Sample records for salt dome repository

  1. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harwell, M. A.; Brandstetter, A.; Benson, G. L.

    1982-06-01

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surroundingmore » the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This

  2. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harwell, M. A.; Brandstetter, A.; Benson, G. L.

    1982-06-01

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surroundingmore » the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This

  3. Preliminary evaluation of solution-mining intrusion into a salt-dome repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-06-01

    This report is the product of the work of an ONWI task force to evaluate inadvertant human intrusion into a salt dome repository by solution mining. It summarizes the work in the following areas: a general review of the levels of defense that could reduce both the likelihood and potential consequences of human intrusion into a salt dome repository; evaluation of a hypothetical intrusion scenario and its consequences; recommendation for further studies. The conclusions of this task force report can be summarized as follows: (1) it is not possible at present to establish with certainty that solution mining is crediblemore » as a human-intrusion event. The likelihood of such an intrusion will depend on the effectiveness of the preventive measures; (2) an example analysis based on the realistic approach is presented in this report; it concluded that the radiological consequences are strongly dependent upon the mode of radionuclide release from the waste form, time after emplacement, package design, impurities in the host salt, the amount of a repository intercepted, the solution mining cavity form, the length of time over which solution mining occurs, the proportion of contaminated salt source for human consumption compared to other sources, and the method of salt purification for culinary purposes; (3) worst case scenarios done by other studies suggest considerable potential for exposures to man while preliminary evaluations of more realistic cases suggest significantly reduced potential consequences. Mathematical model applications to process systems, guided by more advanced assumptions about human intrusion into geomedia, will shed more light on the potential for concerns and the degree to which mitigative measures will be required.« less

  4. Geohydrology of the Keechi, Mount Sylvan, Oakwood, and Palestine salt domes in the northeast Texas salt-dome basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, J.E.; Halasz, S.J.; Peters, H.B.

    1980-01-01

    The salt within these domes has penetrated as much as 20,000 feet of Mesozoic and Cenozoic strata, and presently extends to within 120 to 800 feet of the land surface. The salt penetrates or closely underlies major freshwater and salinewater aquifers within the basin. To provide a safe repository for radioactive wastes within one or more of these domes, a thorough understanding of the geohydrology needs to be obtained, and the hydrologic stability of the domes needs to be established for the expected life of the storage facility. Dissolution may exist at all four candidate salt domes, possibly through contactmore » with Cretaceous or Tertiary aquifers, or through fault systems in the vicinity of the domes. Strata overlying and surrounding Palestine and Keechi Salt Domes have been arched into steeply-dipping folds that are complexly faulted. Similar conditions exist at Oakwood and Mount Sylvan Domes, except that the Tertiary strata have been only moderately disturbed. Additional problems concerning the hydrologic stability of Oakwood and Palestine Salt Domes have resulted from the disposal of oil-field salinewater in the cap rock at the Oakwood Dome and previous solution mining of salt at the Palestine Dome.« less

  5. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal.more » These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs.« less

  6. Suitability of Palestine salt dome, Anderson Co. , Texas for disposal of high-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patchick, P.F.

    1980-01-01

    The suitability of Palestine salt dome, in Anderson County, Texas, is in serious doubt for a repository to isolate high-level nuclear waste because of abandoned salt brining operations. The random geographic and spatial occurrence of 15 collapse sinks over the dome may prevent safe construction of the necessary surface installations for a repository. The dissolution of salt between the caprock and dome, from at least 15 brine wells up to 500 feet deep, may permit increased rates of salt dissolution long into future geologic time. The subsurface dissolution is occurring at a rate difficult, if not impossible, to assess ormore » to calculate. It cannot be shown that this dissolution rate is insignificant to the integrity of a future repository or to ancillary features. The most recent significant collapse was 36 feet in diameter and took place in 1972. The other collapses ranged from 27 to 105 feet in diameter and from 1.5 to more than 15 feet in depth. ONWI recommends that this dome be removed from consideration as a candidate site.« less

  7. Base of fresh ground water, northern Louisiana Salt-Dome Basin and vicinity, northern Louisiana and southern Arkansas

    USGS Publications Warehouse

    Ryals, G.N.

    1980-01-01

    The National Waste Terminal Storage Program is an effort by the U.S. Department of Energy to locate and develop sites for disposal or storage of commercially produced radioactive wastes. As part of this program, salt domes in the northern Louisiana salt-dome basin are being studied to determine their suitability as repositories. Part of the U.S. Geological Survey 's participation in the program has been to describe the regional geohydrology of the northern Louisiana salt-dome basin. A map based on a compilation of published data and the interpretation of electrical logs shows the altitude of the base of freshwater in aquifers in the northern Louisiana salt-dome basin. (USGS)

  8. Geohydrology of the Keechi, Mount Sylvan, Oakwood, and Palestine salt domes in the northeast Texas salt-dome basin

    USGS Publications Warehouse

    Carr, Jerry E.; Halasz, Stephen J.; Peters, Henry B.

    1980-01-01

    Additional problems concerning the hydrologic stability of Oakwood and Palestine Salt Domes have resulted from the disposal of oil-field salinewater in the cap rock at the Oakwood Dome and previous solution mining of salt at the Palestine Dome Additional investigations are needed to determine if a selected dome is hydrologically stable. Needed investigations include: (1) A more complete comparative analysis of the regional and local geohydrologic system; (2) a site-specific drilling and sampling program to analyze the cap rock-aquifer boundary, sediment distribution, hydraulic-parameter variations, hydraulic-head relationships, and hydrochemical patterns; and (3) mass-transport computer modeling of ground-water flow at the domes.

  9. Final report on decommissioning of wells, boreholes, and tiltmeter sites, Gulf Coast Interior Salt Domes of Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-07-01

    In the late 1970s, test holes were drilled in northern Louisiana in the vicinity of Vacherie and Rayburn`s Salt Domes as part of the Department of Energy`s (DOE) National Waste Terminal Storage (NWTS) (rename the Civilian Radioactive Waste Management (CRWM)) program. The purpose of the program was to evaluate the suitability of salt domes for long term storage or disposal of high-level nuclear waste. The Institute for Environmental Studies at Louisiana State University (IES/LSU) and Law Engineering Testing Company (LETCo) of Marietta, Georgia performed the initial field studies. In 1982, DOE awarded a contract to the Earth Technology Corporation (TETC)more » of Long Beach, California to continue the Gulf Coast Salt Dome studies. In 1986, DOE deferred salt domes from further consideration as repository sites. This report describes test well plugging and site abandonment activities performed by SWEC in accordance with Activity Plan (AP) 1--3, Well Plugging and Site Restoration of Work Sites in Louisiana. The objective of the work outlined in this AP was to return test sites to as near original condition as possible by plugging boreholes, removing equipment, regrading, and seeding. Appendices to this report contain forms required by State of Louisiana, used by SWEC to document decommissioning activities, and pertinent documentation related to lease/access agreements.« less

  10. Salt-dome-related diagenesis of Miocene sediment, Black Bayou field, Cameron Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leger, W.R.

    1988-09-01

    The Black Bayou field is associated with a salt dome that pierces Miocene sediment and rises to within 900 ft (275 m) of the surface. The Louisiana Gulf Coast regional geothermal gradient is locally affected by the salt dome. The gradient increases to values greater than the regional gradient, 1.26/degrees/F/100 ft (23/degrees/C/km), near the dome. Local effects of the salt dome on clastic diagenesis have been determined by studying sandstone samples adjacent to and away from the salt dome within Miocene sediment. Sample depths range from 4155 to 6145 ft (1266 to 1873 m). Distances of samples from the edgemore » of the dome range from 82 to 820 ft (25 to 250 m).« less

  11. An application of LOTEM around salt dome near Houston, Texas

    NASA Astrophysics Data System (ADS)

    Paembonan, Andri Yadi; Arjwech, Rungroj; Davydycheva, Sofia; Smirnov, Maxim; Strack, Kurt M.

    2017-07-01

    A salt dome is an important large geologic structure for hydrocarbon exploration. It may seal a porous reservoir of rocks that form petroleum reservoirs. Several techniques such as seismic, gravity, and electromagnetic including magnetotelluric have successfully yielded salt dome interpretation. Seismic has difficulties seeing through the salt because the seismic energy gets trapped by the salt due to its high velocity. Gravity and electromagnetics are more ideal methods. Long Offset Transient Electromagnetic (LOTEM) and Focused Source Electromagnetic (FSEM) were tested over a salt dome near Houston, Texas. LOTEM data were recorded at several stations with varying offset, and the FSEM tests were also made at some receiver locations near a suspected salt overhang. The data were processed using KMS's processing software: First, for assurance, including calibration and header checking; then transmitter and receiver data are merged and microseismic data is separated; Finally, data analysis and processing follows. LOTEM processing leads to inversion or in the FSEM case 3D modeling. Various 3D models verify the sensitivity under the salt dome. In addition, the processing was conducted pre-stack, stack, and post-stack. After pre-stacking, the noise was reduced, but showed the ringing effect due to a low-pass filter. Stacking and post-stacking with applying recursive average could reduce the Gibbs effect and produce smooth data.

  12. Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehgartner, Brian L.; Park, Byoung Yoon

    2009-03-01

    A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parametersmore » and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.« less

  13. Depositional patterns and structural styles-Hackberry Salt Dome, Cameron Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, J.A.; Sharpe, C.L.; Gillham, T.H.

    The West and East Hackberry fields of north-central Cameron Parish, Louisiana, are associated with a large southeast-plunging salt ridge. Episodes of salt movement influenced the depositional patterns and reservoir trap styles of the Oligocene- and Miocene-age sedimentary section. The Oligocene lower Hackberry channels were influenced by the salt structure, resulting in the Manchester-Holmwood channel system flanking the east and south sides of the salt dome and the Choupique channel system flanking the west side of the salt dome. The depositional patterns and structural bed dips of the younger Oligocene Camerina A to marginulina section demonstrate a major period of saltmore » movement and erosion. The resulting truncation of the Camerian A sandstones, sealed by overlying shales, provides the dominant trap style for the majority of the reservoirs. This same general period of salt movement influenced the orientation of the Oligocene Marginulina to Miogypsinoides expansion fault system to the east. The Sweet Lake salt dome, down through to this expansion system, probably represents a southeast extension of this ancestral salt ridge.« less

  14. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, J.E.; Halasz, S.J.; Liscum, F.

    1980-11-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysismore » of principal and selected minor dissolved constituents.« less

  15. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    USGS Publications Warehouse

    Carr, Jerry E.; Halasz, Stephen J.; Liscum, Fred

    1980-01-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes, in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysis of principal and selected minor dissolved constituents.

  16. Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-10-01

    The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, propertymore » ownership, and surface geology, and a geologic cross section were presented for each dome.« less

  17. Three-dimensional representations of salt-dome margins at four active strategic petroleum reserve sites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rautman, Christopher Arthur; Stein, Joshua S.

    2003-01-01

    Existing paper-based site characterization models of salt domes at the four active U.S. Strategic Petroleum Reserve sites have been converted to digital format and visualized using modern computer software. The four sites are the Bayou Choctaw dome in Iberville Parish, Louisiana; the Big Hill dome in Jefferson County, Texas; the Bryan Mound dome in Brazoria County, Texas; and the West Hackberry dome in Cameron Parish, Louisiana. A new modeling algorithm has been developed to overcome limitations of many standard geological modeling software packages in order to deal with structurally overhanging salt margins that are typical of many salt domes. Thismore » algorithm, and the implementing computer program, make use of the existing interpretive modeling conducted manually using professional geological judgement and presented in two dimensions in the original site characterization reports as structure contour maps on the top of salt. The algorithm makes use of concepts of finite-element meshes of general engineering usage. Although the specific implementation of the algorithm described in this report and the resulting output files are tailored to the modeling and visualization software used to construct the figures contained herein, the algorithm itself is generic and other implementations and output formats are possible. The graphical visualizations of the salt domes at the four Strategic Petroleum Reserve sites are believed to be major improvements over the previously available two-dimensional representations of the domes via conventional geologic drawings (cross sections and contour maps). Additionally, the numerical mesh files produced by this modeling activity are available for import into and display by other software routines. The mesh data are not explicitly tabulated in this report; however an electronic version in simple ASCII format is included on a PC-based compact disk.« less

  18. Assessment of the Extent of Land Deformation Associated with Salt Domes within the Jazan City and Surroundings, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Pankratz, H. G.; Sultan, M.; Fathy, K.; AlMogren, S. M.; Harbi, H.; Sefry, S.; Emil, M.; Elkadiri, R.; Ahmed, M.; Othman, A.; Chouinard, K.

    2016-12-01

    The Jazan city in the Jazan Province of the Kingdom of Saudi Arabia is a vibrant and rapidly growing economic center and port. The old city of Jazan is centered over a salt dome (diaper) that crops out over an area, 3-4 km wide and 20 to 40 m above surroundings. The intrusion of the diaper into the overlying cap rock causes uneven surfaces, compromises building foundations, and causes infrastructural problems. Our study is aimed at the assessment of the salt dome-related land deformation. Using observations acquired over known locations of salt domes in Jazan and neighboring Farsan Islands, we identified criteria by which previously unidentified, near-surface salt domes, could be mapped. The selected criteria and/or applied methodologies included: (1) deformation over potential salt dome locations detected from Envisat, ERS-2, and Sentinel-1 scenes using the Stanford Method for Persistent Scatterers [StaMPs] and SARscape software. Uplift rates of about 3 mm/yr were observed over the salt dome outcrop in Jazan with increasing rates towards the center, indicating continuous rise of the salt diaper. (2) Local elevation highs over potential, near surface, salt dome intrusions observed in high spatial resolution (12.5 m), PALSAR digital elevation model (DEM). The elevation the Jazan dome is 45m high, whereas its surroundings are 15-30m high. (3) Negative Bouguer gravity anomalies over potential salt dome locations (Bouguer maps generated from 714 m interval airborne gravity data). Negative Bouguer anomalies were observed over the salt domes in Jazan (-3 mGal) and in Farsan (-30 mGal). (4) Boundaries of the potential salt domes extracted from zero tilt contour values on tilt derivative maps. (5) Shallow (< 2km) modeled depth to identified potential salt dome locations (software: Grav2dc 2-D modeling software). Zero contour values and 2-D modeling was used to identify the location and depth of the source anomaly (depth: Jazan = 0 m). (6) Spatial correlation (in a GIS

  19. Log analysis of six boreholes in conjunction with geologic characterization above and on top of the Weeks Island salt dome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattler, A.R.

    1996-04-01

    Six boreholes were drilled during the geologic characterization and diagnostics of the Weeks Island sinkhole that is over the two-tiered salt mine which was converted for oil storage by the US Strategic Petroleum Reserve. These holes were drilled to provide for geologic characterization of the Weeks Island Salt Dome and its overburden in the immediate vicinity of the sinkhole (mainly through logs and core); to establish a crosswell configuration for seismic tomography; to establish locations for hydrocarbon detection and tracer injection; and to Provide direct observations of sinkhole geometry and material properties. Specific objectives of the logging program were to:more » (1) identify the top of and the physical state of the salt dome; (2) identify the water table; (3) obtain a relative salinity profile in the aquifer within the alluvium, which ranges from the water table directly to the top of the Weeks Island salt dome; and (4) identify a reflecting horizon seen on seismic profiles over this salt dome. Natural gamma, neutron, density, sonic, resistivity and caliper logs were run. Neutron and density logs were run from inside the well casing because of the extremely unstable condition of the deltaic alluvium overburden above the salt dome. The logging program provided important information about the salt dome and the overburden in that (1) the top of the salt dome was identified at {approximately}189 ft bgl (103 ft msl), and the top of the dome contains relatively few fractures; (2) the water table is approximately 1 ft msl, (3) this aquifer appears to become steadily more saline with depth; and (4) the water saturation of much of the alluvium over the salt dome is shown to be influenced by the prevalent heavy rainfall. This logging program, a part of the sinkhole diagnostics, provides unique information about this salt dome and the overburden.« less

  20. Schematic designs for penetration seals for a reference repository in bedded salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelsall, P.C.; Case, J.B.; Meyer, D.

    1982-11-01

    The isolation of radioactive wastes in geologic repositories requires that man-made penetrations such as shafts, tunnels, or boreholes are adequately sealed. This report describes schematic seal designs for a repository in bedded salt referenced to the straitigraphy of southeastern New Mexico. The designs are presented for extensive peer review and will be updated as site-specific conceptual designs when a site for a repository in salt has been selected. The principal material used in the seal system is crushed salt obtained from excavating the repository. It is anticipated that crushed salt will consolidate as the repository rooms creep close to themore » degree that mechanical and hydrologic properties will eventually match those of undisturbed, intact salt. For southeastern New Mexico salt, analyses indicate that this process will require approximately 1000 years for a seal located at the base of one of the repository shafts (where there is little increase in temperature due to waste emplacement) and approximately 400 years for a seal located in an access tunnel within the repository. Bulkheads composed of contrete or salt bricks are also included in the seal system as components which will have low permeability during the period required for salt consolidation.« less

  1. US/German Collaboration in Salt Repository Research, Design and Operation - 13243

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steininger, Walter; Hansen, Frank; Biurrun, Enrique

    2013-07-01

    Recent developments in the US and Germany [1-3] have precipitated renewed efforts in salt repository investigations and related studies. Both the German rock salt repository activities and the US waste management programs currently face challenges that may adversely affect their respective current and future state-of-the-art core capabilities in rock salt repository science and technology. The research agenda being pursued by our respective countries leverages collective efforts for the benefit of both programs. The topics addressed by the US/German salt repository collaborations align well with the findings and recommendations summarized in the January 2012 US Blue Ribbon Commission on America's Nuclearmore » Future (BRC) report [4] and are consistent with the aspirations of the key topics of the Strategic Research Agenda of the Implementing Geological Disposal of Radioactive Waste Technology Platform (IGD-TP) [5]. Against this background, a revival of joint efforts in salt repository investigations after some years of hibernation has been undertaken to leverage collective efforts in salt repository research, design, operations, and related issues for the benefit of respective programs and to form a basis for providing an attractive, cost-effective insurance against the premature loss of virtually irreplaceable scientific expertise and institutional memory. (authors)« less

  2. Investigation of Seismic Events associated with the Sinkhole at Napoleonville Salt Dome, Louisiana

    NASA Astrophysics Data System (ADS)

    Nayak, A.; Dreger, D. S.

    2015-12-01

    This study describes the ongoing efforts in analysis of the intense sequence of complex seismic events associated with the formation of a large sinkhole at Napoleonville Salt Dome, Assumption Parish, Louisiana in August 2012. Point source centroid seismic moment tensor (MT) inversion of these events using data from a temporary network of broadband stations established by the United States Geological Survey had previously revealed large volume-increase components. We investigate the effect of 3D velocity structure of the salt dome on wave propagation in the frequency range of interest (0.1-0.3 Hz) by forward modeling synthetic waveforms using MT solutions that were computed using Green's functions assuming two separate 1D velocity models for stations over the salt dome and stations on the sedimentary strata surrounding the salt dome separately. We also use a matched filter technique to detect smaller events that went undetected by the automated grid-search based scanning and MT inversion algorithm using the waveforms of the larger events as templates. We also analyze the change in spectral content of the events, many of which exhibit a spectral peak at 0.4 Hz with a duration of > 60 seconds. The decrease in spectral amplitudes with distance also gives an estimate of high anelastic attenuation that damps reverberations within the shallow low velocity layers. Finally, we use noise cross-correlation analysis to explore changes in the green's functions during the development of the sinkhole and verify the sediment velocity model by comparing observed and synthetic surface wave dispersion.

  3. Geohydrology of the northern Louisiana salt-dome basin pertinent to the storage of radioactive wastes; a progress report

    USGS Publications Warehouse

    Hosman, R.L.

    1978-01-01

    Salt domes in northern Louisiana are being considered as possible storage sites for nuclear wastes. The domes are in an area that received regional sedimentation through early Tertiary (Eocene) time with lesser amounts of Quaternary deposits. The Cretaceous-Tertiary accumulation is a few thousand feet thick; the major sands are regional aquifers that extend far beyond the boundaries of the salt-dome basin. Because of multiple aquifers, structural deformation, and variations in the hydraulic characteristics of cap rock, the ground-water hydrology around a salt dome may be highly complex. The Sparta Sand is the most productive and heavily used regional aquifer. It is either penetrated by or overlies most of the domes. A fluid entering the Sparta flow system would move toward one of the pumping centers, all at or near municipalities that pump from the Sparta. Movement could be toward surface drainage where local geologic and hydrologic conditions permit leakage to the surface or to a surficial aquifer. (Woodard-USGS)

  4. Log analysis of six boreholes in conjunction with geologic characterization above and on top of the Weeks Island Salt Dome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattler, A.R.

    1996-06-01

    Six boreholes were drilled during the geologic characterization and diagnostics of the Weeks Island sinkhole that is over the two-tiered salt mine which was converted for oil storage by the U.S. Strategic Petroleum Reserve. These holes were drilled to provide for geologic characterization of the Weeks Island Salt Dome and its overburden in the immediate vicinity of the sinkhole (mainly through logs and core); to establish a crosswell configuration for seismic tomography; to establish locations for hydrocarbon detection and tracer injection; and to provide direct observations of sinkhole geometry and material properties. Specific objectives of the logging program were to:more » (1) identify the top of and the physical state of the salt dome; (2) identify the water table; (3) obtain a relative salinity profile in the aquifer within the alluvium, which ranges from the water table directly to the top of the Weeks Island salt dome; and (4) identify a reflecting horizon seen on seismic profiles over this salt dome. Natural gamma, neutron, density, sonic, resistivity and caliper logs were run.« less

  5. Environmental assessment: Richton Dome Site, Mississippi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOEmore » prepared the final EAs. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites--the Cypress Creek Dome site in Mississippi and the Vacherie Dome site in Louisiana. Although the Cypress Creek Dome and the Vacherie Dome sites are suitable for site characterization, the DOE has concluded that the Richton Dome site is the preferred site in the Gulf interior region. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines.« less

  6. Internal structure of mushroom-shaped salt diapirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    This book focuses on the dynamics and kinematics of salt diapirs with crestal bulbs shaped like a mushroom, one of the most complex types of diapirs, as interpreted by experimental modeling and from naturally occurring examples. Direct, practical applications of this research include use in the evaluation of salt domes as repositories for radioactive waste, in the exploration and production of salt, potash, and sulfur, and in the search for subtle hydrocarbon traps. The authors conducted 8 centrifuge experiments, which produced more than 100 model diapirs. These experiments were dynamically scaled to U.S. Gulf Coast salt domes, but the qualitativemore » results are also relevant to salt diapirs in other provinces and to granitoid diapirs penetrating metamorphic crust. The centrifuged domes grew under overburdens of constant thickness or under aggrading and prograding overburdens, a new experimental approach. Results indicate that external mushroom structure results from toroidal circulation of buoyant source and immediate cover having similar effective viscosities, whereas internal structure is produced by toroidal circulation confined within the diapir. The internal diapir structure elucidates the mechanics of emplacement and indicates whether an external mushroom shape can be expected and sought by further exploration.« less

  7. Gulf Coast Salt Domes geologic Area Characterization Report, East Texas Study Area. Volume II. Technical report. [Contains glossary of geological terms; Oakwood, Keechi, and Palestine domes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-07-01

    The East Texas Area Characterization Report (ACR) is a compilation of data gathered during the Area Characterization phase of the Department of Energy's National Waste Terminal Storage program in salt. The characterization of Gulf Coast Salt Domes as a potential site for storage of nuclear waste is an ongoing process. This report summarizes investigations covering an area of approximately 2590 km/sup 2/ (1000 mi/sup 2/). Data on Oakwood, Keechi, and Palestine Domes are given. Subsequent phases of the program will focus on smaller land areas and fewer specific salt domes, with progressively more detailed investigations, possibly culminating with a licensemore » application to the Nuclear Regulatory Commission. The data in this report are a result of drilling and sampling, geophysical and geologic field work, and intensive literature review. The ACR contains text discussing data usage, interpretations, results and conclusions based on available geologic and hydrologic data, and figures including diagrams showing data point locations, geologic and hydrologic maps, geologic cross sections, and other geologic and hydrologic information. An appendix contains raw data gathered during this phase of the project and used in the preparation of these reports.« less

  8. Depositional patterns and structural styles - Hackberry Salt Dome, Cameron Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, J.A.; Sharpe, C.L.; Gillham, T.H.

    The west and east Hackberry fields of north-central Cameron Parish, Louisiana, are associated with a large southeast-plunging salt ridge. Episodes of salt movement influenced the depositional patterns and reservoir trap styles of the Oligocene and Miocene age section. The Oligocene lower Hackberry channels were influenced by the salt, resulting in the {open_quotes}Manchester-Holmwood{close_quotes} channel system skirting the east and south flanks of the salt and the {open_quotes}Choupique{close_quotes} channel system skirting the west flank of the salt. The depositional patterns and structural bed dips of the younger Oligocene Camerina (A) to Marginulina section demonstrate a major period of salt movement and erosion.more » The resulting truncation of the Camerina (A) sands, sealed by overlying shales, provides the dominant trap style for the majority of the fields` reservoirs. This same general period of salt movement influenced the orientation of the Oligocene Camerina (A) - Miogypsinoides expansion fault systems of the prolific Miogypsinoides embayment. The Sweet Lake salt dome, downthrown to this expansion system, probably represents a southeast extension of this ancestral salt ridge.« less

  9. Seismic measurements of explosions in the Tatum Salt Dome, Mississippi

    USGS Publications Warehouse

    Borcherdt, Roger D.; Healy, J.H.; Jackson, W.H.; Warren, D.R.

    1967-01-01

    Project Sterling provided for the detonation of a nuclear device in the cavity resulting from the Salmon nuclear explosion in the Tatum salt dome in southern Mississippi. It also provided for a high explosive (HE) comparison shot in a nearby drill hole. The purpose of the experiment was to gather information on the seismic decoupling of a nuclear explosion in a cavity by comparing seismic signals from a nuclear shot in the Salmon cavity with seismic signals recorded from Salmon and with seismic signals recorded from a muall (about 2 tons) HE shot in the salt dome. Surface seismic measurements were made by the U.S. Geological Survey, the U.S. Coast and Geodetic Survey, and the Air Force Technical Applications Center with coordination and overall direction by the Lawrence Radiation Laboratory. This report covers only the seismic measurements made by the U. S. Geological Survey. The first objective of this report is to describe the field recording procedures and the data obtained by the U. S. Geological Survey from these events. The second objective is to describe the spectral analyses which have been made on the data and the relative seismic amplitudes which have been determined from these analyses.

  10. Near-surface gas mapping studies of salt geologic features at Weeks Island and other sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molecke, M.A.; Carney, K.R.; Autin, W.J.

    1996-10-01

    Field sampling and rapid gas analysis techniques were used to survey near-surface soil gases for geotechnical diagnostic purposes at the Weeks Island Strategic Petroleum Reserve (SPR) site and other salt dome locations in southern Louisiana. This report presents the complete data, results and interpretations obtained during 1995. Weeks Island 1994 gas survey results are also briefly summarized; this earlier study did not find a definitive correlation between sinkhole No. 1 and soil gases. During 1995, several hundred soil gas samples were obtained and analyzed in the field by gas chromatography, for profiling low concentrations and gas anomalies at ppm tomore » percent levels. The target gases included hydrogen, methane, ethane and ethylene. To supplement the field data, additional gas samples were collected at various site locations for laboratory analysis of target gases at ppb levels. Gases in the near-surface soil originate predominantly from the oil, from petrogenic sources within the salt, or from surface microbial activity. Surveys were conducted across two Weeks Island sinkholes, several mapped anomalous zones in the salt, and over the SPR repository site and its perimeter. Samples were also taken at other south Louisiana salt dome locations for comparative purposes. Notable results from these studies are that elevated levels of hydrogen and methane (1) were positively associated with anomalous gassy or shear zones in the salt dome(s) and (2) are also associated with suspected salt fracture (dilatant) zones over the edges of the SPR repository. Significantly elevated areas of hydrogen, methane, plus some ethane, were found over anomalous shear zones in the salt, particularly in a location over high pressure gas pockets in the salt, identified in the mine prior to SPR operations. Limited stable isotope ratio analyses, SIRA, were also conducted and determined that methane samples were of petrogenic origin, not biogenic.« less

  11. Depleted δ13C Values in Salt Dome Cap Rock Organic Matter and Implications for Microbial Metabolism and Fixation

    NASA Astrophysics Data System (ADS)

    Loyd, S. J.; Lu, L.; Caesar, K. H.; Kyle, R.

    2015-12-01

    Salt domes occur throughout the Gulf Coast Region USA and are often associated with trapped hydrocarbons. These salt domes can be capped by sulfate and carbonate minerals that result from complex digenetic interactions in the subsurface. The specific natures of these interactions are poorly understood, in particular the role of microbes in facilitating mineralization and element cycling. Carbon isotope compositions of cap rock calcites (δ13Ccarb) are highly variable and range from near neutral to less than -40‰ (VPDB) indicative of methane-sourced carbon. These low values and the common coexistence of elemental sulfur and metal sulfides have spurred hypotheses invoking microbial sulfate reduction as driving carbonate mineral authigenesis. Here, we present new organic carbon isotope (δ13Corg) data that, similar to δ13Ccarb, exhibit depletions below -30 to -25‰. These δ13Corg values are lower than local liquid hydrocarbons and "normal" marine organic matter reflecting either microbial fixation of methane-sourced carbon or microbial fractionation from liquid hydrocarbon sources. The combined carbon isotope data (δ13Ccarb and δ13Corg) indicate that methane likely plays an important role in microbial cycling in salt domes. The δ13Corg values are similar to those of anaerobic oxidation of methane (AOM) related communities from methane-sulfate controlled marine sediments. Ultimately, salt dome environments may share some important characteristics with AOM systems.

  12. Radar topography of domes on planetary surfaces

    USGS Publications Warehouse

    Neish, Catherine D.; Lorenz, R.D.; Kirk, R.L.

    2008-01-01

    We investigate the possibility of measuring the heights and morphology of viscously emplaced domes using radar imagery. We accurately reproduce the known height and shape of a terrestrial salt dome, and estimate the heights of several venusian pancake domes to within a factor of two. The terrestrial salt dome is consistent with a Bingham flow, while the much larger venusian pancake domes are consistent with a Newtonian flow. Applying the same techniques to Ganesa Macula, a potential cryovolcanic dome on Titan, we estimate a height between 2.0-4.9 km. Additional factors such as variable roughness and composition might account for some of the discrepancies observed. ?? 2008 Elsevier Inc.

  13. Effect of subseabed salt domes on Tidal Residual currents in the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Mashayekh Poul, Hossein; Backhaus, Jan; Dehghani, Ali; Huebner, Udo

    2016-05-01

    Geological studies in the Persian Gulf (PG) have revealed the existence of subseabed salt-domes. With suitable filtering of a high-resolution PG seabed topography, it is seen that the domes leave their signature in the seabed, i.e., numerous hills and valleys with amplitudes of several tens of meters and radii from a few up to tens of kilometers. It was suspected that the "shark skin" of the PG seabed may affect the tidal residual flow. The interaction of tidal dynamics and these obstacles was investigated in a nonlinear hydrodynamic numerical tidal model of the PG. The model was first used to characterize flow patterns of residual currents generated by a tidal wave passing over symmetric, elongated and tilted obstacles. Thereafter it was applied to the entire PG. The model was forced at its open boundary by the four dominant tidal constituents residing in the PG. Each tidal constituent was simulated separately. Results, i.e., tidal residual currents in the PG, as depicted by Lagrangian trajectories reveal a stationary flow that is very rich in eddies. Each eddy can be identified with a topographic obstacle. This confirms that the tidal residual flow field is strongly influenced by the nonlinear interaction of the tidal wave with the bottom relief which, in turn, is deformed by salt-domes beneath the seabed. Different areas of maximum residual current velocities are identified for major tidal constituents. The pattern of trajectories indicates the presence of two main cyclonic gyres and several adjacent gyres rotating in opposite directions and a strong coastal current in the northern PG.

  14. Interpretation of Schlumberger DC resistivity data from Gibson Dome-Lockhart Basin study area, San Juan County, Utah

    USGS Publications Warehouse

    Watts, R.D.

    1982-01-01

    A Schlumberger dc resistivity survey of the Gibson Dome-Lockhart Basin area, San Juan County, Utah, has revealed the following electrical characteristics of the area: (1) the area between the northern part of Davis Canyon and Gibson Dome is electrically quite uniform and resistive at the depth of the Pennsylvanian evaporite deposits, (2) there is a deep conductive anomaly at Horsehead Rock, and (3) there are several shallow and deep electrical anomalies in the vicinity of the Lockhart fault system. No adverse indicators were found for nuclear waste repository siting south of Indian Creek, but additional soundings should be made to increase data density and to extend the survey area southward. The Lockhart fault system appears to have triggered salt dissolution or flow outside the limits of Lockhart Basin; further geophysical work and drilling will be required to understand the origin of the Lockhart Basin structure and its present state of activity. This problem is important because geologic processes that lead to enlargement of the Lockhart Basin structure or to development of similar structures would threaten the integrity of a repository in the Gibson Dome area.

  15. Characterizing the Weeks Island Salt Dome drilling of and seismic measurements from boreholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sattler, A.R.; Harding, R.S.; Jacobson, R.D.

    1996-10-01

    A sinkhole 36 ft across, 30 ft deep was first observed in the alluvium over the Weeks Island Salt Dome (salt mine converted for oil storage by US Strategic Petroleum Reserve) May 1992. Four vertical, two slanted boreholes were drilled for diagnostics. Crosswell seismic data were generated; the velocity images suggest that the sinkhole collapse is complicated, not a simple vertical structure. The coring operation was moderately difficult; limited core was obtained through the alluvium, and the quality of the salt core from the first two vertical wells was poor. Core quality improved with better bit selection, mud, and drillingmore » method. The drilling fluid program provided fairly stable holes allowing open hole logs to be run. All holes were cemented successfully (although it took 3 attempts in one case).« less

  16. Permanent Disposal of Nuclear Waste in Salt

    NASA Astrophysics Data System (ADS)

    Hansen, F. D.

    2016-12-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories

  17. Micromechanical processes in consolidated granular salt

    DOE PAGES

    Mills, Melissa Marie; Stormont, John C.; Bauer, Stephen J.

    2018-03-27

    Here, granular salt is likely to be used as backfill material and a seal system component within geologic salt formations serving as a repository for long-term isolation of nuclear waste. Pressure from closure of the surrounding salt formation will promote consolidation of granular salt, eventually resulting in properties comparable to native salt. Understanding dependence of consolidation processes on stress state, moisture availability, temperature, and time is important for demonstrating sealing functions and long-term repository performance. This study characterizes laboratory-consolidated granular salt by means of microstructural observations. Granular salt material from mining operations was obtained from the bedded Salado Formation hostingmore » the Waste Isolation Pilot Plant and the Avery Island salt dome. Laboratory test conditions included hydrostatic consolidation of jacketed granular salt with varying conditions of confining isochoric stress to 38 MPa, temperature to 250 °C, moisture additions of 1% by weight, time duration, and vented and non-vented states. Resultant porosities ranged between 1% and 22%. Optical and scanning electron microscopic techniques were used to ascertain consolidation mechanisms. From these investigations, samples with 1% added moisture or unvented during consolidation, exhibit clear pressure solution processes with tightly cohered grain boundaries and occluded fluid pores. Samples with only natural moisture content consolidated by a combination of brittle, cataclastic, and crystal plastic deformation. Recrystallization at 250 °C irrespective of moisture conditions was also observed. The range and variability of conditions applied in this study, combined with the techniques used to display microstructural features, are unique, and provide insight into an important area of governing deformation mechanism(s) occurring within salt repository applications.« less

  18. Micromechanical processes in consolidated granular salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Melissa Marie; Stormont, John C.; Bauer, Stephen J.

    Here, granular salt is likely to be used as backfill material and a seal system component within geologic salt formations serving as a repository for long-term isolation of nuclear waste. Pressure from closure of the surrounding salt formation will promote consolidation of granular salt, eventually resulting in properties comparable to native salt. Understanding dependence of consolidation processes on stress state, moisture availability, temperature, and time is important for demonstrating sealing functions and long-term repository performance. This study characterizes laboratory-consolidated granular salt by means of microstructural observations. Granular salt material from mining operations was obtained from the bedded Salado Formation hostingmore » the Waste Isolation Pilot Plant and the Avery Island salt dome. Laboratory test conditions included hydrostatic consolidation of jacketed granular salt with varying conditions of confining isochoric stress to 38 MPa, temperature to 250 °C, moisture additions of 1% by weight, time duration, and vented and non-vented states. Resultant porosities ranged between 1% and 22%. Optical and scanning electron microscopic techniques were used to ascertain consolidation mechanisms. From these investigations, samples with 1% added moisture or unvented during consolidation, exhibit clear pressure solution processes with tightly cohered grain boundaries and occluded fluid pores. Samples with only natural moisture content consolidated by a combination of brittle, cataclastic, and crystal plastic deformation. Recrystallization at 250 °C irrespective of moisture conditions was also observed. The range and variability of conditions applied in this study, combined with the techniques used to display microstructural features, are unique, and provide insight into an important area of governing deformation mechanism(s) occurring within salt repository applications.« less

  19. Enthalpies of formation of polyhalite: A mineral relevant to salt repository

    DOE PAGES

    Guo, Xiaofeng; Xu, Hongwu

    2017-06-02

    Polyhalite is an important coexisting mineral with halite in salt repositories for nuclear waste disposal, such as Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The thermal stability of this mineral is a key knowledge in evaluating the integrity of a salt repository in the long term, as water may release due to thermal decomposition of polyhalite. Previous studies on structural evolution of polyhalite at elevated temperatures laid the basis for detailed calorimetric measurements. Using high-temperature oxide-melt drop-solution calorimetry at 975 K with sodium molybdate as the solvent, we have determined the standard enthalpies of formation from constituent sulfatesmore » (ΔH° f,sul), oxides (ΔH° f,ox) and elements (ΔH° f,ele) of a polyhalite sample with the composition of K 2Ca 2Mg(SO 4) 4·1.95H 2O from the Salado formation at the WIPP site. The obtained results are: ΔH° f,sul = -152.5 ± 5.3 kJ/mol, ΔH° f,ox = -1926.1 ± 10.5 kJ/mol, and ΔH° f,ele = -6301.2 ± 9.9 kJ/mol. Furthermore, based on the estimated formation entropies of polyhalite, its standard Gibbs free energy of formation has been derived to be in the range of -5715.3 ± 9.9 kJ/mol to -5739.3 ± 9.9 kJ/mol. In conclusion, these determined thermodynamic properties provide fundamental parameters for modeling the stability behavior of polyhalite in salt repositories.« less

  20. Proceedings of the 7th US/German Workshop on Salt Repository Research, Design, and Operation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Steininger, Walter; Bollingerfehr, Willhelm

    The 7th US/German Workshop on Salt Repository Research, Design, and Operation was held in Washington, DC on September 7-9, 2016. Over fifty participants representing governmental agencies, internationally recognized salt research groups, universities, and private companies helped advance the technical basis for salt disposal of radioactive waste. Representatives from several United States federal agencies were able to attend, including the Department of Energy´s Office of Environmental Management and Office of Nuclear Energy, the Environmental Protection Agency, the Nuclear Regulatory Commission, and the Nuclear Waste Technical Review Board. A similar representation from the German ministries showcased the covenant established in a Memorandummore » of Understanding executed between the United States and Germany in 2011. The US/German workshops´ results and activities also contribute significantly to the Nuclear Energy Agency Salt Club repository research agenda.« less

  1. Regional magnetic and gravity features of the Gibson Dome area and surrounding region, Paradox Basin, Utah : a preliminary report

    USGS Publications Warehouse

    Hildenbrand, T.G.; Kucks, R.P.

    1983-01-01

    Analyses of regional gravity and magnetic anomaly maps have been carried out to assist in the evaluation of the Gibson Dome area as a possible repository site for high-level radioactive waste. Derivative, wavelength-filtered, and trend maps were compiled to aid in properly locating major geophysical trends corresponding to faults, folds, and lithologic boundaries. The anomaly maps indicate that Paradox Basin is characterized by a heterogeneous Precambrian basement, essentially a metamorphic complex of gneisses and schist intruded by granitic rocks and mafic to ultramafic bodies. Interpreted Precambrian structures trend predominantly northwest and northeast although east-west trending features are evident. Prominent gravity lows define the salt anticlines. Structural and lithologic trends in the Gibson Dome area are closely examined. Of greatest interest is a series of circular magnetic highs trending west-northwest into the Gibson Dome area. Further study of the exact definition and geologic significance of this series of anomalies is warranted.

  2. Source Inversion of Seismic Events Associated with the Sinkhole at Napoleonville Salt Dome, Louisiana using a 3D Velocity Model

    NASA Astrophysics Data System (ADS)

    Nayak, Avinash; Dreger, Douglas S.

    2018-05-01

    The formation of a large sinkhole at the Napoleonville salt dome (NSD), Assumption Parish, Louisiana, caused by the collapse of a brine cavern, was accompanied by an intense and complex sequence of seismic events. We implement a grid-search approach to compute centroid locations and point-source moment tensor (MT) solutions of these seismic events using ˜0.1-0.3 Hz displacement waveforms and synthetic Green's functions computed using a 3D velocity model of the western edge of the NSD. The 3D model incorporates the currently known approximate geometry of the salt dome and the overlying anhydrite-gypsum cap rock, and features a large velocity contrast between the high velocity salt dome and low velocity sediments overlying and surrounding it. For each possible location on the source grid, Green's functions (GFs) to each station were computed using source-receiver reciprocity and the finite-difference seismic wave propagation software SW4. We also establish an empirical method to rigorously assess uncertainties in the centroid location, MW and source type of these events under evolving network geometry, using the results of synthetic tests with hypothetical events and real seismic noise. We apply the methods on the entire duration of data (˜6 months) recorded by the temporary US Geological Survey network. During an energetic phase of the sequence from 24-31 July 2012 when 4 stations were operational, the events with the best waveform fits are primarily located at the western edge of the salt dome at most probable depths of ˜0.3-0.85 km, close to the horizontal positions of the cavern and the future sinkhole. The data are fit nearly equally well by opening crack MTs in the high velocity salt medium or by isotropic volume-increase MTs in the low velocity sediment layers. We find that data recorded by 6 stations during 1-2 August 2012, right before the appearance of the sinkhole, indicate that some events are likely located in the lower velocity media just outside the

  3. Rock mechanics evaluation of potential repository sites in the Paradox, Permian, and Gulf Coast Basins: Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-09-01

    Thermal and thermomechanical analyses of a conceptual radioactive waste repository containing commercial and defense high-level wastes and spent fuel have been performing using finite element models. The thermal and thermomechanical responses of the waste package, disposal room, and repository regions were evaluated. four bedded salt formations, in Davis and Lavender Canyons in the Paradox Basin of southeastern Utah and in Deaf Smith and Swisher counties in the Permian Basin of northwestern Texas, and three salt domes, Vacherie Dome in northwestern Louisiana and Richton and Cypress Creek Domes in southeastern Mississippi, located in the Gulf Coast Basin, were examined. In themore » Paradox Basin, the pressure exerted on the waste package overpack was much greater than the initial in situ stress. The disposal room closure was less than 10 percent after 5 years. Surface uplift was nominal, and no significant thermomechanical perturbation of the aquitards was observed. In the Permian Basin, the pressure exerted on the waste package overpack was greater than the initial in situ stress. The disposal room closures were greater than 10 percent in less than 5 years. Surface uplift was nominal, and no significant thermomechanical perturbation of the aquitards was observed. In the Gulf Coast Basin, the pressure exerted on the waste package overpack was greater than the initial in situ stress. The disposal room closures were greater than 10 percent in less than 5 years. No significant thermomechanical perturbation of the overlying geology was observed. 40 refs., 153 figs., 32 tabs.« less

  4. Structure and Kinematics of a Complex Crater: Upheaval Dome, Southeast, Utah

    NASA Technical Reports Server (NTRS)

    Kriens, B. J.; Herkenhoff, K. E.; Shoemaker, E. M.

    1997-01-01

    Two vastly different phenomena, extraterrestrial impact and salt diapirism, have been proposed for the origin of Upheaval Dome. Upheaval Dome is a about 2.5-km-diameter structural dome surrounded by a 5-km-diameter ring structural depression, which is in turn flanked by extensive, nearly flat-lying Colorado Plateau strata. Seismic refraction data and geologic mapping indicate that the dome originated by the collapse of a transient cavity formed by impact; data also show that rising salt has had a negligible influence on dome development. Evidence for this includes several factors: (1) a rare lag deposit of impactite is present; (2) fan-tailed fracture surfaces (shatter surfaces) and a few shattercones are present; (3) the top of the underlying salt horizon is at least 500 m below the center of the dome, with no exposures of salt in the dome to support the possibility that a salt diapir has ascended through it; (4) sedimentary strata in the center are significantly imbricated by top-to-the-center thrust faulting and are complexly folded; (5) top-to-the-center low-angle normal faults are found at the perimeter of the structure; and (6) clastic dikes are widespread. The scarcity of melt rocks and shock fabrics is attributed to approximately 0.5 km of erosion; the structures of the dome reflect processes of complex crater development at a depth of about 0.5 km below the crater floor. Based on mapping and kinematic analysis, we infer that the dome formed mainly by centerward motion of rock units along listric faults. Outcrop-scale folding and upturning of beds, especially common in the center, largely resulted from this motion. In addition, we have detected some centerward motion of fault-bounded wedges resulting from displacements on subhorizontal faults that conjoin and die out within horizontal bedding in the perimeter of the structure. Collectively, the observed deformation accounts for the creation of both the central uplift and the encircling ring syncline.

  5. Sulfate-dependent Anaerobic Oxidation of Methane as a Generation Mechanism for Calcite Cap Rock in Gulf Coast Salt Domes

    NASA Astrophysics Data System (ADS)

    Caesar, K. H.; Kyle, R.; Lyons, T. W.; Loyd, S. J.

    2015-12-01

    Gulf Coast salt domes, specifically their calcite cap rocks, have been widely recognized for their association with significant reserves of crude oil and natural gas. However, the specific microbial reactions that facilitate the precipitation of these cap rocks are still largely unknown. Insight into the mineralization mechanism(s) can be obtained from the specific geochemical signatures recorded in these structures. Gulf Coast cap rocks contain carbonate and sulfur minerals that exhibit variable carbon (d13C) and sulfur isotope (δ34S) signatures. Calcite d13C values are isotopically depleted and show a large range of values from -1 to -52‰, reflecting a mixture of various carbon sources including a substantial methane component. These depleted carbon isotope compositions combined with the presence of abundant sulfide minerals in cap rocks have led to interpretations that invoke microbial sulfate reduction as an important carbonate mineral-yielding process in salt dome environments. Sulfur isotope data from carbonate-associated sulfate (CAS: trace sulfate incorporated within the carbonate mineral crystal lattice) provide a more direct proxy for aqueous sulfate in salt dome systems and may provide a means to directly fingerprint ancient sulfate reduction. We find CAS sulfur isotope compositions (δ34SCAS) significantly greater than those of the precursor Jurassic sulfate-salt deposits (which exhibit δ34S values of ~ +15‰). This implies that cap rock carbonate generation occurred via microbial sulfate reduction under closed-system conditions. The co-occurrence of depleted carbonate d13C values (< ~30‰) and the enriched δ34SCAS values are evidence for sulfate-dependent anaerobic oxidation of methane (AOM). AOM, which has been shown to yield extensive seafloor carbonate authigenesis, is also potentially partly responsible for the carbonate minerals of the Gulf Coast calcite cap rocks through concomitant production of alkalinity. Collectively, these data shed

  6. Citronelle Dome: A giant opportunity for multizone carbon storage and enhanced oil recovery in the Mississippi Interior Salt Basin of Alabama

    USGS Publications Warehouse

    Esposito, R.A.; Pashin, J.C.; Walsh, P.M.

    2008-01-01

    The Citronelle Dome is a giant, salt-cored anticline in the eastern Mississippi Interior Salt Basin of southern Alabama that is located near several large-scale, stationary, carbon-emitting sources in the greater Mobile area. The dome forms an elliptical, four-way structural closure containing opportunities for CO2-enhanced oil recovery (CO2-EOR) and large-capacity saline reservoir CO2 sequestration. The Citronelle oil field, located on the crest of the dome, has produced more than 169 million bbl of 42-46?? API gravity oil from sandstone bodies in the Lower Cretaceous Rodessa Formation. The top seal for the oil accumulation is a thick succession of shale and anhydrite, and the reservoir is underfilled such that oil-water contacts are typically elevated 30-60 m (100-200 ft) above the structural spill point. Approximately 31-34% of the original oil in place has been recovered by primary and secondary methods, and CO2-EOR has the potential to increase reserves by up to 20%. Structural contour maps of the dome demonstrate that the area of structural closure increases upward in section. Sandstone units providing prospective carbon sinks include the Massive and Pilot sands of the lower Tuscaloosa Group, as well as several sandstone units in the upper Tuscaloosa Group and the Eutaw Formation. Many of these sandstone units are characterized by high porosity and permeability with low heterogeneity. The Tuscaloosa-Eutaw interval is capped by up to 610 m (2000 ft) of chalk and marine shale that are proven reservoir seals in nearby oil fields. Therefore, the Citronelle Dome can be considered a major geologic sink where CO2 can be safely stored while realizing the economic benefits associated with CO2-EOR. Copyright ?? 2008. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  7. Performance Assessment of a Generic Repository in Bedded Salt for DOE-Managed Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Stein, E. R.; Sevougian, S. D.; Hammond, G. E.; Frederick, J. M.; Mariner, P. E.

    2016-12-01

    A mined repository in salt is one of the concepts under consideration for disposal of DOE-managed defense-related spent nuclear fuel (SNF) and high level waste (HLW). Bedded salt is a favorable medium for disposal of nuclear waste due to its low permeability, high thermal conductivity, and ability to self-heal. Sandia's Generic Disposal System Analysis framework is used to assess the ability of a generic repository in bedded salt to isolate radionuclides from the biosphere. The performance assessment considers multiple waste types of varying thermal load and radionuclide inventory, the engineered barrier system comprising the waste packages, backfill, and emplacement drifts, and the natural barrier system formed by a bedded salt deposit and the overlying sedimentary sequence (including an aquifer). The model simulates disposal of nearly the entire inventory of DOE-managed, defense-related SNF (excluding Naval SNF) and HLW in a half-symmetry domain containing approximately 6 million grid cells. Grid refinement captures the detail of 25,200 individual waste packages in 180 disposal panels, associated access halls, and 4 shafts connecting the land surface to the repository. Equations describing coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel flow and transport code. Simulated processes include heat conduction and convection, waste package failure, waste form dissolution, radioactive decay and ingrowth, sorption, solubility limits, advection, dispersion, and diffusion. Simulations are run to 1 million years, and radionuclide concentrations are observed within an aquifer at a point approximately 4 kilometers downgradient of the repository. The software package DAKOTA is used to sample likely ranges of input parameters including waste form dissolution rates and properties of engineered and natural materials in order to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia

  8. Geology of the Upheaval Dome impact structure, southeast Utah

    USGS Publications Warehouse

    Kriens, B.J.; Shoemaker, E.M.; Herkenhoff, K. E.

    1999-01-01

    Two vastly different phenomena, impact and salt diapirism, have been proposed for the origin of Upheaval Dome, a spectacular scenic feature in southeast Utah. Detailed geologic mapping and seismic refraction data indicate that the dome originated by collapse of a transient cavity formed by impact. Evidence is as follows: (1) sedimentary strata in the center of the structure are pervasively imbricated by top-toward-the-center thrust faulting and are complexly folded as well; (2) top-toward-the-center normal faults are found at the perimeter of the structure; (3) clastic dikes are widespread; (4) the top of the underlying salt horizon is at least 500 m below the surface at the center of the dome, and there are no exposures of salt or associated rocks of the Paradox Formation in the dome to support the possibility that a salt diapir has ascended through it; and (5) planar microstructures in quartz grains, fantailed fracture surfaces (shatter surfaces), and rare shatter cones are present near the center of the structure. We show that the dome formed mainly by centerward motion of rock units along listric faults. Outcrop-scale folding and upturning of beds, especially common in the center, are largely a consequence of this motion. We have also detected some centerward motion of fault-bounded wedges resulting from displacements on subhorizontal faults that conjoin and die out within horizontal bedding near the perimeter of the structure. The observed deformation corresponds to the central uplift and the encircling ring structural depression seen in complex impact craters. Copyright 1999 by the American Geophysical Union.

  9. Origin of sulfur for elemental sulfur concentration in salt dome cap rocks, Gulf Coast Basin, USA

    NASA Astrophysics Data System (ADS)

    Hill, J. M.; Kyle, R.; Loyd, S. J.

    2017-12-01

    Calcite cap rocks of the Boling and Main Pass salt domes contain large elemental sulfur accumulations. Isotopic and petrographic data indicate complex histories of cap rock paragenesis for both domes. Whereas paragenetic complexity is in part due to the open nature of these hydrodynamic systems, a comprehensive understanding of elemental sulfur sources and concentration mechanisms is lacking. Large ranges in traditional sulfur isotope compositions (δ34S) among oxidized and reduced sulfur-bearing phases has led some to infer that microbial sulfate reduction and/or influx of sulfide-rich formation waters occurred during calcite cap rock formation. Ultimately, traditional sulfur isotope analyses alone cannot distinguish among local microbial or exogenous sulfur sources. Recently, multiple sulfur isotope (32S, 33S, 34S, 36S) studies reveal small, but measurable differences in mass-dependent behavior of microbial and abiogenic processes. To distinguish between the proposed sulfur sources, multiple-sulfur-isotope analyses have been performed on native sulfur from the Boling and Main Pass cap rocks. Similarities or deviations from equilibrium relationships indicate which pathways were responsible for native sulfur precipitation. Pathway determination provides insight into Gulf Coast cap rock development and potentially highlights the conditions that led to anomalous sulfur enrichment in Boling and Main Pass Domes.

  10. Preliminary access routes and cost study analyses for seven potentially acceptable salt sites: Final report, October 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-02-01

    This report analyzes highway and railroad access to seven potentially acceptable salt repository sites: Richton Dome and Cypress Creek Dome in Mississippi, Vacherie Dome in Louisiana, Swisher County and Deaf Smith County in Texas, and Davis Canyon and Lavender Canyon in utah. The objectives of the study were to investigate the routing of reasonable access corridors to the sites, describe major characteristics of each route, and estimate the costs for constructing or upgrading highways and railroads. The routes used in the analysis are not necessarily recommended or preferred over other routes, nor do they represent an implied final selection. Detailedmore » engineering studies must be performed for the Davis Canyon and Lavender Canyon highway access before the analyzed routes can be considered to be viable. 20 refs., 7 figs., 3 tabs.« less

  11. Chemical compositions of sulfate and chloride salts over the last termination reconstructed from the Dome Fuji ice core, inland Antarctica

    NASA Astrophysics Data System (ADS)

    Oyabu, Ikumi; Iizuka, Yoshinori; Uemura, Ryu; Miyake, Takayuki; Hirabayashi, Motohiro; Motoyama, Hideaki; Sakurai, Toshimitsu; Suzuki, Toshitaka; Hondoh, Takeo

    2014-12-01

    The flux and chemical composition of aerosols impact the climate. Antarctic ice cores preserve the record of past atmospheric aerosols, providing useful information about past atmospheric environments. However, few studies have directly measured the chemical composition of aerosol particles preserved in ice cores. Here we present the chemical compositions of sulfate and chloride salts from aerosol particles in the Dome Fuji ice core. The analysis method involves ice sublimation, and the period covers the last termination, 25.0-11.0 thousand years before present (kyr B.P.), with a 350 year resolution. The major components of the soluble particles are CaSO4, Na2SO4, and NaCl. The dominant sulfate salt changes at 16.8 kyr B.P. from CaSO4, a glacial type, to Na2SO4, an interglacial type. The sulfate salt flux (CaSO4 plus Na2SO4) inversely correlates with δ18O in Dome Fuji over millennial timescales. This correlation is consistent with the idea that sulfate salt aerosols contributed to the last deglacial warming of inland Antarctica by reducing the aerosol indirect effect. Between 16.3 and 11.0 kyr B.P., the presence of NaCl suggests that winter atmospheric aerosols are preserved. A high NaCl/Na2SO4 fraction between 12.3 and 11.0 kyr B.P. indicates that the contribution from the transport of winter atmospheric aerosols increased during this period.

  12. Proceedings of the 8th US/German Workshop on Salt Repository Research Design and Operation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Steininger, Walter; Bollingerfehr, Wilhelm

    This document records the Proceedings of the 2017 gathering of salt repository nations. In a spirit of mutual support, technical issues are dissected, led capably by subject matter experts. As before, it is not possible to explore all contemporary issues regarding nuclear waste disposal in salt formations. Instead, the group focused on a few selected issues to be pursued in depth, while at the same time acknowledging and recording ancillary issues.

  13. Deformation of allochthonous salt and evolution of related salt-structural systems, eastern Louisiana Gulf Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuster, D.C.

    1996-12-31

    Salt tectonics in the northern Gulf of Mexico involves both vertical diapirism and lateral silling or flow of salt into wings and tablets (sheets). Combinations of these two modes of salt deformation, concurrent with sediment loading and salt evacuation, have produced complex structures in the coastal and offshore region of southeastern Louisiana, a prolific oil and gas province. Many large growth faults and salt domes in the study area root into intra-Tertiary salt welds that were formerly occupied by allochthonous salt tablets. Two end-member structural systems involving evacuation of former tabular salt are recognized: roho systems and stepped counter-regional systems.more » Both end-member systems share a similar multi-staged evolution, including (1) initial formation of a south-leaning salt dome or wall sourced from the Jurassic salt level; (2) progressive development into a semi-tabular allochthonous salt body; and (3) subsequent loading, evacuation, and displacement of the tabular salt into secondary domes. In both systems, it is not uncommon to find salt displaced as much as 16-24 km south of its autochthonous source, connected by a horizontal salt weld to an updip, deflated counter-regional feeder. Although both end-member structural systems may originate before loading of allochthonous salt having grossly similar geometry, their final structural configurations after loading and salt withdrawal are distinctly different. Roho systems are characterized by large-displacement, listric, south-dipping growth faults that sole into intra-Tertiary salt welds marked by high-amplitude reflections continuous with residual salt masses. Salt from the former salt tablets has been loaded and squeezed laterally and downdip. Stepped counter-regional systems, in contrast, comprise large salt domes and adjacent large-displacement, north-dipping growth faults that sole into intra-Tertiary salt welds before stepping down again farther north.« less

  14. Evolution of salt structures and Cretaceous uplift in westernmost Mississippi Salt basin, Madison Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, A.H.M.S.; Pilger, R.H. Jr.

    1988-09-01

    Subsurface structures were interpreted from seismic images and well logs in the westernmost Mississippi Salt basin, Madison Parish, Louisiana. Structural and stratigraphic relations indicate that salt structures (Duckport, North Tallulah, South Coleman, Tallulah, and Walnut domes) have evolved through pillow, diapir, and postdiapir stages. Withdrawal synclines associated with each stage of growth occur adjacent to salt domes and are characterized by overthickening of sediments. Synclines associated with Walnut dome are particularly well recognized in the seismic data. Primary withdrawal synclines and present day turtle structure anticlines involve the deepest recorded reflections (possibly Jurassic carbonates) above seismically transparent Paleozoic basement andmore » overlying remnant salt. Similar early (Late Jurassic) salt mobility has recently been documented in North Louisiana and East Texas Salt basins. Secondary withdrawal synclines (Cotton Valley) are exceptionally overthickened and their axes are closer to the dome than the axes of primary synclines. Tertiary synclines are broad and appear to be active at present. North-south seismic sections that cross the approximate northwest boundary of the Mississippi Salt basin display post-middle Cretaceous upwarp (the Monroe Uplift) involving basement. Successively older Lower Cretaceous reflections are truncated to the north beneath an erosional surface. Upwarp apparently continued well into the Cenozoic.« less

  15. The Microbiology of Subsurface, Salt-Based Nuclear Waste Repositories: Using Microbial Ecology, Bioenergetics, and Projected Conditions to Help Predict Microbial Effects on Repository Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Juliet S.; Cherkouk, Andrea; Arnold, Thuro

    This report summarizes the potential role of microorganisms in salt-based nuclear waste repositories using available information on the microbial ecology of hypersaline environments, the bioenergetics of survival under high ionic strength conditions, and “repository microbiology” related studies. In areas where microbial activity is in question, there may be a need to shift the research focus toward feasibility studies rather than studies that generate actual input for performance assessments. In areas where activity is not necessary to affect performance (e.g., biocolloid transport), repository-relevant data should be generated. Both approaches will lend a realistic perspective to a safety case/performance scenario that willmore » most likely underscore the conservative value of that case.« less

  16. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of amore » ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.« less

  17. Radioactive waste isolation in salt: special advisory report on the status of the Office of Nuclear Waste Isolation's plans for repository performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditmars, J.D.; Walbridge, E.W.; Rote, D.M.

    1983-10-01

    Repository performance assessment is analysis that identifies events and processes that might affect a repository system for isolation of radioactive waste, examines their effects on barriers to waste migration, and estimates the probabilities of their occurrence and their consequences. In 1983 Battelle Memorial Institute's Office of Nuclear Waste Isolation (ONWI) prepared two plans - one for performance assessment for a waste repository in salt and one for verification and validation of performance assessment technology. At the request of the US Department of Energy's Salt Repository Project Office (SRPO), Argonne National Laboratory reviewed those plans and prepared this report to advisemore » SRPO of specific areas where ONWI's plans for performance assessment might be improved. This report presents a framework for repository performance assessment that clearly identifies the relationships among the disposal problems, the processes underlying the problems, the tools for assessment (computer codes), and the data. In particular, the relationships among important processes and 26 model codes available to ONWI are indicated. A common suggestion for computer code verification and validation is the need for specific and unambiguous documentation of the results of performance assessment activities. A major portion of this report consists of status summaries of 27 model codes indicated as potentially useful by ONWI. The code summaries focus on three main areas: (1) the code's purpose, capabilities, and limitations; (2) status of the elements of documentation and review essential for code verification and validation; and (3) proposed application of the code for performance assessment of salt repository systems. 15 references, 6 figures, 4 tables.« less

  18. CORS911:Real-Time Subsidence Monitoring of the Napoleonville Salt Dome Sinkhole Using GPS

    NASA Astrophysics Data System (ADS)

    Kent, J. D.

    2013-12-01

    The sinkhole associated with the Napoleonville salt dome in Assumption Parish, Louisiana, threatens the stability of Highway 70 - a state maintained route. To mitigate the potential damaging effects to the highway and address issues of public safety, a program of research and decision support has been implemented to provide long-term measurements of the surface stability using continuous operating GPS reference stations (CORS). Four CORS sites were installed in the vicinity of the sinkhole to measure the horizontal and vertical motions of each site relative to each other and a fixed location outside the study area. Differential motions measured by a integrity monitoring software are summarized for response agencies tasked with ensuring public safety and stability of the Highway, a designated hurricane evacuation route. Implementation experience and intermediate findings will be shared and discussed. Strategies for monitoring random and systematic biases detected in the system are presented. Figure depicting the location of CORS sites used to monitor surface stability along Highway 70 near the Bayou Corne Sinkhole.

  19. Long-Term Modeling of Coupled Processes in a Generic Salt Repository for Heat-Generating Nuclear Waste: Analysis of the Impacts of Halite Solubility Constraints

    NASA Astrophysics Data System (ADS)

    Blanco Martin, L.; Rutqvist, J.; Battistelli, A.; Birkholzer, J. T.

    2015-12-01

    Rock salt is a potential medium for the underground disposal of nuclear waste because it has several assets, such as its ability to creep and heal fractures and its water and gas tightness in the undisturbed state. In this research, we focus on disposal of heat-generating nuclear waste and we consider a generic salt repository with in-drift emplacement of waste packages and crushed salt backfill. As the natural salt creeps, the crushed salt backfill gets progressively compacted and an engineered barrier system is subsequently created [1]. The safety requirements for such a repository impose that long time scales be considered, during which the integrity of the natural and engineered barriers have to be demonstrated. In order to evaluate this long-term integrity, we perform numerical modeling based on state-of-the-art knowledge. Here, we analyze the impacts of halite dissolution and precipitation within the backfill and the host rock. For this purpose, we use an enhanced equation-of-state module of TOUGH2 that properly includes temperature-dependent solubility constraints [2]. We perform coupled thermal-hydraulic-mechanical modeling and we investigate the influence of the mentioned impacts. The TOUGH-FLAC simulator, adapted for large strains and creep, is used [3]. In order to quantify the importance of salt dissolution and precipitation on the effective porosity, permeability, pore pressure, temperature and stress field, we compare numerical results that include or disregard fluids of variable salinity. The sensitivity of the results to some parameters, such as the initial saturation within the backfill, is also addressed. References: [1] Bechthold, W. et al. Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt (BAMBUS II Project). Report EUR20621 EN: European Atomic Energy Community, 2004. [2] Battistelli A. Improving the treatment of saline brines in EWASG for the simulation of hydrothermal systems. Proceedings, TOUGH Symposium 2012

  20. Sinkholes, collapse structures and large landslides in an active salt dome submerged by a reservoir: The unique case of the Ambal ridge in the Karun River, Zagros Mountains, Iran

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Francisco; Lizaga, Iván

    2016-02-01

    Ambal ridge, covering 4 km2, is a salt pillow of Gachsaran Formation with significant salt exposures in direct contact with the Karun River, Zagros Mountains. The highly cavernous salt dome is currently being flooded by the Gotvand Reservoir, second largest in Iran. Geomorphic evidence, including the sharp deflection of the Karun River and defeated streams indicate that Ambal is an active halokinetic structure, probably driven by erosional unloading. Around 30% of the salt dome is affected by large landslides up to ca. 50 × 106 m3 in volume. Slope oversteepening related to fluvial erosion and halokinetic rise seems to be the main controlling factor. A total of 693 sinkholes have been inventoried (170 sinkholes/km2), for which a scaling relationship has been produced. The depressions occur preferentially along a belt with a high degree of clustering. This spatial distribution is controlled by the proximity to the river, slope gradient and halite content in the bedrock. A large compound depression whose bottom lies below the normal maximum level of the reservoir will likely be flooded by water table rise forming a lake. The impoundment of the reservoir has induced peculiar collapse structures 220-280 m across, expressed by systems of arcuate fissures and scarps. Rapid subsurface salt dissolution is expected to generate and reactivate a large number of sinkholes and may reactivate landslides with a significant vertical component due to lack of basal support.

  1. Reconsolidated Salt as a Geotechnical Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Gadbury, Casey

    Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to onemore » that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt

  2. On the importance of coupled THM processes to predict the long-term response of a generic salt repository for high-level nuclear waste

    NASA Astrophysics Data System (ADS)

    Blanco Martin, L.; Rutqvist, J.; Birkholzer, J. T.

    2013-12-01

    Salt is a potential medium for the underground disposal of nuclear waste because it has several assets, in particular its ability to creep and heal fractures generated by excavation and its water and gas tightness in the undisturbed state. In this research, we focus on disposal of heat-generating nuclear waste (such as spent fuel) and we consider a generic salt repository with in-drift emplacement of waste packages and subsequent backfill of the drifts with run-of-mine crushed salt. As the natural salt creeps, the crushed salt backfill gets progressively compacted and an engineered barrier system is subsequently created. In order to evaluate the integrity of the natural and engineered barriers over the long-term, it is important to consider the coupled effects of the thermal, hydraulic and mechanical processes that take place. In particular, the results obtained so far show how the porosity reduction of the crushed salt affects the saturation and pore pressure evolution throughout the repository, both in time and space. Such compaction is induced by the stress and temperature regime within the natural salt. Also, transport properties of the host rock are modified not only by thermo-mechanically and hydraulically-induced damaged processes, but also by healing/sealing of existing fractures. In addition, the THM properties of the backfill evolve towards those of the natural salt during the compaction process. All these changes are based on dedicated laboratory experiments and on theoretical considerations [1-3]. Different scenarios are modeled and compared to evaluate the relevance of different processes from the perspective of effective nuclear waste repositories. The sensitivity of the results to some parameters, such as capillarity, is also addressed. The simulations are conducted using an updated version of the TOUGH2-FLAC3D simulator, which is based on a sequential explicit method to couple flow and geomechanics [4]. A new capability for large strains and creep

  3. Upheaval Dome, An Analogue Site for Gale Center

    NASA Technical Reports Server (NTRS)

    Conrad, P. G.; Eignebrode, J. L.

    2011-01-01

    We propose Upheaval Dome in southeastern Utah as an impact analogue site on Earth to Mars Science Laboratory candidate landing site Gale Crater. The genesis of Upheaval Dome was a mystery for some time--originally thought to be a salt dome. The 5 km crater was discovered to possess shocked quartz and other shock metamorphic features just a few years ago, compelling evidence that the crater was formed by impact, although the structural geology caused Shoemaker and Herkenhoff to speculate an impact origin some 25 years earlier. The lithology of the crater is sedimentary. The oldest rocks are exposed in the center of the dome, upper Permian sandstones, and progressively younger units are well exposed moving outward from the center. These are Triassic sandstones, siltstones and shales, which are intruded by clastic dikes. There are also other clay-rich strata down section, as is the case with Gale Crater. There is significant deformation in the center of the crater, with folding and steeply tilted beds, unlike the surrounding Canyonlands area, which is relatively undeformed. The rock units are well exposed at Upheaval Dome, and there are shatter cones, impactite fragments, shocked quartz grains and melt rocks present. The mineral shock features suggest that the grains were subjected to dynamic pressures> 10 GPa.

  4. Capillary controls on brine percolation in rock salt

    NASA Astrophysics Data System (ADS)

    Hesse, M. A.; Prodanovic, M.; Ghanbarzadeh, S.

    2016-12-01

    The ability the microstructure in rock salt to evolve to minimize the surface energy of the pore-space exerts an important control on brine percolation. The behavior is especially interesting under conditions when brine is wetting the grain boundaries and the pore network percolates at very low porosities, below the transport threshold in typical porous media. We present pore-scale simulations of texturally equilibrated pore spaces in real polycrystalline materials. This allows us to probe the basic physical properties of these materials, such as percolation and trapping thresholds as well as permeability-porosity relationships. Laboratory experiments in NaCl-H2O system are consistent with the computed percolation thresholds. Field data from hydrocarbon exploration wells in rock salt show that fluid commonly invades the lower section of the salt domes. This is consistent with laboratory measurements that show that brine begins to wet the salt grain boundaries with increasing pressure and temperature and theoretical arguments suggesting this would lead to fluid invasion. In several salt domes, however, fluid have percolated to shallower depths, apparently overcoming a substantial percolation threshold. This is likely due to the shear deformation in salt domes, which is not accounted for in theory and experiments.

  5. Projected environmental impacts of radioactive material transportation to the first US repository site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, K.S.; Cashwell, J.W.; Reardon, P.C.

    1986-12-31

    This paper discusses the relative national environmental impacts of transporting nuclear wastes to each of the nine candidate repository sites in the United States. Several of the potential sites are closely clustered and, for the purpose of distance and routing calculations, are treated as a single location. These are: Cypress Creek Dome and Richton Dome in Mississippi (Gulf Interior Region), Deaf Smith County and Swisher County sites in Texas (Permian Basin), and Davis Canyon and Lavender Canyon site in Utah (Paradox Basin). The remaining sites are: Vacherie Dome, Louisiana; Yucca Mountain, Nevada; and Hanford Reservation, Washington. For compatibility with bothmore » the repository system authorized by the NWPA and with the MRS option, two separate scenarios were analyzed. In belief, they are (1) shipment of spent fuel and high-level wastes (HLW) directly from waste generators to a repository (Reference Case) and (2) shipment of spent fuel to a Monitored Retrievable Storage (MRS) facility and then to a repository. Between 17 and 38 truck accident fatalities, between 1.4 and 7.7 rail accident fatalities, and between 0.22 and 12 radiological health effects can be expected to occur as a result of radioactive material transportation during the 26-year operating period of the first repository. During the same period in the United States, about 65,000 total deaths from truck accidents and about 32,000 total deaths from rail accidents would occur; also an estimated 58,300 cancer fatalities are predicted to occur in the United States during a 26-year period from exposure to background radiation alone (not including medical and other manmade sources). The risks reported here are upper limits and are small by comparison with the "natural background" of risks of the same type. 3 refs., 6 tabs.« less

  6. Proceedings of the 6th US/German Workshop on Salt Repository Research, Design, and Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Walter Steininger; Wilhelm Bollingerfehr

    The 6th US/German Workshop on Salt Repository Research, Design, and Operation was held in Dresden. Germany on September 7-9, 2015. Over seventy participants helped advance the technical basis for salt disposal of radioactive waste. The number of collaborative efforts continues to grow and to produce useful documentation, as well as to define the state of the art for research areas. These Proceedings are divided into Chapters, and a list of authors is included in the Acknowledgement Section. Also in this document are the Technical Agenda, List of Participants, Biographical Information, Abstracts, and Presentations. Proceedings of all workshops and other pertinentmore » information are posted on websites hosted by Sandia National Laboratories and the Nuclear Energy Agency Salt Club. The US/German workshops provide continuity for long-term research, summarize and publish status of mature areas, and develop appropriate research by consensus in a workshop environment. As before, major areas and findings are highlighted, which constitute topical Chapters in these Proceedings. In total, the scientific breadth is substantial and while not all subject matter is elaborated into chapter format, all presentations and abstracts are published in this document. In the following Proceedings, six selected topics are developed in detail.« less

  7. AMS fabric and structural record along a strain gradient in an extrusive salt diapir (Kuh-e-Namak, Dashti, Iran)

    NASA Astrophysics Data System (ADS)

    Zavada, Prokop; Schulmann, Karel; Lexa, Ondrej; Machek, Matej; Roxerova, Zuzana; Kusbach, Vladimir

    2016-04-01

    The AMS record and the halite fabrics on meso- and micro-scale were studied in detail on a well exposed salt extrusive body in Iran. In the Kuh-e-Namak (Dashti) mountain salt diapir, the deformation structures in colored salt are displayed along longitudinal profiles across the dome and two glaciers that extend from the NE and SW edge of the dome. The profiles from the dome to the frontal parts of the glaciers reveal a continuous strain gradient associated with transposition of the domal salt fabrics by axial fold cleavage development during flow of rock salt over the ridges in the channel. The extruded salt belongs to the Hormuz sequence of Neo-Proterozoic to Early Cambrian age. From central dome towards especially the northern namakier, structural record revealed zonation from; 1) gravitational collapse related recumbent isoclinal folds in the dome, 2) flat normal shears at the edge of the dome, 3) collapsed vertical layering into flat lying transpositional fabric at the toe of the dome, 4) penetrative fold cleavage transposition of earlier fabrics above the topographical ridge in the base of the flow, locally displaying strong transversal constrictional fabrics, 5) banded mylonites with isoclinal rootless folds in subhorizontally banded frontal and marginal domain of the glacier. The AMS fabric in the rock salt is generated primarily by hematite dispersed in the recrystallized halite. The AMS exhibits three main types of fabric symmetry from clustered all directions (K1,K2,K3, orthogonal fabric) to clustered K1 directions with girdle forming K2,K3 axes and clustered K3 directions with girdle of K1 and K2 directions. The AMS fabric clearly reflects the macroscopic fabric transpositions along the entire investigated strain gradient in the rock salt. Magnetic fabrics reveal continuous trends from bimodal to semi-girdle distribution of foliations in folded and cleavage present regions, to magnetic lineation clustering perpendicular to flow in completely refolded

  8. Dome Schools.

    ERIC Educational Resources Information Center

    Cirulli, Carol

    1999-01-01

    Back in 1988, Emmett, Idaho, built the first monolithic dome school. Now, school boards in Arizona, Missouri, Florida, Minnesota, and New Mexico are among those that have voted to build domed school buildings. A monolithic dome is a steel- reinforced, concrete structure with a smooth, round surface that is inspired by the shape of an egg. (MLF)

  9. Salt water and its relation to fresh ground water in Harris County, Texas

    USGS Publications Warehouse

    Winslow, Allen G.; Doyel, William Watson; Wood, L.A.

    1957-01-01

    Other less probable potential sources of salt-water contamination which are discussed include upward movement of salt water from below, vertical movement around salt domes or along faults, downward seepage from surface sources, and contamination through leaking wells.

  10. Threat of a sinkhole: A reevaluation of Cavern 4, Bayou Choctaw salt dome, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, J.T.; Todd, J.L.; Linn, J.K.

    1993-09-01

    Cavern Lake at Bayou Choctaw salt dome resulted from the failure of Cavern 7 in 1954. Uncontrolled solutioning of this cavern through the thin caprock had set the stage for overburden to collapse into the cavern below. A similar situation developed with nearby Cavern 4, but with less dissolutioning of the caprock. Because pressure loss was already a problem and because another 800 ft diameter lake would have endangered surface operations, solutioning of Cavern 4 was stopped and the cavern abandoned in 1957 in order to protect the already-small site. In 1978 the Strategic Petroleum Reserve (SPR) acquired a numbermore » of caverns at Bayou Choctaw, including Cavern 4, and the possible repeat of the Cavern 7 failure and formation of another lake thus became an issue. The cavern dimensions were re-sonared in 1980 for comparison with 1963 and 1977 surveys. Annual surface leveling between 1982--1992 showed less subsidence occurring than the site average, and a cavern monitoring system, installed in 1984, has revealed no anomalous motion. Repeat sonar surveys in 1992 showed very little, if any, change occurred since 1980 although a small amount of uncertainty exists as a result of changing sonar techniques. We conclude that significant additional solutioning or erosion of the caprock has not occurred and that there is no increased threat to SPR operations.« less

  11. Salt drying: a low-cost, simple and efficient method for storing plants in the field and preserving biological repositories for DNA diversity research.

    PubMed

    Carrió, Elena; Rosselló, Josep A

    2014-03-01

    Although a variety of methods have been optimized for the collection and storage of plant specimens, most of these are not suited for field expeditions for a variety of logistic reasons. Drying specimens with silica gel in polyethylene bags is currently the standard for field-sampling methods that are suitable for subsequent DNA extraction. However, silica-gel repositories are not readily available in remote areas, and its use is not very cost-effective for the long-term storage of collections or in developing countries with limited research budgets. Salting is an ancient and traditional drying process that preserves food samples by dehydrating tissues and inhibiting water-dependent cellular metabolism. We compared salt and silica-gel drying methods with respect to dehydration rates overtime, DNA quality and polymerase chain reaction(PCR) success to assess whether dry salting can be used as an effective plant preservation method for DNA analysis. Specimens from eleven plant species covering a variety of leaf structures, leaf thicknesses and water contents were analysed. Experimental work indicated that (i) levels of dehydration in sodium chloride were usually comparable to those obtained when silica gel was used, (ii) no spoilage, fungal or bacterial growth was observed for any of the species with all drying treatments and (iii) good yields of quality genomic DNA suitable for PCR applications were obtained in the salt-drying treatments. The preservation of plant tissues in commercial table salt appears to be a satisfactory, and versatile method that may be suitable in remote areas where cryogenic resources and silica repositories are not available. © 2013 John Wiley & Sons Ltd.

  12. Long Term Analysis of Deformations in Salt Mines: Kłodawa Salt Mine Case Study, Central Poland

    NASA Astrophysics Data System (ADS)

    Cała, Marek; Tajduś, Antoni; Andrusikiewicz, Wacław; Kowalski, Michał; Kolano, Malwina; Stopkowicz, Agnieszka; Cyran, Katarzyna; Jakóbczyk, Joanna

    2017-09-01

    Located in central Poland, the Kłodawa salt dome is 26 km long and about 2 km wide. Exploitation of the dome started in 1956, currently rock salt extraction is carried out in 7 mining fields and the 12 mining levels at the depth from 322 to 625 meters below sea level (m.b.s.l.). It is planned to maintain the mining activity till 2052 and extend rock salt extraction to deeper levels. The dome is characterised by complex geological structure resulted from halokinetic and tectonic processes. Projection of the 3D numerical analysis took into account the following factors: mine working distribution within the Kłodawa mine (about 1000 rooms, 350 km of galleries), complex geological structure of the salt dome, complicated structure and geometry of mine workings and distinction in rocks mechanical properties e.g. rock salt and anhydrite. Analysis of past mine workings deformation and prediction of future rock mass behaviour was divided into four stages: building of the 3D model (state of mine workings in year 2014), model extension of the future mine workings planned for extraction in years 2015-2052, the 3D model calibration and stability analysis of all mine workings. The 3D numerical model of Kłodawa salt mine included extracted and planned mine workings in 7 mining fields and 14 mining levels (about 2000 mine workings). The dimensions of the model were 4200 m × 4700 m × 1200 m what was simulated by 33 million elements. The 3D model was calibrated on the grounds of convergence measurements and laboratory tests. Stability assessment of mine workings was based on analysis of the strength/stress ratio and vertical stress. The strength/stress ratio analysis enabled to indicate endangered area in mine workings and can be defined as the factor of safety. Mine workings in state close to collapse are indicated by the strength/stress ratio equals 1. Analysis of the vertical stress in mine workings produced the estimation of current state of stress in comparison to initial

  13. Growth faults and salt tectonics in Houston diapir province: relative timing and exploration significance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, T.E.

    1983-09-01

    Oil and gas accumulation in Gulf Coast Tertiary strata is contolled mainly by regional growth faults and by salt-related structures. Salt forms the most prominent set of structures in the Houston diapir province of southeast Texas. Recent work in three study areas shows that the Tertiary growth-fault trends, so well displayed along strike to the south-west, continue through this salt basin as well, but they have been deformed by later salt movement. In the Katy area, seismic data disclose early (pre-Wilcox) salt pillows downdip of the Cretaceous reef trend. Salt stocks were injected upward from the pillows during Clayborne deposition,more » and were flanked by deep withdrawal basins and turtle structures. In Brazoria County, a major lower Frio growth-fault trend affecting the Houston delta system, was deformed by later salt domes, by a salt-withdrawal basin, and by a possible turtle structure at Chocolate Bayou. A productive geopressured aquifer exists in the salt-withdrawal basin bounded by the previously formed growth faults. In Jefferson County, in contrast, salt-tectonic activity and growth faulting appear to have been coeval. Early salt-cored ridges continued to rise throughout Frio deposition; growth faults occur both updip and downdip. Hydrocarbons accumulated over the salt domes in growth-fault anticlines and in stratigraphic traps. Recognition that shelf-margin growth faulting preceded the development of the present pattern of domes and basins has important implications for hydrocarbon exploration. Growth faults may be migration paths for hydrocarbons; furthermore, early formed traps, distorted by salt movement, may still be found to contain hydrocarbons.« less

  14. Upheaval Dome, Utah, USA: Impact origin confirmed

    NASA Astrophysics Data System (ADS)

    Buchner, Elmar; Kenkmann, Thomas

    2008-03-01

    Upheaval Dome is a unique circular structure on the ColoradoPlateau in SE Utah, the origin of which has been controversiallydiscussed for decades. It has been interpreted as a crypto volcanicfeature, a salt diapir, a pinched-off salt diapir, and an erodedimpact crater. While recent structural mapping, modeling, andanalyses of deformation mechanisms strongly support an impactorigin, ultimate proof, namely the documentation of unambiguousshock features, has yet to be successfully provided. In thisstudy, we document, for the first time, shocked quartz grainsfrom this crater in sandstones of the Jurassic Kayenta Formation.The investigated grains contain multiple sets of decorated planardeformation features. Transmission electron microscopy (TEM)reveals that the amorphous lamellae are annealed and exhibitdense tangles of dislocations as well as trails of fluid inclusions.The shocked quartz grains were found in the periphery of thecentral uplift in the northeastern sector of the crater, whichmost likely represents the cross range crater sector.

  15. Monolithic Domes.

    ERIC Educational Resources Information Center

    Lanham, Carol

    2002-01-01

    Describes how the energy savings, low cost, and near-absolute protection from tornadoes provided by monolithic domes is starting to appeal to school districts for athletic and other facilities, including the Italy (Texas) Independent School District. Provides an overview of monolithic dome construction. (EV)

  16. Field-scale Thermal Testing in a Generic Salt Disposal Environment Underground Research Laboratory (URL): Delineation of Principal Purpose Objectives and Hypotheses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sassani, David C.; Hardin, Ernest L.; Kuhlman, Kristopher L

    The amount of brine present in domal salt formation is far less than in bedded salts (e.g., 0.01 to 0.1% compared with 1 to 3%). In salt domes, shear deformation associated with diapirism has caused existing brine to coalesce, leading to flow and expulsion. Brine migration behavior was investigated in bedded salt at WIPP (Nowak and McTigue 1987, SAND87-0880), and in domal salt at Asse (Coyle et al. 1987, BMI/ONWI-624). Test methods were not standardized, and the tests involved large diameter boreholes (17 to 36 in. diameter) and large apparatus. The tested intervals were proximal to mined openings (within approximatelymore » 1 diameter) where in situ stresses are redistributed due to excavation. The tests showed that (1) brine inflow rates can range over at least 2 orders of magnitude for domal vs. bedded salt, (2) that brine inflow is strongly associated with clay and interbedded permeable layers in bedded salt, and (3) that measurement systems can readily collect very small quantities of moisture over time frames of 2 years or longer. Brine inflow rates declined slightly with time in both test series, but neither series approached a state of apparent depletion. This range of flow magnitude could be significant to repository design and performance assessment, especially if inflow rates can be predicted using stratigraphic and geomechanical inputs, and can be shown to approach zero in a predictable manner.« less

  17. Modelling of the reactive transport for rock salt-brine in geological repository systems based on improved thermodynamic database (Invited)

    NASA Astrophysics Data System (ADS)

    Müller, W.; Alkan, H.; Xie, M.; Moog, H.; Sonnenthal, E. L.

    2009-12-01

    The release and migration of toxic contaminants from the disposed wastes is one of the main issues in long-term safety assessment of geological repositories. In the engineered and geological barriers around the nuclear waste emplacements chemical interactions between the components of the system may affect the isolation properties considerably. As the chemical issues change the transport properties in the near and far field of a nuclear repository, modelling of the transport should also take the chemistry into account. The reactive transport modelling consists of two main components: a code that combines the possible chemical reactions with thermo-hydrogeological processes interactively and a thermodynamic databank supporting the required parameters for the calculation of the chemical reactions. In the last decade many thermo-hydrogeological codes were upgraded to include the modelling of the chemical processes. TOUGHREACT is one of these codes. This is an extension of the well known simulator TOUGH2 for modelling geoprocesses. The code is developed by LBNL (Lawrence Berkeley National Laboratory, Univ. of California) for the simulation of the multi-phase transport of gas and liquid in porous media including heat transfer. After the release of its first version in 1998, this code has been applied and improved many times in conjunction with considerations for nuclear waste emplacement. A recent version has been extended to calculate ion activities in concentrated salt solutions applying the Pitzer model. In TOUGHREACT, the incorporated equation of state module ECO2N is applied as the EOS module for non-isothermal multiphase flow in a fluid system of H2O-NaCl-CO2. The partitioning of H2O and CO2 between liquid and gas phases is modelled as a function of temperature, pressure, and salinity. This module is applicable for waste repositories being expected to generate or having originally CO2 in the fluid system. The enhanced TOUGHREACT uses an EQ3/6-formatted database

  18. Age, budget and dynamics of an active salt extrusion in Iran

    NASA Astrophysics Data System (ADS)

    Talbot, C. J.; Jarvis, R. J.

    The Hormuz salt of Kuh-e-Namak, Iran began rising through its Phanerozoic cover in Jurassic times and had surfaced by Cretaceous times. In Miocene times, the still-active Zagros folds began to develop and the salt is still extruding to feed a massive topographic dome and two surface flows of salt which have previously been called salt glaciers but are here called namakiers. Two crude but independent estimates for the rate of salt extrusion and loss are shown to balance the salt budget if the current salt dynamics are assumed to be in steady state. First, to replace the extrusive salt likely to be lost in solution in the annual rainfall, the salt must rise at an average velocity of about 11 cm a -1. Second, the foliation pattern shows that the extruding (and partially dissolved) salt column spreads under its own weight. The maximum height of the salt dome is consistent with a viscous fluid with a viscosity of 2.6 × 10 17 poises extruding from its orifice at a rate of almost 17 cm a -1. Both estimates are consistent in indicating that salt can extrude onto the surface 42-85 times faster than the average long term rate at which salt diapirs rise to the surface. The structure, fabrics, textures and deformation mechanisms of the impure halite all change along the path of the extrusive salt from the dome down the length of both namakiers. Such changes tend to occur when the flowing salt encounters changes in its boundary conditions, and the recognition of buried namakiers is discussed in the light of such observations. Episodes of salt flow at a rate of 0.5 m per day have been measured along the margin of the N namakier after significant rain showers. Such brief episodes of rapid flow alternate with long periods when the namakier is dry and stationary. The shape of the colour bands cropping out on the N namakier indicate that the flow over the surface of impure salt with a mylonitic texture obeys a power law with n ≈ 3. Although the reported annual rainfall has the

  19. Impact of Upheaval Dome, Utah

    NASA Technical Reports Server (NTRS)

    Shoemaker, E. M.; Herkenhoff, K. E.

    1984-01-01

    Reexamination of Upheaval Dome in the Canyonlands National Park, Utah, shows that the structure of this remarkable feature conforms with that expected for a deeply eroded astrobleme. The structure is definitely not compatible with an origin due simply to plastic flowage of salt and other rocks in the underlying Paradox Formation. The most strongly deformed rocks are bounded by a series of circumferential listric faults. The convergent displacement of the rocks corresponds to the deformation that results from collapse of a transient cavity produced by high speed impact. From considerations of the probable depth of exposure of the impact structure and upward extrapolation of the listric faults, the final collapsed crater is estimated to be about 8 to 10 km in diameter; the impacting body was on the order of 0.5 km in diameter.

  20. A Preliminary Performance Assessment for Salt Disposal of High-Level Nuclear Waste - 12173

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joon H.; Clayton, Daniel; Jove-Colon, Carlos

    2012-07-01

    A salt repository is one of the four geologic media currently under study by the U.S. DOE Office of Nuclear Energy to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic salt repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a salt formation. The current phase of this study considers representative geologic settings and features adopted from previous studiesmore » for salt repository sites. For the reference scenario, the brine flow rates in the repository and underlying interbeds are very low, and transport of radionuclides in the transport pathways is dominated by diffusion and greatly retarded by sorption on the interbed filling materials. I-129 is the dominant annual dose contributor at the hypothetical accessible environment, but the calculated mean annual dose is negligibly small. For the human intrusion (or disturbed) scenario, the mean mass release rate and mean annual dose histories are very different from those for the reference scenario. Actinides including Pu-239, Pu-242 and Np-237 are major annual dose contributors, and the calculated peak mean annual dose is acceptably low. A performance assessment model for a generic salt repository has been developed incorporating, where applicable, representative geologic settings and features adopted from literature data for salt repository sites. The conceptual model and scenario for radionuclide release and transport from a salt repository were developed utilizing literature data. The salt GDS model was developed in a probabilistic analysis framework. The preliminary performance analysis for demonstration of model capability is for an isothermal condition at the ambient temperature for the near field. The capability demonstration

  1. The LSST Dome final design

    NASA Astrophysics Data System (ADS)

    DeVries, J.; Neill, D. R.; Barr, J.; De Lorenzi, Simone; Marchiori, Gianpietro

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) is a large (8.4 meter) wide-field (3.5 degree) survey telescope, which will be located on the Cerro Pachón summit in Chile 1. As a result of the Telescope wide field of view, the optical system is unusually susceptible to stray light 2. In addition, balancing the effect of wind induced telescope vibrations with Dome seeing is crucial. The rotating enclosure system (Dome) includes a moving wind screen and light baffle system. All of the Dome vents include hinged light baffles, which provide exceptional Dome flushing, stray light attenuation, and allows for vent maintenance access from inside the Dome. The wind screen also functions as a light screen, and helps define a clear optical aperture for the Telescope. The Dome must operate continuously without rotational travel limits to accommodate the Telescope cadence and travel. Consequently, the Azimuth drives are located on the fixed lower enclosure to accommodate glycol water cooling without the need for a utility cable wrap. An air duct system aligns when the Dome is in its parked position, and this provides air cooling for temperature conditioning of the Dome during the daytime. A bridge crane and a series of ladders, stairs and platforms provide for the inspection, maintenance and repair of all of the Dome mechanical systems. The contract to build the Dome was awarded to European Industrial Engineering in Mestre, Italy in May 2015. In this paper, we present the final design of this telescope and site sub-system.

  2. Structure and origin of Australian ring and dome features with reference to the search for asteroid impact events

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew

    2018-01-01

    Ring, dome and crater features on the Australian continent and shelf include (A) 38 structures of confirmed or probable asteroid and meteorite impact origin and (B) numerous buried and exposed ring, dome and crater features of undefined origin. A large number of the latter include structural and geophysical elements consistent with impact structures, pending test by field investigations and/or drilling. This paper documents and briefly describes 43 ring and dome features with the aim of appraising their similarities and differences from those of impact structures. Discrimination between impact structures and igneous plugs, volcanic caldera and salt domes require field work and/or drilling. Where crater-like morphological patterns intersect pre-existing linear structural features and contain central morphological highs and unique thrust and fault patterns an impact connection needs to tested in the field. Hints of potential buried impact structures may be furnished by single or multi-ring TMI patterns, circular TMI quiet zones, corresponding gravity patterns, low velocity and non-reflective seismic zones.

  3. New developments in measurements technology relevant to the studies of deep geological repositories in bedded salt

    NASA Astrophysics Data System (ADS)

    Mao, N. H.; Ramirez, A. L.

    1980-10-01

    Developments in measurement technology are presented which are relevant to the studies of deep geological repositories for nuclear waste disposal during all phases of development, i.e., site selection, site characterization, construction, operation, and decommission. Emphasis was placed on geophysics and geotechnics with special attention to those techniques applicable to bedded salt. The techniques are grouped into sections as follows: tectonic environment, state of stress, subsurface structures, fractures, stress changes, deformation, thermal properties, fluid transport properties, and other approaches. Several areas that merit further research and developments are identified. These areas are: in situ thermal measurement techniques, fracture detection and characterization, in situ stress measurements, and creep behavior. The available instrumentations should generally be improved to have better resolution and accuracy, enhanced instrument survivability, and reliability for extended time periods in a hostile environment.

  4. Experiments and Modeling in Support of Generic Salt Repository Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourret, Suzanne Michelle; Stauffer, Philip H.; Weaver, Douglas James

    Salt is an attractive material for the disposition of heat generating nuclear waste (HGNW) because of its self-sealing, viscoplastic, and reconsolidation properties (Hansen and Leigh, 2012). The rate at which salt consolidates and the properties of the consolidated salt depend on the composition of the salt, including its content in accessory minerals and moisture, and the temperature under which consolidation occurs. Physicochemical processes, such as mineral hydration/dehydration salt dissolution and precipitation play a significant role in defining the rate of salt structure changes. Understanding the behavior of these complex processes is paramount when considering safe design for disposal of heat-generatingmore » nuclear waste (HGNW) in salt formations, so experimentation and modeling is underway to characterize these processes. This report presents experiments and simulations in support of the DOE-NE Used Fuel Disposition Campaign (UFDC) for development of drift-scale, in-situ field testing of HGNW in salt formations.« less

  5. Science is the first step to siting nuclear waste repositories

    USGS Publications Warehouse

    Neuzil, Christopher E.

    2014-01-01

    As Shaw [2014] notes, U.S. research on shale as a repository host was halted before expending anything close to the effort devoted to studying crystalline rock, salt, and - most notably - tuff at Yucca Mountain. The new political reality regarding Yucca Mountain may allow reconsideration of the decision to abandon research on shale as a repository host.

  6. Effects of Heat Generation on Nuclear Waste Disposal in Salt

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.

    2008-12-01

    Disposal of nuclear waste in salt is an established technology, as evidenced by the successful operations of the Waste Isolation Pilot Plant (WIPP) since 1999. The WIPP is located in bedded salt in southeastern New Mexico and is a deep underground facility for transuranic (TRU) nuclear waste disposal. There are many advantages for placing radioactive wastes in a geologic bedded-salt environment. One desirable mechanical characteristic of salt is that it flows plastically with time ("creeps"). The rate of salt creep is a strong function of temperature and stress differences. Higher temperatures and deviatoric stresses increase the creep rate. As the salt creeps, induced fractures may be closed and eventually healed, which then effectively seals the waste in place. With a backfill of crushed salt emplaced around the waste, the salt creep can cause the crushed salt to reconsolidate and heal to a state similar to intact salt, serving as an efficient seal. Experiments in the WIPP were conducted to investigate the effects of heat generation on the important phenomena and processes in and around the repository (Munson et al. 1987; 1990; 1992a; 1992b). Brine migration towards the heaters was induced from the thermal gradient, while salt creep rates showed an exponential dependence on temperature. The project "Backfill and Material Behavior in Underground Salt Repositories, Phase II" (BAMBUS II) studied the crushed salt backfill and material behavior with heat generation at the Asse mine located near Remlingen, Germany (Bechthold et al. 2004). Increased salt creep rates and significant reconsolidation of the crushed salt were observed at the termination of the experiment. Using the data provided from both projects, exploratory modeling of the thermal-mechanical response of salt has been conducted with varying thermal loading and waste spacing. Increased thermal loading and decreased waste spacing drive the system to higher temperatures, while both factors are desired to

  7. Systematic Evaluation of Salt Cavern Well Integrity

    NASA Astrophysics Data System (ADS)

    Roberts, B. L.; Lord, D. L.; Lord, A. S.; Bettin, G.; Sobolik, S. R.; Park, B. Y.

    2017-12-01

    The U.S. Strategic Petroleum Reserve (SPR) holds a reserve of crude oil ( 700 million barrels) to help ease any interruptions in oil import to the United States. The oil is stored in a set of 63 underground caverns distributed across four sites along the U.S. Gulf Coast. The caverns were solution mined into salt domes at each of the four sites. The plastic nature of the salt is beneficial for the storage of crude oil as it heals any fractures that may occur in the salt. The SPR is responsible for operating and maintaining the nearly 120 wells used to access the storage caverns over operational lifetimes spanning decades. Salt creep can induce deformation of the well casing which must be remediated to insure cavern and well integrity. This is particularly true at the interface between the plastic salt and the rigid caprock. The Department of Energy, the SPR Management and Operations contractor, and Sandia National Laboratories has developed a multidimensional well-grading system for the salt cavern access wells. This system is designed to assign numeric grades to each well indicating its risk of losing integrity and remediation priority. The system consists of several main components which themselves may consist of sub-components. The main components consider such things as salt cavern pressure history, results from geomechanical simulations modeling salt deformation, and measurements of well casing deformation due to salt creep. In addition, the geology of the salt domes and their overlying caprock is also included in the grading. These multiple factors are combined into summary values giving the monitoring and remediation priority for each well. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  8. Crestal fault geometries reveal late halokinesis and collapse of the Samson Dome, Northern Norway: Implications for petroleum systems in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Mattos, Nathalia H.; Alves, Tiago M.; Omosanya, Kamaldeen O.

    2016-10-01

    This paper uses 2D and high-quality 3D seismic reflection data to assess the geometry and kinematics of the Samson Dome, offshore Norway, revising the implications of the new data to hydrocarbon exploration in the Barents Sea. The study area was divided into three (3) zones in terms of fault geometries and predominant strikes. Displacement-length (D-x) and Throw-depth (T-z) plots showed faults to consist of several segments that were later dip-linked. Interpreted faults were categorised into three families, with Type A comprising crestal faults, Type B representing large E-W faults, and Type C consisting of polygonal faults. The Samson Dome was formed in three major stages: a) a first stage recording buckling of the post-salt overburden and generation of radial faults; b) a second stage involving dissolution and collapse of the dome, causing subsidence of the overburden and linkage of initially isolated fault segments; and c) a final stage in which large fault segments were developed. Late Cretaceous faults strike predominantly to the NW, whereas NE-trending faults comprise Triassic structures that were reactivated in a later stage. Our work provides scarce evidence for the escape of hydrocarbons in the Samson Dome. In addition, fault analyses based on present-day stress distributions indicate a tendency for 'locking' of faults at depth, with the largest leakage factors occurring close to the surface. The Samson Dome is an analogue to salt structures in the Barents Sea where oil and gas exploration has occurred with varied degrees of success.

  9. Improving daylight in mosques using domes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alturki, I.; Schiler, M.; Boyajian, Y.

    1996-10-01

    This paper studies the possibilities for improving daylight in mosques by measuring the illumination level under various domes in an old mosque ``Mosque of Guzelce Hasan Bey in Hayrabolu`` using an architectural physical model. The illumination level under the domes were tested under three different cases: a dome without openings (the original building), a dome with a central opening, and a dome with openings around the base. It was found that a dome with openings around the base brings an evenly distributed light all over the prayer hall during the critical hours of 12:00 p.m. and 3:00 p.m. In addition,more » it improves the quality and quantity of light.« less

  10. A Radar Survey of Lunar Dome Fields

    NASA Technical Reports Server (NTRS)

    Carter, Lynn M.; Campbell, Bruce A.; Hawke, B. Ray; Bussey, Ben

    2011-01-01

    The near side of the Moon has several areas with a high concentration of volcanic domes. These low relief structures are considerably different in morphology from terrestrial cinder cones, and some of the domes may be similar to some terrestrial shields formed through Hawaiian or Strombolian eruptions from a central pipe vent or small fissure [1]. The domes are evidence that some volcanic lavas were more viscous than the mare flood basalts that make up most of the lunar volcanic flows. It is still not known what types of volcanism lead to the creation of specific domes, or how much dome formation may have varied across the Moon. Prior work has shown that some domes have unusual radar polarization characteristics that may indicate a surface or subsurface structure that is different from that of other domes. Such differences might result from different styles of late-stage volcanism for some of the domes, or possibly from differences in how the erupted materials were altered over time (e.g. by subsequent volcanism or nearby cratering events). For example, many of the domes in the Marius Hills region have high circular polarization ratios (CPRs) in S-band (12.6 cm wavelength) and/or P-band (70 cm wavelength) radar data [2]. The high CPRs are indicative of rough surfaces, and suggest that these domes may have been built from overlapping blocky flows that in some cases have been covered by meters of regolith [2, 3]. In other cases, domes have low circular polarization ratios indicative of smooth, rock-poor surfaces or possibly pyroclastics. The 12 km diameter dome Manilius 1 in Mare Vaporum [1], has a CPR value of 0.20, which is significantly below values for the surrounding basalts [4]. To better understand the range of surface properties and styles of volcanism associated with the lunar domes, we are currently surveying lunar dome fields including the Marius Hills, Cauchy/Jansen dome field, the Gruithuisen domes, and domes near Hortensius and Vitruvius.

  11. Statistical sensitivity analysis of a simple nuclear waste repository model

    NASA Astrophysics Data System (ADS)

    Ronen, Y.; Lucius, J. L.; Blow, E. M.

    1980-06-01

    A preliminary step in a comprehensive sensitivity analysis of the modeling of a nuclear waste repository. The purpose of the complete analysis is to determine which modeling parameters and physical data are most important in determining key design performance criteria and then to obtain the uncertainty in the design for safety considerations. The theory for a statistical screening design methodology is developed for later use in the overall program. The theory was applied to the test case of determining the relative importance of the sensitivity of near field temperature distribution in a single level salt repository to modeling parameters. The exact values of the sensitivities to these physical and modeling parameters were then obtained using direct methods of recalculation. The sensitivity coefficients found to be important for the sample problem were thermal loading, distance between the spent fuel canisters and their radius. Other important parameters were those related to salt properties at a point of interest in the repository.

  12. Dome, Sweet Dome--Geodesic Structures Teach Math, Science, and Technology Principles

    ERIC Educational Resources Information Center

    Shackelford, Ray; Fitzgerald, Michael

    2007-01-01

    Today, geodesic domes are found on playgrounds, homes, over radar installations, storage facilities, at Disney's Epcot Center, and at World's Fairs. The inventor of the design, Buckminster Fuller, thought that geodesic domes could be used to cover large areas and even designed one to cover all of New York's Manhattan Island. This article details…

  13. Pressure Dome for High-Pressure Electrolyzer

    NASA Technical Reports Server (NTRS)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  14. What factors control superficial lava dome explosivity?

    PubMed

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J

    2015-09-30

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  15. FY16 Summary Report: Participation in the KOSINA Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matteo, Edward N.; Hansen, Francis D.

    Salt formations represent a promising host for disposal of nuclear waste in the United States and Germany. Together, these countries provided fully developed safety cases for bedded salt and domal salt, respectively. Today, Germany and the United States find themselves in similar positions with respect to salt formations serving as repositories for heat-generating nuclear waste. German research centers are evaluating bedded and pillow salt formations to contrast with their previous safety case made for the Gorleben dome. Sandia National Laboratories is collaborating on this effort as an Associate Partner, and this report summarizes that teamwork. Sandia and German research groupsmore » have a long-standing cooperative approach to repository science, engineering, operations, safety assessment, testing, modeling and other elements comprising the basis for salt disposal. Germany and the United States hold annual bilateral workshops, which cover a spectrum of issues surrounding the viability of salt formations. Notably, recent efforts include development of a database for features, events, and processes applying broadly and generically to bedded and domal salt. Another international teaming activity evaluates salt constitutive models, including hundreds of new experiments conducted on bedded salt from the Waste Isolation Pilot Plant. These extensive collaborations continue to build the scientific basis for salt disposal. Repository deliberations in the United States are revisiting bedded and domal salt for housing a nuclear waste repository. By agreeing to collaborate with German peers, our nation stands to benefit by assurance of scientific position, exchange of operational concepts, and approach to elements of the safety case, all reflecting cost and time efficiency.« less

  16. Effects of lava-dome emplacement on the Mount St. Helens crater glacier

    NASA Astrophysics Data System (ADS)

    Walder, J. S.; Schilling, S. P.; Denlinger, R. P.; Vallance, J. W.

    2004-12-01

    Since the end of the 1981-1986 episode of lava-dome growth at Mount St. Helens, an unusual glacier has grown rapidly within the crater of the volcano. The glacier, which is fed primarily by avalanching from the crater walls, contains about 30% rock debris by volume, has a maximum thickness of about 220 m and a volume of about 120 million cubic m, and forms a crescent that wraps around the old lava dome on both east and west sides. The new (October 2004) lava dome in the south of the crater began to grow centered roughly on the contact between the old lava dome and the glacier, in the process uplifting both ice and old dome rock. As the new dome is spreading to the south, the adjacent glacier is bulging upward. Firn layers on the outer flank of the glacier bulge have been warped upward almost vertically. In contrast, ice adjacent to the new dome has been thoroughly fractured. The overall style of deformation is reminiscent of that associated with salt-dome intrusion. Drawing an analogy to sand-box experiments, we suggest that the glacier is being deformed by high-angle reverse faults propagating upward from depth. Comparison of Lidar images of the glacier from September 2003 and October 2004 reveals not only the volcanogenic bulge but also elevated domains associated with the passage of kinematic waves, which are caused by glacier-mass-balance perturbations and have nothing to do with volcanic activity. As of 25 October 2004, growth of the new lava dome has had negligible hydrological consequences. Ice-surface cauldrons are common consequences of intense melting caused by either subglacial eruptions (as in Iceland) or subglacial venting of hot gases (as presently taking place at Mount Spurr, Alaska). However, there has been a notable absence of ice-surface cauldrons in the Mount St. Helens crater glacier, aside from a short-lived pond formed where the 1 October eruption pierced the glacier. We suggest that heat transfer to the glacier base is inefficient because

  17. A 60 Year Record of Atmospheric Aerosol Depositions Preserved in a High-Accumulation Dome Ice Core, Southeast Greenland

    NASA Astrophysics Data System (ADS)

    Iizuka, Yoshinori; Uemura, Ryu; Fujita, Koji; Hattori, Shohei; Seki, Osamu; Miyamoto, Chihiro; Suzuki, Toshitaka; Yoshida, Naohiro; Motoyama, Hideaki; Matoba, Sumito

    2018-01-01

    The Southeastern Greenland Dome (SE-Dome) has both a high elevation and a high accumulation rate (1.01 m we yr-1), which are suitable properties for reconstructing past environmental changes with a high time resolution. For this study, we measured the major ion fluxes in a 90 m ice core drilled from the SE-Dome region in 2015 and present the records of annual ion fluxes from 1957 to 2014. From 1970 to 2010, the trend of nonsea-salt (nss) SO42- flux decreases, whereas that for NH4+ increases, tracking well with the anthropogenic SOx and NH3 emissions mainly from North America. The result suggests that these fluxes reflect histories of the anthropogenic SOx and NH3 emissions. In contrast, the decadal trend of NO3- flux differs from the decreasing trend of anthropogenic NOx emissions. Although the cause of this discrepancy remains unclear, it may be related to changes in particle formation processes and chemical scavenging rates caused by an increase in sea salt and dust and/or a decrease in nssSO42-. We also find a high average NO3- flux (1.13 mmol m-2 yr-1) in the ice core, which suggests a negligible effect from postdepositional NO3- loss. Thus, the SE-Dome region is an excellent location for reconstructing nitrate fluxes. Over a decadal time scale, our NO3- flux record is similar to those from other ice cores in Greenland high-elevation sites, suggesting that NO3- concentration records from these ice cores are reliable.

  18. Characteristics and mode of emplacement of gneiss domes and plutonic domes in central-eastern Pyrenees

    NASA Astrophysics Data System (ADS)

    Soula, Jean-Claude

    Gneiss domes and plutonic granitoid domes make up almost 50% of the pre-Hercynian terrains in the Central and Eastern Pyrenees. From a structural study of the shape and internal structure of the domes and of their relationships with the enclosing rocks, it can be shown that both types of domes were emplaced diapirically during the major regional deformation phase and the peak of regional metamorphism. The study also shows that the internal structure, the overall shape and general behaviour relative to the host rocks are similar for plutonic domes and for gneiss domes. This appears to be in good agreement with H. Ramberg's (1967, Gravity Deformation and the Earth's Crust. Academic Press, London; 1970, Model studies in relation to intrusion of plutonic bodies. In: Mechanisms of Igneous Intrusion (edited by Newall, G. & Rast, N.) Geol. J. Spec. Issue2, 261-286.) model studies showing that dome or mushroom-like structures, similar to those observed, develop when there is a small viscosity ratio between the rising body and its enclosing medium. This implies a high crystal content for the granitoid magma. This crystal content has been estimated by (i) calculating the viscosity and density in natural conditions from petrological data for the magma considered as a suspension, using the model and program of J. P. Carron et al. (1978 Bull Soc. géol. Fr.20, 739-744.); (ii) using the recent results of experimental deformation of partially melted granites of I. van der Molen & M. S. Paterson (1979, Contr. Miner. Petrol.70, 299-318.) and (ii) comparing the preceding results with the data obtained by deformation experiments on rocks similar to those enclosing the domes. The minimum crystal content for the development of a dome-like structure has been, thus, estimated to about 70%, i.e. a value very close to that estimated by van der Molen & Paterson (1979) to be the critical value separating the granular framework flow from suspension-like behaviour. The effect of small

  19. What factors control superficial lava dome explosivity?

    PubMed Central

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J.

    2015-01-01

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management. PMID:26420069

  20. Cryovolcanic emplacement of domes on Europa

    NASA Astrophysics Data System (ADS)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Stephen M.

    2017-03-01

    Here we explore the hypothesis that certain domes on Europa may have been produced by the extrusion of viscous cryolavas. A new mathematical method for the emplacement and relaxation of viscous lava domes is presented and applied to putative cryovolcanic domes on Europa. A similarity solution approach is applied to the governing equation for fluid flow in a cylindrical geometry, and dome relaxation is explored assuming a volume of cryolava has been rapidly emplaced onto the surface. Nonphysical singularities inherent in previous models for dome relaxation have been eliminated, and cryolava cooling is represented by a time-variable viscosity. We find that at the onset of relaxation, bulk kinematic viscosities may lie in the range between 103 and 106 m2/s, while the actual fluid lava viscosity may be much lower. Plausible relaxation times to form the domes, which are linked to bulk cryolava rheology, are found to range from 3.6 days to 7.5 years. We find that cooling of the cryolava, while dominated by conduction through an icy skin, should not prevent fluids from advancing and relaxing to form domes within the timescales considered. Determining the range of emplacement conditions for putative cryolava domes will shed light on Europa's resurfacing history. In addition, the rheologies and compositions of erupted cryolavas have implications for subsurface cryomagma ascent and local surface stress conditions on Europa.

  1. All-year-round aerosol chemical composition at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Udisti, Roberto; Becagli, Silvia; Frosini, Daniele; Galli, Gaia; Ghedini, Costanza; Rugi, Francesco; Severi, Mirko; Traversi, Rita

    2010-05-01

    induced) controlling the MSA-H2SO4 ratio from DMS. Since, in summer, DMS in route toward central Antarctica is subjected to larger atmospheric concentrations of OH (and/or BrO) radical, lower temperatures and lower humidity, all conditions promoting the preferential H2SO4 formation, non-sea-salt sulphate is assumed to be the most reliable biogenic marker at Dome C. A further insight from ice-core stratigraphies is concerning the sea salt sodium (ssNa) content in snow precipitation as a reliable marker of sea-ice extent, via frost-flower formation at the pack-ice seasonal growth. This interpretation faces with the classical view that consider higher sea-spray production as caused by an increase in zonal wind intensity. Sea spray originated from frost flowers can be distinguished from sea spray coming from bulk sea-water by the lower sulphate/sodium ratio (caused by mirabilite - Na2SO4 10H20 - precipitation occurring when sea-ice temperature falls below -8°C). High resolution aerosol measurement can allow to identify different sea-spray sources and quantify frost flowers contribution to the annual ssNa budget. Finally, dust recorded in ice cores can be used as a valuable proxy for changes in hydrological cycles in the dust source areas and transport processes (pathways and scavenging). The geochemical characterization of dust in the present-day aerosol, compared with chemical composition of soils collected in South America and Australia, allows identifying the major dust source area (South America) and reconstructing pathways of atmospheric circulation. South America role in feeding dust aerosol at Dome C was supported also by comparing aerosol composition with satellite observations (dust plumes on the source sites) and back-trajectory analysis (air masses reaching Antarctica) during massive dust-storm events.

  2. Cryovolcanic Emplacement of Domes on Europa

    NASA Technical Reports Server (NTRS)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Stephen M.

    2016-01-01

    Here we explore the hypothesis that certain domes on Europa may have been produced by the extrusion of viscous cryolavas. A new mathematical method for the emplacement and relaxation of viscous lava domes is presented and applied to putative cryovolcanic domes on Europa. A similarity solution approach is applied to the governing equation for fluid flow in a cylindrical geometry, and dome relaxation is explored assuming a volume of cryolava has been rapidly emplaced onto the surface. Nonphysical sin- gularities inherent in previous models for dome relaxation have been eliminated, and cryolava cooling is represented by a time-variable viscosity. We find that at the onset of relaxation, bulk kinematic viscosities may lie in the range between 10(exp 3) and 10(exp 6) sq m/s, while the actual fluid lava viscosity may be much lower. Plausible relaxation times to form the domes, which are linked to bulk cryolava rheology, are found to range from 3.6 days to 7.5 years. We find that cooling of the cryolava, while dominated by conduction through an icy skin, should not prevent fluids from advancing and relaxing to form domes within the timescales considered. Determining the range of emplacement conditions for putative cryolava domes will shed light on Europa's resurfacing history. In addition, the rheologies and compositions of erupted cryolavas have implications for subsurface cryomagma ascent and local surface stress conditions on Europa.

  3. High-resolution mineral dust and sea ice proxy records from the Talos Dome ice core

    NASA Astrophysics Data System (ADS)

    Schüpbach, S.; Federer, U.; Kaufmann, P. R.; Albani, S.; Barbante, C.; Stocker, T. F.; Fischer, H.

    2013-12-01

    In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea

  4. The longevity of lava dome eruptions: analysis of the global DomeHaz database

    NASA Astrophysics Data System (ADS)

    Ogburn, S. E.; Wolpert, R.; Calder, E.; Pallister, J. S.; Wright, H. M. N.

    2015-12-01

    The likely duration of ongoing volcanic eruptions is a topic of great interest to volcanologists, volcano observatories, and communities near volcanoes. Lava dome forming eruptions can last from days to centuries, and can produce violent, difficult-to-forecast activity including vulcanian to plinian explosions and pyroclastic density currents. Periods of active dome extrusion are often interspersed with periods of relative quiescence, during which extrusion may slow or pause altogether, but persistent volcanic unrest continues. This contribution focuses on the durations of these longer-term unrest phases, hereafter eruptions, that include periods of both lava extrusion and quiescence. A new database of lava dome eruptions, DomeHaz, provides characteristics of 228 eruptions at 127 volcanoes; for which 177 have duration information. We find that while 78% of dome-forming eruptions do not continue for more than 5 years, the remainder can be very long-lived. The probability distributions of eruption durations are shown to be heavy-tailed and vary by magma composition. For this reason, eruption durations are modeled with generalized Pareto distributions whose governing parameters depend on each volcano's composition and eruption duration to date. Bayesian predictive distributions and associated uncertainties are presented for the remaining duration of ongoing eruptions of specified composition and duration to date. Forecasts of such natural events will always have large uncertainties, but the ability to quantify such uncertainty is key to effective communication with stakeholders and to mitigation of hazards. Projections are made for the remaining eruption durations of ongoing eruptions, including those at Soufrière Hills Volcano, Montserrat and Sinabung, Indonesia. This work provides a quantitative, transferable method and rationale on which to base long-term planning decisions for dome forming volcanoes of different compositions, regardless of the quality of an

  5. What factors control the superficial lava dome explosivity?

    NASA Astrophysics Data System (ADS)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoit; Morgan, Daniel J.

    2015-04-01

    Dome-forming eruption is a frequent eruptive style; lava domes result from intermittent, slow extrusion of viscous lava. Most dome-forming eruptions produce highly microcrystallized and highly- to almost totally-degassed magmas which have a low explosive potential. During lava dome growth, recurrent collapses of unstable parts are the main destructive process of the lava dome, generating concentrated pyroclastic density currents (C-PDC) channelized in valleys. These C-PDC have a high, but localized, damage potential that largely depends on the collapsed volume. Sometimes, a dilute ash cloud surge develops at the top of the concentrated flow with an increased destructive effect because it may overflow ridges and affect larger areas. In some cases, large lava dome collapses can induce a depressurization of the magma within the conduit, leading to vulcanian explosions. By contrast, violent, laterally directed, explosions may occur at the base of a growing lava dome: this activity generates dilute and turbulent, highly-destructive, pyroclastic density currents (D-PDC), with a high velocity and propagation poorly dependent on the topography. Numerous studies on lava dome behaviors exist, but the triggering of lava dome explosions is poorly understood. Here, seven dome-forming eruptions are investigated: in the Lesser Antilles arc: Montagne Pelée, Martinique (1902-1905, 1929-1932 and 650 y. BP eruptions), Soufrière Hills, Montserrat; in Guatemala, Santiaguito (1929 eruption); in La Chaîne des Puys, France (Puy de Dome and Puy Chopine eruptions). We propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by these key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite

  6. A Safety Case Approach for Deep Geologic Disposal of DOE HLW and DOE SNF in Bedded Salt - 13350

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevougian, S. David; MacKinnon, Robert J.; Leigh, Christi D.

    2013-07-01

    The primary objective of this study is to investigate the feasibility and utility of developing a defensible safety case for disposal of United States Department of Energy (U.S. DOE) high-level waste (HLW) and DOE spent nuclear fuel (SNF) in a conceptual deep geologic repository that is assumed to be located in a bedded salt formation of the Delaware Basin [1]. A safety case is a formal compilation of evidence, analyses, and arguments that substantiate and demonstrate the safety of a proposed or conceptual repository. We conclude that a strong initial safety case for potential licensing can be readily compiled bymore » capitalizing on the extensive technical basis that exists from prior work on the Waste Isolation Pilot Plant (WIPP), other U.S. repository development programs, and the work published through international efforts in salt repository programs such as in Germany. The potential benefits of developing a safety case include leveraging previous investments in WIPP to reduce future new repository costs, enhancing the ability to effectively plan for a repository and its licensing, and possibly expediting a schedule for a repository. A safety case will provide the necessary structure for organizing and synthesizing existing salt repository science and identifying any issues and gaps pertaining to safe disposal of DOE HLW and DOE SNF in bedded salt. The safety case synthesis will help DOE to plan its future R and D activities for investigating salt disposal using a risk-informed approach that prioritizes test activities that include laboratory, field, and underground investigations. It should be emphasized that the DOE has not made any decisions regarding the disposition of DOE HLW and DOE SNF. Furthermore, the safety case discussed herein is not intended to either site a repository in the Delaware Basin or preclude siting in other media at other locations. Rather, this study simply presents an approach for accelerated development of a safety case for a

  7. An assessment of hydrothermal alteration in the Santiaguito lava dome complex, Guatemala: implications for dome collapse hazards

    USGS Publications Warehouse

    Ball, Jessica L.; Calder, Eliza S.; Hubbard, Bernard E.; Bernstein, Marc L.

    2013-01-01

    A combination of field mapping, geochemistry, and remote sensing methods has been employed to determine the extent of hydrothermal alteration and assess the potential for failure at the Santiaguito lava dome complex, Guatemala. The 90-year-old complex of four lava domes has only experienced relatively small and infrequent dome collapses in the past, which were associated with lava extrusion. However, existing evidence of an active hydrothermal system coupled with intense seasonal precipitation also presents ideal conditions for instability related to weakened clay-rich edifice rocks. Mapping of the Santiaguito dome complex identified structural features related to dome growth dynamics, potential areas of weakness related to erosion, and locations of fumarole fields. X-ray diffraction and backscattered electron images taken with scanning electron microscopy of dacite and ash samples collected from around fumaroles revealed only minor clay films, and little evidence of alteration. Mineral mapping using ASTER and Hyperion satellite images, however, suggest low-temperature (<150 °C) silicic alteration on erosional surfaces of the domes, but not the type of pervasive acid-sulfate alteration implicated in collapses of other altered edifices. To evaluate the possibility of internal alteration, we re-examined existing aqueous geochemical data from dome-fed hot springs. The data indicate significant water–rock interaction, but the Na–Mg–K geoindicator suggests only a short water residence time, and δ18O/δD ratios show only minor shifts from the meteoric water line with little precipitation of secondary (alteration) minerals. Based on available data, hydrothermal alteration on the dome complex appears to be restricted to surficial deposits of hydrous silica, but the study has highlighted, importantly, that the 1902 eruption crater headwall of Santa María does show more advanced argillic alteration. We also cannot rule out the possibility of advanced alteration

  8. Thermal influences on spontaneous rock dome exfoliation

    USGS Publications Warehouse

    Collins, Brian D.; Stock, Greg M.; Eppes, Martha C.; Lewis, Scott W.; Corbett, Skye C.; Smith, Joel B.

    2018-01-01

    Rock domes, with their onion-skin layers of exfoliation sheets, are among the most captivating landforms on Earth. Long recognized as integral in shaping domes, the exact mechanism(s) by which exfoliation occurs remains enigmatic, mainly due to the lack of direct observations of natural events. In August 2014, during the hottest days of summer, a granitic dome in California, USA, spontaneously exfoliated; witnesses observed extensive cracking, including a ~8000 kg sheet popping into the air. Subsequent exfoliation episodes during the following two summers were recorded by instrumentation that captured—for the first time—exfoliation deformation and stress conditions. Here we show that thermal cycling and cumulative dome surface heating can induce subcritical cracking that culminates in seemingly spontaneous exfoliation. Our results indicate that thermal stresses—largely discounted in dome formation literature—can play a key role in triggering exfoliation and therefore may be an important control for shaping domes worldwide.

  9. Basic repository environmental assessment design basis, Lavender Canyon site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    This study examines the engineering factors and costs associated with the construction, operation, and decommissioning of a high-level nuclear waste repository in salt in the Paradox Basin in Lavender Canyon, Utah. The study assumes a repository capacity of 36,000 metric tons of heavy metal (MTHM) of unreprocessed spent fuel and 36,000 MTHM of commercial high-level reprocessing waste, along with 7020 canisters of defense high-level reprocessing waste and associated quantities of remote- and contact-handled transuranic waste (TRU). With the exception of TRU, all the waste forms are placed in 300- to 1000-year-life carbon-steel waste packages in a collocated waste handling andmore » packaging facility (WHPF), which is also described. The construction, operation, and decommissioning of the proposed repository is estimated to cost approximately $5.51 billion. Costs include those for the collocated WHPP, engineering, and contingency, but exclude waste form assembly and shipment to the site and waste package fabrication and shipment to the site. These costs reflect the relative average wage rates of the region and the relatively sound nature of the salt at this site. Construction would require an estimated 7.75 years. Engineering factors and costs are not strongly influenced by environmental considerations. 51 refs., 24 figs., 20 tabs.« less

  10. Integrated geophysical study of the Triassic salt bodies' geometry and evolution in central Tunisia

    NASA Astrophysics Data System (ADS)

    Azaiez, Hajer; Amri, Dorra Tanfous; Gabtni, Hakim; Bedir, Mourad; Soussi, Mohamed

    2008-01-01

    A comprehensive study, integrating gravity, magnetic and seismic reflection data, has been used to resolve the complex Triassic salt body geometry and evolution in central Tunisia. Regional seismic lines across the study area show a detachment level in the Upper Triassic evaporites, associated with chaotic seismic facies below the Souinia, Majoura, and Mezzouna structures. The Jurassic and Lower Cretaceous seismic horizons display pinching-outs and onlapping around these structures. A stack-velocity section confirms the existence of a high-velocity body beneath the Souinia Mountain. Regional gravity and magnetic profiles in this area were elaborated from ETAP (the Tunisian Firm of Petroleum Activities) measure stations. These profiles were plotted following the same layout from the west (Souinia) to the east (Mezzouna), across the Majoura and Kharrouba mountains. They highlight associated gravity and magnetic negative anomalies. These gravity and magnetic data coupled to the reflection seismic data demonstrate that, in the Souinia, Majoura, and El Hafey zones, the Triassic salt reaches a salt pillow and a salt-dome stage, without piercing the cover. These stages are expressed by moderately low gravity anomalies. On the other hand, in the Mezzouna area (part of the North-South Axis), the Triassic salt had pierced its cover during the Upper Cretaceous and the Tertiary, reaching a more advanced stage as a salt diapir and salt wall. These stages express important low gravity and magnetic anomalies. These results confirm the model of Tanfous et al. (2005) of halokinetic movements by fault intrusions inducing, from the west to the east, structures at different stages of salt pillow, salt dome, and salt diapir.

  11. Roadmap for disposal of Electrorefiner Salt as Transuranic Waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rechard, Robert P.; Trone, Janis R.; Kalinina, Elena Arkadievna

    The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a minedmore » repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.« less

  12. Tephra layers in the Siple Dome and Taylor Dome ice cores, Antarctica: Sources and correlations

    NASA Astrophysics Data System (ADS)

    Dunbar, Nelia W.; Zielinski, Gregory A.; Voisins, Daniel T.

    2003-08-01

    Volcanic ash, or tephra layers, are found in the Taylor Dome, Siple Dome A, and Siple Dome B ice cores. Significant shard concentrations are found at a number of depths in all three cores. Electron and ion microprobe analyses indicate that the geochemical composition of most layers is basaltic, basanitic, or trachytic, and the geochemical signatures of the layers suggest derivation from the Pleiades volcanic center, Mt. Melbourne volcano, or small mafic centers, probably in the Royal Society Range area. Presence of tephra layers suggests an episode of previously unrecognized Antarctic volcanic activity between 1776 and 1805 A.D., from at least two volcanic centers. A strong geochemical correlation (D = 3.49 and 3.97 with a value of 4 considered identical) is observed between tephra layers at depth of 79.2 m in the Taylor Dome ice core, and layers between 97.2 and 97.7 m depth in the Siple B core. This correlation, and the highly accurate depth-age scale of the Siple B core suggest that the age of this horizon in the Taylor Dome ice core presented by [1998a, 2000] should be revised downward, to the younger age of 675 ± 25 years before 1995. This revised chronology is consistent with vertical strain measurements presented by [2003].

  13. Analysis of an evaporitic dome in eastern Tithonium Chasma (Mars): the result of diapirism processes?

    NASA Astrophysics Data System (ADS)

    Davide, Baioni; Forese Carlo, Wezel

    2010-05-01

    The Tithonium Chasma (TC) is the northern trench of the western troughs of Valles Marineris (Mars). In the easternmost part of the canyon system a mountain displaying dome shape morphology is located. The mineralogical characteristics of the dome have been indicated by the OMEGA image spectrometer data that mapped it as a sulphate deposit (OMEGA data orbit 531_3). Studies on the spectral characteristic absorptions for the hydrated magnesium sulphates carried out on the deposits within the Tithonium Chasma, showed the mineralogical components displayed by the dome in detail. According to these results the dome shows clear signatures of kieserite (Mg SO4.H2O), an evaporitic mineral also found on the Earth. Further studies carried out on the characteristics and the genesis of Kieserite both on Mars and on the Earth showed that the dome can not be constituted entirely by kieserite alone but probably it might be constituted also by the same salts that on the Earth alter to kieserite, such as, carnallite, kainite and halite. In this work we investigated in great detail the surface features of the dome located in the eastern part of TC, with the aim to try to determine its nature and origin. The morphological features of the dome have been investigated through the integrate analysis of HiRISE, HRSC, MOC and THEMIS data, while the morphometric characteristics have been measured on a topographic map (50 m contours lines) built using HRSC and MOLA data. The observation of the dome surface highlights features created by fluvio-erosional and solutional processes. The dome appears to be characterized by deep gully morphology displaying a radial system that develops from the margins of the summit plateau. The solutional surface is characterized by landforms typical of the karst morphology such as, karren, dolines and collapse dolines. Depositional forms displaying periglacial rock glacier features can be seen at the foot of the slopes, while they seem to be lacking along the

  14. Holodeck: Telepresence Dome Visualization System Simulations

    NASA Technical Reports Server (NTRS)

    Hite, Nicolas

    2012-01-01

    This paper explores the simulation and consideration of different image-projection strategies for the Holodeck, a dome that will be used for highly immersive telepresence operations in future endeavors of the National Aeronautics and Space Administration (NASA). Its visualization system will include a full 360 degree projection onto the dome's interior walls in order to display video streams from both simulations and recorded video. Because humans innately trust their vision to precisely report their surroundings, the Holodeck's visualization system is crucial to its realism. This system will be rigged with an integrated hardware and software infrastructure-namely, a system of projectors that will relay with a Graphics Processing Unit (GPU) and computer to both project images onto the dome and correct warping in those projections in real-time. Using both Computer-Aided Design (CAD) and ray-tracing software, virtual models of various dome/projector geometries were created and simulated via tracking and analysis of virtual light sources, leading to the selection of two possible configurations for installation. Research into image warping and the generation of dome-ready video content was also conducted, including generation of fisheye images, distortion correction, and the generation of a reliable content-generation pipeline.

  15. Emplacement of Volcanic Domes on Venus and Europa

    NASA Technical Reports Server (NTRS)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Steve M.

    2015-01-01

    Placing firmer constraints on the emplacement timescales of visible volcanic features is essential to obtaining a better understanding of the resurfacing history of Venus. Fig. 1 shows a Magellan radar image and topography for a putative venusian lava dome. 175 such domes have been identified, having diameters that range from 19 - 94 km, and estimated thicknesses as great as 4 km [1-2]. These domes are thought to be volcanic in origin [3], having formed by the flow of a viscous fluid (i.e., lava) onto the surface. Among the unanswered questions surrounding the formation of Venus steep-sided domes are their emplacement duration, composition, and the rheology of the lava. Rheologically speaking, maintenance of extremely thick, 1-4 km flows necessitates higher viscosity lavas, while the domes' smooth upper surfaces imply the presence of lower viscosity lavas [2-3]. Further, numerous quantitative issues, such as the nature and duration of lava supply, how long the conduit remained open and capable of supplying lava, the volumetric flow rate, and the role of rigid crust in influencing flow and final morphology all have implications for subsurface magma ascent and local surface stress conditions. The surface of Jupiter's icy moon Europa exhibits many putative cryovolcanic constructs [5-7], and previous workers have suggested that domical positive relief features imaged by the Galileo spacecraft may be volcanic in origin [5,7-8] (Fig. 2). Though often smaller than Venus domes, if emplaced as a viscous fluid, formation mechanisms for europan domes may be similar to those of venusian domes [7]. Models for the emplacement of venusian lava domes (e.g. [9-10]) have been previously applied to the formation of putative cryolava domes on Europa [7].

  16. Desalination of brick masonry and stone carvings in Capitullum hall of Riga Dome Cathedral

    NASA Astrophysics Data System (ADS)

    Grave, J.; Krage, L.; Lusis, R.; Vitina, I.

    2011-12-01

    The construction of Riga Dome Cathedral and its Capithullum hall were initiated in 1211. Through centuries they were damaged a lot due to migration of soluble salts and moisture. During the last restoration (1888-1891) a lot of mistakes were conceded and subsequently some of probable solutions for restoration were unsuccessful. In 2009 the new restoration stage in Capithullum hall was started. Two types of desalination methods were used in hall - desalination with lime-sand plaster and poultice of lignin. Both quantitative and semiquantitative chemical analyses were performed in order to appreciate the desalination process.

  17. Arc jet testing of a Dynasil dome

    NASA Astrophysics Data System (ADS)

    Burrell, Jack O.; Strobel, Forrest A.

    1999-07-01

    Arc jet testing of the Hera modified ballistic reentry vehicle - 1E (MBRV-1E) nosetip was conducted in June of 1998. The tests were conducted in the Air Force's Arnold Engineering Development Center HEAT-H1 arc plasma test facility in Tullahoma, Tennessee. The MBRV-1 vehicle is a separating short- to medium-range target. The MBRV-1E nosetip incorporates a custom designed quartz dome that is integrated into the nosetip stagnation region. The dome was bonded to the baseline nosetip material, a well characterized carbon-carbon composite material, using a silica based ceramic bond materials. The objectives of the test were to demonstrate the thermal performance and structural integrity of the nosetip design by exposing tip to arc plasma-heated flow simulating the reentry flight environment. Pre-test analysis of the Dynasil dome performed using finite element analysis predicted the dome would survive the test conditions with no failures. Post-test inspection of the dome revealed a hard, opaque coating on the outer surface of the dome. Once removed, the dome was shown to have numerous surface cracks near the stagnation region. In addition to the surface cracks, significant pitting on the surface was observed through both an optical microscope and a scanning electron microscope. Post-test analyses were performed to determine the cause of these surface cracks. It was concluded that the cracks occurred during cooldown, and were a result of significant strength degradation which was caused by the surface pitting.

  18. Morphodynamics of dome dunes under unimodal wind regimes

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Narteau, Clement; Rozier, Olivier

    2017-04-01

    Dome dunes are isolated sand piles with a rounded shape and no slip face. They are not only incipient or disappearing dunes, they can also reach a giant size and form dome-dune fields. Nevertheless, unlike other types of dunes, they have not been the subject of intense research, certainly because they result from complex multidirectional wind regimes. Here we analyze the morphodynamics of dome dunes under unimodal wind regimes. From numerical modeling using a normal distribution of sand flux orientation, we show that the transition from barchan to dome dunes occur when the standard deviation is larger than 40°. As confirmed by sand flux roses of dome-dune fields in arid deserts on Earth, it corresponds to RDP/DP-value of 0.8 (RDP/DP is the ratio between the resultant drift potential and the drift potential). Both in the field and in the numerical model, the transition from barchan to dome-dunes can also be captured from the coefficient of variation of the planar dune shape. Not surprisingly, smaller dome dunes are faster than larger ones. However, the dependence of dune migration rate on the RDP-value changes according to the presence or absence of slip faces because of the speed-up effect. Transient finger dunes may develop in dome-dune fields, but they rapidly break-up into smaller bodies. This shows that, contrary to bidirectional wind regimes, a large dispersion of sand flux orientation is not efficient in building longitudinal dunes.

  19. The longevity of lava dome eruptions

    NASA Astrophysics Data System (ADS)

    Wolpert, Robert L.; Ogburn, Sarah E.; Calder, Eliza S.

    2016-02-01

    Understanding the duration of past, ongoing, and future volcanic eruptions is an important scientific goal and a key societal need. We present a new methodology for forecasting the duration of ongoing and future lava dome eruptions based on a database (DomeHaz) recently compiled by the authors. The database includes duration and composition for 177 such eruptions, with "eruption" defined as the period encompassing individual episodes of dome growth along with associated quiescent periods during which extrusion pauses but unrest continues. In a key finding, we show that probability distributions for dome eruption durations are both heavy tailed and composition dependent. We construct objective Bayesian statistical models featuring heavy-tailed Generalized Pareto distributions with composition-specific parameters to make forecasts about the durations of new and ongoing eruptions that depend on both eruption duration to date and composition. Our Bayesian predictive distributions reflect both uncertainty about model parameter values (epistemic uncertainty) and the natural variability of the geologic processes (aleatoric uncertainty). The results are illustrated by presenting likely trajectories for 14 dome-building eruptions ongoing in 2015. Full representation of the uncertainty is presented for two key eruptions, Soufriére Hills Volcano in Montserrat (10-139 years, median 35 years) and Sinabung, Indonesia (1-17 years, median 4 years). Uncertainties are high but, importantly, quantifiable. This work provides for the first time a quantitative and transferable method and rationale on which to base long-term planning decisions for lava dome-forming volcanoes, with wide potential use and transferability to forecasts of other types of eruptions and other adverse events across the geohazard spectrum.

  20. Dome: Distributed Object Migration Environment

    DTIC Science & Technology

    1994-05-01

    Best Available Copy AD-A281 134 Computer Science Dome: Distributed object migration environment Adam Beguelin Erik Seligman Michael Starkey May 1994...Beguelin Erik Seligman Michael Starkey May 1994 CMU-CS-94-153 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Abstract Dome... Linda [4], Isis [2], and Express [6] allow a pro- grammer to treat a heterogeneous network of computers as a parallel machine. These tools allow the

  1. Mechanical Design of Metal Dome for Industrial Application

    NASA Astrophysics Data System (ADS)

    Jin-Chee Liu, Thomas; Chen, Li-Wei; Lin, Nai-Pin

    2018-02-01

    In this paper, the mechanical design of metal domes is studied using finite element analysis. The snap-through behavior of a practical button design that uses a metal dome is found. In addition, the individual click ratio and maximum force for a variety of metal domes are determined. This paper provides guidance on button design for industrial engineers.

  2. Autonomous Dome for a Robotic Telescope

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Sengupta, A.; Ganesh, S.

    2016-12-01

    The Physical Research Laboratory operates a 50 cm robotic observatory at Mount Abu (Rajsthan, India). This Automated Telescope for Variability Studies (ATVS) makes use of the Remote Telescope System 2 (RTS2) for autonomous operations. The observatory uses a 3.5 m dome from Sirius Observatories. We have developed electronics using Arduino electronic circuit boards with home grown logic and software to control the dome operations. We are in the process of completing the drivers to link our Arduino based dome controller with RTS2. This document is a short description of the various phases of the development and their integration to achieve the required objective.

  3. Microstructural observations of reconsolidated granular salt to 250°C

    NASA Astrophysics Data System (ADS)

    Mills, M. M.; Hansen, F.; Bauer, S. J.; Stormont, J.

    2014-12-01

    Very low permeability is a principal reason salt formations are considered viable hosts for disposal of nuclear waste and spent nuclear fuel. Granular salt is likely to be used as back-fill material and as a seal system component. Granular salt is expected to reconsolidate to a low permeability condition because of external pressure from the surrounding salt formation. Understanding the consolidation processes--known to depend on the stress state, moisture availability and temperature--is important for predicting achievement of sealing functions and long-term repository performance. As granular salt consolidates, initial void reduction is accomplished by brittle processes of grain rearrangement and cataclastic flow. At porosities of less than 10%, grain boundary processes and crystal-plastic mechanisms govern further porosity reduction. We investigate the micro-mechanisms operative in granular salt that has been consolidated under high temperatures to relatively low porosity. These conditions would occur proximal to heat-generating canisters. Mine-run salt from the Waste Isolation Pilot Plant was used to create cylindrical samples which were consolidated at 250°C and stresses to 20 MPa. From samples consolidated to fractional densities of 86% and 97% polished thin sections, etched cleavage chips, and fragments were fabricated. Microstructural techniques included scanning electron and optical microscopy. Microstructure of undeformed mine-run salt was compared to the deformed granular salt. Observed deformation mechanisms include glide, cross slip, climb, fluid-assisted creep, pressure-solution redeposition, and annealing. Documentation of operative deformation mechanisms within the consolidating granular salt, particularly at grain boundaries, is essential to establish effects of moisture, stress, and temperature. Future work will include characterization of pore structures. Information gleaned in these studies supports evaluation of a constitutive model for

  4. Mitigating Abnormal Grain Growth for Friction Stir Welded Al-Li 2195 Spun Formed Domes

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Russell, Carolyn

    2012-01-01

    Formability and abnormal grain growth (AGG) are the two major issues that have been encountered for Al alloy spun formed dome development using friction stir welded blanks. Material properties that have significant influence on the formability include forming range and strain hardening exponent. In this study, tensile tests were performed for two 2195 friction stir weld parameter sets at 400 F to study the effects of post weld anneal on the forming range and strain hardening exponent. It was found that the formability can be enhanced by applying a newly developed post weld anneal to heat treat the friction stir welded panels. This new post weld anneal leads to a higher forming range and much improved strain hardening exponent. AGG in the weld nugget is known to cause a significant reduction of ductility and fracture toughness. This study also investigated how AGG may be influenced by the heating rate to the solution heat treatment temperature. After post-weld annealing, friction stir welds were strained to 15% and 39% by compression at 400 F before they were subjected to SHT at 950 F for 1 hour. Salt bath SHT is very effective in reducing the grain size as it helps arrest the onset of AGG and promote normal recrystallization and grain growth. However, heat treating a 18 ft dome using a salt bath is not practical. Efforts are continuing at Marshall Space Flight Center to identify the welding parameters and heat treating parameters that can help mitigate the AGG in the friction stir welds.

  5. Himalayan gneiss dome formation in the middle crust and exhumation by normal faulting: New geochronology of Gianbul dome, northwestern India

    USGS Publications Warehouse

    Horton, Forrest; Lee, Jeffrey; Hacker, Bradley; Bowman-Kamaha'o, Meilani; Cosca, Michael A.

    2015-01-01

    A general lack of consensus about the origin of Himalayan gneiss domes hinders accurate thermomechanical modeling of the orogen. To test whether doming resulted from tectonic contraction (e.g., thrust duplex formation, antiformal bending above a thrust ramp, etc.), channel flow, or via the buoyant rise of anatectic melts, this study investigates the depth and timing of doming processes for Gianbul dome in the western Himalaya. The dome is composed of Greater Himalayan Sequence migmatite, Paleozoic orthogneiss, and metasedimentary rock cut by multiple generations of leucogranite dikes. These rocks record a major penetrative D2 deformational event characterized by a domed foliation and associated NE-SW–trending stretching lineation, and they are flanked by the top-down-to-the-SW (normal-sense) Khanjar shear zone and the top-down-to-the-NE (normal sense) Zanskar shear zone (the western equivalent of the South Tibetan detachment system). Monazite U/Th-Pb geochronology records (1) Paleozoic emplacement of the Kade orthogneiss and associated granite dikes; (2) prograde Barrovian metamorphism from 37 to 33 Ma; (3) doming driven by upper-crustal extension and positive buoyancy of decompression melts between 26 and 22 Ma; and (4) the injection of anatectic melts into the upper levels of the dome—neutralizing the effects of melt buoyancy and potentially adding strength to the host rock—by ca. 22.6 Ma on the southwestern flank and ca. 21 Ma on the northeastern flank. As shown by a northeastward decrease in 40Ar/39Ar muscovite dates from 22.4 to 20.2 Ma, ductile normal-sense displacement within the Zanskar shear zone ended by ca. 22 Ma, after which the Gianbul dome was exhumed as part of a rigid footwall block below the brittle Zanskar normal fault, tilting an estimated 5°–10°SW into its present orientation.

  6. Microfracture development and foam collapse during lava dome growth

    NASA Astrophysics Data System (ADS)

    Ashwell, P.; Kendrick, J. E.; Lavallee, Y.; kennedy, B.; Hess, K.; Cole, J. W.; Dingwell, D. B.

    2012-12-01

    The ability of a volcano to degas effectively is regulated by the collapse of the foam during lava dome growth. As a lava dome extrudes and cools, it will begin to collapse under its own weight, leading to the closure of bubbles and the eventual blockage of the permeable foam network. A reduction in the lavas permeability hinders gas movement and increases internal bubble pressure, which may eventually lead to failure of the bubble walls, and ultimately to explosive fragmentation of the dome. However, the behaviour of lava dome material under compression is poorly understood. Here we present the results of low-load, uniaxial, high temperature (850oC) compression experiments on glassy, rhyolitic dome material from Ngongotaha (~200ka, following collapse of Rotorua Caldera) and Tarawera (1314AD, from dome collapse generated block and ash flow) domes in New Zealand. The development of textures and microstructures was tracked using neutron computed tomography at incremental stages of strain. Porosity and permeability measurements, using pycnometry and gas permeability, before and after each experiment quantified the evolution of the permeable bubble network. Our results show that uniaxial compression of vesicular lava leads to a systematic reduction of porosity on a timescale comparable to volcanic eruptions (hours - days). The closure of bubbles naturally decreases permeability parallel and perpendicular to the applied load, and at high strains fractures begin to initiate in phenocrysts and propagate vertically into the glass. These microfractures result in localised increases in permeability. Crystallinity and initial vesicularity of each sample affects the rate of bubble collapse and the evolution of permeability. The most highly compressed samples (60%) show textures similar to samples collected from the centre of Tarawera Dome, thought to have suffered from collapse shortly after dome emplacement. However, structures and porosities in the deformed Ngongotaha

  7. Transdomes: Emplacement of Migmatite Domes in Oblique Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Teyssier, C. P.; Rey, P. F.; Whitney, D. L.; Mondy, L. S.; Roger, F.

    2014-12-01

    Many migmatite domes are emplaced within wrench corridors in which a combination of strike-slip and extensional detachment zones (pull-apart, extensional relay, or transfer zones) focus deep-crust exhumation. The Montagne Noire dome (France, Variscan Massif Central) exemplifies wrench-related dome formation and displays the following structural, metamorphic, and geochronologic characteristics of a 'transdome': the dome is elongate in the direction of extension; foliation outlines a double dome separated by a high-strain zone; lineation is shallowly plunging with a fairly uniform trend that parallels the strike of the high-strain zone; subdomes contain recumbent structures overprinted by upright folds that affected upward by flat shear zones associated with detachment tectonics; domes display a large syn-deformation metamorphic gradient from core (upper amphibolite facies migmatite) to margin (down to greenschist facies mylonite); some rocks in the dome core experienced isothermal decompression revealed by disequilibrium reaction textures, particularly in mafic rocks (including eclogite); and results of U-Pb geochrononology indicate a narrow range of metamorphic crystallization from core to mantling schist spanning ~10 Myr. 3D numerical modeling of transdomes show that the dome solicits a larger source region of partially molten lower crust compared to 2D models; this flowing crust creates a double-dome architecture as in 2D models but there are differences in the predicted thermal history and flow paths. In a transtension setting, flow lines converge at depth (radial-centripetal flow) toward the zone of extension and diverge at shallow levels in a more uniform direction that is imposed by upper crust motion and deformation. This evolution produces a characteristic pattern of strain history, progressive fabric overprint, and P-T paths that are comparable to observed dome rocks.

  8. The Discovery Dome: A Tool for Increasing Student Engagement

    NASA Astrophysics Data System (ADS)

    Brevik, Corinne

    2015-04-01

    The Discovery Dome is a portable full-dome theater that plays professionally-created science films. Developed by the Houston Museum of Natural Science and Rice University, this inflatable planetarium offers a state-of-the-art visual learning experience that can address many different fields of science for any grade level. It surrounds students with roaring dinosaurs, fascinating planets, and explosive storms - all immersive, engaging, and realistic. Dickinson State University has chosen to utilize its Discovery Dome to address Earth Science education at two levels. University courses across the science disciplines can use the Discovery Dome as part of their curriculum. The digital shows immerse the students in various topics ranging from astronomy to geology to weather and climate. The dome has proven to be a valuable tool for introducing new material to students as well as for reinforcing concepts previously covered in lectures or laboratory settings. The Discovery Dome also serves as an amazing science public-outreach tool. University students are trained to run the dome, and they travel with it to schools and libraries around the region. During the 2013-14 school year, our Discovery Dome visited over 30 locations. Many of the schools visited are in rural settings which offer students few opportunities to experience state-of-the-art science technology. The school kids are extremely excited when the Discovery Dome visits their community, and they will talk about the experience for many weeks. Traveling with the dome is also very valuable for the university students who get involved in the program. They become very familiar with the science content, and they gain experience working with teachers as well as the general public. They get to share their love of science, and they get to help inspire a new generation of scientists.

  9. Research on conformal dome of Karman-curve shape

    NASA Astrophysics Data System (ADS)

    Zhang, Yunqiang; Chang, Jun; Niu, Yajun

    2018-01-01

    Because the conformal optical technology can obviously improve the aerodynamic performance of the infrared guidance missile, it has been studied deeply in recent years. By comparing the performance of the missiles with conformal dome and conventional missiles, the advantages of the conformal optical technology are demonstrated in the maneuverability and stealth of the missile. At present, the study of conformal optical systems focuses on ellipsoid or quadratic curve types. But in actual use, the dome using these curves is not the best choice. In this paper, the influence of different shape of the dome on aerodynamic performance, aerodynamic heating, internal space volume and other properties is discussed. The result shows infrared optical system with conformal dome of Karman-curve shape has a good application prospect, is the future direction of development. Finally, the difficult problems of conformal dome of Karman-curve shape are discussed.

  10. The research of suspen-dome structure

    NASA Astrophysics Data System (ADS)

    Gong, Shengyuan

    2017-09-01

    After overcoming the shortcomings of single-layer latticed shell and cable dome structure, the suspen-dome was developed by inheriting the advantages of them, and it was recognized and applied as a new type of prestressed force large span space structure. Based on the analysis of the background and mechanical principle, the researches of suspen-dome are reviewed, including form-finding analysis, the analysis of static force and stability, the dynamic behaviors and the earthquake resistant behavior, the analysis of prestressing force and optimization design, and the research status of the design of the fir-resistant performance etc. This thesis summarizes the methods of various researches, being a reference for further structural performance research and structural engineering application.

  11. A Volume Flux Approach to Cryolava Dome Emplacement on Europa

    NASA Technical Reports Server (NTRS)

    Quick, Lynnae C.; Fagents, Sarah A.; Hurford, Terry A.; Prockter, Louise M.

    2017-01-01

    We previously modeled a subset of domes on Europa with morphologies consistent with emplacement by viscous extrusions of cryolava. These models assumed instantaneous emplacement of a fixed volume of fluid onto the surface, followed by relaxation to form domes. However, this approach only allowed for the investigation of late-stage eruptive processes far from the vent and provided little insight into how cryolavas arrived at the surface. Consideration of dome emplacement as cryolavas erupt at the surface is therefore pertinent. A volume flux approach, in which lava erupts from the vent at a constant rate, was successfully applied to the formation of steep-sided volcanic domes on Venus. These domes are believed to have formed in the same manner as candi-date cryolava domes on Europa. In order to gain a more complete understanding of the potential for the emplacement of Europa domes via extrusive volcanism, we have applied this new volume flux approach to the formation of putative cryovolcanic domes on Europa. Assuming as in that europan cryolavas are briny, aqueous solutions which may or may not contain some ice crystal fraction, we present the results of this modeling and explore theories for the formation of low-albedo moats that surround some domes.

  12. Chemistry of transuranium elements in salt-base repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, Marian; Reed, Donald T; Lucchini, Jean - Francois

    2010-12-02

    The mobility and potential release of actinides into the accessible environment continues to be the key performance assessment concern of nuclear repositories. Actinide, in particular plutonium speciation under the wide range of conditions that can exist in the subsurface is complex and depends strongly on the coupled effects of redox conditions, inorganic/organic complexation, and the extent/nature of aggregation. Understanding the key factors that define the potential for actinide migration is, in this context, an essential and critical part of making and sustaining a licensing case for a nuclear repository. Herein we report on recent progress in a concurrent modeling andmore » experimental study to determine the speciation of plutonium, uranium and americium in high ionic strength Na-CI-Mg brines. This is being done as part of the ongomg recertification effort m the Waste Isolation Pilot Plant (WIPP). The oxidation-state specific solubility of actinides were established in brine as function of pC{sub H+}, brine composition and the presence and absence of organic chelating agents and carbonate. An oxidation-state invariant analog approach using Nd{sup 3+} and Th{sup 4+} was used for An{sup 3+} and An{sup 4+} respectively. These results show that organic ligands and hydrolysis are key factors for An(III) solubility, hydrolysis at pC{sub H+} above 8 is predominate for An(IV) and carbonates are the key factor for U(VI) solubility. The effect of high ionic strength and brine components measured in absence of carbonates leads to measurable increased in overall solubility over analogous low ionic strength groundwater. Less is known about the bioreduction of actinides by halo-tolerant microorganisms, but there is now evidence that bioreduction does occur and is analogous, in many ways, to what occurs with soil bacteria. Results of solubility studies that focus on Pitzer parameter corrections, new species (e.g. borate complexation), and the thermodynamic parameters for

  13. Unique dome design for the SOAR telescope project

    NASA Astrophysics Data System (ADS)

    Teran, Jose U.; Porter, David S.; Hileman, Edward A.; Neff, Daniel H.

    2000-08-01

    The SOAR telescope dome is a 20 meter diameter 5/8 spherical structure built on a rotating steel frame with an over the top nesting shutter and covered with a fiberglass panel system. The insulated fiberglass panel system can be self- supporting and is typically used for radomes on ground based tracking systems. The enclosed observing area is ventilated using a down draft ventilation system. The rotating steel frame is comprised of a ring beam and dual arch girders to provide support to the panel system sections and guide the shutter. The dual door shutter incorporates a unique differential drive system that reduces the complexity of the control system. The dome, shutter and windscreen `track' the telescope for maximum wind protection. The dome rotates on sixteen fixed compliant bogie assemblies. The dome is designed for assembly in sections off the facility and lifted into place for minimal impact on assembly of other telescope systems. The expected cost of the complete dome; including structure, drives, and controls is under 1.7 million. The details covered in this paper are the initial trade-offs and rationale required by SOAR to define the dome, the detailed design performed by M3 Engineering and Technology, and the choices made during the design.

  14. Geological evolution of the Afro-Arabian dome

    NASA Astrophysics Data System (ADS)

    Almond, D. C.

    1986-12-01

    The Afro-Arabian dome includes the elevated continental regions enclosing the Red Sea, Gulf of Aden, and the Ethiopian rift system, and extends northwards as far as Jordan. It is more than an order of magnitude larger than other African uplifts. Both the structures and the igneous rocks of the dome appear to be products of the superimposition of two, perhaps three, semi-independent generating systems, initiated at different times but all still active. A strain pattern dominated by NW-trending basins and rifts first became established early in the Cretaceous. By the end of the Oligocene, much of the extensional strain had been taken up along the Red Sea and Gulf of Aden axes, which subsequently developed into an ocean. Palaeogene "trap" volcanism of mildly alkaline to transitional character was related to this horizontal extension rather than to doming. Further west, the East Sahara swell has a history of intermittent alkaline volcanicity which began in the Mesozoic and was independent of magmatism in the Afro-Arabian dome. Volcanicity specifically related to doming began in the Miocene along a N-S zone of uplift extending from Ethiopia to Syria. This elongated swell forms the northern termination of the East African system of domes and rifts, characterized by episodic vertical uplift but very little extension. Superimposition of epeirogenic uplift upon structures formed by horizontal extension took place in the Neogene. Volcanicity related to vertical tectonics is mildly alkaline in character, whereas transitional and tholeiitic magmas are found along the spreading axes.

  15. Long-period Seismicity at the Napoleonville Salt Dome: Implications for Local Seismic Monitoring of Underground Hydrocarbon Storage Caverns

    NASA Astrophysics Data System (ADS)

    Dreger, D. S.; Ford, S. R.; Nayak, A.

    2015-12-01

    The formation of a large sinkhole at the Napoleonville salt dome, Assumption Parish, Louisiana, in August 2012 was accompanied by a rich sequence of complex seismic events, including long-period (LP) events that were recorded 11 km away at Transportable Array station 544A in White Castle, Louisiana. The LP events have relatively little energy at short periods, which make them difficult to detect using standard high-frequency power detectors, and the majority of energy that reaches the station is peaked near 0.4 Hz. The analysis of the local records reveals that the onset of the 0.4 Hz signals coincides with the S-wave arrival, and therefore it may be a shaking induced resonance in a fluid filled cavern. We created a low-frequency (0.1-0.6 Hz) power detector (short-term average / long-term average) that operated on all three components of the broadband instrument, since considerable energy was detected on the horizontal components. The detections from the power detector were then used as templates in three-channel correlation detectors thereby increasing the number of detections by a little more than a factor of two to nearly 3000. The rate of LP events is approximately one event every other day at the beginning of recording in March 2011. Around 2 May 2012 the rate changes to approximately 7 events per day and then increases to 25 events per day at the beginning of July 2012. Finally, in the days leading up to the sinkhole formation there are approximately 200 LP events per day. The analysis of these events could aid in the development of local seismic monitoring methods for underground industrial storage caverns. Prepared by LLNL under Contract DE-AC52-07NA27344.

  16. Water recycling at the Millennium Dome.

    PubMed

    Hills, S; Smith, A; Hardy, P; Birks, R

    2001-01-01

    Thames Water is working with the New Millennium Experience Company to provide a water recycling system for the Millennium Dome which will supply 500 m3/d of reclaimed water for WC and urinal flushing. The system will treat water from three sources: rainwater--from the Dome roof greywater--from handbasins in the toilet blocks groundwater--from beneath the Dome site The treatment technologies will range from "natural" reedbeds for the rainwater, to more sophisticated options, including biological aerated filters and membranes for the greywater and groundwater. Pilot scale trials were used to design the optimum configuration. In addition to the recycling system, water efficient devices will be installed in three of the core toilet blocks as part of a programme of research into the effectiveness of conservation measures. Data on water usage and customer behaviour will be collected via a comprehensive metering system. Information from the Dome project on the economics and efficiency of on-site recycling at large scale and data on water efficient devices, customer perception and behaviour will be of great value to the water industry. For Thames Water, the project provides vital input to the development of future water resource strategies.

  17. Shapes of Venusian 'pancake' domes imply episodic emplacement and silicic composition

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.; Bridges, Nathan T.; Grimm, Robert E.

    1993-01-01

    The main evidence available for constraining the composition of the large circular 'pancake' domes on Venus is their gross morphology. Laboratory simulations using polyethylene glycol show that the height to diameter (aspect) ratios of domes of a given total volume depend critically on whether their extrusion was continuous or episodic, with more episodes leading to greater cooling and taller domes. Thus without observations of their emplacement, the compositions of Venusian domes cannot be uniquely constrained by their morphology. However, by considering a population of 51 Venusian domes to represent a sampling of many stages during the growth of domes with comparable histories, and by plotting aspect ratio versus total volume, we find that the shapes of the domes are most consistent with episodic emplacement. On Earth this mode of dome growth is found almost exclusively in lavas of dacite to rhyolite composition, strengthening earlier inferences about the presence of evolved magmas on Venus.

  18. Predicting optical and thermal characteristics of transparent single-glazed domed skylights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laouadi, A.; Atif, M.R.

    1999-07-01

    Optical and thermal characteristics of domed skylights are important to solve the trade-off between daylighting and thermal design. However, there is a lack of daylighting and thermal design tools for domed skylights. Optical and thermal characteristics of transparent single-glazed hemispherical domed skylights under sun and sky light are evaluated based on an optical model for domed skylights. The optical model is based on tracing the beam and diffuse radiation transmission through the dome surface. A simple method is proposed to replace single-glazed hemispherical domed skylights by optically and thermally equivalent single-glazed planar skylights to accommodate limitations of energy computer programs.more » Under sunlight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and solar heat gain coefficient (SHGC) at near normal zenith angles than those of single-glazed planar skylights. However, single-glazed hemispherical domed skylights yield substantially higher equivalent solar transmittance and SHGC at high zenith angles and around the horizon. Under isotropic skylight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and SHGC than those of single-glazed planar skylights. Daily solar heat gains of single-glazed hemispherical domed skylights are higher than those of single-glazed horizontal planar skylights in both winter and summer. In summer, the solar heat gain of single-glazed hemispherical domed skylights can reach 3% to 9% higher than those of horizontal single-glazed planar skylights for latitudes varying between 0 and 55{degree} (north/south). In winter, however, the solar heat gains of single-glazed hemispherical domed skylights increase significantly with the increase of the site latitude and can reach 232% higher than those of horizontal single-glazed planar skylights, particularly for high latitude countries.« less

  19. Structural Optimization of the Retractable Dome for Four Meter Telescope (FMT)

    NASA Astrophysics Data System (ADS)

    Pan, Nian; Li, Yuxi; Fan, Yue; Ma, Wenli; Huang, Jinlong; Jiang, Ping; Kong, Sijie

    2017-03-01

    Dome seeing degrades the image quality of ground-based telescopes. To achieve dome seeing of the Four Meter Telescope (FMT) less than 0.5 arcsec, structural optimizations based on computational fluid dynamics (CFD) simulation were proposed. The results of the simulation showed that dome seeing of FMT was 0.42 arcsec, which was mainly caused by the slope angle of the dome when the slope angle was 15° and the wind speed was 10 m/s. Furthermore, the lower the air speed was, the less dome seeing would be. Wind tunnel tests (WT) with a 1:120 scaled model of the retractable dome and FMT indicated that the calculated deviations of the CFD simulation used in this paper were less than 20% and the same variations of the refractive index derived from the WT would be a convincing argument for the validity of the simulations. Thus, the optimization of the retractable dome was reliable and the method expressed in this paper provided a reference for the design of next generation of ground-based telescope dome.

  20. Salt tectonics and shallow subseafloor fluid convection: Models of coupled fluid-heat-salt transport

    USGS Publications Warehouse

    Wilson, A.; Ruppel, C.

    2007-01-01

    Thermohaline convection associated with salt domes has the potential to drive significant fluid flow and mass and heat transport in continental margins, but previous studies of fluid flow associated with salt structures have focused on continental settings or deep flow systems of importance to petroleum exploration. Motivated by recent geophysical and geochemical observations that suggest a convective pattern to near-seafloor pore fluid flow in the northern Gulf of Mexico (GoMex), we devise numerical models that fully couple thermal and chemical processes to quantify the effects of salt geometry and seafloor relief on fluid flow beneath the seafloor. Steady-state models that ignore halite dissolution demonstrate that seafloor relief plays an important role in the evolution of shallow geothermal convection cells and that salt at depth can contribute a thermal component to this convection. The inclusion of faults causes significant, but highly localized, increases in flow rates at seafloor discharge zones. Transient models that include halite dissolution show the evolution of flow during brine formation from early salt-driven convection to later geothermal convection, characteristics of which are controlled by the interplay of seafloor relief and salt geometry. Predicted flow rates are on the order of a few millimeters per year or less for homogeneous sediments with a permeability of 10−15 m2, comparable to compaction-driven flow rates. Sediment permeabilities likely fall below 10−15 m2 at depth in the GoMex basin, but such thermohaline convection can drive pervasive mass transport across the seafloor, affecting sediment diagenesis in shallow sediments. In more permeable settings, such flow could affect methane hydrate stability, seafloor chemosynthetic communities, and the longevity of fluid seeps.

  1. Susceptibility of lava domes to erosion and collapse by toppling on cooling joints

    NASA Astrophysics Data System (ADS)

    Smith, John V.

    2018-01-01

    The shape of lava domes typically leads to the formation of radial patterns of cooling joints. These cooling joints define the orientation of the columnar blocks which plunge toward the center of the dome. In the lower parts of the dome the columns plunge into the dome at low angles and are relatively stable. Higher in the dome the columns plunge into the dome at steep angles. These steeply plunging columns are susceptible to toppling and, if the lower part of a dome is partially removed by erosion or collapse, the unstable part of the dome becomes exposed leading to toppling failure. Examples of this process are provided from coastal erosion of lava domes at Katsura Island, Shimane Peninsula, western Japan. An analogue model is presented to demonstrate the mechanism. It is proposed that the mechanism can contribute to collapse of lava domes during or after emplacement.

  2. The compression dome concept: the restorative implications.

    PubMed

    Milicich, Graeme

    2017-01-01

    Evidence now supports the concept that the enamel on a tooth acts like a compression dome, much like the dome of a cathedral. With an overlying enamel compression dome, the underlying dentin is protected from damaging tensile forces. Disruption of a compression system leads to significant shifts in load pathways. The clinical restorative implications are significant and far-reaching. Cutting the wrong areas of a tooth exposes the underlying dentin to tensile forces that exceed natural design parameters. These forces lead to crack propagation, causing flexural pain and eventual fracture and loss of tooth structure. Improved understanding of the microanatomy of tooth structure and where it is safe to cut teeth has led to a revolution in dentistry that is known by several names, including microdentistry, minimally invasive dentistry, biomimetic dentistry, and bioemulation dentistry. These treatment concepts have developed due to a coalescence of principles of tooth microanatomy, material science, adhesive dentistry, and reinforcing techniques that, when applied together, will allow dentists to repair a compromised compression dome so that it more closely replicates the structure of the healthy tooth.

  3. Electromagnetic sensing for deterministic finishing gridded domes

    NASA Astrophysics Data System (ADS)

    Galbraith, Stephen L.

    2013-06-01

    Electromagnetic sensing is a promising technology for precisely locating conductive grid structures that are buried in optical ceramic domes. Burying grid structures directly in the ceramic makes gridded dome construction easier, but a practical sensing technology is required to locate the grid relative to the dome surfaces. This paper presents a novel approach being developed for locating mesh grids that are physically thin, on the order of a mil, curved, and 75% to 90% open space. Non-contact location sensing takes place over a distance of 1/2 inch. A non-contact approach was required because the presence of the ceramic material precludes touching the grid with a measurement tool. Furthermore, the ceramic which may be opaque or transparent is invisible to the sensing technology which is advantageous for calibration. The paper first details the physical principles being exploited. Next, sensor impedance response is discussed for thin, open mesh, grids versus thick, solid, metal conductors. Finally, the technology approach is incorporated into a practical field tool for use in inspecting gridded domes.

  4. Mechanical response and microprocesses of reconsolidating crushed salt at elevated temperature

    DOE PAGES

    Broome, S. T.; Bauer, S. J.; Hansen, F. D.; ...

    2015-09-14

    Design, analysis and performance assessment of potential salt repositories for heat-generating nuclear waste require knowledge of thermal, mechanical, and fluid transport properties of reconsolidating granular salt. So, to inform salt repository evaluations, we have undertaken an experimental program to determine Bulk and Young’s moduli and Poisson’s ratio of reconsolidated granular salt as a function of porosity and temperature and to establish the deformational processes by which the salt reconsolidates. Our tests were conducted at 100, 175, and 250 °C. In hydrostatic tests, confining pressure is increased to 20 MPa with periodic unload/reload loops to determine K. Volume strain increases withmore » increasing temperature. In shear tests at 2.5 and 5 MPa confining pressure, after confining pressure is applied, the crushed salt is subjected to a differential stress, with periodic unload/reload loops to determine E and ν. At predetermined differential stress levels the stress is held constant and the salt consolidates. Displacement gages mounted on the samples show little lateral deformation until the samples reach a porosity of ~10 %. Interestingly, vapor is vented only for 250 °C tests and condenses at the vent port. It is hypothesized that the brine originates from fluid inclusions, which were made accessible by heating and intragranular deformational processes including decrepitation. Furthermore, identification and documentation of consolidation processes are inferred from optical and scanning electron microstructural observations. As a result, densification at low porosity is enhanced by water film on grain boundaries that enables solution-precipitation phenomena.« less

  5. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Michael F.

    Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separatingmore » fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.« less

  6. Seismic experiments on Showa-Shinzan lava dome using firework shots

    NASA Astrophysics Data System (ADS)

    Miyamachi, Hiroki; Watanabe, Hidefumi; Moriya, Takeo; Okada, Hiromu

    1987-11-01

    Seismic experiments were conducted on Showa-Shinzan, a parasitic lava dome of volcano Usu, Hokkaido, which was formed during 1943 1945 activity. Since we found that firework shots fired on the ground can effectively produce seismic waves, we placed many seismometers on and around the dome during the summer festivals in 1984 and 1985. The internal structure had been previously studied using a prospecting technique employing dynamite blasts in 1954. The measured interval velocity across the dome in 1984 ranges 1.8 2.2 km/s drastically low compared to the results (3.0 4.0 km/s) in 1954; in addition, the velocity is 0.3 0.5 km/s higher than that in the surrounding area. The variation of the observed first arrival amplitudes can be explained by geometrical spreading in the high velocity lava dome. These observations show a marked change in the internal physical state of the dome corresponding to a drop in the measured highest temperature at fumaroles on the dome from 800°C in 1947 to 310°C in 1986.

  7. Brines formed by multi-salt deliquescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, S; Rard, J; Alai, M

    2005-11-04

    The FY05 Waste Package Environment testing program at Lawrence Livermore National Laboratory focused on determining the temperature, relative humidity, and solution compositions of brines formed due to the deliquescence of NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} salt mixtures. Understanding the physical and chemical behavior of these brines is important because they define conditions under which brines may react with waste canister surfaces. Boiling point experiments show that NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} salt mixtures form brines that transform to hydrous melts that do not truly 'dry out' until temperatures exceed 300 and 400more » C, respectively. Thus a conducting solution is present for these salt assemblages over the thermal history of the repository. The corresponding brines form at lower relative humidity at higher temperatures. The NaCl-KNO{sub 3}-NaNO{sub 3} salt mixture has a mutual deliquescence relative humidity (MDRH) of 25.9% at 120 C and 10.8% at 180 C. Similarly, the KNO{sub 3}-NaNO{sub 3} salt mixture has MDRH of 26.4% at 120 C and 20.0% at 150 C. The KNO{sub 3}-NaNO{sub 3} salt mixture salts also absorb some water (but do not appear to deliquesce) at 180 C and thus may also contribute to the transfer of electrons at interface between dust and the waste package surface. There is no experimental evidence to suggest that these brines will degas and form less deliquescent salt assemblages. Ammonium present in atmospheric and tunnel dust (as the chloride, nitrate, or sulfate) will readily decompose in the initial heating phase of the repository, and will affect subsequent behavior of the remaining salt mixture only through the removal of a stoichiometric equivalent of one or more anions. Although K-Na-NO{sub 3}-Cl brines form at high temperature and low relative humidity, these brines are dominated by nitrate, which is known to inhibit corrosion at lower

  8. Regional geohydrology of the northern Louisiana salt-dome basin; Part II, Geohydrologic maps of the Tertiary aquifers and related confining layers

    USGS Publications Warehouse

    Ryals, G.N.

    1984-01-01

    Regional geohydrologic maps show the altitude of the base and the thickness of the aquifers of Tertiary age and related confining layers in the northern Louisiana salt-dome basin. The limit of freshwater in aquifers is also shown. The basin has an area of about 3,000 square miles, and four geologic units of Tertiary age contain regional aquifers. From oldest (deepest) to youngest, the aquifers are in the Wilcox Group, Carrizo Sand, Sparta Sand, and Cockfield Formation. As the Wilcox is hydraulically interconnected with the overlying Carrizo, they are treated as one hydrologic unit, the Wilcox-Carrizo aquifer. The aquifers are separated by confining layers that retard water movement. In the northwestern part of the area, the Wilcox-Carrizo aquifer is separated from the underlying sand facies of the Nacatoch Sand (Cretaceous age) by a confining layer composed of the Midway Group (Tertiary age) and the underlying Arkadelphia Marl and an upper clay and marl facies of the Nacatoch Sand (both of Cretaceous age). In the remainder of the area, the Wilcox-Carrizo aquifer is separated from an underlying Cretaceous aquifer comprised of the Tokio Formation and Brownstown Marl by the Midway Group and several underlying Cretaceous units which in order of increasing age are the Arkadelphia Maril, Nacatoch Sand, Saratoga Chalk, Marlbrook Marl , and Annona Chalk. The Wilcox-Carrizo aquifer is separated from the Sparta aquifer by the overyling Cane River Formation. The Sparta aquifer is separated from the Cockfield aquifer by the overlying Cook Mountain Formation. (USGS)

  9. 4. TURNOUT AND RETAINING WALL AT BASE OF TURTLEBACK DOME. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. TURNOUT AND RETAINING WALL AT BASE OF TURTLEBACK DOME. FACING EAST AT VIEW OF YOSEMITE VALLEY; EL CAPITAN ON LEFT, HALF DOME AT CENTER AND SENTINEL DOME AT LEFT REAR. POST AT LOWER LEFT MARKED 'W3' IS MARKER FOR SELF GUIDED TOUR TO PARK. - Wawona Road, Between South Entrance & Yosemite Valley, Yosemite Village, Mariposa County, CA

  10. Gas-controlled seafloor doming on Opouawe Bank, offshore New Zealand

    NASA Astrophysics Data System (ADS)

    Koch, Stephanie; Berndt, Christian; Bialas, Joerg; Haeckel, Matthias; Crutchley, Gareth; Papenberg, Cord; Klaeschen, Dirk; Greinert, Jens

    2015-04-01

    The process of gas accumulation and subsequent sediment doming appears to be a precursory process in the development of methane seep sites on Opouawe Bank and might be a common characteristic for gas seeps in general. Seabed domes appear as unimpressive topographic highs with diameters ranging from 10-1000 m and exhibit small vertical displacements and layer thickness in comparison to their width. The dome-like uplift of the sediments results from an increase in pore pressure caused by gas accumulation in near-seabed sediments. In this context sediment doming is widely discussed to be a precursor of pockmark formation. Our results suggest that by breaching of domed seafloor sediments a new seep site can develop and contrary to ongoing discussion does not necessarily lead to the formation of pockmarks. There are clear differences in individual gas migration structures that indicate a progression through different evolutionary stages, which range from channeled gas flow and associated seismic blanking, to gas trapping beneath relatively low-permeability horizons, and finally overpressure accumulation and doming. We present high resolution sub-bottom profiler (Parasound) and 2D multichannel seismic data from Opouawe Bank, an accretionary ridge at the Hikurangi Margin, offshore New Zealand's North Island. Beneath this bank, methane migrates along stratigraphic pathways from a maximum source depth of 1500-2100 mbsf (meter below seafloor) towards active cold seeps at the seafloor. We show that, in the shallow sediment of the upper 100 mbsf, this primary migration mechanism changes into a process of gas accumulation leading to sediment doming. Modeling the height of the gas column necessary to create different dome geometries, shows that doming due to gas accumulation is feasible and consistent with field observations. The well-stratified, sub-horizontal strata that exist beneath Opouawe Bank provide favorable conditions for this type of seep development because shallow

  11. Internal ballistics model update for ASRM dome

    NASA Technical Reports Server (NTRS)

    Bowden, Mark H.; Jenkins, Billy Z.

    1991-01-01

    A previous report (no. 5-32279, contract NAS8-36955, DO 51) describes the measures taken to adapt the NASA Complex Burning Region Model and code so that is was applicable to the Advanced Solid Rocket Motor as envisioned at that time. The code so modified was called the CBRM-A. CBRM-A could calculate the port volume and burning area for the star, transition, and cylindrically perforated regions of the motor. Described here is a subsequent effort to add computation of port volume and burning area for the Advanced Solid Rocket Motor head dome. Sample output, input, and overview of the models are included. The software was configured in two forms - a stand alone head dome code and a code integrating the head dome solution with the CBRM-A.

  12. Atmospheric scintillation at Dome C, Antarctica: implications for photometry and astrometry

    NASA Astrophysics Data System (ADS)

    Kenyon, S.; Lawrence, J.; Ashley, M. C. B.; Storey, J. W. V.; Tokovinin, A.; Fossat, E.

    2006-08-01

    Night-time turbulence profiles of the atmosphere above Dome C, Antarctica, were measured during 2004, using a MASS instrument. We compare this data with turbulence profiles above Cerro Tololo and Cerro Pachon, also measured with a MASS, and find, with the exception of the owest layer, that Dome C has significantly less turbulence. In addition, the integrated at turbulence 16 km above Dome C is always less than the median values at the two Chilean sites. Using average wind speed profiles, we assess the photometric noise produced by scintillation, and the atmospheric contribution to the error budget in narrow angle differential astrometry. In comparison with the two mid-latitude sites in Chile, Dome C offers a potential gain of about 3.6 in both photometric precision (for long integrations) and narrow-angle astrometry precision. Although the data from Dome C cover a fairly limited time frame, they lend strong support to expectations that Dome C will offer significant advantages for photometric and astrometric studies.

  13. Structure and evolution of an active resurgent dome evidenced by geophysical investigations: The Yenkahe dome-Yasur volcano system (Siwi caldera, Vanuatu)

    NASA Astrophysics Data System (ADS)

    Brothelande, E.; Lénat, J.-F.; Chaput, M.; Gailler, L.; Finizola, A.; Dumont, S.; Peltier, A.; Bachèlery, P.; Barde-Cabusson, S.; Byrdina, S.; Menny, P.; Colonge, J.; Douillet, G. A.; Letort, J.; Letourneur, L.; Merle, O.; Di Gangi, F.; Nakedau, D.; Garaebiti, E.

    2016-08-01

    In this contribution, we focus on one of the most active resurgences on Earth, that of the Yenkahe dome in the Siwi caldera (Tanna Island, Vanuatu), which is associated with the persistently active Yasur volcano. Gravity and magnetic surveys have been carried out over the past few years in the area, as well as electrical methods including electrical resistivity tomography (ERT), time domain electro-magnetics (TDEM) and self-potential (SP). These investigations were completed by thermometry, CO2 soil gas measurements, field observations and sampling. This multi-method approach allows geological structures within the caldera to be identified, as well as associated hydrothermal features. The global structure of the caldera is deduced from gravity data, which shows the caldera rim as a high density structure. Large lava fields, emplaced before and after the onset of resurgence, are evidenced by combined gravity, magnetic and resistivity signals. In the middle of the caldera, the Yenkahe dome apparently results from a combination of volcanic and tectonic events, showing that lava extrusion and resurgence have been operating simultaneously or alternately during the Siwi caldera post-collapse history. There is a clear distinction between the western and eastern parts of the dome. The western part is older and records the growth of an initial volcanic cone and the formation of a small caldera. This small caldera (paleo-Yasur caldera), partially filled with lava flows, is the present-day focus of volcanic activity and associated fluid circulation and alteration. The eastern part of the dome is presumably younger, and is characterized by intense, extensive hydrothermal alteration and activity. Its northern part is covered by lava flow piles and exhibits a shallow hydrothermal zone in ERT. The southern part has hydrothermal alteration and activity extending at least down to the base of the resurgent dome. This part of the dome is built up of low cohesion rock and is thus

  14. Explosive activity associated with the growth of volcanic domes

    USGS Publications Warehouse

    Newhall, C.G.; Melson, W.G.

    1983-01-01

    Domes offer unique opportunities to measure or infer the characteristics of magmas that, at domes and elsewhere, control explosive activity. A review of explosive activity associated with historical dome growth shows that: 1. (1) explosive activity has occurred in close association with nearly all historical dome growth; 2. (2) whole-rock SiO2 content, a crude but widely reported indicator of magma viscosity, shows no systematic relationship to the timing and character of explosions; 3. (3) the average rate of dome growth, a crude indicator of the rate of supply of magma and volatiles to the near-surface enviornment, shows no systematic relationship to the timing or character of explosions; and 4. (4) new studies at Arenal and Mount St. Helens suggest that water content is the dominant control on explosions from water-rich magmas, whereas the crystal content and composition of the interstitial melt (and hence magma viscosity) are equally or more important controls on explosions from water-poor magmas. New efforts should be made to improve current, rather limited techniques for monitoring pre-eruption volatile content and magma viscosity, and thus the explosive potential of magmas. ?? 1983.

  15. Hemispherical Optical Dome for Underwater Communication

    NASA Technical Reports Server (NTRS)

    Shiri, Ron S.; Lunde, Emily L.; Coronado, Patrick L.; Quijada, Manuel A.

    2017-01-01

    For many years, acoustic systems have been used as the primary method for underwater communication; however, the data transfer rate of such systems is low because sound propagates slowly through the water. A higher throughput can be achieved using visible light to transmit data underwater. The first issue with using this approach is that there is generally a large loss of the light signal due to scattering and absorption in water even though there is an optimal wavelength for transmission in the blue or green wavelengths of the visible spectrum. The second issue is that a simple system consisting only of a highly directional source transmitter and small optical detector receiver has a very narrow field of view. The goal of this project is to improve an optical, underwater communication system by increasing the effective field of view of the receiving optics. To this end, we make two changes to the simple system: (1) An optical dome was added near the receiver. An array of lenses is placed radially on the surface of the dome, reminiscent of the compound eye of an insect. The lenses make the source and detector planes conjugate, and each lens adds a new region of the source plane to the instrument's total field of view. (2) The receiver was expanded to include multiple photodiodes. With these two changes, the receiver has much more tolerance to misalignments (in position and angle) of the transmitter.Two versions of the optical dome (with 6 and 8 diameters) were designed using the CREO CAD software and modeled using the CODE V optical design software. A series of these transparent hemispherical domes, with both design diameters, were manufactured using a 5-axis mill. The prototype was then retrofitted with lenses and compared with the computer-generated model to demonstrate the effectiveness of this solution. This work shows the dome design improves the optical field of view of the underwater communication system considerably. Furthermore, with the experimental test

  16. Hemispherical optical dome for underwater communication

    NASA Astrophysics Data System (ADS)

    Shiri, Ron S.; Lunde, Emily L.; Coronado, Patrick L.; Quijada, Manuel A.

    2017-08-01

    For many years, acoustic systems have been used as the primary method for underwater communication; however, the data transfer rate of such systems is low because sound propagates slowly through water. A higher throughput can be achieved using visible light to transmit data underwater. The first issue with this approach is that there is generally a large loss of the light signal due to scattering and absorption in water, even though there is an optimal wavelength for transmission in the blue or green wavelengths of the visible spectrum. The second issue is that a simple communication system, consisting only of a highly directional source/transmitter and small optical detector/receiver, has a very narrow field of view. The goal of this project is to improve an optical, underwater communication system by increasing the effective field of view of the receiving optics. To this end, we make two changes to the simple system: (1) An optical dome was added near the receiver. An array of lenses is placed radially on the surface of the dome, reminiscent of the compound eye of an insect. The lenses make the source and detector planes conjugate, and each lens adds a new region of the source plane to the instrument's total field of view. (2) The receiver was expanded to include multiple photodiodes. With these two changes, the receiver has much more tolerance to misalignments (in position and angle) of the transmitter. Two versions of the optical dome (with 6" and 8" diameters) were designed using PTC's Creo CAD software and modeled using Synopsys' CODE V optical design software. A series of these transparent hemispherical domes, with both design diameters, were manufactured using a 5-axis mill. The prototype was then retrofitted with lenses and compared with the computer-generated model to demonstrate the effectiveness of this solution. This work shows that the dome design improves the optical field of view of the underwater communication system considerably. Furthermore, with

  17. Hemispherical Optical Dome for Underwater Communication

    NASA Technical Reports Server (NTRS)

    Shiri, Ron S.; Lunde, Emily L.; Coronado, Patrick L.; Quijada, Manuel A.

    2017-01-01

    For many years, acoustic systems have been used as the primary method for underwater communication; however, the data transfer rate of such systems is low because sound propagates slowly through the water. A higher throughput can be achieved using visible light to transmit data underwater. The first issue with using this approach is that there is generally a large loss of the light signal due to scattering and absorption in water even though there is an optimal wavelength for transmission in the blue or green wavelengths of the visible spectrum. The second issue is that a simple system consisting only of a highly directional source/transmitter and small optical detector/receiver has a very narrow field of view. The goal of this project is to improve an optical, underwater communication system by increasing the effective field of view of the receiving optics. To this end, we make two changes to the simple system: (1) An optical dome was added near the receiver. An array of lenses is placed radially on the surface of the dome, reminiscent of the compound eye of an insect. The lenses make the source and detector planes conjugate, and each lens adds a new region of the source plane to the instrument's total field of view. (2) The receiver was expanded to include multiple photodiodes. With these two changes, the receiver has much more tolerance to misalignments (in position and angle) of the transmitter.Two versions of the optical dome (with 6 and 8 diameters) were designed using the CREO CAD software and modeled using the CODE V optical design software. A series of these transparent hemispherical domes, with both design diameters, were manufactured using a 5-axis mill. The prototype was then retrofitted with lenses and compared with the computer-generated model to demonstrate the effectiveness of this solution. This work shows the dome design improves the optical field of view of the underwater communication system considerably. Furthermore, with the experimental test

  18. Baseline design and requirements for the LSST rotating enclosure (dome)

    NASA Astrophysics Data System (ADS)

    Neill, D. R.; DeVries, J.; Hileman, E.; Sebag, J.; Gressler, W.; Wiecha, O.; Andrew, J.; Schoening, W.

    2014-07-01

    The Large Synoptic Survey Telescope (LSST) is a large (8.4 meter) wide-field (3.5 degree) survey telescope, which will be located on the Cerro Pachón summit in Chile. As a result of the wide field of view, its optical system is unusually susceptible to stray light; consequently besides protecting the telescope from the environment the rotating enclosure (Dome) also provides indispensible light baffling. All dome vents are covered with light baffles which simultaneously provide both essential dome flushing and stray light attenuation. The wind screen also (and primarily) functions as a light screen providing only a minimum clear aperture. Since the dome must operate continuously, and the drives produce significant heat, they are located on the fixed lower enclosure to facilitate glycol water cooling. To accommodate day time thermal control, a duct system channels cooling air provided by the facility when the dome is in its parked position.

  19. Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama desert.

    PubMed

    Rasuk, Maria Cecilia; Kurth, Daniel; Flores, Maria Regina; Contreras, Manuel; Novoa, Fernando; Poire, Daniel; Farias, Maria Eugenia

    2014-10-01

    The Central Andes in northern Chile contains a large number of closed basins whose central depression is occupied by saline lakes and salt crusts (salars). One of these basins is Salar de Llamara (850 m a.s.l.), where large domed structures of seemingly evaporitic origin forming domes can be found. In this work, we performed a detailed microbial characterization of these domes. Mineralogical studies revealed gypsum (CaSO(4)) as a major component. Microbial communities associated to these structures were analysed by 454 16S rDNA amplicon sequencing and compared between winter and summer seasons. Bacteroidetes Proteobacteria and Planctomycetes remained as the main phylogenetic groups, an increased diversity was found in winter. Comparison of the upper air-exposed part and the lower water-submerged part of the domes in both seasons showed little variation in the upper zone, showing a predominance of Chromatiales (Gammaproteobacteria), Rhodospirillales (Alphaproteobacteria), and Sphingobacteriales (Bacteroidetes). However, the submerged part showed marked differences between seasons, being dominated by Proteobacteria (Alpha and Gamma) and Verrucomicrobia in summer, but with more diverse phyla found in winter. Even though not abundant by sequence, Cyanobacteria were visually identified by scanning electron microscopy (SEM), which also revealed the presence of diatoms. Photosynthetic pigments were detected by high-performance liquid chromatography, being more diverse on the upper photosynthetic layer. Finally, the system was compared with other endoevaporite, mats microbialite and Stromatolites microbial ecosystems, showing higher similitude with evaporitic ecosystems from Atacama and Guerrero Negro. This environment is of special interest for extremophile studies because microbial life develops associated to minerals in the driest desert all over the world. Nevertheless, it is endangered by mining activity associated to copper and lithium extraction; thus, its

  20. Radar scattering properties of pancakelike domes on Venus

    NASA Technical Reports Server (NTRS)

    Ford, P. G.; Pettengill, G. H.

    1992-01-01

    Magellan radar images have disclosed the presence of a large number of almost perfectly circular domes, presumably of volcanic origin, in many regions of Venus several with diameters of 30 km or more. Their high degree of symmetry has permitted measurements of their shape, as determined by the Magellan altimeter to be compared with models of dome production from the eruption of high-viscosity magmas. In this work, we examine in detail the radar images of domes in Rusalka Planitia (2.8 deg S, 150.9 deg E) and Tinatin Planitia (12.2 deg N, 7.5 deg E), selected for their circular symmetry and apparent absence of modification due to large-scale slumping or tectonic rifting.

  1. Coupled Multi-physical Simulations for the Assessment of Nuclear Waste Repository Concepts: Modeling, Software Development and Simulation

    NASA Astrophysics Data System (ADS)

    Massmann, J.; Nagel, T.; Bilke, L.; Böttcher, N.; Heusermann, S.; Fischer, T.; Kumar, V.; Schäfers, A.; Shao, H.; Vogel, P.; Wang, W.; Watanabe, N.; Ziefle, G.; Kolditz, O.

    2016-12-01

    As part of the German site selection process for a high-level nuclear waste repository, different repository concepts in the geological candidate formations rock salt, clay stone and crystalline rock are being discussed. An open assessment of these concepts using numerical simulations requires physical models capturing the individual particularities of each rock type and associated geotechnical barrier concept to a comparable level of sophistication. In a joint work group of the Helmholtz Centre for Environmental Research (UFZ) and the German Federal Institute for Geosciences and Natural Resources (BGR), scientists of the UFZ are developing and implementing multiphysical process models while BGR scientists apply them to large scale analyses. The advances in simulation methods for waste repositories are incorporated into the open-source code OpenGeoSys. Here, recent application-driven progress in this context is highlighted. A robust implementation of visco-plasticity with temperature-dependent properties into a framework for the thermo-mechanical analysis of rock salt will be shown. The model enables the simulation of heat transport along with its consequences on the elastic response as well as on primary and secondary creep or the occurrence of dilatancy in the repository near field. Transverse isotropy, non-isothermal hydraulic processes and their coupling to mechanical stresses are taken into account for the analysis of repositories in clay stone. These processes are also considered in the near field analyses of engineered barrier systems, including the swelling/shrinkage of the bentonite material. The temperature-dependent saturation evolution around the heat-emitting waste container is described by different multiphase flow formulations. For all mentioned applications, we illustrate the workflow from model development and implementation, over verification and validation, to repository-scale application simulations using methods of high performance computing.

  2. Potassium alum and aluminum sulfate micro-inclusions in polar ice from Dome Fuji, East Antarctica

    NASA Astrophysics Data System (ADS)

    Ohno, Hiroshi; Iizuka, Yoshinori; Horikawa, Shinichiro; Sakurai, Toshimitsu; Hondoh, Takeo; Motoyama, Hideaki

    2014-03-01

    Water-soluble trace constituents affect the physicochemical properties of polar ice. Their structural distribution provides important insights into the formation history of ice and inclusions. We report the first finding of KAl(SO4)2·12H2O (potassium alum) and Al2(SO4)3·nH2O (aluminum sulfate) micro-inclusions in the Dome Fuji ice core, East Antartica, using a micro-Raman technique. Eutectic temperatures of these water-soluble species determined using thermal analysis were -0.4 °C for potassium alum and -8.0 °C for aluminum sulfate. Although the formation process of the aluminum-bearing sulfates remains unclear, the occurrence of these salts largely depends on ice depth.

  3. Astronaut Alan Bean doing acrobatics in OWS dome area

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Astronaut Alan L. Bean, Skylab 3 commander, doing acrobatics in the dome area of the Orbital Workshop (OWS) on the space station cluster in Earth orbit. The dome area is about 22 feet in diameter and 19 feet from top to bottom.

  4. Dome growth and destruction during the 1989-1990 eruption of redoubt volcano

    USGS Publications Warehouse

    Miller, T.P.

    1994-01-01

    Much of the six-month-long 1989-1990 eruption of Redoubt Volcano consisted of a dome-growth and -destructive phase in which 14 short-lived viscous silicic andesite domes were emplaced and 13 subsequently destroyed. The life span of an individual dome ranged from 3 to 21 days and volumes are estimated at 1 ?? 106 to 30 ?? 106 m3. Magma supply rates to the vent area averaged about 5 ?? 105 m3 / day for most of the dome-building phase and ranged from a high of 2.2 ?? 106 m3 per day initially to a low of 1.8 ?? 105 m3 per day at the waning stages of the eruption. The total volume of all domes is estimated to be about 90 ?? 106 m3 and may represent as much as 60-70% of the volume for the entire eruption. The site of 1989-1990 dome emplacement, like that in 1966, was on the margin of a north-facing amphitheatre-like summit crater. The domes were confined on the east and west by steep cliffs of pre-eruption cone-building volcanic rocks and thus were constrained to grow vertically. Rapid upward growth in a precarious site caused each dome to spread preferentially to the north, resulting in eventual gravitational collapse. As long as the present conduit remains active at Redoubt Volcano, any dome formed in a new eruption will be confined to a narrow steeply-sloping gorge, leading to rapid vertical growth and a tendency to collapse gravitationally. Repetitive cycles of dome formation and failure similar to those seen in 1989-1990 are probably the norm and must be considered in future hazard analyses of Redoubt Volcano. ?? 1994.

  5. Design and Development of a Composite Dome for Experimental Characterization of Material Permeability

    NASA Technical Reports Server (NTRS)

    Estrada, Hector; Smeltzer, Stanley S., III

    1999-01-01

    This paper presents the design and development of a carbon fiber reinforced plastic dome, including a description of the dome fabrication, method for sealing penetrations in the dome, and a summary of the planned test series. This dome will be used for the experimental permeability characterization and leakage validation of composite vessels pressurized using liquid hydrogen and liquid nitrogen at the Cryostat Test Facility at the NASA Marshall Space Flight Center (MSFC). The preliminary design of the dome was completed using membrane shell analysis. Due to the configuration of the test setup, the dome will experience some flexural stresses and stress concentrations in addition to membrane stresses. Also, a potential buckling condition exists for the dome due to external pressure during the leak testing of the cryostat facility lines. Thus, a finite element analysis was conducted to assess the overall strength and stability of the dome for each required test condition. Based on these results, additional plies of composite reinforcement material were applied to local regions on the dome to alleviate stress concentrations and limit deflections. The dome design includes a circular opening in the center for the installation of a polar boss, which introduces a geometric discontinuity that causes high stresses in the region near the hole. To attenuate these high stresses, a reinforcement system was designed using analytical and finite element analyses. The development of a low leakage polar boss system is also investigated.

  6. Atmospheric Scintillation at Dome C, Antarctica: Implications for Photometryand Astrometry

    NASA Astrophysics Data System (ADS)

    Kenyon, S. L.; Lawrence, J. S.; Ashley, M. C. B.; Storey, J. W. V.; Tokovinin, A.; Fossat, E.

    2006-06-01

    We present low-resolution turbulence profiles of the atmosphere above Dome C, Antarctica, measured with the MASS instrument during 25 nights in 2004 March-May. Except for the lowest layer, Dome C has significantly less turbulence than Cerro Tololo and Cerro Pachón. In particular, the integrated turbulence at 16 km is always less than the median values at the two Chilean sites. From these profiles we evaluate the photometric noise produced by scintillation, and the atmospheric contribution to the error budget in narrow-angle differential astrometry. In comparison with the two midlatitude sites in Chile, Dome C offers a potential gain of about 3.6 in both photometric precision (for long integrations) and narrow-angle astrometry precision. These gain estimates are preliminary, being computed with average wind-speed profiles, but the validity of our approach is confirmed by independent data. Although the data from Dome C cover a fairly limited time frame, they lend strong support to expectations that Dome C will offer significant advantages for photometric and astrometric studies.

  7. Venusian pancake domes: Insights from terrestrial voluminous silicic lavas and thermal modeling

    NASA Technical Reports Server (NTRS)

    Manley, Curtis R.

    1993-01-01

    The so-called 'pancake' domes, and several other volcanoes on Venus, appear to represent large extrusions of silicic lava. Similar voluminous rhyolite lava flows, often associated with mantle plumes, are known on Earth. Venus' high ambient temperature, and insulation by the dome's brecciated carapace, both act to prolong cooling of a dome's interior, allowing for episodic lava input over an extended period of time. Field relations and aspect ratios of terrestrial voluminous rhyolite lavas imply continuous, non-episodic growth, reflecting tapping of a large volume of dry, anatectic silicic magma. Petrogenetically, the venusian domes may be analogous to chains of small domes on Earth, which represent 'leakage' of evolved material from magma bodies fractionating from much more mafic liquids.

  8. Bedrock topography of Talos Dome and Frontier Mountain area

    NASA Astrophysics Data System (ADS)

    Forieri, A.; Tabacco, I.; della Vedova, A.; Zirizzotti, A.; de Michelis, P.

    2003-04-01

    Talos Dome is an ice dome in the East Antarctica near the coastal line. The exact position was located first with the analysis of ERS-1 data and then from kinematic GPS data collected in 2002. In the area of Talos Dome two traverse surveys were carried out in 1996 and 2002 and eight shallow snow firn cores were drilled in order to understand latitudinal and longitudinal gradient and to document climatic and atmospheric conditions. The interest in Talos Dome area is due to the possibility to extract an ice core down to the bedrock: it would be the first deep drilling in a near coastal site. Frontier Mountain is located about 30 km SE from Talos Dome and its blue ice field is an important meteorite trap. The mechanism concentration is due to the particular flow of ice, slow moving against an absolute and submerged barrier. In the area of Talos Dome and Frontier Mountain airborne radar surveys were conducted by Italian PNRA (Programma Nazionale di Ricerche in Antartide) in 1995, 1997, 1999 and 2001. We present here the bedrock topography obtained by the analysis of all radar data. Our objective is to have a full description of main caractheristics of the bedrock. This could be helpful in the choice of the best site for drilling and could provide more input data for flow model near Frontier Mountain. Radar data are not homogeneous because radar systems with different characteristics have been used. All data have been processed with the same criteria to obtain a homogeneous dataset. Radio-echo sounding records show quite good reflections from the ice sheet base and the internal layering. This confirms the preliminary results of snow radar data with a continuous and horizontal (up to 15 km from the Dome) internal layering. The data of all expeditions have been cross-controlled and are in good agreement each-other.

  9. Underwater Calibration of Dome Port Pressure Housings

    NASA Astrophysics Data System (ADS)

    Nocerino, E.; Menna, F.; Fassi, F.; Remondino, F.

    2016-03-01

    Underwater photogrammetry using consumer grade photographic equipment can be feasible for different applications, e.g. archaeology, biology, industrial inspections, etc. The use of a camera underwater can be very different from its terrestrial use due to the optical phenomena involved. The presence of the water and camera pressure housing in front of the camera act as additional optical elements. Spherical dome ports are difficult to manufacture and consequently expensive but at the same time they are the most useful for underwater photogrammetry as they keep the main geometric characteristics of the lens unchanged. Nevertheless, the manufacturing and alignment of dome port pressure housing components can be the source of unexpected changes of radial and decentring distortion, source of systematic errors that can influence the final 3D measurements. The paper provides a brief introduction of underwater optical phenomena involved in underwater photography, then presents the main differences between flat and dome ports to finally discuss the effect of manufacturing on 3D measurements in two case studies.

  10. Fabric and texture at Siple Dome, Antarctica

    USGS Publications Warehouse

    Diprinzio, C.L.; Wilen, Lawrence A.; Alley, R.B.; Fitzpatrick, J.J.; Spencer, M.K.; Gow, A.J.

    2005-01-01

    Preferred c-axis orientations are present in the firn at Siple Dome, West Antarctica, and recrystallization begins as shallow as 200 m depth in ice below -20??C, based on digital analysis of c-axis fabrics, grain-sizes and other characteristics of 52 vertical thin sections prepared in the field from the kilometer-long Siple Dome ice core. The shallowest section analyzed, from 22 m, shows clustering of c axes toward the vertical. By 200 m depth, girdle fabric and other features of recrystallized ice are evident in layers (or regions), separated by layers (regions) of typically finer-grained ice lacking evidence of recrystallization. Ice from about 700-780 m depth, which was deposited during the last ice age, is especially fine-grained, with strongly vertical c axes, but deeper ice shows much larger crystals and strong evidence of recrystallization. Azimuthal asymmetry of some c-axis fabrics, trends in grain-size, and other indicators reveal additional information on processes and history of ice flow at Siple Dome.

  11. Logistics Modeling of Emplacement Rate and Duration of Operations for Generic Geologic Repository Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, Elena Arkadievna; Hardin, Ernest

    This study identified potential geologic repository concepts for disposal of spent nuclear fuel (SNF) and (2) evaluated the achievable repository waste emplacement rate and the time required to complete the disposal for these concepts. Total repository capacity is assumed to be approximately 140,000 MT of spent fuel. The results of this study provide an important input for the rough-order-of-magnitude (ROM) disposal cost analysis. The disposal concepts cover three major categories of host geologic media: crystalline or hard rock, salt, and argillaceous rock. Four waste package sizes are considered: 4PWR/9BWR; 12PWR/21BWR; 21PWR/44BWR, and dual purpose canisters (DPCs). The DPC concepts assumemore » that the existing canisters will be sealed into disposal overpacks for direct disposal. Each concept assumes one of the following emplacement power limits for either emplacement or repository closure: 1.7 kW; 2.2 kW; 5.5 kW; 10 kW; 11.5 kW, and 18 kW.« less

  12. Four and eight faceted domes effects on drag force and image in missile application

    NASA Astrophysics Data System (ADS)

    Sakarya, Doǧan Uǧur

    2017-10-01

    Drag force effect is an important aspect of range performance in missile applications. Depending on domes geometry, this effect can be decreased. Hemispherical domes have great image uniformity but more drag force has an effect on it. Four and eight faceted domes decrease drag force. However, environment reflections cause a noise in a system. Also depending on the faceted domes shape, sun and other sources in the environment are deformed in the face of them and these deformed objects result in a false target in an image. In this study; hemispherical, four faceted and eight faceted domes are compared with respect to drag force. Furthermore, images are captured by using these manufactured domes. To compare domes effects on images, scenarios are generated and automatic target acquisition algorithm is used.

  13. A Dome Amidst the Hexagons

    ERIC Educational Resources Information Center

    American School and University, 1976

    1976-01-01

    Describes the design of the gymnasium of York (South Carolina) Comprehensive High School, a circular 12,000 square foot structure with a prefabricated domed roof constructed of steel hubs and curved wooden beams. (JG)

  14. Design and Test of Low-Profile Composite Aerospace Tank Dome

    NASA Technical Reports Server (NTRS)

    Ahmed, R.

    1999-01-01

    This report summarizes the design, analysis, manufacture, and test of a subscale, low-profile composite aerospace dome under internal pressure. A low-profile dome has a radius-to-height ratio greater than the square root of two. This effort demonstrated that a low-profile composite dome with a radius-to-height ratio of three was a feasible design and could adequately withstand the varying stress states resulting from internal pressurization. Test data for strain and displacement versus pressure are provided to validate the design.

  15. Numerical analysis of pressure and porosity evolution in lava domes during periodic degassing conditions

    NASA Astrophysics Data System (ADS)

    Hyman, D.; Bursik, M. I.; Pitman, E. B.

    2017-12-01

    The collapse or explosive breakup of growing and degassing lava domes presents a significant hazard due to the generation of dense, mobile pyroclastic flows as well as the wide dispersal of dense ballistic blocks. Lava dome stability is in large part governed by the balance of transport and storage of gas within the pore space. Because pore pressurization reduces the effective stress within a dome, the transient distribution of elevated gas pressure is critically important to understanding dome break up. We combine mathematical and numerical analyses to gain a better understanding of the temporal variation in gas flow and storage within the dome system. In doing so, we develop and analyze new governing equations describing nonlinear gas pressure diffusion in a deforming dome with an evolving porosity field. By relating porosity, permeability, and pressure, we show that the flux of gas through a dome is highly sensitive to the porosity distribution and viscosity of the lava, as well as the timescale and magnitude of the gas supply. The numerical results suggest that the diffusion of pressure and porosity variations play an integral role in the cyclic growth and destruction of small domes.The nearly continuous cycles of lava dome growth, pressurization, and failure that have characterized the last two decades of eruptive history at Volcán Popocatépetl, Mexico provide excellent natural data with which to compare new models of transient dome pressurization. At Popocatépetl, periodic pressure increases brought on by changes in gas supply into the base of the dome may play a role in its cyclic growth and destruction behavior. We compare our model of cyclic pressurization with lava dome survival data from Popocatépetl. We show that transient changes in pore pressure explain how small lava domes evolve to a state of criticality before explosion or collapse. Additionally, numerical analyses presented here suggest that short-term oscillations cannot arise within the dome

  16. DOMe: A deduplication optimization method for the NewSQL database backups

    PubMed Central

    Wang, Longxiang; Zhu, Zhengdong; Zhang, Xingjun; Wang, Yinfeng

    2017-01-01

    Reducing duplicated data of database backups is an important application scenario for data deduplication technology. NewSQL is an emerging database system and is now being used more and more widely. NewSQL systems need to improve data reliability by periodically backing up in-memory data, resulting in a lot of duplicated data. The traditional deduplication method is not optimized for the NewSQL server system and cannot take full advantage of hardware resources to optimize deduplication performance. A recent research pointed out that the future NewSQL server will have thousands of CPU cores, large DRAM and huge NVRAM. Therefore, how to utilize these hardware resources to optimize the performance of data deduplication is an important issue. To solve this problem, we propose a deduplication optimization method (DOMe) for NewSQL system backup. To take advantage of the large number of CPU cores in the NewSQL server to optimize deduplication performance, DOMe parallelizes the deduplication method based on the fork-join framework. The fingerprint index, which is the key data structure in the deduplication process, is implemented as pure in-memory hash table, which makes full use of the large DRAM in NewSQL system, eliminating the performance bottleneck problem of fingerprint index existing in traditional deduplication method. The H-store is used as a typical NewSQL database system to implement DOMe method. DOMe is experimentally analyzed by two representative backup data. The experimental results show that: 1) DOMe can reduce the duplicated NewSQL backup data. 2) DOMe significantly improves deduplication performance by parallelizing CDC algorithms. In the case of the theoretical speedup ratio of the server is 20.8, the speedup ratio of DOMe can achieve up to 18; 3) DOMe improved the deduplication throughput by 1.5 times through the pure in-memory index optimization method. PMID:29049307

  17. Technologies for precision manufacture of current and future windows and domes

    NASA Astrophysics Data System (ADS)

    Hallock, Bob; Shorey, Aric

    2009-05-01

    The final finish and characterization of windows and domes presents a number of challenges in achieving desired precision with acceptable cost and schedule. This becomes more difficult with advanced materials and as window and dome shapes and requirements become more complex, including acute angle corners, transmitted wavefront specifications, aspheric geometries and trending toward conformal surfaces. Magnetorheological Finishing (MRF®) and Magnetorheological Jet (MR Jet®), along with metrology provided by Sub-aperture Stitching Interferometry (SSI®) have several unique attributes that provide them advantages in enhancing fabrication of current and next generation windows and domes. The advantages that MRF brings to the precision finishing of a wide range of shapes such as flats, spheres (including hemispheres), cylinders, aspheres and even freeform optics, has been well documented. Recent advancements include the ability to finish freeform shapes up to 2-meters in size as well as progress in finishing challenging IR materials. Due to its shear-based removal mechanism in contrast to the pressure-based process of other techniques, edges are not typically rolled, in particular on parts with acute angle corners. MR Jet provides additional benefits, particularly in the finishing of the inside of steep concave domes and other irregular shapes. The ability of MR Jet to correct the figure of conformal domes deterministically and to high precision has been demonstrated. Combining these technologies with metrology techniques, such as SSI provides a solution for finishing current and future windows and domes in a reliable, deterministic and cost-effective way. The ability to use the SSI to characterize a range of shapes such as domes and aspheres, as well as progress in using MRF and MR Jet for finishing conventional and conformal windows and domes with increasing size and complexity of design will be presented.

  18. Reconnaissance and deep-drill site selection on Taylor Dome, Antarctica

    NASA Technical Reports Server (NTRS)

    Grootes, Pieter M.; Waddington, Edwin D.

    1993-01-01

    Taylor Dome is a small ice dome near the head of Taylor Valley, Southern Victoria Land. The location of the dome, just west of the Transantarctic Mountains, is expected to make the composition of the accumulating snow sensitive to changes in the extent of the Ross Ice Shelf. Thus, it is linked to the discharge of the West Antarctic Ice Sheet but protected against direct influences of glacial-interglacial sea-level rise. The record of past climatic and environmental changes in the ice provides a valuable complement to the radiocarbon-dated proxy record of climate derived from perched deltas, strandlines, and moraines that have been obtained in the nearby Dry Valleys. We carried out a reconnaissance of the Taylor Dome area over the past two field seasons to determine the most favorable location to obtain a deep core to bedrock. A stake network has been established with an 80-km line roughly along the crest of Taylor Dome, and 40-km lines parallel to it and offset by 10 km. These lines have been surveyed 1990/91, and the positions of 9 grid points have been determined with geoceivers. A higher density stake network was placed and surveyed around the most likely drill area in the second year. Ground-based radar soundings in both years provided details on bedrock topography and internal layering of the ice in the drill area. An airborne radar survey in January 1992, completed the radar coverage of the Taylor Dome field area.

  19. Hyperthyroidism with dome-and-dart T wave: A case report

    PubMed Central

    Lai, Ping; Yuan, Jing-ling; Xue, Jin-hua; Qiu, Yue-qun

    2017-01-01

    Abstract Rationale: Dome-and-dart T waves (or bifid T waves) are a rare phenomenon in the surface electrocardiogram. These wave forms are mainly observed in patients with congenital heart disease such as atrial septal defect and ventricular septal defect. And hyperthyroidism who presented with an electrocardiogram that had dome-and-dart T waves in a precordial lead is never been reported. Patient concerns: The patient presented with continuous tachycardia, palpitations, chest tightness, and headache for 4 days, and aggravated for 1 day. Diagnoses: Hyperthyroidism. Interventions: Methimazole. Outcomes: All symptoms were alleviated. Lessons: Dome-and-dart or bifid T waves have been reported in the conventional 12-lead electrocardiograms in some patients with congenital heart disease. The case illustrated here, to the best of our knowledge, dome-and-dart or bifid T waves may associate with hyperthyroidism patients. PMID:28178156

  20. UKIRT Upgrades Program: design and installation of the Dome Ventilation System (DVS)

    NASA Astrophysics Data System (ADS)

    Neff, D. H.; Hileman, Edward A.; Kain, S. J.; Cavedoni, Charles P.; Chuter, Timothy C.

    1997-03-01

    In order to encourage adequate dome ventilation to reduce or eliminate dome seeing at the 3.8 m United Kingdom Infrared Telescope (UKIRT), a dome ventilation system (DVS) was designed to be installed in the lower dome skirt. The modifications to the dome for the new DVS apertures consisted of installing a reinforcing frame containing an insulated rollup door and adjustable louvers. This paper describes the finite element structural analysis of the reinforcing frame, the detailed design of the frame hardware, the design of the programmable language control (PLC) system for controlling the opening and closing of the rollup doors, and the fabrication and installation of a prototype frame assembly. To date, a prototype assembly has been installed that confirms the design, and fifteen production assemblies are currently under fabrication for installation by September 1996.

  1. Photogrammetric monitoring of lava dome growth during the 2009 eruption of Redoubt Volcano

    USGS Publications Warehouse

    Diefenbach, Angela K.; Bull, Katharine F.; Wessels, Rick; McGimsey, Robert G.

    2013-01-01

    The 2009 eruption of Redoubt Volcano, Alaska, began with a phreatic explosion on 15 March followed by a series of at least 19 explosive events and growth and destruction of at least two, and likely three, lava domes between 22 March and 4 April. On 4 April explosive activity gave way to continuous lava effusion within the summit crater. We present an analysis of post-4 April lava dome growth using an oblique photogrammetry approach that provides a safe, rapid, and accurate means of measuring dome growth. Photogrammetric analyses of oblique digital images acquired during helicopter observation flights and fixed-wing volcanic gas surveys produced a series of digital elevation models (DEMs) of the lava dome from 16 April to 23 September. The DEMs were used to calculate estimates of volume and time-averaged extrusion rates and to quantify morphological changes during dome growth.Effusion rates ranged from a maximum of 35 m3 s− 1 during the initial two weeks to a low of 2.2 m3 s− 1 in early summer 2009. The average effusion rate from April to July was 9.5 m3 s− 1. Early, rapid dome growth was characterized by extrusion of blocky lava that spread laterally within the summit crater. In mid-to-late April the volume of the dome had reached 36 × 106 m3, roughly half of the total volume, and dome growth within the summit crater began to be limited by confining crater walls to the south, east, and west. Once the dome reached the steep, north-sloping gorge that breaches the crater, growth decreased to the south, but the dome continued to inflate and extend northward down the gorge. Effusion slowed during 16 April–1 May, but in early May the rate increased again. This rate increase was accompanied by a transition to exogenous dome growth. From mid-May to July the effusion rate consistently declined. The decrease is consistent with observations of reduced seismicity, gas emission, and thermal anomalies, as well as declining rates of geodetic deflation or

  2. Rigidity of lattice domes

    NASA Technical Reports Server (NTRS)

    Savelyev, V. A.

    1979-01-01

    The means of ensuring total rigidity of lattice domes, using comparison with solid shells of 1-3 layers are discussed. Irregularities of manufacture, processing, and other factors are considered, as they relate to diminution of rigidity. The discussion uses the concepts of upper and lower critical loads on the structure in question.

  3. The Mairan domes: silicic volcanic constructs on the Moon

    USGS Publications Warehouse

    Glotch, Timothy D.; Hagerty, Justin J.; Lucey, Paul G.; Hawke, B. Ray; Giguere, Thomas A.; Arnold, Jessica A.; Williams, Jean-Pierre; Jolliff, Bradley L.; Paige, David A.

    2011-01-01

    The Mairan domes are four features located in northern Oceanus Procellarum at ∼312.3E, 41.4N on the Moon. High resolution visible imagery, visible-to-mid-IR spectra, and Lunar Prospector Th abundance data all indicate that these four domes have a composition that is consistent with derivation from a Si-rich, highly evolved magma.

  4. The dome-shaped Fresnel-Köhler concentrator

    NASA Astrophysics Data System (ADS)

    Zamora, P.; Benitez, P.; Li, Y.; Miñano, J. C.; Mendes-Lopes, J.; Araki, K.

    2012-10-01

    Manufacturing tolerances, along with a high concentration ratio, are key issues in order to obtain cheap CPV systems for mass production. Consequently, this manuscript presents a novel tolerant and cost effective concentrator optic: the domed-shaped Fresnel-Köhler, presenting a curved Fresnel lens as Primary Optical Element (POE). This concentrator is based on two previous successful CPV designs: the FK concentrator, based on a flat Fresnel lens, and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The manuscript shows outstanding simulation results for geometrical concentration factor of Cg = 1,230x: high tolerance and high optical efficiency, achieving acceptance angles of 1.18° (dealing to a CAP*=0.72) and efficiencies over 85% (without any anti-reflective coating). Moreover, Köhler integration provides good irradiance uniformity on the cell surface without increasing system complexity by means of any extra element. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.

  5. First photometric properties of Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Chadid, M.; Vernin, J.; Jeanneaux, F.; Mekarnia, D.; Trinquet, H.

    2008-07-01

    Here we present the first photometric extinction measurements in the visible range performed at Dome C in Antarctica, using PAIX photometer (Photometer AntarctIca eXtinction). It is made with "off the shelf" components, Audine camera at the focus of Blazhko telescope, a Meade M16 diaphragmed down to 15 cm. For an exposure time of 60 s without filter, a 10th V-magnitude star is measured with a precision of 1/100 mag. A first statistics over 16 nights in August 2007 leads to a 0.5 magnitude per air mass extinction, may be due to high altitude cirrus. This rather simple experiment shows that continuous observations can be performed at Dome C, allowing high frequency resolution on pulsation and asteroseismology studies. Light curves of one of RR Lyrae stars: SAra were established. They show the typical trend of a RRLyrae star. A recent sophisticated photometer, PAIX II, has been installed recently at Dome C during polar summer 2008, with a ST10 XME camera, automatic guiding, auto focusing and Johnson/Bessel UBVRI filter wheels.

  6. A history of semi-active laser dome and window materials

    NASA Astrophysics Data System (ADS)

    Sullivan, Roger M.

    2014-05-01

    Semi-Active Laser (SAL) guidance systems were developed starting in the mid-1960's and today form an important class of precision guided weapons. The laser wavelengths generally fall in the short wave infrared region of the spectrum. Relative to passive, image based, infrared seekers the optical demands placed on the domes or windows of SAL seekers is very modest, allowing the use of low cost, easily manufactured materials, such as polycarbonate. This paper will examine the transition of SAL window and dome science and technology from the laboratory to battlefield, with special emphasis on the story of polycarbonate domes.

  7. Lithospheric Structure Beneath the Hangay Dome, Central Mongolia

    NASA Astrophysics Data System (ADS)

    Stachnik, J. C.; Meltzer, A.; Souza, S.; Munkhuu, U.; Tsaagan, B.; Russo, R. M.

    2014-12-01

    The Mongolian Plateau is a broad regional uplift positioned between the Siberian Craton to the north and the far northern edge of the India-Asia collision to the south. Within this intracontinental setting of high topography, the Hangay Dome in central Mongolia reaches elevations of 4 km and contains intermittent basaltic magmatism over the last 30 Ma. The relationship between high topography, magmatism, and geodynamic processes remains largely unsolved although processes ranging from lithospheric delamination to mantle plume effects have been proposed. A temporary array of seismic stations was deployed around the Hangay Dome to determine lithospheric structure. Preliminary results are shown from receiver function analysis, ambient noise tomography, and teleseismic P-wave tomography. Crustal thickness measurements from H-k stacking of receiver functions range from 42 km to 57 km across the array, with thicker crust beneath the highest topography. The bulk crustal Vp/Vs ratio ranges from 1.71 to 1.9 with a median value for the array of 1.77, perhaps indicating a variable crustal composition with some regions having a more mafic crust. The stacked receiver functions are also combined with ambient noise phase velocity dispersion measurements in a joint inversion for shear velocity profiles at each station which reveals crustal thickness estimates consistent with the H-k stacks while also determining the shear velocity step at the Moho. Teleseismic P-wave travel time residuals ranging between +/-1 second are inverted for a 3D P-wave velocity model using finite-frequency kernels. Notable features include 1) a low velocity anomaly (-3%) in the upper 200 km beneath the eastern part of the Hangay Dome near the Orkhon River Valley, , 2) a steeply dipping low velocity anomaly to the north of the Hangay Dome, perhaps related to the nearby Baikal Rift, and 3) generally higher velocities in the upper 200 km surrounding the high topography. To first order, the high topography of

  8. Emplacement of the final lava dome of the 2009 eruption of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Bull, Katharine F.; Anderson, Steven W.; Diefenbach, Angela K.; Wessels, Rick L.; Henton, Sarah M.

    2013-01-01

    After more than 8 months of precursory activity and over 20 explosions in 12 days, Redoubt Volcano, Alaska began to extrude the fourth and final lava dome of the 2009 eruption on April 4. By July 1 the dome had filled the pre-2009 summit crater and ceased to grow. By means of analysis and annotations of time-lapse webcam imagery, oblique-image photogrammetry techniques and capture and analysis of forward-looking infrared (FLIR) images, we tracked the volume, textural, effusive-style and temperature changes in near-real time over the entire growth period of the dome. The first month of growth (April 4–May 4) produced blocky intermediate- to high-silica andesite lava (59–62.3 wt.% SiO2) that initially formed a round dome, expanding by endogenous growth, breaking the surface crust in radial fractures and annealing them with warmer, fresh lava. On or around May 1, more finely fragmented and scoriaceous andesite lava (59.8–62.2 wt.% SiO2) began to appear at the top of the dome coincident with increased seismicity and gas emissions. The more scoriaceous lava spread radially over the dome surface, while the dome continued to expand from endogenous growth and blocky lava was exposed on the margins and south side of the dome. By mid-June the upper scoriaceous lava had covered 36% of the dome surface area. Vesicularity of the upper scoriaceous lava range from 55 to 66%, some of the highest vesicularity measurements recorded from a lava dome.We suggest that the stability of the final lava dome primarily resulted from sufficient fracturing and clearing of the conduit by preceding explosions that allowed efficient degassing of the magma during effusion. The dome was thus able to grow until it was large enough to exceed the magmastatic pressure in the chamber, effectively shutting off the eruption.

  9. Hole-to-surface resistivity measurements at Gibson Dome (drill hole GD-1) Paradox basin, Utah

    USGS Publications Warehouse

    Daniels, J.J.

    1984-01-01

    Hole-to-surface resistivity measurements were made in a deep drill hole (GD-1), in San Juan County, Utah, which penetrated a sequence of sandstone, shale, and evaporite. These measurements were made as part of a larger investigation to study the suitability of an area centered around the Gibson Dome structure for nuclear waste disposal. The magnitude and direction of the total electric field resulting from a current source placed in a drill hole is calculated from potential difference measurements for a grid of closely-spaced stations. A contour map of these data provides a detailed map of the distribution of the electric field away from the drill hole. Computation of the apparent resistivity from the total electric field helps to interpret the data with respect to the ideal situation of a layered earth. Repeating the surface measurements for different source depths gives an indication of variations in the geoelectric section with depth. The quantitative interpretation of the field data at Gibson Dome was hindered by the pressure of a conductive borehole fluid. However, a qualitative interpretation of the field data indicates the geoelectric section around drill hole GD-1 is not perfectly layered. The geoelectric section appears to dip to the northwest, and contains anomalies in the resistivity distribution that may be representative of localized thickening or folding of the salt layers.

  10. Evolution of oceanic core complex domes and corrugations

    NASA Astrophysics Data System (ADS)

    Cann, J.; Escartin, J.; Smith, D.; Schouten, H.

    2007-12-01

    In regions of the oceans where detachment faulting is developed widely, individual core complex domes (elevated massifs capped by corrugated detachment surfaces) show a consistent morphology. At their outward sides, most core complex domes are attached to a planar slope, interpreted (Smith et al., 2006) as an originally steep inward-facing normal fault that has been rotated to shallower angles. We suggest that the break in slope where the originally steep normal fault meets the domal corrugated surface marks the trace of the brittle-ductile transition at the base of the original normal fault. The steep faults originate within a short distance of the spreading axis. This means that the arcuate shape of the intersection of the steep fault with the dome must indicate the shape of the brittle-ductile transition very close to the spreading axis. The transition must be very shallow close to the summit of the dome and deeper on each flank. Evidence from drilling of some core complexes (McCaig et al, 2007) shows that while the domal detachment faults are active they may channel hydrothermal flow at black smoker temperatures and may be simultaneously injected by magma from below. This indicates a close link between igneous activity, hydrothermal flow and deformation while a core complex is forming. Once the shape of the core complex dome is established, it persists as the ductile footwall mantle rising from below is shaped by the overlying brittle hanging wall that has been cooled by the hydrothermal circulation. The corrugations in the footwall must be moulded into it by irregularities in the brittle hanging wall, as suggested by Spencer (1999). The along-axis arched shape of the hanging wall helps to stabilise the domal shape of the footwall as it rises and cools.

  11. The Development of M Cells in Peyer’s Patches Is Restricted to Specialized Dome-Associated Crypts

    PubMed Central

    Gebert, Andreas; Fassbender, Susanne; Werner, Kerstin; Weissferdt, Annikka

    1999-01-01

    It is controversial whether the membranous (M) cells of the Peyer’s patches represent a separate cell line or develop from enterocytes under the influence of lymphocytes on the domes. To answer this question, the crypts that produce the dome epithelial cells were studied and the distribution of M cells over the domes was determined in mice. The Ulex europaeus agglutinin was used to detect M cells in mouse Peyer’s patches. Confocal microscopy with lectin-gold labeling on ultrathin sections, scanning electron microscopy, and laminin immuno-histochemistry were combined to characterize the cellular composition and the structure of the dome-associated crypts and the dome epithelium. In addition, the sites of lymphocyte invasion into the dome epithelium were studied after removal of the epithelium using scanning electron microscopy. The domes of Peyer’s patches were supplied with epithelial cells that derived from two types of crypt: specialized dome-associated crypts and ordinary crypts differing not only in shape, size, and cellular composition but also in the presence of M cell precursors. When epithelial cells derived from ordinary crypts entered the domes, they formed converging radial strips devoid of M cells. In contrast to the M cells, the sites where lymphocytes invaded the dome epithelium were not arranged in radial strips, but randomly distributed over the domes. M cell development is restricted to specialized dome-associated crypts. Only dome epithelial cells that derive from these specialized crypts differentiate into M cells. It is concluded that M cells represent a separate cell line that is induced in the dome-associated crypts by still unknown, probably diffusible lymphoid factors. PMID:10329609

  12. A Planetarium Inside Your Office: Virtual Reality in the Dome Production Pipeline

    NASA Astrophysics Data System (ADS)

    Summers, Frank

    2018-01-01

    Producing astronomy visualization sequences for a planetarium without ready access to a dome is a distorted geometric challenge. Fortunately, one can now use virtual reality (VR) to simulate a dome environment without ever leaving one's office chair. The VR dome experience has proven to be a more than suitable pre-visualization method that requires only modest amounts of processing beyond the standard production pipeline. It also provides a crucial testbed for identifying, testing, and fixing the visual constraints and artifacts that arise in a spherical presentation environment. Topics adreesed here will include rendering, geometric projection, movie encoding, software playback, and hardware setup for a virtual dome using VR headsets.

  13. Completely open-foldable domes remaining cool in sunshine

    NASA Astrophysics Data System (ADS)

    Hammerschlag, Robert H.; Deelen, Sander; Hoogendoorn, Pieter W.; Kommers, Johannes N. M.; Sonner, Thomas; Simoes, Roberto; Grassin, Olivier; Fischer, Andreas; Visser, Simon; Thewissen, Kristof

    2016-07-01

    These open-foldable very light-weight domes, based on very strong textile membranes highly tensioned between steel bows, are designed for bad-weather protection and maintenance of instruments for astronomical, meteorological and civil-engineering measurements and have extremely high wind stability. The domes of the GREGOR telescope and the Dutch Open Telescope are the two existing prototypes. Improvements were developed with all parts light-colored to remain cool in solar light. The new specially made connection parts (eyes) between the textile parts are made from white-colored PETP, a very strong and UV-stable synthetic, and have a better geometrical shape giving higher stability. The rubber seal tubes on top of the dome were of black-colored chloride rubber CR (neoprene), strong and UV stable, but very warm in sunlight. New UV-stable EPDM rubber tubes were produced in natural light color. To get this rubber stiff enough to give good sealing, a black-colored stiff EPDM rubber is put inside the light-colored one. Tests were performed and the forces necessary for compression of the rubber tubes were measured. An inside black tube with a circa 1.3 times larger compression force than the original black tubes was applied. The assembling of the black tubes into the light-colored tubes was successfully applied at the DOT and GREGOR domes.

  14. Solar Photovoltaic Array With Mini-Dome Fresnel Lenses

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    1994-01-01

    Mini-dome Fresnel lenses concentrate sunlight onto individual photovoltaic cells. Facets of Fresnel lens designed to refract incident light at angle of minimum deviation to minimize reflective losses. Prismatic cover on surface of each cell reduces losses by redirecting incident light away from metal contacts toward bulk of semiconductor, where it is usefully absorbed. Simple design of mini-dome concentrator array easily adaptable to automated manufacturing techniques currently used by semiconductor industry. Attractive option for variety of future space missions.

  15. Full Dome Development for Interactive Immersive Training Capabilities

    DTIC Science & Technology

    2015-04-03

    called the the vDome Player. This application serves as a familiar user interface for direct media playback. Modeled after the widely used VLC ...charrette challenge to task. Below are my notes on where everyone is in planning thei r f inal proj ects . Please let me know (comments or emai l...space with a lot of sound and feeling. What is challenging ? The challenge is how to get depth of field in the dome. Trying to gently allure people into

  16. Predictions of Aerodynamic Heating on Tactical Missile Domes

    DTIC Science & Technology

    1979-04-25

    A . Martellucci W. Daskin J. D. Cresswell J. B. Arnaiz L. A . Marshall J. Cassanto R. Hobbs C. Harris F. George P.O. Box 8555 Philadelphia, PA J9101... A LEVELs NSWC TR 79-21 i PREDICTIONS OF AERODYNAMIC HEATING ON TACTICAL MISSILE DOMES A wo BY T. F. ZIEN W. C. RAGSDALE RESEARCH TECHNOLOGY...DOMES SAUTHOR( a ) 8. CONTRACT OR GRANT NUMBER() T. F. ZiendW.C jRagsale 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

  17. Folding retractable protective dome for space vehicle equipment

    NASA Technical Reports Server (NTRS)

    Clark, Paul R. (Inventor); Messinger, Ross H. (Inventor)

    2008-01-01

    A folding, retractable dome for protecting a feature, such as a docking mechanism, a hatch or other equipment at an exterior surface of a space vehicle, includes a plurality of arcuate ribs, each having opposite ends respectively pinioned at opposite sides of the feature at the surface of the vehicle for rotational movement about an axis of rotation extending through the opposite ends and through an arcuate path of revolution extending over the feature, and a flexible cover attached to each of the ribs such that, in a deployed configuration of the dome, in which adjacent ribs are rotated apart from each other at a maximum relative angle therebetween, the cover is stretched generally tangentially between the adjacent ribs to form a generally arcuate shield over the feature, and in a retracted position of the dome, in which adjacent ribs are rotated together at a minimum relative angle therebetween, the cover is collapsed to define folded pleats between the adjacent ribs.

  18. Rheology of Lava Flows on Europa and the Emergence of Cryovolcanic Domes

    NASA Technical Reports Server (NTRS)

    Quick, Lynnae C.; Glaze, Lori S.; Baloga, Steve M.

    2015-01-01

    There is ample evidence that Europa is currently geologically active. Crater counts suggest that the surface is no more than 90 Myr old, and cryovolcanism may have played a role in resurfacing the satellite in recent geological times. Europa's surface exhibits many putative cryovolcanic features, and previous investigations have suggested that a number of domes imaged by the Galileo spacecraft may be volcanic in origin. Consequently, several Europa domes have been modeled as viscous effusions of cryolava. However, previous models for the formation of silicic domes on the terrestrial planets contain fundamental shortcomings. Many of these shortcomings have been alleviated in our new modeling approach, which warrants a re-assessment of the possibility of cryovolcanic domes on Europa.

  19. Contemporary doming of the Adirondack mountains: Further evidence from releveling

    USGS Publications Warehouse

    Isachsen, Y.W.

    1981-01-01

    The Adirondack Mountains constitute an anomalously large, domical uplift on the Appalachian foreland. The dome has a NNE-SSW axis about 190 km long, and an east-west dimension of about 140 km. It has a structural relief of at least 1600 m, and a local topographic relief of up to 1200 m. First-order leveling in 1955, and again in 1973 along a north-south line at the eastern margin of the Adirondack shows an uplift rate of 2.2 mm/yr at the latitude of the center of the dome and a subsidence rate of 2.8 mm/yr at the northern end of the line near the Canadian border. The net amount of arching along this releveled line is 9 cm ?? 2 cm (Isachsen, 1975). To test the idea that this arching represented an "edge effect" of contemporary doming of the Adirondacks as a whole, the National Geodetic Survey was encouraged to relevel a 1931 north-south line between Utica and Fort Covington (near the Canadian border) which crosses the center of the dome. The releveling showed that the mountain mass is undergoing contemporary domical uplift at a rate which reaches 3.7 mm/yr near the center of the dome (compare with 1 mm/yr for the Swiss Alps). Three other releveled lines in the area support this conclusion. ?? 1981.

  20. Status of the first Antarctic survey telescopes for Dome A

    NASA Astrophysics Data System (ADS)

    Li, Zhengyang; Yuan, Xiangyan; Cui, Xiangqun; Wang, Daxing; Gong, Xuefei; Du, Fujia; Zhang, Yi; Hu, Yi; Wen, Haikun; Li, Xiaoyan; Xu, Lingzhe; Shang, Zhaohui; Wang, Lifan

    2012-09-01

    The preliminary site testing carried out since the beginning of 2008 shows the Antarctic Dome A is very likely to be the best astronomical site on earth even better than Dome C and suitable for observations ranging from optical wavelength to infrared and sub-millimeter. After the Chinese Small Telescope Array (CSTAR) which is composed of four small fixed telescopes with diameter of 145mm and mounted on Dome A in 2008 for site testing and variable star monitor, three Antarctic Survey Telescopes (AST3) were proposed for observations of supernovas and extrasolar planets searching. AST3 is composed of 3 large field of view catadioptric telescopes with 500mm entrance diameter and G, R, I filter for each. The telescopes can point and track autonomously along with a light and foldable dome to keep the snow and icing build up. A precise auto-focusing mechanism is designed to make the telescope work at the right focus under large temperature difference. The control and tracking components and assembly were successfully tested at from normal temperature down to -80 Celsius degree. Testing observations of the first AST3 showed it can deliver good and uniform images over the field of 8 square degrees. The first telescope was successfully mounted on Dome A in Jan. 2012 and the automatic observations were started from Mar. 2012.

  1. Forces and dynamics in epithelial domes of controlled size and shape

    NASA Astrophysics Data System (ADS)

    Latorre-Ibars, Ernest; Casares, Laura; Gomez-Gonzalez, Manuel; Uroz, Marina; Arroyo, Marino; Trepat, Xavier

    Mechanobiology of epithelia plays a central role in morphogenesis, wound healing, and tumor progression. Its current understanding relies on mechanical measurements on flat epithelial layers. However, most epithelia in vivo exhibit a curved 3D shape enclosing a pressurized lumen. Using soft micropatterned substrates we produce massive parallel arrays of epithelial domes with controlled size and basal shape. We measure epithelial traction, tension, and luminal pressure in epithelial domes. The local stress tensor on the freestanding epithelial membrane is then mapped by combining measured luminal pressure and local curvature. We show that tension and cell shape are highly anisotropic and vary along the meridional position of the domes. Finally, we establish constitutive relations between shape, tension, and pressure during perturbations of the contractile machinery, osmotic shocks, and spontaneous fluctuations of dome volume. Our findings contradict a description of the epithelium as a fluid capillary surface. Cells in the dome are unable to relax into a uniform and isotropic tensional state through sub- and supra-cellular rearrangements. Mapping epithelial shape, tension, and pressure will enable quantitative studies of mechanobiology in 3D epithelia of controlled size and shape.

  2. Learning Object Repositories

    ERIC Educational Resources Information Center

    Lehman, Rosemary

    2007-01-01

    This chapter looks at the development and nature of learning objects, meta-tagging standards and taxonomies, learning object repositories, learning object repository characteristics, and types of learning object repositories, with type examples. (Contains 1 table.)

  3. Albedo of cold sea ice with precipitated salt on the tropical ocean of Snowball Earth: field measurements and laboratory experiments

    NASA Astrophysics Data System (ADS)

    Light, B.; Black, T.; Carns, R.; Brandt, R.; Dadic, R.; Warren, S.

    2012-04-01

    During the initial freezing of the tropical ocean on Snowball Earth, the first ice to form would be sea ice, which contains salt within liquid brine inclusions. At temperatures below -23 C, significant amounts of salt begin to crystallize within the brine inclusions. These crystals scatter light, increasing the ice albedo. The most abundant salt is hydrohalite, NaCl.2H2O. A dry tropical atmosphere promoting ice surface sublimation would cause a salt crust to be left on the surface as a lag deposit. Such a high-albedo surface could be crucial during the snowball initiation. These processes must be considered when assigning albedos to sea ice in a climate model of Snowball Earth. Precipitation of salt within brine inclusions was observed on windswept bare ice of McMurdo Sound at the coast of Antarctica (78 S) in late winter. Consequently the albedo was higher at lower temperature. The precipitation process exhibited hysteresis, with hydrohalite precipitating at about -30 C and dissolving at about -23 C. The causes of the hysteresis are being investigated in laboratory experiments; they may involve biological macromolecules. Nowhere on the modern Earth does sea ice undergo sublimation at low temperatures for long enough to develop a salt crust before the summer melt begins, so this process is being investigated in our laboratory. A 1000-liter tank is used to grow artificial sea ice, and a system has been built to measure its albedo. A diffusely reflecting hemispherical dome of diameter 1.2 m is placed on top of the tank and illuminated from within. The interior of the dome illuminates the ice surface as well as serving as a platform for detecting the incident and backscattered radiance fields. The diffusely reflecting surfaces of the ice and the dome make it straightforward to estimate incoming and reflected irradiance as angular integrals of the radiance measurements. The albedo of the bare, cold (below -23 C) ice is 0.8 at visible wavelengths, decreasing toward the

  4. MROI Array telescopes: the relocatable enclosure domes

    NASA Astrophysics Data System (ADS)

    Marchiori, G.; Busatta, A.; Payne, I.

    2016-07-01

    The MROI - Magdalena Ridge Interferometer is a project which comprises an array of up to 10 1.4m diameter mirror telescopes arranged in a "Y" configuration. Each of these telescopes will be housed inside a Unit Telescope Enclosure (UTE) which are relocatable onto any of 28 stations. EIE GROUP Srl, Venice - Italy, was awarded the contract for the design, the construction and the erection on site of the MROI by the New Mexico Institute of Mining and Technology. The close-pack array of the MROI - including all 10 telescopes, several of which are at a relative distance of less than 8m center to center from each other - necessitated an original design for the Unit Telescope Enclosure (UTE). This innovative design enclosure incorporates a unique dome/observing aperture system to be able to operate in the harsh environmental conditions encountered at an altitude of 10,460ft (3,188m). The main characteristics of this Relocatable Enclosure Dome are: a Light insulated Steel Structure with a dome made of composites materials (e.g. glass/carbon fibers, sandwich panels etc.), an aperture motorized system for observation, a series of louvers for ventilation, a series of electrical and plants installations and relevant auxiliary equipment. The first Enclosure Dome is now under construction and the completion of the mounting on site id envisaged by the end of 2016. The relocation system utilizes a modified reachstacker (a transporter used to handle freight containers) capable of maneuvering between and around the enclosures, capable of lifting the combined weight of the enclosure with the telescope (30tons), with minimal impacts due to vibrations.

  5. Seismicity associated with dome growth and collapse at the Soufriere Hills Volcano, Montserrat

    USGS Publications Warehouse

    Miller, A.D.; Stewart, R.C.; White, R.A.; Luckett, R.; Baptie, B.J.; Aspinall, W.P.; Latchman, J.L.; Lynch, L.L.; Voight, B.

    1998-01-01

    Varied seismicity has accompanied growth and collapse of the lava dome of the Soufriere Hills Volcano, Montserrat. Earthquakes have been classified as either volcano-tectonic, long-period or hybrid, and daily variations in the numbers of events have mapped changes in the style of eruption. Repetitive hybrid earthquakes were common during the first months of dome growth. In July 1996 the style of seismicity changed and regular short-lived hybrid earthquake swarms became common. This change was probably caused by an increase in the magma flux. Earthquake swarms have preceded almost all major dome collapses, and have accompanied cyclical deformation, thought to be due to a built-up of pressure in the upper conduit which is later released by magma moving into the dome.Varied seismicity has accompanied growth and collapse of the lava dome of the Soufriere Hills Volcano, Montserrat. Earthquakes have been classified as either volcano-tectonic, long-period or hybrid, and daily variations in the numbers of events have mapped changes in the style of eruption. Repetitive hybrid earthquakes were common during the first months of dome growth. In July 1996 the style of seismicity changed and regular, short-lived hybrid earthquake swarms became common. This change was probably caused by an increase in the magma flux. Earthquake swarms have preceded almost all major dome collapses, and have accompanied cyclical deformation, thought to be due to a build-up of pressure in the upper conduit which is later released by magma moving into the dome.

  6. Blue Mountain and The Gas Rocks: Rear-Arc Dome Clusters on the Alaska Peninsula

    USGS Publications Warehouse

    Hildreth, Wes; Fierstein, Judy; Calvert, Andrew T.

    2007-01-01

    Behind the single-file chain of stratovolcanoes on the Alaska Peninsula, independent rear-arc vents for mafic magmas are uncommon, and for silicic magmas rarer still. We report here the characteristics, compositions, and ages of two andesite-dacite dome clusters and of several nearby basaltic units, all near Becharof Lake and 15 to 20 km behind the volcanic front. Blue Mountain consists of 13 domes (58-68 weight percent SiO2) and The Gas Rocks of three domes (62-64.5 weight percent SiO2) and a mafic cone (52 weight percent SiO2). All 16 domes are amphibole-biotite-plagioclase felsite, and nearly all are phenocryst rich and quartz bearing. Although the two dome clusters are lithologically and chemically similar and only 25 km apart, they differ strikingly in age. The main central dome of Blue Mountain yields an 40Ar/39Ar age of 632?7 ka, and two of the Gas Rocks domes ages of 25.7?1.4 and 23.3?1.2 ka. Both clusters were severely eroded by glaciation; surviving volumes of Blue Mountain domes total ~1 km3, and of the Gas Rocks domes 0.035 km3. Three basaltic vents lie close to The Gas Rocks, another lies just south of Blue Mountain, and a fifth is near the north shore of Becharof Lake. A basaltic andesite vent 6 km southeast of The Gas Rocks appears to be a flank vent of the arc-front center Mount Peulik. The basalt of Ukinrek Maars has been called transitionally alkalic, but all the other basaltic rocks are subalkaline. CO2-rich gas emissions near the eponymous Gas Rocks domes are not related to the 25-ka dacite dome cluster but, rather, to intracrustal degassing of intrusive basalt, one batch of which erupted 3 km away in 1977. The felsic and mafic vents all lie along or near the Bruin Bay Fault where it intersects a broad transverse structural zone marked by topographic, volcanologic, and geophysical discontinuities.

  7. 46 CFR 153.256 - Trunks, domes, and openings of cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Equipment Cargo Tanks § 153.256 Trunks, domes, and openings of cargo tanks. (a) The hatch of a cargo tank... uppermost part of the tank, extending above the weatherdeck; (2) Its hatch at the top of the trunk or dome...

  8. 46 CFR 153.256 - Trunks, domes, and openings of cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Cargo Tanks § 153.256 Trunks, domes, and openings of cargo tanks. (a) The hatch of a cargo tank... uppermost part of the tank, extending above the weatherdeck; (2) Its hatch at the top of the trunk or dome...

  9. 46 CFR 153.256 - Trunks, domes, and openings of cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Equipment Cargo Tanks § 153.256 Trunks, domes, and openings of cargo tanks. (a) The hatch of a cargo tank... uppermost part of the tank, extending above the weatherdeck; (2) Its hatch at the top of the trunk or dome...

  10. 46 CFR 153.256 - Trunks, domes, and openings of cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Equipment Cargo Tanks § 153.256 Trunks, domes, and openings of cargo tanks. (a) The hatch of a cargo tank... uppermost part of the tank, extending above the weatherdeck; (2) Its hatch at the top of the trunk or dome...

  11. 46 CFR 153.256 - Trunks, domes, and openings of cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Equipment Cargo Tanks § 153.256 Trunks, domes, and openings of cargo tanks. (a) The hatch of a cargo tank... uppermost part of the tank, extending above the weatherdeck; (2) Its hatch at the top of the trunk or dome...

  12. Thermodynamic Properties of Magnesium Chloride Hydroxide Hydrate (Mg3Cl(OH)5:4H2O, Phase 5), and Its importance to Nuclear Waste Isolation in Geological Repositories in Salt Formations

    NASA Astrophysics Data System (ADS)

    Xiong, Y.; Deng, H.; Nemer, M. B.; Johnsen, S.

    2009-12-01

    MgO (bulk, pure MgO corresponding to the mineral periclase) is the only engineered barrier certified by the Environmental Protection Agency for emplacement in the Waste Isolation Pilot Plant (WIPP) in the US, and an Mg(OH)2-based engineered barrier (bulk, pure Mg(OH)2 corresponding to brucite) is to be employed in the Asse repository in Germany. Both the WIPP and the Asse are located in salt formations. The WIPP is a U.S. Department of Energy geological repository being used for the permanent disposal of defense-related transuranic waste (TRU waste). The repository is 655 m below the surface, and is situated in the Salado Formation, a Permian salt bed mainly composed of halite, and of lesser amounts of polyhalite, anhydrite, gypsum, magnesite, clays and quartz. The WIPP Generic Weep Brine (GWB), a Na-Mg-Cl dominated brine, is associated with the Salado Formation. The previous vendor for MgO for the WIPP was Premier Chemicals and the current vendor is Martin Marietta Materials. Experimental studies of both Premier MgO and Martin Marietta MgO with the GWB at SNL indicate the formation of magnesium chloride hydroxide hydrate, Mg3Cl(OH)5:4H2O, termed as phase 5. However, this important phase is lacking in the existing thermodynamic database. In this study, the solubility constant of phase 5 is determined from a series of solubility experiments in MgCl2-NaCl solutions. The solubility constant at 25 oC for the following reaction, Mg3Cl(OH)5:4H2O + 5H+ = 3Mg2+ + 9H2O(l) + Cl- is recommended as 43.21±0.33 (2σ) based on the Specific Interaction Theory (SIT) model for extrapolation to infinite dilution. The log K obtained via the Pitzer equations is identical to the above value within the quoted uncertainty. The Gibbs free energy and enthalpy of formation for phase 5 at 25 oC are derived as -3384±2 (2σ) kJ mol-1 and -3896±6 (2σ) kJ mol-1, respectively. The standard entropy and heat capacity of phase 5 at 25 oC are estimated as 393±20 J mol-1 K-1 and 374±19 J mol-1 K

  13. Longitudinal biases in the Seychelles Dome simulated by 35 ocean-atmosphere coupled general circulation models

    NASA Astrophysics Data System (ADS)

    Nagura, Motoki; Sasaki, Wataru; Tozuka, Tomoki; Luo, Jing-Jia; Behera, Swadhin K.; Yamagata, Toshio

    2013-02-01

    Seychelles Dome refers to the shallow climatological thermocline in the southwestern Indian Ocean, where ocean wave dynamics efficiently affect sea surface temperature, allowing sea surface temperature anomalies to be predicted up to 1-2 years in advance. Accurate reproduction of the dome by ocean-atmosphere coupled general circulation models (CGCMs) is essential for successful seasonal predictions in the Indian Ocean. This study examines the Seychelles Dome as simulated by 35 CGCMs, including models used in phase five of the Coupled Model Intercomparison Project (CMIP5). Among the 35 CGCMs, 14 models erroneously produce an upwelling dome in the eastern half of the basin whereas the observed Seychelles Dome is located in the southwestern tropical Indian Ocean. The annual mean Ekman pumping velocity in these models is found to be almost zero in the southern off-equatorial region. This result is inconsistent with observations, in which Ekman upwelling acts as the main cause of the Seychelles Dome. In the models reproducing an eastward-displaced dome, easterly biases are prominent along the equator in boreal summer and fall, which result in shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and a spurious upwelling dome in the region. Compared to the CMIP3 models, the CMIP5 models are even worse in simulating the dome longitudes.

  14. Determining the coordinates of lamps in an illumination dome

    NASA Astrophysics Data System (ADS)

    MacDonald, Lindsay W.; Ahmadabadian, Ali H.; Robson, Stuart

    2015-05-01

    The UCL Dome consists of an acrylic hemisphere of nominal diameter 1030 mm, fitted with 64 flash lights, arranged in three tiers of 16, one tier of 12, and one tier of 4 lights at approximately equal intervals. A Nikon D200 digital camera is mounted on a rigid steel frame at the `north pole' of the dome pointing vertically downwards with its optical axis normal to the horizontal baseboard in the `equatorial' plane. It is used to capture sets of images in pixel register for visualisation and surface reconstruction. Three techniques were employed for the geometric calibration of flash light positions in the dome: (1) the shadow cast by a vertical pin onto graph paper; (2) multi-image photogrammetry with retro-reflective targets; and (3) multi-image photogrammetry using the flash lights themselves as targets. The precision of the coordinates obtained by the three techniques was analysed, and it was found that although photogrammetric methods could locate individual targets to an accuracy of 20 μm, the uncertainty of locating the centroids of the flash lights was approximately 1.5 mm. This result was considered satisfactory for the purposes of using the dome for photometric imaging, and in particular for the visualisation of object surfaces by the polynomial texture mapping (PTM) technique.

  15. Key variables influencing patterns of lava dome growth and collapse

    NASA Astrophysics Data System (ADS)

    Husain, T.; Elsworth, D.; Voight, B.; Mattioli, G. S.; Jansma, P. E.

    2013-12-01

    Lava domes are conical structures that grow by the infusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Dome growth can be characterized by repeated cycles of growth punctuated by collapse, as the structure becomes oversized for its composite strength. Within these cycles, deformation ranges from slow long term deformation to sudden deep-seated collapses. Collapses may range from small raveling failures to voluminous and fast-moving pyroclastic flows with rapid and long-downslope-reach from the edifice. Infusion rate and magma rheology together with crystallization temperature and volatile content govern the spatial distribution of strength in the structure. Solidification, driven by degassing-induced crystallization of magma leads to the formation of a continuously evolving frictional talus as a hard outer shell. This shell encapsulates the cohesion-dominated soft ductile core. Here we explore the mechanics of lava dome growth and failure using a two-dimensional particle-dynamics model. This meshless model follows the natural evolution of a brittle carapace formed by loss of volatiles and rheological stiffening and avoids difficulties of hour-glassing and mesh-entangelment typical in meshed models. We test the fidelity of the model against existing experimental and observational models of lava dome growth. The particle-dynamics model follows the natural development of dome growth and collapse which is infeasible using simple analytical models. The model provides insight into the triggers that lead to the transition in collapse mechasnism from shallow flank collapse to deep seated sector collapse. Increase in material stiffness due to decrease in infusion rate results in the transition of growth pattern from endogenous to exogenous. The material stiffness and strength are strongly controlled by the magma infusion rate. Increase in infusion rate decreases the time available for degassing induced crystallization leading to a

  16. Electrical structure beneath the Hangai Dome, Mongolia, from magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Comeau, Matthew; Käufl, Johannes; Becken, Michael; Kuvshinov, Alexey; Demberel, Sodnomsambuu; Sukhbaatar, Usnikh; Batmagnai, Erdenechimeg; Tserendug, Shoovdor; Nasan, Ochir

    2017-04-01

    The Hangai Dome in west-central Mongolia is an unusual high-elevation intra-continental plateau located far from tectonic plate boundaries and characterized by dispersed, low-volume, basaltic volcanism. This region is an ideal natural laboratory for studying intra-continental orogenic and magmatic processes resulting from crust-mantle interactions. The processes responsible for developing the Hangai Dome remain unexplained, due in part to a lack of high resolution geophysical data over the area. Here we present newly acquired broadband (0.008 - 3,000 s) magnetotelluric (MT) data from a large-scale ( 200 x 450 km) and high resolution (site spacing > 5 km) survey across the Hangai Dome. A total of 125 sites were collected and include full MT sites and telluric-only sites where inter-station transfer functions were computed. The MT data are used to generate an electrical resistivity model of the crust and upper mantle below the Hangai Dome. The model shows that the lower crust ( 30 - 50 km; below the brittle-ductile transition zone) beneath the Hangai Dome contains anomalous discrete pockets of low-resistivity ( 30 ohm-m) material that indicate the presence of local accumulations of fluids and/or low-percent partial melts. These anomalous regions appear to be spatially associated with the surface expressions of past volcanism, hydrothermal activity, and an increase in heat flow. They also correlate with observed crustal low-density and low-velocity anomalies. However they are in contrast to some geochemical and petrological studies which show long-lived crustal melt storage is impossible below the Hangai due to limited crustal assimilation and crustal contamination, arguing for a single parent-source at mantle depths. The upper mantle (< 70 km) contains an anomalous low-resistivity zone directly below the Hangai Dome that represents a shallow asthenosphere, and possibly a zone of melt generation. The MT data require the presence of a small amount of partial melts (> 6

  17. Thermoelastic analysis of spent fuel and high level radioactive waste repositories in salt. A semi-analytical solution. [JUDITH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. John, C.M.

    1977-04-01

    An underground repository containing heat generating, High Level Waste or Spent Unreprocessed Fuel may be approximated as a finite number of heat sources distributed across the plane of the repository. The resulting temperature, displacement and stress changes may be calculated using analytical solutions, providing linear thermoelasticity is assumed. This report documents a computer program based on this approach and gives results that form the basis for a comparison between the effects of disposing of High Level Waste and Spent Unreprocessed Fuel.

  18. Pre-HEAT: submillimeter site testing and astronomical spectra from Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Kulesa, C. A.; Walker, C. K.; Schein, M.; Golish, D.; Tothill, N.; Siegel, P.; Weinreb, S.; Jones, G.; Bardin, J.; Jacobs, K.; Martin, C. L.; Storey, J.; Ashley, M.; Lawrence, J.; Luong-Van, D.; Everett, J.; Wang, L.; Feng, L.; Zhu, Z.; Yan, J.; Yang, J.; Zhang, X.-G.; Cui, X.; Yuan, X.; Hu, J.; Xu, Z.; Jiang, Z.; Yang, H.; Li, Y.; Sun, B.; Qin, W.; Shang, Z.

    2008-07-01

    Pre-HEAT is a 20 cm aperture submillimeter-wave telescope with a 660 GHz (450 micron) Schottky diode heterodyne receiver and digital FFT spectrometer for the Plateau Observatory (PLATO) developed by the University of New South Wales. In January 2008 it was deployed to Dome A, the summit of the Antarctic plateau, as part of a scientific traverse led by the Polar Research Institute of China and the Chinese Academy of Sciences. Dome A may be one of the best sites in the world for ground based Terahertz astronomy, based on the exceptionally cold, dry and stable conditions which prevail there. Pre-HEAT is measuring the 450 micron sky opacity at Dome A and mapping the Galactic Plane in the 13CO J=6-5 line, constituting the first submillimeter measurements from Dome A. It is field-testing many of the key technologies for its namesake -- a successor mission called HEAT: the High Elevation Antarctic Terahertz telescope. Exciting prospects for submillimeter astronomy from Dome A and the status of Pre-HEAT will be presented.

  19. Year-round records of bulk and size-segregated aerosol composition in central Antarctica (Concordia site) - Part 1: Fractionation of sea-salt particles

    NASA Astrophysics Data System (ADS)

    Legrand, Michel; Preunkert, Susanne; Wolff, Eric; Weller, Rolf; Jourdain, Bruno; Wagenbach, Dietmar

    2017-11-01

    Multiple year-round records of bulk and size-segregated composition of aerosol were obtained at the inland site of Concordia located at Dome C in East Antarctica. In parallel, sampling of acidic gases on denuder tubes was carried out to quantify the concentrations of HCl and HNO3 present in the gas phase. These time series are used to examine aerosol present over central Antarctica in terms of chloride depletion relative to sodium with respect to freshly emitted sea-salt aerosol as well as depletion of sulfate relative to sodium with respect to the composition of seawater. A depletion of chloride relative to sodium is observed over most of the year, reaching a maximum of ˜ 20 ng m-3 in spring when there are still large sea-salt amounts and acidic components start to recover. The role of acidic sulfur aerosol and nitric acid in replacing chloride from sea-salt particles is here discussed. HCl is found to be around twice more abundant than the amount of chloride lost by sea-salt aerosol, suggesting that either HCl is more efficiently transported to Concordia than sea-salt aerosol or re-emission from the snow pack over the Antarctic plateau represents an additional significant HCl source. The size-segregated composition of aerosol collected in winter (from 2006 to 2011) indicates a mean sulfate to sodium ratio of sea-salt aerosol present over central Antarctica of 0.16 ± 0.05, suggesting that, on average, the sea-ice and open-ocean emissions equally contribute to sea-salt aerosol load of the inland Antarctic atmosphere. The temporal variability of the sulfate depletion relative to sodium was examined at the light of air mass backward trajectories, showing an overall decreasing trend of the ratio (i.e., a stronger sulfate depletion relative to sodium) when air masses arriving at Dome C had traveled a longer time over sea ice than over open ocean. The findings are shown to be useful to discuss sea-salt ice records extracted at deep drilling sites located inland

  20. Venus steep-sided domes: Relationships between geological associations and possible petrogenetic models

    NASA Technical Reports Server (NTRS)

    Pavri, B.; Head, James W., III

    1992-01-01

    Venus domes are characterized by steep sides, a circular shape, and a relatively flat summit area. In addition, they are orders of magnitude larger in volume and have a lower height/diameter ratio than terrestrial silicic lava domes. The morphology of the domes is consistent with formation by lava with a high apparent viscosity. Twenty percent of the domes are located in or near tessera (highly deformed highlands), while most other (62 percent) are located in and near coronae (circular deformational features thought to represent local mantle upwelling). These geological associations provide evidence for mechanisms of petrogenesis and several of these models are found to be plausible: remelting of basaltic or evolved crust, differentiation of basaltic melts, and volatile enhancement and eruption of basaltic foams. Hess and Head have shown that the full range of magma compositions existing on the Earth is plausible under various environmental conditions on Venus. Most of the Venera and Vego lander compostional data are consistent with tholeiitic basalt; however, evidence for evolved magmas was provided by Venera 8 data consistent with a quartz monzonite composition. Pieters et al. have examined the color of the Venus surface from Venera lander images and interpret the surface there to be oxidized. Preliminary modeling of dome growth has provided some interpretations of lava rheology. Viscosity values obtained from these models range from 10(exp 14) - 10(exp 17) pa*s, and the yield strength has been calculated to be between 10(exp 4) and 10(exp 6) Pa, consistent with terrestrial silicic rocks. The apparent high viscosity of the dome lavas suggests that the domes have a silicic composition or must augment their viscosity with increased visicularity or crystal content. Sixty-two percent of the Venus domes are associated with coronae, circular features that have been proposed as sites of mantle upwelling, and 20 percent of the domes are located near tessera, relatively

  1. Thermal-gradient migration of brine inclusions in salt crystals

    NASA Astrophysics Data System (ADS)

    Yagnik, S. K.

    1982-09-01

    High level nuclear waste disposal in a geologic repository was proposed. Natural salt deposits which are considered contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of both all liquid and gas liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusion shape and size are discussed.

  2. Advanced imaging techniques III: a scalable and modular dome illumination system for scientific microphotography on a budget

    USDA-ARS?s Scientific Manuscript database

    A scalable and modular LED illumination dome for microscopic scientific photography is described and illustrated, and methods for constructing such a dome are detailed. Dome illumination for insect specimens has become standard practice across the field of insect systematics, but many dome designs ...

  3. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    PubMed

    Pang, Bo; Becker, Frank

    2017-04-28

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Distributions of cranial pathologies provide evidence for head-butting in dome-headed dinosaurs (Pachycephalosauridae).

    PubMed

    Peterson, Joseph E; Dischler, Collin; Longrich, Nicholas R

    2013-01-01

    Pachycephalosaurids are small, herbivorous dinosaurs with domed skulls formed by massive thickening of the cranial roof. The function of the dome has been a focus of debate: the dome has variously been interpreted as the product of sexual selection, as an adaptation for species recognition, or as a weapon employed in intraspecific combat, where it was used in butting matches as in extant ungulates. This last hypothesis is supported by the recent identification of cranial pathologies in pachycephalosaurids, which appear to represent infections resulting from trauma. However, the frequency and distribution of pathologies have not been studied in a systematic fashion. Here, we show that pachycephalosaurids are characterized by a remarkably high incidence of cranial injury, where 22% of specimens have lesions on the dome. Frequency of injury shows no significant difference between different genera, but flat-headed morphs (here interpreted as juveniles or females) lack lesions. Mapping of injuries onto a digitial pachycephalosaurid skull shows that although lesions are distributed across the dome, they cluster near the apex, which is consistent with the hypothesis that the dome functioned for intraspecific butting matches.

  5. Dome Structures Above Sills and Saucer-Shaped Sills: Insights From Experimental Modeling

    NASA Astrophysics Data System (ADS)

    Planke, S.; Galland, O.; Malthe-Sørenssen, A.

    2007-12-01

    Saucer-shaped magma and sand intrusions are common features in sedimentary basins. They result from fundamental processes for the emplacement of fluids in shallow sedimentary basins. Seismic data show that the overburden above saucer-shaped intrusions is usually deformed and exhibits a dome-like structure. The formation of such structures, and the associated deformation, are of primary importance in the evolution of petroleum systems. In this presentation, we report on experimental investigation of the deformation processes associated with the intrusion of saucer-shaped intrusions into sedimentary basins. The experimental setup consists of molten low-viscosity oil injected into fine-grained silica flour (see Galland et al., this session). It properly simulates the emplacement of saucer-shaped intrusions and the deformation of the country rock. During experiments, the surface of the model is digitalized through a structured light technique based on moiré projection principle. Such a tool provides topographic maps of the model and allows a periodic (every 1.5 s) monitoring of the model surface. When the model magma starts intruding, a symetrical dome rises above the inlet. As injection proceeds, the dome inflates and widens. Subsequently, the dome evolves to a plateau-like feature, with nearly flat surface and steep edges. The plateau keeps lifting up, but nearly stoppes widening. At the end of the experiments, the intruding liquid erupts at the edge of the plateau. The intrusion formed in the experiment is a typical saucer-shaped sill. The evolution of the deforming surface reflects the evolution of the intrusion. We infer that the first doming phase corresponds to the emplacement of a horizontal basal sill by open fracturing. The dome-to-plateau transition corresponds to a transition of the liquid emplacement mechanism from basal sill to inclined sheet. We suggest that the emplacement of the inclined sheets results from shear fracturing at the dome edge.

  6. Crystal-rich lava dome extrusion during vesiculation: an experimental study

    NASA Astrophysics Data System (ADS)

    Pistone, M.; Whittington, A. G.; Andrews, B. J.; Cottrell, E.

    2016-12-01

    Lava dome-forming eruptions represent a common eruptive style and a major hazard on numerous active volcanoes worldwide. The influence of volatiles on the rheological mechanics of lava dome extrusion remains unclear. Here we present new experimental results on the rheology of synthesized, crystal-rich (50 to 80 vol% quartz crystals), hydrous (4.2 wt% H2O in the glass) dacites, which vesiculate from 5 to 27 vol% gas bubbles at high temperatures (483 to 797 °C) during deformation conducted in a parallel plate viscometer (constant stress at 0.64 MPa, and variable strain-rates ranging from 8.32•10-8 to 3.58•10-5 s-1). The experiments replicated lava dome deformation in volcanic conduits during vesiculation of the residual melt, instigated in the experiments by increasing temperature. During gas exsolution we find that the rheological lubrication of the system during deformation is strongly dictated by the imposed initial crystallinity. At low crystal content (< 60 vol%) strain localization within shear bands, composed of melt and gas bubbles that likely interconnect, controls the overall sample rheology. At high crystallinity (60 to 70 vol%) gas pressurization (i.e. pore pressure increase) within crystal clusters and embryonic formation of microscopic fractures drive the system to a brittle behavior. At higher crystallinity (80 vol%) gas pressurization triggers brittle fragmentation through macroscopic fractures, which sustain outgassing and determines the viscous death of the system. The contrasting behaviors at different crystallinities have direct impact on the style of volcanic eruptions. Outgassing induced by deformation and bubble coalescence reduces the system pressurization and the potential for an explosive eruption. Conversely, high crystallinity lava domes experience limited loss of exsolved gas during deformation, permitting the achievement of large overpressures prior to fragmentation, favoring likely explosive eruptions. These findings provide a

  7. Debris avalanches and slumps on the margins of volcanic domes on Venus: Characteristics of deposits

    NASA Technical Reports Server (NTRS)

    Bulmer, M. H.; Guest, J. E.; Beretan, K.; Michaels, Gregory A.; Saunders, R. Stephen

    1992-01-01

    Modified volcanic domes, referred to as collapsed margin domes, have diameters greater than those of terrestrial domes and were therefore thought to have no suitable terrestrial analogue. Comparison of the collapsed debris using the Magellan SAR images with volcanic debris avalanches on Earth has revealed morphological similarities. Some volcanic features identified on the seafloor from sonar images have diameters similar to those on Venus and also display scalloped margins, indicating modification by collapse. Examination of the SAR images of collapsed dome features reveals a number of distinct morphologies to the collapsed masses. Ten examples of collapsed margin domes displaying a range of differing morphologies and collapsed masses have been selected and examined.

  8. Sustainable Outreach: Lessons Learned from Space Update and Discovery Dome

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Sumners, C.; Law, C. C.

    2009-12-01

    A sustainable program lives on past its initial funding cycle, and develops a network of users that ensures continued life, either by fees, advertising revenue, or by making the program more successful in later sponsored grants. Teachers like free things, so having a sponsor for products such as lithographs or CD-Roms is key to wide distribution. In 1994 we developed “Space Update®”, under the NASA “Public Use of the Internet” program. It has new editions annually, with over 40,000 distributed so far (many purchased but most free at teacher and student workshops). In 1996 we created a special edition “Space Weather®”, which includes the space weather module from Space Update plus other resources. Initially developed with funding from the IMAGE mission, it is now sponsored by Cluster and MMS. A new edition is published annually and distributed in the “Sun-Earth Day” packet; total distribution now exceeds 180,000. “Earth Update” was created in 1999 under cooperative agreement “Museums Teaching Planet Earth”. It now has a total distribution of over 20,000. Both Earth Update and Space Update were developed to be museum kiosk software, and more than 15 museums have them on display. Over 4,000 users are active in our e-Teacher network and 577 in our museum educator network. Although these can certainly be considered successful because of their longevity and user base, we have had a far more dramatic sustainable program arise in the last six years… the “Discovery Dome®”. Invented at HMNS and developed under NASA Cooperative Agreement “Immersive Earth”, this dome was the first digital portable planetarium that also showed fulldome movies with an interactive interface (first shown to the public at the Dec 2003 AGU meeting). The Discovery Dome network (tinyurl.com/DiscDome) has spun those initial 6 NASA-funded domes into over 90 installations in 22 states and 23 countries. Creating high quality content is quite expensive and so needs

  9. Formation of dome and basin structures: Results from scaled experiments using non-linear rock analogues

    NASA Astrophysics Data System (ADS)

    Zulauf, J.; Zulauf, G.; Zanella, F.

    2016-09-01

    Dome and basin folds are structures with circular or slightly elongate outcrop patterns, which can form during single- and polyphase deformation in various tectonic settings. We used power-law viscous rock analogues to simulate single-phase dome-and-basin folding of rocks undergoing dislocation creep. The viscosity ratio between a single competent layer and incompetent matrix was 5, and the stress exponent of both materials was 7. The samples underwent layer-parallel shortening under bulk pure constriction. Increasing initial layer thickness resulted in a decrease in the number of domes and basins and an increase in amplitude, A, arc-length, L, wavelength, λ, and layer thickness, Hf. Samples deformed incrementally show progressive development of domes and basins until a strain of eY=Z = -30% is attained. During the dome-and-basin formation the layer thickened permanently, while A, L, and λ increased. A dominant wavelength was not attained. The normalized amplitude (A/λ) increased almost linearly reaching a maximum of 0.12 at eY=Z = -30%. During the last increment of shortening (eY=Z = -30 to -40%) the domes and basins did not further grow, but were overprinted by a second generation of non-cylindrical folds. Most of the geometrical parameters of the previously formed domes and basins behaved stable or decreased during this phase. The normalized arc-length (L/Hf) of domes and basins is significantly higher than that of 2D cylindrical folds. For this reason, the normalized arc length can probably be used to identify domes and basins in the field, even if these structures are not fully exposed in 3D.

  10. Salt deposits in Los Medanos area, Eddy and Lea counties, New Mexico

    USGS Publications Warehouse

    Jones, C.L.; with sections on Ground water hydrology, Cooley; and Surficial Geology, Bachman

    1973-01-01

    The salt deposits of Los Medanos area, in Eddy and Lea Counties, southeastern New Mexico, are being considered for possible use as a receptacle for radioactive wastes in a pilot-plant repository. The salt deposits of the area. are in three evaporite formations: the Castile, Salado, and Rustler Formations, in ascending order. The three formations are dominantly anhydrite and rock salt, but some gypsum, potassium ores, carbonate rock, and fine-grained clastic rocks are present. They have combined thicknesses of slightly more than 4,000 feet, of which roughly one-half belongs to the Salado. Both the Castile and the Rustler are-richer in anhydrite-and poorer in rock salt-than the Salado, and they provide this salt-rich formation with considerable Protection from any fluids which might be present in underlying or overlying rocks. The Salado Formation contains many thick seams of rock salt at moderate depths below the surface. The rock salt has a substantial cover of well-consolidated rocks, and it is very little deformed structurally. Certain geological details essential for Waste-storage purposes are unknown or poorly known, and additional study involving drilling is required to identify seams of rock salt suitable for storage purposes and to establish critical details of their chemistry, stratigraphy, and structure.

  11. Photovoltaic performance of the dome-shaped Fresnel-Köhler concentrator

    NASA Astrophysics Data System (ADS)

    Zamora, Pablo; Benítez, Pablo; Yang, Li; Miñano, Juan Carlos; Mendes-Lopes, Joao; Araki, Kenji

    2012-10-01

    In order to have a cost-effective CPV system, two key issues must be ensured: high concentration factor and high tolerance. The novel concentrator we are presenting, the dome-shaped Fresnel-Köhler, can widely fulfill these two and other essential issues in a CPV module. This concentrator is based on two previous successful CPV designs: the FK concentrator with a flat Fresnel lens and the dome-shaped Fresnel lens system developed by Daido Steel, resulting on a superior concentrator. The concentrator has shown outstanding simulation results, achieving an effective concentration-acceptance product (CAP) value of 0.72, and an optical efficiency of 85% on-axis (no anti-reflective coating has been used). Moreover, Köhler integration provides good irradiance uniformity on the cell surface and low spectral aberration of this irradiance. This ensures an optimal performance of the solar cell, maximizing its efficiency. Besides, the domeshaped FK shows optimal results for very compact designs, especially in the f/0.7-1.0 range. The dome-shaped Fresnel- Köhler concentrator, natural and enhanced evolution of the flat FK concentrator, is a cost-effective CPV optical design, mainly due to its high tolerances. Daido Steel advanced technique for demolding injected plastic pieces will allow for easy manufacture of the dome-shaped POE of DFK concentrator.

  12. Superconductivity of Rock-Salt Structure LaO Epitaxial Thin Film.

    PubMed

    Kaminaga, Kenichi; Oka, Daichi; Hasegawa, Tetsuya; Fukumura, Tomoteru

    2018-06-06

    We report a superconducting transition in a LaO epitaxial thin film with the superconducting transition onset temperature ( T c ) at around 5 K. This T c is higher than those of other lanthanum monochalcogenides and opposite to their chemical trend: T c = 0.84, 1.02, and 1.48 K for LaX (X = S, Se, Te), respectively. The carrier control resulted in a dome-shaped T c as a function of electron carrier density. In addition, the T c was significantly sensitive to epitaxial strain in spite of the highly symmetric crystal structure. This rock-salt superconducting LaO could be a building block to design novel superlattice superconductors.

  13. Real-Time Measurements of Aft Dome Insulation Erosion on Space Shuttle Reusable Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    McWhorter, Bruce; Ewing, Mark; Albrechtsen, Kevin; Noble, Todd; Longaker, Matt

    2004-01-01

    Real-time erosion of aft dome internal insulation was measured with internal instrumentation on a static test of a lengthened version of the Space Shuffle Reusable Solid Rocket Motor (RSRM). This effort marks the first time that real-time aft dome insulation erosion (Le., erosion due to the combined effects of thermochemical ablation and mechanical abrasion) was measured in this kind of large motor static test [designated as Engineering Test Motor number 3 (ETM3)I. This paper presents data plots of the erosion depth versus time. The data indicates general erosion versus time behavior that is in contrast to what would be expected from earlier analyses. Engineers have long known that the thermal environment in the aft dome is severe and that the resulting aft dome insulation erosion is significant. Models of aft dome erosion involve a two-step process of computational fluid dynamics (CFD) modeling and material ablation modeling. This modeling effort is complex. The time- dependent effects are difficult to verify with only prefire and postfire insulation measurements. Nozzle vectoring, slag accumulation, and changing boundary conditions will affect the time dependence of aft dome erosion. Further study of this data and continued measurements on future motors will increase our understanding of the aft dome flow and erosion environment.

  14. The PLATO Dome A site-testing observatory: Power generation and control systems

    NASA Astrophysics Data System (ADS)

    Lawrence, J. S.; Ashley, M. C. B.; Hengst, S.; Luong-van, D. M.; Storey, J. W. V.; Yang, H.; Zhou, X.; Zhu, Z.

    2009-06-01

    The atmospheric conditions above Dome A, a currently unmanned location at the highest point on the Antarctic plateau, are uniquely suited to astronomy. For certain types of astronomy Dome A is likely to be the best location on the planet, and this has motivated the development of the Plateau Observatory (PLATO). PLATO was deployed to Dome A in early 2008. It houses a suite of purpose-built site-testing instruments designed to quantify the benefits of Dome A site for astronomy, and science instruments designed to take advantage of the observing conditions. The PLATO power generation and control system is designed to provide continuous power and heat, and a high-reliability command and communications platform for these instruments. PLATO has run and collected data throughout the winter 2008 season completely unattended. Here we present a detailed description of the power generation, power control, thermal management, instrument interface, and communications systems for PLATO, and an overview of the system performance for 2008.

  15. The PLATO Dome A site-testing observatory: power generation and control systems.

    PubMed

    Lawrence, J S; Ashley, M C B; Hengst, S; Luong-Van, D M; Storey, J W V; Yang, H; Zhou, X; Zhu, Z

    2009-06-01

    The atmospheric conditions above Dome A, a currently unmanned location at the highest point on the Antarctic plateau, are uniquely suited to astronomy. For certain types of astronomy Dome A is likely to be the best location on the planet, and this has motivated the development of the Plateau Observatory (PLATO). PLATO was deployed to Dome A in early 2008. It houses a suite of purpose-built site-testing instruments designed to quantify the benefits of Dome A site for astronomy, and science instruments designed to take advantage of the observing conditions. The PLATO power generation and control system is designed to provide continuous power and heat, and a high-reliability command and communications platform for these instruments. PLATO has run and collected data throughout the winter 2008 season completely unattended. Here we present a detailed description of the power generation, power control, thermal management, instrument interface, and communications systems for PLATO, and an overview of the system performance for 2008.

  16. Longitudinal Biases in the Seychelles Dome Simulated by 34 Ocean-Atmosphere Coupled General Circulation Models

    NASA Astrophysics Data System (ADS)

    Nagura, M.; Sasaki, W.; Tozuka, T.; Luo, J.; Behera, S. K.; Yamagata, T.

    2012-12-01

    The upwelling dome of the southern tropical Indian Ocean is examined by using simulated results from 34 ocean-atmosphere coupled general circulation models (CGCMs) including those from the phase five of the Coupled Model Intercomparison Project (CMIP5). Among the current set of the 34 CGCMs, 12 models erroneously produce the upwelling dome in the eastern half of the basin while the observed Seychelles Dome is located in the southwestern tropical Indian Ocean (Figure 1). The annual mean Ekman pumping velocity is almost zero in the southern off-equatorial region in these models. This is in contrast with the observations that show Ekman upwelling as the cause of the Seychelles Dome. In the models that produce the dome in the eastern basin, the easterly biases are prominent along the equator in boreal summer and fall that cause shallow thermocline biases along the Java and Sumatra coasts via Kelvin wave dynamics and result in a spurious upwelling dome there. In addition, these models tend to overestimate (underestimate) the magnitude of annual (semiannual) cycle of thermocline depth variability in the dome region, which is another consequence of the easterly wind biases in boreal summer-fall. Compared to the CMIP3 models (Yokoi et al. 2009), the CMIP5 models are even worse in simulating the dome longitudes and magnitudes of annual and semiannual cycles of thermocline depth variability in the dome region. Considering the increasing need to understand regional impacts of climate modes, these results may give serious caveats to interpretation of model results and help in further model developments.; Figure 1: The longitudes of the shallowest annual-mean D20 in 5°S-12°S. The open and filled circles are for the observations and the CGCMs, respectively.

  17. Chemical and isotopic changes in Williston Basin brines during long-term oil production: An example from the Poplar dome, Montana

    USGS Publications Warehouse

    Peterman, Zell; Thamke, Joanna N.

    2016-01-01

    Brine samples were collected from 30 conventional oil wells producing mostly from the Charles Formation of the Madison Group in the East and Northwest Poplar oil fields on the Fort Peck Indian Reservation, Montana. Dissolved concentrations of major ions, trace metals, Sr isotopes, and stable isotopes (oxygen and hydrogen) were analyzed to compare with a brine contaminant that affected groundwater northeast of the town of Poplar. Two groups of brine compositions, designated group I and group II, are identified on the basis of chemistry and 87Sr/86Sr ratios. The solute chemistry and Sr isotopic composition of group I brines are consistent with long-term residency in Mississippian carbonate rocks, and brines similar to these contaminated the groundwater. Group II brines probably resided in clastic rocks younger than the Mississippian limestones before moving into the Poplar dome to replenish the long-term fluid extraction from the Charles Formation. Collapse of strata at the crest of the Poplar dome resulting from dissolution of Charles salt in the early Paleogene probably developed pathways for the ingress of group II brines from overlying clastic aquifers into the Charles reservoir. Such changes in brine chemistry associated with long-term oil production may be a widespread phenomenon in the Williston Basin.

  18. 3-DIMENSIONAL Geometric Survey and Structural Modelling of the Dome of Pisa Cathedral

    NASA Astrophysics Data System (ADS)

    Aita, D.; Barsotti, R.; Bennati, S.; Caroti, G.; Piemonte, A.

    2017-02-01

    This paper aims to illustrate the preliminary results of a research project on the dome of Pisa Cathedral (Italy). The final objective of the present research is to achieve a deep understanding of the structural behaviour of the dome, through a detailed knowledge of its geometry and constituent materials, and by taking into account historical and architectural aspects as well. A reliable survey of the dome is the essential starting point for any further investigation and adequate structural modelling. Examination of the status quo on the surveys of the Cathedral dome shows that a detailed survey suitable for structural analysis is in fact lacking. For this reason, high-density and high-precision surveys have been planned, by considering that a different survey output is needed, according both to the type of structural model chosen and purposes to be achieved. Thus, both range-based (laser scanning) and image-based (3D Photogrammetry) survey methodologies have been used. This contribution introduces the first results concerning the shape of the dome derived from surveys. Furthermore, a comparison is made between such survey outputs and those available in the literature.

  19. Modeling englacial radar attenuation at Siple Dome, West Antarctica, using ice chemistry and temperature data

    USGS Publications Warehouse

    MacGregor, J.A.; Winebrenner, D.P.; Conway, H.; Matsuoka, K.; Mayewski, P.A.; Clow, G.D.

    2007-01-01

    The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 ?? 5.7 dB km-1) is somewhat lower than the value derived from radar profiles (25.3 ?? 1.1 dB km-1). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 ?? 2.2 dB km-1. This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet. Copyright 2007 by the American Geophysical Union.

  20. The geology and mechanics of formation of the Fort Rock Dome, Yavapai County, Arizona

    USGS Publications Warehouse

    Fuis, Gary S.

    1996-01-01

    The Fort Rock Dome, a craterlike structure in northern Arizona, is the erosional product of a circular domal uplift associated with a Precambrian shear zone exposed within the crater and with Tertiary volcanism. A section of Precambrian to Quaternary rocks is described, and two Tertiary units, the Crater Pasture Formation and the Fort Rock Creek Rhyodacite, are named. A mathematical model of the doming process is developed that is consistent with the history of the Fort Rock Dome.

  1. Paleomagnetic Evaluation of the Resurgent Dome at Valles Caldera, Jemez Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Rhode, A.; Geissman, J. W.; Goff, F. E.

    2016-12-01

    The Redondo Peak structural dome, located within the ca. 1.25 Ma Valles Caldera, Jemez Mountains, New Mexico, is a well documented example of post-caldera resurgence and is a fundamental part of the famous model of Smith and Bailey (1968). The NE/SW elongated structural resurgent dome, with over 1000 m of uplift, and its medial graben now occupied by Redondo Creek, parallel the NE orientation of the Jemez fault zone, a key boundary structure of the Rio Grande rift. Our paleomagnetic research quantifies the magnitude of structural tilt (i.e. rotation about a horizontal axis) as a component of any deformation of the resurgent dome to determine if uplift was accommodated by block uplift or by simple doming. Independently oriented samples from 43 sites located on two main structural domains that comprise the resurgent dome (the Redondo Border block and the Redondo Peak block) and within the Redondo Creek graben were obtained from the intracaldera facies of the Tshirege Member of the Bandelier Tuff and overlying lower members of post-Bandelier Valles Rhyolite. Magnetic mineralogy consists of low titanium magnetite and maghemite, consistent with previous paleomagnetic studies on flat-lying outflow facies tuff. In situ estimated directions of sites from the Redondo Border structural domain are generally steeper in inclination than the reference direction (D = 175.6, I = -35.7) (Doell et al., 1968; Sussman et al., 2011), with an average inclination of Ig = -42.5, and show a westward deflection in average declination (Dg = 184.2). In situ estimated directions of sites from the Redondo Peak structural domain are generally shallower in inclination than the reference direction (average inclination of Ig = -27.6) and show an eastward deflection in mean declination values, Dg = 160. Overall, paleomagnetic results show that the pattern of deformation is more pronounced parallel to the long axis of the dome and that the Redondo Border block exhibits some 12 degrees of down to the

  2. Precocious development of lectin (Ulex europaeus agglutinin I) receptors in dome epithelium of gut-associated lymphoid tissues.

    PubMed

    Roy, M J

    1987-06-01

    Dome epithelium (DE), the tissue covering lymphoid domes of gut-associated lymphoid tissues, was examined in both adult and neonatal rabbit appendix or sacculus rotundus to determine if dome epithelial cells matured earlier than epithelial cells covering adjacent villi. The localization of well-differentiated epithelial cells in rabbit gut-associated lymphoid tissues (GALT) was accomplished histochemically by use of molecular probes: fluorescein isothiocyanate or horseradish peroxidase conjugates of Ulex europaeus agglutinin I (UEA), a lectin specific for terminal L-fucose molecules on certain glycoconjugates. The villus epithelial cells of newborn and 2-, 5-, or 10-day-old rabbits did not bind UEA, but between the twelfth and fifteenth days of postnatal life, UEA receptors were expressed by well-differentiated villus epithelial cells. In contrast to villus epithelium, DE in appendix and sacculus rotundus of neonatal rabbits expressed UEA receptors two days after birth, a feature that distinguished the DE of neonatal GALT for the next two weeks. In adult rabbits, UEA receptors were associated with dome epithelial cells extending from the mouths of glandular crypts to the upper domes; in contrast to the domes, UEA receptors were only present on well-differentiated epithelial cells at the villus tips. Results suggested that in neonatal rabbits most dome epithelial cells developed UEA receptors shortly after birth, reflecting precocious development of DE as compared to villus epithelium. In adult rabbit dome epithelium UEA receptors appeared on dome epithelial cells as they left the glandular crypts, representing accelerated epithelial maturation.

  3. Dome growth at Mount Cleveland, Aleutian Arc, quantified by time-series TerraSAR-X imagery

    USGS Publications Warehouse

    Wang, Teng; Poland, Michael; Lu, Zhong

    2016-01-01

    Synthetic aperture radar imagery is widely used to study surface deformation induced by volcanic activity; however, it is rarely applied to quantify the evolution of lava domes, which is important for understanding hazards and magmatic system characteristics. We studied dome formation associated with eruptive activity at Mount Cleveland, Aleutian Volcanic Arc, in 2011–2012 using TerraSAR-X imagery. Interferometry and offset tracking show no consistent deformation and only motion of the crater rim, suggesting that ascending magma may pass through a preexisting conduit system without causing appreciable surface deformation. Amplitude imagery has proven useful for quantifying rates of vertical and areal growth of the lava dome within the crater from formation to removal by explosive activity to rebirth. We expect that this approach can be applied at other volcanoes that host growing lava domes and where hazards are highly dependent on dome geometry and growth rates.

  4. Dome and Barchan Dunes in Newton Crater

    NASA Image and Video Library

    2014-10-01

    This observation from NASA Mars Reconnaissance Orbiter shows both dome and barchan dunes in a small sand dune field on the floor of Newton Crater, an approximately 300 kilometer 130 mile wide crater in the Southern hemisphere of Mars.

  5. Managing and Evaluating Digital Repositories

    ERIC Educational Resources Information Center

    Zuccala, Alesia; Oppenheim, Charles; Dhiensa, Rajveen

    2008-01-01

    Introduction: We examine the role of the digital repository manager, discuss the future of repository management and evaluation and suggest that library and information science schools develop new repository management curricula. Method: Face-to-face interviews were carried out with managers of five different types of repositories and a Web-based…

  6. Simulated Lunar Environment Spectra of Silicic Volcanic Rocks: Application to Lunar Domes

    NASA Astrophysics Data System (ADS)

    Glotch, T. D.; Shirley, K.; Greenhagen, B. T.

    2016-12-01

    Lunar volcanism was dominated by flood-style basaltic volcanism associated with the lunar mare. However, since the Apollo era it has been suggested that some regions, termed "red spots," are the result of non-basaltic volcanic activity. These early suggestions of non-mare volcanism were based on interpretations of rugged geomorphology resulting from viscous lava flows and relatively featureless, red-sloped VNIR spectra. Mid-infrared data from the Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter have confirmed that many of the red spot features, including Hansteen Alpha, the Gruithuisen Domes, the Mairan Domes, Lassell Massif, and Compton Belkovich are silicic volcanic domes. Additional detections of silicic material in the Aristarchus central peak and ejecta suggest excavation of a subsurface silicic pluton. Other red spots, including the Helmet and Copernicus have relatively low Diviner Christiansen feature positions, but they are not as felsic as the features listed above. To date, the SiO2 content of the silicic dome features has been difficult to quantitatively determine due to the limited spectral resolution of Diviner and lack of terrestrial analog spectra acquired in an appropriate environment. Based on spectra of pure mineral and glass separates, preliminary estimates suggest that the rocks comprising the lunar silicic domes are > 65 wt.% SiO2. In an effort to better constrain this value, we have acquired spectra of andesite, dacite, rhyolite, pumice, and obsidian rock samples under a simulated lunar environment in the Planetary and Asteroid Regolith Spectroscopy Environmental Chamber (PARSEC) at the Center for Planetary Exploration at Stony Brook University. This presentation will discuss the spectra of these materials and how they relate to the Diviner measurements of the lunar silicic dome features.

  7. The Senior Capstone, Dome or Spire?

    ERIC Educational Resources Information Center

    Heinemann, Robert L.

    This paper examines a basic philosophical issue involved with the purpose of a senior capstone communication course required of all majors. The issue involves two opposites: closure, represented by the dome, and further exploration, represented by the spire. Both approaches have legitimate claims for a capstone course. There is definitely a need…

  8. A comparison between semi-spheroid- and dome-shaped quantum dots coupled to wetting layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahzadeh, Mohammadreza; Sabaeian, Mohammad, E-mail: Sabaeian@scu.ac.ir

    2014-06-15

    During the epitaxial growth method, self-assembled semi-spheroid-shaped quantum dots (QDs) are formed on the wetting layer (WL). However for sake of simplicity, researchers sometimes assume semi-spheroid-shaped QDs to be dome-shaped (hemisphere). In this work, a detailed and comprehensive study on the difference between electronic and transition properties of dome- and semi-spheroid-shaped quantum dots is presented. We will explain why the P-to-S intersubband transition behaves the way it does. The calculated results for intersubband P-to-S transition properties of quantum dots show two different trends for dome-shaped and semi-spheroid-shaped quantum dots. The results are interpreted using the probability of finding electron insidemore » the dome/spheroid region, with emphasis on the effects of wetting layer. It is shown that dome-shaped and semi-spheroid-shaped quantum dots feature different electronic and transition properties, arising from the difference in lateral dimensions between dome- and semi-spheroid-shaped QDs. Moreover, an analogy is presented between the bound S-states in the quantum dots and a simple 3D quantum mechanical particle in a box, and effective sizes are calculated. The results of this work will benefit researchers to present more realistic models of coupled QD/WL systems and explain their properties more precisely.« less

  9. Coupling fuel cycles with repositories: how repository institutional choices may impact fuel cycle design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, C.; Miller, W.F.

    2013-07-01

    The historical repository siting strategy in the United States has been a top-down approach driven by federal government decision making but it has been a failure. This policy has led to dispatching fuel cycle facilities in different states. The U.S. government is now considering an alternative repository siting strategy based on voluntary agreements with state governments. If that occurs, state governments become key decision makers. They have different priorities. Those priorities may change the characteristics of the repository and the fuel cycle. State government priorities, when considering hosting a repository, are safety, financial incentives and jobs. It follows that statesmore » will demand that a repository be the center of the back end of the fuel cycle as a condition of hosting it. For example, states will push for collocation of transportation services, safeguards training, and navy/private SNF (Spent Nuclear Fuel) inspection at the repository site. Such activities would more than double local employment relative to what was planned for the Yucca Mountain-type repository. States may demand (1) the right to take future title of the SNF so if recycle became economic the reprocessing plant would be built at the repository site and (2) the right of a certain fraction of the repository capacity for foreign SNF. That would open the future option of leasing of fuel to foreign utilities with disposal of the SNF in the repository but with the state-government condition that the front-end fuel-cycle enrichment and fuel fabrication facilities be located in that state.« less

  10. 40 CFR 264.18 - Location standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... affected surface waters or the soils of the 100- year floodplain that could result from washout. [Comment... dome formations, salt bed formations, underground mines and caves. The placement of any noncontainerized or bulk liquid hazardous waste in any salt dome formation, salt bed formation, underground mine or...

  11. 40 CFR 264.18 - Location standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... affected surface waters or the soils of the 100- year floodplain that could result from washout. [Comment... dome formations, salt bed formations, underground mines and caves. The placement of any noncontainerized or bulk liquid hazardous waste in any salt dome formation, salt bed formation, underground mine or...

  12. 40 CFR 264.18 - Location standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... affected surface waters or the soils of the 100- year floodplain that could result from washout. [Comment... dome formations, salt bed formations, underground mines and caves. The placement of any noncontainerized or bulk liquid hazardous waste in any salt dome formation, salt bed formation, underground mine or...

  13. Airborne photogrammetry and geomorphological analysis of the 2001-2012 exogenous dome growth at Molodoy Shiveluch Volcano, Kamchatka

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. V.; Dvigalo, V. N.; Svirid, I. Yu.

    2015-10-01

    In 2001, after a six-year pause in extrusive activity, lava dome growth resumed at Molodoy Shiveluch Volcano. The new period of dome growth (2001-present) has morphological features that were uncommon during the previous periods of the dome formation (1980-1981, 1993-1995): numerous lava lobes and crease structures. Thus, the current dome growth is mostly of an exogenous type with short periods of endogenous growth that occurred in 2003, 2005, and 2010. Geomorphological interpretation of stereo photo images has revealed elements of the dome that are hardly distinguishable in single photographs. We have made detailed descriptions of the dome morphology covering all the dates of the available images. By using photogrammetric processing of aerial photographs, we created Digital Terrain Models and topographic maps of the lava dome and defined its volumes for 2001 (0.19 km3), 2003 (0.47 km3), 2005 (0.48 km3), 2010 (0.54 km3), and 2012 (0.63 km3). We also defined other morphometric characteristics: absolute and relative heights, as well as the dimensions of the dome and its elements for the investigated period. Taking into account large partial failures of the dome in 2005 (>0.11 km3) and 2010 (0.28 km3), we suggest that the volume of the extruded material for the whole 1980-2012 period was no less than 1.02 km3. The average extrusion rate over the 2001-2012 period exceeded 225,000 m3/day. The transition from endogenous to exogenous dome growth was possibly caused by change in extruded material physical properties due to an increase of SiO2. On the basis of geomorphological analysis of the current lava dome features, we suggest the possible process of the exogenous dome formation at Molodoy Shiveluch. The crease structures detected at Molodoy Shiveluch were classified into three groups according to their shapes: radial, bilaterally symmetrical, and irregular. These crease structures are morphologically similar to those formed at Unzen Volcano during the 1990

  14. Hyperthyroidism with dome-and-dart T wave: A case report: A care-compliant article.

    PubMed

    Lai, Ping; Yuan, Jing-Ling; Xue, Jin-Hua; Qiu, Yue-Qun

    2017-02-01

    Dome-and-dart T waves (or bifid T waves) are a rare phenomenon in the surface electrocardiogram. These wave forms are mainly observed in patients with congenital heart disease such as atrial septal defect and ventricular septal defect. And hyperthyroidism who presented with an electrocardiogram that had dome-and-dart T waves in a precordial lead is never been reported. The patient presented with continuous tachycardia, palpitations, chest tightness, and headache for 4 days, and aggravated for 1 day. Hyperthyroidism. Methimazole. All symptoms were alleviated. Dome-and-dart or bifid T waves have been reported in the conventional 12-lead electrocardiograms in some patients with congenital heart disease. The case illustrated here, to the best of our knowledge, dome-and-dart or bifid T waves may associate with hyperthyroidism patients.

  15. Corticotropin, Repository Injection

    MedlinePlus

    Corticotropin repository injection is used to treat the following conditions:infantile spasms (seizures that usually begin during the first ... of the arms, hands, feet, and legs). Corticotropin repository injection is in a class of medications called ...

  16. Robotic Manufacturing of 5.5 Meter Cryogenic Fuel Tank Dome Assemblies for the NASA Ares I Rocket

    NASA Technical Reports Server (NTRS)

    Jones, Ronald E.

    2012-01-01

    The Ares I rocket is the first launch vehicle scheduled for manufacture under the National Aeronautic and Space Administration's (NASA's) Constellation program. A series of full-scale Ares I development articles have been constructed on the Robotic Weld Tool at the NASA George C. Marshall Space Flight Center in Huntsville, Alabama. The Robotic Weld Tool is a 100 ton, 7-axis, robotic manufacturing system capable of machining and friction stir welding large-scale space hardware. This presentation will focus on the friction stir welding of 5.5m diameter cryogenic fuel tank components; specifically, the liquid hydrogen forward dome (LH2 MDA), the common bulkhead manufacturing development articles (CBMDA) and the thermal protection system demonstration dome (TPS Dome). The LH2 MDA was the first full-scale, flight-like Ares I hardware produced under the Constellation Program. It is a 5.5m diameter elliptical dome assembly consisting of eight gore panels, a y-ring stiffener and a manhole fitting. All components are made from aluminumlithium alloy 2195. Conventional and self-reacting friction stir welding was used on this article. An overview of the manufacturing processes will be discussed. The LH2 MDA is the first known fully friction stir welded dome ever produced. The completion of four Common Bulkhead Manufacturing Development Articles (CBMDA) and the TPS Dome will also be highlighted. Each CBMDA and the TPS Dome consists of a 5.5m diameter spun-formed dome friction stir welded to a y-ring stiffener. The domes and y-rings are made of aluminum 2014 and 2219 respectively. The TPS Dome has an additional aluminum alloy 2195 barrel section welded to the y-ring. Manufacturing solutions will be discussed including "fixtureless" welding with self reacting friction stir welding.

  17. Talar dome detection and its geometric approximation in CT: Sphere, cylinder or bi-truncated cone?

    PubMed

    Huang, Junbin; Liu, He; Wang, Defeng; Griffith, James F; Shi, Lin

    2017-04-01

    The purpose of our study is to give a relatively objective definition of talar dome and its shape approximations to sphere (SPH), cylinder (CLD) and bi-truncated cone (BTC). The "talar dome" is well-defined with the improved Dijkstra's algorithm, considering the Euclidean distance and surface curvature. The geometric similarity between talar dome and ideal shapes, namely SPH, CLD and BTC, is quantified. 50 unilateral CT datasets from 50 subjects with no pathological morphometry of tali were included in the experiments and statistical analyses were carried out based on the approximation error. The similarity between talar dome and BTC was more prominent, with smaller mean, standard deviation, maximum and median of the approximation error (0.36±0.07mm, 0.32±0.06mm, 2.24±0.47mm and 0.28±0.06mm) compare with fitting to SPH and CLD. In addition, there were significant differences between the fitting error of each pair of models in terms of the 4 measurements (p-values<0.05). The linear regression analyses demonstrated high correlation between CLD and BTC approximations (R 2 =0.55 for median, R 2 >0.7 for others). Color maps representing fitting error indicated that fitting error mainly occurred on the marginal regions of talar dome for SPH and CLD fittings, while that of BTC was small for the whole talar dome. The successful restoration of ankle functions in displacement surgery highly depends on the comprehensive understanding of the talus. The talar dome surface could be well-defined in a computational way and compared to SPH and CLD, the talar dome reflects outstanding similarity with BTC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Grid Application Meta-Repository System: Repository Interconnectivity and Cross-domain Application Usage in Distributed Computing Environments

    NASA Astrophysics Data System (ADS)

    Tudose, Alexandru; Terstyansky, Gabor; Kacsuk, Peter; Winter, Stephen

    Grid Application Repositories vary greatly in terms of access interface, security system, implementation technology, communication protocols and repository model. This diversity has become a significant limitation in terms of interoperability and inter-repository access. This paper presents the Grid Application Meta-Repository System (GAMRS) as a solution that offers better options for the management of Grid applications. GAMRS proposes a generic repository architecture, which allows any Grid Application Repository (GAR) to be connected to the system independent of their underlying technology. It also presents applications in a uniform manner and makes applications from all connected repositories visible to web search engines, OGSI/WSRF Grid Services and other OAI (Open Archive Initiative)-compliant repositories. GAMRS can also function as a repository in its own right and can store applications under a new repository model. With the help of this model, applications can be presented as embedded in virtual machines (VM) and therefore they can be run in their native environments and can easily be deployed on virtualized infrastructures allowing interoperability with new generation technologies such as cloud computing, application-on-demand, automatic service/application deployments and automatic VM generation.

  19. Effective pine bark composting with the Dome Aeration Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trois, Cristina; Polster, Andreas

    2007-07-01

    In South Africa garden refuse is primarily disposed of in domestic landfills. Due to the large quantities generated, any form of treatment would be beneficial for volume reduction, waste stabilization and resource recovery. Dome Aeration Technology (DAT) is an advanced process for aerobic biological degradation of garden refuse and general waste [Paar, S., Brummack, J., Gemende, B., 1999a. Advantages of dome aeration in mechanical-biological waste treatment. In: Proceedings of the 7th International Waste Management and Landfill Symposium, Cagliari, 4-8 October 1999; Paar, S., Brummack, J., Gemende, B., 1999b. Mechanical-biological waste stabilization by the dome aeration method. Environment Protection Engineering 25more » (3/99). Mollekopf, N., Brummack, J., Paar, S., Vorster, K., 2002. Use of the Dome Aeration Technology for biochemical stabilization of waste prior to landfilling. In: Proceedings of the Wastecon 2002, Waste Congress and Exhibition, Durban, South Africa.]. It is a non-reactor open windrow composting process, with the main advantage being that the input material needs no periodic turning. A rotting time of only 3-4 months indicates the high efficiency. Additionally, the low capital/operational costs, low energy inputs and limited plant requirements provide potential for use in aerobic refuse stabilization. The innovation in the DAT process is the passive aeration achieved by thermally driven advection through open windrows caused by temperature differences between the degrading material and the outside environment. This paper investigates the application of Dome Aeration Technology to pine bark composting as part of an integrated waste management strategy. A full-scale field experiment was performed at the Bisasar Road Landfill Site in Durban to assess the influence of climate, waste composition and operational conditions on the process. A test windrow was constructed and measurements of temperature and airflow through the material were taken. The

  20. The Urban Dust Dome: A Demonstration Model

    ERIC Educational Resources Information Center

    Cross, Ralph D.

    1973-01-01

    Working plans for an inexpensive urban dust dome model are presented together with some generalizations about urban atmosphere pollution. Theories and principles of atmospheric pollution which are introduced can be made meaningful to elementary students through classroom use of this model. (SM)

  1. LA-ICP-MS and SIMS U-Pb and U-Th zircon geochronological data of Late Pleistocene lava domes of the Ciomadul Volcanic Dome Complex (Eastern Carpathians).

    PubMed

    Lukács, Réka; Guillong, Marcel; Schmitt, Axel K; Molnár, Kata; Bachmann, Olivier; Harangi, Szabolcs

    2018-06-01

    This article provides laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and secondary ionization mass spectrometry (SIMS) U-Pb and U-Th zircon dates for crystals separated from Late Pleistocene dacitic lava dome rocks of the Ciomadul Volcanic Dome Complex (Eastern Carpathians, Romania). The analyses were performed on unpolished zircon prism faces (termed rim analyses) and on crystal interiors exposed through mechanical grinding an polishing (interior analyses). 206 Pb/ 238 U ages are corrected for Th-disequilibrium based on published and calculated distribution coefficients for U and Th using average whole-rock and individually analyzed zircon compositions. The data presented in this article were used for the Th-disequilibrium correction of (U-Th)/He zircon geochronology data in the research article entitled "The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): eruption chronology and magma type variation" (Molnár et al., 2018) [1].

  2. Time Series Radar Observations of a Growing Lava Dome

    NASA Astrophysics Data System (ADS)

    Wadge, G.; Macfarlane, D. G.; Odbert, H. M.; James, M. R.; Hole, J. K.; Ryan, G.; Bass, V.; de Angelis, S.; Pinkerton, H.; Robertson, D. A.; Loughlin, S. C.

    2007-12-01

    Exogenous growth of Peléean lava domes occurs by addition of lava from a central summit vent and mass wasting on the flanks as rockfalls and pyroclastic flows, forming an apron of talus. We observed this process at the Soufrière Hills Volcano, Montserrat between 30 March and 10 April 2006 using a ground-based imaging mm-wave radar, AVTIS, to measure the shape of the dome surface.From a time series of range and intensity measurements at a distance of six kilometres we measured the topographic evolution of the lava dome. The locus of talus deposition moved to the southeast with time and the talus surface grew upwards on average at about 2 metres per day. The AVTIS measurements show an acceleration in lava extrusion rate on 5 April, with a 2-day lag in the equivalent rockfall seismicity record. We account for the budget of lava addition and dispersal during the eleven days of measurements using: AVTIS range measurements to measure the talus growth (7.2 Mm3, 67%), AVTIS range and intensity measurements to measure the summit lava growth (1.7 Mm3, 16%), and rockfall seismicity and visual observations to measure the pyroclastic flow deposits (1.8 Mm3, 17%). This gives an overall dense rock equivalent extrusion rate of about 9.7 m3s-1. These figures demonstrate how efficient non-explosive lava dome growth can be in generating large volumes of primary clastic deposits, and how this process could also reduce the propensity for large hazardous pyroclastic flows. andrews.ac.uk/~mmwave/mmwave/avtis.shtml

  3. Crystal-rich lava dome extrusion during vesiculation: An experimental study

    NASA Astrophysics Data System (ADS)

    Pistone, Mattia; Whittington, Alan G.; Andrews, Benjamin J.; Cottrell, Elizabeth

    2017-11-01

    Lava dome-forming eruptions represent a common eruptive style and a major hazard at numerous active volcanoes worldwide. The extrusion mechanics of crystal-rich lava domes and the influence of volatiles on the transition from viscous to brittle behaviour during lava dome extrusion remain unclear. Understanding how gas exsolution and crystallinity control effusive versus explosive eruption behaviour is essential. Here, we present new experimental results on the rheology of synthesised, crystal-rich (50 to 80 vol% quartz crystals), hydrous (4.2 wt% H2O in the glass) dacite samples, which vesiculate from 5 to 27 vol% gas bubbles at high temperatures (from glass transition temperature to 797 °C) during deformation conducted in a parallel plate viscometer (constant stress at 0.63-0.64 MPa, and variable strain-rates ranging from 8.32·10- 8 to 3.58·10- 5 s- 1). The experiments reproduce certain aspects of lava dome deformation in volcanic conduits during vesiculation of the residual melt, instigated in the experiments by increasing temperature. During gas exsolution (i.e. nucleation and growth of gas-pressurised bubbles) and volume inflation, we find that the rheological lubrication of the system during deformation is strongly dictated by the initial crystallinity. At crystal contents < 60 vol%, gas bubbles form and coalesce during expansion and viscous deformation, favouring strain localisation and gas permeability within shear bands, which control the overall sample rheology. At crystallinities of 60 to 70 vol%, gas exsolution generates pressurisation (i.e. pore pressure increase) within the bubbles trapped in the solid crystal clusters, and embryonic formation of microscopic fractures through melt and crystals drives the system to a brittle behaviour. At higher crystallinity (80 vol%) vesiculation leads to large pressurisation, which then triggers extensive brittle fragmentation. Through macroscopic fractures, outgassing determines the rheological stalling of the

  4. Early Miocene rapid exhumation in southern Tibet: Insights from P-T-t-D-magmatism path of Yardoi dome

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Min; Wu, Fu-Yuan; Rubatto, Daniela; Liu, Kai; Zhang, Jin-Jiang; Liu, Xiao-Chi

    2018-04-01

    Reconstructing the evolution of Gneiss domes within orogenic belts poses challenges because domes can form in a variety of geodynamic settings and by multiple doming mechanisms. For the North Himalayan gneiss domes (NHGD), it is debated whether they formed during shortening, extension or collapse of the plateau, and what is the spatial and temporal relationship of magmatism, metamorphism and deformation. This study investigates the Yardoi dome in southern Tibet using field mapping, petrography, phase equilibria modelling and new monazite ages. The resulting P-T-time-deformation-magmatism path for the first time reveals the spatial and temporal relationship of metamorphism, deformation and magmatism in the Yardoi dome: a) the dome mantle recorded prograde loading to kyanite-grade Barrovian metamorphic conditions of 650 ± 30 °C and 9 ± 1 kbar (M2) in the Early Miocene (18-17 Ma); b) the main top-to-the-north deformation fabric (D2) formed syn- to post-peak-metamorphism; c) the emplacement of leucorgranites related to doming is syn-metamorphism at 19-17 Ma. The link between the detachment shear zone in the Yardoi dome and the South Tibetan detachment system (STDS) is confirmed. By comparing with orogen-scale tectonic processes in the Himalaya, we suggest that north-south extension in a convergent geodynamic setting during Early Miocene accounts for formation of the Yardoi dome. In a wider tectonic context, the Early Miocene rapid exhumation of deep crustal rocks was contemporaneous with the rapid uplift of southern Tibet and the Himalayan orogen.

  5. A comparison of surgical exposures for posterolateral osteochondral lesions of the talar dome.

    PubMed

    Mayne, Alistair I W; Lawton, Robert; Reidy, Michael J; Harrold, Fraser; Chami, George

    2018-04-01

    Perpendicular access to the posterolateral talar dome for the management of osteochondral defects is difficult. We examined exposure available from each of four surgical approaches. Four surgical approaches were performed on 9 Thiel-embalmed cadavers: anterolateral approach with arthrotomy; anterolateral approach with anterior talo-fibular ligament (ATFL) release; anterolateral approach with antero-lateral tibial osteotomy; and anterolateral approach with lateral malleolus osteotomy. The furthest distance posteriorly allowing perpendicular access with a 2mm k-wire was measured. An anterolateral approach with arthrotomy provided a mean exposure of the anterior third of the lateral talar dome. A lateral malleolus osteotomy provided superior exposure (81.5% vs 58.8%) compared to an anterolateral tibial osteotomy. Only the anterior half of the lateral border of the talar dome could be accessed with an anterolateral approach without osteotomy. A fibular osteotomy provided best exposure to the posterolateral aspect of the talar dome. Copyright © 2016 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  6. Public involvement on closure of Asse II radioactive waste repository in Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallenbach-Herbert, Beate

    2013-07-01

    From 1967 to 1978, about 125,800 barrels of low- and intermediate level waste were disposed of - nominally for research purposes - in the former 'Asse' salt mine which had before been used for the production of potash for many years. Since 1988 an inflow of brine is being observed which will cause dangers of flooding and of a collapse due to salt weakening and dissolution if it should increase. Since several years the closure of the Asse repository is planned with the objective to prevent the flooding and collapse of the mine and the release of radioactive substances tomore » the biosphere. The first concept that was presented by the former operator, however, seemed completely unacceptable to regional representatives from politics and NGOs. Their activities against these plans made the project a top issue on the political agenda from the federal to the local level. The paper traces the main reasons which lead to the severe safety problems in the past as well as relevant changes in the governance system today. A focus is put on the process for public involvement in which the Citizens' Advisory Group 'A2B' forms the core measure. Its structure and framework, experience and results, expectations from inside and outside perspectives are presented. Furthermore the question is tackled how far this process can serve as an example for a participatory approach in a siting process for a geological repository for high active waste which can be expected to be highly contested in the affected regions. (authors)« less

  7. Hazards Associated with Legacy Nitrate Salt Waste Drums Managed under the Container Isolation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funk, David John; Clark, David Lewis

    At present, there are 29 drums of nitrate waste salts (oxidizers with potentially acidic liquid bearing RCRA characteristics D001 and D002) that are awaiting processing, specifically to eliminate these characteristics and to allow for ultimate disposition at WIPP. As a result of the Feb. 14th, 2014 drum breach at WIPP, and the subsequent identification of the breached drum as a product ofLANL TRU waste disposition on May 15th, 2014, these 29 containers were moved into the Perrnacon in Dome 231 at TA-54 Area G, as part of the New Mexico Environment Department (NMED) approved container isolation plan. The plan ismore » designed to mitigate hazards associated with the nitrate salt bearing waste stream. The purpose of this document is to articulate the hazards associated with un-remediated nitrate salts while in storage at LANL. These hazards are distinctly different from the Swheat-remediated nitrate salt bearing drums, and this document is intended to support the request to remove the un-remediated drums from management under the container isolation plan. Plans to remediate and/or treat both of these waste types are being developed separately, and are beyond the scope of this document.« less

  8. The Emperor's New Repository

    ERIC Educational Resources Information Center

    Chudnov, Daniel

    2008-01-01

    The author does not know the first thing about building digital repositories. Maybe that is a strange thing to say, given that he works in a repository development group now, worked on the original DSpace project years ago, and worked on a few repository research projects in between. Given how long he has been around people and projects aiming to…

  9. Transportation plan repository and archive.

    DOT National Transportation Integrated Search

    2011-04-01

    This project created a repository and archive for transportation planning documents in Texas within the : established Texas A&M Repository (http://digital.library.tamu.edu). This transportation planning archive : and repository provides ready access ...

  10. Statistical forecasting of repetitious dome failures during the waning eruption of Redoubt Volcano, Alaska, February-April 1990

    USGS Publications Warehouse

    Page, R.A.; Lahr, J.C.; Chouet, B.A.; Power, J.A.; Stephens, C.D.

    1994-01-01

    The waning phase of the 1989-1990 eruption of Redoubt Volcano in the Cook Inlet region of south-central Alaska comprised a quasi-regular pattern of repetitious dome growth and destruction that lasted from February 15 to late April 1990. The dome failures produced ash plumes hazardous to airline traffic. In response to this hazard, the Alaska Volcano Observatory sought to forecast these ash-producing events using two approaches. One approach built on early successes in issuing warnings before major eruptions on December 14, 1989 and January 2, 1990. These warnings were based largely on changes in seismic activity related to the occurrence of precursory swarms of long-period seismic events. The search for precursory swarms of long-period seismicity was continued through the waning phase of the eruption and led to warnings before tephra eruptions on March 23 and April 6. The observed regularity of dome failures after February 15 suggested that a statistical forecasting method based on a constant-rate failure model might also be successful. The first statistical forecast was issued on March 16 after seven events had occurred, at an average interval of 4.5 days. At this time, the interval between dome failures abruptly lengthened. Accordingly, the forecast was unsuccessful and further forecasting was suspended until the regularity of subsequent failures could be confirmed. Statistical forecasting resumed on April 12, after four dome failure episodes separated by an average of 7.8 days. One dome failure (April 15) was successfully forecast using a 70% confidence window, and a second event (April 21) was narrowly missed before the end of the activity. The cessation of dome failures after April 21 resulted in a concluding false alarm. Although forecasting success during the eruption was limited, retrospective analysis shows that early and consistent application of the statistical method using a constant-rate failure model and a 90% confidence window could have yielded five

  11. Influence of conduit flow mechanics on magma rheology and the growth style of lava domes

    NASA Astrophysics Data System (ADS)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2018-06-01

    We develop a 2-D particle-mechanics model to explore different lava-dome growth styles. These range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fuelled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. A period of reduced effusive flow rates promote enhanced degassing-induced crystallization. A degassed lava plug extrudes exogenously for magmas with crystal contents (ϕ) of 78 per cent, yield strength >1.62 MPa, and at flow rates of <0.5 m3 s-1, while endogenous dome growth is predicted at higher flow rates (Qout > 3 m3 s-1) for magma with lower relative yield strengths (<1 MPa). At moderately high flow rates (Qout = 4 m3 s-1), the extrusion of magma with lower crystal content (62 per cent) and low interparticulate yield strength (0.6 MPa) results in the development of endogenous shear lobes. Our simulations model the periodic extrusion history at Mount St. Helens (1980-1983). Endogenous growth initiates in the simulated lava dome with the extrusion of low yield strength magma (ϕ = 0.63 and τp = 0.76 MPa) after the crystallized viscous plug (ϕ = 0.87 and τp = 3 MPa) at the conduit exit is forced out by the high discharge rate pulse (2 < Qout < 12 m3 s-1). The size of the endogenous viscous plug and the occurrence of exogenous growth depend on magma yield strength and the magma chamber volume, which control the periodicity of the effusion. Our simulations generate dome morphologies similar to those observed at Mount St Helens, and demonstrate the degree to which domes can sag and spread during and following extrusion pulses. This process, which has been observed at Mount St. Helens and other

  12. Laboratory Studies of High Temperature Deformation and Fracture of Lava Domes

    NASA Astrophysics Data System (ADS)

    Smith, R.; Sammonds, P.; Tuffen, H.; Meredith, P.

    2007-12-01

    The high temperature fracture mechanics of magma at high temperatures exerts a fundamental control on the stability of lava domes and the timing and style of eruptions at andesitic to dacitic volcanoes. This is evidenced in the pervasive fracturing seen in both ancient and active magma conduits and lava domes; in addition to the volcanic earthquakes that occur before and during episodes of dome growth and dome collapse. Uniaxial and triaxial deformation experiments have been performed on crystal rich and crystal free magmas (andesite from Ancestral Mount Shasta, California, USA and a rhyolitic obsidian from Krafla, Iceland) at a range of temperatures (up to 900°C), confining pressures (up to 50 MPa) and strain rates (10-5s-1) to 10-3s-1) whilst recording acoustic emissions (AE). Results from these experiments provide useful inputs into models of lava dome stability, extrusion mechanisms, and source mechanisms for volcanic earthquakes. However, the large sample sizes used to ensure valid results (25mm diameter and 75mm length) made it difficult to maintain stable high temperatures under confined conditions. Also, only rudimentary AE data could be obtained, due to the distance of the transducers from the samples to keep them away from the high temperatures. Here, we present modifications to this apparatus, which include a new furnace, improved loading system, additional pore pressure and permeability measurement capability, and vastly improved acoustic monitoring. This allows (1)stable higher temperatures (up to 1000°C) to be achieved under confined conditions, (2) high temperature and moderate pressure (up to 70 MPa) hydrostatic measurements of permeability and acoustic velocities, (3) high temperature triaxial deformation under different pore fluid and pressure conditions, and (4) full waveform AE monitoring for all deformation experiments. This system can thus be used to measure the physical properties and strength of rocks under volcanic conditions and to

  13. Does Flattened Sky Dome Reduces Perceived Moon Size

    NASA Astrophysics Data System (ADS)

    Toskovic, O.

    2009-09-01

    The aim of this study was to examine the Flattened sky dome model as an explanation of the Moon illusion. Two experiments were done, in a dark room, in which distribution of depth cues is the same towards horizon as towards zenith. In the first experiment 14 participants had the task to equalize the perceived distances of three stimuli in three directions (horizontal, tilted 45 degrees and vertical). In the second experiment 16 participants had the task to estimate the perceived sizes of three stimuli in the same three directions. For distance estimates we found differences among three directions in a way, that as the head tilts upwards, the perceived space is being elongated, which is the opposite to flattened sky dome. For size estimates we found no difference among the three directions.

  14. Salt structure and sediment thickness, Texas-Louisiana continental slope, northwestern Gulf of Mexico

    USGS Publications Warehouse

    Martin, Raymond G.

    1973-01-01

    The objectives of this study were to determine the general configuration of the salt surface beneath the Texas-Louisiana continental slope and to isopach the Mesozoic-Cenozoic sedimentary section lying upon it. The structure contour map discloses that the entire slope province between the shelf edge and Sigsbee Escarpment is underlain by salt structures which interconnect at relatively shallow subbottom depths. Salt structures on the slope south of Louisiana and eastern Texas can be grouped according to structural relief and size which define morphological belts of decreasing deformational maturity in a downslope direction. Off northern Mexico and southernmost Texas, salt structures are anticlinal and their trends suggest a structural relationship with the folds of the Mexican Ridge province to the south. Structural trends in the two slope areas meet in the corner of the northwestern gulf where salt structure may have been influenced by a seaward extension of the San Marcos Arch, or an abrupt change in subsalt structural topography. Sediment thickness above the top of salt on the slope averages about 1,400 m (4,620 ft) which is a smaller average than expected from previous estimates. In some synclinal basins between salt structures, sediments may be as thick as 4,000-5,000 m (12,000-17,000 ft). On the average, sedimentary deposits in basins on the upper slope are thicker than on the lower slope. From the isopach map of sediments above salt it is estimated that the U.S. continental slope off Texas and Louisiana contains a sedimentary volume of about 170,000 km3 (41,000 mi3). The bulk of this volume is situated in synclinal basins between domes and principally in those beneath the upper and middle slope regions.

  15. Radially fractured domes: A comparison of Venus and the Earth

    NASA Technical Reports Server (NTRS)

    Janes, Daniel M.; Squyres, Steven W.

    1993-01-01

    Radially fractured domes are large, tectonic and topographic features discovered on the surface of Venus by the Magellan spacecraft. They are thought to be due to uplift over mantle diapirism, and to date are known to occur only on Venus. Since Venus and the Earth are grossly similar in size, composition and structure, we seek to understand why these features have not been seen on the Earth. We model the uplift and fracturing over a mantle diapir as functions of lithospheric thickness and diapir size and depth. We find that lithospheres of the same thickness on the Earth and Venus should respond similarly to the same sized diapir, and that radially fractured domes should form most readily in thin oceanic lithospheres on Earth if diapiric activity is similar on the two planets. However, our current knowledge of the Earth's oceanic floors is insufficient to confirm or deny the presence of radially fractured domes. We compute the expected dimensions for these features on the Earth and suggest a search for them to determine whether mantle diapirism operates similarly on the Earth and Venus.

  16. NCI Mouse Repository | FNLCR Staging

    Cancer.gov

    The NCI Mouse Repository is an NCI-funded resource for mouse cancer models and associated strains. The repository makes strains available to all members of the scientific community (academic, non-profit, and commercial). NCI Mouse Repository strains

  17. Kaguyak dome field and its Holocene caldera, Alaska Peninsula

    USGS Publications Warehouse

    Fierstein, J.; Hildreth, W.

    2008-01-01

    Kaguyak Caldera lies in a remote corner of Katmai National Park, 375??km SW of Anchorage, Alaska. The 2.5-by-3-km caldera collapsed ~ 5.8 ?? 0.2??ka (14C age) during emplacement of a radial apron of poorly pumiceous crystal-rich dacitic pyroclastic flows (61-67% SiO2). Proximal pumice-fall deposits are thin and sparsely preserved, but an oxidized coignimbrite ash is found as far as the Valley of Ten Thousand Smokes, 80??km southwest. Postcaldera events include filling the 150-m-deep caldera lake, emplacement of two intracaldera domes (61.5-64.5% SiO2), and phreatic ejection of lakefloor sediments onto the caldera rim. CO2 and H2S bubble up through the lake, weakly but widely. Geochemical analyses (n = 148), including pre-and post-caldera lavas (53-74% SiO2), define one of the lowest-K arc suites in Alaska. The precaldera edifice was not a stratocone but was, instead, nine contiguous but discrete clusters of lava domes, themselves stacks of rhyolite to basalt exogenous lobes and flows. Four extracaldera clusters are mid-to-late Pleistocene, but the other five are younger than 60??ka, were truncated by the collapse, and now make up the steep inner walls. The climactic ignimbrite was preceded by ~ 200??years by radial emplacement of a 100-m-thick sheet of block-rich glassy lava breccia (62-65.5% SiO2). Filling the notches between the truncated dome clusters, the breccia now makes up three segments of the steep caldera wall, which beheads gullies incised into the breccia deposit prior to caldera formation. They were probably shed by a large lava dome extruding where the lake is today.

  18. Instant snapshot of the internal structure of Unzen lava dome, Japan with airborne muography

    PubMed Central

    Tanaka, Hiroyuki K. M.

    2016-01-01

    An emerging elementary particle imaging technique called muography has increasingly been used to resolve the internal structures of volcanoes with a spatial resolution of less than 100 m. However, land-based muography requires several days at least to acquire satisfactory image contrast and thus, it has not been a practical tool to diagnose the erupting volcano in a real time manner. To address this issue, airborne muography was implemented for the first time, targeting Heisei-Shinzan lava dome of Unzen volcano, Japan. Obtained in 2.5 hours, the resultant image clearly showed the density contrast inside the dome, which is essential information to predict the magnitude of the dome collapse. Since airborne muography is not restricted by topographic conditions for apparatus placements, we anticipate that the technique is applicable to creating images of this type of lava dome evolution from various angles in real time. PMID:28008978

  19. Volcano dome dynamics at Mount St. Helens: Deformation and intermittent subsidence monitored by seismicity and camera imagery pixel offsets

    USGS Publications Warehouse

    Salzer, Jacqueline T.; Thelen, Weston A.; James, Mike R.; Walter, Thomas R.; Moran, Seth C.; Denlinger, Roger P.

    2016-01-01

    The surface deformation field measured at volcanic domes provides insights into the effects of magmatic processes, gravity- and gas-driven processes, and the development and distribution of internal dome structures. Here we study short-term dome deformation associated with earthquakes at Mount St. Helens, recorded by a permanent optical camera and seismic monitoring network. We use Digital Image Correlation (DIC) to compute the displacement field between successive images and compare the results to the occurrence and characteristics of seismic events during a 6 week period of dome growth in 2006. The results reveal that dome growth at Mount St. Helens was repeatedly interrupted by short-term meter-scale downward displacements at the dome surface, which were associated in time with low-frequency, large-magnitude seismic events followed by a tremor-like signal. The tremor was only recorded by the seismic stations closest to the dome. We find a correlation between the magnitudes of the camera-derived displacements and the spectral amplitudes of the associated tremor. We use the DIC results from two cameras and a high-resolution topographic model to derive full 3-D displacement maps, which reveals internal dome structures and the effect of the seismic activity on daily surface velocities. We postulate that the tremor is recording the gravity-driven response of the upper dome due to mechanical collapse or depressurization and fault-controlled slumping. Our results highlight the different scales and structural expressions during growth and disintegration of lava domes and the relationships between seismic and deformation signals.

  20. 40 CFR 124.33 - Information repository.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Information repository. 124.33 Section... FOR DECISIONMAKING Specific Procedures Applicable to RCRA Permits § 124.33 Information repository. (a... basis, for an information repository. When assessing the need for an information repository, the...

  1. Astronaut Gerald Carr floats in forward dome area

    NASA Image and Video Library

    1974-02-01

    Astronaut Gerald P. Carr, commander for the Skylab 4 mission, demonstrates the effects of zero-gravity as he floats in the forward dome area of the Orbital Workshop of the Skylab space station while in Earth orbit.

  2. The touch dome defines an epidermal niche specialized for mechanosensory signaling

    PubMed Central

    Doucet, Yanne S.; Woo, Seung-Hyun; Ruiz, Marlon E.; Owens, David M.

    2013-01-01

    Summary In mammalian skin, Merkel cells are mechanoreceptor cells that are required for the perception of gentle touch. Recent evidence indicates that mature Merkel cells descend from the proliferative layer of skin epidermis; however, the stem cell niche for Merkel cell homeostasis has not been reported. Here, we provide the first genetic evidence for maintenance of mature Merkel cells during homeostasis by Krt17+ stem cells located in epidermal touch domes of hairy skin and in the tips of the rete ridges of glabrous skin. Lineage tracing analysis indicated that the entire pool of mature Merkel cells is turned over every 7–8 weeks in adult epidermis and that Krt17+ stem cells also maintain squamous differentiation in the touch dome and in glabrous skin. Finally, selective genetic ablation of Krt17+ touch dome keratinocytes indicates that these cells, and not mature Merkel cells, are primarily responsible for maintaining innervation of the Merkel cell-neurite complex. PMID:23727240

  3. An Operationally Based Vision Assessment Simulator for Domes

    NASA Technical Reports Server (NTRS)

    Archdeacon, John; Gaska, James; Timoner, Samson

    2012-01-01

    The Operational Based Vision Assessment (OBVA) simulator was designed and built by NASA and the United States Air Force (USAF) to provide the Air Force School of Aerospace Medicine (USAFSAM) with a scientific testing laboratory to study human vision and testing standards in an operationally relevant environment. This paper describes the general design objectives and implementation characteristics of the simulator visual system being created to meet these requirements. A key design objective for the OBVA research simulator is to develop a real-time computer image generator (IG) and display subsystem that can display and update at 120 frame s per second (design target), or at a minimum, 60 frames per second, with minimal transport delay using commercial off-the-shelf (COTS) technology. There are three key parts of the OBVA simulator that are described in this paper: i) the real-time computer image generator, ii) the various COTS technology used to construct the simulator, and iii) the spherical dome display and real-time distortion correction subsystem. We describe the various issues, possible COTS solutions, and remaining problem areas identified by NASA and the USAF while designing and building the simulator for future vision research. We also describe the critically important relationship of the physical display components including distortion correction for the dome consistent with an objective of minimizing latency in the system. The performance of the automatic calibration system used in the dome is also described. Various recommendations for possible future implementations shall also be discussed.

  4. Centralized mouse repositories.

    PubMed

    Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T

    2012-10-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.

  5. Using analog flow experiments to model morphologies developed during episodic dome growth: A case study of Mount St Helens, 1980-1986

    NASA Astrophysics Data System (ADS)

    Altman, K. M.; Teasdale, R.

    2009-12-01

    From 1980 to 1986 the dacite dome at Mount St. Helens was emplaced as a series of 17 events, identified by different growth rates, volumes, height to diameter ratios, emplacement rates, surface textures and dome morphologies (Swanson, 1989). Rates of emplacement characterize three periods; between October 18, 1980 and the end of 1981 the growth rate was 1.8 x 10^6 m^3/month; between March 1982 and March 1984 the growth rate was 1.3 x 10^6 m^3/month; followed by a growth rate of 0.62 x 10^6 m^3/month until the end of the emplacement events in 1986 (Swanson, 1989). The shape of the dome changed from 1980 to 1986 as a function of magma viscosity, tensile strength of the hot core, and thickness of the outer shell (Swanson, 1989). The height to diameter ratios (h:d) recorded throughout the growth of the dome have been used to quantify the changes in the shape of the dome. The dome was flatter during the first period of emplacement when larger volumes kept the dome hotter and hindered the formation of a thick, cool outer crust (Swanson, 1989). Once the growth rate slowed by June 1981, a thick skin had formed and allowed the dome to steepen (Swanson, 1989). Analog models presented here aim to reproduce the emplacement of the domes based on observations and data recorded at Mount St. Helens from 1980 to 1986. Flow experiments use a slurry of PEG (poly-ethelyne glycol) mixed with kaolin powder that is pumped into a tank of cold water (Fink and Griffiths, 1998). PEG is used because it is liquid at room temperature and solidifies in the cold water. Kaolin powder is added to the PEG to simulate the viscosity of the dacite domes. The observed and recorded data from Mount St. Helens are used to constrain analog flow model parameters such as slope, effusion rate, and PEG viscosity in an attempt to recreate the dome morphologies observed in the 1980 to 1986 episodes. As expected, dome morphology in experiments varies with the crustal thickness developed during experiments. The

  6. Virtual patient repositories--a comparative analysis.

    PubMed

    Küfner, Julia; Kononowicz, Andrzej A; Hege, Inga

    2014-01-01

    Virtual Patients (VPs) are an important component of medical education. One way to reduce the costs for creating VPs is sharing through repositories. We conducted a literature review to identify existing repositories and analyzed the 17 included repositories in regards to the search functions and metadata they provide. Most repositories provided some metadata such as title or description, whereas other data, such as educational objectives, were less frequent. Future research could, in cooperation with the repository provider, investigate user expectations and usage patterns.

  7. Computational modeling of lava domes using particle dynamics to investigate the effect of conduit flow mechanics on flow patterns

    NASA Astrophysics Data System (ADS)

    Husain, Taha Murtuza

    Large (1--4 x 106 m3) to major (> 4 x 106 m3) dome collapses for andesitic lava domes such as Soufriere Hills Volcano, Montserrat are observed for elevated magma discharge rates (6--13 m3/s). The gas rich magma pulses lead to pressure build up in the lava dome that result in structural failure of the over steepened canyon-like walls which may lead to rockfall or pyroclastic flow. This indicates that dome collapse intimately related to magma extrusion rate. Variation in magma extrusion rate for open-system magma chambers is observed to follow alternating periods of high and low activity. Periodic behavior of magma exhibits a rich diversity in the nature of its eruptive history due to variation in magma chamber size, total crystal content, linear crystal growth rate and magma replenishment rate. Distinguished patterns of growth were observed at different magma flow rates ranging from endogenous to exogenous dome growth for magma with varying strengths. Determining the key parameters that control the transition in flow pattern of the magma during its lava dome building eruption is the main focus. This dissertation examines the mechanical effects on the morphology of the evolving lava dome on the extrusion of magma from a central vent using a 2D particle dynamics model. The particle dynamics model is coupled with a conduit flow model that incorporates the kinetics of crystallization and rheological stiffening to investigate important mechanisms during lava dome building eruptions. Chapter I of this dissertation explores lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional

  8. Study of constraints in using household NaCl salt for retrospective dosimetry

    NASA Astrophysics Data System (ADS)

    Elashmawy, M.

    2018-05-01

    Thermoluminescence (TL) characteristics of 5 different household NaCl salts and one analytical salt were determined to investigate the possible factors that affect the reliability of using household salt for retrospective dosimetry. Salts' TL sensitivities were found to be particle-size dependent and approached saturation at the largest size, whereas for salts that have the same particle size, the TL sensitivity depended on their origin. TL dependence on the particle size interprets significant variations in TL response reported in the literature for the same salt patch. The first TL readout indicated that all salts have similar glow curves with one distinctive peak. Typical second TL readout at two different doses showed a dramatic decrease in TL sensitivity associated with a significant change in the glow curve structure possessing two prominent peaks. Glow curve deconvolution (GCD) of the first TL readout for all salts yielded 6 individual glow peaks of first-order kinetics, whereas in GCD of second TL readouts, 5 individual glow peaks of second-order kinetics were obtained. Similarities in the glow curve structures of the first and second TL readouts suggest that additives such as KIO3 and MgCO3 have no effect on the TL process. Fading effect was evaluated for the salt of highest TL sensitivity, and it was found that the integral TL intensity decreased gradually and lost 40% of its initial value over 2 weeks, after which it remained constant. Results conclude that a household salt cannot be used for retrospective dosimetry without considering certain constraints such as the salt's origin and particle size. Furthermore, preparedness for radiological accidents and accurate dose reconstructions require that most of the commonly distributed household salt brands should be calibrated in advance and stored in a repository to be recalled in case of accidents.

  9. Temporal evolution of magma flow and degassing conditions during dome growth, insights from 2D numerical modeling

    NASA Astrophysics Data System (ADS)

    Chevalier, Laure; Collombet, Marielle; Pinel, Virginie

    2017-03-01

    Understanding magma degassing evolution during an eruption is essential to improving forecasting of effusive/explosive regime transitions at andesitic volcanoes. Lava domes frequently form during effusive phases, inducing a pressure increase both within the conduit and within the surrounding rocks. To quantify the influence of dome height on magma flow and degassing, we couple magma and gas flow in a 2D numerical model. The deformation induced by magma flow evolution is also quantified. From realistic initial magma flow conditions in effusive regime (Collombet, 2009), we apply increasing pressure at the conduit top as the dome grows. Since volatile solubility increases with pressure, dome growth is then associated with an increase in magma dissolved water content at a given depth, which corresponds with a decrease in magma porosity and permeability. Magma flow evolution is associated with ground deflation of a few μrad in the near field. However this signal is not detectable as it is hidden by dome subsidence (a few mrad). A Darcy flow model is used to study the impact of pressure and permeability conditions on gas flow in the conduit and surrounding rock. We show that dome permeability has almost no influence on magma degassing. However, increasing pressure in the surrounding rock, due to dome loading, as well as decreasing magma permeability in the conduit limit permeable gas loss at the conduit walls, thus causing gas pressurization in the upper conduit by a few tens of MPa. Decreasing magma permeability and increasing gas pressure increase the likelihood of magma explosivity and hazard in the case of a rapid decompression due to dome collapse.

  10. On the Dome Effect of Flux Radiometers to Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Tsay, S.-C.; Ji, Q.

    1999-01-01

    Since the introduction of thermopile, pyranometers (solar, e.g., 0.3-3.0 microns) and pyrgeometers (terrestrial, e.g., 4-50 microns) have become instruments commonly used for measuring the broadband hemispherical irradiances at the surface in a long-term, monitoring mode for decades. These commercially available radiometers have been manufactured in several countries such as from the United States, Asia, and Europe, and are generally reliable and economical. These worldwide distributions of surface measurements become even more important in the era of Earth remote sensing in studying climate forcing. However, recent studies from field campaigns have pointed out that erroneous factors (e.g., temperature gradients between the filter dome and detector, emissivity of the thermopile) are responsible for the unacceptable level of uncertainty (e.g., 10-20 W/square Meter). Using a newly developed instrument of Quantum Well Infrared Photodetector (QWIP), we have characterized the brightness temperature fields of pyranometers and pyrgeometers under various sky conditions. The QWIP is based on the superlattice (GaAs/AlGaAs) technology and has a noise equivalent temperature (NE delta T) less than 0.1 K. The quality of pyranometer and pyrgeometer measurements can be improved largely by applying proper knowledge of the thermal parameters affecting the operation of the thermopile systems. For example, we show a method to determine the "dome factor" (the longwave emission divided by the longwave transmission of a pyrgeometer dome) from field measurements. The results show, and are verified independently by the QWIP, that our dome factors of 0.59 and 0.90 are much smaller than the value of 4.0 assumed by the WMO. Data correction procedure and algorithm will be presented and discussed.

  11. Density-dependent groundwater flow and dissolution potential along a salt diapir in the Transylvanian Basin, Romania

    NASA Astrophysics Data System (ADS)

    Zechner, Eric; Danchiv, Alex; Dresmann, Horst; Mocuţa, Marius; Huggenberger, Peter; Scheidler, Stefan; Wiesmeier, Stefan; Popa, Iulian; Zlibut, Alexandru; Zamfirescu, Florian

    2016-04-01

    Salt diapirs and the surrounding sediments are often involved in a variety of human activities, such as salt mining, exploration and storage of hydrocarbons, and also storage of radioactive waste material. The presence of highly soluble evaporitic rocks, a complex tectonic setting related to salt diapirsm, and human activities can lead to significant environmental problems, e.g. land subsidence, sinkhole development, salt cavern collapse, and contamination of water resources with brines. In the Transylvanian town of Ocna Mures. rock salt of a near-surface diapir has been explored since the Roman ages in open excavations, and up to the 20th century in galleries and with solution mining. Most recently, in 2010 a sudden collapse in the adjacent Quaternary unconsolidated sediments led to the formation of a 70-90m wide salt lake with a max. depth of 23m. Over the last 3 years a Romanian-Swiss research project has led to the development of 3D geological and hydrogeological information systems in order to improve knowledge on possible hazards related to uncontrolled salt dissolution. One aspect which has been investigated is the possibility of density-driven flow along permeable subvertical zones next to the salt dome, and the potential for subsaturated groundwater to dissolve the upper sides of the diapir. Structural 3D models of the salt diapir, the adjacent basin sediments, and the mining galleries, led to the development of 2D numerical vertical density-dependent models of flow and transport along the diapir. Results show that (1) increased rock permeability due to diapirsm, regional tectonic thrusting and previous dissolution, and (2) more permeable sandstone layers within the adjacent basin sediments may lead to freshwater intrusion towards the top of the diapir, and, therefore, to increased potential for salt dissolution.

  12. Centralized Mouse Repositories

    PubMed Central

    Donahue, Leah Rae; de Angelis, Martin Hrabe; Hagn, Michael; Franklin, Craig; Lloyd, K. C. Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T.

    2013-01-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world. PMID:22945696

  13. Brine Migration in Heated Salt: Lessons Learned from Field Experiments

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Matteo, E. N.; Mills, M.

    2017-12-01

    We summarize several interesting brine migration related phenomena hinted at in field experiments from field testing related to salt radioactive waste repositories in Germany and the US. Past heater tests in salt have shown 1) thermal-hydrological-mechanical coupling is quite strong during both heating and cooling; 2) chemical composition of brine evolves during heating, and comprises a mix of several water sources; and 3) acid gas (HCl) generation has been observed during past heater tests and may have multiple mechanisms for formation. We present a heated brine migration test design, formulated with these complexities in mind. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  14. Analysis and test of low profile aluminum aerospace tank dome

    NASA Technical Reports Server (NTRS)

    Ahmed, R.; Wilhelm, J. M.

    1993-01-01

    In order to increase the structural performance of cryogenic tanks, the aerospace industry is beginning to employ low-profile bulkheads in new generation launch vehicle designs. This report details the analysis and test of one such dome made from 2219 aluminum. Such domes have two potential failure modes under internal pressure, general tensile failure and hoop compression buckling (in regions near the equator). The test determined the buckling load and ultimate tensile load of the hardware and showed that both compared well with the analysis predictions. This effort was conducted under the auspices of NASA and the General Dynamics Cryogenic Tank Technology Program (CTTP).

  15. Analysis and test of low profile aluminum aerospace tank dome

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Wilhelm, J. M.

    1993-12-01

    In order to increase the structural performance of cryogenic tanks, the aerospace industry is beginning to employ low-profile bulkheads in new generation launch vehicle designs. This report details the analysis and test of one such dome made from 2219 aluminum. Such domes have two potential failure modes under internal pressure, general tensile failure and hoop compression buckling (in regions near the equator). The test determined the buckling load and ultimate tensile load of the hardware and showed that both compared well with the analysis predictions. This effort was conducted under the auspices of NASA and the General Dynamics Cryogenic Tank Technology Program (CTTP).

  16. Aft segment dome-to-stiffener factory joint insulation void elimination

    NASA Technical Reports Server (NTRS)

    Jensen, S. K.

    1991-01-01

    Since the detection of voids in the internal insulation of the dome-to-stiffener factory joint of the 15B aft segment, all aft segment dome-to-stiffener factory joints were x-rated and all were found to contain voids. Using a full-scale process simulation article (PSA), the objective was to demonstrate that the proposed changes in the insulation layup and vacuum bagging processes will greatly reduce or eliminate voids without adversely affecting the configuration of performance of the insulation which serves as a primary seal over the factory joint. The PSA-8 aft segment was insulated and cured using standard production processes.

  17. Exploring Learning through Audience Interaction in Virtual Reality Dome Theaters

    NASA Astrophysics Data System (ADS)

    Apostolellis, Panagiotis; Daradoumis, Thanasis

    Informal learning in public spaces like museums, science centers and planetariums is increasingly popular during the last years. Recent advancements in large-scale displays allowed contemporary technology-enhanced museums to get equipped with digital domes, some with real-time capabilities like Virtual Reality systems. By conducting extensive literature review we have come to the conclusion that little to no research has been carried out on the leaning outcomes that the combination of VR and audience interaction can provide in the immersive environments of dome theaters. Thus, we propose that audience collaboration in immersive virtual reality environments presents a promising approach to support effective learning in groups of school aged children.

  18. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant

  19. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant

  20. Earth Observations taken by the Expedition 22 Crew

    NASA Image and Video Library

    2010-01-31

    ISS022-E-058538 (31 Jan. 2010) --- Sir Bani Yas Island is featured in this image photographed by an Expedition 22 crew member on the International Space Station. Sir Bani Yas Island is located in the Persian Gulf near the western coastline of the United Arab Emirates (UAE). The approximately 14-kilometers x nine-kilometers island is the surface expression of a salt dome, and is one of several such islands in the Persian Gulf. During past periods of alternating wet and dry climate, sometimes involving areas with high rates of evaporation in enclosed basins, thick layers of salt minerals (such as halite ? common table salt, or gypsum ? a major component of wallboard) were deposited. These layers were subsequently buried by sediments; with enough overlaying material and depth of burial, the salt layers can begin to flow. Salt has lower density than the surrounding rock and it tends to flow upwards, pushing up the overlaying layers of rock to form a salt dome. While many salt domes retain a cap of the youngest rock layers at the surface, in some cases the underlaying salt extrudes onto the surface. This photograph illustrates the varying character of surfaces on the island. The central mountains of Jebel Wahid (center) mark the location of the Sir Bani Yas salt dome. The dome has breached the surface but exposed salt - primarily gypsum - is removed by erosion, leaving a rugged, insoluble cap formed from fragments of the overlaying sedimentary and volcanic rocks. Sand and silt derived from the Jebel Wahid area and surrounding gravel cover forms beaches along the outer edge of the island.

  1. Heterotopic Prostate at Autopsy- An Unusual Mass at the Dome of the Urinary Bladder.

    PubMed

    Munde, Shital; Fernandes, Gwendolyn; Phadnis, Priyanka

    2017-09-01

    Heterotopic prostate in the dome of the urinary bladder is extremely rare and difficult to diagnose. It is often mistaken for neoplastic masses and histopathological examination is warranted for diagnosis. We report an autopsy case of an ectopic prostate at the dome of the bladder which mimicked a neoplasm on gross pathology.

  2. Where is the Best Site on Earth? Domes A, B, C, and F, and Ridges A and B

    NASA Technical Reports Server (NTRS)

    Suanders, Will; Lawrence, Jon S.; Storey, John W. V.; Ashley, Michael C. B.; Kato, Seiji; Minnis, Patrick; Winker, David M.; Liu, Guiping; Kulesa, Craig

    2009-01-01

    The Antarctic plateau contains the best sites on earth for many forms of astronomy, but none of the existing bases were selected with astronomy as the primary motivation. In this paper, we try to systematically compare the merits of potential observatory sites. We include South Pole, Domes A, C and F, and also Ridge B (running NE from Dome A), and what we call Ridge A (running SW from Dome A). Our analysis combines satellite data, published results and atmospheric models, to compare the boundary layer, weather, free atmosphere, sky brightness, pecipitable water vapour, and surface temperature at each site. We find that all Antarctic sites are likely compromised for optical work by airglow and aurorae. Of the sites with existing bases, Dome A is the best overall; but we find that Ridge A offers an even better site. We also find that Dome F is a remarkably good site. Dome C is less good as a thermal infrared or terahertz site, but would be able to take advantage of a predicted OH hole over Antarctica during Spring.

  3. Radiation release at the nation's only operating deep geological repository--an independent monitoring perspective.

    PubMed

    Thakur, P; Ballard, S; Hardy, R

    2014-11-04

    Recent incidents at the nation's only operating deep geologic nuclear waste repository, the Waste Isolation Pilot Plant (WIPP), resulted in the release of americium and plutonium from one or more defense-related transuranic (TRU) waste containers into the environment. WIPP is a U.S. Department of Energy mined geologic repository that has been in operation since March, 1999. Over 85,000 m3 of waste in various vented payload containers have been emplaced in the repository. The primary radionuclides within the disposed waste are 239+240Pu and 241Am, which account for more than 99% of the total TRU radioactivity disposed and scheduled for disposal in the repository. For the first time in its 15 years of operation, there was an airborne radiation release from the WIPP at approximately 11:30 PM Mountain Standard Time (MST) on Friday, February 14, 2014. The radiation release was likely caused by a chemical reaction inside a TRU waste drum that contained nitrate salts and organic sorbent materials. In a recent news release, DOE announced that photos taken of the waste underground showed evidence of heat and gas pressure resulting in a deformed lid, in material expelled through that deformation, and in melted plastic and rubber and polyethylene in the vicinity of that drum. Recent entries into underground Panel 7 have confirmed that at least one waste drum containing a nitrate salt bearing waste stream from Los Alamos National Laboratory was breached underground and was the most likely source of the release. Further investigation is underway to determine if other containers contributed to the release. Air monitoring across the WIPP site intensified following the first reports of radiation detection underground to ascertain whether or not there were releases to the ground surface. Independent analytical results of air filters from sampling stations on and near the WIPP facility have been released by us at the Carlsbad Environmental Monitoring & Research Center and confirmed

  4. Catastrophic lava dome failure at Soufrière Hills Volcano, Montserrat, 12-13 July 2003

    USGS Publications Warehouse

    Herd, Richard A.; Edmonds, Marie; Bass, Venus A.

    2005-01-01

    The lava dome collapse of 12–13 July 2003 was the largest of the Soufrière Hills Volcano eruption thus far (1995–2005) and the largest recorded in historical times from any volcano; 210 million m3 of dome material collapsed over 18 h and formed large pyroclastic flows, which reached the sea. The evolution of the collapse can be interpreted with reference to the complex structure of the lava dome, which comprised discrete spines and shear lobes and an apron of talus. Progressive slumping of talus for 10 h at the beginning of the collapse generated low-volume pyroclastic flows. It undermined the massive part of the lava dome and eventually prompted catastrophic failure. From 02:00 to 04:40 13 July 2003 large pyroclastic flows were generated; these reached their largest magnitude at 03:35, when the volume flux of material lost from the lava dome probably approached 16 million m3 over two minutes. The high flux of pyroclastic flows into the sea caused a tsunami and a hydrovolcanic explosion with an associated pyroclastic surge, which flowed inland. A vulcanian explosion occurred during or immediately after the largest pyroclastic flows at 03:35 13 July and four further explosions occurred at progressively longer intervals during 13–15 July 2003. The dome collapse lasted approximately 18 h, but 170 of the total 210 million m3 was removed in only 2.6 h during the most intense stage of the collapse.

  5. The 2006 lava dome eruption of Merapi Volcano (Indonesia): Detailed analysis using MODIS TIR

    NASA Astrophysics Data System (ADS)

    Carr, Brett B.; Clarke, Amanda B.; Vanderkluysen, Loÿc

    2016-02-01

    Merapi is one of Indonesia's most active and dangerous volcanoes. Prior to the 2010 VEI 4 eruption, activity at Merapi during the 20th century was characterized by the growth and collapse of a series of lava domes. Periods of very slow growth were punctuated by short episodes of increased eruption rates characterized by dome collapse-generated pyroclastic density currents (PDCs). An eruptive event of this type occurred in May-June, 2006. For effusive eruptions such as this, detailed extrusion rate records are important for understanding the processes driving the eruption and the hazards presented by the eruption. We use thermal infrared (TIR) images from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on NASA's Aqua and Terra satellites to estimate extrusion rates at Merapi Volcano during the 2006 eruption using the method of Harris and Ripepe (2007). We compile a set of 75 nighttime MODIS images of the eruptive period to produce a detailed time series of thermal radiance and extrusion rate that reveal multiple phases of the 2006 eruption. These data closely correspond to the published ground-based observational record and improve observation density and detail during the eruption sequence. Furthermore, additional analysis of radiance values for thermal anomalies in Band 21 (λ = 3.959 μm) of MODIS images results in a new framework for detecting different styles of activity. We successfully discriminate among slow dome growth, rapid dome growth, and PDC-producing dome collapse. We also demonstrate a positive correlation between PDC frequency and extrusion rate, and provide evidence that extrusion rate can increase in response to external events such as dome collapses or tectonic earthquakes. This study represents a new method of documenting volcanic activity that can be applied to other similar volcanic systems.

  6. Heterotopic Prostate at Autopsy- An Unusual Mass at the Dome of the Urinary Bladder

    PubMed Central

    Munde, Shital; Phadnis, Priyanka

    2017-01-01

    Heterotopic prostate in the dome of the urinary bladder is extremely rare and difficult to diagnose. It is often mistaken for neoplastic masses and histopathological examination is warranted for diagnosis. We report an autopsy case of an ectopic prostate at the dome of the bladder which mimicked a neoplasm on gross pathology. PMID:29207717

  7. Calculation of Thermally-Induced Displacements in Spherically Domed Ion Engine Grids

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2006-01-01

    An analytical method for predicting the thermally-induced normal and tangential displacements of spherically domed ion optics grids under an axisymmetric thermal loading is presented. A fixed edge support that could be thermally expanded is used for this analysis. Equations for the displacements both normal and tangential to the surface of the spherical shell are derived. A simplified equation for the displacement at the center of the spherical dome is also derived. The effects of plate perforation on displacements and stresses are determined by modeling the perforated plate as an equivalent solid plate with modified, or effective, material properties. Analytical model results are compared to the results from a finite element model. For the solid shell, comparisons showed that the analytical model produces results that closely match the finite element model results. The simplified equation for the normal displacement of the spherical dome center is also found to accurately predict this displacement. For the perforated shells, the analytical solution and simplified equation produce accurate results for materials with low thermal expansion coefficients.

  8. Generic repository design concepts and thermal analysis (FY11).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howard, Robert; Dupont, Mark; Blink, James A.

    2011-08-01

    Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generatedmore » in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses

  9. Magmatic gas percolation through the old lava dome of El Misti volcano

    NASA Astrophysics Data System (ADS)

    Moussallam, Yves; Peters, Nial; Masias, Pablo; Apaza, Fredy; Barnie, Talfan; Ian Schipper, C.; Curtis, Aaron; Tamburello, Giancarlo; Aiuppa, Alessandro; Bani, Philipson; Giudice, Gaetano; Pieri, David; Davies, Ashley Gerard; Oppenheimer, Clive

    2017-06-01

    The proximity of the major city of Arequipa to El Misti has focused attention on the hazards posed by the active volcano. Since its last major eruption in the fifteenth century, El Misti has experienced a series of modest phreatic eruptions and fluctuating fumarolic activity. Here, we present the first measurements of the compositions of gas emitted from the lava dome in the summit crater. The gas composition is found to be fairly dry with a H2O/SO2 molar ratio of 32 ± 3, a CO2/SO2 molar ratio of 2.7 ± 0.2, a H2S/SO2 molar ratio of 0.23 ± 0.02 and a H2/SO2 molar ratio of 0.012 ± 0.002. This magmatic gas signature with minimal evidence of hydrothermal or wall rock interaction points to a shallow magma source that is efficiently outgassing through a permeable conduit and lava dome. Field and satellite observations show no evolution of the lava dome over the last decade, indicating sustained outgassing through an established fracture network. This stability could be disrupted if dome permeability were to be reduced by annealing or occlusion of outgassing pathways. Continued monitoring of gas composition and flux at El Misti will be essential to determine the evolution of hazard potential at this dangerous volcano.

  10. Phytoplankton production and taxon-specific growth rates in the Costa Rica Dome

    PubMed Central

    Selph, Karen E.; Landry, Michael R.; Taylor, Andrew G.; Gutiérrez-Rodríguez, Andrés; Stukel, Michael R.; Wokuluk, John; Pasulka, Alexis

    2016-01-01

    During summer 2010, we investigated phytoplankton production and growth rates at 19 stations in the eastern tropical Pacific, where winds and strong opposing currents generate the Costa Rica Dome (CRD), an open-ocean upwelling feature. Primary production (14C-incorporation) and group-specific growth and net growth rates (two-treatment seawater dilution method) were estimated from samples incubated in situ at eight depths. Our cruise coincided with a mild El Niño event, and only weak upwelling was observed in the CRD. Nevertheless, the highest phytoplankton abundances were found near the dome center. However, mixed-layer growth rates were lowest in the dome center (∼0.5–0.9 day−1), but higher on the edge of the dome (∼0.9–1.0 day−1) and in adjacent coastal waters (0.9–1.3 day−1). We found good agreement between independent methods to estimate growth rates. Mixed-layer growth rates of Prochlorococcus and Synechococcus were largely balanced by mortality, whereas eukaryotic phytoplankton showed positive net growth (∼0.5–0.6 day−1), that is, growth available to support larger (mesozooplankton) consumer biomass. These are the first group-specific phytoplankton rate estimates in this region, and they demonstrate that integrated primary production is high, exceeding 1 g C m−2 day−1 on average, even during a period of reduced upwelling. PMID:27275025

  11. Phytoplankton production and taxon-specific growth rates in the Costa Rica Dome.

    PubMed

    Selph, Karen E; Landry, Michael R; Taylor, Andrew G; Gutiérrez-Rodríguez, Andrés; Stukel, Michael R; Wokuluk, John; Pasulka, Alexis

    2016-03-01

    During summer 2010, we investigated phytoplankton production and growth rates at 19 stations in the eastern tropical Pacific, where winds and strong opposing currents generate the Costa Rica Dome (CRD), an open-ocean upwelling feature. Primary production ( 14 C-incorporation) and group-specific growth and net growth rates (two-treatment seawater dilution method) were estimated from samples incubated in situ at eight depths. Our cruise coincided with a mild El Niño event, and only weak upwelling was observed in the CRD. Nevertheless, the highest phytoplankton abundances were found near the dome center. However, mixed-layer growth rates were lowest in the dome center (∼0.5-0.9 day -1 ), but higher on the edge of the dome (∼0.9-1.0 day -1 ) and in adjacent coastal waters (0.9-1.3 day -1 ). We found good agreement between independent methods to estimate growth rates. Mixed-layer growth rates of Prochlorococcus and Synechococcus were largely balanced by mortality, whereas eukaryotic phytoplankton showed positive net growth (∼0.5-0.6 day -1 ), that is, growth available to support larger (mesozooplankton) consumer biomass. These are the first group-specific phytoplankton rate estimates in this region, and they demonstrate that integrated primary production is high, exceeding 1 g C m -2 day -1 on average, even during a period of reduced upwelling.

  12. Desiderata for healthcare integrated data repositories based on architectural comparison of three public repositories.

    PubMed

    Huser, Vojtech; Cimino, James J

    2013-01-01

    Integrated data repositories (IDRs) are indispensable tools for numerous biomedical research studies. We compare three large IDRs (Informatics for Integrating Biology and the Bedside (i2b2), HMO Research Network's Virtual Data Warehouse (VDW) and Observational Medical Outcomes Partnership (OMOP) repository) in order to identify common architectural features that enable efficient storage and organization of large amounts of clinical data. We define three high-level classes of underlying data storage models and we analyze each repository using this classification. We look at how a set of sample facts is represented in each repository and conclude with a list of desiderata for IDRs that deal with the information storage model, terminology model, data integration and value-sets management.

  13. The tectono-thermal evolution of the Waterbury dome, western Connecticut, based on U-Pb and 40Ar/39Ar ages

    USGS Publications Warehouse

    Dietsch, Craig; Kunk, Michael J.; Aleinikoff, John; Sutter, John F.

    2010-01-01

    Level 3 nappes were emplaced over the Waterbury dome along an Acadian décollement synchronous with the formation of a D3 thrust duplex in the dome. The décollement truncates the Ky + Kfs-in (migmatite) isograd in the dome core and a St-in isograd in level 3 nappes, indicating that peak metamorphic conditions in the dome core and nappe cover rocks formed in different places at different times. Metamorphic overgrowths on zircon from the felsic orthogneiss in the Waterbury dome have an age of 387 ± 5 Ma. Rocks of all levels and the décollement are folded by D4 folds that have a strongly developed, regional crenulation cleavage and D5 folds. The Waterbury dome was formed by thrust duplexing followed by fold interference during the Acadian orogeny. The 40Ar/39Ar ages of amphibole, muscovite, biotite, and K-feldspar from above and below the décollement are ca. 378 Ma, 355 Ma, 360 Ma (above) and 340 (below), and 288 Ma, respectively. Any kilometer-scale vertical movements between dome and nappe rocks were over by ca. 378 Ma. Core and cover rocks of the Waterbury dome record synchronous, post-Acadian cooling.

  14. On the Dome Effect of Flux Radiometers to Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Tsay, S.-C.; Ji, Q.

    1999-01-01

    Since the introduction of thermopile, pyranometers (solar, e.g., 0.3-3.0 micrometers) and pyrgeometers (terrestrial, e.g., 4-50 micrometers) have become instruments commonly used for measuring the broadband hemispherical irradiances at the surface in a long-term, monitoring mode for decades. These commercially available radiometers have been manufactured in several countries such as from the United States, Asia, and Europe, and are generally reliable and economical. These worldwide distributions of surface measurements become even more important in the era of Earth remote sensing in studying climate forcing. However, recent studies from field campaigns have pointed out that erroneous factors (e.g., temperature gradients between the filter dome and detector, emissivity of the thermopile) are responsible for the unacceptable level of uncertainty (e.g., 10-20 W m (exp -2)). Using a newly developed instrument of Quantum Well Infrared Photodetector (QWIP), we have characterized the brightness temperature fields of pyranometers and pyrgeometers under various sky conditions. The QWIP is based on the superlattice (GaAs/AlGaAs) technology and has a noise equivalent temperature (NE delta T) less than 0.1 K. The quality of pyranometer and pyrgeometer measurements can be improved largely by applying proper knowledge of the thermal parameters affecting the operation of the thermopile systems. For example, we show a method to determine the "dome factor" (the longwave emission divided by the longwave transmission of a pyrgeometer dome) from field measurements. The results show, and are verified independently by the QWIP, that our dome factors of 0.59 and 0.90 are much smaller than the value of 4.0 assumed by the WMO (World Meteorological Organization). Data correction procedure and algorithm will be presented and discussed.

  15. Dual Innervation of Neonatal Merkel Cells in Mouse Touch Domes

    PubMed Central

    Luo, Wenqin

    2014-01-01

    Merkel cell-neurite complexes are specialized mechanosensory end organs that mediate discriminative touch sensation. It is well established that type I slowly adapting (SAI) mechanoreceptors, which express neural filament heavy chain (NFH), innervate Merkel cells. It was previously shown that neurotrophic factor NT3 and its receptor TrkC play crucial roles in controlling touch dome Merkel cell innervation of NFH+ fibers. In addition, nerve fibers expressing another neurotrophic tyrosine receptor kinase (NTRK), Ret, innervate touch dome Merkel cells as well. However, the relationship between afferents responsive to NT3/TrkC signaling and those expressing Ret is unclear. It is also controversial if these Ret+ fibers belong to the early or late Ret+ DRG neurons, which are defined based on the co-expression and developmental dependence of TrkA. To address these questions, we genetically traced Ret+ and TrkC+ fibers and analyzed their developmental dependence on TrkA. We found that Merkel cells in neonatal mouse touch domes receive innervation of two types of fibers: one group is Ret+, while the other subset expresses TrkC and NFH. In addition, Ret+ fibers depend on TrkA for their survival and normal innervation whereas NFH+ Merkel cell innervating fibers are almost unaltered in TrkA mutant mice, supporting that Ret+ and NFH+/TrkC+ afferents are two distinct groups. Ret signaling, on the other hand, plays a minor role for the innervation of neonatal touch domes. In contrast, Merkel cells in the glabrous skin are mainly contacted by NFH+/TrkC+ afferents. Taken together, our results suggest that neonatal Merkel cells around hair follicles receive dual innervation while Merkel cells in the glabrous skin are mainly innervated by only SAI mechanoreceptors. In addition, our results suggest that neonatal Ret+ Merkel cell innervating fibers most likely belong to the late but not early Ret+ DRG neurons. PMID:24637732

  16. Influence of extrusion rate and magma rheology on the growth of lava domes: Insights from particle-dynamics modeling

    NASA Astrophysics Data System (ADS)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2014-09-01

    Lava domes are structures that grow by the extrusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Repeated cycles of growth are punctuated by collapse, as the structure becomes oversized for the strength of the composite magma that rheologically stiffens and strengthens at its surface. Here we explore lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional carapace that caps a ductile magma core. Extrusion rate and magma rheology together with crystallization temperature and volatile content govern the distribution of strength in the composite structure. This new model is calibrated against existing observational models of lava dome growth. Results show that the shape and extent of the ductile core and the overall structure of the lava dome are strongly controlled by the infusion rate. The effects of extrusion rate on magma rheology are sensitive to material stiffness, which in turn is a function of volatile content and crystallinity. Material stiffness and material strength are key model parameters which govern magma rheology and subsequently the morphological character of the lava dome and in turn stability. Degassing induced crystallization causes material stiffening and enhances material strength reflected in non-Newtonian magma behavior. The increase in stiffness and strength of the injected magma causes a transition in the style of dome growth, from endogenous expansion of a ductile core, to stiffer and stronger intruding material capable of punching through the overlying material and resulting in the development of a spine or

  17. Flexure and faulting of sedimentary host rocks during growth of igneous domes, Henry Mountains, Utah

    USGS Publications Warehouse

    Jackson, M.D.; Pollard, D.D.

    1990-01-01

    A sequence of sedimentary rocks about 4 km thick was bent, stretched and uplifted during the growth of three igneous domes in the southern Henry Mountains. Mount Holmes, Mount Ellsworth and Mount Hillers are all about 12 km in diameter, but the amplitudes of their domes are about 1.2, 1.85 and 3.0 km, respectively. These mountains record successive stages in the inflation of near-surface diorite intrusions that are probably laccolithic in origin. The host rocks deformed along networks of outcrop-scale faults, or deformation bands, marked by crushed grains, consolidation of the porous sandstone and small displacements of sedimentary beds. Zones of deformation bands oriented parallel to the beds and formation contacts subdivided the overburden into thin mechanical layers that slipped over one another during doming. Measurements of outcrop-scale fault populations at the three mountains reveal a network of faults that strikes at high angles to sedimentary beds which themselves strike tangentially about the domes. These faults have normal and reverse components of slip that accommodated bending and stretching strains within the strata. An early stage of this deformation is displayed at Mount Holmes, where states of stress computed from three fault samples correlate with the theoretical distribution of stresses resulting from bending of thin, circular, elastic plates. Field observations and analysis of frictional driving stresses acting on horizontal planes above an opening-mode dislocation, as well as the paleostress analysis of faulting, indicate that bedding-plane slip and layer flexure were important components of the early deformation. As the amplitude of doming increased, radial and circumferential stretching of the strata and rotation of the older faults in the steepening limbs of the domes increased the complexity of the fault patterns. Steeply-dipping, map-scale faults with dip-slip displacements indicate a late-stage jostling of major blocks over the central

  18. 48 CFR 227.7207 - Contractor data repositories.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Computer Software and Computer Software Documentation 227.7207 Contractor data repositories. Follow 227.7108 when it is in the Government's interests to have a data repository include computer software or to have a separate computer software repository. Contractual instruments establishing the repository...

  19. 48 CFR 227.7207 - Contractor data repositories.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Computer Software and Computer Software Documentation 227.7207 Contractor data repositories. Follow 227.7108 when it is in the Government's interests to have a data repository include computer software or to have a separate computer software repository. Contractual instruments establishing the repository...

  20. 48 CFR 227.7207 - Contractor data repositories.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Computer Software and Computer Software Documentation 227.7207 Contractor data repositories. Follow 227.7108 when it is in the Government's interests to have a data repository include computer software or to have a separate computer software repository. Contractual instruments establishing the repository...

  1. 48 CFR 227.7207 - Contractor data repositories.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Computer Software and Computer Software Documentation 227.7207 Contractor data repositories. Follow 227.7108 when it is in the Government's interests to have a data repository include computer software or to have a separate computer software repository. Contractual instruments establishing the repository...

  2. PHOTOMETRY OF VARIABLE STARS FROM DOME A, ANTARCTICA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Lingzhi; Macri, Lucas M.; Krisciunas, Kevin

    Dome A on the Antarctic plateau is likely one of the best observing sites on Earth thanks to the excellent atmospheric conditions present at the site during the long polar winter night. We present high-cadence time-series aperture photometry of 10,000 stars with i < 14.5 mag located in a 23 deg{sup 2} region centered on the south celestial pole. The photometry was obtained with one of the CSTAR telescopes during 128 days of the 2008 Antarctic winter. We used this photometric data set to derive site statistics for Dome A and to search for variable stars. Thanks to the nearlymore » uninterrupted synoptic coverage, we found six times as many variables as previous surveys with similar magnitude limits. We detected 157 variable stars, of which 55% were unclassified, 27% were likely binaries, and 17% were likely pulsating stars. The latter category includes {delta} Scuti, {gamma} Doradus, and RR Lyrae variables. One variable may be a transiting exoplanet.« less

  3. Petrogensis of rhyolitic domes of Dastjerd (SE Qom)

    NASA Astrophysics Data System (ADS)

    Askari, Nasim; Kheirkhah, Monireh; Hashem Emami, Mohamad

    2010-05-01

    The study area is located in South Eastern Qom; this area is marginal part of SW Central Iran, located in Urumieh- Dokhtar magmatic belt. Rhyolitic domes (Post Eocene) as endogenous (crypto dome) are along Meyem slip-fault, that this fault probably is effective in emplacement and magma ascent. The ryholitic rocks contain some phenocrysts of garnets, plagioclases and biotits. The groundmasses are consisting of plagioclase, K-feldspar and quartz. Rhyolitic rocks have calc alkaline trends and base on chemical composition of rhyolite rocks and mica bearing. The source of magma is S-type and per aluminums which belongs to collision environment. It is suggested the role of continental crust in generation rhyolitic rocks. Because of the garnet area is an early crystallizing phase and is only confined to rhyolite, it is inferred that the garnet did not crystallize in more basic magmas and that the rhyolite could not have been derived from a basic magma by crystal fractionation. Keywords: Rhyolitic, slip-fault, collision, S-type, endogenous

  4. Structure-based membrane dome mechanism for Piezo mechanosensitivity.

    PubMed

    Guo, Yusong R; MacKinnon, Roderick

    2017-12-12

    Mechanosensitive ion channels convert external mechanical stimuli into electrochemical signals for critical processes including touch sensation, balance, and cardiovascular regulation. The best understood mechanosensitive channel, MscL, opens a wide pore, which accounts for mechanosensitive gating due to in-plane area expansion. Eukaryotic Piezo channels have a narrow pore and therefore must capture mechanical forces to control gating in another way. We present a cryo-EM structure of mouse Piezo1 in a closed conformation at 3.7Å-resolution. The channel is a triskelion with arms consisting of repeated arrays of 4-TM structural units surrounding a pore. Its shape deforms the membrane locally into a dome. We present a hypothesis in which the membrane deformation changes upon channel opening. Quantitatively, membrane tension will alter gating energetics in proportion to the change in projected area under the dome. This mechanism can account for highly sensitive mechanical gating in the setting of a narrow, cation-selective pore. © 2017, Guo et al.

  5. Structure-based membrane dome mechanism for Piezo mechanosensitivity

    PubMed Central

    Guo, Yusong R

    2017-01-01

    Mechanosensitive ion channels convert external mechanical stimuli into electrochemical signals for critical processes including touch sensation, balance, and cardiovascular regulation. The best understood mechanosensitive channel, MscL, opens a wide pore, which accounts for mechanosensitive gating due to in-plane area expansion. Eukaryotic Piezo channels have a narrow pore and therefore must capture mechanical forces to control gating in another way. We present a cryo-EM structure of mouse Piezo1 in a closed conformation at 3.7Å-resolution. The channel is a triskelion with arms consisting of repeated arrays of 4-TM structural units surrounding a pore. Its shape deforms the membrane locally into a dome. We present a hypothesis in which the membrane deformation changes upon channel opening. Quantitatively, membrane tension will alter gating energetics in proportion to the change in projected area under the dome. This mechanism can account for highly sensitive mechanical gating in the setting of a narrow, cation-selective pore. PMID:29231809

  6. A Cascade of Wnt, Eda, and Shh Signaling Is Essential for Touch Dome Merkel Cell Development.

    PubMed

    Xiao, Ying; Thoresen, Daniel T; Miao, Lingling; Williams, Jonathan S; Wang, Chaochen; Atit, Radhika P; Wong, Sunny Y; Brownell, Isaac

    2016-07-01

    The Sonic hedgehog (Shh) signaling pathway regulates developmental, homeostatic, and repair processes throughout the body. In the skin, touch domes develop in tandem with primary hair follicles and contain sensory Merkel cells. The developmental signaling requirements for touch dome specification are largely unknown. We found dermal Wnt signaling and subsequent epidermal Eda/Edar signaling promoted Merkel cell morphogenesis by inducing Shh expression in early follicles. Lineage-specific gene deletions revealed intraepithelial Shh signaling was necessary for Merkel cell specification. Additionally, a Shh signaling agonist was sufficient to rescue Merkel cell differentiation in Edar-deficient skin. Moreover, Merkel cells formed in Fgf20 mutant skin where primary hair formation was defective but Shh production was preserved. Although developmentally associated with hair follicles, fate mapping demonstrated Merkel cells primarily originated outside the hair follicle lineage. These findings suggest that touch dome development requires Wnt-dependent mesenchymal signals to establish reciprocal signaling within the developing ectoderm, including Eda signaling to primary hair placodes and ultimately Shh signaling from primary follicles to extrafollicular Merkel cell progenitors. Shh signaling often demonstrates pleiotropic effects within a structure over time. In postnatal skin, Shh is known to regulate the self-renewal, but not the differentiation, of touch dome stem cells. Our findings relate the varied effects of Shh in the touch dome to the ligand source, with locally produced Shh acting as a morphogen essential for lineage specification during development and neural Shh regulating postnatal touch dome stem cell maintenance.

  7. Winter sky brightness and cloud cover at Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Moore, Anna M.; Yang, Yi; Fu, Jianning; Ashley, Michael C. B.; Cui, Xiangqun; Feng, Long Long; Gong, Xuefei; Hu, Zhongwen; Lawrence, Jon S.; Luong-Van, Daniel M.; Riddle, Reed; Shang, Zhaohui; Sims, Geoff; Storey, John W. V.; Tothill, Nicholas F. H.; Travouillon, Tony; Wang, Lifan; Yang, Huigen; Yang, Ji; Zhou, Xu; Zhu, Zhenxi

    2013-01-01

    At the summit of the Antarctic plateau, Dome A offers an intriguing location for future large scale optical astronomical observatories. The Gattini Dome A project was created to measure the optical sky brightness and large area cloud cover of the winter-time sky above this high altitude Antarctic site. The wide field camera and multi-filter system was installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in January 2008. This automated wide field camera consists of an Apogee U4000 interline CCD coupled to a Nikon fisheye lens enclosed in a heated container with glass window. The system contains a filter mechanism providing a suite of standard astronomical photometric filters (Bessell B, V, R) and a long-pass red filter for the detection and monitoring of airglow emission. The system operated continuously throughout the 2009, and 2011 winter seasons and part-way through the 2010 season, recording long exposure images sequentially for each filter. We have in hand one complete winter-time dataset (2009) returned via a manned traverse. We present here the first measurements of sky brightness in the photometric V band, cloud cover statistics measured so far and an estimate of the extinction.

  8. Thermal photogrammetric imaging: A new technique for monitoring dome eruptions

    NASA Astrophysics Data System (ADS)

    Thiele, Samuel T.; Varley, Nick; James, Mike R.

    2017-05-01

    Structure-from-motion (SfM) algorithms greatly facilitate the generation of 3-D topographic models from photographs and can form a valuable component of hazard monitoring at active volcanic domes. However, model generation from visible imagery can be prevented due to poor lighting conditions or surface obscuration by degassing. Here, we show that thermal images can be used in a SfM workflow to mitigate these issues and provide more continuous time-series data than visible-light equivalents. We demonstrate our methodology by producing georeferenced photogrammetric models from 30 near-monthly overflights of the lava dome that formed at Volcán de Colima (Mexico) between 2013 and 2015. Comparison of thermal models with equivalents generated from visible-light photographs from a consumer digital single lens reflex (DSLR) camera suggests that, despite being less detailed than their DSLR counterparts, the thermal models are more than adequate reconstructions of dome geometry, giving volume estimates within 10% of those derived using the DSLR. Significantly, we were able to construct thermal models in situations where degassing and poor lighting prevented the construction of models from DSLR imagery, providing substantially better data continuity than would have otherwise been possible. We conclude that thermal photogrammetry provides a useful new tool for monitoring effusive volcanic activity and assessing associated volcanic risks.

  9. 48 CFR 227.7108 - Contractor data repositories.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Technical Data 227.7108 Contractor data repositories. (a) Contractor data repositories may be established... procedures for protecting technical data delivered to or stored at the repository from unauthorized release... disclosure of technical data from the repository to third parties consistent with the Government's rights in...

  10. Desiderata for Healthcare Integrated Data Repositories Based on Architectural Comparison of Three Public Repositories

    PubMed Central

    Huser, Vojtech; Cimino, James J.

    2013-01-01

    Integrated data repositories (IDRs) are indispensable tools for numerous biomedical research studies. We compare three large IDRs (Informatics for Integrating Biology and the Bedside (i2b2), HMO Research Network’s Virtual Data Warehouse (VDW) and Observational Medical Outcomes Partnership (OMOP) repository) in order to identify common architectural features that enable efficient storage and organization of large amounts of clinical data. We define three high-level classes of underlying data storage models and we analyze each repository using this classification. We look at how a set of sample facts is represented in each repository and conclude with a list of desiderata for IDRs that deal with the information storage model, terminology model, data integration and value-sets management. PMID:24551366

  11. Origins of Central Pits and Domes on Ceres: Dawn Mapping Constraints and Ganymede Comparisons

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Hiesinger, H.; Platz, T.; Bowling, T.; Schmidt, B.; Sizemore, H.

    2017-09-01

    The bright faculae (spots) on Ceres are the most provocative features on this small planetary body and in Occator crater are associated with a prominent fractured dome and pit complex. This feature is analogous to those observed on large icy moon Ganymede and is potentially related to hydrothermal venting of carbonate-rich fluids followed by doming of the pit floor.

  12. Preliminary investigation of gold mineralization in the Pedro Dome-Cleary Summit area, Fairbanks district, Alaska

    USGS Publications Warehouse

    Pilkington, H.D.; Forbes, R.B.; Hawkins, D.B.; Chapman, R.M.; Swainbank, R.C.

    1969-01-01

    Anomalous gold values in mineralized veins and hydrothermally altered quartz-mica schist in the Pedro Dome-Cleary Summit area of the Fairbanks district suggest the presence of numerous small low- to high-grade lodes. Anomalous concentrations of gold were found to exist in the wall rocks adjacent to mineralized veins. In general, the gold concentration gradients in these wall rocks are much too steep to increase appreciably the mineable width of the veins. Anomalous gold values were also detected in bedrock samples taken by means of a power auger on the Murphy Dome Road along the southwest extension of the Pedro Dome-Cleary Summit mineralized belt.

  13. Linking Seismicity at Depth to the Mechanics of a Lava Dome Failure - a Forecasting Approach

    NASA Astrophysics Data System (ADS)

    Salvage, R. O.; Neuberg, J. W.; Murphy, W.

    2014-12-01

    Soufriere Hills volcano (SHV), Montserrat has been in a state of ongoing unrest since 1995. Prior to eruptions, an increase in the number of seismic events has been observed. We use the Material Failure Law (MFL) (Voight, 1988) to investigate how an accelerating number of low frequency seismic events are related to the timing of a large scale dome collapse in June 1997. We show that although the forecasted timing of a dome collapse may coincide with the known timing, the accuracy of the application of the MFL to the data is poor. Using a cross correlation technique we show how characterising seismicity into similar waveform "families'' allows us to focus on a single process at depth and improve the reliability of our forecast. A number of families are investigated to assess their relative importance. We show that despite the timing of a forecasted dome collapse ranging between several hours of the known timing of collapse, each of the families produces a better forecast in terms of fit to the seismic acceleration data than when using all low frequency seismicity. In addition, we investigate the stability of such families between major dome collapses (1997 and 2003), assessing their potential for use in real-time forecasting. Initial application of Grey's Incidence Analysis suggests that a key parameter influencing the potential for a large scale slumping on the dome of SHV is the rate of low frequency seismicity associated with magma movement and dome growth. We undertook numerical modelling of an andesitic dome with a hydrothermally altered layer down to 800m. The geometry of the dome is based on SHV prior to the collapse of 2003. We show that a critical instability is reached once slope angles exceed 25°, corresponding to a summit height of just over 1100m a.s.l.. The geometry of failure is in close agreement with the identified failure plane suggesting that the input mechanical properties are broadly consistent with reality. We are therefore able to compare

  14. Influence analysis of Github repositories.

    PubMed

    Hu, Yan; Zhang, Jun; Bai, Xiaomei; Yu, Shuo; Yang, Zhuo

    2016-01-01

    With the support of cloud computing techniques, social coding platforms have changed the style of software development. Github is now the most popular social coding platform and project hosting service. Software developers of various levels keep entering Github, and use Github to save their public and private software projects. The large amounts of software developers and software repositories on Github are posing new challenges to the world of software engineering. This paper tries to tackle one of the important problems: analyzing the importance and influence of Github repositories. We proposed a HITS based influence analysis on graphs that represent the star relationship between Github users and repositories. A weighted version of HITS is applied to the overall star graph, and generates a different set of top influential repositories other than the results from standard version of HITS algorithm. We also conduct the influential analysis on per-month star graph, and study the monthly influence ranking of top repositories.

  15. Biological Web Service Repositories Review

    PubMed Central

    Urdidiales‐Nieto, David; Navas‐Delgado, Ismael

    2016-01-01

    Abstract Web services play a key role in bioinformatics enabling the integration of database access and analysis of algorithms. However, Web service repositories do not usually publish information on the changes made to their registered Web services. Dynamism is directly related to the changes in the repositories (services registered or unregistered) and at service level (annotation changes). Thus, users, software clients or workflow based approaches lack enough relevant information to decide when they should review or re‐execute a Web service or workflow to get updated or improved results. The dynamism of the repository could be a measure for workflow developers to re‐check service availability and annotation changes in the services of interest to them. This paper presents a review on the most well‐known Web service repositories in the life sciences including an analysis of their dynamism. Freshness is introduced in this paper, and has been used as the measure for the dynamism of these repositories. PMID:27783459

  16. Ice crystal precipitation at Dome C site (East Antarctica)

    NASA Astrophysics Data System (ADS)

    Santachiara, G.; Belosi, F.; Prodi, F.

    2016-01-01

    For the first time, falling ice crystals were collected on glass slides covered with a thin layer of 2% formvar in chloroform at the Dome Concordia site (Dome C), Antarctica. Samplings were performed in the framework of the 27th Italian Antarctica expedition of the Italian National Program for Research in Antarctica in the period 21 February-6 August 2012. Events of clear-sky precipitations and precipitations from clouds were considered and the replicas obtained were examined under Scanning Electron Microscope (SEM). Several shapes of ice crystals were identified, including ;diamond dust; (plates, pyramids, hollow and solid columns), and crystal aggregates varying in complexity. Single events often contained both small (10 μm to 50 μm) and large (hundreds of microns) crystals, suggesting that crystals can form simultaneously near the ground (height of a few hundred metres) and at higher layers (height of thousands of metres). Images of sampled crystal replicas showed that single bullets are not produced separately, but by the disintegration of combinations of bullets. Rimed ice crystals were absent in the Dome C samples, i.e. the only mode of crystal growth was water vapour diffusion. On considering the aerosol in the sampled crystals, we reached the conclusion that inertial impaction, interception and Brownian motion were insufficient to explain the scavenged aerosol. We therefore presume that phoretic forces play a role in scavenging during the crystal growth process.

  17. Winter sky brightness & cloud cover over Dome A

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Moore, A. M.; Fu, J.; Ashley, M.; Cui, X.; Feng, L.; Gong, X.; Hu, Z.; Laurence, J.; LuongVan, D.; Riddle, R. L.; Shang, Z.; Sims, G.; Storey, J.; Tothill, N.; Travouillon, T.; Wang, L.; Yang, H.; Yang, J.; Zhou, X.; Zhu, Z.; Burton, M. G.

    2014-01-01

    At the summit of the Antarctic plateau, Dome A offers an intriguing location for future large scale optical astronomical Observatories. The Gattini DomeA project was created to measure the optical sky brightness and large area cloud cover of the winter-time sky above this high altitude Antarctic site. The wide field camera and multi-filter system was installed on the PLATO instrument module as part of the Chinese-led traverse to Dome A in January 2008. This automated wide field camera consists of an Apogee U4000 interline CCD coupled to a Nikon fish-eye lens enclosed in a heated container with glass window. The system contains a filter mechanism providing a suite of standard astronomical photometric filters (Bessell B, V, R), however, the absence of tracking systems, together with the ultra large field of view 85 degrees) and strong distortion have driven us to seek a unique way to build our data reduction pipeline. We present here the first measurements of sky brightness in the photometric B, V, and R band, cloud cover statistics measured during the 2009 winter season and an estimate of the transparency. In addition, we present example light curves for bright targets to emphasize the unprecedented observational window function available from this ground-based location. A ~0.2 magnitude agreement of our simultaneous test at Palomar Observatory with NSBM(National Sky Brightness Monitor), as well as an 0.04 magnitude photometric accuracy for typical 6th magnitude stars limited by the instrument design, indicating we obtained reasonable results based on our ~7mm effective aperture fish-eye lens.

  18. Chemical Vapor Deposition of Multispectral Domes

    DTIC Science & Technology

    1975-04-01

    optical testing, was also cut out as indicated in Figure 10. The image spoiling measureinents were performed at the Air Force Avionics Laboratory on...AD-A014 362 CHEMICAL VAPOR DEPOSITION OF MULTISPECTRAL DOMES B. A. diBenedetto, et al Raytheon Company Prepared for: Air Force Materials Laboratory...Approved for public release; distribution unlimited. ) F) .• •~~EP 7 ’+ i.i AIR FORCE MATERIALS LABORATORY AIR FORCE SYSTEMS COMMAND WRIGHT-PATrERSON AIR

  19. The unique radar scattering properties of silicic lava flows and domes

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.; Stofan, Ellen R.; Anderson, Steven W.; Crown, David A.

    1995-01-01

    Silicic (silica-rich) lava flows, such as rhyolite, rhyodacite, and dacite, possess unique physical properties primarily because of the relatively high viscosity of the molten lava. Silicic flows tend to be thicker than basaltic flows, and the resulting large-scale morphology is typically a steep-sided dome or flow lobe, with aspect ratios (height/length) sometimes approaching unity. The upper surfaces of silicic domes and flows are normally emplaced as relatively cool, brittle slabs that fracture as they are extruded from the central vent areas, and are then rafted away toward the flow margin as a brittle carapace above a more ductile interior layer. This mode of emplacement results in a surface with unique roughness characteristics, which can be well-characterized by multiparameter synthetic aperture radar (SAR) observations. In this paper, we examine the scattering properties of several silicic domes in the Inyo volcanic chain in the Eastern Sierra of California, using AIRSAR and TOPSAR data. Field measurements of intermediate-scale (cm to tens of m) surface topography and block size are used to assess the mechanisms of the scattering process, and to quantify the unique roughness characteristics of the flow surfaces.

  20. A Fourier transform spectrometer for site testing at Dome A

    NASA Astrophysics Data System (ADS)

    Li, Xin-Xing; Paine, Scott; Yao, Qi-Jun; Shi, Sheng-Cai; Matsuo, Hiroshi; Yang, Ji; Zhang, Qi-Zhou

    2009-07-01

    Observations in tera-hertz astronomy can only be done at a site with good atmospheric transmission at millimeter and submillimeter wavelengths. With extremely dry weather and calm atmosphere resulted by high altitude and cold temperature, Dome A (or Dome Argus), Antarctica, is possibly the best site on this earth for THz astronomy. To evaluate the site condition there, we are constructing a Fourier Transform Spectrometer (FTS) based on Martin-Puplett interferometer to measure the atmospheric transmission in the frequency range of 0.75~15THz. The whole FTS system is designed for unattended and outdoor (temperatures even below -70 degrees Celsius) operation. Its total power consumption is estimated to be approximately 200W. This contribution will give a brief overview of this FTS development.

  1. Mini-dome Fresnel lens photovoltaic concentrator development

    NASA Technical Reports Server (NTRS)

    Oneill, Mark J.; Piszczor, Michael F., Jr.

    1991-01-01

    Since 1986 work on a new high-performance, light-weight space photovoltaic concentration array has been conducted. An update on the mini-dome lens concentrator array development program is provided. Recent prototype cell and lens test results indicate that near-term array performance goals of 300 w/sq m and 100 w/kg are feasible, and that a longer-term goal of 200 w/kg is reasonable.

  2. Annually-resolved temperature reconstructions of the past 2000 years from Dome-Fuji, East Antarctica

    NASA Astrophysics Data System (ADS)

    Motizuki, Yuko; Takahashi, Kazuya; Nakai, Yoichi; Motoyama, Hideaki

    2016-04-01

    We present annually-resolved temperature and SST reconstructions of the past 2000 years based on water (oxygen and deuterium) isotope measurement on a shallow ice core drilled in 2010 at Dome Fuji station, East Antarctica. These time series records will be an essential contribution to the PAGES 2k project from sparse data area in Antarctica. Dome Fuji station is located on a summit of Dronning Maud Land at an altitude of 3810 m a.s.l. (above sea level) (77o19'01'' S, 39o42'12'' E) in East Antarctica. The 10 m depth mean snow temperature at Dome Fuji is -57.3oC1). The inland area around Dome Fuji has been recognized to be especially unique: The snow and ice there contain much stratospheric information. The direct evidence for this comes from tritium contents originated from the nuclear bomb tests in the 1960s; the tritium fallout at the Dome Fuji site is outstandingly high among 16 snow pit samples widely collected over Antarctica2). To date the concerned Dome Fuji ice core, we applied volcanic signature matching to transfer the West Antarctic Ice Sheet (WAIS) Divide ice core chronology constructed by annual layer counting as used in the study by Sigl et al. (2014)3). In our presentation, we confine ourselves to discuss the oscillation periodicity that we observed in the oxygen isotope record in our data: The periods of approximately 10, 20, and 200 years were found. We will present the time series analyses for this in detail, and will discuss the origin of this periodicity. References: 1) Kameda, T., Motoyama, H., Fujita, S., and Takahashi, S.: "Past temporal and spatial variability of surface mass balance at Dome Fuji", East Antarctica, by the stake method from 1995 to 2006, J. Glaciol., 54, 107-116, 2008. 2) Fourre, E., Jean-Baptiste, P., Dapoigny, A., Baumier, D., Petit, J.-R., and Jouzel, J.: "Past and recent tritium levels in Arctic and Antarctic polar caps", Earth Planet. Sc. Lett., 245, 56-64, 2006. 3) Sigl, M., J. McConnell, M. Toohey, M. Curran, S. Das, R

  3. Distraction Osteogenesis Maxillary Expansion (DOME) for Adult Obstructive Sleep Apnea Patients with High Arched Palate.

    PubMed

    Liu, Stanley Yung-Chuan; Guilleminault, Christian; Huon, Leh-Kiong; Yoon, Audrey

    2017-08-01

    A narrow maxilla with high arched palate characterizes a phenotype of obstructive sleep apnea (OSA) patients that is associated with increased nasal resistance and posterior tongue displacement. Current maxillary expansion techniques for adults are designed to correct dentofacial deformity. We describe distraction osteogenesis maxillary expansion (DOME) tailored to adult patients with OSA with narrow nasal floor and high arched palate without soft tissue redundancy. DOME is performed with placement of maxillary expanders secured by mini-implants along the midpalatal suture. This minimizes the maxillary osteotomies necessary to re-create sutural separation for reliable expansion at the nasal floor and palatal vault. We report the safety and efficacy profile of the first 20 patients at Stanford who underwent DOME.

  4. 30 CFR 250.1601 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... means a well drilled through cap rock into the core at a salt dome for the purpose of producing brine. Cap rock means the rock formation, a body of limestone, anhydride, and/or gypsum, overlying a salt dome. Sulphur deposit means a formation of rock that contains elemental sulphur. Sulphur production...

  5. 30 CFR 250.1601 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... means a well drilled through cap rock into the core at a salt dome for the purpose of producing brine. Cap rock means the rock formation, a body of limestone, anhydride, and/or gypsum, overlying a salt dome. Sulphur deposit means a formation of rock that contains elemental sulphur. Sulphur production...

  6. Biological Web Service Repositories Review.

    PubMed

    Urdidiales-Nieto, David; Navas-Delgado, Ismael; Aldana-Montes, José F

    2017-05-01

    Web services play a key role in bioinformatics enabling the integration of database access and analysis of algorithms. However, Web service repositories do not usually publish information on the changes made to their registered Web services. Dynamism is directly related to the changes in the repositories (services registered or unregistered) and at service level (annotation changes). Thus, users, software clients or workflow based approaches lack enough relevant information to decide when they should review or re-execute a Web service or workflow to get updated or improved results. The dynamism of the repository could be a measure for workflow developers to re-check service availability and annotation changes in the services of interest to them. This paper presents a review on the most well-known Web service repositories in the life sciences including an analysis of their dynamism. Freshness is introduced in this paper, and has been used as the measure for the dynamism of these repositories. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Geologic appraisal of Paradox basin salt deposits for water emplacement

    USGS Publications Warehouse

    Hite, Robert J.; Lohman, Stanley William

    1973-01-01

    process and that any waste-storage or disposal sites in these structures should remain dry for hundreds of thousands of years.Trace to commercial quantities of oil and gas are found in all of the black shale-dolomite-anhydrite interbeds of the Paradox Member. These hydrocarbons constitute a definite hazard in the construction and operation of underground waste-storage or disposal facilities. However, many individual halite beds are of. sufficient thickness that a protective seal of halite can be left between the openings and the gassy beds.A total of 12 different localities were considered to be potential waste-storage or disposal sites in the Paradox basin. Two Sharer dome and Salt Valley anticline, were considered to have the most favorable characteristics.

  8. Draw forming of scale shuttle external tank dome gores

    NASA Technical Reports Server (NTRS)

    Garfield, G.

    1974-01-01

    The process for manufacturing external tank dome gores is discussed. The test fixture and test procedure are described. The characteristics of the draw forming die are analyzed. The specific subjects included are: (1) forming, (2) trimming, (3) cleaning, and (4) heat treatment.

  9. Arthroscopic Talar Dome Access Using a Standard Versus Wire-Based Traction Method for Ankle Joint Distraction.

    PubMed

    Barg, Alexej; Saltzman, Charles L; Beals, Timothy C; Bachus, Kent N; Blankenhorn, Brad D; Nickisch, Florian

    2016-07-01

    To evaluate the accessibility of the talar dome through anterior and posterior portals for ankle arthroscopy with the standard noninvasive distraction versus wire-based longitudinal distraction using a tensioned wire placed transversely through the calcaneal tuberosity. Seven matched pairs of thigh-to-foot specimens underwent ankle arthroscopy with 1 of 2 methods of distraction: a standard noninvasive strapping technique or a calcaneal tuberosity wire-based technique. The order of the arthroscopic approach and use of a distraction method was randomly determined. The areas accessed from both 2-portal anterior and 2-portal posterior approaches were determined by using a molded translucent grid. The mean talar surface accessible by anterior ankle arthroscopy was comparable with noninvasive versus calcaneal wire distraction with 57.8% ± 17.2% (range, 32.9% to 75.7%) versus 61.5% ± 15.2% (range, 38.5% to 79.1%) of the talar dome, respectively (P = .590). The use of calcaneal wire distraction significantly improved posterior talar dome accessibility compared with noninvasive distraction, with 56.4% ± 20.0% (range, 14.4% to 78.0%) versus 39.8% ± 14.9% (range, 20.0% to 57.6%) of the talar dome, respectively (P = .031). Under the conditions studied, our cadaveric model showed equivalent talar dome access with 2-portal anterior arthroscopy of calcaneal wire-based distraction versus noninvasive strap distraction, but improved access for 2-portal posterior arthroscopy with calcaneal wire-based distraction versus noninvasive strap distraction. The posterior 40% of the talar dome is difficult to access via anterior ankle arthroscopy. Posterior calcaneal tuberosity wire-based longitudinal distraction improved arthroscopic access to the centro-posterior talar dome with a posterior arthroscopic approach. Published by Elsevier Inc.

  10. Changes in lava effusion rate, explosion characteristics and degassing revealed by time-series photogrammetry and feature tracking velocimetry of Santiaguito lava dome

    NASA Astrophysics Data System (ADS)

    Andrews, B. J.; Grocke, S.; Benage, M.

    2016-12-01

    The Santiaguito dome complex, Guatemala, provides a unique opportunity to observe an active lava dome with an array of DSLR and video cameras from the safety of Santa Maria volcano, a vantage point 2500 m away from and 1000 m above the dome. Radio triggered DSLR cameras can collect synchronized images at rates up to 10 frames/minute. Single-camera datasets describe lava dome surface motions and application of Feature-Tracking-Velocimetry (FTV) to the image sequences measures apparent lava flow surface velocities (as projected onto the camera-imaging plane). Multi-camera datasets describe the lava dome surface topography and 3D velocity field; this 4D photogrammetric approach yields georeferenced point clouds and DEMs with specific points or features tracked through time. HD video cameras document explosions and characterize those events as comparatively gas-rich or ash-rich. Comparison of observations collected during January and November 2012 and January 2016 reveals changes in the effusion rate and explosion characteristics at the active Santiaguito dome that suggest a change in shallow degassing behavior. The 2012 lava dome had numerous incandescent regions and surface velocities of 3 m/hr along the southern part of the dome summit where the dome fed a lava flow. The 2012 dome also showed a remarkably periodic (26±6 minute) pattern of inflation and deflation interpreted to reflect gas accumulation and release, with some releases occurring explosively. Video observations show that the explosion plumes were generally ash-poor. In contrast, the January 2016 dome exhibited very limited incandescence, and had reduced surface velocities of <1 m/hr. Explosions occurred infrequently, but were generally longer duration ( e.g. 90-120 s compared to 30 s) and more ash-rich than those in 2012. We suggest that the reduced lava effusion rate in 2016 produced a net increase in the gas accumulation capacity of the shallow magma, and thus larger, less-frequent explosions. These

  11. VLF electromagnetic investigations of the crater and central dome of Mount St. Helens, Washington

    USGS Publications Warehouse

    Towle, J.N.

    1983-01-01

    A very low frequency (VLF) electromagnetic induction survey in the crater of Mount St. Helens has identified several electrically conductive structures that appear to be associated with thermal anomalies and ground water within the crater. The most interesting of these conductive structures lies beneath the central dome. It is probably a partial melt of dacite similar to that comprising the June 1981 lobe of the central dome. ?? 1983.

  12. Managing the nation`s nuclear waste. Site descriptions: Cypress Creek, Davis Canyon, Deaf Smith, Hanford Reference, Lavender Canyon, Richton Dome, Swisher, Vacherie Dome, and Yucca Mountain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1985-12-31

    In 1982, the Congress enacted the Nuclear Waste Policy Act (Public Law 97-425), which established a comprehensive national program directed toward siting, constructing, and operating geologic repositories for the permanent disposal of high-level radioactive waste. In February 1983, the United States Department of Energy (DOE) identified the nine referenced repository locations as potentially acceptable sites for a mined geologic repository. These sites have been evaluated in accordance with the DOE`s General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. The DOE findings and determinations are based on the evaluations contained in the draft Environmental Assessments (EA). A finalmore » EA will be prepared after considering the comments received on the draft EA. The purpose of this document is to provide the public with specific site information on each potential repository location.« less

  13. The thermal environment of the fiber glass dome for the new solar telescope at Big Bear Solar Observatory

    NASA Astrophysics Data System (ADS)

    Verdoni, A. P.; Denker, C.; Varsik, J. R.; Shumko, S.; Nenow, J.; Coulter, R.

    2007-09-01

    The New Solar Telescope (NST) is a 1.6-meter off-axis Gregory-type telescope with an equatorial mount and an open optical support structure. To mitigate the temperature fluctuations along the exposed optical path, the effects of local/dome-related seeing have to be minimized. To accomplish this, NST will be housed in a 5/8-sphere fiberglass dome that is outfitted with 14 active vents evenly spaced around its perimeter. The 14 vents house louvers that open and close independently of one another to regulate and direct the passage of air through the dome. In January 2006, 16 thermal probes were installed throughout the dome and the temperature distribution was measured. The measurements confirmed the existence of a strong thermal gradient on the order of 5° Celsius inside the dome. In December 2006, a second set of temperature measurements were made using different louver configurations. In this study, we present the results of these measurements along with their integration into the thermal control system (ThCS) and the overall telescope control system (TCS).

  14. Preparation and Characterization of Soybean Oil-Based Polyurethanes for Digital Doming Applications

    PubMed Central

    Pantone, Vincenzo; Laurenza, Amelita Grazia; Annese, Cosimo; Fracassi, Francesco; Fini, Paola; Nacci, Angelo; Russo, Antonella; Fusco, Caterina

    2017-01-01

    Polyurethane-resin doming is currently one of the fastest growing markets in the field of industrial graphics and product identification. Semi-rigid bio-based polyurethanes were prepared deriving from soybean oil as a valuable alternative to fossil materials for digital doming and applied to digital mosaic technology. Bio-resins produced can favorably compete with the analogous fossil polymers, giving high-quality surface coatings (ascertained by SEM analyses). In addition, polyurethane synthesis was accomplished by using a mercury- and tin-free catalyst (the commercially available zinc derivative K22) bringing significant benefits in terms of cost efficiency and eco-sustainability. PMID:28773208

  15. Geomechanical Model Calibration Using Field Measurements for a Petroleum Reserve

    NASA Astrophysics Data System (ADS)

    Park, Byoung Yoon; Sobolik, Steven R.; Herrick, Courtney G.

    2018-03-01

    A finite element numerical analysis model has been constructed that consists of a mesh that effectively captures the geometries of Bayou Choctaw (BC) Strategic Petroleum Reserve (SPR) site and multimechanism deformation (M-D) salt constitutive model using the daily data of actual wellhead pressure and oil-brine interface location. The salt creep rate is not uniform in the salt dome, and the creep test data for BC salt are limited. Therefore, the model calibration is necessary to simulate the geomechanical behavior of the salt dome. The cavern volumetric closures of SPR caverns calculated from CAVEMAN are used as the field baseline measurement. The structure factor, A 2, and transient strain limit factor, K 0, in the M-D constitutive model are used for the calibration. The value of A 2, obtained experimentally from BC salt, and the value of K 0, obtained from Waste Isolation Pilot Plant salt, are used for the baseline values. To adjust the magnitude of A 2 and K 0, multiplication factors A 2 F and K 0 F are defined, respectively. The A 2 F and K 0 F values of the salt dome and salt drawdown skins surrounding each SPR cavern have been determined through a number of back analyses. The cavern volumetric closures calculated from this model correspond to the predictions from CAVEMAN for six SPR caverns. Therefore, this model is able to predict behaviors of the salt dome, caverns, caprock, and interbed layers. The geotechnical concerns associated with the BC site from this analysis will be explained in a follow-up paper.

  16. 5. GLACIER POINT ROAD VIEW AT SENTINEL DOME PARKING AREA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. GLACIER POINT ROAD VIEW AT SENTINEL DOME PARKING AREA. LOOKING E. GIS: N-37 42 43.8 / W-119 35 12.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  17. 4. WASHBURN POINT VISTA AREA. HALF DOME AT CENTER REAR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. WASHBURN POINT VISTA AREA. HALF DOME AT CENTER REAR. LOOKING NE. GIS: N-37 43 13.7 / W-119 34 23.0 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  18. Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2015-04-01

    The study of volcanic domes growth (e.g. St. Helens, Unzen, Montserrat) shows that it is often characterized by a succession of extrusion phases, dome explosions and collapse events. Lava dome eruptive activity may last from days to decades. Therefore, their internal structure, at the end of the eruption, is complex and includes massive extrusions and lava lobes, talus and pyroclastic deposits as well as hydrothermal alteration. The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for volcano structure imaging. Because a large range of resistivity values is often observed in volcanic environments, the method is well suited to study the internal structure of volcanic edifices. We performed an ERT survey on an 11ka years old trachytic lava dome, the Puy de Dôme volcano (French Massif Central). The analysis of a recent high resolution DEM (LiDAR 0.5 m), as well as other geophysical data, strongly suggest that the Puy de Dôme is a composite dome. 11 ERT profiles have been carried out, both at the scale of the entire dome (base diameter of ~2 km and height of 400 m) on the one hand, and at a smaller scale on the summit part on the other hand. Each profile is composed of 64 electrodes. Three different electrode spacing have been used depending on the study area (35 m for the entire dome, 10 m and 5 m for its summit part). Some profiles were performed with half-length roll-along acquisitions, in order to keep a good trade-off between depth of investigation and resolution. Both Wenner-alpha and Wenner-Schlumberger protocols were used. 2-D models of the electrical resistivity distribution were computed using RES2DINV software. In order to constrain inversion models interpretation, the depth of investigation (DOI) method was applied to those results. It aims to compute a sensitivity index on inversion results, illustrating how the data influence the model and constraining models

  19. 8. Detail view of steam dome attached to top of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Detail view of steam dome attached to top of Lancashire double flue boiler. - Hacienda Azucarera El Coto, Sugar Mill Ruins, .5 Mi. SW of Rt. 347 Bridge Over Guanajibo River, San German, San German Municipio, PR

  20. 1. PARKING LOT AT GLACIER POINT. HALF DOME AT CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. PARKING LOT AT GLACIER POINT. HALF DOME AT CENTER REAR. LOOKING NE. GIS: N-36 43 45.8 / W-119 34 14.1 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  1. Enhanced infrared transmission through subwavelength hole arrays in a thin gold film mounted with dielectric micro-domes

    NASA Astrophysics Data System (ADS)

    Kumar, Raghwendra; Ramakrishna, S. Anantha

    2018-04-01

    Dielectric micro-domes were mounted on the subwavelength holes of a periodically perforated gold film such that a lens-like micro-dome covers each hole. In comparison to the extraordinary transmission through an array of bare holes in the gold film, this structure showed a further enhanced transmission over a larger range of incident angles with much larger bandwidth at mid-wave infrared wavelengths (3-4.5~μ m). The structure was fabricated using laser interference lithography, a novel back-exposure with an ultra-violet laser, and lift-off process that left behind the micro-domes of SU-8, covering each of the holes in the gold film. The measured transmittance of these perforated gold films, with and without the micro-domes, was verified by electromagnetic wave simulations. The enhanced transmittance arises from the scattered electromagnetic fields of the micro-domes, which couple the incident light efficiently via the scattered near-fields into the waveguide modes of holes in the plasmonic film. The increased transmittance and the highly enhanced and localized near-fields can be used to enhance the photo-response of infrared detectors over relevant bands, for example, the 3-4.5~μ m band that is used for thermal imaging applications.

  2. Parametric analysis of lava dome-collapse events and pyroclastic deposits at Shiveluch volcano, Kamchatka, using visible and infrared satellite data

    NASA Astrophysics Data System (ADS)

    Krippner, Janine B.; Belousov, Alexander B.; Belousova, Marina G.; Ramsey, Michael S.

    2018-04-01

    For the years 2001 to 2013 of the ongoing eruption of Shiveluch volcano, a combination of different satellite remote sensing data are used to investigate the dome-collapse events and the resulting pyroclastic deposits. Shiveluch volcano in Kamchatka, Russia, is one of the world's most active dome-building volcanoes, which has produced some of the largest known historical block-and-ash flows (BAFs). Globally, quantitative data for deposits resulting from such large and long-lived dome-forming eruptions, especially like those at Shiveluch, are scarce. We use Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared (TIR), shortwave infrared (SWIR), and visible-near infrared (VNIR) data to analyze the dome-collapse scars and BAF deposits that were formed during eruptions and collapse events in 2001, 2004, 2005, 2007, 2009, 2010, and two events in 2013. These events produced flows with runout distances of as far as 19 km from the dome, and with aerial extents of as much as 22.3 km2. Over the 12 years of this period of investigation, there is no trend in deposit area or runout distances of the flows through time. However, two potentially predictive features are apparent in our data set: 1) the largest dome-collapse events occurred when the dome exceeded a relative height (from dome base to top) of 500 m; 2) collapses were preceded by thermal anomalies in six of the cases in which ASTER data were available, although the areal extent of these precursory thermal areas did not generally match the size of the collapse events as indicated by scar area (volumes are available for three collapse events). Linking the deposit distribution to the area, location, and temperature profiles of the dome-collapse scars provides a basis for determining similar future hazards at Shiveluch and at other dome-forming volcanoes. Because of these factors, we suggest that volcanic hazard analysis and mitigation at volcanoes with similar BAF emplacement behavior may

  3. Small domes on Venus: Probable analogs of Icelandic lava shields

    USGS Publications Warehouse

    Garvin, James B.; Williams, Richard S.

    1990-01-01

    On the basis of observed shapes and volumetric estimates, we interpret small, dome-like features on radar images of Venus to be analogs of Icelandic lava-shield volcanoes. Using morphometric data for venusian domes in Aubele and Slyuta (in press), as well as our own measurements of representative dome volumes and areas from Tethus Regio, we demonstrate that the characteristic aspect ratios and flank slopes of these features are consistent with a subclass of low Icelandic lava-shield volcanoes (LILS ). LILS are slightly convex in cross-section with typical flank slopes of ∼3°. Plausible lava-shield-production rates for the venusian plains suggest formation of ∼53 million shields over the past 0.25 Ga. The cumulative global volume of lava that would be associated with this predicted number of lava shields is only a factor of 3–4 times that of a single oceanic composite shield volcano such as Mauna Loa. The global volume of all venusian lava shields in the 0.5–20-km size range would only contribute a meter of resurfacing over geologically significant time scales. Thus, venusian analogs to LILS may represent the most abundant landform on the globally dominant plains of Venus, but would be insignificant with regard to the global volume of lava extruded. As in Iceland, associated lavas from fissure eruptions probably dominate plains volcanism and should be evident on the higher resolution Magellan radar images.

  4. Volcanic synchronization of Dome Fuji and Dome C Antarctic deep ice cores over the past 216 kyr

    NASA Astrophysics Data System (ADS)

    Fujita, S.; Parrenin, F.; Severi, M.; Motoyama, H.; Wolff, E. W.

    2015-10-01

    Two deep ice cores, Dome Fuji (DF) and EPICA Dome C (EDC), drilled at remote dome summits in Antarctica, were volcanically synchronized to improve our understanding of their chronologies. Within the past 216 kyr, 1401 volcanic tie points have been identified. DFO2006 is the chronology for the DF core that strictly follows O2 / N2 age constraints with interpolation using an ice flow model. AICC2012 is the chronology for five cores, including the EDC core, and is characterized by glaciological approaches combining ice flow modelling with various age markers. A precise comparison between the two chronologies was performed. The age differences between them are within 2 kyr, except at Marine Isotope Stage (MIS) 5. DFO2006 gives ages older than AICC2012, with peak values of 4.5 and 3.1 kyr at MIS 5d and MIS 5b, respectively. Accordingly, the ratios of duration (AICC2012 / DFO2006) range between 1.4 at MIS 5e and 0.7 at MIS 5a. When making a comparison with accurately dated speleothem records, the age of DFO2006 agrees well at MIS 5d, while the age of AICC2012 agrees well at MIS 5b, supporting their accuracy at these stages. In addition, we found that glaciological approaches tend to give chronologies with younger ages and with longer durations than age markers suggest at MIS 5d-6. Therefore, we hypothesize that the causes of the DFO2006-AICC2012 age differences at MIS 5 are (i) overestimation in surface mass balance at around MIS 5d-6 in the glaciological approach and (ii) an error in one of the O2 / N2 age constraints by ~ 3 kyr at MIS 5b. Overall, we improved our knowledge of the timing and duration of climatic stages at MIS 5. This new understanding will be incorporated into the production of the next common age scale. Additionally, we found that the deuterium signals of ice, δDice, at DF tends to lead the one at EDC, with the DF lead being more pronounced during cold periods. The lead of DF is by +710 years (maximum) at MIS 5d, -230 years (minimum) at MIS 7a and +60

  5. Comparative analysis of uranium bioassociation with halophilic bacteria and archaea

    PubMed Central

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Schmidt, Matthias; Simmons, Karen; Swanson, Juliet S.; Reed, Donald T.; Stumpf, Thorsten

    2018-01-01

    Rock salt represents a potential host rock formation for the final disposal of radioactive waste. The interactions between indigenous microorganisms and radionuclides, e.g. uranium, need to be investigated to better predict the influence of microorganisms on the safety assessment of the repository. Hence, the association process of uranium with two microorganisms isolated from rock salt was comparatively studied. Brachybacterium sp. G1, which was isolated from the German salt dome Gorleben, and Halobacterium noricense DSM15987T, were selected as examples of a moderately halophilic bacterium and an extremely halophilic archaeon, respectively. The microorganisms exhibited completely different association behaviors with uranium. While a pure biosorption process took place with Brachybacterium sp. G1 cells, a multistage association process occurred with the archaeon. In addition to batch experiments, in situ attenuated total reflection Fourier-transform infrared spectroscopy was applied to characterize the U(VI) interaction process. Biosorption was identified as the dominating process for Brachybacterium sp. G1 with this method. Carboxylic functionalities are the dominant interacting groups for the bacterium, whereas phosphoryl groups are also involved in U(VI) association by the archaeon H. noricense. PMID:29329319

  6. Low-Cost Photogrammetric Technique Used to Measure Dome Growth at Mount St. Helens Volcano, 2007-2007

    NASA Astrophysics Data System (ADS)

    Diefenbach, A. K.; Crider, J. G.; Schilling, S. P.; Dzurisin, D.

    2007-12-01

    We describe a low-cost application of digital photogrammetry using commercial grade software, an off-the-shelf digital camera, a laptop computer and oblique photographs to reconstruct volcanic dome morphology during the on-going eruption at Mount St. Helens, Washington. Renewed activity at Mount St. Helens provides a rare opportunity to devise and test new methods for better understanding and predicting volcanic events, because the new method can be validated against other observations on this well-instrumented volcano. Uncalibrated, oblique aerial photographs (snap shots) taken from a helicopter are the raw data. Twelve sets of overlapping digital images of the dome taken during 2004-2007 were used to produce digital elevation models (DEMs) from which dome height, eruption volume and extrusion rate can be derived. Analyses of the digital images were carried out using PhotoModeler software, which produces three dimensional coordinates of points identified in multiple photos. The steps involved include: (1) calibrating the digital camera using this software package, (2) establishing control points derived from existing DEMs, (3) identifying tie points located in each photo of any given model date, and (4) identifying points in pairs of photos to build a three dimensional model of the evolving dome at each photo date. Text files of three-dimensional points encompassing the dome at each date were imported into ArcGIS and three-dimensional models (triangulated irregular network or TINs) were generated. TINs were then converted to 2 m raster DEMs. The evolving morphology of the growing dome was modeled by comparison of successive DEMs. The volume of extruded lava visible in each DEM was calculated using the 1986 pre-eruption crater floor topography as a basal surface. Results were validated by comparing volume measurements derived from traditional aerophotogrammetric surveys run by the USGS Cascades Volcano Observatory. Our new "quick and cheap" technique yields

  7. 48 CFR 227.7207 - Contractor data repositories.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... repositories. 227.7207 Section 227.7207 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS... Computer Software and Computer Software Documentation 227.7207 Contractor data repositories. Follow 227.7108 when it is in the Government's interests to have a data repository include computer software or to...

  8. DETAIL VIEW OF BRIDGE CRANE USED TO LIFT DOMED LIDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BRIDGE CRANE USED TO LIFT DOMED LIDS OF THE ALTITUDE CHAMBERS, FACING SOUTHWEST - Cape Canaveral Air Force Station, Launch Complex 39, Altitude Chambers, First Street, between Avenue D and Avenue E, Cape Canaveral, Brevard County, FL

  9. A Review of Optical Sky Brightness and Extinction at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Kenyon, S. L.; Storey, J. W. V.

    2006-03-01

    The recent discovery of exceptional seeing conditions at Dome C, Antarctica, raises the possibility of constructing an optical observatory there with unique capabilities. However, little is known from an astronomer's perspective about the optical sky brightness and extinction at Antarctic sites. We review the contributions to sky brightness at high-latitude sites and calculate the amount of usable dark time at Dome C. We also explore the implications of the limited sky coverage of high-latitude sites and review optical extinction data from the South Pole. Finally, we examine the proposal of Baldry & Bland-Hawthorn to extend the amount of usable dark time through the use of polarizing filters.

  10. IRAIT project: future mid-IR operations at Dome C during summer

    NASA Astrophysics Data System (ADS)

    Tosti, Gino; IRAIT Collaboration

    The project IRAIT consists of a robotic mid-infrared telescope that will be hosted at Dome C in the Italian-French Concordia station on the Antarctic Plateau. The telescope was built in collaboration with the PNRA (sectors Technology and Earth-Sun Interaction and Astrophysics). Its focal plane instrumentation is a mid-infrared Camera (5-25 mu m), based on the TIRCAM II prototype, which is the result of a join effort between Institutes of CNR and INAF. International collaborations with French and Spanish Institutes for the construction of a near infrared spectrographic camera have also been started. We present the status of the project and the ongoing developments that will make possible to start infrared observations at Dome C during the summer Antarctic campaign 2005-2006.

  11. 21 CFR 522.480 - Repository corticotropin injection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Repository corticotropin injection. 522.480 Section 522.480 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 522.480 Repository corticotropin injection. (a)(1) Specifications. The drug conforms to repository...

  12. Comparison of membrane ATPases from extreme halophiles isolated from ancient salt deposits

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Sulzner, Michael; Egelseer, Eva; Norton, Cynthia F.; Hochstein, Lawrence I.

    1993-01-01

    Halophilic microorganisms were isolated from Triassic and Permian salt deposits. Two were rods and grew as red colonies; another was a coccus and produced pink colonies. The rods lysed in solutions that lacked added sodium chloride. Growth of all isolates was inhibited by aphidicolin and their bulk-proteins were acidic as judged from isoelectric focusing. Therefore, these organisms were tentatively identified as extreme halophiles. Whole cell proteins patterns of the isolates following gel electrophoresis were distinct and differed from those of representative type strains of halophilic bacteria. The membrane ATPases from the rods were similar to the enzyme from Halobacterium saccharovorum with respect to subunit composition, enzymatic properties and immunological cross-reaction, but differed slightly in amino acid composition. If the age of the microbial isolated is similar to that of the salt deposits, they can be considered repositories of molecular information of great evolutionary interest.

  13. Comparison of Membrane ATPases from Extreme Halophiles Isolated from Ancient Salt Deposits

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Sulzner, Michael; Egelseer, Eva; Norton, Cynthia F.; Hochstein, Lawrence I.

    1993-01-01

    Halophilic microorganisms were isolated from Triassic and Permian salt deposits. Two were rods and grew as red colonies; another was a coccus and produced pink colonies. The rods lysed in solutions that lacked added sodium chloride. Growth of all isolates was inhibited by aphidicolin and their bulk proteins were acidic as judged from isoelectric focusing. Therefore, these organisms were tentatively identified as extreme halophiles. Whole cell proteins patterns of the isolates following gel electrophoresis were distinct and differed from those of representative type strains of halophilic bacteria. The membrane ATPases from the rods were similar to the enzyme from Halobacterium saccharovorum with respect to sub unit composition. enzymatic properties and immunological cross-reaction, but differed slightly in amino acid composition. If the age of the microbial isolated is similar to that of the salt deposits, they can be considered repositories of molecular information of great evolutionary interest.

  14. Limitations to the use of two-dimensional thermal modeling of a nuclear waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.W.

    1979-01-04

    Thermal modeling of a nuclear waste repository is basic to most waste management predictive models. It is important that the modeling techniques accurately determine the time-dependent temperature distribution of the waste emplacement media. Recent modeling studies show that the time-dependent temperature distribution can be accurately modeled in the far-field using a 2-dimensional (2-D) planar numerical model; however, the near-field cannot be modeled accurately enough by either 2-D axisymmetric or 2-D planar numerical models for repositories in salt. The accuracy limits of 2-D modeling were defined by comparing results from 3-dimensional (3-D) TRUMP modeling with results from both 2-D axisymmetric andmore » 2-D planar. Both TRUMP and ADINAT were employed as modeling tools. Two-dimensional results from the finite element code, ADINAT were compared with 2-D results from the finite difference code, TRUMP; they showed almost perfect correspondence in the far-field. This result adds substantially to confidence in future use of ADINAT and its companion stress code ADINA for thermal stress analysis. ADINAT was found to be somewhat sensitive to time step and mesh aspect ratio. 13 figures, 4 tables.« less

  15. Functional Balance Training Using a Domed Device

    DTIC Science & Technology

    2005-02-01

    people. Exerc. Sport Sci. Rev. 31:182–187. 2003. 17. Roubenoff, R. Sarcopenia and its im- plications for the elderly . Eur. J. Clin. Nutr. 54(Suppl 3):S40–7... elderly and the injured (7, 10, 18). Functional balance training involves skilled body movement patterns that si- multaneously require movement and...important aspect of athletic and occupational perfor- mance, in the elderly , and for injury rehabilitation, where use of a novel domed device can be

  16. Evaluation of aerosol composition changes in the last 60 years around southeastern Greenland by analyzing micro-inclusions in the SE-Dome ice core using Raman spectroscopy.

    NASA Astrophysics Data System (ADS)

    Ando, T.; Iizuka, Y.; Ohno, H.; Sugiyama, S.

    2017-12-01

    Emission regulation of anthropogenic NOX and SOX since late 90's rather caused excess atmospheric ammonium (NH3) in agricultural regions (Warner et al., 2017, Geophys. Res. Lett.). The Arctic is one of the most sensitive areas for future warming. Aerosols in the Arctic are transported from the Northern Hemisphere and mostly experience wet deposition (Breider et al., 2014, Jour. of Geophys. Res.: Atmos.). Ice cores preserve past water-soluble aerosols. From these viewpoints, ice cores from the Arctic is suitable to evaluate recent variation in aerosol composition due to human activity in the Northern Hemisphere and aerosol transportation. We analyzed ion concentrations in the ice core samples from a southeastern dome in Greenland (SE-Dome). The concentrations increased for NH4+ and decreased for SO42- after late 90's. The NH4+ increasing trend is due to excess NH3 emission in North America. Cloud nuclei formation depends on chemical form of aerosols. Thus, differences in chemical forms of these ammonium aerosols in SE-Dome samples are important to evaluate the effect on climate change in Greenland. In this study, we identified the chemical form of aerosols (water-soluble inclusions) in the SE-Dome ice core by using micro-Raman spectroscopy. SE-Dome ice core samples were collected in 2015 and enabled us to reconstruct seasonal variation owing to extremely higher accumulation rate ( 1m/yr.). The ice samples were sublimated and accumulated inclusions on the Ni sheets in a clean booth under -22 degrees Celsius. We identified CaSO4, Na2SO4, (NH4)2SO4, NaNO3, NH4NO3 by Raman spectra. This is the first report to identify ammonium salts ((NH4)2SO4 and NH4NO3) from ice core sample. In the summer samples, the relative abundances of CaSO4 and NaNO3 are lower but (NH4)2SO4 are higher than those in the spring samples. NH4+ rapidly react with SO24- under higher temperature. Higher concentration of NH3 in the warmest season possibly enhanced the formation of (NH4)2SO4 in North

  17. Geomechanical Model Calibration Using Field Measurements for a Petroleum Reserve

    DOE PAGES

    Park, Byoung Yoon; Sobolik, Steven R.; Herrick, Courtney G.

    2018-01-19

    A finite element numerical analysis model has been constructed that consists of a mesh that effectively captures the geometries of Bayou Choctaw (BC) Strategic Petroleum Reserve (SPR) site and multimechanism deformation (M-D) salt constitutive model using the daily data of actual wellhead pressure and oil–brine interface location. The salt creep rate is not uniform in the salt dome, and the creep test data for BC salt are limited. Therefore, the model calibration is necessary to simulate the geomechanical behavior of the salt dome. The cavern volumetric closures of SPR caverns calculated from CAVEMAN are used as the field baseline measurement.more » The structure factor, A 2, and transient strain limit factor, K o, in the M-D constitutive model are used for the calibration. The value of A 2, obtained experimentally from BC salt, and the value of K o, obtained from Waste Isolation Pilot Plant salt, are used for the baseline values. To adjust the magnitude of A 2 and K0, multiplication factors A 2 F and K o F are defined, respectively. The A 2 F and K0F values of the salt dome and salt drawdown skins surrounding each SPR cavern have been determined through a number of back analyses. The cavern volumetric closures calculated from this model correspond to the predictions from CAVEMAN for six SPR caverns. Therefore, this model is able to predict behaviors of the salt dome, caverns, caprock, and interbed layers. In conclusion, the geotechnical concerns associated with the BC site from this analysis will be explained in a follow-up paper.« less

  18. Geomechanical Model Calibration Using Field Measurements for a Petroleum Reserve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Byoung Yoon; Sobolik, Steven R.; Herrick, Courtney G.

    A finite element numerical analysis model has been constructed that consists of a mesh that effectively captures the geometries of Bayou Choctaw (BC) Strategic Petroleum Reserve (SPR) site and multimechanism deformation (M-D) salt constitutive model using the daily data of actual wellhead pressure and oil–brine interface location. The salt creep rate is not uniform in the salt dome, and the creep test data for BC salt are limited. Therefore, the model calibration is necessary to simulate the geomechanical behavior of the salt dome. The cavern volumetric closures of SPR caverns calculated from CAVEMAN are used as the field baseline measurement.more » The structure factor, A 2, and transient strain limit factor, K o, in the M-D constitutive model are used for the calibration. The value of A 2, obtained experimentally from BC salt, and the value of K o, obtained from Waste Isolation Pilot Plant salt, are used for the baseline values. To adjust the magnitude of A 2 and K0, multiplication factors A 2 F and K o F are defined, respectively. The A 2 F and K0F values of the salt dome and salt drawdown skins surrounding each SPR cavern have been determined through a number of back analyses. The cavern volumetric closures calculated from this model correspond to the predictions from CAVEMAN for six SPR caverns. Therefore, this model is able to predict behaviors of the salt dome, caverns, caprock, and interbed layers. In conclusion, the geotechnical concerns associated with the BC site from this analysis will be explained in a follow-up paper.« less

  19. Geomechanical Simulation of Bayou Choctaw Strategic Petroleum Reserve - Model Calibration.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Byoung

    2017-02-01

    A finite element numerical analysis model has been constructed that consists of a realistic mesh capturing the geometries of Bayou Choctaw (BC) Strategic Petroleum Reserve (SPR) site and multi - mechanism deformation ( M - D ) salt constitutive model using the daily data of actual wellhead pressure and oil - brine interface. The salt creep rate is not uniform in the salt dome, and the creep test data for BC salt is limited. Therefore, the model calibration is necessary to simulate the geomechanical behavior of the salt dome. The cavern volumetric closures of SPR caverns calculated from CAVEMAN aremore » used for the field baseline measurement. The structure factor, A 2 , and transient strain limit factor, K 0 , in the M - D constitutive model are used for the calibration. The A 2 value obtained experimentally from the BC salt and K 0 value of Waste Isolation Pilot Plant (WIPP) salt are used for the baseline values. T o adjust the magnitude of A 2 and K 0 , multiplication factors A2F and K0F are defined, respectively. The A2F and K0F values of the salt dome and salt drawdown skins surrounding each SPR cavern have been determined through a number of back fitting analyses. The cavern volumetric closures calculated from this model correspond to the predictions from CAVEMAN for six SPR caverns. Therefore, this model is able to predict past and future geomechanical behaviors of the salt dome, caverns, caprock , and interbed layers. The geological concerns issued in the BC site will be explained from this model in a follow - up report .« less

  20. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusionmore » coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport

  1. 19. View of satcom communication dome with TR radome in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View of satcom communication dome with TR radome in background right. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  2. Supporting multiple domains in a single reuse repository

    NASA Technical Reports Server (NTRS)

    Eichmann, David A.

    1992-01-01

    Domain analysis typically results in the construction of a domain-specific repository. Such a repository imposes artificial boundaries on the sharing of similar assets between related domains. A lattice-based approach to repository modeling can preserve a reuser's domain specific view of the repository, while avoiding replication of commonly used assets and supporting a more general perspective on domain interrelationships.

  3. 15 CFR 1180.10 - NTIS permanent repository.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false NTIS permanent repository. 1180.10... ENGINEERING INFORMATION TO THE NATIONAL TECHNICAL INFORMATION SERVICE § 1180.10 NTIS permanent repository. A... repository as a service to agencies unless the Director advises the Liaison Officer that it has not been so...

  4. Periodic behavior in lava dome eruptions

    NASA Astrophysics Data System (ADS)

    Barmin, A.; Melnik, O.; Sparks, R. S. J.

    2002-05-01

    Lava dome eruptions commonly display fairly regular alternations between periods of high activity and periods of low or no activity. The time scale for these alternations is typically months to several years. Here we develop a generic model of magma discharge through a conduit from an open-system magma chamber with continuous replenishment. The model takes account of the principal controls on flow, namely the replenishment rate, magma chamber size, elastic deformation of the chamber walls, conduit resistance, and variations of magma viscosity, which are controlled by degassing during ascent and kinetics of crystallization. The analysis indicates a rich diversity of behavior with periodic patterns similar to those observed. Magma chamber size can be estimated from the period with longer periods implying larger chambers. Many features observed in volcanic eruptions such as alternations between periodic behaviors and continuous discharge, sharp changes in discharge rate, and transitions from effusive to catastrophic explosive eruption can be understood in terms of the non-linear dynamics of conduit flows from open-system magma chambers. The dynamics of lava dome growth at Mount St. Helens (1980-1987) and Santiaguito (1922-2000) was analyzed with the help of the model. The best-fit models give magma chamber volumes of ∼0.6 km3 for Mount St. Helens and ∼65 km3 for Santiaguito. The larger magma chamber volume is the major factor in explaining why Santiaguito is a long-lived eruption with a longer periodicity of pulsations in comparison with Mount St. Helens.

  5. Predicting Wind Noise Inside Porous Dome Filters for Infrasound Sensing on Mars

    NASA Astrophysics Data System (ADS)

    Pitre, Kevin M.

    The study described in this thesis aims to assess the effects of wind-generated noise on potential infrasound measurements on future Mars missions. Infrasonic sensing on Mars is being considered as a means to probe the long-scale atmospheric dynamics, thermal balance, and also to infer bolide impact statistics. In this study, a preliminary framework for predicting the principal wind noise mechanisms to the signal detected by a sensor placed inside a hemispherical porous dome on the Martian surface is developed. The method involves calculating the pressure power density spectra in the infrasonic range generated by turbulent interactions and filtered by dome shaped filters of varying porosities. Knowing the overall noise power spectrum will allow it to be subtracted from raw signals of interest and aid in the development of infrasound sensors for the Martian environment. In order to make these power spectral predictions, the study utilizes the Martian Climate Database (MCD) global circulation model, developed by Laboratoire de Meteorologie Dynamique in Paris, France. Velocity profiles are generated and used in semi empirical functions generated by von Karman along with equations for describing the physical turbulent interactions. With these, turbulent interactions in the free atmosphere above the Martian surface are described. For interactions of turbulence with the porous filter, semi-empirical formulations are adapted to the Martian parameters generated by the MCD and plotted alongside contributions in the free atmosphere outside and inside the dome to obtain the total wind noise contribution from turbulence. In conclusion, the plots of power spectral densities versus frequency are analyzed to determine what porosity filter would provide the best wind-noise suppression when measured at the center the dome. The study shows that 55% (0.02 to 5 Hz) and 80% (6 to 20 Hz) porosities prove to be the better of the five porosities tested.

  6. Traversing Microphone Track Installed in NASA Lewis' Aero-Acoustic Propulsion Laboratory Dome

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.; Perusek, Gail P.

    1999-01-01

    The Aero-Acoustic Propulsion Laboratory is an acoustically treated, 65-ft-tall dome located at the NASA Lewis Research Center. Inside this laboratory is the Nozzle Acoustic Test Rig (NATR), which is used in support of Advanced Subsonics Technology (AST) and High Speed Research (HSR) to test engine exhaust nozzles for thrust and acoustic performance under simulated takeoff conditions. Acoustic measurements had been gathered by a far-field array of microphones located along the dome wall and 10-ft above the floor. Recently, it became desirable to collect acoustic data for engine certifications (as specified by the Federal Aviation Administration (FAA)) that would simulate the noise of an aircraft taking off as heard from an offset ground location. Since nozzles for the High-Speed Civil Transport have straight sides that cause their noise signature to vary radially, an additional plane of acoustic measurement was required. Desired was an arched array of 24 microphones, equally spaced from the nozzle and each other, in a 25 off-vertical plane. The various research requirements made this a challenging task. The microphones needed to be aimed at the nozzle accurately and held firmly in place during testing, but it was also essential that they be easily and routinely lowered to the floor for calibration and servicing. Once serviced, the microphones would have to be returned to their previous location near the ceiling. In addition, there could be no structure could between the microphones and the nozzle, and any structure near the microphones would have to be designed to minimize noise reflections. After many concepts were considered, a single arched truss structure was selected that would be permanently affixed to the dome ceiling and to one end of the dome floor.

  7. The Fulldome Curriculum for the Spitz SciDome Digital Planetarium: Volume 2

    NASA Astrophysics Data System (ADS)

    Bradstreet, David H.; Sanders, S. J.; Huggins, S.

    2014-01-01

    The Spitz Fulldome Curriculum (FDC) for the SciDome digital planetarium ushered in a new and innovative way to present astronomical pedagogy via its use of the unique teaching attributes of the digital planetarium. In the case of the FDC, which uses the ubiquitous Starry Night planetarium software as its driving engine, these engaging and novel teaching techniques have also been made usable to desktop computers and flat-screen video projectors for classroom use. Volume 2 of the FDC introduces exciting new classes and mini-lessons to further enlighten and invigorate students as they struggle with often difficult three dimensional astronomical concepts. Additionally, other topics with related astronomical ties have been created to integrate history into planetarium presentations. One of the strongest advantages of the SciDome is its use of Starry Night as its astronomical engine. With it students can create their own astronomical configurations in the computer lab or at home, using the PC or Mac version. They can then simply load their creations onto the SciDome planetarium system and display them for their classmates on the dome. This poster will discuss and illustrate some of the new content that has been developed for Volume 2. Topics covered in Volume 2 include eclipses, plotting planet locations on a curtate orbit chart by observing their positions in the sky, time and timekeeping (including sidereal day, hour angles, sidereal time, LAST, LMST, time zones and the International Date Line), teaching to the Boy Scout Merit Badge requirements, plotting scale analemmas on the surface of planets and interpreting them, precession, astronomical events in revolutionary Boston, the Lincoln Almanac Trial, eclipsing binaries, lunar librations, a trip through the universe, watching the speed of light move in real time, stellar sizes and the Milky Way.

  8. jPOSTrepo: an international standard data repository for proteomes

    PubMed Central

    Okuda, Shujiro; Watanabe, Yu; Moriya, Yuki; Kawano, Shin; Yamamoto, Tadashi; Matsumoto, Masaki; Takami, Tomoyo; Kobayashi, Daiki; Araki, Norie; Yoshizawa, Akiyasu C.; Tabata, Tsuyoshi; Sugiyama, Naoyuki; Goto, Susumu; Ishihama, Yasushi

    2017-01-01

    Major advancements have recently been made in mass spectrometry-based proteomics, yielding an increasing number of datasets from various proteomics projects worldwide. In order to facilitate the sharing and reuse of promising datasets, it is important to construct appropriate, high-quality public data repositories. jPOSTrepo (https://repository.jpostdb.org/) has successfully implemented several unique features, including high-speed file uploading, flexible file management and easy-to-use interfaces. This repository has been launched as a public repository containing various proteomic datasets and is available for researchers worldwide. In addition, our repository has joined the ProteomeXchange consortium, which includes the most popular public repositories such as PRIDE in Europe for MS/MS datasets and PASSEL for SRM datasets in the USA. Later MassIVE was introduced in the USA and accepted into the ProteomeXchange, as was our repository in July 2016, providing important datasets from Asia/Oceania. Accordingly, this repository thus contributes to a global alliance to share and store all datasets from a wide variety of proteomics experiments. Thus, the repository is expected to become a major repository, particularly for data collected in the Asia/Oceania region. PMID:27899654

  9. Serous retinal detachment accompanied by MEWDS in a myopic patient with dome-shaped macula.

    PubMed

    Shin, Min Kyu; Byon, Ik Soo; Park, Sung Who; Lee, Ji Eun

    2014-01-01

    Macular serous retinal detachment (MSRD) is a rare complication in highly myopic patients with an inferior staphyloma, tilted disc, or dome-shaped macula. Multiple evanescent white dot syndrome (MEWDS) presents with sudden visual loss and multiple yellowish dots that resolve spontaneously within several weeks. The authors report the development and spontaneous resolution of subretinal fluid accompanied by MEWDS in a myopic patient with a dome-shaped macula. Dysfunction of the retinal pigment epithelium due to MEWDS likely induced temporary MSRD in this patient. Copyright 2014, SLACK Incorporated.

  10. Light, shadows and surface characteristics: the multispectral Portable Light Dome

    NASA Astrophysics Data System (ADS)

    Watteeuw, Lieve; Hameeuw, Hendrik; Vandermeulen, Bruno; Van der Perre, Athena; Boschloos, Vanessa; Delvaux, Luc; Proesmans, Marc; Van Bos, Marina; Van Gool, Luc

    2016-11-01

    A multispectral, multidirectional, portable and dome-shaped acquisition system is developed within the framework of the research projects RICH (KU Leuven) and EES (RMAH, Brussels) in collaboration with the ESAT-VISICS research group (KU Leuven). The multispectral Portable Light Dome (MS PLD) consists of a hemispherical structure, an overhead camera and LEDs emitting in five parts of the electromagnetic spectrum regularly covering the dome's inside surface. With the associated software solution, virtual relighting and enhancements can be applied in a real-time, interactive manner. The system extracts genuine 3D and shading information based on a photometric stereo algorithm. This innovative approach allows for instantaneous alternations between the computations in the infrared, red, green, blue and ultraviolet spectra. The MS PLD system has been tested for research ranging from medieval manuscript illuminations to ancient Egyptian artefacts. Preliminary results have shown that it documents and measures the 3D surface structure of objects, re-visualises underdrawings, faded pigments and inscriptions, and examines the MS results in combination with the actual relief characteristics of the physical object. Newly developed features are reflection maps and histograms, analytic visualisations of the reflection properties of all separate LEDs or selected areas. In its capacity as imaging technology, the system acts as a tool for the analysis of surface materials (e.g. identification of blue pigments, gold and metallic surfaces). Besides offering support in answering questions of attribution and monitoring changes and decay of materials, the PLD also contributes to the identification of materials, all essential factors when making decisions in the conservation protocol.

  11. Cybersickness Following Repeated Exposure to DOME and HMD Virtual Environments

    NASA Technical Reports Server (NTRS)

    Taylor, Laura C.; Harm, Deborah L.; Kennedy, Robert S.; Reschke, Millard F.; Loftin, R. Bowen

    2011-01-01

    Virtual environments (VE) offer unique training opportunities, including training astronauts to preadapt them to the novel sensory conditions of microgravity. However, one unresolved issue with VE use is the occurrence of cybersickness during and following exposure to VE systems. Most individuals adapt and become less ill with repeated interaction with VEs. The goal of this investigation was to compare motion sickness symptoms (MSS) produced by dome and head-mounted (HMD) displays and to examine the effects of repeated exposures on MSS. Sixty-one subjects participated in the study. Three experimental sessions were performed each separated by one day. The subjects performed a navigation and pick and place task in either a dome or HMD VE. MSS were measured using a Simulator Sickness Questionnaire before, immediately after, and at 1, 2, 4 and 6 hours following exposure to the VEs. MSS data were normalized by calculating the natural log of each score and an analysis of variance was performed. We observed significant main effects for day and time and a significant day by time interaction for total sickness and for each of the subscales, nausea, oculomotor and disorientation. However, there was no significant main effect for device. In conclusion, subjects reported a large increase in MSS immediately following exposure to both the HMD and dome, followed by a rapid recovery across time. Sickness severity also decreased over days, which suggests that subjects become dual-adapted over time making VE training a viable pre-flight countermeasure for space motion sickness.

  12. Geology of the north end of the Salt Valley Anticline, Grand County, Utah

    USGS Publications Warehouse

    Gard, Leonard Meade

    1976-01-01

    This report describes the geology and hydrology of a portion of the Salt Valley anticline lying north of Moab, Utah, that is being studied as a potential site for underground storage of nuclear waste in salt. Selection of this area was based on recommendations made in an earlier appraisal of the potential of Paradox basin salt deposits for such use. Part of sec. 5, T. 23 S., R. 20 E. has been selected as a site for subsurface investigation as a potential repository for radioactive waste. This site has easy access to transportation, is on public land, is isolated from human habitation, is not visible from Arches National Park, and the salt body lies within about 800 feet (244 m) of the surface. Further exploration should include investigation of possible ground water in the caprock and physical exploration of the salt body to identify a thick bed of salt for use as a storage zone that can be isolated from the shaly interbeds that possibly contain quantities of hydrocarbons. Salt Valley anticline, a northwest-trending diapiric structure, consists of Mesozoic sedimentary rocks arched over a thick core of salt of the Paradox Member of the Middle Pennsylvanian Hermosa Formation. Salt began to migrate to form and/or develop this structure shortly after it was deposited, probably in response to faulting. This migration caused upwelling of the salt creating a linear positive area. This positive area, in turn, caused increased deposition of sediments in adjacent areas which further enhanced salt migration. Not until late Jurassic time had flowage of the salt slowed sufficiently to allow sediments of the Morrison and younger formations to be deposited across the salt welt. A thick cap of insoluble residue was formed on top of the salt diapir as a result of salt dissolution through time. The crest of the anticline is breached; it collapsed in two stages during the Tertiary Period. The first stage was graben collapse during the early Tertiary; the second stage occurred after

  13. Metal-insulator quantum critical point beneath the high Tc superconducting dome.

    PubMed

    Sebastian, Suchitra E; Harrison, N; Altarawneh, M M; Mielke, C H; Liang, Ruixing; Bonn, D A; Hardy, W N; Lonzarich, G G

    2010-04-06

    An enduring question in correlated systems concerns whether superconductivity is favored at a quantum critical point (QCP) characterized by a divergent quasiparticle effective mass. Despite such a scenario being widely postulated in high T(c) cuprates and invoked to explain non-Fermi liquid transport signatures, experimental evidence is lacking for a critical divergence under the superconducting dome. We use ultrastrong magnetic fields to measure quantum oscillations in underdoped YBa(2)Cu(3)O(6+x), revealing a dramatic doping-dependent upturn in quasiparticle effective mass at a critical metal-insulator transition beneath the superconducting dome. Given the location of this QCP under a plateau in T(c) in addition to a postulated QCP at optimal doping, we discuss the intriguing possibility of two intersecting superconducting subdomes, each centered at a critical Fermi surface instability.

  14. Monitoring lava-dome growth during the 2004-2008 Mount St. Helens, Washington, eruption using oblique terrestrial photography

    USGS Publications Warehouse

    Major, J.J.; Dzurisin, D.; Schilling, S.P.; Poland, Michael P.

    2009-01-01

    We present an analysis of lava dome growth during the 2004–2008 eruption of Mount St. Helens using oblique terrestrial images from a network of remotely placed cameras. This underutilized monitoring tool augmented more traditional monitoring techniques, and was used to provide a robust assessment of the nature, pace, and state of the eruption and to quantify the kinematics of dome growth. Eruption monitoring using terrestrial photography began with a single camera deployed at the mouth of the volcano's crater during the first year of activity. Analysis of those images indicates that the average lineal extrusion rate decayed approximately logarithmically from about 8 m/d to about 2 m/d (± 2 m/d) from November 2004 through December 2005, and suggests that the extrusion rate fluctuated on time scales of days to weeks. From May 2006 through September 2007, imagery from multiple cameras deployed around the volcano allowed determination of 3-dimensional motion across the dome complex. Analysis of the multi-camera imagery shows spatially differential, but remarkably steady to gradually slowing, motion, from about 1–2 m/d from May through October 2006, to about 0.2–1.0 m/d from May through September 2007. In contrast to the fluctuations in lineal extrusion rate documented during the first year of eruption, dome motion from May 2006 through September 2007 was monotonic (± 0.10 m/d) to gradually slowing on time scales of weeks to months. The ability to measure spatial and temporal rates of motion of the effusing lava dome from oblique terrestrial photographs provided a significant, and sometimes the sole, means of identifying and quantifying dome growth during the eruption, and it demonstrates the utility of using frequent, long-term terrestrial photography to monitor and study volcanic eruptions.

  15. Modeling the dynamic response of a crater glacier to lava-dome emplacement: Mount St Helens, Washington, USA

    USGS Publications Warehouse

    Price, Stephen F.; Walder, Joseph S.

    2007-01-01

    The debris-rich glacier that grew in the crater of Mount St Helens after the volcano's cataclysmic 1980 eruption was split in two by a new lava dome in 2004. For nearly six months, the eastern part of the glacier was squeezed against the crater wall as the lava dome expanded. Glacier thickness nearly doubled locally and surface speed increased substantially. As squeezing slowed and then stopped, surface speed fell and ice was redistributed downglacier. This sequence of events, which amounts to a field-scale experiment on the deformation of debris-rich ice at high strain rates, was interpreted using a two-dimensional flowband model. The best match between modeled and observed glacier surface motion, both vertical and horizontal, requires ice that is about 5 times stiffer and 1.2 times denser than normal, temperate ice. Results also indicate that lateral squeezing, and by inference lava-dome growth adjacent to the glacier, likely slowed over a period of about 30 days rather than stopping abruptly. This finding is supported by geodetic data documenting dome growth.

  16. Salt

    USGS Publications Warehouse

    Franson, J.C.; Friend, M.

    1999-01-01

    Animals become victims of salt poisoning or toxicosis when toxic levels of sodium and chloride accumulate in the blood after they ingest large amounts of salt or, in some species, are deprived of water. For birds, salt sources may include saline water and road salt.Normally, the salt glands of birds (Fig. 47.1) excrete sodium and chloride to maintain the proper physiologic chemical balance. However, when there has been insufficient time for acclimation of the salt gland to the saline environment, or when salt gland function is compromised by exposure to certain pesticides or oil, the electrolyte balance of the blood may be upset by the excess sodium and chloride, resulting in toxicosis. Salt accumulation on the outside of the body, or salt encrustation, is a greater problem for waterbirds that use very saline waters than is salt toxicosis. Salt encrustation can lead to exertion, acute muscle degeneration, and eventual drowning during the struggle to escape entrapment.

  17. Sub-surface structure of La Soufrière of Guadeloupe lava dome deduced from a ground-based magnetic survey

    NASA Astrophysics Data System (ADS)

    Bouligand, Claire; Coutant, Olivier; Glen, Jonathan M. G.

    2016-07-01

    In this study, we present the analysis and interpretation of a new ground magnetic survey acquired at the Soufrière volcano on Guadeloupe Island. Observed short-wavelength magnetic anomalies are compared to those predicted assuming a constant magnetization within the sub-surface. The good correlation between modeled and observed data over the summit of the dome indicates that the shallow sub-surface displays relatively constant and high magnetization intensity. In contrast, the poor correlation at the base of the dome suggests that the underlying material is non- to weakly-magnetic, consistent with what is expected for a talus comprised of randomly oriented and highly altered and weathered boulders. The new survey also reveals a dipole anomaly that is not accounted for by a constant magnetization in the sub-surface and suggests the existence of material with decreased magnetization beneath the Soufrière lava dome. We construct simple models to constrain its dimensions and propose that this body corresponds to hydrothermally altered material within and below the dome. The very large inferred volume for such material may have implications on the stability of the dome.

  18. Contact between the acetabulum and dome of a Kerboull-type plate influences the stress on the plate and screw.

    PubMed

    Hara, Katsutoshi; Kaku, Nobuhiro; Tabata, Tomonori; Tsumura, Hiroshi

    2015-07-01

    We used a three-dimensional finite element method to investigate the conditions behind the Kerboull-type (KT) dome. The KT plate dome was divided into five areas, and 14 models were created to examine different conditions of dome contact with the acetabulum. The maximum stress on the KT plate and screws was estimated for each model. Furthermore, to investigate the impact of the contact area with the acetabulum on the KT plate, a multiple regression analysis was conducted using the analysis results. The dome-acetabulum contact area affected the maximum equivalent stress on the KT plate; good contact with two specific areas of the vertical and horizontal beams (Areas 3 and 5) reduced the maximum equivalent stress. The maximum equivalent stress on the hook increased when the hardness of the bone representing the acetabulum varied. Thus, we confirmed the technical importance of providing a plate with a broad area of appropriate support from the bone and cement in the posterior portion of the dome and also proved the importance of supporting the area of the plate in the direction of the load at the center of the cross-plate and near the hook.

  19. Cooling rate and thermal structure determined from progressive magnetization of the dacite dome at Mount St. Helens, Washington

    USGS Publications Warehouse

    Dzurisin, D.; Denlinger, R.P.; Rosenbaum, J.G.

    1990-01-01

    Our study of a magnetic anomaly associated with the recently active dacite dome at Mount St. Helens suggests that the dome consists of a hot, nonmagnetized core surrounded by a cool, magnetized carapace and flanking talus. Temporal changes in the magnetic anomaly indicate that the magnetized carapace thickened at an average rate of 0.03 ?? 0.01 m/d from 1984 to 1986. Petrographic and rock magnetic properties of dome samples indicate that the dominant process responsible for these changes is magnetization of extensively oxidized rock at progressively deeper levels within the dome as the rock cools through its blocking temperature, rather than subsequent changes in magnetization caused by further oxidation. Newly extruded material cools rapidly for a short period as heat is conducted outward in response to convective heat loss from its surface. The cooling rate gradually declines for several weeks, and thereafter the material cools at a relatively constant rate by convective heat loss from its interior along fractures that propagate inward. -from Authors

  20. Anatomy of a lava dome using muon radiography and electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Lenat, J.

    2011-12-01

    For the TOMUVOL Collaboration Previous works (e.g. Tanaka et al., 2008) have demonstrated the capacity of muon radiography techniques to image the internal structure of volcanoes. The method is based on the attenuation of the flux of high energy atmospheric muons through a volcanic edifice, which is measured by a muon telescope installed at some distance from the volcano. The telescope is composed of three parallel matrices of detectors in order to record the angle of incidence of the muons. The aperture of the telescope and its resolution are determined by the distance between the matrices, their surface and their segmentation. TOMUVOL is a project, involving astroparticle and particle physicists and volcanologists, aimed at developing muon tomography of volcanoes. The ultimate goal is to construct autonomous, portable, remote controlled muon telescopes to study and monitor active volcanoes. A first experiment has been carried out on a large, 11000-year-old, trachytic dome, the Puy de Dôme, located in the French Central Massif. The telescope system is derived from particle physics experiments. The sensors are glass resistive plate chambers. The telescope has two 1 m2 and one 1/6 m2 planes. It is located 2 km away from the summit of Puy de Dôme (elevation 1465 m), at 868 m in elevation, Signals have been accumulated during several months. A high resolution LiDAR digital terrain model has been used in computing a density model of the dome, averaged along the path of the muons through the dome. In parallel, an electrical resistivity section of the dome has been obtained using a long (2.2 km) line of electrodes. The internal structure of the dome is thus described with two physical parameters (density and resistivity). This allows us to analyse jointly the results of the two types of measurements. At the time of writing, a new muon radiography campaign is being carried out from a different viewpoint. This is the first step towards a tomographic image of the volcano

  1. EPICA Dome C deuterium record of orbital and millennial Antarctic climate variability over the last 800 000 years

    NASA Astrophysics Data System (ADS)

    Masson-Delmotte, V.

    2006-12-01

    The detailed deuterium record of the EPICA (European Project for Ice Coring in Antarctica) Dome C ice core from East Antarctica has been measured at a 55 cm resolution down to a depth of 3260 m, covering ~800 000 years. Several lines of evidence support a reliable use of deuterium fluctuations in central Antarctic ice to reconstruct past temperature changes. The magnitude of the temperature fluctuations range between -9°C and +5°C compared to the late Holocene level. At the orbital scale, the imprint of obliquity changes in the EPICA Dome C record is highlighted and compared to simulations conducted with the ECBILT-CLIO intermediate complexity climate model. We discuss the comparison between the current interglacial period and the long interglacial corresponding to marine isotopic stage 11, ~400 kyr BP. Previous studies had focused on the role of precession and the thresholds required to induce glacial inceptions. We suggest that, due to the low eccentricity configuration of MIS 11 and the Holocene, the effect of precession on the incoming solar radiation is damped and that changes in obliquity must be taken into account. The EPICA Dome C alignment of terminations I and V published in 2004 corresponds to a phasing of the obliquity signals. A relationship is observed between an index of interglacial intensity and the cumulative annual mean insolation at high latitudes, mainly as a result of the modulation of amplitude of obliquity fluctuations. We suggest that this long term changes in obliquity may be involved in the change in magnitude of glacial-interglacial fluctuations between the first and second halves of the EPICA Dome C record. At the high frequency scale, the detailed EPICA Dome C deuterium record clearly shows a one-to-one correspondence between each Greenland ice core Dansgaard-Oeschger event and their smoothed Antarctic counterparts. A methodology to detect objectively rapid events from the EPICA Dome C records is developed and applied for the earlier

  2. Single-Gap Superconductivity and Dome of Superfluid Density in Nb-Doped SrTiO 3

    NASA Astrophysics Data System (ADS)

    Thiemann, Markus; Beutel, Manfred H.; Dressel, Martin; Lee-Hone, Nicholas R.; Broun, David M.; Fillis-Tsirakis, Evangelos; Boschker, Hans; Mannhart, Jochen; Scheffler, Marc

    2018-06-01

    SrTiO3 exhibits a superconducting dome upon doping with Nb, with a maximum critical temperature Tc≈0.4 K . Using microwave stripline resonators at frequencies from 2 to 23 GHz and temperatures down to 0.02 K, we probe the low-energy optical response of superconducting SrTiO3 with a charge carrier concentration from 0.3 to 2.2 ×1020 cm-3 , covering the majority of the superconducting dome. We find single-gap electrodynamics even though several electronic bands are superconducting. This is explained by a single energy gap 2 Δ due to gap homogenization over the Fermi surface consistent with the low level of defect scattering in Nb-doped SrTiO3 . Furthermore, we determine Tc, 2 Δ , and the superfluid density as a function of charge carrier concentration, and all three quantities exhibit the characteristic dome shape.

  3. Crowning the Cathedral of Florence: Brunelleschi Builds His Dome. A Unit of Study for Grades 7-10.

    ERIC Educational Resources Information Center

    Symcox, Linda

    This unit focuses on a dramatic moment in the Renaissance from about 1420 when Filippo Brunelleschi single handedly created, defined, and engineered a new architecture by building the great dome of the cathedral of Santa Maria del Fiore in Florence. The dome became the symbol of Florence's grandeur during the Renaissance, and a model for great…

  4. Groundwater flow velocity measurements in a sinkhole at the Weeks Island Strategic Petroleum Reserve Facility, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballard, S.; Gibson, J.

    1995-02-01

    In 1992, a sinkhole was discovered above a Strategic Petroleum Reserve storage facility at Weeks Island, Louisiana. The oil is stored in an old salt mine located within a salt dome. In order to assess the hydrologic significance of the sink hole, an In Situ Permeable Flow Sensor was deployed within a sand-filled conduit in the salt dome directly beneath the sinkhole. The flow sensor is a recently developed instrument which uses a thermal perturbation technique to measure the magnitude and direction of the full 3-dimensional groundwater flow velocity vector in saturated, permeable materials. The flow sensor measured substantial groundwatermore » flow directed vertically downward into the salt dome. The data obtained with the flow sensor provided critical evidence which was instrumental in assessing the significance of the sinkhole in terms of the integrity of the oil storage facility.« less

  5. 17 CFR 49.12 - Swap data repository recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Swap data repository... COMMISSION SWAP DATA REPOSITORIES § 49.12 Swap data repository recordkeeping requirements. (a) A registered swap data repository shall maintain its books and records in accordance with the requirements of part...

  6. 17 CFR 49.12 - Swap data repository recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Swap data repository... COMMISSION SWAP DATA REPOSITORIES § 49.12 Swap data repository recordkeeping requirements. (a) A registered swap data repository shall maintain its books and records in accordance with the requirements of part...

  7. 17 CFR 49.12 - Swap data repository recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 2 2014-04-01 2014-04-01 false Swap data repository... COMMISSION (CONTINUED) SWAP DATA REPOSITORIES § 49.12 Swap data repository recordkeeping requirements. (a) A registered swap data repository shall maintain its books and records in accordance with the requirements of...

  8. Glacio-isostasy and Glacial Ice Load at Law Dome, Wilkes Land, East Antarctica

    NASA Astrophysics Data System (ADS)

    Goodwin, Ian D.; Zweck, Christopher

    2000-05-01

    The Holocene sea-level high stand or "marine limit" in Wilkes Land, East Antarctica, reached ˜30 m above present sea level at a few dispersed sites. The most detailed marine limit data have been recorded for the Windmill Islands and Budd Coast at the margin of the Law Dome ice cap, a dome of the East Antarctic Ice Sheet (EAIS). Relative sea-level lowering of 30 m and the associated emergence of the Windmill Islands have occurred since 6900 14C (corr.) yr B.P. Numerical modeling of the Earth's rheology is used to determine the glacio-isostatic component of the observed relative sea-level lowering. Glaciological evidence suggests that most of EAIS thickening occurred around its margin, with expansion onto the continental shelf. Consequently, a regional ice history for the last glacial maximum (LGM) was applied in the glacio-isostatic modeling to test whether the observed relative sea-level lowering was primarily produced by regional ice-sheet changes. The results of the modeling indicate that the postglacial (13,000 to 8000 14C yr B.P) removal of an ice load of between 770 and 1000 m from around the margin of the Law Dome and adjacent EAIS have produced the observed relative sea-level lowering. Such an additional ice load would have been associated with a 40- to 65-km expansion of the Law Dome to near the continental shelf break, together with a few hundred meters of ice thickening on the adjoining coastal slope of the EAIS up to 2000 m elevation. Whereas the observed changes in relative sea level are shown to be strongly influenced by regional ice sheet changes, the glacio-isostatic response at the Windmill Islands results from a combination of regional and, to a lesser extent, Antarctic-wide effects. The correspondence between the Holocene relative sea-level lowering interpreted at the margin of the Law Dome and the lowering interpreted along the remainder of the Wilkes Land and Oates Land coasts (105°-160° E) suggests that a similar ice load of up to 1000 m

  9. Development of in-structure design spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julyk, L.J.

    1995-09-01

    In-structure response spectra for dome mounted equipment on underground waste storage tanks at the Hanford Site are developed on the basis of recent soil-structure-interaction analyses. Recommended design spectra are provided for various locations on the tank dome.

  10. Durability of truncated dome warnings on existing curb ramps : final report.

    DOT National Transportation Integrated Search

    2004-12-01

    In 2002 the Federal Highway Administration (FHWA) notified the Oregon Department of Transportation (ODOT) that that the state was required to use truncated dome detectable warnings on curb ramps. Products appropriate for use on cured concrete surface...

  11. Small explosive volcanic plume dynamics: insights from feature tracking velocimetry at Santiaguito lava dome

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Andrews, B. J.

    2016-12-01

    Volcanic explosions eject turbulent, transient jets of hot volcanic gas and particles into the atmosphere. Though the jet of hot material is initially negatively buoyant, the jet can become buoyant through entrainment and subsequent thermal expansion of entrained air that allows the eruptive plume to rise several kilometers. Although basic plume structure is qualitatively well known, the velocity field and dynamic structure of volcanic plumes are not well quantified. An accurate and quantitative description of volcanic plumes is essential for hazard assessments, such as if the eruption will form a buoyant plume that will affect aviation or produce dangerous pyroclastic density currents. Santa Maria volcano, in Guatemala, provides the rare opportunity to safely capture video of Santiaguito lava dome explosions and small eruptive plumes. In January 2016, two small explosions (< 2 km) that lasted several minutes and with little cloud obstruction were recorded for image analysis. The volcanic plume structure is analyzed through sequential image frames from the video where specific features are tracked using a feature tracking velocimetry (FTV) algorithm. The FTV algorithm quantifies the 2D apparent velocity fields along the surface of the plume throughout the duration of the explosion. Image analysis of small volcanic explosions allows us to examine the maximum apparent velocities at two heights above the dome surface, 0-25 meters, where the explosions first appear, and 100-125 meters. Explosions begin with maximum apparent velocities of <15 m/s. We find at heights near the dome surface and 10 seconds after explosion initiation, the maximum apparent velocities transition to sustained velocities of 5-15 m/s. At heights 100-125 meters above the dome surface, the apparent velocities transition to sustained velocities of 5-15 m/s after 25 seconds. Throughout the explosion, transient velocity maximums can exceed 40 m/s at both heights. Here, we provide novel quantification

  12. Geology and impact features of Vargeão Dome, southern Brazil

    NASA Astrophysics Data System (ADS)

    Crósta, Alvaro P.; Kazzuo-Vieira, César; Pitarello, Lidia; Koeberl, Christian; Kenkmann, Thomas

    2012-01-01

    Vargeão Dome (southern Brazil) is a circular feature formed in lava flows of the Lower Cretaceous Serra Geral Formation and in sandstones of the Paraná Basin. Even though its impact origin was already proposed in the 1980s, little information about its geological and impact features is available in the literature. The structure has a rim-rim diameter of approximately 12 km and comprises several ring-like concentric features with multiple concentric lineaments. The presence of a central uplift is suggested by the occurrence of deformed sandstone strata of the Botucatu and Pirambóia formations. We present the morphological/structural characteristics of Vargeão Dome, characterize the different rock types that occur in its interior, mainly brecciated volcanic rocks (BVR) of the Serra Geral Formation, and discuss the deformation and shock features in the volcanic rocks and in sandstones. These features comprise shatter cones in sandstone and basalt, as well as planar microstructures in quartz. A geochemical comparison of the target rock equivalents from outside the structure with the shocked rocks from its interior shows that both the BVRs and the brecciated sandstone have a composition largely similar to that of the corresponding unshocked lithologies. No traces of meteoritic material have been found so far. The results confirm the impact origin of Vargeão Dome, making it one of the largest among the rare impact craters in basaltic targets known on Earth.

  13. Friction-Stir-Welded and Spin-Formed End Domes for Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Hales, S. J.; Tayon, W. A.; Domack, M. S.

    2012-01-01

    Manufacturing of single-piece end domes for cryogenic tanks employing spin forming of tailored, friction-stir-welded blanks of Al-Li alloy 2195 plate offers cost and reliability benefits. The introduction of plastic deformation into a friction stir weld is a unique feature of the proposed manufacturing route. This investigation addressed abnormal grain growth [AGG] within the friction stir weldments during postfabrication processing of a prototype dome. The phenomenon of AGG was observed during the solution heat treatment [SHT] phase of T8 tempering and is a major concern for meeting specifications. Such abrupt microstructural transitions can be detrimental to notch-sensitive mechanical properties, such as ductility and/or fracture toughness. If the issue of AGG cannot be resolved, then the acceptance of this approach as a viable manufacturing route may be in jeopardy. The innovative approach adopted in this investigation was the insertion of a stand-alone, Intermediate Annealing Treatment [IAT] between the spin forming and T8 processing operations. A simple, recovery annealing step was deemed to be the most readily-scalable solution when fabricating thin-walled, ellipsoidal domes. The research effort culminated in the development of an effective IAT, which resulted in a significant decrease in AGG following SHT. The processing philosophy adopted in designing the IAT is outlined and the microstructural reasons for success are discussed. The analytical results presented are consistent with promoting continuous grain growth during the IAT, thereby suppressing AGG during the SHT.

  14. Growth of single-layer boron nitride dome-shaped nanostructures catalysed by iron clusters.

    PubMed

    Torre, A La; Åhlgren, E H; Fay, M W; Ben Romdhane, F; Skowron, S T; Parmenter, C; Davies, A J; Jouhannaud, J; Pourroy, G; Khlobystov, A N; Brown, P D; Besley, E; Banhart, F

    2016-08-11

    We report on the growth and formation of single-layer boron nitride dome-shaped nanostructures mediated by small iron clusters located on flakes of hexagonal boron nitride. The nanostructures were synthesized in situ at high temperature inside a transmission electron microscope while the e-beam was blanked. The formation process, typically originating at defective step-edges on the boron nitride support, was investigated using a combination of transmission electron microscopy, electron energy loss spectroscopy and computational modelling. Computational modelling showed that the domes exhibit a nanotube-like structure with flat circular caps and that their stability was comparable to that of a single boron nitride layer.

  15. Building Scientific Data's list of recommended data repositories

    NASA Astrophysics Data System (ADS)

    Hufton, A. L.; Khodiyar, V.; Hrynaszkiewicz, I.

    2016-12-01

    When Scientific Data launched in 2014 we provided our authors with a list of recommended data repositories to help them identify data hosting options that were likely to meet the journal's requirements. This list has grown in size and scope, and is now a central resource for authors across the Nature-titled journals. It has also been used in the development of data deposition policies and recommended repository lists across Springer Nature and at other publishers. Each new addition to the list is assessed according to a series of criteria that emphasize the stability of the resource, its commitment to principles of open science and its implementation of relevant community standards and reporting guidelines. A preference is expressed for repositories that issue digital object identifiers (DOIs) through the DataCite system and that share data under the Creative Commons CC0 waiver. Scientific Data currently lists fourteen repositories that focus on specific areas within the Earth and environmental sciences, as well as the broad scope repositories, Dryad and figshare. Readers can browse and filter datasets published at the journal by the host repository using ISA-explorer, a demo tool built by the ISA-tools team at Oxford University1. We believe that well-maintained lists like this one help publishers build a network of trust with community data repositories and provide an important complement to more comprehensive data repository indices and more formal certification efforts. In parallel, Scientific Data has also improved its policies to better support submissions from authors using institutional and project-specific repositories, without requiring each to apply for listing individually. Online resources Journal homepage: http://www.nature.com/scientificdata Data repository criteria: http://www.nature.com/sdata/policies/data-policies#repo-criteria Recommended data repositories: http://www.nature.com/sdata/policies/repositories Archived copies of the list: https

  16. Lava dome morphometry and geochronology of the youngest eruptive activity in Eastern Central Europe: Ciomadul (Csomád), East Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Karátson, D.; Telbisz, T.; Harangi, Sz.; Magyari, E.; Kiss, B.; Dunkl, I.; Veres, D.; Braun, M.

    2012-04-01

    Volcanic evolution of the Ciomadul (Csomád) lava dome complex, site of the youngest (Late Pleistocene, late Marine Isotope Stage 3) eruptive activity in the Carpathians, has been studied by advanced morphometry and radiometric (U/Pb, U/He and 14C) geochronology. The volcano produced alternating effusive and intermittent explosive eruptions from individual domes, typical of common andesitic-dacitic lava domes. A comparative morphometry shows steep ≥30° mean slopes of domes' upper flank and the Csomád domes fit well to the 100-200 ka domes worldwide. Morphometric ages obtained from the mean slope vs age precipitation correlation results in ≤100 ka ages. The morphometric approach is supported by U/Pb and U/He chronology: preliminary results of zircon dating indicate ages ranging between 200(250) and 30 ka. The youngest ages of the data set obtained both from lavas and pumiceous pyroclastics argue for a more or less coeval effusive and explosive volcanism. Based also on volcanological data, we propose vulcanian eruptions and explosive dome collapses especially toward the end of volcanic activity. Moreover, radiometric chronology suggests that, possibly subsequently to the peripheral domes, a central lava dome complex built up ≤100 ka ago. This dome complex, exhibiting even more violent, up to sub-plinian explosions, emplaced pumiceous pyroclastic flow and fall deposits as far as 17 km. We propose that the explosive activity produced caldera-forming eruptions as well, creating a half-caldera. This caldera rim is manifested by the asymmetric morphology of the central edifice: the present-day elevated ridge of Ciomadul Mare (Nagy Csomád), encompassing the twin craters of Mohoş (Mohos) peat bog and Sf. Ana (Szent [St.] Anna). These latter craters may have been formed subsequently, ca. ~100-30 ka ago, after the caldera formation. Drilling of lacustrine sediments in the St. Anna crater shows that beneath the Holocene gyttja several meters of Late Pleistocene

  17. Physico-chemical interactions at the concrete-bitumen interface of nuclear waste repositories

    NASA Astrophysics Data System (ADS)

    Bertron, A.; Ranaivomanana, H.; Jacquemet, N.; Erable, B.; Sablayrolles, C.; Escadeillas, G.; Albrecht, A.

    2013-07-01

    This study investigates the fate of nitrate and organic acids at the bitumenconcrete-steel interface within a repository storage cell for long-lived, intermediatelevel, radioactive wastes. The interface was simulated by a multiphase system in which cementitious matrices (CEM V-paste specimens) were exposed to bitumen model leachates consisting of nitrates and acetic acid with and without oxalic acid, chemical compounds likely to be released by bitumen. Leaching experiments were conducted with daily renewal of the solutions in order to accelerate reactions. C-steel chips, simulating the presence of steel in the repository, were added in the systems for some experiments. The concentrations of anions (acetate, oxalate, nitrate, and nitrite) and cations (calcium, potassium, ammonium) and the pH were monitored over time. Mineralogical changes of the cementitious matrices were analysed by XRD. The results confirmed the stability of nitrates in the absence of steel, whereas, reduction of nitrates was observed in the presence of steel (production of NH4+). The action of acetic acid on the cementitious matrix was similar to that of ordinary leaching; no specific interaction was detected between acetate and cementitious cations. The reaction of oxalic acid with the cementitious phases led to the precipitation of calcium oxalate salts in the outer layer of the matrix. The concentration of oxalate was reduced by 65% inside the leaching medium.

  18. Manufacturing of 5.5 Meter Diameter Cryogenic Fuel Tank Domes for the NASA Ares I Rocket

    NASA Technical Reports Server (NTRS)

    Jones, Ronald E.; Carter, Robert W.

    2012-01-01

    The Ares I rocket is the first launch vehicle scheduled for manufacture under the National Aeronautic and Space Administration s (NASA s) Constellation program. A series of full-scale Ares I development articles have been constructed on the Robotic Weld Tool at the NASA George C. Marshall Space Flight Center in Huntsville, Alabama. The Robotic Weld Tool is a 100 ton, 7-axis, robotic manufacturing system capable of machining and friction stir welding large-scale space hardware. This presentation will focus on the friction stir welding of 5.5m diameter cryogenic fuel tank components; specifically, the liquid hydrogen forward dome (LH2 MDA) and the common bulkhead manufacturing development articles (CBMDA). The LH2 MDA was the first full-scale, flight-like Ares I hardware produced under the Constellation Program. It is a 5.5m diameter elliptical dome assembly consisting of eight gore panels, a y-ring stiffener and a manhole fitting. All components are made from aluminum-lithium alloy 2195. Conventional and self-reacting friction stir welding was used on this article. Manufacturing solutions will be discussed including the implementation of photogrammetry, an advanced metrology technique, as well as fixtureless welding. The LH2 MDA is the first known fully friction stir welded dome ever produced. The completion of four Common Bulkhead Manufacturing Development Articles (CBMDA) will also be highlighted. Each CBMDA consists of a 5.5m diameter spun-formed dome friction stir welded to a y-ring stiffener. The domes and y-rings are made of aluminum 2014 and 2219 respectively. An overview of CBMDA manufacturing processes and the effect of tooling on weld defect formation will be discussed.

  19. Muon radiography and deformation analysis of the lava dome formed by the 1944 eruption of Usu, Hokkaido--contact between high-energy physics and volcano physics--.

    PubMed

    K M Tanaka, Hiroyuki; Yokoyama, Izumi

    2008-01-01

    Lava domes are one of the conspicuous topographic features on volcanoes. The subsurface structure of the lava dome is important to discuss its formation mechanism. In the 1944 eruption of Volcano Usu, Hokkaido, a new lava dome was formed at its eastern foot. After the completion of the lava dome, various geophysical methods were applied to the dome to study its subsurface structure, but resulted in a rather ambiguous conclusion. Recently, from the results of the levelings, which were repeated during the eruption, "pseudo growth curves" of the lava dome were obtained. The curves suggest that the lava dome has a bulbous shape. In the present work, muon radiography, which previously proved effective in imaging the internal structure of Volcano Asama, has been applied to the Usu lava dome. The muon radiography measures the distribution of the "density length" of volcanic bodies when detectors are arranged properly. The result obtained is consistent with the model deduced from the pseudo growth curves. The measurement appears to afford useful method to clarify the subsurface structure of volcanoes and its temporal changes, and in its turn to discuss volcanic processes. This is a point of contact between high-energy physics and volcano physics.

  20. Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Formed Domes

    NASA Technical Reports Server (NTRS)

    Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.

    2010-01-01

    Simulated service testing (SST) development was required to help qualify a new 2195 aluminum lithium (Al-Li) alloy spin forming dome fabrication process for the National Aeronautics and Space Administration (NASA) Exploration Development Technology Program. The application for the technology is to produce high strength low weight tank components for NASA s next generation launch vehicles. Since plate material is not currently manufactured large enough to fabricate these domes, two plates are joined by means of friction stir welding. The plates are then pre-contour machined to near final thicknesses allowing for a thicker weld land and anticipating the level of stretch induced by the spin forming process. The welded plates are then placed in a spin forming tool and hot stretched using a trace method producing incremental contours. Finally the dome receives a room temperature contour stretch to final dimensions, heat treatment, quenching, and artificial aging to emulate a T-8 condition of temper. Stress corrosion cracking (SCC) tests were also performed by alternate immersion in a sodium chloride (NaCl) solution using the typical double beam assembly and with 4-point loaded specimens and use of bent-beam stress-corrosion test specimens under alternate immersion conditions. In addition, experiments were conducted to determine the threshold stress intensity factor for SCC (K(sub ISCC)) which to our knowledge has not been determined previously for Al-Li 2195 alloy. The successful simulated service and stress corrosion testing helped to provide confidence to continue to Ares 1 scale dome fabrication

  1. Granitoid magmatism of Alarmaut granite-metamorphic dome, West Chukotka, NE Russia

    NASA Astrophysics Data System (ADS)

    Luchitskaya, M. V.; Sokolov, S. D.; Bondarenko, G. E.; Katkov, S. M.

    2009-04-01

    Main tectonic elements of West Chukotka are Alazey-Oloy, South-Anyui and Anyui-Chukotka fold systems, formed as a result of collision between structures of North-Asian continent active margin and Chukotka microcontinent [1-3]. South-Anyui fold system, separating Alazey-Oloy and Anyui-Chukotka systems, is considered as suture zon, formed as a result of oceanic basin closing [4-6]. Continent-microcontinent collision resulted in formation of large orogen with of northern and southern vergent structures, complicated by strike-slip deformations [7, 8]. Within Anyui-Chukotka fold system several rises, where most ancient deposits (crystalline basement and Paleozoic cover of Chukotka microcontinent) are exposed, were distinguished [2, 9-11]. Later they were considered as granite-metamorphic domes [12-14]. Alarmaut dome is located at West Chukotka to the north from Bilibino city and is traced from south to north in more than 120 km. General direction of structure is discordant to prevailing NW extensions of tectonic elements of the region. Paleozoic-Triassic deposits are exposed within the Alarmaut dome: 1) D3-C1 - crystalline schists, quartz-feldspar metasandstones, quartzites, marbles (700 m) [11]; 2) C1 - marblized limestones, quartz-feldspar metasandstones, quartzites, amphibole-pyroxene crystalline schists. Limestones contain corals, indicating Visean age of deposits [11]. Metamorphism reaches amphibolite facies, maximum P-T conditions are 660°С and 5 kbar. Migmatites, indicating in situ partial melting, are observed. Intensity of deformations of Paleozoic rocks increases at the boundary with Triassic deposits [11]; in the western part of dome slices of Pz rocks are separated by blastomylonite horizons [14]. Within Alramaut dome granitoids of Lupveem batholith (central part of dome), Bystrinsky pluton (southeastern part), and small Koyvel' and Kelil'vun plutons were studied. New U-Pb SHRIMP zircon data indicate Early Cretaceous (117-112 m.a.) age of granitoids [15

  2. Data repositories for medical education research: issues and recommendations.

    PubMed

    Schwartz, Alan; Pappas, Cleo; Sandlow, Leslie J

    2010-05-01

    The authors explore issues surrounding digital repositories with the twofold intention of clarifying their creation, structure, content, and use, and considering the implementation of a global digital repository for medical education research data sets-an online site where medical education researchers would be encouraged to deposit their data in order to facilitate the reuse and reanalysis of the data by other researchers. By motivating data sharing and reuse, investigators, medical schools, and other stakeholders might see substantial benefits to their own endeavors and to the progress of the field of medical education.The authors review digital repositories in medicine, social sciences, and education, describe the contents and scope of repositories, and present extant examples. The authors describe the potential benefits of a medical education data repository and report results of a survey of the Society for Directors of Research in Medicine Education, in which participants responded to questions about data sharing and a potential data repository. Respondents strongly endorsed data sharing, with the caveat that principal investigators should choose whether or not to share data they collect. A large majority believed that a repository would benefit their unit and the field of medical education. Few reported using existing repositories. Finally, the authors consider challenges to the establishment of such a repository, including taxonomic organization, intellectual property concerns, human subjects protection, technological infrastructure, and evaluation standards. The authors conclude with recommendations for how a medical education data repository could be successfully developed.

  3. Influence of porosity and groundmass crystallinity on dome rock strength: a case study from Mt. Taranaki, New Zealand

    NASA Astrophysics Data System (ADS)

    Zorn, Edgar U.; Rowe, Michael C.; Cronin, Shane J.; Ryan, Amy G.; Kennedy, Lori A.; Russell, James K.

    2018-04-01

    Lava domes pose a significant hazard to infrastructure, human lives and the environment when they collapse. Their stability is partly dictated by internal mechanical properties. Here, we present a detailed investigation into the lithology and composition of a < 250-year-old lava dome exposed at the summit of Mt. Taranaki in the western North Island of New Zealand. We also examined samples from 400 to 600-year-old block-and-ash flow deposits, formed by the collapse of earlier, short-lived domes extruded at the same vent. Rocks with variable porosity and groundmass crystallinity were compared using measured compressive and tensile strength, derived from deformation experiments performed at room temperature and low (3 MPa) confining pressures. Based on data obtained, porosity exerts the main control on rock strength and mode of failure. High porosity (> 23%) rocks show low rock strength (< 41 MPa) and dominantly ductile failure, whereas lower porosity rocks (5-23%) exhibit higher measured rock strengths (up to 278 MPa) and brittle failure. Groundmass crystallinity, porosity and rock strength are intercorrelated. High groundmass crystal content is inversely related to low porosity, implying crystallisation and degassing of a slowly undercooled magma that experienced rheological stiffening under high pressures deeper within the conduit. This is linked to a slow magma ascent rate and results in a lava dome with higher rock strength. Samples with low groundmass crystallinity are associated with higher porosity and lower rock strength, and represent magma that ascended more rapidly, with faster undercooling, and solidification in the upper conduit at low pressures. Our experimental results show that the inherent strength of rocks within a growing dome may vary considerably depending on ascent/emplacement rates, thus significantly affecting dome stability and collapse hazards.

  4. Sea salt sodium record from Talos Dome (East Antarctica) as a potential proxy of the Antarctic past sea ice extent.

    PubMed

    Severi, M; Becagli, S; Caiazzo, L; Ciardini, V; Colizza, E; Giardi, F; Mezgec, K; Scarchilli, C; Stenni, B; Thomas, E R; Traversi, R; Udisti, R

    2017-06-01

    Antarctic sea ice has shown an increasing trend in recent decades, but with strong regional differences from one sector to another of the Southern Ocean. The Ross Sea and the Indian sectors have seen an increase in sea ice during the satellite era (1979 onwards). Here we present a record of ssNa + flux in the Talos Dome region during a 25-year period spanning from 1979 to 2003, showing that this marker could be used as a potential proxy for reconstructing the sea ice extent in the Ross Sea and Western Pacific Ocean at least for recent decades. After finding a positive relationship between the maxima in sea ice extent for a 25-year period, we used this relationship in the TALDICE record in order to reconstruct the sea ice conditions over the 20th century. Our tentative reconstruction highlighted a decline in the sea ice extent (SIE) starting in the 1950s and pointed out a higher variability of SIE starting from the 1960s and that the largest sea ice extents of the last century occurred during the 1990s. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Europa Ridges, Hills and Domes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This moderate-resolution view of the surface of one of Jupiter's moons, Europa, shows the complex icy crust that has been extensively modified by fracturing and the formation of ridges. The ridge systems superficially resemble highway networks with overpasses, interchanges and junctions. From the relative position of the overlaps, it is possible to determine the age sequence for the ridge sets. For example, while the 8-kilometer-wide (5-mile) ridge set in the lower left corner is younger than most of the terrain seen in this picture, a narrow band cuts across the set toward the bottom of the picture, indicating that the band formed later. In turn, this band is cut by the narrow 2- kilometer-wide (1.2-mile) double ridge running from the lower right to upper left corner of the picture. Also visible are numerous clusters of hills and low domes as large as 9 kilometers (5.5 miles) across, many with associated dark patches of non-ice material. The ridges, hills and domes are considered to be ice-rich material derived from the subsurface. These are some of the youngest features seen on the surface of Europa and could represent geologically young eruptions.

    This area covers about 140 kilometers by 130 kilometers (87 miles by 81 miles) and is centered at 12.3 degrees north latitude, 268 degrees west longitude. Illumination is from the east (right side of picture). The resolution is about 180 meters (200 yards) per pixel, meaning that the smallest feature visible is about a city block in size. The picture was taken by the Solid State Imaging system on board the Galileo spacecraft on February 20, 1997, from a distance of 17,700 kilometers (11,000 miles) during its sixth orbit around Jupiter.

    The Jet Propulsion Laboratory, Pasadena, CA, manages the mission for NASA's Office of Space Science, Washington D.C. This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov.

  6. Management of Cubitus Varus Deformity in Children by Closed Dome Osteotomy

    PubMed Central

    Kejariwal, Ujjwal; Singh, Bijendra

    2017-01-01

    Introduction Supracondylar fractures are the most common elbow injuries in skeletally immature children between 5-10 years of age and cubitus varus deformity is the most common late complication. Cubitus varus or bow elbow or gunstock deformity is the result of malunion occurring as a complication of supracondylar fracture of the humerus. Various type of corrective osteotomies are used of which lateral closed wedge French osteotomy is commomly used which has its own complications like lateral condylar prominence, unsightful scar and limitation of movement. Closed dome osteotomy is a technique which overcomes these complications. This surgery is done with simple readily available instruments in the orthopaedic operation theatre with no special requirements for instrumentation. Aim This study was done to study the results of closed dome osteotomy for correction of cubitus varus deformity, after malunited supracondylar fracture of humerus in children. Materials and Methods This study included 25 children of either sex with malunited supracondylar fracture of distal humerus having cubitus varus deformity admitted in orthopaedics department. After appropriate pre operative assessment, closed dome osteotomy was done and post operatively X-ray of patients was taken and carrying angle and Lateral Condylar Prominence Index (LCPI) were calculated. Patients were re-assessed at complete union and results were calculated as per Mitchell and Adams criteria. Results In our study of 25 patients, 68% were males, 32% were females. Majority (84%) of patients were in the age group of 5-10 years. Carrying angle post operatively was 0-10° valgus in 64% of patients while 36% had 10-20° valgus. LCPI changed post operatively ranging from +5.0% to -10.7%, average -2.75%. Decrease in LCPI had better cosmetic appearance. Range of motion post operatively increased or remained same as previous full motion in 84% of the patients. Union occurred in all patients by eight weeks. Few complications

  7. Pyroclastic flows generated by gravitational instability of the 1996-97 lava dome of Soufriere Hills Volcano, Montserrat

    USGS Publications Warehouse

    Cole, P.D.; Calder, E.S.; Druitt, T.H.; Hoblitt, R.; Robertson, R.; Sparks, R.S.J.; Young, S.R.

    1998-01-01

    Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9 ?? 106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated pyroclastic flow productivity and sustained dome collapse events are linked to pulses of high magma extrusion rates.Numerous pyroclastic flows were produced during 1996-97 by collapse of the growing andesitic lava dome at Soufriere Hills Volcano, Montserrat. Measured deposit volumes from these flows range from 0.2 to 9??106 m3. Flows range from discrete, single pulse events to sustained large scale dome collapse events. Flows entered the sea on the eastern and southern coasts, depositing large fans of material at the coast. Small runout distance (<1 km) flows had average flow front velocities in the order of 3-10 m/s while flow fronts of the larger runout distance flows (up to 6.5 km) advanced in the order of 15-30 m/s. Many flows were locally highly erosive. Field relations show that development of the fine grained ash cloud surge component was enhanced during the larger sustained events. Periods of elevated dome pyroclastic flow productivity and sustained collapse events are linked to pulses of high magma extrusion rates.

  8. Evolution of Abnormally Low Pressure at Bravo Dome and its Implications for Carbon Capture and Storage (CCS)

    NASA Astrophysics Data System (ADS)

    Akhbari, D.; Hesse, M. A.

    2015-12-01

    Carbon capture and storage allows reductions of the rapidly rising CO2 from fossil fuel-based power generation, if large storage rates and capacities can be achieved. The injection of large fluid volumes at high rates leads to a build-up of pore-pressure in the storage formation that may induce seismicity and compromise the storage security. Many natural CO2 fields in midcontinent US, in contrast, are under-pressured rather than over-pressured suggesting that natural processes reduce initial over-pressures and generate significant under-pressures. The question is therefore to understand the sequence of process(es) that allow the initial over-pressure to be eliminated and the under-pressure to be maintained over geological periods of time. We therefore look into pressure evolution in Bravo Dome, one of the largest natural CO2 accumulations in North America, which stores 1.3 Gt of CO2. Bravo Dome is only 580-900 m deep and is divided into several compartments with near gas-static pressure (see Figure). The pre-production gas pressures in the two main compartments that account for 70% of the mass of CO2 stored at Bravo Dome are more than 6 MPa below hydrostatic pressure. Here we show that the under-pressure in the Bravo Dome CO2 reservoir is maintained by hydrological compartmentalization over millennial timescales and generated by a combination of processes including cooling, erosional unloading, limited leakage into overlying formations, and CO2 dissolution into brine. Herein, we introduce CO2 dissolution into brine as a new process that reduce gas pressure in a compartmentalized reservoir and our results suggest that it may contribute significantly to reduce the initial pressure build-up due to injection. Bravo Dome is the first documented case of pressure drop due to CO2 dissolution. To have an accurate prediction of pressure evolution in Bravo Dome, our models must include geomechanics and thermodynamics for the reservoir while they account for the pressure

  9. Numerical Experiments on the Role of the Lower Crust in the Development of Extension-driven Gneiss Domes

    NASA Astrophysics Data System (ADS)

    Korchinski, M.; Rey, P. F.; Teyssier, C. P.; Mondy, L. S.; Whitney, D.

    2016-12-01

    Flow of orogenic crust is a critical geodynamic process in the chemical and physical evolution of continents. Deeply sourced rocks are transported to the near surface within gneiss domes, which are ubiquitous features in orogens and extensional regions. Exhumation of material within a gneiss dome can occur as the result of tectonic stresses, where material moves into space previously occupied by the shallow crust as the result of extension localized along a detachment system. Gravitationally driven flow may also contribute to exhumation. This research addresses how physical parameters (density, viscosity) of the deep crust (base of brittle crust to Moho) impact (1) the localization of extension in the shallow crust, and (2) the flow of deep crust by tectonic and non-tectonic stresses. We present 2D numerical experiments in which the density (2900-3100 kg m-3) and viscosity (1e19-1e21 Pa s) of the deep crust are systematically varied. Lateral and vertical transport of deep crustal rocks toward the gneiss dome occurs across the entire parameter space. A low viscosity deep crust yields localized extension in the upper crust and crustal-scale upward flow; this case produces the highest exhumation. A high viscosity deep crust results in distributed thinning of the upper crust, which suppresses upward mass transport. The density of the deep crust has only a second-order effect on the shallow crust extension regime. We capture the flow field generated after the cessation of extension to evaluate mass transport that is not driven by tectonic stresses. Upward transport of material within the gneiss dome is present across the entire parameter space. In the case of a low-viscosity deep crust, horizontal flow occurs adjacent to the dome above the Moho; this flow is an order of magnitude higher than that within the dome. Density variations do not drastically alter the flow field in the low viscosity lower crust. However, a high density and high viscosity deep crust results in

  10. Institutional Repositories as Infrastructures for Long-Term Preservation

    ERIC Educational Resources Information Center

    Francke, Helena; Gamalielsson, Jonas; Lundell, Björn

    2017-01-01

    Introduction: The study describes the conditions for long-term preservation of the content of the institutional repositories of Swedish higher education institutions based on an investigation of how deposited files are managed with regards to file format and how representatives of the repositories describe the functions of the repositories.…

  11. Collaborative Information Retrieval Method among Personal Repositories

    NASA Astrophysics Data System (ADS)

    Kamei, Koji; Yukawa, Takashi; Yoshida, Sen; Kuwabara, Kazuhiro

    In this paper, we describe a collaborative information retrieval method among personal repositorie and an implementation of the method on a personal agent framework. We propose a framework for personal agents that aims to enable the sharing and exchange of information resources that are distributed unevenly among individuals. The kernel of a personal agent framework is an RDF(resource description framework)-based information repository for storing, retrieving and manipulating privately collected information, such as documents the user read and/or wrote, email he/she exchanged, web pages he/she browsed, etc. The repository also collects annotations to information resources that describe relationships among information resources and records of interaction between the user and information resources. Since the information resources in a personal repository and their structure are personalized, information retrieval from other users' is an important application of the personal agent. A vector space model with a personalized concept-base is employed as an information retrieval mechanism in a personal repository. Since a personalized concept-base is constructed from information resources in a personal repository, it reflects its user's knowledge and interests. On the other hand, it leads to another problem while querying other users' personal repositories; that is, simply transferring query requests does not provide desirable results. To solve this problem, we propose a query equalization scheme based on a relevance feedback method for collaborative information retrieval between personalized concept-bases. In this paper, we describe an implementation of the collaborative information retrieval method and its user interface on the personal agent framework.

  12. Extrusion cycles of dome-forming eruptions

    NASA Astrophysics Data System (ADS)

    de'Michieli Vitturi, M.; Clarke, A. B.; Neri, A.; Voight, B.

    2010-12-01

    We investigated the dynamics of magma ascent along a dome-forming conduit coupled with the formation and extrusion of a degassed plug at the top by a two-phase flow model. We treated the magma mixture as a liquid continuum with dispersed gas bubbles and crystals in thermodynamic equilibrium with the melt. A modified Poiseulle form of the viscous term for fully developed laminar flow in an elliptic conduit was assumed. During ascent, magma pressure decreases and water vapor exsolves and partially degasses from the melt as the melt simultaneously crystallizes, causing changes in mixture density and viscosity, which may eventually lead to the formation of a degassed plug sealing the conduit. The numerical model DOMEFLOW (de’ Michieli Vitturi et al., EPSL 2010) has been applied to dome-building eruptions using conditions approximately appropriate for the Soufrière Hills volcano, Montserrat, which has led to a better understanding of the role of a plug on eruption periodicity. Two mechanisms, which have been proposed to cause periodicity, have been implemented in the model and their corresponding timescales explored. The first test applies a stick-slip model in which the plug is considered as solid and static/dynamic friction, as described in Iverson et al. [Nature 2006, 444, 439-43], replaces the viscous forces in the momentum equation. This mechanism yields cycle timescales of seconds to tens of seconds with values generally depending on assumed friction coefficients. Although not all constants and parameters have been explored for this model, we suggest that a stick-slip mechanism of this type cannot explain the cycles of extrusion and explosion typically observed at Montserrat (timescales of hours). The second mechanism does not consider friction but allows enhanced permeable gas loss in the shallow conduit, possibly due to connected porosity or micro- or macro-scale fractures. Enhanced permeable gas loss may lead to formation of a dense and rheologically

  13. Morphological and structural changes at the Merapi lava dome monitored in 2012-15 using unmanned aerial vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Darmawan, Herlan; Walter, Thomas R.; Brotopuspito, Kirbani Sri; Subandriyo; I Gusti Made Agung Nandaka

    2018-01-01

    Dome-building volcanoes undergo rapid and profound topographic changes that are important to quantify for the purposes of hazard assessment. However, as hazardous lava domes often develop on high-altitude volcanoes that exhibit steep-sided topography, it is challenging to obtain direct field access and thus to analyze these morphological and structural changes. Merapi Volcano in Indonesia is a type example of such a volcano, as soon after its 2010 eruption, a new lava dome developed. This dome was partially destroyed during six distinct steam-driven explosions that occurred between 2012 and 2014. Here, we investigate the topographic and structural changes associated with these six steam-driven explosions by comparing close-range photogrammetric data obtained before and after these explosions. To accomplish this, we performed two UAV campaigns in 2012 and 2015. By applying the Structure from Motion (SfM) technique, we are able to construct three-dimensional point clouds, assess their quality by comparing them to a terrestrial laser scanning (TLS) dataset, and generate high-resolution Digital Elevation Models (DEMs) and photomosaics. The comparison of these two DEMs and photomosaics reveals changes in topography and the appearance of fractures. In the 2012 dataset, we find a dense fracture network striking to the NNW-SSE. In the post-eruptive 2015 dataset, we see that this NNW-SSE fracture trend is much more strongly expressed; we also detect the formation of aligned and elongated explosion craters, which are associated with the removal of over 200,000 m3 of dome material, most of which ( 70%) was deposited outside the crater region. Therefore, this study suggests that the locations of the steam-driven explosions at Merapi Volcano were controlled by the reactivation of preexisting structures. Moreover, some of the newly developed and reactivated fractures delineate a block on the southern slope of the dome, which could become structurally unstable and potentially

  14. Geometric and Optic Characterization of a Hemispherical Dome Port for Underwater Photogrammetry

    PubMed Central

    Menna, Fabio; Nocerino, Erica; Fassi, Francesco; Remondino, Fabio

    2016-01-01

    The popularity of automatic photogrammetric techniques has promoted many experiments in underwater scenarios leading to quite impressive visual results, even by non-experts. Despite these achievements, a deep understanding of camera and lens behaviors as well as optical phenomena involved in underwater operations is fundamental to better plan field campaigns and anticipate the achievable results. The paper presents a geometric investigation of a consumer grade underwater camera housing, manufactured by NiMAR and equipped with a 7′′ dome port. After a review of flat and dome ports, the work analyzes, using simulations and real experiments, the main optical phenomena involved when operating a camera underwater. Specific aspects which deal with photogrammetric acquisitions are considered with some tests in laboratory and in a swimming pool. Results and considerations are shown and commented. PMID:26729133

  15. Composition of fluid inclusions in Permian salt beds, Palo Duro Basin, Texas, U.S.A.

    USGS Publications Warehouse

    Roedder, E.; d'Angelo, W. M.; Dorrzapf, A.F.; Aruscavage, P. J.

    1987-01-01

    Several methods have been developed and used to extract and chemically analyze the two major types of fluid inclusions in bedded salt from the Palo Duro Basin, Texas. Data on the ratio K: Ca: Mg were obtained on a few of the clouds of tiny inclusions in "chevron" salt, representing the brines from which the salt originally crystallized. Much more complete quantitative data (Na, K, Ca, Mg, Sr, Cl, SO4 and Br) were obtained on ??? 120 individual "large" (mostly ???500 ??m on an edge, i.e., ??? ??? 1.6 ?? 10-4 g) inclusions in recrystallized salt. These latter fluids have a wide range of compositions, even in a given piece of core, indicating that fluids of grossly different composition were present in these salt beds during the several (?) stages of recrystallization. The analytical results indicating very large inter-and intra-sample chemical variation verify the conclusion reached earlier, from petrography and microthermometry, that the inclusion fluids in salt and their solutes are generally polygenetic. The diversity in composition stems from the combination of a variety of sources for the fluids (Permian sea, meteoric, and groundwater, as well as later migrating ground-, formation, or meteoric waters of unknown age), and a variety of subsequent geochemical processes of dissolution, precipitation and rock-water interaction. The compositional data are frequently ambiguous but do provide constraints and may eventually yield a coherent history of the events that produced these beds. Such an understanding of the past history of the evaporite sequence of the Palo Duro Basin should help in predicting the future role of the fluids in the salt if a nuclear waste repository is sited there. ?? 1987.

  16. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permitmore » is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.« less

  17. The Chaitén rhyolite lava dome: Eruption sequence, lava dome volumes, rapid effusion rates and source of the rhyolite magma

    USGS Publications Warehouse

    Pallister, John S.; Diefenbach, Angela K.; Burton, William C.; Munoz, Jorge; Griswold, Julia P.; Lara, Luis E.; Lowenstern, Jacob B.; Valenzuela, Carolina E.

    2013-01-01

    We use geologic field mapping and sampling, photogrammetric analysis of oblique aerial photographs, and digital elevation models to document the 2008-2009 eruptive sequence at Chaitén Volcano and to estimate volumes and effusion rates for the lava dome. We also present geochemical and petrologic data that contribute to understanding the source of the rhyolite and its unusually rapid effusion rates. The eruption consisted of five major phases: 1. An explosive phase (1-11 May 2008); 2. A transitional phase (11-31 May 2008) in which low-altitude tephra columns and simultaneous lava extrusion took place; 3. An exogenous lava flow phase (June-September 2008); 4. A spine extrusion and endogenous growth phase (October 2008-February 2009); and 5. A mainly endogenous growth phase that began after the collapse of a prominent Peléean spine on 19 February 2009 and continued until the end of the eruption (late 2009 or possibly earliest 2010). The 2008-2009 rhyolite lava dome has a total volume of approximately 0.8 km3. The effusion rate averaged 66 m3s-1 during the first two weeks and averaged 45 m3s-1 for the first four months of the eruption, during which 0.5 km3 of rhyolite lava was erupted. These are among the highest rates measured world-wide for historical eruptions of silicic lava. Chaitén’s 2008-2009 lava is phenocryst-poor obsidian and microcrystalline rhyolite with 75.3±0.3% SiO2. The lava was erupted at relatively high temperature and is remarkably similar in composition and petrography to Chaitén’s pre-historic rhyolite. The rhyolite’s normative composition plots close to that of low pressure (100-200 MPa) minimum melts in the granite system, consistent with estimates of approximately 5 to 10 km source depths based on phase equilibria and geodetic studies. Calcic plagioclase, magnesian orthopyroxene and aluminous amphibole among the sparse phenocrysts suggest derivation of the rhyolite by melt extraction from a more mafic magmatic mush. High temperature

  18. Muon radiography and deformation analysis of the lava dome formed by the 1944 eruption of Usu, Hokkaido —Contact between high-energy physics and volcano physics—

    PubMed Central

    TANAKA, Hiroyuki K. M.; YOKOYAMA, Izumi

    2008-01-01

    Lava domes are one of the conspicuous topographic features on volcanoes. The subsurface structure of the lava dome is important to discuss its formation mechanism. In the 1944 eruption of Volcano Usu, Hokkaido, a new lava dome was formed at its eastern foot. After the completion of the lava dome, various geophysical methods were applied to the dome to study its subsurface structure, but resulted in a rather ambiguous conclusion. Recently, from the results of the levelings, which were repeated during the eruption, “pseudo growth curves” of the lava dome were obtained. The curves suggest that the lava dome has a bulbous shape. In the present work, muon radiography, which previously proved effective in imaging the internal structure of Volcano Asama, has been applied to the Usu lava dome. The muon radiography measures the distribution of the “density length” of volcanic bodies when detectors are arranged properly. The result obtained is consistent with the model deduced from the pseudo growth curves. The measurement appears to afford useful method to clarify the subsurface structure of volcanoes and its temporal changes, and in its turn to discuss volcanic processes. This is a point of contact between high-energy physics and volcano physics. PMID:18941290

  19. Tilting of the Puy de Dome by a forced fold

    NASA Astrophysics Data System (ADS)

    van Wyk de Vries, Benjamin; Petronis, Michael; Garza, Daniel

    2017-04-01

    The Puy de Dome, like the leaning tower of Pisa, has one side steeper than the other. Paleomagnetic data from 14 sites show a consistent horizontal-axis rotation of 15° from the expected 11 ka paleomagnetic pole position for the site location. Morphological data further support these data: the south west side of the dome is steep, rugged and scarred with landslides, and has a breccia apron only at the base made of mass flow deposits: this side has steepened and lost material. In contrast, the northeast side of the dome is smooth and less steep, and is mantled by breccia on the upper flanks: this side has become more stable. In addition, the north flank of the Puy de Dôme has a deep gully that extends down in line with a fault scarp of the summit graben of an uplifted area that trends across the Petit Puy de Dôme. This uplift has been interpreted as a forced fold that developed over a trachyte intrusion. Stratigraphic data further show that the fold formed after the Puy de Dôme was formed. We conclude that the volcano was deformed, faulted, then shed the south west flank's carapace as it was tilted by the bulge. Monogenetic volcanoes, like the Puy de Dôme display in miniature processes, such tilting, that could feasibly provoke large scale landsliding at much larger volcanic edifices. The collapses at Bezimyanny (Kamchatka) and Mt St Helens (Oregon), involved the forced folding deformation of the edifice by internal intrusions. However, we argue that, it is possible that sills are preferentially intruded at the margins of volcanic centres, and hence whole volcano tilting could be more common occurrence than previously recognised.

  20. Intrapleural fluid infusion for MR-guided high-intensity focused ultrasound ablation in the liver dome.

    PubMed

    Wijlemans, Joost W; de Greef, Martijn; Schubert, Gerald; Moonen, Chrit T W; van den Bosch, Maurice A A J; Ries, Mario

    2014-12-01

    Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of tumors in the liver dome is challenging because of the presence of air in the costophrenic angle. In this study, we used a porcine liver model and a clinical MR-HIFU system to assess the feasibility and safety of using intrapleural fluid infusion (IPI) to create an acoustic window for MR-HIFU ablation in the liver dome. Healthy adult Dalland land pigs (n = 6) under general anesthesia were used with animal committee approval. Degassed saline (200-800 mL) was infused into the intrapleural space under ultrasound guidance. A clinical 1.5-T MR-HIFU system was used to perform sonications (4-mm treatment cells, 300-450 W, 20-30 seconds) in the liver dome under real-time MR thermometry. An intercostal firing technique was used to prevent rib heating in one experiment. Technical success was defined as a temperature increase (>10°C) in the target area. After termination, the animal was examined for thermal damage to liver, diaphragm, pleura, lung, or intercostal muscle. An acoustic window was established in all animals. A temperature increase in the target area was achieved in all animals (max. 47°C-67°C). MR thermometry showed no heating outside the target area. Intercostal firing effectively reduced rib heating (55°C vs. 42°C). Postmortem examination revealed no unwanted thermal damage. One complication occurred, in the first experiment, because of an ill-suited needle (displacement of the needle). The results indicate that IPI may be used safely to assist MR-HIFU ablation of tumors in the liver dome. For reliable tissue coagulation, IPI must be combined with an intercostal sonication technique. Considering the proportion of patients with tumors in the liver dome, IPI widens the applicability of MR-HIFU ablation for liver tumors considerably. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  1. Phase III: Implementation and Operation of the Repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1998-07-01

    The metadata catalog was brought online for public access May 14, 1998. Since then dozens of users have registered and began to access the system. The system was demonstrated at the AAPG annual meeting in Salt Lake City and the EAGE (European Association of Geoscientists and Engineers) annual meeting in Leipzig, Germany. Hart Publications and PTTC "NetworkNews" have published articles about the metadata catalog, and articles for the AAPG Explorer and GSA Today are being developed. A back-up system at AGI headquarters was established. In support of the metadata catalog system, a leased-line Internet connection and two servers were installed.more » Porting of the GeoTrek server software to the new systems has begun. The back-up system will be operational during the 3 rd quarter of 1998 and will serve the NGDRS needs during periods when access to the site in Houston is down. Additionally, experimentation with new data types and deployment schemes will be tested on the system at AGI. The NGDRS has picked-up additional endorsements from the American Association of State Geologists, the MMS Outer Continental Shelf Policy Committee, and a new endorsement is being formulated by the AAPG Core Preservation Committee for consideration by the AAPG Executive Committee. The Texas Bureau of Economic Geology (BEG) is currently geocoding the well locations for the metadata catalog. Also, they have solicited proposals for the development of a core inventory control system that will work hand-in-hand with GeoTrek. A contract for that system will probably be given during the 3 rd quarter of 1998. The Texas Railroad Commission proposes to test the application of GeoTrek for accessing data in a joint project with the BEG. Several data transfer projects are underway. Vastar has committed to the transfer of 2D Appalachian seismic lines to the NDGRS clearinghouse. Receiving repositories have been identified and the final preparations are being made for transfer to these public

  2. NPDES Permit for Devon Energy Production Company – Riverton Dome in Wyoming

    EPA Pesticide Factsheets

    Under NPDES permit WY-0000671, Devon Energy Production Company, L.P. – Riverton Dome is authorized to discharge from its wastewater treatment facility located in Fremont County, Wyoming to the Little Wind River via unnamed draw.

  3. Sinkhole formation and hydrogeological situation at the salt mining area of Solotvyno, Ukraine

    NASA Astrophysics Data System (ADS)

    Stoeckl, L.; Banks, V.

    2017-12-01

    In Solotvyno, Ukraine, several salt mines were unexpectedly flooded in the recent past. As a result, dozens of sinkholes formed and are still forming with diameters up to 250 m. A one month advisory mission by the European Commission was launched in fall 2016 to conduct a risk assessment. The former mining area is situated in close vicinity to the river Theiss, which is the largest contributory of the largest river in Europe: the Danube. As river contamination by the release of large quantities of saltwater would lead to an international disaster, hydrogeological measurements were taken on-site to study the system. Saturated (hyper-saline) water as well as fresh surface and groundwater were encountered in different locations of the former mining area. Water samples were analyzed for chemistry and stable isotopes at BGR revealing insight into groundwater flow dynamics. Satellite imaging and interferometric synthetic aperture radar (SAR) were applied to study ground movements and evaluate the risk of further collapses. A resulting conceptual model explains the processes of sinkhole formation as well as the natural restoration of the salt dome prior to mining operations. This study shows the advantage of an interdisciplinary approach to conduct a risk assessment in the case of large mine collapses.

  4. Nonlinear vibration of a hemispherical dome under external water pressure

    NASA Astrophysics Data System (ADS)

    Ross, C. T. F.; McLennan, A.; Little, A. P. F.

    2011-07-01

    The aim of this study was to analyse the behaviour of a hemi-spherical dome when vibrated under external water pressure, using the commercial computer package ANSYS 11.0. In order to achieve this aim, the dome was modelled and vibrated in air and then in water, before finally being vibrated under external water pressure. The results collected during each of the analyses were compared to the previous studies, and this demonstrated that ANSYS was a suitable program and produced accurate results for this type of analysis, together with excellent graphical displays. The analysis under external water pressure, clearly demonstrated that as external water pressure was increased, the resonant frequencies decreased and a type of dynamic buckling became likely; because the static buckling eigenmode was similar to the vibration eigenmode. ANSYS compared favourably with the in-house software, but had the advantage that it produced graphical displays. This also led to the identification of previously undetected meridional modes of vibration; which were not detected with the in-house software.

  5. Unfinished business: the rebirth of the ALPO Lunar Dome Survey

    NASA Astrophysics Data System (ADS)

    Huddleston, Marvin W.

    2004-05-01

    The ALPO board of directors approved the revival of the Lunar Dome Survey during their annual board meeting in the summer of 2003. The initial LDS program was conceived by Harry Jamieson in the early 1960's and headed by him when the British Astronomical Assn. (BAA) was invited to join the program, which they did. The joint effort between the ALPO and BAA lunar sections lasted for approximately 14 years, ending officially around 1976 due to a decline in interest. The program was again revived in 1987 under the direction of Jim Phillips and lasted until the mid-1990's. All told, this program has been one of the longest running programs in the history of the Lunar Section of ALPO. The revived program will concentrate on cleaning up the existing catalog, classification and confirmation of the objects contained therein, and analysis of the database created in the process. It is hoped that, as in the past, much of the newly revived Lunar Dome Survey will be an international effort.

  6. Semantic Linking of Learning Object Repositories to DBpedia

    ERIC Educational Resources Information Center

    Lama, Manuel; Vidal, Juan C.; Otero-Garcia, Estefania; Bugarin, Alberto; Barro, Senen

    2012-01-01

    Large-sized repositories of learning objects (LOs) are difficult to create and also to maintain. In this paper we propose a way to reduce this drawback by improving the classification mechanisms of the LO repositories. Specifically, we present a solution to automate the LO classification of the Universia repository, a collection of more than 15…

  7. Deposits from the 12 July Dome Collapse and Explosive Activity at Soufriere Hills Volcano, 12-15 July 2003

    NASA Astrophysics Data System (ADS)

    Edmonds, M.; Herd, R.; Strutt, M.; Mann, C.

    2003-12-01

    A large dome collapse took place on 12-13 July 2003 at Soufriere Hills Volcano. This event was the largest in magnitude during the 1995-2003 eruption and involved over 120 million m3 andesite dome and talus material. The collapse took place over 18 hours and culminated in an explosive phase that continued intermittently until 15 July 2003. Prior to the collapse, the total volume of the dome was 230 million m3 and was made up of remnants of lava erupted 1997-2001, talus material and fresh andesite dome lava erupted during the last two years. Talus made up around 50% of the total dome volume. This paper describes and interprets the pyroclastic flow and airfall deposits from this event, using other monitoring data and empirical evidence to reconstruct the dome collapse. The airfall and pyroclastic flow deposits were studied in detail over the weeks following the collapse. Airfall deposits were studied at 45 locations around the island and 75 samples were collected for analysis. The surge deposit stretched over 10 km2 on land and 35 pits were dug at intervals through it. The sections were described and sampled, yielding a further 60 samples for grain size analysis. Further sampling was carried out on the block and ash deposits in the Tar River Valley and on the Tar River Fan. Pumices from the post-collapse explosion sequence were collected and their densities measured and mass coverage estimated. Deposit maps for airfall, lithics and pumices were constructed for all of the individual events and a map to show the distribution of the main surge unit was generated. The collapse was monitored in real-time using the MVO seismic network and observations from the field. The sequence of events was as follows. From 09:00 to 18:00, low-energy pyroclastic flows took place, confined to the Tar River Valley, which reached the sea at the mouth of Tar River. These flows gradually increased in energy throughout the day but were not associated with energetic, large surges. By 18:00 the

  8. NCI Mouse Repository | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The NCI Mouse Repository is an NCI-funded resource for mouse cancer models and associated strains. The repository makes strains available to all members of the scientific community (academic, non-profit, and commercial). NCI Mouse Repository strains

  9. Digital Photogrammetry for the Geometrical Analysis of the Umbrella-Shaped Dome in Baia (naples)

    NASA Astrophysics Data System (ADS)

    Aliberti, L.; Alonso-Rodríguez, M. Á.

    2018-05-01

    This paper is focused on the use of photogrammetric measurement techniques for the valorization of architectural and archaeological heritage. The functionality of this system allows operating with unfavourable conditions and pursues the accuracy of the measurement. This case of study presents a complex situation. Currently half part of the octagonal room annexed to the Temple of Mercury in Baia is underwater. Moreover the level of water may grow due to the characteristic movement of the soil in this area. The accuracy of photogrammetric method and the high definition of the camera used for the photo captures allow the reconstruction of the interior of the dome. The particular geometry of this surface stresses the relevance of a complete documentation of the dome. The research describes the method and tools used to realize this survey in difficult conditions and then analyze the geometry of the interior of the dome. In order to develop the geometrical analysis we carried on a series of operations on the point cloud and the survey model. The study of the photogrammetric model and the construction of an ideal model based on geometrical laws generate useful material to understand this complex vault.

  10. Net Shape Spin Formed Cryogenic Aluminum Lithium Cryogenic Tank Domes for Lower Cost Higher Performance Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Curreri, Peter A.; Hoffman, Eric; Domack, Marcia; Brewster, Jeb; Russell, Carolyn

    2013-01-01

    With the goal of lower cost (simplified manufacturing and lower part count) and higher performance (higher strength to weight alloys) the NASA Technical Maturation Program in 2006 funded a proposal to investigate spin forming of space launch vehicle cryogenic tank domes. The project funding continued under the NASA Exploration Technology Development Program through completion in FY12. The first phase of the project involved spin forming of eight, 1 meter diameter "path finder" domes. Half of these were processed using a concave spin form process (MT Aerospace, Augsburg Germany) and the other half using a convex process (Spincraft, Boston MA). The convex process has been used to produce the Ares Common Bulkhead and the concave process has been used to produce dome caps for the Space Shuttle light weight external tank and domes for the NASDA H2. Aluminum Lithium material was chosen because of its higher strength to weight ratio than the Aluminum 2219 baseline. Aluminum lithium, in order to obtain the desired temper (T8), requires a cold stretch after the solution heat treatment and quench. This requirement favors the concave spin form process which was selected for scale up. This paper describes the results of processing four, 5.5 meter diameter (upper stage scale) net shaped spin formed Aluminum Lithium domes. In order to allow scalability beyond the limits of foundry and rolling mills (about 12 foot width) the circular blank contained one friction stir weld (heavy lifter scales require a flat blank containing two welds). Mechanical properties data (tensile, fracture toughness, stress corrosion, and simulated service testing) for the parent metal and weld will also be discussed.

  11. Ash aggregation during the 11 February 2010 partial dome collapse of the Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Burns, F. A.; Bonadonna, C.; Pioli, L.; Cole, P. D.; Stinton, A.

    2017-04-01

    On 11 February 2010, Soufrière Hills Volcano, Montserrat, underwent a partial dome collapse ( 50 × 106 m3) and a short-lived Vulcanian explosion towards the end. Three main pyroclastic units were identified N and NE of the volcano: dome-collapse pyroclastic density current (PDC) deposits, fountain-collapse PDC deposits formed by the Vulcanian explosion, and tephra-fallout deposits associated with elutriation from the dome-collapse and fountain-collapse PDCs (i.e. co-PDC fallout deposit). The fallout associated with the Vulcanian explosion was mostly dispersed E and SE by high altitude winds. All units N and NE of the volcano contain variable amounts and types of particle aggregates, although the co-PDC fallout deposit is associated with the largest abundance (i.e. up to 24 wt%). The size of aggregates found in the co-PDC fallout deposit increases with distance from the volcano and proximity to the sea, reaching a maximum diameter of 12 mm about 500 m from the coast. The internal grain size of all aggregates have nearly identical distributions (with Mdϕ ≈ 4-5), with particles in the size categories > 3 ϕ (i.e. < 250 μm) being distributed in similar proportions within the aggregates but in different proportions within distinct internal layers. In fact, most aggregates are characterized by a coarse grained central core occupying the main part of the aggregate, coated by a thin layer of finer ash (single-layer aggregates), while others have one or two additional layers accreted over the core (multiple-layer aggregates). Calculated aggregate porosity and settling velocity vary between 0.3 and 0.5 and 11-21 m s- 1, respectively. The aggregate size shows a clear correlation with both the core size and the size of the largest particles found in the core. The large abundance of aggregates in the co-PDC fallout deposits suggests that the buoyant plumes elutriated above PDCs represent an optimal environment for the formation (particle collision) and development

  12. Types of Online Hierarchical Repository Structures

    ERIC Educational Resources Information Center

    Hershkovitz, Arnon; Azran, Ronit; Hardof-Jaffe, Sharon; Nachmias, Rafi

    2011-01-01

    This study presents an empirical investigation of online hierarchical repositories of items presented to university students in Web-supported course websites, using Web mining methods. To this end, data from 1747 courses were collected, and the use of online repositories of content items in these courses was examined. At a later stage, courses…

  13. Ecological effects of the Wickersham Dome fire near Fairbanks, Alaska.

    Treesearch

    L.A. Viereck; C.T. Dyrness

    1979-01-01

    The Wickersham Dome fire occurred in late June 1971 and burned over 6 300 hectares of predominantly black spruce forest land. Shortly after the fire was controlled, studies of the effects of the fire on various components of the biotic community were undertaken. Results reported here are mainly for the first 3 years after the fire.

  14. Late Oligocene and Early Miocene Muroidea of the Zinda Pir Dome.

    PubMed

    Lindsay, Everett H; Flynn, Lawrence J

    2016-02-17

    A series of Oligocene through Early Miocene terrestrial deposits preserved in the foothills of the Zinda Pir Dome of western Pakistan produce multiple, superposed fossil mammal localities. These include small mammal assemblages that shed light on the evolution of rodent lineages, especially Muroidea, in South Asia. Nine small mammal localities span approximately 28-19 Ma, an interval encompassing the Oligocene-Miocene boundary. The Early Miocene rodent fossil assemblages are dominated by muroid rodents, but muroids are uncommon and archaic in earlier Oligocene horizons. The Zinda Pir sequence includes the evolutionary transition to modern Muroidea at about the Oligocene-Miocene boundary. We review the muroid record for the Zinda Pir Dome, which includes the early radiation of primitive bamboo rats (Rhizomyinae) and early members of the modern muroid radiation, which lie near crown Cricetidae and Muridae. The Zinda Pir record dates diversification of modern muroids in the Indian Subcontintent and establishment by 19 Ma of muroid assemblages characteristic of the later Siwaliks.

  15. Optimizing the night time with dome vents and SNR-QSO at CFHT

    NASA Astrophysics Data System (ADS)

    Devost, Daniel; Mahoney, Billy; Moutou, Claire; CFHT QSO Team, CFHT software Group

    2017-06-01

    Night time is a precious and costly commodity and it is important to get everything we can out of every second of every night of observing. In 2012 the Canada-France-Hawaii Telescope started operating 12 new vent doors installed on the dome over the course of the previous two years. The project was highly successful and seeing measurements show that venting the dome greatly enhances image quality at the focal plane. In order to capitalize on the gains brought by the new vents, the observatory started exploring a new mode of observation called SNR-QSO. This mode consist of a new implementation inside our Queued Service Observation (QSO) system. Exposure times are adjusted for each frame depending on the weather conditions in order to reach a specific depth, Signal to Noise Ratio (SNR) at a certain magnitude. The goal of this new mode is to capitalize on the exquisite seeing provided by Maunakea, complemented by the minimized dome turbulence, to use the least amount of time to reach the depth required by the science programs. Specific implementations were successfully tested on two different instruments, our wide field camera MegaCam and our high resolution spectrograph ESPaDOnS. I will present the methods used for each instrument to achieve SNR observing and the gains produced by these new observing modes in order to reach the scientific goals of accepted programs in a shorter amount of time.

  16. An experimental study on Sokkuram Cave Temple dome's indoor environment using a miniature model in winter season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, S.H.; Chung, K.S.; Park, J.S.

    1999-07-01

    Currently, there are many researches on the analysis of indoor environment in Sokkuram Cave Temple. However, there is not enough researches about an experimental study on the dome's indoor environment in Sokkuram Cave Temple using a miniature model. The purpose of this investigation is to measure and analyze characteristics of indoor environment such as relative humidity, dry bulb temperature and air velocity in the miniature model of Sokkuram Cave dome during winter season.

  17. Evaluating links between deformation, topography and surface temperature at volcanic domes: Results from a multi-sensor study at Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Salzer, Jacqueline T.; Milillo, Pietro; Varley, Nick; Perissin, Daniele; Pantaleo, Michele; Walter, Thomas R.

    2017-12-01

    Dome building activity is common at many volcanoes and due to the gravitational instability, a dome represents one of the most hazardous volcanic phenomena. Shallow volcanic processes as well as rheological and structural changes of the dome affecting the fluid transport have been linked to transitions in eruptive activity. Also, hydrothermal alteration may affect the structural integrity of the dome, increasing the potential for collapse. However, mapping the deformation and details of fluid escape at the summit of steep sloped volcanoes and integrating these with other types of data is challenging due to difficult access and poor coverage. Here we present for the first time the near-vertical and near-horizontal surface deformation field of a quiescent summit dome and the relationships with degassing and topographic patterns. Our results are derived from high resolution satellite radar interferometry (InSAR) time series based on a year of TerraSAR-X SpotLight acquisitions and Structure from Motion (SfM) processing of overflight infrared data at Volcán de Colima, Mexico. The identified deformation is dominated by localized heterogeneous subsidence of the summit dome exceeding rates of 15 cm/yr, and strongly decreasing over the year 2012, up to the renewal of explosive and extrusive activity in early 2013. We tentatively attribute the deformation to the degassing, cooling and contraction of the dome and shallow conduit material. We also find that the results strongly differ depending on the chosen InSAR time series method, which potentially overprints the true physical complexities of small scale, shallow deformation processes. The combined interpretation of the deformation and infrared data reveals a complex spatial relationship between the degassing pathways and the deformation. While we observe no deformation across the crater rim fumaroles, discontinuities in the deformation field are more commonly observed around the dome rim fumaroles and occasionally on the

  18. Approach to the E-ELT dome and main structure challenges

    NASA Astrophysics Data System (ADS)

    Bilbao, Armando; Murga, Gaizka; Gómez, Celia; Llarena, Javier

    2014-07-01

    The E-ELT as a whole could be classified as an extremely challenging project. More precisely, it should be defined as an array of many different sub-challenges, which comprise technical, logistical and managerial matters. This paper reviews some of these critical challenges, in particular those related to the Dome and the Main Structure, suggesting ways to face them in the most pragmatic way possible. Technical challenges for the Dome and the Main Structure are mainly related to the need to upscale current design standards to an order of magnitude larger design. Trying a direct design escalation is not feasible; it would not work. A design effort is needed to cross hybridize current design standards with technologies coming from other different applications. Innovative design is therefore not a wish but a must. And innovative design comes along with design risk. Design risk needs to be tackled from two angles: on the one hand through thorough design validation analysis and on the other hand through extensive pre-assembly and testing. And, once again, full scale integrated pre-assembly and testing of extremely large subsystems is not always possible. Therefore, defining a comprehensive test plan for critical components, critical subsystems and critical subassemblies becomes essential. Logistical challenges are linked to the erection site. Cerro Armazones is a remote site and this needs to be considered when evaluating transport and erection requirements. But it is not only the remoteness of the site that needs to be considered. The size of both Dome and Main Structure require large construction cranes and a well defined erection plan taking into account pre-assembly strategies, limited plan area utilization, erection sequence, erection stability during intermediate stages and, very specifically, efficient coordination between the Dome and the Main Structure erection processes. Managerial issues pose another set of challenges in this project. Both the size of the

  19. Creation of Data Repositories to Advance Nursing Science.

    PubMed

    Perazzo, Joseph; Rodriguez, Margaret; Currie, Jackson; Salata, Robert; Webel, Allison R

    2017-12-01

    Data repositories are a strategy in line with precision medicine and big data initiatives, and are an efficient way to maximize data utility and form collaborative research relationships. Nurse researchers are uniquely positioned to make a valuable contribution using this strategy. The purpose of this article is to present a review of the benefits and challenges associated with developing data repositories, and to describe the process we used to develop and maintain a data repository in HIV research. Systematic planning, data collection, synthesis, and data sharing have enabled us to conduct robust cross-sectional and longitudinal analyses with more than 200 people living with HIV. Our repository building has also led to collaboration and training, both in and out of our organization. We present a pragmatic and affordable way that nurse scientists can build and maintain a data repository, helping us continue to make to our understanding of health phenomena.

  20. NPDES Permit for Phoenix Production Company – Sheldon Dome Field in Wyoming

    EPA Pesticide Factsheets

    Under NPDES permit WY-0024953, Phoenix Production Company is authorized to discharge from its Sheldon Dome Field wastewater treatment facility in Fremont County, Wyoming, to an unnamed ephemeral tributary of Dry Creek, which is tributary to the Wind River.

  1. Proteomics data repositories

    PubMed Central

    Riffle, Michael; Eng, Jimmy K.

    2010-01-01

    The field of proteomics, particularly the application of mass spectrometry analysis to protein samples, is well-established and growing rapidly. Proteomics studies generate large volumes of raw experimental data and inferred biological results. To facilitate the dissemination of these data, centralized data repositories have been developed that make the data and results accessible to proteomics researchers and biologists alike. This review of proteomics data repositories focuses exclusively on freely-available, centralized data resources that disseminate or store experimental mass spectrometry data and results. The resources chosen reflect a current “snapshot” of the state of resources available with an emphasis placed on resources that may be of particular interest to yeast researchers. Resources are described in terms of their intended purpose and the features and functionality provided to users. PMID:19795424

  2. Seismic evidence of Messinian salt in opposite margins of West Mediterranean

    NASA Astrophysics Data System (ADS)

    Mocnik, Arianna; Camerlenghi, Angelo; Del Ben, Anna; Geletti, Riccardo; Wardell, Nigel; Zgur, Fabrizio

    2015-04-01

    The post drift Messinian Salinity Crisis (MSC) affected the whole Mediterranean basin, with deposition of evaporitic sequences in the deep basins, in the lower continental slopes, and in several shallower marginal basins; usually, in the continental margins, the MSC originated noticeable erosional truncations that locally cause important hiatuses in the pre-Messinian sequences, covered by the Plio-Quaternary sediments. In this work we focus on the MSC seismic signature of two new seismic datasets acquired in 2010 (West Sardinia offshore) and in 2012 (within the Eurofleet project SALTFLU in the South Balearic continental margin and the northern Algero abyssal plain). The "Messinian trilogy" recognized in the West-Mediterranean abyssal plain, is characterized by different seismic facies: the Lower evaporite Unit (LU), the salt Mobile Unit (MU) and the Upper evaporite mainly gypsiferous Unit (UU). Both seismic datasets show the presence of the Messinian trilogy also if the LU is not always clearly interpretable due to the strong seismic signal absorption by the halite layers; the salt thickness of the MU is similar in both the basins as also the thickness and stratigraphy of the UU. The Upper Unit (UU) is made up of a well reflecting package of about 10 reflectors, partially deformed by salt tectonic and characterized by a thin transparent layer that we interpreted as salt sequence inner the shallower part of the UU. Below the stratified UU, the MU exhibits a transparent layer in the deep basin and also on the foot of the slope, where a negative reflector, related to the high interval velocity of salt, marks its base. The halokinetic processes are not homogeneously distributed in the region, forming a great number of diapirs on the foot of the slope (due to the pression of the slided sediments) and giant domes toward the deep basin (due to the higher thickness of the Plio-quaternary sediments). This distribution seems to be related to the amount of salt and of the

  3. Late Cenozoic extension and crustal doming in the NE Chinese Pamir

    NASA Astrophysics Data System (ADS)

    Thiede, Rasmus C.; Sobel, Edward R.; Chen, Jie; Schoenbohm, Lindsay; Stockli, Daniel; Sudo, Masafumi; Strecker, Manfred

    2013-04-01

    The northward motion of the Pamir indenter with respect to Eurasia has resulted in coeval thrusting, strike-slip and normal faulting. The eastern Pamir is currently deformed by east-west oriented extension, accompanied by uplift and exhumation of the Kongur Shan (7719 m) and Muztagh Ata (7546 m) gneiss domes. Both domes are an integral part of the footwall of the Kongur Shan Extensional System (KES), a 250-km-long, north-south oriented graben. Why active normal faulting within the Pamir is primarily localized along the KES and not distributed more widely throughout the orogen, has remained unclear. In addition, relatively little is known about how deformation has evolved throughout the Cenozoic, despite refined estimates on present-day crustal deformation rates and microseismicity, which indicate where crustal deformation is presently being accommodated. To better constrain the spatiotemporal evolution of faulting along the KES, we present 39 new apatite fission-track, zircon U-Th-Sm/He, and 40Ar/39Ar cooling ages from a series of footwall transects along the KES graben shoulder. Combining this data with, present day topographic relief, 1D thermo-kinematic and exhumational modeling documents successive stages, rather than synchronous deformation and gneiss dome exhumation. While Kongur-Shan-exhumation started during the late Miocene, Muztagh Ata began earlier and has slowed down since the late Miocene. We present a new model, suggesting that thermal and density effects associated with a lithospheric tear fault along the eastern margin of the subducting Alai slab localizes extensional upper-plate deformation along the KES and decouples crustal motion between the Central/Western Pamir and Eastern Pamir/Tarim basin.

  4. Teaching Using Immersion - Explaining Magnetism and Eclipses in a Planetarium Dome

    NASA Astrophysics Data System (ADS)

    Reiff, P. H.; Sumners, C.

    2017-12-01

    Previously we have shown that three-dimensional concepts are more readily learned in a three-dimensional context. Although VR headsets are growing in popularity, they only provide a quite limited field of view, and each person in a group may be viewing a different direction or a different time in the visualization. By using instead a fullsphere movie (VR360) in a planetarium dome instead of a headset, you can share the VR and specify which half of the sphere your audience is looking at. You can pause the movie, ask questions using a clicker system, display the results, and move on if the subject is mastered or explain if items are not understood. In this paper we have used a planetarium dome in its more traditional "hemisphere" mode to teach about magnetism (using our new show "Magnetism - Defending Our Planet, Defining the Cosmos" ) and pre/post testing to show how many concepts can be understood in a relatively short experience. We have identified 35 concepts that most high school students do NOT know about magnetism, and have done pre/post testing on students and teachers. Most students more than doubled the number of concepts that they were able to explain after watching the show just one time. We have also created a series of eclipse animations to teach about solar and lunar eclipses. These animations have been used in more than 500 planetarium theaters and used as part of several TV specials on the August 2017 eclipse. By teaching eclipses in a dome, the students correctly understand the three-dimensional geometry of the Earth and Moon orbits and the causes of eclipses.

  5. On the Theory of Accumulation of Hydrocarbons in a Dome Used to Eliminate a Technogenic Spill at the Bottom of the Ocean

    NASA Astrophysics Data System (ADS)

    Gimaltdinov, I. K.; Kil'dibaeva, S. R.

    2018-01-01

    Consideration is given to the operation of a dome separator installed at the bottom of the World Ocean and intended to eliminate the effects of technogenic spill of hydrocarbons. It is assumed that oil and gas (methane) escape from the damaged well on the ocean floor. Under the conditions of stable existence of a hydrate, a hydration sheath is formed on the surface of methane bubbles. To collect the entering hydrocarbons, a dome from a soft polyurethane shell is installed above the spill site, inside which the hydrocarbons are accumulated. In the regime of steady-state operation of the dome, provision is made for pumping out of hydrocarbons for transportation and further utilization. In the work, temperature fields of the hydrocarbon layers accumulated in the dome are investigated.

  6. NPDES Permit for Wesco Operating, Inc. – Sheldon Dome Field in Wyoming

    EPA Pesticide Factsheets

    Under NPDES permit WY-0025607, Wesco Operating, Inc. is authorized to discharge from its Sheldon Dome Field wastewater treatment facility in Fremont County, Wyo. to an unnamed ephemeral tributary of Dry (Pasup) Creek, which is tributary to the Wind River.

  7. NPDES Permit for Wesco Operating, Inc. – Winkleman Dome Field in Wyoming

    EPA Pesticide Factsheets

    Under NPDES permit WY-0025232, Wesco Operating, Inc. is authorized to discharge from its Winkleman Dome Field wastewater treatment facility in Fremont County, Wyo. to an unnamed ephemeral tributary of Big Horn Draw, a tributary to the Little Wind River.

  8. Liking, salt taste perception and use of table salt when consuming reduced-salt chicken stews in light of South Africa's new salt regulations.

    PubMed

    De Kock, H L; Zandstra, E H; Sayed, N; Wentzel-Viljoen, E

    2016-01-01

    This study investigated the impact of salt reduction on liking, salt taste perception, and use of table salt when consuming chicken stew in light of South Africa's new salt recommendations. In total, 432 South-African consumers (aged 35.2 ± 12.3 years) consumed a full portion of a chicken stew meal once at a central location. Four stock cube powders varying in salt content were used to prepare chicken stews: 1) no reduction - 2013 Na level; regular salt level as currently available on the South African market (24473 mg Na/100 g), 2) salt reduction smaller than 2016 level, i.e. 10%-reduced (22025 mg Na/100 g), 3) 2016 salt level, as per regulatory prescriptions (18000 mg Na/100 g), 4) 2019 salt level, as per regulatory prescriptions (13000 mg Na/100 g). Consumers were randomly allocated to consume one of the four meals. Liking, salt taste perception, and use of table salt and pepper were measured. Chicken stews prepared with reduced-salt stock powders were equally well-liked as chicken stews with the current salt level. Moreover, a gradual reduction of the salt in the chicken stews resulted in a reduced salt intake, up to an average of 19% for the total group compared to the benchmark 2013 Na level stew. However, 19% of consumers compensated by adding salt back to full compensation in some cases. More salt was added with increased reductions of salt in the meals, even to the point of full compensation. Further investigation into the impacts of nutrition communication and education about salt reduction on salt taste perception and use is needed. This research provides new consumer insights on salt use and emphasises the need for consumer-focused behaviour change approaches, in addition to reformulation of products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Reconsolidation of Crushed Salt to 250°C Under Hydrostatic and Shear Stress Conditions Scott Broome, Frank Hansen, and SJ Bauer Sandia National Laboratories, Geomechanics Department

    NASA Astrophysics Data System (ADS)

    Broome, S. T.

    2012-12-01

    Design, analysis and performance assessment of potential salt repositories for heat-generating nuclear waste require knowledge of thermal, mechanical, and fluid transport properties of reconsolidating granular salt. Mechanical properties, Bulk (K) and Elastic (E) Moduli and Poisson's ratio (ν) are functions of porosity which decreases as the surrounding salt creeps inward and compresses granular salt within the rooms, drifts or shafts. To inform salt repository evaluations, we have undertaken an experimental program to determine K, E, and ν of reconsolidated granular salt as a function of porosity and temperature and to establish the deformational processes by which the salt reconsolidates. The experiments will be used to populate the database used in the reconsolidation model developed by Callahan (1999) which accounts for the effects of moisture through pressure solution and dislocation creep, with both terms dependent on effective stress to account for the effects of porosity. Mine-run salt from the Waste Isolation Pilot Program (WIPP) was first dried at 105 °C for a few days. Undeformed right-circular cylindrical sample assemblies of unconsolidated granular salt with an initial porosity of ~ 40%, nominally 10 cm in diameter and 17.5 cm in length, are jacketed in lead. Samples are placed in a pressure vessel and kept at test temperatures of 100, 175 or 250 °C; samples are vented to the atmosphere during the entire test procedure. At these test conditions the consolidating salt is always creeping, the creep rate increases with increasing temperature and stress and decreases as porosity decreases. In hydrostatic tests, confining pressure is increased to 20 MPa with periodic unload/reload loops to determine K. Volume strain increases with increasing temperature. In shear tests at 2.5 and 5 MPa confining pressure, after confining pressure is applied, the crushed salt is subjected to a differential stress, with periodic unload/reload loops to determine E and

  10. Sea Salt vs. Table Salt: What's the Difference?

    MedlinePlus

    ... Nutrition and healthy eating What's the difference between sea salt and table salt? Answers from Katherine Zeratsky, R.D., L.D. The main differences between sea salt and table salt are in their taste, ...

  11. Personal Name Identification in the Practice of Digital Repositories

    ERIC Educational Resources Information Center

    Xia, Jingfeng

    2006-01-01

    Purpose: To propose improvements to the identification of authors' names in digital repositories. Design/methodology/approach: Analysis of current name authorities in digital resources, particularly in digital repositories, and analysis of some features of existing repository applications. Findings: This paper finds that the variations of authors'…

  12. Analysis of Geologic CO2 Sequestration at Farnham Dome, Utah, USA

    NASA Astrophysics Data System (ADS)

    Lee, S.; Han, W.; Morgan, C.; Lu, C.; Esser, R.; Thorne, D.; McPherson, B.

    2008-12-01

    The Farnham Dome in east-central Utah is an elongated, Laramide-age anticline along the northern plunge of the San Rafael uplift and the western edge of the Uinta Basin. We are helping design a proposed field demonstration of commercial-scale geologic CO2 sequestration, including injection of 2.9 million tons of CO2 over four years time. The Farnham Dome pilot site stratigraphy includes a stacked system of saline formations alternating with low-permeability units. Facilitating the potential sequestration demonstration is a natural CO2 reservoir at depth, the Jurassic-age Navajo formation, which contains an estimated 50 million tons of natural CO2. The sequestration test design includes two deep formations suitable for supercritical CO2 injection, the Jurassic-age Wingate sandstone and the Permian-age White Rim sandstone. We developed a site-specific geologic model based on available geophysical well logs and formation tops data for use with numerical simulation. The current geologic model is limited to an area of approximately 6.5x4.5 km2 and 2.5 km thick, which contains 12 stacked formations starting with the White Rim formation at the bottom (>5000 feet bgl) and extending to the Jurassic Curtis formation at the top of the model grid. With the detail of the geologic model, we are able to estimate the Farnham Dome CO2 capacity at approximately 36.5 million tones within a 5 mile radius of a single injection well. Numerical simulation of multiphase, non- isothermal CO2 injection and flow suggest that the injected CO2 plume will not intersect nearby fault zones mapped in previous geologic studies. Our simulations also examine and compare competing roles of different trapping mechanisms, including hydrostratigraphic, residual gas, solubility, and mineralization trapping. Previous studies of soil gas flux at the surface of the fault zones yield no significant evidence of CO2 leakage from the natural reservoir at Farnham Dome, and thus we use these simulations to

  13. The Energy Dome. Social Studies Packet-Grades 4, 5, 6.

    ERIC Educational Resources Information Center

    National Science Teachers Association, Washington, DC.

    This teacher's guide contains a unit of study for teaching about energy in grades four, five, and six. The guide is self-contained and includes the fact sheets students need to work out the activity problems. The unit is organized around the theme of the domed athletic stadium. The students begin by surveying the energy it takes to travel from…

  14. Software Repository

    NASA Technical Reports Server (NTRS)

    Merwarth, P., D.

    1983-01-01

    The Common Software Module Repository (CSMR) is computerized library system with high product and service visibility to potential users. Online capabilities of system allow both librarian and user to interact with library. Librarian is responsible for maintaining information in CSMR library. User searches library to locate software modules that meet his or her current needs.

  15. 10 CFR 51.67 - Environmental information concerning geologic repositories.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental information concerning geologic repositories... information concerning geologic repositories. (a) In lieu of an environmental report, the Department of Energy... connection with any geologic repository developed under Subtitle A of Title I, or under Title IV, of the...

  16. Geochemical controls of elevated arsenic concentrations in groundwater, Ester Dome, Fairbanks district, Alaska

    USGS Publications Warehouse

    Verplanck, P.L.; Mueller, S.H.; Goldfarb, R.J.; Nordstrom, D. Kirk; Youcha, E.K.

    2008-01-01

    Ester Dome, an upland area near Fairbanks, Alaska, was chosen for a detailed hydrogeochemical study because of the previously reported elevated arsenic in groundwater, and the presence of a large set of wells amenable to detailed sampling. Ester Dome lies within the Fairbanks mining district, where gold-bearing quartz veins, typically containing 2-3??vol.% sulfide minerals (arsenopyrite, stibnite, and pyrite), have been mined both underground and in open cuts. Gold-bearing veins on Ester Dome occur in shear zones and the sulfide minerals in these veins have been crushed to fine-grained material by syn- or post-mineralization movement. Groundwater at Ester Dome is circumneutral, Ca-HCO3 to Ca-SO4 type, and ranges from dilute (specific conductance of 48????S/cm) to more concentrated (specific conductance as high as 2070????S/cm). In general, solute concentrations increase down hydrologic gradient. Redox species indicate that the groundwaters range from oxic to sub-oxic (low dissolved oxygen, Fe(III) reduction, no SO4 reduction). Waters with the highest Fe concentrations, as high as 10.7??mg/L, are the most anoxic. Dissolved As concentrations range from < 1 to 1160????g/L, with a median value of 146????g/L. Arsenic concentrations are not correlated with specific conductance or Fe concentrations, suggesting that neither groundwater residence time, nor reductive dissolution of iron oxyhydroxides, control the arsenic chemistry. Furthermore, As concentrations do not covary with other constituents that form anions and oxyanions in solution (e.g., HCO3, Mo, F, or U) such that desorption of arsenic from clays or oxides also does not control arsenic mobility. Oxidation of arsenopyrite and dissolution of scorodite, in the near-surface environment appears to be the primary control of dissolved As in this upland area. More specifically, the elevated As concentrations are spatially associated with sulfidized shear zones and localities of gold-bearing quartz veins. Consistent with

  17. PLANETarium Pilot: visualizing PLANET Earth inside-out on the planetarium's full-dome

    NASA Astrophysics Data System (ADS)

    Ballmer, Maxim; Wiethoff, Tobias

    2016-04-01

    In the past decade, projection systems in most planetariums, traditional sites of outreach and education, have advanced from interfaces that can display the motion of stars as moving beam spots to systems that are able to visualize multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education, and any previous geo-shows have mostly been limited to cartoon-style animations. Thus, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100 million per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to show "inside-out" visualizations of scientific datasets and models, as if the audience was positioned in the Earth's core. Such visualizations are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., gravity, air temperature), or horizontal slices of seismic-tomography images and spherical computer models requires no rendering at all. Rendering of 3D Cartesian datasets or models may further be achieved using standard techiques. Here, we show several example pilot animations. These animations rendered for the full dome are projected back to 2D for visualization on the flatscreen. Present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly with a higher level of detail. In addition to e.g. climate change and natural hazards, themes for any future geo-shows may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the

  18. PLANETarium Pilot: visualizing PLANET Earth inside-out on the planetarium's full-dome

    NASA Astrophysics Data System (ADS)

    Ballmer, M. D.; Wiethoff, T.

    2014-12-01

    In the past decade, projection systems in most planetariums, traditional sites of outreach and education, have advanced from interfaces that can display the motion of stars as moving beam spots to systems that are able to visualize multicolor, high-resolution, immersive full-dome videos or images. These extraordinary capabilities are ideally suited for visualization of global processes occurring on the surface and within the interior of the Earth, a spherical body just as the full dome. So far, however, our community has largely ignored this wonderful interface for outreach and education, and any previous geo-shows have mostly been limited to cartoon-style animations. Thus, we here propose a framework to convey recent scientific results on the origin and evolution of our PLANET to the >100 million per-year worldwide audience of planetariums, making the traditionally astronomy-focussed interface a true PLANETarium. In order to do this most efficiently, we intend to show „inside-out" visualizations of scientific datasets and models, as if the audience was positioned in the Earth's inner core. Such visualizations are expected to be renderable to the dome with little or no effort. For example, showing global geophysical datasets (e.g., gravity, air temperature), or horizontal slices of seismic-tomography images and spherical computer models requires no rendering at all. Rendering of 3D Cartesian datasets or models may further be achieved using standard techiques. Here, we show several example pilot animations. These animations rendered for the full dome are projected back to 2D for visualization on a flatscreen. Present-day science visualizations are typically as intuitive as cartoon-style animations, yet more appealing visually, and clearly with a higher level of detail. In addition to e.g. climate change and natural hazards, themes for any future geo-shows may include the coupled evolution of the Earth's interior and life, from the accretion of our planet to the

  19. Fractionation, ascent, and extrusion of magma at the Santiaguito volcanic dome, Guatemala

    NASA Astrophysics Data System (ADS)

    Scott, J.; Mather, T. A.; Pyle, D. M.

    2011-12-01

    The silicic dome complex of Santiaguito, Guatemala has exhibited continuous low-level activity for nearly 90 years[1]. Despite its longevity, remarkably little is known about the magmatic plumbing system beneath Santiaguito. We present preliminary constraints on this system, based on petrological analyses of lava samples. Amphibole thermobarometry suggests magma evolves during slow ascent through a phenocryst fractionation zone - a complex of dikes and sills, extending from at least ~24 km to at most ~12 km beneath Santiaguito. Discontinuous plagioclase size distributions suggest this slow fractionation ends at depth, and degassing-induced crystallization of microlites begins. The texture and geochemistry of microlites is consistent with uninterrupted final ascent; there is no evidence of shallow magma storage beneath Santiaguito. The normative composition of matrix glass, and the morphology and volume of plagioclase microlites suggests ascending magma crosses the rigidification threshold within <1 km of the surface. The term "rigidification" refers to the point at which crystallization ends, vesicles are preserved, and ductile behaviour is replaced by dominantly brittle behaviour, previously referred to as "final melt quench". We suggest rigidification slows the ascent of magma and may create the conduit plug previously observed at Santiaguito[2]. This rigid mass of magma may begin to fracture almost immediately to form a semi-permeable plug, before extruding onto the surface as blocky lava. The extrusion rate may be reflected in the extent of matrix glass decomposition to crystalline silica and alkali feldspar. This preliminary picture of the plumbing system beneath Santiaguito may lead to a greater understanding of the behaviour of this enigmatic volcano, and of the danger it poses to the region. However, our findings raise many further questions about the dynamics within silicic dome-forming systems that need to be addressed if we are to work towards a broad

  20. Origin of the Lyme Dome and implications for the timing of multiple Alleghanian deformational and intrusive events in southern Connecticut

    USGS Publications Warehouse

    Walsh, G.J.; Aleinikoff, J.N.; Wintsch, R.P.

    2007-01-01

    Geologic mapping, structural analysis, and geochronology in the area of the Lyme dome, southern Connecticut provides constraints on the origin of the rocks in the core of the dome, the absolute timing of the principal deformational and thermal events attributed to Alleghanian orogenesis, and the processes that generated the dome. Detrital zircon geochronology in combination with ages on intrusive rocks brackets the deposition of quartzite in the core of the dome sometime between ca. 925 and 620 Ma. Granite and granodiorite intruded the Neoproteorozic metasedimentary rocks in the core of the dome at ca. 620 to 610 Ma. Four major early Permian events associated with the Alleghanian orogeny affected the rocks in the Lyme dome area. Syn-tectonic migmatization and widespread penetrative deformation (D1, ca. 300 - 290 Ma) included emplacement of alaskite at 290 ?? 4 Ma during regional foliation development and aluminosilicate-orthoclase metamorphic conditions. Rocks of the Avalon terrane may have wedged between Gander cover rocks and Gander basement in the core of the Lyme during D1. Limited structural evidence for diapiric uplift of the Lyme dome indicates that diapirism started late in D1 and was completed by D2 (ca. 290 - 280 Ma) when horizontal WNW contractional stresses dominated over vertical stresses. Second sillimanite metamorphism continued and syn-tectonic D2 granite pegmatite (288 ?? 4 Ma) and the Joshua Rock Granite Gniess (284 ?? 3 Ma) intruded at this time. North-northwest extension during D3 (ca. 280 - 275 Ma) led to granitic pegmatite intrusion along S3 cleavage planes and in extensional zones in boudin necks during hydraulic failure and decompression melting. Intrusion of a Westerly Granite dike at 275 ?? 4 Ma suggests that D3 extension was active, and perhaps concluding, by ca. 275 Ma. Late randomly oriented but gently dipping pegmatite dikes record a final stage of intrusion during D4 (ca. 275 - 260 Ma), and a switch from NNW extension to vertical

  1. The Laschamp geomagnetic excursion featured in nitrate record from EPICA-Dome C ice core

    PubMed Central

    Traversi, R.; Becagli, S.; Poluianov, S.; Severi, M.; Solanki, S. K.; Usoskin, I. G.; Udisti, R.

    2016-01-01

    Here we present the first direct comparison of cosmogenic 10Be and chemical species in the period of 38–45.5 kyr BP spanning the Laschamp geomagnetic excursion from the EPICA-Dome C ice core. A principal component analysis (PCA) allowed to group different components as a function of the main sources, transport and deposition processes affecting the atmospheric aerosol at Dome C. Moreover, a wavelet analysis highlighted the high coherence and in-phase relationship between 10Be and nitrate at this time. The evident preferential association of 10Be with nitrate rather than with other chemical species was ascribed to the presence of a distinct source, here labelled as “cosmogenic”. Both the PCA and wavelet analyses ruled out a significant role of calcium in driving the 10Be and nitrate relationship, which is particularly relevant for a plateau site such as Dome C, especially in the glacial period during which the Laschamp excursion took place. The evidence that the nitrate record from the EDC ice core is able to capture the Laschamp event hints toward the possibility of using this marker for studying galactic cosmic ray flux variations and thus also major geomagnetic field excursions at pluri-centennial-millennial time scales, thus opening up new perspectives in paleoclimatic studies. PMID:26819064

  2. Seafloor doming driven by degassing processes unveils sprouting volcanism in coastal areas.

    PubMed

    Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Chiodini, Giovanni; Caliro, Stefano; Sacchi, Marco; Rizzo, Andrea Luca; Ventura, Guido

    2016-03-01

    We report evidences of active seabed doming and gas discharge few kilometers offshore from the Naples harbor (Italy). Pockmarks, mounds, and craters characterize the seabed. These morphologies represent the top of shallow crustal structures including pagodas, faults and folds affecting the present-day seabed. They record upraise, pressurization, and release of He and CO2 from mantle melts and decarbonation reactions of crustal rocks. These gases are likely similar to those that feed the hydrothermal systems of the Ischia, Campi Flegrei and Somma-Vesuvius active volcanoes, suggesting the occurrence of a mantle source variously mixed to crustal fluids beneath the Gulf of Naples. The seafloor swelling and breaching by gas upraising and pressurization processes require overpressures in the order of 2-3 MPa. Seabed doming, faulting, and gas discharge are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions.

  3. Seafloor doming driven by degassing processes unveils sprouting volcanism in coastal areas

    PubMed Central

    Passaro, Salvatore; Tamburrino, Stella; Vallefuoco, Mattia; Tassi, Franco; Vaselli, Orlando; Giannini, Luciano; Chiodini, Giovanni; Caliro, Stefano; Sacchi, Marco; Rizzo, Andrea Luca; Ventura, Guido

    2016-01-01

    We report evidences of active seabed doming and gas discharge few kilometers offshore from the Naples harbor (Italy). Pockmarks, mounds, and craters characterize the seabed. These morphologies represent the top of shallow crustal structures including pagodas, faults and folds affecting the present-day seabed. They record upraise, pressurization, and release of He and CO2 from mantle melts and decarbonation reactions of crustal rocks. These gases are likely similar to those that feed the hydrothermal systems of the Ischia, Campi Flegrei and Somma-Vesuvius active volcanoes, suggesting the occurrence of a mantle source variously mixed to crustal fluids beneath the Gulf of Naples. The seafloor swelling and breaching by gas upraising and pressurization processes require overpressures in the order of 2–3 MPa. Seabed doming, faulting, and gas discharge are manifestations of non-volcanic unrests potentially preluding submarine eruptions and/or hydrothermal explosions. PMID:26925957

  4. Harvesting NASA's Common Metadata Repository

    NASA Astrophysics Data System (ADS)

    Shum, D.; Mitchell, A. E.; Durbin, C.; Norton, J.

    2017-12-01

    As part of NASA's Earth Observing System Data and Information System (EOSDIS), the Common Metadata Repository (CMR) stores metadata for over 30,000 datasets from both NASA and international providers along with over 300M granules. This metadata enables sub-second discovery and facilitates data access. While the CMR offers a robust temporal, spatial and keyword search functionality to the general public and international community, it is sometimes more desirable for international partners to harvest the CMR metadata and merge the CMR metadata into a partner's existing metadata repository. This poster will focus on best practices to follow when harvesting CMR metadata to ensure that any changes made to the CMR can also be updated in a partner's own repository. Additionally, since each partner has distinct metadata formats they are able to consume, the best practices will also include guidance on retrieving the metadata in the desired metadata format using CMR's Unified Metadata Model translation software.

  5. CAED Document Repository

    EPA Pesticide Factsheets

    Compliance Assurance and Enforcement Division Document Repository (CAEDDOCRESP) provides internal and external access of Inspection Records, Enforcement Actions, and National Environmental Protection Act (NEPA) documents to all CAED staff. The respository will also include supporting documents, images, etc.

  6. The Research Library's Role in Digital Repository Services: Final Report of the ARL Digital Repository Issues Task Force

    ERIC Educational Resources Information Center

    Association of Research Libraries, 2009

    2009-01-01

    Libraries are making diverse contributions to the development of many types of digital repositories, particularly those housing locally created digital content, including new digital objects or digitized versions of locally held works. In some instances, libraries are managing a repository and its related services entirely on their own, but often…

  7. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard

    2006-05-26

    The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface mapsmore » and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon

  8. Core Certification of Data Repositories: Trustworthiness and Long-Term Stewardship

    NASA Astrophysics Data System (ADS)

    de Sherbinin, A. M.; Mokrane, M.; Hugo, W.; Sorvari, S.; Harrison, S.

    2017-12-01

    Scientific integrity and norms dictate that data created and used by scientists should be managed, curated, and archived in trustworthy data repositories thus ensuring that science is verifiable and reproducible while preserving the initial investment in collecting data. Research stakeholders including researchers, science funders, librarians, and publishers must also be able to establish the trustworthiness of data repositories they use to confirm that the data they submit and use remain useful and meaningful in the long term. Data repositories are increasingly recognized as a key element of the global research infrastructure and the importance of establishing their trustworthiness is recognised as a prerequisite for efficient scientific research and data sharing. The Core Trustworthy Data Repository Requirements are a set of universal requirements for certification of data repositories at the core level (see: https://goo.gl/PYsygW). They were developed by the ICSU World Data System (WDS: www.icsu-wds.org) and the Data Seal of Approval (DSA: www.datasealofapproval.org)—the two authoritative organizations responsible for the development and implementation of this standard to be further developed under the CoreTrustSeal branding . CoreTrustSeal certification of data repositories involves a minimally intensive process whereby repositories supply evidence that they are sustainable and trustworthy. Repositories conduct a self-assessment which is then reviewed by community peers. Based on this review CoreTrustSeal certification is granted by the CoreTrustSeal Standards and Certification Board. Certification helps data communities—producers, repositories, and consumers—to improve the quality and transparency of their processes, and to increase awareness of and compliance with established standards. This presentation will introduce the CoreTrustSeal certification requirements for repositories and offer an opportunity to discuss ways to improve the contribution of

  9. Static analysis of a sonar dome rubber window

    NASA Technical Reports Server (NTRS)

    Lai, J. L.

    1978-01-01

    The application of NASTRAN (level 16.0.1) to the static analysis of a sonar dome rubber window (SDRW) was demonstrated. The assessment of the conventional model (neglecting the enclosed fluid) for the stress analysis of the SDRW was made by comparing its results to those based on a sophisticated model (including the enclosed fluid). The fluid was modeled with isoparametric linear hexahedron elements with approximate material properties whose shear modulus was much smaller than its bulk modulus. The effect of the chosen material property for the fluid is discussed.

  10. The Caldas Novas dome, central Brazil: structural evolution and implications for the evolution of the Neoproterozoic Brasília belt

    NASA Astrophysics Data System (ADS)

    D'el-Rey Silva, Luiz José Homem; Wolf Klein, Percy Boris; Walde, Detlef Hans-Gert

    2004-10-01

    The Caldas Novas dome (Goiaás state, central Brazil) lies in the southern segment of the Neoproterozoic Brasília belt (center of the Tocantins Province) between the Goiás magmatic arc and the margin of the ancient São Francisco plate. The core of the dome comprises rocks of the Meso-Neoproterozoic Paranoá group (passive margin psamitic-pelitic sediments and subgreenschist facies) covered by a nappe of the Neoproterozoic Araxá group (backarc basin pelitic-psamitic sediments and volcanics of greenschist facies, bitotite zone). Hot underground waters that emerge along fractures in the Paranoá quartzite and wells in the Araxá schist have made the Caldas Novas dome an international tourist attraction. A recent detailed structural analysis demonstrates that the dome area was affected by a D 1-D 3 Brasiliano cycle progressive deformation in the ˜750-600 Ma interval (published U-Pb and Sm-Nd data). During event D 1, a pervasive layer-parallel foliation developed coeval the regional metamorphism. Event D 2 (intense F 2 isoclinal folding) was responsible for the emplacement of the nappe. D 1 and D 2 record a regime of simple shear (top-to-SE relative regional movement) due to a WNW-ESE subhorizontal compression ( σ1). Event D 3 records a WSW-ENE compression, during which the dome rose as a large-scale F 3 fold, possibly associated with a duplex structure at depth. During the dome's uplift, the layers slid back and down in all directions, giving way to gravity-slide folds and an extensional crenulation cleavage. A set of brittle fractures and quartz veins constitutes the record of a late-stage D 4 event important for understanding the thermal water reservoir.

  11. Asset Reuse of Images from a Repository

    ERIC Educational Resources Information Center

    Herman, Deirdre

    2014-01-01

    According to Markus's theory of reuse, when digital repositories are deployed to collect and distribute organizational assets, they supposedly help ensure accountability, extend information exchange, and improve productivity. Such repositories require a large investment due to the continuing costs of hardware, software, user licenses, training,…

  12. Pitted cones and domes on Mars: Observations in Acidalia Planitia and Cydonia Mensae using MOC, THEMIS, and TES data

    USGS Publications Warehouse

    Farrand, W. H.; Gaddis, L.R.; Keszthelyi, L.

    2005-01-01

    Domes and cones with summit pits located in Acidalia Planitia and Cydonia Mensae were studied using MOC and THEMIS images and a TES-derived thermal inertia map. North of 40.5??N latitude, the features have a dome-like morphology, and south of that latitude, the morphology is more cone-like. Layering is apparent in the summit craters of fresher looking southern cones, and asymmetric aprons were observed in some instances. Some of the northern domes also display layering in their summit craters, but asymmetric aprons were not observed. The northern domes can also display multiple summit pits or no summit pits at all and can occur in association with higher-albedo "pancake" features. The northern domes are higher in albedo but have apparent thermal inertias that are lower than the surrounding plains. The apparent thermal inertia values of the southern cones range from values comparable to the surrounding plains to slightly lower. From the TES thermal inertia map, we infer that the thermal inertia values of the pitted cones are between those of basaltic fine dust and sand, while those of the surrounding plains are closer to that of basaltic sand. While a unique interpretation of the origin of the pitted cones is not possible with the available data, we do not find compelling evidence to suggest an origin related to either basaltic volcanism or ground-ice. Instead, an origin for these features through some combination of mud volcanism and evaporite deposition around geysers and/or springs is most consistent with the observations. Copyright 2005 by the American Geophysical Union.

  13. Ballistics Tests of Fibrous Concrete Dome and Plate Specimens

    DTIC Science & Technology

    1976-04-01

    x 0.22 x 1 in. chopped steel fibers from U.S. Steel. KG denotes 1 in. fiberglass fibers from Owens - Corning . Table 3 Dome Test Results Test Fiber...1 in. drawn steel fibers Innii National Standard. FG denotes fiberglass fibers from Owens - Corning . Table 4b 30-Callber Machine Gun Plate Teat...drawn steel fibers from National Standard. FG denotes fiberglass fibers from Owens - Corning . { ♦ Tabk4c 45-Callbcr Pbtol Plate Teat Reantti lypeof

  14. The effect of diabetes on bone formation following application of the GBR principle with the use of titanium domes.

    PubMed

    Lee, Sang-Bok; Retzepi, Maria; Petrie, Aviva; Hakimi, Ahmad-Reza; Schwarz, Frank; Donos, Nikolaos

    2013-01-01

    The aim of the study was to evaluate the effect of experimental diabetes and metabolic control on de novo bone formation following the GBR principle under titanium dome with a hydrophobic or hydrophilic surface. Three groups of equal number of randomly allocated Wistar strain rats were created: (a) uncontrolled, streptozotocin-induced diabetes (D); (b) insulin-controlled diabetes (CD); (c) healthy (H). Each group was then further divided into two groups according to either 7 or 42 days of healing period, which received either a hydrophobic (SLA: A) or a hydrophilic (SLActive: B) dome. The undecalcified sections were evaluated by qualitative and quantitative histological analysis and the differences between means for the groups (D, CD, and H) and the type of domes (SLA and SLActive) at each of two observational periods (i.e. 7 and 42 days) were assessed by performing a two-way analysis of variance (ANOVA). In all experimental groups, significant de novo bone formation under the domes was observed at 42 days of healing. There was a tendency of increased new total bone (TB) formation in H and CD groups compared to D group at 42 days of healing. Also, the SLActive titanium surface showed a trend of promoting superior TB formation at the early observational period among the experimental groups, however these differences did not reach statistical significance. In regards to the bone-to-implant contact (BIC%) under the both dome treatments (SLA and SLActive), there was no statistically significant difference among the H, CD, and D groups at both 7 and 42 days. Despite of the presence of uncontrolled diabetes, substantial de novo bone formation can be achieved in titanium domes with a hydrophobic and a hydrophilic surface. The use of SLActive titanium surface may present a tendency to promote new bone formation in healthy and diabetic conditions at 7 days of healing, however the obtained data do not allow any robust conclusions. © 2012 John Wiley & Sons A/S.

  15. Optical aberrations in underwater photogrammetry with flat and hemispherical dome ports

    NASA Astrophysics Data System (ADS)

    Menna, Fabio; Nocerino, Erica; Remondino, Fabio

    2017-06-01

    The paper analyses differences between dome and flat port housings used for underwater photogrammetry. The underwater environment negatively affects image quality and 3D reconstructions, but this influence on photogrammetric measurements, so far, has not been addressed properly in the literature. In this work, motivations behind the need for systematic underwater calibrations are provided, then experimental tests using a specifically designed photogrammetric modular test object in laboratory and at sea are reported. The experiments are carried out using a Nikon D750 24 Mpx DSLR camera with a 24 mm f2.8 AF/D lens coupled with a NIMAR NI3D750ZM housing, equipped first with a dome and, successively, with a flat port. To quantify the degradation of image quality, MTF measurements are carried out, then the outcomes of self-calibrating bundle adjustment calibrations are shown and commented. Optical phenomena like field curvature as well as chromatic aberration and astigmatism are analysed and their implications on the degradation of image quality is factored in the bundle adjustment through a different weighting of 2D image observations.

  16. Shared Medical Imaging Repositories.

    PubMed

    Lebre, Rui; Bastião, Luís; Costa, Carlos

    2018-01-01

    This article describes the implementation of a solution for the integration of ownership concept and access control over medical imaging resources, making possible the centralization of multiple instances of repositories. The proposed architecture allows the association of permissions to repository resources and delegation of rights to third entities. It includes a programmatic interface for management of proposed services, made available through web services, with the ability to create, read, update and remove all components resulting from the architecture. The resulting work is a role-based access control mechanism that was integrated with Dicoogle Open-Source Project. The solution has several application scenarios like, for instance, collaborative platforms for research and tele-radiology services deployed at Cloud.

  17. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

    2005-05-10

    The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structuremore » and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary

  18. Digital Repositories and the Question of Data Usefulness

    NASA Astrophysics Data System (ADS)

    Hughes, J. S.; Downs, R. R.

    2017-12-01

    The advent of ISO standards for trustworthy long-term digital repositories provides both a set of principles to develop long-term data repositories and the instruments to assess them for trustworthiness. Such mandatory high-level requirements are broad enough to be achievable, to some extent, by many scientific data centers, archives, and other repositories. But the requirement that the data be useful in the future, the requirement that is usually considered to be most relevant to the value of the repository for its user communities, largely remains subject to various interpretations and misunderstanding. However, current and future users will be relying on repositories to preserve and disseminate the data and information needed to discover, understand, and utilize these resources to support their research, learning, and decision-making objectives. Therefore, further study is needed to determine the approaches that can be adopted by repositories to make data useful to future communities of users. This presentation will describe approaches for enabling scientific data and related information, such as software, to be useful for current and potential future user communities and will present the methodology chosen to make one science discipline's data useful for both current and future users. The method uses an ontology-based information model to define and capture the information necessary to make the data useful for contemporary and future users.

  19. Deformation sequence of Baltimore gneiss domes, USA, assessed from porphyroblast Foliation Intersection Axes

    NASA Astrophysics Data System (ADS)

    Yeh, Meng-Wan

    2007-05-01

    The NE-SW trending gneiss domes around Baltimore, Maryland, USA, have been cited as classic examples of mantled gneiss domes formed by diapiric rise of migmatitic gneisses [Eskola, P., 1949. The problem of mantled gneiss domes. Quarterly Journal of Geological Society of London 104/416, 461-476]. However, 3-D analysis of porphyroblast-matrix foliation relations and porphyroblast inclusion trail geometries suggests that they are the result of interference between multiple refolding of an early-formed nappe. A succession of six FIA (Foliation Intersection Axes) sets, based upon relative timing of inclusion texture in garnet and staurolite porphyroblasts, revealed 6 superposed deformation phases. The successions of inclusion trail asymmetries, formed around these FIAs, document the geometry of deformation associated with folding and fabric development during discrete episodes of bulk shortening. Exclusive top to NW shear asymmetries of curvature were recorded by inclusion trails associated with the vertical collapsing event within the oldest FIA set (NE-SW trend). This strongly indicates a large NE-SW-striking, NW-verging nappe had formed early during this deformation sequence. This nappe was later folded into NE-SW-trending up-right folds by coaxial shortening indicated by an almost equal proportion of both inclusion trail asymmetries documented by the second N-S-trending FIA set. These folds were then amplified by later deformation, as the following FIA sets showed an almost equal proportion of both inclusion trail asymmetries.

  20. Digital Dome versus Desktop Display: Learning Outcome Assessments by Domain Experts

    ERIC Educational Resources Information Center

    Jacobson, Jeffery

    2013-01-01

    In previous publications, the author reported that students learned about Egyptian architecture and society by playing an educational game based on a virtual representation of a temple. Students played the game in a digital dome or on a standard desktop computer, and (each) then recorded a video tour of the temple. Those who had used the dome…