluid residence time in batch and continuous (conventional) reverse osmosis systems to the nucleation induction times for crystallization of sparingly soluble salts. This study considers the inorganic foulants calcium sulfate (gypsum), calcium carbonate (calcite), and silica, and the work predicts maximum recovery ratios for the treatment of typical water sources using batch reverse osmosis (BRO) and continuous reverse osmosis. The prediction method is validated through comparisons to the measured time delay for CaSO 4 membrane scaling in a bench-scale, recirculating reverse osmosis unit. The maximum recovery ratio for each salt solution (CaCO 3 , CaSO 4 ) is individually predicted as a function of inlet salinity, as shown in contour plots. Next, the maximum recovery ratios of batch and conventional RO are compared across several water sources, including seawater, brackish groundwater, and RO brine. Batch RO's shorter residence times, associated with cycling from low to high salinity during each batch, enable significantly higher recovery ratios and higher salinity than in continuous RO for all cases examined. Finally, representative brackish RO brine samples were analyzed to determine the maximum possible recovery with batch RO. Overall, the induction time modeling methodology provided here can be used to allow batch RO to operate at high salinity and high recovery, while controlling scaling. The results show that, in addition to its known energy efficiency improvement, batch RO has superior inorganic

  20. Monitoring Marine Microbial Fouling

    NASA Technical Reports Server (NTRS)

    Colwell, R.

    1985-01-01

    Two techniques developed for studying marine fouling. Methods originally developed to study fouling of materials used in Space Shuttle solid fuel booster rockets. Methods used to determine both relative fouling rates and efficacy of cleaning methods to remove fouling on various surfaces including paints, metals, and sealants intended for marine use.

  1. Anti-Fouling Double-Skinned Forward Osmosis Membrane with Zwitterionic Brush for Oily Wastewater Treatment.

    PubMed

    Ong, Chi Siang; Al-Anzi, Bader; Lau, Woei Jye; Goh, Pei Sean; Lai, Gwo Sung; Ismail, Ahmad Fauzi; Ong, Yue Seong

    2017-07-31

    Despite its attractive features for energy saving separation, the performance of forward osmosis (FO) has been restricted by internal concentration polarization and fast fouling propensity that occur in the membrane sublayer. These problems have significantly affected the membrane performance when treating highly contaminated oily wastewater. In this study, a novel double-skinned FO membrane with excellent anti-fouling properties has been developed for emulsified oil-water treatment. The double-skinned FO membrane comprises a fully porous sublayer sandwiched between a highly dense polyamide (PA) layer for salt rejection and a fairly loose dense bottom zwitterionic layer for emulsified oil particle removal. The top dense PA layer was synthesized via interfacial polymerization meanwhile the bottom layer was made up of a zwitterionic polyelectrolyte brush - (poly(3-(N-2-methacryloxyethyl-N,N-dimethyl) ammonatopropanesultone), abbreviated as PMAPS layer. The resultant double-skinned membrane exhibited a high water flux of 13.7 ± 0.3 L/m 2 .h and reverse salt transport of 1.6 ± 0.2 g/m 2 .h under FO mode using 2 M NaCl as the draw solution and emulsified oily solution as the feed. The double-skinned membrane outperforms the single-skinned membrane with much lower fouling propensity for emulsified oil-water separation.

  2. Membrane fouling and anti-fouling strategies using RO retentate from a municipal water recycling plant as the feed for osmotic power generation.

    PubMed

    Chen, Si Cong; Amy, Gary L; Chung, Tai-Shung

    2016-01-01

    RO retentate from a municipal water recycling plant is considered as a potential feed stream for osmotic power generation in this paper. The feasibility of using RO retentate from a municipal water recycling plant was examined from two aspects: (a) the membrane fouling propensity of RO retentate, and (b) the efficacy of anti-fouling strategies. The membranes used in this study were the inner selective thin film composite polyethersulfone (TFC/PES) hollow fiber membranes, which possessed a high water permeability and good mechanical strength. Scaling by phosphate salts was found to be one possible inorganic fouling on the innermost layer of the PES membrane, whereas silica fouling was observed to be the governing fouling on the outmost surface of the PES membrane. Two anti-fouling pretreatments, i.e., pH adjustment and anti-scalant pre-treatment for the feed stream, were studied and found to be straightforward and effective. Using RO retentate at pH 7.2 as the feed and 1 M NaCl as the draw solution, the average power density was 7.3 W/m(2) at 20 bar. The average power density increased to 12.6 W/m(2) by modifying RO retentate with an initial pH value of 5.5 using HCl and to 13.4 W/m(2) by adding 1.1 mM ethylenediaminetetraacetic acid (EDTA). Moreover, the flux recovery of the fouled membranes, without the indicated pretreatments, reached 84.9% using deionized (DI) water flushing and 95.0% using air bubbling under a high crossflow velocity of 23.3 cm/s (Re = 2497) for 30 min. After pretreatment by pH adjustment, the flux recovery increased to 94.6% by DI water flushing and 100.0% by air bubbling. After pretreatment by adding 1.1 mM EDTA into RO retentate, flux was almost fully restored by physical cleaning by DI water flushing and air bubbling. These results provide insight into developing an effective pretreatment by either pH adjustment or EDTA addition before PRO and physical cleaning methods by DI water flushing and air bubbling for membrane used in

  3. Microbial Relevant Fouling in Membrane Bioreactors: Influencing Factors, Characterization, and Fouling Control

    PubMed Central

    Wu, Bing; Fane, Anthony G.

    2012-01-01

    Microorganisms in membrane bioreactors (MBRs) play important roles on degradation of organic/inorganic substances in wastewaters, while microbial deposition/growth and microbial product accumulation on membranes potentially induce membrane fouling. Generally, there is a need to characterize membrane foulants and to determine their relations to the evolution of membrane fouling in order to identify a suitable fouling control approach in MBRs. This review summarized the factors in MBRs that influence microbial behaviors (community compositions, physical properties, and microbial products). The state-of-the-art techniques to characterize biofoulants in MBRs were reported. The strategies for controlling microbial relevant fouling were discussed and the future studies on membrane fouling mechanisms in MBRs were proposed. PMID:24958297

  4. Role for syn-eruptive plagioclase disequilibrium crystallisation in basaltic magma ascent dynamics

    NASA Astrophysics Data System (ADS)

    La Spina, Giuseppe; Burton, Mike; de'Michieli Vitturi, Mattia; Arzilli, Fabio

    2017-04-01

    Magma ascent dynamics in volcanic conduits play a key role in determining the eruptive style of a volcano. The lack of direct observations inside the conduit means that numerical conduit models, constrained with observational data, provide invaluable tools for quantitative insights into complex magma ascent dynamics. The highly nonlinear, interdependent processes involved in magma ascent dynamics require several simplifications when modelling their ascent. For example, timescales of magma ascent in conduit models are typically assumed to be much longer than crystallisation and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallisation and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Using observations from Mount Etna's 2001 eruption and a magma ascent model we are able to constrain timescales for crystallisation and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were 1 h. Furthermore, we have related the amount of plagioclase in erupted products with the ascent dynamics of basaltic eruptions. We find that relatively high plagioclase content requires crystallisation in a shallow reservoir, whilst a low plagioclase content reflects a disequilibrium crystallisation occurring during a fast ascent from depth to the surface. Using these new constraints on disequilibrium plagioclase crystallisation we also reproduce observed crystal abundances for different basaltic eruptions: Etna 2002/2003, Stromboli 2007 (effusive eruption) and 1930 (paroxysm) and different Pu'u' O'o eruptions at Kilauea (episodes 49-53). Therefore, our results show that disequilibrium processes play a key role on the ascent dynamics of basaltic magmas and cannot be neglected when describing basaltic

  5. Evaluation of fouling in nanofiltration for desalination using a resistance-in-series model and optical coherence tomography.

    PubMed

    Park, Jongkwan; Lee, Sungyun; You, Jeongyeop; Park, Sanghun; Ahn, Yujin; Jung, Woonggyu; Cho, Kyung Hwa

    2018-06-12

    Resistance-in-series models have been applied to investigate fouling behavior. However, it is difficult to model the influence of morphology on fouling behavior because resistance is indirectly calculated from the water flux and transmembrane pressure. In this study, optical coherence tomography (OCT) was applied to evaluate the resistance of the fouling layer based on fouling morphology. Sodium alginate, humic acid, and bovine serum albumin (BSA) with high salts concentrations (conductivity: 23 mS/cm) were used as model foulants. At the same total fouling resistance, BSA showed the highest cake layer thickness (BSA (114.5 μm) > humic acid (53.5 μm) > sodium alginate (20.0 μm)). However, a different order was found for the cake layer resistance (BSA > sodium alginate > humic acid). This indicates that fouling thickness is not correlated with cake layer resistance. According to the Carman-Kozeny equation, fouling layer porosity decreased in the following order: humic acid (0.30) > BSA (0.21) > sodium alginate (0.20). In addition, we provided a specific value that was calculated using the ratio between the fouling thickness and cake layer resistance. The results show that alginic acid induced a stronger cake layer resistance, despite its thin fouling layer, whereas BSA showed a relatively low potential for inducing cake layer resistance. The results obtained in this study could be used for estimating and predicting fouling behavior. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Structural studies of the crystallisation of microporous materials

    NASA Astrophysics Data System (ADS)

    Davies, Andrew Treharne

    A range of powerful synchrotron radiation characterisation techniques have been used to study fundamental aspects of the fonnation of microporous solids, specifically alumi nosilicates, heteroatom substituted aluminophosphates and titanosilicates. This work has been performed with the aim of investigating in situ the structural changes occurring during crystallisation and post synthetic treatment. In situ EDXRD was used to follow the crystallisation of these materials under a wide range of synthesis conditions using a hydrothermal cell and a solid-state detector array. A quantitative analysis of the crystallisation kinetics was performed for the large pore aluminosilicate, zeolite A, using a simple mathematical model to calculate the activation energy of formation. The results obtained were found to closely agree with both the experimental results and theoretical models of others. A qualitative study of the effect of altering the synthesis conditions was also investigated for this material. Similar kinetic studies were then performed for a range of microporous aluminophosphates and their cobalt substituted derivatives in order to follow the effects of varying synthesis conditions such as the synthesis temperature, organic template type, and cobalt concentration. Distinct trends were noted in the formation times, stability and nature of the resulting crystalline phases as conditions were varied. The relationship between the cobalt and organic template molecules during crystallisation was considered in some detail with reference to other experimental data and theoretical models. The alumi nophosphate studies were subsequently extended to a range of other heteroatom substituted aluminophosphates, using in situ EDXRD, complimented by EXAFS, which allowed investigation of the local environments around the heteroatoms within the microporous structure. EDXRD and EXAFS studies have been performed on the microporous titanosilicate, ETS-10, while the thermal stability of

  7. Drag of Clean and Fouled Net Panels – Measurements and Parameterization of Fouling

    PubMed Central

    Gansel, Lars Christian; Plew, David R.; Endresen, Per Christian; Olsen, Anna Ivanova; Misimi, Ekrem; Guenther, Jana; Jensen, Østen

    2015-01-01

    Biofouling is a serious problem in marine aquaculture and it has a number of negative impacts including increased forces on aquaculture structures and reduced water exchange across nets. This in turn affects the behavior of fish cages in waves and currents and has an impact on the water volume and quality inside net pens. Even though these negative effects are acknowledged by the research community and governmental institutions, there is limited knowledge about fouling related effects on the flow past nets, and more detailed investigations distinguishing between different fouling types have been called for. This study evaluates the effect of hydroids, an important fouling organism in Norwegian aquaculture, on the forces acting on net panels. Drag forces on clean and fouled nets were measured in a flume tank, and net solidity including effect of fouling were determined using image analysis. The relationship between net solidity and drag was assessed, and it was found that a solidity increase due to hydroids caused less additional drag than a similar increase caused by change in clean net parameters. For solidities tested in this study, the difference in drag force increase could be as high as 43% between fouled and clean nets with same solidity. The relationship between solidity and drag force is well described by exponential functions for clean as well as for fouled nets. A method is proposed to parameterize the effect of fouling in terms of an increase in net solidity. This allows existing numerical methods developed for clean nets to be used to model the effects of biofouling on nets. Measurements with other types of fouling can be added to build a database on effects of the accumulation of different fouling organisms on aquaculture nets. PMID:26151907

  8. Studies of isothermal crystallisation kinetics of sunflower hard stearin-based confectionery fats.

    PubMed

    Bootello, Miguel A; Hartel, Richard W; Levin, Madeline; Martínez-Blanes, Jose M; Real, Concepción; Garcés, Rafael; Martínez-Force, Enrique; Salas, Joaquín J

    2013-08-15

    The crystallisation and polymorphic properties of three sunflower hard stearins (SHSs) and cocoa butter equivalents (CBEs) formulated by blending SHSs and palm mid fraction (PMF) were studied and compared with those from cocoa butter (CB), to explore their possibilities as confectionery fats. The isothermal crystallisation kinetics of these fats were examined by pNMR and DSC at three different temperatures. All samples studied displayed a two-step crystallisation profile that could be fitted to an exponential-Gompertz equation. Stop-and-return DSC studies showed that SHSs and CBEs exhibited different crystallisation mechanisms according to their triacylglycerol composition, with a quick formation of metastable crystals, followed by a polymorphic transition to the more stable β or β' forms. X-ray diffraction (XRD) was used to investigate the polymorphic forms of tempered SHSs and CBEs in the long term. In all cases the resulting fats displayed short spacing patterns associated with β polymorphism. These formulations based on SHSs and PMF met all the requirements to be considered as CBEs; therefore they could be used as an alternative to traditional confectionery fats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Direct observation of bacterial deposition onto clean and organic-fouled polyamide membranes.

    PubMed

    Subramani, Arun; Huang, Xiaofei; Hoek, Eric M V

    2009-08-01

    Nanofiltration (NF) and reverse osmosis (RO) membranes are commonly applied to produce highly purified water from municipal wastewater effluents. In these applications, biofouling limits overall process performance and increases the cost of operation. Initial bacteria adhesion onto a membrane surface is a critical early step in the overall process of membrane biofouling. However, adsorption of effluent organic matter onto the membrane may precede bacterial deposition and change membrane surface properties. Herein we employed direct microscopic observation to elucidate mechanisms governing bacterial cell deposition onto clean and organic-fouled NF and RO membranes. Bovine serum albumin (BSA) and alginic acid (AA) were used as models for protein and polysaccharide rich organic matter in secondary wastewater effluents. In all experiments, organic fouling increased membrane hydraulic resistance and salt rejection, in addition to interfacial hydrophilicity and roughness. Even though surface hydrophilicity increased, the rougher surfaces presented by organic-fouled membranes produced nano-scale features that promoted localized bacterial deposition. An extended DLVO analysis of bacterial cells and membrane surface properties suggested that bacterial deposition correlated most strongly with the Lewis acid-base free energy of adhesion and root mean square (RMS) roughness, whereas van der Waals and electrostatic free energies were weakly correlated. This was true for both clean and organic-fouled membranes. Bacterial deposition rates were clearly influenced by an antagonistic interplay between macroscopic surface hydrophilicity and nano-scale surface roughness.

  10. Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Sik; Yu, Qingsong; Deng, Baolin

    2011-09-01

    Commercial nanofiltration (NF) thin-film composite (TFC) membranes were treated by low-pressure NH3 plasma, and the effects of the plasma treatment were investigated in terms of the membrane hydrophilicity, pure water flux, salt rejection, protein adsorption, and humic acid fouling. Experimental results indicated that the membrane surface hydrophilicity was increased by the plasma treatment, and changes in the hydrophilicity as well as membrane performance including permeate flux and fouling varied with the original membrane characteristics (e.g., roughness and hydrophilicity). Water flux of plasma treated membranes was the highest with 10 min and 90 W of plasma treatment, and salt rejection was mainly affected by the intensity of the plasma power. Results of bovine serum albumin (BSA) adsorption demonstrated that the protein adsorption decreased with increasing plasma treatment time. The plasma treatment that resulted in more negatively charged surfaces could also better prevent Aldrich humic acid (AHA) attachment on the membrane surface.

  11. 49 CFR 234.231 - Fouling wires.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Fouling wires. 234.231 Section 234.231..., Inspection, and Testing Maintenance Standards § 234.231 Fouling wires. Each set of fouling wires in a highway... single duplex wire with single plug acting as fouling wires is prohibited. Existing installations having...

  12. 49 CFR 234.231 - Fouling wires.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Fouling wires. 234.231 Section 234.231..., Inspection, and Testing Maintenance Standards § 234.231 Fouling wires. Each set of fouling wires in a highway... single duplex wire with single plug acting as fouling wires is prohibited. Existing installations having...

  13. Hen Egg-White Lysozyme Crystallisation: Protein Stacking and Structure Stability Enhanced by a Tellurium(VI)-Centred Polyoxotungstate

    PubMed Central

    Bijelic, Aleksandar; Molitor, Christian; Mauracher, Stephan G; Al-Oweini, Rami; Kortz, Ulrich; Rompel, Annette

    2015-01-01

    As synchrotron radiation becomes more intense, detectors become faster and structure-solving software becomes more elaborate, obtaining single crystals suitable for data collection is now the bottleneck in macromolecular crystallography. Hence, there is a need for novel and advanced crystallisation agents with the ability to crystallise proteins that are otherwise challenging. Here, an Anderson–Evans-type polyoxometalate (POM), specifically Na6[TeW6O24]⋅22 H2O (TEW), is employed as a crystallisation additive. Its effects on protein crystallisation are demonstrated with hen egg-white lysozyme (HEWL), which co-crystallises with TEW in the vicinity (or within) the liquid–liquid phase separation (LLPS) region. The X-ray structure (PDB ID: 4PHI) determination revealed that TEW molecules are part of the crystal lattice, thus demonstrating specific binding to HEWL with electrostatic interactions and hydrogen bonds. The negatively charged TEW polyoxotungstate binds to sites with a positive electrostatic potential located between two (or more) symmetry-related protein chains. Thus, TEW facilitates the formation of protein–protein interfaces of otherwise repulsive surfaces, and thereby the realisation of a stable crystal lattice. In addition to retaining the isomorphicity of the protein structure, the anomalous scattering of the POMs was used for macromolecular phasing. The results suggest that hexatungstotellurate(VI) has great potential as a crystallisation additive to promote both protein crystallisation and structure elucidation. PMID:25521080

  14. Salt power - Is Neptune's ole salt a tiger in the tank

    NASA Astrophysics Data System (ADS)

    Wick, G. S.

    1980-02-01

    Methods of exploiting the 24 atm osmotic pressure difference between fresh and salt water to generate energy include reverse electrodialysis, wherein 80 millivolts of electricity cross each ion-selective membrane placed between solutions of fresh and salt water. Pressure-retarded osmosis, using pumps and pressure chambers, relies on semipermeable membranes that allow fresh water to flow into saline, with power generated by the permeated water being released through a turbine. In reverse vapor compression, water vapor rapidly transfers from fresh water to salt water in an evacuated chamber (due to the vapor pressure difference between them), and power can be extracted using 24 m diameter turbine blades. Environmental concerns include protecting estuaries from stress, managing sediments, and protecting marine animals, while filtration would be needed to keep the membranes free from corrosion, biological fouling, or silting.

  15. Advanced treatment of municipal wastewater by nanofiltration: Operational optimization and membrane fouling analysis.

    PubMed

    Li, Kun; Wang, Jianxing; Liu, Jibao; Wei, Yuansong; Chen, Meixue

    2016-05-01

    Municipal sewage from an oxidation ditch was treated for reuse by nanofiltration (NF) in this study. The NF performance was optimized, and its fouling characteristics after different operational durations (i.e., 48 and 169hr) were analyzed to investigate the applicability of nanofiltration for water reuse. The optimum performance was achieved when transmembrane pressure=12bar, pH=4 and flow rate=8L/min using a GE membrane. The permeate water quality could satisfy the requirements of water reclamation for different uses and local standards for water reuse in Beijing. Flux decline in the fouling experiments could be divided into a rapid flux decline and a quasi-steady state. The boundary flux theory was used to predict the evolution of permeate flux. The expected operational duration based on the 169-hr experiment was 392.6hr which is 175% longer than that of the 48-hr one. High molecular weight (MW) protein-like substances were suggested to be the dominant foulants after an extended period based on the MW distribution and the fluorescence characteristics. The analyses of infrared spectra and extracellular polymeric substances revealed that the roles of both humic- and polysaccharide-like substances were diminished, while that of protein-like substances were strengthened in the contribution of membrane fouling with time prolonged. Inorganic salts were found to have marginally influence on membrane fouling. Additionally, alkali washing was more efficient at removing organic foulants in the long term, and a combination of water flushing and alkali washing was appropriate for NF fouling control in municipal sewage treatment. Copyright © 2015. Published by Elsevier B.V.

  16. Timing of Crystallisation of the Lunar Magma Ocean Constrained by the Oldest Zircon

    NASA Technical Reports Server (NTRS)

    Nemchin, A.; Timms, N.; Pidgeon, R.; Geisler, T.; Reddy, S.; Meyer, C.

    2009-01-01

    The presently favoured concept for the early evolution of the Moon involves consolidation of debris from a giant impact of a Mars sized body with Earth forming a primitive Moon with a thick global layer of melt referred to as the Lunar Magma Ocean1 . It is widely accepted that many significant features observed on the Moon today are the result of crystallisation of this magma ocean. However, controversy exists over the precise timing and duration of the crystallisation process. Resolution of this problem depends on the establishment of precise and robust key crystallisation time points. We report a 4417 6 Myr old zircon in lunar breccia sample 72215,195, which provides a precisely determined younger limit for the solidification of the Lunar Magma Ocean. A model based on these data, together with the age of the Moon forming giant impact, defines an exponential time frame for crystallisation and suggests formation of anorthositic crust after about 80-85% of the magma ocean was solidified. In combination with other zircon ages the 4417 +/- 6 Myr age also suggests that the very small (less than a few per cent) residual portion of the magma ocean continued to solidify during the following 300-500 m.y.

  17. Hen egg-white lysozyme crystallisation: protein stacking and structure stability enhanced by a Tellurium(VI)-centred polyoxotungstate.

    PubMed

    Bijelic, Aleksandar; Molitor, Christian; Mauracher, Stephan G; Al-Oweini, Rami; Kortz, Ulrich; Rompel, Annette

    2015-01-19

    As synchrotron radiation becomes more intense, detectors become faster and structure-solving software becomes more elaborate, obtaining single crystals suitable for data collection is now the bottleneck in macromolecular crystallography. Hence, there is a need for novel and advanced crystallisation agents with the ability to crystallise proteins that are otherwise challenging. Here, an Anderson-Evans-type polyoxometalate (POM), specifically Na6 [TeW6 O24 ]⋅22 H2 O (TEW), is employed as a crystallisation additive. Its effects on protein crystallisation are demonstrated with hen egg-white lysozyme (HEWL), which co-crystallises with TEW in the vicinity (or within) the liquid-liquid phase separation (LLPS) region. The X-ray structure (PDB ID: 4PHI) determination revealed that TEW molecules are part of the crystal lattice, thus demonstrating specific binding to HEWL with electrostatic interactions and hydrogen bonds. The negatively charged TEW polyoxotungstate binds to sites with a positive electrostatic potential located between two (or more) symmetry-related protein chains. Thus, TEW facilitates the formation of protein-protein interfaces of otherwise repulsive surfaces, and thereby the realisation of a stable crystal lattice. In addition to retaining the isomorphicity of the protein structure, the anomalous scattering of the POMs was used for macromolecular phasing. The results suggest that hexatungstotellurate(VI) has great potential as a crystallisation additive to promote both protein crystallisation and structure elucidation. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  18. Crystallisation kinetics study in stabilisation treatment of sol-gel derived 45S5 bioglass

    NASA Astrophysics Data System (ADS)

    Prakrathi, S.; Matin, Mallikarjun; Kiran, P.; Manne, Bhaskar; Ramesh, M. R.

    2018-04-01

    Solgel gel derived bioglasses require stabilisation heat treatment to decompose nitrates and to improve mechanical stability. While decomposing nitrate phases especially in solgel derived 45S5 bioglass, it is difficult to avoid crystallisation of silicate crystalline phases (Na2CaSi2O6, Na2Ca2Si3O9) due to overlapping of nitrates decomposition and silicates crystallisation temperatures. Control of such crystallinity amount in bioglasses is at most important during stabilisation as it affects the dissolution rates of bioglassesin body fluids. Controlling and quantifying of this crystallinity helps in engineering bioglasses for specific period in application. In this work, synthesis of 45S5 bioglass through solgel method is presented. Here, temperature and time dependent crystallisation kinetics were estimated using a quality parameter derived from X-ray diffraction (XRD) patterns of bioglass during stabilisation treatment. Quality parameter derived from XRD patterns is termed as IPB which is the ratio of integral area of peaks to the integral area of background. It is proposed that IPB can be used as quality parameter to assess crystallinity and to study crystallisation kinetics in bioglasses.

  19. Development of a digital video-microscopy technique to study lactose crystallisation kinetics in situ.

    PubMed

    Arellano, María Paz; Aguilera, José Miguel; Bouchon, Pedro

    2004-11-15

    Polarised light microscopy was employed non-invasively to monitor lactose crystallisation from non-seeded supersaturated solutions in real time. Images were continuously recorded, processed and characterised by image analysis, and the results were compared with those obtained by refractometry. Three crystallisation temperatures (10, 20 and 30 degrees C) and three different levels of initial relative supersaturation (C/C(s)=1.95; 2.34; 3.15) were investigated. Induction times using the imaging technique proved to be substantially lower than those determined using refractive index. Lactose crystals were isolated digitally to determine geometrical parameters of interest, such as perimeter, diameter, area, roundness and Feret mean, and to derive crystal growth rates. Mean growth rates obtained for single crystals were fitted to a combined mass transfer model (R(2)=0.9766). The model allowed the effects of temperature and supersaturation on crystallisation rate to be clearly identified. It also suggested that, in this set of experiments, surface integration seemed to be the rate controlling step. It is believed that a similar experimental set-up could be implemented in a real food system to characterise a particular process where crystallisation control is of interest and where traditional techniques are difficult to implement.

  20. 49 CFR 214.323 - Foul time.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Foul time. 214.323 Section 214.323 Transportation... TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.323 Foul time. Working limits established on controlled track through the use of foul time procedures shall comply with the following...

  1. 49 CFR 214.323 - Foul time.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Foul time. 214.323 Section 214.323 Transportation... TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.323 Foul time. Working limits established on controlled track through the use of foul time procedures shall comply with the following...

  2. 49 CFR 214.323 - Foul time.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Foul time. 214.323 Section 214.323 Transportation... TRANSPORTATION RAILROAD WORKPLACE SAFETY Roadway Worker Protection § 214.323 Foul time. Working limits established on controlled track through the use of foul time procedures shall comply with the following...

  3. Probe Measures Fouling As In Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Marner, Wilbur J.; Macdavid, Kenton S.

    1990-01-01

    Combustion deposits reduce transfer of heat. Instrument measures fouling like that on gas side of heat exchanger in direct-fired boiler or heat-recovery system. Heat-flux probe includes tube with embedded meter in outer shell. Combustion gases flow over probe, and fouling accumulates on it, just as fouling would on heat exchanger. Embedded heat-flow meter is sandwich structure in which thin Chromel layers and middle alloy form thermopile. Users determine when fouling approaches unacceptable levels so they schedule cleaning and avoid decreased transfer of heat and increased drop in pressure fouling causes. Avoids cost of premature, unnecessary maintenance.

  4. A triple fouling layers perspective on evaluation of membrane fouling under different scenarios of membrane bioreactor operation

    PubMed Central

    2014-01-01

    One of the main factors affecting membrane fouling in MBRs is operational conditions. In this study the influence of aeration rate, filtration mode, and SRT on hollow fiber membrane fouling was investigated using a triple fouling layers perspective. The sludge microbial population distribution was also determined by PCR method. Through various applied operational scenarios the optimal conditions were: aeration rate of 15 LPM; relaxation mode with 40s duration and 8 min. interval; and SRT of 30 days. The similarity between SMP variations in triple fouling layers with its corresponding hydraulic resistance confirmed the effect of SMP on membrane fouling. Among three fouling fractions, the upper (rinsed) layer found to have the most effect on membrane fouling which implies the critical role of aeration, but as for multilateral effects of aeration, the optimal aeration rate should be determined more precisely. Relaxation interval was more effective than its duration for fouling control. SRT variations in addition to influencing the amount of SMP, also affect on the structure of these material. At longer SRTs (20, 30 days) a greater percentage of SMP could penetrate into the membrane pores and for shorter SRTs they accumulate more on membrane surface. Results showed that there is a very good correlation between total hydraulic resistance (Log R) and protein to carbohydrate ratio at the rinsed layer (P1/C1). Considering significant effects of aeration and SRT conditions on this ratio (according to data), it is very determinative to apply the optimal aeration and SRT conditions. PMID:25002969

  5. Crystallisation via novel 3D nanotemplates as a tool for protein purification and bio-separation

    NASA Astrophysics Data System (ADS)

    Shah, Umang V.; Jahn, Niklas H.; Huang, Shanshan; Yang, Zhongqiang; Williams, Daryl R.; Heng, Jerry Y. Y.

    2017-07-01

    This study reports an experimental validation of the surface preferential nucleation of proteins on the basis of a relationship between nucleant pore diameter and protein hydrodynamic diameter. The validated correlation was employed for the selection of nucleant pore diameter to crystallise a target protein from binary, equivolume protein mixture. We report proof-of-concept preliminary experimental evidence for the rational approach for crystallisation of a target protein from a binary protein mixture on the surface of 3D nanotemplates with controlled surface porosity and narrow pore-size distribution selected on the basis of a relationship between the nucleant pore diameter and protein hydrodynamic diameter. The outcome of this study opens up an exciting opportunity for exploring protein crystallisation as a potential route for protein purification and bio-separation in both technical and pharmaceutical applications.

  6. Fatty acid bile acid conjugates (FABACs)—New molecules for the prevention of cholesterol crystallisation in bile

    PubMed Central

    Gilat, T; Somjen, G; Mazur, Y; Leikin-Frenkel, A; Rosenberg, R; Halpern, Z; Konikoff, F.

    2001-01-01

    BACKGROUND—Cholesterol gall stones are a frequent disease for which at present surgery is the usual therapy. Despite the importance of bile acids it has become evident that phospholipids are the main cholesterol solubilisers in bile. Even phospholipid components, such as fatty acids, have anticrystallising activity.
AIM—To synthesise fatty acid bile acid conjugates (FABACs) and study their effects on cholesterol crystallisation in bile in vitro and in vivo.
METHODS—FABACs were prepared by conjugation of cholic acid at position 3 with saturated fatty acids of variable chain length using an amide bond. Cholesterol crystallisation and its kinetics (crystal observation time, crystal mass) were studied in model bile, pooled enriched human bile, and fresh human bile using FABACs with saturated fatty acids of varying chain length (C-6 to C-22). Absorption of FABACs into blood and bile was tested in hamsters. Prevention of biliary cholesterol crystallisation in vivo was tested in hamsters and inbred mice.
RESULTS—FABACs strongly inhibited cholesterol crystallisation in model as well as native bile. The FABACs with longer acyl chains (C-16 to C-22) were more effective. At a concentration of 5 mM, FABACs almost completely inhibited cholesterol crystallisation in fresh human bile for 21 days. FABACs were absorbed and found in both portal and heart blood of hamsters. Levels in bile were 2-3 times higher than in blood, indicating active secretion. Appreciable levels were found in the systemic circulation 24-48 hours after a single administration. Ingested FABACs completely prevented the formation of cholesterol crystals in the gall bladders of hamsters and mice fed a lithogenic diet.
CONCLUSIONS—FABACs are potent inhibitors of cholesterol crystallisation in bile. They are absorbed and secreted into bile and prevent the earliest step of cholesterol gall stone formation in animals. These compounds may be of potential use in cholesterol gall stone disease in

  7. An automated parallel crystallisation search for predicted crystal structures and packing motifs of carbamazepine.

    PubMed

    Florence, Alastair J; Johnston, Andrea; Price, Sarah L; Nowell, Harriott; Kennedy, Alan R; Shankland, Norman

    2006-09-01

    An automated parallel crystallisation search for physical forms of carbamazepine, covering 66 solvents and five crystallisation protocols, identified three anhydrous polymorphs (forms I-III), one hydrate and eight organic solvates, including the single-crystal structures of three previously unreported solvates (N,N-dimethylformamide (1:1); hemi-furfural; hemi-1,4-dioxane). Correlation of physical form outcome with the crystallisation conditions demonstrated that the solvent adopts a relatively nonspecific role in determining which polymorph is obtained, and that the previously reported effect of a polymer template facilitating the formation of form IV could not be reproduced by solvent crystallisation alone. In the accompanying computational search, approximately half of the energetically feasible predicted crystal structures exhibit the C=O...H--N R2(2)(8)dimer motif that is observed in the known polymorphs, with the most stable correctly corresponding to form III. Most of the other energetically feasible structures, including the global minimum, have a C=O...H--N C(4) chain hydrogen bond motif. No such chain structures were observed in this or any other previously published work, suggesting that kinetic, rather than thermodynamic, factors determine which of the energetically feasible crystal structures are observed experimentally, with the kinetics apparently favouring nucleation of crystal structures based on the CBZ-CBZ R2(2)(8) motif. (c) 2006 Wiley-Liss, Inc. and the American Pharmacists Association.

  8. Improving the organic and biological fouling resistance and removal of pharmaceutical and personal care products through nanofiltration by using in situ radical graft polymerization.

    PubMed

    Lin, Yi-Li; Tsai, Chia-Cheng; Zheng, Nai-Yun

    2018-09-01

    In this study, an insitu radical graft polarization technique using monomers of 3-sulfopropyl methacrylate potassium salt (SPM) and 2-hydroxyethyl methacrylate (HEMA) was applied to a commercial nanofiltration membrane (NF90) to improve its removal of six commonly detected pharmaceutical and personal care products (PPCPs) and mitigate organic and biological fouling by humic acid (HA) and sodium alginate (SA). Compared with the virgin membrane, the modified NF90 membrane exhibited considerably improved fouling resistance and an increased reversible fouling percentage, especially for SA+HA composite fouling Moreover, the PPCP removal of the modified NF90 membrane was higher than that of the virgin membrane after SA and SA+HA fouling, respectively. Triclosan and carbamazepine, which are poorly rejected, could be effectively removed by modified membrane after SA or SA+HA fouling. Both monomers modified the membrane surface by increasing the hydrophilicity and decreasing the contact angle. The degree of grafting was quantified using attenuated total reflection Fourier-transform infrared spectroscopy. The mitigation in the fouling was evident from the low quantity of deposit formed on the modified membrane, as observed using scanning electron microscopy. A considerable amount of highly hydrophobic triclosan was adsorbed on the SA-fouled virgin membrane and penetrated through it. By contrast, the adsorption of triclosan was substantially lower in the SPM-modified membrane. After membrane modification, the fouling mechanism changed from solely intermediate blocking to both intermediate blocking and complete blocking after membrane modification. Thus, the in situ radical graft polymerization method effectively reduces organic and biological fouling and provides high PPCP removal, which is beneficial for fouling control and produces permeate of satisfactory quality for application in the field of membrane technology. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Promoting crystallisation of the Salmonella enteritidis fimbriae 14 pilin SefD using deuterium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bing; Garnett, James A.; Lee, Wei-chao

    Highlights: Black-Right-Pointing-Pointer The benefits of D{sub 2}O in screening for crystallisation was explored. Black-Right-Pointing-Pointer The crystal structures of the SefD pilin in both H{sub 2}O and D{sub 2}O reveal differences. Black-Right-Pointing-Pointer Crystallisation improvements are explained by altered interactions in D{sub 2}O crystals. Black-Right-Pointing-Pointer D{sub 2}O is useful additive in sparse-matrix screening for crystallisation. -- Abstract: The use of heavy water (D{sub 2}O) as a solvent is commonplace in many spectroscopic techniques for the study of biological macromolecules. A significant deuterium isotope effect exists where hydrogen-bonding is important, such as in protein stability, dynamics and assembly. Here we illustrate the usemore » of D{sub 2}O in additive screening for the production of reproducible diffraction-quality crystals for the Salmonella enteritidis fimbriae 14 (SEF14) putative tip adhesin, SefD.« less

  10. Fouling mechanism in ultrafiltration of vegetable oil

    NASA Astrophysics Data System (ADS)

    Ariono, D.; Wardani, A. K.; Widodo, S.; Aryanti, Putu T. P.; Wenten, I. G.

    2018-03-01

    Energy efficient and cost-effective separation of impurities from vegetable oil is a great challenge for vegetable oil processing. Several technologies have been developed, including pressurized membrane, chemical treatment, and chemical free separation methods. Among those technologies, ultrafiltration membrane is one of the most attractive processes with low operating pressure and temperature. In this work, hydrophobic polypropylene ultrafiltration membrane was used to remove impurities such as non-dissolved solids from palm kernel oil. Unfortunately, the hydrophobicity of polypropylene membrane leads to significant impact on the reduction of permeate flux due to membrane fouling. This fouling is associated with the accumulation of substances on the membrane surface or within the membrane pores. For better understanding, fouling mechanism that occurred during palm kernel oil ultrafiltration using hydrophobic polypropylene membrane was investigated. The effect of trans-membrane pressure and feed temperature on fouling mechanism was also studied. The result showed that cake formation became the dominant fouling mechanism up to 50 min operation of palm kernel oil ultrafiltration. Furthermore, the fouling mechanism was not affected by the increase of trans-membrane pressure and feed temperature.

  11. Effect of Na2O on Crystallisation Behaviour and Heat Transfer of Fluorine-Free Mould Fluxes

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Zhang, Jianqiang; Sasaki, Yasushi; Ostrovski, Oleg; Zhang, Chen; Cai, Dexiang; Kashiwaya, Yoshiaki

    Most of the commercial mould fluxes contain fluorides which bring about serious environmental problems. The major challenge in the application of fluorine-free mould fluxes is to control the heat transfer from the strand to copper mould which is closely related to crystallisation behaviour. In this study, the effects of Na2O on the crystallisation behaviour and heat transfer of CaO-SiO2-Na2O-B2O3-TiO2-Al2O3-MgO-Li2O mould fluxes were investigated using single /double hot thermocouple technique (SHTT/DHTT) and infrared emitter technique (IET), respectively. Continuous cooling transformation (CCT) and time-temperature transformation (TTT) diagrams constructed using SHTT showed that the increase of Na2O concentration led to higher critical cooling rate and shorter incubation time. The crystallisation behaviour in a thermal gradient was examined using DHTT. The heat flux measured by IET showed that the increase of Na2O concentration decreased the heat flux when Na2O was lower than 9 mass% but the further increase of Na2O raised the heat flux. The relationship between flux crystallisation and heat transfer was also discussed.

  12. Utilisation of adsorption and desorption for simultaneously improving protein crystallisation success rate and crystal quality

    NASA Astrophysics Data System (ADS)

    Guo, Yun-Zhu; Sun, Li-Hua; Oberthuer, Dominik; Zhang, Chen-Yan; Shi, Jian-Yu; di, Jiang-Lei; Zhang, Bao-Liang; Cao, Hui-Ling; Liu, Yong-Ming; Li, Jian; Wang, Qian; Huang, Huan-Huan; Liu, Jun; Schulz, Jan-Mirco; Zhang, Qiu-Yu; Zhao, Jian-Lin; Betzel, Christian; He, Jian-Hua; Yin, Da-Chuan

    2014-12-01

    High-quality protein crystals of suitable size are an important prerequisite for applying X-ray crystallography to determine the 3-dimensional structure of proteins. However, it is often difficult to obtain protein crystals of appropriate size and quality because nucleation and growth processes can be unsuccessful. Here, we show that by adsorbing proteins onto porous polystyrene-divinylbenzene microspheres (SDB) floating on the surface of the crystallisation solution, a localised high supersaturation region at the surface of the microspheres and a low supersaturation region below the microspheres can coexist in a single solution. The crystals will easily nucleate in the region of high supersaturation, but when they grow to a certain size, they will sediment to the region of low supersaturation and continue to grow. In this way, the probability of crystallisation and crystal quality can be simultaneously increased in a single solution without changing other crystallisation parameters.

  13. Fouling of a spiral-wound reverse osmosis membrane processing swine wastewater: effect of cleaning procedure on fouling resistance.

    PubMed

    Camilleri-Rumbau, M S; Masse, L; Dubreuil, J; Mondor, M; Christensen, K V; Norddahl, B

    2016-01-01

    Swine manure is a valuable source of nitrogen, phosphorus and potassium. After solid-liquid separation, the resulting swine wastewater can be concentrated by reverse osmosis (RO) to produce a nitrogen-potassium rich fertilizer. However, swine wastewater has a high fouling potential and an efficient cleaning strategy is required. In this study, a semi-commercial farm scale RO spiral-wound membrane unit was fouled while processing larger volumes of swine wastewater during realistic cyclic operations over a 9-week period. Membrane cleaning was performed daily. Three different cleaning solutions, containing SDS, SDS+EDTA and NaOH were compared. About 99% of the fouling resistance could be removed by rinsing the membrane with water. Flux recoveries (FRs) above 98% were achieved for all the three cleaning solutions after cleaning. No significant differences in FR were found between the cleaning solutions. The NaOH solution thus is a good economical option for cleaning RO spiral-wound membranes fouled with swine wastewater. Soaking the membrane for 3 days in permeate water at the end of each week further improved the FR. Furthermore, a fouling resistance model for predicting the fouling rate, permeate flux decay and cleaning cycle periods based on processing time and swine wastewater conductivity was developed.

  14. Molecular Mechanisms of Ultrafiltration Membrane Fouling in Polymer-Flooding Wastewater Treatment: Role of Ions in Polymeric Fouling.

    PubMed

    Liu, Guicai; Yu, Shuili; Yang, Haijun; Hu, Jun; Zhang, Yi; He, Bo; Li, Lei; Liu, Zhiyuan

    2016-02-02

    Polymer (i.e., anionic polyacrylamide (APAM)) fouling of polyvinylidene fluoride (PVDF) ultrafiltration (UF) membranes and its relationships to intermolecular interactions were investigated using atomic force microscopy (AFM). Distinct relations were obtained between the AFM force spectroscopy measurements and calculated fouling resistance over the concentration polarization layer (CPL) and gel layer (GL). The measured maximum adhesion forces (Fad,max) were closely correlated with the CPL resistance (Rp), and the proposed molecular packing property (largely based on the shape of AFM force spectroscopy curve) of the APAM chains was related to the GL resistance (Rg). Calcium ions (Ca(2+)) and sodium ions (Na(+)) caused more severe fouling. In the presence of Ca(2+), the large Rp corresponded to high foulant-foulant Fad,max, resulting in high flux loss. In addition, the Rg with Ca(2+) was minor, but the flux recovery rate after chemical cleaning was the lowest, indicating that Ca(2+) created more challenges in GL cleaning. With Na(+), the fouling behavior was complicated and concentration-dependent. The GL structures with Na(+), which might correspond to the proposed molecular packing states among APAM chains, played essential roles in membrane fouling and GL cleaning.

  15. 49 CFR 236.57 - Shunt and fouling wires.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Shunt and fouling wires. 236.57 Section 236.57...: All Systems Track Circuits § 236.57 Shunt and fouling wires. (a) Except as provided in paragraph (b) of this section, shunt wires and fouling wires hereafter installed or replaced shall consist of at...

  16. 49 CFR 236.57 - Shunt and fouling wires.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Shunt and fouling wires. 236.57 Section 236.57...: All Systems Track Circuits § 236.57 Shunt and fouling wires. (a) Except as provided in paragraph (b) of this section, shunt wires and fouling wires hereafter installed or replaced shall consist of at...

  17. Off the Shelf Fouling Management

    PubMed Central

    Rittschof, Daniel

    2017-01-01

    This chapter tells the story of a research thread that identified and modified a pharmaceutical that could be a component of environmentally benign fouling management coatings. First, I present the background context of biofouling and how fouling is managed. The major target of the research is disrupting transduction of a complex process in all macrofouling organisms: metamorphosis. Using a bioassay directed approach we first identified a pharmaceutical candidate. Then, based on structure function studies coupled with laboratory and field bioassays, we simplified the molecule, eliminating halogens and aromatic rings to a pharmacophore that could be readily broken down by bacteria. Next, we did further structure function studies coupled to lab and field bioassays of modifications that enabled delivery of the molecule in a variety of coatings. The outcome is a different way of thinking about managing fouling and concepts in which molecules are designed to perform a function and then degrade. This work is discussed in the context of existing fouling management approaches and business models which use long-lived broad-spectrum biocides which have consequences for human, environmental health, and food security. PMID:28613232

  18. Coarse-grained modelling of triglyceride crystallisation: a molecular insight into tripalmitin tristearin binary mixtures by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Pizzirusso, Antonio; Brasiello, Antonio; De Nicola, Antonio; Marangoni, Alejandro G.; Milano, Giuseppe

    2015-12-01

    The first simulation study of the crystallisation of a binary mixture of triglycerides using molecular dynamics simulations is reported. Coarse-grained models of tristearin (SSS) and tripalmitin (PPP) molecules have been considered. The models have been preliminarily tested in the crystallisation of pure SSS and PPP systems. Two different quenching procedures have been tested and their performances have been analysed. The structures obtained from the crystallisation procedures show a high orientation order and a high content of molecules in the tuning fork conformation, comparable with the crystalline α phase. The behaviour of melting temperatures for the α phase of the mixture SSS/PPP obtained from the simulations is in qualitative agreement with the behaviour that was experimentally determined.

  19. High Concentration Protein Ultrafiltration: a Comparative Fouling Assessment

    NASA Astrophysics Data System (ADS)

    Lim, Y. P.; Mohammad, A. W.

    2018-05-01

    In this paper, the predominant fouling mechanism via pH manipulation in gelatin ultrafiltration (UF) at constant operating pressure was studied. Two 30 kDa molecular weight cut off (MWCO) UF membranes with different hydrophilic/hydrophobic properties were tested at solution pH near gelatin isoelectric point (IEP), pH below and above gelatin’s IEP. The resistance-in-series model was used to determine quantitatively the contribution of each filtration resistance occurred during gelatin UF. The governing fouling mechanisms were investigated using classical blocking laws. The results demonstrated that concentration polarization remain as dominant fouling resistance in gelatin UF, but exceptional case was observed at pH away from gelatin’s IEP, showing that combined reversible and irreversible fouling resistances contributed around 57% and 37%, respectively to the overall fouling resistances. Under all experimental condition tested, permeate flux decline was accurately predicted by all the models studied. Fouling profile was fitted well with “Standard Blocking”, “Intermediate Blocking” and “Cake Filtration” model for regenerated cellulose acetate (RCA) membrane and “Cake Filtration” model for polyethersulphone (PES) membrane.

  20. Asphaltene Aggregation and Fouling Behavior

    NASA Astrophysics Data System (ADS)

    Derakhshesh, Marzie

    This thesis explored the properties of asphaltene nano-aggregates in crude oil and toluene based solutions and fouling at process furnace temperatures, and the links between these two phenomena. The link between stability of asphaltenes at ambient conditions and fouling at the conditions of a delayed coker furnace, at over 450 °C, was examined by blending crude oil with an aliphatic diluent in different ratios. The stability of the blends were measured using a S-value analyzer, then fouling rates were measured on electrically heated stainless steel 316 wires in an autoclave reactor. The less stable the blend, the greater the rate and extent of fouling. The most severe fouling occurred with the unstable asphaltenes. SEM imaging of the foulant illustrates very different textures, with the structure becoming more porous with lower stability. Under cross-polarized light, the coke shows the presence of mesophase in the foulant layer. These data suggest a correlation between the fouling rate at high temperature furnace conditions and the stability index of the crude oil. Three organic polysulfides were introduced to the crude oil to examine their effect on fouling. The polysulfides are able to reduce coking and carbon monoxide generation in steam crackers. The fouling results demonstrated that polysulfide with more sulfur content increased the amount of corrosion-fouling of the wire. Various additives, solvents, ultrasound, and heat were employed to attempt to completely disaggregate the asphaltene nano-aggregates in solution at room temperature. The primary analytical technique used to monitor the nano-aggregation state of the asphaltenes in solution was the UV-visible spectroscopy. The results indicate that stronger solvents, such as pyridine and quinoline, combined with ionic liquids yield a slight reduction in the apparent absorbance at longer wavelengths, indicative of a decrease in the nano-aggregate size although the magnitude of the decrease is not significant

  1. Investigation of CaCO3 fouling in plate heat exchangers

    NASA Astrophysics Data System (ADS)

    Li, Wei; Zhou, Kan; Manglik, Raj M.; Li, Guan-Qiu; Bergles, Arthur E.

    2016-11-01

    An experimental investigation, coupled with theoretical modeling of CaCO3 fouling in plate-and-frame type heat exchangers (PHEs) have been conducted. Four different plates, made of SS-304, are used in two different surface patterns (chevron and zig-zag) of varying corrugation severity (waviness depth and pitch) and area enhancement. They were further characterized in clean, non-fouled convection by their measured heat transfer coefficients and friction factors in the Reynolds number range of 600-6000. The flow-fouling experiments delineate the effects of temperature and plate-surface geometry on growth rates and stabilization of fouling resistance, along with the anti-fouling behavior of plates coated with a hydrophobic PTFE (Teflon) film. Moreover, the microscopic structure of fouling deposits is mapped in a scanning-electron microscope. Corrugated plates with the largest height-to-pitch ratio and hydraulic diameter are found to have the lowest fouling growth rate and resistance; Teflon-film coating of plate surface is also found to mitigate fouling relative to the performance of bare stainless steel plates. Finally, a semi-empirical fouling model, based on the Prandtl-Taylor analogy, has been devised to describe the experimental data and provide a predictive tool.

  2. A survey of gas-side fouling in industrial heat-transfer equipment

    NASA Astrophysics Data System (ADS)

    Marner, W. J.; Suitor, J. W.

    1983-11-01

    Gas-side fouling and corrosion problems occur in all of the energy intensive industries including the chemical, petroleum, primary metals, pulp and paper, glass, cement, foodstuffs, and textile industries. Topics of major interest include: (1) heat exchanger design procedures for gas-side fouling service; (2) gas-side fouling factors which are presently available; (3) startup and shutdown procedures used to minimize the effects of gas-side fouling; (4) gas-side fouling prevention, mitigation, and accommodation techniques; (5) economic impact of gas-side fouling on capital costs, maintenance costs, loss of production, and energy losses; and (6) miscellaneous considerations related to gas-side fouling. The present state-of-the-art for industrial gas-side fouling is summarized by a list of recommendations for further work in this area.

  3. A survey of gas-side fouling in industrial heat-transfer equipment

    NASA Technical Reports Server (NTRS)

    Marner, W. J.; Suitor, J. W.

    1983-01-01

    Gas-side fouling and corrosion problems occur in all of the energy intensive industries including the chemical, petroleum, primary metals, pulp and paper, glass, cement, foodstuffs, and textile industries. Topics of major interest include: (1) heat exchanger design procedures for gas-side fouling service; (2) gas-side fouling factors which are presently available; (3) startup and shutdown procedures used to minimize the effects of gas-side fouling; (4) gas-side fouling prevention, mitigation, and accommodation techniques; (5) economic impact of gas-side fouling on capital costs, maintenance costs, loss of production, and energy losses; and (6) miscellaneous considerations related to gas-side fouling. The present state-of-the-art for industrial gas-side fouling is summarized by a list of recommendations for further work in this area.

  4. Community solar salt production in Goa, India

    PubMed Central

    2012-01-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa’s riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans. Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1–2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested. Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced. The aim of this review is to describe salt farming in Goa’s history, importance of salt production as a community activity, traditional method of salt production and the

  5. Community solar salt production in Goa, India.

    PubMed

    Mani, Kabilan; Salgaonkar, Bhakti B; Das, Deepthi; Bragança, Judith M

    2012-12-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa's riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans.Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1-2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested.Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced.The aim of this review is to describe salt farming in Goa's history, importance of salt production as a community activity, traditional method of salt production and the biota

  6. A comprehensive review of milk fouling on heated surfaces.

    PubMed

    Sadeghinezhad, E; Kazi, S N; Dahari, M; Safaei, Mohammad Reza; Sadri, Rad; Badarudin, A

    2015-01-01

    Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task.

  7. Ammonia recovery from agricultural wastes by membrane distillation: fouling characterization and mechanism.

    PubMed

    Zarebska, A; Nieto, D Romero; Christensen, K V; Norddahl, B

    2014-06-01

    One of the main obstacles impeding implementation of membrane distillation for the recovery and concentration of ammonia from swine manure is wetting caused by fouling. Due to the different types of fouling which can occur in a membrane system, foulants characterization is a complex problem. To elucidate the fouling mechanism, deposit morphology and composition of foulants have been determined using Scanning Electron Microscopy, X-ray Energy Dispersive Spectrometry, Attenuated Total Reflectance Infrared Spectrometry, Ion chromatography and Inductively coupled plasma-optical emission spectroscopy. Based on the analysis of fouled membranes, it is concluded that membrane fouling is dominated by organic fouling in combination with deposits of inorganic elements and microorganisms. After a week of running the membrane process without cleaning, the average fouling layer thickness was estimated to 10-15 μm. The fouling layer further results in a loss of membrane hydrophobicity. This indicates that fouling could be a severe problem for membrane distillation performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Climatology of salt transitions and implications for stone weathering.

    PubMed

    Grossi, C M; Brimblecombe, P; Menéndez, B; Benavente, D; Harris, I; Déqué, M

    2011-06-01

    This work introduces the notion of salt climatology. It shows how climate affects salt thermodynamic and the potential to relate long-term salt damage to climate types. It mainly focuses on specific sites in Western Europe, which include some cities in France and Peninsular Spain. Salt damage was parameterised using the number of dissolution-crystallisation events for unhydrated (sodium chloride) and hydrated (sodium sulphate) systems. These phase transitions have been calculated using daily temperature and relative humidity from observation meteorological data and Climate Change models' output (HadCM3 and ARPEGE). Comparing the number of transitions with meteorological seasonal data allowed us to develop techniques to estimate the frequency of salt transitions based on the local climatology. Results show that it is possible to associate the Köppen-Geiger climate types with potential salt weathering. Temperate fully humid climates seem to offer the highest potential for salt damage and possible higher number of transitions in summer. Climates with dry summers tend to show a lesser frequency of transitions in summer. The analysis of temperature, precipitation and relative output from Climate Change models suggests changes in the Köppen-Geiger climate types and changes in the patterns of salt damage. For instance, West Europe areas with a fully humid climate may change to a more Mediterranean like or dry climates, and consequently the seasonality of different salt transitions. The accuracy and reliability of the projections might be improved by simultaneously running multiple climate models (ensembles). Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Elastomeric fluorinated polyurethane coatings for nontoxic fouling control.

    PubMed

    Brady, Robert F; Aronson, Carl L

    2003-04-01

    Nontoxic antifouling coatings have been investigated for many years as possible successors to toxic antifouling paints. Polymers containing fluorine or silicone have been tested and each has been shown to be partially effective for different reasons. This paper describes a new coating which combines the best features of fluorinated and silicone coatings and is non-toxic. Four fluorinated elastomers were prepared and tested for fouling resistance during a full fouling season. The surface energy and mechanical properties of each polymer were measured and correlated to fouling performance. One of the elastomers was shown to foul slowly, clean easily, be durable in the marine environment and organisms bonded to it only weakly. The surface energy, elastic modulus, and thickness of the elastomer may be varied as desired over wide ranges to meet differing performance requirements.

  10. Non-Toxic, Self Cleaning Silicone Fouling Release Coatings

    DTIC Science & Technology

    1997-10-07

    Attempts to microencapsulate silicone oils for enhanced fouling release coatings with thermoset wall structures were unsuccessful: Microcapsule ...filled coatings failed abrasion resistance tests and had mediocre fouling release properties, despite having controlled release rates. Microcapsules with

  11. Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control.

    PubMed

    Mikhaylin, Sergey; Bazinet, Laurent

    2016-03-01

    The environmentally friendly ion-exchange membrane (IEM) processes find more and more applications in the modern industries in order to demineralize, concentrate and modify products. Moreover, these processes may be applied for the energy conversion and storage. However, the main drawback of the IEM processes is a formation of fouling, which significantly decreases the process efficiency and increases the process cost. The present review is dedicated to the problematic of IEM fouling phenomena. Firstly, the major types of IEM fouling such as colloidal fouling, organic fouling, scaling and biofouling are discussed along with consideration of the main factors affecting fouling formation and development. Secondly, the review of the possible methods of IEM fouling characterization is provided. This section includes the methods of fouling visualization and characterization as well as methods allowing investigations of characteristics of the fouled IEMs. Eventually, the reader will find the conventional and modern strategies of prevention and control of different fouling types. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Survival of foul-hooked largemouth bass (Micropterus salmoides)

    USGS Publications Warehouse

    Pope, K.L.; Wilde, G.R.

    2010-01-01

    We conducted a field experiment to determine the survival rate of foul-hooked (hooked external to the oral cavity) largemouth bass (Micropterus salmoides) caught and released by recreational anglers. Of 42 largemouth bass caught with hard-plastic baits containing three treble hooks, 15 were hooked only within the mouth and 27 had at least one hook penetrating the external surface of the fish (i.e., foul-hooked). There was no difference in survival of mouth-hooked (100%), foul-hooked (100%), or control (100%) largemouth bass.

  13. Crystallisation and crystal forms of carbohydrate derivatives

    NASA Astrophysics Data System (ADS)

    Lennon, Lorna

    This thesis is focused on the synthesis and solid state analysis of carbohydrate derivatives, including many novel compounds. Although the synthetic chemistry surrounding carbohydrates is well established in the literature, the crystal chemistry of carbohydrates is less well studied. Therefore this research aims to improve understanding of the solid state properties of carbohydrate derivatives through gaining more information on their supramolecular bonding. Chapter One focuses on an introduction to the solid state of organic compounds, with a background to crystallisation, including issues that can arise during crystal growth. Chapter Two is based on glucopyranuronate derivatives which are understudied in terms of their solid state forms. This chapter reports on the formation of novel glucuronamides and utilising the functionality of the amide bond for crystallisation. TEMPO oxidation was completed to form glucopyranuronates by oxidation of the primary alcohol groups of glucosides to the carboxylic acid derivatives, to increase functionality for enhanced crystal growth. Chapter Three reports on the synthesis of glucopyranoside derivatives by O-glycosylation reactions and displays crystal structures, including a number of previously unsolved acetate protected and deprotected crystal structures. More complex glycoside derivatives were also researched in an aim to study the resultant supramolecular motifs. Chapter Four contains the synthesis of aryl cellobioside derivatives including the novel crystal structures that were solved for the acetate protected and deprotected compounds. Research was carried out to determine if 1-deoxycellodextrins could act as putative isostructures for cellulose. Our research displays the presence of isostructural references with 1-deoxycellotriose shown to be similar to cellulose III11, 1-deoxycellotetraose correlates with cellulose IV11 and 1-deoxycellopentose shows isostructurality similar to that of cellulose II. Chapter Five contains

  14. Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling

    PubMed Central

    Iorhemen, Oliver Terna; Hamza, Rania Ahmed; Tay, Joo Hwa

    2016-01-01

    The membrane bioreactor (MBR) has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application. PMID:27314394

  15. Investigating and understanding fouling in a planar setup using ultrasonic methods.

    PubMed

    Wallhäusser, E; Hussein, M A; Becker, T

    2012-09-01

    Fouling is an unwanted deposit on heat transfer surfaces and occurs regularly in foodstuff heat exchangers. Fouling causes high costs because cleaning of heat exchangers has to be carried out and cleaning success cannot easily be monitored. Thus, used cleaning cycles in foodstuff industry are usually too long leading to high costs. In this paper, a setup is described with which it is possible, first, to produce dairy protein fouling similar to the one found in industrial heat exchangers and, second, to detect the presence and absence of such fouling using an ultrasonic based measuring method. The developed setup resembles a planar heat exchanger in which fouling can be made and cleaned reproducible. Fouling presence, absence, and cleaning progress can be monitored by using an ultrasonic detection unit. The setup is described theoretically based on electrical and mechanical lumped circuits to derive the wave equation and the transfer function to perform a sensitivity analysis. Sensitivity analysis was done to determine influencing quantities and showed that fouling is measurable. Also, first experimental results are compared with results from sensitivity analysis.

  16. In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4- cage nanoparticles

    NASA Astrophysics Data System (ADS)

    Hu, Qin; Zhao, Lichen; Wu, Jiang; Gao, Ke; Luo, Deying; Jiang, Yufeng; Zhang, Ziyi; Zhu, Chenhui; Schaible, Eric; Hexemer, Alexander; Wang, Cheng; Liu, Yi; Zhang, Wei; Grätzel, Michael; Liu, Feng; Russell, Thomas P.; Zhu, Rui; Gong, Qihuang

    2017-06-01

    Hybrid lead halide perovskites have emerged as high-performance photovoltaic materials with their extraordinary optoelectronic properties. In particular, the remarkable device efficiency is strongly influenced by the perovskite crystallinity and the film morphology. Here, we investigate the perovskites crystallisation kinetics and growth mechanism in real time from liquid precursor continually to the final uniform film. We utilize some advanced in situ characterisation techniques including synchrotron-based grazing incident X-ray diffraction to observe crystal structure and chemical transition of perovskites. The nano-assemble model from perovskite intermediated [PbI6]4- cage nanoparticles to bulk polycrystals is proposed to understand perovskites formation at a molecular- or nano-level. A crystallisation-depletion mechanism is developed to elucidate the periodic crystallisation and the kinetically trapped morphology at a mesoscopic level. Based on these in situ dynamics studies, the whole process of the perovskites formation and transformation from the molecular to the microstructure over relevant temperature and time scales is successfully demonstrated.

  17. A Sinister Bias for Calling Fouls in Soccer

    PubMed Central

    Kranjec, Alexander; Lehet, Matthew; Bromberger, Bianca; Chatterjee, Anjan

    2010-01-01

    Distinguishing between a fair and unfair tackle in soccer can be difficult. For referees, choosing to call a foul often requires a decision despite some level of ambiguity. We were interested in whether a well documented perceptual-motor bias associated with reading direction influenced foul judgments. Prior studies have shown that readers of left-to-right languages tend to think of prototypical events as unfolding concordantly, from left-to-right in space. It follows that events moving from right-to-left should be perceived as atypical and relatively debased. In an experiment using a go/no-go task and photographs taken from real games, participants made more foul calls for pictures depicting left-moving events compared to pictures depicting right-moving events. These data suggest that two referees watching the same play from distinct vantage points may be differentially predisposed to call a foul. PMID:20628648

  18. A fouling monitor alarm to prevent forced outages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, R.E.; Hickinbotham, A.; Fang, T.C.

    2000-07-01

    Many utilities rely on coal blending to meet emissions and boiler performance goals, but the increased variability in coal quality can adversely impact ash deposition and soot blowing requirements. Other utilities are experimenting with lower quality coals and burner zone blending of coals fired from different bunkers as part of a deregulation strategy to reduce fuel costs. However, these strategies can lead to slagging/fouling episodes, a possible outage, or a decrease in unit availability if boiler operations are not carefully monitored. This paper summarizes the development of software to monitor boiler fouling and to provide an advanced warning to themore » control operators when a fouling episode is imminent. With adequate warming, preemptive action can be taken (e.g., soot blowing, a change in coal blend, etc.) to potentially avoid a costly outage. The software utilizes a unique combination of combustion diagnostic techniques and convective section heat adsorption analyses to identify boiler operating conditions where ash deposition rates may be high and conductive to triggering a fouling episode. The paper outlines the history of the fouling problem and the implementation of the software on Wabamun Unit 4, a tangentially-fired unit with relatively narrow reheat tube spacing. The unit had a tendency to foul when burning a high alkaline (but low ash) coal seam. The paper discusses the software development, implementation, and data acquisitions activities. Preliminary test results are provided for Wabamun 4 and for Sundance Units 1 and 2 where the software was recently installed.« less

  19. Mitigation of Syngas Cooler Plugging and Fouling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bockelie, Michael J.

    This Final Report summarizes research performed to develop a technology to mitigate the plugging and fouling that occurs in the syngas cooler used in many Integrated Gasification Combined Cycle (IGCC) plants. The syngas cooler is a firetube heat exchanger located downstream of the gasifier. It offers high thermal efficiency, but its’ reliability has generally been lower than other process equipment in the gasification island. The buildup of ash deposits that form on the fireside surfaces in the syngas cooler (i.e., fouling) lead to reduced equipment life and increased maintenance costs. Our approach to address this problem is that fouling ofmore » the syngas cooler cannot be eliminated, but it can be better managed. The research program was funded by DOE using two budget periods: Budget Period 1 (BP1) and Budget Period 2 (BP2). The project used a combination of laboratory scale experiments, analysis of syngas cooler deposits, modeling and guidance from industry to develop a better understanding of fouling mechanisms and to develop and evaluate strategies to mitigate syngas cooler fouling and thereby improve syngas cooler performance. The work effort in BP 1 and BP 2 focused on developing a better understanding of the mechanisms that lead to syngas cooler plugging and fouling and investigating promising concepts to mitigate syngas cooler plugging and fouling. The work effort focused on the following: • analysis of syngas cooler deposits and fuels provided by an IGCC plant collaborating with this project; • performing Jet cleaning tests in the University of Utah Laminar Entrained Flow Reactor to determine the bond strength between an ash deposit to a metal plate, as well as implementing planned equipment modifications to the University of Utah Laminar Entrained Flow Reactor and the one ton per day, pressurized Pilot Scale Gasifier; • performing Computational Fluid Dynamic modeling of industrially relevant syngas cooler configurations to develop a better

  20. Direct microscopic observation of forward osmosis membrane fouling.

    PubMed

    Wang, Yining; Wicaksana, Filicia; Tang, Chuyang Y; Fane, Anthony G

    2010-09-15

    This study describes the application of a noninvasive direct microscopic observation method for characterizing fouling of a forward osmosis (FO) membrane. The effect of the draw solution concentration, membrane orientation, and feed spacer on FO fouling was systematically investigated in a cross-flow setup using latex particles as model foulant in the feedwater. Higher draw solution (DS) concentrations (and thus increased flux levels) resulted in dramatic increase in the surface coverage by latex particles, suggesting that the critical flux concept might be applicable even for the osmotically driven FO process. Under identical draw solution concentrations, the active-layer-facing-the-feed-solution orientation (AL-FS) experienced significantly less fouling compared to the alternative orientation. This may be explained by the lower water flux in AL-FS, which is consistent with the critical flux concept. The use of a feed spacer not only dramatically enhanced the initial flux of the FO membrane, but also significantly improved the flux stability during FO fouling. Despite such beneficial effects of using the feed spacer, a significant amount of particle accumulation was found near the spacer filament, suggesting further opportunities for improved spacer design. To the best of the authors' knowledge, this is the first direct microscopic observation study on FO fouling.

  1. Seasonal variations in fouling diatom communities on the Yantai coast

    NASA Astrophysics Data System (ADS)

    Yang, Cuiyun; Wang, Jianhua; Yu, Yang; Liu, Sujing; Xia, Chuanhai

    2015-03-01

    Fouling diatoms are a main component of biofilm, and play an important role in marine biofouling formation. We investigated seasonal variations in fouling diatom communities that developed on glass slides immersed in seawater, on the Yantai coast, northern Yellow Sea, China, using microscopy and molecular techniques. Studies were conducted during 2012 and 2013 over 3, 7, 14, and 21 days in each season. The abundance of attached diatoms and extracellular polymeric substances increased with exposure time of the slides to seawater. The lowest diatom density appeared in winter and the highest species richness and diversity were found in summer and autumn. Seasonal variation was observed in the structure of fouling diatom communities. Pennate diatoms Cylindrotheca, Nitzschia, Navicula, Amphora, Gomphonema, and Licmophora were the main fouling groups. Cylindrotheca sp. dominated in the spring. Under laboratory culture conditions, we found that Cylindrotheca grew very fast, which might account for the highest density of this diatom in spring. The lower densities in summer and autumn might result from the emergence of fouling animals and environmental factors. The Cylindrotheca sp. was identified as Cylindrotheca closterium using18S rDNA sequencing. The colonization process of fouling diatoms and significant seasonal variation in this study depended on environmental and biological factors. Understanding the basis of fouling diatoms is essential and important for developing new antifouling techniques.

  2. Ultrasonic control of ceramic membrane fouling: Effect of particle characteristics.

    PubMed

    Chen, Dong; Weavers, Linda K; Walker, Harold W

    2006-02-01

    In this study, the effect of particle characteristics on the ultrasonic control of membrane fouling was investigated. Ultrasound at 20 kHz was applied to a cross-flow filtration system with gamma-alumina membranes in the presence of colloidal silica particles. Experimental results indicated that particle concentration affected the ability of ultrasound to control membrane fouling, with less effective control of fouling at higher particle concentrations. Measurements of sound wave intensity and images of the cavitation region indicated that particles induced additional cavitation bubbles near the ultrasonic source, which resulted in less turbulence reaching the membrane surface and subsequently less effective control of fouling. When silica particles were modified to be hydrophobic, greater inducement of cavitation bubbles near the ultrasonic source occurred for a fixed concentration, also resulting in less effective control of fouling. Particle size influenced the cleaning ability of ultrasound, with better permeate recovery observed with larger particles. Particle size did not affect sound wave intensity, suggesting that the more effective control of fouling by large particles was due to greater lift and cross-flow drag forces on larger particles compared to smaller particles.

  3. Chemical reaction fouling model for single-phase heat transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panchal, C.B.; Watkinson, A.P.

    1993-08-01

    A fouling model was developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermalboundary layer, or at the fluid/wall interface, depending upon the interactive effects of flu id dynamics, heat and mass transfer, and the controlling chemical reaction. The analysis was used to examine the experimental data for fouling deposition of polyperoxides produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries were analyzed. The results showed that the relative effects of physical parameters on the fouling rate would differmore » for the three fouling mechanisms; therefore, it is important to identify the controlling mechanism in applying the closed-flow-loop data to industrial conditions.« less

  4. Nanoparticle fouling and its combination with organic fouling during forward osmosis process for silver nanoparticles removal from simulated wastewater

    NASA Astrophysics Data System (ADS)

    Zhao, Yanxiao; Wang, Xinhua; Wang, Zhiwei; Li, Xiufen; Ren, Yueping

    2016-05-01

    The increasing and wide application of silver nanoparticles (Ag NPs) has resulted in their appearance in wastewater. In consideration of their potential toxicity and environmental impacts, it is necessary to find effective technology for their removal from wastewater. Here, forward osmosis (FO) membrane was applied for Ag NPs removal from wastewater, and single and combined fouling of nanoparticles and organic macromolecules were further investigated during the FO process. The findings demonstrated that FO membrane can effectively remove Ag NPs from wastewater due to its high rejection performance. Fouling tests indicated that water flux declined appreciably even at the beginning of the single Ag NPs fouling test, and more remarkable flux decline and larger amounts of deposited Ag NPs were observed with an increase of Ag NPs concentration. However, the addition of bovine serum albumin (BSA) could effectively alleviate the FO membrane fouling induced by Ag NPs. The interaction between Ag NPs and BSA was responsible for this phenomenon. BSA can easily form a nanoparticle-protein corona surrounded nanoparticles, which prevented nanoparticles from aggregation due to the steric stabilization mechanism. Furthermore, the interaction between BSA and Ag NPs occurred not only in wastewater but also on FO membrane surface.

  5. Influence of enzymatic and chemical interesterification on crystallisation properties of refined, bleached and deodourised (RBD) palm oil and RBD palm kernel oil blends.

    PubMed

    Norizzah, Abd Rashid; Nur Azimah, Kamarulzaman; Zaliha, Omar

    2018-04-01

    Interesterification reaction involves rearrangement of the fatty acid radicals on the glycerol backbone, either randomly (chemical interesterification) or regioselectivity (enzymatic interesterification). Refined, bleached and deodourised palm oil (RBDPO) and palm kernel oil (RBDPKO) were blended in ratios from 25:75 to 75:25 (wt/wt). All blends were subjected to enzymatic (EI) and chemical interesterification (CI) using Lipozyme TL IM (4% w/w) and sodium methoxide (0.2% m/m) as the catalysts, respectively. The effect of EI and CI on the triacylglycerol (TAG) composition, thermal behaviour, polymorphism, crystal morphology and crystallisation kinetics were studied. The aim of this research is to characterise the nature of crystals in food product for certain desired structure. The crystallisation behaviour discussed in this study involves microstructure (PLM), polymorphism (XRD), thermal properties and crystallisation kinetics by DSC. The alteration in TAG composition was greater after CI as compared to EI with the reduction of LaLaLa (from 11.00% to 5.15%) and POO (from 14.28% to 4.87%). The DSC complete melting and crystallisation temperature of blend with 75% PO increased after CI, from 39.58 °C to 41.67 °C and from -30.84 °C to -28.33 °C, respectively. EI contributed to finer crystals than CI. However, the β' and β polymorph mixture and crystallisation kinetics (n = 2) of PO-PKO blends did not change after CI and EI. The knowledge on controlling crystallisation of RBDPO and RBDPKO blends is vital for proper processing condition like margarine production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6]4− cage nanoparticles

    PubMed Central

    Hu, Qin; Zhao, Lichen; Wu, Jiang; Gao, Ke; Luo, Deying; Jiang, Yufeng; Zhang, Ziyi; Zhu, Chenhui; Schaible, Eric; Hexemer, Alexander; Wang, Cheng; Liu, Yi; Zhang, Wei; Grätzel, Michael; Liu, Feng; Russell, Thomas P.; Zhu, Rui; Gong, Qihuang

    2017-01-01

    Hybrid lead halide perovskites have emerged as high-performance photovoltaic materials with their extraordinary optoelectronic properties. In particular, the remarkable device efficiency is strongly influenced by the perovskite crystallinity and the film morphology. Here, we investigate the perovskites crystallisation kinetics and growth mechanism in real time from liquid precursor continually to the final uniform film. We utilize some advanced in situ characterisation techniques including synchrotron-based grazing incident X-ray diffraction to observe crystal structure and chemical transition of perovskites. The nano-assemble model from perovskite intermediated [PbI6]4− cage nanoparticles to bulk polycrystals is proposed to understand perovskites formation at a molecular- or nano-level. A crystallisation-depletion mechanism is developed to elucidate the periodic crystallisation and the kinetically trapped morphology at a mesoscopic level. Based on these in situ dynamics studies, the whole process of the perovskites formation and transformation from the molecular to the microstructure over relevant temperature and time scales is successfully demonstrated. PMID:28635947

  7. In situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI 6] 4– cage nanoparticles

    DOE PAGES

    Hu, Qin; Zhao, Lichen; Wu, Jiang; ...

    2017-06-21

    Hybrid lead halide perovskites have emerged as high-performance photovoltaic materials with their extraordinary optoelectronic properties. In particular, the remarkable device efficiency is strongly influenced by the perovskite crystallinity and the film morphology. Here, we investigate the perovskites crystallisation kinetics and growth mechanism in real time from liquid precursor continually to the final uniform film. We utilize some advanced in situ characterisation techniques including synchrotron-based grazing incident X-ray diffraction to observe crystal structure and chemical transition of perovskites. The nano-assemble model from perovskite intermediated [PbI 6] 4– cage nanoparticles to bulk polycrystals is proposed to understand perovskites formation at a molecular-more » or nano-level. A crystallisation-depletion mechanism is developed to elucidate the periodic crystallisation and the kinetically trapped morphology at a mesoscopic level. Based on these in situ dynamics studies, the whole process of the perovskites formation and transformation from the molecular to the microstructure over relevant temperature and time scales is successfully demonstrated.« less

  8. Amphiphilic polymer based on fluoroalkyl and PEG side chains for fouling release coating

    NASA Astrophysics Data System (ADS)

    Cong, W. W.; Wang, K.; Yu, X. Y.; Zhang, H. Q.; Lv, Z.; Gui, T. J.

    2017-12-01

    Under static conditions, fouling release coating could not express good release property to marine organisms. Amphiphilic polymer with mixture of fluorinated monomer and short side group of polyethylene glycol (PEG) was synthesized. And also we studied the ability of amphiphilic polymer to influence the surface properties and how it controlled the adhesion of marine organisms to coated surfaces. By incorporating fluorinated monomer and PEG side chain into the polymer, the effect of incorporating both polar and non-polar groups on fouling-release coating could be studied. The dry surface was characterized by three-dimensional digital microscopy and scanning electron microscopy (SEM), and the morphology of the amphiphilic fouling release coating showed just like flaky petal. The amphiphilic polymer in fouling release coating tended to reconstruct in water, and the ability was examined by static contact angle, which was smaller than the PDMS (polydimethylsiloxane) fouling release coating. Also surface energy was calculated by three solvents, and surface energy of amphiphilic fouling release coating was higher than that of the PDMS fouling release coating. To understand more about its fouling release property, seawater exposure method was adopted in gulf of Qingdao port. Fewer diatoms Navicula were found in biofilm after using amphiphilic fouling release coating. In general, coating containing both PEG and fluorinated side chain possessed certain fouling release property.

  9. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.

    PubMed

    Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal

    2014-04-01

    This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal.

    PubMed

    Luo, Wenhai; Phan, Hop V; Xie, Ming; Hai, Faisal I; Price, William E; Elimelech, Menachem; Nghiem, Long D

    2017-02-01

    This study systematically compares the performance of osmotic membrane bioreactor - reverse osmosis (OMBR-RO) and conventional membrane bioreactor - reverse osmosis (MBR-RO) for advanced wastewater treatment and water reuse. Both systems achieved effective removal of bulk organic matter and nutrients, and almost complete removal of all 31 trace organic contaminants investigated. They both could produce high quality water suitable for recycling applications. During OMBR-RO operation, salinity build-up in the bioreactor reduced the water flux and negatively impacted the system biological treatment by altering biomass characteristics and microbial community structure. In addition, the elevated salinity also increased soluble microbial products and extracellular polymeric substances in the mixed liquor, which induced fouling of the forward osmosis (FO) membrane. Nevertheless, microbial analysis indicated that salinity stress resulted in the development of halotolerant bacteria, consequently sustaining biodegradation in the OMBR system. By contrast, biological performance was relatively stable throughout conventional MBR-RO operation. Compared to conventional MBR-RO, the FO process effectively prevented foulants from permeating into the draw solution, thereby significantly reducing fouling of the downstream RO membrane in OMBR-RO operation. Accumulation of organic matter, including humic- and protein-like substances, as well as inorganic salts in the MBR effluent resulted in severe RO membrane fouling in conventional MBR-RO operation. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. Performance of ceramic ultrafiltration membranes and fouling behavior of a dye-polysaccharide binary system.

    PubMed

    Zuriaga-Agustí, E; Alventosa-deLara, E; Barredo-Damas, S; Alcaina-Miranda, M I; Iborra-Clar, M I; Mendoza-Roca, J A

    2014-05-01

    Ultrafiltration membrane processes have become an established technology in the treatment and reuse of secondary effluents. Nevertheless, membrane fouling arises as a major obstacle in the efficient operation of these systems. In the current study, the performance of tubular ultrafiltration ceramic membranes was evaluated according to the roles exerted by membrane pore size, transmembrane pressure and feed concentration on a binary foulant system simulating textile wastewater. For that purpose, carboxymethyl cellulose sodium salt (CMC) and an azo dye were used as colloidal and organic foulants, respectively. Results showed that a larger pore size enabled more solutes to get adsorbed into the pores, producing a sharp permeate flux decline attributed to the rapid pore blockage. Besides, an increase in CMC concentration enhanced severe fouling in the case of the tighter membrane. Concerning separation efficiency, organic matter was almost completely removed with removal efficiency above 98.5%. Regarding the dye, 93% of rejection was achieved. Comparable removal efficiencies were attributed to the dynamic membrane formed by the cake layer, which governed process performance in terms of rejection and selectivity. As a result, none of the evaluated parameters showed significant influence on separation efficiency, supporting the significant role of cake layer on filtration process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Characterisation of a garnet population from the Sikkim Himalaya: implications for the mechanisms and rates of porphyroblast crystallisation

    NASA Astrophysics Data System (ADS)

    George, Freya; Gaidies, Fred

    2016-04-01

    Analysis of porphyroblast distribution in metamorphic rocks yields insight into the processes controlling metamorphic reaction rates. By coupling this textural record with microprobe analysis and phase-equilibria and diffusion modelling, a detailed view of the nucleation and growth history of metamorphic minerals can be obtained. In this study, we comprehensively characterise the 3D distribution and compositional variation of a garnet population in a garnet-grade pelitic schist of the Lesser Himalayan Sequence (Sikkim), in order to investigate both the rates and kinetic controls of porphyroblastic crystallisation. Quantification of the size, shape and spatial distribution of garnet using high-resolution μ-computed X-ray tomography and statistical analysis reveals a log-normal crystal size distribution, systematic variation of aspect ratio with crystal size, and a significantly clustered garnet texture in the study sample. The latter is indicative of interface-controlled nucleation and growth, with nucleation sites controlled principally by a heterogeneous precursor assemblage. At length-scales less than 0.7 mm, there is evidence for adjacent grains that are on average smaller than the mean size of the population; this minor ordering is attributed to secondary redistribution of porphyroblast centers and reduction of crystal sizes due to syn-kinematic growth and resorption, respectively. Geochemical traverses through centrally sectioned garnet crystals of variable size highlight several features: (1) core compositions of even the smallest crystals preserve primary prograde growth zonation, with little evidence for diffusional modification in any crystal size; (2) rim compositions are within error between grains, suggestive of sample-scale equilibration of the growth medium at the time of cessation of crystallisation; (3) different grains of equal radii display equivalent compositional zoning; and (4) gradients of compositional profiles display a steepening trend in

  13. Membrane filtration device for studying compression of fouling layers in membrane bioreactors

    PubMed Central

    Bugge, Thomas Vistisen; Larsen, Poul; Nielsen, Per Halkjær; Christensen, Morten Lykkegaard

    2017-01-01

    A filtration devise was developed to assess compressibility of fouling layers in membrane bioreactors. The system consists of a flat sheet membrane with air scouring operated at constant transmembrane pressure to assess the influence of pressure on resistance of fouling layers. By fitting a mathematical model, three model parameters were obtained; a back transport parameter describing the kinetics of fouling layer formation, a specific fouling layer resistance, and a compressibility parameter. This stands out from other on-site filterability tests as model parameters to simulate filtration performance are obtained together with a characterization of compressibility. Tests on membrane bioreactor sludge showed high reproducibility. The methodology’s ability to assess compressibility was tested by filtrations of sludges from membrane bioreactors and conventional activated sludge wastewater treatment plants from three different sites. These proved that membrane bioreactor sludge showed higher compressibility than conventional activated sludge. In addition, detailed information on the underlying mechanisms of the difference in fouling propensity were obtained, as conventional activated sludge showed slower fouling formation, lower specific resistance and lower compressibility of fouling layers, which is explained by a higher degree of flocculation. PMID:28749990

  14. The influence of solution environment on the nucleation kinetics and crystallisability of para-aminobenzoic acid.

    PubMed

    Turner, T D; Corzo, D M C; Toroz, D; Curtis, A; Dos Santos, M M; Hammond, R B; Lai, X; Roberts, K J

    2016-10-05

    The influence of solvent type on the solution thermodynamics, nucleation-kinetics and crystal growth of alpha para-aminobenzoic acid (PABA) crystallising from supersaturated ethanol, acetonitrile and water solutions, is examined using poly-thermal analysis of the metastable zone width. Application of a recently proposed model for analysis of crystallisation kinetics (J. Cryst. Growth, 2010, 312, 698-704) indicates a solvent and concentration dependence of the nucleation mechanism and key nucleation parameters for the alpha form of PABA. The mechanism of nucleation is found to change from instantaneous to progressive with decreasing concentration and also when changing the solvent from ethanol to acetonitrile to water. The dependence of the nucleation mechanism is correlated to the kinetic component of the nucleation rate through calculated values of instantaneously nucleated crystallites, which increase from 1.40 × 10 9 m -3 in ethanol to 1.08 × 10 10 m -3 in acetonitrile to 2.58 × 10 10 m -3 in water. This in combination with low calculated number concentrations of interfacial tension between 1.13 and 2.71 mJ m -2 , supports the conclusion that the kinetic component of the nucleation rate is more limiting when crystallising PABA from ethanol solutions in comparison to water solutions. This finding is further supported by molecular dynamics simulations of the solvation free energy of PABA, which is found to be greatest in water, -42.4 kJ mol -1 and lowest in ethanol, -58.5 kJ mol -1 .

  15. A survey of gas-side fouling measuring devices

    NASA Technical Reports Server (NTRS)

    Marner, W. J.; Henslee, S. P.

    1984-01-01

    A survey of measuring devices or probes, which were used to investigate gas side fouling, was carried out. Five different types of measuring devices are identified and discussed including: heat flux meters, mass accumulation probes, optical devices, deposition probes, and acid condensation probes. A total of 32 different probes are described in detail and summarized in matrix or tabular form. The important considerations of combustion gas characterization and deposit analysis are also given a significant amount of attention. The results show that considerable work was done in the development of gas side fouling probes. However, it is clear that the design, construction, and testing of a durable, versatile probe - capable of monitoring on-line fouling resistances - remains a formidable task.

  16. Temporal and spatial variation in the fouling of silicone coatings in Pearl Harbor, Hawaii.

    PubMed

    Holm, E R; Nedved, B T; Phillips, N; Deangelis, K L; Hadfield, M G; Smith, C M

    2000-01-01

    An antifouling or foul-release coating cannot be globally effective if it does not perform well in a range of environmental conditions, against a diversity of fouling organisms. From 1996 to 1998, the field test sites participating in the United States Navy's Office of Naval Research 6.2 Biofouling program examined global variation in the performance of 3 silicone foul-release coatings, viz. GE RTV11, Dow Corning RTV 3140, and Intersleek (International Coatings Ltd), together with a control anticorrosive coating (Ameron Protective Coatings F-150 series). At the University of Hawaii's test site in Pearl Harbor, significant differences were observed among the coatings in the rate of accumulation of fouling. The control coating failed rapidly; after 180-220 d immersion a community dominated by molluscs and sponges developed that persisted for the remainder of the experiment. Fouling of the GE and Dow Corning silicone coatings was slower, but eventually reached a similar community structure and coverage as the control coatings. The Intersleek coating remained lightly fouled throughout the experiment. Spatial variation in the structure of the community fouling the coatings was observed, but not in the extent of fouling. The rate of accumulation of fouling reflected differences among the coatings in adhesion of the tubeworm Hydroides elegans. The surface properties of these coatings may have affected the rate of fouling and the structure of the fouling community through their influence on larval settlement and subsequent interactions with other residents, predators, and the physical environment.

  17. Heat transfer fouling characteristics of microfiltered thin stillage from the dry grind process.

    PubMed

    Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Singh, Vijay; Tumbleson, M E; Rausch, Kent D

    2010-08-01

    We investigated effects of microfiltration (MF) on heat transfer fouling tendencies of thin stillage. A stainless steel MF membrane (0.1 micron pore size) was used to remove solids from thin stillage. At filtration conditions of 690kPa, the MF process effectively recovered total solids from thin stillage. Thin stillage was concentrated from 7.0% to 22.4% solids with average permeate flux rates of 180+/-30 L/m(2)/h at 75 degrees C. In retentate streams, protein and fat contents were increased from 23.5 and 16.7% db to 27.6 and 31.1% db, respectively, and ash content was reduced from 10.5% to 3.8% db. Removal of solids, protein and fat generated a microfiltration permeate (MFP) that was used as an input stream to the fouling probe system; MFP fouling tendencies were measured. An annular fouling probe was used to measure fouling tendencies of thin stillage from a commercial dry grind facility. When comparing diluted thin stillage (DTS) stream and MFP, a reduction in solids concentration was not the only reason of fouling decrement. Selective removal of protein and fat played an important role in mitigating the fouling. At t=10h, mean fouling rates of MFP were an order of magnitude lower when compared to thin stillage and diluted streams. When maximum probe temperature (200 degrees C) was reached, mean fouling rates for thin stillage, DTS and MFP were 7.1x10(-4), 4.2x10(-4) and 2.6x10(-4) m(2) degrees C/kW/min, respectively. In DTS and MFP, the induction period was prolonged by factors of 4.3 and 9.5, respectively, compared to the induction period for thin stillage fouling. Mean fouling rates were decreased by factors of 2.3 and 23.4 for DTS and MFP, respectively. Fouling of MFP took twice the time to reach a probe temperature of 200 degrees C than did thin stillage (22 h vs 10 h, respectively). A reduction in heat transfer fouling could be achieved by altering process stream composition using microfiltration. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Crystallisation sequence and magma evolution of the De Beers dyke (Kimberley, South Africa)

    NASA Astrophysics Data System (ADS)

    Soltys, Ashton; Giuliani, Andrea; Phillips, David

    2018-06-01

    We present petrographic and mineral chemical data for a suite of samples derived from the De Beers dyke, a contemporaneous, composite intrusion bordering the De Beers pipe (Kimberley, South Africa). Petrographic features and mineral compositions indicate the following stages in the evolution of this dyke: (1) production of antecrystic material by kimberlite-related metasomatism in the mantle (i.e., high Cr-Ti phlogopite); (2) entrainment of wall-rock material during ascent through the lithospheric mantle, including antecrysts; (3) early magmatic crystallisation of olivine (internal zones and subsequently rims), Cr-rich spinel, rutile, and magnesian ilmenite, probably on ascent to the surface; and (4) crystallisation of groundmass phases (i.e., olivine rinds, Fe-Ti-rich spinels, perovskite, apatite, monticellite, calcite micro-phenocrysts, kinoshitalite-phlogopite, barite, and baddeleyite) and the mesostasis (calcite, dolomite, and serpentine) on emplacement in the upper crust. Groundmass and mesostasis crystallisation likely forms a continuous sequence with deuteric/hydrothermal modification. The petrographic features, mineralogy, and mineral compositions of different units within the De Beers dyke are indistinguishable from one another, indicating a common petrogenesis. The compositions of antecrysts (i.e., high Cr-Ti phlogopite) and magmatic phases (e.g., olivine rims, magnesian ilmenite, and spinel) overlap those from the root zone intrusions of the main Kimberley pipes (i.e., Wesselton, De Beers, Bultfontein). However, the composition of these magmatic phases is distinct from those in `evolved' intrusions of the Kimberley cluster (e.g., Benfontein, Wesselton water tunnel sills). Although the effects of syn-emplacement flow processes are evident (e.g., alignment of phases parallel to contacts), there is no evidence that the De Beers dyke has undergone significant pre-emplacement crystal fractionation (e.g., olivine, spinel, ilmenite). This study demonstrates the

  19. Effect of NTP Pretreatment on Thermal Resistance and Fouling Components of Oilfield Wastewater

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Li, Wenli; Zou, Longsheng; Fu, Honghun

    2018-01-01

    In order to prevent scaling in the process of oilfield wastewater evaporation, low temperature plasma is used for pretreatment of heavy oil wastewater. It reacts with the ions and radicals produced by the low-temperature plasma and then is send into the evaporator. The changes of various indexes of the distilled water and the distribution of fouling in the evaporation process of heavy oil wastewater after plasma pretreatment were studied. The results showed that the content and hardness of silica in wastewater were decreased after plasma pretreatment, which was more suitable for evaporation treatment. At the same time, the content of salt and oil in distilled water is reduced, and the quality is improved. In addition, when the steam concentration was 30∼40 times, the suspended solids in the concentrated solution of the wastewater increased significantly after the plasma treatment. Correspondingly, the fouling at the bottom of evaporator is greatly reduced. Comparing the various indexes of distilled water and the feed water index of gas injection boiler, it can be seen that the excessive oil content in distilled water is the biggest obstacle to the recovery of distilled water to boiler feed water. Low temperature plasma pretreatment can provide a quick and new way to solve the scaling problems and water quality problems in the recovery of distilled water from a large number of heavy oil wastewater.

  20. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling

    PubMed Central

    Sun, Wen; Liu, Junxia; Chu, Huaqiang; Dong, Bingzhi

    2013-01-01

    The application of low pressure membranes (microfiltration/ultrafiltration) has undergone accelerated development for drinking water production. However, the major obstacle encountered in its popularization is membrane fouling caused by natural organic matter (NOM). This paper firstly summarizes the two factors causing the organic membrane fouling, including molecular weight (MW) and hydrophilicity/hydrophobicity of NOM, and then presents a brief introduction of the methods which can prevent membrane fouling such as pretreatment of the feed water (e.g., coagulation, adsorption, and pre-oxidation) and membrane hydrophilic modification (e.g., plasma modification, irradiation grafting modification, surface coating modification, blend modification, etc.). Perspectives of further research are also discussed. PMID:24956947

  1. Flux Recovery of a Forward Osmosis Membrane After a Fouling Process

    NASA Technical Reports Server (NTRS)

    Gamboa-Vázquez, Sonia; Flynn, Michael; Romero Mangado, Jaione; Parodi, Jurek

    2016-01-01

    Wastewater treatment through Forward Osmosis (FO) membranes is a process that has been evaluated in the past years as an innovative technology for the Next Generation Life Support Systems. FO technologies are cost effective, and require very low energy consumption, but are subject to membrane fouling. Membrane fouling occurs when unwanted materials accumulate on the active side of the membrane during the wastewater treatment process, which leads to a decrease in membrane flow rates. Membrane fouling can be reversed with the use of antifoulant solutions. The aim of this study is to identify the materials that cause flow rate reduction due to membrane fouling, as well as to evaluate the flux recovery after membrane treatment using commercially available antifoulants. 3D Laser Scanning Microscope images were taken to observe the surface of the membrane. Fourier Transform Infrared (FTIR) spectrometry results identified possible compounds that cause membrane fouling and FO testing results demonstrated flow rate recovery after membrane treatment using antifoulants.

  2. Novel Fouling-Reducing Coatings for Ultrafiltration, Nanofiltration, and Reverse Osmosis Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benny Freeman

    2008-08-31

    Polymeric membranes could potentially be the most flexible and viable long-term strategy for treatment of produced water from oil and gas production. However, widespread use of membranes, including reverse osmosis (RO) membranes, for produced water purification is hindered due to fouling caused by the impurities present in the water. Fouling of RO membranes is likely caused by surface properties including roughness, hydrophilicity, and charge, so surface modification is the most widely considered approach to improve the fouling properties of current RO membranes. This project focuses on two main approaches to surface modification: coating and grafting. Hydrophilic coating and grafting materialsmore » based on poly(ethylene glycol) (PEG) are applied to commercial RO membranes manufactured by Dow FilmTec and GE. Crossflow filtration experiments are used to determine the fouling resistance of modified membranes, and compare their performance to that of unmodified commercial RO membranes. Grafting and coating are shown to be two alternative methods of producing modified membranes with improved fouling resistance.« less

  3. Iodine-infused aeration for hull fouling prevention: a vessel-scale study.

    PubMed

    Dickenson, Natasha C; Krumholz, Jason S; Hunsucker, Kelli Z; Radicone, Michael

    2017-11-01

    Biofouling is a significant economic and ecological problem, causing reduced vessel performance and increases in fuel consumption and emissions. Previous research has shown iodine vapor (I 2 )-infused aeration to be an environmentally friendly method for deterring the settlement of fouling organisms. An aeration system was deployed on a vessel with hull sections coated with two types of antifoulant coatings, Intersleek ® 1100 (fouling-release) and Interspeed ® BRA-640 (ablative copper biocide), as well as an inert epoxy barrier coating, to assess the effectiveness of aeration in conjunction with common marine coatings. I 2 -infused aeration resulted in consistent reductions of 80-90% in hard fouling across all three coatings. Additionally, aeration reduced the soft fouling rate by 45-70% when used in conjunction with both Intersleek ® and Interspeed ® BRA versus those coatings alone. The results of this study highlight the contribution of I 2 -infused aeration as a standalone mechanism for fouling prevention or as a complement to traditional antifouling coatings.

  4. A zwitterionic macro-crosslinker for durable non-fouling coatings.

    PubMed

    Wang, Wei; Lu, Yang; Xie, Jinbing; Zhu, Hui; Cao, Zhiqiang

    2016-03-28

    A novel zwitterionic macro-crosslinker was developed and applied to fabricate durable non-fouling coatings on a polyurethane substrate. The zwitterionic macro-crosslinker coating exhibited superior durability over the traditional brush polymer coating and was able to retain its non-fouling property even after weeks of shearing in flowing liquid.

  5. Hydrophilic, bactericidal nanoheater-enabled reverse osmosis membranes to improve fouling resistance.

    PubMed

    Ray, Jessica R; Tadepalli, Sirimuvva; Nergiz, Saide Z; Liu, Keng-Ku; You, Le; Tang, Yinjie; Singamaneni, Srikanth; Jun, Young-Shin

    2015-06-03

    Polyamide (PA) semipermeable membranes typically used for reverse osmosis water treatment processes are prone to fouling, which reduces the amount and quality of water produced. By synergistically coupling the photothermal and bactericidal properties of graphene oxide (GO) nanosheets, gold nanostars (AuNS), and hydrophilic polyethylene glycol (PEG) on PA reverse osmosis membrane surfaces, we have dramatically improved fouling resistance of these membranes. Batch fouling experiments from three classes of fouling are presented: mineral scaling (CaCO3 and CaSO4), organic fouling (humic acid), and biofouling (Escherichia coli). Systematic analyses and a variety of complementary techniques were used to elucidate fouling resistance mechanisms from each layer of modification on the membrane surface. Both mineral scaling and organic fouling were significantly reduced in PA-GO-AuNS-PEG membranes compared to other membranes. The PA-GO-AuNS-PEG membrane was also effective in killing all near-surface bacteria compared to PA membranes. In the PA-GO-AuNS-PEG membrane, the GO nanosheets act as templates for in situ AuNS growth, which then facilitated localized heating upon irradiation by an 808 nm laser inactivating bacteria on the membrane surface. Furthermore, AuNS in the membrane assisted PEG in preventing mineral scaling on the membrane surface. In flow-through flux and foulant rejection tests, PA-GO-AuNS-PEG membranes performed better than PA membranes in the presence of CaSO4 and humic acid model foulants. Therefore, the newly suggested membrane surface modifications will not only reduce fouling from RO feeds, but can improve overall membrane performance. Our innovative membrane design reported in this study can significantly extend the lifetime and water treatment efficacy of reverse osmosis membranes to alleviate escalating global water shortage from rising energy demands.

  6. New insights into membrane fouling in submerged MBR under sub-critical flux condition.

    PubMed

    Li, Jianfeng; Zhang, Xiuxiu; Cheng, Fangqin; Liu, Yu

    2013-06-01

    This study investigated the membrane fouling in MBRs under sub-critical flux condition. Results showed membrane fouling at subcritical flux evolved through a three-stage process: a slow linear increase in transmembrane pressure (TMP) (stage I), followed by an exponential increase in TMP (stage II), and finally a rapid linear TMP rise was observed at stage III. It was found that bound EPS would play a significant role in fouling development at stage I, while SMPs appeared to be the major contributor to self-accelerating fouling phenomena observed at stage II. At stage III, the entire membrane was covered by a cake layer of flocs, as the result, the fouling rate was likely determined by floc characteristics. This study offers new insights into the fouling development under sub-critical flux condition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Anti-fouling properties of Fab' fragments immobilized on silane-based adlayers

    NASA Astrophysics Data System (ADS)

    Crivianu-Gaita, Victor; Romaschin, Alexander; Thompson, Michael

    2015-12-01

    Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a difficult task. The last decade has seen an increase in the use of immobilized antigen-binding antibody fragments (Fab') in biosensors. One Fab' linker compound S-(11-trichlorosilyl-undecanyl)-benzothiosulfonate (TUBTS) and three spacers were used to create the silane-based adlayers. The ultra-high frequency electromagnetic piezoelectric acoustic sensor (EMPAS) was used to gauge the fouling properties of the various surfaces using bovine serum albumin (BSA), goat IgG, and mouse serum. X-ray photoelectron spectroscopy (XPS), contact angle, and atomic force microscopy (AFM) were employed to characterize the surfaces. It was discovered that immobilized oriented Fab' fragments reduced the fouling levels of surfaces up to 80% compared to the surfaces without fragments. An explanation for this phenomenon is that the antibody fragments increase the hydration of the surfaces and aid in the formation of an anti-fouling water barrier. The anti-fouling effect of the Fab' fragments is at its maximum when there is an even distribution of fragments across the surfaces. Finally, using Fab'-covered surfaces, a cancer biomarker was detected from serum, showing the applicability of this work to the field of biodetection.

  8. Static adsorptive fouling of extracellular polymeric substances with different membrane materials.

    PubMed

    Su, Xinying; Tian, Yu; Zuo, Wei; Zhang, Jun; Li, Hui; Pan, Xiaoyue

    2014-03-01

    Adsorptive fouling of microbial extracellular polymeric substances (EPS) greatly influences the fouling behavior and membrane characteristics in a membrane bioreactor (MBR). In this study, adsorptive fouling of the EPS on different membrane materials was compared and adsorptive mechanism between membranes and EPS was investigated by thermodynamic analysis. The results suggested that both the absolute and relative changes of hydraulic resistances should be considered to evaluate fouling of membranes with different materials, and Sips isotherm was the most suitable model to describe the EPS carbohydrate and protein adsorptions on membranes. Thermodynamic analysis showed that both EPS carbohydrate and protein adsorptions were spontaneous (ΔrG(θ) < 0), endothermic (ΔrH(θ) > 0), and entropy driven (ΔrS(θ) > 0). Decreasing ΔrG(θ) values with temperature suggested that EPS adsorptive fouling can be limited by reducing temperature. In addition, physisorption processes and hydrogen bonding interactions between EPS and membranes might play a relatively major role in the adsorption mechanism of EPS on the membrane surface. Atomic force microscopy (AFM) and contact angle analysis confirmed that the adsorptive fouling modified the membrane surface, making the membrane surface more heterogeneous and more hydrophobic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production.

    PubMed

    Jermann, D; Pronk, W; Meylan, S; Boller, M

    2007-04-01

    Ultrafiltration is an emerging technology for drinking water production, but a main challenge remains the lack of understanding about fouling. This paper investigates the impact of molecular interactions between different natural organic matter (NOM) compounds on ultrafiltration fouling mechanisms. We performed dead-end filtration experiments with individual and mixed humic acid and alginate (polysaccharide). Alginate showed detrimental, but mostly reversible, flux decline and high solute retention. Our results indicate that this was caused by pore blocking transformed into cake building and weak molecular foulant-membrane and foulant-foulant interactions. In the presence of calcium, aggravated fouling was observed, related to complexation of alginate and its subsequently induced gel formation. With humic acid, more severe irreversible fouling occurred due to humic acid adsorption. Minor adsorption of alginate onto the membrane was also observed, which probably caused the substantial irreversible flux decline. The fouling characteristics in the mixtures reflected a combination of the individual humic acid and alginate experiments and we conclude, that the individual fouling mechanisms mutually influence each other. A model elucidates this interplay of the individual fouling mechanisms via hydrophobic and electrostatic interactions. In our study such an interplay resulted in an alginate cake, or gel in the presence of calcium, which is relatively irreversibly adsorbed onto the membrane by humic acid associations. This study shows the importance of mutual influences between various foulants for improved understanding of fouling phenomena. Furthermore it shows that substances with a minor individual influence might have a large impact in mixed systems such as natural water.

  10. Fouling of evaporators in maize processing developing a fundamental understanding

    USDA-ARS?s Scientific Manuscript database

    Evaporator fouling is a common, chronic problem during maize starch and ethanol production. To compensate for the consequences of fouling, capital costs are increased, operating costs are incurred, productivity is reduced and environmental impact is increased. Despite these issues, fundamental cause...

  11. FOULING OF FINE PORE DIFFUSED AERATORS: AN INTER- PLANT COMPARISON

    EPA Science Inventory

    There has been increasing interest in fine pore aeration systems, along with concerned about diffuser fouling and the subsequent loss of aeration efficiency. The objective of this study was to assess the relative fouling tendency of fine bubble diffusers t nine activated sludge ...

  12. Characteristics of heat transfer fouling of thin stillage using model thin stillage and evaporator concentrates

    NASA Astrophysics Data System (ADS)

    Challa, Ravi Kumar

    The US fuel ethanol demand was 50.3 billion liters (13.3 billion gallons) in 2012. Corn ethanol was produced primarily by dry grind process. Heat transfer equipment fouling occurs during corn ethanol production and increases the operating expenses of ethanol plants. Following ethanol distillation, unfermentables are centrifuged to separate solids as wet grains and liquid fraction as thin stillage. Evaporator fouling occurs during thin stillage concentration to syrup and decreases evaporator performance. Evaporators need to be shutdown to clean the deposits from the evaporator surfaces. Scheduled and unscheduled evaporator shutdowns decrease process throughput and results in production losses. This research were aimed at investigating thin stillage fouling characteristics using an annular probe at conditions similar to an evaporator in a corn ethanol production plant. Fouling characteristics of commercial thin stillage and model thin stillage were studied as a function of bulk fluid temperature and heat transfer surface temperature. Experiments were conducted by circulating thin stillage or carbohydrate mixtures in a loop through the test section which consisted of an annular fouling probe while maintaining a constant heat flux by electrical heating and fluid flow rate. The change in fouling resistance with time was measured. Fouling curves obtained for thin stillage and concentrated thin stillage were linear with time but no induction periods were observed. Fouling rates for concentrated thin stillage were higher compared to commercial thin stillage due to the increase in solid concentration. Fouling rates for oil skimmed and unskimmed concentrated thin stillage were similar but lower than concentrated thin stillage at 10% solids concentration. Addition of post fermentation corn oil to commercial thin stillage at 0.5% increments increased the fouling rates up to 1% concentration but decreased at 1.5%. As thin stillage is composed of carbohydrates, protein, lipid

  13. The Influence of Unsportsmanlike Fouls on Basketball Teams' Performance According to Context-Related Variables.

    PubMed

    Gómez, Miguel-Ángel; Ortega Toro, Enrique; Furley, Philip

    2016-07-01

    The aim of the current study was to analyze the temporal effects that unsportsmanlike fouls may have on basketball teams' scoring performance under consideration of context-related variables. The authors analyzed 130 unsportsmanlike fouls from 362 elite basketball games (men's and women's Olympic Games, European and World Championships). The context-related variables studied were score-line, quality of opposition, timeout situation, minutes remaining, and player status. The data were analyzed with linear-regression models. The results showed that both teams (the team that made the foul and the opponent) had similar positive scoring performances during 1 and 3 ball possessions after the unsportsmanlike foul (short-term effect). However, 5 ball possessions after the foul (midterm effect), the team that made the foul had a scoring disadvantage (-0.96) and the opponent team an advantage (0.78). The context-related variable quality of opposition was significant only during 1 ball possession, with negative effects for the team that made the foul and positive effects for the opponent. The final outcome showed a positive effect for score-line when the unsportsmanlike foul was made (0.96) and for quality of opposition (0.64).

  14. Characteristics of membrane fouling in submerged membrane bioreactor under sub-critical flux operation.

    PubMed

    Su, Y C; Huang, C P; Pan, Jill R; Lee, H C

    2008-01-01

    Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.

  15. Application of electrochemical processes to membrane bioreactors for improving nutrient removal and fouling control.

    PubMed

    Borea, Laura; Naddeo, Vincenzo; Belgiorno, Vincenzo

    2017-01-01

    Membrane bioreactor (MBR) technology is becoming increasingly popular as wastewater treatment due to the unique advantages it offers. However, membrane fouling is being given a great deal of attention so as to improve the performance of this type of technology. Recent studies have proven that the application of electrochemical processes to MBR represents a promising technological approach for membrane fouling control. In this work, two intermittent voltage gradients of 1 and 3 V/cm were applied between two cylindrical perforated electrodes, immersed around a membrane module, at laboratory scale with the aim of investigating the treatment performance and membrane fouling formation. For comparison purposes, the reactor also operated as a conventional MBR. Mechanisms of nutrient removal were studied and membrane fouling formation evaluated in terms of transmembrane pressure variation over time and sludge relative hydrophobicity. Furthermore, the impact of electrochemical processes on transparent exopolymeric particles (TEP), proposed as a new membrane fouling precursor, was investigated in addition to conventional fouling precursors such as bound extracellular polymeric substances (bEPS) and soluble microbial products (SMP). All the results indicate that the integration of electrochemical processes into a MBR has the advantage of improving the treatment performance especially in terms of nutrient removal, with an enhancement of orthophosphate (PO 4 -P) and ammonia nitrogen (NH 4 -N) removal efficiencies up to 96.06 and 69.34 %, respectively. A reduction of membrane fouling was also observed with an increase of floc hydrophobicity to 71.72 %, a decrease of membrane fouling precursor concentrations, and, thus, of membrane fouling rates up to 54.33 %. The relationship found between TEP concentration and membrane fouling rate after the application of electrochemical processes confirms the applicability of this parameter as a new membrane fouling indicator.

  16. Differential natural organic matter fouling of ceramic versus polymeric ultrafiltration membranes.

    PubMed

    Lee, Seung-Jin; Kim, Jae-Hong

    2014-01-01

    Ceramic ultrafiltration membranes has drawn increasing attention in drinking water treatment sectors as an alternative to traditional polymeric counterparts, yet only limited information has been made available about the characteristics of ceramic membrane fouling by natural organic matter. The effects of solution chemistry including ionic strength, divalent ion concentration and pH on the flux behavior were comparatively evaluated for ceramic and polymeric ultrafiltration of synthetic water containing model natural organic matter. Filtration characteristics were further probed via resistance-in-series model analysis, fouling visualization using quantum dots, batch adsorption test, contact angle measurement, solute-membrane surface adhesion force measurement, and quantitative comparison of fouling characteristics between ceramic and polymeric membranes. The results collectively suggested that the effects of solution chemistry on fouling behavior of ceramic membranes were generally similar to polymeric counterparts in terms of trends, while the extent varied significantly depending on water quality parameters. Lower fouling tendency and enhanced cleaning efficiency were observed with the ceramic membrane, further promoting the potential for ceramic membrane application to surface water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Effect of surface fouling on the output of PV panels

    NASA Astrophysics Data System (ADS)

    Zhang, Zele

    2018-04-01

    Surface fouling on the photovoltaic system caused by the output of a certain impact, therefore, it is very important to explore the effect of fouling on its contribution. Through the use of photovoltaic panels to collect Baoding area under different weather output data, and the collected data for comparative analysis, obtained under different environments on the impact of its contribution. It is concluded that the output of the photovoltaic cells will decrease, and the power drop rate will stabilize after three or four days. The effect of fouling on the fog haze and low temperature is more obvious.

  18. The New Performance Calculation Method of Fouled Axial Flow Compressor

    PubMed Central

    Xu, Hong

    2014-01-01

    Fouling is the most important performance degradation factor, so it is necessary to accurately predict the effect of fouling on engine performance. In the previous research, it is very difficult to accurately model the fouled axial flow compressor. This paper develops a new performance calculation method of fouled multistage axial flow compressor based on experiment result and operating data. For multistage compressor, the whole compressor is decomposed into two sections. The first section includes the first 50% stages which reflect the fouling level, and the second section includes the last 50% stages which are viewed as the clean stage because of less deposits. In this model, the performance of the first section is obtained by combining scaling law method and linear progression model with traditional stage stacking method; simultaneously ambient conditions and engine configurations are considered. On the other hand, the performance of the second section is calculated by averaged infinitesimal stage method which is based on Reynolds' law of similarity. Finally, the model is successfully applied to predict the 8-stage axial flow compressor and 16-stage LM2500-30 compressor. The change of thermodynamic parameters such as pressure ratio, efficiency with the operating time, and stage number is analyzed in detail. PMID:25197717

  19. Flux Recovery of a Forward Osmosis Membrane After a Fouling Process

    NASA Technical Reports Server (NTRS)

    Romero-Mangado, Jaione; Parodi, Jurek; Gamboa-Vazquez, Sonia; Stefanson, Ofir; Diaz-Cartagena, Diana C.; Flynn, Michael

    2016-01-01

    Wastewater treatment through forward osmosis (FO) membranes is a process that has been evaluated in the past years as an innovative technology for the Next Generation Life Support Systems. FO technologies are cost effective, and require very low energy consumption, but are subject to membrane fouling. Membrane fouling occurs when unwanted materials accumulate on the active side of the membrane during the wastewater treatment process, which leads to a decrease in membrane flux rate. The aim of this study is to identify the materials that cause flux rate reduction due to membrane fouling, as well as to evaluate the flux rate recovery after membrane treatment using commercially available antifoulants. Fourier Transform Infrared (FTIR) spectrometry results identified possible compounds that cause membrane fouling and FO testing results demonstrated flux rate recovery after membrane treatment using antifoulants.

  20. Force of crystallisation-development during CaO hydration: theory vs. experiment and the role of fluid transport

    NASA Astrophysics Data System (ADS)

    Wolterbeek, Tim; van Noort, Reinier; Spiers, Chris

    2017-04-01

    When chemical reactions that involve an increase in solid volume proceed in a confined space, this may under certain conditions lead to the development of a so-called force of crystallisation (FoC). In other words, reaction can result in stress being exerted on the confining boundaries of the system. In principle, any thermodynamic driving force that is able to produce a supersaturation with respect to a solid product can generate a FoC, as long as precipitation can occur under confined conditions, i.e. within load-bearing grain contacts. Well-known examples of such reactions include salt damage, where supersaturation is caused by evaporation and surface curvature effects, and a wide range of mineral reactions where the solid products comprise a larger volume than the solid reactants. Frost heave, where crystallisation is driven by fluid under-cooling, i.e. temperature change, is a similar process. In a geological context, FoC-development is widely considered to play an important role in pseudomorphic replacement, vein formation, and reaction-driven fracturing. Chemical reactions capable of producing a FoC such as the hydration of CaO (lime), which is thermodynamically capable of producing stresses in the GPa range, also offer obvious engineering potential. Despite this, relatively few studies have been conducted where the magnitude of the FoC is determined directly. Indeed, the maximum stress obtainable by CaO hydration has not been validated or determined experimentally. Here we report uni-axial compaction/expansion experiments performed in an oedometer-type apparatus on pre-compacted CaO powder, at 65 °C and at atmospheric pore fluid pressure. Using this set-up, the FoC generated during CaO hydration could be measured directly. Our results show FoC-induced stresses reaching up to 153 MPa, with the hydration reaction stopping or slowing down significantly before completion. Failure to achieve the GPa stresses predicted by thermodynamic theory is attributed to

  1. LA-ICP-MS trace element mapping: insights into the crystallisation history of a metamorphic garnet population

    NASA Astrophysics Data System (ADS)

    George, Freya; Gaidies, Fred

    2017-04-01

    In comparison to our understanding of major element zoning, relatively little is known about the incorporation of trace elements into metamorphic garnet. Given their extremely slow diffusivities and sensitivity to changing mineral assemblages, the analysis of the distribution of trace elements in garnet has the potential to yield a wealth of information pertaining to interfacial attachment mechanisms during garnet crystallisation, the mobility of trace elements in both garnet and the matrix, and trace element geochronology. Due to advances in the spatial resolution and analytical precision of modern microbeam techniques, small-scale trace element variations can increasingly be documented and used to inform models of metamorphic crystallisation. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in particular, can be used to rapidly quantify a wide range of elemental masses as a series of laser rasters, producing large volumes of spatially constrained trace element data. In this study, we present LA-ICP-MS maps of trace element concentrations from numerous centrally-sectioned garnets representative of the crystal size-distribution of a single sample's population. The study sample originates from the garnet-grade Barrovian zone of the Lesser Himalayan Sequence in Sikkim, northeast India, and has been shown to have crystallised garnet within a single assemblage between 515 ˚C and 565˚C, with no evidence for accessory phase reaction over the duration of garnet growth. Previous models have indicated that the duration of garnet crystallisation was extremely rapid (<1 Myr), with negligible diffusional homogenisation of major divalent cations. Consequently, the trace element record likely documents the primary zonation generated during garnet growth. In spite of straightforward (i.e. concentrically-zoned) major element garnet zonation, trace elements maps are characterised by significant complexity and variability. Y and the heavy rare earth elements

  2. Model of radiation transmittance by inorganic fouling on UV reactor lamp sleeves.

    PubMed

    Wait, Isaac W; Blatchley, Ernest R

    2010-11-01

    The efficacy of UV disinfection of water depends on the ability of radiation to pass from UV lamps through the quartz sleeves that encase them; the accumulation of metal-containing foulants on sleeve surfaces inhibits disinfection by absorbing radiation that would otherwise be available for inactivation. In a series of experiments, the composition and quantity of sleeve foulants were studied relative to water chemistry and sleeve transmittance. Findings indicate that iron and calcium dominate fouling, with elevated fouling activity by iron, aluminum, manganese, and zinc. A regression-based modeling approach was used to characterize and quantify the effects of foulant metals on UV absorbance. The molar extinction coefficient for iron was found to be more than 3 times greater than that of calcium. Iron's relatively high activity in fouling reactions, elevated capacity to absorb UV, and reduced solubility under oxidizing conditions makes it a fouling precursor of particular concern, with respect to potential for sleeve fouling in UV reactors.

  3. Application of Several Techniques for Prohibiting Fouling in Li-Recovery Pilot Plant

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Kim, D.; Gong, M.; Kim, B.; Chung, K.

    2010-12-01

    The problem of marine organisms adhering to any surfaces exposed in seawater is as old as time. Marine fouling is a major problem in the materials used in seawater worldwide. Marine coatings contain elements such as copper and triorganotin compounds were often used as an effective compound for control the fouling problem, but application of such coatings containing triorganotin compounds was prohibited and the former are considered undesirable because of its toxicity and accumulative in non-target organisms. Monitoring and field studies regarding fouling problems during operation of Li-recovery pilot plant which is designed by the Korea Institute of Geoscience & Mineral Resources (KIGAM) were major concern of this study. Fouling could be the most troublesome tasks during the development of a large scale pilot production test for achieving a high performance adsorbent for seawater dissolved Li recovery. Chemical and microbiological characteristics of the fouling biofilms developed on various surfaces in contact with the seawater were made. The microbial compositions of the biofilm consortia formed on the reservoir polymer surfaces were also tested for. The quantities of the diverse microorganisms in the biofilm samples developed on the prohibiting polymer reservoir surface were larger when there was no concern about materials for special selection for fouling. The experimental results offered new specific information, concerning the problems in the application of new material as well as surface coating such as anti-fouling coatings. They showed the important role microbial activity in fouling and corrosion of the surfaces in contact with the any seawater. Acknowledgements: This research was supported by a grant from the Development of Technology for Extraction of Resources Dissolved in Sea Water Program funded by Ministry of Land Transport and Maritime Affairs in Korean Government (2010).

  4. Water hammer reduces fouling during natural water ultrafiltration.

    PubMed

    Broens, F; Menne, D; Pothof, I; Blankert, B; Roesink, H D W; Futselaar, H; Lammertink, R G H; Wessling, M

    2012-03-15

    Today's ultrafiltration processes use permeate flow reversal to remove fouling deposits on the feed side of ultrafiltration membranes. We report an as effective method: the opening and rapid closing of a valve on the permeate side of an ultrafiltration module. The sudden valve closure generates pressure fluctuations due to fluid inertia and is commonly known as "water hammer". Surface water was filtrated in hollow fiber ultrafiltration membranes with a small (5%) crossflow. Filtration experiments above sustainable flux levels (>125 l (m2h)(-1)) show that a periodic closure of a valve on the permeate side improves filtration performance as a consequence of reduced fouling. It was shown that this effect depends on flux and actuation frequency of the valve. The time period that the valve was closed proved to have no effect on filtration performance. The pressure fluctuations generated by the sudden stop in fluid motion due to the valve closure are responsible for the effect of fouling reduction. High frequency recording of the dynamic pressure evolution shows water hammer related pressure fluctuations to occur in the order of 0.1 bar. The pressure fluctuations were higher at higher fluxes (higher velocities) which is in agreement with the theory. They were also more effective at higher fluxes with respect to fouling mitigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Reducing ultrafiltration membrane fouling during potable water reuse using pre-ozonation.

    PubMed

    Wang, Hui; Park, Minkyu; Liang, Heng; Wu, Shimin; Lopez, Israel J; Ji, Weikang; Li, Guibai; Snyder, Shane A

    2017-11-15

    Wastewater reclamation has increasingly become popular to secure potable water supply. Low-pressure membrane processes such as microfiltration (MF) and ultrafiltration (UF) play imperative roles as a barrier of macromolecules for such purpose, but are often limited by membrane fouling. Effluent organic matter (EfOM), including biopolymers and particulates, in secondary wastewater effluents have been known to be major foulants in low-pressure membrane processes. Hence, the primary aim of this study was to investigate the effects of pre-ozonation as a pre-treatment for UF on the membrane fouling caused by EfOM in secondary wastewater effluents for hydrophilic regenerated cellulose (RC) and hydrophobic polyethersulfone (PES) UF membranes. It was found that greater fouling reduction was achieved by pre-ozonation for the hydrophilic RC membrane than the hydrophobic PES membrane at increasing ozone doses. In addition, the physicochemical property changes of EfOM, including biopolymer fractions, by pre-ozonation were systemically investigated. The classical pore blocking model and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theories were employed to scrutinize the fouling alleviation mechanism by pre-ozonation. As a result, the overarching mechanisms of fouling reduction were attributed to the following key reasons: (1) Ozone degraded macromolecules such as biopolymers like proteins and polysaccharides into smaller fractions, thereby increasing free energy of cohesion of EfOM and rendering them more hydrophilic and stable; (2) pre-ozonation augmented the interfacial free energy of adhesion between foulants and the RC/PES membranes, leading to the increase of repulsions and/or the decrease of attractions; and (3) pre-ozonation prolonged the transition from pore blocking to cake filtration that was a dominant fouling mechanism, thereby reducing fouling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pore channel surface modification for enhancing anti-fouling membrane distillation

    NASA Astrophysics Data System (ADS)

    Qiu, Haoran; Peng, Yuelian; Ge, Lei; Villacorta Hernandez, Byron; Zhu, Zhonghua

    2018-06-01

    Membrane surface modification by forming a functional layer is an effective way to improve the anti-fouling properties of membranes; however, the additional layer and the potential blockage of bulk pores may increase the mass transfer resistance and reduce the permeability. In this study, we applied a novel method of preparing anti-fouling membranes for membrane distillation by dispersing graphene oxide (GO) on the channel surface of polyvinylidene fluoride membranes. The surface morphology and properties were characterized by scanning electron microscopy, atomic force microscope, and Fourier transform infrared spectrometry. Compared to the membrane surface modification by nanoparticles (e.g. SiO2), GO was mainly located on the pore surface of the membrane bulk, rather than being formed as an individual layer onto the membrane surface. The performance was evaluated via a direct-contact membrane distillation process with anionic and cationic surfactants as the foulants, separately. Compared to the pristine PVDF membrane, the anti-fouling behavior and distillate flux of the GO-modified membranes were improved, especially when using the anionic surfactant as the foulant. The enhanced anti-fouling performance can be attributed to the oxygen containing functional groups in GO and the healing of the membrane pore defects. This method may provide an effective route to manipulate membrane pore surface properties for anti-fouling separation without increasing mass transfer resistance.

  7. Control of membrane fouling with the addition of a nanoporous zeolite membrane fouling reducer to the submerged hollow fiber membrane bioreactor.

    PubMed

    Park, Chul-Hwi; Park, Jun-Won; Han, Gee-Bong

    2016-10-14

    The membrane fouling control via the addition of nanoporous zeolite membrane fouling reducer (Z-MFR) to the submerged membrane bioreactor (MBR) was investigated. Using scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) analysis techniques, the characteristics of fouling on a hollow fiber membrane surface were also analyzed. The addition of Z-MFR to the MBR led to the adsorption of foulants and the flocculation of mixed liquor suspended solids (MLSSs), which resulted in substantially enhancing the membrane filterability. The critical flux values obtained from the sewage mixed liquors of 3400 mg L(-1) at the effective dosage rate of 0.03 mg Z-MFR mg(-1) MLSS was 85 L m(-2) h(-1) (LMH), which was enhanced by 42%. The transmembrane pressure (TMP) variation under the operating conditions of 30 LMH with 3500 mg MLSS L(-1) showed that the addition of Z-MFR extended the time required to reach the critical flux of 0.32 bar by 2.6-fold longer than the control. Thus, due to the hybrid functions of adsorbing foulants and precipitating colloidal substances with the addition of Z-MFR, a decrease in the foulant amount and an improvement of sludge flocculation have been attained simultaneously. As a result, the membrane fouling control was achieved effectively with the addition of the Z-MFR.

  8. Application of a stepwise method for analyzing fouling in shell-and-tube exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prieto, M.M.; Miranda, J.; Sigales, B.

    1999-12-01

    This article presents the results of the application of a quite simple method for analyzing shell-side fouling in shell-and-tube exchangers, capable of taking into account the formation or irregular fouling deposits with variable thermal conductivity. This method, based on the utilization of elementary heat exchangers, has been implemented for E-shell TEMA-type heat exchangers with two tube passes. Several fouling deposit distributions have been simulated so as to ascertain their effects on the heat transfer rate. These distributions consider that fouling is concentrated in zones where the temperature of the fluids is maximum or minimum.

  9. Robust design optimization method for centrifugal impellers under surface roughness uncertainties due to blade fouling

    NASA Astrophysics Data System (ADS)

    Ju, Yaping; Zhang, Chuhua

    2016-03-01

    Blade fouling has been proved to be a great threat to compressor performance in operating stage. The current researches on fouling-induced performance degradations of centrifugal compressors are based mainly on simplified roughness models without taking into account the realistic factors such as spatial non-uniformity and randomness of the fouling-induced surface roughness. Moreover, little attention has been paid to the robust design optimization of centrifugal compressor impellers with considerations of blade fouling. In this paper, a multi-objective robust design optimization method is developed for centrifugal impellers under surface roughness uncertainties due to blade fouling. A three-dimensional surface roughness map is proposed to describe the nonuniformity and randomness of realistic fouling accumulations on blades. To lower computational cost in robust design optimization, the support vector regression (SVR) metamodel is combined with the Monte Carlo simulation (MCS) method to conduct the uncertainty analysis of fouled impeller performance. The analyzed results show that the critical fouled region associated with impeller performance degradations lies at the leading edge of blade tip. The SVR metamodel has been proved to be an efficient and accurate means in the detection of impeller performance variations caused by roughness uncertainties. After design optimization, the robust optimal design is found to be more efficient and less sensitive to fouling uncertainties while maintaining good impeller performance in the clean condition. This research proposes a systematic design optimization method for centrifugal compressors with considerations of blade fouling, providing a practical guidance to the design of advanced centrifugal compressors.

  10. Polyamide desalination membrane characterization and surface modification to enhance fouling resistance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Mukul M.; Freeman, Benny D.; Van Wagner, Elizabeth M.

    2010-08-01

    The market for polyamide desalination membranes is expected to continue to grow during the coming decades. Purification of alternative water sources will also be necessary to meet growing water demands. Purification of produced water, a byproduct of oil and gas production, is of interest due to its dual potential to provide water for beneficial use as well as to reduce wastewater disposal costs. However, current polyamide membranes are prone to fouling, which decreases water flux and shortens membrane lifetime. This research explored surface modification using poly(ethylene glycol) diglycidyl ether (PEGDE) to improve the fouling resistance of commercial polyamide membranes. Characterizationmore » of commercial polyamide membrane performance was a necessary first step before undertaking surface modification studies. Membrane performance was found to be sensitive to crossflow testing conditions. Concentration polarization and feed pH strongly influenced NaCl rejection, and the use of continuous feed filtration led to higher water flux and lower NaCl rejection than was observed for similar tests performed using unfiltered feed. Two commercial polyamide membranes, including one reverse osmosis and one nanofiltration membrane, were modified by grafting PEGDE to their surfaces. Two different PEG molecular weights (200 and 1000) and treatment concentrations (1% (w/w) and 15% (w/w)) were studied. Water flux decreased and NaCl rejection increased with PEGDE graft density ({micro}g/cm{sup 2}), although the largest changes were observed for low PEGDE graft densities. Surface properties including hydrophilicity, roughness and charge were minimally affected by surface modification. The fouling resistance of modified and unmodified membranes was compared in crossflow filtration studies using model foulant solutions consisting of either a charged surfactant or an oil in water emulsion containing n-decane and a charged surfactant. Several PEGDE-modified membranes demonstrated

  11. Novel magnetically induced membrane vibration (MMV) for fouling control in membrane bioreactors.

    PubMed

    Bilad, Muhammad R; Mezohegyi, Gergo; Declerck, Priscilla; Vankelecom, Ivo F J

    2012-01-01

    Conventional submerged membrane bioreactors (MBRs) rely on the coarse bubbles aeration to generate shear at the liquid-membrane interface to limit membrane fouling. Unfortunately, it is a very energy consuming method, still often resulting in a rapid decrease of membrane permeability and consequently in higher expenses. In this paper, the feasibility of a novel magnetically induced membrane vibration (MMV) system was studied in a lab-scale MBR treating synthetic wastewater. The effects on membrane fouling of applied electrical power of different operation strategies, of membrane flux and of the presence of multiple membranes on one vibrating engine on membrane fouling were investigated. The filtration performance was evaluated by determining the filtration resistance profiles and critical flux. The results showed clear advantages of the vibrating system over conventional MBR processes by ensuring higher fluxes at lower fouling rates. Intermittent vibration was found a promising strategy for both efficient fouling control and significant energy saving. The optimised MMV system is presumed to lead to significant energy and cost reduction in up-scaled MBR operations. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. [Effect of sludge bulking on membrane fouling of MBR under low temperature].

    PubMed

    Ren, Nan-qi; Liu, Jiao; Wang, Xiu-heng

    2009-01-01

    The performance and membrane fouling of submerged membrane bioreactor were studied in the case of active sludge bulking under low temperature. The factors contributing to membrane fouling were discussed from the microorganism aspect. The results showed that COD removal efficiencies of supernatant and permeate were 85% and 92% respectively and filamentous sludge bulking had little impact on them. The sludge settleability became bad and the filament index (FI) increased from 2 to 5 during the formation of filamentous sludge bulking under low temperature. The filamentous bacteria extending from the sludge flocs formed net structure. Membrane fouling changed with time in linear under low temperature and the operation period of MBR was 15 d. However, membrane fouling was more serious in the condition of filamentous sludge bulking at low temperature, shortening the operation period of MBR to 7 d. The extracellular polymeric substances (EPS) content of bulking sludge was three times as that of normal sludge and the relative hydrophobicity (RH) of sludge flocs was decreased as FI increased. The increase of EPS and RH may cause more materials to deposit on the membrane surface, thus the membrane fouling rate improved and the operation period of MBR became short. Further analysis indicated that the mixed liquid viscosity, Zeta potential and sludge floc structure were all important factors of membrane fouling.

  13. A physicochemical investigation of membrane fouling in cold microfiltration of skim milk.

    PubMed

    Tan, T J; Wang, D; Moraru, C I

    2014-01-01

    The main challenge in microfiltration (MF) is membrane fouling, which leads to a significant decline in permeate flux and a change in membrane selectivity over time. This work aims to elucidate the mechanisms of membrane fouling in cold MF of skim milk by identifying and quantifying the proteins and minerals involved in external and internal membrane fouling. Microfiltration was conducted using a 1.4-μm ceramic membrane, at a temperature of 6±1°C, cross-flow velocity of 6m/s, and transmembrane pressure of 159kPa, for 90min. Internal and external foulants were extracted from a ceramic membrane both after a brief contact between the membrane and skim milk, to evaluate instantaneous adsorption of foulants, and after MF. Four foulant streams were collected: weakly attached external foulants, weakly attached internal foulants, strongly attached external foulants, and strongly attached internal foulants. Liquid chromatography coupled with tandem mass spectrometry analysis showed that all major milk proteins were present in all foulant streams. Proteins did appear to be the major cause of membrane fouling. Proteomics analysis of the foulants indicated elevated levels of serum proteins as compared with milk in the foulant fractions collected from the adsorption study. Caseins were preferentially introduced into the fouling layer during MF, when transmembrane pressure was applied, as confirmed both by proteomics and mineral analyses. The knowledge generated in this study advances the understanding of fouling mechanisms in cold MF of skim milk and can be used to identify solutions for minimizing membrane fouling and increasing the efficiency of milk MF. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Influence of relaxation modes on membrane fouling in submerged membrane bioreactor for domestic wastewater treatment.

    PubMed

    Habib, Rasikh; Asif, Muhammad Bilal; Iftekhar, Sidra; Khan, Zahiruddin; Gurung, Khum; Srivastava, Varsha; Sillanpää, Mika

    2017-08-01

    Relaxation and backwashing have become an integral part of membrane bioreactor (MBR) operations for fouling control. This study was carried out on real municipal wastewater to evaluate the influence of different operational strategies on membrane fouling at equivalent water yield. Four relaxation modes (MBR 10+0, MBR 10+1 , MBR 10+1.5 and MBR 10+2 ) were tested to analyze membrane fouling behavior. For the optimization of relaxation modes, fouling rate in terms of trans-membrane pressure, hydraulic resistances and characteristics of fouling fractions were analyzed. It has been observed that cake layer resistance was minimum in MBR 10+1.5 but pore blockage resistance was increased in all relaxation modes. Moreover, high instantaneous flux contributed significantly to fouling rate at the initial stage of MBR operations. Relaxation modes were also efficient in removing irreversible fouling to some extent. Under all relaxation modes, COD removal efficiency ranged from 92 to 96.5%. Ammonium and TP removal were on the lower side due to the short solids and hydraulic retention time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Review: Factors affecting fouling in conventional pens for slaughter pigs.

    PubMed

    Larsen, M L V; Bertelsen, M; Pedersen, L J

    2018-02-01

    This review assesses factors affecting fouling in conventional pens for slaughter pigs. Fouling of the pen happens when pigs change their excretory behaviour from occurring in the designated dunging area to the lying area. This can result in a lower hygiene, bad air quality, extra work for the farmer, disturbance of the pigs' resting behaviour and an increase in agonistic interactions. A systematic search was conducted and results narrowed down to 21 articles. Four factors were found to affect fouling directly: insufficient space allowance, the flooring design of the pen, the thermal climate and pigs' earlier experience. Further, these primary factors are affected by secondary factors such as the shape of the pen, the weight of the pigs and especially the heat balance of the pigs, which is affected by several tertiary factors including, for example, temperature, humidity and draught. Results indicate that the most important factor to control when trying to prevent fouling of a pen is the pen climate. An appropriate climate may be accomplished through floor cooling in the designated lying area, sprinklers above the designated dunging area and by ensuring a more optimal ambient temperature curve that also fits the weight of the pigs in different stages of the production. All in all, fouling of the pen in conventional slaughter pigs is a multifactorial problem, but it is important to focus on increasing the comfortability, and especially the climate, of the designated lying area.

  16. Influence of crystallised igneous intrusions on fault nucleation and reactivation during continental extension

    NASA Astrophysics Data System (ADS)

    Magee, Craig; McDermott, Kenneth G.; Stevenson, Carl T. E.; Jackson, Christopher A.-L.

    2014-05-01

    Continental rifting is commonly accommodated by the nucleation of normal faults, slip on pre-existing fault surfaces and/or magmatic intrusion. Because crystallised igneous intrusions are pervasive in many rift basins and are commonly more competent (i.e. higher shear strengths and Young's moduli) than the host rock, it is theoretically plausible that they locally intersect and modify the mechanical properties of pre-existing normal faults. We illustrate the influence that crystallised igneous intrusions may have on fault reactivation using a conceptual model and observations from field and subsurface datasets. Our results show that igneous rocks may initially resist failure, and promote the preferential reactivation of favourably-oriented, pre-existing faults that are not spatially-associated with solidified intrusions. Fault segments situated along strike from laterally restricted fault-intrusion intersections may similarly be reactivated. This spatial and temporal control on strain distribution may generate: (1) supra-intrusion folds in the hanging wall; (2) new dip-slip faults adjacent to the igneous body; or (3) sub-vertical, oblique-slip faults oriented parallel to the extension direction. Importantly, stress accumulation within igneous intrusions may eventually initiate failure and further localise strain. The results of our study have important implications for the structural of sedimentary basins and the subsurface migration of hydrocarbons and mineral-bearing fluids.

  17. Engineering of an MBR supernatant fouling layer by fine particles addition: a possible way to control cake compressibility.

    PubMed

    Teychene, Benoît; Guigui, Christelle; Cabassud, Corinne

    2011-02-01

    For membrane bioreactors (MBR) applied to wastewater treatment membrane fouling is still the prevalent issue. The main limiting phenomena related to fouling is a sudden jump of the transmembrane pressure (TMP) often attributed to the collapse of the fouling layer. Among existing techniques to avoid or to delay this collapse, the addition of active particles membrane fouling reducers (polymer, resins, powdered activated carbon (PAC), zeolithe...) showed promising results. Thus the main objective of this work is to determine if fouling can be reduced by inclusion of inert particles (500 nm and inert compared to other fouling reducers) and which is the impact on filtration performances of the structuring of the fouling. Those particles were chosen for their different surface properties and their capability to form well structured layer. Results, obtained at constant pressure in dead end mode, show that the presence of particles changes foulant deposition and induces non-compressible fouling (in the range of 0.5-1 bar) and higher rejection values compared to filtration done on supernatant alone. Indeed dead end filtration tests show that whatever interactions between biofluid and particles, the addition of particles leads to better filtration performances (in terms of rejection, and fouling layer compressibility). Moreover results confirm the important role played by macromolecular compounds, during supernatant filtration, creating highly compressible and reversible fouling. In conclusion, this study done at lab-scale suggests the potential benefit to engineer fouling structure to control or to delay the collapse of the fouling layer. Finally this study offers the opportunities to enlarge the choice of membrane fouling reducers by taking into consideration their ability to form more consistent fouling (i.e. rigid, structured fouling). Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. The effect of residual cationic polymers in swine wastewater on the fouling of reverse osmosis membranes.

    PubMed

    Pedersen, C O; Masse, L; Hjorth, M

    2014-01-01

    Solid-liquid separation with flocculation can be used as pre-treatment for reverse osmosis (RO) filtration as it produces a liquid fraction (LF) low in suspended solids (SS). However, residual polymers in the LF may foul the membrane. Membrane fouling during RO filtration of swine wastewater containing polymers was investigated with respect to polymer charge density (CD), effluent SS concentration and membrane surface charge. Effluents with 765 mg/L SS and without SS were spiked with low and medium CD polymers (0-40 mg/L effluent) then processed with RO membranes having low and high negative surface charges. Fouling intensity was evaluated by comparing permeate flux and water flux recovery of fouled and cleaned membranes. For effluents containing SS, the presence of polymer reduced permeate flux by 4-16% and water flux recovery of the fouled membrane by 0-18%, relative to effluents without polymer. The extent of the fouling was higher with the low than the medium CD polymer. The fouling was mostly reversible as cleaning allowed for over 95% flux recovery, but the membrane with high negative surface charge was more susceptible to irreversible fouling. Adding the low CD polymer to feed without SS had no effect on permeate flux or flux recovery. Membrane fouling thus appeared to be caused by the polymer changing SS-membrane interaction. If flocculation is applied to pre-treat manure, a medium CD polymer should be used to optimize SS removal and a membrane with low surface charge should be selected to minimize fouling.

  19. Salt-responsive polyzwitterionic materials for surface regeneration between switchable fouling and antifouling properties.

    PubMed

    Chen, Hong; Yang, Jintao; Xiao, Shengwei; Hu, Rundong; Bhaway, Sarang M; Vogt, Bryan D; Zhang, Mingzhen; Chen, Qiang; Ma, Jie; Chang, Yung; Li, Lingyan; Zheng, Jie

    2016-08-01

    Development of smart regenerative surface is a highly challenging but important task for many scientific and industrial applications. Specifically, very limited research efforts were made for surface regeneration between bio-adhesion and antifouling properties, because bioadhesion and antifouling are the two highly desirable but completely opposite properties of materials. Herein, we developed salt-responsive polymer brushes of poly(3-(1-(4-vinylbenzyl)-1H-imidazol-3-ium-3-yl) propane-1-sulfonate) (polyVBIPS), which can be switched reversibly and repeatedly between protein capture/release and surface wettability in a controllable manner. PolyVBIPS brush has demonstrated its switching ability to resist both protein adsorption from 100% blood plasma/serum and bacterial attachment in multiple cycles. PolyVBIPS brush also exhibits reversible surface wettability from ∼40° to 25° between in PBS and in 1M NaCl solutions in multiple cycles. Overall, the salt-responsive behaviors of polyVBIPS brushes can be interpreted by the "anti-polyelectrolyte effect", i.e. polyVBIPS brushes adopt a collapsed chain conformation at low ionic strengths to achieve surface adhesive, but an extended chain conformation at high ionic strength to realize antifouling properties. We expect that polyVBIPS will provide a simple, robust, and promising system for the fabrication of smart surfaces with biocompatible, reliable, and regenerative properties. Unlike many materials with "one-time switching" capability for surface regeneration, we developed a new regenerative surface of zwitterionic polymer brush, which exhibits a reversible salt-induced switching property between a biomolecule-adhesive state and a biomolecule repellent state in complex media for multiple cycles. PolyVBIPS is easily synthesized and can be straightforward coated on the surface, which provides a simple, robust, and promising system for the fabrication of smart surfaces with biocompatible, reliable, regenerative properties

  20. Detection and location of fouling on photovoltaic panels using a drone-mounted infrared thermography system

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Zhang, Lifu; Wu, Taixia; Zhang, Hongming; Sun, Xuejian

    2017-01-01

    Due to weathering and external forces, solar panels are subject to fouling and defects after a certain amount of time in service. These fouling and defects have direct adverse consequences such as low-power efficiency. Because solar power plants usually have large-scale photovoltaic (PV) panels, fast detection and location of fouling and defects across large PV areas are imperative. A drone-mounted infrared thermography system was designed and developed, and its ability to detect rapid fouling on large-scale PV panel systems was investigated. The infrared images were preprocessed using the K neighbor mean filter, and the single PV module on each image was recognized and extracted. Combining the local and global detection method, suspicious sites were located precisely. The results showed the flexible drone-mounted infrared thermography system to have a strong ability to detect the presence and determine the position of PV fouling. Drone-mounted infrared thermography also has good technical feasibility and practical value in the detection of PV fouling detection.

  1. Combination film/splash fill for overcoming film fouling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, P.M.; Minett, T.O.

    1995-02-01

    In summary, this large cooling tower user has found the Phelps film/splash Stack-Pack fill design to attain a substantial improvement in capability of their existing crossflow cooling towers, without increasing fan power or tower size. The lack of fouling in the film fill component of this fill design is due to the use of film fill with large (1 inch) spacing between sheets, coupled with effective water treatment as provided by Nalco. This combination of factors provides a proven method for significantly increasing crossflow or counterflow cooling tower capability while minimizing chances of serious fill fouling.

  2. Understanding ozone mechanisms to alleviate ceramic membrane fouling

    NASA Astrophysics Data System (ADS)

    Chu, Irma Giovanna Llamosas

    Ceramic membranes are a strong prospect as an advanced treatment in the drinking water domain. But their high capital cost and the lack of specific research on their performance still discourage their application in this field. Thus, knowing that fouling is the main drawback experienced in filtration processes, this bench-scale study was aimed to assess the impact of an ozonation pre-treatment on the alleviation of the fouling of UF ceramic membranes. Preozonation and filtration steps were performed under two different pH and ozone doses. Chosen pH values were at the limits of natural surface waters range (6.5 and 8.5) to keep practicability. Raw water from the Thousand Isle's river at Quebec-Canada was used for the tests. The filtration setup involved an unstirred dead-end filtration cell operated at constant flux. Results showed that pre-oxidation by ozone indeed reduced the fouling degree of the membranes according to the dose applied (up to 60 and 85% for membranes 8 and 50 kDa, respectively). Direct NOM oxidation was found responsible for this effect as the presence of molecular ozone was not essential to achieve these results. In the context of this experiment, however, pH showed to be more effective than the ozonation pre-treatment to keep fouling at low levels: 70% lower at pH 6.5 than at pH 8.5 for un-ozonated waters, which was contrary to most of the literature found on the topic (Changwon, 2013; De Angelis & Fidalgo, 2013; Karnik et al., 2005; S. Lee & Kim, 2014). This behaviour results mainly from the operation mode used in the experiment, the electrical repulsions between MON molecules at basic pH that led to the accumulation of material on the feed side of the membranes (concentration polarisation) and ulterior cake formation. In addition, solution pH showed an influence in the definition of fouling mechanisms. At solution pH 6.5, which was precisely the isoelectric point of the membranes (+/-6.5), the blocking fouling mode was frequently detected

  3. Searching for storm water inflows in foul sewers using fibre-optic distributed temperature sensing.

    PubMed

    Schilperoort, Rémy; Hoppe, Holger; de Haan, Cornelis; Langeveld, Jeroen

    2013-01-01

    A major drawback of separate sewer systems is the occurrence of illicit connections: unintended sewer cross-connections that connect foul water outlets from residential or industrial premises to the storm water system and/or storm water outlets to the foul sewer system. The amount of unwanted storm water in foul sewer systems can be significant, resulting in a number of detrimental effects on the performance of the wastewater system. Efficient removal of storm water inflows into foul sewers requires knowledge of the exact locations of the inflows. This paper presents the use of distributed temperature sensing (DTS) monitoring data to localize illicit storm water inflows into foul sewer systems. Data results from two monitoring campaigns in foul sewer systems in the Netherlands and Germany are presented. For both areas a number of storm water inflow locations can be derived from the data. Storm water inflow can only be detected as long as the temperature of this inflow differs from the in-sewer temperatures prior to the event. Also, the in-sewer propagation of storm and wastewater can be monitored, enabling a detailed view on advection.

  4. Model-based analysis of the effect of different operating conditions on fouling mechanisms in a membrane bioreactor.

    PubMed

    Sabia, Gianpaolo; Ferraris, Marco; Spagni, Alessandro

    2016-01-01

    This study proposes a model-based evaluation of the effect of different operating conditions with and without pre-denitrification treatment and applying three different solids retention times on the fouling mechanisms involved in membrane bioreactors (MBRs). A total of 11 fouling models obtained from literature were used to fit the transmembrane pressure variations measured in a pilot-scale MBR treating real wastewater for more than 1 year. The results showed that all the models represent reasonable descriptions of the fouling processes in the MBR tested. The model-based analysis confirmed that membrane fouling started by pore blocking (complete blocking model) and by a reduction of the pore diameter (standard blocking) while cake filtration became the dominant fouling mechanism over long-term operation. However, the different fouling mechanisms occurred almost simultaneously making it rather difficult to identify each one. The membrane "history" (i.e. age, lifespan, etc.) seems the most important factor affecting the fouling mechanism more than the applied operating conditions. Nonlinear regression of the most complex models (combined models) evaluated in this study sometimes demonstrated unreliable parameter estimates suggesting that the four basic fouling models (complete, standard, intermediate blocking and cake filtration) contain enough details to represent a reasonable description of the main fouling processes occurring in MBRs.

  5. Colloidal interactions and fouling of NF and RO membranes: a review.

    PubMed

    Tang, Chuyang Y; Chong, T H; Fane, Anthony G

    2011-05-11

    Colloids are fine particles whose characteristic size falls within the rough size range of 1-1000 nm. In pressure-driven membrane systems, these fine particles have a strong tendency to foul the membranes, causing a significant loss in water permeability and often a deteriorated product water quality. There have been a large number of systematic studies on colloidal fouling of reverse osmosis (RO) and nanofiltration (NF) membranes in the last three decades, and the understanding of colloidal fouling has been significantly advanced. The current paper reviews the mechanisms and factors controlling colloidal fouling of both RO and NF membranes. Major colloidal foulants (including both rigid inorganic colloids and organic macromolecules) and their properties are summarized. The deposition of such colloidal particles on an RO or NF membrane forms a cake layer, which can adversely affect the membrane flux due to 1) the cake layer hydraulic resistance and/or 2) the cake-enhanced osmotic pressure. The effects of feedwater compositions, membrane properties, and hydrodynamic conditions are discussed in detail for inorganic colloids, natural organic matter, polysaccharides, and proteins. In general, these effects can be readily explained by considering the mass transfer near the membrane surface and the colloid-membrane (or colloid-colloid) interaction. The critical flux and limiting flux concepts, originally developed for colloidal fouling of porous membranes, are also applicable to RO and NF membranes. For small colloids (diameter≪100 nm), the limiting flux can result from two different mechanisms: 1) the diffusion-solubility (gel formation) controlled mechanism and 2) the surface interaction controlled mechanism. The former mechanism probably dominates for concentrated solutions, while the latter mechanism may be more important for dilute solutions. Future research needs on RO and NF colloidal fouling are also identified in the current paper. Copyright © 2010 Elsevier B

  6. Fouling characteristics and cleaning strategies of NF membranes for the advanced treatment of antibiotic production wastewater.

    PubMed

    Wang, Jianxing; Li, Kun; Yu, Dawei; Zhang, Junya; Wei, Yuansong

    2017-04-01

    The nanofiltration (NF) membrane fouling characteristics and cleaning strategies were investigated through a laboratory-scale NF fouling test treating membrane bioreactor (MBR) effluent and MBR-granular activated carbon (GAC) effluent of an antibiotic production wastewater by DK and NF90 membranes, respectively. Results showed that organic fouling is the main NF membrane fouling for treating both the MBR effluent and MBR-GAC effluent. Soluble microbial by-product (SMP)-like and aromatic protein-like substances were the dominant components in the foulants, whereas humic-like substances had little contribution to the NF fouling. The fouling of DK was more severe than that of NF90. However, foulants respond by UV 254 were more easily to foul NF90 membrane. It could get satisfactory effect using combined cleaning of acid (HCl, pH 2.0∼2.5) and alkali (NaOH + 0.3 wt% NaDS, pH 10.0∼10.5). The favorable cleaning strategy is "acid + alkali" for treating MBR-GAC effluent, while it is "alkali + acid" for treating MBR effluent.

  7. New insights into the early stages of silica-controlled barium carbonate crystallisation

    NASA Astrophysics Data System (ADS)

    Eiblmeier, Josef; Schürmann, Ulrich; Kienle, Lorenz; Gebauer, Denis; Kunz, Werner; Kellermeier, Matthias

    2014-11-01

    Recent work has demonstrated that the dynamic interplay between silica and carbonate during co-precipitation can result in the self-assembly of unusual, highly complex crystal architectures with morphologies and textures resembling those typically displayed by biogenic minerals. These so-called biomorphs were shown to be composed of uniform elongated carbonate nanoparticles that are arranged according to a specific order over mesoscopic scales. In the present study, we have investigated the circumstances leading to the continuous formation and stabilisation of such well-defined nanometric building units in these inorganic systems. For this purpose, in situ potentiometric titration measurements were carried out in order to monitor and quantify the influence of silica on both the nucleation and early growth stages of barium carbonate crystallisation in alkaline media at constant pH. Complementarily, the nature and composition of particles occurring at different times in samples under various conditions were characterised ex situ by means of high-resolution electron microscopy and elemental analysis. The collected data clearly evidence that added silica affects carbonate crystallisation from the very beginning (i.e. already prior to, during, and shortly after nucleation), eventually arresting growth on the nanoscale by cementation of BaCO3 particles within a siliceous matrix. Our findings thus shed light on the fundamental processes driving bottom-up self-organisation in silica-carbonate materials and, for the first time, provide direct experimental proof that silicate species are responsible for the miniaturisation of carbonate crystals during growth of biomorphs, hence confirming previously discussed theoretical models for their formation mechanism.Recent work has demonstrated that the dynamic interplay between silica and carbonate during co-precipitation can result in the self-assembly of unusual, highly complex crystal architectures with morphologies and textures

  8. Linking biofilm growth to fouling and aeration performance of fine-pore diffuser in activated sludge.

    PubMed

    Garrido-Baserba, Manel; Asvapathanagul, Pitiporn; McCarthy, Graham W; Gocke, Thomas E; Olson, Betty H; Park, Hee-Deung; Al-Omari, Ahmed; Murthy, Sudhir; Bott, Charles B; Wett, Bernhard; Smeraldi, Joshua D; Shaw, Andrew R; Rosso, Diego

    2016-03-01

    Aeration is commonly identified as the largest contributor to process energy needs in the treatment of wastewater and therefore garners significant focus in reducing energy use. Fine-pore diffusers are the most common aeration system in municipal wastewater treatment. These diffusers are subject to fouling and scaling, resulting in loss in transfer efficiency as biofilms form and change material properties producing larger bubbles, hindering mass transfer and contributing to increased plant energy costs. This research establishes a direct correlation and apparent mechanistic link between biofilm DNA concentration and reduced aeration efficiency caused by biofilm fouling. Although the connection between biofilm growth and fouling has been implicit in discussions of diffuser fouling for many years, this research provides measured quantitative connection between the extent of biofouling and reduced diffuser efficiency. This was clearly established by studying systematically the deterioration of aeration diffusers efficiency during a 1.5 year period, concurrently with the microbiological study of the biofilm fouling in order to understand the major factors contributing to diffuser fouling. The six different diffuser technologies analyzed in this paper included four different materials which were ethylene-propylene-diene monomer (EPDM), polyurethane, silicone and ceramic. While all diffusers foul eventually, some novel materials exhibited fouling resistance. The material type played a major role in determining the biofilm characteristics (i.e., growth rate, composition, and microbial density) which directly affected the rate and intensity at what the diffusers were fouled, whereas diffuser geometry exerted little influence. Overall, a high correlation between the increase in biofilm DNA and the decrease in αF was evident (CV < 14.0 ± 2.0%). By linking bacterial growth with aeration efficiency, the research was able to show quantitatively the causal connection

  9. An assessment of gas-side fouling in cement plants

    NASA Technical Reports Server (NTRS)

    Marner, W. J.

    1982-01-01

    The cement industry is the most energy-intensive industry in the United States in terms of energy cost as a percentage of the total product cost. An assessment of gas-side fouling in cement plants with special emphasis on heat recovery applications is provided. In the present context, fouling is defined as the buildup of scale on a heat-transfer surface which retards the transfer of heat and includes the related problems of erosion and corrosion. Exhaust gases in the cement industry which are suitable for heat recovery range in temperature from about 100 to 1300 K, are generally dusty, may be highly abrasive, and are often heavily laden with alkalies, sulfates, and chlorides. Particulates in the exhaust streams range in size from molecular to about 100 micrometers in diameter and come from both the raw feed as well as the ash in the coal which is the primary fuel used in the cement industry. The major types of heat-transfer equipment used in the cement industry include preheaters, gas-to-air heat exchangers, waste heat boilers, and clinker coolers. At the present time, the trend in this country is toward suspension preheater systems, in which the raw feed is heated by direct contact with the hot kiln exit gases, and away from waste heat boilers as the principal method of heat recovery. The most important gas-side fouling mechanisms in the cement industry are those due to particulate, chemical reaction, and corrosion fouling.

  10. Fouling of microfiltration membranes by flowback and produced waters from the Marcellus shale gas play.

    PubMed

    Xiong, Boya; Zydney, Andrew L; Kumar, Manish

    2016-08-01

    There is growing interest in possible options for treatment or reuse of flowback and produced waters from natural gas processing. Here we investigated the fouling characteristics during microfiltration of different flowback and produced waters from hydraulic fracturing sites in the Marcellus shale. All samples caused severe and highly variable fouling, although there was no direct correlation between the fouling rate and total suspended solids, turbidity, or total organic carbon. Furthermore, the fouling of water after prefiltration through a 0.2 μm membrane was also highly variable. Low fouling seen with prefiltered water was mainly due to removal of submicron particles 0.4-0.8 μm during prefiltration. High fouling seen with prefiltered water was mainly caused by a combination of hydrophobic organics and colloidal particles <100 nm in size (quantified by transmission electron microscopy) that passed through the prefiltration membranes. The small colloidal particles were highly stable, likely due to the surfactants and other organics present in the fracking fluids. The colloid concentration was as high as 10(11) colloids/ml, which is more than 100 times greater than that in typical seawater. Furthermore, these colloids were only partially removed by MF, causing substantial fouling during a subsequent ultrafiltration. These results clearly show the importance of organics and colloidal material in membrane fouling caused by flowback and produced waters, which is of critical importance in the development of more sustainable treatment strategies in natural gas processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The fine art of integral membrane protein crystallisation.

    PubMed

    Birch, James; Axford, Danny; Foadi, James; Meyer, Arne; Eckhardt, Annette; Thielmann, Yvonne; Moraes, Isabel

    2018-05-18

    Integral membrane proteins are among the most fascinating and important biomolecules as they play a vital role in many biological functions. Knowledge of their atomic structures is fundamental to the understanding of their biochemical function and key in many drug discovery programs. However, over the years, structure determination of integral membrane proteins has proven to be far from trivial, hence they are underrepresented in the protein data bank. Low expression levels, insolubility and instability are just a few of the many hurdles one faces when studying these proteins. X-ray crystallography has been the most used method to determine atomic structures of membrane proteins. However, the production of high quality membrane protein crystals is always very challenging, often seen more as art than a rational experiment. Here we review valuable approaches, methods and techniques to successful membrane protein crystallisation. Copyright © 2018 Diamond Light Source LTD. Published by Elsevier Inc. All rights reserved.

  12. Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation.

    PubMed

    Fan, Xinfei; Zhao, Huimin; Quan, Xie; Liu, Yanming; Chen, Shuo

    2016-01-01

    Membrane filtration provides an effective solution for removing pollutants from water but is limited by serious membrane fouling. In this work, an effective approach was used to mitigate membrane fouling by integrating membrane filtration with electropolarization using an electroconductive nanocarbon-based membrane. The electropolarized membrane (EM) by alternating square-wave potentials between +1.0 V and -1.0 V with a pulse width of 60 s exhibited a permeate flux 8.1 times as high as that without electropolarization for filtering feed water containing bacteria, which confirms the ability of the EM to achieve biofouling mitigation. Moreover, the permeate flux of EM was 1.5 times as high as that without electropolarization when filtrating natural organic matter (NOM) from water, and demonstrated good performance in organic fouling mitigation with EM. Furthermore, the EM was also effective for complex fouling mitigation in filtering water containing coexisting bacteria and NOM, and presented an increased flux rate 1.9 times as high as that without electropolarization. The superior fouling mitigation performance of EM was attributed to the synergistic effects of electrostatic repulsion, electrochemical oxidation and electrokinetic behaviors. This work opens an effective avenue for membrane fouling mitigation of water-treatment membrane filtration systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Role of adsorption in combined membrane fouling by biopolymers coexisting with inorganic particles.

    PubMed

    Chen, Xu-di; Wang, Zhi; Liu, Dan-Yang; Xiao, Kang; Guan, Jing; Xie, Yuefeng F; Wang, Xiao-Mao; Waite, T David

    2018-01-01

    This study was conducted in order to obtain a better understanding of the combined fouling by biopolymers coexisting with inorganic particles from the aspects of fouling index, fouling layer structure and biopolymer-particle interactions. Calcium alginate was used as the model biopolymer and Fe 2 O 3 , Al 2 O 3 , kaolin, and SiO 2 were used as model inorganic particles. Results showed that the combined fouling differed greatly among the four types of inorganic particles. The differences were attributed particularly to the different adsorption capacities for calcium alginate by the particles with this capacity decreasing in the order of Fe 2 O 3 , Al 2 O 3 , kaolin and SiO 2 . Particle size measurement and electron microscopic observation indicated the formation of agglomerates between calcium alginate and those inorganic particles exhibiting strong adsorption capacity. A structure was proposed for the combined fouling layer comprised of a backbone cake layer of alginate-inorganic particle agglomerates with the pores partially filled with discontinuous calcium alginate gels. The filterability of the fouling layer was primarily determined by the abundance of the gels. The strength of physical interaction between calcium alginate and each type of inorganic particle was calculated from the respective surface energies and zeta potentials. Calculation results showed that the extent of physical interaction increased in the order of Al 2 O 3 , Fe 2 O 3 , kaolin and SiO 2 , with this order differing from that of adsorption capacity. Chemical interactions may also play an important role in the adsorption of alginate and the consequent combined fouling. High-resolution XPS scans revealed a slight shift of electron binding energies when alginate was adsorbed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The problem of fouling in submerged membrane bioreactors - Model validation and experimental evidence

    NASA Astrophysics Data System (ADS)

    Tsibranska, Irene; Vlaev, Serafim; Tylkowski, Bartosz

    2018-01-01

    Integrating biological treatment with membrane separation has found a broad area of applications and industrial attention. Submerged membrane bioreactors (SMBRs), based on membrane modules immersed in the bioreactor, or side stream ones connected in recycle have been employed in different biotechnological processes for separation of thermally unstable products. Fouling is one of the most important challenges in the integrated SMBRs. A number of works are devoted to fouling analysis and its treatment, especially exploring the opportunity for enhanced fouling control in SMBRs. The main goal of the review is to provide a comprehensive yet concise overview of modeling the fouling in SMBRs in view of the problematics of model validation, either by real system measurements at different scales or by analysis of the obtained theoretical results. The review is focused on the current state of research applying computational fluid dynamics (CFD) modeling techniques.

  15. How different is the composition of the fouling layer of wastewater reuse and seawater desalination RO membranes?

    PubMed

    Khan, Muhammad Tariq; Busch, Markus; Molina, Veronica Garcia; Emwas, Abdul-Hamid; Aubry, Cyril; Croue, Jean-Philippe

    2014-08-01

    To study the effect of water quality and operating parameters on membrane fouling, a comparative analysis of wastewater (WW) and seawater (SW) fouled reverse osmosis (RO) membranes was conducted. Membranes were harvested from SWRO and WWRO pilot plants located in Vilaseca (East Spain), both using ultrafiltration as pretreatment. The SWRO unit was fed with Mediterranean seawater and the WWRO unit was operated using secondary effluent collected from the municipal wastewater treatment plant. Lead and terminal SWRO and WWRO modules were autopsied after five months and three months of operation, respectively. Ultrastructural, chemical, and microbiological analyses of the fouling layers were performed. Results showed that the WWRO train had mainly bio/organic fouling at the lead position element and inorganic fouling at terminal position element, whereas SWRO train had bio/organic fouling at both end position elements. In the case of WWRO membranes, Betaproteobacteria was the major colonizing species; while Ca, S, and P were the major present inorganic elements. The microbial population of SWRO membranes was mainly represented by Alpha and Gammaproteobacteria. Ca, Fe, and S were the main identified inorganic elements of the fouling layer of SWRO membranes. These results confirmed that the RO fouling layer composition is strongly impacted by the source water quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments

    NASA Technical Reports Server (NTRS)

    Marner, W. J. (Editor); Webb, R. L. (Editor)

    1982-01-01

    The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified.

  17. Fouling reduction by ozone-enhanced backwashing process in ultrafiltration of petroleum-based oil in water emulsion

    NASA Astrophysics Data System (ADS)

    Aryanti, Nita; Prihatiningtyas, Indah; Kusworo, Tutuk Djoko

    2017-06-01

    Ultrafiltration membrane has been successfully applied for oily waste water treatment. However, one significant drawback of membrane technology is fouling which is responsible for permeate flux decline as well as reducing membrane performance. One method commonly used to reduce fouling is a backwashing process. The backwashing is carried out by a push of reversed flow from permeate side to the feed side of a membrane to remove fouling on the membrane pore and release fouling release fouling layer on the external side. However, for adsorptive fouling, the backwashing process was not effective. On the other hand, Ozone demonstrated great performance for reducing organics fouling. Hence this research was focused on backwashing process with ozone for removing fouling due to ultrafiltration of petroleum based oil emulsion. Gasoline and diesel oil were selected as dispersed phase, while as continuous phase was water added with Tween 80 as a surfactant. This research found that the Ozone backwashing was effective to improve flux recovery. In ultrafiltration of gasoline emulsion, the flux recovery after Ozone backwashing was in the range of 42-74%. For ultrafiltration of diesel oil emulsion, the permeate flux recovery was about 35-84%. In addition, foulant deposition was proposed and predicting that foulant deposition for ultrafiltration of gasoline-in-water emulsion was surfactant as the top layer and the oil was underneath the surfactant. On the other hand, for ultrafiltration of diesel oil-in-water emulsion, the oil was predicted as a top layer above the surfactant foulant.

  18. Liquid infused porous surfaces for mineral fouling mitigation.

    PubMed

    Charpentier, Thibaut V J; Neville, Anne; Baudin, Sophie; Smith, Margaret J; Euvrard, Myriam; Bell, Ashley; Wang, Chun; Barker, Richard

    2015-04-15

    Prevention of mineral fouling, known as scale, is a long-standing problem in a wide variety of industrial applications, such as oil production, water treatment, and many others. The build-up of inorganic scale such as calcium carbonate on surfaces and facilities is undesirable as it can result in safety risks and associated flow assurance issues. To date the overwhelming amount of research has mainly focused on chemical inhibition of scale bulk precipitation and little attention has been paid to deposition onto surfaces. The development of novel more environmentally-friendly strategies to control mineral fouling will most probably necessitate a multifunctional approach including surface engineering. In this study, we demonstrate that liquid infused porous surfaces provide an appealing strategy for surface modification to reduce mineral scale deposition. Microporous polypyrrole (PPy) coatings were fabricated onto stainless steel substrates by electrodeposition in potentiostatic mode. Subsequent infusion of low surface energy lubricants (fluorinated oil Fluorinert FC-70 and ionic liquid 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BMIm)) into the porous coatings results in liquid-repellent slippery surfaces. To assess their ability to reduce surface scaling the coatings were subjected to a calcium carbonate scaling environment and the scale on the surface was quantified using Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). PPy surfaces infused with BMIm (and Fluorinert to a lesser extent) exhibit remarkable antifouling properties with the calcium carbonate deposition reduced by 18 times in comparison to untreated stainless steel. These scaling tests suggest a correlation between the stability of the liquid infused surfaces in artificial brines and fouling reduction efficiency. The current work shows the great potential of such novel coatings for the management of mineral scale fouling. Copyright © 2014 Elsevier Inc. All rights

  19. From Broad-Spectrum Biocides to Quorum Sensing Disruptors and Mussel Repellents: Antifouling Profile of Alkyl Triphenylphosphonium Salts

    PubMed Central

    Martín-Rodríguez, Alberto J.; Babarro, Jose M. F.; Lahoz, Fernando; Sansón, Marta; Martín, Víctor S.; Norte, Manuel; Fernández, José J.

    2015-01-01

    ‘Onium’ compounds, including ammonium and phosphonium salts, have been employed as antiseptics and disinfectants. These cationic biocides have been incorporated into multiple materials, principally to avoid bacterial attachment. In this work, we selected 20 alkyl-triphenylphosphonium salts, differing mainly in the length and functionalization of their alkyl chains, in fulfilment of two main objectives: 1) to provide a comprehensive evaluation of the antifouling profile of these molecules with relevant marine fouling organisms; and 2) to shed new light on their potential applications, beyond their classic use as broad-spectrum biocides. In this regard, we demonstrate for the first time that these compounds are also able to act as non-toxic quorum sensing disruptors in two different bacterial models (Chromobacterium violaceum and Vibrio harveyi) as well as repellents in the mussel Mytilus galloprovincialis. In addition, their inhibitory activity on a fouling-relevant enzymatic model (tyrosinase) is characterized. An analysis of the structure-activity relationships of these compounds for antifouling purposes is provided, which may result useful in the design of targeted antifouling solutions with these molecules. Altogether, the findings reported herein provide a different perspective on the biological activities of phosphonium compounds that is particularly focused on, but, as the reader will realize, is not limited to their use as antifouling agents. PMID:25897858

  20. Structural study of salt forms of amides; paracetamol, benzamide and piperine

    NASA Astrophysics Data System (ADS)

    Kennedy, Alan R.; King, Nathan L. C.; Oswald, Iain D. H.; Rollo, David G.; Spiteri, Rebecca; Walls, Aiden

    2018-02-01

    Single crystal x-ray diffraction has been used to investigate the structures of six complexes containing O-atom protonated cations derived from the pharmaceutically relevant amides benzamide (BEN), paracetamol (PAR) and piperine (PIP). The structures of the salt forms [PAR(H)][SO3C6H4Cl], [BEN(H)][O3SC6H4Cl] and [BEN(H)][Br]·H2O are reported along with those of the hemi-halide salt forms [PAR(H)][I3]. PAR, [PIP(H)][I3]·PIP and [PIP(H)][I3]0·5[I]0.5. PIP. The structure of the cocrystal BEN. HOOCCH2Cl is also presented for comparison. The geometry of the amide group is found to systematically change upon protonation, with the Cdbnd O distance increasing and the Csbnd N distance decreasing. The hemi-halide species all feature strongly hydrogen bonded amide(H)/amide pairs. The amide group Cdbnd O and Csbnd N distances for both elements of each such pair are intermediate between those found for simple neutral amide and protonated amide forms. It was found that crystallising paracetamol from aqueous solutions containing Ba2+ ions gave orthorhombic paracetamol.

  1. Role of membrane fouling substances on the rejection of N-nitrosamines by reverse osmosis.

    PubMed

    Fujioka, Takahiro; Kodamatani, Hitoshi; Aizawa, Hidenobu; Gray, Stephen; Ishida, Kenneth P; Nghiem, Long D

    2017-07-01

    The impact of fouling substances on the rejection of four N-nitrosamines by a reverse osmosis (RO) membrane was evaluated by characterizing individual organic fractions in a secondary wastewater effluent and deploying a novel high-performance liquid chromatography-photochemical reaction-chemiluminescence (HPLC-PR-CL) analytical technique. The HPLC-PR-CL analytical technique allowed for a systematic examination of the correlation between the fouling level and the permeation of N-nitrosamines in the secondary wastewater effluent and synthetic wastewaters through an RO membrane. Membrane fouling caused by the secondary wastewater effluent led to a notable decrease in the permeation of N-nitrosodimethylamine (NDMA) while a smaller but nevertheless discernible decrease in the permeation of N-nitrosomethylethylamine (NMEA), N-nitrosopyrrolidine (NPYR) and N-nitrosomorpholine (NMOR) was also observed. Fluorescence spectrometry analysis revealed that major foulants in the secondary wastewater effluent were humic and fulvic acid-like substances. Analysis using the size exclusion chromatography technique also identified polysaccharides and proteins as additional fouling substances. Thus, further examination was conducted using solutions containing model foulants (i.e., sodium alginate, bovine serum albumin, humic acid and two fulvic acids). Similar to the secondary wastewater effluent, membrane fouling with fulvic acid solutions resulted in a decrease in N-nitrosamine permeation. In contrast, membrane fouling with the other model foulants resulted in a negligible impact on N-nitrosamine permeation. Overall, these results suggest that the impact of fouling on the permeation of N-nitrosamines by RO is governed by specific small organic fractions (e.g. fulvic acid-like organics) in the secondary wastewater effluent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Combined effects of coagulation and adsorption on ultrafiltration membrane fouling control and subsequent disinfection in drinking water treatment.

    PubMed

    Xing, Jiajian; Liang, Heng; Cheng, Xiaoxiang; Yang, Haiyan; Xu, Daliang; Gan, Zhendong; Luo, Xinsheng; Zhu, Xuewu; Li, Guibai

    2018-06-02

    This study investigated the combined effects of coagulation and powdered activated carbon (PAC) adsorption on ultrafiltration (UF) membrane fouling control and subsequent disinfection efficiency through filtration performance, dissolved organic carbon (DOC) removal, fluorescence excitation-emission matrix (EEM) spectroscopy, and disinfectant curve. The fouling behavior of UF membrane was comprehensively analyzed especially in terms of pollutant removal and fouling reversibility to understand the mechanism of fouling accumulation and disinfectant dose reduction. Pre-coagulation with or without adsorption both achieved remarkable effect of fouling mitigation and disinfection dose reduction. The two pretreatments were effective in total fouling control and pre-coagulation combined with PAC adsorption even decreased hydraulically irreversible fouling notably. Besides, pre-coagulation decreased residual disinfectant decline due to the removal of hydrophobic components of natural organic matters (NOM). Pre-coagulation combined with adsorption had a synergistic effect on further disinfectant decline rate reduction and decreased total disinfectant consumption due to additional removal of hydrophilic NOM by PAC adsorption. The disinfectant demand was further reduced after membrane. These results show that membrane fouling and disinfectant dose can be reduced in UF coupled with pretreatment, which could lead to the avoidance of excessive operation cost disinfectant dose for drinking water supply.

  3. Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors.

    PubMed

    Jin, Le; Ong, Say Leong; Ng, How Yong

    2010-12-01

    Membrane fouling, the key disadvantage that inevitably occurs continuously in the membrane bioreactor (MBR), baffles the wide-scale application of MBR. Ceramic membrane, which possesses high chemical and thermal resistance, has seldom been used in MBR to treat municipal wastewater. Four ceramic membranes with the same materials but different pore sizes, ranging from 80 to 300 nm, were studied in parallel using four lab-scale submerged MBRs (i.e., one type of ceramic membrane in one MBR). Total COD and ammonia nitrogen removal efficiencies were observed to be consistently above 94.5 and 98%, respectively, in all submerged ceramic membrane bioreactors. The experimental results showed that fouling was mainly affected by membrane's microstructure, surface roughness and pore sizes. Ceramic membrane with the roughest surface and biggest pore size (300 nm) had the highest fouling potential with respect to the TMP profile. The 80 nm membrane with a smoother surface and relatively uniform smaller pore openings experienced least membrane fouling with respect to TMP increase. The effects of the molecular weight distribution, particle size distribution and other biomass characteristics such as extracellular polymeric substances, zeta potential and capillary suction time, were also investigated in this study. Results showed that no significant differences of these attributes were observed. These observations indicate that the membrane surface properties are the dominant factors leading to different fouling potential in this study. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Source water quality shaping different fouling scenarios in a full-scale desalination plant at the Red Sea.

    PubMed

    Khan, Muhammad Tariq; Manes, Carmem-Lara de O; Aubry, Cyril; Croué, Jean-Philippe

    2013-02-01

    The complexity of Reverse Osmosis (RO) membrane fouling phenomenon has been widely studied and several factors influencing it have been reported by many researchers. This original study involves the investigation of two different fouling profiles produced at a seawater RO desalination plant installed on a floating mobile barge. The plant was moved along the coastline of the Red Sea in Saudi Arabia. The two locations where the barge was anchored showed different water quality. At the second location, two modules were harvested. One of the modules was pre-fouled by inorganics during plant operation at the previous site while the other was installed at the second site. Fouled membranes were subjected to a wide range of chemical and microbiological characterization procedures. Drastically different fouling patterns were observed in the two membranes which indicates the influence of source water quality on membrane surface modification and on fouling of RO membranes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Succession and physiological health of freshwater microalgal fouling in a Tasmanian hydropower canal.

    PubMed

    Perkins, Kathryn J; Andrewartha, Jessica M; McMinn, Andrew; Cook, Suellen S; Hallegraeff, Gustaaf M

    2010-08-01

    Freshwater microalgal biofouling in hydropower canals in Tarraleah, Tasmania, is dominated by a single diatom species, Gomphonema tarraleahae. The microfouling community is under investigation with the aim of reducing its impact on electricity generation. Species succession was investigated using removable glass slides. Fouled slides were examined microscopically and for chlorophyll a biomass. Chl a biomass increased steeply after 8 weeks (0.09-0.87 mg m(-2)), but increased much earlier on slides surrounded by a biofouled inoculum. Succession began with low profile diatoms such as Tabellaria flocculosa, progressing to stalked diatoms such as Gomphonema spp. and Cymbella aspera. Few chlorophytes and no filamentous algae were present. Pulse amplitude modulated fluorometry was used to measure the physiological health of fouling on the canal wall. Maximum quantum yield (F(v)/F(m)) measurements were consistently <0.18, indicating that the fouling mat consisted of dead or dying algae. The succession and physiological health of cells in the fouling community has broad implications for mitigation techniques used.

  6. The application of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the stratum corneum.

    PubMed

    Goh, Choon Fu; Craig, Duncan Q M; Hadgraft, Jonathan; Lane, Majella E

    2017-02-01

    Drug permeation through the intercellular lipids, which pack around and between corneocytes, may be enhanced by increasing the thermodynamic activity of the active in a formulation. However, this may also result in unwanted drug crystallisation on and in the skin. In this work, we explore the combination of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the skin. Ex vivo permeation studies of saturated solutions of diclofenac sodium (DF Na) in two vehicles, propylene glycol (PG) and dimethyl sulphoxide (DMSO), were carried out in porcine ear skin. Tape stripping and ATR-FTIR spectroscopy were conducted simultaneously to collect spectral data as a function of skin depth. Multivariate data analysis was applied to visualise and categorise the spectral data in the region of interest (1700-1500cm -1 ) containing the carboxylate (COO - ) asymmetric stretching vibrations of DF Na. Spectral data showed the redshifts of the COO - asymmetric stretching vibrations for DF Na in the solution compared with solid drug. Similar shifts were evident following application of saturated solutions of DF Na to porcine skin samples. Multivariate data analysis categorised the spectral data based on the spectral differences and drug crystallisation was found to be confined to the upper layers of the skin. This proof-of-concept study highlights the utility of ATR-FTIR spectroscopy in combination with multivariate data analysis as a simple and rapid approach in the investigation of drug deposition in the skin. The approach described here will be extended to the study of other actives for topical application to the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Numerical simulation of calcium sulfate (CaSO4) fouling in the plate heat exchanger

    NASA Astrophysics Data System (ADS)

    Xu, Zhiming; Zhao, Yu; Han, Zhimin; Wang, Jingtao

    2018-07-01

    Plate heat exchanger is a widely used apparatus in the industrial production processes. Through a numerical simulation method, this paper calculates the deposition rate of CaSO4 fouling on heat transfer surfaces of the plate heat exchanger under saturation in the bulk. The effects of CaSO4 concentration in the range 0.7 kg/m3 to 1.5 kg/m3, inlet flow velocity under turbulent flow, and the fluid's inlet temperature from 288 K to 328 K on the deposition rate, removal mass rate and fouling resistance are investigated. The simulation results are compared with the experimental results showing similar trend. The simulation results show that the concentration and the flow velocity affect significantly the fouling characteristics in the plate heat exchanger. The deposition mass rate, removal mass rate, and asymptotic value of fouling resistance all increase with the increase in CaSO4 concentration and the inlet temperature of the hot fluid, while the asymptotic value of fouling resistance decreases with the increasing of inlet flow velocity. The influence of the inlet temperature of cold fluid may be negligible.

  8. Research progress of nano self - cleaning anti-fouling coatings

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhao, Y. J.; Teng, J. L.; Wang, J. H.; Wu, L. S.; Zheng, Y. L.

    2018-01-01

    There are many methods of evaluating the performance of nano self-cleaning anti-fouling coatings, such as carbon blacking method, coating reflection coefficient method, glass microbead method, film method, contact angle and rolling angle method, organic degradation method, and the application of performance evaluation method in self-cleaning antifouling coating. For the more, the types of nano self-cleaning anti-fouling coatings based on aqueous media was described, such as photocatalytic self-cleaning coatings, silicone coatings, organic fluorine coatings, fluorosilicone coatings, fluorocarbon coatings, polysilazane self-cleaning coatings. The research and application of different kinds of nano self-cleaning antifouling coatings are anlysised, and the latest research results are summed.

  9. Membrane morphology and topology for fouling control in Reverse Osmosis filtration systems

    NASA Astrophysics Data System (ADS)

    Ling, Bowen; Battiato, Ilenia

    2017-11-01

    Reverse Osmosis Membrane (ROM) filtration systems are widely utilized in waste-water recovery, seawater desalination, landfill water treatment, etc. During filtration, the system performance is dramatically affected by membrane fouling which causes a significant decrease in permeate flux as well as an increase in the energy input required to operate the system. Design and optimization of ROM filtration systems aim at reducing membrane fouling by studying the coupling between membrane structure, local flow field and foulant adsorption patterns. Yet, current studies focus exclusively on oversimplified steady-state models that ignore any dynamic coupling between fluid flow and transport through the membrane. In this work, we develop a customized solver (SUMembraneFoam) under OpenFOAM to solve the transient equations. The simulation results not only predict macroscopic quantities (e.g. permeate flux, pressure drop, etc.) but also show an excellent agreement with the fouling patterns observed in experiments. It is observed that foulant deposition is strongly controlled by the local shear stress on the membrane, and channel morphology or membrane topology can be modified to control the shear stress distribution and reduce fouling. Finally, we identify optimal regimes for design.

  10. Comparison of power-plant condenser cooling-water fouling rates for spirally-indented and plain tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabas, T.; Panchal, C.; Sasscer, D.

    1991-01-01

    This paper presents the fouling rates for twelve TVA power-plant condensers, nine of which were retubed with an enhanced tube. The overall heat-transfer coefficients were calculated from logged field data taken over periods from one to ten years. The fouling resistances were calculated with the separate-resistance method and with a bundle correction factor to the condensing, single-tube Nusselt prediction. The fouling rates with the enhanced tubes ranged from about the same as to about twice that of the plain tubes. The thermal performance with the enhanced tubes remained superior to that obtained with plain-tubes for more than a year withoutmore » cleaning. After one year of operation, the enhanced-tube fouling resistance values were less than the minimum value of the TEMA Standards and the plain-tube fouling resistance values were always less than one half of this value. After shutdown cleaning, the thermal performance values for both tubes were restored to essentially the new, clean levels. 28 refs., 9 figs., 2 tabs.« less

  11. Characterization of Fouling at Field Test Sites of the ONR Biofouling Program: Background Information and Results for 2006-2007

    DTIC Science & Technology

    2008-10-01

    Crassostrea virginica, and Hydroides dianthus to fouling-release coatings. Biofouling 17:155-167. Meyer AE, Baier RE, King RW. 1988. Initial fouling...Truby K, Darkangelo Wood C. 2001. Variation in adhesion strength of Balanus eburneus, Crassostrea virginica, and Hydroides dianthus to fouling...strength of Balanus eburneus, Crassostrea virginica, and Hydroides dianthus to fouling-release coatings. Biofouling 17:155-167. Mook D. 1976. Studies of

  12. The impact of N,N-dimethyldodecylamine N-oxide (DDAO) concentration on the crystallisation of sodium dodecyl sulfate (SDS) systems and the resulting changes to crystal structure, shape and the kinetics of crystal growth.

    PubMed

    Summerton, Emily; Hollamby, Martin J; Zimbitas, Georgina; Snow, Tim; Smith, Andrew J; Sommertune, Jens; Bettiol, Jeanluc; Jones, Christopher; Britton, Melanie M; Bakalis, Serafim

    2018-05-19

    At low temperatures stability issues arise in commercial detergent products when surfactant crystallisation occurs, a process which is not currently well-understood. An understanding of the phase transition can be obtained using a simple binary SDS (sodium dodecyl sulfate) + DDAO (N,N-dimethyldodecylamine N-oxide) aqueous system. It expected that the crystallisation temperature of an SDS system can be lowered with addition of DDAO, thus providing a route to improve detergent stability. Detergent systems are typically comprised of anionic surfactants, non-ionic surfactants and water. This study explores the crystallisation of a three component system consisting of sodium dodecyl sulfate (SDS), N,N-dimethyldodecylamine N-oxide (DDAO), and water using wide-angle X-ray scattering (WAXS), differential scanning calorimetry (DSC) and confocal Raman microscopy. The presence of DDAO lowered the crystallisation temperature of a 20 wt% SDS system. For all aqueous mixtures of SDS + DDAO at low temperatures, SDS hydrated crystals, SDS.1/2H 2 O or SDS·H 2 O, formed. SDS hydrates comprising of layers of SDS separated by water layers. DDAO tended to reside in the vicinity of these SDS crystals. In the absence of DDAO an additional intermediary hydrate structure, SDS.1/8H 2 O, formed whereas for mixed SDS + DDAO systems no such structure was detected during crystallisation. Copyright © 2018. Published by Elsevier Inc.

  13. Fouling resilient perforated feed spacers for membrane filtration.

    PubMed

    Kerdi, Sarah; Qamar, Adnan; Vrouwenvelder, Johannes S; Ghaffour, Noreddine

    2018-04-24

    The improvement of feed spacers with optimal geometry remains a key challenge for spiral-wound membrane systems in water treatment due to their impact on the hydrodynamic performance and fouling development. In this work, novel spacer designs are proposed by intrinsically modifying cylindrical filaments through perforations. Three symmetric perforated spacers (1-Hole, 2-Hole, and 3-Hole) were in-house 3D-printed and experimentally evaluated in terms of permeate flux, feed channel pressure drop and membrane fouling. Spacer performance is characterized and compared with standard no perforated (0-Hole) design under constant feed pressure and constant feed flow rate. Perforations in the spacer filaments resulted in significantly lowering the net pressure drop across the spacer filled channel. The 3-Hole spacer was found to have the lowest pressure drop (50%-61%) compared to 0-Hole spacer for various average flow velocities. Regarding permeate flux production, the 0-Hole spacer produced 5.7 L m -2 .h -1 and 6.6 L m -2 .h -1 steady state flux for constant pressure and constant feed flow rate, respectively. The 1-Hole spacer was found to be the most efficient among the perforated spacers with 75% and 23% increase in permeate production at constant pressure and constant feed flow, respectively. Furthermore, membrane surface of 1-Hole spacer was found to be cleanest in terms of fouling, contributing to maintain higher permeate flux production. Hydrodynamic understanding of these perforated spacers is also quantified by performing Direct Numerical Simulation (DNS). The performance enhancement of these perforated spacers is attributed to the formation of micro-jets in the spacer cell that aided in producing enough unsteadiness/turbulence to clean the membrane surface and mitigate fouling phenomena. In the case of 1-Hole spacer, the unsteadiness intensity at the outlet of micro-jets and the shear stress fluctuations created inside the cells are higher than those

  14. What Lies Beneath? An Evaluation of Rapid Assessment Tools for Management of Hull Fouling

    NASA Astrophysics Data System (ADS)

    Clarke Murray, Cathryn; Therriault, Thomas W.; Pakhomov, Evgeny

    2013-08-01

    Despite an increased understanding of marine invasions, non-indigenous species (NIS) continue to be redistributed at both global and regional scales. Since prevention is an important element of NIS programs, monitoring vectors responsible for NIS introductions and spread, such as hull fouling, has become a priority and methods should be selected carefully to balance accuracy, time, and cost. Two common fouling assessment tools for the marine recreational boating vector were evaluated for accuracy using a traditional underwater SCUBA survey in coastal British Columbia: a dockside level of fouling assessment and a behavioral questionnaire model. Results showed that although rapid, dockside assessments did not provide an accurate assessment of fouling present below the surface, at least not in this region. In contrast, a questionnaire-based model using four easily obtained variables (boat type, age of antifouling paint, storage type, and occurrence of long distance trips) reliably identified boats carrying macrofouling species, a proxy for risk of NIS transport. Once validated, this fouling model tool could be applied in border inspection or quarantine situations where decisions must be made quickly. Further development and refinement of rapid assessment tools would improve our ability to prevent new introductions and manage spread of existing invasive species.

  15. What lies beneath? An evaluation of rapid assessment tools for management of hull fouling.

    PubMed

    Clarke Murray, Cathryn; Therriault, Thomas W; Pakhomov, Evgeny

    2013-08-01

    Despite an increased understanding of marine invasions, non-indigenous species (NIS) continue to be redistributed at both global and regional scales. Since prevention is an important element of NIS programs, monitoring vectors responsible for NIS introductions and spread, such as hull fouling, has become a priority and methods should be selected carefully to balance accuracy, time, and cost. Two common fouling assessment tools for the marine recreational boating vector were evaluated for accuracy using a traditional underwater SCUBA survey in coastal British Columbia: a dockside level of fouling assessment and a behavioral questionnaire model. Results showed that although rapid, dockside assessments did not provide an accurate assessment of fouling present below the surface, at least not in this region. In contrast, a questionnaire-based model using four easily obtained variables (boat type, age of antifouling paint, storage type, and occurrence of long distance trips) reliably identified boats carrying macrofouling species, a proxy for risk of NIS transport. Once validated, this fouling model tool could be applied in border inspection or quarantine situations where decisions must be made quickly. Further development and refinement of rapid assessment tools would improve our ability to prevent new introductions and manage spread of existing invasive species.

  16. Prevention of PVDF ultrafiltration membrane fouling by coating MnO2 nanoparticles with ozonation

    PubMed Central

    Yu, Wenzheng; Brown, Matthew; Graham, Nigel. J. D.

    2016-01-01

    Pre-treatment is normally required to reduce or control the fouling of ultrafiltration (UF) membranes in drinking water treatment process. Current pre-treatment methods, such as coagulation, are only partially effective to prevent long-term fouling. Since biological activities are a major contributor to accumulated fouling, the application of an oxidation/disinfection step can be an effective complement to coagulation. In this study, a novel pre-treatment method has been evaluated at laboratory scale consisting of the addition of low dose ozone into the UF membrane tank after coagulation and the use of a hollow-fibre membrane coated with/without MnO2 nanoparticles over a test period of 70 days. The results showed that there was minimal fouling of the MnO2 coated membrane (0.5 kPa for 70 days), while the uncoated membrane experienced both reversible and irreversible fouling. The difference was attributed to the greatly reduced presence of bacteria and organic matter because of the catalytic decomposition of ozone to hydroxyl radicals and increase of the hydrophilicity of the membrane surface. In particular, the MnO2 coated membrane had a much thinner cake layer, with significantly less polysaccharides and proteins, and much less accumulated organic matter within the membrane pores. PMID:27436142

  17. Exhaust Gas Recirculation Cooler Fouling in Diesel Applications: Fundamental Studies Deposit Properties and Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storey, John Morse; Sluder, Scott; Lance, Michael J

    2013-01-01

    This paper reports on the results of experimental efforts aimed at improving the understanding of the mechanisms and conditions at play in the fouling of EGR coolers. An experimental apparatus was constructed to utilize simplified surrogate heat exchanger tubes in lieu of full-size heat exchangers. The use of these surrogate tubes allowed removal of the tubes after exposure to engine exhaust for study of the deposit layer and its properties. The exhaust used for fouling the surrogate tubes was produced using a modern medium-duty diesel engine fueled with both ultra-low sulfur diesel and biodiesel blends. At long exposure times, nomore » significant difference in the fouling rate was observed between fuel types and HC levels. Surface coatings for the tubes were also evaluated to determine their impact on deposit growth. No surface treatment or coating produced a reduction in the fouling rate or any evidence of deposit removal. In addition, microstructural analysis of the fouling layers was performed using optical and electron microscopy in order to better understand the deposition mechanism. The experimental results are consistent with thermophoretic deposition for deposit formation, and van der Waals attraction between the deposit surface and exhaust-borne particulate.« less

  18. Prevention of PVDF ultrafiltration membrane fouling by coating MnO2 nanoparticles with ozonation

    NASA Astrophysics Data System (ADS)

    Yu, Wenzheng; Brown, Matthew; Graham, Nigel. J. D.

    2016-07-01

    Pre-treatment is normally required to reduce or control the fouling of ultrafiltration (UF) membranes in drinking water treatment process. Current pre-treatment methods, such as coagulation, are only partially effective to prevent long-term fouling. Since biological activities are a major contributor to accumulated fouling, the application of an oxidation/disinfection step can be an effective complement to coagulation. In this study, a novel pre-treatment method has been evaluated at laboratory scale consisting of the addition of low dose ozone into the UF membrane tank after coagulation and the use of a hollow-fibre membrane coated with/without MnO2 nanoparticles over a test period of 70 days. The results showed that there was minimal fouling of the MnO2 coated membrane (0.5 kPa for 70 days), while the uncoated membrane experienced both reversible and irreversible fouling. The difference was attributed to the greatly reduced presence of bacteria and organic matter because of the catalytic decomposition of ozone to hydroxyl radicals and increase of the hydrophilicity of the membrane surface. In particular, the MnO2 coated membrane had a much thinner cake layer, with significantly less polysaccharides and proteins, and much less accumulated organic matter within the membrane pores.

  19. Marine fouling release silicone/carbon nanotube nanocomposite coatings: on the importance of the nanotube dispersion state.

    PubMed

    Beigbeder, Alexandre; Mincheva, Rosica; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Claes, Michael; Dubois, Philippe

    2010-05-01

    The present work reports on the influence of the dispersion quality of multiwall carbon nanotubes (MWCNTs) in a silicone matrix on the marine fouling-release performance of the resulting nanocomposite coatings. A first set of coatings filled with different nanofiller contents was prepared by the dilution of a silicone/MWCNTs masterbatch within a hydrosilylation-curing polydimethylsiloxane resin. The fouling-release properties of the nanocomposite coatings were studied through laboratory assays with the marine alga (seaweed) Ulva, a common fouling species. As reported previously (see Ref. [19]), the addition of a small (0.05%) amount of carbon nanotubes substantially improves the fouling-release properties of the silicone matrix. This paper shows that this improvement is dependent on the amount of filler, with a maximum obtained with 0.1 wt% of multiwall carbon nanotubes (MWCNTs). The method of dispersion of carbon nanotubes in the silicone matrix is also shown to significantly (p = 0.05) influence the fouling-release properties of the coatings. Dispersing 0.1% MWCNTs using the masterbatch approach yielded coatings with circa 40% improved fouling-release properties over those where MWCNTs were dispersed directly in the polymeric matrix. This improvement is directly related to the state of nanofiller dispersion within the cross-linked silicone coating.

  20. Ceramic membrane fouling during ultrafiltration of oil/water emulsions: roles played by stabilization surfactants of oil droplets.

    PubMed

    Lu, Dongwei; Zhang, Tao; Ma, Jun

    2015-04-07

    Oil/water (O/W) emulsion stabilized by surfactants is the part of oily wastewater that is most difficult to handle. Ceramic membrane ultrafiltration presently is an ideal process to treat O/W emulsions. However, little is known about the fouling mechanism of the ceramic membrane during O/W emulsion treatment. This paper investigated how stabilization surfactants of O/W emulsions influence the irreversible fouling of ceramic membranes during ultrafiltration. An unexpected phenomenon observed was that irreversible fouling was much less when the charge of the stabilization surfactant of O/W emulsions is opposite to the membrane. The less ceramic membrane fouling in this case was proposed to be due to a synergetic steric effect and demulsification effect which prevented the penetration of oil droplets into membrane pores and led to less pore blockage. This proposed mechanism was supported by cross section images of fouled and virgin ceramic membranes taken with scanning electron microscopy, regression results of classical fouling models, and analysis of organic components rejected by the membrane. Furthermore, this mechanism was also verified by the existence of a steric effect and demulsification effect. Our finding suggests that ceramic membrane oppositely charged to the stabilization surfactant should be applied in ultrafiltration of O/W emulsions to alleviate irreversible membrane fouling. It could be a useful rule for ceramic membrane ultrafiltration of oily wastewater.

  1. Fouling analysis of membrane bioreactor treating antibiotic production wastewater at different hydraulic retention times.

    PubMed

    Yu, Dawei; Chen, Yutao; Wei, Yuansong; Wang, Jianxing; Wang, Yawei; Li, Kun

    2017-04-01

    Membrane fouling, including foulants and factors, was investigated during hydraulic retention time (HRT) optimization of a membrane bioreactor (MBR) that treated wastewater from the production of antibiotics. The results showed that HRT played an important role in membrane fouling. Trans-membrane pressure (TMP), membrane flux, and resistance were stable at -6 kPa, 76 L m -2  h -1  bar -1 , and 4.5 × 10 12  m -1 when HRT was at 60, 48, and 36 h, respectively. Using Fourier transform infrared spectroscopy, foulants were identified as carbohydrates and proteins, which correlated with effluent organic matter and effluent chemical oxygen demand (COD) compounds. Therefore, membrane fouling trends would benefit from low supernatant COD (378 mg L -1 ) and a low membrane removal rate (26 %) at a HRT of 36 h. Serious membrane fouling at 72 and 24 h was related to soluble microbial products and extracellular polymeric substances in mixed liquor, respectively. Based on the TMP decrease and flux recovery after physical and chemical cleaning, irremovable fouling aggravation was related to extracellular polymeric substances' increase and soluble microbial products' decrease. According to changes in the specific oxygen uptake rate (SOUR) and mixed liquor suspended solids (MLSSs) during HRT optimization in this study, antibiotic production wastewater largely inhibited MLSS growth, which only increased from 4.5 to 5.0 g L -1 when HRT was decreased from 72 to 24 h, but did not limit sludge activity. The results of a principal component analysis highlighted both proteins and carbohydrates in extracellular polymeric substances as the primary foulants. Membrane fouling associated with the first principal component was positively related to extracellular polymeric substances and negatively related to soluble microbial products. Principal component 2 was primarily related to proteins in the influent. Additional membrane fouling factors included biomass characteristics

  2. Electrografted diazonium salt layers for antifouling on the surface of surface plasmon resonance biosensors.

    PubMed

    Zou, Qiongjing; Kegel, Laurel L; Booksh, Karl S

    2015-02-17

    Electrografted diazonium salt layers on the surface of surface plasmon resonance (SPR) sensors present potential for a significant improvement in antifouling coatings. A pulsed potential deposition profile was used in order to circumvent mass-transport limitations for layer deposition rate. The influence of number of pulses with respect to antifouling efficacy was evaluated by nonspecific adsorption surface coverage of crude bovine serum proteins. Instead of using empirical and rough estimated values, the penetration depth and sensitivity of the SPR instrument were experimentally determined for the calculation of nonspecific adsorption surface coverage. This provides a method to better examine antifouling surface coatings and compare crossing different coatings and experimental systems. Direct comparison of antifouling performance of different diazonium salts was facilitated by a tripad SPR sensor design. The electrografted 4-phenylalanine diazonium chloride (4-APhe) layers with zwitterionic characteristic demonstrate ultralow fouling.

  3. [Effect of ozone on membrane fouling in water and wastewater treatment: a research review].

    PubMed

    Zhu, Hong-tao; Wen, Xiang-hua; Huang, Xia

    2009-01-01

    As a high efficient water and wastewater treatment technology, membrane filtration has been mainly used in wastewater treatment as membrane bioreactor, in reclaiming secondary effluent,treating surface water and potable water, and etc. Membrane fouling is a main obstacle to the wide application of membrane technology. Ozone has strong oxidizing power and has been utilized widely in water and wastewater treatment. In recent years, researches on combined process of ozone-membrane filtration are increasing. This paper does reviews and analysis of these researches. It is noticed that there has been a few of researches on the ozone treatment plus MBR process. Pre-ozonation of feed to MBR and slight ozonation of the mixed liquid in MBR may be used to relieve membrane fouling.Combined processes of ozone-membrane filtration can be divided into three classes in terms of the function of ozone and the system configuration: (1) cleaning the fouled membrane with ozone; (2) separate ozone-membrane filtration process; (3) integrated ozone-membrane filtration process. Although most reports supported that ozonation can control membrane fouling development,there were contrary results. At present, researches on the mechanisms of ozone's effect on membrane fouling control concentrated on the change of organic composition of the filtration influent under ozonation, however, particulate substances, microbial and inorganic substances may also be affected and then play roles in membrane fouling, depending on source water quality and process configuration. Moreover, there have not been common parameters to evaluate the ozone diffusion equipment and efficiency. The authors suggest that further researches should emphasize on integrated ozone-membrane process, and more attention should be paid to the cost-effectiveness of the combined process.

  4. Electro-Conductive Membranes for Permeation Enhancement and Fouling Mitigation: A Short Review

    PubMed Central

    Pantuso, Elvira; De Filpo, Giovanni; Nicoletta, Fiore Pasquale

    2017-01-01

    The research on electro-conductive membranes has expanded in recent years. These membranes have strong prospective as key components in next generation water treatment plants because they are engineered in order to enhance their performance in terms of separation, flux, fouling potential, and permselectivity. The present review summarizes recent developments in the preparation of electro-conductive membranes and the mechanisms of their response to external electric voltages in order to obtain an improvement in permeation and mitigation in the fouling growth. In particular, this paper deals with the properties of electro-conductive polymers and the preparation of electro-conductive polymer membranes with a focus on responsive membranes based on polyaniline, polypyrrole and carbon nanotubes. Then, some examples of electro-conductive membranes for permeation enhancement and fouling mitigation by electrostatic repulsion, hydrogen peroxide generation and electrochemical oxidation will be presented. PMID:28788091

  5. Self-Replenishing Vascularized Fouling-Release Surfaces

    DOE PAGES

    Howell, Caitlin; Vu, Thy L.; Lin, Jennifer J.; ...

    2014-08-13

    Inspired by the long-term effectiveness of living antifouling materials, we have developed a method for the selfreplenishment of synthetic biofouling-release surfaces. These surfaces are created by either molding or directly embedding 3D vascular systems into polydimethylsiloxane (PDMS) and filling them with a silicone oil to generate a nontoxic oil-infused material. When replenished with silicone oil from an outside source, these materials are capable of self-lubrication and continuous renewal of the interfacial fouling-release layer. Under accelerated lubricant loss conditions, fully infused vascularized samples retained significantly more lubricant than equivalent nonvascularized controls. Tests of lubricant-infused PDMS in static cultures of the infectiousmore » bacteria Staphylococcus aureus and Escherichia coli as well as the green microalgae Botryococcus braunii, Chlamydomonas reinhardtii, Dunaliella salina, and Nannochloropsis oculata showed a significant reduction in biofilm adhesion compared to PDMS and glass controls containing no lubricant. Further experiments on vascularized versus nonvascularized samples that had been subjected to accelerated lubricant evaporation conditions for up to 48 h showed significantly less biofilm adherence on the vascularized surfaces. These results demonstrate the ability of an embedded lubricant-filled vascular network to improve the longevity of fouling-release surfaces.« less

  6. Surface and anti-fouling properties of a polyampholyte hydrogel grafted onto a polyethersulfone membrane.

    PubMed

    Zhang, Wei; Yang, Zhe; Kaufman, Yair; Bernstein, Roy

    2018-05-01

    Zwitterion polymers have anti-fouling properties; therefore, grafting new zwitterions to surfaces, particularly as hydrogels, is one of the leading research directions for preventing fouling. Specifically, polyampholytes, polymers of random mixed charged subunits with a net-electric charge, offer a synthetically easy alternative for studying new zwitterions with a broad spectrum of charged moieties. Here, a novel polyampholyte hydrogel was grafted onto the surface of polyethersulfone membrane by copolymerizing a mixture of vinylsulfonic acid (VSA) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METMAC) as the negatively and positively charged monomers, respectively, using various monomer ratios in the polymerization solution, and with N,N'-methylenebisacrylamide as the crosslinker. The physicochemical, morphological and anti-fouling properties of the modified membranes were systematically investigated. Hydrophilic hydrogels were successfully grafted using monomers at different molar ratios. A thin-film zwitterion hydrogel (∼90 nm) was achieved at a 3:1 [VSA:METMAC] molar ratio in the polymerization solution. Among all examined membranes, the zwitterion polyampholyte-modified membrane demonstrated the lowest adsorption of proteins, humic acid, and sodium alginate. It also had low fouling and high flux recovery following filtration with a protein or with an extracellular polymeric substance solution. These findings suggest that this polyampholyte hydrogel is applicable as a low fouling surface coating. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes by protein mixtures: the role of inter-foulant-species interaction.

    PubMed

    Wang, Yi-Ning; Tang, Chuyang Y

    2011-08-01

    Protein fouling of nanofiltration (NF), reverse osmosis (RO), and ultrafiltration (UF) membranes by bovine serum albumin (BSA), lysozyme (LYS), and their mixture was investigated under cross-flow conditions. The effect of solution chemistry, membrane properties, and permeate flux level was systematically studied. When the solution pH was within the isoelectric points (IEPs) of the two proteins (i.e., pH 4.7-10.4), the mixed protein system experienced more severe flux decline compared to the respective single protein systems, which may be attributed to the electrostatic attraction between the negatively charged BSA and positively charged LYS molecules. Unlike a typical single protein system, membrane fouling by BSA-LYS mixture was only weakly dependent on solution pH within this pH range, and increased ionic strength was found to enhance the membrane flux as a result of the suppressed BSA-LYS electrostatic attraction. Membrane fouling was likely controlled by foulant-fouled-membrane interaction under severe fouling conditions (elevated flux level and unfavorable solution chemistry that promotes fouling), whereas it was likely dominated by foulant-clean-membrane interaction under mild fouling conditions. Compared to nonporous NF and RO membranes, the porous UF membrane was more susceptible to dramatic flux decline due to the increased risk of membrane pore plugging. This study reveals that membrane fouling by mixed macromolecules may behave very differently from that by typical single foulant system, especially when the inter-foulant-species interaction dominates over the intra-species interaction in the mixed foulant system.

  8. Influence of solids retention time on membrane fouling: characterization of extracellular polymeric substances and soluble microbial products.

    PubMed

    Duan, Liang; Tian, Zhiyong; Song, Yonghui; Jiang, Wei; Tian, Yuan; Li, Shan

    2015-01-01

    The objective of this study was to investigate the influence of solids retention time (SRT) on membrane fouling and the characteristics of biomacromolecules. Four identical laboratory-scale membrane bioreactors (MBRs) were operated with SRTs for 10, 20, 40 and 80 days. The results indicated that membrane fouling occurred faster and more readily under short SRTs. Fouling resistance was the primary source of filtration resistance. The modified fouling index (MFI) results suggested that the more ready fouling at short SRTs could be attributed to higher concentrations of soluble microbial products (SMP). Fourier transform infrared (FTIR) spectra indicated that the SRT had a weak influence on the functional groups of the total extracellular polymeric substances (TEPS) and SMP. However, the MBR under a short SRT had more low-molecular-weight (MW) compounds (<1 kDa) and fewer high-MW compounds (>100 kDa). Aromatic protein and tryptophan protein-like substances were the dominant groups in the TEPS and SMP, respectively.

  9. Thermodynamic analysis of effects of contact angle on interfacial interactions and its implications for membrane fouling control.

    PubMed

    Chen, Jianrong; Shen, Liguo; Zhang, Meijia; Hong, Huachang; He, Yiming; Liao, Bao-Qiang; Lin, Hongjun

    2016-02-01

    Concept of hydrophobicity always fails to accurately assess the interfacial interaction and membrane fouling, which calls for reliable parameters for this purpose. In this study, effects of contact angle on interfacial interactions related to membrane fouling were investigated based on thermodynamic analysis. It was found that, total interaction energy between sludge foulants and membrane monotonically decreases and increases with water and glycerol contact angle, respectively, indicating that these two parameters can be reliable indicators predicting total interaction energy and membrane fouling. Membrane roughness decreases interaction strength for over 20 times, and effects of membrane roughness on membrane fouling should consider water and glycerol contact angle on membrane. It was revealed existence of a critical water and glycerol contact angle for a given membrane bioreactor. Meanwhile, diiodomethane contact angle has minor effect on the total interaction, and cannot be regarded as an effective indicator assessing interfacial interactions and membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. [Application of chemical ecology in controlling marine fouling organisms].

    PubMed

    Fang, Fang; Yan, Tao; Liu, Qing

    2005-10-01

    Many marine organisms can produce secondary metabolites beneficial to the protection of marine environments against fouling, and thus, applying chemo-ecological methods to extract the natural antifoulants from marine organisms to resolve the problems relevant to marine fouling is a new thinking in resent years. Its aim is to search for high efficient and non-toxic antifoulants to replace the existing chemically synthetic ones which are unfortunately found to have widespread toxic effects on marine environment. Although we know few about the antifouling mechanisms of secondary metabolites, many natural products have been proved to have antifouling activity. Therefore, basic and applied researches on the ecological roles of these natural compounds, their action mechanisms, coating compatibility, controlled release, and field test are required in the future.

  11. Effect of membrane bioreactor solids retention time on reverse osmosis membrane fouling for wastewater reuse.

    PubMed

    Farias, Elizabeth L; Howe, Kerry J; Thomson, Bruce M

    2014-02-01

    The effect of the solids retention time (SRT) in a membrane bioreactor (MBR) on the fouling of the membranes in a subsequent reverse osmosis (RO) process used for wastewater reuse was studied experimentally using a pilot-scale treatment system. The MBR-RO pilot system was fed effluent from the primary clarifiers at a large municipal wastewater treatment plant. The SRT in the MBRs was adjusted to approximately 2, 10, and 20 days in three experiments. The normalized specific flux through the MBR and RO membranes was evaluated along with inorganic and organic constituents in the influent and effluent of each process. Increasing the SRT in the MBR led to an increase in the removal of bulk DOC, protein, and carbohydrates, as has been observed in previous studies. Increasing the SRT led to a decrease in the fouling of the MBR membranes, which is consistent with previous studies. However, the opposite trend was observed for fouling of the RO membranes; increasing the SRT of the MBR resulted in increased fouling of the RO membranes. These results indicate that the constituents that foul MBR membranes are not the same as those that foul RO membranes; to be an RO membrane foulant in a MBR-RO system, the constituents must first pass through the MBR membranes without being retained. Thus, an intermediate value of SRT may be best choice of operating conditions in an MBR when the MBR is followed by RO for wastewater reuse. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Genome Sequence of a Byssochlamys sp. Strain Isolated from Fouled B20 Biodiesel

    PubMed Central

    Andrade, Oderay C.; Lyon, Wanda J.; Floyd, James G.; Nunn, Heather S.; Bojanowski, Caitlin L.

    2018-01-01

    ABSTRACT Byssochlamys sp. strain AF001 is a filamentous fungus isolated from fouled B20 biodiesel. Its growth on B20 biodiesel results in the degradation and fouling of the fuel and higher rates of corrosion in affected storage tanks. The genome of Byssochlamys sp. AF001 is 35.9 Mbp and is composed of 10 scaffolds, with a G+C content of 45.89%. PMID:29496830

  13. 76 FR 76896 - International Anti-Fouling System Certificate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-09

    ...-fouling System (IAFS) Certificate to the list of certificates a recognized classification society may..., 2001. This final rule will enable recognized classification societies to apply to the Coast Guard for... the Coast Guard to authorize recognized classification societies to issue IAFS Certificates...

  14. Integrated approach to characterize fouling on a flat sheet membrane gravity driven submerged membrane bioreactor.

    PubMed

    Fortunato, Luca; Jeong, Sanghyun; Wang, Yiran; Behzad, Ali R; Leiknes, TorOve

    2016-12-01

    Fouling in membrane bioreactors (MBR) is acknowledged to be complex and unclear. An integrated characterization methodology was employed in this study to understand the fouling on a gravity-driven submerged MBR (GD-SMBR). It involved the use of different analytical tools, including optical coherence tomography (OCT), liquid chromatography with organic carbon detection (LC-OCD), total organic carbon (TOC), flow cytometer (FCM), adenosine triphosphate analysis (ATP) and scanning electron microscopy (SEM). The three-dimensional (3D) biomass morphology was acquired in a real-time through non-destructive and in situ OCT scanning of 75% of the total membrane surface directly in the tank. Results showed that the biomass layer was homogeneously distributed on the membrane surface. The amount of biomass was selectively linked with final destructive autopsy techniques. The LC-OCD analysis indicated the abundance of low molecular weight (LMW) organics in the fouling composition. Three different SEM techniques were applied to investigate the detailed fouling morphology on the membrane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Assessing the role of feed water constituents in irreversible membrane fouling of pilot-scale ultrafiltration drinking water treatment systems.

    PubMed

    Peiris, R H; Jaklewicz, M; Budman, H; Legge, R L; Moresoli, C

    2013-06-15

    Fluorescence excitation-emission matrix (EEM) approach together with principal component analysis (PCA) was used for assessing hydraulically irreversible fouling of three pilot-scale ultrafiltration (UF) systems containing full-scale and bench-scale hollow fiber membrane modules in drinking water treatment. These systems were operated for at least three months with extensive cycles of permeation, combination of back-pulsing and scouring and chemical cleaning. The principal component (PC) scores generated from the PCA of the fluorescence EEMs were found to be related to humic substances (HS), protein-like and colloidal/particulate matter content. PC scores of HS- and protein-like matter of the UF feed water, when considered separately, showed reasonably good correlations with the rate of hydraulically irreversible fouling for long-term UF operations. In contrast, comparatively weaker correlations for PC scores of colloidal/particulate matter and the rate of hydraulically irreversible fouling were obtained for all UF systems. Since, individual correlations could not fully explain the evolution of the rate of irreversible fouling, multi-linear regression models were developed to relate the combined effect of HS-like, protein-like and colloidal/particulate matter PC scores to the rate of hydraulically irreversible fouling for each specific UF system. These multi-linear regression models revealed significant individual and combined contribution of HS- and protein-like matter to the rate of hydraulically irreversible fouling, with protein-like matter generally showing the greatest contribution. The contribution of colloidal/particulate matter to the rate of hydraulically irreversible fouling was not as significant. The addition of polyaluminum chloride, as coagulant, to UF feed appeared to have a positive impact in reducing hydraulically irreversible fouling by these constituents. The proposed approach has applications in quantifying the individual and synergistic

  16. Mechanistic modeling of the loss of protein sieving due to internal and external fouling of microfilters.

    PubMed

    Bolton, Glen R; Apostolidis, Alex J

    2017-09-01

    Fed-batch and perfusion cell culture processes used to produce therapeutic proteins can use microfilters for product harvest. In this study, new explicit mathematical models of sieving loss due to internal membrane fouling, external membrane fouling, or a combination of the two were generated. The models accounted for membrane and cake structures and hindered solute transport. Internal membrane fouling was assumed to occur due to the accumulation of foulant on either membrane pore walls (pore-retention model) or membrane fibers (fiber-retention model). External cake fouling was assumed to occur either by the growth of a single incompressible cake layer (cake-growth) or by the accumulation of a number of independent cake layers (cake-series). The pore-retention model was combined with either the cake-series or cake-growth models to obtain models that describe internal and external fouling occurring either simultaneously or sequentially. The models were tested using well-documented sieving decline data available in the literature. The sequential pore-retention followed by cake-growth model provided a good fit of sieving decline data during beer microfiltration. The cake-series and cake-growth models provided good fits of sieving decline data during the microfiltration of a perfusion cell culture. The new models provide insights into the mechanisms of fouling that result in the loss of product sieving. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1323-1333, 2017. © 2017 American Institute of Chemical Engineers.

  17. Electrostatic interactions as governing the fouling in protein microfiltration

    NASA Astrophysics Data System (ADS)

    Ouammou, M.; Tijani, N.; Calvo, J. I.; Palacio, L.; Prádanos, P.; Hernández, A.

    2005-03-01

    The influence of pH and electrostatic interactions on the fouling mechanism during protein dead-end microfiltration (MF) has been investigated for two charged membranes. Polyethersulfone acidic membranes (ICE-450), being negatively charged, and basic ones (SB-6407), these positively charged, both from Pall Co., have been used in the investigations. BSA and Lysozyme solutions at different pH values (3.0, 5.0, 7.0, 8.5 and 10.0) were microfiltered through the membranes at a constant applied transmembrane pressure. Results have been analysed in terms of usual blocking filtration laws and a substantial change in the fouling behaviour has been observed when solution pH and/or membrane charge as the pressure was changed, this change being clearly related with the specific membrane-protein and protein-protein interactions.

  18. Estimation of the nucleation kinetics for the anti-solvent crystallisation of paracetamol in methanol/water solutions

    NASA Astrophysics Data System (ADS)

    Ó'Ciardhá, Clifford T.; Frawley, Patrick J.; Mitchell, Niall A.

    2011-08-01

    In this work the primary nucleation kinetics have been estimated for the anti-solvent crystallisation of paracetamol in methanol-water solutions from metastable zone widths (MSZW) and induction times at 25 °C. Laser back-scattering via a focused beam reflectance Measurement (FBRM ®) is utilised to detect the onset of nucleation. The theoretical approach of Kubota was employed to estimate the nucleation kinetics, which accounts for the sensitivity of the nucleation detection technique. This approach is expanded in this work to analyse the induction time for an anti-solvent crystallisation process. Solvent composition is known to have a significant impact on the measured induction times and MSZW. The induction time in this paper was measured from 40% to 70% mass water and the MSZW is measured from 40% to 60% mass water. The primary focus of the paper was to gauge the extent of how solvent composition affects nucleation kinetics so that this effect may be incorporated into a population balance model. Furthermore, the effects of solvent composition on the estimated nucleation rates are investigated. The primary nucleation rates were found to decrease with dynamic solvent composition, with the extent of their reduction linked to the gradient of the solubility curve. Finally, both MSZW and induction time methods have been found to produce similar estimates for the nucleation parameters.

  19. Environmentally benign sol-gel antifouling and foul-releasing coatings.

    PubMed

    Detty, Michael R; Ciriminna, Rosaria; Bright, Frank V; Pagliaro, Mario

    2014-02-18

    Biofouling on ships and boats, characterized by aquatic bacteria and small organisms attaching to the hull, is an important global issue, since over 80000 tons of antifouling paint is used annually. This biofilm, which can form in as little as 48 hours depending on water temperature, increases drag on watercraft, which greatly reduces their fuel efficiency. In addition, biofouling can lead to microbially induced corrosion (MIC) due to H2S formed by the bacteria, especially sulfate-reducing bacteria. When the International Maritime Organization (IMO) international convention banned the use of effective but environmentally damaging coatings containing tributyl tin in 2008, the development of clean and effective antifouling systems became more important than ever. New nonbiocidal coatings are now in high demand. Scientists have developed new polymers, materials, and biocides, including new elastomeric coatings that they have obtained by improving the original silicone (polydimethylsiloxane) formulation patented in 1975. However, the high cost of silicones, especially of fluoropolymer-modified silicones, has generally prevented their large-scale diffusion. In 2009, traditional antifouling coatings using cuprous oxide formulated in copolymer paints still represented 95% of the global market volume of anti-fouling paints. The sol-gel nanochemistry approach to functional materials has emerged as an attractive candidate for creating low fouling surfaces due to the unique structure and properties of silica-based coatings and of hybrid inorganic-organic silicas in particular. Sol-gel formulations easily bind to all types of surfaces, such as steel, fiberglass, aluminum, and wood. In addition, they can cure at room temperature and form thin glassy coatings that are markedly different from thick silicone elastomeric foul-releasing coatings. Good to excellent performance against biofouling, low cure temperatures, enhanced and prolonged chemical and physical stability, ease of

  20. [Effect of Membrane Wettability on Membrane Fouling and Chemical Durability of SPG Membranes].

    PubMed

    Zhang, Jing; Xiao, Tai-min; Zhang, Jing; Cao, Li-ya; Du, Ya-wei; Liu, Chun; Zhang, Lei

    2015-05-01

    Shirasu porous glass (SPG) membranes have been applied for microbubble aeration in aerobic wastewater treatment. In the present study, both hydrophilic and hydrophobic SPG membranes were used in a microbubble-aerated biofilm reactor with online chemical cleaning, and their membrane fouling and chemical durability were determined to be strongly dependent on the membrane wettability. The fouling layer formed on the surface of both membranes was confirmed to be mainly organic fouling, and the hydrophobic membrane showed a relatively stronger resistance to the organic fouling. The severe chemical corrosion of the hydrophilic membrane was observed due to exposure to the alkaline sodium hypochlorite solution used for chemical cleaning, which resulted in significant increases in the median pore diameter and the porosity. On the other hand, the pore structure of the hydrophobic membrane changed slightly when exposed to the alkaline sodium hypochlorite solution, suggesting its strong alkali-resistance due to the non-wetting surface. However, the surface hydrophobic groups of hydrophobic membrane could be oxidized by sodium hypochlorite solution, resulting in more wettable membrane surface. The hydrophobic membrane also showed better performance in the respects of oxygen transfer, contaminant removal and energy-saving. Therefore, the hydrophobic membrane seemed more appropriate to be applied for microbubble aeration in aerobic wastewater treatment process.

  1. Effect of Pre-Ozonation and UF Membrane Modification with CNT on Fouling Control

    NASA Astrophysics Data System (ADS)

    Wang, Kailun; Guan, Yuqi; Zhu, Xuedong; Dong, Dan; Guo, Jin

    2018-01-01

    The effect of carbon nanotubes (CNT) modification on ultrafiltration membrane fouling control was explored. Three kinds of base membrane were chosen in the study: 20 kDa polysulfone (PS) membrane, 20 kDa and 100 kDa polyethersulfone (PES) membrane. Besides, the effect of pre-ozonation on the three CNT modified membranes for fouling alleviation was further studied. CNT modification presented antifouling properties at the beginning of filtration, while the recoverability of the CNT modified membranes are relatively lower as for the blocking of CNT layer by foulants. Pre-ozonation with a lower ozone concentration (0.25 mgO3/mgDOC) did not efficiently alleviate the fouling of CNT modified membranes. With the ozone concentration increased to 0.81 mgO3/mgDOC, the CNT modified membranes exhibited their higher antifouling properties. Water quality analysis results showed that CNT modification presented a higher capture ability for the humic-like and protein-like substances. After pre-ozonation, more organic materials could be retained in the interior of CNT layer, which decreased the fouling of base membranes and increased the permeate quality as well. Base membrane with large molecular size cut-off is more helpful for the synergistic effect of pre-ozonation and CNT modification.

  2. Effect of hydraulically reversible and hydraulically irreversible fouling on the removal of MS2 and φX174 bacteriophage by an ultrafiltration membrane.

    PubMed

    ElHadidy, Ahmed M; Peldszus, Sigrid; Van Dyke, Michele I

    2014-09-15

    The effect of membrane fouling on the removal of enteric virus surrogates MS2 and φX174 bacteriophage by an ultrafiltration membrane was assessed under simulated full-scale drinking water treatment operating conditions. Filtration experiments of up to 8 days using either river or lake water ascertained how the membrane fouling layer affected virus removal. Organic carbon fractionation techniques identified potential foulants, including biopolymers, in the feed water and in the permeate. Hydraulically irreversible fouling could greatly improve the removal of both viruses at moderate and severe fouling conditions by up to 2.5 logs. Hydraulically reversible fouling increased virus removal only slightly, and increased removal of >0.5 log for both phage were only obtained under severe fouling conditions. The increase in virus removal due to irreversible and reversible fouling differed between the two water sources. As the degree of fouling increased, differences between the removal of the two phage decreased. Maintenance cleaning partially removed membrane foulants, however virus removal following maintenance cleaning was lower than that of the fouled membrane, it remained higher than that of the clean membrane. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A Dual-Porosity, In Situ Crystallisation Model For Fast-Spreading Mid-Ocean Ridge Magma Chambers Based Upon Direct Observation From Hess Deep

    NASA Astrophysics Data System (ADS)

    MacLeod, C. J.; Lissenberg, C. J.

    2014-12-01

    We propose a revised magma chamber model for fast-spreading mid-ocean ridges based upon a synthesis of new data from a complete section of lower crust from the East Pacific Rise, reconstructed from samples collected from the Hess Deep rift valley during cruise JC21. Our investigation includes detailed sampling across critical transitions in the upper part of the plutonic section, including the inferred axial melt lens (AML) within the dyke-gabbro transition. We find that an overall petrological progression, from troctolite and primitive gabbro at the base up into evolved (oxide) gabbro and gabbronorite at the top of the lower crustal section, is mirrored by a progressive upward chemical fractionation as recorded in bulk rock and mineral compositions. Crystallographic preferred orientations measured using EBSD show that the downward increase in deformation of mush required in crystal subsidence models is not observed. Together these observations are consistent only with a model in which crystallisation of upward migrating evolving melts occurs in situ in the lower crust. Over-enrichment in incompatible trace element concentrations and ratios above that possible by fractional crystallisation is ubiquitous. This implies redistribution of incompatible trace elements in the lower crust by low porosity, near-pervasive reactive porous flow of interstitial melt moving continuously upward through the mush pile. Mass balance calculations reveal a significant proportion of this trace element enriched melt is trapped at mid-crustal levels. Mineral compositions in the upper third to half of the plutonic section are too evolved to represent the crystal residues of MORB. Erupted MORB therefore must be fed from melts sourced in the deeper part of the crystal mush pile, and which must ascend rapidly without significant modification in the upper plutonics or AML. From physical models of mush processes we posit that primitive melts are transported through transient, high porosity

  4. Effects of physical and chemical aspects on membrane fouling and cleaning using interfacial free energy analysis in forward osmosis.

    PubMed

    Zhang, Wanzhu; Dong, Bingzhi

    2018-05-20

    Natural organic matter (NOM) in micro-polluted water purification using membranes is a critical issue to handle. Understanding the fouling mechanism in the forward osmosis (FO) process, particularly identifying the predominant factor that controls membrane fouling, could have significant effects on exerting the advantages of FO technique. Cellulose triacetate no-woven (CTA-NW) membrane is applied to experiments with a high removal efficiency (> 99%) for the model foulant. Tannic acid (TA) is used as a surrogate foulant for NOM in the membrane fouling process, thus enabling the analysis of the effects of physical and chemical aspects of water flux, retention, and adsorption. The membrane fouling behavior is affected mainly by the combined effects of the osmotic dragging force and the interaction of the pH in the working solution, foulants, and calcium ions, as demonstrated by the water flux loss and the changes of membrane retention and adsorption. The fouled CTA-NW membrane (in PRO mode) could be flux-recovered by > 85% through physical cleaning methods. The interfacial free energy analysis theory was used to analyze the membrane fouling behavior with calculating the interfacial cohesion and adhesion free energies. The cohesion free energy refers to the deposition of foulants (TA or TA combined with calcium ions) on a fouled membrane. In addition, the adhesion free energy could be used to evaluate the interaction between foulants and a clean membrane.

  5. The effect of engine operating conditions on exhaust gas recirculation cooler fouling

    DOE PAGES

    Lance, Michael J.; Mills, Zachary G.; Seylar, Joshua C.; ...

    2018-05-17

    Exhaust gas recirculation (EGR) cooler fouling occurs when particulate matter (PM) and hydrocarbons (HC) in diesel exhaust form a deposit on the walls of the EGR cooler through thermophoresis and condensation. To better understand the mechanisms controlling deposit formation and removal and how operating conditions can affect cooler performance, 20 identical tube-in-shell EGR coolers with sinusoidal fins were fouled using a 5-factor, 3-level experimental design. The deposit thickness was measured using two methods: (1) epoxy-mounting and polishing cooler cross-sections and comparing deposit thicknesses on the primary (outer tube) to the secondary (fins) heat transfer surfaces, and (2) milling tube sectionsmore » such that the surface of a fin could be observed and measuring the deposit thickness across the fin using a 3D profilometer. Near the cooler inlet, high inlet gas temperatures reduced deposit thickness by promoting mud-cracking and spallation. Near the middle of the cooler, the flow rate had the largest impact on the deposit thickness through the effect on residence time of the PM. The HC concentration along with flow rate had the largest effects near the cooler outlet where the lower temperatures allows for more HC condensation. Furthermore, these insights into how engine operating conditions influence the development of fouling layers in EGR coolers learned through this study will aid in the development of more fouling resistant coolers in the future.« less

  6. The effect of engine operating conditions on exhaust gas recirculation cooler fouling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lance, Michael J.; Mills, Zachary G.; Seylar, Joshua C.

    Exhaust gas recirculation (EGR) cooler fouling occurs when particulate matter (PM) and hydrocarbons (HC) in diesel exhaust form a deposit on the walls of the EGR cooler through thermophoresis and condensation. To better understand the mechanisms controlling deposit formation and removal and how operating conditions can affect cooler performance, 20 identical tube-in-shell EGR coolers with sinusoidal fins were fouled using a 5-factor, 3-level experimental design. The deposit thickness was measured using two methods: (1) epoxy-mounting and polishing cooler cross-sections and comparing deposit thicknesses on the primary (outer tube) to the secondary (fins) heat transfer surfaces, and (2) milling tube sectionsmore » such that the surface of a fin could be observed and measuring the deposit thickness across the fin using a 3D profilometer. Near the cooler inlet, high inlet gas temperatures reduced deposit thickness by promoting mud-cracking and spallation. Near the middle of the cooler, the flow rate had the largest impact on the deposit thickness through the effect on residence time of the PM. The HC concentration along with flow rate had the largest effects near the cooler outlet where the lower temperatures allows for more HC condensation. Furthermore, these insights into how engine operating conditions influence the development of fouling layers in EGR coolers learned through this study will aid in the development of more fouling resistant coolers in the future.« less

  7. Full-scale simulation of seawater reverse osmosis desalination processes for boron removal: Effect of membrane fouling.

    PubMed

    Park, Pyung-Kyu; Lee, Sangho; Cho, Jae-Seok; Kim, Jae-Hong

    2012-08-01

    The objective of this study is to further develop previously reported mechanistic predictive model that simulates boron removal in full-scale seawater reverse osmosis (RO) desalination processes to take into account the effect of membrane fouling. Decrease of boron removal and reduction in water production rate by membrane fouling due to enhanced concentration polarization were simulated as a decrease in solute mass transfer coefficient in boundary layer on membrane surface. Various design and operating options under fouling condition were examined including single- versus double-pass configurations, different number of RO elements per vessel, use of RO membranes with enhanced boron rejection, and pH adjustment. These options were quantitatively compared by normalizing the performance of the system in terms of E(min), the minimum energy costs per product water. Simulation results suggested that most viable options to enhance boron rejection among those tested in this study include: i) minimizing fouling, ii) exchanging the existing SWRO elements to boron-specific ones, and iii) increasing pH in the second pass. The model developed in this study is expected to help design and optimization of the RO processes to achieve the target boron removal at target water recovery under realistic conditions where membrane fouling occurs during operation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors

    PubMed Central

    Huang, Jian; Wang, Zhiwei; Zhang, Junyao; Zhang, Xingran; Ma, Jinxing; Wu, Zhichao

    2015-01-01

    Membrane fouling remains an obstacle to wide-spread applications of membrane bioreactors (MBRs) for wastewater treatment and reclamation. Herein, we report a simple method to prepare a composite conductive microfiltration (MF) membrane by introducing a stainless steel mesh into a polymeric MF membrane and to effectively control its fouling by applying an external electric field. Linear sweep voltammetry and electrochemical impedance spectroscopy analyses showed that this conductive membrane had very good electrochemical properties. Batch tests demonstrated its anti-fouling ability in filtration of bovine serum albumin, sodium alginate, humic acid and silicon dioxide particles as model foulants. The fouling rate in continuous-flow MBRs treating wastewater was also decreased by about 50% for this conductive membrane with 2 V/cm electric field compared to the control test during long-term operation. The enhanced electrostatic repulsive force between foulants and membrane, in-situ cleaning by H2O2 generated from oxygen reduction, and decreased production of soluble microbial products and extracellular polymeric substances contributed to fouling mitigation in this MBR. The results of this study shed light on the control strategy of membrane fouling for achieving a sustainable operation of MBRs. PMID:25784160

  9. Pre-treatment for ultrafiltration: effect of pre-chlorination on membrane fouling

    NASA Astrophysics Data System (ADS)

    Yu, Wenzheng; Xu, Lei; Graham, Nigel; Qu, Jiuhui

    2014-10-01

    Microbial effects are believed to be a major contributor to membrane fouling in drinking water treatment. Sodium hypochlorite (NaClO) is commonly applied in membrane cleaning, but its potential use as a pretreatment for controlling operational fouling has received little attention. In this study, the effect of adding a continuous low dose of NaClO (1 mg/l as active Cl) in combination with alum, before ultrafiltration, was compared with only alum as pretreatment. The results showed that the addition of NaClO substantially reduced membrane fouling both in terms of the rate of TMP development and the properties of the membrane cake layer. Although the size of nano-scale primary coagulant flocs changed little by the addition of NaClO, the cake layer on the membrane had a greater porosity and a substantially reduced thickness. NaClO was found to inactivate bacteria in the influent flow, which reduced both microbial proliferation and the production of proteins and polysaccharides in the cake layer and contributed significantly to improving the overall ultrafiltration performance. NaClO dosing had no adverse impact on the formation of currently regulated disinfection by-product compounds (THMs and HAAs).

  10. Comparison and Analysis of Membrane Fouling between Flocculent Sludge Membrane Bioreactor and Granular Sludge Membrane Bioreactor

    PubMed Central

    Zhi-Qiang, Chen; Jun-Wen, Li; Yi-Hong, Zhang; Xuan, Wang; Bin, Zhang

    2012-01-01

    The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs), two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates. PMID:22859954

  11. Characteristics and composition of fouling caused by pig slurry in a tubular heat exchanger--recommended cleaning systems.

    PubMed

    Cunault, C; Coquinot, Y; Burton, C H; Picard, S; Pourcher, A M

    2013-03-15

    The structure and composition of the fouling deposits caused by pig slurry heated in a tubular heat exchanger were characterized to understand their formation and thus be able to minimize fouling and define effective routine cleaning methods. Two temperatures (55 °C and 80 °C) were investigated. Two types of fouling were identified: organic/mineral and biofilm. The first only formed at temperatures above 50 °C, often during the heating phase, and was the main problem encountered in treatments at 80 °C. Organic/mineral deposits formed a thin compact sub-layer and a thick porous top layer composed of 67-76% minerals, 9-15% proteins, 8-20% carbohydrates and 0-5% fats. Biofilms formed at temperatures between 25 °C and 70 °C in both the cooling and heating sections of the exchanger. This type of fouling predominated at temperatures below 55 °C. The biofilm covered a thin mineral base layer. Strongly acidic or alkaline washing cycle are recommended to clean Type I deposits, while in-line gas-rumbling is recommended for Type II fouling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Prediction of Agglomeration, Fouling, and Corrosion Tendency of Fuels in CFB Co-Combustion

    NASA Astrophysics Data System (ADS)

    Barišć, Vesna; Zabetta, Edgardo Coda; Sarkki, Juha

    Prediction of agglomeration, fouling, and corrosion tendency of fuels is essential to the design of any CFB boiler. During the years, tools have been successfully developed at Foster Wheeler to help with such predictions for the most commercial fuels. However, changes in fuel market and the ever-growing demand for co-combustion capabilities pose a continuous need for development. This paper presents results from recently upgraded models used at Foster Wheeler to predict agglomeration, fouling, and corrosion tendency of a variety of fuels and mixtures. The models, subject of this paper, are semi-empirical computer tools that combine the theoretical basics of agglomeration/fouling/corrosion phenomena with empirical correlations. Correlations are derived from Foster Wheeler's experience in fluidized beds, including nearly 10,000 fuel samples and over 1,000 tests in about 150 CFB units. In these models, fuels are evaluated based on their classification, their chemical and physical properties by standard analyses (proximate, ultimate, fuel ash composition, etc.;.) alongside with Foster Wheeler own characterization methods. Mixtures are then evaluated taking into account the component fuels. This paper presents the predictive capabilities of the agglomeration/fouling/corrosion probability models for selected fuels and mixtures fired in full-scale. The selected fuels include coals and different types of biomass. The models are capable to predict the behavior of most fuels and mixtures, but also offer possibilities for further improvements.

  13. Self-Replenishing Vascularized Fouling-Release Surfaces

    DTIC Science & Technology

    2014-01-01

    similar results. Surfaces submerged for 12 days in static cultures of B. braunii, a green microalga known for its potential in the algae biofuels...Technol. 2004, 32, 219−222. (12) Kirschner, C. M.; Brennan, A. B. Bio -Inspired Antifouling Strategies. Annu. Rev. Mater. Res. 2012, 42, 211−229. (13...Release from Fouling Release Coatings. Biofouling 2000, 15, 73−81. (25) Liu, K.; Jiang, L. Bio -Inspired Self-Cleaning Surfaces. Annu. Rev. Mater. Res

  14. Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor.

    PubMed

    Mei, Xiaojie; Quek, Pei Jun; Wang, Zhiwei; Ng, How Yong

    2017-09-01

    In this study, a chemically enhanced backflush (CEB) cleaning method using NaOH solution was proposed for fouling mitigation in anaerobic membrane bioreactors (AnMBRs). Ex-situ cleaning tests revealed that NaOH dosages ranging from 0.05 to 1.30mmol/L had positive impacts on anaerobic biomass, while higher dosages (>1.30mmol/L) showed inhibition and/or toxic impacts. In-situ cleaning tests showed that anaerobic biomass could tolerate much higher NaOH concentrations due to the alkali consumption by anaerobic process and/or the buffering role of mixed liquor. More importantly, 10-20mmol-NaOH/L could significantly reduce membrane fouling rates (4-5.5 times over the AnMBR with deionized water backflush) and slightly improve methanogenic activities. COD removal efficiencies were over 87% and peaked at 20mmol-NaOH/L. However, extremely high NaOH concentration had adverse effects on filtration and treatment performance. Economic analysis indicated that 12mmol/L of NaOH was the cost-efficient and optimal fouling-control dosage for the CEB cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Optimisation and performance of NaClO-assisted maintenance cleaning for fouling control in membrane bioreactors.

    PubMed

    Wang, Zhizhen; Meng, Fangang; He, Xiang; Zhou, Zhongbo; Huang, Li-Nan; Liang, Shuang

    2014-04-15

    Based on conventional chemical cleaning and physical backflush methods, a novel in situ chemical backflush method, i.e., chemically assisted maintenance cleaning with NaClO as the principal reagent, was developed for membrane fouling control in membrane bioreactors (MBRs). The results demonstrated that, compared with a control MBR with water backflush, the use of low NaClO loads had few adverse effects on nutrient removal; on the contrary, the exposure to NaClO enhanced the denitrification performance of the MBR as a result of the formation of sludge granules. Measurements of transmembrane pressure (TMP) showed that an NaClO backflush at 0.2 ppm could achieve effective membrane fouling control in MBRs. Ex situ backflush tests showed that an NaClO backflush enhanced the detachment of biopolymers from the fouled membranes compared with a water backflush. Comparative 16S rRNA sequencing showed differing bacterial community composition in the fouling layers of the two MBRs. Specifically, the NaClO backflush could suppress filament-caused membrane fouling (i.e., lowered the abundance of Thiothrix eikelboomii in the fouling layers). Both the water and NaClO backflush resulted in significant increases in the pure water permeability of the membranes as a result of the enlargement of membrane pores. The results of Fourier transform infrared spectrometry indicated that the frequent NaClO backflush did not change the functional groups of the active layer of the membranes significantly. This study could provide an alternative for the implementation of membrane cleaning in MBR plants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Thermodynamic analysis of membrane fouling in a submerged membrane bioreactor and its implications.

    PubMed

    Hong, Huachang; Peng, Wei; Zhang, Meijia; Chen, Jianrong; He, Yiming; Wang, Fangyuan; Weng, Xuexiang; Yu, Haiying; Lin, Hongjun

    2013-10-01

    The thermodynamic interactions between membrane and sludge flocs in a submerged membrane bioreactor (MBR) were investigated. It was found that Lewis acid-base (AB) interaction predominated in the total interactions. The interaction energy composition of membrane-sludge flocs combination was quite similar to that of membrane-bovine serum albumin (BSA) combination, indicating the critical role of proteins in adhesion process. Detailed analysis revealed the existence of a repulsive energy barrier in membrane-foulants interaction. Calculation results demonstrated that small flocs possessed higher attractive interaction energy per unit mass, and therefore adhered to membrane surface more easily as compared to large flocs. Meanwhile, initial sludge adhesion would facilitate the following adhesion due to the reduced repulsive energy barrier. Membrane with high electron donor surface tension component was a favor option for membrane fouling abatement. These findings offered new insights into membrane fouling, and also provided significant implications for fouling control in MBRs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Formation and crystallisation of a liquid jet in a film exposed to a tightly focused laser beam

    NASA Astrophysics Data System (ADS)

    Anisimov, S. I.; Zhakhovsky, V. V.; Inogamov, N. A.; Murzov, S. A.; Khokhlov, V. A.

    2017-06-01

    This paper considers the effect of an ultrashort laser pulse on a thin gold film on a glass substrate at a focal spot size near 1 μm. We analyse the motion and thermal history of a film that has peeled off from the substrate in the heating spot as a consequence of melting. The detached zone is shown to form a domeshaped bump whose motion is hindered by surface tension. After the dome stops and turns back, towards the substrate, a jet begins to grow on its top. Concurrently, because of the heat dissipation in the film, melt recrystallisation begins, involving first the dome and then the jet. The liquid part of the jet elongates and breaks up into droplets because of the Plateau-Rayleigh instability development. The formation of a neck and the detachment of the last droplet occur in the solidification zone between the crystalline and liquid parts of the jet. The propagation of the crystallisation zone in the jet leads the necking process, so neck disruption occurs in the solid phase under nonequilibrium crystallisation conditions (the melt temperature is hundreds of kelvins lower than the melting point), at limiting mechanical stress and at high deformation rates. As a result, the jet transforms into a high needle with an extremely small tip radius (a few nanometres).

  18. Five Foul Things That Are Also Good for You

    MedlinePlus

    ... Things That Are Also Good for You Inside Life Science View All Articles | Inside Life Science Home Page Five Foul Things That Are Also ... Learn more: NIH Human Microbiome Project This Inside Life Science article also appears on LiveScience . Learn about related ...

  19. Study to determine the aquatic biological effects on the Solid Rocket Booster (SRB). [technique for monitoring marine microbial fouling

    NASA Technical Reports Server (NTRS)

    Colwell, R. R.; Zachary, A.

    1979-01-01

    The surface of the reusable solid rocket boosters (SRB), which are jettisoned from the Shuttle Orbiter to parachute in the sea, are studied for colonization by marine life. Techniques for monitoring the marine microbial fouling of SRB materials are presented. An assessment of the nature and degree of the biofouling expected on the SRB materials in the recovery zone is reported. A determination of the degree and the effects of seasonal variation occurring on microbial fouling in the retrieval zone waters is made. The susceptibility of the SRB parachute recovery system to microbial fouling and biodeterioration is investigated. The development of scanning electron microscopy and epifluorescence microscopic observation techniques for rapid assessment of microbial fouling is discussed.

  20. Fouling and long-term durability of an integrated forward osmosis and membrane distillation system.

    PubMed

    Husnain, T; Mi, B; Riffat, R

    2015-01-01

    An integrated forward osmosis (FO) and membrane distillation (MD) system has great potential for sustainable wastewater reuse. However, the fouling and long-term durability of the system remains largely unknown. This study investigates the fouling behaviour and efficiency of cleaning procedures of FO and MD membranes used for treating domestic wastewater. Results showed that a significant decline in flux of both FO and MD membranes were observed during treatment of wastewater with organic foulants. However, shear force generated by the increased cross-flow physically removed the loosely attached foulants from the FO membrane surface and resulted in 86-88% recovery of flux by cleaning with tap water. For the MD membrane, almost no flux recovery was achieved due to adsorption of organic foulants on the hydrophobic membrane surface, thus indicating significant irreversible fouling/wetting, which may not be effectively cleaned even with chemical reagents. Long-term (10 d) tests showed consistent performance of the FO membrane by rejecting the contaminants. However, organic foulants reduced the hydrophobicity of the MD membrane, caused wetting problems and allowed contaminants to pass through. The results demonstrate that combination of the FO and MD processes can effectively reduce irreversible membrane fouling and solve the wetting problem of the MD membrane.

  1. Effect of barnacle fouling on ship resistance and powering.

    PubMed

    Demirel, Yigit Kemal; Uzun, Dogancan; Zhang, Yansheng; Fang, Ho-Chun; Day, Alexander H; Turan, Osman

    2017-11-01

    Predictions of added resistance and the effective power of ships were made for varying barnacle fouling conditions. A series of towing tests was carried out using flat plates covered with artificial barnacles. The tests were designed to allow the examination of the effects of barnacle height and percentage coverage on the resistance and effective power of ships. The drag coefficients and roughness function values were evaluated for the flat plates. The roughness effects of the fouling conditions on the ships' frictional resistances were predicted. Added resistance diagrams were then plotted using these predictions, and powering penalties for these ships were calculated using the diagrams generated. The results indicate that the effect of barnacle size is significant, since a 10% coverage of barnacles each 5 mm in height caused a similar level of added power requirements to a 50% coverage of barnacles each 1.25 mm in height.

  2. Toward Best Practices For Assessing Near Surface Sensor Fouling: Potential Correction Approaches Using Underway Ferry Measurements

    NASA Astrophysics Data System (ADS)

    Sastri, A. R.; Dewey, R. K.; Pawlowicz, R.; Krogh, J.

    2016-02-01

    Data from long term deployments of sensors on autonomous, mobile and cabled observation platforms suffer potential quality issues associated with bio-fouling. This issue is of particular concern for optical sensors, such as fluorescence and/or absorbance-based instruments for which light emitting/receiving surfaces are prone to fouling due constant contact with the marine environment. Here we examine signal quality for backscatter, chlorophyll and CDOM fluorescence from a single triplet instrument installed in a ferry box system (nominal depth of 3m) operated by Ocean Networks Canada. The time series consists of 22 months of 8-10 daily transits across the productive waters of the Strait of Georgia, British Columbia, Canada (Nanaimo on Vancouver Island and Vancouver on mainland BC). Instruments were cleaned every 2 weeks since all three instruments experienced significant signal attenuation during that period throughout the year. We experimented with a variety of pre- and post-cleaning measurements in an effort to develop `correction factors' with which to account for the effects of fouling. We found that CDOM fluorescence was especially sensitive to fouling and that correction factors derived from measurements of the fluorescence of standardized solutions successfully accounted for fouling. Similar results were found for chlorophyll fluorescence. Here we present results from our measurements and assess the efficacy of each of these approaches using comparisons against additional instruments less prone to signal attenuation over short periods.

  3. Towards sustainable membrane filtration of palm oil mill effluent: analysis of fouling phenomena from a hybrid PAC-UF process

    NASA Astrophysics Data System (ADS)

    Amosa, Mutiu Kolade

    2017-10-01

    Sustainability of a membrane process depends on many factors of which fouling mitigation is the most central. Because membrane fouling phenomenon is very complex, extent of fouling potential of a feedwater with respect to a membrane has to be identified right from the design stage. This will acquaint engineers with the proper fouling mitigation measures during operation. This study presents a preliminary fouling data from the ultrafiltration of biotreated palm oil mill effluent (POME) after an upstream adsorption process. The flux decline is studied in a typical constant-pressure experiments with a cross-flow ultrafiltration of biotreated POME through Sartocon® polyethersulfone membranes (MWCOs 1, 5 and 10 kDa) at applied pressures of 40, 80 and 120 kPa. Results are examined, within the frame of the common blocking mechanisms and it was found that the blocking index η decreased from 2 to 0. Pore blocking phenomenon was successively observed from complete blocking ( η = 2) down to cake filtration ( η = 0), and the early blockage of the pores and a formation of a cake resulted in a limiting cake height. Thus, cake filtration could be best used to explain the fouling mechanisms of biotreated POME on the ultrafiltration membranes based on the R 2 values at all applied pressures. This demonstrates that the fouling was as a result of gradual reversible cake deposition which could easily be removed by less onerous cleaning methods. In addition, it could be concluded that the upstream adsorption reduced the particulate deposition on the membrane surface.

  4. Influence of Chlorination and Choice of Materials on Fouling in Cooling Water System under Brackish Seawater Conditions

    PubMed Central

    Rajala, Pauliina; Bomberg, Malin; Huttunen-Saarivirta, Elina; Priha, Outi; Tausa, Mikko; Carpén, Leena

    2016-01-01

    Cooling systems remove heat from components and industrial equipment. Water cooling, employing natural waters, is typically used for cooling large industrial facilities, such as power plants, factories or refineries. Due to moderate temperatures, cooling water cycles are susceptible to biofouling, inorganic fouling and scaling, which may reduce heat transfer and enhance corrosion. Hypochlorite treatment or antifouling coatings are used to prevent biological fouling in these systems. In this research, we examine biofouling and materials’ degradation in a brackish seawater environment using a range of test materials, both uncoated and coated. The fouling and corrosion resistance of titanium alloy (Ti-6Al-4V), super austenitic stainless steel (254SMO) and epoxy-coated carbon steel (Intershield Inerta160) were studied in the absence and presence of hypochlorite. Our results demonstrate that biological fouling is intensive in cooling systems using brackish seawater in sub-arctic areas. The microfouling comprised a vast diversity of bacteria, archaea, fungi, algae and protozoa. Chlorination was effective against biological fouling: up to a 10–1000-fold decrease in bacterial and archaeal numbers was detected. Chlorination also changed the diversity of the biofilm-forming community. Nevertheless, our results also suggest that chlorination enhances cracking of the epoxy coating. PMID:28773597

  5. Influence of Chlorination and Choice of Materials on Fouling in Cooling Water System under Brackish Seawater Conditions.

    PubMed

    Rajala, Pauliina; Bomberg, Malin; Huttunen-Saarivirta, Elina; Priha, Outi; Tausa, Mikko; Carpén, Leena

    2016-06-15

    Cooling systems remove heat from components and industrial equipment. Water cooling, employing natural waters, is typically used for cooling large industrial facilities, such as power plants, factories or refineries. Due to moderate temperatures, cooling water cycles are susceptible to biofouling, inorganic fouling and scaling, which may reduce heat transfer and enhance corrosion. Hypochlorite treatment or antifouling coatings are used to prevent biological fouling in these systems. In this research, we examine biofouling and materials' degradation in a brackish seawater environment using a range of test materials, both uncoated and coated. The fouling and corrosion resistance of titanium alloy (Ti-6Al-4V), super austenitic stainless steel (254SMO) and epoxy-coated carbon steel (Intershield Inerta160) were studied in the absence and presence of hypochlorite. Our results demonstrate that biological fouling is intensive in cooling systems using brackish seawater in sub-arctic areas. The microfouling comprised a vast diversity of bacteria, archaea, fungi, algae and protozoa. Chlorination was effective against biological fouling: up to a 10-1000-fold decrease in bacterial and archaeal numbers was detected. Chlorination also changed the diversity of the biofilm-forming community. Nevertheless, our results also suggest that chlorination enhances cracking of the epoxy coating.

  6. Fouling reduction characteristics of a no-distributor-fluidized-bed heat exchanger for flue gas heat recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun, Y.D.; Lee, K.B.; Islam, S.Z.

    2008-07-01

    In conventional flue gas heat recovery systems, the fouling by fly ashes and the related problems such as corrosion and cleaning are known to be major drawbacks. To overcome these problems, a single-riser no-distributor-fluidized-bed heat exchanger is devised and studied. Fouling and cleaning tests are performed for a uniquely designed fluidized bed-type heat exchanger to demonstrate the effect of particles on the fouling reduction and heat transfer enhancement. The tested heat exchanger model (1 m high and 54 mm internal diameter) is a gas-to-water type and composed of a main vertical tube and four auxiliary tubes through which particles circulatemore » and transfer heat. Through the present study, the fouling on the heat transfer surface could successfully be simulated by controlling air-to-fuel ratios rather than introducing particles through an external feeder, which produced soft deposit layers with 1 to 1.5 mm thickness on the inside pipe wall. Flue gas temperature at the inlet of heat exchanger was maintained at 450{sup o}C at the gas volume rate of 0.738 to 0.768 CMM (0.0123 to 0.0128 m{sup 3}/sec). From the analyses of the measured data, heat transfer performances of the heat exchanger before and after fouling and with and without particles were evaluated. Results showed that soft deposits were easily removed by introducing glass bead particles, and also heat transfer performance increased two times by the particle circulation. In addition, it was found that this type of heat exchanger had high potential to recover heat of waste gases from furnaces, boilers, and incinerators effectively and to reduce fouling related problems.« less

  7. Pre-treatment for ultrafiltration: effect of pre-chlorination on membrane fouling

    PubMed Central

    Yu, Wenzheng; Xu, Lei; Graham, Nigel; Qu, Jiuhui

    2014-01-01

    Microbial effects are believed to be a major contributor to membrane fouling in drinking water treatment. Sodium hypochlorite (NaClO) is commonly applied in membrane cleaning, but its potential use as a pretreatment for controlling operational fouling has received little attention. In this study, the effect of adding a continuous low dose of NaClO (1 mg/l as active Cl) in combination with alum, before ultrafiltration, was compared with only alum as pretreatment. The results showed that the addition of NaClO substantially reduced membrane fouling both in terms of the rate of TMP development and the properties of the membrane cake layer. Although the size of nano-scale primary coagulant flocs changed little by the addition of NaClO, the cake layer on the membrane had a greater porosity and a substantially reduced thickness. NaClO was found to inactivate bacteria in the influent flow, which reduced both microbial proliferation and the production of proteins and polysaccharides in the cake layer and contributed significantly to improving the overall ultrafiltration performance. NaClO dosing had no adverse impact on the formation of currently regulated disinfection by-product compounds (THMs and HAAs). PMID:25269375

  8. Crystallisation regimes and kinetics in experimentally decompressed dacitic magma

    NASA Astrophysics Data System (ADS)

    Blum-Oeste, N.; Schmidt, B. C.; Webb, S. L.

    2011-12-01

    Kinetic processes during magma ascent may have a strong influence on the eruption style. In water bearing dacitic magmas decompression induced exsolution of water and accompanying crystallisation of plagioclase are the main processes which drive the system towards a new equilibrium state. We present new data on the evolution of residual glass composition and crystal size distributions of plagioclase from decompression experiments. Experiments have been conducted in cold seal pressure vessels at 850°C on a natural dacite composition from Taapaca volcano (N. Chile). After an initial equilibration at 2kbar decompression rates between 6.3 and 450bar/h were applied to final pressures between 50 and 1550bar where samples were rapidly quenched. Complementary equilibrium experiments were done at corresponding pressures. The glass composition evolves from the initial state towards the equilibrium at the final pressure. The completeness of this re-equilibration depends on run duration and reaction rates. We introduce the "re-equilibration index" (REI), a fraction between 0 (initial state) and 1 (final state) which allows comparison of chemical components in terms of re-equilibration at different decompression rates. REI divided by the decompression duration gives the "re-equilibration rate" (RER). The REI varies among oxides and it decreases with increasing decompression rate. The highest REIs of ~0.9 have been found for MgO, K2O and Al2O3 at 6.3bar/h whereas Na2O shows the lowest number with 0.25 at this decompression rate. Towards faster decompression all REIs tend to decrease which shows a decreasing completeness of re-equilibration. At 450bar/h the highest REIs are ~0.25. RERs increase from below ~0.005/h at 6.3bar/h up to almost 0.08/h for Al2O3 at 450bar/h. The variability of RERs of different oxides also increases with decompression rates. At 450bar/h the RERs reach from <0.005/h up to 0.08/h. Although RERs strongly increase from low to high decompression rates, this

  9. Effects of hydraulic retention time and bioflocculant addition on membrane fouling in a sponge-submerged membrane bioreactor.

    PubMed

    Deng, Lijuan; Guo, Wenshan; Ngo, Huu Hao; Du, Bing; Wei, Qin; Tran, Ngoc Han; Nguyen, Nguyen Cong; Chen, Shiao-Shing; Li, Jianxin

    2016-06-01

    The characteristics of activated sludge and membrane fouling were evaluated in a sponge-submerged membrane bioreactor (SSMBR) at different hydraulic retention times (HRTs) (6.67, 5.33 and 4.00h). At shorter HRT, more obvious membrane fouling was caused by exacerbated cake layer formation and aggravated pore blocking. Activated sludge possessed more extracellular polymeric substances (EPS) due to excessive growth of biomass and lower protein to polysaccharide ratio in soluble microbial products (SMP). The cake layer resistance was aggravated by increased sludge viscosity together with the accumulated EPS and biopolymer clusters (BPC) on membrane surface. However, SMP showed marginal effect on membrane fouling when SSMBRs were operated at all HRTs. The SSMBR with Gemfloc® addition at the optimum HRT of 6.67h demonstrated superior sludge characteristics such as larger floc size, less SMP in mixed liquor with higher protein/polysaccharide ratio, less SMP and BPC in cake layer, thereby further preventing membrane fouling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Contribution of assimilable organic carbon to biological fouling in seawater reverse osmosis membrane treatment.

    PubMed

    Weinrich, Lauren; LeChevallier, Mark; Haas, Charles N

    2016-09-15

    Biological fouling occurs on RO membranes when bacteria and nutrients are present in conditions that are conducive to growth and proliferation of the bacteria. Controlling microbial growth on the membranes is typically limited to biocide application (i.e., disinfectants) in seawater RO plants. However, biological growth and subsequent fouling has not been well-managed. Pretreatment has not been focused on nutrient limitation. This project used a biological assay, the assimilable organic carbon (AOC) test to evaluate pretreatment effects on the nutrient supply. The AOC test provided a useful surrogate measurement for the biodegradability or biofouling potential of RO feed water. Biofouling observed in controlled conditions at the bench- and pilot-scale resulted in statistically significant correlations between AOC and the operational effects caused by biofouling. Membrane fouling rates are observed through operational changes over time such as increased differential pressure between the membrane feed and concentrate locations and decreased permeate flux through the membrane. In full scale plants there were strong correlations when AOC was used as a predictor variable for increased differential pressure (0.28-0.55 bar from September-December 2012) and decreased specific flux (1.40 L per hour/(m(2) · bar)). Increased differential pressure was associated with RO membrane biological fouling when the median AOC was 50 μg/L during pilot testing. Conditions were also evaluated at the bench-scale using a flat sheet RO membrane. In a comparison test using 30 and 1000 μg/L AOC, fouling was detected on more portions of the membrane when AOC was higher. Biofilm and bacterial deposits were apparent from scanning electron microscope imaging and biomass measurements using ATP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Struvite formation and the fouling propensity of different materials.

    PubMed

    Doyle, J D; Oldring, K; Churchley, J; Parsons, S A

    2002-09-01

    Struvite (MgNH4PO4 x 6H2O) fouling was investigated to identify the impact supersaturation and material had on scaling rates. Tests were undertaken at three supersaturation ratios and with three different materials: stainless steel, teflon and acrylic. Impellers consisting of a clasp unit and two corrosion coupons that could be attached were used to mix centrate liquor and precipitation was initiated by the change in pH caused by degassing. Increasing the supersaturation ratio from 1.7 to 5.3 led to a doubling in the scaling rate of stainless-steel coupons. Experiments with acrylic and teflon coupons showed the influence of surface roughness upon scaling propensity. Coarsely roughened coupons following 40 h of mixing had a mass of 413 mg of struvite attached compared to smooth coupons that had a mass of 240 mg attached. Material did have an influence upon struvite fouling but this influence diminished with increasing surface roughness.

  12. Influence of extreme concentrations of hydrophilic pore-former on reinforced polyethersulfone ultrafiltration membranes for reduction of humic acid fouling.

    PubMed

    Son, Moon; Kim, Hayoung; Jung, Junhyeok; Jo, Sungsoo; Choi, Heechul

    2017-07-01

    To address the issue of membrane fouling by ubiquitous humic substances, a hydrophilic pore-former-blended polyethersulfone UF membrane was successfully synthesized via the phase inversion method. For the first time, extremely high concentrations of polyvinylpyrrolidone (PVP), up to 20 wt%, were tested as the hydrophilic pore-former in order to determine the optimum concentration for humic acid fouling. Intrinsic membrane parameters such as permeability and selectivity were evaluated using a cross-flow UF filtration setup. Interestingly, as little as 1 wt% added PVP can significantly improve membrane permeability. That tiny amount of added PVP increased membrane flux to 1107 L/m 2 h·bar from zero flux, with over 90% rejection of humic acid. In addition, pure water permeation increased to over 2400 L/m 2 h·bar without sacrificing humic acid rejection (around 90%) when 10 wt% PVP was added; pure water permeation decreased to around 1000 L/m 2 h·bar as added PVP was increased to 20 wt%. The order of water flux increased with the amount of added PVP up to 20 wt% during humic acid fouling while maintaining membrane selectivity. However, the membrane with 10 wt% added PVP showed the best fouling resistance in terms of flux recovery ratio (98%), total flux loss, reversible fouling ratio, and irreversible fouling ratio. Therefore, the addition of 10 wt% PVP is recommended considering cleaning efficiency and the moderately high flux during humic acid fouling for field operation in wastewater reclamation and water treatment processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Flow and fouling in membrane filters: Effects of membrane morphology

    NASA Astrophysics Data System (ADS)

    Sanaei, Pejman; Cummings, Linda J.

    2015-11-01

    Membrane filters are widely-used in microfiltration applications. Many types of filter membranes are produced commercially, for different filtration applications, but broadly speaking the requirements are to achieve fine control of separation, with low power consumption. The answer to this problem might seem obvious: select the membrane with the largest pore size and void fraction consistent with the separation requirements. However, membrane fouling (an inevitable consequence of successful filtration) is a complicated process, which depends on many parameters other than membrane pore size and void fraction; and which itself greatly affects the filtration process and membrane functionality. In this work we formulate mathematical models that can (i) account for the membrane internal morphology (internal structure, pore size & shape, etc.); (ii) fouling of membranes with specific morphology; and (iii) make some predictions as to what type of membrane morphology might offer optimum filtration performance.

  14. Investigation of the mechanisms of membrane fouling by intracellular organic matter under different iron treatments during ultrafiltration.

    PubMed

    Huang, Weiwei; Qin, Xiao; Dong, Bingzhi; Zhou, Wenzong; Lv, Weiguang

    2018-05-30

    Iron is an important trace element in algal growth and water eutrophication. This study focused on the ultrafiltration (UF) membrane fouling mechanism by the intracellular organic matter (IOM) of Microcystis aeruginosa under different iron treatments. The results indicated that the membranes experienced faster flux decline and worse fouling reversibility when the IOM formed under low iron concentrations. In contrast, less IOM membrane fouling was found under normal and high iron concentrations. The mass balances of the dissolved organic carbon (DOC) content implied that the IOM in the low-iron treatment was associated with higher IOM retention and a higher capacity of reversibly deposited organics, whereas more IOM in the high-iron treatment passed through the UF membrane. The IOM in the low-iron treatment was composed of more biopolymer macromolecules, whereas the IOM in the high-iron treatment contained more UV-absorbing hydrophobic organics. The fluorescence excitation-emission matrix (EEM) spectra coupled with peak-fitting analysis implied that the fouling associated with protein-like components was more irreversible in the low-iron treatment than those in the normal- and high-iron treatments. Cake formation combined with intermediate blocking was identified as the main membrane fouling mechanism responsible for the flux decline caused by IOM solutions in the three iron treatments in this study. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Variation in Adhesion Strength of Balanus Eburneus, Crassostrea Virginica and Hydroides Dianthus to Fouling-Release Coatings

    DTIC Science & Technology

    2001-03-01

    www.informaworld.com/smpp/title~content=t713454511 Variation in adhesion strength of Balanus eburneus, crassostrea virginica and hydroides dianthus to...in adhesion strength of Balanus eburneus, crassostrea virginica and hydroides dianthus to fouling-release coatings’, Biofouling, 17: 2, 155 — 167...4. TITLE AND SUBTITLE Variation in adhesion strength of Balanus eburneus, crassostrea virginica and hydroides dianthus to fouling-release coatings

  16. Variation in Adhesion Strength of Balanus eburneus, Crassostrea virginica and Hydroides dianthus to Fouling-release Coatings

    DTIC Science & Technology

    2001-07-01

    www.informaworld.com/smpp/title~content=t713454511 Variation in adhesion strength of Balanus eburneus, crassostrea virginica and hydroides dianthus to...in adhesion strength of Balanus eburneus, crassostrea virginica and hydroides dianthus to fouling-release coatings’, Biofouling, 17: 2, 155 — 167...4. TITLE AND SUBTITLE Variation in adhesion strength of Balanus eburneus, crassostrea virginica and hydroides dianthus to fouling-release coatings

  17. Modification of Silicone Elastomer Surfaces with Zwitterionic Polymers: Short-Term Fouling Resistance and Triggered Biofouling Release.

    PubMed

    Shivapooja, Phanindhar; Yu, Qian; Orihuela, Beatriz; Mays, Robin; Rittschof, Daniel; Genzer, Jan; López, Gabriel P

    2015-11-25

    We present a method for dual-mode-management of biofouling by modifying surface of silicone elastomers with zwitterionic polymeric grafts. Poly(sulfobetaine methacrylate) was grafted from poly(vinylmethylsiloxane) elastomer substrates using thiol-ene click chemistry and surface-initiated, controlled radical polymerization. These surfaces exhibited both fouling resistance and triggered fouling-release functionality. The zwitterionic polymers exhibited fouling resistance over short-term (∼hours) exposure to bacteria and barnacle cyprids. The biofilms that eventually accumulated over prolonged-exposure (∼days) were easily detached by applying mechanical strain to the elastomer substrate. Such dual-functional surfaces may be useful in developing environmentally and biologically friendly coatings for biofouling management on marine, industrial, and biomedical equipment because they can obviate the use of toxic compounds.

  18. Effect of makeup water properties on the condenser fouling in power planr cooling system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safari, I.; Walker, M.; Abbasian, J.

    2011-01-01

    The thermoelectric power industry in the U.S. uses a large amount of fresh water. As available freshwater for use in thermoelectric power production becomes increasingly limited, use of nontraditional water sources is of growing interest. Utilization of nontraditional water, in cooling systems increases the potential for mineral precipitation on heat exchanger surfaces. In that regard, predicting the accelerated rate of scaling and fouling in condenser is crucial to evaluate the condenser performance. To achieve this goal, water chemistry should be incorporated in cooling system modeling and simulation. This paper addresses the effects of various makeup water properties on the coolingmore » system, namely pH and aqueous speciation, both of which are important factors affecting the fouling rate in the main condenser. Detailed modeling of the volatile species desorption (i.e. CO{sub 2} and NH{sub 3}), the formation of scale in the recirculating system, and the relationship between water quality and the corresponding fouling rates is presented.« less

  19. Membrane fouling in a submerged membrane bioreactor: effect of pH and its implications.

    PubMed

    Zhang, Ye; Zhang, Meijia; Wang, Fangyuan; Hong, Huachang; Wang, Aijun; Wang, Juan; Weng, Xuexiang; Lin, Hongjun

    2014-01-01

    The effect of pH on membrane fouling in a submerged membrane bioreactor (MBR) was investigated in this study. It was found that, pH increase slightly increased the resistance of virgin membrane and fouled membrane. Pore clogging resistance was quite low, which was not apparently affected by the pH variation. Lower pH resulted in higher adherence of sludge flocs on membrane surface. Thermodynamic analysis showed that a repulsive energy barrier existed in the process of the foulants approaching to membrane surface. This energy barrier would decrease with pH decreased, suggesting the existence of a critical pH below which the repulsive energy barrier would disappear, which would facilitate attachment of the foulants. The resistance of the formed cake layer would significantly increase with the feed pH. This result could be explained by the osmotic pressure mechanism. The obtained findings also provided important implications for membrane fouling mitigation in MBRs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Applying thermosettable zwitterionic copolymers as general fouling-resistant and thermal-tolerant biomaterial interfaces.

    PubMed

    Chou, Ying-Nien; Chang, Yung; Wen, Ten-Chin

    2015-05-20

    We introduced a thermosettable zwitterionic copolymer to design a high temperature tolerance biomaterial as a general antifouling polymer interface. The original synthetic fouling-resistant copolymer, poly(vinylpyrrolidone)-co-poly(sulfobetaine methacrylate) (poly(VP-co-SBMA)), is both thermal-tolerant and fouling-resistant, and the antifouling stability of copolymer coated interfaces can be effectively controlled by regulating the VP/SBMA composition ratio. We studied poly(VP-co-SBMA) copolymer gels and networks with a focus on their general resistance to protein, cell, and bacterial bioadhesion, as influenced by the thermosetting process. Interestingly, we found that the shape of the poly(VP-co-SBMA) copolymer material can be set at a high annealing temperature of 200 °C while maintaining good antifouling properties. However, while the zwitterionic PSBMA polymer gels were bioinert as expected, control of the fouling resistance of the PSBMA polymer networks was lost in the high temperature annealing process. A poly(VP-co-SBMA) copolymer network composed of PSBMA segments at 32 mol % showed reduced fibrinogen adsorption, tissue cell adhesion, and bacterial attachment, but a relatively higher PSBMA content of 61 mol % was required to optimize resistance to platelet adhesion and erythrocyte attachment to confer hemocompatibility to human blood. We suggest that poly(VP-co-SBMA) copolymers capable of retaining stable fouling resistance after high temperature shaping have a potential application as thermosettable materials in a bioinert interface for medical devices, such as the thermosettable coating on a stainless steel blood-compatible metal stent investigated in this study.

  1. Optimising the operation of a MBR pilot plant by quantitative analysis of the membrane fouling mechanism.

    PubMed

    Jiang, T; Kennedy, M D; Guinzbourg, B F; Vanrolleghem, P A; Schippers, J C

    2005-01-01

    In order to optimize some operational conditions of MBR systems, a MBR pilot plant equipped with a submerged hollow fibre membrane module was employed in this study. The pilot MBR was fed with real municipal wastewater and the filtration flux, backwashing interval, aeration frequency and temperature were varied. A filtration flux below 25 I/m2h is generally recommended, at below this flux, the MBR operated at sub-critical flux conditions, the filter cake was minimized and membrane fouling was mainly attributed to the membrane pore blocking. Moreover, the membrane fouling, at below 25 I/m2h, was more reversible to backwashing; above this value, backwashing became less efficient to clean the membrane. Less frequent backwashing (e.g. 600 s filtration/45 s backwashing) decreased the amount of fouling irreversible to backwashing and its performance was superior to that of frequent backwashing (e.g. 200 s filtration/15 s backwashing). The MBR suffered more fouling at low temperature conditions (e.g. at 13-14 degrees C) than at high temperature conditions (e.g. at 17-18 degrees C). A conceptual model was built up and successfully interpreted this temperature effect.

  2. Crystallisation of alpha-crustacyanin, the lobster carapace astaxanthin-protein: results from EURECA

    NASA Astrophysics Data System (ADS)

    Zagalsky, P. F.; Wright, C. E.; Parsons, M.

    1995-08-01

    Crystallisation of alpha-crustacyanin, the lobster carapace astaxanthin-protein was attempted under microgravity conditions in EURECA satellite using liquid-liquid diffusion with polyethyleneglycol (PEG) as precipitant; in a second reaction chamber phenol and dioxan were used as additives to prevent composite crystal growth. Crystals of alpha-crustacyanin grown under microgravity from PEG were larger than those grown terrestrially in the same apparatus under otherwise identical conditions. On retrieval, the crystals from PEG were shown to be composite and gave a powder diffraction pattern. The second reaction chamber showed leakage on retrieval and had also been subjected to rapid temperature variation during flight. Crystal fragments were nevertheless recovered but showed a powder diffraction pattern. It is concluded, certainly for liquid-liquid diffusion using PEG alone, that, for crustacyanin, although microgravity conditions resulted in an increase in dimensions of crystals, a measurable improvement in molecular ordering was not achieved.

  3. Influence of mixing and ultrasound frequency on antisolvent crystallisation of sodium chloride.

    PubMed

    Lee, Judy; Ashokkumar, Muthupandian; Kentish, Sandra E

    2014-01-01

    Ultrasound is known to promote nucleation of crystals and produce a narrower size distribution in a controlled and reproducible manner for the crystallisation process. Although there are various theories that suggest cavitation bubbles are responsible for sonocrystallisation, most studies use power ultrasonic horns that generate both intense shear and cavitation and this can mask the role that cavitation bubbles play. High frequency ultrasound from a plate transducer can be used to examine the effect of cavitation bubbles without the intense shear effect. This study reports the crystal size and morphology with various mixing speeds and ultrasound frequencies. The results show high frequency ultrasound produced sodium chloride crystals of similar size distribution as an ultrasonic horn. In addition, ultrasound generated sodium chloride crystals having a more symmetrical cubic structure compared to crystals produced by a high shear mixer. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. The impact of fouling on the process performance of the thermal treatment of pig slurry using tubular heat exchangers.

    PubMed

    Cunault, C; Burton, C H; Pourcher, A M

    2013-03-15

    The aim of this study was to determine the kinetics of fouling and their influence on the performance of a thermal treatment process used for sanitisation of pig slurry. Two temperatures (55 °C and 80 °C) were investigated. One trial was carried out at 55 °C and 80 °C in which the slurry was not re-circulated and one trial at 80 °C in which 100% or 50% of the slurry was re-circulated. Fouling of the heat exchangers was assessed by on-line monitoring of the drop in pressure, changes in treatment temperature, heat transfer coefficients, heat recycling rate, and energy consumption. Similar energy consumption of around 38 kWh m(-3) of effluent was observed at the two temperatures. The operating periods prior to excessive fouling or blockage were 18 days at 55 °C and four days at 80 °C. Recycling treated manure to obtain 50% dilution of the raw feed increased the viable operating period to 14 days at 80 °C but doubled energy consumption. At 55 °C, the significant drop in the target temperature (>7 °C) with fouling severely jeopardised the process. The nature of the decline in performance suggests that the main fouling mechanisms were bio-fouling at 55 °C and organic/mineral deposits at 80 °C. Recycling treated manure enabled the operating period to be extended but increased the total cost of heating. One hundred percent recycling showed that the fouling potential of the manure was largely eliminated after one thermal treatment, suggesting a pretreatment may be advantageous. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Impact of PAC Fines in Fouling of Polymeric and Ceramic Low-Pressure Membranes for Drinking Water Treatment

    PubMed Central

    Oligny, Laurent; Bérubé, Pierre R.; Barbeau, Benoit

    2016-01-01

    This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP) due to the export of powdered activated carbon (PAC) fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW), chemically enhanced backwashing (CEB) and Clean-in-Place (CIP). The impacts on fouling of membrane type, operation flux increase and the presence/absence of the PAC pretreatment were investigated. Membranes without pretreatment were operated in parallel as a control. In addition, CIP washwaters samples were analyzed to measure organic and inorganic foulants removed from the membranes. It was observed that for the polymeric membranes, fouling generally increased with the presence of the PAC pretreatment because of the export of fines. On the contrary, the ceramic membranes were not significantly impacted by their presence. The analysis of CIP washwaters showed a greater total organic carbon (TOC) content on membranes with a PAC pretreatment while no similar conclusion could be made for inorganic foulants. PMID:27399788

  6. Impact of PAC Fines in Fouling of Polymeric and Ceramic Low-Pressure Membranes for Drinking Water Treatment.

    PubMed

    Oligny, Laurent; Bérubé, Pierre R; Barbeau, Benoit

    2016-07-07

    This study assessed the issue of membrane fouling in a Hybrid Membrane Process (HMP) due to the export of powdered activated carbon (PAC) fines from a pretreatment contactor. Two parallel pilot-scale ceramic and polymeric membranes were studied. Reversible and irreversible foulings were measured following three cleaning procedures: Physical backwashing (BW), chemically enhanced backwashing (CEB) and Clean-in-Place (CIP). The impacts on fouling of membrane type, operation flux increase and the presence/absence of the PAC pretreatment were investigated. Membranes without pretreatment were operated in parallel as a control. In addition, CIP washwaters samples were analyzed to measure organic and inorganic foulants removed from the membranes. It was observed that for the polymeric membranes, fouling generally increased with the presence of the PAC pretreatment because of the export of fines. On the contrary, the ceramic membranes were not significantly impacted by their presence. The analysis of CIP washwaters showed a greater total organic carbon (TOC) content on membranes with a PAC pretreatment while no similar conclusion could be made for inorganic foulants.

  7. Algal antifouling and fouling-release properties of metal surfaces coated with a polymer inspired by marine mussels.

    PubMed

    Statz, Andrea; Finlay, John; Dalsin, Jeffrey; Callow, Maureen; Callow, James A; Messersmith, Phillip B

    2006-01-01

    The marine antifouling and fouling-release performance of titanium surfaces coated with a bio-inspired polymer was investigated. The polymer consisted of methoxy-terminated poly(ethylene glycol) (mPEG) conjugated to the adhesive amino acid l-3,4-dihydroxyphenylalanine (DOPA) and was chosen based on its successful resistance to protein and mammalian cell fouling. Biofouling assays for the settlement and release of the diatom Navicula perminuta and settlement, growth and release of zoospores and sporelings (young plants) of the green alga Ulva linza were carried out. Results were compared to glass, a poly(dimethylsiloxane) elastomer (Silastic T2) and uncoated Ti. The mPEG-DOPA3 modified Ti surfaces exhibited a substantial decrease in attachment of both cells of N. perminuta and zoospores of U. linza as well as the highest detachment of attached cells under flow compared to control surfaces. The superior performance of this polymer over a standard silicone fouling-release coating in diatom assays and approximately equivalent performance in zoospore assays suggests that this bio-inspired polymer may be effective in marine antifouling and fouling-release applications.

  8. Electro-induced protein deposition on low-fouling surfaces

    NASA Astrophysics Data System (ADS)

    Cole, M. A.; Voelcker, N. H.; Thissen, H.

    2007-12-01

    Control over protein adsorption is a key issue for numerous biomedical applications ranging from diagnostic microarrays to tissue-engineered medical devices. Here, we describe a method for creating surfaces that prevent non-specific protein adsorption, which upon application of an external trigger can be transformed into surfaces showing high protein adsorption on demand. Silicon wafers were used as substrate materials upon which thin functional coatings were constructed by the deposition of an allylamine plasma polymer followed by high-density grafting of poly(ethylene oxide) aldehyde, resulting in a low-fouling surface. When the underlying highly doped silicon substrate was used as an electrode, the resulting electrostatic attraction between the electrode and charged proteins in solution induced protein deposition at the low-fouling interface. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were used to characterize the surface modifications. Controlled protein adsorption experiments were carried out using horseradish peroxidase. The amount of protein deposited at the surface was then investigated by means of a colorimetric assay. It is expected that the concept described here will find use in a variety of biotechnological and biomedical applications, particularly in the area of biochips.

  9. EFFECT OF CHLORAMINATION AND SEASONAL WATER CHANGES ON NANOFILTRATION FOULING

    EPA Science Inventory

    Nanofiltraton membrane studies conducted with Little Miami Aquifer water from the Indian Hill Water Works (OH) showed tht flux loss was highly seasonal in nature with the greatest fouling occurring during the highest water temperatures during drought conditions. The reason for th...

  10. Effect of granular activated carbon addition on the effluent properties and fouling potentials of membrane-coupled expanded granular sludge bed process.

    PubMed

    Ding, An; Liang, Heng; Qu, Fangshu; Bai, Langming; Li, Guibai; Ngo, Huu Hao; Guo, Wenshan

    2014-11-01

    To mitigate membrane fouling of membrane-coupled anaerobic process, granular activated carbon (GAC: 50 g/L) was added into an expanded granular sludge bed (EGSB). A short-term ultrafiltration test was investigated for analyzing membrane fouling potential and underlying fouling mechanisms. The results showed that adding GAC into the EGSB not only improved the COD removal efficiency, but also alleviated membrane fouling efficiently because GAC could help to reduce soluble microbial products, polysaccharides and proteins by 26.8%, 27.8% and 24.7%, respectively, compared with the control system. Furthermore, excitation emission matrix (EEM) fluorescence spectroscopy analysis revealed that GAC addition mainly reduced tryptophan protein-like, aromatic protein-like and fulvic-like substances. In addition, the resistance distribution analysis demonstrated that adding GAC primarily decreased the cake layer resistance by 53.5%. The classic filtration mode analysis showed that cake filtration was the major fouling mechanism for membrane-coupled EGSB process regardless of the GAC addition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Investigations of inorganic and organic fouling behaviors, antifouling and cleaning strategies for pressure retarded osmosis (PRO) membrane using seawater desalination brine and wastewater.

    PubMed

    Han, Gang; Zhou, Jieliang; Wan, Chunfeng; Yang, Tianshi; Chung, Tai-Shung

    2016-10-15

    By employing seawater desalination brine (SWBr) and wastewater brine (WWBr) as the feed pair, membrane fouling behaviors as well as antifouling and cleaning strategies for the state-of-the-art thin-film composite polyethersulfone (TFC-PES) hollow fiber membrane have been systematically investigated under pressure retarded osmosis (PRO) operations. Fouling on the polyamide selective layer induced by the SWBr draw solution is relatively mild because of the outstanding membrane rejection and the hydration antifouling layer formed by the permeating water. However, using WWBr as the feed causes fast and severe internal concentration polarization (ICP) and fouling within the porous PES substrate, which result in dramatic flux and power density declines. In addition, the PRO fouling upon and within the porous substrate is highly irreversible. Experimental data show that both anti-scalant pretreatment and pH adjustment of WWBr could effectively mitigate inorganic fouling, while increasing feed flow velocity along the substrate surface is ineffective for fouling control. To clean the fouled membranes, hydraulic-pressure induced backwash and flushing with alkaline and NaOCl solutions on the fouled surface are effective strategies to remove foulants and regenerate membranes with a flux recovery of 83-90%. However, osmotic backwash shows low cleaning efficiency in PRO. In summary, a proper combination of feed pretreatment and membrane cleaning strategies has been demonstrated in this study to sustain PRO operations with a high water flux and power density. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Effect of skim milk treated with high hydrostatic pressure on permeate flux and fouling during ultrafiltration.

    PubMed

    Leu, Mathilde; Marciniak, Alice; Chamberland, Julien; Pouliot, Yves; Bazinet, Laurent; Doyen, Alain

    2017-09-01

    Ultrafiltration (UF) is largely used in the dairy industry to generate milk and whey protein concentrate for standardization of milk or production of dairy ingredients. Recently, it was demonstrated that high hydrostatic pressure (HHP) extended the shelf life of milk and improved rennet coagulation and cheese yield. Pressurization also modified casein micelle size distribution and promoted aggregation of whey proteins. These changes are likely to affect UF performance. Consequently, this study determined the effect of skim milk pressurization (300 and 600 MPa, 5 min) on UF performance in terms of permeate flux decline and fouling. The effect of HHP on milk proteins was first studied and UF was performed in total recycle mode at different transmembrane pressures to determine optimal UF operational parameters and to evaluate the effect of pressurization on critical and limiting fluxes. Ultrafiltration was also performed in concentration mode at a transmembrane pressure of 345 kPa for 130 or 140 min to evaluate the decline of permeate flux and to determine fouling resistances. It was observed that average casein micelle size decreased by 32 and 38%, whereas β-lactoglobulin denaturation reached 30 and 70% at 300 and 600 MPa, respectively. These results were directly related to UF performance because initial permeate fluxes in total recycle mode decreased by 25% at 300 and 600 MPa compared with nonpressurized milk, critical flux, and limiting flux, which were lower during UF of milk treated with HHP. During UF in concentration mode, initial permeate fluxes were 30% lower at 300 and 600 MPa compared with the control, but the total flux decline was higher for nonpressurized milk (62%) compared with pressure-treated milk (30%). Fouling resistances were similar, whatever the treatment, except at 600 MPa where irreversible fouling was higher. Characterization of the fouling layer showed that caseins and β-lactoglobulin were mainly involved in membrane fouling after UF of

  13. Anti-fouling and high water permeable forward osmosis membrane fabricated via layer by layer assembly of chitosan/graphene oxide

    NASA Astrophysics Data System (ADS)

    Salehi, Hasan; Rastgar, Masoud; Shakeri, Alireza

    2017-08-01

    To date, forward osmosis (FO) has received considerable attention due to its potential application in seawater desalination. FO does not require external hydraulic pressure and consequently is believed to have a low fouling propensity. Despite the numerous privileges of FO process, a major challenge ahead for its development is the lack of high performance membranes. In this study, we fabricated a novel highly-efficient FO membrane using layer-by-layer (LbL) assembly of positive chitosan (CS) and negative graphene oxide (GO) nanosheets via electrostatic interaction on a porous support layer. The support layer was prepared by blending hydrophilic sulfonated polyethersulfone (SPES) into polyethersulfone (PES) matrix using wet phase inversion process. Various characterization techniques were used to confirm successful fabrication of LbL membrane. The number of layers formed on the SPES-PES support layer was easily adjusted by repeating the CS and GO deposition cycles. Thin film composite (TFC) membrane was also prepared by the same SPES-PES support layer and polyamide (PA) active layer to compare membranes performances. The water permeability and salt rejection of the fabricated membranes were obtained by two kinds of draw solutions (including Na2SO4 and sucrose) under two different membrane orientations. The results showed that membrane coated by a CS/GO bilayers had water flux of 2-4 orders of magnitude higher than the TFC one. By increasing the number of CS/GO bilayers, the selectivity of the LbL membrane was improved. The novel fabricated LbL membrane showed better fouling resistance than the TFC one in the feed solution containing 200 ppm of sodium alginate as a foulant model.

  14. Composite Membrane with Underwater-Oleophobic Surface for Anti-Oil-Fouling Membrane Distillation.

    PubMed

    Wang, Zhangxin; Hou, Deyin; Lin, Shihong

    2016-04-05

    In this study, we fabricated a composite membrane for membrane distillation (MD) by modifying a commercial hydrophobic polyvinylidene fluoride (PVDF) membrane with a nanocomposite coating comprising silica nanoparticles, chitosan hydrogel and fluoro-polymer. The composite membrane exhibits asymmetric wettability, with the modified surface being in-air hydrophilic and underwater oleophobic, and the unmodified surface remaining hydrophobic. By comparing the performance of the composite membrane and the pristine PVDF membrane in direct contact MD experiments using a saline emulsion with 1000 ppm crude oil (in water), we showed that the fabricated composite membrane was significantly more resistant to oil fouling compared to the pristine hydrophobic PVDF membrane. Force spectroscopy was conducted for the interaction between an oil droplet and the membrane surface using a force tensiometer. The difference between the composite membrane and the pristine PVDF membrane in their interaction with an oil droplet served to explain the difference in the fouling propensities between these two membranes observed in MD experiments. The results from this study suggest that underwater oleophobic coating can effectively mitigate oil fouling in MD operations, and that the fabricated composite membrane with asymmetric wettability can enable MD to desalinate hypersaline wastewater with high concentrations of hydrophobic contaminants.

  15. Membrane fouling by extracellular polymeric substances after ozone pre-treatment: Variation of nano-particles size.

    PubMed

    Yu, Wenzheng; Zhang, Dizhong; Graham, Nigel J D

    2017-09-01

    The application of ozone pre-treatment for ultrafiltration (UF) in drinking water treatment has been studied for more than 10 years, but its performance in mitigating or exacerbating membrane fouling has been inconclusive, and sometimes contradictory. To help explain this, our study considers the significance of the influent organic matter and its interaction with ozone on membrane fouling, using solutions of two representative types of extracellular polymeric substances (EPS), alginate and bovine serum albumin (BSA), and samples of surface water. The results show that at typical ozone doses there is no measurable mineralization of alginate and BSA, but substantial changes in their structure and an increase in the size of nano-particle aggregates (micro-flocculation). The impact of ozonation on membrane fouling, as indicated by the membrane flux, was markedly different for the two types of EPS and found to be related to the size of the nano-particle aggregates formed in comparison with the UF pore size. Thus, for BSA, ozonation created aggregate sizes similar to the UF pore size (100 k Dalton) which led to an increase in fouling. In contrast, ozonation of alginate created the nano-particle aggregates greater than the UF pore size, giving reduced membrane fouling/greater flux. For solutions containing a mixture of the two species of EPS the overall impact of ozonation on UF performance depends on the relative proportion of each, and the ozone dose, and the variable behaviour has been demonstrated by the surface water. These results provide new information about the role of nano-particle aggregate size in explaining the reported ambiguity over the benefits of applying ozone as pre-treatment for ultrafiltration. Copyright © 2017. Published by Elsevier Ltd.

  16. Numerical Simulations of Melting-Crystallisation Processes at the Boundaries Between Magma Oceans and Solid Mantle

    NASA Astrophysics Data System (ADS)

    Bolrão, D. P.; Rozel, A.; Morison, A.; Labrosse, S.; Tackley, P. J.

    2017-12-01

    The idea that the Earth had a global magma ocean, mostly created by impacts, core formation, radiogenic and tidal heating, is well accepted nowadays. When this ocean starts to crystallise, if the melt is denser than the solid, a basal magma ocean is created below the solid part. These two magma oceans influence the dynamics and evolution of solid mantle. Near the boundaries, the vertical flow in the solid part creates a topography. If this topography is destroyed by melting/crystallisation processes in a time scale much shorter than the time needed to adjust the topography by viscous relaxation, then matter can cross the boundary. In this case, the boundary is said to be permeable. On the other hand, if this time is longer, matter cannot cross and the boundary is said impermeable. This permeability is defined by a non-dimensional phase change number, φ, introduced by Deguen, 2013. This φ is the ratio of the two timescales mentioned, and defines a permeable boundary when φ « 1, and an impermeable one when φ » 1. To understand the impact of magma oceans on the dynamics of the solid mantle, we use the convection code StagYY, with a 2D spherical annulus geometry, to compute the convection of the solid part. Our results show different convection behaviours depending on the type of boundary chosen. For the permeable case, we investigate the thermo-compositional evolution of the solid domain, explicitly taking into account the compositional evolution of the magma oceans. Reference: Deguen, R. Thermal convection in a spherical shell with melting/freezing at either or both of its boundaries. Journal of Earth Science, Vol. 24, No. 5, p. 669-682, 2013. doi: 10.1007/s12583-013-0364-8

  17. A semi-empirical model for the prediction of fouling in railway ballast using GPR

    NASA Astrophysics Data System (ADS)

    Bianchini Ciampoli, Luca; Tosti, Fabio; Benedetto, Andrea; Alani, Amir M.; Loizos, Andreas; D'Amico, Fabrizio; Calvi, Alessandro

    2016-04-01

    The first step in the planning for a renewal of a railway network consists in gathering information, as effectively as possible, about the state of the railway tracks. Nowadays, this activity is mostly carried out by digging trenches at regular intervals along the whole network, to evaluate both geometrical and geotechnical properties of the railway track bed. This involves issues, mainly concerning the invasiveness of the operations, the impacts on the rail traffic, the high costs, and the low levels of significance concerning such discrete data set. Ground-penetrating radar (GPR) can represent a useful technique for overstepping these issues, as it can be directly mounted onto a train crossing the railway, and collect continuous information along the network. This study is aimed at defining an empirical model for the prediction of fouling in railway ballast, by using GPR. With this purpose, a thorough laboratory campaign was implemented within the facilities of Roma Tre University. In more details, a 1.47 m long × 1.47 m wide × 0.48 m height plexiglass framework, accounting for the domain of investigation, was laid over a perfect electric conductor, and filled up with several configuration of railway ballast and fouling material (clayey sand), thereby representing different levels of fouling. Then, the set of fouling configurations was surveyed with several GPR systems. In particular, a ground-coupled multi-channel radar (600 MHz and 1600 MHz center frequency antennas) and three air-launched radar systems (1000 MHz and 2000 MHz center frequency antennas) were employed for surveying the materials. By observing the results both in terms of time and frequency domains, interesting insights are highlighted and an empirical model, relating in particular the shape of the frequency spectrum of the signal and the percentage of fouling characterizing the surveyed material, is finally proposed. Acknowledgement The Authors thank COST, for funding the Action TU1208 "Civil

  18. Changes in mechanical properties and morphology of elastomer coatings after immersion in salt solutions

    NASA Astrophysics Data System (ADS)

    Terán Arce, Fernando; Avci, Recep; Beech, Iwona; Cooksey, Keith; Wigglesworth-Cooksey, Barbara

    2004-03-01

    RTV11 (^TM GE Silicones) and Intersleek (^TM International Paints) are two elastomers of considerable significance to the navy and maritime industry for their application as fouling release coatings. Both materials are composed of polymeric matrices with embedded filler particles, which provide increased strength and durability to the elastomer. Using Atomic force microscopy (AFM), surface and bulk analysis techniques, we have found surface regions with microelastic properties, which correlate with the locations of filler particles inside the coatings. These particles are able to undergo elastic displacements of hundreds of nm inside the polymeric matrix during compression by the AFM tip. While elastic properties of Intersleek remain largely unchanged after immersion in salt solutions, roughening, embrittlement and stiffening occurs in RTV11 coatings depending on the amount of curing agent and humidity used during preparation and curing, respectively. Interestingly, such transformations are absent after immersion in pure water. In particle free regions, elastic moduli of RTV11 take values of 2 - 3 MPa before immersion in salt solutions. After immersion, those values increase 5 - 10 times.

  19. Membrane fouling and wetting in membrane distillation and their mitigation by novel membranes with special wettability.

    PubMed

    Wang, Zhangxin; Lin, Shihong

    2017-04-01

    Membrane distillation (MD) has been identified as a promising technology to desalinate the hypersaline wastewaters from fracking and other industries. However, conventional hydrophobic MD membranes are highly susceptible to fouling and/or wetting by the hydrophobic and/or amphiphilic constituents in these wastewaters of complex compositions. This study systematically investigates the impact of the surface wetting properties on the membrane wetting and/or fouling behaviors in MD. Specifically, we compare the wetting and fouling resistance of three types of membranes of different wetting properties, including hydrophobic and omniphobic membranes as well as composite membranes with a hydrophobic substrate and a superhydrophilic top surface. We challenged the MD membranes with hypersaline feed solutions that contained a relatively high concentration of crude oil with and without added synthetic surfactants, Triton X-100. We found that the composite membranes with superhydrophilic top surface were robustly resistant to oil fouling in the absence of Triton X-100, but were subject to pore wetting in the presence of Triton X-100. On the other hand, the omniphobic membranes were easily fouled by oil-in-water emulsion without Triton X-100, but successfully sustained stable MD performance with Triton X-100 stabilized oil-in-water emulsion as the feed solution. In contrast, the conventional hydrophobic membranes failed readily regardless whether Triton X-100 was present, although via different mechanisms. These findings are corroborated by contact angle measures as well as oil-probe force spectroscopy. This study provides a holistic picture regarding how a hydrophobic membrane fails in MD and how we can leverage membranes with special wettability to prevent membrane failure in MD operations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. ALTERNATIVES TO CHLORINATION FOR CONTROL OF CONDENSER TUBE BIO-FOULING

    EPA Science Inventory

    The report gives results of a study of methods used to reduce free-chlorine residuals in power plant effluents. Most U.S. power plants use chlorine (28,600 tons in 1972) to control biological fouling in their cooling systems, particularly in their condenser tubes. Using chlorine ...

  1. Comparison of NF membrane fouling and cleaning by two pretreatment strategies for the advanced treatment of antibiotic production wastewater.

    PubMed

    Wang, Jianxing; Li, Kun; Yu, Dawei; Zhang, Junya; Wei, Yuansong; Chen, Meixue; Shan, Baoqing

    2016-01-01

    The nanofiltration (NF) membrane fouling characteristics and cleaning strategies were investigated and compared for treating membrane bioreactor (MBR) effluent and MBR-granular activated carbon (GAC) effluent of an antibiotic production wastewater by DK membrane. Results showed that the fouling of treating MBR effluent was more severe than that of treating MBR-GAC effluent. After filtering for 216 h, the difference of membrane flux decline was obvious between MBR effluent and MBR-GAC effluent, with 14.9% and 10.3% flux decline, respectively. Further study showed that organic fouling is the main NF membrane fouling in the advanced treatment of antibiotic production wastewater for both of the two different effluents. Soluble microbial by-product like and tyrosine-like substances were the dominant components in the foulants, whereas humic-like substances existing in the effluents had little contribution to the NF membrane fouling. A satisfactory efficiency of NF chemical cleaning could be obtained using combination of acid (HCl, pH 2.0-2.5) and alkali (NaOH + 0.3 wt% NaDS, pH 10.0-10.5). The favorable cleaning strategy is acid-alkali for treating the MBR-GAC effluent, while it is alkali-acid for treating the MBR effluent.

  2. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion.

    PubMed

    Lu, Dongwei; Zhang, Tao; Gutierrez, Leo; Ma, Jun; Croué, Jean-Philippe

    2016-05-03

    In this work, ceramic ultrafiltration membranes deposited with different metal oxides (i.e., TiO2, Fe2O3, MnO2, CuO, and CeO2) of around 10 nm in thickness and similar roughness were tested for O/W emulsion treatment. A distinct membrane fouling tendency was observed, which closely correlated to the properties of the filtration-layer metal oxides (i.e., surface hydroxyl groups, hydrophilicity, surface charge, and adhesion energy for oil droplets). Consistent with the distinct bond strength of the surface hydroxyl groups, hydrophilicity of these common metal oxides is quite different. The differences in hydrophilicity consequently lead to different adhesion of these metal oxides toward oil droplets, consistent with the irreversible membrane fouling tendency. In addition, the surface charge of the metal oxide opposite to that of emulsion can help to alleviate irreversible membrane fouling in ultrafiltration. Highly hydrophilic Fe2O3 with the lowest fouling tendency could be a potential filtration-layer material for the fabrication/modification of ceramic membranes for O/W emulsion treatment. To the best of our knowledge, this is the first study clearly showing the correlations between surface properties of filtration-layer metal oxides and ceramic membrane fouling tendency by O/W emulsion.

  3. Influence of diatomite addition on membrane fouling and performance in a submerged membrane bioreactor.

    PubMed

    Yang, Xiao-Li; Song, Hai-Liang; Lu, Ji-Lai; Fu, Da-Fang; Cheng, Bing

    2010-12-01

    This paper examined the effect of diatomite addition on membrane fouling and process performance in an anoxic/oxic submerged membrane bioreactor (A/O MBR). Particle size distribution, molecular weight distribution and microbial activity have been investigated to characterize the sludge mixed liquor. Results show that diatomite addition is a reliable and effective approach in terms of both membrane fouling mitigation and pollutants removal improvement. The MBR system with diatomite addition of 50 mg/L enhanced the removal of COD, TN and TP by 0.9%, 6.9% and 31.2%, respectively, as compared to the control MBR (without diatomite addition). The NH(4)-N removal always maintained at a high level of over 98% irrespective of diatomite addition. Due to the hybrid effect of adsorption and co-precipitation on fine colloids and dissolved organic matter (DOM) from the addition of diatomite, a reduction in foulants amount, an increase in microbial floc size and an improvement in sludge settleability have been achieved simultaneously. As a result, the membrane fouling rate was mitigated successfully. 2010 Elsevier Ltd. All rights reserved.

  4. [Membrane fouling alleviation characteristics of sludge/water pre-separation MBR].

    PubMed

    Wang, Hong-Jie; Dong, Wen-Yi; Bai, Wei; Li, Wei-Guang; Yang, Yue

    2009-07-15

    A long-term operation was conducted to investigate the alleviation of membrane fouling by sludge/water pre-separation membrane bioreactor (S/W-MBR). The variation of trans-membrane pressure (TMP), concentration of sludge and extracellular polymeric substances (EPS) on S/W-MBR and submerged membrane bioreactor (SMBR) was also studied. The results showed that the sludge concentration in S/W-MBR was basically identical with that of SMBR's biotic area, while the sludge concentration was significantly decreased in S/W-MBR's membrane area than that of SMBR's. The concentration of EPS was increased with operation time in both two MBRs' biotic area, but it was lower and basically maintained at the level of 15 mg/g in S/W-MBR's membrane area. The S/W-MBR was more capable of alleviating membrane fouling, and it had been cleaned only 2 times while the SMBR who had been cleaned 5 times during the period of about 90 days laboratory performance.

  5. Fouling mechanisms of gel layer in a submerged membrane bioreactor.

    PubMed

    Hong, Huachang; Zhang, Meijia; He, Yiming; Chen, Jianrong; Lin, Hongjun

    2014-08-01

    The fouling mechanisms underlying gel layer formation and its filtration resistance in a submerged membrane bioreactor (MBR) were investigated. It was found that gel layer rather than cake layer was more easily formed when soluble microbial products content in sludge suspension was relatively high. Thermodynamic analyses showed that gel layer formation process should overcome a higher energy barrier as compared with cake layer formation process. However, when separation distance <2.3 nm, attractive interaction energy of gelling foulant-membrane combination was remarkably higher than that of sludge floc-membrane combination. The combined effects were responsible for gel layer formation. Filtration tests showed that specific filtration resistance (SFR) of gel layer was almost 100 times higher than that of cake layer. The unusually high SFR of gel layer could be ascribed to the gelling propensity and osmotic pressure mechanism. These findings shed significant light on fouling mechanisms of gel layer in MBRs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Microbial Fouling and Its Effect on Power Generation.

    DTIC Science & Technology

    1983-07-01

    water treated to remove residual carbon and suspended sriljs is used. Nutrients , glucose, micoroorganisms and, in some cases, a syntheti- growth media are...of foul ing .-rve poorly understood and, consequently, provide a challenge to the water treatment chemist or engineer ir, terms of diagniosis anid...by the production of EPS. Cells attached in this way can only be removed by rather severe mechanical or chemical treatment . The forces influencing both

  7. Optimization of MBR hydrodynamics for cake layer fouling control through CFD simulation and RSM design.

    PubMed

    Yang, Min; Yu, Dawei; Liu, Mengmeng; Zheng, Libing; Zheng, Xiang; Wei, Yuansong; Wang, Fang; Fan, Yaobo

    2017-03-01

    Membrane fouling is an important issue for membrane bioreactor (MBR) operation. This paper aims at the investigation and the controlling of reversible membrane fouling due to cake layer formation and foulants deposition by optimizing MBR hydrodynamics through the combination of computational fluid dynamics (CFD) and design of experiment (DOE). The model was validated by comparing simulations with measurements of liquid velocity and dissolved oxygen (DO) concentration in a lab-scale submerged MBR. The results demonstrated that the sludge concentration is the most influencing for responses including shear stress, particle deposition propensity (PDP), sludge viscosity and strain rate. A medium sludge concentration of 8820mgL -1 is optimal for the reduction of reversible fouling in this submerged MBR. The bubble diameter is more decisive than air flowrate for membrane shear stress due to its role in sludge viscosity. The optimal bubble diameter was at around 4.8mm for both of shear stress and PDP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Design of poly(vinylidene fluoride)-g-p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) membrane via surface modification for enhanced fouling resistance and release property

    NASA Astrophysics Data System (ADS)

    Zhao, Guili; Chen, Wei Ning

    2017-03-01

    Thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAAm), hydrophilic polymer poly(hydroxyethyl methacrylate) (PHEMA) and copolymer p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) [P(HEMA-co-NIPAAm)] were synthesized onto poly(vinylidene fluoride) (PVDF) membrane via atom transfer radical polymerization (ATRP) in order to improve not only fouling resistance but also fouling release property. The physicochemical properties of membranes including hydrophilicity, morphology and roughness were examined by contact angle analyzer, scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively. The antifouling property of membranes was improved remarkably after surface modification according to protein and bacterial adhesion testing, and filtration experiment. Minimum protein adsorption and bacterial adhesion were both obtained on PVDF-g-P(HEMA-co-NIPAAm) membrane, with reduction by 44% and 71% respectively compared to the pristine membrane. The minimum bacterial cells after detachment at 25 °C were observed on the PVDF-g-P(HEMA-co-NIPAAm) membrane with the detachment rate of 77%, indicating high fouling release property. The filtration testing indicated that the copolymer modified membrane exhibited high resistance to protein fouling and the foulant on the surface was released and removed easily by washing, suggesting high fouling release and easy-cleaning capacity. This study provides useful insight in the combined "fouling resistance" and "fouling release" property of P(HEMA-co-NIPAAm) for PVDF membrane modification, even for other types of the membrane in wide application.

  9. The influence of crystallised Fe3O4 on the magnetic properties of coprecipitation-derived ferrimagnetic glass-ceramics.

    PubMed

    Bretcanu, O; Spriano, S; Verné, E; Cöisson, M; Tiberto, P; Allia, P

    2005-07-01

    Ferrimagnetic glass-ceramics are potential candidates for magnetic induction hyperthermia, which is one form of inducing deep-regional hyperthermia, by using a magnetic field. The aim of this work was to analyse the influence of the amount of crystallised magnetite on the magnetic properties of glass-ceramic samples. Thus, two different ferrimagnetic glass-ceramics with the composition of the system Na(2)O-CaO-SiO(2)-P(2)O(5)-FeO-Fe(2)O(3) were prepared by melting at 1500 degrees C for 30 min of the coprecipitation-derived starting products. The X-ray diffraction patterns show the presence of nanometric magnetite crystals in a glassy matrix after cooling from melting temperature. The estimated amount of crystallised magnetite varies between 20 and 45 wt.%, as a function of the chemical composition. The morphology of the crystals was studied by scanning electron micrography and transmission electron micrography. Glass transition temperature and thermal stability were investigated by differential thermal analysis. Magnetic hysteresis cycles were analysed using a vibrating sample magnetometer with a maximum applied field of 17 kOe, at room temperature, in quasi-static conditions. Calorimetric measurements were carried out using a magnetic induction furnace. The power losses estimated from calorimetric measurements under a magnetic field of 40 kA/m and 440 kHz are 65 W/g for the glass-ceramic with lower iron oxides content and 25 W/g for the glass-ceramic with higher iron oxide content.

  10. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH.

    PubMed

    Yu, Wenzheng; Liu, Teng; Crawshaw, John; Liu, Ting; Graham, Nigel

    2018-08-01

    The fouling of ultrafiltration (UF) and nanofiltration (NF) membranes during the treatment of surface waters continues to be of concern and the particular role of natural organic matter (NOM) requires further investigation. In this study the effect of pH and surface charge on membrane fouling during the treatment of samples of a representative surface water (Hyde Park recreational lake) were evaluated, together with the impact of pre-ozonation. While biopolymers in the surface water could be removed by the UF membrane, smaller molecular weight (MW) fractions of NOM were poorly removed, confirming the importance of membrane pore size. For NF membranes the removal of smaller MW fractions (800 Da-10 kDa) was less than expected from their pore size; however, nearly all of the hydrophobic, humic-type substances could be removed by the hydrophilic NF membranes for all MW distributions (greater than 90%). The results indicated the importance of the charge and hydrophilic nature of the NOM. Thus, the hydrophilic NF membrane could remove the hydrophobic organic matter, but not the hydrophilic substances. Increasing charge effects (more negative zeta potentials) with increasing solution pH were found to enhance organics removal and reduce fouling (flux decline), most likely through greater membrane surface repulsion. Pre-ozonation of the surface water increased the hydrophilic fraction and anionic charge of NOM and altered their size distributions. This resulted in a decreased fouling (less flux decline) for the UF and smaller pore NF, but a slight increase in fouling for the larger pore NF. The differences in the NF behavior are believed to relate to the relative sizes of ozonated organic fractions and the NF pores; a similar size of ozonated organic fractions and the NF pores causes significant membrane fouling. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Change in the fouling propensity of sludge in membrane bioreactors (MBR) in relation to the accumulation of biopolymer clusters.

    PubMed

    Sun, Fei-yun; Wang, Xiao-mao; Li, Xiao-yan

    2011-04-01

    A membrane bioreactor (MBR) and an activated sludge process (ASP) were operated side by side to evaluate the change of sludge supernatant characteristics and the evolution of the sludge fouling propensity. The MBR sludge had a higher organic concentration and more biopolymer clusters (BPC) in the supernatant compared with ASP. BPC increased in both concentration and size in the MBR. The results show that the change in the liquid-phase property had a profound effect on the sludge fouling propensity. MBR operation transformed typical activated sludge to MBR sludge with a higher fouling propensity. Distinct from the ASP, membrane filtration retained soluble microbial products (SMP) within the MBR, and the vast membrane surface provided a unique environment for the transformation of SMP to large size BPC, leading to further sludge deposition on the membrane surface. Thus, membrane filtration is the crucial cause of the inevitable fouling problem in submerged MBRs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Fouling resistance prediction using artificial neural network nonlinear auto-regressive with exogenous input model based on operating conditions and fluid properties correlations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biyanto, Totok R.

    Fouling in a heat exchanger in Crude Preheat Train (CPT) refinery is an unsolved problem that reduces the plant efficiency, increases fuel consumption and CO{sub 2} emission. The fouling resistance behavior is very complex. It is difficult to develop a model using first principle equation to predict the fouling resistance due to different operating conditions and different crude blends. In this paper, Artificial Neural Networks (ANN) MultiLayer Perceptron (MLP) with input structure using Nonlinear Auto-Regressive with eXogenous (NARX) is utilized to build the fouling resistance model in shell and tube heat exchanger (STHX). The input data of the model aremore » flow rates and temperatures of the streams of the heat exchanger, physical properties of product and crude blend data. This model serves as a predicting tool to optimize operating conditions and preventive maintenance of STHX. The results show that the model can capture the complexity of fouling characteristics in heat exchanger due to thermodynamic conditions and variations in crude oil properties (blends). It was found that the Root Mean Square Error (RMSE) are suitable to capture the nonlinearity and complexity of the STHX fouling resistance during phases of training and validation.« less

  13. The influence of oxidation reduction potential and water treatment processes on quartz lamp sleeve fouling in ultraviolet disinfection reactors.

    PubMed

    Wait, Isaac W; Johnston, Cliff T; Blatchley, Ernest R

    2007-06-01

    Ultraviolet (UV) disinfection systems are incorporated into drinking water production facilities because of their broad-spectrum antimicrobial capabilities, and the minimal disinfection by-product formation that generally accompanies their use. Selection of an optimal location for a UV system within a drinking water treatment facility depends on many factors; a potentially important consideration is the effect of system location on operation and maintenance issues, including the potential for fouling of quartz surfaces. To examine the effect of system location on fouling, experiments were conducted at a groundwater treatment facility, wherein aeration, chlorination, and sand filtration were applied sequentially for treatment. In this facility, access to the water stream was available prior to and following each of the treatment steps. Therefore, it was possible to examine the effects of each of these unit operations on fouling dynamics within a UV system. Results indicated zero-order formation kinetics for the fouling reactions at all locations. Increases in oxidation reduction potential, caused by water treatment steps such as aeration and chlorination, increased the rate of sleeve fouling and the rate of irradiance loss within the reactor. Analysis of metals in the sleeve foulant showed that calcium and iron predominate, and relative comparisons of foulant composition to water chemistry highlighted a high affinity for incorporation into the foulant matrix for both iron and manganese, particularly after oxidizing treatment steps. Fouling behavior was observed to be in qualitative agreement with representations of the degree of saturation, relative to the metal:ligand combinations that are believed to comprise a large fraction of the foulants that accumulate on the surfaces of quartz jackets in UV systems used to treat water.

  14. Experimental Study of Fouling Behavior of Main Substances (BSA, HA, SA) of Dissolved Organic Matter (DOM) in Dead-end Membrane Filtration

    NASA Astrophysics Data System (ADS)

    Sun, Yongjun; Zhu, Kexin; Khan, Bushra; Du, Xinpei; Hou, Lei; Zhao, Shuang; Li, Ping; Liu, Songbai; Song, Peng; Zhang, Hong; Jiang, Shuihong; Wang, Zhan; Zha, Shenghua

    2018-01-01

    In this study, the fouling behavior of PES ultrafiltration (UF) membrane with different DOM fractions including bovine serum albumin (BSA), sodium alginate (SA) and humic acid (HA) was systematically investigated. The result showed that the fouling mechanism of HA was cake formation while that of BSA and SA was caused by both pore blocking and cake formation due to the different particle size. Moreover, membrane fouling became more severe with the increase of feed concentration and TMP and it could be accurately described by the cake-complete model. The pore blocking resistance for SA was larger than that for BSA, whereas the cake resistance followed the sequence SA>BSA>HA. This observation offered insight into the differences in fouling behavior of the various DOM components and was further used as guidance for practical application.

  15. Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors

    PubMed Central

    Miodek, Anna; Regan, Edward M.; Bhalla, Nikhil; Hopkins, Neal A.E.; Goodchild, Sarah A.; Estrela, Pedro

    2015-01-01

    An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples. PMID:26426017

  16. Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors.

    PubMed

    Miodek, Anna; Regan, Edward M; Bhalla, Nikhil; Hopkins, Neal A E; Goodchild, Sarah A; Estrela, Pedro

    2015-09-29

    An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples.

  17. Microbial Fouling and Its Effect on Power Generation.

    DTIC Science & Technology

    1982-09-01

    Bryers, J. D. (1980) " Dynamics of Early Biof’dm Formation in a Turbulent Flow System." Ph.D. dissertation, Rice University. Trulear, M. G. (1980...studies to date have avoided addressing fundamental questions concerning fouling in fluid flow and heat transfer systems and their effect on fluid...34clean" surface exposed to turbulent flow of a tuid con- taining dispersed microorganisms, nutrient, and organic macromolecules. Adsorption of an organic

  18. Microbial Fouling and its Effect on Power Generation.

    DTIC Science & Technology

    1981-09-01

    The tubular fouling reactor system (TFR) consists of a test block heat exchanger and a support system which includes water supply treatment facilities...and measurement instrumentation. Figure 8 is a schematic diagram of the system. Test block heat exchanger : The test block heat exchanger consists of...two adjacent aluminum cylindrical blocks (12.5 cm dia.) clamped to the section of tubing being tested (Fig. 9). The block is heated by electrical re

  19. Architecture, component, and microbiome of biofilm involved in the fouling of membrane bioreactors.

    PubMed

    Inaba, Tomohiro; Hori, Tomoyuki; Aizawa, Hidenobu; Ogata, Atsushi; Habe, Hiroshi

    2017-01-01

    Biofilm formation on the filtration membrane and the subsequent clogging of membrane pores (called biofouling) is one of the most persistent problems in membrane bioreactors for wastewater treatment and reclamation. Here, we investigated the structure and microbiome of fouling-related biofilms in the membrane bioreactor using non-destructive confocal reflection microscopy and high-throughput Illumina sequencing of 16S rRNA genes. Direct confocal reflection microscopy indicated that the thin biofilms were formed and maintained regardless of the increasing transmembrane pressure, which is a common indicator of membrane fouling, at low organic-loading rates. Their solid components were primarily extracellular polysaccharides and microbial cells. In contrast, high organic-loading rates resulted in a rapid increase in the transmembrane pressure and the development of the thick biofilms mainly composed of extracellular lipids. High-throughput sequencing revealed that the biofilm microbiomes, including major and minor microorganisms, substantially changed in response to the organic-loading rates and biofilm development. These results demonstrated for the first time that the architectures, chemical components, and microbiomes of the biofilms on fouled membranes were tightly associated with one another and differed considerably depending on the organic-loading conditions in the membrane bioreactor, emphasizing the significance of alternative indicators other than the transmembrane pressure for membrane biofouling.

  20. An atomic force microscopy study on fouling characteristics of modified PES membrane in submerged membrane bioreactor for domestic wastewater treatment

    NASA Astrophysics Data System (ADS)

    Liu, Shuo; Han, Hongjun; Liu, Yanping; Wang, Baozhen

    2008-10-01

    To investigate the fouling characteristics of modified PES membrane in submerged Membrane Bioreactor (MBR) for domestic wastewater treatment, Atomic Force Microscope (AFM) study was conducted to analyze the microstructure characteristics of PES membrane. Surface roughness and section analysis of both virgin and fouled membrane were achieved by software of NanoScope 6.12. Compared to the virgin membrane, the average roughness (Ra), square average roughness (Rms) and ten points average roughness (Rz) of fouled membrane were increased by 100.6nm, 133.7nm and 330.7nm respectively. The section analysis results indicated that the cake layer formed and membrane pore blocked were the main causes for the increase of TMP. Micro-filtration resistance analysis was conducted to support the results of AFM analysis. It is showed that membrane resistance, cake resistance, pore blocking and irreversible fouling resistance is 0.755, 1.721 and 1.386 respectively, which contributed 20%, 44%, and 36%, respectively, to total resistance of submerged MBR (at MLSS 6000mg/L and flux 21.9L/m2Â.h). The results proved that AFM could be used to properly describe the fouling characteristics of modified PES membrane in submerged MBR through roughness and section analysis.

  1. High-resolution phylogenetic analysis of residual bacterial species of fouled membranes after NaOCl cleaning.

    PubMed

    Navarro, Ronald R; Hori, Tomoyuki; Inaba, Tomohiro; Matsuo, Kazuyuki; Habe, Hiroshi; Ogata, Atsushi

    2016-05-01

    Biofouling is one of the major problems during wastewater treatment using membrane bioreactors (MBRs). In this regard, sodium hypochlorite (NaOCl) has been widely used to wash fouled membranes for maintenance and recovery purposes. Advanced chemical and biological characterization was conducted in this work to evaluate the performance of aqueous NaOCl solutions during washing of polyacrylonitrile membranes. Fouled membranes from MBR operations supplemented with artificial wastewater were washed with 0.1% and 0.5% aqueous NaOCl solutions for 5, 10 and 30 min. The changes in organics composition on the membrane surface were directly monitored by an attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectrometer. In addition, high-throughput Illumina sequencing of 16S rRNA genes was applied to detect any residual microorganisms. Results from ATR-FT-IR analysis indicated the complete disappearance of functional groups representing different fouling compounds after at least 30 min of treatment with 0.1% NaOCl. However, the biomolecular survey revealed the presence of residual bacteria even after 30 min of treatment with 0.5% NaOCl solution. Evaluation of microbial diversity of treated samples using Chao1, Shannon and Simpson reciprocal indices showed an increase in evenness while no significant decline in richness was observed. These implied that only the population of dominant species was mainly affected. The high-resolution phylogenetic analysis revealed the presence of numerous operational taxonomic units (OTUs) whose close relatives exhibit halotolerance. Some OTUs related to thermophilic and acid-resistant strains were also identified. Finally, the taxonomic analysis of recycled membranes that were previously washed with NaOCl also showed the presence of numerous halotolerant-related OTUs in the early stage of fouling. This further suggested the possible contribution of such chemical tolerance on their survival against NaOCl washing, which in turn

  2. Macroalgal Introductions by Hull Fouling on Recreational Vessels: Seaweeds and Sailors

    NASA Astrophysics Data System (ADS)

    Mineur, Frédéric; Johnson, Mark P.; Maggs, Christine A.

    2008-10-01

    Macroalgal invasions in coastal areas have been a growing concern during the past decade. The present study aimed to assess the role of hull fouling on recreational yachts as a vector for macroalgal introductions. Questionnaire and hull surveys were carried out in marinas in France and Spain. The questionnaires revealed that the majority of yacht owners are aware of seaweed introductions, usually undertake short range journeys, dry dock their boat at least once a year, and use antifouling paints. The hull survey showed that many in-service yachts were completely free of macroalgae. When present, fouling assemblages consisted mainly of one to two macroalgal species. The most commonly found species was the tolerant green seaweed Ulva flexuosa. Most of the other species found are also cosmopolitan and opportunistic. A few nonnative and potentially invasive Ceramiales (Rhodophyta) were found occasionally on in-service yachts. On the basis of the information gathered during interviews of yacht owners in the surveyed area, these occurrences are likely to be uncommon. However they can pose a significant risk of primary or secondary introductions of alien macroalgal species, especially in the light of the increase in yachting activities. With large numbers of recreational yachts and relatively rare occurrences of nonnative species on hulls, comprehensive screening programs do not seem justified or practical. The risks of transferring nonnative species may, however, be minimized by encouraging the behaviors that prevent fouling on hulls and by taking action against neglected boats before they can act as vectors.

  3. Macroalgal introductions by hull fouling on recreational vessels: seaweeds and sailors.

    PubMed

    Mineur, Frédéric; Johnson, Mark P; Maggs, Christine A

    2008-10-01

    Macroalgal invasions in coastal areas have been a growing concern during the past decade. The present study aimed to assess the role of hull fouling on recreational yachts as a vector for macroalgal introductions. Questionnaire and hull surveys were carried out in marinas in France and Spain. The questionnaires revealed that the majority of yacht owners are aware of seaweed introductions, usually undertake short range journeys, dry dock their boat at least once a year, and use antifouling paints. The hull survey showed that many in-service yachts were completely free of macroalgae. When present, fouling assemblages consisted mainly of one to two macroalgal species. The most commonly found species was the tolerant green seaweed Ulva flexuosa. Most of the other species found are also cosmopolitan and opportunistic. A few nonnative and potentially invasive Ceramiales (Rhodophyta) were found occasionally on in-service yachts. On the basis of the information gathered during interviews of yacht owners in the surveyed area, these occurrences are likely to be uncommon. However they can pose a significant risk of primary or secondary introductions of alien macroalgal species, especially in the light of the increase in yachting activities. With large numbers of recreational yachts and relatively rare occurrences of nonnative species on hulls, comprehensive screening programs do not seem justified or practical. The risks of transferring nonnative species may, however, be minimized by encouraging the behaviors that prevent fouling on hulls and by taking action against neglected boats before they can act as vectors.

  4. Effect of magnetic powder on membrane fouling mitigation and microbial community/composition in membrane bioreactors (MBRs) for municipal wastewater treatment.

    PubMed

    Liu, Yi; Liu, Qiang; Li, Jixiang; Ngo, Huu Hao; Guo, Wenshan; Hu, Jiajun; Gao, Min-Tian; Wang, Qiyuan; Hou, Yuansheng

    2018-02-01

    This study aims to investigate the usefulness of magnetic powder addition in membrane bioreactors (MBRs) for membrane fouling mitigation and its effect on microbial community and composition. The comparison between the two MBRs (one with magnetic powder (MAS-MBR) and one without magnetic powder (C-MBR)) was carried out to treat synthetic municipal wastewater. Results showed that bioflocculation and adsorption of magnetic powder contributed only minimally to membrane fouling mitigation while the slower fouling rate might be ascribed to magnetic bio-effect. The macromolecules (larger than 500 kDa and 300-500 kDa) of soluble microbial product from the MAS-MBR were reduced by 24.06% and 11.11%, respectively. High-throughput sequencing demonstrated the most abundant genera of biofilm sludge indicated lower abundance in bulk sludge from the MAS-MBR compared to the C-MBR. It is possible that less membrane fouling is connected to reductions in large molecules and pioneer bacteria from bulk sludge. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Short communication: Evaluation of a sol-gel-based stainless steel surface modification to reduce fouling and biofilm formation during pasteurization of milk.

    PubMed

    Liu, Dylan Zhe; Jindal, Shivali; Amamcharla, Jayendra; Anand, Sanjeev; Metzger, Lloyd

    2017-04-01

    Milk fouling and biofilms are common problems in the dairy industry across many types of processing equipment. One way to reduce milk fouling and biofilms is to modify the characteristics of milk contact surfaces. This study examines the viability of using Thermolon (Porcelain Industries Inc., Dickson, TN), a sol-gel-based surface modification of stainless steel, during thermal processing of milk. We used stainless steel 316L (control) and sol-gel-modified coupons in this study to evaluate fouling behavior and bacterial adhesion. The surface roughness as measured by an optical profiler indicated that the control coupons had a slightly smoother finish. Contact angle measurements showed that the modified surface led to a higher water contact angle, suggesting a more hydrophobic surface. The modified surface also had a lower surface energy (32.4 ± 1.4 mN/m) than the control surface (41.36 ± 2.7 mN/m). We evaluated the susceptibility of control and modified stainless steel coupons to fouling in a benchtop plate heat exchanger. We observed a significant reduction in the amount of fouled layer on modified surfaces. We found an average fouling weight of 19.21 mg/cm 2 and 0.37 mg/cm 2 on the control and modified stainless steel coupons, respectively. We also examined the adhesion of Bacillus and biofilm formation, and observed that the modified stainless steel surface offered greater resistance to biofilm formation. Overall, the Thermolon-modified surface showed potential in the thermal processing of milk, offering significantly lower fouling and bacterial attachment than the control surface. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Membrane fouling control and enhanced removal of pharmaceuticals and personal care products by coagulation-MBR.

    PubMed

    Park, Junwon; Yamashita, Naoyuki; Tanaka, Hiroaki

    2018-04-01

    We investigated the effects of the addition of two coagulants-polyaluminium chloride (PACl) and chitosan-into the membrane bioreactor (MBR) process on membrane fouling and the removal of pharmaceuticals and personal care products (PPCPs). Their addition at optimized dosages improved the permeability of the membrane by reducing the concentration of soluble microbial products in mixed liquor, the content of inorganic elements, and irreversible fouling of the membrane surface. During long-term operation, the addition of PACl increased removal efficiencies of tetracycline, mefenamic acid, atenolol, furosemide, ketoprofen, and diclofenac by 17-23%. The comparative evaluation using mass balance calculations between coagulation-MBR (with PACl addition) and control-MBR (without PACl addition) showed that enhanced biodegradability played a key role in improving removal efficiencies of some PPCPs in coagulation-MBR. Coagulation-MBR also had higher oxygen uptake rates and specific nitrification rates of microorganisms. Overall, our findings suggest that the combination of MBR with coagulation reduced membrane fouling, lengthening operation period of the membrane, and improved the removal of some PPCPs as a result of enhanced biodegradability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Biofilm community structure and the associated drag penalties of a groomed fouling release ship hull coating.

    PubMed

    Hunsucker, Kelli Z; Vora, Gary J; Hunsucker, J Travis; Gardner, Harrison; Leary, Dagmar H; Kim, Seongwon; Lin, Baochuan; Swain, Geoffrey

    2018-02-01

    Grooming is a proactive method to keep a ship's hull free of fouling. This approach uses a frequent and gentle wiping of the hull surface to prevent the recruitment of fouling organisms. A study was designed to compare the community composition and the drag associated with biofilms formed on a groomed and ungroomed fouling release coating. The groomed biofilms were dominated by members of the Gammaproteobacteria and Alphaproteobacteria as well the diatoms Navicula, Gomphonemopsis, Cocconeis, and Amphora. Ungroomed biofilms were characterized by Phyllobacteriaceae, Xenococcaceae, Rhodobacteraceae, and the pennate diatoms Cyclophora, Cocconeis, and Amphora. The drag forces associated with a groomed biofilm (0.75 ± 0.09 N) were significantly less than the ungroomed biofilm (1.09 ± 0.06 N). Knowledge gained from this study has helped the design of additional testing which will improve grooming tool design, minimizing the growth of biofilms and thus lowering the frictional drag forces associated with groomed surfaces.

  8. Effects of bamboo charcoal on fouling and microbial diversity in a flat-sheet ceramic membrane bioreactor.

    PubMed

    Zhang, Wenjie; Liu, Xiaoning; Wang, Dunqiu; Jin, Yue

    2017-11-01

    Membrane fouling is a problem in full-scale membrane bioreactors. In this study, bamboo charcoal (BC) was evaluated for its efficacy in alleviating membrane fouling in flat-sheet membrane bioreactors treating municipal wastewater. The results showed that BC addition markedly improved treatment performance based on COD, NH 4 + -N, total nitrogen, and total phosphorus levels. Adding BC slowed the increase in the trans-membrane pressure rate and resulted in lower levels of soluble microbial products and extracellular polymeric substances detected in the flat-sheet membrane bioreactor. BC has a porous structure, and a large quantity of biomass was detected using scanning electron microscopy. The microbial community analysis results indicated that BC increased the microbial diversity and Aminomonas, Anaerofustis, uncultured Anaerolineaceae, Anaerolinea, and Anaerotruncus were found in higher abundances in the reactor with BC. BC addition is an effective method for reducing membrane fouling, and can be applied to full-scale flat-sheet membrane bioreactors to improve their function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Airfoil-shaped micro-mixers for reducing fouling on membrane surfaces

    DOEpatents

    Ho, Clifford K; Altman, Susan J; Clem, Paul G; Hibbs, Michael; Cook, Adam W

    2012-10-23

    An array of airfoil-shaped micro-mixers that enhances fluid mixing within permeable membrane channels, such as used in reverse-osmosis filtration units, while minimizing additional pressure drop. The enhanced mixing reduces fouling of the membrane surfaces. The airfoil-shaped micro-mixer can also be coated with or comprised of biofouling-resistant (biocidal/germicidal) ingredients.

  10. Fibrinogen Reduction During Selective Plasma Exchange due to Membrane Fouling.

    PubMed

    Ohkubo, Atsushi; Okado, Tomokazu; Miyamoto, Satoko; Hashimoto, Yurie; Komori, Shigeto; Yamamoto, Motoki; Maeda, Takuma; Itagaki, Ayako; Yamamoto, Hiroko; Seshima, Hiroshi; Kurashima, Naoki; Iimori, Soichiro; Naito, Shotaro; Sohara, Eisei; Uchida, Shinichi; Rai, Tatemitsu

    2017-06-01

    Fibrinogen is substantially reduced by most plasmapheresis modalities but retained in selective plasma exchange using Evacure EC-4A10 (EC-4A). Although EC-4A's fibrinogen sieving coefficient is 0, a session of selective plasma exchange reduced fibrinogen by approximately 19%. Here, we investigated sieving coefficient in five patients. When the mean processed plasma volume was 1.15 × plasma volume, the mean reduction of fibrinogen during selective plasma exchange was approximately 15%. Fibrinogen sieving coefficient was 0 when the processed plasma volume was 1.0 L, increasing to 0.07 when the processed plasma volume was 3.0 L, with a mean of 0.03 during selective plasma exchange. When fibrinogen sieving coefficient was 0, selective plasma exchange reduced fibrinogen by approximately 10%. Scanning electron microscopy images revealed internal fouling of EC-4A's hollow fiber membrane by substances such as fibrinogen fibrils. Thus, fibrinogen reduction by selective plasma exchange may be predominantly caused by membrane fouling rather than filtration. © 2017 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.

  11. Non-Fouling Biodegradable Poly(ϵ-caprolactone) Nanofibers for Tissue Engineering.

    PubMed

    Kostina, Nina Yu; Pop-Georgievski, Ognen; Bachmann, Michael; Neykova, Neda; Bruns, Michael; Michálek, Jiří; Bastmeyer, Martin; Rodriguez-Emmenegger, Cesar

    2016-01-01

    Poly(ϵ-caprolactone) (PCL) nanofibers are very attractive materials for tissue engineering (TE) due to their degradability and structural similarity to the extracellular matrix (ECM). However, upon exposure to biological media, their surface is rapidly fouled by proteins and cells, which may lead to inflammation and foreign body reaction. In this study, an approach for the modification of PCL nanofibers to prevent protein fouling from biological fluids and subsequent cell adhesion is introduced. A biomimetic polydopamine (PDA) layer was deposited on the surface of the PCL nanofibers and four types of antifouling polymer brushes were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) from initiator moieties covalently attached to the PDA layer. Cell adhesion was assessed with mouse embryonic fibroblasts (MEFs). MEFs rapidly adhered and formed cell-matrix adhesions (CMAs) with PCL and PCL-PDA nanofibers. Importantly, the nanofibers modified with antifouling polymer brushes were able to suppress non-specific protein adsorption and thereby cell adhesion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Probing the roles of Ca(2+) and Mg(2+) in humic acids-induced ultrafiltration membrane fouling using an integrated approach.

    PubMed

    Wang, Long-Fei; He, Dong-Qin; Chen, Wei; Yu, Han-Qing

    2015-09-15

    Membrane fouling induced by natural organic matter (NOM) negatively affects the performance of ultrafiltration (UF) technology in producing drinking water. Divalent cation is found to be an important factor that affects the NOM-induced membrane fouling process. In this work, attenuated total reflection-Fourier transformation infrared spectroscopy (ATR-FTIR) coupled with quartz crystal microbalance (QCM), assisted by isothermal titration calorimetry (ITC), is used to explore the contribution of Mg(2+) and Ca(2+), the two abundant divalent cations in natural water, to the UF membrane fouling caused by humic acid (HA) at a molecular level. The results show that Ca(2+) exhibited superior performance in accelerating fouling compared to Mg(2+). The hydrophobic polyethersulfone (PES) membrane exhibited greater complexation with HA in the presence of Mg(2+) and Ca(2+), compared to the hydrophilic cellulose membrane, as evidenced by the more intense polysaccharide C-O, aromatic C=C and carboxylic C=O bands in the FTIR spectra. The QCM and ITC measurements provide quantitative evidence to support that Ca(2+) was more effective than Mg(2+) in binding with HA and accumulating foulants on the membrane surfaces. The higher charge neutralization capacity and more favorable binding ability of Ca(2+) were found to be responsible for its greater contribution to the NOM-induced membrane fouling than Mg(2+). This work offers a new insight into the mechanism of cation-mediated NOM-induced membrane fouling process, and demonstrates that such an integrated ATR-FTIR/QCM/ITC approach could be a useful tool to explore other complicated interaction processes in natural and engineered environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Thiolated polyethylene oxide as a non-fouling element for nano-patterned bio-devices

    NASA Astrophysics Data System (ADS)

    Lisboa, Patrícia; Valsesia, Andrea; Colpo, Pascal; Gilliland, Douglas; Ceccone, Giacomo; Papadopoulou-Bouraoui, Andri; Rauscher, Hubert; Reniero, Fabiano; Guillou, Claude; Rossi, François

    2007-03-01

    This work describes the synthesis of a thiolated polyethylene oxide that self-assembles on gold to create a non-fouling surface. Thiolated polyethylene oxide was synthesised by reacting 16-mercaptohexadecanoic acid with polyethylene glycol mono methyl ether. The coverage of the thiolated polyethylene oxide on gold was studied by cyclic voltammetry, and the modified surfaces were characterised by X-ray photoelectron spectroscopy and ellipsometry. Protein resistance was assessed using quartz crystal microbalance. Results showed a non-fouling character produced by the thiolated polyethylene oxide. The synthesised product was used as the passivation layer on nano-patterned surfaces consisting of arrayed nano-spots, fabricated by plasma based colloidal lithography. The specific adsorption of anti-bovine serum albumin in the mercaptohexadecanoic acid spots was verified by atomic force microscopy.

  14. The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility

    NASA Astrophysics Data System (ADS)

    Loader, Matthew A.; Wilkinson, Jamie J.; Armstrong, Robin N.

    2017-08-01

    The redox sensitivity of Ce and Eu anomalies in zircon has been clearly demonstrated by experimental studies, and these may represent an important tool in the exploration for porphyry Cu deposits which are thought to be derived from oxidised magmas. These deposits are significant because they are the source of much of the world's copper and almost all of the molybdenum and rhenium, key elements in many modern technologies. However, Ce and Eu anomalies in zircon are also affected by the co-crystallisation of REE bearing phases, such as titanite. Here, we report the trace element chemistry of zircons from titanite-bearing intrusions associated with mineralisation at the world class Oyu Tolgoi porphyry Cu-Au deposit (Mongolia). Based on these data, we suggest that neither zircon Eu/Eu*, nor Ce4+/Ce3+ are robust proxies for melt redox conditions, because they are both too strongly dependent on melt REE concentrations, which are usually poorly constrained and controlled by the crystallisation of titanite and other REE-bearing phases. In spite of this, Eu/Eu* can broadly distinguish between fertile and barren systems, so may still be an indicator of porphyry magma fertility, and a useful tool for exploration.

  15. Nanomaterials for membrane fouling control: accomplishments and challenges.

    PubMed

    Yang, Qian; Mi, Baoxia

    2013-11-01

    We report a review of recent research efforts on incorporating nanomaterials-including metal/metal oxide nanoparticles, carbon-based nanomaterials, and polymeric nanomaterials-into/onto membranes to improve membrane antifouling properties in biomedical or potentially medical-related applications. In general, nanomaterials can be incorporated into/onto a membrane by blending them into membrane fabricating materials or by attaching them to membrane surfaces via physical or chemical approaches. Overall, the fascinating, multifaceted properties (eg, high hydrophilicity, superparamagnetic properties, antibacterial properties, amenable functionality, strong hydration capability) of nanomaterials provide numerous novel strategies and unprecedented opportunities to fully mitigate membrane fouling. However, there are still challenges in achieving a broader adoption of nanomaterials in the membrane processes used for biomedical applications. Most of these challenges arise from the concerns over their long-term antifouling performance, hemocompatibility, and toxicity toward humans. Therefore, rigorous investigation is still needed before the adoption of some of these nanomaterials in biomedical applications, especially for those nanomaterials proposed to be used in the human body or in contact with living tissue/body fluids for a long period of time. Nevertheless, it is reasonable to predict that the service lifetime of membrane-based biomedical devices and implants will be prolonged significantly with the adoption of appropriate fouling control strategies. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  16. Protein fouling in microfiltration: deposition mechanism as a function of pressure for different pH.

    PubMed

    Velasco, C; Ouammou, M; Calvo, J I; Hernández, A

    2003-10-01

    The influence of applied pressure on the fouling mechanism during bovine serum albumin (BSA) dead-end microfiltration (MF) has been investigated for a polyethersulfone acidic negatively charged membrane (ICE-450) from Pall Co. BSA solutions at pH values of 4, 5 (almost equal to the protein isoelectric point, IEP), and 6 were microfiltered through the membrane at different applied transmembrane pressures. Results have been analyzed in terms of the usual blocking filtration laws and a substantial change in the fouling mechanism was observed as the pressure was increased, this change can be related to the specific membrane-protein and protein-protein interactions.

  17. Ferrous iron/peroxymonosulfate oxidation as a pretreatment for ceramic ultrafiltration membrane: Control of natural organic matter fouling and degradation of atrazine.

    PubMed

    Cheng, Xiaoxiang; Liang, Heng; Ding, An; Tang, Xiaobin; Liu, Bin; Zhu, Xuewu; Gan, Zhendong; Wu, Daoji; Li, Guibai

    2017-04-15

    Ferrous iron/peroxymonosulfate (Fe(II)/PMS) oxidation was employed as a pretreatment method for ultrafiltration process to control membrane fouling caused by natural organic matter, including humic acid (HA), sodium alginate (SA), bovine serum albumin (BSA), and their mixture (HA-SA-BSA). To evaluate the mechanism of fouling mitigation, the effects of Fe(II)/PMS pretreatment on the characteristics of feed water were examined. The degradation of atrazine (ATZ) was also investigated and the species of generated radicals were preliminarily determined. Under the test exposure (15 and 50 μM), Fe(II)/PMS pretreatment effectively mitigated membrane fouling caused by HA, SA and HA-SA-BSA mixture, and the performance improved with the increase of Fe(II) or PMS dose; whereas aggravated BSA fouling at lower doses and fouling alleviation was observed only at a higher dose (50/50 μΜ). The fouling mitigation was mainly attributed to the effective reduction of organic loadings by coagulation with in-situ formed Fe(III). Its performance was comparable or even slightly higher than single coagulation with Fe(III), most likely due to the oxidation by Fe(II)/PMS process. Fe(II)/PMS oxidation showed better performance in reducing DOC and UV 254 , fluorescence intensities of fluorescent components and UV-absorbing compounds than single coagulation. In addition, Fe(II)/PMS pretreatment was efficient in ATZ degradation due to the generation of sulfate and hydroxyl radicals, whereas coagulation was ineffective to remove it. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Development of the primary bacterial microfouling layer on antifouling and fouling release coatings in temperate and tropical environments in Eastern Australia.

    PubMed

    Molino, Paul J; Childs, Samantha; Eason Hubbard, Maeve R; Carey, Janet M; Burgman, Mark A; Wetherbee, Richard

    2009-01-01

    The role played by bacteria during the pioneering stages of colonisation on marine coatings was investigated over three distinct seasons in both tropical and temperate environments. Novel methods were developed to facilitate the study of the adhered bacterial population on the test coatings in their native, hydrated state. The approach eliminated destructive sample preparation techniques, including sample dehydration and/or removal from the substratum surface prior to analysis. Bacterial colonisation during initial biofilm formation was evaluated on two antifouling paints, Intersmooth 360 and Super Yacht 800, and a fouling release coating, Intersleek 700. Bacterial colonisation was quantified on all three coating surfaces. Intersleek 700 displayed the quickest colonisation by bacteria, resulting in major modification of the substratum surface within 2-4 days following immersion in the ocean. Whilst fouling accumulated more quickly on Intersleek 700, by 16 days all three coatings were fouled significantly. Bacterial fouling was correlated to both location and season, with fouling occurring at a more rapid rate at the Cairns location, as well as during the summer months, when higher water temperatures were recorded. Successful colonisation of all coatings by bacteria soon after immersion modifies the characteristics of the surfaces at the hull/water interface, and subsequent settlement by higher biofouling organisms must be moderated by these modified surfaces.

  19. Crystallisation of mela-aillikites of the Narsaq region, Gardar alkaline province, south Greenland and relationships to other aillikitic carbonatitic associations in the province

    NASA Astrophysics Data System (ADS)

    Upton, B. G. J.; Craven, J. A.; Kirstein, L. A.

    2006-11-01

    Aillikites (carbonated, melilite-free ultramafic lamprophyres grading to carbonatites) are minor components of the Gardar alkaline igneous province. They occur principally as minor intrusions and as clasts in diatremes, but more voluminous aillikitic intrusions crop out near the Ilímaussaq Complex, which they predate by a few million years. These larger intrusions were emplaced at 1160 ± 5 Ma. They are essentially carbonate-free and, consisting almost wholly of ferromagnesian silicate and oxide minerals, are mela-aillikites. Typically the mela-aillikites are fine-grained rocks composed largely of olivine, clinopyroxene, phlogopite and magnetite that crystallised in open systems, permitting loss of volatile-rich residues. The petrography is highly complex, involving at least 28 mineral species. Pyroxenitic veins were emplaced while the host-rocks were still at high temperatures and represent channels through which fluorinated silico-carbonatitic residual melts escaped, with exsolving CO 2 as propellant. Precipitation of Ca-rich minerals including monticellite, perovskite, vesuvianite, wollastonite and cuspidine was a result of dissociation of the calcium carbonate in the residual melts. Late-stage crystallisation was in a highly oxidising environment in which the 'common minerals' attain extreme compositions (almost pure forsterite, ferrian-diopside, highly magnesian ilmenite, Ba-Ti-rich phlogopite and Sr-rich kaersutite). Spatially associated diatremes may be vents through which CO 2-rich gases erupted. The whole-rock compositions are considered to be well removed from those of co-existing melts: compaction and expulsion of highly mobile residual melts is inferred to have left the mela-aillikites as aberrant cumulates. The mela-aillikites are a late-Gardar manifestation of the aillikitic magmatism that occurred intermittently in the province for over 120 Ma. Repetitive formation of metasomite vein systems in the deep lithospheric mantle is postulated. These

  20. Comparison of MFI-UF constant pressure, MFI-UF constant flux and Crossflow Sampler-Modified Fouling Index Ultrafiltration (CFS-MFI UF).

    PubMed

    Sim, Lee Nuang; Ye, Yun; Chen, Vicki; Fane, Anthony G

    2011-02-01

    Understanding the foulant deposition mechanism during crossflow filtration is critical in developing indices to predict fouling propensity of feed water for reverse osmosis (RO). Factors affecting the performance on different fouling indices such as MFI-UF constant pressure, MFI-UF constant flux and newly proposed fouling index, CFS-MFI(UF) were investigated. Crossflow Sampler-Modified Fouling Index Ultrafiltration (CFS-MFI(UF)) utilises a typical crossflow unit to simulate the hydrodynamic conditions in the actual RO units followed by a dead-end unit to measure the fouling propensity of foulants. CFS-MFI(UF) was found sensitive to crossflow velocity. The crossflow velocity in the crossflow sampler unit influences the particle concentration and the particle size distribution in its permeate. CFS-MFI(UF) was also found sensitive to the permeate flux of both CFS and the dead-end cell. To closely simulate the hydrodynamic conditions of a crossflow RO unit, the flux used for CFS-MFI(UF) measurement was critical. The best option is to operate both the CFS and dead-end permeate flux at flux which is normally operated at industry RO units (∼20 L/m(2)h), but this would prolong the test duration excessively. In this study, the dead-end flux was accelerated by reducing the dead-end membrane area while maintaining the CFS permeate flux at 20 L/m(2)h. By doing so, a flux correction factor was investigated and applied to correlate the CFS-MFI(UF) measured at dead-end flux of 120 L/m(2)h to CFS-MFI(UF) measured at dead-end flux of 20 L/m(2)h for RO fouling rate prediction. Using this flux correction factor, the test duration of CFS-MFI(UF) can be shortened from 15 h to 2h. © 2010 Elsevier Ltd. All rights reserved.

  1. Analyzing the Evolution of Membrane Fouling via a Novel Method Based on 3D Optical Coherence Tomography Imaging.

    PubMed

    Li, Weiyi; Liu, Xin; Wang, Yi-Ning; Chong, Tzyy Haur; Tang, Chuyang Y; Fane, Anthony G

    2016-07-05

    The development of novel tools for studying the fouling behavior during membrane processes is critical. This work explored optical coherence tomography (OCT) to quantitatively interpret the formation of a cake layer during a membrane process; the quantitative analysis was based on a novel image processing method that was able to precisely resolve the 3D structure of the cake layer on a micrometer scale. Fouling experiments were carried out with foulants having different physicochemical characteristics (silica nanoparticles and bentonite particles). The cake layers formed at a series of times were digitalized using the OCT-based characterization. The specific deposit (cake volume/membrane surface area) and surface coverage were evaluated as a function of time, which for the first time provided direct experimental evidence for the transition of various fouling mechanisms. Axial stripes were observed in the grayscale plots showing the deposit distribution in the scanned area; this interesting observation was in agreement with the instability analysis that correlated the polarized particle groups with the small disturbances in the boundary layer. This work confirms that the OCT-based characterization is able to provide deep insights into membrane fouling processes and offers a powerful tool for exploring membrane processes with enhanced performance.

  2. Modeling filtration and fouling with a microstructured membrane filter

    NASA Astrophysics Data System (ADS)

    Cummings, Linda; Sanaei, Pejman

    2017-11-01

    Membrane filters find widespread use in diverse applications such as A/C systems and water purification. While the details of the filtration process may vary significantly, the broad challenge of efficient filtration is the same: to achieve finely-controlled separation at low power consumption. The obvious resolution to the challenge would appear simple: use the largest pore size consistent with the separation requirement. However, the membrane characteristics (and hence the filter performance) are far from constant over its lifetime: the particles removed from the feed are deposited within and on the membrane filter, fouling it and degrading the performance over time. The processes by which this occurs are complex, and depend on several factors, including: the internal structure of the membrane and the type of particles in the feed. We present a model for fouling of a simple microstructured membrane, and investigate how the details of the microstructure affect the filtration efficiency. Our idealized membrane consists of bifurcating pores, arranged in a layered structure, so that the number (and size) of pores changes in the depth of the membrane. In particular, we address how the details of the membrane microstructure affect the filter lifetime, and the total throughput. NSF DMS 1615719.

  3. Violence in youth sports: hazing, brawling and foul play.

    PubMed

    Fields, S K; Collins, C L; Comstock, R D

    2010-01-01

    By separating hazing, brawling, and foul play and failing to recognise that their connection to sport binds them together into a cohesive subset of sport injury and youth violence, past research has failed to show how sports-related violence is a broad example of interpersonal violence. The acceptance of violence within the sporting culture may, in part, explain why sports-related violence has not yet been widely recognised as a public health concern. This review shows that sports-related violence, including hazing, brawling and foul play, occurs among youth athletes of all ages and in a variety of different sports. The few studies to address this issue have all acknowledged the dangers of sports-related violence; however, no incident tracking method has been developed. Future research must provide accurate national estimates of the incidence of sports-related violence among youth, identify associated risk factors, evaluate preventive interventions and identify effective methods of distributing and implementing evidence-based interventions. Monitoring the magnitude and distribution of the burden of sports-related violence and building the scientific infrastructure necessary to support the development and widespread application of effective sports-related prevention interventions are essential first steps toward a reduction in the incidence of sports-related violence.

  4. Modification of poly(vinylidene fluoride) ultrafiltration membranes with poly(vinyl alcohol) for fouling control in drinking water treatment.

    PubMed

    Du, Jennifer R; Peldszus, Sigrid; Huck, Peter M; Feng, Xianshe

    2009-10-01

    A commercial poly(vinylidene fluoride) flat sheet membrane was modified by surface coating with a dilute poly(vinyl alcohol) (PVA) aqueous solution followed by solid-vapor interfacial crosslinking. The resulting PVA layer increased membrane smoothness and hydrophilicity and resulted in comparable pure water permeation between the modified and unmodified membranes. Fouling tests using a 5 mg/L protein solution showed that a short period of coating and crosslinking improved the anti-fouling performance. After 18 h ultrafiltration of a surface water with a TOC of approximately 7 mg C/L, the flux of the modified membrane was twice as high as that of the unmodified membrane. The improved fouling resistance of the modified membrane was related to the membrane physiochemical properties, which were confirmed by pure water permeation, X-ray photoelectron spectroscopy, and contact angle, zeta potential and roughness measurements.

  5. Reverse flexing as a physical/mechanical treatment to mitigate fouling of fine bubble diffusers.

    PubMed

    Odize, Victory O; Novak, John; De Clippeleir, Haydee; Al-Omari, Ahmed; Smeraldi, Joshua D; Murthy, Sudhir; Rosso, Diego

    2017-10-01

    Achieving energy neutrality has shifted focus towards aeration system optimization, due to the high energy consumption of aeration processes in modern advanced wastewater treatment plants. A study on fine bubble diffuser fouling and mitigation, quantified by dynamic wet pressure (DWP), oxygen transfer efficiency and alpha was carried out in Blue Plains, Washington, DC. Four polyurethane fine bubble diffusers were installed in a pilot reactor column fed with high rate activated sludge from a full scale system. A mechanical cleaning method, reverse flexing (RF), was used to treat two diffusers (RF1, RF2), while two diffusers were kept as a control (i.e., no reverse flexing). There was a 45% increase in DWP of the control diffuser after 17 months of operation, an indication of fouling. RF treated diffusers (RF1 and RF2) did not show significant increase in DWP, and in comparison to the control diffuser prevented about 35% increase in DWP. Hence, reverse flexing potentially saves blower energy, by reducing the pressure burden on the air blower which increases blower energy requirement. However, no significant impact of the RF treatment in preventing a decrease in alpha-fouling (αF) of the fine pore diffusers, over time in operation was observed.

  6. Crystallisation of Ba1-xSrxZn2Si2O7 from BaO/SrO/ZnO/SiO2 glass with different ZrO2 and TiO2 concentrations

    NASA Astrophysics Data System (ADS)

    Vladislavova, Liliya; Kracker, Michael; Zscheckel, Tilman; Thieme, Christian; Rüssel, Christian

    2018-04-01

    The effect of different nucleation agents such as ZrO2 and TiO2 was investigated for a first time with respect to their crystallisation behaviour in the glass system BaO-SrO-ZnO-SiO2. In all studied glasses, a Ba1-xSrxZn2Si2O7 (0.1 ≤ x ≤ 0.9) solid solution crystallized. This phase was first described in 2015 to possess a similar structure as the high temperature phase of BaZn2Si2O7 and a thermal expansion close to zero or even negative. It may find applications e.g. as cook panels, telescope mirrors, and furnace windows. Kinetic parameters of the crystallisation process were determined by supplying different heating rates in a differential scanning calorimeter (DSC). The results were evaluated using the equations of Ozawa and Kissinger with respect to the activation energies. Furthermore, the Ozawa method was used for the determination of Avrami parameters, which provides further information on the nucleation and crystallisation processes. Scanning electron microscopy including electron backscatter diffraction (EBSD) was used to characterise the microstructure, to determine the crystallite size and the crystal orientation. For the characterisation of the occurring crystalline phases, X-ray diffraction was used.

  7. Bioactive coating with low-fouling polymers for the development of biocompatible vascular implants

    NASA Astrophysics Data System (ADS)

    Thalla, Pradeep Kumar

    The replacement of occluded blood vessels and endovascular aneurysm repair (EVAR) are performed with the use of synthetic vascular grafts and stent grafts, respectively. Both implants lead to frequent clinical complications that are different but due to a similar problem, namely the inadequate surface properties of the polymeric biomaterials used (generally polyethylene terephthalate (PET) or expanded polytetrafluoroethylene (ePTFE)). Therefore the general objective of this thesis was to create a versatile bioactive coating on vascular biomaterials that reduce material-induced thrombosis and promote desired cell interactions favorable to tissue healing around implants. The use of low-fouling backgrounds was decided in order to reduce platelet adhesion as well as the non-specific protein adsorption and thus increase the bioactivity of immobilized biomolecules. As part of the preliminary objective, a multi-arm polyethylene glycol (PEG) was chosen to create a versatile low-fouling surface, since the current coating methods are far from being versatile and rely on the availability of compatible functional groups on both PEG and the host surface. This PEG coating method was developed by taking advantage of novel primary amine-rich plasma polymerized coatings (LP). As demonstrated by quartz crystal microbalance with dissipation (QCM-D), fluorescence measurements and platelet adhesion assays, our PEG coatings exhibited low protein adsorption and almost no platelet adhesion after 15 min perfusion in whole blood. Although protein adsorption was not completely abrogated and short-term platelet adhesion assay was clearly insufficient to draw conclusions for long-term prevention of thrombosis in vivo, the low-fouling properties of this PEG coating were sufficient to be exploited for further coupling of bioactive molecules to create bioactive coatings. Therefore, as a part of the second objective, an innovative and versatile bioactive coating was developed on PEG and

  8. Alleviation of membrane fouling in a submerged membrane bioreactor with electrochemical oxidation mediated by in-situ free chlorine generation.

    PubMed

    Chung, Chong Min; Tobino, Tomohiro; Cho, Kangwoo; Yamamoto, Kazuo

    2016-06-01

    The control of membrane fouling is still the biggest challenge that membrane bioreactor (MBR) for wastewater treatment faces with. In this report, we evince that an in-situ electrochemical free chlorine generation is effective for membrane fouling mitigation. An electrochemical oxidation (EO) apparatus with perforated Ti/IrO2 anodes and Ti/Pt cathodes was integrated into a conventional MBR with microfiltration module (EO-MBR). The membrane fouling characteristics of EO-MBR fed with synthetic wastewater were monitored for about 2 months in comparison to control MBRs. In the EO-MBR at a direct current density of 0.4 mA/cm(2), the frequency of membrane fouling when the trans-membrane pressure (TMP) reached 30 kPa was effectively reduced by 40% under a physical membrane cleaning regime. The evolution patterns of TMP together with hydraulic resistance analysis based on resistance-in-series model indicated that the electrochemically generated active chlorine alleviated the physically irremovable membrane fouling. Further analysis on extracellular polymeric substances (EPS) of sludge cake layer (SCL) revealed significant reductions of protein contents in soluble EPS and fluorescence emission intensities from humic acids and other fluorophores in bound EPS, which in-turn would decrease the hydrophobic accumulation of organic foulants on membrane pores. The chlorine dosage from the EO apparatus was estimated to be 4.7 mg Cl2/g MLVSS/day and the overall physicochemical properties (bio-solids concentration, floc diameter, zeta-potential) as well as the microbial activity in terms of specific oxygen utilization rate and removal efficiency of dissolved organic carbon (>97%) were not affected significantly. A T-RFLP (terminal restriction fragment length polymorphism) analysis suggested noticeable shifts in microbial community both in mixed liquor and sludge cake layer. Consequently, our electrochemical chlorination would be an efficient fouling control strategy in membrane

  9. Development of the initial diatom microfouling layer on antifouling and fouling-release surfaces in temperate and tropical Australia.

    PubMed

    Molino, Paul J; Campbell, Ewan; Wetherbee, Richard

    2009-11-01

    Diatoms are a major component of the slime layers that form on artificial surfaces in marine environments. In this article, the role played by diatoms during the pioneering stages of colonization of three marine antifouling (AF) coatings, viz Intersmooth 360, Super Yacht 800 and a fouling-release (FR) coating Intersleek 700, was investigated. The study was conducted over three distinct seasons in two very different marine environments in Australia, ie temperate Williamstown, Victoria and tropical Cairns, Queensland. Diatom fouling occurred more rapidly on the FR coating Intersleek 700, compared to both biocidal AF paints. However, colonization by diatoms on all three coatings was generally slow during the 16-day study. Benthic diatoms do not subsist by floating around in the water column, rather they only gain the opportunity to colonize new surfaces when they either voluntarily release or are displaced from their benthic habitat, thereafter entering the water column where the opportunity to adhere to a new surface presents itself. However, once settled, fouling diatoms grow exponentially from the site of attachment, spreading out until they populate large areas of the surface. This mode of surface colonization correlates more with an 'infection' type, epidemiology model, a mechanism that accounts for the colonization of significant regions of the coating surface from a single fouling diatom cell, forming 'clonal patches'. This is in comparison to the bacterial colonization of the surface, which exhibits far more rapid recruitment and growth of cells on the substratum surface. Therefore, it is hypothesized that fouling diatoms may be characterized more by their ability to adhere and grow on surfaces already modified by bacterial biofilms, rather than on their strength of adhesion. Cell morphology and the ability to avoid shear may also be an important factor.

  10. Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings.

    PubMed

    Bixler, Gregory D; Theiss, Andrew; Bhushan, Bharat; Lee, Stephen C

    2014-04-01

    Material scientists often look to biology for new engineering solutions to materials science problems. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (antifouling) and lotus leaf (self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we study antifouling properties of four microstructured surfaces inspired by rice leaves and fabricated with photolithography and hot embossing techniques. Anti-biofouling effectiveness is determined with bioassays using Escherichia coli whilst inorganic fouling with simulated dirt particles. Antifouling data are presented to understand the role of surface geometrical features resistance to fouling. Conceptual modeling provides design guidance when developing novel antifouling surfaces for applications in the medical, marine, and industrial fields. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings.

    PubMed

    Beigbeder, Alexandre; Degee, Philippe; Conlan, Sheelagh L; Mutton, Robert J; Clare, Anthony S; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Dubois, Philippe

    2008-01-01

    This article reports on the preparation and partial characterisation of silicone-based coatings filled with low levels of either synthetic multiwall carbon nanotubes (MWCNTs) or natural sepiolite (NS). The antifouling and fouling-release properties of these coatings were explored through laboratory assays involving representative soft-fouling (Ulva) and hard-fouling (Balanus) organisms. The bulk mechanical properties of the coatings appeared unchanged by the addition of low amounts of filler, in contrast to the surface properties, which were modified on exposure to water. The release of Ulva sporelings (young plants) was improved by the addition of low amounts of both NS and MWCNTs. The most profound effect recorded was the significant reduction of adhesion strength of adult barnacles growing on a silicone elastomer containing a small amount (0.05%) of MWCNTs. All the data indicate that independent of the bulk properties, the surface properties affect settlement, and more particularly, the fouling-release behaviour, of the filled materials.

  12. Biocontrol of fouling pests: Effect of diversity, identity and density of control agents.

    PubMed

    Atalah, Javier; Newcombe, Emma M; Zaiko, Anastasija

    2016-04-01

    Augmentative biocontrol, using native natural enemies, has been suggested as a promising tool to control marine biofouling pests on artificial structures. However, there are still important knowledge gaps to be addressed before biocontrol can be considered as a management tool. In a field experiment on floating marine structures we examined intra- and interspecific consumer interactions among biocontrol agents on different surface orientations. We tested the effect of identity, density and diversity of three invertebrates (the 11-arm seastar Coscinasterias muricata, the sea urchin Evechinus chloroticus and the gastropod Cook's turban Cookia sulcata) to reduce established biofouling and to prevent fouling growth on defouled surfaces. High densities of biocontrol agents were not more effective at fouling control (cover and biomass) than low densities. Nor did multi-species treatments function more effectively than mono-specific ones. However, biocontrol agent identity was important, with the 11-arm seastar and Cook's turban being the most effective at fouling reduction and prevention, respectively. Surface orientation had a strong effect on the effectiveness of control agents, with the best results obtained on vertical compared to diagonal and underside surfaces. This study confirmed the potential of biocontrol as a management tool for marine pest, indicating that identity is more important than richness and density of control agents. It also highlighted the limitations of this approach on diagonal and underside surfaces, where control agents have limited retention ability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Future warming and acidification effects on anti-fouling and anti-herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae).

    PubMed

    Raddatz, Stefanie; Guy-Haim, Tamar; Rilov, Gil; Wahl, Martin

    2017-02-01

    Human-induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+∆5°C, +∆700 μatm CO 2 ) using multifactorial long-term experiments in novel outdoor benthic mesocosms ("Benthocosms") over 9-12-week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti-fouling and anti-herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti-microfouling activity was highest during winter under warming, while anti-macrofouling and anti-herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti-fouling and anti-herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future. © 2016 Phycological Society of America.

  14. Efficacy and Ecotoxicity of Novel Anti-Fouling Nanomaterials in Target and Non-Target Marine Species.

    PubMed

    Avelelas, Francisco; Martins, Roberto; Oliveira, Tânia; Maia, Frederico; Malheiro, Eliana; Soares, Amadeu M V M; Loureiro, Susana; Tedim, João

    2017-04-01

    Biofouling is a global problem that affects virtually all the immersed structures. Currently, several novel environmentally friendly approaches are being tested worldwide to decrease the toxicity of biocides in non-fouling species, such as the encapsulation/immobilization of commercially available biocides, in order to achieve control over the leaching rate. The present study addresses the toxicity of two widely used booster biocides, zinc pyrithione (ZnPT) and copper pyrithione (CuPT), in its free and incorporated forms in order to assess their toxicity and anti-fouling efficacy in target and non-target species. To achieve this goal, the following marine organisms were tested; the green microalgae Tetraselmis chuii (non-target species) and both target species, the diatom Phaeodactylum tricornutum and the mussel Mytilus edulis. Organisms were exposed to both biocides, two unloaded nanostructured materials and nanomaterials loaded with biocides, from 10 μg/L to 100 mg/L total weight, following standard protocols. The most eco-friendly and simultaneously efficient anti-fouling solution against the two photosynthetic species (nanoclays loaded with ZnPT) was then tested on mussels to assess its lethal efficacy (LC 50  = 123 μg/L) and compared with free biocide (LC 50  = 211 μg/L) and unloaded material (LC 50  > 1000 μg/L). A second exposure test with sub-lethal concentrations (lower than 100 μg/L), using mussels, was carried out to assess biochemical changes caused by the tested compounds. Oxidative stress, detoxification and neurotransmission markers were not responsive; however, different antioxidant patterns were found with free ZnPT and loaded nanoclay exposures. Thus, the immobilization of the biocide ZnPT into nanoclays proved to be a promising efficient and eco-friendly anti-fouling strategy.

  15. Impact of algal organic matter released from Microcystis aeruginosa and Chlorella sp. on the fouling of a ceramic microfiltration membrane.

    PubMed

    Zhang, Xiaolei; Devanadera, Ma Catriona E; Roddick, Felicity A; Fan, Linhua; Dalida, Maria Lourdes P

    2016-10-15

    Algal blooms lead to the secretion of algal organic matter (AOM) from different algal species into water treatment systems, and there is very limited information regarding the impact of AOM from different species on the fouling of ceramic microfiltration (MF) membranes. The impact of soluble AOM released from Microcystis aeruginosa and Chlorella sp. separately and together in feedwater on the fouling of a tubular ceramic microfiltration membrane (alumina, 0.1 μm) was studied at lab scale. Multi-cycle MF tests operated in constant pressure mode showed that the AOM (3 mg DOC L(-1)) extracted from the cultures of the two algae in early log phase of growth (12 days) resulted in less flux decline compared with the AOM from stationary phase (35 days), due to the latter containing significantly greater amounts of high fouling potential components (protein and humic-like substances). The AOM released from Chlorella sp. at stationary phase led to considerably greater flux decline and irreversible fouling resistance compared with that from M. aeruginosa. The mixture of the AOM (1:1, 3 mg DOC L(-1)) from the two algal species showed more similar flux decline and irreversible fouling resistance to the AOM from M. aeruginosa than Chlorella sp. This was due to the characteristics of the AOM mixture being more similar to those for M. aeruginosa than Chlorella sp. The extent of the flux decline for the AOM mixture after conventional coagulation with aluminium chlorohydrate or alum was reduced by 70%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Predicting the distribution of whey protein fouling in a plate heat exchanger using the kinetic parameters of the thermal denaturation reaction of β-lactoglobulin and the bulk temperature profiles.

    PubMed

    Blanpain-Avet, P; André, C; Khaldi, M; Bouvier, L; Petit, J; Six, T; Jeantet, R; Croguennec, T; Delaplace, G

    2016-12-01

    Fouling of plate heat exchangers (PHE) is a severe problem in the dairy industry, notably because the relationship between the build-up of protein fouling deposits and the chemical reactions taking place in the fouling solution has not yet been fully elucidated. Experiments were conducted at pilot scale in a corrugated PHE, and fouling deposits were generated using a model β-lactoglobulin (β-LG) fouling solution for which the β-LG thermal denaturation reaction constants had been previously determined experimentally. Then 18 different bulk temperature profiles within the PHE were imposed. Analysis of the fouling runs shows that the dry deposit mass per channel versus the ratio R=k unf /k agg (with k unf and k agg representing, respectively, the unfolding and aggregation rate constants computed from both the identification of the β-LG thermal denaturation process and knowledge of the imposed bulk temperature profile into the PHE channel) is able to gather reasonably well the experimental fouling mass data into a unique master curve. This type of representation of the results clearly shows that the heat-induced reactions (unfolding and aggregation) of the various β-LG molecular species in the bulk fluid are essential to capture the trend of the fouling mass distribution inside a PHE. This investigation also illustrates unambiguously that the release of the unfolded β-LG (also called β-LG molten globule) within the bulk fluid (and the absence of its consumption in the form of aggregates) is a key phenomenon that controls the extent of protein fouling as well as its location inside the PHE. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Tackling membrane fouling in microalgae filtration using nylon 6,6 nanofiber membrane.

    PubMed

    Bilad, M R; Azizo, A S; Wirzal, M D H; Jia Jia, L; Putra, Z A; Nordin, N A H M; Mavukkandy, M O; Jasni, M J F; Yusoff, A R M

    2018-06-06

    Microalgae technology, if managed properly, has promising roles in solving food-water-energy nexus. The Achilles' heel is, however, to lower the costs associated with cultivation and harvesting. As a favorable technique, application of membrane process is strongly limited by membrane fouling. This study evaluates performance of nylon 6,6 nanofiber membrane (NFM) to a conventional polyvinylidene fluoride phase inverted membrane (PVDF PIM) for filtration of Chlorella vulgaris. Results show that nylon 6,6 NFM is superhydrophilic, has higher size of pore opening (0.22 vs 0.18 μm) and higher surface pore density (23 vs 18 pores/μm 2 ) leading to higher permeance (1018 vs 493 L/m 2 hbar) and better fouling resistant. Such advantages help to outperform the filterability of PVDF PIM by showing much higher steady-state permeance (286 vs 120 L/m 2 hbar), with comparable biomass retention. In addition, unlike for PVDF PIM, imposing longer relaxation cycles further enhances the performance of the NFM (i.e., 178 L/m 2 hbar for 0.5 min and 236 L/m 2 hbar for 5 min). Overall findings confirm the advantages of nylon 6,6 NFM over the PVDF PIM. Such advantages can help to reduce required membrane area and specific aeration demand by enabling higher flux and lowering aeration rate. Nevertheless, developments of nylon 6,6 NFM material with respect to its intrinsic properties, mechanical strength and operational conditions of the panel can still be explored to enhance its competitiveness as a promising fouling resistant membrane material for microalgae filtration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Effect of different temperatures on performance and membrane fouling in high concentration PAC-MBR system treating micro-polluted surface water.

    PubMed

    Ma, Cong; Yu, Shuili; Shi, Wenxin; Heijman, S G J; Rietveld, L C

    2013-08-01

    A bench-scale immersed microfiltration coupled with 50 g/L PAC was developed to treat micro-polluted surface water (MPSW) under 10 and 20 °C and the effects of temperatures on the performance and the membrane fouling were also investigated. The low temperature (10 °C) delayed the time for the start-up by 9 days and the complete nitrification by 10 days. In the stable operation, two systems both had high NH₃-N removal efficiency (above 90%) and better removal of organic matters (10% DOC, 5% UV₂₅₄ and 4% SUVA) at 10 °C. Polysaccharides (SMP) were the main membrane fouling matters at low temperature (10 °C) and low temperature (10 °C) didn't cause serious chemical irreversible membrane fouling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor-membrane bioreactor system.

    PubMed

    Luo, Yunlong; Jiang, Qi; Ngo, Huu H; Nghiem, Long D; Hai, Faisal I; Price, William E; Wang, Jie; Guo, Wenshan

    2015-09-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) system and a conventional membrane bioreactor (CMBR) were compared in terms of micropollutant removal efficiency and membrane fouling propensity. The results show that the hybrid MBBR-MBR system could effectively remove most of the selected micropollutants. By contrast, the CMBR system showed lower removals of ketoprofen, carbamazepine, primidone, bisphenol A and estriol by 16.2%, 30.1%, 31.9%, 34.5%, and 39.9%, respectively. Mass balance calculations suggest that biological degradation was the primary removal mechanism in the MBBR-MBR system. During operation, the MBBR-MBR system exhibited significantly slower fouling development as compared to the CMBR system, which could be ascribed to the wide disparity in the soluble microbial products (SMP) levels between MBBR-MBR (4.02-6.32 mg/L) and CMBR (21.78 and 33.04 mg/L). It is evident that adding an MBBR process prior to MBR treatment can not only enhance micropollutant elimination but also mitigate membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Sunlight-Sensitive Anti-Fouling Nanostructured TiO2 coated Cu Meshes for Ultrafast Oily Water Treatment

    PubMed Central

    Liu, HaoRan; Raza, Aikifa; Aili, Abulimiti; Lu, JinYou; AlGhaferi, Amal; Zhang, TieJun

    2016-01-01

    Nanostructured materials with desired wettability and optical property can play an important role in reducing the energy consumption of oily water treatment technologies. For effective oily water treatment, membrane materials with high strength, sunlight-sensitive anti-fouling, relative low fabrication cost, and controllable wettability are being explored. In the proposed oily water treatment approach, nanostructured TiO2-coated copper (TNS-Cu) meshes are used. These TNS-Cu meshes exhibit robust superhydrophilicity and underwater oleophobicity (high oil intrusion pressure) as well as excellent chemical and thermal stability (≈250 °C). They have demonstrated high separation efficiency (oil residue in the filtrate ≤21.3 ppm), remarkable filtration flux (≥400 kL h−1 m−2), and sunlight-sensitive anti-fouling properties. Both our theoretical analysis and experimental characterization have confirmed the enhanced light absorption property of TNS-Cu meshes in the visible region (40% of the solar spectrum) and consequently strong anti-fouling capability upon direct solar light illumination. With these features, the proposed approach promises great potential in treating produced oily wastewater from industry and daily life. PMID:27160349

  1. Salt

    USGS Publications Warehouse

    Franson, J.C.; Friend, M.

    1999-01-01

    Animals become victims of salt poisoning or toxicosis when toxic levels of sodium and chloride accumulate in the blood after they ingest large amounts of salt or, in some species, are deprived of water. For birds, salt sources may include saline water and road salt.Normally, the salt glands of birds (Fig. 47.1) excrete sodium and chloride to maintain the proper physiologic chemical balance. However, when there has been insufficient time for acclimation of the salt gland to the saline environment, or when salt gland function is compromised by exposure to certain pesticides or oil, the electrolyte balance of the blood may be upset by the excess sodium and chloride, resulting in toxicosis. Salt accumulation on the outside of the body, or salt encrustation, is a greater problem for waterbirds that use very saline waters than is salt toxicosis. Salt encrustation can lead to exertion, acute muscle degeneration, and eventual drowning during the struggle to escape entrapment.

  2. Addressing reverse osmosis fouling within water reclamation--a side-by-side comparison of low-pressure membrane pretreatments.

    PubMed

    Kent, Fraser C; Farahbakhsh, Khosrow

    2011-06-01

    A tertiary membrane filtration (TMF) pilot operating on secondary effluent and a membrane bioreactor (MBR) were setup in a side-by-side study as pretreatments for two identical reverse osmosis pilot systems. The water quality of the permeate from both low-pressure membrane pretreatment systems and the fouling rate of the reverse osmosis systems were compared to assess the capabilities of the two low-pressure membrane pretreatments to prevent organic fouling of the reverse osmosis systems. Both pretreatment pilots were setup using typical operating conditions (i.e., solids retention time and mixed-liquor suspended solids). A consistent difference in water quality and reverse osmosis performance was demonstrated during the 12-month study. The MBR permeate consistently had significantly lower total organic carbon (TOC) and chemical oxygen demand concentrations, but higher color and specific UV absorbance compared with the permeate from the TMF pretreatment. The pretreatment with the MBR gave an average reverse osmosis fouling rate over the entire study (0.27 Lmh/bar.month) that was less than half of the value found for the reverse osmosis with TMF pretreatment (0.60 Lmh/bar.month). A correlation of reverse osmosis feed TOC concentration with average reverse osmosis fouling rate also was established, independent of the pretreatment method used. Results from a cleaning analysis, energy dispersive spectroscopy, and fourier transformed infrared reflectometry confirmed that the foulants were primarily organic in nature. It is concluded that, for this type of application and setup, MBR systems present an advantage over tertiary membrane polishing of secondary effluent for reverse osmosis pretreatment.

  3. Preparation of PVDF/SiO2 composite membrane for salty oil emulsion separation: Physicochemical properties changes and its impact on fouling propensity

    NASA Astrophysics Data System (ADS)

    Ngang, H. P.; Ahmad, A. L.; Low, S. C.; Ooi, B. S.

    2017-06-01

    In this study, polyvinylidene fluoride (PVDF)/silica (SiO2) composite membranes were prepared by diffusion induced phase separation through direct blending method. The roles of SiO2 particles concentration on membrane physicochemical properties were evaluated through oil emulsion separation under high ionic strength environment whereby hydrophobic interaction is prevalent. Membranes were characterized using field emission scanning electron microscope (FESEM), atomic force microscopy (AFM), contact angle measurement, membrane porosity and pore size distribution. It was expected that by adding the monodispersed SiO2, it will render the membrane with hydrophilic characteristic. However, it is concomitantly changing the physical properties of the membrane. Addition of SiO2 caused the changes to the physicochemical properties of the composite membrane and its effects on the fouling propensity were evaluated. It was found that the mean pore size of the membranes increased with the increase of SiO2 concentration. The addition of hydrophilic SiO2 had accelerated the precipitation of the membrane dope solution resulting in changes of membrane cross section morphology. FESEM images showed the membrane cross-section morphology of PVDF/SiO2 composite membrane had gradually changed from finger-like to macrovoid-like structure with the increased of SiO2 concentration. The hydrophilicity of the PVDF/SiO2 composite membrane was enhanced which is a desired property for water purification. However, the changes in physical properties (pore size, porosity, and surface roughness) had played more dominant role in the oil emulsion fouling behaviour rather than hydrophilicity enhancement. Due to the salting out effect under high ionic strength environment, hydrophobic interaction played an important role in the oil adsorption. The increment in membrane pore size, porosity, and surface roughness after incorporation of SiO2 particles had encountered more serious relative flux reduction and

  4. Effects of dissolved organic matters (DOMs) on membrane fouling in anaerobic ceramic membrane bioreactors (AnCMBRs) treating domestic wastewater.

    PubMed

    Yue, Xiaodi; Koh, Yoong Keat Kelvin; Ng, How Yong

    2015-12-01

    Anaerobic membrane bioreactors (AnMBRs) have been regarded as a potential solution to achieve energy neutrality in the future wastewater treatment plants. Coupling ceramic membranes into AnMBRs offers great potential as ceramic membranes are resistant to corrosive chemicals such as cleaning reagents and harsh environmental conditions such as high temperature. In this study, ceramic membranes with pore sizes of 80, 200 and 300 nm were individually mounted in three anaerobic ceramic membrane bioreactors (AnCMBRs) treating real domestic wastewater to examine the treatment efficiencies and to elucidate the effects of dissolved organic matters (DOMs) on fouling behaviours. The average overall chemical oxygen demands (COD) removal efficiencies could reach around 86-88%. Although CH4 productions were around 0.3 L/g CODutilised, about 67% of CH4 generated was dissolved in the liquid phase and lost in the permeate. When filtering mixed liquor of similar properties, smaller pore-sized membranes fouled slower in long-term operations due to lower occurrence of pore blockages. However, total organic removal efficiencies could not explain the fouling behaviours. Liquid chromatography-organic carbon detection, fluorescence spectrophotometer and high performance liquid chromatography coupled with fluorescence and ultra-violet detectors were used to analyse the DOMs in detail. The major foulants were identified to be biopolymers that were produced in microbial activities. One of the main components of biopolymers--proteins--led to different fouling behaviours. It is postulated that the proteins could pass through porous cake layers to create pore blockages in membranes. Hence, concentrations of the DOMs in the soluble fraction of mixed liquor (SML) could not predict membrane fouling because different components in the DOMs might have different interactions with membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A Study on Anti – Fouling Behaviour and Mechanical Properties of PVA/Chitosan/TEOS Hybrid membrane in The Treatment of Copper Solution

    NASA Astrophysics Data System (ADS)

    Sulaiman, N. A.; Kassim Shaari, N. Z.; Rahman, N. Abdul

    2018-05-01

    In a wastewater treatment by using membrane filtration, fouling has been one of the major problems. In this study, the anti-fouling behaviour of the fabricated thin-film composite membrane were studied during the treatment of water containing copper ion. The membranes were prepared from a polymer blend of 2wt.% chitosan with 10 wt.% poly(vinyl alcohol) (PVA) and then it was cross – linked with tetraethylorthosilicate (TEOS) through sol-gel method. The membrane had been evaluated for its resistance against organic fouling where humic acid had been chosen as organic foulant model which represent the natural organic matter (NOM) in water or wastewater. The dead-end filtration experiments were carried out by using 50 ppm of copper solution with and without the presence of humic acid as feed solution, which was passed through two types of thin film composite membranes. The possible reversible fouling was evaluated by using relative flux decay (RFD) and relative flux recovery (RFR) calculations. The percentage of copper ion removal was evaluated by using Atomic Absorption Spectroscopy (AAS). Based on the results, with the presence of humic acid, the membrane incorporated with silica precursor (TEOS) showed lower flux decay (3%) and higher flux recovery (76%), which show that the formulated hybrid membrane possesses the anti fouling property. The same trend was observed in the mechanical properties of hybrid membrane, where the presence of TEOS has improved the tensile strength and flexibility of the membrane. Therefore, the fabricated thin film composite with the anti-fouling properties and good physical flexibility has potential to be used in the treatment of wastewater containing heavy metal as it could result in good saving in term of operational cost.

  6. Membrane fouling of forward osmosis (FO) membrane for municipal wastewater treatment: A comparison between direct FO and OMBR.

    PubMed

    Sun, Yan; Tian, Jiayu; Zhao, Zhiwei; Shi, Wenxin; Liu, Dongmei; Cui, Fuyi

    2016-11-01

    In this work, membrane fouling behavior in a direct forward osmosis (FO) and an osmotic membrane bioreactor (OMBR) for municipal wastewater treatment was systematically investigated and compared. During the long-term operation, much severer flux decline was observed for the direct FO than that for the OMBR. The cake layer was found to be much thicker, together with large amounts of microorganisms growing on the membrane surface in direct FO. Interestingly, no obvious attachment of microorganisms on the membrane surface was observed in the OMBR. The fourier transform infrared spectroscopy (FTIR) and excitation emission matrices (EEM) analyses showed the polysaccharides and proteins were the dominant organic foulants in the fouling layer, and the quantity of the organic substances was also higher in direct FO than that in OMBR. Energy-dispersive X-ray (EDX) results indicated the main inorganic elements in the fouling layer were Ca, Mg, Fe and P, all of which exhibited higher relative percentages in direct FO than that in OMBR. The occurrence of higher contents of microorganisms, organic foulants and inorganic elements in the cake layer caused a higher filtration resistance for the FO membrane in the direct FO. Although more severe membrane fouling was identified in direct FO, the hydraulic and chemical cleaning was more effective on recovering the water permeability of the membrane in direct FO than that in OMBR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Experimental Study of Membrane Fouling during Crossflow Microfiltration of Yeast and Bacteria Suspensions: Towards an Analysis at the Microscopic Level

    PubMed Central

    Ben Hassan, Ines; Ennouri, Monia; Lafforgue, Christine; Schmitz, Philippe; Ayadi, Abdelmoneim

    2013-01-01

    Microfiltration of model cell suspensions combining macroscopic and microscopic approaches was studied in order to better understand microbial membrane fouling mechanisms. The respective impact of Saccharomyces cerevisiae yeast and Escherichia coli bacteria on crossflow microfiltration performances was investigated using a multichannel ceramic 0.2 µm membrane. Pure yeast suspensions (5 µm ovoid cells) and mixtures of yeast and bacteria (1 to 2.5 µm rod shape cells) were considered in order to analyse the effect of interaction between these two microorganisms on fouling reversibility. The resistances varied significantly with the concentration and characteristics of the microorganisms. Membrane fouling with pure yeast suspension was mainly reversible. For yeast and bacteria mixed suspensions (6 g L−1 yeast concentration) the increase in bacteria from 0.15 to 0.30 g L−1 increased the percentage of normalized reversible resistance. At 10 g L−1 yeast concentration, the addition of bacteria tends to increase the percentage of normalized irreversible resistance. For the objective of performing local analysis of fouling, an original filtration chamber allowing direct in situ observation of the cake by confocal laser scanning microscopy (CLSM) was designed, developed and validated. This device will be used in future studies to characterize cake structure at the microscopic scale. PMID:24958619

  8. Impact of the Interaction between Aquatic Humic Substances and Algal Organic Matter on the Fouling of a Ceramic Microfiltration Membrane.

    PubMed

    Zhang, Xiaolei; Fan, Linhua; Roddick, Felicity A

    2018-02-01

    The influence of the interaction between aquatic humic substances and the algal organic matter (AOM) derived from Microcystis aeruginosa on the fouling of a ceramic microfiltration (MF) membrane was studied. AOM alone resulted in a significantly greater flux decline compared with Suwannee River humic acid (HA), and fulvic acid (FA). The mixture of AOM with HA and FA exhibited a similar flux pattern as the AOM alone in the single-cycle filtration tests, indicating the flux decline may be predominantly controlled by the AOM in the early filtration cycles. The mixtures resulted in a marked increase in irreversible fouling resistance compared with all individual feed solutions. An increase in zeta potential was observed for the mixtures (becoming more negatively charged), which was in accordance with the increased reversible fouling resistance resulting from enhanced electrostatic repulsion between the organic compounds and the negatively-charged ceramic membrane. Dynamic light scattering (DLS) and size exclusion chromatography analyses showed an apparent increase in molecular size for the AOM-humics mixtures, and some UV-absorbing molecules in the humics appeared to participate in the formation of larger aggregates with the AOM, which led to greater extent of pore plugging and hence resulted in higher irreversible fouling resistance.

  9. Impact of the Interaction between Aquatic Humic Substances and Algal Organic Matter on the Fouling of a Ceramic Microfiltration Membrane

    PubMed Central

    Zhang, Xiaolei; Fan, Linhua

    2018-01-01

    The influence of the interaction between aquatic humic substances and the algal organic matter (AOM) derived from Microcystis aeruginosa on the fouling of a ceramic microfiltration (MF) membrane was studied. AOM alone resulted in a significantly greater flux decline compared with Suwannee River humic acid (HA), and fulvic acid (FA). The mixture of AOM with HA and FA exhibited a similar flux pattern as the AOM alone in the single-cycle filtration tests, indicating the flux decline may be predominantly controlled by the AOM in the early filtration cycles. The mixtures resulted in a marked increase in irreversible fouling resistance compared with all individual feed solutions. An increase in zeta potential was observed for the mixtures (becoming more negatively charged), which was in accordance with the increased reversible fouling resistance resulting from enhanced electrostatic repulsion between the organic compounds and the negatively-charged ceramic membrane. Dynamic light scattering (DLS) and size exclusion chromatography analyses showed an apparent increase in molecular size for the AOM-humics mixtures, and some UV-absorbing molecules in the humics appeared to participate in the formation of larger aggregates with the AOM, which led to greater extent of pore plugging and hence resulted in higher irreversible fouling resistance. PMID:29389873

  10. Dynamics of the Fouling Layer Microbial Community in a Membrane Bioreactor

    PubMed Central

    Ziegler, Anja S.; McIlroy, Simon J.; Larsen, Poul; Albertsen, Mads; Hansen, Aviaja A.; Heinen, Nicolas; Nielsen, Per Halkjær

    2016-01-01

    Membrane fouling presents the greatest challenge to the application of membrane bioreactor (MBR) technology. Formation of biofilms on the membrane surface is the suggested cause, yet little is known of the composition or dynamics of the microbial community responsible. To gain an insight into this important question, we applied 16S rRNA gene amplicon sequencing with a curated taxonomy and fluorescent in situ hybridization to monitor the community of a pilot-scale MBR carrying out enhanced biological nitrogen and phosphorus removal with municipal wastewater. In order to track the dynamics of the fouling process, we concurrently investigated the communities of the biofilm, MBR bulk sludge, and the conventional activated sludge system used to seed the MBR system over several weeks from start-up. As the biofilm matured the initially abundant betaproteobacterial genera Limnohabitans, Hydrogenophaga and Malikia were succeeded by filamentous Chloroflexi and Gordonia as the abundant species. This study indicates that, although putative pioneer species appear, the biofilm became increasingly similar to the bulk community with time. This suggests that the microbial population in bulk water will largely determine the community structure of the mature biofilm. PMID:27399199

  11. Membrane fouling related to microbial community and extracellular polymeric substances at different temperatures.

    PubMed

    Gao, Da-Wen; Wen, Zhi-Dan; Li, Bao; Liang, Hong

    2013-09-01

    An anoxic-aerobic membrane bioreactor was established to investigate the role of microorganisms and microbial metabolites in membrane fouling at different temperatures. The results showed that the membrane fouling cycle at 303, 293, and 283 K were 30, 29, and 5.5 days, respectively. Polysaccharides dominated the extracellular polymeric substances (EPS) and soluble microbial products (SMP) at 303 and 293 K, instead, proteins was the predominant composition of metabolites at 283 K. The correlation coefficient (r(2)) was calculated to identify the relationship between temperature (T), filtration resistance (R) and compositions of EPS and SMP. In biocake, the EPS polysaccharides (EPSc) was the most correlative factor to temperature (T) and filtration resistance (R); in mixed liquor, the ratio of SMP polysaccharides to proteins (SMPc/p) was the most correlative factor. The microbial community structure and the dominant species was the major reason causing the change of EPS and SMP composition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Performance and fouling characteristics of different pore-sized submerged ceramic membrane bioreactors (SCMBR).

    PubMed

    Jin, Le; Ng, How Yong; Ong, Say Leong

    2009-01-01

    The membrane bioreactor (MBR), a combination of activated sludge process and the membrane separation system, has been widely used in wastewater treatment. However, 90% of MBR reported were employing polymeric membranes. The usage of ceramic membranes in MBR is quite rare. Four submerged ceramic membrane bioreactors (SCMBRs) with different membrane pore size were used in this study to treat sewage. The results showed that the desirable carbonaceous removal of 95% and ammonia nitrogen removal of 98% were obtained for all the SCMBRs. It was also showed that the ceramic membranes were able to reject some portions of the protein and carbohydrate, whereby the carbohydrate rejection rate was much higher than that of protein. Membrane pore size did not significantly affect the COD and TOC removal efficiencies, the composition of EPS and SMP or the membrane rejection rate, although slight differences were observed. The SCMBR with the biggest membrane pore size fouled fastest, and membrane pore size was a main contributor for the different fouling potential observed.

  13. Successional dynamics of marine fouling hydroids (Cnidaria: Hydrozoa) at a finfish aquaculture facility in the Mediterranean Sea

    PubMed Central

    Bracale, Roberta; Carrion, Steven A.; Purcell, Jennifer E.; Lezzi, Marco; Gravili, Cinzia; Piraino, Stefano; Boero, Ferdinando

    2018-01-01

    Aquaculture is increasing rapidly to meet global seafood demand. Some hydroid populations have been linked to mortality and health issues in finfish and shellfish, but their dynamics in and around aquaculture farms remain understudied. In the present work, two experiments, each with 36 panels, tested colonization (factors: depth, season of immersion) and succession (factors: depth, submersion duration) over one year. Hydroid surface cover was estimated for each species, and data were analyzed with multivariate techniques. The assemblage of hydrozoans was species-poor, although species richness, frequency and abundance increased with time, paralleling the overall increase in structural complexity of fouling assemblages. Submersion duration and season of immersion were particularly important in determining the species composition of the assemblages in the succession and colonization experiments, respectively. Production of water-borne propagules, including medusae, from the hydroids was observed from locally abundant colonies, among them the well-known fouling species Obelia dichotoma, potentially representing a nuisance for cultured fish through contact-driven envenomations and gill disorders. The results illustrate the potential importance of fouling hydroids and their medusae to the health of organisms in the aquaculture industry. PMID:29608614

  14. Diatom communities on commercial biocidal fouling control coatings after one year of immersion in the marine environment.

    PubMed

    Muthukrishnan, Thirumahal; Dobretsov, Sergey; De Stefano, Mario; Abed, Raeid M M; Kidd, Barry; Finnie, Alistair A

    2017-08-01

    Little is known about the effect of commercial biocidal fouling control coatings on fouling diatom communities and their growth forms after long periods of exposure in the marine tropical environment. The current study investigated the abundance and composition of fouling diatom communities developed on 11 commercially available biocidal antifouling coatings, covering the three main technology types in recent historic use (Self-Polishing Copolymers, Self-Polishing Hybrid and Controlled Depletion Polymers) after one year of static immersion at two locations in Muscat, Oman (Marina Shangri La and Marina Bandar Rowdha). Light microscopy demonstrated that the total abundance of diatoms and the relative abundance of growth forms were significantly affected by the choice of biocidal antifouling coating and experimental location. Using scanning electron microscopy, a total of 21 diatom genera were identified which were grouped into adnate, motile, plocon and erect growth forms. The adnate growth forms, mainly the genera Amphora, Cocconeis and Mastogloia, dominated the other growth forms in terms of their relative abundance. Current results revealed the importance of exposure location and choice of biocidal antifouling coating on the relative abundance of diatom growth forms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of filtration modes on membrane fouling behavior and treatment in submerged membrane bioreactor.

    PubMed

    Maqbool, Tahir; Khan, Sher Jamal; Lee, Chung-Hak

    2014-11-01

    Relaxation or backwashing is obligatory for effective operation of membrane module and intermittent aeration is helpful for nutrients removal. This study was performed to investigate effects of different filtration modes on membrane fouling behavior and treatment in membrane bioreactor (MBR) operated at three modes i.e., 12, 10 and 8min filtration and 3, 2, and 2min relaxation corresponding to 6, 5 and 4cycles/hour, respectively. Various parameters including trans-membrane pressure, specific cake resistance, specific oxygen uptake rate, nutrients removal and sludge dewaterability were examined to optimize the filtration mode. TMP profiles showed that MBR(8+2) with 8min filtration and 2min relaxation reduced the fouling rate and depicted long filtration time in MBR treating synthetic wastewater. MBR(12+3) was more efficient in organic and nutrients removal while denitrification rate was high in MBR(8+2). Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. New and practical mathematical model of membrane fouling in an aerobic submerged membrane bioreactor.

    PubMed

    Zuthi, Mst Fazana Rahman; Guo, Wenshan; Ngo, Huu Hao; Nghiem, Duc Long; Hai, Faisal I; Xia, Siqing; Li, Jianxin; Li, Jixiang; Liu, Yi

    2017-08-01

    This study aimed to develop a practical semi-empirical mathematical model of membrane fouling that accounts for cake formation on the membrane and its pore blocking as the major processes of membrane fouling. In the developed model, the concentration of mixed liquor suspended solid is used as a lumped parameter to describe the formation of cake layer including the biofilm. The new model considers the combined effect of aeration and backwash on the foulants' detachment from the membrane. New exponential coefficients are also included in the model to describe the exponential increase of transmembrane pressure that typically occurs after the initial stage of an MBR operation. The model was validated using experimental data obtained from a lab-scale aerobic sponge-submerged membrane bioreactor (MBR), and the simulation of the model agreed well with the experimental findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fabrication of anti-protein-fouling poly(ethylene glycol) microfluidic chip electrophoresis by sandwich photolithography

    PubMed Central

    Cong, Hailin; Xu, Xiaodan; Yu, Bing; Liu, Huwei

    2016-01-01

    Microfluidic chip electrophoresis (MCE) is a powerful separation tool for biomacromolecule analysis. However, adsorption of biomacromolecules, particularly proteins onto microfluidic channels severely degrades the separation performance of MCE. In this paper, an anti-protein-fouling MCE was fabricated using a novel sandwich photolithography of poly(ethylene glycol) (PEG) prepolymers. Photopatterned microchannel with a minimum resolution of 10 μm was achieved. After equipped with a conventional online electrochemical detector, the device enabled baseline separation of bovine serum albumin, lysozyme (Lys), and cytochrome c (Cyt-c) in 53 s under a voltage of 200 V. Compared with a traditional polydimethylsiloxane MCE made by soft lithography, the PEG MCE made by the sandwich photolithography not only eliminated the need of a master mold and the additional modification process of the microchannel but also showed excellent anti-protein-fouling properties for protein separation. PMID:27493702

  18. Heat treatment of whole milk by the direct joule effect--experimental and numerical approaches to fouling mechanisms.

    PubMed

    Fillaudeau, L; Winterton, P; Leuliet, J C; Tissier, J P; Maury, V; Semet, F; Debreyne, P; Berthou, M; Chopard, F

    2006-12-01

    The development of alternative technologies such as the direct Joule effect to pasteurize and sterilize food products is of great scientific and industrial interest. Our objective was 1) to gain insight into the ability to ensure ultra-high-temperature treatment of milk and 2) to investigate the links among thermal, hydraulic, and electrical phenomena in relation to fouling in a direct Joule effect heater. The ohmic heater [OH; E perpendicular to v (where E is the electrical field and v is the velocity); P (power) = 15 kW] was composed of 5 flat rectangular cells [e (space between the plate and electrode) = 15 mm, w (wall) = 76 mm, and L (length of the plate in plate heat exchanger or electrode) = 246 mm]--3 active cells to ensure heating and 2 (at the extremities) for electrical insulation and the recovery of leakage currents. In the first step, the thermal performance of the OH was investigated vs. the flow regimen [50 < Re (Reynolds number) < 5,000], supplied power (0 < P < 15 kW), and electrical conductivity of fluids (0.1 < sigma(20 degrees C) < 2 S/m) under clean conditions with model fluids. This protocol enabled a global thermal approach (thermal and electrical balance, modeling of the temperature profile of a fluid) and local analysis of the wall temperature of the electrode. An empirical correlation was established to estimate the temperature gradient, T(w)-T(b) (where T(w) is the wall temperature and T(b) is the product temperature) under clean conditions (without fouling) and was used to define operating conditions for pure-volume and direct-resistance heating. In the second step, the ability of OH to ensure the ultra-high-temperature treatment of whole milk was investigated and compared with a plate heat exchanger. Special care was taken to investigate the heat transfer phenomena occurring over a range of temperatures from 105 to 138 degrees C. This temperature range corresponds to the part of the process made critical by protein and mineral fouling

  19. Study of Separation and Fouling of Reverse Osmosis Membranes during Model Hydrolysate Solution Filtration.

    PubMed

    Ajao, Olumoye; Rahni, Mohamed; Marinova, Mariya; Chadjaa, Hassan; Savadogo, Oumarou

    2017-12-15

    Prehydrolysate, a dilute solution consisting mainly of pentoses, hexoses, and lesser quantities of organic acids, furfural and phenolics, is generated in the Kraft dissolving pulp process. An obstacle facing the valorization of the solution in hemicellulose biorefineries, by conversion of the sugars into bioproducts such as furfural, is the low sugar concentration. Membrane filtration is typically proposed in several hemicellulose based biorefineries for concentrating the solution, although they are usually generated using different wood species, pretreatment methods, and operating conditions. However, the chemical composition of the solutions is generally not considered. Also, the combined effect of composition and operating conditions is rarely investigated for biorefinery applications. The purpose of this work was to determine the impact of the prehydrolysate composition and operating parameters on the component separation and permeate flux during membrane filtration. Using model prehydrolysate solutions, two commercial reverse osmosis (RO) membranes were screened, and one was selected for use, based on its higher sugar and acetic acid retention. A Taguchi L18 experimental design array was then applied to determine the dominant parameters and limiting factors. Results showed that the feed pressure and temperature have the highest impact on permeate flux, but the least effect on sugar retention. Further experiments to quantify flux decline, due to fouling and osmotic pressure, showed that furfural has the highest membrane fouling tendency, and can limit the lifetime of the membrane. Regeneration of the membrane by cleaning with a sodium hydroxide solution is also effective for reversing fouling. It has been demonstrated that RO can efficiently and sustainably concentrate wood prehydrolysate.

  20. Study of Separation and Fouling of Reverse Osmosis Membranes during Model Hydrolysate Solution Filtration

    PubMed Central

    Rahni, Mohamed; Marinova, Mariya; Chadjaa, Hassan; Savadogo, Oumarou

    2017-01-01

    Prehydrolysate, a dilute solution consisting mainly of pentoses, hexoses, and lesser quantities of organic acids, furfural and phenolics, is generated in the Kraft dissolving pulp process. An obstacle facing the valorization of the solution in hemicellulose biorefineries, by conversion of the sugars into bioproducts such as furfural, is the low sugar concentration. Membrane filtration is typically proposed in several hemicellulose based biorefineries for concentrating the solution, although they are usually generated using different wood species, pretreatment methods, and operating conditions. However, the chemical composition of the solutions is generally not considered. Also, the combined effect of composition and operating conditions is rarely investigated for biorefinery applications. The purpose of this work was to determine the impact of the prehydrolysate composition and operating parameters on the component separation and permeate flux during membrane filtration. Using model prehydrolysate solutions, two commercial reverse osmosis (RO) membranes were screened, and one was selected for use, based on its higher sugar and acetic acid retention. A Taguchi L18 experimental design array was then applied to determine the dominant parameters and limiting factors. Results showed that the feed pressure and temperature have the highest impact on permeate flux, but the least effect on sugar retention. Further experiments to quantify flux decline, due to fouling and osmotic pressure, showed that furfural has the highest membrane fouling tendency, and can limit the lifetime of the membrane. Regeneration of the membrane by cleaning with a sodium hydroxide solution is also effective for reversing fouling. It has been demonstrated that RO can efficiently and sustainably concentrate wood prehydrolysate. PMID:29244761

  1. Fouling-Resistant Membranes for Treating Concentrated Brines for Water Reuse in Advanced Energy Systems- Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendren, Zachary; Choi, Young Chul

    The high total dissolved solids (TDS) levels in the wastewater quality generated from unconventional oil and gas development make the current state-of-the art approach to water treatment/disposal untenable. Our proposed membrane technology approach addresses the two major challenges associated with this water: 1) the membrane distillation process removes the high TDS content, which is often 8 times higher than that of seawater, and 2) our novel membrane coating prevents the formation of scale that would otherwise pose a significant operational hurdle. This is accomplished through next-generation electrically conductive membranes that mitigate fouling beyond what is currently possible, and allow formore » the flexibility to treat to the water to levels desirable for multiple reuse options, thus reducing fresh water withdrawal, all the way to direct disposal into the environment. The overall project objective was to demonstrate the efficacy of membrane distillation (MD) as a cost-savings technology to treat concentrated brines (such as, but not limited to, produced waters generated from fossil fuel extraction) that have high levels of TDS for beneficial water reuse in power production and other industrial operations as well as agricultural and municipal water uses. In addition, a novel fouling-resistant nanocomposite membrane was developed to reduce the need for chemicals to address membrane scaling due to the precipitation of divalent ions in high-TDS waters and improve overall MD performance via an electrically conductive membrane distillation process (ECMD). This anti-fouling membrane technology platform is based on incorporating carbon nanotubes (CNTs) into the surface layer of existing, commercially available MD membranes. The CNTs impart electrical conductivity to the membrane surface to prevent membrane scaling and fouling when an electrical potential is applied.« less

  2. A venturi device reduces membrane fouling in a submerged membrane bioreactor.

    PubMed

    Kayaalp, Necati; Ozturkmen, Gokmen

    2016-01-01

    In this study, for the first time, a venturi device was integrated into a submerged membrane bioreactor (MBR) to improve membrane surface cleaning and bioreactor oxygenation. The performances of a blower and the venturi device were compared in terms of membrane fouling and bioreactor oxygenation. Upon comparing membrane fouling, the performances were similar for a low operation flux (18 L/m(2).h); however, at a medium flux (32 L/m(2).h), the venturi system operated 3.4 times longer than the blower system, and the final transmembrane pressure was one-third that of the blower system. At the highest flux studied (50 L/m(2).h), the venturi system operated 5.4 times longer than the blower system. The most notable advantage of using a venturi device was that the dissolved oxygen (DO) concentration of the MBR was in the range of 7 to 8 mg/L at a 3 L/min aeration rate, while the DO concentration of the MBR was inadequate (a maximum of 0.29 mg/L) in the blower system. A clean water oxygenation test at a 3 L/min aeration rate indicated that the standard oxygen transfer rate for the venturi system was 9.5 times higher than that of the blower system.

  3. Factors causing PAC cake fouling in PAC-MF (powdered activated carbon-microfiltration) water treatment systems.

    PubMed

    Zhao, P; Takizawa, S; Katayama, H; Ohgaki, S

    2005-01-01

    Two pilot-scale powdered activated carbon-microfiltration (PAC-MF) reactors were operated using river water pretreated by a biofilter. A high permeate flux (4 m/d) was maintained in two reactors with different particle sizes of PAC. High concentration (20 g/L) in the PAC adsorption zone demonstrated 60-80% of organic removal rates. Analysis on the PAC cake fouling demonstrated that attached metal ions play more important role than organic matter attached on PAC to the increase of PAC cake resistance. Effects of factors which may cause PAC cake fouling in PAC-MF process were investigated and evaluated by batch experiments, further revealing that small particulates and metal ions in raw water impose prominent influence on the PAC cake layer formation. Fe (II) precipitates after being oxidized to Fe (III) during PAC adsorption and thus Fe(ll) colloids display more significant effect than other metal ions. At a high flux, PAC cake layer demonstrated a higher resistance with larger PAC due to association among colloids, metals and PAC particles, and easy migration of small particles in raw water into the void space in the PAC cake layer. Larger PAC possesses much more non-uniform particle size distribution and larger void space, making it easier for small colloids to migrate into the voids and for metal ions to associate with PAC particles by bridge effect, hence speeding up and intensifying the of PAC cake fouling on membrane surface.

  4. Multiple Approaches for Testing Novel Coatings in the Laboratory and in Pearl Harbor, Hawaii with Emphasis on the Global, Problem-Fouling Invertebrates

    DTIC Science & Technology

    2015-09-25

    Multiple Approaches for Testing Novel Coatings in the Laboratory and in Pearl Harbor, Hawaii with Emphasis on the Global, Problem-Fouling Invertebrates 5a...on the Global, Problem-Fouling Invertebrates ONR AWARD NUMBER: N00014-11-1-0167 PRINCIPLE INVESTIGATOR: Michael G. Hadfield, Ph.D...luteoviolacea a phage tail-like component that is capable of inducing the metamorphosis of a marine invertebrate . However, our continued studies in the

  5. Fluorescence analysis of NOM degradation by photocatalytic oxidation and its potential to mitigate membrane fouling in drinking water treatment.

    PubMed

    Nerger, Bryan A; Peiris, Ramila H; Moresoli, Christine

    2015-10-01

    This study examined the photocatalytic oxidation of natural organic matter (NOM) as a method to mitigate membrane fouling in drinking water treatment. ZnO and TiO2 photocatalysts were tested in concentrations ranging from 0.05 g L(-1) to 0.5 g L(-1). Fluorescence peaks were used as the primary method to characterize the degradation of three specific NOM components - fulvic acid-like humic substances, humic acid-like humic substances, and protein-like substances during photocatalytic oxidation. Fluorescence peaks and Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis indicated that higher NOM degradation was obtained by photocatalytic oxidation with ZnO than with TiO2. Treatment of the feed water by ZnO photocatalytic oxidation was successful in reducing considerably the extent of hydraulically reversible and irreversible membrane fouling during ultrafiltration (UF) compared to feed water treatment with TiO2. Fouling during UF of water subjected to photocatalytic oxidation appeared to be caused by low molecular weight constituents of NOM generated during photocatalytic oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Polysulfone ultrafiltration membrane incorporated with Ag-SiO2 nanohybrid for effective fouling control.

    PubMed

    Wu, Huiqing; Huang, Jing; Liu, Yuejun

    2017-06-01

    An anti-fouling hybrid membrane was prepared by incorporating Ag-SiO 2 nanohybrid into a polysulfone (PSf) matrix. The addition of Ag-SiO 2 can significantly improve the hydrophilicity, separation property, anti-fouling ability, and especially anti-bacterial activity of hybrid membranes. The optimum performance of the Ag-SiO 2 /PSf hybrid membrane is achieved when the concentration of Ag-SiO 2 is as low as 0.45 wt%. Compared with PSf membrane and SiO 2 /PSf hybrid membrane, the Ag-SiO 2 /PSf hybrid membrane displays the best overall properties. The excellent performance of the Ag-SiO 2 /PSf hybrid membrane can be attributed to the well-tailored structure and unique property of Ag-SiO 2 nanohybrid, where nanosized Ag (∼5 nm) can densely and uniformly disperse on the surface of silica spheres. The obtained membrane could be a promising material for water treatment.

  7. Membrane fouling control using a rotary disk in a submerged anaerobic membrane sponge bioreactor.

    PubMed

    Kim, Jungmin; Shin, Jaewon; Kim, Hyemin; Lee, Jung-Yeol; Yoon, Min-Hyuk; Won, Seyeon; Lee, Byung-Chan; Song, Kyung Guen

    2014-11-01

    Despite significant research efforts over the last few decades, membrane fouling in anaerobic membrane bioreactors (AnMBRs) remains an unsolved problem that increases the overall operational costs and obstructs the industrial applications. Herein, we developed a method for effectively controlling the membrane fouling in a sponge-submerged AnMBRs using an anaerobic rotary disk MBR (ARMBR). The disk rotation led the effective collision between the sponge and membrane surface; thus successfully enhanced the membrane permeability in the ARMBR. The effect of the disk rotational speed and sponge volume fraction on the membrane permeability and the relationship between the water flow direction and membrane permeability were investigated. The long-term feasibility was tested over 100days of synthetic wastewater treatment. As a result, stable and economical performance was observed without membrane replacement and washing. The proposed integrated rotary disk-supporting media appears to be a feasible and even beneficial option in the AnMBR technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Harvesting microalgal biomass using crossflow membrane filtration: critical flux, filtration performance, and fouling characterization.

    PubMed

    Elcik, Harun; Cakmakci, Mehmet

    2017-06-01

    The purpose of this study was to investigate the efficient harvesting of microalgal biomass through crossflow membrane filtration. The microalgal biomass harvesting experiments were performed using one microfiltration membrane (pore size: 0.2 µm, made from polyvinylidene fluoride) and three ultrafiltration membranes (molecular weight cut-off: 150, 50, and 30 kDa, made from polyethersulfone, hydrophilic polyethersulfone, and regenerated cellulose, respectively). Initially, to minimize membrane fouling caused by microalgal cells, experiments with the objective of determining the critical flux were performed. Based on the critical flux calculations, the best performing membrane was confirmed to be the UH050 membrane, produced from hydrophilic polyethersulfone material. Furthermore, we also evaluated the effect of transmembrane pressure (TMP) and crossflow velocity (CFV) on filtration flux. It was observed that membrane fouling was affected not only by the membrane characteristics, but also by the TMP and CFV. In all the membranes, it was observed that increasing CFV was associated with increasing filtration flux, independent of the TMP.

  9. Effects of fouling on the Japanese scallop Mizuhopecten yessoensis (Jay) in Peter the Great Bay (Sea of Japan)

    NASA Astrophysics Data System (ADS)

    Gabaev, D. D.

    2013-03-01

    A valuable mariculture object, the Japanese scallop Mizuhopecten (= Patinopevten) yessoensis (Jay), after six hours long transportation by air and sowing on the bottom is fouled greater by epi- and endolythical organisms than the members of the native population. It is likely that the fouling negatively affects the specimens, those that were the largest before the sowing at the bottom were not found among those that reached puberty. The results of the effects of the endolythic polychaete Polydora brevipalpa and the barnacle Hesperibalanus hesperius on the growth rate of the Japanese scallop cultivated on the bottom of Peter the Great Bay (Sea of Japan) are provided in this paper.

  10. Preparation of Low fouling Polyethersulfone Membranes by Simultaneously Phase Separation and Redox Polymerization

    NASA Astrophysics Data System (ADS)

    Roihatin, A.; Susanto, H.

    2017-05-01

    This paper presents preparation of low fouling PES membranes by non solvent induced phase separation (NIPS) coupled with redox polymerization. The membrane characterization included water permeability, morphology structure (by SEM) and surface chemistry (by FTIR). Water permeability measurements showed thatthe membranes have water permeability within the range 10-50 L/h.m2.bar. Addition of PEG dan PEGMA intopolymer solution increased water permeability, whereas blending redox initiator and crosslinker, MBAA in polymer solution decreased water permeability. Surface morfology of membranes by SEM showed that unmodified PES membrane had smaller pore size than PEG or PEGMA modified PES membranes. Furthermore, PES-PEG or PES-PEGMA membranes modified by blending with redox initiator and MBAA as crosslinker showed smaller pore size than unmodified membrane. FTIR analysis showed that all membranes have typical spectraof PES polymer; however no additional peak was observed forthe membranes prepared with addition of PEG/PEGMA, initiator redox and also crosslinker. The addition of PEG/PEGMA, redox initiator and crosslinker resulted in membranes with high rejection and an acceptable flux as well as more stable due to relatively high fouling resistance.

  11. Effect of cycle run time of backwash and relaxation on membrane fouling removal in submerged membrane bioreactor treating sewage at higher flux.

    PubMed

    Tabraiz, Shamas; Haydar, Sajjad; Sallis, Paul; Nasreen, Sadia; Mahmood, Qaisar; Awais, Muhammad; Acharya, Kishor

    2017-08-01

    Intermittent backwashing and relaxation are mandatory in the membrane bioreactor (MBR) for its effective operation. The objective of the current study was to evaluate the effects of run-relaxation and run-backwash cycle time on fouling rates. Furthermore, comparison of the effects of backwashing and relaxation on the fouling behavior of membrane in high rate submerged MBR. The study was carried out on a laboratory scale MBR at high flux (30 L/m 2 ·h), treating sewage. The MBR was operated at three relaxation operational scenarios by keeping the run time to relaxation time ratio constant. Similarly, the MBR was operated at three backwashing operational scenarios by keeping the run time to backwashing time ratio constant. The results revealed that the provision of relaxation or backwashing at small intervals prolonged the MBR operation by reducing fouling rates. The cake and pores fouling rates in backwashing scenarios were far less as compared to the relaxation scenarios, which proved backwashing a better option as compared to relaxation. The operation time of backwashing scenario (lowest cycle time) was 64.6% and 21.1% more as compared to continuous scenario and relaxation scenario (lowest cycle time), respectively. Increase in cycle time increased removal efficiencies insignificantly, in both scenarios of relaxation and backwashing.

  12. Liking, salt taste perception and use of table salt when consuming reduced-salt chicken stews in light of South Africa's new salt regulations.

    PubMed

    De Kock, H L; Zandstra, E H; Sayed, N; Wentzel-Viljoen, E

    2016-01-01

    This study investigated the impact of salt reduction on liking, salt taste perception, and use of table salt when consuming chicken stew in light of South Africa's new salt recommendations. In total, 432 South-African consumers (aged 35.2 ± 12.3 years) consumed a full portion of a chicken stew meal once at a central location. Four stock cube powders varying in salt content were used to prepare chicken stews: 1) no reduction - 2013 Na level; regular salt level as currently available on the South African market (24473 mg Na/100 g), 2) salt reduction smaller than 2016 level, i.e. 10%-reduced (22025 mg Na/100 g), 3) 2016 salt level, as per regulatory prescriptions (18000 mg Na/100 g), 4) 2019 salt level, as per regulatory prescriptions (13000 mg Na/100 g). Consumers were randomly allocated to consume one of the four meals. Liking, salt taste perception, and use of table salt and pepper were measured. Chicken stews prepared with reduced-salt stock powders were equally well-liked as chicken stews with the current salt level. Moreover, a gradual reduction of the salt in the chicken stews resulted in a reduced salt intake, up to an average of 19% for the total group compared to the benchmark 2013 Na level stew. However, 19% of consumers compensated by adding salt back to full compensation in some cases. More salt was added with increased reductions of salt in the meals, even to the point of full compensation. Further investigation into the impacts of nutrition communication and education about salt reduction on salt taste perception and use is needed. This research provides new consumer insights on salt use and emphasises the need for consumer-focused behaviour change approaches, in addition to reformulation of products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Sea Salt vs. Table Salt: What's the Difference?

    MedlinePlus

    ... Nutrition and healthy eating What's the difference between sea salt and table salt? Answers from Katherine Zeratsky, R.D., L.D. The main differences between sea salt and table salt are in their taste, ...

  14. Influence of fermentation liquid from waste activated sludge on anoxic/oxic- membrane bioreactor performance: Nitrogen removal, membrane fouling and microbial community.

    PubMed

    Han, Xiaomeng; Zhou, Zhen; Mei, Xiaojie; Ma, Yan; Xie, Zhenfang

    2018-02-01

    In order to investigate effects of waste activated sludge (WAS) fermentation liquid on anoxic/oxic- membrane bioreactor (A/O-MBR), two A/O-MBRs with and without WAS fermentation liquid addition were operated in parallel. Results show that addition of WAS fermentation liquid clearly improved denitrification efficiency without deterioration of nitrification, while severe membrane fouling occurred. WAS fermentation liquid resulted in an elevated production of proteins and humic acids in bound extracellular polymeric substance (EPS) and release of organic matter with high MW fractions in soluble microbial product (SMP) and loosely bound EPS (LB-EPS). Measurement of deposition rate and fluid structure confirmed increased fouling potential of SMP and LB-EPS. γ-Proteobacteria and Ferruginibacter, which can secrete and export EPS, were also found to be abundant in the MBR with WAS fermentation liquid. It is implied that when WAS fermentation liquid was applied, some operational steps to control membrane fouling should be employed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Preparation of Sulfobetaine-Grafted PVDF Hollow Fiber Membranes with a Stably Anti-Protein-Fouling Performance

    PubMed Central

    Li, Qian; Lin, Han-Han; Wang, Xiao-Lin

    2014-01-01

    Based on a two-step polymerization method, two sulfobetaine-based zwitterionic monomers, including 3-(methacryloylamino) propyl-dimethyl-(3-sulfopropyl) ammonium hydroxide (MPDSAH) and 2-(methacryloyloxyethyl) ethyl-dimethyl-(3-sulfopropyl) ammonium (MEDSA), were successfully grafted from poly(vinylidene fluoride) (PVDF) hollow fiber membrane surfaces in the presence of N,N′-methylene bisacrylamide (MBAA) as a cross-linking agent. The mechanical properties of the PVDF membrane were improved by the zwitterionic surface layers. The surface hydrophilicity of PVDF membranes was significantly enhanced and the polyMPDSAH-g-PVDF membrane showed a higher hydrophilicity due to the higher grafting amount. Compared to the polyMEDSA-g-PVDF membrane, the polyMPDSAH-g-PVDF membrane showed excellent significantly better anti-protein-fouling performance with a flux recovery ratio (RFR) higher than 90% during the cyclic filtration of a bovine serum albumin (BSA) solution. The polyMPDSAH-g-PVDF membrane showed an obvious electrolyte-responsive behavior and its protein-fouling-resistance performance was improved further during the filtration of the protein solution with 100 mmol/L of NaCl. After cleaned with a membrane cleaning solution for 16 days, the grafted MPDSAH layer on the PVDF membrane could be maintain without any chang; however, the polyMEDSA-g-PVDF membrane lost the grafted MEDSA layer after this treatment. Therefore, the amide group of sulfobetaine, which contributed significantly to the higher hydrophilicity and stability, was shown to be imperative in modifying the PVDF membrane for a stable anti-protein-fouling performance via the two-step polymerization method. PMID:24957171

  16. A 125Te and 23Na NMR investigation of the structure and crystallisation of sodium tellurite glasses.

    PubMed

    Holland, D; Bailey, J; Ward, G; Turner, B; Tierney, P; Dupree, R

    2005-01-01

    125Te static nuclear magnetic resonance (NMR) and 23Na and 125Te magic angle spinning (MAS) NMR have been used, in conjunction with X-ray diffraction, to examine the structure and crystallisation behaviour of glasses of composition xNa2O.(1-x)TeO2 (0.075 x 0.4). The MAS NMR 23Na spectra from the glasses are broad and featureless but shift by approximately +5 ppm with increased x, i.e. as the system becomes more ionic. The static 125Te NMR spectra show an increase in axial symmetry with increasing x, indicating a shift from predominantly [TeO4] to [TeO3] structural units. The 23Na and 125Te spectra from the crystallised samples have been fitted to obtain information on the sites in the metastable crystal phases, which are the first to form on heating and which are therefore more closely related to the glass structure than thermodynamically stable crystal phases. New sodium tellurite phases are reported, including a sodium stabilised, face centred cubic phase related to delta-TeO2; a metastable form of Na2Te4O9 containing 3 sodium and 4 tellurium sites; and a metastable form of Na2Te2O5 containing 2 sodium sites. There is evidence of oxidation of TeIV to TeVI occurring in glasses with high values of x and, at x=0.40 and 0.50 (outside the glass forming range), some sodium metatellurate (Na2TeO4) is formed at the same time as sodium metatellurite (Na2TeO3). The 125Te shift is very sensitive to environment within the sodium tellurite system, covering more than 320 ppm, with anisotropies varying from 640 to 1540 ppm. The lack of features in the 125Te spectra of the glass phases, combined with the large shift range and high but variable anisotropy, means than it is not possible to obtain a unique fit to any presumed species present. Furthermore, the chemical shift anisotropy parameters for three of the four Te sites in the Na2Te4O9 phase are found to lie outside the range used for previous simulations of glass spectra.

  17. A robust salt-tolerant superoleophobic aerogel inspired by seaweed for efficient oil-water separation in marine environments.

    PubMed

    Li, Yuqi; Zhang, Hui; Fan, Mizi; Zhuang, Jiandong; Chen, Lihui

    2016-09-14

    Oil-water separation has recently become an important subject due to the increasing incidence of oil spills. Materials with underwater superoleophobic properties have aroused considerable interest due to their cost-effectiveness, environmental friendliness and anti-fouling properties. This paper presents a robust salt-tolerant superoleophobic aerogel inspired by seaweed used without any further chemical modification for oil-seawater separation. The green aerogel is prepared by freeze-drying of sodium alginate (SA)-nanofibrillated cellulose (NFC) using Ca 2+ ions as the crosslinking agent. The three-dimensional (3D) interconnected network structure of the developed aerogel ensures its high mechanical strength and good flexibility. The natural hydrophilicity of the polysaccharides contained in the aerogel ensures its excellent underwater superoleophobicity, antifouling and salt-tolerance properties. More impressively, the as-prepared aerogel can even keep its underwater superoleophobicity and high hydrophilicity after being immersed in seawater for 30 days, indicating its good stability in marine environments. Furthermore, the aerogel could separate oil-seawater mixtures with a high separation efficiency (of up to 99.65%) and good reusability (at least 40 cycles). The facile and green fabrication process combined with the excellent separation performance and good reusability makes it possible to develop engineering materials for oil-water separation in marine environments.

  18. Influences of acid-base property of membrane on interfacial interactions related with membrane fouling in a membrane bioreactor based on thermodynamic assessment.

    PubMed

    Zhao, Leihong; Qu, Xiaolu; Zhang, Meijia; Lin, Hongjun; Zhou, Xiaoling; Liao, Bao-Qiang; Mei, Rongwu; Hong, Huachang

    2016-08-01

    Failure of membrane hydrophobicity in predicting membrane fouling requires a more reliable indicator. In this study, influences of membrane acid base (AB) property on interfacial interactions in two different interaction scenarios in a submerged membrane bioreactor (MBR) were studied according to thermodynamic approaches. It was found that both the polyvinylidene fluoride (PVDF) membrane and foulant samples in the MBR had relatively high electron donor (γ(-)) component and low electron acceptor (γ(+)) component. For both of interaction scenarios, AB interaction was the major component of the total interaction. The results showed that, the total interaction monotonically decreased with membrane γ(-), while was marginally affected by membrane γ(+), suggesting that γ(-) could act as a reliable indicator for membrane fouling prediction. This study suggested that membrane modification for fouling mitigation should orient to improving membrane surface γ(-) component rather than hydrophilicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Impact of biological activated carbon pre-treatment on the hydrophilic fraction of effluent organic matter for mitigating fouling in microfiltration.

    PubMed

    Pramanik, Biplob Kumar; Roddick, Felicity A; Fan, Linhua

    2017-07-24

    The hydrophilic (HPI) fraction of effluent organic matter, which has protein and carbohydrate contents, has a high propensity to foul low-pressure membranes. Biological activated carbon (BAC) filtration was examined as a pre-treatment for reducing the fouling of a microfiltration (MF) membrane (0.1 µm PVDF) by the HPI organic fraction extracted from a biologically treated secondary effluent (BTSE). Although the BAC removed less dissolved organic carbon, carbohydrate and protein from the HPI fraction than the granular activated carbon treatment which was used for comparison, it led to better improvement in permeate flux. This was shown to be due to the removal/breakdown of the HPI fraction resulting in less deposition of these organics on the membrane, many components of which are high molecular weight biopolymers (such as protein and carbohydrate molecules) through biodegradation and adsorption of those molecules on the biofilm and activated carbon. This study established the potential of BAC pre-treatment for reducing the HPI fouling of the membrane and thus improving the performance for the MF of BTSE for water reclamation.

  20. Membrane fouling and performance evaluation of conventional membrane bioreactor (MBR), moving biofilm MBR and oxic/anoxic MBR.

    PubMed

    Khan, Sher Jamal; Ahmad, Aman; Nawaz, Muhammad Saqib; Hankins, Nicholas P

    2014-01-01

    In this study, three laboratory scale submerged membrane bioreactors (MBRs) comprising a conventional MBR (C-MBR), moving bed MBR (MB-MBR) and anoxic-oxic MBR (A/O-MBR) were continuously operated with synthesized domestic wastewater (chemical oxygen demand, COD = 500 mg/L) for 150 days under similar operational and environmental conditions. Kaldnes(®) plastic media with 20% dry volume was used as a biofilm carrier in the MB-MBR and A/O-MBR. The treatment performance and fouling propensity of the MBRs were evaluated. The effect of cake layer formation in all three MBRs was almost the same. However, pore blocking caused a major difference in the resultant water flux. The A/O-MBR showed the highest total nitrogen and phosphorus (PO4-P) removal efficiencies of 83.2 and 69.7%, respectively. Due to the high removal of nitrogen, fewer protein contents were found in the soluble and bound extracellular polymeric substances (EPS) of the A/O-MBR. Fouling trends of the MBRs showed 12, 14 and 20 days filtration cycles for C-MBR, MB-MBR and A/O-MBR, respectively. A 25% reduction of the soluble EPS and a 37% reduction of the bound EPS concentrations in A/O-MBR compared with C-MBR was a major contributing factor for fouling retardation and the enhanced filtration capacity of the A/O-MBR.

  1. Advanced Wastewater Treatment Engineering—Investigating Membrane Fouling in both Rotational and Static Membrane Bioreactor Systems Using Empirical Modelling

    PubMed Central

    Paul, Parneet; Jones, Franck Anderson

    2016-01-01

    Advanced wastewater treatment using membranes are popular environmental system processes since they allow reuse and recycling. However, fouling is a key limiting factor and so proprietary systems such as Avanti’s RPU-185 Flexidisks membrane bioreactor (MBR) use novel rotating membranes to assist in ameliorating it. In earlier research, this rotating process was studied by creating a simulation model based on first principles and traditional fouling mechanisms. In order to directly compare the potential benefits of this rotational system, this follow-up study was carried out using Avanti’s newly developed static (non-rotating) Flexidisks MBR system. The results from operating the static pilot unit were simulated and modelled using the rotational fouling model developed earlier however with rotational switching functions turned off and rotational parameters set to a static mode. The study concluded that a rotating MBR system could increase flux throughput when compared against a similar static system. It is thought that although the slowly rotating spindle induces a weak crossflow shear, it is still able to even out cake build up across the membrane surface, thus reducing the likelihood of localised critical flux being exceeded at the micro level and lessening the potential of rapid trans-membrane pressure increases at the macro level. PMID:26742053

  2. A novel approach for mitigation of membrane fouling: Concomitant use of flocculant and magnetic powder.

    PubMed

    Wang, Hongyu; Chen, Zhouzhou; Miao, Jia; Li, Yaozhong

    2016-06-01

    Membrane fouling alleviation by addition of poly dimethyl diallyl ammonium chloride (PDMDAAC) and magnetic powder (Fe3O4) was investigated. It was found that magnetic powder associated with PDMDAAC had a good performance on mitigation of membrane fouling, improvement in dehydrogenase activity and enhancement of biomass growth. The optimal dose of PDMDAAC was determined by using constant pressure dead-end filtration unit. Maximum permeate flux was attained at 400mg/L of PDMDAAC addition. Continuous experiment was conducted in a submerged membrane bioreactor (MBR) system and biomass parameters such as soluble microbial products (SMP), extracellular polymeric substances (EPS), dehydrogenase activity, zeta potential, and capillary suction time (CST) were analyzed. Best results were obtained with a combination of 120mg/L of magnetic powder and 400mg/L of PDMDAAC. This study results demonstrated that PDMDAAC played a major role in SMPc and EPSc reduction, whereas magnetic powder had better performance in decreasing SMPc and EPSp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Performance and fouling characteristics of a submerged anaerobic membrane bioreactor for kraft evaporator condensate treatment.

    PubMed

    Xie, K; Lin, H J; Mahendran, B; Bagley, D M; Leung, K T; Liss, S N; Liao, B Q

    2010-04-14

    Submerged anaerobic membrane bioreactor (SAnMBR) technology was studied for kraft evaporator condensate treatment at 37 +/- 1 degrees C over a period of 9 months. Under tested organic loading rates of 1-24 kg COD/m3/day, a chemical oxygen demand (COD) removal efficiency of 93-99% was achieved with a methane production rate of 0.35 +/- 0.05 L methane/g COD removed and a methane content of 80-90% in produced biogas. Bubbling of recycled biogas was effective for in-situ membrane cleaning, depending on the biogas sparging rate used. The membrane critical flux increased and the membrane fouling rate decreased with an increase in the biogas sparging rate. The scanning electron microscopy images showed membrane pore clogging was not significant and sludge cake formation on the membrane surface was the dominant mechanism of membrane fouling. The results suggest that the SAnMBR is a promising technology for energy recovery from kraft evaporator condensate.

  4. Natural Organic Matter Removal and Fouling in a Low Pressure Hybrid Membrane Systems

    PubMed Central

    Uyak, Vedat; Akdagli, Muge; Cakmakci, Mehmet; Koyuncu, Ismail

    2014-01-01

    The objective of this study was to investigate powdered activated carbon (PAC) contribution to natural organic matter (NOM) removal by a submerged MF and UF hybrid systems. It was found that filtration of surface waters by a bare MF and UF membranes removed negligible TOC; by contrast, significant amounts of TOC were removed when daily added PAC particles were predeposited on the membrane surfaces. These results support the assumption that the membranes surface properties and PAC layer structure might have considerably influential factor on NOM removal. Moreover, it was concluded that the dominant removal mechanism of hybrid membrane system is adsorption of NOM within PAC layer rather than size exclusion of NOM by both of membrane pores. Transmembrane pressure (TMP) increases with PAC membrane systems support the view that PAC adsorption pretreatment will not prevent the development of membrane pressure; on the contrary, PAC particles themselves caused membrane fouling by blocking the entrance of pores of MF and UF membranes. Although all three source waters have similar HPI content, it appears that the PAC interaction with the entrance of membrane pores was responsible for offsetting the NOM fractional effects on membrane fouling for these source waters. PMID:24523651

  5. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the...

  6. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  7. Membrane fouling in a submerged membrane bioreactor: New method and its applications in interfacial interaction quantification.

    PubMed

    Hong, Huachang; Cai, Xiang; Shen, Liguo; Li, Renjie; Lin, Hongjun

    2017-10-01

    Quantification of interfacial interactions between two rough surfaces represents one of the most pressing requirements for membrane fouling prediction and control in membrane bioreactors (MBRs). This study firstly constructed regularly rough membrane and particle surfaces by using rigorous mathematical equations. Thereafter, a new method involving surface element integration (SEI) method, differential geometry and composite Simpson's rule was proposed to quantify the interfacial interactions between the two constructed rough surfaces. This new method were then applied to investigate interfacial interactions in a MBR with the data of surface properties of membrane and foulants experimentally measured. The feasibility of the new method was verified. It was found that asperity amplitude and period of the membrane surface exerted profound effects on the total interaction. The new method had broad potential application fields especially including guiding membrane surface design for membrane fouling mitigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Temperature and body weight affect fouling of pig pens.

    PubMed

    Aarnink, A J A; Schrama, J W; Heetkamp, M J W; Stefanowska, J; Huynh, T T T

    2006-08-01

    Fouling of the solid lying area in pig housing is undesirable for reasons of animal welfare, animal health, environmental pollution, and labor costs. In this study the influence of temperature on the excreting and lying behavior of growing-finishing pigs of different BW (25, 45, 65, 85, or 105 kg) was studied. Ten groups of 5 pigs were placed in partially slatted pens (60% solid concrete, 40% metal-slatted) in climate respiration chambers. After an adaptation period, temperatures were raised daily for 9 d. Results showed that above certain inflection temperatures (IT; mean 22.6 degrees C, SE = 0.78) the number of excretions (relative to the total number of excretions) on the solid floor increased with temperature (mean increase 9.7%/ degrees C, SE = 1.41). Below the IT, the number of excretions on the solid floor was low and not influenced by temperature (mean 13.2%, SE = 3.5). On average, the IT for excretion on the solid floor decreased with increasing BW, from approximately 25 degrees C at 25 kg to 20 degrees C at 100 kg of BW (P < 0.05). Increasing temperature also affected the pattern and postural lying. The temperature at which a maximum number of pigs lay on the slatted floor (i.e., the IT for lying) decreased from approximately 27 degrees C at 25 kg to 23 degrees C at 100 kg of BW (P < 0.001). At increasing temperatures, pigs lay more on their sides and less against other pigs (P < 0.001). Temperature affects lying and excreting behavior of growing-finishing pigs in partially slatted pens. Above certain IT, pen fouling increases linearly with temperature. Inflection temperatures decrease at increasing BW.

  9. Fatty acid fouling of forward osmosis membrane: Effects of pH, calcium, membrane orientation, initial permeate flux and foulant composition.

    PubMed

    Zhao, Pin; Gao, Baoyu; Yue, Qinyan; Liu, Pan; Shon, Ho Kyong

    2016-08-01

    Octanoic acid (OA) was selected to represent fatty acids in effluent organic matter (EOM). The effects of feed solution (FS) properties, membrane orientation and initial permeate flux on OA fouling in forward osmosis (FO) were investigated. The undissociated OA formed a cake layer quickly and caused the water flux to decline significantly in the initial 0.5hr at unadjusted pH3.56; while the fully dissociated OA behaved as an anionic surfactant and promoted the water permeation at an elevated pH of 9.00. Moreover, except at the initial stage, the sudden decline of water flux (meaning the occurrence of severe membrane fouling) occurred in two conditions: 1. 0.5mmol/L Ca(2+), active layer facing draw solution (AL-DS) and 1.5mol/L NaCl (DS); 2. No Ca(2+), active layer-facing FS (AL-FS) and 4mol/L NaCl (DS). This demonstrated that cake layer compaction or pore blocking occurred only when enough foulants were absorbed into the membrane surface, and the water permeation was high enough to compact the deposit inside the porous substrate. Furthermore, bovine serum albumin (BSA) was selected as a co-foulant. The water flux of both co-foulants was between the fluxes obtained separately for the two foulants at pH3.56, and larger than the two values at pH9.00. This manifested that, at pH3.56, BSA alleviated the effect of the cake layer caused by OA, and OA enhanced BSA fouling simultaneously; while at pH9.00, the mutual effects of OA and BSA eased the membrane fouling. Copyright © 2016. Published by Elsevier B.V.

  10. Effects of spacer orientations on the cake formation during membrane fouling: Quantitative analysis based on 3D OCT imaging.

    PubMed

    Liu, Xin; Li, Weiyi; Chong, Tzyy Haur; Fane, Anthony G

    2017-03-01

    Spacer design plays an important role in improving the performance of membrane processes for water/wastewater treatment. This work focused on a fundamental issue of spacer design, i.e., investigating the effects of spacer orientations on the fouling behavior during a membrane process. A series of fouling experiments with different spacer orientation were carried out to in situ characterize the formation of a cake layer in a spacer unit cell via 3D optical coherence tomography (OCT) imaging. The cake layers formed at different times were digitalized for quantitatively analyzing the variation in the cake morphology as a function of time. In particular, the local deposition rates were evaluated to determine the active regions where the instantaneous changes in deposit thickness were significant. The characterization results indicate that varying the spacer orientation could substantially change the evolution of membrane fouling by particulate foulants and thereby result in a cake layer with various morphologies; the competition between growth and erosion at different locations would instantaneously respond to the micro-hydrodynamic environment that might change with time. This work confirms that the OCT-based characterization method is a powerful tool for exploring novel spacer design. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Fouling characteristics of reverse osmosis membranes at different positions of a full-scale plant for municipal wastewater reclamation.

    PubMed

    Tang, Fang; Hu, Hong-Ying; Sun, Li-Juan; Sun, Ying-Xue; Shi, Na; Crittenden, John C

    2016-03-01

    Membrane fouling is an important shortcoming limiting the efficiency and wide application of reverse osmosis (RO) technology. In this paper, RO membranes in a full-scale municipal wastewater reclamation plant were autopsied. From the lead to tail position RO membranes in RO system, both of organic and inorganic matters on membranes reduced gradually. The higher ion products in RO concentrate didn't result in more serious inorganic scaling on the last position RO membranes, which was contrast with some other researches. Fe, Ca and Mg were major inorganic elements. Fe had a relatively low concentration in RO influent but the highest content on membranes. However, there was no specific pretreatment in terms of Fe removal. Ca and Mg scaling was controlled by the antiscalants injected. Organic fouling (75.0-84.5% of dry weights) was major problem on RO membranes due to the large amount of dissolved organic matters in secondary effluent as raw water. Hydrophilic acid (HIA, 48.0% of total DOC), hydrophobic acid (HOA, 23.6%) and hydrophobic neutral (HON, 19.0%) fraction was largest among the six fractions in RO influent, while HON (38.2-51.1%) and HOA (22.1-26.1%) tended to accumulate on membranes in higher quantities. Monitoring HON and HOA might help to forecast organic fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Membrane fouling in a submerged membrane bioreactor: An unified approach to construct topography and to evaluate interaction energy between two randomly rough surfaces.

    PubMed

    Cai, Xiang; Shen, Liguo; Zhang, Meijia; Chen, Jianrong; Hong, Huachang; Lin, Hongjun

    2017-11-01

    Quantitatively evaluating interaction energy between two randomly rough surfaces is the prerequisite to quantitatively understand and control membrane fouling in membrane bioreactors (MBRs). In this study, a new unified approach to construct rough topographies and to quantify interaction energy between a randomly rough particle and a randomly rough membrane was proposed. It was found that, natural rough topographies of both foulants and membrane could be well constructed by a modified two-variable Weierstrass-Mandelbrot (WM) function included in fractal theory. Spatial differential relationships between two constructed surfaces were accordingly established. Thereafter, a new approach combining these relationships, surface element integration (SEI) approach and composite Simpson's rule was deduced to calculate the interaction energy between two randomly rough surfaces in a submerged MBR. The obtained results indicate the profound effects of surface morphology on interaction energy and membrane fouling. This study provided a basic approach to investigate membrane fouling and interface behaviors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Consumer knowledge and attitudes to salt intake and labelled salt information.

    PubMed

    Grimes, Carley A; Riddell, Lynn J; Nowson, Caryl A

    2009-10-01

    The objective of this study was to investigate consumers' knowledge of health risks of high salt intake and frequency of use and understanding of labelled salt information. We conducted a cross-sectional survey in shopping centres within Metropolitan Melbourne. A sample of 493 subjects was recruited. The questionnaire assessed salt related shopping behaviours, attitudes to salt intake and health and their ability to interpret labelled sodium information. Four hundred and seventy four valid surveys were collected (65% female, 64% being the main shopper). Most participants knew of the relationship between salt intake and high blood pressure (88%). Sixty five percent of participants were unable to correctly identify the relationship between salt and sodium. Sixty nine percent reported reading the salt content of food products when shopping. Salt label usage was significantly related to shoppers concern about the amount of salt in their diet and the belief that their health could improve by lowering salt intake. Approximately half of the sample was unable to accurately use labelled sodium information to pick low salt options. Raising consumer awareness of the health risks associated with high salt consumption may increase salt label usage and purchases of low salt foods. However, for food labels to be effective in helping consumers select low salt foods a more 'user friendly' labelling format is needed.

  14. Performance and membrane fouling of a step-fed submerged membrane sequencing batch reactor treating swine biogas digestion slurry.

    PubMed

    Han, Zhiying; Chen, Shixia; Lin, Xiaochang; Yu, Hongjun; Duan, Li'an; Ye, Zhangying; Jia, Yanbo; Zhu, Songming; Liu, Dezhao

    2018-01-02

    To identify the performance of step-fed submerged membrane sequencing batch reactor (SMSBR) treating swine biogas digestion slurry and to explore the correlation between microbial metabolites and membrane fouling within this novel reactor, a lab-scale step-fed SMSBR was operated under nitrogen loading rate of 0.026, 0.052 and 0.062 g NH 4 + -N (gVSS·d) -1 . Results show that the total removal efficiencies for NH 4 + -N, total nitrogen and chemical oxygen demand in the reactor (>94%, >89% and >97%, respectively) were high during the whole experiment. However, the cycle removal efficiency of NH 4 + -N decreased significantly when the nitrogen loading rate was increased to 0.062 g NH 4 + -N (gVSS·d) -1 . The total removal efficiency of total phosphorus in the step-fed SMSBR was generally higher than 75%, though large fluctuations were observed during the experiments. In addition, the concentrations of microbial metabolites, i.e., soluble microbial products (SMP) and extracellular polymeric substances (EPS) from activated sludge increased as nitrogen loading rate increased, both showing quadratic equation correlations with viscosity of the mixed liquid in the step-fed SMSBR (both R 2 > 0.90). EPS content was higher than SMP content, while protein (PN) was detected as the main component in both SMP and EPS. EPS PN was found to be well correlated with transmembrane pressure, membrane flux and the total membrane fouling resistance. Furthermore, the three-dimensional excitation-emission matrix fluorescence spectroscopy results suggested the tryptophan-like protein as one of the main contributors to the membrane fouling. Overall, this study showed that the step-fed SMSBR could be used to treat swine digestion slurry at nitrogen loading rate of 0.052 g NH 4 + -N (gVSS·d) -1 , and the control strategy of membrane fouling should be developed based on reducing the tryptophan-like PN in EPS.

  15. Estimation of the growth kinetics for the cooling crystallisation of paracetamol and ethanol solutions

    NASA Astrophysics Data System (ADS)

    Mitchell, Niall A.; Ó'Ciardhá, Clifford T.; Frawley, Patrick J.

    2011-08-01

    This work details the estimation of the growth kinetics of paracetamol in ethanol solutions for cooling crystallisation processes, by means of isothermal seeded batch experiments. The growth kinetics of paracetamol crystals were evaluated in isolation, with the growth rate assumed to be size independent. Prior knowledge of the Metastable Zone Width (MSZW) was required, so that supersaturation ratios of 1.7-1.1 could be induced in solution without the occurrence of nucleation. The technique involved the utilisation of two in-situ Process Analytical Techniques (PATs), with a Focused Beam Reflectance Measurement (FBRM ®) utilised to ensure that negligible nucleation occurred and an Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) probe employed for online monitoring of solute concentration. Initial Particle Size Distributions (PSDs) were used in conjunction with desupersaturation profiles to determine the growth rate as a function of temperature and supersaturation. Furthermore, the effects of seed loading and size on the crystal growth rate were investigated. A numerical model, incorporating the population balance equation and the method of moments, was utilised to describe the crystal growth process. Experimental parameters were compared to the model simulation, with the accuracy of the model validated by means of the final product PSDs and solute concentration.

  16. Investigation of salt loss from the Bonneville Salt Flats, northwestern Utah

    USGS Publications Warehouse

    Mason, James L.; Kipp, Kenneth L.

    1997-01-01

    The Bonneville Salt Flats study area is located in the western part of the Great Salt Lake Desert in northwestern Utah, about 110 miles west of Salt Lake City. The salt crust covers about 50 square miles, but the extent varies yearly as a result of salt being dissolved by the formation and movement of surface ponds during the winter and redeposited with the evaporation of these ponds during the summer.A decrease in thickness and extent of the salt crust on the Bonneville Salt Flats has been documented during 1960-88 (S. Brooks, Bureau of Land Management, written commun., 1989). Maximum salt-crust thickness was 7 feet in 1960 and 5.5 feet in 1988. No definitive data are available to identify and quantify the processes that cause salt loss. More than 55 million tons of salt are estimated to have been lost from the salt crust during the 28-year period. The Bureau of Land Management needs to know the causes of salt loss to make appropriate management decisions.

  17. Permeability recovery of fouled forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic osmotic membrane bioreactors treating low-strength wastewater.

    PubMed

    Wang, Xinhua; Hu, Taozhan; Wang, Zhiwei; Li, Xiufen; Ren, Yueping

    2017-10-15

    Anaerobic osmotic membrane bioreactor (AnOMBR) has gained increasing interests in wastewater treatment owing to its simultaneous recovery of biogas and water. However, the forward osmosis (FO) membrane fouling was severe during a long-term operation of AnOMBRs. Here, we aim to recover the permeability of fouled FO membranes by chemical cleaning. Specifically speaking, an optimal chemical cleaning procedure was searched for fouled thin film composite polyamide FO (TFC-FO) membranes in a novel microfiltration (MF) assisted AnOMBR (AnMF-OMBR). The results indicated that citric acid, disodium ethylenediaminetetraacetate (EDTA-2Na), hydrochloric acid (HCl), sodium dodecyl sulfate (SDS) and sodium hydroxide (NaOH) had a low cleaning efficiency of less than 15%, while hydrogen peroxide (H 2 O 2 ) could effectively remove foulants from the TFC-FO membrane surface (almost 100%) through oxidizing the functional group of the organic foulants and disintegrating the colloids and microbe flocs into fine particles. Nevertheless, the damage of H 2 O 2 to the TFC-FO membrane was observed when a high cleaning concentration and a long duration were applied. In this case, the optimal cleaning conditions including cleaning concentration and time for fouled TFC-FO membranes were selected through confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM) images and the flux recovery rate. The results suggested that the optimal cleaning procedure for fouled TFC-FO membranes was use of 0.5% H 2 O 2 at 25 °C for 6 h, and after that, the cleaned TFC-FO membrane had the same performance as a virgin one including water flux and rejection for organic matters and phosphorus during the operation of AnMF-OMBR. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Chemical Fouling Reduction of a Submersible Steel Spectrophotometer in Estuarine Environments Using a Sacrificial Zinc Anode.

    PubMed

    Tait, Zachary S; Thompson, Megan; Stubbins, Aron

    2015-07-01

    The availability of in situ spectrophotometers, such as the S::CAN spectro::lyser, has expanded the possibilities for high-frequency water quality data collection. However, biological and chemical fouling can degrade the performance of in situ spectrophotometers, especially in saline environments with rapid flow rates. A complex freshwater washing system has been previously designed to reduce chemical fouling for the S::CAN spectro::lyser spectrophotometer. In the current study, we present a simpler, cheaper alternative: the attachment of a sacrificial zinc anode. Results are presented detailing the S::CAN spectro::lyser performance with and without the addition of the sacrificial anode. Attachment of the zinc anode provided efficient corrosion protection during 2-wk deployments in a highly dynamic (average tidal range, 2.5 m) saline tidal saltmarsh creek at Groves Creek, Skidaway Institute of Oceanography, Savannah, GA. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  19. Primary welding and crystallisation textures preserved in the intra-caldera ignimbrites of the Permian Ora Formation, northern Italy: implications for deposit thermal state and cooling history

    NASA Astrophysics Data System (ADS)

    Willcock, M. A. W.; Cas, R. A. F.

    2014-06-01

    Exceptional exposure through a Permian intra-caldera ignimbrite fill within the 42 × 40 km Ora caldera (>1,290 km3 erupted volume) provides an opportunity to study welding textures in a thick intra-caldera ignimbrite succession. The ignimbrite succession records primary dense welding, a simple cooling unit structure, common crystallisation zones, and remarkably preserves fresh to slightly hydrated glass in local vitrophyre zones. Evidence for primary syn- and post-emplacement welding consists of (a) viscously deformed and sintered juvenile glass and relict shard textures; (b) complete deposit welding; (c) subtle internal welding intensity variations; (d) vitrophyre preserved locally at the base of the ignimbrite succession; (e) persistent fiamme juvenile clast shapes throughout the succession at the macroscopic and microscopic scales, defining a moderate to well-developed eutaxitic texture; (f) common undulating juvenile clast (pumice) margins and feathery terminations; (g) a general loss of deposit porosity; and (h) perlitic fracturing. A low collapsing or fountaining explosive eruption column model is proposed to have facilitated the ubiquitous welding of the deposit, which in turn helped preserve original textures. The ignimbrite succession preserves no evidence of a time break through the sequence and columnar joints cross-gradational ignimbrite lithofacies boundaries, so the ignimbrite is interpreted to represent a simple cooling unit. Aspect ratio and anisotropy of magnetic susceptibility (AMS) analyses through stratigraphic sections within the thick intra-caldera succession and at the caldera margin reveal variable welding compaction and strain profiles. Significantly, these data show that welding degree/intensity may vary in an apparently simple cooling unit because of variations in eruption process recorded in differing lithofacies. These data imply complex eruption, emplacement, and cooling processes. Three main crystallisation textural zones are

  20. Fouling assemblage of benthic plastic debris collected from Mersin Bay, NE Levantine coast of Turkey.

    PubMed

    Gündoğdu, Sedat; Çevik, Cem; Karaca, Serkan

    2017-11-15

    The Mediterranean is an ecosystem that faces more and more microplastic pollution every day. This causes the whole of the Mediterranean to face the negative effects of plastic pollution. This study examines the state of plastic debris and fouling organisms found on it in one of the areas most affected by plastic pollution, Mersin Bay. As a result, a total of 3.88kg plastic (mean=0,97kg; n=120; 2670item/km 2 ; 86,3kg/km 2 ) was collected and based on the ATR-FTIR analysis, it was determined that this total contained 9 types of plastics. 17 different fouling species belonging to 6 phylum (Annelida, Arthropoda, Bryozoa, Chordata, Cnidaria, Mollusca) 7 class and 11 order were discovered on plastics. Spirobranchus triqueter, Hydroides sp. and Neopycnodonte cochlear were the most abundant species. In the end, the example of Mersin Bay shows that plastic debris as a substrate can contain a very high diversity of life just like natural substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Entrapped cells-based-anaerobic membrane bioreactor treating domestic wastewater: Performances, fouling, and bacterial community structure.

    PubMed

    Juntawang, Chaipon; Rongsayamanont, Chaiwat; Khan, Eakalak

    2017-11-01

    A laboratory scale study on treatment performances and fouling of entrapped cells-based-anaerobic membrane bioreactor (E-AnMBR) in comparison with suspended cells-based-bioreactor (S-AnMBR) treating domestic wastewater was conducted. The difference between E-AnMBR and S-AnMBR was the uses of cells entrapped in phosphorylated polyvinyl alcohol versus planktonic cells. Bulk organic removal efficiencies by the two AnMBRs were comparable. Lower concentrations of suspended biomass, bound extracellular polymeric substances and soluble microbial products in E-AnMBR resulted in less fouling compared to S-AnMBR. S-AnMBR provided 7 days of operation time versus 11 days for E-AnMBR before chemical cleaning was required. The less frequent chemical cleaning potentially leads to a longer membrane life-span for E-AnMBR compared to S-AnMBR. Phyla Proteobacteria, Chloroflexi, Bacteroidetes and Acidobacteria were dominant in cake sludge from both AnMBRs but their abundances were different between the two AnMBRs, suggesting influence of cell entrapment on the bacteria community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Substratum location and zoospore behaviour in the fouling alga Enteromorpha.

    PubMed

    Callow, M E; Callow, J A

    2000-01-01

    The green alga Enteromorpha is the most important macroalga that fouls ships, submarines and underwater structures. Major factors in its success in colonising new substrata are the production of enormous numbers of swimming spores and their ability to locate surfaces on which to settle. Factors facilitating the settlement and adhesion of asexual zoospores are examined in this article. Settlement and adhesion may be regulated by topographical, biological, chemical and physico-chemical cues, all of which are modified by the presence of microbial biofilm. The level of gregarious zoospore settlement is related to spore density and may be mediated by a number of external cues including fatty acids and 'detritus'.

  3. Single ether group in a glycol-based ultra-thin layer prevents surface fouling from undiluted serum.

    PubMed

    Sheikh, Sonia; Yang, David Yi; Blaszykowski, Christophe; Thompson, Michael

    2012-01-30

    Through systematic structural modification, it is shown that the internal, single oxygen atom of simple monoethylene glycol-based organic films is essential for radically altering the fouling behaviour of quartz against undiluted serum, as characterized by the electromagnetic piezoelectric acoustic sensor. The synergy is strongest with distal hydroxyls.

  4. Investigation of electrodialysis anti-fouling configuration for desalting and treating tannery unhairing wastewater: Feasibility of by-products recovery and water recycling.

    PubMed

    Tamersit, Sabrina; Bouhidel, Kamel-Eddine; Zidani, Zakaria

    2018-02-01

    The desalination and treatment of tannery unhairing wastewater by electrodialysis (ED) is investigated in this research in order to separate, concentrate, recover and reuse low molecular weight charged species (S 2- , HS - , OH - , Cl - , Ca 2+ , Na + and amino acids), and to separate proteins and recycle treated water. Therefore, a novel electrodialysis membrane configuration was proposed. This was based on a double anti-fouling membrane. The ED anion exchange membrane (AEM), which is very sensitive to organic fouling, was protected by an ultra filtration membrane impermeable to the negatively charged proteins that could not reach the AEM surface. The experimental results were quite promising, and in spite of only one desalination compartment ED cell; the demineralization efficiency was 56 ± 1.25% (5.5-2.4 mS/cm), with a sensitive removal of sulphide, calcium and chloride. The organic matter (protein, peptides…) was isolated in the dilute compartment. The most important result was the total absence of membrane fouling. The experimental results remarkably proved the initial hypothesis, and suggested promising solutions for industrial pollution, where the membrane processes have never been successful. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Performance and Mechanisms of Ultrafiltration Membrane Fouling Mitigation by Coupling Coagulation and Applied Electric Field in a Novel Electrocoagulation Membrane Reactor.

    PubMed

    Sun, Jingqiu; Hu, Chengzhi; Tong, Tiezheng; Zhao, Kai; Qu, Jiuhui; Liu, Huijuan; Elimelech, Menachem

    2017-08-01

    A novel electrocoagulation membrane reactor (ECMR) was developed, in which ultrafiltration (UF) membrane modules are placed between electrodes to improve effluent water quality and reduce membrane fouling. Experiments with feedwater containing clays (kaolinite) and natural organic matter (humic acid) revealed that the combined effect of coagulation and electric field mitigated membrane fouling in the ECMR, resulting in higher water flux than the conventional combination of electrocoagulation and UF in separate units (EC-UF). Higher current densities and weakly acidic pH in the EMCR favored faster generation of large flocs and effectively reduced membrane pore blocking. The hydraulic resistance of the formed cake layers on the membrane surface in ECMR was reduced due to an increase in cake layer porosity and polarity, induced by both coagulation and the applied electric field. The formation of a polarized cake layer was controlled by the applied current density and voltage, with cake layers formed under higher electric field strengths showing higher porosity and hydrophilicity. Compared to EC-UF, ECMR has a smaller footprint and could achieve significant energy savings due to improved fouling resistance and a more compact reactor design.

  6. Evaluation of the low-temperature heat-exchanger fouling problem. Phase I report. Literature review and work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butcher, T.A.

    1983-05-01

    This report describes Phase I of a study of the fouling of condensing heat exchangers in residential oil-fired boiler and furnaces. The first phase consists of a review of available information on soot information in residential systems and the preparation of a work plan for Phase II. In the literature review the effects of burner type, startup and shutdown, time from tuning, fuel quality, combustion chambers, nozzles, and fuel additives are discussed. While data are available on soot emissions with current burners and fuels there are limited data available on advanced burners and degraded fuels with modern burners. The Phasemore » II work will provide an evaluation of the need for the development of advanced burner concepts for oil-fired condensing systems. Planned experimental work includes a furnace draft optimization study, extended fouling tests, a blue flame/yellow flame comparative test, and some degraded fuel teste.« less

  7. Where Does Road Salt Go - a Static Salt Model

    NASA Astrophysics Data System (ADS)

    Yu, C. W.; Liu, F.; Moriarty, V. W.

    2017-12-01

    Each winter, more than 15 million tons of road salt is applied in the United States for the de-icing purpose. Considerable amount of chloride in road salt flows into streams/drainage systems with the snow melt runoff and spring storms, and eventually goes into ecologically sensitive low-lying areas in the watershed, such as ponds and lakes. In many watersheds in the northern part of US, the chloride level in the water body has increased significantly in the past decades, and continues an upward trend. The environmental and ecological impact of the elevated chloride level can no longer be ignored. However although there are many studies on the biological impact of elevated chloride levels, there are few investigations on how the spatially distributed road salt application affects various parts of the watershed. In this presentation, we propose a static road salt model as a first-order metric to address spacial distribution of salt loading. Derived from the Topological Wetness Index (TWI) in many hydrological models, this static salt model provides a spatial impact as- sessment of road salt applications. To demonstrate the effectiveness of the static model, National Elevation Dataset (NED) of ten-meter resolution of Lake George watershed in New York State is used to generate the TWI, which is used to compute a spatially dis- tributed "salt-loading coefficient" of the whole watershed. Spatially varying salt applica- tion rate is then aggregated, using the salt-loading coefficients as weights, to provide salt loading assessments of streams in the watershed. Time-aggregated data from five CTD (conductivity-temperature-depth) sensors in selected streams are used for calibration. The model outputs and the sensor data demonstrate a strong linear correlation, with the R value of 0.97. The investigation shows that the static modeling approach may provide an effective method for the understanding the input and transport of road salt to within watersheds.

  8. Oil droplet fouling and differential toxicokinetics of polycyclic aromatic hydrocarbons in embryos of Atlantic haddock and cod.

    PubMed

    Sørensen, Lisbet; Sørhus, Elin; Nordtug, Trond; Incardona, John P; Linbo, Tiffany L; Giovanetti, Laura; Karlsen, Ørjan; Meier, Sonnich

    2017-01-01

    The impact of crude oil pollution on early life stages (ELS) of fish, including larvae and embryos, has received considerable attention in recent years. Of the organic components present in crude oil, polycyclic aromatic hydrocarbons (PAHs) are considered the main class of compounds responsible for toxic effects in marine organisms. Although evidence suggests that they are more toxic, alkylated PAHs remain much less studied than their unsubstituted congeners. Recently, it was established that embryos of Atlantic haddock (Melanogrammus aeglefinus) are particularly sensitive to dispersed crude oil, and it was hypothesized that this was caused by direct interaction with crude oil droplets, which adhered to the chorion of exposed embryos. Such a phenomenon would increase the potential for uptake of less water-soluble compounds, including alkylated PAHs. In the current study, we compared the uptake of parent and alkylated PAHs in Atlantic cod (Gadus morhua) and haddock embryos exposed to dispersed crude oil at a range of environmentally relevant concentrations (10-600 μg oil/liter seawater). Although the species are biologically very similar, the cod chorion does not become fouled with oil droplets, even when the two species are exposed to dispersions of crude oil droplets under similar conditions. A close correlation between the degree of fouling and toxicological response (heart defects, craniofacial malformation) was observed. Oil droplet fouling in haddock led to both quantitative and qualitative differences in PAH uptake. Finally, kinetic data on a large suite of PAHs showed differential elimination, suggesting differential metabolism of unsubstituted versus alkylated compounds.

  9. Oil droplet fouling and differential toxicokinetics of polycyclic aromatic hydrocarbons in embryos of Atlantic haddock and cod

    PubMed Central

    Sørhus, Elin; Nordtug, Trond; Incardona, John P.; Linbo, Tiffany L.; Giovanetti, Laura; Karlsen, Ørjan; Meier, Sonnich

    2017-01-01

    The impact of crude oil pollution on early life stages (ELS) of fish, including larvae and embryos, has received considerable attention in recent years. Of the organic components present in crude oil, polycyclic aromatic hydrocarbons (PAHs) are considered the main class of compounds responsible for toxic effects in marine organisms. Although evidence suggests that they are more toxic, alkylated PAHs remain much less studied than their unsubstituted congeners. Recently, it was established that embryos of Atlantic haddock (Melanogrammus aeglefinus) are particularly sensitive to dispersed crude oil, and it was hypothesized that this was caused by direct interaction with crude oil droplets, which adhered to the chorion of exposed embryos. Such a phenomenon would increase the potential for uptake of less water-soluble compounds, including alkylated PAHs. In the current study, we compared the uptake of parent and alkylated PAHs in Atlantic cod (Gadus morhua) and haddock embryos exposed to dispersed crude oil at a range of environmentally relevant concentrations (10–600 μg oil/liter seawater). Although the species are biologically very similar, the cod chorion does not become fouled with oil droplets, even when the two species are exposed to dispersions of crude oil droplets under similar conditions. A close correlation between the degree of fouling and toxicological response (heart defects, craniofacial malformation) was observed. Oil droplet fouling in haddock led to both quantitative and qualitative differences in PAH uptake. Finally, kinetic data on a large suite of PAHs showed differential elimination, suggesting differential metabolism of unsubstituted versus alkylated compounds. PMID:28678887

  10. Performance and fouling mechanism of direct contact membrane distillation (DCMD) treating fermentation wastewater with high organic concentrations.

    PubMed

    Wu, Yan; Kang, Yun; Zhang, Liqiu; Qu, Dan; Cheng, Xiang; Feng, Li

    2018-03-01

    In this study, direct contact membrane distillation (DCMD) was used for treating fermentation wastewater with high organic concentrations. DCMD performance characteristics including permeate flux, permeate water quality as well as membrane fouling were investigated systematically. Experimental results showed that, after 12hr DCMD, the feed wastewater was concentrated by about a factor of 3.7 on a volumetric basis, with the permeate flux decreasing from the initial 8.7L/m 2 /hr to the final 4.3L/m 2 /hr due to membrane fouling; the protein concentration in the feed wastewater was increased by about 3.5 times and achieved a value of 6178mg/L, which is suitable for reutilization. Although COD and TOC in permeate water increased continuously due to the transfer of volatile components from wastewater, organic rejection of over 95% was achieved in wastewater. GC-MS results suggested that the fermentation wastewater contained 128 kinds of organics, in which 14 organics dominated. After 12hr DCMD, not only volatile organics including trimethyl pyrazine, 2-acetyl pyrrole, phenethyl alcohol and phenylacetic acid, but also non-volatile dibutyl phthalate was detected in permeate water due to membrane wetting. FT-IR and SEM-EDS results indicated that the deposits formed on the membrane inner surface mainly consisted of Ca, Mg, and amine, carboxylic acid and aromatic groups. The fouled membrane could be recovered, as most of the deposits could be removed using a HCl/NaOH chemical cleaning method. Copyright © 2017. Published by Elsevier B.V.

  11. INNER SALTS

    DTIC Science & Technology

    been characterized include: (1) mesomeric phosphonium salts possessing phototropic properties; (2) pentavalent phosphorus compounds; and (3) a...Products that have been characterized include: (1) mesomeric phosphonium salts possessing phototropic properties; (2) pentavalent phosphorus compounds; and (3) a mesomeric inner salt. (Author)

  12. OTEC biofouling, corrosion, and materials study from a moored platform at Punta Tuna, Puerto Rico - 1. - fouling resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasscer, D.S.; Morgan, T.O.; Rivera, C.

    1981-01-01

    A biofouling test of 404 days was conducted on evaporator tubes of an ocean thermal energy conversion plant of the Center for Energy and Environmental Research. The fouling resistance (R/sub f/), total surface carbon and nitrogen content, ATP, and the wet film thickness (WFT) were determined throughout the test. Visual observations of the fouling film were made by light sectioning and scanning microscopy, and at the end of the test, a study was made of the macrofouling of the flow system. The results of these tests indicate that a base layer of bacteria and exudated polysaccharides enhance microbial adhesion andmore » thereby create an environment conducive to rapid film growth. Fouling rates (dR/sub f//dt) for aluminum were generally higher than for titanium but they were linear for both materials and did not exceed 0.3(10/sup -4/)ft/sup 2/-hr-/degree/F/Btu-day for either material during the 13-month study. Excellent correlation was found to exist between R/sub f/ and WFT, which supports the hypothesis that it is the stagnant film of water entrapped by bacteria which is largely responsible for the insulating properties of the biofilm. The macrofouling study identified 61 species of benthic invertebrates representing ten phyla growing in those parts of the flow system, where flow was less than 3 fps but no macrofouling where the flow velocity significantly exceeded 3 fps. 24 refs.« less

  13. Molten salt oxidation of organic hazardous waste with high salt content.

    PubMed

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  14. [Salt and cancer].

    PubMed

    Strnad, Marija

    2010-05-01

    Besides cardiovascular disease, a high salt intake causes other adverse health effects, i.e., gastric and some other cancers, obesity (risk factor for many cancer sites), Meniere's disease, worsening of renal disease, triggering an asthma attack, osteoporosis, exacerbation of fluid retention, renal calculi, etc. Diets containing high amounts of food preserved by salting and pickling are associated with an increased risk of cancers of the stomach, nose and throat. Because gastric cancer is still the most common cancer in some countries (especially in Japan), its prevention is one of the most important aspects of cancer control strategy. Observations among Japanese immigrants in the U.S.A. and Brazil based on the geographic differences, the trend in cancer incidence with time, and change in the incidence patterns indicate that gastric cancer is closely associated with dietary factors such as the intake of salt and salted food. The findings of many epidemiological studies suggest that high dietary salt intake is a significant risk factor for gastric cancer and this association was found to be strong in the presence of Helicobacter (H.) pylori infection with atrophic gastritis. A high-salt intake strips the lining of the stomach and may make infection with H. pylori more likely or may exacerbate the infection. Salting, pickling and smoking are traditionally popular ways of preparing food in Japan and some parts of Asia. In addition to salt intake, cigarette smoking and low consumption of fruit and vegetables increase the risk of stomach cancer. However, it is not known whether it is specifically the salt in these foods or a combination of salt and other chemicals that can cause cancer. One study identified a mutagen in nitrite-treated Japanese salted fish, and chemical structure of this mutagen suggests that it is derived from methionine and that salt and nitrite are precursors for its formation. Working under conditions of heat stress greatly increased the workers

  15. Long-term effect on membrane fouling in a new membrane bioreactor as a pretreatment to seawater desalination.

    PubMed

    Jeong, Sanghyun; Rice, Scott A; Vigneswaran, Saravanamuthu

    2014-08-01

    Submerged membrane adsorption bio-reactors (SMABR) were investigated as a new pretreatment for seawater reverse osmosis (SWRO) desalination. They were tested with different doses of powder activated carbon (PAC) on-site for a long-term. The biofouling on the membrane was assessed in terms of DNA (cells) and polysaccharide distribution. MBR without PAC addition resulted in severe fouling on membrane. When PAC is added in the MBR, PAC could reduce the organic fouling. Hence the biofilm formation on membrane was reduced without any membrane damage. PAC also helped to remove low molecular weight (LMW) organics responsible for biofouling of RO membrane. A linear correlation between assimilable organic carbon (AOC) and LMW organics was observed. A small amount of PAC (2.4-8.0g of PAC/m(3) of seawater) was sufficient to reduce biofouling. It indicated that SMABR is an environmentally-friendly biological pretreatment to reduce biofouling for SWRO. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Bearing the burden of boat harbours: heavy contaminant and fouling loads in a native habitat-forming alga.

    PubMed

    Johnston, E L; Marzinelli, E M; Wood, C A; Speranza, D; Bishop, J D D

    2011-10-01

    Boat harbours are an increasingly common form of artificial habitat. This paper presents a comparative study of contaminants and foulers of a habitat-forming native kelp (Saccharina latissima) in four marinas and four reference locations along the south-west coast of the UK. Fouling of algal laminae was light (<2% cover) in reference locations, while epibiota cover ranged from 25% to 80% of laminae in marinas. Metals associated with antifouling paints were up to six times more concentrated in algal tissues from marinas than from the reference locations. Marinas also carried the greatest cover and diversity of non-indigenous epibiota on the kelp laminae. This indicates not only a potential stress to kelps in these environments, but also the possibility that detached laminae will act as vectors for the dispersal of non-indigenous species. The development of boat harbours creates habitats that are high risk source localities for pollution-tolerant fouling organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Coagulation and oxidation for controlling ultrafiltration membrane fouling in drinking water treatment: Application of ozone at low dose in submerged membrane tank.

    PubMed

    Yu, Wenzheng; Graham, Nigel J D; Fowler, Geoffrey D

    2016-05-15

    Coagulation prior to ultrafiltration (UF) is widely applied for treating contaminated surface water sources for potable supply. While beneficial, coagulation alone is unable to control membrane fouling effectively in many cases, and there is continuing interest in the use of additional, complementary methods such as oxidation in the pre-treatment of raw water prior to UF. In this study, the application of ozone at low dose in the membrane tank immediately following coagulation has been evaluated at laboratory-scale employing model raw water. In parallel tests with and without the application of ozone, the impact of applied ozone doses of 0.5 mg L(-1) and 1.5 mg L(-1) (approximately 0.18 mg L(-1) and 0.54 mg L(-1) consumed ozone, respectively) on the increase of trans-membrane pressure (TMP) was evaluated and correlated with the quantity and nature of membrane deposits, both as a cake layer and within membrane pores. The results showed that a dose of 0.5 mgO3 L(-1) gave a membrane fouling rate that was substantially lower than without ozone addition, while a dose of 1.5 mgO3 L(-1) was able to prevent fouling effects significantly (no increase in TMP). Ozone was found to decrease the concentration of bacteria (especially the concentration of bacteria per suspended solid) in the membrane tank, and to alter the nature of dissolved organic matter by increasing the proportion of hydrophilic substances. Ozone decreased the concentration of extracellular polymeric substances (EPS), such as polysaccharides and proteins, in the membrane cake layer; the reduced EPS and bacterial concentrations resulted in a much thinner cake layer, although the suspended solids concentration was much higher in the ozone added membrane tank. Ozone also decreased the accumulation and hydrophobicity of organic matter within the membrane pores, leading to minimal irreversible fouling. Therefore, the application of low-dose ozone within the UF membrane tank is a potentially important

  18. A new nanocomposite forward osmosis membrane custom-designed for treating shale gas wastewater

    PubMed Central

    Qin, Detao; Liu, Zhaoyang; Delai Sun, Darren; Song, Xiaoxiao; Bai, Hongwei

    2015-01-01

    Managing the wastewater discharged from oil and shale gas fields is a big challenge, because this kind of wastewater is normally polluted by high contents of both oils and salts. Conventional pressure-driven membranes experience little success for treating this wastewater because of either severe membrane fouling or incapability of desalination. In this study, we designed a new nanocomposite forward osmosis (FO) membrane for accomplishing simultaneous oil/water separation and desalination. This nanocomposite FO membrane is composed of an oil-repelling and salt-rejecting hydrogel selective layer on top of a graphene oxide (GO) nanosheets infused polymeric support layer. The hydrogel selective layer demonstrates strong underwater oleophobicity that leads to superior anti-fouling capability under various oil/water emulsions, and the infused GO in support layer can significantly mitigate internal concentration polarization (ICP) through reducing FO membrane structural parameter by as much as 20%. Compared with commercial FO membrane, this new FO membrane demonstrates more than three times higher water flux, higher removals for oil and salts (>99.9% for oil and >99.7% for multivalent ions) and significantly lower fouling tendency when investigated with simulated shale gas wastewater. These combined merits will endorse this new FO membrane with wide applications in treating highly saline and oily wastewaters. PMID:26416014

  19. Profiling Groundwater Salt Concentrations in Mangrove Swamps and Tropical Salt Flats

    NASA Astrophysics Data System (ADS)

    Ridd, Peter V.; Sam, Renagi

    1996-11-01

    The salt concentration of groundwater in mangrove swamps is an important parameter controlling the growth of mangrove species. Extremely high salt concentrations of groundwater in tropical salt flats are responsible for the complete absence of macrophytes. Determining groundwater salt concentrations can be a very time-consuming and laborious process if conventional techniques are used. Typically, groundwater samples must be extracted for later laboratory analysis. In this work, a simple conductivity probe has been developed which may be inserted easily to a depth of 2 m into the sediment. The changes in conductivity of the sediment is due primarily to porewater salt concentration, and thus ground conductivity is useful in determining changes in groundwater salt concentrations. Using the conductivity probe, transects of sediment conductivity can be undertaken quickly. As an example of a possible application of the probe, transects of ground conductivity were taken on a mangrove swamp/saltflat system. The transects show clearly the sharp delineation in conductivity between the salt flat and mangrove swamp due to a change in groundwater salt concentrations. Horizontal and vertical salt concentration gradients of up to 50 g l -1 m -1and 150 g l -1 m -1, respectively, were found. Very sharp changes in groundwater salt concentrations at the interface between salt flats and mangroves indicate that the mangroves may be modifying the salinity of the groundwater actively.

  20. Remote Sensing as a Tool to Track Algal Blooms in the Great Salt Lake, Utah, USA

    NASA Astrophysics Data System (ADS)

    Bradt, S. R.; Wurtsbaugh, W. A.; Naftz, D.; Moore, T.; Haney, J.

    2006-12-01

    The Great Salt Lake is a large hypersaline, terminal water body in northern Utah, USA. The lake has both a significant economic importance to the local community as a source of brine shrimp and mineral resources, as well as, an ecological importance to large numbers of migratory waterfowl. Due to nutrient input from sewage treatment plants, sections of the Great Salt Lake are subjected to highly eutrophic conditions. One of the main tributaries, Farmington Bay, experiences massive blooms of cyanobacteria which can reach concentrations in excess of 300 mg l-1 in the bay. Effects of these blooms can be observed stretching into the rest of the lake. The detrimental outcomes of the blooms include unsightly scums, foul odor and the danger of cyanobacterial toxins. While the blooms have an obvious effect on Farmington Bay, it is quite possible that the cyanobacteria impact a much wider area of the lake as currents move eutrophic water masses. Of particular interest is the reaction of brine shrimp to the plumes of cyanobacteria-rich water leaving Farmington Bay. We are employing remote sensing as a tool to map the distribution of algae throughout the lake and produce lake-wide maps of water quality on a regular basis. On-lake reflectance measurements have been coupled with MODIS satellite imagery to produce a time series of maps illustrating changes in algal distribution. The successes and shortcomings of our remote sensing technique will be a central topic of this presentation.

  1. Influence of membrane fouling reducers (MFRs) on filterability of disperse mixed liquor of jet loop bioreactors.

    PubMed

    Koseoglu-Imer, Derya Yuksel; Dizge, Nadir; Karagunduz, Ahmet; Keskinler, Bulent

    2011-07-01

    The effects of membrane fouling reducers (MFRs) (the cationic polyelectrolyte (CPE) and FeCI(3)) on membrane fouling were studied in a lab-scale jet loop submerged membrane bioreactor (JL-SMBR) system. The optimum dosages of MFRs (CPE dosage=20 mg g(-1)MLSS, FeCI(3) dosage=14 mg g(-1)MLSS) were continuously fed to JL-SMBR system. The soluble and bound EPS concentrations as well as MLSS concentration in the mixed liquor of JL-SMBR were not changed substantially by the addition of MFRs. However, significant differences were observed in particle size and relative hydrophobicity. Filtration tests were performed by using different membrane types (polycarbonate (PC) and nitrocellulose mixed ester (ME)) and various pore sizes (0.45-0.22-0.1 μm). The steady state fluxes (J(ss)) of membranes increased at all membranes after MFRs addition to JL-SMBR. The filtration results showed that MFRs addition was an effective approach in terms of improvement in filtration performance for both membrane types. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Authigenic K-feldspar in salt rock (Haselgebirge Formation, Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Leitner, Christoph

    2015-04-01

    The crystallisation of authigenic quartz under low temperature, saline conditions is well known (Grimm, 1962). Also the growth of low temperature authigenic feldspar in sediments is a long known phenomenon (Kastner & Siever, 1979; Sandler et al., 2004). In this study we intend to show that halite (NaCl) is a major catalyser for authigenic mineral growth. During late Permian (c. 255-250 Ma), when the later Eastern Alps were located around north of the equator, the evaporites of the Haselgebirge Formation were deposited (Piller et al., 2004). The Haselgebirge Fm. consists in salt mines of a two-component tectonite of c. 50 % halite and 50 % sedimentary clastic and other evaporite rocks (Spötl 1998). Most of the clastic rocks are mud- to siltstones ("mudrock"). During this study, we investigated rare sandstones embedded in salt rock form four Alpine salt mines. Around 40 polished thin sections were prepared by dry grinding for thin section analysis and scanning electron microscopy. The sandstones consist mainly of quartz, K-feldspar, rock fragments, micas, accessory minerals and halite in the pore space. They are fine grained and well sorted. Mudrock clasts in sandstone were observed locally, and also coal was observed repeatedly. Asymmetric ripples were found only in the dimension of millimeters to centimeters. Euhedral halite crystals in pores indicate an early presence of halite. During early diagenesis, authigenic minerals crystallized in the following chronological order. (1) Where carbonate (mainly magnesite) occurred, it first filled the pore space. Plant remains were impregnated with carbonate. (2) Halite precipitated between the detritic sandstone grains. Carbonate grains can be completely embedded in halite. (3) K-feldspar and quartz grains usually expose a detritic core and a later grown euhedral inclusion free rim. Euhedral rims of K-feldspar often also enclose a halite core. K-feldspar replaced the pre-existing halite along former grain boundaries of

  3. Dewatering of Chlorella pyrenoidosa using diatomite dynamic membrane: filtration performance, membrane fouling and cake behavior.

    PubMed

    Zhang, Yalei; Zhao, Yangying; Chu, Huaqiang; Zhou, Xuefei; Dong, Bingzhi

    2014-01-01

    The diatomite dynamic membrane (DDM) was utilized to dewater Chlorella pyrenoidosa of 2 g dry weight/L under continuous-flow mode, whose ultimate algae concentration ranged from 43 g to 22 g dry weight/L of different culture time. The stable flux of DDM could reach 30 L/m(2) h over a 24 h operation time without backwash. Influences of extracellular organic matters (EOM) on filtration behavior and membrane fouling were studied. The DDM was divided into three sub-layers, the slime layer, the algae layer and the diatomite layer from the outside to the inside of the cake layer based on components and morphologies. It was found that EOM caused membrane fouling by accumulating in the slime and algae layers. The DDM intercepted polysaccharides, protein-like substances, humic-like substances and some low-MW organics. Proteins were indicated the major membrane foulants with increased protein/polysaccharide ratio from the slime layer to the diatomite layer as culture time increased. This method could be applied to subsequent treatment of microalgae coupling technology of wastewater treatment or microalgae harvesting for producing biofuel. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Quantitative exploration of the contribution of settlement, growth, dispersal and grazing to the accumulation of natural marine biofilms on antifouling and fouling-release coatings

    PubMed Central

    Van Mooy, Benjamin A. S.; Hmelo, Laura R.; Fredricks, Helen F.; Ossolinski, Justin E.; Pedler, Byron E.; Bogorff, Daniel J.; Smith, Peter J.S.

    2014-01-01

    The accumulation of microbial biofilms on ships' hulls negatively affects ships' performance and efficiency while also moderating the establishment of even more detrimental hard-fouling communities. However, there is little quantitative information on how the accumulation rate of microbial biofilms is impacted by the balance of the rates of cell settlement, in situ production (ie growth), dispersal to surrounding waters and mortality induced by grazers. These rates were quantified on test panels coated with copper-based antifouling or polymer-based fouling-release coatings by using phospholipids as molecular proxies for microbial biomass. The results confirmed the accepted modes of efficacy of these two types of coatings. In a more extensive set of experiments with only the fouling-release coatings, it was found that seasonally averaged cellular production rates were 1.5 ± 0.5 times greater than settlement and the dispersal rates were 2.7 ± 0.8 greater than grazing. The results of this study quantitatively describe the dynamic balance of processes leading to microbial biofilm accumulation on coatings designed for ships' hulls. PMID:24417212

  5. Distillation and condensation of LiCl-KCl eutectic salts for a separation of pure salts from salt wastes from an electrorefining process

    NASA Astrophysics Data System (ADS)

    Eun, Hee Chul; Yang, Hee Chul; Lee, Han Soo; Kim, In Tae

    2009-12-01

    Salt separation and recovery from the salt wastes generated from a pyrochemical process is necessary to minimize the high-level waste volumes and to stabilize a final waste form. In this study, the thermal behavior of the LiCl-KCl eutectic salts containing rare earth oxychlorides or oxides was investigated during a vacuum distillation and condensation process. LiCl was more easily vaporized than the other salts (KCl and LiCl-KCl eutectic salt). Vaporization characteristics of LiCl-KCl eutectic salts were similar to that of KCl. The temperature to obtain the vaporization flux (0.1 g min -1 cm -2) was decreased by much as 150 °C by a reduction of the ambient pressure from 5 Torr to 0.5 Torr. Condensation behavior of the salt vapors was different with the ambient pressure. Almost all of the salt vapors were condensed and were formed into salt lumps during a salt distillation at the ambient pressure of 0.5 Torr and they were collected in the condensed salt storage. However, fine salt particles were formed when the salt distillation was performed at 10 Torr and it is difficult for them to be recovered. Therefore, it is thought that a salt vacuum distillation and condensation should be performed to recover almost all of the vaporized salts at a pressure below 0.5 Torr.

  6. Recovery of real dye bath wastewater using integrated membrane process: considering water recovery, membrane fouling and reuse potential of membranes.

    PubMed

    Balcik-Canbolat, Cigdem; Sengezer, Cisel; Sakar, Hacer; Karagunduz, Ahmet; Keskinler, Bulent

    2017-11-01

    It has been recognized by the whole world that textile industry which produce large amounts of wastewater with strong color and toxic organic compounds is a major problematical industry requiring effective treatment solutions. In this study, reverse osmosis (RO) membranes were tested on biologically treated real dye bath wastewater with and without pretreatment by nanofiltration (NF) membrane to recovery. Also membrane fouling and reuse potential of membranes were investigated by multiple filtrations. Obtained results showed that only NF is not suitable to produce enough quality to reuse the wastewater in a textile industry as process water while RO provide successfully enough permeate quality. The results recommend that integrated NF/RO membrane process is able to reduce membrane fouling and allow long-term operation for real dye bath wastewater.

  7. Mechanisms of mineral membrane fouling growth modulated by pulsed modes of current during electrodialysis: evidences of water splitting implications in the appearance of the amorphous phases of magnesium hydroxide and calcium carbonate.

    PubMed

    Cifuentes-Araya, Nicolás; Astudillo-Castro, Carolina; Bazinet, Laurent

    2014-07-15

    Experiments revealed the fouling nature evolutions along different electrodialysis (ED) trials, and how it disappears when current pulsation acts repetitively on the interfaces of ion-exchange membranes (IEMs). Fouling was totally controlled on the diluate side of cation-exchange membrane (CEM) by the repetitive pulsation frequency of the higher on-duty ratios applied. They created steady water splitting proton-barriers that neutralized OH(-) leakage through the membrane, decreasing the interfacial pH, and fouling of the concentrate side. The anion-exchange membrane (AEM) on the diluate side was similarly protected, but it was fouled once water splitting OH(-) generation became either intense enough or excessively weak. Interestingly, amorphous magnesium hydroxide (AMH) stemmed on the CEM-diluate side from brucite under intense water splitting OH(-) generation, and/or strong OH(-) leakage electromigration through the membrane. Water dissociation and overlimiting current regimes triggered drastic water molecule removal from crystal lattices through an accelerated cascade water splitting reaction. Also, amorphous calcium carbonate (ACC) appeared on CEM under intense water splitting reaction, and disappeared once intense OH(-) leakage was allowed by the water splitting proton-barrier dissipation. Our findings have implications for membrane fouling control, as well as for the understanding of the growth behavior of CaCO3 and Mg(OH)2 species on electromembrane interfaces. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Investigations into the fouling mechanism of parvovirus filters during filtration of freeze-thawed mAb drug substance solutions.

    PubMed

    Barnard, James G; Kahn, David; Cetlin, David; Randolph, Theodore W; Carpenter, John F

    2014-03-01

    Filtration to remove viruses is one of the single most expensive steps in the production of mAb drug products. Therefore, virus filtration steps should be fully optimized, and any decline in flow rates warrants investigation into the causes of such membrane fouling. In the current study, it was found that freezing and thawing of a mAb bulk drug solution caused a substantial decrease in viral filter membrane flow rate. Freezing and thawing also caused formation of aggregates and particles across a broad size range, including particles that could be detected by microflow imaging (≥1 μm in size). However, removal of these particles offered little protection against flow rate decline during viral filtration. Further investigation revealed that trace amounts of aggregates (ca. 10⁻⁶ of the total mass of protein in solution) approximately 20-40 nm in size were primarily responsible for the observed membrane fouling. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. A submerged membrane bioreactor with pendulum type oscillation (PTO) for oily wastewater treatment: membrane permeability and fouling control.

    PubMed

    Qin, Lei; Fan, Zheng; Xu, Lusheng; Zhang, Guoliang; Wang, Guanghui; Wu, Dexin; Long, Xuwei; Meng, Qin

    2015-05-01

    In this study, a novel submerged membrane bioreactor (SMBR) with pendulum type oscillation (PTO) hollow fiber membrane modules was developed to treat oily wastewater and control the problem of membrane fouling. To assess the potential of PTO membrane modules, the effect of oscillation orientation and frequency on membrane permeability was investigated in detail. The forces exerted on sludge flocs in the oscillating SMBR were analyzed to evaluate the impact of membrane oscillating on the cake layer resistance reduction. Results showed that the optimized PTO SMBR system exhibited 11 times higher membrane permeability and better fouling controllability than the conventional MBR system. By hydrodynamic analysis, it was found that the cooperative effect of bubble-induced turbulence and membrane oscillation in PTO SMBR system generated strong shear stress at liquid-membrane interface in vertical and horizontal direction and effectively hindered the particles from depositing on membrane surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Cloning, expression and crystallisation of SGT1 co-chaperone protein from Glaciozyma antarctica

    NASA Astrophysics Data System (ADS)

    Yusof, Nur Athirah; Bakar, Farah Diba Abu; Beddoe, Travis; Murad, Abdul Munir Abdul

    2013-11-01

    Studies on psycrophiles are now in the limelight of today's post genomic era as they fascinate the research and development industries. The discovery from Glaciozyma antarctica, an extreme cold adapted yeast from Antarctica shows promising future to provide cost effective natural sustainable energy and create wider understanding of the property that permits this organisms to adapt to extreme temperature downshift. In plants and yeast, studies show the interaction between SGT1 and HSP90 are essential for disease resistance and heat stress by activating a number of resistance proteins. Here we report for the first time cloning, expression and crystallization of the recombinant SGT1 protein of G. antarctica (rGa_SGT1), a highly conserved eukaryotic protein that interacts with the molecular chaperones HSP90 (heat shock protein 90) apparently associated in a role of co-chaperone that may play important role in cold adaptation. The sequence analysis of rGa_SGT1 revealed the presence of all the characteristic features of SGT1 protein. In this study, we present the outlines and results of protein structural study of G. antarctica SGT1 protein. We validate this approach by starting with cloning the target insert into Ligation Independent Cloning system proceeded with expression using E. coli system, and crystallisation of the target rGA_SGT1 protein. The work is still on going with the target subunit of the complex proteins yielded crystals. These results, still ongoing, open a platform for better understanding of the uniqueness of this crucial molecular machine function in cold adaptation.

  11. Molten Salt Promoting Effect in Double Salt CO2 Absorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keling; Li, Xiaohong S.; Chen, Haobo

    2016-01-01

    The purpose of this paper is to elaborate on the concept of molten salts as catalysts for CO2 absorption by MgO, and extend these observations to the MgO-containing double salt oxides. We will show that the phenomena involved with CO2 absorption by MgO and MgO-based double salts are similar and general, but with some important differences. This paper focuses on the following key concepts: i) identification of conditions that favor or disfavor participation of isolated MgO during double salt absorption, and investigation of methods to increase the absorption capacity of double salt systems by including MgO participation; ii) examination ofmore » the relationship between CO2 uptake and melting point of the promoter salt, leading to the recognition of the role of pre-melting (surface melting) in these systems; and iii) extension of the reaction pathway model developed for the MgO-NaNO3 system to the double salt systems. This information advances our understanding of MgO-based CO2 absorption systems for application with pre-combustion gas streams.« less

  12. Offshore oil platforms and fouling communities in the southern Arabian Gulf (Abu Dhabi).

    PubMed

    Stachowitsch, Michael; Kikinger, Reinhard; Herler, Jürgen; Zolda, Pamela; Geutebrück, Ernst

    2002-09-01

    This study examined the fouling organisms on the legs of offshore oil platforms at two sites in the southern Arabian Gulf (offshore Abu Dhabi, United Arab Emirates). 100% of the metal structures was colonized by encrusting organisms. Both the number of individuals and the total biomass tended to decrease with depth. The total weight of dead shells always exceeded that of living organisms. Sessile filter feeders dominated the biomass, whereas small mobile forms had the largest number of individuals. The biomass at the deeper platform (22 m) was dominated by bivalves, barnacles and bryozoans, while polychaetes and amphipods had the greatest number of individuals. Biomass values here ranged from 1 g/0.1 m2 at 20 m to 147 g/0.1 m2 at 5 m; the corresponding individual numbers were 266 (20 m) and 11,814 indiv./0.1 m2 (5 m). The results at the shallower platform (11 m) differed in several respects: barnacles clearly dominated over bivalves, and sponges exceeded byrozoans, while total individual numbers fell due to a decline in polychaete dominance. Biomass values here ranged from 84 g/0.1 m2 at 10 m to 153 g/0.1 m2 at 0 m; the corresponding individual numbers were 695 (10 m) and 3,125 indiv./0.1 m2 (0 m). The potential role of such fouling communities on artificial structures in the Gulf is discussed.

  13. Fouling and ships' hulls: how changing circumstances and spawning events may result in the spread of exotic species.

    PubMed

    Minchin, Dan; Gollasch, Stephan

    2003-04-01

    Organisms fouling ships' hulls are continually in transit worldwide. Although effective antifouling paints incorporating organotins have considerably reduced fouling biomass these paints have a limited period of effectiveness, which may be less than the ships' inter-docking period, depending on sea temperature and abrasion. Vessels immersed over several years can allow fouling communities to develop and spread beyond their native distribution. This process of establishment is not fully understood. This review proposes that short rapid turn-around of vessels with mature attached biota can result in synchronized spawnings and production of sufficient zygotes to form a founder population. Spawning may be induced by changes in temperature or salinity on entry into a port, according to season. The diversity of taxa in transit on ships' hulls includes commercial molluscs, which have the potential to transmit their diseases or pests to port regions. Several factors may act in the further enhancement of exotic species establishment including changes of in-port berthing regions to more marine conditions. Ships today are generally larger, and faster, and have a high frequency of port visits thereby increasing the number of spawning opportunities, perhaps with a larger inoculum size. With trade expansion, new trading routes, political events and changes in climate, new pathways for invasion will emerge. Greater controls on industrial discharges, improved treatments of urban wastes and better management of waste runoff into rivers as well as a phasing out of organotin antifoulants will mean a reduced toxicity in port regions. This may enable a smaller inoculum to colonize by creating opportunities for establishment not present in the previous 25 years. Some invaders will have unwanted consequences for the environment, economies and human health.

  14. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyukjin Oh; Kalyan Annamalai; John M. Sweeten

    2008-04-15

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass, FB) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash 'fouling' were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss throughmore » ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out. 16 refs., 12 figs., 6 tabs.« less

  15. Investigations of ash fouling with cattle wastes as reburn fuel in a small-scale boiler burner under transient conditions.

    PubMed

    Oh, Hyukjin; Annamalai, Kalyan; Sweeten, John M

    2008-04-01

    Fouling behavior under reburn conditions was investigated with cattle wastes (termed as feedlot biomass [FB]) and coal as reburn fuels under a transient condition and short-time operation. A small-scale (30 kW or 100,000 Btu/hr) boiler burner research facility was used for the reburn experiments. The fuels considered for these experiments were natural gas (NG) for the ashless case, pure coal, pure FB, and blends of coal and FB. Two parameters that were used to characterize the ash "fouling" were (1) the overall heat-transfer coefficient (OHTC) when burning NG and solid fuels as reburn fuels, and (2) the combustible loss through ash deposited on the surfaces of heat exchanger tubes and the bottom ash in the ash port. A new methodology is presented for determining ash-fouling behavior under transient conditions. Results on the OHTCs for solid reburn fuels are compared with the OHTCs for NG. It was found that the growth of the layer of ash depositions over longer periods typically lowers OHTC, and the increased concentration of ash in gas phase promotes radiation in high-temperature zones during initial periods while decreasing the heat transfer in low-temperature zones. The ash analyses indicated that the bottom ash in the ash port contained a smaller percentage of combustibles with a higher FB percentage in the fuels, indicating better performance compared with coal because small particles in FB burn faster and the FB has higher volatile matter on a dry ash-free basis promoting more burn out.

  16. Application of pulsed UV-irradiation and pre-coagulation to control ultrafiltration membrane fouling in the treatment of micro-polluted surface water.

    PubMed

    Yu, Wenzheng; Campos, Luiza C; Graham, Nigel

    2016-12-15

    A major cause of ultrafiltration (UF) membrane fouling is the accumulation of microorganisms and their associated soluble products. To mitigate fouling the application of pulsed short-wavelength ultraviolet (UVC) light (around 254 nm) within the membrane tank together with pre-coagulation was investigated. In mini-pilot-scale tests carried out in parallel with conventional pre-treatment (CUF), the impact of pulsed UV (CUF-UV) at different UV irradiances and fluxes on the increase of trans-membrane pressure (TMP) was evaluated and explained in terms of the quantity and nature of membrane deposits in the membrane cake layer and pores. The results indicated that at a flux of 20 L m -2  h -1 , the pulsed UV (1 min within 31 min cycle) at 3.17 × 10 -2  W/cm 2 prevented any measureable increase in TMP over a period of 32 days, while there was a fourfold increase in TMP for the conventional pre-treatment. For the CUF-UV system the concentration of bacteria and soluble microbial products was much less than the conventional CUF system, and the cake layer was thinner and contained less biopolymers (proteins and polysaccharides). In addition, the pores of the CUF-UV membrane appeared to have less organic deposits, and particularly fractions with a high molecular weight (>10 kDa). At a lower UV irradiance (1.08 × 10 -2  W/cm 2 ), or higher flux (40 L m -2  h -1 ) with the same UV irradiance, there was a measurable increase in TMP, indicating some fouling of the CUF-UV membrane, but the rate of TMP development was significantly lower (∼50%) than the conventional CUF membrane system. Overall, the results show the potential advantages of applying intermittent (pulsed) UVC irradiation with coagulation to control UF membrane fouling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Applying fermentation liquid of food waste as carbon source to a pilot-scale anoxic/oxic-membrane bioreactor for enhancing nitrogen removal: Microbial communities and membrane fouling behaviour.

    PubMed

    Tang, Jialing; Wang, Xiaochang C; Hu, Yisong; Ngo, Huu Hao; Li, Yuyou; Zhang, Yongmei

    2017-07-01

    Fermentation liquid of food waste (FLFW) was applied as an external carbon source in a pilot-scale anoxic/oxic-membrane bioreactor (A/O-MBR) system to enhance nitrogen removal for treating low COD/TN ratio domestic wastewater. Results showed that, with the FLFW addition, total nitrogen removal increased from lower than 20% to 44-67% during the 150days of operation. The bacterial metabolic activities were obviously enhanced, and the significant change in microbial community structure promoted pollutants removal and favored membrane fouling mitigation. By monitoring transmembrane pressure and characterizing typical membrane foulants, such as extracellular polymeric substances (EPS), dissolved organic matter (DOM), and inorganics and biopolymers in the cake layer, it was confirmed that FLFW addition did not bring about any additional accumulation of membrane foulants, acceleration of fouling rate, or obvious irreversible membrane fouling in the whole operation period. Therefore, FLFW is a promising alternative carbon source to enhance nitrogen removal for the A/O-MBR system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Marine fouling invasions in ports of Patagonia (Argentina) with implications for legislation and monitoring programs.

    PubMed

    Schwindt, Evangelina; López Gappa, Juan; Raffo, María Paula; Tatián, Marcos; Bortolus, Alejandro; Orensanz, José María; Alonso, Gloria; Diez, María Emilia; Doti, Brenda; Genzano, Gabriel; Lagger, Cristian; Lovrich, Gustavo; Piriz, María Luz; Mendez, María Martha; Savoya, Verónica; Sueiro, María Cruz

    2014-08-01

    Ports are a key factor in the understanding and solving of most problems associated with marine invasive species across regional and global scales. Yet many regions with active ports remain understudied. The aim of this work was to (a) identify and quantify the marine fouling organisms in all Patagonian ports of Argentina classifying them as native, exotic or cryptogenic species through a rapid assessment survey and experimental studies, (b) survey the environmental and anthropogenic variables of these ports and (c) analyze and discuss these results in the light of the South America context for the study of marine invasive species, legislation and commerce. We found 247 fouling species, including 17 introduced, one of which is a new record for the region, and other 15 species currently considered cryptogenic species that will need further attention to clarify their status. The analysis of mobile and sessile taxa, together with the environmental variables measured in this study and the port movement, allow us to discuss individual ports' vulnerability to future introductions. This is the first large scale study performed for this region on this topic, and it will help in developing monitoring programs and early detection plans to minimize new species introductions along the marine coastline of southern South America. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Deformation of allochthonous salt and evolution of related salt-structural systems, eastern Louisiana Gulf Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuster, D.C.

    1996-12-31

    Salt tectonics in the northern Gulf of Mexico involves both vertical diapirism and lateral silling or flow of salt into wings and tablets (sheets). Combinations of these two modes of salt deformation, concurrent with sediment loading and salt evacuation, have produced complex structures in the coastal and offshore region of southeastern Louisiana, a prolific oil and gas province. Many large growth faults and salt domes in the study area root into intra-Tertiary salt welds that were formerly occupied by allochthonous salt tablets. Two end-member structural systems involving evacuation of former tabular salt are recognized: roho systems and stepped counter-regional systems.more » Both end-member systems share a similar multi-staged evolution, including (1) initial formation of a south-leaning salt dome or wall sourced from the Jurassic salt level; (2) progressive development into a semi-tabular allochthonous salt body; and (3) subsequent loading, evacuation, and displacement of the tabular salt into secondary domes. In both systems, it is not uncommon to find salt displaced as much as 16-24 km south of its autochthonous source, connected by a horizontal salt weld to an updip, deflated counter-regional feeder. Although both end-member structural systems may originate before loading of allochthonous salt having grossly similar geometry, their final structural configurations after loading and salt withdrawal are distinctly different. Roho systems are characterized by large-displacement, listric, south-dipping growth faults that sole into intra-Tertiary salt welds marked by high-amplitude reflections continuous with residual salt masses. Salt from the former salt tablets has been loaded and squeezed laterally and downdip. Stepped counter-regional systems, in contrast, comprise large salt domes and adjacent large-displacement, north-dipping growth faults that sole into intra-Tertiary salt welds before stepping down again farther north.« less

  20. New iodide-based molten salt systems for high temperature molten salt batteries

    NASA Astrophysics Data System (ADS)

    Fujiwara, Syozo; Kato, Fumio; Watanabe, Syouichiro; Inaba, Minoru; Tasaka, Akimasa

    Novel multi-component molten salt systems containing iodides, LiF-LiBr-LiI, LiF-NaBr-LiI, and LiF-LiCl-LiBr-LiI, were investigated for use as electrolytes in high temperature molten salt batteries to improve the discharge rate-capability. The iodide-based molten salts showed higher ionic conductivity (∼3 S cm -1 at 500 °C) than conventional LiCl-KCl, and had low enough melting points (below 400 °C) that can be used in practical high temperature molten salt batteries. The iodide-based salts showed instability at temperatures higher than 280 °C in dried air. The decomposition mechanism of iodide-based molten salts was discussed, and it was found that elimination of oxygen from the environment is effective to stabilize the iodide-based molten salts at high temperatures.

  1. Impact of ozonation, anion exchange resin and UV/H2O2 pre-treatments to control fouling of ultrafiltration membrane for drinking water treatment.

    PubMed

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Sarker, Dipok Chandra; Suja, Fatihah

    2017-06-01

    The effects of ozonation, anion exchange resin (AER) and UV/H 2 O 2 were investigated as a pre-treatment to control organic fouling (OF) of ultrafiltration membrane in the treatment of drinking water. It was found that high molecular weight (MW) organics such as protein and polysaccharide substances were majorly responsible for reversible fouling which contributed to 90% of total fouling. The decline rate increased with successive filtration cycles due to deposition of protein content over time. All pre-treatment could reduce the foulants of a Ultrafiltration membrane which contributed to the improvement in flux, and there was a greater improvement of flux by UV/H 2 O 2 (61%) than ozonation (43%) which in turn was greater than AER (23%) treatment. This was likely due to the effective removal/breakdown of high MW organic content. AER gave greater removal of biofouling potential components (such as biodegradable dissolved organic carbon and assimilable organic carbon contents) compared to UV/H 2 O 2 and ozonation treatment. Overall, this study demonstrated the potential of pre-treatments for reducing OF of ultrafiltration for the treatment of drinking water.

  2. The Energy Implications of Air-Side Fouling in Constant Air Volume HVAC Systems

    NASA Astrophysics Data System (ADS)

    Wilson, Eric J. H.

    2011-12-01

    This thesis examines the effect of air-side fouling on the energy consumption of constant air volume (CAV) heating, ventilating, and air conditioning (HVAC) systems in residential and small commercial buildings. There is a particular focus on evaluating the potential energy savings that may result from the remediation of such fouling from coils, filters, and other air system components. A computer model was constructed to simulate the behavior of a building and its duct system under various levels of fouling. The model was verified through laboratory and field testing and then used to run parametric simulations to examine the range of energy impacts for various climates and duct system characteristics. A sensitivity analysis was conducted to determine the impact of parameters like duct insulation, duct leakage, duct location, and duct design on savings potential. Duct system pressures, temperatures, and energy consumption for two houses were monitored for one month. The houses' duct systems, which were both in conditioned space, were given a full cleaning, and were then monitored for another month. The flow rates at the houses improved by 10% and 6%. The improvements were primarily due to installing a new filter, as both houses had only light coil fouling. The results indicate that there was negligible change in heating energy efficiency due to the system cleaning. The parametric simulation results are in agreement with the field experiment: for systems in all eight climates, with flowrates degraded by 20% or less, if ducts are located within the thermal zone, HVAC source energy savings from cleaning are negligible or even slightly negative. However, if ducts are outside the thermal zone, savings are in the 1 to 5% range. For systems with flowrates degraded by 40%, if ducts are within the thermal zone, savings from cleaning occurs only for air conditioning energy, up to 8% in climates like Miami, FL. If ducts are outside the thermal zone, savings occurs with both

  3. Effect of salt intake on beat-to-beat blood pressure nonlinear dynamics and entropy in salt-sensitive versus salt-protected rats.

    PubMed

    Fares, Souha A; Habib, Joseph R; Engoren, Milo C; Badr, Kamal F; Habib, Robert H

    2016-06-01

    Blood pressure exhibits substantial short- and long-term variability (BPV). We assessed the hypothesis that the complexity of beat-to-beat BPV will be differentially altered in salt-sensitive hypertensive Dahl rats (SS) versus rats protected from salt-induced hypertension (SSBN13) maintained on high-salt versus low-salt diet. Beat-to-beat systolic and diastolic BP series from nine SS and six SSBN13 rats (http://www.physionet.org) were analyzed following 9 weeks on low salt and repeated after 2 weeks on high salt. BP complexity was quantified by detrended fluctuation analysis (DFA), short- and long-range scaling exponents (αS and αL), sample entropy (SampEn), and traditional standard deviation (SD) and coefficient of variation (CV(%)). Mean systolic and diastolic BP increased on high-salt diet (P < 0.01) particularly for SS rats. SD and CV(%) were similar across groups irrespective of diet. Salt-sensitive and -protected rats exhibited similar complexity indices on low-salt diet. On high salt, (1) SS rats showed increased scaling exponents or smoother, systolic (P = 0.007 [αL]) and diastolic (P = 0.008 [αL]) BP series; (2) salt-protected rats showed lower SampEn (less complex) systolic and diastolic BP (P = 0.046); and (3) compared to protected SSBN13 rats, SS showed higher αL for systolic (P = 0.01) and diastolic (P = 0.005) BP Hypertensive SS rats are more susceptible to high salt with a greater rise in mean BP and reduced complexity. Comparable mean pressures in sensitive and protective rats when on low-salt diet coupled with similar BPV dynamics suggest a protective role of low-salt intake in hypertensive rats. This effect likely reflects better coupling of biologic oscillators. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  4. A Replacement for the Silt Density Index: Permanganate Demand to Predict Reverse Osmosis Membrane Fouling.

    DTIC Science & Technology

    1983-10-13

    Acid, Tannin , and Lignin in Natural Waters. Water Res. 14, 373 (1980). 85. Willard,H.,Furman,N.H.,Bacon,E.K. A Short Course in Quantitative Analysis , Van...63 c. Experimental Procedure 64 2. Results of the Preliminary Investigation of the SDI 74 a. Results of Before and After Membrane Filtration Analysis ...Permanganate Demand Test A. Literature Review 1. Permanganate to Predict Fouling 81 2. Detection and Analysis of Permanganate 83 a. Spectrophotometry

  5. Electrolyte salts for power sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doddapaneni, Narayan; Ingersoll, David

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  6. A new flat sheet membrane bioreactor hybrid system for advanced treatment of effluent, reverse osmosis pretreatment and fouling mitigation.

    PubMed

    Hosseinzadeh, Majid; Bidhendi, Gholamreza Nabi; Torabian, Ali; Mehrdadi, Naser; Pourabdullah, Mehdi

    2015-09-01

    This paper introduces a new hybrid electro membrane bioreactor (HEMBR) for reverse osmosis (RO) pretreatment and advanced treatment of effluent by simultaneously integrating electrical coagulation (EC) with a membrane bioreactor (MBR) and its performance was compared with conventional MBR. Experimental results and their statistical analysis showed removal efficiency for suspended solids (SS) of almost 100% for both reactors. HEMBR removal of chemical oxygen demand (COD) improved by 4% and membrane fouling was alleviated according to transmembrane pressure (TMP). The average silt density index (SDI) of HEMBR permeate samples was slightly better indicating less RO membrane fouling. Moreover, based on the SVI comparison of two reactor biomass samples, HEMBR showed better settling characteristics which improved the dewaterability and filterability of the sludge. Analysis the change of membrane surfaces and the cake layer formed over them through field emission scanning electron microscopy (FESEM) and X-ray fluorescence spectrometer (XRF) were also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Balancing sub- and supra-salt strain in salt-influenced rifts: Implications for extension estimates

    NASA Astrophysics Data System (ADS)

    Coleman, Alexander J.; Jackson, Christopher A.-L.; Duffy, Oliver B.

    2017-09-01

    The structural style of salt-influenced rifts may differ from those formed in predominantly brittle crust. Salt can decouple sub- and supra-salt strain, causing sub-salt faults to be geometrically decoupled from, but kinematically coupled to and responsible for, supra-salt forced folding. Salt-influenced rifts thus contain more folds than their brittle counterparts, an observation often ignored in extension estimates. Fundamental to determining whether sub- and supra-salt structures are kinematically coherent, and the relative contributions of thin- (i.e. gravity-driven) and thick-skinned (i.e. whole-plate stretching) deformation to accommodating rift-related strain, is our ability to measure extension at both structural levels. We here use published physical models of salt-influenced extension to show that line-length estimates yield more accurate values of sub- and supra-salt extension compared to fault-heave, before applying these methods to seismic data from the Halten Terrace, offshore Norway. We show that, given the abundance of ductile deformation in salt-influenced rifts, significant amounts of extension may be ignored, leading to the erroneous interpretations of thin-skinned, gravity-gliding. If a system is kinematically coherent, supra-salt structures can help predict the occurrence and kinematics of sub-salt faults that may be poorly imaged and otherwise poorly constrained.

  8. Reducing the Salt Added to Takeaway Food: Within-Subjects Comparison of Salt Delivered by Five and 17 Holed Salt Shakers in Controlled Conditions

    PubMed Central

    Goffe, Louis; Wrieden, Wendy; Penn, Linda; Hillier-Brown, Frances; Lake, Amelia A.; Araujo-Soares, Vera; Summerbell, Carolyn; White, Martin; Adamson, Ashley J.

    2016-01-01

    Objectives To determine if the amount of salt delivered by standard salt shakers commonly used in English independent takeaways varies between those with five and 17 holes; and to determine if any differences are robust to variations in: the amount of salt in the shaker, the length of time spent shaking, and the person serving. Design Four laboratory experiments comparing the amount of salt delivered by shakers. Independent variables considered were: type of shaker used (five or 17 holes), amount of salt in the shaker before shaking commences (shaker full, half full or nearly empty), time spent shaking (3s, 5s or 10s), and individual serving. Setting Controlled, laboratory, conditions. Participants A quota-based convenience sample of 10 participants (five women) aged 18–59 years. Main Outcome Measures Amount of salt delivered by salt shakers. Results Across all trials, the 17 holed shaker delivered a mean (SD) of 7.86g (4.54) per trial, whilst the five holed shaker delivered 2.65g (1.22). The five holed shaker delivered a mean of 33.7% of the salt of the 17 holed shaker. There was a significant difference in salt delivered between the five and 17 holed salt shakers when time spent shaking, amount of salt in the shaker and participant were all kept constant (p<0.001). This difference was robust to variations in the starting weight of shakers, time spent shaking and participant shaking (pssalt shakers have the potential to reduce the salt content of takeaway food, and particularly food from Fish & Chip shops, where these shakers are particularly used. Further research will be required to determine the effects of this intervention on customers’ salt intake with takeaway food and on total dietary salt intake. PMID:27668747

  9. Gold nanoparticles and polyethylene glycols functionalized conducting polyaniline nanowires for ultrasensitive and low fouling immunosensing of alpha-fetoprotein.

    PubMed

    Hui, Ni; Sun, Xiaotian; Song, Zhiling; Niu, Shuyan; Luo, Xiliang

    2016-12-15

    An ultrasensitive biosensor for alpha-fetoprotein was developed based on electrochemically synthesized polyaniline (PANI) nanowires, which were functionalized with gold nanoparticles (AuNPs) and polyethylene glycols (PEG). The prepared PEG/AuNPs/PANI composite, combining the electrical conductivity of the AuNPs/PANI with the robust antifouling ability of PEG, offered an ideal substrate for the development of low fouling electrochemical biosensors. Alpha-fetoprotein (AFP), a well-known hepatocellular carcinoma biomarker, was used as a model analyte, and its antibody was immobilized on the PEG/AuNPs/PANI for the construction of the AFP immunosensor. Using the redox current of PANI as the sensing signal, in addition to the good biocompatibility of PEG/AuNPs and the anti-biofouling property of PEG, the developed immunosensor showed improved biosensing performances, such as wide linear range and ultralow detection limit (0.007pgmL(-1)). More importantly, it is label-free, reagentless and low fouling, making it capable of assaying AFP in real serum samples without suffering from significant interference or biofouling. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Trace organic solutes in closed-loop forward osmosis applications: influence of membrane fouling and modeling of solute build-up.

    PubMed

    D'Haese, Arnout; Le-Clech, Pierre; Van Nevel, Sam; Verbeken, Kim; Cornelissen, Emile R; Khan, Stuart J; Verliefde, Arne R D

    2013-09-15

    In this study, trace organics transport in closed-loop forward osmosis (FO) systems was assessed. The FO systems considered, consisted of an FO unit and a nanofiltration (NF) or reverse osmosis (RO) unit, with the draw solution circulating between both units. The rejection of trace organics by FO, NF and RO was tested. It was found that the rejection rates of FO were generally comparable with NF and lower than RO rejection rates. To assess the influence of fouling in FO on trace organics rejection, FO membranes were fouled with sodium alginate, bovine serum albumin or by biofilm growth, after which trace organics rejection was tested. A negative influence of fouling on FO rejection was found which was limited in most cases, while it was significant for some compounds such as paracetamol and naproxen, indicating specific compound-foulant interactions. The transport mechanism of trace organics in FO was tested, in order to differentiate between diffusive and convective transport. The concentration of trace organics in the final product water and the build-up of trace organics in the draw solution were modeled assuming the draw solution was reconcentrated by NF/RO and taking into account different transport mechanisms for the FO membrane and different rejection rates by NF/RO. Modeling results showed that if the FO rejection rate is lower than the RO rejection rate (as is the case for most compounds tested), the added value of the FO-RO cycle compared to RO only at steady-state was small for diffusively and negative for convectively transported trace organics. Modeling also showed that trace organics accumulate in the draw solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel.

    PubMed

    Arukalam, Innocent O; Oguzie, Emeka E; Li, Ying

    2016-12-15

    Perfluorodecyltrichlorosilane-based poly(dimethylsiloxane)-ZnO (FDTS-based PDMS-ZnO) nanocomposite coating with anti-corrosion and anti-fouling capabilities has been prepared using a one-step fabrication technique. XPS analysis and contact angle measurements showed the fluorine content to increase, while the hydrophobicity of the coatings decreased with addition of FDTS. XRD analysis revealed existence of ZnO nanoparticles of dimensions ranging from 11.45 to 93.01nm on the surface of coatings, with the mean particle size decreasing with FDTS addition, and was confirmed by SEM and TEM observations. Interestingly, the anti-corrosion performance and mechanical properties of the coatings increased remarkably on addition of FDTS. Indeed, the observed low adhesion strength, surface energies and the outstanding anti-corrosive properties imply that the obtained coating would be useful in anti-fouling applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Great Salt Lake and Bonneville Salt Flats, UT, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This is a view of the Great Salt Lake and nearby Bonneville Salt Flats, UT, (41.0N, 112.5W). A railroad causeway divides the lake with a stark straight line changing the water level and chemistry of the lake as a result. Fresh water runoff enters from the south adding to the depth and reducing the salinity. The north half receives little frsh water and is more saline and shallow. The Bonnieville Salt Flats is the lakebed of a onetime larger lake.

  13. Great Salt Lake and Bonneville Salt Flats, UT, USA

    NASA Image and Video Library

    1992-04-02

    This is a view of the Great Salt Lake and nearby Bonneville Salt Flats, UT, (41.0N, 112.5W). A railroad causeway divides the lake with a stark straight line changing the water level and chemistry of the lake as a result. Fresh water runoff enters from the south adding to the depth and reducing the salinity. The north half receives little frsh water and is more saline and shallow. The Bonnieville Salt Flats is the lakebed of a onetime larger lake.

  14. [Historical roles of salt].

    PubMed

    Ritz, E; Ritz, C

    2004-12-17

    Recently increasing evidence has been provided pointing to a close relation of salt consumption to hypertension as well as to target organ damage. It is interesting to note that the discussion concerning salt is unusually emotional. This may be explained, at least in part, by the fact that since ancient times salt had deep symbolic significance, as exemplified, mostly subconsciously, by many customs and expressions still in current use. In the past salt was essential to preserve food. The past importance of salt as a commodity can well be compared with that of oil today. These and further historical aspects of the role of salt are briefly dealt with in this article.

  15. Forward osmosis for the treatment of reverse osmosis concentrate from water reclamation: process performance and fouling control.

    PubMed

    Kazner, C; Jamil, S; Phuntsho, S; Shon, H K; Wintgens, T; Vigneswaran, S

    2014-01-01

    While high quality water reuse based on dual membrane filtration (membrane filtration or ultrafiltration, followed by reverse osmosis) is expected to be progressively applied, treatment and sustainable management of the produced reverse osmosis concentrate (ROC) are still important issues. Forward osmosis (FO) is a promising technology for maximising water recovery and further dewatering ROC so that zero liquid discharge is produced. Elevated concentrations of organic and inorganic compounds may act as potential foulants of the concentrate desalting system, in that they consist of, for example, FO and a subsequent crystallizer. The present study investigated conditions under which the FO system can serve as concentration phase with the focus on its fouling propensity using model foulants and real ROC. Bulk organics from ROC consisted mainly of humic acids (HA) and building blocks since wastewater-derived biopolymers were retained by membrane filtration or ultrafiltration. Organic fouling of the FO system by ROC-derived bulk organics was low. HA was only adsorbed moderately at about 7% of the initial concentration, causing a minor flux decline of about 2-4%. However, scaling was a major impediment to this process if not properly controlled, for instance by pH adjustment or softening.

  16. Simultaneous nitrification and denitrification in a novel membrane bioelectrochemical reactor with low membrane fouling tendency.

    PubMed

    Li, Hui; Zuo, Wei; Tian, Yu; Zhang, Jun; Di, Shijing; Li, Lipin; Su, Xinying

    2017-02-01

    Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor for electrochemical denitrification, yet there is little knowledge about how to apply them into current wastewater treatment process to achieve efficient nitrogen removal. In this study, two dual-chamber MFCs were integrated with an aerobic membrane bioreactor to construct a novel membrane bioelectrochemical reactor (MBER) for simultaneous nitrification and denitrification under specific aeration. The effects of chemical oxygen demand (COD) loading rate, COD/N ratio, hydraulic retention time (HRT), and external resistance on the system performance were investigated. High effluent quality was obtained in the MBER in terms of COD and ammonium. During the operation, denitrification simultaneously occurred with nitrification at the bio-cathode of the MBER, achieving a maximal nitrogen removal efficiency of 84.3 %. A maximum power density of 1.8 W/m 3 and a current density of 8.5 A/m 3 were achieved with a coulombic efficiency of 12.1 %. Furthermore, compared to the control system, the MBER exhibited lower membrane fouling tendency due to mixed liquor volatile suspended solids (MLVSSs) and extracellular polymeric substance (EPS) reductions, EPSp/EPSc ratio decrease, and particle size increase of the sludge. These results suggest that the MBER holds potential for efficient nitrogen removal, electricity production, and membrane fouling mitigation.

  17. Development and Testing of a Fully Adaptable Membrane Bioreactor Fouling Model for a Sidestream Configuration System

    PubMed Central

    Paul, Parneet

    2013-01-01

    A dead-end filtration model that includes the three main fouling mechanisms mentioned in Hermia (i.e., cake build-up, complete pore blocking, and pore constriction) and that was based on a constant trans-membrane pressure (TMP) operation was extensively modified so it could be used for a sidestream configuration membrane bioreactor (MBR) situation. Modifications and add-ons to this basic model included: alteration so that it could be used for varying flux and varying TMP operations; inclusion of a backwash mode; it described pore constriction (i.e., irreversible fouling) in relation to the concentration of soluble microbial products (SMP) in the liquor; and, it could be used in a cross flow scenario by the addition of scouring terms in the model formulation. The additional terms in this modified model were checked against an already published model to see if they made sense, physically speaking. Next this modified model was calibrated and validated in Matlab© using data collected by carrying out flux stepping tests on both a pilot sidestream MBR plant, and then a pilot membrane filtration unit. The model fit proved good, especially for the pilot filtration unit data. In conclusion, this model formulation is of the right level of complexity to be used for most practical MBR situations. PMID:24958618

  18. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  19. Non-fouling surfaces produced by gas phase pulsed plasma polymerization of an ultra low molecular weight ethylene oxide containing monomer.

    PubMed

    Wu; Timmons; Jen; Molock

    2000-10-01

    The pulsed plasma polymerization of low molecular weight molecules containing only one (ethylene oxide vinyl ether) and two (diethylene oxide vinyl ether) ethylene oxide units were investigated. The surface density of EO units retained in the polymer films increases sharply with decreasing average power input during deposition, particularly at very low plasma duty cycles. The protein adsorption properties of these plasma synthesized polymer were investigated using 125I-labeled albumin and fibrinogen. Surprisingly effective, non-fouling surfaces were observed with films synthesized from the monomer containing two ethylene oxide units; however, the monomer containing only one EO unit gave surfaces that were not particularly effective in preventing protein adsorptions. The results obtained show that ultra short chain length PEO modified surfaces can be biologically non-fouling. This, in turn, has interesting consequences in terms of trying to identify the basic reason for the effectiveness of EO units in preventing biomolecule adsorptions on surfaces.

  20. Effects of sulphur on the performance of an anaerobic membrane bioreactor: Biological stability, trace organic contaminant removal, and membrane fouling.

    PubMed

    Song, Xiaoye; Luo, Wenhai; McDonald, James; Khan, Stuart J; Hai, Faisal I; Guo, Wenshan; Ngo, Hao H; Nghiem, Long D

    2018-02-01

    This study investigated the impact of sulphur content on the performance of an anaerobic membrane bioreactor (AnMBR) with an emphasis on the biological stability, contaminant removal, and membrane fouling. Removal of 38 trace organic contaminants (TrOCs) that are ubiquitously present in municipal wastewater by AnMBR was evaluated. Results show that basic biological performance of AnMBR regarding biomass growth and the removal of chemical oxygen demand (COD) was not affected by sulphur addition when the influent COD/SO 4 2- ratio was maintained higher than 10. Nevertheless, the content of hydrogen sulphate in the produced biogas increased significantly and membrane fouling was exacerbated with sulphur addition. Moreover, the increase in sulphur content considerably affected the removal of some hydrophilic TrOCs and their residuals in the sludge phase during AnMBR operation. By contrast, no significant impact on the removal of hydrophobic TrOCs was noted with sulphur addition to AnMBR. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    NASA Astrophysics Data System (ADS)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth’s surface-environment can be regarded as ‘water-friendly’ and ‘salt hostile’, the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, ‘salt-friendly’. The riddle as to how the salt accumulated in various locations on those two planets, is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed ‘evaporites’, meaning that they formed as a consequence of the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, as an ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will attain the phase of supercritical water vapor (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (T>400°C, P>300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a

  2. Effects of pharmaceutical micropollutants on the membrane fouling of a submerged MBR treating municipal wastewater: case of continuous pollution by carbamazepine.

    PubMed

    Li, Chengcheng; Cabassud, Corinne; Reboul, Bernard; Guigui, Christelle

    2015-02-01

    Membrane bioreactor (MBR) is increasingly used for municipal wastewater treatment and reuse and great concerns have been raised to some emerging trace pollutants found in aquatic environment in the last decade, notably the pharmaceuticals. As a consequence the removal of pharmaceutical micropollutants by MBRs has been extensively investigated. But there is still a lack of knowledge on the effects of the current presence of pharmaceutical micropollutants in domestic wastewaters on MBR fouling. Among the different pharmaceuticals, it was decided to focus on carbamazepine (CBZ), an anti-epileptic drug, because of its occurrence in domestic wastewaters and persistency in biological processes including MBRs. This paper focuses on the effects of continuous carbamazepine pollution on MBR fouling. A continuous introduction of CBZ into the MBR via the feed (about 90 μg L(-1) CBZ in the feed) provoked a TMP jump. It occurred just 1 day after the addition of CBZ in MBR and a significantly higher increase rate of TMP was also observed after 1 day after addition of CBZ in MBR, as compared to that before addition of CBZ. This indicates that the pharmaceutical stress induced by CBZ causes more severe membrane fouling. Addition of CBZ was shown to induce a significant increase of the concentration of proteins in the supernatant at the beginning several days then stabilized to original level whereas no significant change was found for polysaccharides. HPLC-SEC analysis showed that addition of CBZ induced a decrease of 100-1000 kDa protein-like SMPs and a more significant increase of 10-100 kDa protein-like SMPs in the supernatant. Moreover it was found that addition of CBZ in the MBR affected the sludge microbial activities, as a slight inhibition (about 20%) of the exogenous respiration rate was observed. The increased membrane fouling could be related to the change in biomass characteristics and supernatant quality after addition of CBZ in MBR. This study allows also

  3. Salt Stability - The Effect of pHmax on Salt to Free Base Conversion.

    PubMed

    Hsieh, Yi-Ling; Merritt, Jeremy M; Yu, Weili; Taylor, Lynne S

    2015-09-01

    The aim of this study was to investigate how the disproportionation process can be impacted by the properties of the salt, specifically pHmax. Five miconazole salts and four sertraline salts were selected for this study. The extent of conversion was quantified using Raman spectroscopy. A mathematical model was utilized to estimate the theoretical amount of conversion. A trend was observed that for a given series of salts of a particular basic compound (both sertraline and miconazole are bases), the extent of disproportionation increases as pHmax decreases. Miconazole phosphate monohydrate and sertraline mesylate, although exhibiting significantly different pHmax values (more than 2 units apart), underwent a similar extent of disproportionation, which may be attributed to the lower buffering capacity of sertraline salts. This work shows that the disproportionation tendency can be influenced by pHmax and buffering capacity and thus highlights the importance of selecting the appropriate salt form during the screening process in order to avoid salt-to-free form conversion.

  4. Long-term changes in Prosobranchia (Gastropoda) abundances on the German North Sea coast: the role of the anti-fouling biocide tributyltin

    NASA Astrophysics Data System (ADS)

    Nehring, S.

    2000-05-01

    Tributyltin (TBT) has been used as a biocide in marine anti-fouling paints since the early 1970s. Due to its strong ecotoxicity and the relatively high levels in the water column as well as in port sediments on the German North Sea coast, it probably has negative ecological effects on organisms other than those targeted. An analysis of the long-term development of prosobranch stocks in the inner German Bight reveals a decrease in abundance of many species. For most species the decline cannot be attributed to TBT, but in four prosobranch species ( Buccinum undatum, Hydrobia ulvae, Littorina littorea and Nucella lapillus) significant ecological effects by TBT pollution are very probable. Although research for alternative non-TBT anti-fouling paints (e.g. biocide-free types on the basis of silicone) has been intensified, the potential threats to ecosystems and the ecotoxicological profiles of these alternatives have to be carefully evaluated.

  5. Plasma 24,25-dihydroxyvitamin D concentration of Dahl salt-sensitive rats decreases during high salt intake

    NASA Technical Reports Server (NTRS)

    Thierry-Palmer, Myrtle; Tewolde, Teclemicael K.; Forte, Camille; Wang, Min; Bayorh, Mohamed A.; Emmett, Nerimiah L.; White, Jolanda; Griffin, Keri

    2002-01-01

    Dahl salt-sensitive rats, but not salt-resistant rats, develop hypertension in response to high salt intake. We have previously shown an inverse relationship between plasma 25-hydroxyvitamin D (25-OHD) concentration and blood pressure of Dahl salt-sensitive rats during high salt intake. In this study, we report on the relationship between high salt intake and plasma 24,25-dihydroxyvitamin D (24,25-(OH)(2)D) concentration of Dahl salt-sensitive and salt-resistant rats. Rats were fed a high salt diet (8%) and sacrificed at day 2, 7, 14, 21, and 28. Plasma 24,25-(OH)(2)D concentrations of salt-sensitive rats were reduced to 50% of that at baseline at day 2-when blood pressure and plasma 25-OHD concentration were unchanged, but 25-OHD content in the kidney was 81% of that at baseline. Plasma 24,25-(OH)(2)D concentration was reduced further to 10% of that at baseline from day 7 to 14 of high salt intake, a reduction that was prevented in rats switched to a low salt (0.3%) diet at day 7. Exogenous 24,25-dihydroxycholecalciferol (24,25-(OH)(2)D(3)), administered at a level that increased plasma 24,25-(OH)(2)D concentration to five times normal, did not attenuate the salt-induced hypertension of salt-sensitive rats. Plasma 24,25-(OH)(2)D concentration of salt-resistant rats was gradually reduced to 50% of that at baseline at day 14 and returned to baseline value at day 28 of high salt intake. We conclude that the decrease in plasma 24,25-(OH)(2)D concentration in salt-sensitive rats during high salt intake is caused by decreased 25-OHD content in the kidney and also by another unidentified mechanism.

  6. Comparison of salt taste thresholds and salt usage behaviours between adults in Myanmar and Korea.

    PubMed

    Cho, Hyungjin; Kim, So Mi; Jeong, Seong Su; Kim, Soon Bae

    2016-12-01

    Excessive oral salt intake can induce hypertension. According to previous studies, the prevalence of hypertension is higher in Myanmar than in Korea. We postulated that Myanmar adults had higher salt taste thresholds and eat much saltier food. This study aimed to compare salt taste thresholds and salt usage behaviour scores between adults in Myanmar and Korea. This cross-sectional study enrolled patients who visited volunteer medical service clinics at Ansung in Korea and Hlegu and Bago in Myanmar in August 2014. We measured the vital signs, heights, and weights of each patient and evaluated detection thresholds, recognition thresholds, and salt preferences. All patients underwent urinalysis and spot urine Na tests. Additionally, they each completed a salt usage behaviour questionnaire. A total of 131 patients were enrolled, including 64 Myanmarese patients and 67 Korean patients. Blood pressure was significantly higher in the Myanmarese than in the Koreans. Detection and recognition thresholds, salt preferences, and spot urine sodium and salt usage behaviour scores were also higher in the Myanmarese than in the Korean subjects. We calculated correlation coefficients between systolic blood pressure and parameters that were related to salt intake. The detection and recognition thresholds were significantly correlated with systolic blood pressure. All parameters related to salt intake, including detection and recognition thresholds, salt preference, salt usage behaviour scores and spot urine sodium concentrations, are significantly higher in Myanmarese than in Korean individuals.

  7. Mineral resource of the month: salt

    USGS Publications Warehouse

    Kostick, Dennis S.

    2010-01-01

    The article presents information on various types of salt. Rock salt is either found from underground halite deposits or near the surface. Other types of salt include solar salt, salt brine, and vacuum pan salt. The different uses of salt are also given including its use as a flavor enhancer, as a road deicing agent, and to manufacture sodium hydroxide.

  8. Effects of PM fouling on the heat exchange effectiveness of wave fin type EGR cooler for diesel engine use

    NASA Astrophysics Data System (ADS)

    Jang, Sang-Hoon; Hwang, Se-Joon; Park, Sang-Ki; Choi, Kap-Seung; Kim, Hyung-Man

    2012-06-01

    Developing an effective method of reducing nitrogen oxide emissions is an important goal in diesel engine research. The use of cooled exhaust gas recirculation has been considered one of the most effective techniques of reducing nitrogen oxide. However, since the combustion characteristics in a diesel engine involves high temperature and load, the amount of particulate matter emission tends to increase, and there is a trade-off between the amount of nitrogen oxide and particulate matter emissions. In the present study, engine dynamometer experiments are performed to investigate the effects of particulate matter fouling on the heat exchange characteristics of wave fin type exhaust gas recirculation coolers that have four cases of two wave pitch and three fin pitch lengths. To optimize the fin and wave pitches of the EGR cooler, the exhaust gas temperature, pressure drop and heat exchange effectiveness are compared. The experimental results show that the exhaust gas recirculation cooler with a fin pitch of 3.6 mm and a wave pitch of 8.8 mm exhibits better heat exchange characteristics and smaller particulate matter fouling effect than the other coolers.

  9. Mechanical stratification of autochthonous salt: Implications from basin-scale numerical models of rifted margin salt tectonics

    NASA Astrophysics Data System (ADS)

    Ings, Steven; Albertz, Markus

    2014-05-01

    Deformation of salt and sediments owing to the flow of weak evaporites is a common phenomenon in sedimentary basins worldwide, and the resulting structures and thermal regimes have a significant impact on hydrocarbon exploration. Evaporite sequences ('salt') of significant thickness (e.g., >1km) are typically deposited in many cycles of seawater inundation and evaporation in restricted basins resulting in layered autochthonous evaporite packages. However, analogue and numerical models of salt tectonics typically treat salt as a homogeneous viscous material, often with properties of halite, the weakest evaporite. In this study, we present results of two-dimensional plane-strain numerical experiments designed to illustrate the effects of variable evaporite viscosity and embedded frictional-plastic ('brittle') sediment layers on the style of salt flow and associated deformation of the sedimentary overburden. Evaporite viscosity is a first-order control on salt flow rate and the style of overburden deformation. Near-complete evacuation of low-viscosity salt occurs beneath expulsion basins, whereas significant salt is trapped when viscosity is high. Embedded frictional-plastic sediment layers (with finite yield strength) partition salt flow and develop transient contractional structures (folds, thrust faults, and folded faults) in a seaward salt-squeeze flow regime. Multiple internal sediment layers reduce the overall seaward salt flow during sediment aggradation, leaving more salt behind to be re-mobilized during subsequent progradation. This produces more seaward extensive allochthonous salt sheets. If there is a density difference between the embedded layers and the surrounding salt, then the embedded layers 'fractionate' during deformation and either float to the surface or sink to the bottom (depending on density), creating a thick zone of pure halite. Such a process of 'buoyancy fractionation' may partially explain the apparent paradox of layered salt in

  10. 238Pu recovery and salt disposition from the molten salt oxidation process

    NASA Astrophysics Data System (ADS)

    Remerowski, M. L.; Stimmel, Jay J.; Wong, Amy S.; Ramsey, Kevin B.

    2000-07-01

    We have begun designing and optimizing our recovery and recycling processes by experimenting with samples of "spent salt" produced by MSO treatment of surrogate waste in the reaction vessel at the Naval Surface Warfare Center-Indian Head. One salt was produced by treating surrogate waste containing pyrolysis ash spiked with cerium. The other salt contains residues from MSO treatment of materials similar to those used in 238Pu processing, e.g., Tygon tubing, PVC bagout bags, HDPE bottles. Using these two salt samples, we will present results from our investigations.

  11. Salt Weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    2006-12-01

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  12. Should we eat less salt?

    PubMed

    Delahaye, François

    2013-05-01

    High blood pressure is a major cardiovascular risk factor. There is overwhelming evidence that high salt consumption is a major cause of increased blood pressure. There is also a link between high salt consumption and risk of stroke, left ventricular hypertrophy, renal disease, obesity, renal stones and stomach cancer. Reducing salt consumption leads to a decrease in blood pressure and the incidence of cardiovascular disease. There are no deleterious effects associated with reducing salt consumption and it is also very cost-effective. Many organizations and state governments have issued recommendations regarding the suitable amount of salt consumption. In France, the objective is a salt consumption<8g/day in men and<6.5g/day in women and children. As 80% of consumed salt comes from manufactured products in developed countries, reduction of salt consumption requires the participation of the food industry. The other tool is consumer information and education. Salt consumption has already decreased in France in recent years, but efforts must continue. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  14. Power plant I - Fused salt

    NASA Astrophysics Data System (ADS)

    Roche, M.

    A solar thermal power plant using fused salt as the heat transfer fluid for steam power generation is analyzed for the feasibility of economic operation. The salt is also stored in a tank reservoir for maintaining the primary heat loop at temperatures high enough for the salts to remain liquid, and also to provide reserve power for the steam generator. Initial studies were with eutectic (hitec) salt comprising Na, KOH, and nitrites melting at 146 C, and further studies were performed employing draw salt, which has no nitrite, is more stable at high temperature, and melts at 225 C. The use of draw salt was found to allow a 5 percent reduction in storage capacity. Further examinations of the effects of the hitec salts on corrosion and composition degradation at high temperatures are indicated. The molten salt system is projected to offer an efficiency of 26 percent.

  15. The effects of organic fouling on the removal of radionuclides by reverse osmosis membranes.

    PubMed

    Ding, Shiyuan; Yang, Yu; Li, Chen; Huang, Haiou; Hou, Li-An

    2016-05-15

    The removals of cesium (Cs) and strontium (Sr), two hazardous and abundant radionuclides in aquatic environment, were assessed with their isotopes in a synthetic water containing Suwannee River natural organic matter (SRNOM), a natural surface water (SW) and a wastewater effluent (WW) by two different types of ultra-low pressure RO membranes (M1 and M2). The rejections of Sr by the membranes M1 and M2 were higher than 97.5% and 96.0%, respectively, and the rejections of Cs exceeded 90.0% and 85.0%, respectively, in the filtration of real water. The membrane M1 exhibited a more significant flux decline in the filtration of the SRNOM solution, while more severe flux declines were observed with the membrane M2 in the filtration of SW and WW. Protein-like materials with relatively high molecular weight were the main contributors to the flux decline, and humic-acid-like compounds had little effect on the flux decline. Donnan exclusion and size exclusion by humic-acid-like compounds improved the rejections by the membrane M2 with weaker hydrophilicity, while the cake-enhanced concentration polarization reduced the rejections of Cs and Sr by the membrane M1 with stronger hydrophilicity. The ionic strength in the real water resulted in the mitigation of membrane fouling. This study provided important insights into foulant characterization and the mechanisms of organic-fouling-enhanced rejections of Cr and Sr by ultra-low pressure RO membranes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Salt briquette: the form of salt monopoly in madura, 1883-1911

    NASA Astrophysics Data System (ADS)

    Wisnu; Alrianingrum, S.; Artono; Liana, C.

    2018-01-01

    This study describes the history of the salt monopoly in Indonesia because it is associated with the issue of salt crisis lately, widely reported in various media. This study tried to find answers to the relationship between monopoly and crisis events through the study of history. Monopoly policy by the government of the colonial period is actually an industrial modernization effort, but it turned out another impact. Although the colonial government wanted to issue a policy that ends strengthens the position of the government in the industry, but ultimately backfire and disasters in the salt industry at the time. This article discusses only the focus of the salt monopoly in Madura as a selection of events, arguing the island as a center of salt in Indonesia. The method used in this study using a review of history. Therefore, their explanations using historical sources. Methodologically through the process of collecting historical sources, criticize these sources, synthesize and interpret the analysis in an array of historical writing. In conclusion, although the salt monopoly policy gives a great advantage to the colonial government, but the overall population of Madura remains in a poor state. It is evident that the Madurese to migrate Madurese to various areas outside the island of Madura, to fix the economy.

  17. Dynamics of salt playa polygons

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Fourrière, A.

    2014-12-01

    In natural salt playa or in evaporation pools for the salt extraction industry, one can sometimes see surprising regular structures formed by ridges of salt. These ridges connect together to form a self-organized network of polygons one to two meters in diameter, which we call salt polygons. Here we propose a mechanism based on porous media convection of salty water in soil to explain the formation and the scaling of the salt polygons. Surface evaporation causes a steady upward flow of salty water, which can cause precipitation near the surface. A vertical salt gradient then builds up in the porous soil, with heavy salt-saturated water lying over the less salty source water. This can drive convection when a threshold is reached, given by a critical Rayleigh number of about 7. We suggest that the salt polygons are the surface expression of the porous medium convection, with salt crystallizing along the positions of the convective downwellings. To study this instability directly, we developed a 2D analogue experiment using a Hele-Shaw cell filled with a porous medium saturated with a salt solution and heated from above. We perform a linear stability analysis of this system, and find that it is unstable to convection, with a most unstable wavelength that is set by a balance between salt diffusion and water evaporation. The Rayleigh number in our experiment is controlled by the particle size of our model soil, and the evaporation rate. We obtain results that scale with the observation of natural salt polygons. Using dye, we observe the convective movement of salty water and find downwelling convective plumes underneath the spots where surface salt ridges form, as shown in the attached figure.

  18. Combined biofouling and scaling in membrane feed channels: a new modeling approach.

    PubMed

    Radu, A I; Bergwerff, L; van Loosdrecht, M C M; Picioreanu, C

    2015-01-01

    A mathematical model was developed for combined fouling due to biofilms and mineral precipitates in membrane feed channels with spacers. Finite element simulation of flow and solute transport in two-dimensional geometries was coupled with a particle-based approach for the development of a composite (cells and crystals) foulant layer. Three fouling scenarios were compared: biofouling only, scaling only and combined fouling. Combined fouling causes a quicker flux decline than the summed flux deterioration when scaling and biofouling act independently. The model results indicate that the presence of biofilms leads to more mineral formation due to: (1) an enhanced degree of saturation for salts next to the membrane and within the biofilm; and (2) more available surface for nucleation to occur. The impact of biofilm in accelerating gypsum precipitation depends on the composition of the feed water (eg the presence of NaCl) and the kinetics of crystal nucleation and growth. Interactions between flow, solute transport and biofilm-induced mineralization are discussed.

  19. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt.

    PubMed

    Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R

    2013-12-02

    Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

  20. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  1. Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway

    USGS Publications Warehouse

    Wold, Steven R.; Thomas, Blakemore E.; Waddell, Kidd M.

    1997-01-01

    The water and salt balance of Great Salt Lake primarily depends on the amount of inflow from tributary streams and the conveyance properties of a causeway constructed during 1957-59 that divides the lake into the south and north parts. The conveyance properties of the causeway originally included two culverts, each 15 feet wide, and the permeable rock-fill material.During 1980-86, the salt balance changed as a result of record high inflow that averaged 4,627,000 acre-feet annually and modifications made to the conveyance properties of the causeway that included opening a 300-foot-wide breach. In this study, a model developed in 1973 by Waddell and Bolke to simulate the water and salt balance of the lake was revised to accommodate the high water-surface altitude and modifications made to the causeway. This study, done by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of State Lands and Forestry, updates the model with monitoring data collected during 1980-86. This report describes the calibration of the model and presents the results of simulations for three hypothetical 10-year periods.During January 1, 1980, to July 31, 1984, a net load of 0.5 billion tons of dissolved salt flowed from the south to the north part of the lake primarily as a result of record inflows. From August 1, 1984, when the breach was opened, to December 31,1986, a net load of 0.3 billion tons of dissolved salt flowed from the north to the south part of the lake primarily as a result of the breach.For simulated inflow rates during a hypothetical 10-year period resulting in the water-surface altitude decreasing from about 4,200 to 4,192 feet, there was a net movement of about 1.0 billion tons of dissolved salt from the south to the north part, and about 1.7 billion tons of salt precipitated in the north part. For simulated inflow rates during a hypothetical 10-year period resulting in a rise in water-surface altitude from about 4,200 to 4

  2. Salt Reductions in Some Foods in The Netherlands: Monitoring of Food Composition and Salt Intake

    PubMed Central

    Temme, Elisabeth H. M.; Hendriksen, Marieke A. H.; Milder, Ivon E. J.; Toxopeus, Ido B.; Westenbrink, Susanne; Brants, Henny A. M.; van der A, Daphne L.

    2017-01-01

    Background and objectives. High salt intake increases blood pressure and thereby the risk of chronic diseases. Food reformulation (or food product improvement) may lower the dietary intake of salt. This study describes the changes in salt contents of foods in the Dutch market over a five-year period (2011–2016) and differences in estimated salt intake over a 10-year period (2006–2015). Methods. To assess the salt contents of foods; we obtained recent data from chemical analyses and from food labels. Salt content of these foods in 2016 was compared to salt contents in the 2011 version Dutch Food Composition Database (NEVO, version 2011), and statistically tested with General Linear Models. To estimate the daily dietary salt intake in 2006, 2010, and 2015, men and women aged 19 to 70 years were recruited through random population sampling in Doetinchem, a small town located in a rural area in the eastern part of the Netherlands. The characteristics of the study population were in 2006: n = 317, mean age 49 years, 43% men, in 2010: n = 342, mean age 46 years, 45% men, and in 2015: n = 289, mean age 46 years, 47% men. Sodium and potassium excretion was measured in a single 24-h urine sample. All estimates were converted to a common metric: salt intake in grams per day by multiplication of sodium with a factor of 2.54. Results. In 2016 compared to 2011, the salt content in certain types of bread was on average 19 percent lower and certain types of sauce, soup, canned vegetables and legumes, and crisps had a 12 to 26 percent lower salt content. Salt content in other types of foods had not changed significantly. Between 2006, 2010 and 2015 the estimated salt intake among adults in Doetinchem remained unchanged. In 2015, the median estimated salt intake was 9.7 g per day for men and 7.4 g per day for women. As in 2006 and 2010, the estimated salt intake in 2015 exceeded the recommended maximum intake of 6 g per day set by the Dutch Health Council. Conclusion. In the

  3. Salt Reductions in Some Foods in The Netherlands: Monitoring of Food Composition and Salt Intake.

    PubMed

    Temme, Elisabeth H M; Hendriksen, Marieke A H; Milder, Ivon E J; Toxopeus, Ido B; Westenbrink, Susanne; Brants, Henny A M; van der A, Daphne L

    2017-07-22

    High salt intake increases blood pressure and thereby the risk of chronic diseases. Food reformulation (or food product improvement) may lower the dietary intake of salt. This study describes the changes in salt contents of foods in the Dutch market over a five-year period (2011-2016) and differences in estimated salt intake over a 10-year period (2006-2015). To assess the salt contents of foods; we obtained recent data from chemical analyses and from food labels. Salt content of these foods in 2016 was compared to salt contents in the 2011 version Dutch Food Composition Database (NEVO, version 2011), and statistically tested with General Linear Models. To estimate the daily dietary salt intake in 2006, 2010, and 2015, men and women aged 19 to 70 years were recruited through random population sampling in Doetinchem, a small town located in a rural area in the eastern part of the Netherlands. The characteristics of the study population were in 2006: n = 317, mean age 49 years, 43% men, in 2010: n = 342, mean age 46 years, 45% men, and in 2015: n = 289, mean age 46 years, 47% men. Sodium and potassium excretion was measured in a single 24-h urine sample. All estimates were converted to a common metric: salt intake in grams per day by multiplication of sodium with a factor of 2.54. In 2016 compared to 2011, the salt content in certain types of bread was on average 19 percent lower and certain types of sauce, soup, canned vegetables and legumes, and crisps had a 12 to 26 percent lower salt content. Salt content in other types of foods had not changed significantly. Between 2006, 2010 and 2015 the estimated salt intake among adults in Doetinchem remained unchanged. In 2015, the median estimated salt intake was 9.7 g per day for men and 7.4 g per day for women. As in 2006 and 2010, the estimated salt intake in 2015 exceeded the recommended maximum intake of 6 g per day set by the Dutch Health Council. In the Netherlands, the salt content of bread, certain sauces, soups

  4. Sustainable operation of submerged Anammox membrane bioreactor with recycling biogas sparging for alleviating membrane fouling.

    PubMed

    Li, Ziyin; Xu, Xindi; Xu, Xiaochen; Yang, FengLin; Zhang, ShuShen

    2015-12-01

    A submerged anaerobic ammonium oxidizing (Anammox) membrane bioreactor with recycling biogas sparging for alleviating membrane fouling has been successfully operated for 100d. Based on the batch tests, a recycling biogas sparging rate at 0.2m(3)h(-1) was fixed as an ultimate value for the sustainable operation. The mixed liquor volatile suspended solid (VSS) of the inoculum for the long operation was around 3000mgL(-1). With recycling biogas sparging rate increasing stepwise from 0 to 0.2m(3)h(-1), the reactor reached an influent total nitrogen (TN) up to 1.7gL(-1), a stable TN removal efficiency of 83% and a maximum specific Anammox activity (SAA) of 0.56kg TNkg(-1) VSSd(-1). With recycling biogas sparging rate at 0.2 m(3) h(-1) (corresponding to an aeration intensity of 118m(3)m(-2)h(-1)), the membrane operation circle could prolong by around 20 times compared to that without gas sparging. Furthermore, mechanism of membrane fouling was proposed. And with recycling biogas sparging, the VSS and EPS content increasing rate in cake layer were far less than the ones without biogas sparging. The TN removal performance and sustainable membrane operation of this system showed the appealing potential of the submerged Anammox MBR with recycling biogas sparging in treating high-strength nitrogen-containing wastewaters. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Tilted membrane panel: A new module concept to maximize the impact of air bubbles for membrane fouling control in microalgae harvesting.

    PubMed

    Eliseus, A; Bilad, M R; Nordin, N A H M; Putra, Z A; Wirzal, M D H

    2017-10-01

    Microalgae harvesting using membrane technology is challenging because of its high fouling propensity. As an established fouling mitigation technique, efficacy of air bubbles can be improved by maximizing the impact of shear-rates in scouring foulant. In this study, it is achieved by tilting the membrane panel. We investigate the effect of tilting angle, switching period as well as aeration rate during microalgal broth filtration. Results show that higher tilting angles (up to 20°) improve permeability of up to 2.7 times of the vertical panel. In addition, operating a one-sided panel is better than a two-sided panel, in which the later involved switching mode. One-sided membrane panel only require a half of area, yet its performance is comparable with of a large-scale module. This tilted panel can lead to significant membrane cost reductions and eventually improves the competitiveness of membrane technology for microalgae harvesting application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. An Overview of Novel Power Sources for Advanced Munitions

    DTIC Science & Technology

    2009-04-27

    selected gas when desired. Prevention of rapid heat loss is a critical factor in prolonging operating lifetime as molten salt thermal batteries...4c. A higher number of end heat pellets not only provides more heat for bringing the battery internals above the eutectic point of the electrolyte but...maintenance. Finally, the combination of high vapor pressure and high ionic salt content typically found in catholyte formulations has caused foul- ing

  7. Plant salt-tolerance mechanisms

    DOE PAGES

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; ...

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  8. Early evolution of salt structures in north Louisiana salt basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobao, J.J.; Pilger, R.H. Jr.

    1986-05-01

    Several salt diapirs and pillows in southern and central north Louisiana have been studied using approximately 355 mi (570 km) of seismic reflection data and information from 57 deep well holes. Using seismic profiles with deep well-hole data is the most advantageous method to document regional salt tectonism through time. The following conclusions were reached on diapirism in the North Louisiana Salt basin. (1) The diapiric event began early (early Coahuilan) in the southern and central part of the basin, and later (late Coahuilan to Comanchean) in the northern part. (2) The initial diapiric event is much more abrupt andmore » intense in the southern and central diapirs when compared with the later diapiric event in the northern diapirs. (3) Regional depocenter shifting, relative sea level, local erosion with salt extrusion, and rapid depositional loading of sediments are the major controls on diapirism in the basin.« less

  9. Salt weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  10. Combinations of fluorinated solvents with imide salts or methide salts for electrolytes

    DOEpatents

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include imide salts and/or methide salts as well as fluorinated solvents capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and improve safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Linear and cyclic imide salts, such as LiN(SO.sub.2CF.sub.2CF.sub.3).sub.2, and LiN(SO.sub.2CF.sub.3).sub.2, as well as methide salts, such as LiC(SO.sub.2CF.sub.3).sub.3 and LiC(SO.sub.2CF.sub.2CF.sub.3).sub.3, may be used in these electrolytes. Fluorinated alkyl groups enhance solubility of these salts in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene, and/or one or more ionic liquids.

  11. Salt fluoridation and oral health.

    PubMed

    Marthaler, Thomas M

    2013-11-01

    The aim of this paper is to make known the potential of fluoridated salt in community oral health programs, particularly in South Eastern Europe. Since 1922, the addition of iodine to salt has been successful in Switzerland. Goiter is virtually extinct. By 1945, the caries-protective effect of fluorides was well established. Based on the success of water fluoridation, a gynecologist started adding of fluoride to salt. The sale of fluoridated salt began in 1956 in the Swiss Canton of Zurich, and several other cantons followed suit. Studies initiated in the early seventies showed that fluoride, when added to salt, inhibits dental caries. The addition of fluoride to salt for human consumption was officially authorized in 1980-82. In Switzerland 85% of domestic salt consumed is fluoridated and 67% in Germany. Salt fluoridation schemes are reaching more than one hundred million in Mexico, Colombia, Peru and Cuba. The cost of salt fluoridation is very low, within 0.02 and 0.05 € per year and capita. Children and adults of the low socio-economic strata tend to have substantially more untreated caries than higher strata. Salt fluoridation is by far the cheapest method for improving oral health. Salt fluoridation has cariostatic potential like water fluoridation (caries reductions up to 50%). In Europe, meaningful percentages of users have been attained only in Germany (67%) and Switzerland (85%). In Latin America, there are more than 100 million users, and several countries have arrived at coverage of 90 to 99%. Salt fluoridation is by far the cheapest method of caries prevention, and billions of people throughout the world could benefit from this method. Copyright © 2013 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  12. Physiological responses to salt stress of salt-adapted and directly salt (NaCl and NaCl+Na2SO4 mixture)-stressed cyanobacterium Anabaena fertilissima.

    PubMed

    Swapnil, Prashant; Rai, Ashwani K

    2018-05-01

    Soil salinity in nature is generally mixed type; however, most of the studies on salt toxicity are performed with NaCl and little is known about sulfur type of salinity (Na 2 SO 4 ). Present study discerns the physiologic mechanisms responsible for salt tolerance in salt-adapted Anabaena fertilissima, and responses of directly stressed parent cells to NaCl and NaCl+Na 2 SO 4 mixture. NaCl at 500 mM was lethal to the cyanobacterium, whereas salt-adapted cells grew luxuriantly. Salinity impaired gross photosynthesis, electron transport activities, and respiration in parent cells, but not in the salt-adapted cells, except a marginal increase in PSI activity. Despite higher Na + concentration in the salt mixture, equimolar NaCl appeared more inhibitive to growth. Sucrose and trehalose content and antioxidant activities were maximal in 250 mM NaCl-treated cells, followed by salt mixture and was almost identical in salt-adapted (exposed to 500 mm NaCl) and control cells, except a marginal increase in ascorbate peroxidase activity and an additional fourth superoxide dismutase isoform. Catalase isoform of 63 kDa was induced only in salt-stressed cells. Salinity increased the uptake of intracellular Na + and Ca 2+ and leakage of K + in parent cells, while cation level in salt-adapted cells was comparable to control. Though there was differential increase in intracellular Ca 2+ under different salt treatments, ratio of Ca 2+ /Na + remained the same. It is inferred that stepwise increment in the salt concentration enabled the cyanobacterium to undergo priming effect and acquire robust and efficient defense system involving the least energy.

  13. Electrolyte salts for nonaqueous electrolytes

    DOEpatents

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  14. ADR salt pill design and crystal growth process for hydrated magnetic salts

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J. (Inventor); DiPirro, Michael J. (Inventor); Canavan, Edgar R. (Inventor)

    2013-01-01

    A process is provided for producing a salt pill for use in very low temperature adiabatic demagnetization refrigerators (ADRs). The method can include providing a thermal bus in a housing. The thermal bus can include an array of thermally conductive metal conductors. A hydrated salt can be grown on the array of thermally conductive metal conductors. Thermal conductance can be provided to the hydrated salt.

  15. Reconsolidated Salt as a Geotechnical Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Gadbury, Casey

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to onemore » that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt

  16. Pathophysiology of salt sensitivity hypertension.

    PubMed

    Ando, Katsuyuki; Fujita, Toshiro

    2012-06-01

    Dietary salt intake is the most important factor contributing to hypertension, but the salt susceptibility of blood pressure (BP) is different in individual subjects. Although the pathogenesis of salt-sensitive hypertension is heterogeneous, it is mainly attributable to an impaired renal capacity to excrete sodium (Na(+) ). We recently identified two novel mechanisms that impair renal Na(+) -excreting function and result in an increase in BP. First, mineralocorticoid receptor (MR) activation in the kidney, which facilitates distal Na(+) reabsorption through epithelial Na(+) channel activation, causes salt-sensitive hypertension. This mechanism exists not only in models of high-aldosterone hypertension as seen in conditions of obesity or metabolic syndrome, but also in normal- or low-aldosterone type of salt-sensitive hypertension. In the latter, Rac1 activation by salt excess causes MR stimulation. Second, renospecific sympathoactivation may cause an increase in BP under conditions of salt excess. Renal beta2 adrenoceptor stimulation in the kidney leads to decreased transcription of the gene encoding WNK4, a negative regulator of Na(+) reabsorption through Na(+) -Cl (-) cotransporter in the distal convoluted tubules, resulting in salt-dependent hypertension. Abnormalities identified in these two pathways of Na(+) reabsorption in the distal nephron may present therapeutic targets for the treatment of salt-sensitive hypertension.

  17. Microbial Successions and Metabolite Changes during Fermentation of Salted Shrimp (Saeu-Jeot) with Different Salt Concentrations

    PubMed Central

    Lee, Se Hee; Jung, Ji Young; Jeon, Che Ok

    2014-01-01

    To investigate the effects of salt concentration on saeu-jeot (salted shrimp) fermentation, four sets of saeu-jeot samples with 20%, 24%, 28%, and 32% salt concentrations were prepared, and the pH, bacterial and archaeal abundances, bacterial communities, and metabolites were monitored during the entire fermentation period. Quantitative PCR showed that Bacteria were much more abundant than Archaea in all saeu-jeot samples, suggesting that bacterial populations play more important roles than archaeal populations even in highly salted samples. Community analysis indicated that Vibrio, Photobacterium, Psychrobacter, Pseudoalteromonas, and Enterovibrio were identified as the initially dominant genera, and the bacterial successions were significantly different depending on the salt concentration. During the early fermentation period, Salinivibrio predominated in the 20% salted samples, whereas Staphylococcus, Halomonas, and Salimicrobium predominated in the 24% salted samples; eventually, Halanaerobium predominated in the 20% and 24% salted samples. The initially dominant genera gradually decreased as the fermentation progressed in the 28% and 32% salted samples, and eventually Salimicrobium became predominant in the 28% salted samples. However, the initially dominant genera still remained until the end of fermentation in the 32% salted samples. Metabolite analysis showed that the amino acid profile and the initial glycerol increase were similar in all saeu-jeot samples regardless of the salt concentration. After 30–80 days of fermentation, the levels of acetate, butyrate, and methylamines in the 20% and 24% salted samples increased with the growth of Halanaerobium, even though the amino acid concentrations steadily increased until approximately 80–107 days of fermentation. This study suggests that a range of 24–28% salt concentration in saeu-jeot fermentation is appropriate for the production of safe and tasty saeu-jeot. PMID:24587230

  18. Kinematics and dynamics of salt movement driven by sub-salt normal faulting and supra-salt sediment accumulation - combined analogue experiments and analytical calculations

    NASA Astrophysics Data System (ADS)

    Warsitzka, Michael; Kukowski, Nina; Kley, Jonas

    2017-04-01

    In extensional sedimentary basins, the movement of ductile salt is mainly controlled by the vertical displacement of the salt layer, differential loading due to syn-kinematic deposition, and tectonic shearing at the top and the base of the salt layer. During basement normal faulting, salt either tends to flow downward to the basin centre driven by its own weight or it is squeezed upward due to differential loading. In analogue experiments and analytical models, we address the interplay between normal faulting of the sub-salt basement, compaction and density inversion of the supra-salt cover and the kinematic response of the ductile salt layer. The analogue experiments consist of a ductile substratum (silicone putty) beneath a denser cover layer (sand mixture). Both layers are displaced by normal faults mimicked through a downward moving block within the rigid base of the experimental apparatus and the resulting flow patterns in the ductile layer are monitored and analysed. In the computational models using an analytical approximative solution of the Navier-Stokes equation, the steady-state flow velocity in an idealized natural salt layer is calculated in order to evaluate how flow patterns observed in the analogue experiments can be translated to nature. The analytical calculations provide estimations of the prevailing direction and velocity of salt flow above a sub-salt normal fault. The results of both modelling approaches show that under most geological conditions salt moves downwards to the hanging wall side as long as vertical offset and compaction of the cover layer are small. As soon as an effective average density of the cover is exceeded, the direction of the flow velocity reverses and the viscous material is squeezed towards the elevated footwall side. The analytical models reveal that upward flow occurs even if the average density of the overburden does not exceed the density of salt. By testing various scenarios with different layer thicknesses

  19. Measuring salt retention.

    DOT National Transportation Integrated Search

    2013-03-01

    This research developed and completed a field evaluation of salt distribution equipment. The evaluation provides a direct comparison of three different types of salt spreaders at three different truck speeds and brine rates. A rubber mat was divided ...

  20. Fetal bile salt metabolism

    PubMed Central

    Smallwood, R. A.; Lester, R.; Piasecki, G. J.; Klein, P. D.; Greco, R.; Jackson, B. T.

    1972-01-01

    Bile salt metabolism was studied in fetal dogs 1 wk before term. The size and distribution of the fetal bile salt pool were measured, and individual bile salts were identified. The hepatic excretion of endogenous bile salts was studied in bile fistula fetuses, and the capacity of this excretory mechanism was investigated by the i.v. infusion of a load of sodium taurocholate-14C up to 20 times the endogenous pool size. The total fetal bile salt pool was 30.9±2.7 μmoles, of which two-thirds was in the fetal gallbladder. Expressed on a body weight basis, this was equal to approximately one-half the estimated pool size in the adult dog (119.2±11.3 vs. 247.5±33.1 μmoles/kg body wt). Measurable quantities of bile salt were found in small bowel (6.0±1.8 μmoles), large bowel (1.1±0.3 μmoles), liver (1.2±0.5 μmoles), and plasma (0.1±0.03 μmoles). Plasma bile salt levels were significantly greater in fetal than in maternal plasma (1.01±0.24 μg/ml vs. 0.36±0.06 μg/ml; P < 0.05). Fetal hepatic bile salt excretion showed a fall over the period of study from 2.04±0.34 to 0.30±0.07 μmoles/hr. The maximal endogenous bile salt concentration in fetal hepatic bile was 18.7±1.5 μmoles/ml. The concentration in fetal gallbladder bile was 73.9±8.6 μmoles/ml; and, in those studies in which hepatic and gallbladder bile could be compared directly, the gallbladder appeared to concentrate bile four- to fivefold. Taurocholate, taurochenodeoxycholate, and taurodeoxycholate were present in fetal bile, but no free bile salts were identified. The presence of deoxycholate was confirmed by thin-layer chromatography and gas liquid chromatography, and the absence of microorganisms in fetal gut suggests that it was probably transferred from the maternal circulation. After infusion of a taurocholate load, fetal hepatic bile salt excretion increased 30-fold, so that 85-95% of the dose was excreted by the fetal liver during the period of observation. Placental transfer accounted

  1. Rheological stratification of the Hormuz Salt Formation in Iran - microstructural study of the dirty and pure rock salts from the Kuh-e-Namak (Dashti) salt diapir

    NASA Astrophysics Data System (ADS)

    Závada, Prokop; Desbois, Guillaume; Urai, Janos; Schulmann, Karel; Rahmati, Mahmoud; Lexa, Ondrej; Wollenberg, Uwe

    2014-05-01

    Significant viscosity contrasts displayed in flow structures of a mountain namakier (Kuh-e-Namak - Dashti), between 'weak' terrestrial debris bearing rock salt types and 'strong' pure rock salt types are questioned for deformation mechanisms using detailed quantitative microstructural study including crystallographic preferred orientation (CPO) mapping of halite grains. While the solid impurity rich ("dirty") rock salts contain disaggregated siltstone and dolomite interlayers, "clean" salts (debris free) reveal microscopic hematite and remnants of abundant fluid inclusions in non-recrystallized cores of porphyroclasts. Although flow in both, the recrystallized dirty and clean salt types is accommodated by combined mechanisms of pressure-solution creep (PS), grain boundary sliding (GBS) and dislocation creep accommodated grain boundary migration (GBM), their viscosity contrasts are explained by significantly slower rates of intergranular diffusion and piling up of dislocations at hematite inclusions in clean salt types. Porphyroclasts of clean salts deform by semi-brittle and plastic mechanisms with intra-crystalline damage being induced also by fluid inclusions that explode in the crystals at high fluid pressures. Boudins of clean salt types with coarse grained and original sedimentary microstructure suggest that clean rock salts are associated with dislocation creep dominated power law flow in the source layer and the diapiric stem. Rheological contrasts between both rock salt classes apply in general for the variegated and terrestrial debris rich ("dirty") Lower Hormuz and the "clean" rock salt forming the Upper Hormuz, respectively, and suggest that large strain rate gradients likely exist along horizons of mobilized salt types of different composition and microstructure.

  2. Dosimetry using silver salts

    DOEpatents

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  3. Secondary wastewater polishing with ultrafiltration membranes for unrestricted reuse: fouling and flushing modeling.

    PubMed

    Gillerman, Leonid; Bick, Amos; Buriakovsky, Nisan; Oron, Gideon

    2006-11-01

    The effects of operating parameters such astransmembrane pressure, retentate, and recirculation volumetric flow rates on the productivity of an ultrafiltration membrane were studied using field data and development of a management model. Correlation equations for predicting the volumetric permeate flow rates were derived from general membrane blocking laws and experimental data. The experimental data were obtained from a pilot study carried out in the Arad wastewater treatment system (a pilot plant operating in feed and bleed operation mode) located several kilometers west of the City of Arad, Israel. Correlation predictions were confirmed with the independent experimental results. The results enabled us to develop a mathematical expression accurately describing the decline in flux due to fouling.

  4. Determination of discretionary salt intake in rural Guatemala and Benin to determine the iodine fortification of salt required to control iodine deficiency disorders: studies using lithium-labeled salt.

    PubMed

    Melse-Boonstra, A; Rozendaal, M; Rexwinkel, H; Gerichhausen, M J; van den Briel, T; Bulux, J; Solomons, N W; West, C E

    1998-09-01

    The use of discretionary salt, which is salt added during cooking and at the table, as a suitable vehicle for iodine intake was assessed by measuring salt consumption using the lithium-marker technique in rural areas of Guatemala and Benin. In both countries, we studied boys aged 6-12 y and their mothers. Subjects used lithium-labeled salt after all unlabeled salt was removed from their households. In Guatemala, 24-h urine samples for 9 mother-son pairs were collected at baseline and on days 7, 8, and 9 during the use of lithium-labeled salt. Total maternal salt intake averaged 5.2 +/- 1.7 g/d (mean +/- SD), of which 77 +/- 24% came from discretionary sources, whereas Guatemalan boys consumed 1.8 +/- 0.6 g salt/d, of which 72 +/- 12% came from discretionary sources. In Benin, urine collection from 13 mother-son pairs took place at baseline and on days 5 and 7. Beninese mothers had a total salt intake of 9.0 +/- 2.9 g/d and their sons had an intake of 5.7 +/- 2.8 g/d; discretionary salt contributed 52 +/- 14% and 50 +/- 13%, respectively, of total salt consumed. Therefore, fortification of household salt appears to be an appropriate method of controlling iodine deficiency in both countries, although fortification of other salt sources could be considered in Benin.

  5. Dietary Salt Intake and Hypertension

    PubMed Central

    2014-01-01

    Over the past century, salt has been the subject of intense scientific research related to blood pressure elevation and cardiovascular mortalities. Moderate reduction of dietary salt intake is generally an effective measure to reduce blood pressure. However, recently some in the academic society and lay media dispute the benefits of salt restriction, pointing to inconsistent outcomes noted in some observational studies. A reduction in dietary salt from the current intake of 9-12 g/day to the recommended level of less than 5-6 g/day will have major beneficial effects on cardiovascular health along with major healthcare cost savings around the world. The World Health Organization (WHO) strongly recommended to reduce dietary salt intake as one of the top priority actions to tackle the global non-communicable disease crisis and has urged member nations to take action to reduce population wide dietary salt intake to decrease the number of deaths from hypertension, cardiovascular disease and stroke. However, some scientists still advocate the possibility of increased risk of CVD morbidity and mortality at extremes of low salt intake. Future research may inform the optimal sodium reduction strategies and intake targets for general populations. Until then, we have to continue to build consensus around the greatest benefits of salt reduction for CVD prevention, and dietary salt intake reduction strategies must remain at the top of the public health agenda. PMID:25061468

  6. Salt-Stress Response Mechanisms Using de Novo Transcriptome Sequencing of Salt-Tolerant and Sensitive Corchorus spp. Genotypes

    PubMed Central

    Yang, Zemao; Lu, Ruike; Dai, Zhigang; Yan, An; Tang, Qing; Cheng, Chaohua; Xu, Ying; Yang, Wenting; Su, Jianguang

    2017-01-01

    High salinity is a major environmental stressor for crops. To understand the regulatory mechanisms underlying salt tolerance, we conducted a comparative transcriptome analysis between salt-tolerant and salt-sensitive jute (Corchorus spp.) genotypes in leaf and root tissues under salt stress and control conditions. In total, 68,961 unigenes were identified. Additionally, 11,100 unigenes (including 385 transcription factors (TFs)) exhibited significant differential expression in salt-tolerant or salt-sensitive genotypes. Numerous common and unique differentially expressed unigenes (DEGs) between the two genotypes were discovered. Fewer DEGs were observed in salt-tolerant jute genotypes whether in root or leaf tissues. These DEGs were involved in various pathways, such as ABA signaling, amino acid metabolism, etc. Among the enriched pathways, plant hormone signal transduction (ko04075) and cysteine/methionine metabolism (ko00270) were the most notable. Eight common DEGs across both tissues and genotypes with similar expression profiles were part of the PYL-ABA-PP2C (pyrabactin resistant-like/regulatory components of ABA receptors-abscisic acid-protein phosphatase 2C). The methionine metabolism pathway was only enriched in salt-tolerant jute root tissue. Twenty-three DEGs were involved in methionine metabolism. Overall, numerous common and unique salt-stress response DEGs and pathways between salt-tolerant and salt-sensitive jute have been discovered, which will provide valuable information regarding salt-stress response mechanisms and help improve salt-resistance molecular breeding in jute. PMID:28927022

  7. The variability of reported salt levels in fast foods across six countries: opportunities for salt reduction.

    PubMed

    Dunford, Elizabeth; Webster, Jacqueline; Woodward, Mark; Czernichow, Sebastien; Yuan, Wen Lun; Jenner, Katharine; Ni Mhurchu, Cliona; Jacobson, Michael; Campbell, Norm; Neal, Bruce

    2012-06-12

    Several fast food companies have made commitments to reduce the levels of salt in the foods they serve, but technical issues are often cited as a barrier to achieving substantial reductions. Our objective was to examine the reported salt levels for products offered by leading multinational fast food chains. Data on salt content for products served by six fast food chains operating in Australia, Canada, France, New Zealand, the United Kingdom and the United States were collected by survey in April 2010. Mean salt contents (and their ranges) were calculated and compared within and between countries and companies. We saw substantial variation in the mean salt content for different categories of products. For example, the salads we included in our survey contained 0.5 g of salt per 100 g, whereas the chicken products we included contained 1.6 g. We also saw variability between countries: chicken products from the UK contained 1.1 g of salt per 100 g, whereas chicken products from the US contained 1.8 g. Furthermore, the mean salt content of food categories varied between companies and between the same products in different countries (e.g., McDonald's Chicken McNuggets contain 0.6 g of salt per 100 g in the UK, but 1.6 g of salt per 100 g in the US). The salt content of fast foods varies substantially, not only by type of food, but by company and country in which the food is produced. Although the reasons for this variation are not clear, the marked differences in salt content of very similar products suggest that technical reasons are not a primary explanation. In the right regulatory environment, it is likely that fast food companies could substantially reduce the salt in their products, translating to large gains for population health.

  8. The variability of reported salt levels in fast foods across six countries: opportunities for salt reduction

    PubMed Central

    Dunford, Elizabeth; Webster, Jacqueline; Woodward, Mark; Czernichow, Sebastien; Yuan, Wen Lun; Jenner, Katharine; Mhurchu, Cliona Ni; Jacobson, Michael; Campbell, Norm; Neal, Bruce

    2012-01-01

    Background: Several fast food companies have made commitments to reduce the levels of salt in the foods they serve, but technical issues are often cited as a barrier to achieving substantial reductions. Our objective was to examine the reported salt levels for products offered by leading multinational fast food chains. Methods: Data on salt content for products served by six fast food chains operating in Australia, Canada, France, New Zealand, the United Kingdom and the United States were collected by survey in April 2010. Mean salt contents (and their ranges) were calculated and compared within and between countries and companies. Results: We saw substantial variation in the mean salt content for different categories of products. For example, the salads we included in our survey contained 0.5 g of salt per 100 g, whereas the chicken products we included contained 1.6 g. We also saw variability between countries: chicken products from the UK contained 1.1 g of salt per 100 g, whereas chicken products from the US contained 1.8 g. Furthermore, the mean salt content of food categories varied between companies and between the same products in different countries (e.g., McDonald’s Chicken McNuggets contain 0.6 g of salt per 100 g in the UK, but 1.6 g of salt per 100 g in the US). Interpretation: The salt content of fast foods varies substantially, not only by type of food, but by company and country in which the food is produced. Although the reasons for this variation are not clear, the marked differences in salt content of very similar products suggest that technical reasons are not a primary explanation. In the right regulatory environment, it is likely that fast food companies could substantially reduce the salt in their products, translating to large gains for population health. PMID:22508978

  9. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal.more » These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs.« less

  10. Significance of adjusting salt intake by body weight in the evaluation of dietary salt and blood pressure.

    PubMed

    Hashimoto, Tomomi; Takase, Hiroyuki; Okado, Tateo; Sugiura, Tomonori; Yamashita, Sumiyo; Kimura, Genjiro; Ohte, Nobuyuki; Dohi, Yasuaki

    2016-08-01

    The close association between dietary salt and hypertension is well established. However, previous studies generally assessed salt intake without adjustment for body weight. Herein, we investigated the significance of body weight-adjusted salt intake in the general population. The present cross-sectional study included 7629 participants from our yearly physical checkup program, and their salt intake was assessed using a spot urine test to estimate 24-hour urinary salt excretion. Total salt intake increased with increasing body weight. Body weight-adjusted salt intake was greater in participants with hypertension than in those without hypertension. Systolic blood pressure, estimated glomerular filtration rate, and urinary albumin were independently correlated with body weight-adjusted salt intake after adjustment for possible cardiovascular risk factors. Excessive body weight-adjusted salt intake could be related to an increase in blood pressure and hypertensive organ damage. Adjustment for body weight might therefore provide clinically important information when assessing individual salt intake. Copyright © 2016 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  11. COMPLEX EVOLUTION OF BILE SALTS IN BIRDS

    PubMed Central

    Hagey, Lee R.; Vidal, Nicolas; Hofmann, Alan F.; Krasowski, Matthew D.

    2010-01-01

    Bile salts are the major end-metabolites of cholesterol and are important in lipid digestion and shaping of the gut microflora. There have been limited studies of bile-salt variation in birds. The purpose of our study was to determine bile-salt variation among birds and relate this variation to current avian phylogenies and hypotheses on the evolution of bile salt pathways. We determined the biliary bile-salt composition of 405 phylogenetically diverse bird species, including 7 paleognath species. Bile salt profiles were generally stable within bird families. Complex bile-salt profiles were more common in omnivores and herbivores than in carnivores. The structural variation of bile salts in birds is extensive and comparable to that seen in surveys of bile salts in reptiles and mammals. Birds produce many of the bile salts found throughout nonavian vertebrates and some previously uncharacterized bile salts. One difference between birds and other vertebrates is extensive hydroxylation of carbon-16 of bile salts in bird species. Comparison of our data set of bird bile salts with that of other vertebrates, especially reptiles, allowed us to infer evolutionary changes in the bile salt synthetic pathway. PMID:21113274

  12. Microplastic Pollution in Table Salts from China.

    PubMed

    Yang, Dongqi; Shi, Huahong; Li, Lan; Li, Jiana; Jabeen, Khalida; Kolandhasamy, Prabhu

    2015-11-17

    Microplastics have been found in seas all over the world. We hypothesize that sea salts might contain microplastics, because they are directly supplied by seawater. To test our hypothesis, we collected 15 brands of sea salts, lake salts, and rock/well salts from supermarkets throughout China. The microplastics content was 550-681 particles/kg in sea salts, 43-364 particles/kg in lake salts, and 7-204 particles/kg in rock/well salts. In sea salts, fragments and fibers were the prevalent types of particles compared with pellets and sheets. Microplastics measuring less than 200 μm represented the majority of the particles, accounting for 55% of the total microplastics, and the most common microplastics were polyethylene terephthalate, followed by polyethylene and cellophane in sea salts. The abundance of microplastics in sea salts was significantly higher than that in lake salts and rock/well salts. This result indicates that sea products, such as sea salts, are contaminated by microplastics. To the best of our knowledge, this is the first report on microplastic pollution in abiotic sea products.

  13. Modeling Episodic Ephemeral Brine Lake Evaporation and Salt Crystallization on the Bonneville Salt Flats, Utah

    NASA Astrophysics Data System (ADS)

    Liu, T.; Harman, C. J.; Kipnis, E. L.; Bowen, B. B.

    2017-12-01

    Public concern about apparent reductions in the areal extent of the Bonneville Salt Flat (BSF) and perceived changes in inundation frequency has motivated renewed interest in the hydrologic and geochemical behavior of this salt playa. In this study, we develop a numerical modeling framework to simulate the relationship between hydrometeorologic variability, brine evaporation and salt crystallization processes on BSF. The BSF, locates in Utah, is the remnant of paleo-lake Bonneville, and is capped by up to 1 meter of salt deposition over a 100 km2 area. The BSF has two distinct hydrologic periods each year: a winter wet periods with standing surface brine and the summer dry periods when the brine is evaporated, exposing the surface salt crust. We develop a lumped non-linear dynamical models coupling conservation expressions from water, dissolved salt and thermal energy to investigate the seasonal and diurnal behavior of brine during the transition from standing brine to exposed salt at BSF. The lumped dynamic models capture important nonlinear and kinetic effects introduced by the high ionic concentration of the brine, including the pronounced effect of the depressed water activity coefficient on evaporation. The salt crystallization and dissolution rate is modeled as a kinetic process linearly proportional to the degree of supersaturation of brine. The model generates predictions of the brine temperature and the solute and solvent masses controlled by diurnal net radiation input and aerodynamic forcing. Two distinct mechanisms emerge as potential controls on salt production and dissolution: (1) evapo-concentration and (2) changes in solubility related to changes in brine temperature. Although the evaporation of water is responsible for ultimate disappearance of the brine each season ,variation in solubility is found to be the dominant control on diurnal cycles of salt precipitation and dissolution in the BSF case. Most salt is crystallized during nighttime, but the

  14. Replacement of salt by a novel potassium- and magnesium-enriched salt alternative improves the cardiovascular effects of ramipril.

    PubMed Central

    Mervaala, E. M.; Paakkari, I.; Laakso, J.; Nevala, R.; Teräväinen, T. M.; Fyhrquist, F.; Vapaatalo, H.; Karppanen, H.

    1994-01-01

    1. The influence of salt (sodium chloride; NaCl) (an additional 6% in the diet) and that of a novel sodium-reduced, potassium-, magnesium-, and L-lysine-enriched salt alternative on the cardiovascular effects of ramipril was studied in stroke-prone spontaneously hypertensive rats in a 6-week study. The intake of sodium chloride was adjusted to the same level by adding the salt alternative at a 1.75 times higher amount than regular salt. 2. Salt produced a marked rise in blood pressure and induced cardiac hypertrophy and significant mortality, while the salt alternative neither increased blood pressure nor caused any mortality and produced less cardiac hypertrophy than salt. 3. Ramipril treatment at a daily dose of 3 mg kg-1 normalized blood pressure and prevented the development of cardiac hypertrophy of rats on control diet. These effects of ramipril were blocked by the addition of salt but were only slightly attenuated by the addition of the salt alternative. The mortality in the salt group was prevented by ramipril. 4. Responses of mesenteric arterial rings in vitro were examined at the end of the study. Salt, but not the salt alternative, increased vascular contractile responses to noradrenaline. Ramipril treatment improved the arterial relaxation responses to acetylcholine and to sodium nitroprusside. The vascular relaxation enhancing effect of ramipril was blocked by salt but only slightly attenuated by the salt alternative. 5. Ramipril treatment did not significantly increase plasma renin activity in the presence or in the absence of salt supplementation. The salt alternative did not cause hyperkalaemia, either alone or in combination with ramipril treatment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8032605

  15. Submerged anaerobic membrane bioreactor (SAnMBR) performance on sewage treatment: removal efficiencies, biogas production and membrane fouling.

    PubMed

    Chen, Rong; Nie, Yulun; Ji, Jiayuan; Utashiro, Tetsuya; Li, Qian; Komori, Daisuke; Li, Yu-You

    2017-09-01

    A submerged anaerobic membrane reactor (SAnMBR) was employed for comprehensive evaluation of sewage treatment at 25 °C and its performance in removal efficiency, biogas production and membrane fouling. Average 89% methanogenic degradation efficiency as well as 90%, 94% and 96% removal of total chemical oxygen demand (TCOD), biochemical oxygen demand (BOD) and nonionic surfactant were obtained, while nitrogen and phosphorus were only subjected to small removals. Results suggest that SAnMBRs can effectively decouple organic degradation and nutrients disposal, and reserve all the nitrogen and phosphorus in the effluent for further possible recovery. Small biomass yields of 0.11 g mixed liquor volatile suspended solids (MLVSS)/gCOD were achieved, coupled to excellent methane production efficiencies of 0.338 NLCH 4 /gCOD, making SAnMBR an attractive technology characterized by low excess sludge production and high bioenergy recovery. Batch tests revealed the SAnMBR appeared to have the potential to bear a high food-to-microorganism ratio (F/M) of 1.54 gCOD/gMLVSS without any inhibition effect, and maximum methane production rate occurred at F/M 0.7 gCOD/gMLVSS. Pore blocking dominated the membrane fouling behaviour at a relative long hydraulic retention time (HRT), i.e. >12 hours, while cake layer dominated significantly at shorter HRTs, i.e. <8 hours.

  16. Iodized salt sales in the United States.

    PubMed

    Maalouf, Joyce; Barron, Jessica; Gunn, Janelle P; Yuan, Keming; Perrine, Cria G; Cogswell, Mary E

    2015-03-10

    Iodized salt has been an important source of dietary iodine, a trace element important for regulating human growth, development, and metabolic functions. This analysis identified iodized table salt sales as a percentage of retail salt sales using Nielsen ScanTrack. We identified 1117 salt products, including 701 salt blends and 416 other salt products, 57 of which were iodized. When weighted by sales volume in ounces or per item, 53% contained iodized salt. These findings may provide a baseline for future monitoring of sales of iodized salt.

  17. Tail proteins of phage T5: investigation of the effect of the His6-tag position, from expression to crystallisation.

    PubMed

    Noirclerc-Savoye, Marjolaine; Flayhan, Ali; Pereira, Cindy; Gallet, Benoit; Gans, Pierre; Ebel, Christine; Breyton, Cécile

    2015-05-01

    Upon binding to its bacterial host receptor, the tail tip of phage T5 perforates, by an unknown mechanism, the heavily armoured cell wall of the host. This allows the injection of phage DNA into the cytoplasm to hijack the cell machinery and enable the production of new virions. In the perspective of a structural study of the phage tail, we have systematically overproduced eight of the eleven T5 tail proteins, with or without a N- or a C-terminal His6-tag. The widely used Hi6-tag is very convenient to purify recombinant proteins using immobilised-metal affinity chromatography. The presence of a tag however is not always innocuous. We combined automated gene cloning and expression tests to rapidly identify the most promising constructs for proteins of phage T5 tail, and performed biochemical and biophysical characterisation and crystallisation screening on available proteins. Automated small-scale purification was adapted for two highly expressed proteins. We obtained structural information for three of the proteins. We showed that the presence of a His6-tag can have drastic effect on protein expression, solubility, oligomerisation propensity and crystal quality. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide.

    PubMed

    Gordish, Kevin L; Kassem, Kamal M; Ortiz, Pablo A; Beierwaltes, William H

    2017-04-01

    Previously, we reported that 20% fructose diet causes salt-sensitive hypertension. In this study, we hypothesized that a high salt diet supplemented with 20% fructose (in drinking water) stimulates salt-sensitive hypertension by increasing salt retention through decreasing renal nitric oxide. Rats in metabolic cages consumed normal rat chow for 5 days (baseline), then either: (1) normal salt for 2 weeks, (2) 20% fructose in drinking water for 2 weeks, (3) 20% fructose for 1 week, then fructose + high salt (4% NaCl) for 1 week, (4) normal chow for 1 week, then high salt for 1 week, (5) 20% glucose for 1 week, then glucose + high salt for 1 week. Blood pressure, sodium excretion, and cumulative sodium balance were measured. Systolic blood pressure was unchanged by 20% fructose or high salt diet. 20% fructose + high salt increased systolic blood pressure from 125 ± 1 to 140 ± 2 mmHg ( P  < 0.001). Cumulative sodium balance was greater in rats consuming fructose + high salt than either high salt, or glucose + high salt (114.2 ± 4.4 vs. 103.6 ± 2.2 and 98.6 ± 5.6 mEq/Day19; P  < 0.05). Sodium excretion was lower in fructose + high salt group compared to high salt only: 5.33 ± 0.21 versus 7.67 ± 0.31 mmol/24 h; P  < 0.001). Nitric oxide excretion was 2935 ± 256  μ mol/24 h in high salt-fed rats, but reduced by 40% in the 20% fructose + high salt group (2139 ± 178  μ mol /24 hrs P  < 0.01). Our results suggest that fructose predisposes rats to salt-sensitivity and, combined with a high salt diet, leads to sodium retention, increased blood pressure, and impaired renal nitric oxide availability. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  19. Molten salt power towers operating at 600–650 °C: Salt selection and cost benefits

    DOE PAGES

    Turchi, Craig S.; Vidal, Judith; Bauer, Matthew

    2018-03-14

    This analysis examines the potential benefit of adopting the supercritical carbon dioxide (sCO 2) Brayton cycle at 600-650 degrees C compared to the current state-of-the-art power tower operating a steam-Rankine cycle with solar salt at approximately 574 degrees C. The analysis compares a molten-salt power tower configuration using direct storage of solar salt (60:40 wt% sodium nitrate: potassium nitrate) or single-component nitrate salts at 600 degrees C or alternative carbonate- or chloride-based salts at 650 degrees C.

  20. Molten salt power towers operating at 600–650 °C: Salt selection and cost benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turchi, Craig S.; Vidal, Judith; Bauer, Matthew

    This analysis examines the potential benefit of adopting the supercritical carbon dioxide (sCO 2) Brayton cycle at 600-650 degrees C compared to the current state-of-the-art power tower operating a steam-Rankine cycle with solar salt at approximately 574 degrees C. The analysis compares a molten-salt power tower configuration using direct storage of solar salt (60:40 wt% sodium nitrate: potassium nitrate) or single-component nitrate salts at 600 degrees C or alternative carbonate- or chloride-based salts at 650 degrees C.