Optimization of salt fog conditions for organic zinc paints : final report.
DOT National Transportation Integrated Search
1981-10-01
Although Louisiana has been testing and using organic zinc coatings since 1963, premature failures have occurred on bridges within the state recently. These failures were not predicted by accelerated testing which included salt fog exposure. the resu...
NASA Astrophysics Data System (ADS)
Rosmamuhamadani, R.; Talari, M. K.; Yahaya, Sabrina M.; Sulaiman, S.; Ismail, M. I. S.; Hanim, M. A. Azmah
2018-05-01
Aluminium-copper (Al-Cu) alloys is the one of most Metal Matrix Composites (MMCs) have important high-strength Al alloys. The aluminium (Al) casting alloys, based on the Al-Cu system are widely used in light-weight constructions and transport applications requiring a combination of high strength and ductility. In this research, Al-Cu master alloy was reinforced with 3 and 6wt.% titanium diboride (TiB2) that obtained from salts route reactions. The salts used were were potassium hexafluorotitanate (K2TiF6) and potassium tetrafluoroborate (KBF4). The salts route reaction process were done at 800 °C. The Al-Cu alloy then has characterized on the mechanical properties and microstructure characterization. Salts spray fog test and Gamry-electrode potentiometer instruments were used to determine the corrosion rate of this alloys. From results obtained, the increasement of 3wt.%TiB2 contents will decrease the value of the corrosion rate. In corrosion test that conducted both of salt spray fog and Gamry-electrode potentiometer, the addition of 3wt.%TiB2 gave the good properties in corrosion characterization compare to Al-Cu-6wt.%TiB2 and Al-Cu cast alloy itself. As a comparison, Al-Cu with 3wt.%TiB2 gave the lowest value of corrosion rate, which means alloy has good properties in corrosion characterization. The results obtained show that in-situ Al-Cu alloy composites containing the different weight of TiB2 phase were synthesized successfully by the salt-metal reaction method.
Scavenging processes of marine aerosols by sea fog over the northern North Pacific
NASA Astrophysics Data System (ADS)
Narita, Y.; Iwamoto, Y.; Yoshida, K.; Kondo, M.; Uematsu, M.
2007-12-01
Sea fog appears frequently over the subarctic North Pacific in summertime. Typical advection fog over this region may affect the distribution of natural and anthropogenic substances from lands as well as marine biogenic substances. To clarify the variation of chemical composition in fog water, size distribution of fog droplets and fog scavenging processes, investigation was conducted over the northern North Pacific, where sea fog appears frequently in summer, during the KH-04-3 cruise of R/V Hakuho-maru in 2004. The sea salt composition is governed 65% of total concentration of inorganic ions and the non-sea-salt (nss-) sulfate occupied 10 % in the 90 sea fog water samples. The average size distribution of liquid water content (LWC) of sea fog showed a bimodal pattern with peaks of 7.0 and 27.5 μm in diameter, while its distribution on land fog commonly showed a monomodal pattern. LWC, number concentrations of fog droplets and concentrations of sea salt composition were high at the edge of the fog area, and decreased toward the center of the fog area. The peak of LWC size distribution was shifted from 17.0 μm at the edge to 36.5 μm in the center area. Based on the relationship of chemical compositions between aerosols and fog droplets, nss-SO42- and NH 4 + in sea fog water consisted of 85 % of the coarse mode aerosol and 15 % of the fine mode by ion basis. The fog droplets are expected to deposit with growing of its droplet size with coagulation and adsorbing reactive gases as a function of the distance from the edge of the sea fog area. These results suggest that sea fog over the subarctic North Pacific is an important as a scavenger of natural and anthropogenic substances transported from the Asian continent and its nitrogen flux to the marine environment may stimulate phytoplankton growth.
EMPFASIS: A Publication of the National Electronics Manufacturing Center of Excellence
2010-01-01
for moisture, salt spray, and wind driven rain protection. • Conversion to ruggedized electrical and fluid connectors. • Additional circuitry, if...computer control technology, designed for safe lead free and eutectic rework applications. Available in two models, the RD-500 series features a three-stage...shock, Temperature Humidity Bias (THB) Testing, Highly Accelerated Stress Testing (HAST), salt fog, high temperature storage, or other environmental
Testing and Evaluation of Multifunctional Smart Coatings
NASA Technical Reports Server (NTRS)
Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.; Pearman, Benjamin; Zhang, Xuejun
2015-01-01
A smart coating system, based on pH sensitive microcontainers (microparticles and microcapsules) has been developed. Various corrosion inhibitors have been encapsulated and incorporated into commercial and formulated coatings to test the functionality imparted on the coating by the incorporation of the inhibitor microcontainers. Coated carbon steel and aluminum alloy panels were tested using salt immersion, salt fog, and coastal atmospheric exposure conditions. This paper provides the details on coating sample preparation, evaluation methods, as well as test results of the inhibiting function of smart coatings.
9th Annual Systems Engineering Conference: Volume 2 Tuesday
2006-10-26
Laboratory, Ben-Gurion University of the Negev Jacob Herscovitz Space systems Directorate RAFAEL jacobh@rafael.co.il A Pragmatic Focus in Managing...Maintainability Tests •Environmental Qualification Tests – Humidity, Salt Fog, Shock, Vibration, Rain UE, Rain CE, Solar Radiation , Icing, Fluid
Influence of Sample Size of Polymer Materials on Aging Characteristics in the Salt Fog Test
NASA Astrophysics Data System (ADS)
Otsubo, Masahisa; Anami, Naoya; Yamashita, Seiji; Honda, Chikahisa; Takenouchi, Osamu; Hashimoto, Yousuke
Polymer insulators have been used in worldwide because of some superior properties; light weight, high mechanical strength, good hydrophobicity etc., as compared with porcelain insulators. In this paper, effect of sample size on the aging characteristics in the salt fog test is examined. Leakage current was measured by using 100 MHz AD board or 100 MHz digital oscilloscope and separated three components as conductive current, corona discharge current and dry band arc discharge current by using FFT and the current differential method newly proposed. Each component cumulative charge was estimated automatically by a personal computer. As the results, when the sample size increased under the same average applied electric field, the peak values of leakage current and each component current increased. Especially, the cumulative charges and the arc discharge length of dry band arc discharge increased remarkably with the increase of gap length.
F-35 Pollution Prevention Activities
2008-02-26
Cover Page Bushing Replacement Lab Testing • F-35 Evaluation of Alternative Materials – ToughMet, Nitronic 50 /60, 304/HBN, SBIR Developed, etc...Completed SCC and Salt Fog exposure – All F-35 Bushings ɚ.5”Ø Switched to Cold Worked Nitronic 60 – Phase 5 test plan Evaluating Installation Issues • ASC
Factors that influence properties of FOG deposits and their formation in sewer collection systems.
Iasmin, Mahbuba; Dean, Lisa O; Lappi, Simon E; Ducoste, Joel J
2014-02-01
Understanding the formation of Fat, Oil, and Grease (FOG) deposits in sewer systems is critical to the sustainability of sewer collection systems since they have been implicated in causing sewerage blockages that leads to sanitary sewer overflows (SSOs). Recently, FOG deposits in sewer systems displayed strong similarities with calcium-based fatty acid salts as a result of a saponification reaction. The objective of this study was to quantify the factors that may affect the formation of FOG deposits and their chemical and rheological properties. These factors included the types of fats used in FSEs, environmental conditions (i.e. pH and temperature), and the source of calcium in sewer systems. The results of this study showed that calcium content in the calcium based salts seemed to depend on the solubility limit of the calcium source and influenced by pH and temperature conditions. The fatty acid profile of the calcium-based fatty acid salts produced under alkali driven hydrolysis were identical to the profile of the fat source and did not match the profile of field FOG deposits, which displayed a high fraction of palmitic, a long chain saturated fatty acid. It is hypothesized that selective microbial metabolism of fats and/or biologically induced hydrogenation may contribute to the FOG deposit makeup in sewer system. Therefore, selective removal of palmitic in pretreatment processes may be necessary prior to the discharge of FSE wastes into the sewer collection system. Copyright © 2013 Elsevier Ltd. All rights reserved.
White Sands Missile Range Overview & Introduction: Test Capabilities Briefing
2011-11-07
PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Army Test and Evaluation Command (ATEC),White Sands Missile Range,White Sands Missile Range,NM,88002...5000 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR...solar radiation, icing, salt fog, etc. • Instrumented for system performance / diagnostics Climatics testing capabilities • Fixed and mobile test
Corrosion Control Test Method for Avionic Components
1981-09-25
pin conn’ecLor adsemblies *Electronic test articles exposed in an avionic box The following test parameters were used: Environment A - Modified Sulfur Dic...carrier correlation criteria in Table IV. The modified sulfur dioxide/salt fog test showed the best correlation with the carrier exposed test arti...capacitor. The HCl/H 2 SO3 environment and the S2C12 environment, as expected, produced more electrical failures than the modified sulfur dioxide test
Blast and Penetration Resistant Tactical Shelters
1979-07-01
2. Hardened Wall Material Properties 32 3. S-280 Shelter Panal Properties 33 4. Results Zor Dynamic Response of Complete S-280 Shelters 32 £-". In...insulation from a -6501 low to a 120 0F high plus a solar heating load 7. Corrosion resistance including salt fog 8. Blackout capability 9. Fungus...65 0 F), high temperature (120 0 F) plus a solar heating (BTU) load. g. Corrosion resistance (salt fog). 19 h. Blackout capability. i. Fungus
Pollution in coastal fog at Alto Patache, Northern Chile.
Sträter, Ellen; Westbeld, Anna; Klemm, Otto
2010-11-01
The Atacama Desert in Northern Chile is one of the most arid places on earth. However, fog occurs regularly at the coastal mountain range and can be collected at different sites in Chile to supply settlements at the coast with freshwater. This is also planned in the fog oasis Alto Patache (20°49'S, 70°09'W). For this pilot study, we collected fog water samples in July and August 2008 for chemical analysis to find indications for its suitability for domestic use. Fog water samples were taken with a cylindrical scientific fog collector and from the net and the storage tank of a Large Fog Collector (LFC). The pHs of advective fog, originating from the stratus cloud deck over the Eastern Pacific, varied between 2.9 and 3.5. Orographic fog, which was formed locally, exhibited a pH of 2.5. About 50% of the total ionic concentration was due to sea salt. High percentages of sulfate and very high enrichment factors (versus sea salt) of heavy metals were found. Both backward trajectories and the enrichment factors indicate that the high concentrations of ions and heavy metals in fog were influenced by anthropogenic activities along the Chilean Pacific Coast such as power plants, mining, and steel industry. We found no direct indication for the importance of other sources such as the emission of dimethyl sulfide from the ocean and subsequent atmospheric oxidation for acidity and sulfate or soil erosion for heavy metal concentrations. When fog water was collected by the LFC, it apparently picked up large amounts of dry deposition which accumulated on the nets during fog-free periods. This material is rinsed off the collector shortly after the onset of a fog event with the water collected first. During the first flush, some concentrations of acidity, nitrate, As, and Se, largely exceeded the Chilean drinking water limits. Before any use of fog water for domestic purpose, its quality should be checked on a regular basis. Strategies to mitigate fog water pollution are given.
Effect of Environment on Fatigue Behavior of a Nicalon(TM)/Si-N-C Ceramic Matrix Composite
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Ojard, Greg C.; Verrilli, Michael J.; Kiraly, Louis J. (Technical Monitor)
2002-01-01
The effect of environmental exposure on the fatigue life of Nicalon(TM) /Si-N-C composite was investigated in this study. Test specimens with arrays of 1.8 mm diameter holes and two different open areas, 25 and 35%, were machined. Three environmental conditions were studied: 1) continuous fatigue cycling in air, 2) fatigue cycling in air alternating with humidity exposure, and 3) fatigue cycling in air alternating with exposure to a salt-fog environment. All fatigue testing on specimens with holes was performed with a load ratio, R = 0.05, and at a temperature of 910 C. In general, fatigue lives were shortest for specimens subjected to salt-fog exposure and longest for specimens subjected to continuous fatigue cycling in air. The fatigue data generated on the specimens with holes were compared with fatigue data generated in air on specimens with no holes. Fatigue strength reduction factors for different environmental conditions and open areas investigated in the study were calculated for the Nicalon(TM) /Si-N-C composite.
2013-03-01
24 1. Geography of Great Salt Lake Basin .................................... 24 2. Fog at Salt Lake City...43 1. Moisture in GSL Basin .......................................................... 43 2...imagery over Salt Lake Basin from 1800 UTC 23 January 2009
Block 2 solar cell module environmental test program
NASA Technical Reports Server (NTRS)
Holloway, K. L.
1978-01-01
Environmental tests were performed of on 76 solar cell modules produced by four different manufacturers. The following tests were performed: (1) 28 day temperature and humidity; (2) rain and icing; (3) salt fog; (4) sand and dust; (5) vacuum/steam/pressure; (6) fungus; (7) temperature/altitude; and (8) thermal shock. Environmental testing of the solar cell modules produced cracked cells, cracked encapsulant and encapsulant delaminations on various modules. In addition, there was some minor cell and frame corrosion.
Localized corrosion of high performance metal alloys in an acid/salt environment
NASA Technical Reports Server (NTRS)
Macdowell, L. G.; Ontiveros, C.
1991-01-01
Various vacuum jacketed cryogenic supply lines at the Space Shuttle launch site at Kennedy Space Center use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the thin walled 304L stainless steel flex hoses. A search was done to find a more corrosion resistant replacement material. The study focussed on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, and long term exposure at a beach corrosion testing site. Based on the results of these tests, several nickel based alloys were found to have very high resistance to this corrosive environment. Also, there was excellent agreement between the electrochemical tests and the actual beach exposure tests. This suggests that electrochemical testing may be useful for narrowing the field of potential candidate alloys before subjecting samples to long term beach exposure.
Dominic, Christopher Cyril Sandeep; Szakasits, Megan; Dean, Lisa O; Ducoste, Joel J
2013-01-01
Sanitary sewer overflows are caused by the accumulation of insoluble calcium salts of fatty acids, which are formed by the reaction between fats, oils and grease (FOG) and calcium found in wastewaters. Different sewer structural configurations (i.e., manholes, pipes, wet wells), which vary spatially, along with other obstructions (roots intrusion) and pipe deformations (pipe sags), may influence the detrimental buildup of FOG deposits. The purpose of this study was to quantify the spatial variation in FOG deposit formation and accumulation in a pilot-scale sewer collection system. The pilot system contained straight pipes, manholes, roots intrusion, and a pipe sag. Calcium and oil were injected into the system and operated at alkaline (pH = 10) and neutral (pH = 7) pH conditions. Results showed that solid accumulations were slightly higher at neutral pH. Fourier transform infrared (FTIR) analysis on the solids samples confirmed that the solids were indeed calcium-based fatty acid salts. However, the fatty acid profiles of the solids deviated from the profile found from FOG deposits in sewer systems, which were primarily saturated fatty acids. These results confirm the work done previously by researchers and suggest an alternative fate of unsaturated fatty acids that does not lead to their incorporation in FOG deposits in full-scale sewer systems.
Environmental testing of flat plate solar cell modules
NASA Technical Reports Server (NTRS)
Griffith, J.; Dumas, L.; Hoffman, A.
1978-01-01
Commercially available flat-plate solar cell modules have been subjected to a variety of environmental tests designed to simulate service conditions. Among the tests are those simulating heat and rain, wind-driven rains, humidity and freezing, humidity and heat, humidity with a voltage bias, salt fog, hail impact, and fungus infestation. Tests for optical surface soiling and the combined effects of temperature, humidity and UV irradiation are under development. A correlation has been demonstrated between degradation caused by the qualification tests and such observed field effects as power loss.
46 CFR 175.600 - Incorporation by reference.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Vessels Under 61 Meters (200 feet) in Length, 1983 (“ABS Steel Vessel Rules (Meters)”) 177.300. Rules..., Standard Practice for Operating Salt Spray (Fog) Apparatus (“ASTM B 117”) 175.400. ASTM B 122/B 122M-95... (“ASTM D 93”) 175.400. ASTM D 635-97, Standard test Method for Rate of Burning and or Extent and Time of...
Salt Attack on Rocks and Expansion of Soils on Mars
NASA Astrophysics Data System (ADS)
Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Carey, J. W.
2004-12-01
Salt-rich sediments observed by the MER rover Opportunity at Meridiani Planum show that brines have been present on Mars in the past, but a role for groundwater in widespread rock weathering and soil formation is uncertain. Experiments by several groups suggest instead the action of acid fog over long time spans, with episodic input of volcanic gases, as a more significant agent of Mars weathering. Salt minerals formed in these acid weathering experiments consistently include gypsum and alunogen, with epsomite or hexahydrite forming where olivine provides a source of Mg. Analogous to the martian acid fog scenario are terrestrial acid rain or acid fog attacks on building and monument stone by chemical action and mechanical wedging through growth of gypsum, anhydrite, epsomite, hexahydrite, kieserite, and other sulfate minerals. Physical effects can be aggressive, operating by both primary salt growth and hydration of anhydrous or less-hydrous primary salts. In contrast, soils evolve to states where chemical attack is lessened and salt mineral growth leads to expansion with cementation; in this situation the process becomes constructive rather than destructive. We have made synthetic salt-cemented soils (duricrusts) from clays, zeolites, palagonites and other media mixed with ultrapure Mg-sulfate solutions. Although near-neutral in pH, these solutions still exchange or leach Ca from the solids to form cements containing gypsum as well as hexahydrite. At low total P (1 torr) and low RH (<1%) hexahydrite becomes amorphous but gypsum does not. If allowed to rehydrate from vapor at higher RH, the Mg-sulfate component of the duricrust expands by formation of a complex mixture of Mg-sulfate phases with various hydration states. The expanded form is retained even if the duricrust is again dehydrated, suggesting that soil porosity thus formed is difficult to destroy. These processes can be considered in the context of Viking, Pathfinder, and MER evidence for differing salt components in the weathered surfaces of rocks versus duricrust-like materials in soils. The divergent chemical trends indicate that soil formation on Mars is not merely a result of enhanced weathering of locally comminuted rock but requires an eolian component. The resulting soils thus appear to be a three-component mixture of local detritus, a regional or global eolian component, and acid fog additions. In the absence of rainfall or groundwater action, expanded and salt-cemented soil horizons are likely to persist as a regolith component in soil-atmosphere interactions over long time spans.
Less-Toxic Coatings for Inhibiting Corrosion of Aluminum
NASA Technical Reports Server (NTRS)
Minevski, Zoran; Clarke, Eric; Eylem, Cahit; Maxey, Jason; Nelson, Carl
2003-01-01
Two recently invented families of conversion- coating processes have been found to be effective in reducing or preventing corrosion of aluminum alloys. These processes offer less-toxic alternatives to prior conversion-coating processes that are highly effective but have fallen out of favor because they generate chromate wastes, which are toxic and carcinogenic. Specimens subjected to these processes were found to perform well in standard salt-fog corrosion tests.
NASA Technical Reports Server (NTRS)
Kessel, Kurt R.
2016-01-01
The test results for Salt Spray Resistance, Static Heat and Humidity and Marine Environment can be found in Sections 3.1.3.3, 3.1.4.3 and 3.1.5.3 respectively. In summary, both the Metalast TCP and SurTec 650 Type 2 conversion coatings perform very similar to the incumbent Type 1 conversion coating against both 6061 and 5052 aluminum under all three test conditions. Significant prior work was performed to select the aluminum and conversion coating included within this test cycle; Reference - NASA GSDO Program Hexavalent Chrome Alternatives Final Pretreatments Test Report Task Order: NNH12AA45D September 01, 2013. As illustrated in the data, the 6061 aluminum panels SLIGHTLY out-performed the 5052 aluminum panels. Individual shielding effectiveness graphs for each panel are included within Appendix C and D. One other notable effect found during review of the data is that the Test Panels exposed to B117 Salt Fog reduced in shielding effectiveness significantly more than the Marine Environment Test Panels. The shielding effectiveness of the Marine Test Panels was approximately 20dB higher than the Test Panels that underwent B117 Salt Fog Exposure. The intent of this evaluation was not to maximize shielding effectiveness values. The same Parker Chomerics Cho-Seal 6503 gasket material was used for all panels with aluminum and conversion coating variants. A typical EMI gasket design for corrosive environments would be done quite differently. The intent was to execute a test that would provide the best possible evaluation of different aluminum materials and conversion coatings in corrosive environments. The test program achieved this intent. The fact that the two aluminums and two Type II conversion coatings performed similar to the incumbent Type 1 conversion coating is a positive outcome. It was desired to have an outcome that further differentiation the performance of two aluminum types and two conversion coating types but this could not be extracted by the test results. Further analysis of the test plates may be done by X-Ray Photoelectron Spectroscopy (XPS) or Electrochemical Impedance Spectroscopy (EIS). Feasibility of this is under review.
Detecting Corrosion Under Paint and Insulation
NASA Technical Reports Server (NTRS)
Bastin, Gary L.
2011-01-01
Corrosion is a major concern at the Kennedy Space Center in Florida due to the proximity of the center to the Atlantic Ocean and to salt water lagoons. High humidity, salt fogs, and ocean breezes, provide an ideal environment in which painted steel structures become corroded. Maintenance of painted steel structures is a never-ending process.
NASA Technical Reports Server (NTRS)
Ontiveros, Cordelia
1988-01-01
Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. This study focused on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results of these tests, the most corrosion resistant alloys were found to be (in order) Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of those tested for this application.
NASA Technical Reports Server (NTRS)
Macdowell, Louis G., III; Ontiveros, Cordelia
1988-01-01
Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made out of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. Nineteen metal alloys were tested. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results, the most corrosion resistant alloys were found to be, in order, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of the alloys tested.
Birch, Gabriel C.; Woo, Bryana L.; Sanchez, Andres L.; ...
2017-08-24
The evaluation of optical system performance in fog conditions typically requires field testing. This can be challenging due to the unpredictable nature of fog generation and the temporal and spatial nonuniformity of the phenomenon itself. We describe the Sandia National Laboratories fog chamber, a new test facility that enables the repeatable generation of fog within a 55 m×3 m×3 m (L×W×H) environment, and demonstrate the fog chamber through a series of optical tests. These tests are performed to evaluate system image quality, determine meteorological optical range (MOR), and measure the number of particles in the atmosphere. Relationships between typical opticalmore » quality metrics, MOR values, and total number of fog particles are described using the data obtained from the fog chamber and repeated over a series of three tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birch, Gabriel C.; Woo, Bryana L.; Sanchez, Andres L.
The evaluation of optical system performance in fog conditions typically requires field testing. This can be challenging due to the unpredictable nature of fog generation and the temporal and spatial nonuniformity of the phenomenon itself. We describe the Sandia National Laboratories fog chamber, a new test facility that enables the repeatable generation of fog within a 55 m×3 m×3 m (L×W×H) environment, and demonstrate the fog chamber through a series of optical tests. These tests are performed to evaluate system image quality, determine meteorological optical range (MOR), and measure the number of particles in the atmosphere. Relationships between typical opticalmore » quality metrics, MOR values, and total number of fog particles are described using the data obtained from the fog chamber and repeated over a series of three tests.« less
The chemical composition of fogs and intercepted clouds in the United States
NASA Astrophysics Data System (ADS)
Collett, Jeffrey L.; Bator, Aaron; Sherman, D. Eli; Moore, Katharine F.; Hoag, Katherine J.; Demoz, Belay B.; Rao, Xin; Reilly, Jill E.
Over the past decade, the chemical compositions of fogs and intercepted clouds have been investigated at more than a dozen locations across the United States. Sampling sites have been located in the northeast, southeast, Rocky Mountain, and west coast regions of the US. They include both pristine and heavily polluted locations. Frontal/orographic clouds (warm and supercooled), intercepted coastal stratiform clouds, and radiation fogs have all been examined. Sample pH values range from below 3 to above 7. Major ions also exhibit a wide concentration range, with clouds at some locations exhibiting high sea salt concentrations, while composition at other locations is dominated by ammonium and sulfate or nitrate.
The Effectiveness of Power Tool Cleaning as an Alternative to Abrasive Blasting
1995-06-01
Lamar Avenue Houston, TX 77251 3M Building Service and Cleaning Products Division Building 223-65-03 St. Paul, MN 55144-1000 Marindus Company P. O...Mill Scale Removal with 3M Brand Heavy Duty RotoPeen Flap Wheel”;”Scotch-Brite” Surface Conditioning Products, 3M Building Service and Cleaning ... Products Division. 18. “The Dilemma of Removing Lead-Based Paint,” January 1988, p. 34-35. Specifications: ASTM TEST METHODS: B1 17, Salt Spray (Fog
Fatigue Behavior of an Advanced SiC/SiC Composite at Elevated Temperature in Air and in Steam
2009-12-01
specimens tested in salt fog achieved fatigue run-out. However, a significant decrease in fatigue life was observed for fatigue stresses ≥ 100 MPa...fatigue stress level approached the proportional limit. The reduction is fatigue life was attributed to the increased matrix cracking near the...oxidation of any free silicon remaining after production using methods such as melt infiltration, and the SiC itself as temperatures near 1000 ºC. These
NASA Astrophysics Data System (ADS)
Kim, So-Hyeong; Han, Ji-Hae; Suh, Myoung-Seok
2017-04-01
In this study, we developed a hybrid fog detection algorithm (FDA) using AHI/Himawari-8 satellite and ground observation data for nighttime. In order to detect fog at nighttime, Dual Channel Difference (DCD) method based on the emissivity difference between SWIR and IR1 is most widely used. DCD is good at discriminating fog from other things (middle/high clouds, clear sea and land). However, it is difficult to distinguish fog from low clouds. In order to separate the low clouds from the pixels that satisfy the thresholds of fog in the DCD test, we conducted supplementary tests such as normalized local standard derivation (NLSD) of BT11 and the difference of fog top temperature (BT11) and air temperature (Ta) from NWP data (SST from OSTIA data). These tests are based on the larger homogeneity of fog top than low cloud tops and the similarity of fog top temperature and Ta (SST). Threshold values for the three tests were optimized through ROC analysis for the selected fog cases. In addition, considering the spatial continuity of fog, post-processing was performed to detect the missed pixels, in particular, at edge of fog or sub-pixel size fog. The final fog detection results are presented by fog probability (0 100 %). Validation was conducted by comparing fog detection probability with the ground observed visibility data from KMA. The validation results showed that POD and FAR are ranged from 0.70 0.94 and 0.45 0.72, respectively. The quantitative validation and visual inspection indicate that current FDA has a tendency to over-detect the fog. So, more works which reducing the FAR is needed. In the future, we will also validate sea fog using CALIPSO data.
46 CFR 161.006-1 - Applicable specifications.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., and strip. (3) Standards of ASTM: ASTM B 117-97, Standard Practice for Operating Salt Spray (Fog) Apparatus—161.006-5 ASTM B 456-95, Standard Specification for Electrodeposited Coatings of Copper Plus...
Fog water chemistry in Shanghai
NASA Astrophysics Data System (ADS)
Li, Pengfei; Li, Xiang; Yang, Chenyu; Wang, Xinjun; Chen, Jianmin; Collett, Jeffrey L., Jr.
2011-08-01
With the aim of understanding the fog chemistry in a Chinese megacity, twenty-six fog water samples were collected in urban Shanghai from March 2009 to March 2010. The following parameters were measured: pH, electrical conductivity (EC), ten inorganic major ions ( SO42-, NO3-, NO2-, F -, Cl -, Na +, K +, Ca 2+, Mg 2+, NH4+) and four major organic acids (CH 3COO -, HCOO -, CO42-, MSA). The total ionic concentration (TIC) and EC of fog samples were one or two orders of magnitude higher than those often found in Europe, North America and other Asian countries. Pollutants were expected to be mainly from local sources, including factories, motor vehicle emissions and civil construction. Non-local sources such as moderate- and long-range transport of sea salt also contributed to pollution levels in fog events as indicated by back trajectory analysis. The pH of the fog water collected during the monitoring period varied from 4.68 to 6.58; acidic fogs represented about 30.8% of the total fog events during this period. The fog water was characterized by high concentrations of SO42- (20.0% of measured TIC), NO3- (17.1%), NH4+ (28.3%) and Ca 2+ (14.4%). SO42- and NO3-, the main precursors of fog acidity, were related to burning fossil fuels and vehicle emissions, respectively. NH4+, originating from the scavenging of gaseous ammonia and particulate ammonium nitrate and ammonium sulfate, and Ca 2+, originating from the scavenging of coarse particles, acted as acid neutralizers and were the main cause for the relatively high pH of fogs in Shanghai. The ratio of ( SO42- + NO3-)/( NH4+ + Ca 2+) was lower than 1, indicating the alkaline nature of the fog water. A high ratio of NO3-/ SO42- and low ratio of HCOO -/CH 3COO - were consistent with large contributions from vehicular emissions that produce severe air pollution in megacities.
Accelerated life assessment of coating on the radar structure components in coastal environment.
Liu, Zhe; Ming, ZhiMao
2016-07-04
This paper aimed to build an accelerated life test scheme and carry out quantitative analysis between accelerated life test in the laboratory and actual service for the coating composed of epoxy primer and polyurethane paint on structure components of some kind of radar served in the coastal environment of South China Sea. The accelerated life test scheme was built based on the service environment and failure analysis of the coating. The quantitative analysis between accelerated life test and actual service was conducted by comparing the gloss loss, discoloration, chalking, blistering, cracking and electrochemical impedance spectroscopy of the coating. The main factors leading to the coating failure were ultraviolet radiation, temperature, moisture, salt fog and loads, the accelerated life test included ultraviolet radiation, damp heat, thermal shock, fatigue and salt spray. The quantitative relationship was that one cycle of the accelerated life test was equal to actual service for one year. It was established that one cycle of the accelerated life test was equal to actual service for one year. It provided a precise way to predict actual service life of newly developed coatings for the manufacturer.
Fog and precipitation chemistry at a mid-land forest in central Taiwan.
Liang, Yang-Ling; Lin, Teng-Chiu; Hwong, Jeen-Liang; Lin, Neng-Huei; Wang, Chiao-Ping
2009-01-01
We analyzed fog and bulk precipitation chemistry at a cloud forest in central Taiwan where mountain agriculture activities are highest. There were 320 foggy days (visibility <1000 m) recorded between April 2005 and March 2006. Fog was most frequent between April 2005 and July 2005 and in March 2006 (153/153 d) and least frequent in January 2006 (21/31 d). The total fog duration was 2415 h, representing 28% of the sampling period. Compared with bulk precipitation, fog was disproportionally enriched in NO(3)(-) and SO(4)(2-) relative to K(+), Ca(2+), Mg(2+), and NH(4)(+), resulting in higher a content of nitric acid and sulfuric acid than weak acids or neutral salts and, therefore, higher acidity (median pH, 4.9) in fog than in bulk precipitation (median and mean pH, 5.5). The very high input of NH(4)(+) (47 kg N ha(-1) yr(-1)) through bulk precipitation suggests that the use of fertilizer (ammonium sulfate and animal manure) associated with mountain agriculture has a major impact on atmospheric deposition at the surrounding forest ecosystems. The input of inorganic N reached 125 kg N ha(-1) yr(-1) and likely exceeded the biological demand of the forest ecosystem. Sulfate is the most abundant anion in fog at Chi-tou and in precipitation at various forests throughout Taiwan, suggesting that the emission and transport of large quantities of SO(2,) the precursor of SO(4)(2-), is an island-wide environmental issue.
Fog tests performed at Kennedy Space Center on Kodak film type 101-05
NASA Technical Reports Server (NTRS)
Weinstein, M. S.
1973-01-01
Based on the tests which were conducted, the fogging exhibited by the Kodak 101-05 glass plates when used in the Skylab S-183 experiment carrousels is a chemical fog caused by an outgassing within the carrousel. Testing has not yet been able to determine which chemical causes the fog or just what can be done to eliminate the problem.
NASA Astrophysics Data System (ADS)
Panigrahi, B. K.; Srikanth, S.; Sahoo, G.
2009-11-01
The effect of copper, phosphorus, and chromium present in a semikilled reinforcing bar steel produced by in-line quenching [thermomechanical treatment (TMT)] process on the tensile properties, microstructure, and corrosion resistance of steel in simulated chloride environment has been investigated. The results have been compared with that of a semikilled C-Mn reinforcing bar steel without these alloying elements produced by the same process route. Though the amount of phosphorus (0.11 wt.%) was higher than that specified by ASTM A 706 standard, the Cu-P-Cr steel exhibited a composite microstructure, and good balance of yield stress, tensile stress, elongation, and ultimate tensile to yield stress ratio. Two conventional test methods, namely, the salt fog, and potentiodynamic polarization tests, were used for the corrosion test. The rust formed on Cu-P-Cr steel was adherent, and was of multiple colors, while the corrosion products formed on the C-Mn steel were weakly adherent and relatively darker blue. Also, the free corrosion potential of the Cu-P-Cr steel was nobler, and the corrosion current was markedly lower than that of a C-Mn rebar. The Cu-P-Cr steel did not develop any pits/deep grooves on its surface even after the prolonged exposure to salt fog. The improved corrosion resistance of the Cu-P-Cr steel has been attributed to the presence of copper, phosphorus, and small amount of chromium in the dense, adherent rust layer on the surface of reinforcing steel bar. A schematic mechanism of charge transfer has been proposed to explain the improved corrosion resistance of the Cu-P-Cr alloyed TMT rebar.
NASA Astrophysics Data System (ADS)
Lekouch, I.; Kabbachi, B.; Milimouk-Melnytchouk, I.; Muselli, M.; Beysens, D.
2010-07-01
In order to be used as alternative or supplemental sources of water, the physical and physico-chemical characteristics of rain, fog and dew water were investigated at Mirleft in the arid coastal environment of south-west Morocco. A site was instrumented on a terrace with a fog net collector, four 1 m2 inclined (30° ) test dew condenser, together with a weather station providing standard meteorological data. The study was carried out between May 1, 2007 and Avril 30, 2008. Over the one year period were noted 178 dew events (49% yearly occurrence), 31 rain events (8.5 % yearly occurrence) and 7 significant fog events (2 % yearly occurrence). The total quantity of collected water was 48.7 mm (rain), 18.9 mm (dew) and 1.4 mm (fog). Then collecting dew increases almost 40% the water yield although fog contributes to only 3%. A number of physico-chemical and biological parameters were also measured for dew and rain water: pH, electrical conductivity (EC), major anions (HCO3-,Cl-, SO42-,NO3-), major cations (NH4+, Na+, K+, Ca2+, Mg2+). It is found that the mean dew and rain pH are equal to 7.4 and 6.9, respectively and the mean EC are 730 ? S/cm and 316 ? S/cm, respectively, corresponding to large total mineralization. The ratio TA/TC < 1 indicates the alkaline nature of dew and rain water. The analysis of the major ions shows that the concentration of Cl- and Na+ is high compared to that of the other elements. To consider the marine and nonmarine origin of these ions, the fraction of salt coming from sea (SSF) was also calculated. While in dew Cl-, Na+ et Mg2+ are clearly of marine origine, the small SSF value for Ca2+, K+, SO4- et NO3- in dew suggests a considerable contribution of nonmarine origin for these components. In contrast, in rainwater, the values of the No Sea Salt Fraction (NSSF) indicates that only Ca2+ et NO3-are of non marine origin. The dry and transition seasons (spring, summer, fall) correspond to a water more concentrated in elements than during the wet season (winter), in relation to the water yield. The ions concentration agrees with the World Health Organization requirements for potable water. The biological analysis shows harmless vegetal spores and little contamination by animal/human bacteria.
Development of fog detection algorithm using Himawari-8/AHI data at daytime
NASA Astrophysics Data System (ADS)
Han, Ji-Hye; Kim, So-Hyeong; suh, Myoung-Seok
2017-04-01
Fog is defined that small cloud water drops or ice particles float in the air and visibility is less than 1 km. In general, fog affects ecological system, radiation budget and human activities such as airplane, ship, and car. In this study, we developed a fog detection algorithm (FDA) consisted of four threshold tests of optical and textual properties of fog using satellite and ground observation data at daytime. For the detection of fog, we used satellite data (Himawari-8/AHI data) and other ancillary data such as air temperature from NWP data (over land), SST from OSTIA (over sea). And for validation, ground observed visibility data from KMA. The optical and textual properties of fog are normalized albedo (NAlb) and normalized local standard deviation (NLSD), respectively. In addition, differences between air temperature (SST) and fog top temperature (FTa(S)) are applied to discriminate the fog from low clouds. And post-processing is performed to detect the fog edge based on spatial continuity of fog. Threshold values for each test are determined by optimization processes based on the ROC analysis for the selected fog cases. Fog detection is performed according to solar zenith angle (SZA) because of the difference of available satellite data. In this study, we defined daytime when SZA is less than 85˚ . Result of FDA is presented by probability (0 ˜ 100 %) of fog through the weighted sum of each test result. The validation results with ground observed visibility data showed that POD and FAR are 0.63 ˜ 0.89 and 0.29 ˜ 0.46 according to the fog intensity and type, respectively. In general, the detection skills are better in the cases of intense and without high clouds than localized and weak fog. We are plan to transfer this algorithm to the National Meteorological Satellite Center of KMA for the operational detection of fog using GK-2A/AMI data which will be launched in 2018.
Development testing of large volume water sprays for warm fog dispersal
NASA Technical Reports Server (NTRS)
Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.; Beard, K. V.
1986-01-01
A new brute-force method of warm fog dispersal is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray induced air flow. Fog droplets are removed by coalescence/rainout. The efficiency of the technique depends upon the drop size spectra in the spray, the height to which the spray can be projected, the efficiency with which fog laden air is processed through the curtain of spray, and the rate at which new fog may be formed due to temperature differences between the air and spray water. Results of a field test program, implemented to develop the data base necessary to assess the proposed method, are presented. Analytical calculations based upon the field test results indicate that this proposed method of warm fog dispersal is feasible. Even more convincingly, the technique was successfully demonstrated in the one natural fog event which occurred during the test program. Energy requirements for this technique are an order of magnitude less than those to operate a thermokinetic system. An important side benefit is the considerable emergency fire extinguishing capability it provides along the runway.
A new method for testing the scale-factor performance of fiber optical gyroscope
NASA Astrophysics Data System (ADS)
Zhao, Zhengxin; Yu, Haicheng; Li, Jing; Li, Chao; Shi, Haiyang; Zhang, Bingxin
2015-10-01
Fiber optical gyro (FOG) is a kind of solid-state optical gyroscope with good environmental adaptability, which has been widely used in national defense, aviation, aerospace and other civilian areas. In some applications, FOG will experience environmental conditions such as vacuum, radiation, vibration and so on, and the scale-factor performance is concerned as an important accuracy indicator. However, the scale-factor performance of FOG under these environmental conditions is difficult to test using conventional methods, as the turntable can't work under these environmental conditions. According to the phenomenon that the physical effects of FOG produced by the sawtooth voltage signal under static conditions is consistent with the physical effects of FOG produced by a turntable in uniform rotation, a new method for the scale-factor performance test of FOG without turntable is proposed in this paper. In this method, the test system of the scale-factor performance is constituted by an external operational amplifier circuit and a FOG which the modulation signal and Y waveguied are disconnected. The external operational amplifier circuit is used to superimpose the externally generated sawtooth voltage signal and the modulation signal of FOG, and to exert the superimposed signal on the Y waveguide of the FOG. The test system can produce different equivalent angular velocities by changing the cycle of the sawtooth signal in the scale-factor performance test. In this paper, the system model of FOG superimposed with an externally generated sawtooth is analyzed, and a conclusion that the effect of the equivalent input angular velocity produced by the sawtooth voltage signal is consistent with the effect of input angular velocity produced by the turntable is obtained. The relationship between the equivalent angular velocity and the parameters such as sawtooth cycle and so on is presented, and the correction method for the equivalent angular velocity is also presented by analyzing the influence of each parameter error on the equivalent angular velocity. A comparative experiment of the method proposed in this paper and the method of turntable calibration was conducted, and the scale-factor performance test results of the same FOG using the two methods were consistent. Using the method proposed in this paper to test the scale-factor performance of FOG, the input angular velocity is the equivalent effect produced by a sawtooth voltage signal, and there is no need to use a turntable to produce mechanical rotation, so this method can be used to test the performance of FOG at the ambient conditions which turntable can not work.
Zinc-rich coatings: A market survey
NASA Technical Reports Server (NTRS)
Lizak, R.
1975-01-01
Zinc-rich coatings with both organic and inorganic binders were considered for coastal bridges which require more corrosion protection than inland bridges because of exposure to salt spray and fog. Inorganics give longer protection and may be applied without a finish coat; those currently available are harder to apply than organics. The NASA potassium silicate/zinc - dust coating appears to provide longer protection, resist thermal shock, and overcome the application problem. Panels coated with the formulation withstood 5308 hours in a salt spray chamber with no rusting or blistering.
A novel process of electroless Ni-P plating with plasma electrolytic oxidation pretreatment
NASA Astrophysics Data System (ADS)
Liu, Zhenmin; Gao, Wei
2006-12-01
A novel Ni based coating - plasma electrolytic oxidation (PEO) pre-treatment followed by electroless nickel (EN) plating - has been developed to produce pore free Ni coatings on AZ91 magnesium alloy. The application of the PEO film between the nickel coating and the substrate acts as an effective barrier and catalytic layer for the subsequent nickel plating. The potentiodynamic tests indicated that the corrosion current density of the PEO + EN plating on AZ91 decreased by almost two orders of magnitudes compared to the traditional EN coating. Salt fog spray testing further proved this improvement. More importantly, the new technique does not use Cr +6 and HF in its pretreatment, therefore is a much environmentally friendlier process.
The Chemical Composition of Fogs and Clouds in Southern California.
NASA Astrophysics Data System (ADS)
Munger, James William
Fog and clouds are frequent occurrences in Southern California. Their chemical composition is of interest due to their potential role in the transformation of sulfur and nitrogen oxides to sulfuric and nitric acid and in the subsequent deposition of those acids. In addition, cloud and fog droplets may be involved in the chemistry of low-molecular-weight carboxylic acids and carbonyl compounds. The major inorganic species in cloud and fogwater samples were NH_4^+, H ^+, NO_3^-, and SO_4^{2-}. Concentrations in fogwater samples were 1-10 times 10^ {-3} M; pH values ranged from ~eq2 to 6. Nitrate usually exceeded sulfate. Acidity depended on the availability of of NH_3 from agricultural operations. Stratus cloudwater had somewhat lower concentrations; pH values were in the range 3-4. The major factors accounting for variation in fog- or cloudwater composition were the preexisting aerosol and gas concentrations and variations in liquid water content. Deposition and entrainment or advection of different air masses were also important during extended cloud or fog episodes. The droplet size dependence of cloudwater composition was investigated on one occasion in an intercepted coastal stratus clouds. The observations were consistent with the hypothesis that small droplets form on small secondary aerosol composed of H_2SO _4, HNO_3, and their NH_4^+ salts, while large droplets form on large sea-salt and soil-dust aerosol. Species that can exist in the gas phase, such as HCl and HNO _3, may be found in either droplet-size fraction. Concentrations of S(IV) and CH_2 O in the range 100-1000 μm were observed in fogwater from urban sites in Southern California. Lower concentrations were observed in stratus clouds. The high levels of S(IV) and CH_2 O were attributed to the formation of hydroxymethanesulfonate (HMSA), the S(IV) adduct of CH_2O. Direct measurement of HMSA in fogwater samples from Bakersfield, CA were made by ion-pairing chromatography. Glyoxal and methylglyoxal were observed at concentrations comparable to CH_2O in fogwater samples from Riverside, CA and in stratus cloudwater samples from sites along the Santa Barbara Channel.
46 CFR 114.600 - Incorporation by reference.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Conshohocken, PA 19428-2959 ASTM B 96-93, Standard Specification for Copper-Silicon Alloy Plate, Sheet, Strip... Operating Salt Spray (Fog) Apparatus 114.400 ASTM B 122/B 122M-95, Standard Specification for Copper-Nickel-Tin Alloy , Copper-Nickel-Zinc Alloy (Nickel Silver), and Copper-Nickel Alloy Plate, Sheet, Strip, and...
46 CFR 114.600 - Incorporation by reference.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Conshohocken, PA 19428-2959 ASTM B 96-93, Standard Specification for Copper-Silicon Alloy Plate, Sheet, Strip... Operating Salt Spray (Fog) Apparatus 114.400 ASTM B 122/B 122M-95, Standard Specification for Copper-Nickel-Tin Alloy , Copper-Nickel-Zinc Alloy (Nickel Silver), and Copper-Nickel Alloy Plate, Sheet, Strip, and...
Finstad, Kari M.; Probst, Alexander J.; Thomas, Brian C.; ...
2017-07-28
Although once thought to be devoid of biology, recent studies have identified salt deposits as oases for life in the hyperarid Atacama Desert. To examine spatial patterns of microbial species and key nutrient sources, we genomically characterized 26 salt crusts from three sites along a fog gradient. The communities are dominated by a large variety of Halobacteriales and Bacteroidetes, plus a few algal and Cyanobacterial species. CRISPR locus analysis suggests the distribution of a single Cyanobacterial population among all sites. This is in stark contrast to the extremely high sample specificity of most other community members. Only present at themore » highest moisture site is a genomically characterized Thermoplasmatales archaeon (Marine Group II) and six Nanohaloarchaea, one of which is represented by a complete genome. Parcubacteria (OD1) and Saccharibacteria (TM7), not previously reported from hypersaline environments, were found at low abundances. We found no indication of a N 2 fixation pathway in the communities, suggesting acquisition of bioavailable nitrogen from atmospherically derived nitrate. Samples cluster by site based on bacterial and archaeal abundance patterns and photosynthetic capacity decreases with increasing distance from the ocean. We conclude that moisture level, controlled by coastal fog intensity, is the strongest driver of community membership.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finstad, Kari M.; Probst, Alexander J.; Thomas, Brian C.
Although once thought to be devoid of biology, recent studies have identified salt deposits as oases for life in the hyperarid Atacama Desert. To examine spatial patterns of microbial species and key nutrient sources, we genomically characterized 26 salt crusts from three sites along a fog gradient. The communities are dominated by a large variety of Halobacteriales and Bacteroidetes, plus a few algal and Cyanobacterial species. CRISPR locus analysis suggests the distribution of a single Cyanobacterial population among all sites. This is in stark contrast to the extremely high sample specificity of most other community members. Only present at themore » highest moisture site is a genomically characterized Thermoplasmatales archaeon (Marine Group II) and six Nanohaloarchaea, one of which is represented by a complete genome. Parcubacteria (OD1) and Saccharibacteria (TM7), not previously reported from hypersaline environments, were found at low abundances. We found no indication of a N 2 fixation pathway in the communities, suggesting acquisition of bioavailable nitrogen from atmospherically derived nitrate. Samples cluster by site based on bacterial and archaeal abundance patterns and photosynthetic capacity decreases with increasing distance from the ocean. We conclude that moisture level, controlled by coastal fog intensity, is the strongest driver of community membership.« less
Finstad, Kari M; Probst, Alexander J; Thomas, Brian C; Andersen, Gary L; Demergasso, Cecilia; Echeverría, Alex; Amundson, Ronald G; Banfield, Jillian F
2017-01-01
Although once thought to be devoid of biology, recent studies have identified salt deposits as oases for life in the hyperarid Atacama Desert. To examine spatial patterns of microbial species and key nutrient sources, we genomically characterized 26 salt crusts from three sites along a fog gradient. The communities are dominated by a large variety of Halobacteriales and Bacteroidetes, plus a few algal and Cyanobacterial species. CRISPR locus analysis suggests the distribution of a single Cyanobacterial population among all sites. This is in stark contrast to the extremely high sample specificity of most other community members. Only present at the highest moisture site is a genomically characterized Thermoplasmatales archaeon (Marine Group II) and six Nanohaloarchaea, one of which is represented by a complete genome. Parcubacteria (OD1) and Saccharibacteria (TM7), not previously reported from hypersaline environments, were found at low abundances. We found no indication of a N 2 fixation pathway in the communities, suggesting acquisition of bioavailable nitrogen from atmospherically derived nitrate. Samples cluster by site based on bacterial and archaeal abundance patterns and photosynthetic capacity decreases with increasing distance from the ocean. We conclude that moisture level, controlled by coastal fog intensity, is the strongest driver of community membership.
Freezer or non-freezer: clinical assessment of freezing of gait.
Snijders, Anke H; Haaxma, Charlotte A; Hagen, Yolien J; Munneke, Marten; Bloem, Bastiaan R
2012-02-01
Freezing of gait (FOG) is both common and debilitating in patients with Parkinson's disease (PD). Future pathophysiology studies will depend critically upon adequate classification of patients as being either 'freezers' or 'non-freezers'. This classification should be based ideally upon objective confirmation by an experienced observer during clinical assessment. Given the known difficulties to elicit FOG when examining patients, we aimed to investigate which simple clinical test would be the most sensitive to provoke FOG objectively. We examined 50 patients with PD, including 32 off-state freezers (defined as experiencing subjective 'gluing of the feet to the floor'). Assessment including a FOG trajectory (three trials: normal speed, fast speed, and with dual tasking) and several turning variants (180° vs. 360° turns; leftward vs. rightward turns; wide vs. narrow turning; and slow vs. fast turns). Sensitivity of the entire assessment to provoke FOG in subjective freezers was 0.74, specificity was 0.94. The most effective test to provoke FOG was rapid 360° turns in both directions and, if negative, combined with a gait trajectory with dual tasking. Repeated testing improved the diagnostic yield. The least informative tests included wide turns, 180° turns or normal speed full turns. Sensitivity to provoke objective FOG in subjective freezers was 0.65 for the rapid full turns in both directions and 0.63 for the FOG trajectory. The most efficient way to objectively ascertain FOG is asking patients to repeatedly make rapid 360° narrow turns from standstill, on the spot and in both directions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Hexavalent Chromium IV-Free Primer Development
NASA Technical Reports Server (NTRS)
Alldredge, Michael J.; Buck, Amy L.
2015-01-01
Primer materials provide corrosion protection for metal parts as well as an increased adhesion between metallic substrates and thermal protection systems (TPSs). Current primers for use in cryogenic applications contain hexavalent chromium. This hexavalent chromium provides excellent corrosion protection even in a cryogenic environment, but it is a carcinogen that requires special equipment and waste control procedures to use. The hazardous nature of hexavalent chromium makes it an obsolescence risk in the future. This study included two phases of evaluation. Thirteen primers were initially identified as candidates and twelve of those primers were tested in phase 1. Four of the best performing candidates from phase 1 continued into phase 2 testing. Phase 1 testing consisted mostly of liquid constituent and physical property testing. Cryoflex and salt fog testing were included in phase 1 because of their importance to the overall success of a candidate material. Phase 2 consisted of physical, thermal, and mechanical properties for nominally processed and fabricated specimens.
The Quality of Fog Water Collected for Domestic and Agricultural Use in Chile.
NASA Astrophysics Data System (ADS)
Schemenauer, Robert S.; Cereceda, Pilar
1992-03-01
One exciting new application of meteorology is the prospect of using high-elevation fogs as an and land's water resource. This has now become reality in northern Chile where a pilot project has used 50 fog collectors to generate an average of 7200 1 of water per day during three drought years. The chemical composition of the fog water is of primary importance and is examined in this paper.A small, carefully cleaned fog-water collector was used at the site (elevation 780 m) to study the incoming fog (cloud). The ion and trace-element concentrations met Chilean and the World Health Organization's (WHO) drinking-water standards. The pH values, however, were at times extremely low. Samples from 1987 and 1988 were consistent with those from the larger dataset in 1989. The lowest observed pH was 3.46. The acidity was associated with high concentrations (89%) of excess sulfate in the 15 fog-water samples (based on Cl as the seawater tracer element). The NO3/SO4 equivalents ratio for the fog samples was 0.18, showing the dominance of SO4 in determining the acidity of the fog samples. The relative abundances of ions and trace elements in the dry deposition are very similar to those in the fog water, suggesting that the aerosols originate primarily from evaporated cloud droplets over the ocean. Based on enrichment-factor calculations (with Cl as the indicator element for seawater and A1 for the earth's crust), sea salts were the main source of Na+, Mg++, and Cl in the fog water; soil dust was the main source of Fe, Al and Ti; and other sources provided Ca++, K+, NH4+, Br SO4NO3 As,Cd,Pb,V,Mn,Ni,Cu,SrSb,and Ba in the fog water.The use of enrichment factors based on the relative abundances in soil extracts suggests that As, V, Cu, and Sr may be available from wetted soil dust.The output from the large (48 m2) fog collectors was also acceptable, except for several of the 24 trace elements, which exceeded the maximum allowable values in the first flush of water after a dry period of a few days. The pH values were again near 4 and would have to undergo a simple treatment to raise them to a value of 6 or more to meet the drinking-water standard. The output from a 2000-1 fog-water storage tank was completely acceptable and that from a 25 000-1 storage tank completely acceptable, except for a low pH. In contrast, both the water presently being used in a nearby village and local spring water were unacceptable. It is concluded that fog water is an attractive alternative as a water supply even after collection on the large meshes at this site.
Suppa, Antonio; Kita, Ardian; Leodori, Giorgio; Zampogna, Alessandro; Nicolini, Ettore; Lorenzi, Paolo; Rao, Rosario; Irrera, Fernanda
2017-01-01
Freezing of gait (FOG) is a leading cause of falls and fractures in Parkinson’s disease (PD). The episodic and rather unpredictable occurrence of FOG, coupled with the variable response to l-DOPA of this gait disorder, makes the objective evaluation of FOG severity a major clinical challenge in the therapeutic management of patients with PD. The aim of this study was to examine and compare gait, clinically and objectively, in patients with PD, with and without FOG, by means of a new wearable system. We also assessed the effect of l-DOPA on FOG severity and specific spatiotemporal gait parameters in patients with and without FOG. To this purpose, we recruited 28 patients with FOG, 16 patients without FOG, and 16 healthy subjects. In all participants, gait was evaluated clinically by video recordings and objectively by means of the wearable wireless system, during a modified 3-m Timed Up and Go (TUG) test. All patients performed the modified TUG test under and not under dopaminergic therapy (ON and OFF therapy). By comparing instrumental data with the clinical identification of FOG based on offline video-recordings, we also assessed the performance of the wearable system to detect FOG automatically in terms of sensitivity, specificity, positive and negative predictive values, and finally accuracy. TUG duration was longer in patients than in controls, and the amount of gait abnormalities was prominent in patients with FOG compared with those without FOG. l-DOPA improved gait significantly in patients with PD and particularly in patients with FOG mainly by reducing FOG duration and increasing specific spatiotemporal gait parameters. Finally, the overall wireless system performance in automatic FOG detection was characterized by excellent sensitivity (93.41%), specificity (98.51%), positive predictive value (89.55%), negative predictive value (97.31%), and finally accuracy (98.51%). Our study overall provides new information on the beneficial effect of l-DOPA on FOG severity and specific spatiotemporal gait parameters as objectively measured by a wearable sensory system. The algorithm here reported potentially opens to objective long-time sensing of FOG episodes in patients with PD. PMID:28855889
An evaluation of corrosion protection by two epoxy primers on 2219-T87 and 7075-T73 aluminum
NASA Technical Reports Server (NTRS)
Mendrek, M. J.
1992-01-01
A comparison of the corrosion protection provided by two amine epoxy primers was made using salt fog, alternate immersion, and total immersion as exposure media. The study is the result of a request to use an unqualified low volatile organic carbon (VOC) primer (AKZO 463-6-78) in place of the current primer (AKZO 463-6-3) because environmental regulations have eliminated use of the current primer in many states. Primed, scribed samples of 2219-T87 and 7075-T73 aluminum were exposed to 5-percent NaCl salt fog and 3.5-percent NaCl alternate immersion for a period of 90 days. In addition, electrode samples immersed in 3.5-percent NaCl were tested using electrochemical impedance spectroscopy (EIS). The EG&G model 368 ac impedance measurement system was used to monitor changing properties of AKZO 463-6-78 and AKZO 463-6-3 primed 2219-T87 aluminum for a period of 30 days. The response of the corroding system of a frequency scan can be modeled in terms of an equivalent circuit consisting of resistors and capacitors in a specific arrangement. Each resistor/capacitor combination represents physical processes taking place within the electrolyte, at the electrolyte/primer surface, within the coating, and at the coating/substrate surface. Values for the resistors and capacitors are assigned following a nonlinear least squares fit of the data to the equivalent circuit. Changes in the values of equivalent circuit parameters during the 30-day exposure allow assessment of the time to and mechanism of coating breakdown.
An improved measurement system for FOG pure lag time with no changing of FOG work status
NASA Astrophysics Data System (ADS)
Chen, X.; Yang, J. H.; Zhou, Y. L.; Shu, X. W.
2018-05-01
The minimum pure lag time is an important factor for characterizing the dynamic performance of fiber optical gyroscope. It is defined as the time duration from the reception of velocity-shock signal to the output of corresponding fiber-optic gyroscope data. Many engineering projects have required for this index specifically, so the measurement of the minimum pure lag time is highly demanded. In typically measurement system, the work status of tested FOG has to be changed. In this work, a FOG pure lag time measurement system without changing the work status of the FOG has been demonstrated. During the operation of this test system, the impact structure generated a shock towards the FOG, and the pure lag time was measured through data processing analysis. The design scheme and test principle have been researched and analyzed in detail. And a prototype has been developed and used for experiment successfully. This measurement system can realize a measurement accuracy of better than ±3 μs and a system resolution of 108.6ns.
Electrodeposited Zinc-Nickel as an Alternative to Cadmium Plating for Aerospace Application
NASA Technical Reports Server (NTRS)
Mcmillan, V. C.
1991-01-01
Corrosion evaluation studies were conducted on 4130 alloy steel samples coated with electrodeposited zinc-nickel and samples coated with electrodeposited cadmium. The zinc nickel was deposited by the selection electrochemical metallizing process. These coated samples were exposed to a 5-percent salt fog environment at 35 plus or minus 2 C for a period ranging from 96 to 240 hours. An evaluation of the effect of dichromate coatings on the performance of each plating was conducted. The protection afforded by platings with a dichromate seal was compared to platings without the seal. During the later stages of testing, deposit adhesion and the potential for hydrogen entrapment were also evaluated.
Indium and Zinc Alloys as Cadmium Brush Plating Replacements
2011-05-10
process development Salt Fog Corrosion Resistance 18 Coating Condition First Sign of White Rust First Sign of Red Rust Noticeable Propagation of...coupons] 31 1. Low temperature eutectic : • The Sn-In system eutectic is 244°F at ~48.3 weight % Sn • Cd-In-Sn system eutectic is ~199°F • Good for a
NASA TEERM Hexavalent Chrome Alternatives Projects
NASA Technical Reports Server (NTRS)
Rothgeb, Matt
2009-01-01
This slide presentation reviews the NASA/DOD projects to select an alternative to hexavalent chrome in the aerospace industry. The Phase I process of the project performed: (1) Evaluation and testing of non-chromated coating systems as replacements for hexavalent chrome coatings in aircraft and aerospace applications. (2) Testing of coating systems to DoD and NASA specifications for corrosion resistance and adhesion. (3) Bare corrosion resistance and atmospheric exposure will be focus areas of Phase II Testing. The description includes a chart that summarizes the 3000 hour salt fog test results. The second phase of the project includes (1) Evaluation and testing of coating systems that do not contain hexavalent chrome as replacements for aerospace applications. (2) Evaluation of coatings at Beach Test Site and Launch Complex 39B (3) Evaluation of non-chrome coatings for electronic housings (bare corrosion resistance and electrical impedance) is a part of this round of testing. This project was performed for the Technology Evaluation for Environmental Risk Mitigation (TEERM)
FogEye UV Sensor System : Low Visibility Landing Test (Phase IV Report)
DOT National Transportation Integrated Search
2004-03-01
The potential of FogEye solar blind UV technology to contribute to safe and swift throughput operations at airports has been demonstrated. One application, use of FogEye (Safety Sentry), as an aircraft surface detection sensor has been successfully o...
Martorell, Carlos; Ezcurra, Exequiel
2007-04-01
Plants that use fog as an important water-source frequently have a rosette growth habit. The performance of this morphology in relation to fog interception has not been studied. Some first-principles from physics predict that narrow leaves, together with other ancillary traits (large number and high flexibility of leaves, caudices, and/or epiphytism) which constitute the "narrow-leaf syndrome" should increase fog-interception efficiency. This was tested using aluminum models of rosettes that differed in leaf length, width and number and were exposed to artificial fog. The results were validated using seven species of Tillandsia and four species of xerophytic rosettes. The total amount of fog intercepted in rosette plants increased with total leaf area, while narrow leaves maximized interception efficiency (measured as interception per unit area). The number of leaves in the rosettes is physically constrained because wide-leafed plants can only have a few blades. At the limits of this constraint, net fog interception was independent of leaf form, but interception efficiency was maximized by large numbers of narrow leaves. Atmospheric Tillandsia species show the narrow-leaf syndrome. Their fog interception efficiencies were correlated to the ones predicted from aluminum-model data. In the larger xerophytic rosette species, the interception efficiency was greatest in plants showing the narrow-leaf syndrome. The adaptation to fog-harvesting in several narrow-leaved rosettes was tested for evolutionary convergence in 30 xerophytic rosette species using a comparative method. There was a significant evolutionary tendency towards the development of the narrow-leaf syndrome the closer the species grew to areas where fog is frequently available. This study establishes convergence in a very wide group of plants encompassing genera as contrasting as Tillandsia and Agave as a result of their dependence on fog.
Wood, Joseph P; Calfee, Michael Worth; Clayton, Matthew; Griffin-Gatchalian, Nicole; Touati, Abderrahmane; Egler, Kim
2013-04-15
The purpose of this study was to evaluate the sporicidal (inactivation of bacterial spores) effectiveness and operation of a fogging device utilizing peracetic acid/hydrogen peroxide (PAA). Experiments were conducted in a pilot-scale 24 m(3) stainless steel chamber using either biological indicators (BIs) or bacterial spores deposited onto surfaces via aerosolization. Wipe sampling was used to recover aerosol-deposited spores from chamber surfaces and coupon materials before and after fogging to assess decontamination efficacy. Temperature, relative humidity, and hydrogen peroxide vapor levels were measured during testing to characterize the fog environment. The fog completely inactivated all BIs in a test using a 60 mL solution of PAA (22% hydrogen peroxide/4.5% peracetic acid). In tests using aerosol-deposited bacterial spores, the majority of the post-fogging spore levels per sample were less than 1 log colony forming units, with a number of samples having no detectable spores. In terms of decontamination efficacy, a 4.78 log reduction of viable spores was achieved on wood and stainless steel. Fogging of PAA solutions shows potential as a relatively easy to use decontamination technology in the event of contamination with Bacillus anthracis or other spore-forming infectious disease agents, although additional research is needed to enhance sporicidal efficacy. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Montano, J. W.
1987-01-01
This report presents a preliminary mechanical property and stress corrosion evaluation of double melted (vacuum induction melted (VIM), and vacuum arc remelted (VAR)), solution treated, work strengthened and direct aged Inconel 718 alloy bar (5.50 in. (13.97 cm) diameter). Two sets of tensile specimens, one direct single aged and the other direct double aged, were tested at ambient temperature in both the longitudinal and transverse directions. Longitudinal tensile and yield strengths in excess of 200 ksi (1378.96 MPa) and 168 ksi (1158.33 MPa), respectively, were realized at ambient temperature, for the direct double aged specimen. No failures occurred in the single or double edged longitudinal and transverse tensile specimens stressed to 75 and 100 percent of their respective yield strengths and exposed to a salt fog environment for 180 days. Tensile tests performed after the stress corrosion test showed no mechanical property degradation.
NASA Astrophysics Data System (ADS)
Finstad, K. M.; Amundson, R.
2013-12-01
It has become increasing apparent that salt-rich deposits are present on the Martian surface and that aqueous alteration has occurred sometime during the planet's past. In the hyperarid Atacama Desert in Chile, an important Earth-based analogue to Mars, microbial life has been discovered inhabiting halite (NaCl) surface crust deposits. Is it possible that similar salt deposits on Mars once harbored microbial life? If so, what adaptations were likely necessary for survival in such an environment and what biosignatures are expected to remain? Although this fascinating ecosystem in the Atacama Desert has been recognized, neither the physical processes of halite crust formation, nor the microorganisms residing within the salts have been extensively studied. To better understand the formation and geochemical dynamics of this unique habitat, we chose two sites within the Atacama Desert which exhibit both active crust formation as well as the presence of microbial communities: one site is on a dry Holocene age lake bed, while the other is of Pleistocene age. At each site soil profiles were excavated and total geochemical analyses were performed. Field observations clearly showed that the soils exhibited transitions of carbonate to sulfate to chloride salt deposition with decreasing depth, and that the thickness and mass of halite in the surficial crust was related to the age of the soil. Isotope profiles of carbon, nitrogen, and sulfur from these soils were also analyzed. Once exposed to the atmosphere, the halite crusts reside in a dynamic state of dissolution and erosion by wind and fog, and reformation due to fog and dew. In the crust nodules, microbial communities were sampled, in centimeter increments from the surface, for carbon, nitrogen, and sulfur isotope/concentration profiles. Our analyses help elucidate the physical and geochemical processes linked to the formation and evolution of these dynamic salt crusts, and the imprint of microbial life within them. A detailed examination of this habitat provides guidelines for interpreting and understanding similar data from hyperarid environments, such as Mars, and planning for future Mars exploration.
Thermal spray coating for corrosion under insulation (CUI) prevention
NASA Astrophysics Data System (ADS)
Fuad, Mohd Fazril Irfan Ahmad; Razak, Khalil Abdul; Alias, Nur Hashimah; Othman, Nur Hidayati; Lah, Nik Khairul Irfan Nik Ab
2017-12-01
Corrosion under insulation (CUI) is one of the predominant issues affecting process of Oil and Gas and Petrochemical industries. CUI refers to external corrosion, but it is difficult to be detected as the insulation cover masks the corrosion problem. One of the options to prevent CUI is by utilizing the protective coating systems. Thermal spray coating (TSC) is an advanced coating system and it shows promising performance in harsh environment, which could be used to prevent CUI. However, the application of TSC is not attractive due to the high initial cost. This work evaluates the potential of TSC based on corrosion performance using linear polarization resistance (LPR) method and salt spray test (SST). Prior to the evaluation, the mechanical performance of TSC was first investigated using adhesion test and bend test. Microstructure characterization of the coating was investigated using Scanning Electron Microscope (SEM). The LPR test results showed that low corrosion rate of 0.05 mm/years was obtained for TSC in compared to the bare steel especially at high temperature of 80 °C, where usually normal coating would fail. For the salt spray test, there was no sign of corrosion products especially at the center (fully coated region) was observed. From SEM images, no corrosion defects were observed after 336 hours of continuous exposure to salt fog test. This indicates that TSC protected the steel satisfactorily by acting as a barrier from a corrosive environment. In conclusion, TSC can be a possible solution to minimize the CUI in a long term. Further research should be done on corrosion performance and life cycle cost by comparing TSC with other conventional coating technology.
Use of tannin anticorrosive reaction primer to improve traditional coating systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matamala, G.; Droguett, G.; Smeltzer, W.
1994-04-01
Different anticorrosive schemes applied over plain or previously shot-blasted surfaces of AISI 1010 (UNS G10100) steel plates were compared. Plates were painted with alkydic, vinylic, and epoxy anticorrosive schemes over metal treated previously with pine tannin reaction primer and over its own schemes without previous primer treatment. Anticorrosive tests were conducted in a salt fog chamber according to ASTM B 117-73. Rusting, blistering, and adhesion were assessed over time. The survey was complemented with potentiodynamic scanning tests in sodium chloride (NaCl) solution with a concentration equivalent to seawater. Corrosion currents were determined using Tafel and polarization resistance techniques. Results showedmore » the reaction primer inhibited corrosion by improving adherence. Advantages over traditional conversion primers formulated in a base of zinc chromate in phosphoric medium were evident.« less
Handwriting Impairments in People With Parkinson's Disease and Freezing of Gait.
Heremans, Elke; Nackaerts, Evelien; Broeder, Sanne; Vervoort, Griet; Swinnen, Stephan P; Nieuwboer, Alice
2016-11-01
Recent studies show that patients with Parkinson's disease (PD) and freezing of gait (FOG) experience motor problems outside their gait freezing episodes. Because handwriting is also a sequential movement, it may be affected in PD patients with FOG relative to those without. The current study aimed to assess the quality of writing in PD patients with and without FOG in comparison to healthy controls (CTs) during various writing tasks. Handwriting was assessed by the writing of cursive loops on a touch-sensitive writing tablet and by means of the Systematic Screening of Handwriting Difficulties (SOS) test in 30 PD patients with and without freezing and 15 healthy age-matched CTs. The tablet tests were performed at 2 different sizes, either continuously or alternatingly, as indicated by visual target lines. Patients with freezing showed decreased writing amplitudes and increased variability compared with CTs and patients without freezing on the writing tablet tests. Writing problems were present during both tests but were more pronounced during writing at alternating compared with writing at continuous size. Patients with freezing also had a higher total score on the SOS test than patients without freezing and CTs, reflecting more extensive handwriting problems, particularly with writing fluency. Writing is more severely affected in PD patients with FOG than in those without FOG. These results indicate that deficient movement sequencing and adaptation is a generic problem in patients with FOG. © The Author(s) 2016.
Hot-dipped tin-zinc on U-0. 75 w/o Ti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weirick, L.J.
1979-09-01
Conventional Zn galvanizing of U-0.75 Ti results in nonuniform coatings and reduced elongation because of thermal aging of the surface of the U-Ti. A lower melting material which would give sacrificial galvanic protection to the U-Ti was found in the Sn-Zn alloy system. The present work describes: (1) the metallography of the Sn-Zn system, (2) the electrochemistry of the Sn-Zn system with respect to U-Ti, (3) the mechanics of applying a Sn-Zn coating to U-Ti, (4) salt spray corrosion test results of various Sn-Zn alloys applied to U-Ti coupons, and (5) mechanical property tests of coated U-Ti tensile bars. Anmore » 80 Sn-20 Zn alloy (MP-280/sup 0/C) was chosen for the galvanizing study because of its lower melting point. The results showed that all alloys of the Sn-Zn system galvanically protected the U-Ti in salt fog environments. The lack of a suitable low temperature flux prevented the operation of the Sn-Zn bath at its optimum temperature and low elongations were obtained with this coating system.« less
Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2
NASA Technical Reports Server (NTRS)
Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.
2012-01-01
Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.
NASA Astrophysics Data System (ADS)
Sasakawa, Motoki; Uematsu, Mitsuo
2002-12-01
Samples of aerosol, sea fog, and rainwater were collected during a research cruise in the northwestern North Pacific, the Sea of Okhotsk, and the Sea of Japan in the summer of 1998. High concentrations of NO3-, nss-SO42- and NH4+ in aerosol over the Sea of Japan suggest that anthropogenic substances were transported to this region. Although the Sea of Okhotsk was covered with a clean marine air mass, the concentration of nss-SO42- was comparatively high in the aerosol samples. This nss-SO42- is probably of marine biogenic origin. The pH values of fogwater samples were measured to be <3.0 over the Sea of Okhotsk and the Sea of Japan. The concentrations of NO3- and NH4+ in the fogwater collected over the Sea of Japan were higher than those in the other regions, suggesting that the sea fog scavenged anthropogenic substances. The concentration of nss-SO42- in fogwater over the Sea of Okhotsk was equivalent to that over the Sea of Japan, probably because nss-SO42- and SO2 of marine biogenic origin were scavenged by the sea fog over the Sea of Okhotsk. The pH values of rainwater samples ranged from 6.1 to 7.2 during the cruise, and acidification of the rain was not significant. The concentrations of nss-Ca2+ in the rainwater were higher than those of the fogwater. This suggests that the rain-scavenged continental CaCO3 may have existed above the lower marine boundary layer, where sea fog appeared. Comparisons of the composition of aerosol and fogwater indicated that coarse particles, such as sea salts predominantly act as condensation nuclei of sea fog droplets rather than fine particles such as (NH4)2SO4.
Palmerini, Luca; Rocchi, Laura; Mazilu, Sinziana; Gazit, Eran; Hausdorff, Jeffrey M.; Chiari, Lorenzo
2017-01-01
Freezing of gait (FOG) is a disabling symptom that is common among patients with advanced Parkinson’s disease (PD). External cues such as rhythmic auditory stimulation can help PD patients experiencing freezing to resume walking. Wearable systems for automatic freezing detection have been recently developed. However, these systems detect a FOG episode after it has happened. Instead, in this study, a new approach for the prediction of FOG (before it actually happens) is presented. Prediction of FOG might enable preventive cueing, reducing the likelihood that FOG will occur. Moreover, understanding the causes and circumstances of FOG is still an open research problem. Hence, a quantitative characterization of movement patterns just before FOG (the pre-FOG phase) is of great importance. In this study, wearable inertial sensors were used to identify and quantify the characteristics of gait during the pre-FOG phase and compare them with the characteristics of gait that do not precede FOG. The hypothesis of this study is based on the threshold-based model of FOG, which suggests that before FOG occurs, there is a degradation of the gait pattern. Eleven PD subjects were analyzed. Six features extracted from movement signals recorded by inertial sensors showed significant differences between gait and pre-FOG. A classification algorithm was developed in order to test if it is feasible to predict FOG (i.e., detect it before it happens). The aim of the classification procedure was to identify the pre-FOG phase. Results confirm that there is a degradation of gait occurring before freezing. Results also provide preliminary evidence on the feasibility of creating an automatic algorithm to predict FOG. Although some limitations are present, this study shows promising findings for characterizing and identifying pre-FOG patterns, another step toward a better understanding, prediction, and prevention of this disabling symptom. PMID:28855887
2009-01-05
CAPE CANAVERAL, Fla. -- Fog blankets the woods near a road in the Merritt Island National Wildlife Refuge at NASA's Kennedy Space Center in Florida. The center shares a boundary with the refuge that includes salt-water estuaries, brackish marshes, hardwood hammocks and pine flatwoods. The diverse landscape provides habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles. Photo credit: NASA/Jack Pfaller
1975-02-01
but the "explosive warming" prior to the onset of the polar day haa no| yet been obaarved over the Antartic . Blocke are comparatively rare end occur...bluish, splinters easily, and is nearly free from salt. New ice is milky in color, hard, and salty. Fresh water may also be obtained from icebergs , but
NASA Astrophysics Data System (ADS)
Jordan, T. E.; Cosentino, N. J.
2014-12-01
We have developed a new altimeter proxy based on the 87Sr/86Sr ratio of surficial accumulations of salts in hyperarid settings. Under hyperarid conditions like in the Andean forearc in northern Chile at altitudes below ~3000 m.a.s.l., gypsum and other soluble salts form saline soils. The altimeter is based on the first-order topographic control on the extent of inland incursion of fog-transported marine aerosols derived from the Pacific Ocean. Once this fog is evaporated it deposits calcium sulfates with a marine 87Sr/86Sr signal. At positions in the landscape not reached by marine aerosols, calcium sulfates have no marine source, except by eolian reworking, and have a lower 87Sr/86Sr. 87Sr/86Sr values for Holocene accumulations of salts show a bimodal distribution: high values between 225-1075 m.a.s.l. (0.70807 ± 0.00004) and low values below and above those altitude thresholds (0.70746 ± 0.00010). We sampled dated gypsic relict soils and Gypsisols to study post-5 Ma surface height evolution using this method, after correcting for changes in the altitudinal structure of the paleo-fog zone with time. Locations spanning ~250 km strike-parallel distance within the forearc and at elevations between 450-1650 m.a.s.l. display moderate amounts of altitudinal change during the Pliocene, Pleistocene and Quaternary. Site results include two in the northern zone (19.5ºS and 19.65ºS) that experienced maximum net surface uplifts of ~350 m and ~600 m since 2.5 ± 0.5 Ma and ~2.6 Ma, respectively. Locations at ~21.4°S display an estimated minimum net decline in altitude of ~250 m since 3.4 ± 1.1 Ma and ~200 m since 1.1 ± 0.4 Ma. These constraints will shed light on the geodynamic processes responsible for surface elevation change, by acting as boundary conditions to numerical models of the Andean forearc.
Investigating factors leading to fogging of glass vials in lyophilized drug products.
Abdul-Fattah, Ahmad M; Oeschger, Richard; Roehl, Holger; Bauer Dauphin, Isabelle; Worgull, Martin; Kallmeyer, Georg; Mahler, Hanns-Christian
2013-10-01
Vial "Fogging" is a phenomenon observed after lyophilization due to drug product creeping upwards along the inner vial surface. After the freeze-drying process, a haze of dried powder is visible inside the drug product vial, making it barely acceptable for commercial distribution from a cosmetic point of view. Development studies were performed to identify the root cause for fogging during manufacturing of a lyophilized monoclonal antibody drug product. The results of the studies indicate that drug product creeping occurs during the filling process, leading to vial fogging after lyophilization. Glass quality/inner surface, glass conversion/vial processing (vial "history") and formulation excipients, e.g., surfactants (three different surfactants were tested), all affect glass fogging to a certain degree. Results showed that the main factor to control fogging is primarily the inner vial surface hydrophilicity/hydrophobicity. While Duran vials were not capable of reliably improving the level of fogging, hydrophobic containers provided reliable means to improve the cosmetic appearance due to reduction in fogging. Varying vial depyrogenation treatment conditions did not lead to satisfying results in removal of the fogging effect. Processing conditions of the vial after filling with drug product had a strong impact on reducing but not eliminating fogging. Copyright © 2013 Elsevier B.V. All rights reserved.
Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy
NASA Astrophysics Data System (ADS)
Mingo, B.; Arrabal, R.; Mohedano, M.; Llamazares, Y.; Matykina, E.; Yerokhin, A.; Pardo, A.
2018-03-01
The effect of three different post-treatments carried out on Plasma Electrolytic Oxidation (PEO) coated magnesium alloys are evaluated in terms of characterisation and corrosion resistance. Special interest is given to the role of a common additive (NaF) to the coating properties. The post-treatments are based on immersion sealing processes in aqueous solutions of inorganic salts (cerium and stannate based salts) and alcoholic solution of an organic acid (octodecylphosphate acid, ODP). Sealing mechanisms for each post-treatment are proposed. Cerium and stannate sealings are based on filling of the pores with the products of dissolution/precipitation reactions, while the ODP acid sealing is based on the formation of a thin layer of ODP over the coating through specific interactions between the polar part of the organic acid and the coating surface. All coatings are evaluated by salt fog test and analysed by electrochemical impedance spectroscopy. All sealings show a slight increase in the corrosion resistance of the coatings formed in the NaF-free electrolyte, but their positive influence is boosted in case of the coatings obtained in the NaF-containing electrolyte. This is related to the chemical and morphological changes at the coating surface induced by the presence of NaF in the electrolyte.
Performance Evaluation of a Commercial Polyurethane Coating in Marine Environment
NASA Astrophysics Data System (ADS)
Mobin, M.; Malik, A. U.; Al-Muaili, F.; Al-Hajri, M.
2012-07-01
A material evaluation study has been carried out to determine corrosion behavior of a commercial polyurethane coating system (Souplethane 5) in the marine environment. The coating system is solvent free, two-component polyurethane protective coating. The performance of the coating on steel and rebar concrete was evaluated by conducting different types of tests which include atmospheric exposure, immersion in 5% sodium chloride solution, exposure to splash zone in seawater, salt fog, sabkha soil burial, and electrochemical tests, which include potentiodynamic polarization and AC impedance measurements. Uncoated, coated, and coated scribed specimens were used in each study. In general, the coating showed good corrosion resistance in marine environment. However, the coated samples, when subjected to break under applied compressive load, showed partial or complete detachment from the substrate, e.g., steel and rebar concrete. This appears to be the major drawback of the coating while applying on steel and concrete structures.
NASA Technical Reports Server (NTRS)
Nelson, Mary J.; Groshart, Earl C.
1995-01-01
The Boeing Company has been searching for replacements to cadmium plate. Two alloy plating systems seem close to meeting the needs of a cadmium replacement. The two alloys, zinc-nickel and tin-zinc are from alloy plating baths; both baths are neutral pH. The alloys meet the requirements for salt fog corrosion resistance, and both alloys excel as a paint base. Currently, tests are being performed on standard fasteners to compare zinc-nickel and tin-zinc on threaded hardware where cadmium is heavily used. The Hydrogen embrittlement propensity of the zinc-nickel bath has been tested, and just beginning for the tin-zinc bath. Another area of interest is the electrical properties on aluminum for tin-zinc and will be discussed. The zinc-nickel alloy plating bath is in production in Boeing Commercial Airplane Group for non-critical low strength steels. The outlook is promising that these two coatings will help The Boeing Company significantly reduce its dependence on cadmium plating.
The Clinical Significance Of Freezing While Turning in Parkinson’s Disease
Mancini, Martina; Smulders, Katrijn; Cohen, Rajal G.; Horak, Fay B.; Giladi, Nir; Nutt, John G
2016-01-01
Freezing of gait (FoG) in people with Parkinson’s disease (PD) is an environmentally sensitive, intermittent problem that occurs most often during turning. FoG is difficult for clinicians to evaluate and treat because it can be difficult to elicit during a clinical visit. Here, we aimedto develop a clinically valid objective measure of freezing severity during a 2-minute 360 degrees turning-in-place. Twenty-eight subjects with PD (16 freezers, FoG+, and 12 nonfreezers, FoG−) in the “off” state and 14 healthy control subjects were tested. Subjects wore 3 inertial sensors (one on each shin and one on the waist) while 1) turning in place for 2 minutes (alternating 360 degrees to the right with 360 degrees to the left) and 2) performing an Instrumented 7m Timed Up and Go test (ITUG). Performance was videotaped, and clinical severity of FoG was independently rated by two movement disorders specialists (co-authors). Turning in place consistently resulted in FoG (13 out of 16 subjects with PD) while FoG was clinically observed in only 2 subjects with PD during the ITUG test. The Freezing Ratio during the turning test was significantly correlated with the clinical ratings (ρ=0.7, p=0.003) and with score on the new freezing of gait questionnaire (ρ=0.5, p=0.03). After correcting for symptom severity (UPDRS-III), out of the 4 objective measures of the turning test (total number of turns, average turn peak speed and average turn smoothness), only the Freezing Ratio was significantly different across groups (p=0.04). Freezing can be well quantified with body-worn inertial sensors during a 2-minute turning-in-place protocol. PMID:27956066
2009-01-05
CAPE CANAVERAL, Fla. – Fog envelops the Cape Canaveral Lighthouse that has graced Cape Canaveral's shore for more than 100 years under the stewardship of the U.S. Air Force. The center shares a boundary with the refuge that includes salt-water estuaries, brackish marshes, hardwood hammocks and pine flatwoods. The diverse landscape provides habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles. Photo credit: NASA/Jack Pfaller
2011-06-14
ground vehicle Program Management (PM) needs. Base Armor • Small Arms/Frag Opaque B-kits • Medium Cal/Frag Opaque B-kits • Transparent Armor Appliqué...packaged/mounted on a vehicle -representative structure and after introducing relevant environments and relevant threat engagements. Yes 4 MIL-STD 810...Contamination by Fluids • Solar Radiation • Rain • Humidity • Salt Fog • Sand & Dust • Acidic Atmosphere • Vibration • Shock • Fire, Smoke & Toxicity ATPD
Integration of Local Observations into the One Dimensional Fog Model PAFOG
NASA Astrophysics Data System (ADS)
Thoma, Christina; Schneider, Werner; Masbou, Matthieu; Bott, Andreas
2012-05-01
The numerical prediction of fog requires a very high vertical resolution of the atmosphere. Owing to a prohibitive computational effort of high resolution three dimensional models, operational fog forecast is usually done by means of one dimensional fog models. An important condition for a successful fog forecast with one dimensional models consists of the proper integration of observational data into the numerical simulations. The goal of the present study is to introduce new methods for the consideration of these data in the one dimensional radiation fog model PAFOG. First, it will be shown how PAFOG may be initialized with observed visibilities. Second, a nudging scheme will be presented for the inclusion of measured temperature and humidity profiles in the PAFOG simulations. The new features of PAFOG have been tested by comparing the model results with observations of the German Meteorological Service. A case study will be presented that reveals the importance of including local observations in the model calculations. Numerical results obtained with the modified PAFOG model show a distinct improvement of fog forecasts regarding the times of fog formation, dissipation as well as the vertical extent of the investigated fog events. However, model results also reveal that a further improvement of PAFOG might be possible if several empirical model parameters are optimized. This tuning can only be realized by comprehensive comparisons of model simulations with corresponding fog observations.
A field study of air flow and turbulent features of advection fog
NASA Technical Reports Server (NTRS)
Connell, J. D.
1979-01-01
The setup and initial operation of a set of specialized meteorological data collection hardware are described. To study the life cycle of advection fogs at a lake test site, turbulence levels in the fog are identified, and correlated with the temperature gradients and mean wind profiles. A meteorological tower was instrumented to allow multiple-level measurements of wind and temperature on a continuous basis. Additional instrumentation was: (1)hydrothermograph, (2)microbarograph, (3)transmissometers, and (4)a boundary layer profiler. Two types of fogs were identified, and important differences in the turbulence scales were noted.
FOG-2, a Heart- and Brain-Enriched Cofactor for GATA Transcription Factors
Lu, Jian-rong; McKinsey, Timothy A.; Xu, Hongtao; Wang, Da-zhi; Richardson, James A.; Olson, Eric N.
1999-01-01
Members of the GATA family of zinc finger transcription factors have been shown to play important roles in the control of gene expression in a variety of cell types. GATA-1, -2, and -3 are expressed primarily in hematopoietic cell lineages and are required for proliferation and differentiation of multiple hematopoietic cell types, whereas GATA-4, -5, and -6 are expressed in the heart, where they activate cardiac muscle structural genes. Friend of GATA-1 (FOG) is a multitype zinc finger protein that interacts with GATA-1 and serves as a cofactor for GATA-1-mediated transcription. FOG is coexpressed with GATA-1 in developing erythroid and megakaryocyte cell lineages and cooperates with GATA-1 to control erythropoiesis. We describe a novel FOG-related factor, FOG-2, that is expressed predominantly in the developing and adult heart, brain, and testis. FOG-2 interacts with GATA factors, and interaction of GATA-4 and FOG-2 results in either synergistic activation or repression of GATA-dependent cardiac promoters, depending on the specific promoter and the cell type in which they are tested. The properties of FOG-2 suggest its involvement in the control of cardiac and neural gene expression by GATA transcription factors. PMID:10330188
Impact of Land-Sea Thermal Contrast on Inland Penetration of Sea Fog over The Yellow Sea
NASA Astrophysics Data System (ADS)
Lee, H. Y.; Chang, E. C.
2017-12-01
Sea fog can be classified into a cold sea fog that occurs when sea surface temperature (SST) is colder than sea air temperature (SAT) and a warm sea fog that occurs when the SST is warmer than the SAT. We simulated two sea fog events over the Yellow Sea which is surrounded by Korean Peninsula and mainland China using Weather Research and Forecasting (WRF) model. Our first aim is to understand contributions of major factors for the sea fog formation. First, the two sea fog events are designated as cold and warm types, and cooling rates as well as moistening rates are calculated employing bulk aerodynamic methods. Both cases show cooling and moistening by turbulent fluxes play an important role in condensation either favorably or unfavorably. However, longwave radiative cooling is as or even stronger than turbulent cooling, suggesting it is the most decisive factor in formation of sea fogs regardless of their type. Our second purpose of the study is to understand inland penetration of sea fog in terms of thermal contrast (TC) and it was conducted through sensitivity tests of SST and land skin temperature (LST). In the SST sensitivity tests, increase of SSTs lead to that of upward turbulent heat fluxes so that SATs rise which are responsible for evaporation of cloud waters and it is common response of the two events. In addition, change of the SST induce that of the TC and may affect the inland penetration of sea fog. However, when the cloud waters over the sea evaporate, it is hard to fully determine the inland penetration. As a remedy for this limitation, LST is now modified instead of SST to minimize the evaporation effect, maintaining the equivalent TC. In the case of cold sea fog, land air temperature (LAT) is warmer than SAT. Here, decrease of the LAT leads to weakening of the TC and favors the inland penetration. On the other hand, LAT is colder than the SAT in the warm sea fog event. When the LAT decreases, the TC is intensified resulting in blocking of the penetration. Although our study mainly focused on the TC, the results can offer new perspective which would be helpful for forecasting the visibility in the coastal area.
NASA Astrophysics Data System (ADS)
Srivastava, S. K., Sr.; Sharma, D. A.; Sachdeva, K.
2017-12-01
Indo-Gangetic plains of India experience severe fog conditions during the peak winter months of December and January every year. In this paper an attempt has been to analyze the spatial and temporal variability of winter fog over Indo-Gangetic plains. Further, an attempt has also been made to configure an efficient meso-scale numerical weather prediction model using different parameterization schemes and develop a forecasting tool for prediction of fog during winter months over Indo-Gangetic plains. The study revealed that an alarming increasing positive trend of fog frequency prevails over many locations of IGP. Hot spot and cluster analysis were conducted to identify the high fog prone zones using GIS and inferential statistical tools respectively. Hot spots on an average experiences fog on 68.27% days, it is followed by moderate and cold spots with 48.03% and 21.79% respectively. The study proposes a new FASP (Fog Analysis, sensitivity and prediction) Model for overall analysis and prediction of fog at a particular location and period over IGP. In the first phase of this model long term climatological fog data of a location is analyzed to determine its characteristics and prevailing trend using various advanced statistical techniques. During a second phase a sensitivity test is conducted with different combination of parameterization schemes to determine the most suitable combination for fog simulation over a particular location and period and in the third and final phase, first ARIMA model is used to predict the number of fog days in future . Thereafter, Numerical model is used to predict the various meteorological parameters favourable for fog forecast. Finally, Hybrid model is used for fog forecast over the study location. The results of the FASP model are validated with actual ground based fog data using statistical tools. Forecast Fog-gram generated using hybrid model during Jan 2017 shows highly encouraging results for fog occurrence/Non occurrence between 25 hrs to 72 hours forecast. The model predicted the fog occurrences/Non occurrence with more than 85 % accuracy over most of the locations across the study area. The minimum visibility departure is within 500 m on 90% occasions over the central IGP and within 1000m on more than 80 % occasions over most of the locations across Indo-Gangetic plains.
Probe and Sensors Development for Level Measurement of Fats, Oils and Grease in Grease Boxes
Faria, José; Sousa, André; Reis, Arsénio; Filipe, Vitor; Barroso, João
2016-01-01
The wide spread of food outlets has become an environmental and sanitation infrastructure problem, due to Fats, Oils and Grease (FOG). A grease box is used at the industrials facilities to collect the FOG, in a specific time window, while its quality is good for recycling (e.g., biodiesel) and it is economically valuable. After this period, it will be disposed at a cost. For the proper management of the grease boxes, it is necessary to know the quantity of FOG inside the boxes, which is a major problem, as the boxes are sealed and permanently filled with water. The lack of homogeneity of the FOG renders it not detectable by current probes for level detection in liquids. In this article, the design, development and testing of a set of probes for FOG level measurement, based on the principles used in sensors for the detection of liquids inside containers, is described. The most suitable probe, based on the capacitance principle, together with the necessary hardware and software modules for data acquisition and transmission, was developed and tested. After the development phase, the probe was integrated on a metropolitan system for FOG collection and grease box management in partnership with a grease box management company. PMID:27649204
Probe and Sensors Development for Level Measurement of Fats, Oils and Grease in Grease Boxes.
Faria, José; Sousa, André; Reis, Arsénio; Filipe, Vitor; Barroso, João
2016-09-16
The wide spread of food outlets has become an environmental and sanitation infrastructure problem, due to Fats, Oils and Grease (FOG). A grease box is used at the industrials facilities to collect the FOG, in a specific time window, while its quality is good for recycling (e.g., biodiesel) and it is economically valuable. After this period, it will be disposed at a cost. For the proper management of the grease boxes, it is necessary to know the quantity of FOG inside the boxes, which is a major problem, as the boxes are sealed and permanently filled with water. The lack of homogeneity of the FOG renders it not detectable by current probes for level detection in liquids. In this article, the design, development and testing of a set of probes for FOG level measurement, based on the principles used in sensors for the detection of liquids inside containers, is described. The most suitable probe, based on the capacitance principle, together with the necessary hardware and software modules for data acquisition and transmission, was developed and tested. After the development phase, the probe was integrated on a metropolitan system for FOG collection and grease box management in partnership with a grease box management company.
Roles of Fog and Topography in Redwood Forest Hydrology
NASA Astrophysics Data System (ADS)
Francis, E. J.; Asner, G. P.
2017-12-01
Spatial variability of water in forests is a function of both climatic gradients that control water inputs and topo-edaphic variation that determines the flows of water belowground, as well as interactions of climate with topography. Coastal redwood forests are hydrologically unique because they are influenced by coastal low clouds, or fog, that is advected onto land by a strong coastal-to-inland temperature difference. Where fog intersects the land surface, annual water inputs from summer fog drip can be greater than that of winter rainfall. In this study, we take advantage of mapped spatial gradients in forest canopy water storage, topography, and fog cover in California to better understand the roles and interactions of fog and topography in the hydrology of redwood forests. We test a conceptual model of redwood forest hydrology with measurements of canopy water content derived from high-resolution airborne imaging spectroscopy, topographic variables derived from high-resolution LiDAR data, and fog cover maps derived from NASA MODIS data. Landscape-level results provide insight into hydrological processes within redwood forests, and cross-site analyses shed light on their generality.
Pereira, Marcelo P; Gobbi, Lilian T B; Almeida, Quincy J
2016-08-01
The role of proprioceptive integration impairments as the potential mechanism underlying Freezing of gait (FOG) in Parkinson's disease (PD) is still an open debate. The effects of muscle vibration (a well-known manipulation of proprioception) could provide the answer to the debate. The aim of this study was to determine whether proprioceptive manipulation, through muscle vibration, could reduce FOG severity. Sixteen PD patients who experience FOG were required to walk with small step lengths (15 cm). Cylindrical vibration devices were positioned on triceps surae tendon. Three vibration conditions were tested: No vibration (OFF), vibration on the less affected limb (LA), or on the more affected limb (MA). Additionally, we assessed the effects of applying vibration before and after FOG onset. The FOG duration and the foot used to take the next step were assessed. FOG significantly decreased only with vibration of LA in comparison to OFF, and when vibration was applied after FOG onset. Our results show that muscle vibration is a promising technique to alleviate the severity of FOG. Improvements to FOG behavior were restricted to the less affected limb, suggesting that only the less damaged side of the basal ganglia may have preserved capacity to process sensory feedback. These results also suggest the likelihood of sensory deficits in FOG that cannot be explained by cognitive mechanisms, since vibration effects were only observed unilaterally. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gentry, D.; Whinnery, J. T.; Ly, V. T.; Travers, S. V.; Sagaga, J.; Dahlgren, R. P.
2017-12-01
Microorganisms play a major role in our biosphere due to their ability to alter water, carbon and other geochemical cycles. Fog and low-level cloud water can play a major role in dispersing and supporting such microbial diversity. An ideal region to gather these microorganisms for characterization is the central coast of California, where dense fog is common. Fog captured from an unmanned aerial vehicle (UAV) at different altitudes will be analyzed to better understand the nature of microorganisms in the lower atmosphere and their potential geochemical impacts. The capture design consists of a square-meter hydrophobic mesh that hangs from a carbon fiber rod attached to a UAV. The DJI M600, a hexacopter, will be utilized as the transport for the payload, the passive impactor collection unit (PICU). The M600 will hover in a fog bank at altitudes between 10 and 100 m collecting water samples via the PICU. A computational flow dynamics (CFD) model will optimize the PICU's size, shape and placement for maximum capture efficiency and to avoid contamination from the UAV downwash. On board, there will also be an altitude, temperature and barometric pressure sensor whose output is logged to an SD card. A scale model of the PICU has been tested with several different types of hydrophobic meshes in a fog chamber at 90-95% humidity; polypropylene was found to capture the fog droplets most efficiently at a rate of .0042 g/cm2/hour. If the amount collected is proportional to the area of mesh, the estimated amount of water collected under optimal fog and flight conditions by the impactor is 21.3 g. If successful, this work will help identify the organisms living in the lower atmosphere as well as their potential geochemical impacts.
Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development
NASA Astrophysics Data System (ADS)
Farmer, Joseph; Choi, Jor-Shan; Saw, Cheng; Haslam, Jeffrey; Day, Dan; Hailey, Phillip; Lian, Tiangan; Rebak, Raul; Perepezko, John; Payer, Joe; Branagan, Daniel; Beardsley, Brad; D'Amato, Andy; Aprigliano, Lou
2009-06-01
An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was cosponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the U.S. Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition, materials synthesis, thermal stability, corrosion resistance, environmental cracking, mechanical properties, damage tolerance, radiation effects, and important potential applications. Amorphous alloys identified as SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) and SAM1651 (Fe48Mo14Cr15Y2C15B6) have been produced as meltspun ribbons (MSRs), dropcast ingots, and thermal-spray coatings. Chromium (Cr), molybdenum (Mo), and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of MSRs and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently, thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests; good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while the open-circuit corrosion potentials (OCPs) were simultaneously monitored; reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber and suitable for criticality-control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and Ni-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling, and tunnel-boring applications. Large areas have been successfully coated with these materials, with thicknesses of approximately 1 cm. The observed corrosion resistance may enable applications of importance in industries such as oil and gas production, refining, nuclear power generation, shipping, etc.
NASA Technical Reports Server (NTRS)
Haines, R. F.
1973-01-01
Thirty six students and 54 commercial airline pilots were tested in the fog chamber to determine the effect of runway edge and centerline light intensity and spacing, fog density, ambient luminance level, and lateral and vertical offset distance of the subject from the runway's centerline upon horizontal visual range. These data were obtained to evaluate the adequacy of a balanced lighting system to provide maximum visual range in fog viewing both centerline and runway edge lights. The daytime system was compared against two other candidate lighting systems; the nighttime system was compared against other candidate lighting systems. The second objective was to determine if visual range is affected by lights between the subject and the farthestmost light visible through the fog. The third objective was to determine if college student subjects differ from commercial airline pilots in their horizontal visual range through fog. Two studies were conducted.
Pilleri, Manuela; Weis, Luca; Zabeo, Letizia; Koutsikos, Konstantinos; Biundo, Roberta; Facchini, Silvia; Rossi, Simonetta; Masiero, Stefano; Antonini, Angelo
2015-08-15
Freezing of Gait (FOG) is a frequent and disabling feature of Parkinson disease (PD). Gait rehabilitation assisted by electromechanical devices, such as training on treadmill associated with sensory cues or assisted by gait orthosis have been shown to improve FOG. Overground robot assisted gait training (RGT) has been recently tested in patients with PD with improvement of several gait parameters. We here evaluated the effectiveness of RGT on FOG severity and gait abnormalities in PD patients. Eighteen patients with FOG resistant to dopaminergic medications were treated with 15 sessions of RGT and underwent an extensive clinical evaluation before and after treatment. The main outcome measures were FOG questionnaire (FOGQ) global score and specific tasks for gait assessment, namely 10 meter walking test (10 MWT), Timed Up and Go test (TUG) and 360° narrow turns (360 NT). Balance was also evaluated through Fear of Falling Efficacy Scale (FFES), assessing self perceived stability and Berg Balance Scale (BBS), for objective examination. After treatment, FOGQ score was significantly reduced (P=0.023). We also found a significant reduction of time needed to complete TUG, 10 MWT, and 360 NT (P=0.009, 0.004 and 0.04, respectively). By contrast the number of steps and the number of freezing episodes recorded at each gait task did not change. FFES and BBS scores also improved, with positive repercussions on performance on daily activity and quality of life. Our results indicate that RGT is a useful strategy for the treatment of drug refractory FOG. Copyright © 2015 Elsevier B.V. All rights reserved.
New method for evaluating high-quality fog protective coatings
NASA Astrophysics Data System (ADS)
Czeremuszkin, Grzegorz; Latreche, Mohamed; Mendoza-Suarez, Guillermo
2011-05-01
Fogging is commonly observed when humid-warm air contacts the cold surface of a transparent substrate, i.e. eyewear lenses, making the observed image blurred and hazy. To protect from fogging, the lens inner surfaces are protected with Anti-Fog coatings, which render them hydrophilic and induce water vapor condensation as a smooth, thin and invisible film, which uniformly flows down on the lens as the condensation progresses. Coatings differ in protection level, aging kinetics, and susceptibility to contamination. Some perform acceptably in limited conditions, beyond which the condensing water film becomes unstable, nonuniform, and scatters light or shows refractory distortions, both affecting the observed image. Quantifying the performance of Anti-Fog coated lenses is difficult: they may not show classical fogging and the existing testing methods, based on fog detection, are therefore inapplicable. The presented method for evaluating and quantifying AF properties is based on characterizing light scattering on lenses exposed to controlled humidity and temperature. Changes in intensity of laser light scattered at low angles (1, 2 4 and 8 degrees), observed during condensation of water on lenses, provide information on the swelling of Anti-Fog coatings, formation of uniform water film, going from an unstable to a steady state, and on the coalescence of discontinuous films. Real time observations/measurements allow for better understanding of factors controlling fogging and fog preventing phenomena. The method is especially useful in the development of new coatings for military-, sport-, and industrial protective eyewear as well as for medical and automotive applications. It allows for differentiating between coatings showing acceptable, good, and excellent performance.
A torque, tension and stress corrosion evaluation of high strength A286 bolts
NASA Technical Reports Server (NTRS)
Montano, J. W.
1986-01-01
The problems associated with overtorque applied to the Booster Separation Motor (BSM) Igniter Adapter high strength 200 KSI (1379 Mpa) A286 CRES bolts and the threaded holes of the 7075-T73 aluminum alloy BSM cases are addressed. The evaluation included torque, tensile, and stress corrosion tests incorporating the A286 CRES bolts and the 7075-T73 aluminum alloy BSM cases. The tensile test data includes ultimate tensile load (UTL), Johnson's 2/3 yield load (J2/3YL), proportional limit load (PLL), and total bolt stretch. Torque tension data includes torque, torque induced load, and positive and negative break-away torque. Stress corrosion test data reflect the overtorque and the resulting torque induced loads sustained by the A286 CRES bolts torqued into a 7075-T73 aluminum alloy forged dome with threaded holes. After 60 days of salt fog exposure, the positive and the negative break-away torques, the subsequent mechanical property tensile test results, and the BSM dome threaded hole axial tensile pullout loads are reported.
Tribological behavior of DLC films deposited on nitrided and post-oxidized stainless steel by PACVD
NASA Astrophysics Data System (ADS)
Dalibon, E. L.; Brühl, S. P.; Heim, D.
2012-06-01
In this work, the tribological behavior and adhesion of DLC films deposited by PACVD on AISI 420 martensitic stainless steel was evaluated. Prior to DLC deposition, the samples were nitrided and some of them also post-oxidized. The films were characterized by Raman and EDS, microhardness was assessed with Vickers indenter and the microstructure was analyzed by OM, SEM, FIB. Fretting and linear reciprocating sliding tests were performed using a WC ball as counterpart, and the adhesion of the DLC films was characterized using the Scratch Test and Rockwell C indentation. Corrosion behavior was evaluated by the Salt Spray Fog Test. The film showed a hardness of only about 1500 HV but it was about 15-20 microns thick. The results of the mechanical tests showed that pre-treatments (nitriding and oxidizing) of the substrate did not have a big influence in the tribological behavior of the coating. However, the nitriding treatment before the DLC coating process reduced the interface stress and enhanced the adhesion. Additionally, all the films evidenced good corrosion resistance in a saline environment, better than the AISI 420 itself.
Richter, William R; Wood, Joseph P; Wendling, Morgan Q S; Rogers, James V
2018-01-15
The inactivation of Bacillus anthracis spores on subway and used subway railcar materials was evaluated using fogged peracetic acid/hydrogen peroxide (PAA) and hydrogen peroxide (H 2 O 2 ). A total of 21 separate decontamination tests were conducted using bacterial spores of both B. anthracis Ames (B.a.) and Bacillus atrophaeus (B.g.) inoculated onto several types of materials. Tests were conducted using commercial off-the-shelf fogging equipment filled with either PAA or H 2 O 2 to fumigate a ∼15 cubic meter chamber under uncontrolled ambient relative humidity and controlled temperature (10 or 20 °C) from 8 to 168 h. For the present study, no conditions were found that resulted in complete inactivation of either B.a. Ames or B.g. on all test materials. Approximately 41% and 38% of the decontamination efficacies for B.a. and B.g., respectively, exhibited ≥6 log 10 reduction (LR); efficacy depended greatly on the material. When testing at 10 °C, the mean LR was consistently lower for both B.a. and B.g. as compared to 20 °C. Based on the statistical comparison of the LR results, B.g. exhibited equivalent or greater resistance than B.a. for approximately 92% of the time across all 21 tests. The efficacy data suggest that B.g. may be a suitable surrogate for B.a. Ames when assessing the decontamination efficacy of fogged PAA or H 2 O 2 . Moreover, the results of this testing indicate that in the event of B.a. spore release into a subway system, the fogging of PAA or H 2 O 2 represents a decontamination option for consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Case Study of the Mechanisms Modulating the Evolution of Valley Fog
NASA Astrophysics Data System (ADS)
Hang, C.; Nadeau, D. F.; Gultepe, I.; Hoch, S. W.; Román-Cascón, C.; Pryor, K.; Fernando, H. J. S.; Creegan, E. D.; Leo, L. S.; Silver, Z.; Pardyjak, E. R.
2016-09-01
We present a valley fog case study in which radiation fog is modulated by topographic effects using data obtained from a field campaign conducted in Heber Valley, Utah from January 7-February 1, 2015, as part of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program. We use data collected on January 9, 2015 to gain insight into relationships between typical shallow radiation fog, turbulence, and gravity waves associated with the surrounding topography. A ≈ 10-30 m fog layer formed by radiative cooling was observed from 0720 to 0900 MST under cold air temperatures (≈-9 °C), near-saturated (relative humidity with respect to water ≈95 %), and calm wind (mostly <0.5 m s-1) conditions. Drainage flows were observed occasionally prior to fog formation, which modulated heat exchanges between air masses through the action of internal gravity waves and cold-air pool sloshing. The fog appeared to be triggered by cold-air advection from the south (≈200°) at 0700 MST. Quasi-periodic oscillations were observed before and during the fog event with a time period of about 15 min. These oscillations were detected in surface pressure, temperature, sensible heat flux, incoming longwave radiation, and turbulent kinetic energy measurements. We hypothesize that the quasi-periodic oscillations were caused by atmospheric gravity waves with a time period of about 10-20 min based on wavelet analysis. During the fog event, internal gravity waves led to about 1 °C fluctuations in air temperatures. After 0835 MST when net radiation became positive, fog started to dissipate due to the surface heating and heat absorption by the fog particles. Overall, this case study provides a concrete example of how fog evolution is modulated by very weak thermal circulations in mountainous terrain and illustrates the need for high density vertical and horizontal measurements to ensure that the highly spatially varying physics in complex terrain are sufficient for hypothesis testing.
Protection of alodine coatings from thermal aging by removable polymer coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagstaff, Brett R.; Bradshaw, Robert W.; Whinnery, LeRoy L., Jr.
2006-12-01
Removable polymer coatings were evaluated as a means to suppress dehydration of Alodine chromate conversion coatings during thermal aging and thereby retain the corrosion protection afforded by Alodine. Two types of polymer coatings were applied to Alodine-treated panels of aluminum alloys 7075-T73 and 6061-T6 that were subsequently aged for 15 to 50 hours at temperatures between 135 F to 200 F. The corrosion resistance of the thermally aged panels was evaluated, after stripping the polymer coatings, by exposure to a standard salt-fog corrosion test and the extent of pitting of the polymer-coated and untreated panels compared. Removable polymer coatings mitigatedmore » the loss of corrosion resistance due to thermal aging experienced by the untreated alloys. An epoxide coating was more effective than a fluorosilicone coating as a dehydration barrier.« less
NASA Astrophysics Data System (ADS)
Choudhary, S.; Garg, A.; Mondal, K.
2016-07-01
The present work discusses continuous corrosion assessment from a unique correlation of open circuit potential (OCP) and linear polarization resistance with rust formation on mild steel after prolong exposure in 3.5% NaCl salt fog environment. The OCP measurement and linear polarization tests were carried out of the rusted samples only without the removal of rust. It also discusses the strong influence of the composition, fraction, and morphology of the rust layers with OCP and linear polarization resistance. The rust characterization was done after the measurement of OCP and linear polarization resistance of the rusted steel samples. Therefore, monitoring of both the OCP and linear polarization resistance of the rusted mild steels coupled with rust characterization could be used for easy and dynamic assessment of the nature of corrosion.
Relationship between Leakage Current and Pollution Deposits on the Surface of Polymeric Insulator
NASA Astrophysics Data System (ADS)
Miyake, Takuma; Seo, Yuya; Sakoda, Tatsuya; Otsubo, Masahisa
Application of polymeric materials used for housing insulators is considered. However, because polymeric insulator is organic matter, the aged deterioration is anxious. The lifetime of polymeric insulator is influenced by environmental conditions such as ultraviolet, acid rain, and polluted deposits. A change of the surface condition of polymeric material causes the dry band arc discharge and the discharge may lower the insulation strength. To investigate the relationship between insoluble pollution and occurrence of dry band arc discharge, we performed a salt-fog test with ethylene vinyl acetate (EVA) samples. The results showed that the heavy erosion caused by frequent dry band arc discharges occurred even in the case of a light polluted condition. Additionally, a very characteristic increase tendency in leakage current with a period of about 5 h was observed during the mist period.
Cold Regions Environmental Test of Nuclear, Biological, and Chemical Decontamination Equipment
1985-05-17
Blowing Snow "Rain Wet Fog Hail "Falling snow Ice Fog Other (specify) Malfunctions (explain): Remarks: A-1 -. , -17 May 1985 TOP 8-4-007 SAPPENDIX S...displays. * ~4. Remove and replace minor items [) FI FI[ * ( lightbulbs , filters, etc.) 5. Lubricate. ii F ) C 6. Add expendables. (I FJ( * ~~7...Displays are readable under dark [1 [1 [ . :I to bright glare conditions. 21. Cover glass does hot fog up. [ [ [. [E 22. Displays do not freeze up
The combined Fog Monitoring System of ARPAV over the Veneto Region, Po Valley - Italy
NASA Astrophysics Data System (ADS)
Domenichini, F.; Rossa, A.; Zardini, F.; Monai, M.; Calza, M.; Della Valle, A.; Gaspari, V.
2010-07-01
The presence of fog is a frequent problem in the Po Valley. The consequent reduction in visibility has a strong impact on the road, air, ship and railway traffic. Both, fog monitoring and forecasting, constitute significant challenges, not least due to the high spatial and temporal variability of the phenomenon. ARPAV (Regional Agency for Environmental Prevention and Protection of Veneto) is the regional meteorological service of the north-eastern Italian region Veneto and, as such, is responsible for meteorological support to institutional and private users. Real-time visibility information over an extended area would represent an interesting product for road and transport safety. In the framework of the FP7 project Roadidea, (14 partners from 8 different countries, Dec 2007 - Aug 2010) on road safety and traffic control ARPAV developed pilot system for the fog monitoring. The main idea of this fog monitoring methodology is to merge information derived from different observation platforms, i.e. satellite low stratus cloud classification, direct visibility monitoring, statistical estimation of low visibility from meteorological parameters at the ground. This information is translated into probability maps of fog occurrence and information weight on a common grid (4x4 km) covering the flat portion of the region Veneto. These weights are used to combine the three data sources into the final fog probability map. A probabilistic verification applied to the fog monitoring product yields encouraging results, and is systematically more skillfull than the fog probabilities derived from the individual data sources. First real-time products are now available on the ARPAV Fog Pilot website for a group of specific users (motorway head office, road police, national railways and others) and are under testing.
Dual Motor-Cognitive Virtual Reality Training Impacts Dual-Task Performance in Freezing of Gait.
Killane, Isabelle; Fearon, Conor; Newman, Louise; McDonnell, Conor; Waechter, Saskia M; Sons, Kristian; Lynch, Timothy; Reilly, Richard B
2015-11-01
Freezing of gait (FOG), an episodic gait disturbance characterized by the inability to generate effective stepping, occurs in more than half of Parkinson's disease patients. It is associated with both executive dysfunction and attention and becomes most evident during dual tasking (performing two tasks simultaneously). This study examined the effect of dual motor-cognitive virtual reality training on dual-task performance in FOG. Twenty community dwelling participants with Parkinson's disease (13 with FOG, 7 without FOG) participated in a pre-assessment, eight 20-minute intervention sessions, and a post-assessment. The intervention consisted of a virtual reality maze (DFKI, Germany) through which participants navigated by stepping-in-place on a balance board (Nintendo, Japan) under time pressure. This was combined with a cognitive task (Stroop test), which repeatedly divided participants' attention. The primary outcome measures were pre- and post-intervention differences in motor (stepping time, symmetry, rhythmicity) and cognitive (accuracy, reaction time) performance during single- and dual-tasks. Both assessments consisted of 1) a single cognitive task 2) a single motor task, and 3) a dual motor-cognitive task. Following the intervention, there was significant improvement in dual-task cognitive and motor parameters (stepping time and rhythmicity), dual-task effect for those with FOG and a noteworthy improvement in FOG episodes. These improvements were less significant for those without FOG. This is the first study to show benefit of a dual motor-cognitive approach on dual-task performance in FOG. Advances in such virtual reality interventions for home use could substantially improve the quality of life for patients who experience FOG.
Manning, Todd G; Papa, Nathan; Perera, Marlon; McGrath, Shannon; Christidis, Daniel; Khan, Munad; O'Beirne, Richard; Campbell, Nicholas; Bolton, Damien; Lawrentschuk, Nathan
2018-03-01
Laparoscopic lens fogging (LLF) hampers vision and impedes operative efficiency. Attempts to reduce LLF have led to the development of various anti-fogging fluids and warming devices. Limited literature exists directly comparing these techniques. We constructed a model peritoneum to simulate LLF and to compare the efficacy of various anti-fogging techniques. Intraperitoneal space was simulated using a suction bag suspended within an 8 L container of water. LLF was induced by varying the temperature and humidity within the model peritoneum. Various anti-fogging techniques were assessed including scope warmers, FRED TM , Resoclear TM , chlorhexidine, betadine and immersion in heated saline. These products were trialled with and without the use of a disposable scope warmer. Vision scores were evaluated by the same investigator for all tests and rated according to a predetermined scale. Fogging was assessed for each product or technique 30 times and a mean vision rating was recorded. All products tested imparted some benefit, but FRED TM performed better than all other techniques. Betadine and Resoclear TM performed no better than the use of a scope warmer alone. Immersion in saline prior to insertion resulted in decreased vision ratings. The robotic scope did not result in LLF within the model. In standard laparoscopes, the most superior preventative measure was FRED TM utilised on a pre-warmed scope. Despite improvements in LLF with other products FRED TM was better than all other techniques. The robotic laparoscope performed superiorly regarding LLF compared to standard laparoscope.
Exploring Fog Water Harvesting Potential and Quality in the Asir Region, Kingdom of Saudi Arabia
NASA Astrophysics Data System (ADS)
Gandhidasan, P.; Abualhamayel, H. I.
2012-05-01
During the last decade, the exploitation of the existing water resources in the Asir region of the Kingdom of Saudi Arabia has considerably increased due to both the decrease in annual precipitation and the added population pressures from the growing tourist industry. To face the conventional water shortage, attention has been mainly focused on desalination of water. To save the region from severe water shortage, additional new water sources that are low-cost and renewable must be identified. There exists an alternative source of water such as fog water harvesting. Fog forms in the Asir Region more frequently between December and February compared to the other months of the year. This paper presents the study of the climatic conditions in the Asir region of the Kingdom to identify the most suitable location for fog water collection as well as design and testing of two large fog collectors (LFCs) of size 40 m2 along with standard fog collectors (SFCs) of 1 m2 in that region. During the period from 27 December 2009 to 9 March 2010, a total of 3,128.4 and 2,562.4 L of fog water were collected by the LFC at two sites in the Al-Sooda area of the Asir region, near Abha. Experimental results indicate that fog water collection can be combined with rain water harvesting systems to increase water yield during the rainy season. The quality of the collected fog water was analyzed and compared to the World Health Organization (WHO) drinking water standards and found to be potable. An economic analysis was carried out for the proposed method of obtaining fresh water from the fog. The study suggests a clear tendency that in terms of both quality and magnitude of yield, fog is a viable source of water and can be successfully used to supplement water supplies in the Asir region of the Kingdom.
2013-01-01
Background We have previously published a technique for objective assessment of freezing of gait (FOG) in Parkinson's disease (PD) from a single shank-mounted accelerometer. Here we extend this approach to evaluate the optimal configuration of sensor placement and signal processing parameters using seven sensors attached to the lumbar back, thighs, shanks and feet. Methods Multi-segmental acceleration data was obtained from 25 PD patients performing 134 timed up and go tasks, and clinical assessment of FOG was performed by two experienced raters from video. Four metrics were used to compare objective and clinical measures; the intraclass correlation coefficient (ICC) for number of FOG episodes and the percent time frozen per trial; and the sensitivity and specificity of FOG detection. Results The seven-sensor configuration was the most robust, scoring highly on all measures of performance (ICC number of FOG 0.75; ICC percent time frozen 0.80; sensitivity 84.3%; specificity 78.4%). A simpler single-shank sensor approach provided similar ICC values and exhibited a high sensitivity to FOG events, but specificity was lower at 66.7%. Recordings from the lumbar sensor offered only moderate agreement with the clinical raters in terms of absolute number and duration of FOG events (likely due to musculoskeletal attenuation of lower-limb 'trembling' during FOG), but demonstrated a high sensitivity (86.2%) and specificity (82.4%) when considered as a binary test for the presence/absence of FOG within a single trial. Conclusions The seven-sensor approach was the most accurate method for quantifying FOG, and is best suited to demanding research applications. A single shank sensor provided measures comparable to the seven-sensor approach but is relatively straightforward in execution, facilitating clinical use. A single lumbar sensor may provide a simple means of objective FOG detection given the ubiquitous nature of accelerometers in mobile telephones and other belt-worn devices. PMID:23405951
Replacement for a Flex Hose Coating at the Space Shuttle Launch Pad
NASA Technical Reports Server (NTRS)
Whitten, Mary; Vinje, Rubiela; Curran, Jerome; Meneghelli, Barry; Calle, Luz Marina
2009-01-01
Aerocoat AR-7 is a coating that has been used to protect stainless steel flex hoses at NASA's Kennedy Space Center launch complex and hydraulic lines of the mobile launch platform (MLP). This coating has great corrosion control performance and low temperature application. AR-7 was developed by NASA and produced exclusively for NASA but its production has been discontinued due to its high content of volatile organic compounds (VOC) and significant environmental impact. The purpose of this project was to select and evaluate candidate coatings to find a replacement coating that is more environmentally friendly, with similar properties to AR-7. No coatings were identified that perform the same as AR-7 in all areas. Candidate coatings failed in comparison to AR-7 in salt fog, beachside atmospheric exposure, pencil hardness, Mandrel bend, chemical compatibility, adhesion, and ease of application tests. However, two coatings were selected for further evaluation.
Measuring visibility using smartphones
NASA Astrophysics Data System (ADS)
Friesen, Jan; Bialon, Raphael; Claßen, Christoph; Graffi, Kalman
2017-04-01
Spatial information on fog density is an important parameter for ecohydrological studies in cloud forests. The Dhofar cloud forest in Southern Oman exhibits a close interaction between the fog, trees, and rainfall. During the three month monsoon season the trees capture substantial amounts of horizontal precipitation from fog which increases net precipitation below the tree canopy. As fog density measurements are scarce, a smartphone app was designed to measure visibility. Different smartphone units use a variety of different parts. It is therefore important to assess the developed visibility measurement across a suite of different smartphones. In this study we tested five smartphones/ tablets (Google/ LG Nexus 5X, Huawei P8 lite, Huawei Y3, HTC Nexus 9, and Samsung Galaxy S4 mini) against digital camera (Sony DLSR-A900) and visual visibility observations. Visibility was assessed from photos using image entropy, from the number of visible targets, and from WiFi signal strength using RSSI. Results show clear relationships between object distance and fog density, yet a considerable spread across the different smartphone/ tablet units is evident.
Waldo-Mendoza, Miguel A; Quiñones-Jurado, Zoe V; Pérez-Medina, Juan C; Yañez-Soto, Bernardo; Ramírez-González, Pedro E
2017-02-22
The transformation of fog at a non-visible water layer on a membrane of low-density polyethylene (LDPE) and ethylene-vinyl acetate (EVA) was evaluated. Nonionic surfactants of major demand in the polyolefin industry were studied. A kinetic study using a hot fog chamber showed that condensation is controlled by both the diffusion and permanency of the surfactant more than by the change of the surface energy developed by the wetting agents. The greatest permanency of the anti-fog effect of the LDPE/EVA surface was close to 3000 h. The contact angle results demonstrated the ability of the wetting agent to spread out to the surface. Complementarily, the migration of nonionic surfactants from the inside of the polymeric matrix to the surface was analyzed by Fourier transform infrared (FTIR) microscopy. Additionally, electrical measurement on the anti-fogging membrane at alternating currents and at a sweep frequency was proposed to test the conductivity and wetting ability of nonionic surfactants. We proved that the amphiphilic molecules had the ability to increase the conductivity in the polyolefin membrane. A correlation between the bulk electrical conductivity and the permanency of the fogging control on the LDPE/EVA coextruded film was found.
Waldo-Mendoza, Miguel A.; Quiñones-Jurado, Zoe V.; Pérez-Medina, Juan C.; Yañez-Soto, Bernardo; Ramírez-González, Pedro E.
2017-01-01
The transformation of fog at a non-visible water layer on a membrane of low-density polyethylene (LDPE) and ethylene-vinyl acetate (EVA) was evaluated. Nonionic surfactants of major demand in the polyolefin industry were studied. A kinetic study using a hot fog chamber showed that condensation is controlled by both the diffusion and permanency of the surfactant more than by the change of the surface energy developed by the wetting agents. The greatest permanency of the anti-fog effect of the LDPE/EVA surface was close to 3000 h. The contact angle results demonstrated the ability of the wetting agent to spread out to the surface. Complementarily, the migration of nonionic surfactants from the inside of the polymeric matrix to the surface was analyzed by Fourier transform infrared (FTIR) microscopy. Additionally, electrical measurement on the anti-fogging membrane at alternating currents and at a sweep frequency was proposed to test the conductivity and wetting ability of nonionic surfactants. We proved that the amphiphilic molecules had the ability to increase the conductivity in the polyolefin membrane. A correlation between the bulk electrical conductivity and the permanency of the fogging control on the LDPE/EVA coextruded film was found. PMID:28241433
Park, Hyung-Soon; Yoon, Jung Won; Kim, Jonghyun; Iseki, Kazumi; Hallett, Mark
2013-01-01
Freezing of gait (FOG) is a commonly observed phenomenon in Parkinson’s disease, but its causes and mechanisms are not fully understood. This paper presents the development of a virtual reality (VR)-based body-weight supported treadmill interface (BWSTI) designed and applied to investigate FOG. The BWSTI provides a safe and controlled walking platform which allows investigators to assess gait impairments under various conditions that simulate real life. In order to be able to evoke FOG, our BWSTI employed a novel speed adaptation controller, which allows patients to drive the treadmill speed. Our interface responsively follows the subject’s intention of changing walking speed by the combined use of feedback and feedforward controllers. To provide realistic visual stimuli, a three dimensional VR system is interfaced with the speed adaptation controller and synchronously displays realistic visual cues. The VR-based BWSTI was tested with three patients with PD who are known to have FOG. Visual stimuli that might cause FOG were shown to them while the speed adaptation controller adjusted treadmill speed to follow the subjects’ intention. Two of the three subjects showed FOG during the treadmill walking. PMID:22275661
Dong, Younsuk; Safferman, Steven I; Ostahowski, Jeff; Herold, Tom; Panter, Ronald
2017-01-02
When a fast-food restaurant's wastewater containing fats, oil and grease (FOG) is discharged into a collection system, it builds up over time and clogs pipes. Similarly, when such wastewater flows into a septic soil treatment system, it adheres to the surface of inlet pipes, gravel/distribution media and soil, restricting the flow and eventually clogging the septic soil treatment system. In this study, an enzymatic pretreatment system was tested on wastewater from a fast-food restaurant to determine its effectiveness in preventing septic soil treatment system clogging. This system used aeration equipment, baffles and a one-time inoculum that excretes enzymes to reduce the molecular weight and number of double bonds associated with FOG. FOG containing triglycerides having lower molecular weights and fewer double bonds are less sticky. The enzymatic pretreatment system was found to cause these changes as verified by measuring the types of triglycerides (compounds in FOG) using liquid chromatography/mass spectrometry. A unique bench-scale septic soil treatment system (soil trench) was also used. Each contained six soil moisture sensors to enable the determination of moisture saturation trends among the five tested conditions: sanitary wastewater only, a combination of sanitary and kitchen wastewater, enzymatically pretreated sanitary and kitchen wastewater, kitchen wastewater, and enzymatically pretreated kitchen wastewater. For all influent types, a significant amount of FOG and other pollutants were removed, regardless of the initial concentrations. Moisture sensor readings showed differences among the tested conditions, indicating that septic soil treatment system clogging was delayed. Inspection of the influent pipe and gravel at the end of testing verified these differences as did the measurements of volatile solids.
Speech and gait in Parkinson's disease: When rhythm matters.
Ricciardi, Lucia; Ebreo, Michela; Graziosi, Adriana; Barbuto, Marianna; Sorbera, Chiara; Morgante, Letterio; Morgante, Francesca
2016-11-01
Speech disturbances in Parkinson's disease (PD) are heterogeneous, ranging from hypokinetic to hyperkinetic types. Repetitive speech disorder has been demonstrated in more advanced disease stages and has been considered the speech equivalent of freezing of gait (FOG). We aimed to verify a possible relationship between speech and FOG in patients with PD. Forty-three consecutive PD patients and 20 healthy control subjects underwent standardized speech evaluation using the Italian version of the Dysarthria Profile (DP), for its motor component, and subsets of the Battery for the Analysis of the Aphasic Deficit (BADA), for its procedural component. DP is a scale composed of 7 sub-sections assessing different features of speech; the rate/prosody section of DP includes items investigating the presence of repetitive speech disorder. Severity of FOG was evaluated with the new freezing of gait questionnaire (NFGQ). PD patients performed worse at DP and BADA compared to healthy controls; patients with FOG or with Hoehn-Yahr >2 reported lower scores in the articulation, intellibility, rate/prosody sections of DP and in the semantic verbal fluency test. Logistic regression analysis showed that only age and rate/prosody scores were significantly associated to FOG in PD. Multiple regression analysis showed that only the severity of FOG was associated to rate/prosody score. Our data demonstrate that repetitive speech disorder is related to FOG and is associated to advanced disease stages and independent of disease duration. Speech dysfluency represents a disorder of motor speech control, possibly sharing pathophysiological mechanisms with FOG. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jensen-Jarolim, Erika; Roth-Walter, Franziska; Leitner, Erich; Buchleitner, Stefan; Vogelsang, Harald; Kinaciyan, Tamar
2016-01-01
Cinnamon aldehyde (alias cinnamaldehyde) is widely used in food, textile or cosmetic industry. It is mostly associated with contact allergy, but immediate type allergies have been reported. The present study was triggered by a case of anaphylactic events to cinnamon in food and upon skin prick test. We investigated a possible correlation of exposure to a disco fog machine and/or shisha consumption with immediate type hypersensitivity to cinnamon aldehyde in the patient and healthy volunteers. In both fog machines and shisha pipes heating of glycerol-based fluids before evaporation renders chemical transversion to malodorous acrolein. Therefore, both methods are frequently operated with aroma additives. Cinnamon aldehyde and derivatives could be detected by gas chromatography in sampled fog flavored with cola fragrance. The patient as well as healthy (mostly female) volunteers were skin prick tested using cinnamon aldehyde diluted in 0.9 % NaCl, Vaseline® or fog fluid. Persons with a history of exposure to disco fog or shisha (n = 10, mean 32.8 years) reacted with a significantly larger wheal and flare reaction in the skin test (p = 0.0115, p = 0.0146, or p = 0.098) than the non-exposed (n = 8, mean 37.3 years). Both groups were gender matched, but differed in the mean age by 4.5 years. This reaction was specific as compared to skin reactivity to cinnamon alcohol, with only a trend to higher reactivity in exposed persons (ns). From our data we conclude that hapten fragrances such as cinnamon aldehyde may during heating in glycerol fluids associate to complete antigens and via inspiration lead to specific immediate type hypersensitivity. In some cases the hypersensitivity may be unmasked by spiced food containing cinnamon aldehyde or related chemicals, and lead to severe adverse reactions.
Quality Assessment of the Cobel-Isba Numerical Forecast System of Fog and Low Clouds
NASA Astrophysics Data System (ADS)
Bergot, Thierry
2007-06-01
Short-term forecasting of fog is a difficult issue which can have a large societal impact. Fog appears in the surface boundary layer and is driven by the interactions between land surface and the lower layers of the atmosphere. These interactions are still not well parameterized in current operational NWP models, and a new methodology based on local observations, an adaptive assimilation scheme and a local numerical model is tested. The proposed numerical forecast method of foggy conditions has been run during three years at Paris-CdG international airport. This test over a long-time period allows an in-depth evaluation of the forecast quality. This study demonstrates that detailed 1-D models, including detailed physical parameterizations and high vertical resolution, can reasonably represent the major features of the life cycle of fog (onset, development and dissipation) up to +6 h. The error on the forecast onset and burn-off time is typically 1 h. The major weakness of the methodology is related to the evolution of low clouds (stratus lowering). Even if the occurrence of fog is well forecasted, the value of the horizontal visibility is only crudely forecasted. Improvements in the microphysical parameterization and in the translation algorithm converting NWP prognostic variables into a corresponding horizontal visibility seems necessary to accurately forecast the value of the visibility.
Combining Fog Computing with Sensor Mote Machine Learning for Industrial IoT.
Lavassani, Mehrzad; Forsström, Stefan; Jennehag, Ulf; Zhang, Tingting
2018-05-12
Digitalization is a global trend becoming ever more important to our connected and sustainable society. This trend also affects industry where the Industrial Internet of Things is an important part, and there is a need to conserve spectrum as well as energy when communicating data to a fog or cloud back-end system. In this paper we investigate the benefits of fog computing by proposing a novel distributed learning model on the sensor device and simulating the data stream in the fog, instead of transmitting all raw sensor values to the cloud back-end. To save energy and to communicate as few packets as possible, the updated parameters of the learned model at the sensor device are communicated in longer time intervals to a fog computing system. The proposed framework is implemented and tested in a real world testbed in order to make quantitative measurements and evaluate the system. Our results show that the proposed model can achieve a 98% decrease in the number of packets sent over the wireless link, and the fog node can still simulate the data stream with an acceptable accuracy of 97%. We also observe an end-to-end delay of 180 ms in our proposed three-layer framework. Hence, the framework shows that a combination of fog and cloud computing with a distributed data modeling at the sensor device for wireless sensor networks can be beneficial for Industrial Internet of Things applications.
Combining Fog Computing with Sensor Mote Machine Learning for Industrial IoT
Lavassani, Mehrzad; Jennehag, Ulf; Zhang, Tingting
2018-01-01
Digitalization is a global trend becoming ever more important to our connected and sustainable society. This trend also affects industry where the Industrial Internet of Things is an important part, and there is a need to conserve spectrum as well as energy when communicating data to a fog or cloud back-end system. In this paper we investigate the benefits of fog computing by proposing a novel distributed learning model on the sensor device and simulating the data stream in the fog, instead of transmitting all raw sensor values to the cloud back-end. To save energy and to communicate as few packets as possible, the updated parameters of the learned model at the sensor device are communicated in longer time intervals to a fog computing system. The proposed framework is implemented and tested in a real world testbed in order to make quantitative measurements and evaluate the system. Our results show that the proposed model can achieve a 98% decrease in the number of packets sent over the wireless link, and the fog node can still simulate the data stream with an acceptable accuracy of 97%. We also observe an end-to-end delay of 180 ms in our proposed three-layer framework. Hence, the framework shows that a combination of fog and cloud computing with a distributed data modeling at the sensor device for wireless sensor networks can be beneficial for Industrial Internet of Things applications. PMID:29757227
Automatic detection of freezing of gait events in patients with Parkinson's disease.
Tripoliti, Evanthia E; Tzallas, Alexandros T; Tsipouras, Markos G; Rigas, George; Bougia, Panagiota; Leontiou, Michael; Konitsiotis, Spiros; Chondrogiorgi, Maria; Tsouli, Sofia; Fotiadis, Dimitrios I
2013-04-01
The aim of this study is to detect freezing of gait (FoG) events in patients suffering from Parkinson's disease (PD) using signals received from wearable sensors (six accelerometers and two gyroscopes) placed on the patients' body. For this purpose, an automated methodology has been developed which consists of four stages. In the first stage, missing values due to signal loss or degradation are replaced and then (second stage) low frequency components of the raw signal are removed. In the third stage, the entropy of the raw signal is calculated. Finally (fourth stage), four classification algorithms have been tested (Naïve Bayes, Random Forests, Decision Trees and Random Tree) in order to detect the FoG events. The methodology has been evaluated using several different configurations of sensors in order to conclude to the set of sensors which can produce optimal FoG episode detection. Signals recorded from five healthy subjects, five patients with PD who presented the symptom of FoG and six patients who suffered from PD but they do not present FoG events. The signals included 93 FoG events with 405.6s total duration. The results indicate that the proposed methodology is able to detect FoG events with 81.94% sensitivity, 98.74% specificity, 96.11% accuracy and 98.6% area under curve (AUC) using the signals from all sensors and the Random Forests classification algorithm. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Fog Studies for University Students and High School Teachers
NASA Astrophysics Data System (ADS)
Witiw, M.; Ladochy, S.
2010-07-01
Over the past few years, fog studies have been introduced as part of courses in Earth system science for both university students and high school teachers at Seattle Pacific University. In the undergraduate course, about three hours are devoted to the study of fog starting with a discussion on sustainable water systems. This is followed by presentations on types of fog, the role of fog in the biosphere, biogeochemical cycles and fog, human influences on fog and fog intensity, and remote sensing of fog. We end with a description of fog collection. Fog education efforts increased for students when our campus was able to obtain fog collecting equipment from Richard Jagels at the University of Maine. The equipment included active and passive fog collectors as well as infrared-beam fog detectors. Two graduating students took on fog collection as their senior project. After setting up the newly acquired equipment, the students designed a fog collection project for the University’s Whidby Island location on Puget Sound, an area that experiences frequent advection fog. They built a passive fog detector and determined where to place it on the Island. Future projects planned include implementing a water system based upon fog collection on Whidby Island. We have also implemented a new module on fog for the Earth System Science Education Alliance (ESSEA) - The Camanchaca: Fog in the Earth System (available at: http://essea.strategies.org/module.php?module_id=54). Aspects of fog in the Earth system are discussed and participants are led to see the important role fog has throughout the Earth system. This module was successfully piloted as part of an Earth system science course for teachers offered in June-July, 2009.
Translational Control of FOG-2 Expression in Cardiomyocytes by MicroRNA-130a
Kim, Gene H.; Samant, Sadhana A.; Earley, Judy U.; Svensson, Eric C.
2009-01-01
MicroRNAs are increasingly being recognized as regulators of embryonic development; however, relatively few microRNAs have been identified to regulate cardiac development. FOG-2 (also known as zfpm2) is a transcriptional co-factor that we have previously shown is critical for cardiac development. In this report, we demonstrate that FOG-2 expression is controlled at the translational level by microRNA-130a. We identified a conserved region in the FOG-2 3′ untranslated region predicted to be a target for miR-130a. To test the functional significance of this site, we generated an expression construct containing the luciferase coding region fused with the 3′ untranslated region of FOG-2 or a mutant version lacking this microRNA binding site. When these constructs were transfected into NIH 3T3 fibroblasts (which are known to express miR-130a), we observed a 3.3-fold increase in translational efficiency when the microRNA target site was disrupted. Moreover, knockdown of miR-130a in fibroblasts resulted in a 3.6-fold increase in translational efficiency. We also demonstrate that cardiomyocytes express miR-130a and can attenuate translation of mRNAs with a FOG-2 3′ untranslated region. Finally, we generated transgenic mice with cardiomyocyte over-expression of miR-130a. In the hearts of these mice, FOG-2 protein levels were reduced by as much as 80%. Histological analysis of transgenic embryos revealed ventricular wall hypoplasia and ventricular septal defects, similar to that seen in FOG-2 deficient hearts. These results demonstrate the importance of miR-130a for the regulation of FOG-2 protein expression and suggest that miR-130a may also play a role in the regulation of cardiac development. PMID:19582148
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorur, R.S.; Cherney, E.A.; Hackam, R.
1988-07-01
A comparative study of the ac (60 Hz) surface aging in a fog chamber is reported on cylindrical rod samples of high temperature vulcanized (HTV) silicone rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of alumina trihydrate (ATH) and/or silica fillers. In low conductivity (250 ..mu..S/cm) fog, silicone rubber performed better than EPDM samples whereas in high conductivity (1000 ..mu..S/cm) fog, the order of performance was reversed. The mechanisms by which fillers impart tracking and erosion resistance to materials is discussed as influenced by the experimental conditions of the accelerated aging tests. Surface studies by ESCA (Electronmore » Spectroscopy for Chemical Analysis) demonstrate that the hydrophobicity of silicone rubber, despite the accumulation of surface contamination, can be attributed to migration of low molecular weight polymer chains and/or mobile fluids, such as silicone oil.« less
Schlenstedt, Christian; Mancini, Martina; Nutt, Jay; Hiller, Amie P.; Maetzler, Walter; Deuschl, Günther; Horak, Fay
2018-01-01
Introduction: This study aims at investigating whether impaired anticipatory postural adjustments (APA) during gait initiation contribute to the occurrence of freezing of gait (FOG) or whether altered APAs compensate for FOG in Parkinson’s disease (PD). Methods: Gait initiation after 30 s quiet stance was analyzed without and with a cognitive dual task (DT) in 33 PD subjects with FOG (PD+FOG), 30 PD subjects without FOG (PD-FOG), and 32 healthy controls (HC). APAs were characterized with inertial sensors and muscle activity of the tensor fasciae latae (TFL), gastrocnemius, and tibialis anterior was captured with electromyography recordings. Nine trials (of 190) were associated with start hesitation/FOG and analyzed separately. Results: PD+FOG and PD-FOG did not differ in disease duration, disease severity, age, or gender. PD+FOG had significantly smaller medio-lateral (ML) and anterio-posterior APAs compared to PD-FOG (DT, p < 0.05). PD+FOG had more co-contraction of left and right TFL during APAs compared to PD-FOG (p < 0.01). Within the PD+FOG, the ML size of APA (DT) was positively correlated with the severity of FOG history (NFOG-Q), with larger APAs associated with worse FOG (rho = 0.477, p = 0.025). ML APAs were larger during trials with observed FOG compared to trials of PD+FOG without FOG. Conclusions: People with PD who have a history of FOG have smaller ML APAs (weight shifting) during gait initiation compared to PD-FOG and HC. However, start hesitation (FOG) is not caused by an inability to sufficiently displace the center of mass toward the stance leg because APAs were larger during trials with observed FOG. We speculate that reducing the acceleration of the body center of mass with hip abductor co-contraction for APAs might be a compensatory strategy in PD+FOG, to address postural control deficits and enable step initiation. PMID:29497374
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demmer, Rick; Fox, Don; Reese, Stephen
The Idaho National Laboratory (INL) and the United Kingdom (UK) National Nuclear Laboratory (NNL) have been collaborating for several years on materials and methods for the fogged/misted introduction of fixatives into radiologically contaminated facilities. The objective of the project is to deliver a process for reducing airborne radiological and/or mercury contamination and affixing loose contamination in place, thereby reducing contamination risk to employees and decreasing D&D cost and schedule. The developed process provides a reliable, unmanned method of introducing a coating that captures and fixes contamination in place within facilities. The INL coating, termed FX2, has undergone extensive non-radiological testing,more » including determination that it is non-flammable, affixes contamination and flows well through unusual geometries (testing at Florida International University). A series of non-active fogging trials for activity knock/tie-down application have been completed at NNL Workington on behalf of Idaho National Laboratory (INL). These trials performed by the NNL employed commercially available agricultural fogging equipment and the INL’s knock/tie-down latex formulation (FX-2). This testing successfully demonstrated the ability of the fogging devices to successfully spray the FX-2 formulation within various scenarios, and prepared the project for a radioactive trial. The INL has also developed a mercury vapor reducing form of the coating termed FX-Hg, which has shown great promise in laboratory studies.« less
Compact fiber optic gyroscopes for platform stabilization
NASA Astrophysics Data System (ADS)
Dickson, William C.; Yee, Ting K.; Coward, James F.; McClaren, Andrew; Pechner, David A.
2013-09-01
SA Photonics has developed a family of compact Fiber Optic Gyroscopes (FOGs) for platform stabilization applications. The use of short fiber coils enables the high update rates required for stabilization applications but presents challenges to maintain high performance. We are able to match the performance of much larger FOGs by utilizing several innovative technologies. These technologies include source noise reduction to minimize Angular Random Walk (ARW), advanced digital signal processing that minimizes bias drift at high update rates, and advanced passive thermal packaging that minimizes temperature induced bias drift while not significantly affecting size, weight, or power. In addition, SA Photonics has developed unique distributed FOG packaging technologies allowing the FOG electronics and photonics to be packaged remotely from the sensor head or independent axis heads to minimize size, weight, and power at the sensing location(s). The use of these technologies has resulted in high performance, including ARW less than 0.001 deg/rt-hr and bias drift less than 0.004 deg/hr at an update rate of 10 kHz, and total packaged volume less than 30 cu. in. for a 6 degree of freedom FOG-based IMU. Specific applications include optical beam stabilization for LIDAR and LADAR, beam stabilization for long-range free-space optical communication, Optical Inertial Reference Units for HEL stabilization, and Ka band antenna pedestal pointing and stabilization. The high performance of our FOGs also enables their use in traditional navigation and positioning applications. This paper will review the technologies enabling our high-performance compact FOGs, and will provide performance test results.
Fogs and Clouds are a Potential Indicator of a Local Water Source in Valles Marineris
NASA Astrophysics Data System (ADS)
Leung, Cecilia W. S.; Rafkin, Scot C. R.; Stillman, David E.; McEwen, Alfred S.
2016-04-01
Recurring slope lineae (RSL) are narrow, low-albedo seasonal flow features on present-day Mars that extend incrementally down warm, steep slopes, fade when inactive, and reappear annually over multiple Mars years [1,2]. Hypothesis for the sources of volatile by which RSL are recharged include seeping water, melting shallow ice, aquifers, and vapor from the atmosphere [1-5]. About 50% of the 250+ candidate and confirmed RSL sites appear in and around Valles Marineris [3], and coincide with regions where putative morning water ice fogs may appear as imaged by the High Resolution Stereo Camera on Mars Express [6]. The presence of fog may provide clues to the water cycle within the canyon, and could elucidate the processes related to the evolution of RSL. Using a regional atmospheric model, we investigate the atmospheric dynamics in and around Valles Marineris. Our simulation results show a curious temperature structure, where the inside of the canyon appears warmer relative to the plateaus immediately outside at all times of day. Formation of fogs requires the atmosphere to be saturated. This can happen with the appropriate combination of cooling or addition of water vapor. The modeled temperature structure suggests that if water is well mixed and fog is present within the warmer canyon bottom, fog should be present on the cooler surrounding plateaus as well. This is generally not the case. Therefore, the only way to produce fog inside the canyon is to have a local water source. RSL may contribute to this atmospheric water through evaporation, or RSL may simply be a surface marker of a larger near-surface reservoir of water that can act as a source. From the modeled temperatures, we calculated the corresponding saturation vapor pressures and saturation mixing ratios to determine the amount of water vapor in the air at saturation. The observed Martian atmospheric column abundance is ~10 precipitable microns on average [7] and presents a major challenge for an atmospheric origin of volatiles. If nocturnal clouds and fogs are present in Valles Marineris and not on the surrounding terrain, the modeled atmospheric thermal field points to an active source of water in the canyon. This source may be related to the water source for RSL and bolsters the hypothesis for a subsurface water reservoir. An atmospheric origin of water for RSL via deliquescence on salt requires an effective mechanism to trap water over small areas to support the estimated volumes of water in RSL. No such mechanism has been identified. However, there is evidence that the atmosphere still exerts control on the formation and activity of RSL through thermal effects. References: [1] McEwen, A. et al., (2011) Science, 333, 740-743. [2] McEwen, A. et al., (2014) Nature GeoSci, 7, 53-58. [3] Stillman, D. et al. (2016) Icarus, 265, 125-138. [4] McEwen, A. et al., (2015) EPSC, 786. [5] Wang., A. et al., 46th LPSC, #2483. [6] Möhlmann, D.T. et al. (2009) Planetary and Space Science, 57(14), 1987-1992. [7] Smith, M. (2008) AREPS 36, 191-219.
NASA Astrophysics Data System (ADS)
Gilson, G.; Jiskoot, H.
2016-12-01
Many Arctic glaciers terminate along coasts where temperature inversions and sea fog are frequent during summer. Both can influence glacier ablation, but the effects of fog may be complex. To understand fog's physical and radiative properties and its association to temperature inversions it is important to determine accurate Arctic coastal fog climatologies In previous research we determined that fog in East Greenland peaks in the melt season and can be spatially extensive over glacierized terrain. In this study we aim to understand which environmental factors influence fog occurrence in East Greenland; understand the association between fog and temperature inversions; and quantify fog height. We analyzed fog observations and other weather data from coastal synoptic weather stations, and extracted temperature inversions from the Integrated Global Radiosonde Archive radiosonde profiles. Fog height was calculated from radiosonde profiles, based on a method developed for radiation fog which we expanded to include advection and steam fog. Our results show that Arctic coastal fog requires sea ice breakup and a sea breeze with wind speed between 1-4 m/s. Fog is mostly advective, occurring under stable synoptic conditions characterized by deep and strong low-level temperature inversions. Steam fog may occur 5-30% of the time. Fog can occur under near-surface subsidence, with a subsaturated inversion base, or a saturated inversion base. We classified five types of fog based on their vertical sounding characteristics: only at the surface, below an inversion, capped by an inversion, inside a surface-based inversion, or inside a low-level inversion. Fog is commonly 100-400 m thick, often reaching the top of the boundary layer. Fog height is greater at northern stations, where daily fog duration is longer and relative humidity lower. Our results will be included in glacier energy-balance models to account for the influence of fog and temperature inversions on glacier melt.
NASA Astrophysics Data System (ADS)
La, I.; Yum, S. S.; Yeom, J. M.; Gultepe, I.
2017-12-01
Since microphysical and dynamical processes of fog are not well-known and have non-linear relationships among processes that are related to fog formation, improving the accuracy of the fog forecasting/nowcasting system is challenging. For these reasons, understanding the fog mechanism is needed to develop the fog forecasting system. So, we focus on understanding fog-turbulence interactions and fog-gravity wave interactions. Many studies noted that turbulence plays important roles in fog. However, a discrepancy between arguments for the effect of turbulent mixing on fog formation exists. Several studies suggested that turbulent mixing suppresses fog formation. Some other studies reported that turbulent mixing contributes to fog formation. On the other hand, several quasi-periodic oscillations of temperature, visibility, and vertical velocity, which have period of 10-20 minutes, were observed to be related to gravity waves in fog; because gravity waves play significant dynamic roles in the atmosphere. Furthermore, a numerical study suggested that gravity waves, simulated near the top of the fog layer, may affect fog microphysics. Thus, we investigate the effects of turbulent mixing on fog formation and the influences of gravity waves on fog microphysics to understand fog structure in Pyeongchang. In these studies, we analyze the data that are obtained from doppler lidar and 3.5 m meteorological observation tower including 3D-ultrasonic anemometer, IR sensor, and fog monitor during ICE-POP (International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic winter games) campaign. In these instruments, doppler lidar is a good instrument to observe the gravity waves near the fog top, while in situ measurements have small spatial coverage. The instruments are installed at the mountainous terrain of Pyeongchang, Korea. More details will be presented at the conference.
Postural control and freezing of gait in Parkinson's disease.
Schlenstedt, Christian; Muthuraman, Muthuraman; Witt, Karsten; Weisser, Burkhard; Fasano, Alfonso; Deuschl, Günther
2016-03-01
The relationship between freezing of gait (FOG) and postural instability in Parkinson's disease (PD) is unclear. We analyzed the impact of FOG on postural control. 31 PD patients with FOG (PD+FOG), 27 PD patients without FOG (PD-FOG) and 22 healthy control (HC) were assessed in the ON state. Postural control was measured with the Fullerton Advanced Balance (FAB) scale and with center of pressure (COP) analysis during quiet stance and maximal voluntary forward/backward leaning. The groups were balanced concerning age, disease duration and disease severity. PD+FOG performed significantly worse in the FAB scale (21.8 ± 5.8) compared to PD-FOG (25.6 ± 5.0) and HC (34.9 ± 2.4) (mean ± SD, p < 0.01). PD+FOG had impaired ability to voluntary lean forward, difficulties to stand on foam with eyes closed and reduced limits of stability compared to PD-FOG (p < 0.05). During quiet stance the average anterior-posterior COP position was significantly displaced towards posterior in PD+FOG in comparison to PD-FOG and HC (p < 0.05). The COP position correlated with severity of FOG (p < 0.01). PD+FOG and PD-FOG did not differ in average COP sway excursion, sway velocity, sway regularity and postural control asymmetry. PD+FOG have reduced postural control compared to PD-FOG and HC. Our results show a relationship between the anterior-posterior COP position during quiet stance and FOG. The COP shift towards posterior in PD+FOG leads to a restricted precondition to generate forward progression during gait initiation. This may contribute to the occurrence of FOG or might be a compensatory strategy to avoid forward falls. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shi, Weiwei; Anderson, Mark J; Tulkoff, Joshua B; Kennedy, Brook S; Boreyko, Jonathan B
2018-04-11
Fog harvesting is a useful technique for obtaining fresh water in arid climates. The wire meshes currently utilized for fog harvesting suffer from dual constraints: coarse meshes cannot efficiently capture microscopic fog droplets, whereas fine meshes suffer from clogging issues. Here, we design and fabricate fog harvesters comprising an array of vertical wires, which we call "fog harps". Under controlled laboratory conditions, the fog-harvesting rates for fog harps with three different wire diameters were compared to conventional meshes of equivalent dimensions. As expected for the mesh structures, the mid-sized wires exhibited the largest fog collection rate, with a drop-off in performance for the fine or coarse meshes. In contrast, the fog-harvesting rate continually increased with decreasing wire diameter for the fog harps due to efficient droplet shedding that prevented clogging. This resulted in a 3-fold enhancement in the fog-harvesting rate for the harp design compared to an equivalent mesh.
NASA Astrophysics Data System (ADS)
Degefie, D. T.; El-Madany, T.-S.; Held, M.; Hejkal, J.; Hammer, E.; Dupont, J.-C.; Haeffelin, M.; Fleischer, E.; Klemm, O.
2015-10-01
The chemical composition of collected fog water and its temporal evolution was studied during the PARISFOG campaign in winter 2012/2013 at the SIRTA (Site Instrumental de Recherche par Télédétection Atmosphéric) atmospheric observatory outside Paris, France. A further development of the caltech active fog collector was applied, in which the collected fog water gets into contact with Teflon and polyether ether ketone (PEEK) material exclusively. The collector was operational whenever the visibility was below 1000 m. In addition, the turbulent and gravitational fluxes of fog water and water vapor flux were used to examine in detail the temporal evolution the chemical composition of two fogs. The technique was applied to two fog events, one representing a radiation fog and the other one representing a stratus lowering fog. The result revealed that the dominant inorganic species in the fog water were NH4+, NO3-, Ca2 + and SO42 -, which accounted for more than 85% of the ion balance. The pH ranged from 3.7 to 6.2. In the evolution the two fog events, the interaction among the turbulent fog water flux, gravitational fog water flux and water vapor flux controlled the major ion loads (amount of ions, dissolved in fog droplets per volume of air) and ion concentrations (amount dissolved per volume of liquid water) of the fog water. In the radiation fog event, an increase of ion loads and ion concentrations occurred when the direction of water vapor flux towards to the place where the condensation process occurred. A decrease of ion loads and ion concentrations mainly happened by gravitational fog water flux with a minor contribution from turbulent fog water flux. However, when the turbulent water vapor flux was oriented downward, it turned the turbulent fog water flux upward and offset the removal of ions in the fog. In the stratus lowering fog event, the turbulent fog water flux and the gravitational water flux together mainly contributed to the fog water deposition and removal of ions. Increases of ion loads and ion concentrations occurred in response to slight downward water vapor flux. This study also indicates that the turbulent transport of fog droplets contributed to the preferential deposition of certain sizes fog droplets such that it affected the chemical composition of the fog water. For instance, both the NO3- concentration and load decreased fast as compared to NH4+ and SO42 - during the deposition period. This suggested that the chemical composition was dependent on fog droplets size.
Characteristics of water-soluble ions before, during and after fog events
NASA Astrophysics Data System (ADS)
Li, P.; Du, H.; Yang, C.; Yao, J.; Du, J.; Chen, J.
2010-07-01
Two atmospheric processes of rain-fog-haze and haze-fog-rain were observed on Feb.8th and Mar. 14th, 2010 in urban Shanghai. On-line characterization of water-soluble ions of aerosol was performed before, during and after two fog episodes by an instrument of Monitoring AeRosoles and GAses (MARGA). Fog water samples were also collected to study the chemical ion characteristics for identifying the property of fogs. After rain, total water-soluble ion concentration in PM2.5 increased by 71.9%. Afterwards, a fog formation was observed as a frontal fog. Six fog water samples were collected to measure concentration of water-soluble ions, whose total concentrations decreased from beginning to end of fog. At the end of fog, the total water-soluble ion concentration of aerosol was continually increased. Meanwhile with a sharp decline of RH down to 70% in two hours, and a haze episode was observed. The reverse process, haze-fog-rain process, was also investigated. After the haze episode, total water-soluble ions concentration of aerosol rarely increased, but fog appeared with sharp increase of RH. Concentration of water-soluble ions in the fog water sample was higher than mean concentration of samples in 2009. When the fog started to disperse, the ion concentration hardly changed. As water vapor continued to increase, rain was observed. The inorganic compositions of aerosol in both fog events were dominated by sulfate and ammonium. The in situ investigation clearly illustrated that fog water mainly influenced by continental sources was dirtier and contained more sediment comparing with fog water influenced by marine sources.
Laserlight cues for gait freezing in Parkinson's disease: an open-label study.
Donovan, S; Lim, C; Diaz, N; Browner, N; Rose, P; Sudarsky, L R; Tarsy, D; Fahn, S; Simon, D K
2011-05-01
Freezing of gait (FOG) and falls are major sources of disability for Parkinson's disease (PD) patients, and show limited responsiveness to medications. We assessed the efficacy of visual cues for overcoming FOG in an open-label study of 26 patients with PD. The change in the frequency of falls was a secondary outcome measure. Subjects underwent a 1-2 month baseline period of use of a cane or walker without visual cues, followed by 1 month using the same device with the laserlight visual cue. The laserlight visual cue was associated with a modest but significant mean reduction in FOG Questionnaire (FOGQ) scores of 1.25 ± 0.48 (p = 0.0152, two-tailed paired t-test), representing a 6.6% improvement compared to the mean baseline FOGQ scores of 18.8. The mean reduction in fall frequency was 39.5 ± 9.3% with the laserlight visual cue among subjects experiencing at least one fall during the baseline and subsequent study periods (p = 0.002; two-tailed one-sample t-test with hypothesized mean of 0). Though some individual subjects may have benefited, the overall mean performance on the timed gait test (TGT) across all subjects did not significantly change. However, among the 4 subjects who underwent repeated testing of the TGT, one showed a 50% mean improvement in TGT performance with the laserlight visual cue (p = 0.005; two-tailed paired t-test). This open-label study provides evidence for modest efficacy of a laserlight visual cue in overcoming FOG and reducing falls in PD patients. Copyright © 2010 Elsevier Ltd. All rights reserved.
Turbulent Fogwater Flux Measurements Above A Forest
NASA Astrophysics Data System (ADS)
Burkard, R.; Eugster, W.; Buetzberger, P.; Siegwolf, R.
Many forest ecosystems in elevated regions receive a significant fraction of their wa- ter and nutrient input by the interception of fogwater. Recently, several studies have demonstrated the suitability of the eddy covariance technique for the direct measure- ment of turbulent liquid water fluxes. Since summer 2001 a fogwater flux measure- ment equipment has been running at a montane site above a mixed forest canopy in Switzerland. The measurement equipment consists of a high-speed size-resolving droplet spectrometer and a three-dimensional ultrasonic anemometer. The chemical composition of the fogwater was determined from samples collected with a modified Caltech active strand collector. The deposition of nutrients by fog (occult deposition) was calculated by multiplying the total fogwater flux (total of measured turbulent and calculated gravitational flux) during each fog event by the ionic concentrations found in the collected fogwater. Several uncertainties still exist as far as the accuracy of the measurements is con- cerned. Although there is no universal statistical approach for testing the quality of the liquid water flux data directly, results of independent data quality checks of the two time series involved in the flux computation and accordingly the two instruments (ultrasonic anemometer and the droplet spectrometer) are presented. Within the measurement period, over 80 fog events with a duration longer than 2.5 hours were analyzed. An enormous physical and chemical heterogeneity among these fog events was found. We assume that some of this heterogeneity is due to the fact that fog or cloud droplets are not conservative entities: the turbulent flux of fog droplets, which can be referred to as the liquid water flux, is affected by phase change processes and coagulation. The measured coexistence of upward fluxes of small fog droplets (di- ameter < 10 µm) with the downward transport of larger droplets indicates the influ- ence of such processes. With the aid of the measured data we will present an approach which is based on the evolution of the stable isotope ratios during a fog event, on how to deal with the complexity of the evaporation and condensation processes during a fog event.
Yang, Qiong; Zhang, Lin-Yuan; Chen, Sheng-Di; Liu, Jun
2014-01-01
Freezing of gait (FOG) is a complicated gait disturbance in Parkinson's disease (PD) and a relevant subclinical predictor algorithm is lacking. The main purpose of this study is to explore the potential value of surface electromyograph (sEMG) and plasma α-synuclein levels as predictors of the FOG seen in PD. 21 PD patients and 15 normal controls were recruited. Motor function was evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS) and Freezing of gait questionnaire (FOG-Q). Simultaneously, gait analysis was also performed using VICON capture system in PD patients and sEMG data was recorded as well. Total plasma α-synuclein was quantitatively assessed by Luminex assay in all participants. Recruited PD patients were classified into two groups: PD patients with FOG (PD+FOG) and without FOG (PD-FOG), based on clinical manifestation, the results of the FOG-Q and VICON capture system. PD+FOG patients displayed higher FOG-Q scores, decreased walking speed, smaller step length, smaller stride length and prolonged double support time compared to the PD-FOG in the gait trial. sEMG data indicated that gastrocnemius activity in PD+FOG patients was significantly reduced compared to PD-FOG patients. In addition, plasma α-synuclein levels were significantly decreased in the PD+FOG group compared to control group; however, no significant difference was found between the PD+FOG and PD-FOG groups. Our study revealed that gastrocnemius sEMG could be used to evaluate freezing gait in PD patients, while plasma α-synuclein might discriminate freezing of gait in PD patients from normal control, though no difference was found between the PD+FOG and PD-FOG groups. PMID:24586710
Bonora, Gianluca; Mancini, Martina; Carpinella, Ilaria; Chiari, Lorenzo; Ferrarin, Maurizio; Nutt, John G.; Horak, Fay B.
2017-01-01
The One-Leg Stance (OLS) test is a widely adopted tool for the clinical assessment of balance in the elderly and in subjects with neurological disorders. It was previously showed that the ability to control anticipatory postural adjustments (APAs) prior to lifting one leg is significantly impaired by idiopathic Parkinson’s disease (iPD). However, it is not known how APAs are affected by other types of parkinsonism, such as frontal gait disorders (FGD). In this study, an instrumented OLS test based on wearable inertial sensors is proposed to investigate both the initial anticipatory phase and the subsequent unipedal balance. The sensitivity and the validity of the test have been evaluated. Twenty-five subjects with iPD presenting freezing of gait (FOG), 33 with iPD without FOG, 13 with FGD, and 32 healthy elderly controls were recruited. All subjects wore three inertial sensors positioned on the posterior trunk (L4–L5), and on the left and right frontal face of the tibias. Participants were asked to lift a foot and stand on a single leg as long as possible with eyes open, as proposed by the mini-BESTest. Temporal parameters and trunk acceleration were extracted from sensors and compared among groups. The results showed that, regarding the anticipatory phase, the peak of mediolateral trunk acceleration was significantly reduced compared to healthy controls (p < 0.05) in subjects with iPD with and without FOG, but not in FGD group (p = 0.151). Regarding the balance phase duration, a significant shortening was found in the three parkinsonian groups compared to controls (p < 0.001). Moreover, balance was significantly longer (p < 0.001) in iPD subjects without FOG compared to subjects with FGD and iPD subjects presenting FOG. Strong correlations between balance duration extracted by sensors and clinical mini-BESTest scores were found (ρ > 0.74), demonstrating the method’s validity. Our findings support the validity of the proposed method for assessing the OLS test and its sensitivity in distinguishing among the tested groups. The instrumented test discriminated between healthy controls and people with parkinsonism and among the three groups with parkinsonism. The objective characterization of the initial anticipatory phase represents an interesting improvement compared to most clinical OLS tests. PMID:28790972
Bonora, Gianluca; Mancini, Martina; Carpinella, Ilaria; Chiari, Lorenzo; Ferrarin, Maurizio; Nutt, John G; Horak, Fay B
2017-01-01
The One-Leg Stance (OLS) test is a widely adopted tool for the clinical assessment of balance in the elderly and in subjects with neurological disorders. It was previously showed that the ability to control anticipatory postural adjustments (APAs) prior to lifting one leg is significantly impaired by idiopathic Parkinson's disease (iPD). However, it is not known how APAs are affected by other types of parkinsonism, such as frontal gait disorders (FGD). In this study, an instrumented OLS test based on wearable inertial sensors is proposed to investigate both the initial anticipatory phase and the subsequent unipedal balance. The sensitivity and the validity of the test have been evaluated. Twenty-five subjects with iPD presenting freezing of gait (FOG), 33 with iPD without FOG, 13 with FGD, and 32 healthy elderly controls were recruited. All subjects wore three inertial sensors positioned on the posterior trunk (L4-L5), and on the left and right frontal face of the tibias. Participants were asked to lift a foot and stand on a single leg as long as possible with eyes open, as proposed by the mini-BESTest. Temporal parameters and trunk acceleration were extracted from sensors and compared among groups. The results showed that, regarding the anticipatory phase, the peak of mediolateral trunk acceleration was significantly reduced compared to healthy controls ( p < 0.05) in subjects with iPD with and without FOG, but not in FGD group ( p = 0.151). Regarding the balance phase duration, a significant shortening was found in the three parkinsonian groups compared to controls ( p < 0.001). Moreover, balance was significantly longer ( p < 0.001) in iPD subjects without FOG compared to subjects with FGD and iPD subjects presenting FOG. Strong correlations between balance duration extracted by sensors and clinical mini-BESTest scores were found (ρ > 0.74), demonstrating the method's validity. Our findings support the validity of the proposed method for assessing the OLS test and its sensitivity in distinguishing among the tested groups. The instrumented test discriminated between healthy controls and people with parkinsonism and among the three groups with parkinsonism. The objective characterization of the initial anticipatory phase represents an interesting improvement compared to most clinical OLS tests.
Stress Corrosion Cracking of Ferritic Materials for Fossil Power Generation Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawel, Steven J; Siefert, John A.
2014-01-01
Creep strength enhanced ferritic (CSEF) steels Grades 23, 24, 91, and 92 have been widely implemented in the fossil fired industry for over two decades. The stress corrosion cracking (SCC) behavior of these materials with respect to mainstay Cr-Mo steels (such as Grades 11, 12 and 22) has not been properly assessed, particularly in consideration of recent reported issues of SCC in CSEF steels. This report details the results of Jones test exposures of a wide range of materials (Grades 11, 22, 23, 24, and 92), material conditions (as-received, improper heat treatments, normalized, weldments) and environments (salt fog; tube cleaningmore » environments including decreasing, scale removal, and passivation; and high temperature water) to compare the susceptibility to cracking of these steels. In the as-received (normalized and tempered) condition, none of these materials are susceptible to SCC in the environments examined. However, in the hardened condition, certain combinations of environment and alloy reveal substantial SCC susceptibility.« less
Urban Heat Island Over Delhi Punches Holes in Widespread Fog in the Indo-Gangetic Plains
NASA Astrophysics Data System (ADS)
Gautam, Ritesh; Singh, Manoj K.
2018-01-01
Persistent and widespread fog affects several densely populated and agriculturally fertile basins around the world. Dense and polluted fog is especially known to impact transportation, air quality, and public health. Here we report a striking observation of holes in fog over urban areas in satellite imagery. The extent of fog holes appear highly correlated with city populations in fog-prevalent regions of Asia, Europe, and the United States. We find the highest frequency and largest extent of fog holes over Delhi along with suppressed fog fraction, amidst increased fog occurrence over the Indo-Gangetic Plains, based on 17 years of satellite data (2000-2016). This apparent urban heat impact is characterized in sharp urban-rural gradients in surface temperatures and fog thickness. Urban heating seems to have already amplified the long-term fog decline in Europe and the United States and should be assessed over regions undergoing urban expansion including India, where no previous linkages are reported between urban heating and fog.
Sunwoo, Mun Kyung; Cho, Kyoo H; Hong, Jin Yong; Lee, Ji E; Sohn, Young H; Lee, Phil Hyu
2013-12-01
The pathophysiology of freezing of gait (FOG) in non-demented Parkinson's disease (PD) patients remains poorly understood. Recent studies have suggested that neurochemical alterations in the cholinergic systems play a role in the development of FOG. Here, we evaluated the association between subcortical cholinergic structures and FOG in patients with non-demented PD. We recruited 46 non-demented patients with PD, categorized into PD with (n = 16) and without FOG (n = 30) groups. We performed neuropsychological test, region-of-interest-based volumetric analysis of the substantia innominata (SI) and automatic analysis of subcortical brain structures using a computerized segmentation procedure. The comprehensive neuropsychological assessment showed that PD patients with FOG had lower cognitive performance in the frontal executive and visual-related functions compared with those without freezing of gait. The normalized SI volume did not differ significantly between the two groups (1.65 ± 0.18 vs. 1.68 ± 0.31). The automatic analysis of subcortical structures revealed that the thalamic volumes were significantly reduced in PD patients with FOG compared with those without FOG after adjusting for age, sex, disease duration, the Unified PD Rating Scale scores and total intracranial volume (left: 6.71 vs. 7.16 cm3, p = 0.029, right: 6.47 vs. 6.91 cm3, p = 0.026). Multiple linear regression analysis revealed that thalamic volume showed significant positive correlations with visual recognition memory (left: β = 0.441, p = 0.037, right: β = 0.498, p = 0.04). These data suggest that thalamic volume and related visual recognition, rather than the cortical cholinergic system arising from the SI, may be a major contributor to the development of freezing of gait in non-demented patients with PD. Copyright © 2013. Published by Elsevier Ltd.
Fog collecting biomimetic surfaces: Influence of microstructure and wettability.
Azad, M A K; Ellerbrok, D; Barthlott, W; Koch, K
2015-01-19
We analyzed the fog collection efficiency of three different sets of samples: replica (with and without microstructures), copper wire (smooth and microgrooved) and polyolefin mesh (hydrophilic, superhydrophilic and hydrophobic). The collection efficiency of the samples was compared in each set separately to investigate the influence of microstructures and/or the wettability of the surfaces on fog collection. Based on the controlled experimental conditions chosen here large differences in the efficiency were found. We found that microstructured plant replica samples collected 2-3 times higher amounts of water than that of unstructured (smooth) samples. Copper wire samples showed similar results. Moreover, microgrooved wires had a faster dripping of water droplets than that of smooth wires. The superhydrophilic mesh tested here was proved more efficient than any other mesh samples with different wettability. The amount of collected fog by superhydrophilic mesh was about 5 times higher than that of hydrophilic (untreated) mesh and was about 2 times higher than that of hydrophobic mesh.
NASA Technical Reports Server (NTRS)
Montano, J. W.
1986-01-01
Presented are the mechanical properties and the stress corrosion resistance of triple melted vacuum induction melted (VIM), electro-slag remelted (ESR), and vacuum arc remelted (VAR), solution treated, work strengthened and direct double aged Inconel 718 alloy bars 4.00 in. (10.16) and 5.75 in. (14.60 cm) diameter. Tensile, charpy v-notched impact, and compact tension specimens were tested at ambient temperature in both the longitudinal and transverse directions. Longitudinal tensile and yield strengths in excess of 220 ksi (1516.85 MPa) and 200 ksi (1378.00 MPa) respectively, were realized at ambient temperature. Additional charpy impact and compact tension tests were performed at -100 F (-73 C). Longitudinal charpy impact strength equalled or exceeded 12.0 ft-lbs (16.3 Joules) at ambient and at -100 F(-73 C) while longitudinal compact (LC) tension fracture toughness strength remained above 79 ksi (86.80 MPa) at ambient and at -100 F(-73 C) temperatures. No failures occurred in the longitudinal or transverse tensile specimens stressed to 75 and 100 percent of their respective yield strengths and exposed to a salt fog environment for 180 days. Tensile tests performed after the stress corrosion test indicated no mechanical property degradation.
The impact of fog on soil moisture dynamics in the Namib Desert
NASA Astrophysics Data System (ADS)
Li, Bonan; Wang, Lixin; Kaseke, Kudzai F.; Vogt, Roland; Li, Lin; Seely, Mary K.
2018-03-01
Soil moisture is a crucial component supporting vegetation dynamics in drylands. Despite increasing attention on fog in dryland ecosystems, the statistical characterization of fog distribution and how fog affects soil moisture dynamics have not been seen in literature. To this end, daily fog records over two years (Dec 1, 2014-Nov 1, 2016) from three sites within the Namib Desert were used to characterize fog distribution. Two sites were located within the Gobabeb Research and Training Center vicinity, the gravel plains and the sand dunes. The third site was located at the gravel plains, Kleinberg. A subset of the fog data during rainless period was used to investigate the effect of fog on soil moisture. A stochastic modeling framework was used to simulate the effect of fog on soil moisture dynamics. Our results showed that fog distribution can be characterized by a Poisson process with two parameters (arrival rate λ and average depth α (mm)). Fog and soil moisture observations from eighty (Aug 19, 2015-Nov 6, 2015) rainless days indicated a moderate positive relationship between soil moisture and fog in the Gobabeb gravel plains, a weaker relationship in the Gobabeb sand dunes while no relationship was observed at the Kleinberg site. The modeling results suggested that mean and major peaks of soil moisture dynamics can be captured by the fog modeling. Our field observations demonstrated the effects of fog on soil moisture dynamics during rainless periods at some locations, which has important implications on soil biogeochemical processes. The statistical characterization and modeling of fog distribution are of great value to predict fog distribution and investigate the effects of potential changes in fog distribution on soil moisture dynamics.
Koračin, Darko; Dorman, Clive E.; Lewis, John M.; Hudson, James G.; Wilcox, Eric M.; Torregrosa, Alicia
2014-01-01
The objective of this review is to discuss physical processes over a wide range of spatial scales that govern the formation, evolution, and dissipation of marine fog. We consider marine fog as the collective combination of fog over the open sea along with coastal sea fog and coastal land fog. The review includes a history of sea fog research, field programs, forecasting methods, and detection of sea fog via satellite observations where similarity in radiative properties of fog top and the underlying sea induce further complexity. The main thrust of the study is to provide insight into causality of fog including its initiation, maintenance, and destruction. The interplay between the various physical processes behind the several stages of marine fog is among the most challenging aspects of the problem. An effort is made to identify this interplay between processes that include the microphysics of fog formation and maintenance, the influence of large-scale circulation and precipitation/clouds, radiation, turbulence (air-sea interaction), and advection. The environmental impact of marine fog is also addressed. The study concludes with an assessment of our current knowledge of the phenomenon, our principal areas of ignorance, and future lines of research that hold promise for advances in our understanding.
NASA Astrophysics Data System (ADS)
Gilson, Gaëlle; Jiskoot, Hester
2017-04-01
Arctic sea fog hasn't been extensively studied despite its importance for environmental impact such as on traffic safety and on glacier ablation in coastal Arctic regions. Understanding fog processes can improve nowcasting of environmental impact in such remote regions where few observational data exist. To understand fog's physical, macrophysical and radiative properties, it is important to determine accurate Arctic fog climatology. Our previous study suggested that fog peaks in July over East Greenland and associates with sea ice break-up and a sea breeze with wind speeds between 1-4 m/s. The goal of this study is to understand Arctic coastal fog macrophysical properties and quantify its vertical extent. Radiosonde profiles were extracted from the Integrated Global Radiosonde Archive (IGRA) between 1980-2012, coincident with manual and automated fog observations at three synoptic weather stations along the coast of East Greenland. A new method using air mass saturation ratio and thermodynamic stability was developed to derive fog top height from IGRA radiosonde profiles. Soundings were classified into nine categories, based on surface and low-level saturation ratio, inversion type, and the fog top height relative to the inversion base. Results show that Arctic coastal fog mainly occurs under thermodynamically stable conditions characterized by deep and strong low-level inversions. Fog thickness is commonly about 100-400 m, often reaching the top of the boundary layer. Fog top height is greater at northern stations, where daily fog duration is also longer and often lasts throughout the day. Fog thickness is likely correlated to sea ice concentration density during sea ice break-up. Overall, it is hypothesized that our sounding classes represent development or dissipation stages of advection fog, or stratus lowering and fog lifting processes. With a new automated method, it is planned to retrieve fog height from IGRA data over Arctic terrain around the entire North Atlantic region. These results will serve as a basis for the incorporation of fog and temperature inversions into glacier surface energy balance models and can aid in improving the parameterization of fog for nowcasting methods for aviation applications.
NASA Astrophysics Data System (ADS)
van den Bossche, Michael; De Wekker, Stephan F. J.
2016-09-01
We investigated the spatiotemporal variability of surface meteorological variables in the nocturnal boundary layer using six automatic weather stations deployed in the Heber Valley, UT, during the MATERHORN-Fog experiment. The stations were installed on the valley floor within a 1.5 km × 0.8 km area and collected 1-Hz wind and pressure data and 0.2-Hz temperature and humidity data. We describe the weather stations and analyze the spatiotemporal variability of the measured variables during three nights with radiative cooling. Two nights were characterized by the presence of dense ice fog, one night with a persistent (`heavy') fog, and one with a short-lived (`moderate') fog, while the third night had no fog. Frost-point depressions were larger preceding the night without fog and showed a continued decrease during the no-fog night. On both fog nights, the frost-point depression reached values close to zero early in the night, but ~5 h earlier on the heavy-fog night than on the moderate-fog night. Spatial variability of temperature and humidity was smallest during the heavy-fog night and increased temporarily during short periods when wind speeds increased and the fog lifted. During all three nights, wind speeds did not exceed 2 m/s. The temporal variability of the wind speed and direction was larger during the fog nights than during the no-fog nights, but was particularly large during the heavy-fog night. The large variability corresponded with short-lived (5-10 min) pressure variations with amplitudes on the order of 0.5 hPa, indicating gravity wave activity. These pressure fluctuations occurred at all stations and were correlated in particular with variability in wind direction. Although not able to provide a complete picture of the nocturnal boundary layer, our low-cost weather stations were able to continuously collect data that were comparable to those of nearby research-grade instruments. From these data, we distinguished between fog and no-fog events, successfully quantified spatiotemporal variations in surface properties during these events, and detected gravity waves.
Fog deposition fluxes of water and ions to a mountainous site in Central Europe
NASA Astrophysics Data System (ADS)
Klemm, Otto; Wrzesinsky, Thomas
2007-09-01
Fog and precipitation composition and deposition were measured over a 1-yr period. Ion concentrations were higher in fog than in precipitation by factors of between 6 and 18. The causes of these differences were less dilution of fog water due to non-availability of condensable water vapour, and more efficient transfer of surface emissions to fog water as compared to rain water or snow. Fogwater and dissolved ions depositions were measured with eddy covariance in combination with a bulk fogwater collector. Annual fogwater deposition was 9.4% that of precipitation. The annual deposition of ions through fog was of the same order as that for precipitation. Ammonium, representing local emission sources, had 46% more annual deposition through fog than through precipitation. The fog droplet number and mass size distributions are reported. Fog droplets of 15 μm diameter contribute most to the deposition flux. The variability of processes and parameters contributing to deposition of ions through fog (ion concentrations in fog water, liquid water content in air, fog duration and turbulence) is high.
The analysis of rapidly developing fog at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
Wheeler, Mark M.; Atchison, Michael K.; Schumann, Robin; Taylor, Greg E.; Yersavich, Ann; Warburton, John D.
1994-01-01
This report documents fog precursors and fog climatology at Kennedy Space Center (KSC) Florida from 1986 to 1990. The major emphasis of this report focuses on rapidly developing fog events that would affect the less than 7-statute mile visibility rule for End-Of-Mission (EOM) Shuttle landing at KSC (Rule 4-64(A)). The Applied Meteorology Unit's (AMU's) work is to: develop a data base for study of fog associated weather conditions relating to violations of this landing constraint; develop forecast techniques or rules-of-thumb to determine whether or not current conditions are likely to result in an acceptable condition at landing; validate the forecast techniques; and transition techniques to operational use. As part of the analysis the fog events were categorized as either advection, pre-frontal or radiation. As a result of these analyses, the AMU developed a fog climatological data base, identified fog precursors and developed forecaster tools and decision trees. The fog climatological analysis indicates that during the fog season (October to April) there is a higher risk for a visibility violation at KSC during the early morning hours (0700 to 1200 UTC), while 95 percent of all fog events have dissipated by 1600 UTC. A high number of fog events are characterized by a westerly component to the surface wind at KSC (92 percent) and 83 percent of the fog events had fog develop west of KSC first (up to 2 hours). The AMU developed fog decision trees and forecaster tools that would help the forecaster identify fog precursors up to 12 hours in advance. Using the decision trees as process tools ensures the important meteorological data are not overlooked in the forecast process. With these tools and a better understanding of fog formation in the local KSC area, the Shuttle weather support forecaster should be able to give the Launch and Flight Directors a better KSC fog forecast with more confidence.
Effects of pitch and shape for diffraction grating in LED fog lamp
NASA Astrophysics Data System (ADS)
Chen, Hsi-Chao; Lin, Jun-Yu; Wu, Jih-Huah; Ma, Shih-Hsin; Yang, Chi-Hao
2011-10-01
The characteristics of light-emitting diodes (LEDs) that make them energy-efficient and long-lasting light source for general illumination have attracted a great attention from the lighting industry and commercial market. As everyone know LEDs have the advantages of environmental protection, long lifetime, fast response time (μs), low voltage and good mechanical properties. Their high luminance and the wide region of the dominant wavelengths within the entire visible spectrum mean that people have high anticipations for the applications of LEDs. The output lighting from reflector in the traditional fog lamp was required to fit the standard of the ECE R19 F3 regulation. Therefore, this study investigated the effects of pitch and angle for a diffraction grating in LED fog lamp. The light pattern of fog lamp must be satisfied ECE regulations, so a design of diffraction grating to shift down the lighting was required. There are three LEDs (Cree XLamp XPE LEDs) as the light source in the fog lamp for the illumination efficiency. Then, an optimal simulation of diffraction grating was done for the pitch and angle of the diffraction grating at the test distance of 25 meters. The best pitch and angle was 2mm and 60 degree for the grating shape of wedge type.
NASA Astrophysics Data System (ADS)
Napoli, Jay
2016-05-01
Precision fiber optic gyroscopes (FOGs) are critical components for an array of platforms and applications ranging from stabilization and pointing orientation of payloads and platforms to navigation and control for unmanned and autonomous systems. In addition, FOG-based inertial systems provide extremely accurate data for geo-referencing systems. Significant improvements in the performance of FOGs and FOG-based inertial systems at KVH are due, in large part, to advancements in the design and manufacture of optical fiber, as well as in manufacturing operations and signal processing. Open loop FOGs, such as those developed and manufactured by KVH Industries, offer tactical-grade performance in a robust, small package. The success of KVH FOGs and FOG-based inertial systems is due to innovations in key fields, including the development of proprietary D-shaped fiber with an elliptical core, and KVH's unique ThinFiber. KVH continually improves its FOG manufacturing processes and signal processing, which result in improved accuracies across its entire FOG product line. KVH acquired its FOG capabilities, including its patented E•Core fiber, when the company purchased Andrew Corporation's Fiber Optic Group in 1997. E•Core fiber is unique in that the light-guiding core - critical to the FOG's performance - is elliptically shaped. The elliptical core produces a fiber that has low loss and high polarization-maintaining ability. In 2010, KVH developed its ThinFiber, a 170-micron diameter fiber that retains the full performance characteristics of E•Core fiber. ThinFiber has enabled the development of very compact, high-performance open-loop FOGs, which are also used in a line of FOG-based inertial measurement units and inertial navigation systems.
NASA Astrophysics Data System (ADS)
Koohafkan, M.; Thompson, S. E.; Leonardson, R.; Dufour, A.
2013-12-01
We showcase a fog monitoring study designed to quantitatively estimate the contribution of summer fog events to the water balance of a coastal watershed managed by the San Francisco Public Utilities Commission. Two decades of research now clearly show that fog and occult precipitation can be major contributors to the water balance of watersheds worldwide. Monitoring, understanding and predicting occult precipitation is therefore as hydrologically compelling as forecasting precipitation or evaporation, particularly in the face of climate variability. We combine ground-based monitoring and collection strategies with remote sensing technologies, time-lapse imagery, and isotope analysis to trace the ';signature' of fog in physical and ecological processes. Spatial coverage and duration of fog events in the watershed is monitored using time-lapse cameras and leaf wetness sensors strategically positioned to provide estimates of the fog bank extent and cloud base elevation, and this fine-scale data is used to estimate transpiration suppression by fog and is examined in the context of regional climate through the use of satellite imagery. Soil moisture sensors, throughfall collectors and advective fog collectors deployed throughout the watershed provide quantitative estimates of fog drip contribution to soil moisture and plants. Fog incidence records and streamflow monitoring provide daily estimates of fog contribution to streamflow. Isotope analysis of soil water, fog drip, stream water and vegetation samples are used to probe for evidence of direct root and leaf uptake of fog drip by plants. Using this diversity of fog monitoring methods, we develop an empirical framework for the inclusion of fog processes in water balance models.
Freezing of gait is associated with cognitive impairment in patients with Parkinson disease.
Yao, Zhiwen; Shao, Yuan; Han, Xiang
2017-08-24
To explore whether the cognitive impairment is correlated with freezing of gait (FOG) in patients with Parkinson disease (PD). A total of 186 patients with Parkinson disease (104 patients with FOG and 82 patients with no clinical history of freezing behavior) and 125 healthy individuals were selected for this study. Neuropsychological assessments, including the scales for outcomes in Parkinson disease cognition, unified Parkinson's disease rating scale, and Hamilton depression/anxiety rating scale etc., were applied to evaluate the patients'cognitive functioning. We found that the scores of Unified Parkinson's Disease Rating Scale (UPDRS) were significantly higher among PD patients with FOG, compared with non-FOG group. We also showed that Mini-Mental State Examination score (MMSE) was lower among subjects with FOG than in patients without FOG. Patients with FOG displayed lower Scales for OUTCOMES: in Parkinson's Disease Cognition (SCOPA-COG) score than non-FOG patients. In addition, significant higher Hamilton Anxiety Rating Scale (HAMD) scores were found in patients with FOG than patients without FOG. Moreover, disease duration, stage of the disease, the severity of motor symptom, increased depressive and anxiety complaints measured by FOG questionnaire were significantly associated with severity of FOG. Meanwhile, we also found that the score of Freezing of Gait Questionnaire (FOGQ) score was negatively correlated with MMSE. Our results demonstrated that FOG is related to impaired cognitive functions in PD patients with FOG. The understanding of impaired cognitive functions in PD patients with FOG can provide evidences for possible therapeutic interventions. Copyright © 2017 Elsevier B.V. All rights reserved.
Observational Study and Parameterization of Aerosol-fog Interactions
NASA Astrophysics Data System (ADS)
Duan, J.; Guo, X.; Liu, Y.; Fang, C.; Su, Z.; Chen, Y.
2014-12-01
Studies have shown that human activities such as increased aerosols affect fog occurrence and properties significantly, and accurate numerical fog forecasting depends on, to a large extent, parameterization of fog microphysics and aerosol-fog interactions. Furthermore, fogs can be considered as clouds near the ground, and enjoy an advantage of permitting comprehensive long-term in-situ measurements that clouds do not. Knowledge learned from studying aerosol-fog interactions will provide useful insights into aerosol-cloud interactions. To serve the twofold objectives of understanding and improving parameterizations of aerosol-fog interactions and aerosol-cloud interactions, this study examines the data collected from fogs, with a focus but not limited to the data collected in Beijing, China. Data examined include aerosol particle size distributions measured by a Passive Cavity Aerosol Spectrometer Probe (PCASP-100X), fog droplet size distributions measured by a Fog Monitor (FM-120), Cloud Condensation Nuclei (CCN), liquid water path measured by radiometers and visibility sensors, along with meteorological variables measured by a Tethered Balloon Sounding System (XLS-Ⅱ) and Automatic Weather Station (AWS). The results will be compared with low-level clouds for similarities and differences between fogs and clouds.
Marine sources influence fog bioaerosol composition in Namibia and Maine
NASA Astrophysics Data System (ADS)
Evans, S. E.; Dueker, E.; Logan, J. R. V.; Weathers, K. C.
2017-12-01
Organic aerosol particles act as condensation nuclei for fogs and clouds (CCN) and are main determinants of fog evolution, chemical processing, and overall aerosol-fog-cloud interactions. Recent work has confirmed the presence of marine bioaerosols, but little is known about their sources, transport, taxonomic diversity or viability. The few studies that have characterized bioaerosols in fog have been limited to culture-based approaches that capture only a fraction of microbial diversity. We characterized fungal and bacterial communities in the fog in two iconic fog systems, the Coast of Maine (USA) and the Namib Desert (Namibia). The biology of fog in both systems was diverse and distinct, by geography, from dry aerosols, and from local sources. The local environment had a dominant influence on fog in both the Namib and Maine; in particular, the biology of fog in Maine, which was collected near the coast, was more similar to microbial communities from the ocean surface. In both systems, differences between pre- and post-fog aerosol communities suggest that fog events can significantly alter microbial aerosol diversity and composition. This insight into the microbial composition of fog indicates that its origin and frequency has the potential to influence the number and diversity of microorganisms that settle in a given environment, and the composition of microbial aerosol communities in ambient or clear conditions. Here we suggest that fog microbes can possess specific traits that enhance nucleation, altering the transport and deposition of marine- and soil-derived organic matter in terrestrial systems.
Assessment of online patient education materials from major ophthalmologic associations.
Huang, Grace; Fang, Christina H; Agarwal, Nitin; Bhagat, Neelakshi; Eloy, Jean Anderson; Langer, Paul D
2015-04-01
Patients are increasingly using the Internet to supplement finding medical information, which can be complex and requires a high level of reading comprehension. Online ophthalmologic materials from major ophthalmologic associations should be written at an appropriate reading level. To assess ophthalmologic online patient education materials (PEMs) on ophthalmologic association websites and to determine whether they are above the reading level recommended by the American Medical Association and National Institutes of Health. Descriptive and correlational design. Patient education materials from major ophthalmology websites were downloaded from June 1, 2014, through June 30, 2014, and assessed for level of readability using 10 scales. The Flesch Reading Ease test, Flesch-Kincaid Grade Level, Simple Measure of Gobbledygook test, Coleman-Liau Index, Gunning Fog Index, New Fog Count, New Dale-Chall Readability Formula, FORCAST scale, Raygor Readability Estimate Graph, and Fry Readability Graph were used. Text from each article was pasted into Microsoft Word and analyzed using the software Readability Studio professional edition version 2012.1 for Windows. Flesch Reading Ease score, Flesch-Kincaid Grade Level, Simple Measure of Gobbledygook grade, Coleman-Liau Index score, Gunning Fog Index score, New Fog Count, New Dale-Chall Readability Formula score, FORCAST score, Raygor Readability Estimate Graph score, and Fry Readability Graph score. Three hundred thirty-nine online PEMs were assessed. The mean Flesch Reading Ease score was 40.7 (range, 17.0-51.0), which correlates with a difficult level of reading. The mean readability grade levels ranged as follows: 10.4 to 12.6 for the Flesch-Kincaid Grade Level; 12.9 to 17.7 for the Simple Measure of Gobbledygook test; 11.4 to 15.8 for the Coleman-Liau Index; 12.4 to 18.7 for the Gunning Fog Index; 8.2 to 16.0 for the New Fog Count; 11.2 to 16.0 for the New Dale-Chall Readability Formula; 10.9 to 12.5 for the FORCAST scale; 11.0 to 17.0 for the Raygor Readability Estimate Graph; and 12.0 to 17.0 for the Fry Readability Graph. Analysis of variance demonstrated a significant difference (P < .001) between the websites for each reading scale. Online PEMs on major ophthalmologic association websites are written well above the recommended reading level. Consideration should be given to revision of these materials to allow greater comprehension among a wider audience.
Fog Occurrence and Associated Meteorological Factors Over Kempegowda International Airport, India
NASA Astrophysics Data System (ADS)
Kutty, Saumya G.; Agnihotri, G.; Dimri, A. P.; Gultepe, I.
2018-05-01
The increase in fog frequency over the past few decades is a major cause of concern for the aviation and transportation sectors. Accurate forecasting of the spatio-temporal extent of fog is crucial for minimizing socioeconomic losses. The present study attempts to characterize the fog frequency and associated meteorological factors over Kempegowda International Airport, Bengaluru (KIAB), in Karnataka, India. Maximum fog occurrence is observed during the month of December, followed by January. The time of onset of fog lies usually between 1800 and 0300 UTC. No fog is formed between 0400 and 1700 UTC indicating the role of radiation fog. The predominant wind direction during fog events is east or southeasterly. There is significant positive correlation between the fog frequency and both the northeast monsoon, October-November (0.72), as well as December-January-February (DJF) rainfall (0.80). Soil moisture conditions during the DJF period also play a key role in fog occurrence and its climatology, which is evident from the correlation coefficient of order 0.68. These suggest that further research is needed for understanding the extent of impact on aviation at KIAB.
Seasonal trend of fog water chemical composition in the Po Valley.
Fuzzi, S; Facchini, M C; Orsi, G; Ferri, D
1992-01-01
Fog frequency in the Po Valley, Northern Italy, can be as high as 30% of the time in the fall-winter season. High pollutant concentrations have been measured in fog water samples collected in this area over the past few years. The combined effects of high fog occurrence and high pollutant loading of the fog droplets can determine, in this area, appreciable chemical deposition rates. An automated station for fog water collection was developed, and deployed at the field station of S. Pietro Capofiume, in the eastern part of the Po Valley for an extended period: from the beginning of November 1989 to the end of April 1990. Time-resolved sampling of fog droplets was carried out during all fog events occurring in this period, and chemical analyses were performed on the collected samples. Statistical information on fog occurrence and fog water chemical composition is reported in this paper, and a tentative seasonal deposition budget is calculated for H+, NH4+, NO3- and SO4(2-) ions. The problems connected with fog droplet sampling in sub-freezing conditions are also addressed in the paper.
Fog Simulations Based on Multi-Model System: A Feasibility Study
NASA Astrophysics Data System (ADS)
Shi, Chune; Wang, Lei; Zhang, Hao; Zhang, Su; Deng, Xueliang; Li, Yaosun; Qiu, Mingyan
2012-05-01
Accurate forecasts of fog and visibility are very important to air and high way traffic, and are still a big challenge. A 1D fog model (PAFOG) is coupled to MM5 by obtaining the initial and boundary conditions (IC/BC) and some other necessary input parameters from MM5. Thus, PAFOG can be run for any area of interest. On the other hand, MM5 itself can be used to simulate fog events over a large domain. This paper presents evaluations of the fog predictability of these two systems for December of 2006 and December of 2007, with nine regional fog events observed in a field experiment, as well as over a large domain in eastern China. Among the simulations of the nine fog events by the two systems, two cases were investigated in detail. Daily results of ground level meteorology were validated against the routine observations at the CMA observational network. Daily fog occurrences for the two study periods was validated in Nanjing. General performance of the two models for the nine fog cases are presented by comparing with routine and field observational data. The results of MM5 and PAFOG for two typical fog cases are verified in detail against field observations. The verifications demonstrated that all methods tended to overestimate fog occurrence, especially for near-fog cases. In terms of TS/ETS, the LWC-only threshold with MM5 showed the best performance, while PAFOG showed the worst. MM5 performed better for advection-radiation fog than for radiation fog, and PAFOG could be an alternative tool for forecasting radiation fogs. PAFOG did show advantages over MM5 on the fog dissipation time. The performance of PAFOG highly depended on the quality of MM5 output. The sensitive runs of PAFOG with different IC/BC showed the capability of using MM5 output to run the 1D model and the high sensitivity of PAFOG on cloud cover. Future works should intensify the study of how to improve the quality of input data (e.g. cloud cover, advection, large scale subsidence) for the 1D model, particularly how to eliminate near-fog case in fog forecasting.
Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles.
Nørgaard, Thomas; Dacke, Marie
2010-07-16
In the Namib Desert fog represents an alternative water source. This is utilised by Darkling beetles (Tenebrionidae) that employ different strategies for obtaining the fog water. Some dig trenches in the sand, while others use their own bodies as fog collectors assuming a characteristic fog-basking stance. Two beetle species from the genus Onymacris have been observed to fog-bask on the ridges of the sand dunes. These beetles all have smooth elytra surfaces, while another species with elytra covered in bumps is reported to have specialised adaptations facilitating water capture by fog-basking. To resolve if these other beetles also fog-bask, and if an elytra covered in bumps is a more efficient fog water collector than a smooth one, we examined four Namib Desert beetles; the smooth Onymacris unguicularis and O. laeviceps and the bumpy Stenocara gracilipes and Physasterna cribripes. Here we describe the beetles' fog-basking behaviour, the details of their elytra structures, and determine how efficient their dorsal surface areas are at harvesting water from fog. The beetles differ greatly in size. The largest P. cribripes has a dorsal surface area that is 1.39, 1.56, and 2.52 times larger than O. unguicularis, O. laeviceps, and S. gracilipes, respectively. In accordance with earlier reports, we found that the second largest O. unguicularis is the only one of the four beetles that assumes the head standing fog-basking behaviour, and that fog is necessary to trigger this behaviour. No differences were seen in the absolute amounts of fog water collected on the dorsal surface areas of the different beetles. However, data corrected according to the sizes of the beetles revealed differences. The better fog water harvesters were S. gracilipes and O. unguicularis while the large P. cribripes was the poorest. Examination of the elytra microstructures showed clear structural differences, but the elytra of all beetles were found to be completely hydrophobic. The differences in fog water harvesting efficiency by the dorsal surface areas of beetles with very different elytra surface structures were minor. We therefore conclude that the fog-basking behaviour itself is a more important factor than structural adaptations when O. unguicularis collect water from fog.
Panama Canal Fog Navigation Study : System Requirements Statement
DOT National Transportation Integrated Search
1984-03-01
Efforts to minimize the adverse impact of fog on Panama Canal operations have focused in the past on obtaining methods of predicting fog, of dispersing fog and of providing navigation during fog. This report describes the result of the most recent fo...
NASA Astrophysics Data System (ADS)
Wærsted, Eivind G.; Haeffelin, Martial; Dupont, Jean-Charles; Delanoë, Julien; Dubuisson, Philippe
2017-09-01
Radiative cooling and heating impact the liquid water balance of fog and therefore play an important role in determining their persistence or dissipation. We demonstrate that a quantitative analysis of the radiation-driven condensation and evaporation is possible in real time using ground-based remote sensing observations (cloud radar, ceilometer, microwave radiometer). Seven continental fog events in midlatitude winter are studied, and the radiative processes are further explored through sensitivity studies. The longwave (LW) radiative cooling of the fog is able to produce 40-70 g m-2 h-1 of liquid water by condensation when the fog liquid water path exceeds 30 g m-2 and there are no clouds above the fog, which corresponds to renewing the fog water in 0.5-2 h. The variability is related to fog temperature and atmospheric humidity, with warmer fog below a drier atmosphere producing more liquid water. The appearance of a cloud layer above the fog strongly reduces the LW cooling relative to a situation with no cloud above; the effect is strongest for a low cloud, when the reduction can reach 100 %. Consequently, the appearance of clouds above will perturb the liquid water balance in the fog and may therefore induce fog dissipation. Shortwave (SW) radiative heating by absorption by fog droplets is smaller than the LW cooling, but it can contribute significantly, inducing 10-15 g m-2 h-1 of evaporation in thick fog at (winter) midday. The absorption of SW radiation by unactivated aerosols inside the fog is likely less than 30 % of the SW absorption by the water droplets, in most cases. However, the aerosols may contribute more significantly if the air mass contains a high concentration of absorbing aerosols. The absorbed radiation at the surface can reach 40-120 W m-2 during the daytime depending on the fog thickness. As in situ measurements indicate that 20-40 % of this energy is transferred to the fog as sensible heat, this surface absorption can contribute significantly to heating and evaporation of the fog, up to 30 g m-2 h-1 for thin fog, even without correcting for the typical underestimation of turbulent heat fluxes by the eddy covariance method. Since the radiative processes depend mainly on the profiles of temperature, humidity and clouds, the results of this paper are not site specific and can be generalised to fog under different dynamic conditions and formation mechanisms, and the methodology should be applicable to warmer and moister climates as well. The retrieval of approximate emissivity of clouds above fog from cloud radar should be further developed.
When the Fog Clears: Long-Term Monitoring of Fog and Fog-Dependent Biota in the Namib Desert
NASA Astrophysics Data System (ADS)
Logan, J. R. V.
2014-12-01
The Gobabeb Research and Training Centre in western Namibia is currently undertaking several efforts to enhance long-term atmospheric and fog monitoring in the central Namib Desert and to measure how fog-dependent biota are responding to global change. In an environment that receives regular sea fog and a mean annual rainfall of only 25 mm, Gobabeb is ideally situated to study the drivers and ecological role of fog in arid environments. Currently more than ten meteorological projects perform measurements at or close to Gobabeb. These projects include continuous trace gas measurements, fog isotope sampling, in situ surface radiation measurements, land surface temperature and other satellite validation studies, and multiple aerosol/dust monitoring projects; most of these projects are also components in other global monitoring networks. To these projects, Gobabeb has recently added a network of nine autonomous weather stations spanning the central Namib that will continuously collect basic meteorological data over an area of approximately 70x70 km. Using this data in conjunction with modeling efforts will expand our understanding of fog formation and the linkages between fog and the Benguela Current off Namibia's coast. Historical weather data from previous meteorological stations and satellite observations will also enable development of a fog time series for the last 50 years to determine climate variability driven by possible changes in the Benguela Current system. To complement these efforts, Gobabeb is also expanding its decades-old ecological research programs to explore the impacts of the fog on the region's biota at various time and spatial scales. Gobabeb's long-term, multidisciplinary projects can serve as a prototype for monitoring in other fog-affected systems, together increasing our understanding of coastal fog dynamics, land-atmosphere-ocean connections, and the impacts of fog-related global change.
A polarisation maintaining fiber optimized for high temperature gyroscopes
NASA Astrophysics Data System (ADS)
Tutu, F.; Hill, Mark; Cooper, Laurence; Gillooly, A.
2015-05-01
Fiber optic gyroscopes (FOGs) are being used within increasingly severe environments, requiring operational temperatures in excess of the standard operating range for FOGs. Applications requiring these higher temperatures include: directional drilling of wells in oil and gas fields, space applications and military FOG applications. This paper will describe the relative merits of two high temperature acrylate coatings for an optical fiber designed for a FOG in such operating environments. Results for two high temperature acrylates are presented, tested in a 200m length of loose wound fiber, coiled and supported at 75mm diameter, in line with TIA/EIA-455-192 (FOTP-192). It can be seen that both coating types give very good polarization extinction ratio (PER) performance at high temperature up to 180oC, with better performance shown by one coating type on the low temperature side, since it does not harden to the same extent below 0oC. The long term thermal exposure effects will be discussed and experimental results presented which include testing the PER performance over temperature both before and after an extended period of high temperature endurance. This will demonstrate the relative merits of different styles of coatings. From the PER performance, the h-parameter of the fiber can be calculated and hence the preferred coating type selected and recommended for the customer operating environment.
NASA Astrophysics Data System (ADS)
Abualhamayel, H. I.; Gandhidasan, P.
2010-07-01
The region of Asir is located in the southwestern part of the Kingdom of Saudi Arabia between longitudes 41 - 45 E and latitudes 17 - 21 N. Known for its natural beauty and cool climate delight the visitors and the region has become a destination for tourists. One of the main problems in the Asir region is the high demand for water during tourism seasons especially in view of the rapidly growing tourism sector. Flourishing tourism in the region is challenged by the scarcity of water resources and there is urgent need to identify alternative sources of potable water. It is found that fog water collection is a viable resource and Asir region is the most suitable location for fog water harvesting. An operational fog water collection project was initiated in 2007 to provide fresh water supply. Al-Sooda, situated at an altitude of about 3,000 m, was identified as the most suitable experimental site and two large fog collectors measuring 20 m by 2 m each were erected in 2009. The distance between the two sites is about 2 km. This paper gives the methods used to select the experimental site and the design of the large fog collection system. The fog collectors are flat rectangular nets supported by a post at both ends and arranged perpendicular to the direction of the prevailing wind. The collection surface, comprising two layers of black polypropylene mesh net, is fastened laterally to the posts with a set of fastening bars. The aluminum trough located below the mesh net catches the water that runs down the net and carries it to a pipe connected to the storage tank. Because the fog collectors are long and require space for guy wires for the posts, the basic site consideration is that at least 25 m of horizontal land available for the erection. Meteorological instruments and the portable weather station are used to measure the climatic data which are recorded three times a day, namely at 7:00, 14:00 and 19:00 h. On average, yields of about 5 to 6 L/m2 per day are collected. The fog water collected has been analyzed for its quality and found to be potable, free from minerals. The experimental results are presented and discussed in the paper. Further studies are in progress.
The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs
NASA Astrophysics Data System (ADS)
Hoag, Katherine J.; Collett, Jeffrey L., Jr.; Pandis, Spyros N.
Drop size-resolved measurements of fog chemistry in California's San Joaquin Valley during the 1995 Integrated Monitoring Study reveal that fog composition varies with drop size. Small fog drops were less alkaline and typically contained higher major ion (nitrate, sulfate, ammonium) concentrations than large drops. Small drops often contained higher concentrations of Fe and Mn than large drops while H 2O 2 concentrations exhibited no strong drop size dependence. Simulation of an extended fog episode in Fresno, California revealed the capability of a drop size-resolved fog chemistry model to reproduce the measured (based on two drop size categories) drop size dependence of several key species. The model was also able to satisfactorily reproduce measured species-dependent deposition rates (ammonium>sulfate>nitrate) resulting from fog drop sedimentation. Both the model simulation and direct analysis of size-resolved fog composition observations and measured gas-phase oxidant concentrations indicate the importance of ozone as an aqueous-phase S(IV) oxidant in these high pH fogs. Due to the nonlinear dependence of the rate law for the ozone pathway on the hydrogen ion concentration, use of the average fog drop composition can lead to significant underprediction of aqueous phase sulfate production rates in these chemically heterogeneous fogs.
Hierarchical Surface Architecture of Plants as an Inspiration for Biomimetic Fog Collectors.
Azad, M A K; Barthlott, W; Koch, K
2015-12-08
Fog collectors can enable us to alleviate the water crisis in certain arid regions of the world. A continuous fog-collection cycle consisting of a persistent capture of fog droplets and their fast transport to the target is a prerequisite for developing an efficient fog collector. In regard to this topic, a biological superior design has been found in the hierarchical surface architecture of barley (Hordeum vulgare) awns. We demonstrate here the highly wettable (advancing contact angle 16° ± 2.7 and receding contact angle 9° ± 2.6) barbed (barb = conical structure) awn as a model to develop optimized fog collectors with a high fog-capturing capability, an effective water transport, and above all an efficient fog collection. We compare the fog-collection efficiency of the model sample with other plant samples naturally grown in foggy habitats that are supposed to be very efficient fog collectors. The model sample, consisting of dry hydrophilized awns (DH awns), is found to be about twice as efficient (fog-collection rate 563.7 ± 23.2 μg/cm(2) over 10 min) as any other samples investigated under controlled experimental conditions. Finally, a design based on the hierarchical surface architecture of the model sample is proposed for the development of optimized biomimetic fog collectors.
Piecewise compensation for the nonlinear error of fiber-optic gyroscope scale factor
NASA Astrophysics Data System (ADS)
Zhang, Yonggang; Wu, Xunfeng; Yuan, Shun; Wu, Lei
2013-08-01
Fiber-Optic Gyroscope (FOG) scale factor nonlinear error will result in errors in Strapdown Inertial Navigation System (SINS). In order to reduce nonlinear error of FOG scale factor in SINS, a compensation method is proposed in this paper based on curve piecewise fitting of FOG output. Firstly, reasons which can result in FOG scale factor error are introduced and the definition of nonlinear degree is provided. Then we introduce the method to divide the output range of FOG into several small pieces, and curve fitting is performed in each output range of FOG to obtain scale factor parameter. Different scale factor parameters of FOG are used in different pieces to improve FOG output precision. These parameters are identified by using three-axis turntable, and nonlinear error of FOG scale factor can be reduced. Finally, three-axis swing experiment of SINS verifies that the proposed method can reduce attitude output errors of SINS by compensating the nonlinear error of FOG scale factor and improve the precision of navigation. The results of experiments also demonstrate that the compensation scheme is easy to implement. It can effectively compensate the nonlinear error of FOG scale factor with slightly increased computation complexity. This method can be used in inertial technology based on FOG to improve precision.
Xie, Tao; Bloom, Lisa; Padmanaban, Mahesh; Bertacchi, Breanna; Kang, Wenjun; MacCracken, Ellen; Dachman, Abraham; Vigil, Julie; Satzer, David; Zadikoff, Cindy; Markopoulou, Katerina; Warnke, Peter; Kang, Un Jung
2018-04-13
To evaluate the long-term effect of 60 Hz stimulation of the subthalamic nucleus (STN) on dysphagia, freezing of gait (FOG) and other motor symptoms in patients with Parkinson's disease (PD) who have FOG at the usual 130 Hz stimulation. This is a prospective, sequence randomised, crossover, double-blind study. PD patients with medication refractory FOG at 130 Hz stimulation of the STN were randomised to the sequences of 130 Hz, 60 Hz or deep brain stimulation off to assess swallowing function (videofluoroscopic evaluation and swallowing questionnaire), FOG severity (stand-walk-sit test and FOG questionnaire) and motor function (Unified PD Rating Scale, Part III motor examination (UPDRS-III)) at initial visit (V1) and follow-up visit (V2, after being on 60 Hz stimulation for an average of 14.5 months), in their usual medications on state. The frequency of aspiration events, perceived swallowing difficulty and FOG severity at 60 Hz compared with 130 Hz stimulation at V2, and their corresponding changes at V2 compared with V1 at 60 Hz were set as primary outcomes, with similar comparisons in UPDRS-III and its subscores as secondary outcomes. All 11 enrolled participants completed V1 and 10 completed V2. We found the benefits of 60 Hz stimulation compared with 130 Hz in reducing aspiration frequency, perceived swallowing difficulty, FOG severity, bradykinesia and overall axial and motor symptoms at V1 and persistent benefits on all of them except dysphagia at V2, with overall decreasing efficacy when comparing V2 to V1. The 60 Hz stimulation, when compared with 130 Hz, has long-term benefits on reducing FOG, bradykinesia and overall axial and motor symptoms except dysphagia, although the overall benefits decrease with long-term use. NCT02549859;Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Astrophysics Data System (ADS)
Xu, Xu; Li, Bincheng; He, Wenyan; Wang, Changjun; Wei, Ming
2018-04-01
Gemini-style protected-silver mirror (Sub / NiCrNx / Ag / NiCrNx / SiNx / Air) is a suitable choice for optical instruments requiring both long-term environmental durability and high broadband reflectance. Three Gemini-style protected-silver mirrors with NiCrNx interlayer thicknesses between 0.1 and 0.6 nm were prepared by magnetron sputtering, and the dependences of spectral properties and environmental durability of these protected-silver mirrors on the thickness of NiCrNx interlayer between the silver layer and SiNx layer were investigated in-depth. The reflectance, transmittance and total scattering loss measurements, optical microscope, and scanning electron microscope imaging were employed to characterize the spectral properties and surface morphology, and accelerated environmental tests, including humidity test and salt fog test, were applied to investigate the environmental durability. The experimental results showed that both optical and corrosion-resistant properties of protected-silver mirrors were NiCrNx interlayer thickness dependent, and an optimum NiCrNx interlayer thickness should be ˜0.3 nm for Gemini-style protected-silver mirrors to have reasonably both high reflectance in a broadband spectral range from visible to far infrared and good corrosion resistance for long-lifetime applications in harsh environments.
Forecasting sea fog on the coast of southern China
NASA Astrophysics Data System (ADS)
Huang, H.; Huang, B.; Liu, C.; Tu, J.; Wen, G.; Mao, W.
2016-12-01
Forecast sea fog is still full of challenges. We have performed the numerical forecasting of sea fog on the coast of southern China by using the operational meso-scale regional model GRAPES (Global/Regional assimilation and prediction system). The GRAPES model horizontal resolution was 3km and with 66 vertical levels. A total of 72 hours forecasting of sea fog was conducted with hourly outputs over the sea fog event. The results show that the model system can predict reasonable characteristics of typical sea fog events on the coast of southern China. The scope of sea fog coincides with the observations of meteorological stations, the observations of the Marine Meteorological Science Experiment Base (MMSEB) at Bohe, Maoming and satellite products of sea fog. The goal of this study is to establish an operational numerical forecasting model system of sea fog on the coast of southern China.
A review of observations of organic matter in fogs and clouds: Origin, processing and fate
NASA Astrophysics Data System (ADS)
Herckes, Pierre; Valsaraj, Kalliat T.; Collett, Jeffrey L.
2013-10-01
While fog and cloud composition has been studied for decades, most of the research was limited to inorganic species and fog acidity. Recently the focus has shifted towards organic matter in the atmospheric aqueous phase of fogs and clouds: its origin, reactivity and fate. An impressive number of fog and cloud chemistry observational studies have been performed over the last decade throughout the world. In the present work we will review the state of knowledge of atmospheric organic matter processing by fogs, with a focus on field observations. We start by reviewing observational studies in general and then discuss our knowledge on the occurrence of organic matter in fogs, its solubility, characterization and molecular speciation. Organic carbon concentrations can vary widely from approximately 1 mg C/L in remote marine environments to more than 100 mg C/L in polluted radiation fogs, accounting for a substantial part of fogwater solutes. The carbonaceous material can enter the droplets from the gas and particle phase and the scavenging behavior of fogs will be detailed. Observational studies showed evidence of aqueous phase transformation of organic material, in particular secondary organic aerosol (SOA) generation, in fog. Recent observations of biological material in fog suggest also an impact of biological processing within the droplets on fog organic matter. The review will end with a discussion of the impact of fog on the deposition fluxes of organic material and hence its atmospheric lifetime.
Germ-line induction of the Caenorhabditis elegans vulva
Thompson, Beth E.; Lamont, Liana B.; Kimble, Judith
2006-01-01
Development of the Caenorhabditis elegans vulva serves as a paradigm for intercellular signaling during animal development. In wild-type animals, the somatic gonadal anchor cell generates the LIN-3/EGF ligand to induce vulval fates in the underlying hypodermis, whereas FBF, FOG-1, and FOG-3 control germ-line development. Here we report that FBF functions redundantly with FOG-1 and FOG-3 to control vulval induction: animals lacking FBF and either FOG-1 or FOG-3 have multiple vulvae, the Muv phenotype. The fog; fbf Muv phenotype is generated by aberrant induction of vulval precursor cells (VPCs): in wild-type animals, three VPCs are induced to form a single vulva, but, in fog; fbf mutants, four or five VPCs are typically induced, resulting in ectopic vulvae. Laser ablation experiments and mosaic analyses demonstrate that the germ line is critical for the fog; fbf Muv phenotype. Consistent with that site of action, we detect FBF and FOG-1 in the germ line but not in the VPCs. The simplest interpretation is that FOG-1, FOG-3, and FBF act in the germ line to influence vulval fates. The LIN-3/EGF ligand may be the germ-line signal to the VPCs: the fog; fbf Muv phenotype depends on LIN-3 activity, and the lin-3 3′ UTR possesses an FBF binding element. Our findings reveal new insights into germ line-to-soma signals and the role of PUF proteins in animal development. PMID:16407099
NASA Astrophysics Data System (ADS)
Micheli, L.; Dodge, C.; Fernandez, D.; Weiss, P. L.; Flint, L. E.; Flint, A. L.; Torregrosa, A.
2016-12-01
Summertime coastal fog advects from the ocean and transports water inland in the form of fog droplets to forests and grasslands. The amount of fog water delivered to the soil through fog drip from foliage and other surfaces that have captured and accumulated the droplets is often difficult to quantify due to many challenges including the difficulty of measuring the relatively small variations in soil moisture that accompany fog events. This study details summer season records collected from 4 sites at the Pepperwood Preserve in Santa Rosa, CA. Fog drip volumes were measured using 1 m2 standard fog collectors located at a grassland site for the past three summers. Soil moisture measurements were collected for portions of the three summer seasons from three sites: two oak woodland understory sites and a grassland site on the edge of a forest. One oak woodland site was within 400 m of the standard fog collector grassland site. Leaf wetness sensors (LWS) were co-located at all soil moisture sites. We observe a much higher frequency of wet periods at the grassland site than at the nearby oak woodland site during the summer fog season. One hypothesis is that the oak canopy acts to protect the LWS at the oak woodland site from nocturnal radiative cooling, thereby reducing condensation and dew formation. Another hypothesis is that the oak woodland canopy tends sheltered the understory during light fog events, resulting in edge effects that may tend to reduce fog deposition within the canopy. Leaf and soil moisture measurements both during fog events and during periods without fog but when dew point is reached may provide a more complete picture of non-rain mechanisms of moisture delivery to the foliage and the soil. Investigations are on-going to include corresponding meteorological data (wind speed and direction, relative humidity and temperature) to understand relative contributions to the soil associated with both fog and dew and to better distinguish between fog and dew inputs.
NASA Astrophysics Data System (ADS)
Nilsson, E. Douglas; Bigg, E. Keith
1996-04-01
Radiosondes established that the air in the near surface mixed layer was very frequently near saturation during the International Arctic Ocean Expedition 1991 which must have been a large factor in the frequent occurrence of fogs. Fogs were divided into groups of summer, transition and winter types depending on whether the advecting air, the ice surface or sea surface respectively was warmest and the source of heat. The probability of summer and transition fogs increased at air temperatures near 0°C while winter fogs had a maximum probability of occurrence at air temperatures between -5 and -10°C. Advection from the open sea was the primary cause of the summer group, the probability of occurrence being high during the 1st day's travel and appreciable until the end of 3days. Transition fogs reached its maximum probability of formation on the 4th day of advection. Radiation heating and cooling of the ice both appeared to have influenced summer and transition fogs, while winter fogs were strongly favoured by the long wave radiation loss at clear sky conditions. Another cause of winter fogs was the heat and moisture source of open leads. Wind speed was also a factor in the probability of fog formation, summer and transition fogs being favoured by winds between 2 and 6ms
1, while winter fogs were favoured by wind speeds of only 1ms
1. Concentrations of fog drops were generally lower than those of the cloud condensation nuclei active at 0.1%, having a median of 3cm
3. While a well-defined modal diameter of 20 25μm was found in all fogs, a second transient mode at about 100μm was also frequently observed. The observation of fog bows with supernumerary arcs pointed to the existence of fog droplets as large as 200 300µm in diameter at fog top. It is suggested that the large drops originated from droplets grown near the fog top and were brought to near the surface by an overturning of the fog layer. Shear induced wave motions and roll vortices were found to cause perturbations in the near-surface layer and appeared to influence fog formation and dissipation. The low observed droplet concentration in fogs limits their ability to modify aerosol number concentrations and size distributions, the persistent overlying stratus being a more likely site for effective interactions. It is suggested that variations in the fog formation described in this paper may be a useful indicator of circulation changes in the arctic consequent upon a global warming.
COSMO-PAFOG: Three-dimensional fog forecasting with the high-resolution COSMO-model
NASA Astrophysics Data System (ADS)
Hacker, Maike; Bott, Andreas
2017-04-01
The presence of fog can have critical impact on shipping, aviation and road traffic increasing the risk of serious accidents. Besides these negative impacts of fog, in arid regions fog is explored as a supplementary source of water for human settlements. Thus the improvement of fog forecasts holds immense operational value. The aim of this study is the development of an efficient three-dimensional numerical fog forecast model based on a mesoscale weather prediction model for the application in the Namib region. The microphysical parametrization of the one-dimensional fog forecast model PAFOG (PArameterized FOG) is implemented in the three-dimensional nonhydrostatic mesoscale weather prediction model COSMO (COnsortium for Small-scale MOdeling) developed and maintained by the German Meteorological Service. Cloud water droplets are introduced in COSMO as prognostic variables, thus allowing a detailed description of droplet sedimentation. Furthermore, a visibility parametrization depending on the liquid water content and the droplet number concentration is implemented. The resulting fog forecast model COSMO-PAFOG is run with kilometer-scale horizontal resolution. In vertical direction, we use logarithmically equidistant layers with 45 of 80 layers in total located below 2000 m. Model results are compared to satellite observations and synoptic observations of the German Meteorological Service for a domain in the west of Germany, before the model is adapted to the geographical and climatological conditions in the Namib desert. COSMO-PAFOG is able to represent the horizontal structure of fog patches reasonably well. Especially small fog patches typical of radiation fog can be simulated in agreement with observations. Ground observations of temperature are also reproduced. Simulations without the PAFOG microphysics yield unrealistically high liquid water contents. This in turn reduces the radiative cooling of the ground, thus inhibiting nocturnal temperature decrease. The simulated visibility agrees with observations. However, fog tends to be dissolved earlier than in the observation. As a result of the investigated fog events, it is concluded that the three-dimensional fog forecast model COSMO-PAFOG is able to simulate these fog events in accordance with observations. After the successful application of COSMO-PAFOG for fog events in the west of Germany, model simulations will be performed for coastal desert fog in the Namib region.
A Study of the Physical Processes of an Advection Fog BoundaryLayer
NASA Astrophysics Data System (ADS)
Liu, D.; Yan, W.; Kang, Z.; Dai, Z.; Liu, D.; Liu, M.; Cao, L.; Chen, H.
2016-12-01
Using the fog boundary layer observation collected by a moored balloon between December 1 and 2, 2009, the processes of advection fog formation and dissipation under cold and warm double-advection conditions was studied. the conclusions are as follows: 1. The advection fog process was generated by the interaction between the near-surface northeast cold advection and the upper layer's southeast warm, humid advection. The ground fog formed in an advection cooling process, and the thick fog disappeared in two hours when the wind shifted from the northeast to the northwest. The top of the fog layer remained over 600 m for most of the time. 2. This advection fog featured a double-inversion structure. The interaction between the southeast warm, humid advection of the upper layer and the descending current generated the upper inversion layer. The northeast cold advection near the ground and the warm, humid advection in the high-altitude layer formed the lower layer clouds and lower inversion layer. The upper inversion layer was composed of southeast warm, humid advection and a descending current with increasing temperature. The double inversion provided good thermal conditions for maintaining the thick fog layer. 3. The southeast wind of the upper layer not only created the upper inversion layer but also brought vapour-rich air to the fog region. The steady southeast vapour transportation by the southeast wind was the main condition that maintained the fog thickness, homogeneous density, and long duration. The low-altitude low-level jet beneath the lower inversion layer helped maintain the thickness and uniform density of the fog layer by enhancing the exchange of heat, momentum and vapour within the lower inversion layer. 4. There were three transportation mechanisms associated with this advection fog: 1) The surface layer vapour was delivered to the lower fog layer. 2) The low-altitude southeast low-level jet transported the vapour to the upper layer. 3) The vapour was exchanged between the upper and lower layers via the turbulent exchange and vertical air motion, which mixed the fog density and maintained the thickness of the fog. These mechanisms explain why the fog top was higher than the lower inversion layer and reached the upper inversion layer, as well as why this advection fog was so thick.
Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles
2010-01-01
Background In the Namib Desert fog represents an alternative water source. This is utilised by Darkling beetles (Tenebrionidae) that employ different strategies for obtaining the fog water. Some dig trenches in the sand, while others use their own bodies as fog collectors assuming a characteristic fog-basking stance. Two beetle species from the genus Onymacris have been observed to fog-bask on the ridges of the sand dunes. These beetles all have smooth elytra surfaces, while another species with elytra covered in bumps is reported to have specialised adaptations facilitating water capture by fog-basking. To resolve if these other beetles also fog-bask, and if an elytra covered in bumps is a more efficient fog water collector than a smooth one, we examined four Namib Desert beetles; the smooth Onymacris unguicularis and O. laeviceps and the bumpy Stenocara gracilipes and Physasterna cribripes. Here we describe the beetles' fog-basking behaviour, the details of their elytra structures, and determine how efficient their dorsal surface areas are at harvesting water from fog. Results The beetles differ greatly in size. The largest P. cribripes has a dorsal surface area that is 1.39, 1.56, and 2.52 times larger than O. unguicularis, O. laeviceps, and S. gracilipes, respectively. In accordance with earlier reports, we found that the second largest O. unguicularis is the only one of the four beetles that assumes the head standing fog-basking behaviour, and that fog is necessary to trigger this behaviour. No differences were seen in the absolute amounts of fog water collected on the dorsal surface areas of the different beetles. However, data corrected according to the sizes of the beetles revealed differences. The better fog water harvesters were S. gracilipes and O. unguicularis while the large P. cribripes was the poorest. Examination of the elytra microstructures showed clear structural differences, but the elytra of all beetles were found to be completely hydrophobic. Conclusions The differences in fog water harvesting efficiency by the dorsal surface areas of beetles with very different elytra surface structures were minor. We therefore conclude that the fog-basking behaviour itself is a more important factor than structural adaptations when O. unguicularis collect water from fog. PMID:20637085
Weather Support for the 2002 Winter Olympic and Paralympic Games.
NASA Astrophysics Data System (ADS)
Horel, J.; Potter, T.; Dunn, L.; Steenburgh, W. J.; Eubank, M.; Splitt, M.; Onton, D. J.
2002-02-01
The 2002 Winter Olympic and Paralympic Games will be hosted by Salt Lake City, Utah, during February-March 2002. Adverse weather during this period may delay sporting events, while snow and ice-covered streets and highways may impede access by the athletes and spectators to the venues. While winter snowstorms and other large-scale weather systems typically have widespread impacts throughout northern Utah, hazardous winter weather is often related to local terrain features (the Wasatch Mountains and Great Salt Lake are the most prominent ones). Examples of such hazardous weather include lake-effect snowstorms, ice fog, gap winds, downslope windstorms, and low visibility over mountain passes.A weather support system has been developed to provide weather information to the athletes, games officials, spectators, and the interested public around the world. This system is managed by the Salt Lake Olympic Committee and relies upon meteorologists from the public, private, and academic sectors of the atmospheric science community. Weather forecasting duties will be led by National Weather Service forecasters and a team of private, weather forecasters organized by KSL, the Salt Lake City NBC television affiliate. Other government agencies, commercial firms, and the University of Utah are providing specialized forecasts and support services for the Olympics. The weather support system developed for the 2002 Winter Olympics is expected to provide long-term benefits to the public through improved understanding,monitoring, and prediction of winter weather in the Intermountain West.
An Observational Case Study of Persistent Fog and Comparison with an Ensemble Forecast Model
NASA Astrophysics Data System (ADS)
Price, Jeremy; Porson, Aurore; Lock, Adrian
2015-05-01
We present a study of a persistent case of fog and use the observations to evaluate the UK Met Office ensemble model. The fog appeared to form initially in association with small patches of low-level stratus and spread rapidly across southern England during 11 December 2012, persisting for 24 h. The low visibility and occurrence of fog associated with the event was poorly forecast. Observations show that the surprisingly rapid spreading of the layer was due to a circulation at the fog edge, whereby cold cloudy air subsided into and mixed with warmer adjacent clear air. The resulting air was saturated, and hence the fog layer grew rapidly outwards from its edge. Measurements of fog-droplet deposition made overnight show that an average of 12 g m h was deposited but that the liquid water content remained almost constant, indicating that further liquid was condensing at a similar rate to the deposition, most likely due to the slow cooling. The circulation at the fog edge was also present during its dissipation, by which time the fog top had lowered by 150 m. During this period the continuing circulation at the fog edge, and increasing wind shear at fog top, acted to dissipate the fog by creating mixing with, by then, the drier adjacent and overlying air. Comparisons with a new, high resolution Met Office ensemble model show that this type of case remains challenging to simulate. Most ensemble members successfully simulated the formation and persistence of low stratus cloud in the region, but produced too much cloud initially overnight, which created a warm bias. During the daytime, ensemble predictions that had produced fog lifted it into low stratus, whilst in reality the fog remained present all day. Various aspects of the model performance are discussed further.
NASA Astrophysics Data System (ADS)
Gilson, Gaëlle F.; Jiskoot, Hester; Cassano, John J.; Gultepe, Ismail; James, Timothy D.
2018-05-01
An automated method to classify Arctic fog into distinct thermodynamic profiles using historic in-situ surface and upper-air observations is presented. This classification is applied to low-resolution Integrated Global Radiosonde Archive (IGRA) soundings and high-resolution Arctic Summer Cloud Ocean Study (ASCOS) soundings in low- and high-Arctic coastal and pack-ice environments. Results allow investigation of fog macrophysical properties and processes in coastal East Greenland during melt seasons 1980-2012. Integrated with fog observations from three synoptic weather stations, 422 IGRA soundings are classified into six fog thermodynamic types based on surface saturation ratio, type of temperature inversion, fog-top height relative to inversion-base height and stability using the virtual potential temperature gradient. Between 65-80% of fog observations occur with a low-level inversion, and statically neutral or unstable surface layers occur frequently. Thermodynamic classification is sensitive to the assigned dew-point depression threshold, but categorization is robust. Despite differences in the vertical resolution of radiosonde observations, IGRA and ASCOS soundings yield the same six fog classes, with fog-class distribution varying with latitude and environmental conditions. High-Arctic fog frequently resides within an elevated inversion layer, whereas low-Arctic fog is more often restricted to the mixed layer. Using supplementary time-lapse images, ASCOS microwave radiometer retrievals and airmass back-trajectories, we hypothesize that the thermodynamic classes represent different stages of advection fog formation, development, and dissipation, including stratus-base lowering and fog lifting. This automated extraction of thermodynamic boundary-layer and inversion structure can be applied to radiosonde observations worldwide to better evaluate fog conditions that affect transportation and lead to improvements in numerical models.
Bore, E; Langsrud, S
2005-01-01
To characterize micro-organisms isolated from Norwegian dairy production plants after cleaning and fogging disinfection with alkyl amine/peracetic acid and to indicate reasons for survival. Microbial samples were collected from five dairy plants after cleaning and fogging disinfection. Isolates from two of these production plants, which used fogging with alkylamino acetate (plant A), and peracetic acid (plant B), were chosen for further characterization. The sequence of the 16S ribosomal DNA, fatty acid analysis and biochemical characteristics were used to identify isolates. Three isolates identified as Rhodococcus erythropolis, Methylobacterium rhodesianum and Rhodotorula mucilaginosa were isolated from plant A and one Sphingomonas sp. and two M. extorquens from plant B. Different patterns of resistance to seven disinfectants in a bactericidal suspension test and variable degree of attachment to stainless steel were found. The strains with higher disinfectant resistance showed lower degree of attachment than susceptible strains. The study identifies and characterizes micro-organisms present after cleaning and fogging disinfection. Both surface attachment and resistance were shown as possible reasons for the presence of the isolates after cleaning and disinfection. These results contribute to the awareness of disinfectant resistance as well as attachment as mechanisms of survival in dairy industry. It also strengthens the argument of frequent alternation of disinfectants in the food processing industry to avoid the establishment of resistant house strains.
Crowd Sensing-Enabling Security Service Recommendation for Social Fog Computing Systems
Wu, Jun; Su, Zhou; Li, Jianhua
2017-01-01
Fog computing, shifting intelligence and resources from the remote cloud to edge networks, has the potential of providing low-latency for the communication from sensing data sources to users. For the objects from the Internet of Things (IoT) to the cloud, it is a new trend that the objects establish social-like relationships with each other, which efficiently brings the benefits of developed sociality to a complex environment. As fog service become more sophisticated, it will become more convenient for fog users to share their own services, resources, and data via social networks. Meanwhile, the efficient social organization can enable more flexible, secure, and collaborative networking. Aforementioned advantages make the social network a potential architecture for fog computing systems. In this paper, we design an architecture for social fog computing, in which the services of fog are provisioned based on “friend” relationships. To the best of our knowledge, this is the first attempt at an organized fog computing system-based social model. Meanwhile, social networking enhances the complexity and security risks of fog computing services, creating difficulties of security service recommendations in social fog computing. To address this, we propose a novel crowd sensing-enabling security service provisioning method to recommend security services accurately in social fog computing systems. Simulation results show the feasibilities and efficiency of the crowd sensing-enabling security service recommendation method for social fog computing systems. PMID:28758943
Crowd Sensing-Enabling Security Service Recommendation for Social Fog Computing Systems.
Wu, Jun; Su, Zhou; Wang, Shen; Li, Jianhua
2017-07-30
Fog computing, shifting intelligence and resources from the remote cloud to edge networks, has the potential of providing low-latency for the communication from sensing data sources to users. For the objects from the Internet of Things (IoT) to the cloud, it is a new trend that the objects establish social-like relationships with each other, which efficiently brings the benefits of developed sociality to a complex environment. As fog service become more sophisticated, it will become more convenient for fog users to share their own services, resources, and data via social networks. Meanwhile, the efficient social organization can enable more flexible, secure, and collaborative networking. Aforementioned advantages make the social network a potential architecture for fog computing systems. In this paper, we design an architecture for social fog computing, in which the services of fog are provisioned based on "friend" relationships. To the best of our knowledge, this is the first attempt at an organized fog computing system-based social model. Meanwhile, social networking enhances the complexity and security risks of fog computing services, creating difficulties of security service recommendations in social fog computing. To address this, we propose a novel crowd sensing-enabling security service provisioning method to recommend security services accurately in social fog computing systems. Simulation results show the feasibilities and efficiency of the crowd sensing-enabling security service recommendation method for social fog computing systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Fog signals. 118.130 Section 118... LIGHTING AND OTHER SIGNALS § 118.130 Fog signals. On waterways where visibility is frequently reduced due... more fog signals to warn the navigator of the presence of the bridge. The fog signals must conform to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Fog signals. 118.130 Section 118... LIGHTING AND OTHER SIGNALS § 118.130 Fog signals. On waterways where visibility is frequently reduced due... more fog signals to warn the navigator of the presence of the bridge. The fog signals must conform to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Fog signals. 118.130 Section 118... LIGHTING AND OTHER SIGNALS § 118.130 Fog signals. On waterways where visibility is frequently reduced due... more fog signals to warn the navigator of the presence of the bridge. The fog signals must conform to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Fog signals. 118.130 Section 118... LIGHTING AND OTHER SIGNALS § 118.130 Fog signals. On waterways where visibility is frequently reduced due... more fog signals to warn the navigator of the presence of the bridge. The fog signals must conform to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Fog signals. 118.130 Section 118... LIGHTING AND OTHER SIGNALS § 118.130 Fog signals. On waterways where visibility is frequently reduced due... more fog signals to warn the navigator of the presence of the bridge. The fog signals must conform to...
Vertical distribution of microphysical properties in radiation fogs - A case study
NASA Astrophysics Data System (ADS)
Egli, S.; Maier, F.; Bendix, J.; Thies, B.
2015-01-01
The present study investigates the validity of a theoretical liquid water content (LWC) profile in fog layers currently used for satellite based ground fog detection, with a special focus on the temporal dynamics during fog life cycle. For this purpose, LWC profiles recorded during two different fog events by means of a tethered balloon borne measurement system are presented and discussed. The results indicate a good agreement in trend and gradient between measured and theoretical LWC profiles during the mature stage of the fog life cycle. The profile obtained during the dissipation stage shows less accordance with the theoretical profile. To improve the agreement between theoretical and measured LWC profiles, the evolutionary stages during the fog life cycle should be incorporated. However, the variability within the prenoted measurements points out that more LWC profiles during a great variety of different fog events have to be collected for a well-justified adaptation of the theoretical LWC profile, considering fog life cycle phases in the future. In general, this underlines the existing knowledge gap regarding the vertical distribution of microphysical properties in natural fogs.
Project Fog Drops. Part 1: Investigations of warm fog properties
NASA Technical Reports Server (NTRS)
Pilie, R. J.; Eadie, W.; Mack, E. J.; Rogers, C.; Kocmond, W. C.
1972-01-01
A detailed study was made of the micrometeorological and microphysical characteristics of eleven valley fogs occurring near Elmira, New York. Observations were made of temperature, dew point, wind speed and direction, dew deposition, vertical wind velocity, and net radiative flux. In fog, visibility was continuously recorded and periodic measurements were made of liquid water content and drop-size distribution. The observations were initiated in late evening and continued until the time of fog dissipation. The vertical distribution of temperature in the lowest 300 meters and cloud nucleus concentration at several heights were measured from an aircraft before fog nucleus concentrations at several heights were measured from an aircraft before fog formation. A numerical model was developed to investigate the life cycle of radiation fogs. The model predicts the temporal evolution of the vertical distributions of temperature, water vapor, and liquid water as determined by the turbulent transfer of heat and moisture. The model includes the nocturnal cooling of the earth's surface, dew formation, fog drop sedimentation, and the absorption of infrared radiation by fog.
Long-term performance of high-rate anaerobic reactors for the treatment of oily wastewater.
Jeganathan, Jeganaesan; Nakhla, George; Bassi, Amarjeet
2006-10-15
Complex oily wastewater from a food industry was treated in three different UASB reactors at different operating conditions. Although all three systems achieved fat, oil, and grease (FOG) and COD removal efficiencies above 80% at an organic loading of 3 kg COD/m3 x d, system performance deteriorated sharply at higher loading rates, and the presence of high FOG caused a severe sludge flotation resulting in failure. Initially, FOG accumulated onto the biomass which led to sludge flotation and washout of biomass. The loss of sludge in the bed increased the FOG loading to the biomass and failure ensued. Contrary to previous findings, accumulation of FOG rather than influent FOG concentrations or volumetric FOG loading rate was the most importantfactor governing the high-rate anaerobic reactor performance. The critical accumulated FOG loading was identified as 1.04 +/- 0.13 g FOG/g VSS for all three reactors. Furthermore, FOG accumulation onto the biomass was identified mainly as palmitic acid (>60%) whereas the feed LCFA contained only 30% of palmitic acid and 50% of oleic acid.
Streamflow, Fog, and Fog-Drip in the California Coast Range
NASA Astrophysics Data System (ADS)
Sawaske, S. R.; Freyberg, D. L.
2013-12-01
The onshore movement of marine fog from coastal waters is a common occurrence during summer months along much of the contiguous U.S. Pacific Coast. Because the fog-season tends to occur during the precipitation-free dry-season, any additional input of moisture or reduction in loss of moisture through evapotranspiration provided by marine layer can be an important factor in localized hydrologic systems. In an effort to quantify some of the effects of fog on the regional dry-season hydrology, a study site within the Santa Cruz Mountains of central California was established. The fog-laden coastside and predominately fog-free San Francisco Bay-side of the study area provided an excellent opportunity to assess the impacts of the presence and absence of fog on ecohydrological processes. Streamflow, fog-drip, soil moisture, and weather conditions were measured from May-September. Bayside streams were found to be almost all intermittent, with much higher rates of baseflow recession compared to the predominately perennial coastside streams. Fog-drip was essentially nonexistent on the bayside, while highly variable amounts were recorded on the coastside. Maximum rates and seasonal totals of drip were found within stands of mature conifers (Sequoia sempervirens and Pseudotsuga menziesii) along exposed, often windy ridgelines. Rates of up to 19 in (48 cm)/month of fog-drip were recorded. Consequently, frequent infiltration events to depths of at least 9 in (23 cm) were also documented. Over the course of the study soil moisture levels at high fog-drip locations either increased, or were roughly equivalent to initial spring conditions from the onset of data collection. Increases of flow in coastside streams, under otherwise receding conditions, were found to coincide with fog and fog-drip events. These results indicate that the presence of fog can significantly affect dry-season hydrologic conditions of some coastal locations.
NASA Astrophysics Data System (ADS)
Lin, Caiyan; Zhang, Zhongfeng; Pu, Zhaoxia; Wang, Fengyun
2017-10-01
A series of numerical simulations is conducted to understand the formation, evolution, and dissipation of an advection fog event over Shanghai Pudong International Airport (ZSPD) with the Weather Research and Forecasting (WRF) model. Using the current operational settings at the Meteorological Center of East China Air Traffic Management Bureau, the WRF model successfully predicts the fog event at ZSPD. Additional numerical experiments are performed to examine the physical processes associated with the fog event. The results indicate that prediction of this particular fog event is sensitive to microphysical schemes for the time of fog dissipation but not for the time of fog onset. The simulated timing of the arrival and dissipation of the fog, as well as the cloud distribution, is substantially sensitive to the planetary boundary layer and radiation (both longwave and shortwave) processes. Moreover, varying forecast lead times also produces different simulation results for the fog event regarding its onset and duration, suggesting a trade-off between more accurate initial conditions and a proper forecast lead time that allows model physical processes to spin up adequately during the fog simulation. The overall outcomes from this study imply that the complexity of physical processes and their interactions within the WRF model during fog evolution and dissipation is a key area of future research.
A Study of the Physical Processes of an Advection Fog Boundary Layer
NASA Astrophysics Data System (ADS)
Liu, Duan Yang; Yan, Wen Lian; Yang, Jun; Pu, Mei Juan; Niu, Sheng Jie; Li, Zi Hua
2016-01-01
A large quantity of advection fog appeared in the Yangtze River delta region between 1 and 2 December 2009. Here, we detail the fog formation and dissipation processes and the background weather conditions. The fog boundary layer and its formation and dissipation mechanisms have also been analyzed using field data recorded in a northern suburb of Nanjing. The results showed the following: (1) This advection fog was generated by interaction between advection of a north-east cold ground layer and a south-east warm upper layer. The double-inversion structure generated by this interaction between the cold and warm advections and steady south-east vapour transport was the main cause of this long-lasting fog. The double-inversion structure provided good thermal conditions for the thick fog, and the south-east vapour transport was not only conducive to maintaining the thickness of the fog but also sustained its long duration. (2) The fog-top altitude was over 600 m for most of the time, and the fog reduced visibility to less than 100 m for approximately 12 h. (3) The low-level jet near the lower inversion layer also played a role in maintaining the thick fog system by promoting heat, momentum and south-east vapour transport.
Cloud and fog interactions with coastal forests in the California Channel Islands
NASA Astrophysics Data System (ADS)
Still, C. J.; Baguskas, S. A.; Williams, P.; Fischer, D. T.; Carbone, M. S.; Rastogi, B.
2015-12-01
Coastal forests in California are frequently covered by clouds or immersed in fog in the rain-free summer. Scientists have long surmised that fog might provide critical water inputs to these forests. However, until recently, there has been little ecophysiological research to support how or why plants should prefer foggy regions; similarly, there is very little work quantifying water delivered to ecosystems by fog drip except for a few notable sites along the California coast. However, without spatial datasets of summer cloudcover and fog inundation, combined with detailed process studies, questions regarding the roles of cloud shading and fog drip in dictating plant distributions and ecosystem physiology cannot be addressed effectively. The overall objective of this project is to better understand how cloudcover and fog influence forest metabolism, growth, and distribution. Across a range of sites in California's Channel Islands National Park we measured a wide variety of ecosystem processes and properties. We then related these to cloudcover and fog immersion maps created using satellite datasets and airport and radiosonde observations. We compiled a spatially continuous dataset of summertime cloudcover frequency of the Southern California bight using satellite imagery from the NOAA geostationary GOES-11 Imager. We also created map of summertime cloudcover frequency of this area using MODIS imagery. To assess the ability of our mapping approach to predict spatial and temporal fog inundation patterns, we compared our monthly average daytime fog maps for GOES pixels corresponding to stations where fog inputs were measured with fog collectors in a Bishop pine forest. We also compared our cloudcover maps to measurements of irradiance measurements. Our results demonstrate that cloudcover and fog strongly modulate radiation, water, and carbon budgets, as well as forest distributions, in this semi-arid environment. Measurements of summertime fog drip, pine sapflow and growth, and soil respiration are strongly related to variations in cloudcover and fog drip. Importantly, spatial variations in cloud cover and fog immersion drive large changes in modeled water budgets and correspond closely to patterns of tree growth and mortality.
NASA Astrophysics Data System (ADS)
Weiss-Penzias, P. S.; Heim, W. A.; Fernandez, D.; Coale, K. H.; Oliphant, A. J.; Dann, D.; Porter, M.; Hoskins, D.; Dodge, C.
2014-12-01
This project investigates the mercury content in summertime Pacific coastal fog in California and whether fog could be an important vector for ocean emissions of mercury to be deposited via fog drip to upland coastal ecosystems. Efforts began in early 2014 with the building of 7 active-strand fog collectors based on the Colorado State University Caltech CASCC design. The new UCSC CASCC includes doors sealing the collector which open under microcomputer control based on environmental sensing (relative humidity). Seven sites spanning from Trinidad in the north to Marina in the south have collected samples June-August 2014 under a project called FogNet. Fog conditions were favorable for collecting large water volumes (> 250 mL) at many sites. Fog samplers were cleaned with soap and deionized water daily and field blanks taken immediately following cleaning. Fog water samples were collected overnight, split into an aliquot for anion and DOC/DIC analysis and the remaining sample was acidified. Monomethyl mercury (MMHg) concentrations in samples and field blanks for 3 sites in FogNet are shown in the accompanying figure. The range of MMHg concentrations from 10 fog water samples > 100 mL in volume was 0.9-9.3 ng/L (4.5-46.4 pM). Elevated MMHg concentrations (> 5 ng/L, 25 pM) were observed at 2 sites: UC Santa Cruz and Bodega Bay. The field blanks produced MMHg concentrations of 0.08-0.4 ng/L (0.4-2.0 pM), which was on average < 10% of the sample concentration and suggests the artifact due to sampling was small. The observed MMHg concentrations in fog water observed is this study are 1-2 orders of magnitude greater than MMHg concentrations seen previously in rain water samples from the California coast suggesting an additional source of MMHg to fog. Shipboard measurements of dimethyl mercury (DMHg) in coastal California seawater during the time period of FogNet operations (summer 2014) reveal surface waters that were supersaturated in DMHg which represents a potential source of organic mercury to the overlying fog bank.
Effects of theatrical smokes and fogs on respiratory health in the entertainment industry.
Varughese, Sunil; Teschke, Kay; Brauer, Michael; Chow, Yat; van Netten, Chris; Kennedy, Susan M
2005-05-01
Theatrical fogs (glycol or mineral oil aerosols) are widely used in the entertainment industry to create special effects and make lighting visible. We studied 101 employees at 19 sites using fogs and measured personal fog exposures, across work shift lung function, and acute and chronic symptoms. Results were also compared to an external control population, studied previously. Chronic work-related wheezing and chest tightness were significantly associated with increased cumulative exposure to fogs (mineral oil and glycols) over the previous 2 years. Acute cough and dry throat were associated with acute exposure to glycol-based fogs; increased acute upper airway symptoms were associated with increased fog aerosol overall. Lung function was significantly lower among those working closest to the fog source. Mineral oil- and glycol-based fogs are associated with acute and chronic adverse effects on respiratory health among employees. Reducing exposure, through controls, substitution, and elimination where possible, is likely to reduce these effects. (c) 2005 Wiley-Liss, Inc.
Fog and Phosphorous:Mist Connections?
NASA Astrophysics Data System (ADS)
Weathers, K. C.; Caraco, N. F.; Ewing, H. A.
2005-12-01
Fog (or cloud) is an important vector for delivering water, nutrients and pollutants to many coastal and montane ecosystems worldwide. Previous research has demonstrated that elements and ions whose sources are thought to be atmospheric, such as nitrogen and sulfur, can be deposited in substantial quantities via fog water deposition. However, the ecologically-important nutrient, phosphorous (P), is thought to derive primarily from guano or terrestrial sources; it has not been demonstrated to be deposited in significant quantities via rain water, for example. Here we suggest that phosphorous may be quite prevalent in fog water and that the atmospheric deposition of phosphorous to the forest floor is significant. Phosphate appears to be either immobilized or utilized in the forest floor. We examine the concentrations of phosphorous in fog water from several ecosystems in the Americas and the spatial patterns of P movement in a fog-dominated, redwood forest in Sonoma County, CA. Phosphate concentrations were surprisingly high, ranging from 0.002 to 2.9 mg/L, in fog samples from near-coast and montane ecosystems. Phosphate in fog water appears to be derived from a crustal source as demonstrated by the strong relationship between phosphorous concentrations in fog and K:Na ratios. Fog water phosphorous inputs to the forest floor were observed to decline exponentially and vary significantly from edge to interior in a redwood forest. Phosphate via fog deposition can be detected in shallow soil zones but not at greater depths, and only at the forest edge, during the summer fog season.
Urban-rural fog differences in Belgrade area, Serbia
NASA Astrophysics Data System (ADS)
Vujović, Dragana; Todorović, Nedeljko
2018-02-01
Urban/rural fog appearance during the last 27 years in the Belgrade region is analysed using hourly meteorological records from two meteorological stations: an urban station at Belgrade-Vračar (BV) and a rural station at Belgrade-Airport (BA). The effects of urban development on fog formation are discussed through analysis of fog frequency trends and comparison with a number of meteorological parameters. The mean annual and the mean annual minimum temperatures were greater at the urban BV station than at the rural BA station. The mean monthly relative humidity and the mean monthly water vapour pressure were greater at the rural than urban station. During the period of research (1988-2014), BA experiences 425 more days with fog than BV, which means that BV experiences fog for 62.68% of foggy days at BA. Trends in the number of days with fog were statistically non-significant. We analysed the fog occurrence during different types of weather. Fog in urban BV occurred more frequently during cyclonal circulation (in 52.75% of cases). In rural BA, the trend was the opposite and fog appeared more frequently during anticyclonic circulation (in 53.58% of cases). Fog at BV occurred most frequently in stable anticyclonic weather with light wind, when a temperature inversion existed (21.86% of cases). Most frequently, fog at BA occurred in the morning and only lasted a short time, followed by clearer skies during the anticyclonic warm and dry weather (22.55% of cases).
Fog chemistry in the Texas-Louisiana Gulf Coast corridor
NASA Astrophysics Data System (ADS)
Raja, Suresh; Raghunathan, Ravikrishna; Yu, Xiao-Ying; Lee, Taehyoung; Chen, Jing; Kommalapati, Raghava R.; Murugesan, Karthik; Shen, Xinhua; Qingzhong, Yuan; Valsaraj, Kalliat T.; Collett, Jeffrey L.
Fog samples were collected in two population centers of the US Gulf Coast (Houston, Texas and Baton Rouge, Louisiana) using Caltech active strand cloud collectors. A total of 32 fogwater samples were collected in Baton Rouge (November 2004-February 2005) and Houston (February 2006). These samples were analyzed for pH, total and dissolved organic carbon, major inorganic ions, and a variety of organic compounds including organic acids, aromatics, carbonyls, and linear alkanes. Fogs in both environments were of moderate density, with typical fog liquid water contents <100 mg m -3. Fog samples collected in Houston reflect a clear influence of marine and anthropogenic inputs, while Baton Rouge samples also reflect agricultural inputs. The volume-weighted mean fog pH was somewhat more acidic (˜4.3) in Houston than in Baton Rouge (˜5.0). A wide pH range was observed in fog at both locations. Houston fog had higher concentrations of Cl -, NO 3-, Na +, Mg 2+, and Ca 2+. Sulfate to nitrate ratios were high in fogs at both locations, typical of many clouds in the eastern US. Total organic carbon concentrations were much higher in Houston fogs than in Baton Rouge fogs. Efforts to speciate dissolved organic carbon (DOC) reveal large contributions from organic acids and carbonyls, with smaller contributions from other organic compound families including aromatics, alkanes, amides, and alcohols. Approximately 40% of the fog DOC was unspeciated in samples from both study locations.
Castro-Rodriguez, J. A.; Salazar-Lindo, E.; Leon-Barua, R.
1997-01-01
Clinical features and laboratory tests that determine carbohydrate in faeces were evaluated to determine which was best able to distinguish between osmotic and secretory diarrhoea in infants and children. For this purpose 80 boys aged 3 to 24 months, with acute watery diarrhoea, were studied prospectively. The faecal osmolar gap (FOG) was calculated as: serum osmolarity − [2 × (faecal sodium + potassium concentration)]. Fifty eight patients were classified as having predominantly osmotic diarrhoea (FOG >100 mosmol/l), and 22 as having predominantly secretory diarrhoea (FOG ⩽100 mosmol/l). The two groups were comparable in their clinical features on admission, in the results of blood and urine tests, and in the evolution of their diarrhoeal illness. Evidence of steatorrhoea (by positive Sudan III test) and of acid faecal pH on admission were significantly more frequent in patients with osmotic diarrhoea. Mean (SD) faecal osmolarity was not significantly different between the two groups (319 (80) mosmol/l in secretory diarrhoea v 361 (123) mosmol/l in osmotic diarrhoea). Tests for reducing substances in faeces such as Benedict's test—with and without hydrolysis—and glucose strip, all showed a positive and significant association with osmotic diarrhoea (p <0.05, <0.025, <0.05, respectively). The presence of excess reducing substances (Benedict's test with hydrolysis >++) on admission was the most sensitive and specific test with the best predictive value for differentiating between the two types of watery diarrhoea. PMID:9370895
Refreshing Music: Fog Harvesting with Harps
NASA Astrophysics Data System (ADS)
Shi, Weiwei; Anderson, Mark; Kennedy, Brook; Boreyko, Jonathan
2017-11-01
Fog harvesting is a useful technique for obtaining fresh water in arid climates. The wire meshes currently utilized for fog harvesting suffer from dual constraints: coarse meshes cannot efficiently capture fog, while fine meshes suffer from clogging issues. Here, we design a new type of fog harvester comprised of an array of vertical wires, which we call ``fog harps.'' To investigate the water collection efficiency, three fog harps were designed with different diameters (254 μm, 508 μm and 1.30 mm) but the same pitch-to-diameter ratio of 2. For comparison, three different size meshes were purchased with equivalent dimensions. As expected for the mesh structures, the mid-sized wires performed the best, with a drop-off in performance for the fine or coarse meshes. In contrast, the fog harvesting rate continually increased with decreasing wire diameter for the fog harps, due to its low hysteresis that prevented droplet clogging. This resulted in a 3-fold enhancement in the fog harvesting rate for the harp form factor compared to the mesh. The lack of a performance ceiling for the harps suggest that even greater enhancements could be achieved by scaling down to yet smaller sizes.
Daytime sea fog retrieval based on GOCI data: a case study over the Yellow Sea.
Yuan, Yibo; Qiu, Zhongfeng; Sun, Deyong; Wang, Shengqiang; Yue, Xiaoyuan
2016-01-25
In this paper, a new daytime sea fog detection algorithm has been developed by using Geostationary Ocean Color Imager (GOCI) data. Based on spectral analysis, differences in spectral characteristics were found over different underlying surfaces, which include land, sea, middle/high level clouds, stratus clouds and sea fog. Statistical analysis showed that the Rrc (412 nm) (Rayleigh Corrected Reflectance) of sea fog pixels is approximately 0.1-0.6. Similarly, various band combinations could be used to separate different surfaces. Therefore, three indices (SLDI, MCDI and BSI) were set to discern land/sea, middle/high level clouds and fog/stratus clouds, respectively, from which it was generally easy to extract fog pixels. The remote sensing algorithm was verified using coastal sounding data, which demonstrated that the algorithm had the ability to detect sea fog. The algorithm was then used to monitor an 8-hour sea fog event and the results were consistent with observational data from buoys data deployed near the Sheyang coast (121°E, 34°N). The goal of this study was to establish a daytime sea fog detection algorithm based on GOCI data, which shows promise for detecting fog separately from stratus.
Animal or plant: which is the better fog water collector?
Nørgaard, Thomas; Ebner, Martin; Dacke, Marie
2012-01-01
Occasional fog is a critical water source utilised by plants and animals in the Namib Desert. Fog basking beetles (Onymacris unguicularis, Tenebrionidae) and Namib dune bushman grass (Stipagrostris sabulicola, Poaceae) collect water directly from the fog. While the beetles position themselves optimally for fog water collection on dune ridges, the grass occurs predominantly at the dune base where less fog water is available. Differences in the fog-water collecting abilities in animals and plants have never been addressed. Here we place beetles and grass side-by-side in a fog chamber and measure the amount of water they collect over time. Based on the accumulated amount of water over a two hour period, grass is the better fog collector. However, in contrast to the episodic cascading water run-off from the grass, the beetles obtain water in a steady flow from their elytra. This steady trickle from the beetles' elytra to their mouth could ensure that even short periods of fog basking--while exposed to predators--will yield water. Up to now there is no indication of specialised surface properties on the grass leafs, but the steady run-off from the beetles could point to specific property adaptations of their elytra surface.
Referenceless perceptual fog density prediction model
NASA Astrophysics Data System (ADS)
Choi, Lark Kwon; You, Jaehee; Bovik, Alan C.
2014-02-01
We propose a perceptual fog density prediction model based on natural scene statistics (NSS) and "fog aware" statistical features, which can predict the visibility in a foggy scene from a single image without reference to a corresponding fogless image, without side geographical camera information, without training on human-rated judgments, and without dependency on salient objects such as lane markings or traffic signs. The proposed fog density predictor only makes use of measurable deviations from statistical regularities observed in natural foggy and fog-free images. A fog aware collection of statistical features is derived from a corpus of foggy and fog-free images by using a space domain NSS model and observed characteristics of foggy images such as low contrast, faint color, and shifted intensity. The proposed model not only predicts perceptual fog density for the entire image but also provides a local fog density index for each patch. The predicted fog density of the model correlates well with the measured visibility in a foggy scene as measured by judgments taken in a human subjective study on a large foggy image database. As one application, the proposed model accurately evaluates the performance of defog algorithms designed to enhance the visibility of foggy images.
NASA Astrophysics Data System (ADS)
Torregrosa, A.; Flint, L. E.; Flint, A. L.; Peters, J.; Combs, C.
2014-12-01
Coastal fog modifies the hydrodynamic and thermodynamic properties of California watersheds with the greatest impact to ecosystem functioning during arid summer months. Lowered maximum temperatures resulting from inland penetration of marine fog are probably adequate to capture fog effects on thermal land surface characteristics however the hydrologic impact from lowered rates of evapotranspiration due to shade, fog drip, increased relative humidity, and other factors associated with fog events are more difficult to gauge. Fog products, such as those derived from National Weather Service Geostationary Operational Environmental Satellite (GOES) imagery, provide high frequency (up to 15 min) views of fog and low cloud cover and can potentially improve water balance models. Even slight improvements in water balance calculations can benefit urban water managers and agricultural irrigation. The high frequency of GOES output provides the opportunity to explore options for integrating fog frequency data into water balance models. This pilot project compares GOES-derived fog frequency intervals (6, 12 and 24 hour) to explore the most useful for water balance models and to develop model-relevant relationships between climatic and water balance variables. Seasonal diurnal thermal differences, plant ecophysiological processes, and phenology suggest that a day/night differentiation on a monthly basis may be adequate. To explore this hypothesis, we examined discharge data from stream gages and outputs from the USGS Basin Characterization Model for runoff, recharge, potential evapotranspiration, and actual evapotranspiration for the Russian River Watershed under low, medium, and high fog event conditions derived from hourly GOES imagery (1999-2009). We also differentiated fog events into daytime and nighttime versus a 24-hour compilation on a daily, monthly, and seasonal basis. Our data suggest that a daily time-step is required to adequately incorporate the hydrologic effect of fog.
Mimoto, Mizuho S.; Christian, Jan L.
2012-01-01
Friend of GATA (FOG) plays many diverse roles in adult and embryonic hematopoiesis, however the mechanisms by which it functions and the roles of potential interaction partners are not completely understood. Previous work has shown that overexpression of FOG in Xenopus laevis causes loss of blood suggesting that in contrast to its role in mammals, FOG might normally function to repress erythropoiesis in this species. Using loss-of-function analysis, we demonstrate that FOG is essential to support primitive red blood cell (RBC) development in Xenopus. Moreover, we show that it is specifically required to prevent excess apoptosis of circulating primitive RBCs and that in the absence of FOG, the pro-apoptotic gene Bim-1 is strongly upregulated. To identify domains of FOG that are essential for blood development and, conversely, to begin to understand the mechanism by which overexpressed FOG represses primitive erythropoiesis, we asked whether FOG mutants that are unable to interact with known co-factors retain their ability to rescue blood formation in FOG morphants and whether they repress erythropoiesis when overexpressed in wild type embryos. We find that interaction of FOG with the Nucleosome Remodeling and Deacetylase complex (NuRD), but not with C-terminal Binding Protein, is essential for normal primitive RBC development. In contrast, overexpression of all mutant and wild type constructs causes a comparable repression of primitive erythropoiesis. Together, our data suggest that a requirement for FOG and its interaction with NuRD during primitive erythropoiesis are conserved in Xenopus and that loss of blood upon FOG overexpression is due to a dominant-interfering effect. PMID:22235346
UAV Applications for Thermodynamic Profiling:Emphasis on Ice Fog Visibility
NASA Astrophysics Data System (ADS)
Gultepe, Ismail; Heymsfield, Andrew; Fernando, Joseph; hoch, sebastian; pardyjack, Eric; Boudala, faisal; Ware, Randolph
2017-04-01
Ice fog often occurs over the Arctic, in cold climates, and near mountainous regions about 30% of time when temperatures (T) drop to -10°C or below. Ice fog affects aviation operations, transportation, and local climate. Ice Nucleation (IN) and radiative cooling play an important role by controlling the intensity of ice fog conditions. Ice fog can also occur at T above -10°C, but close to 0°C it mainly occurs due to freezing of supercooled droplets that contain an IN. To better document ice fog conditions, observations from ice fog events of the Indirect and Semi-Direct Aerosol effects on Climate (ISDAC) project (Barrow, Alaska), Fog Remote Sensing And Modeling (FRAM) project (Yellowknife, Northwest Territories), and the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) project (Heber City, Utah), were analyzed. Difficulties in measuring small ice fog particles at low temperatures and low-level research aircraft flying restrictions prevent observations from aircraft within the atmospheric boundary layer. However, Unmanned Aerial Vehicles (UAVs) can be operated safely to measure IN number concentration, Relative Humidity with respect to ice (RHi), T, horizontal wind speed (Uh) and direction, visibility, and possibly even measuring ice crystal spectra below about 500 micron, to provide a method for future research of ice fog. In this study, thermodynamic profiling was conducted using a Radiometrics Microwave Radiometer (PMWR) and Vaisala CL51 ceilometer to describe vertical spatial and temporal development of ice fog conditions. Overall, ice fog characteristics and its thermodynamic environment will be presented using both ground-based and airborne platforms such as a UAV with new sensors. Some examples of measurements from the UAV and a DMT GCIP (Droplet Measurement Technologies Ground Cloud Imaging Probe), and challenges related to both ice fog measurements and visibility parameterization will also be presented.
NASA Astrophysics Data System (ADS)
Ginnebaugh, Diana L.; Jacobson, Mark Z.
2012-12-01
This study investigates the air quality impacts of using a high-blend ethanol fuel (E85) instead of gasoline in vehicles in an urban setting when a morning fog is present under summer and winter conditions. The model couples the near-explicit gas-phase Master Chemical Mechanism (MCM v. 3.1) with the extensive aqueous-phase Chemical Aqueous Phase Radical Mechanism (CAPRAM 3.0i) in SMVGEAR II, a fast and accurate ordinary differential equation solver. Summer and winter scenarios are investigated during a two day period in the South Coast Air Basin (SCAB) with all gasoline vehicles replaced by flex-fuel vehicles running on E85 in 2020. We find that E85 slightly increases ozone compared with gasoline in the presence or absence of a fog under summer conditions but increases ozone significantly relative to gasoline during winter conditions, although winter ozone is always lower than summer ozone. A new finding here is that a fog during summer may increase ozone after the fog disappears, due to chemistry alone. Temperatures were high enough in the summer to increase peroxy radical (RO2) production with the morning fog, which led to the higher ozone after fog dissipation. A fog on a winter day decreases ozone after the fog. Within a fog, ozone is always lower than if no fog occurs. The sensitivity of the results to fog parameters like droplet size, liquid water content, fog duration and photolysis are investigated and discussed. The results support previous work suggesting that E85 and gasoline both enhance pollution with E85 enhancing pollution significantly more at low temperatures. Thus, neither E85 nor gasoline is a ‘clean-burning’ fuel.
Fog water collection effectiveness: Mesh intercomparisons
Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew
2018-01-01
To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of < 1 m s–1 the coated stainless steel mesh collected 3% more and at wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.
Influence of composite particle formation on the performance and economics of grit removal.
Judd, S J; Khraisheh, M; Al-Jaml, K L; Jarman, D M; Jahfer, T
2017-01-01
Grit is routinely removed at the headworks of municipal wastewater treatment works to limit its onerous impact on downstream processes. Grit separation technologies are normally based on sedimentation of a homogeneous material (usually sand). However, in practice inorganic grit particles are likely to be combined with organic matter, such as fats oils and grease (FOG), producing a composite particle whose settling properties vary with the inorganic/organic content. A study of the impact of particle composition on its sedimentation has been conducted encompassing theoretical description (for particle settling in transitional flow), practical measurement and economic analysis. Practical measurement included sedimentation tests of homogeneous and composite particles along with characterisation of accumulated granular material sampled from actual municipal wastewater treatment works. The economic assessment was based on data from full-scale installations in the UK and US pertaining to remedial measures undertaken as a result of grit impacts, primarily accumulation in vessels and channels and damage of mechanical equipment through abrasion. Practical tests revealed coating of the sand grains with a FOG analogue (candlewax) to generate composite particles containing 45% wax by weight. The coated particles were then 30% less dense, 22% larger and 14% less settleable, on average, than the uncoated particles. Samples of accumulated grit taken from anaerobic digesters and aeration lanes from a full-scale plant indicated a FOG content (43%) similar to that of the waxed particles in the bench-scale tests, thus leading to a similar grain retardation of 14% assuming the FOG to be entirely associated with the grit. An assessment of the impact of the consequential breakthrough of grit particles due to buoyancy generated by composite particle formation indicated a $1.1 increase in operating costs per megalitre (ML) wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Warm fog dissipation using large volume water sprays
NASA Technical Reports Server (NTRS)
Keller, Vernon W. (Inventor)
1988-01-01
To accomplish the removal of warm fog about an area such as an airport runway, a plurality of nozzles along a line adjacent the area propelled water jets through the fog to heights of approximately twenty-five meters. Each water jet breaks up forming a water drop size distribution that falls through the fog overtaking, colliding, and coalescing with individual fog droplets and thereby removes the fog. A water retrieval system is used to collect the water and return it to reservoirs for pumping it to the nozzles once again.
Coastal Fog As a System: Defining an Interdisciplinary Research Agenda (Invited)
NASA Astrophysics Data System (ADS)
Weathers, K. C.
2013-12-01
Fog is a graphic and charismatic phenomenon that is commonplace in coastal geographies around the globe. Some of the first concerns about fog and human health arose over 50 years ago in foggy cities around the world, such as London and Los Angeles, where thousands of excess deaths have been attributed to the presence of acidic fog particles. Further, the mere presence of fog also results in airplane, ship, and automobile traffic delays and accidents, especially in coastal areas. In many Pacific coastal systems, fog is the primary--sometimes the only--source of water, it is a fundamental moderator of local and regional climate, and it influences productivity of near-coast ecosystems. In recent years fog has been identified as a vector for limiting nutrients (e.g., nitrogen and phosphorus), pollutants (e.g., mercury), and microbes (including human pathogens), all of whose origin is thought to be biologically controlled in the ocean. Researchers have also started inquiring into the importance of fog in modulating weather as well as local, regional and, global climate dynamics. However, from its formation in marine systems to deposition in terrestrial systems, understanding the fog system is an intellectual and interdisciplinary challenge that, to date, has gone unmet. This is in part because the fog system is complex: it involves feedbacks and coupling between physical, chemical, and biological systems in the ocean, atmosphere, and near-coast terrestrial systems. In addition, its formation is the result of global processes, yet its distribution as well as its impacts are local, and extremely spatially and temporally heterogeneous within and across landscapes. Here we describe a systems approach and framework for understanding the controls on fog formation as well as feedbacks to its formation, dissipation, distribution, flows, and stocks or pools. In addition, an interdisciplinary research agenda for coastal fog as a system will be described based on the outcome of a recent coastal fog workshop. Coastal-Fog-As-a-System Interdisciplinary Research Frontiers; example from June 2013 Workshop Participants
An analysis of fog events at Belgrade International Airport
NASA Astrophysics Data System (ADS)
Veljović, Katarina; Vujović, Dragana; Lazić, Lazar; Vučković, Vladan
2015-01-01
A preliminary study of the occurrence of fog at Belgrade "Nikola Tesla" Airport was carried out using a statistical approach. The highest frequency of fog has occurred in the winter months of December and January and far exceeded the number of fog days in the spring and the beginning of autumn. The exceptionally foggy months, those having an extreme number of foggy days, occurred in January 1989 (18 days), December 1998 (18 days), February 2005 (17 days) and October 2001 (15 days). During the winter months (December, January and February) from 1990 to 2005 (16 years), fog occurred most frequently between 0600 and 1000 hours, and in the autumn, between 0500 and 0800 hours. In summer, fog occurred most frequently between 0300 and 0600 hours. During the 11-year period from 1995 to 2005, it was found that there was a 13 % chance for fog to occur on two consecutive days and a 5 % chance that it would occur 3 days in a row. In October 2001, the fog was observed over nine consecutive days. During the winter half year, 52.3 % of fog events observed at 0700 hours were in the presence of stratus clouds and 41.4 % were without the presence of low clouds. The 6-h cooling observed at the surface preceding the occurrence of fog between 0000 and 0700 hours ranged mainly from 1 to 4 °C. A new method was applied to assess the probability of fog occurrence based on complex fog criteria. It was found that the highest probability of fog occurrence (51.2 %) takes place in the cases in which the relative humidity is above 97 %, the dew-point depression is 0 °C, the cloud base is lower than 50 m and the wind is calm or weak 1 h before the onset of fog.
NASA Astrophysics Data System (ADS)
Stoycheva, Anastasiya; Manafov, Ilian; Vassileva, Keranka; Guerova, Guergana
2017-08-01
The topography of the high valley, in which the Bulgarian capital Sofia is located, predispose the seasonal character of fog formation in anticyclonic conditions. The fog in Sofia is mainly in the cold season, with the highest frequency of registrations in December and January. During the anticyclonic conditions the clear sky and calm or nearly calm conditions favour the formation of inversions and hence the fog formation. The maximum of fog registrations is at 6 UTC and minimum at 15 UTC but during prolonged fog a low visibility is registered also between 12 and 15 UTC. A prolonged fog is registered in Sofia between 3 and 10 January 2014 and is studied by using surface synoptic observations and vertically Integrated Water Vapour (IWV) derived from Global Navigation Satellite Systems (GNSS). The fog is separated in two parts: 1) part I - radiation fog (3-5 January) and 2) part II - advection fog (7-10 January). The Sofia Stability Index (SSI) is computed using surface temperature observation at 600 and 2300 m asl. The SSI is found to give additional information about the development and the dissipation of inversion layer especially for the part II fog. IWV is derived from two GNSS stations at 600 and 1120 m asl. and clearly detects the change in the air mass between the part I and II (5-6 January) fog. Furthermore, dependence between diurnal IWV cycle and fog formation/dissipation is found with IWV variation being lowest during the days with fog. A comparison of SSI and index computed using the WRF Numerical Weather Prediction model temperatures (SSI-W) shows good correlation but an negative off-set. Assimilation of surface and upper-air observations in the WRF model resulted in partial improvement of the index (10%), which is a result of moderate improvement of the vertical temperature profile.
Fog at the Guarulhos International Airport from 1951 to 2015
NASA Astrophysics Data System (ADS)
França, Gutemberg Borges; do Carmo, Luiz Felipe Rodrigues; de Almeida, Manoel Valdonel; Albuquerque Neto, Francisco Leite
2018-02-01
This paper presents and discusses the fog occurrences before and after the construction of the Guarulhos International Airport, using data from 1951 to 2015. The analysis showed the following: (1) a total of 19,816 h of fog were registered. (2) The minimum average, mean and maximum average of the fog temperature had significantly increased after the airport was constructed from 1.2 to 6.9, 12.1 to 14.5 and 20.2 to 20.7 °C, respectively, due to the urban development around the airport during the study period. (3) The average fog hours per year decreased by approximately 73.1%, i.e., from 492 ± 84.45 to 132 ± 54.51 h per year. (4) Most of the fog events occurred due to longwave cooling on clear nights with relatively low wind speeds (characterizing radiation fog), with over 65% having duration of 2 h and occurring in the early hours of the day during March-September period. (5) The maximum probability of fog occurrence dropped about 10% from before to after the construction of the airport. Finally, two fog events are investigated using data collected during the fog evolution using atmospheric sounding profiles (from an acoustic sounder) and automatic meteorological stations and preliminary results showed that the values of cooling rate and turbulent kinetic energy play key roles in the onset and growth-dissipation phases of the fog, respectively.
Scholl, M.; Eugster, W.; Burkard, R.
2011-01-01
Understanding the hydrology of tropical montane cloud forests (TMCF) has become essential as deforestation of mountain areas proceeds at an increased rate worldwide. Passive and active cloud-water collectors, throughfall and stemflow collectors, visibility or droplet size measurements, and micrometeorological sensors are typically used to measure the fog water inputs to ecosystems. In addition, stable isotopes may be used as a natural tracer for fog and rain. Previous studies have shown that the isotopic signature of fog tends to be more enriched in the heavier isotopes 2H and 18O than that of rain, due to differences in condensation temperature and history. Differences between fog and rain isotopes are largest when rain is from synoptic-scale storms, and fog or orographic cloud water is generated locally. Smaller isotopic differences have been observed between rain and fog on mountains with orographic clouds, but only a few studies have been conducted. Quantifying fog deposition using isotope methods is more difficult in forests receiving mixed precipitation, because of limitations in the ability of sampling equipment to separate fog from rain, and because fog and rain may, under some conditions, have similar isotopic composition. This article describes the various types of fog most relevant to montane cloud forests and the importance of fog water deposition in the hydrologic budget. A brief overview of isotope hydrology provides the background needed to understand isotope applications in cloud forests. A summary of previous work explains isotopic differences between rain and fog in different environments, and how monitoring the isotopic signature of surface water, soil water and tree xylem water can yield estimates of the contribution of fog water to streamflow, groundwater recharge and transpiration. Next, instrumentation to measure fog and rain, and methods to determine isotopic concentrations in plant and soil water are discussed. The article concludes with the identification of some of the more pressing research questions in this field and offers various suggestions for future research. ?? 2010 This article is a US Government work and is in the public domain in the USA.
An automated fog monitoring system for the Indo-Gangetic Plains based on satellite measurements
NASA Astrophysics Data System (ADS)
Patil, Dinesh; Chourey, Reema; Rizvi, Sarwar; Singh, Manoj; Gautam, Ritesh
2016-05-01
Fog is a meteorological phenomenon that causes reduction in regional visibility and affects air quality, thus leading to various societal and economic implications, especially disrupting air and rail transportation. The persistent and widespread winter fog impacts the entire the Indo-Gangetic Plains (IGP), as frequently observed in satellite imagery. The IGP is a densely populated region in south Asia, inhabiting about 1/6th of the world's population, with a strong upward pollution trend. In this study, we have used multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for developing an automated web-based fog monitoring system over the IGP. Using our previous and existing methodologies, and ongoing algorithm development for the detection of fog and retrieval of associated microphysical properties (e.g. fog droplet effective radius), we characterize the widespread fog detection during both daytime and nighttime. Specifically, for the night time fog detection, the algorithm employs a satellite-based bi-spectral brightness temperature difference technique between two spectral channels: MODIS band-22 (3.9μm) and band-31 (10.75μm). Further, we are extending our algorithm development to geostationary satellites, for providing continuous monitoring of the spatial-temporal variation of fog. We anticipate that the ongoing and future development of a fog monitoring system would be of assistance to air, rail and vehicular transportation management, as well as for dissemination of fog information to government agencies and general public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moody, Neville R.
Objective: We will research how short (ns) and ultrashort (fs) laser pulses interact with the surfaces of various materials to create complex color layers and morphological patterns. Method: We are investigating the site-specific, formation of microcolor features. Also, research includes a fundamental study of the physics underlying periodic ripple formation during femtosecond laser irradiation. Status of effort: Laser induced color markings were demonstrated on an increased number of materials (including metal thin films) and investigated for optical properties and microstructure. Technology that allows for marking curved surfaces (and large areas) has been implemented. We have used electro-magnetic solvers to modelmore » light-solid interactions leading to periodic surface ripple patterns. This includes identifying the roles of surface plasmon polaritons. Goals/Milestones: Research corrosion resistance of oxide color markings (salt spray, fog, polarization tests); Through modeling, investigate effects of multi-source scattering and interference on ripple patterns; Investigate microspectrophotometry for mapping color; and Investigate new methods for laser color marking curved surfaces and large areas.« less
Liu, Chengcheng; Ju, Jie; Zheng, Yongmei; Jiang, Lei
2014-02-25
Inspired by novel creatures, researchers have developed varieties of fog drop transport systems and made significant contributions to the fields of heat transferring, water collecting, antifogging, and so on. Up to now, most of the efforts in directional fog drop transport have been focused on static surfaces. Considering it is not practical to keep surfaces still all the time in reality, conducting investigations on surfaces that can transport fog drops in both static and dynamic states has become more and more important. Here we report the wings of Morpho deidamia butterflies can directionally transport fog drops in both static and dynamic states. This directional drop transport ability results from the micro/nano ratchet-like structure of butterfly wings: the surface of butterfly wings is composed of overlapped scales, and the scales are covered with porous asymmetric ridges. Influenced by this special structure, fog drops on static wings are transported directionally as a result of the fog drops' asymmetric growth and coalescence. Fog drops on vibrating wings are propelled directionally due to the fog drops' asymmetric dewetting from the wings.
Efficient fog harvesting by Stipagrostis sabulicola (Namib dune bushman grass)
NASA Astrophysics Data System (ADS)
Roth-Nebelsick, A.; Ebner, M.; Miranda, T.
2010-07-01
Stipagrostis sabulicola is an endemic species of the central Namib Desert which settles on extremely arid dune fields. Due to its ability to persistence even during exceptionally dry years it is generally assumed that water supply of this species is substantially based on fog water. In this contribution, the results of a study investigating the capability of S. sabulicola for fog harvesting are presented. For this purpose, stem flow rates of S. sabulicola during fog events, spatial gradient of soil water content (SWC) close to mounds of S. sabulicola and its leaf water potential (LWP) before and after fog events were monitored together with climate parameters. According to the data obtained during this study, S. sabulicola is able to harvest substantial amounts of water by fog catchment from nocturnal fog events. Since culms of S. sabulicola are often stiff with an upright habitus, fog harvesting occurs via stemflow that conducts water directly towards the root zone of a plant. According to this mechanism, the stem runoff is concentrated within the area of the mound. A medium-sized mound of S. sabulicola is able to collect an amount of about 4 l per fog night. This fog harvesting leads to a considerable spatial gradient of soil water content with values decreasing with increasing distance from the mound. As a result of the water input by fog drip, SWC within the mound increases significantly, particularly close to the culm bases where SWC values increased to 2.2 % after a fog event. Due to the uneven distribution of water by stemflow, SWC within a mound shows high spatial heterogeneity which is also illustrated by the numerous outliers and extreme values of SWC within the mound region. This heterogeneity is also due to the fact that several sagging leaves are always present causing fog drip which more or less irregularly scatters moisture. For bare soil outside of a mound, the water content is not substantially increased, amounting to 0.78 % on average during dry days and 0.89 % after fog events. Fog harvesting affects also leaf water potential: whereas leaf water potential declines during dry days, it remains more or less constant on days following fog events. Since mounds of S. sabulicola provide shelter and food for various other organisms such as ants and lizards, their ability for nocturnal fog catchment is of high significance for the ecosystem of the Namib dunes.
Preliminary test results of electrical charged particle generator for application to fog dispersal
NASA Technical Reports Server (NTRS)
Frost, W.
1982-01-01
A charged particle generator for use in fog dispersal applications was built and preliminary tests were carried out. The parameter used as a measure of performance was the current measured with a needle probe positioned in the charged jet connected to ground through an ammeter. The needle was movable and allowed the current profile throughout the jet to be determined. The measured current is referred to as the current output. The major independent parameters were liquid water injection rate, plenum pressure, and corona voltage. Optimum current output was achieved at the approximate pressure of 30 psig, corona voltage of 5600 volts, and liquid water injection rate of 6 cc/min. The results of the test with the prototype charged particle generator clearly demonstrate that a current on the order of 20 microamperes can be routinely achieved with the system. This measurement of current does not necessarily represent the total issuing from the nozzle current which is expected to be larger. From these results, confidence was established that a charged particle generator which will operate continuously and consistently can be designed, constructed, and operated. Further work is required, however, to better understand the physical mechanisms involved and to optimize the system for fog dispersal application.
Elizabeth Keppeler
2007-01-01
Within the second-growth redwood forest of the Caspar Creek watershed, fog drip was measured in 1998 at 12 sites where heavy fog drip was expected. The following year, two one-ha plots were each instrumented with six randomly sited 1.35 m2 fog-drip collectors and one additional collector in a nearby clearcut. Fog-drip totals were highly variable...
Coastal fog, climate change, and the environment
Torregrosa, Alicia; O'Brien, Travis A.; Faloona, Ian C.
2014-01-01
Coastal marine fog, a characteristic feature of climates generated at the eastern boundaries of ocean basins worldwide, evokes different feelings in those who experience it (see Figure 1). Authors and poets use fog to represent mystery, bleakness, and confusion. Film directors seek out fog to shroud scenes in eerie gloominess. Tourists visiting beaches bemoan the cool and damp conditions that create a striking contrast to the sunny warm conditions typically found less than a few kilometers inland. Airline passengers delayed by fog impatiently wait for the skies to clear. Residents get used to the Sun “rising” in midday after fog dissipates.
An assessment of warm fog: Nucleation, control, and recommended research
NASA Technical Reports Server (NTRS)
Corrin, M. L.; Connell, J. R.; Gero, A. J.
1974-01-01
A state-of-the-art survey is given of warm fog research which has been performed up to, and including, 1974. Topics covered are nucleation, growth, coalescence, fog structures and visibility, effects of surface films, drop size spectrum, optical properties, instrumentation, liquid water content, condensation nuclei. Included is a summary of all reported fog modification experiments. Additional data is provided on air flow, turbulence, a summary of recommendations on instruments to be developed for determining turbulence, air flow, etc., as well as recommendations of various fog research tasks which should be performed for a better understanding of fog microphysics.
Animal or Plant: Which Is the Better Fog Water Collector?
Nørgaard, Thomas; Ebner, Martin; Dacke, Marie
2012-01-01
Occasional fog is a critical water source utilised by plants and animals in the Namib Desert. Fog basking beetles (Onymacris unguicularis, Tenebrionidae) and Namib dune bushman grass (Stipagrostris sabulicola, Poaceae) collect water directly from the fog. While the beetles position themselves optimally for fog water collection on dune ridges, the grass occurs predominantly at the dune base where less fog water is available. Differences in the fog-water collecting abilities in animals and plants have never been addressed. Here we place beetles and grass side-by-side in a fog chamber and measure the amount of water they collect over time. Based on the accumulated amount of water over a two hour period, grass is the better fog collector. However, in contrast to the episodic cascading water run-off from the grass, the beetles obtain water in a steady flow from their elytra. This steady trickle from the beetles' elytra to their mouth could ensure that even short periods of fog basking – while exposed to predators – will yield water. Up to now there is no indication of specialised surface properties on the grass leafs, but the steady run-off from the beetles could point to specific property adaptations of their elytra surface. PMID:22509331
NASA Astrophysics Data System (ADS)
Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan
2015-10-01
The impact of haze-fog on surface temperature, flow pattern, pollutant dispersion and pedestrian thermal comfort are investigated using computational fluid dynamics (CFD) approach based on a three-dimensional street canyon model under different haze-fog conditions. In this study, light extinction coefficient (Kex) is adopted to represent haze-fog pollution level. Numerical simulations are performed for different Kex values at four representative time events (1000 LST, 1300 LST, 1600 LST and 2000 LST). The numerical results suggest that the surface temperature is strongly affected by the haze-fog condition. Surface heating induced by the solar radiation is enhanced by haze-fog, as higher surface temperature is observed under thicker haze-fog condition. Moreover, the temperature difference between sunlit and shadow surfaces is reduced, while that for the two shadow surfaces is slightly increased. Therefore, the surface temperature among street canyon facets becomes more evenly distributed under heavy haze-fog conditions. In addition, flow patterns are considerably altered by different haze-fog conditions, especially for the afternoon (1600 LST) case, in which thermal-driven flow has opposite direction as that of the wind-driven flow direction. Consequently, pollutants such as vehicular emissions will accumulate at pedestrian level, and pedestrian thermal comfort may lower under thicker haze-fog condition.
On the theoretical aspects of improved fog detection and prediction in India
NASA Astrophysics Data System (ADS)
Dey, Sagnik
2018-04-01
The polluted Indo-Gangetic Basin (IGB) in northern India experiences fog (a condition when visibility degrades below 1 km) every winter (Dec-Jan) causing a massive loss of economy and even loss of life due to accidents. This can be minimized by improved fog detection (especially at night) and forecasting so that activities can be reorganized accordingly. Satellites detect fog at night by a positive brightness temperature difference (BTD). However, fixing the right BTD threshold holds the key to accuracy. Here I demonstrate the sensitivity of BTD in response to changes in fog and surface emissivity and their temperatures and justify a new BTD threshold. Further I quantify the dependence of critical fog droplet number concentration, NF (i.e. minimum fog concentration required to degrade visibility below 1 km) on liquid water content (LWC). NF decreases exponentially with an increase in LWC from 0.01 to 1 g/m3, beyond which it stabilizes. A 10 times low bias in simulated LWC below 1 g/m3 would require 107 times higher aerosol concentration to form the required number of fog droplets. These results provide the theoretical aspects that will help improving the existing fog detection algorithm and fog forecasting by numerical models in India.
Alqaralleh, Rania Mona; Kennedy, Kevin; Delatolla, Robert; Sartaj, Majid
2016-12-01
Renewable energy and clean environment are two crucial requirements for our modern world. Low cost, energy production and limited environmental impact make anaerobic digestion (AD) a promising technology for stabilizing organic waste and in particular, sewage waste. The anaerobic co-digestion of thickened waste activated sludge (TWAS) and sewage treatment plant trapped fat, oil and grease (FOG) using different FOG-TWAS mixtures (20, 40, 60 and 80% of FOG based on total volatile solids (TVS)) were investigated in this study using both thermophilic (55 ± 1 °C) and two stages hyper-thermophilic/thermophilic (70 ± 1 °C and 55 ± 1 °C) anaerobic co-digestion. The hyper-thermophilic co-digestion approach as a part of the co-digestion process has been shown to be very useful in improving the methane production. During hyper-thermophilic biochemical methane potential (BMP) assay testing the sample with 60% FOG (based on TVS) has been shown to significantly increase the maximum methane production to 673.1 ± 14.0 ml of methane as compared to 316.4 ± 14.3 ml of methane for the control sample. This represents a 112.7% increase in methane production compared to the control sample considered in this paper. These results signify the importance of hyper-thermophilic digestion to the co-digestion of TWAS-FOG field. Copyright © 2016 Elsevier Ltd. All rights reserved.
Visual Advantage of Enhanced Flight Vision System During NextGen Flight Test Evaluation
NASA Technical Reports Server (NTRS)
Kramer, Lynda J.; Harrison, Stephanie J.; Bailey, Randall E.; Shelton, Kevin J.; Ellis, Kyle K.
2014-01-01
Synthetic Vision Systems and Enhanced Flight Vision System (SVS/EFVS) technologies have the potential to provide additional margins of safety for aircrew performance and enable operational improvements for low visibility operations in the terminal area environment. Simulation and flight tests were jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA) to evaluate potential safety and operational benefits of SVS/EFVS technologies in low visibility Next Generation Air Transportation System (NextGen) operations. The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SVS/EFVS operational and system-level performance capabilities. Nine test flights were flown in Gulfstream's G450 flight test aircraft outfitted with the SVS/EFVS technologies under low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 feet to 3600 feet reported visibility) under different obscurants (mist, fog, drizzle fog, frozen fog) and sky cover (broken, overcast). Flight test videos were evaluated at three different altitudes (decision altitude, 100 feet radar altitude, and touchdown) to determine the visual advantage afforded to the pilot using the EFVS/Forward-Looking InfraRed (FLIR) imagery compared to natural vision. Results indicate the EFVS provided a visual advantage of two to three times over that of the out-the-window (OTW) view. The EFVS allowed pilots to view the runway environment, specifically runway lights, before they would be able to OTW with natural vision.
The role of fog in haze episode in Tianjin, China: A case study for November 2015
NASA Astrophysics Data System (ADS)
Hao, Tianyi; Han, Suqin; Chen, Shucheng; Shan, Xiaolin; Zai, Ziying; Qiu, Xiaobin; Yao, Qing; Liu, Jingle; Chen, Jing; Meng, Lihong
2017-09-01
A severe haze episode that heavy fog appeared in its later stage emerged in Tianjin, east-central China, from November 27 to December 2, 2015. With meteorological data and pollutants monitoring data, the characteristics of this event and the role of fog in haze were investigated. During this process, the visibility was less than 600 m, especially in the haze and fog coexisting period (below 100 m). The peak value of PM2.5 mass concentration appeared in the haze only period was 446 μg/m3. The fog played a role in scavenging and removing PM2.5 during haze and fog coexisting period. The surface high humidity province can match well with the high PM2.5 concentration region in pollutants removal period. The fog top height was reduced to about 200 m by cold air. Although the cold air has arrived in Tianjin high altitude, the saturated layer below 200 m maintained for nearly 12 h. The heavy fog prevented the momentum in upper atmosphere from transmitting downward and caused the high altitude cold air difficult to reach the ground. The latent heat flux was transmitted upward ahead of sensible heat flux in pollutants removal period, indicating the increasing tendency of mechanical turbulence after fog dissipation. Turbulent kinetic energy (Etk) and the surface mean kinetic energy (E) also enhanced after fog dissipation. It demonstrates that the termination of haze was delayed by heavy fog.
Cerebellar Volume and Executive Function in Parkinson Disease with and without Freezing of Gait.
Myers, Peter S; McNeely, Marie E; Koller, Jonathan M; Earhart, Gammon M; Campbell, Meghan C
2017-01-01
Freezing of gait (FOG) affects approximately 50% of people with Parkinson Disease (PD), impacting quality of life and placing financial and emotional strain on the individual and caregivers. People with PD and FOG have similar deficits in motor adaptation and cognition as individuals with cerebellar lesions, indicating the cerebellum may play a role in FOG. To examine potential differences in cerebellar volumes and their relationships with cognition between PD with (FOG+) and without FOG (FOG-). Sixty-three participants were divided into two groups, FOG+ (n = 25) and FOG- (n = 38), based on the New Freezing of Gait Questionnaire. Cognitive assessment included Trail Making, Stroop, Verbal Fluency, and Go-NoGo executive function tasks. All participants completed structural T1- and T2-weighted MRI scans. Imaging data were processed with FreeSurfer and the Spatially Unbiased Infratentorial toolbox to segment the cerebellum into individual lobules. FOG+ performed significantly worse on phonemic verbal fluency (F(1, 22) = 7.06, p = 0.01) as well as the Go-NoGo task (F(1, 22) = 9.00, p = 0.004). We found no differences in cerebellar volumes between groups (F(4, 55) = 1.42, p = 0.24), but there were significant relationships between verbal fluency measures and lobule volumes in FOG-. These findings underscore the need for longitudinal studies to better characterize potential changes in cerebellar volume, cognitive function, and functional connectivity between people with PD with and without FOG.
2005-01-01
graphite flakes for infrared obscuration are being deployed for training scenarios. The effect of this combination on avian species was unknown. Our...Hematological response was normal and no toxic effects in eryth- rocytes or leukocytes were found. White blood cell counts, spleen weights, and incidence of...5 List of Figures and Tables Figures 1. Exposure system used for testing the effects of fog oil and graphite flake aerosols on avian health
Manuylov, Nikolay L.; Fujiwara, Yuko; Adameyko, Igor I.; Poulat, Francis
2007-01-01
We have previously established an in vivo requirement for GATA4 and FOG2 transcription factors in sexual differentiation. Fog2 null mouse fetuses or fetuses homozygous for a targeted mutation in Gata4 (Gata4ki), which cripples the GATA4-FOG2 interaction, exhibit a profound and early block in testis differentiation in both sexes. Others have shown that XX mice with the Ods transgenic insertion or the Wt1-Sox9 YAC transgene overexpress the testis differentiation gene, Sox9. Thus, these XX animals undergo dominant sex-reversal by developing into phenotypically normal, but sterile, males. Now we have determined that Fog2 haploinsufficiency prevents (suppresses) this dominant sex-reversal and Fog2+/− Wt1-Sox9 or Ods XX animals develop normally - as fertile females. The suppression of sex-reversal in Fog2 heterozygous females results from approximately 50% downregulation of the expression from the transgene-associated allele of Sox9. The GATA4/FOG2-dependent sex reversal observed in the transgenic XX gonads has to rely on gene targets other than the Y chromosome-linked Sry gene. Importantly, Fog2 null or Gata4ki/ki embryos (either XX or XY) fail to express detectable levels of Sox9 despite carrying the Ods mutation or Wt1-Sox9 transgene. Fog2 haploinsufficiency leads to a decreased amount of SOX9-positive cells in XY gonads. We conclude that FOG2 is a limiting factor in the formation of a functional GATA4/FOG2 transcription complex that is required for Sox9 expression during gonadogenesis. PMID:17540364
NASA Astrophysics Data System (ADS)
Hall, Steven J.; Maurer, Gregory; Hoch, Sebastian W.; Taylor, Raili; Bowling, David R.
2014-12-01
Urban montane valleys are often characterized by periodic wintertime temperature inversions (cold air pools) that increase atmospheric particulate matter concentrations, potentially stimulating the deposition of major ions to these snow-covered ecosystems. We assessed spatial and temporal patterns of ion concentrations in snow across urban to montane gradients in Salt Lake City, Utah, USA, and the adjacent Wasatch Mountains during January 2011, a period of several persistent cold air pools. Ion concentrations in fresh snow samples were greatest in urban sites, and were lower by factors of 4-130 in a remote high-elevation montane site. Adjacent undeveloped canyons experienced significant incursions of particulate-rich urban air during stable atmospheric conditions, where snow ion concentrations were lower but not significantly different from urban sites. Surface snow ion concentrations on elevation transects in and adjacent to Salt Lake City varied with temporal and spatial trends in aerosol concentrations, increasing following exposure to particulate-rich air as cold air pools developed, and peaking at intermediate elevations (1500-1600 m above sea level, or 200-300 m above the valley floor). Elevation trends in ion concentrations, especially NH4+ and NO3-, corresponded with patterns of aerosol exposure inferred from laser ceilometer data, suggesting that high particulate matter concentrations stimulated fog or dry ion deposition to snow-covered surfaces at the top of the cold air pools. Fog/dry deposition inputs were similar to wet deposition at mid-elevation montane sites, but appeared negligible at lower and higher-elevation sites. Overall, snow ion concentrations in our urban and adjacent montane sites exceeded many values reported from urban precipitation in North America, and greatly exceeded those reported for remote snowpacks. Sodium, Cl-, NH4+, and NO3- concentrations in fresh snow were high relative to previously measured urban precipitation, with means of 120, 117, 42, and 39 μeq l-1, respectively. After exposure to atmospheric particulate matter during cold pool events, surface snow concentrations peaked at 2500, 3600, 93, and 90 μeq l-1 for these ions. Median nitrogen (N) deposition in fresh urban snow samples measured 0.8 kg N ha-1 during January 2011, with similar fog/dry deposition inputs at mid-elevation montane sites. Wintertime anthropogenic air pollution represents a significant source of ions to snow-covered ecosystems proximate to urban montane areas, with important implications for ecosystem function.
Fog in the coastal region of southern Brazil: seasonal variations
NASA Astrophysics Data System (ADS)
Krusche, N.; Gomes, C.
2009-05-01
Fog forecasting, especially advection fog, is important because a large port is located at Rio Grande, 32° S and 52° W. Fogs discontinue the cargo transport and prevent entrance of ships in the port, causing great financial loss. Atmospheric and oceanographic conditions associated to fog formation are been investigated, especially those that happen during advection fog. The result of this characterization will facilitate the forecast using mesoscale numerical models. The research started with a climatology of fog in the region, in two locations which are 2° of latitude apart, with an average temperature difference of 3°C. The observation of fog is a standard record at conventional meteorological stations. Data from this study was obtained from the Meteorological Station of Rio Grande, which belongs to the Instituto Nacional de Meteorologia network, and from the Meteorological Station operated by the Division of Meteorology of Department of Airspace Control in Porto Alegre. The period of this study is from January 1990 to December 2005. The distribution of the monthly total of fog observations shows that they occur mainly between May and August, with maximum in June. In all seasons of the year the total number of fogs is greater than in Porto Alegre in Rio Grande. There was a decrease in the average annual number of fogs from the 90s to the last five years of research, which can be attributed to urbanization around the places of observation. It increases the temperature in the layers closer to the soil and decreases the available moisture, making the occurrence of radiation fog. Atmospheric and oceanographic conditions, prevalent during these occurrences, will be examined next. The another goal is to compare the data of advection fog in Rio Grande, obtained from images of the type ARGUS in Cassino beach, with those recorded by Meteorological Station. This work is partially financed by FINEP and CAPES.
Marine Fog over the Western Pacific Marginal Seas Based Upon Ship Observations for 1950 - 2007
NASA Astrophysics Data System (ADS)
Dorman, C. E.; Koracin, D. R.
2016-12-01
An analysis is presented of the marine fog distribution over the western Pacific marginal seas based upon the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) ship observations taken during 1950-2007. Fog occurrence is reported in routine weather reports that are encoded in an ICOADS ship observation. This includes the marginal seas of Okhotsk Sea, Japan Sea, Yellow Sea and South China Sea which have significant fog occurrences with values much greater than in the surrounding ocean with distinct seasonal trends but different generation mechanisms. The greatest occurrence is 55 % in Jun-Jul-Aug over the Okhotsk Sea followed by 28 % over the Japan Sea. This is seasonally controlled by the sea level pressure gradient moving air over a negative sea surface temperature gradient. During Dec-Jan-Feb, the SLP gradient reverses, moving cold, dry continental air over the Okhotsk and Japan Seas, eliminating any fog. The maximum fog over the Okhotsk Sea is over isolated locations with shallow water. In the Japan Sea, the most frequent fog occurs along the north side of the sea over a narrow shelf with the lowest SST of the entire Sea. In the Yellow Sea, the fog frequency peak is from Dec through May. In Mar-Apr-May the highest value is 18 % which is centered at 33 N 122 W while elevated values extend along the China coast to Taiwan. In Jun-Jul-Aug, highest values are mostly confined to the Yellow Sea. In Dec-Jan-Feb, decreased but significant fog occurrences extend along the entire China coast when the highest value in the Yellow Sea is 5 % and in South China Sea it is 6 %. The only other world marine fog occurrence analysis discovered by us is a US Department of Agriculture Jun-Jul-Aug marine fog frequency chart published in 1938 that does not show any fog in the Okhotsk Sea and misses most of the fog occurrence reported by ships in the Yellow Sea.
Leduc, D; Fally, S; De Vuyst, P; Wollast, R; Yernault, J C
1995-11-01
Naturally occurring fogs in industrialized cities are contaminated by acidic air pollutants. In Brussels, Belgium, the pH of polluted fogwater may be as low as 3 with osmolarity as low as 30 mOsm. In order to explore short-term respiratory effects of a realistic acid-polluted fog, we collected samples of acid fog in Brussels, Belgium, which is a densely populated and industrialized city, we defined characteristics of this fog and exposed asthmatic volunteers at rest through a face mask to fogs with physical and chemical characteristics similar to those of natural fogs assessed in this urban area. Fogwater was sampled using a screen collector where droplets are collected by inertial impaction and chemical content of fogwater was assessed by measurement of conductivity, pH, visible colorimetry, high pressure liquid chromatography, and atomic absorption spectrophotometry over a period of one year. The fogwater composition was dominated by NH4+ and SO4- ions. First we evaluated the possible effect of fog acidity alone. For this purpose 14 subjects with asthma were exposed at rest for 1 hr [mass median aerodynamic diameter to a large-particle (MMAD), 9 microns] aerosol with H2SO4 concentration of 500 micrograms/m3 (pH 2.5) and osmolarity of 300 mOsm. We did not observe significant change in pulmonary function or bronchial responsiveness to metacholine. In the second part of the work, 10 asthmatic subjects were exposed to acid fog (MMAD, 7 microns) containing sulfate and ammonium ions (major ions recovered in naturally occurring fogs) with pH 3.5 and osmolarity 30 mOsm. Again, pulmonary function and bronchial reactivity were not modified after inhalation of this fog. It was concluded that short-term exposure to acid fog reproducing acidity and hypoosmolarity of natural polluted fogs does not induce bronchoconstriction and does not change bronchial responsiveness in asthmatics.
Analysis of prospective systems for fog warnings : [summary].
DOT National Transportation Integrated Search
2013-01-01
Florida nearly leads the nation in fatal vehicle crashes due to fog and smoke conditions. Between 2002 and 2009, 299 people in Florida died in vehicle crashes related to fog and smoke conditions. In January 2012, heavy fog and smoke were blamed for a...
NASA Technical Reports Server (NTRS)
Morrison, H. D.; Carmin, D. L., Jr. (Inventor)
1974-01-01
An anti-fog composition is described for the prevention of fogging on surfaces such as space helmet visors, spacecraft windows, and windshields. It is composed of a surface active agent, water, and an oil time extender.
Fog chemistry at three sites in Norway
NASA Astrophysics Data System (ADS)
Wang, Youliang; Zhang, Jinwei; Marcotte, Aurelie R.; Karl, Matthias; Dye, Christian; Herckes, Pierre
2015-01-01
Fog composition was investigated at three sites in Norway, one in suburban Oslo and two coastal sites in the area of the Mongstad refinery. Overall fog frequency during the study periods was low. Fog pH was around 5 with slightly lower values at Hakadal, the suburban site, compared to the coastal sites, which were slightly above 5. Major ions at the coastal sites were sodium and chloride consistent with the marine environment. The ion chemistry at the suburban site was dominated by ammonium, sulfate and nitrate, consistent with fogs in anthropogenically impacted environments. Overall concentrations of major ions were very low, orders of magnitude lower than those in polluted urban fogs. Organic matter concentrations were also low (< 3 mgC/L) consistent with limited anthropogenic impact and little biogenic activity in the winter months. Selected amine concentrations were determined and ranged from nanomolar concentrations for ethylamines to several hundred nanomolar concentrations for dimethylamine, the most abundant amine investigated. While N-nitrosodimehylamine was detected in fog, the concentrations were very low in the fogs.
Hydrophobic/Hydrophilic Cooperative Janus System for Enhancement of Fog Collection.
Cao, Moyuan; Xiao, Jiasheng; Yu, Cunming; Li, Kan; Jiang, Lei
2015-09-09
Harvesting micro-droplets from fog is a promising method for solving global freshwater crisis. Different types of fog collectors have been extensively reported during the last decade. The improvement of fog collection can be attributed to the immediate transportation of harvested water, the effective regeneration of the fog gathering surface, etc. Through learning from the nature's strategy for water preservation, the hydrophobic/hydrophilic cooperative Janus system that achieved reinforced fog collection ability is reported here. Directional delivery of the surface water, decreased re-evaporation rate of the harvested water, and thinner boundary layer of the collecting surface contribute to the enhancement of collection efficiency. Further designed cylinder Janus collector can facilely achieve a continuous process of efficient collection, directional transportation, and spontaneous preservation of fog water. This Janus fog harvesting system should improve the understanding of micro-droplet collection system and offer ideas to solve water resource crisis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.
1975-01-01
A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.
The smog-fog-smog cycle and acid deposition
NASA Astrophysics Data System (ADS)
Pandis, Spyros N.; Seinfeld, John H.; Pilinis, Christodoulos
1990-10-01
A model including descriptions of aerosol and droplet microphysics, gas and aqueous-phase chemistry, and deposition is used to study the transformation of aerosol to fog droplets and back to aerosol in an urban environment. Fogs in polluted environments have the potential to increase aerosol sulfate concentrations but at the same time to cause reductions in the aerosol concentration of nitrate, chloride, ammonium and sodium and well as in the total aerosol mass concentration. The sulfate produced during fog episodes favors the aerosol particles that have access to most of the fog liquid water which are usually the large particles. Aerosol scavenging efficiencies of around 80 percent are calculated for urban fogs. Sampling and subsequent mixing of fog droplets of different sizes may result in measured concentrations that are not fully representative of the fogwater chemical composition and can introduce errors in the reported values of the ionic species deposition velocities. Differences in the major ionic species deposition velocities can be explained by their distribution over the droplet size spectrum and can be correlated with the species average diameter. Two different expressions are derived for use in fog models for the calculation of the liquid water deposition velocity during fog growth and dissipation stages.
Impact of Cognitive Loading on Postural Control in Parkinson’s Disease With Freezing of Gait
Buated, Wannipat; Lolekha, Praween; Hidaka, Shohei; Fujinami, Tsutomu
2016-01-01
Objective:To assess standing balance in Parkinson’s disease (PD) patients with and without freezing of gait (FOG) during cognitive loading. Method:A balance assessment with cognitive loading, reading (RE) and counting backward (CB), was performed by the Nintendo Wii Fit in 60 PD patients (Hoehn and Yahr stages 1-3) at Thammasat University Hospital, Thailand. The participants were grouped into FOG and non-FOG according to the Freezing of Gait–Questionnaire (FOG-Q) scores. The center of pressure (CoP) in terms of path length (PL), sway area (SA), root mean square (RMS), medio-lateral (ML), and antero-posterior (AP) were analyzed. Results:Significant increases of PL were observed in both groups of PD patients during cognitive loading (p < .001). Meanwhile, the increased differences of PL during cognitive loading in PD-FOG were larger than in PD-non-FOG. The ML displacement during counting backward was significantly increased in PD-FOG (p = .012). Conclusion:Cognitive loading influenced standing balance and postural sway of PD patients. The effects were more prominent in PD-FOG. These findings represent the interactions between cognitive function, postural control, and FOG in PD. PMID:28680941
Pérez-López, Carlos; Català, Andreu; Moreno Arostegui, Joan M.; Cabestany, Joan; Bayés, Àngels; Alcaine, Sheila; Mestre, Berta; Prats, Anna; Crespo, M. Cruz; Counihan, Timothy J.; Browne, Patrick; Quinlan, Leo R.; ÓLaighin, Gearóid; Sweeney, Dean; Lewy, Hadas; Azuri, Joseph; Vainstein, Gabriel; Annicchiarico, Roberta; Costa, Alberto; Rodríguez-Molinero, Alejandro
2017-01-01
Among Parkinson’s disease (PD) symptoms, freezing of gait (FoG) is one of the most debilitating. To assess FoG, current clinical practice mostly employs repeated evaluations over weeks and months based on questionnaires, which may not accurately map the severity of this symptom. The use of a non-invasive system to monitor the activities of daily living (ADL) and the PD symptoms experienced by patients throughout the day could provide a more accurate and objective evaluation of FoG in order to better understand the evolution of the disease and allow for a more informed decision-making process in making adjustments to the patient’s treatment plan. This paper presents a new algorithm to detect FoG with a machine learning approach based on Support Vector Machines (SVM) and a single tri-axial accelerometer worn at the waist. The method is evaluated through the acceleration signals in an outpatient setting gathered from 21 PD patients at their home and evaluated under two different conditions: first, a generic model is tested by using a leave-one-out approach and, second, a personalised model that also uses part of the dataset from each patient. Results show a significant improvement in the accuracy of the personalised model compared to the generic model, showing enhancement in the specificity and sensitivity geometric mean (GM) of 7.2%. Furthermore, the SVM approach adopted has been compared to the most comprehensive FoG detection method currently in use (referred to as MBFA in this paper). Results of our novel generic method provide an enhancement of 11.2% in the GM compared to the MBFA generic model and, in the case of the personalised model, a 10% of improvement with respect to the MBFA personalised model. Thus, our results show that a machine learning approach can be used to monitor FoG during the daily life of PD patients and, furthermore, personalised models for FoG detection can be used to improve monitoring accuracy. PMID:28199357
Environmental fog/rain visual display system for aircraft simulators
NASA Technical Reports Server (NTRS)
Chase, W. D. (Inventor)
1982-01-01
An environmental fog/rain visual display system for aircraft simulators is described. The electronic elements of the system include a real time digital computer, a caligraphic color display which simulates landing lights of selective intensity, and a color television camera for producing a moving color display of the airport runway as depicted on a model terrain board. The mechanical simulation elements of the system include an environmental chamber which can produce natural fog, nonhomogeneous fog, rain and fog combined, or rain only. A pilot looking through the aircraft wind screen will look through the fog and/or rain generated in the environmental chamber onto a viewing screen with the simulated color image of the airport runway thereon, and observe a very real simulation of actual conditions of a runway as it would appear through actual fog and/or rain.
Dual effects of the winter monsoon on haze-fog variations in eastern China
NASA Astrophysics Data System (ADS)
Liu, Qian; Sheng, Lifang; Cao, Ziqi; Diao, Yina; Wang, Wencai; Zhou, Yang
2017-06-01
Previous studies have revealed a negative correlation between the East Asian winter monsoon and wintertime haze-fog events in China. The winter monsoon reduces haze-fog by advecting away aerosol particles and supplying clean air through cold waves. However, it is found that the frequency of haze-fog events on subseasonal time scales displays no correlation with typical winter monsoon indices. The results show that the accumulating and maintaining effects of calm weather related to the Siberian High, which is also a part of the monsoon circulation system, are equally important for the development of haze-fog events during winter. Correlation analysis indicates that subseasonal variations in haze-fog are closely related to the intensity of the Siberian High (r = 0.49). The Siberian High may increase the occurrence of haze-fog events by reducing the near surface wind speed and enhancing the stratification stability. To quantify the contribution of these diverse effects of the winter monsoon on the variations in haze-fog events, we analyzed haze-fog events during periods of cold wave activity and calm weather separately and contrasted the relative contributions of these two effects on different time scales. On the subseasonal scale, the effect of the Siberian High was 2.0 times that of cold waves; on the interannual scale, the effect of cold waves was 2.4 times that of the Siberian High. This study reveals the dual effects of the East Asian winter monsoon on wintertime haze-fog variations in eastern China and provides a more comprehensive understanding of the relationship between the monsoon and haze-fog events.
Spray characterization of thermal fogging equipment typically used in vector control
USDA-ARS?s Scientific Manuscript database
The generation of insecticide laden fogs provides an effective method for controlling flying insects. One of the critical factors affecting the effectiveness of a thermal fogging application is the generation of droplets that will remain aloft in the fogging cloud and moves into the area where the ...
Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Suárez-Albela, Manuel; Díaz-Bouza, Manuel A
2018-06-17
Pipes are one of the key elements in the construction of ships, which usually contain between 15,000 and 40,000 of them. This huge number, as well as the variety of processes that may be performed on a pipe, require rigorous identification, quality assessment and traceability. Traditionally, such tasks have been carried out by using manual procedures and following documentation on paper, which slows down the production processes and reduces the output of a pipe workshop. This article presents a system that allows for identifying and tracking the pipes of a ship through their construction cycle. For such a purpose, a fog computing architecture is proposed to extend cloud computing to the edge of the shipyard network. The system has been developed jointly by Navantia, one of the largest shipbuilders in the world, and the University of A Coruña (Spain), through a project that makes use of some of the latest Industry 4.0 technologies. Specifically, a Cyber-Physical System (CPS) is described, which uses active Radio Frequency Identification (RFID) tags to track pipes and detect relevant events. Furthermore, the CPS has been integrated and tested in conjunction with Siemens’ Manufacturing Execution System (MES) (Simatic IT). The experiments performed on the CPS show that, in the selected real-world scenarios, fog gateways respond faster than the tested cloud server, being such gateways are also able to process successfully more samples under high-load situations. In addition, under regular loads, fog gateways react between five and 481 times faster than the alternative cloud approach.
Inactivation of stable viruses in cell culture facilities by peracetic acid fogging.
Gregersen, Jens-Peter; Roth, Bernhard
2012-07-01
Looking for a robust and simple method to replace formaldehyde fumigation for the disinfection of virus-handling laboratories and facilities, we tested peracetic acid fogging as a method to inactivate stable viruses under practical conditions. Peracetic acid/hydrogen peroxide (5.8%/27.5%, 2.0 mL/m³) was diluted in sufficient water to achieve ≥ 70% relative humidity and was vaporized as <10 μm droplets in a fully equipped 95 m³ laboratory unit. High titers of reovirus 3, MVM parvovirus and an avian polyomavirus were coated on frosted glass carriers and were exposed to the peracetic acid fog in various positions in the laboratory. After vaporization, a 60 min exposure time, and venting of the laboratory, no residual virus was detected on any of the carriers (detection limit <1 infectious unit/sample volume tested). The log reduction values were 9.0 for reovirus, 6.4 for MVM parvovirus, and 7.65 for the polyomavirus. After more than 10 disinfection runs within 12 months, no damage or functional impairment of electrical and electronic equipment was noted. Copyright © 2012 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
The measurement of the size distribution of artificial fogs
NASA Technical Reports Server (NTRS)
Deepak, A.; Cliff, W. C.; Mcdonald, J. R.; Ozarski, R.; Thomson, J. A. L.; Huffaker, R. M.
1974-01-01
The size-distribution of the fog droplets at various fog particle concentrations in fog chamber was determined by two methods: (1) the Stokes' velocity photographic method and (2) using the active scattering particle spectrometer. It is shown that the two techniques are accurate in two different ranges of particle size - the former in the radii range (0.1 micrometers to 10.0 micrometers), and the latter for radii greater than 10.0 micrometers. This was particularly true for high particle concentration, low visibility fogs.
The Research on the Spectral Characteristics of Sea Fog Based on Caliop and Modis Data
NASA Astrophysics Data System (ADS)
Wan, J.; Su, J.; Liu, S.; Sheng, H.
2018-04-01
In view of that difficulty of distinguish between sea fog and low cloud by optical remote sensing mean, the research on spectral characteristics of sea fog is focused and carried out. The satellite laser radar CALIOP data and the high spectral MODIS data were obtained from May to December 2017, and the scattering coefficient and the vertical height information were extracted from the atmospheric attenuation of the lower star to extract the sea fog sample points, and the spectral response curve based on MODIS was formed to analyse the spectral response characteristics of the sea fog, thus providing a theoretical basis for the monitoring of sea fog with optical remote sensing image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berkowitz, Carl M.; Berg, Larry K.; Yu, Xiao-Ying
2011-04-05
This paper presents an analysis of the aerosol chemical composition, optical properties and size distributions for a range of conditions encountered during a field measurement campaign conducted between July 7-29, 2005 at Point Reyes National Seashore, north of San Francisco, CA. Observations are partitioned into one-hour periods when conditions were ‘clear’ or ‘foggy’ to identify evidence of cloud processing of aerosols. During the first half of the campaign (July 7-18), conditions at the site were largely maritime. However flow during the second half of the campaigns (July 18-29) was influenced by a thermal trough that added a cyclonic twist tomore » the incoming marine air, bringing it from the south with a more extensive over-land trajectory. Neither flow regime was associated with air coming from the San Francisco Bay area to the south. Measurements by an Aerodyne aerosol mass spectrometer (AMS) of the equivalent molar ratio of ammonium to the sum of sulfate, nitrate and chloride made before the onset of the thermal trough on July 18th were associated with acidic or near-neutral particles. Measurements made after July 18th appear to have excess ammonium. The AMS measurements of mass loading were an order of magnitude less than those reported by a nearby IMPROVE station. However, the AMS measures only non-refractory particles between 0.1 µm and 1 µm, which would not include sea salt. In contrast, the IMPROVE station employs filter-based techniques to measure mass for all particles < 2.5 µm. Assuming chlorine is associated with large sea salt particles at Pt. Reyes and removing this value from the IMPROVE data resulted in good agreement in the total mass fraction between these two techniques,, indicating the importance of sea salt mass in particles greater than 1 µm. Model calculations of the equilibrium gas-phase mixing ratio of NH3 suggest very high values which we attribute to agricultural practices within the park. Reported as an incidental finding is evidence for the cloud droplet activation of large particles (diameter >0.2 mm) with a corresponding reduction in the single scattering albedo of the non-activated particles, followed by a return in the particle size spectrum to the pre-fog conditions immediately afterwards.« less
Novel method for fog monitoring using cellular networks infrastructures
NASA Astrophysics Data System (ADS)
David, N.; Alpert, P.; Messer, H.
2012-08-01
A major detrimental effect of fog is visibility limitation which can result in serious transportation accidents, traffic delays and therefore economic damage. Existing monitoring techniques including satellites, transmissometers and human observers - suffer from low spatial resolution, high cost or lack of precision when measuring near ground level. Here we show a novel technique for fog monitoring using wireless communication systems. Communication networks widely deploy commercial microwave links across the terrain at ground level. Operating at frequencies of tens of GHz they are affected by fog and are, effectively, an existing, spatially world-wide distributed sensor network that can provide crucial information about fog concentration and visibility. Fog monitoring potential is demonstrated for a heavy fog event that took place in Israel. The correlation between transmissomters and human eye observations to the visibility estimates from the nearby microwave links was found to be 0.53 and 0.61, respectively. These values indicate the high potential of the proposed method.
Fog as a fresh-water resource: overview and perspectives.
Klemm, Otto; Schemenauer, Robert S; Lummerich, Anne; Cereceda, Pilar; Marzol, Victoria; Corell, David; van Heerden, Johan; Reinhard, Dirk; Gherezghiher, Tseggai; Olivier, Jana; Osses, Pablo; Sarsour, Jamal; Frost, Ernst; Estrela, María J; Valiente, José A; Fessehaye, Gebregiorgis Mussie
2012-05-01
The collection of fog water is a simple and sustainable technology to obtain fresh water for afforestation, gardening, and as a drinking water source for human and animal consumption. In regions where fresh water is sparse and fog frequently occurs, it is feasible to set up a passive mesh system for fog water collection. The mesh is directly exposed to the atmosphere, and the foggy air is pushed through the mesh by the wind. Fog droplets are deposited on the mesh, combine to form larger droplets, and run down passing into a storage tank. Fog water collection rates vary dramatically from site to site but yearly averages from 3 to 10 l m(-2) of mesh per day are typical of operational projects. The scope of this article is to review fog collection projects worldwide, to analyze factors of success, and to evaluate the prospects of this technology.
76 FR 44906 - Foremost 4809-ES Insect-O-Fog; Amended Cancellation Order
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-27
... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2009-1017; FRL-8880-8] Foremost 4809-ES Insect-O-Fog... cancellation order for the pesticide product Foremost 4809-ES Insect-O-Fog, a pesticide product containing Piperonyl Butoxide and Pyrethrins. The registrant of Foremost 4809-ES Insect-O-Fog--Delta Foremost Chemical...
A field investigation and numerical simulation of coastal fog
NASA Technical Reports Server (NTRS)
Mack, E. J.; Eadie, W. J.; Rogers, C. W.; Kocmond, W. C.; Pilie, R. J.
1973-01-01
A field investigation of the microphysical and micrometeorological features of fogs occurring near Los Angeles and Vandenberg, California was conducted. Observations of wind speed and direction, temperature, dew point, vertical wind velocity, dew deposition, drop-size distribution, liquid water content, and haze and cloud nucleus concentration were obtained. These observations were initiated in late evening prior to fog formation and continued until the time of dissipation in both advection and radiation fogs. Data were also acquired in one valley fog and several dense haze situations. The behavior of these parameters prior to and during fog are discussed in detail. A two-dimensional numerical model was developed to investigate the formation and dissipation of advection fogs under the influence of horizontal variations in surface temperature. The model predicts the evolution of potential temperature, water vapor content, and liquid water content in a vertical plane as determined by vertical turbulent transfer and horizontal advection. Results are discussed from preliminary numerical experiments on the formation of warm-air advection fog and dissipation by natural and artificial heating from the surface.
Azad, M A K; Krause, Tobias; Danter, Leon; Baars, Albert; Koch, Kerstin; Barthlott, Wilhelm
2017-06-06
Fog-collecting meshes show a great potential in ensuring the availability of a supply of sustainable freshwater in certain arid regions. In most cases, the meshes are made of hydrophilic smooth fibers. Based on the study of plant surfaces, we analyzed the fog collection using various polyethylene terephthalate (PET) fibers with different cross sections and surface structures with the aim of developing optimized biomimetic fog collectors. Water droplet movement and the onset of dripping from fiber samples were compared. Fibers with round, oval, and rectangular cross sections with round edges showed higher fog-collection performance than those with other cross sections. However, other parameters, for example, width, surface structure, wettability, and so forth, also influenced the performance. The directional delivery of the collected fog droplets by wavy/v-shaped microgrooves on the surface of the fibers enhances the formation of a water film and their fog collection. A numerical simulation of the water droplet spreading behavior strongly supports these findings. Therefore, our study suggests the use of fibers with a round cross section, a microgrooved surface, and an optimized width for an efficient fog collection.
Fog computing job scheduling optimization based on bees swarm
NASA Astrophysics Data System (ADS)
Bitam, Salim; Zeadally, Sherali; Mellouk, Abdelhamid
2018-04-01
Fog computing is a new computing architecture, composed of a set of near-user edge devices called fog nodes, which collaborate together in order to perform computational services such as running applications, storing an important amount of data, and transmitting messages. Fog computing extends cloud computing by deploying digital resources at the premise of mobile users. In this new paradigm, management and operating functions, such as job scheduling aim at providing high-performance, cost-effective services requested by mobile users and executed by fog nodes. We propose a new bio-inspired optimization approach called Bees Life Algorithm (BLA) aimed at addressing the job scheduling problem in the fog computing environment. Our proposed approach is based on the optimized distribution of a set of tasks among all the fog computing nodes. The objective is to find an optimal tradeoff between CPU execution time and allocated memory required by fog computing services established by mobile users. Our empirical performance evaluation results demonstrate that the proposal outperforms the traditional particle swarm optimization and genetic algorithm in terms of CPU execution time and allocated memory.
Zheng, Yue; Zhang, Chunxi; Li, Lijing; Song, Lailiang; Chen, Wen
2016-06-10
For a fiber-optic gyroscope (FOG) using electronic dithers to suppress the dead zone, without a fixed loop gain, the deterministic compensation for the dither signals in the control loop of the FOG cannot remain accurate, resulting in the dither residuals in the FOG rotation rate output and the navigation errors in the inertial navigation system. An all-digital automatic-gain-control method for stabilizing the loop gain of the FOG is proposed. By using a perturbation square wave to measure the loop gain of the FOG and adding an automatic gain control loop in the conventional control loop of the FOG, we successfully obtain the actual loop gain and make the loop gain converge to the reference value. The experimental results show that in the case of 20% variation in the loop gain, the dither residuals are successfully eliminated and the standard deviation of the FOG sampling outputs is decreased from 2.00 deg/h to 0.62 deg/h (sampling period 2.5 ms, 10 points smoothing). With this method, the loop gain of the FOG can be stabilized over the operation temperature range and in the long-time application, which provides a solid foundation for the engineering applications of the high-precision FOG.
Drop size distributions and related properties of fog for five locations measured from aircraft
NASA Technical Reports Server (NTRS)
Zak, J. Allen
1994-01-01
Fog drop size distributions were collected from aircraft as part of the Synthetic Vision Technology Demonstration Program. Three west coast marine advection fogs, one frontal fog, and a radiation fog were sampled from the top of the cloud to the bottom as the aircraft descended on a 3-degree glideslope. Drop size versus altitude versus concentration are shown in three dimensional plots for each 10-meter altitude interval from 1-minute samples. Also shown are median volume radius and liquid water content. Advection fogs contained the largest drops with median volume radius of 5-8 micrometers, although the drop sizes in the radiation fog were also large just above the runway surface. Liquid water content increased with height, and the total number of drops generally increased with time. Multimodal variations in number density and particle size were noted in most samples where there was a peak concentration of small drops (2-5 micrometers) at low altitudes, midaltitude peak of drops 5-11 micrometers, and high-altitude peak of the larger drops (11-15 micrometers and above). These observations are compared with others and corroborate previous results in fog gross properties, although there is considerable variation with time and altitude even in the same type of fog.
Chemical Composition of Sea Fog Water Along the South China Sea
NASA Astrophysics Data System (ADS)
Yue, Yanyu; Niu, Shengjie; Zhao, Lijuan; Zhang, Yu; Xu, Feng
2012-12-01
The chemical and microphysical properties of sea fog were measured during a field experiment on Donghai Island, Zhanjiang of China from March 15 to April 18, 2010. The average pH and electrical conductivity (EC) value of the six sea fog cases during the experiment was 5.2 and 1,884 μS/cm. The observed total ion concentration of sea fog was four orders of magnitude higher than those in the North Pacific and other sea areas of China. The dominant anion and cation in all sea fog water samples were Cl- and Na+, respectively. From backward trajectory analysis and ion loading computation, it can be concluded that the ions in the samples were transported either from pollutants in distant industrial cities or from local ion deposition processes. The concentration of Ca2+ in the sea fog water samples in Case 2 suggested that a dust storm in the Inner Mongolia, a northern region of China several thousand kilometers away, could reach the South China Sea. The data also showed that the sea fog droplet spectrum over the South China Sea is unimodal. Through relationship analysis, it is illustrated that the evolution of microphysics (such as droplet concentration, diameter, and liquid water content) during fog process could affect the chemical properties of sea fog.
NASA Astrophysics Data System (ADS)
Schulz, Hans Martin; Thies, Boris; Chang, Shih-Chieh; Bendix, Jörg
2016-03-01
The mountain cloud forest of Taiwan can be delimited from other forest types using a map of the ground fog frequency. In order to create such a frequency map from remotely sensed data, an algorithm able to detect ground fog is necessary. Common techniques for ground fog detection based on weather satellite data cannot be applied to fog occurrences in Taiwan as they rely on several assumptions regarding cloud properties. Therefore a new statistical method for the detection of ground fog in mountainous terrain from MODIS Collection 051 data is presented. Due to the sharpening of input data using MODIS bands 1 and 2, the method provides fog masks in a resolution of 250 m per pixel. The new technique is based on negative correlations between optical thickness and terrain height that can be observed if a cloud that is relatively plane-parallel is truncated by the terrain. A validation of the new technique using camera data has shown that the quality of fog detection is comparable to that of another modern fog detection scheme developed and validated for the temperate zones. The method is particularly applicable to optically thinner water clouds. Beyond a cloud optical thickness of ≈ 40, classification errors significantly increase.
Protein FOG--a streptococcal inhibitor of neutrophil function.
Johansson, Helena M; Mörgelin, Matthias; Frick, Inga-Maria
2004-12-01
Several strains of group G streptococci (GGS) form aggregates when grown in vitro. Aggregating strains interact with fibrinogen, and this study reports the isolation of a novel self-associating and fibrinogen-binding protein of GGS, denoted protein FOG. Sequencing of the fog gene revealed structural similarity with M proteins of both GGS and group A streptococci (GAS). Analogous to GAS, GGS were found to multiply in human blood. All strains of GGS express protein G, a protein known to interact with the constant region of immunoglobulin G and albumin. Surprisingly, a clinical isolate expressing protein G, but lacking protein FOG, was killed in human whole blood; however, the addition of intact soluble protein FOG restored the ability of the bacteria to survive and multiply in human blood. This is believed to be the first report of a soluble M-like protein salvaging an M-negative strain from being killed. The antibactericidal property of protein FOG is dependent on its fibrinogen-binding activity. Thus, in plasma, FOG precipitates fibrinogen, and when added to whole blood, protein FOG triggers the formation of visible aggregates comprising fibrinogen and neutrophils that are disabled in their killing of the bacteria. Moreover, the results emphasize the importance of an intact FOG molecule, as presented on the bacterial surface, for full protective effect.
Crash risk analysis during fog conditions using real-time traffic data.
Wu, Yina; Abdel-Aty, Mohamed; Lee, Jaeyoung
2018-05-01
This research investigates the changes of traffic characteristics and crash risks during fog conditions. Using real-time traffic flow and weather data at two regions in Florida, the traffic patterns at the fog duration were compared to the traffic patterns at the clear duration. It was found that the average 5-min speed and the average 5-min volume were prone to decreasing during fog. Based on previous studies, a "Crash Risk Increase Indicator (CRII)" was proposed to explore the differences of crash risk between fog and clear conditions. A binary logistic regression model was applied to link the increase of crash risks with traffic flow characteristics. The results suggested that the proposed indicator worked well in evaluating the increase of crash risk under fog condition. It was indicated that the crash risk was prone to increase at ramp vicinities in fog conditions. Also, the average 5-min volume during fog and the lane position are important factors for crash risk increase. The differences between the regions were also explored in this study. The results indicated that the locations with heavier traffic or locations at the lanes that were closest to the median in Region 2 were more likely to observe an increase in crash risks in fog conditions. It is expected that the proposed indicator can help identify the dangerous traffic status under fog conditions and then proper ITS technologies can be implemented to enhance traffic safety when the visibility declines. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Scholl, M. A.; Torregrosa, A.; Coplen, T. B.
2014-12-01
Fog and cloud water can be an important part of the water cycle in mountainous coastal areas. In coastal California's Mediterranean climate, fog is the predominant precipitation source during the summer months. Here we report initial results of a study utilizing stable hydrogen and oxygen isotopes of water to investigate the role of fog in the hydrology of two ecosystems in Sonoma County, CA. The two study sites were the Bodega Marine Laboratory (BML) at 13 m elevation at the coast, and the Pepperwood Preserve at 375 m elevation in the North Coast Range, 44 km inland to the northeast. During a 1-week period in July 2014, fog samples were collected at 30-minute intervals using small active-strand cloudwater collectors (mini-CASCCs) and automated precipitation samplers. Four overnight fog events were collected at the Pepperwood site, while at the BML site, the liquid water content of the fog was very low, and only one cumulative sample was obtained. Groundwater samples from five wells and seven springs, and surface water samples from two streams were collected in and around the Pepperwood Preserve and on Bodega Head near BML. Droplet size distribution of the fog at BML was monitored, and at both sites, air temperature was measured at 10-minute intervals to assess variation in the δ 18O and δ 2H values of fog related to temperature. Relative humidity, wind speed, and wind direction were obtained from weather stations at each site. Previous work in this area (Coplen et al., in prep) documented the isotopic signatures of winter precipitation from frontal systems and landfalling Pacific storms. These results will be combined with the isotopic signature of summer fog water to determine whether fog contributes to shallow groundwater recharge or streamflow at the two sites.
Huang, Chuyi; Chu, Heling; Zhang, Yan; Wang, Xiaoping
2018-01-01
Freezing of gait (FOG) is a gait disorder featured by recurrent episodes of temporary gait halting and mainly found in advanced Parkinson's disease (PD). FOG has a severe impact on the quality of life of patients with PD. The pathogenesis of FOG is unclear and considered to be related to several brain areas and neural circuits. Its close connection with cognitive disorder has been proposed and some researchers explain the pathogenesis using the cognitive model theory. FOG occurs concurrently with cognitive disorder in some PD patients, who are poorly responsive to medication therapy. Deep brain stimulation (DBS) proves effective for FOG in PD patients. Cognitive impairment plays a role in the formation of FOG. Therefore, if DBS works by improving the cognitive function, both two challenging conditions can be ameliorated by DBS. We reviewed the clinical studies related to DBS for FOG in PD patients over the past decade. In spite of the varying stimulation parameters used in different studies, DBS of either subthalamic nucleus (STN) or pedunculopontine nucleus (PPN) alone or in combination can improve the symptoms of FOG. Moreover, the treatment efficacy can last for 1-2 years and DBS is generally safe. Although few studies have been conducted concerning the use of DBS for cognitive disorder in FOG patients, the existing studies seem to indicate that PPN is a potential therapeutic target to both FOG and cognitive disorder. However, most of the studies have a small sample size and involve sporadic cases, so it remains uncertain which nucleus is the optimal target of stimulation. Prospective clinical trials with a larger sample size are needed to systematically assess the efficacy of DBS for FOG and cognitive disorder.
Numerical Modeling of Persistent Winter Fog over the Indo-Gangetic Plains
NASA Astrophysics Data System (ADS)
Ghimire, S.; Adhikary, B.; Praveen, P. S.; Panday, A. K.
2017-12-01
Every winter the Indo-Gangetic Plains (IGP) in northern South Asia; bounded by the great Himalayas in the north, are periodically covered by dense and persistent fog that severely impacts day-to-day activities of several hundred million people. The fog can stretch over several hundred kilometers and last several days in many locations. Despite the fog's high impact, there are very limited in-situ observations available to characterize persistent fog episodes. Also, there has been very little success to date in accurately predicting the fog occurrence and extent over a larger area such as IGP. This study will present insights into the performance of the Weather Research and Forecasting (WRF) model simulating persistent winter fog prediction in the IGP region, compared to satellite observations and in-situ measurements. Since fog is not a prognostic variable in WRF, the study presents results based on multi-rule diagnostic algorithms published in peer reviewed journals. In addition, fog episodes were analyzed using the Air Force Weather Agency (AFWA) diagnostics package available for WRF. On a regional scale, MODIS data onboard the TERRA and AQUA satellites are used to evaluate model performance skills. At a local scale, the model is evaluated at two sites in the southern Nepal, Lumbini and Chitwan, located in the IGP. Lumbini and Chitwan observatories have Luftt and Biral weather sensors which allow monitoring presence of fog, visibility range and surface meteorology. In addition, for Chitwan, data from DMT Fog Monitor (FM 120) and Luftt CHM 15K Ceilometer were used to compare model performance for liquid-water content and planetary boundary layer during foggy and non-foggy days.
On the fog variability over south Asia
NASA Astrophysics Data System (ADS)
Syed, F. S.; Körnich, H.; Tjernström, M.
2012-12-01
An increasing trend in fog frequencies over south Asia during winter in the last few decades has resulted in large economical losses and has caused substantial difficulties in the daily lives of people. In order to better understand the fog phenomenon, we investigated the climatology, inter-annual variability and trends in the fog occurrence from 1976 to 2010 using observational data from 82 stations, well distributed over India and Pakistan. Fog blankets large area from Pakistan to Bangladesh across north India from west to east running almost parallel to south of the Himalayas. An EOF analysis revealed that the fog variability over the whole region is coupled and therefore must be governed by some large scale phenomenon on the inter-annual time scale. Significant positive trends were found in the fog frequency but this increase is not gradual, as with the humidity, but comprises of two distinct regimes shifts, in 1990 and 1998, with respect to both mean and variance. The fog is also detected in ERA-Interim 3 hourly, surface and model level forecast data when using the concept of "cross-over temperature" combined with boundary layer stability. This fog index is able to reproduce the regime shift around 1998 and shows that the method can be applied to analyze fog over south Asia. The inter-annual variability seems to be associated with the wave train originating from the North Atlantic in the upper troposphere that when causing higher pressure over the region results in an increased boundary layer stability and surface-near relative humidity. The trend and shifts in the fog occurrence seems to be associated with the gradual increasing trend in relative humidity from 1990 onwards.
NASA Astrophysics Data System (ADS)
Patil, D. L.; Gautam, R.; Rizvi, S.; Singh, M. K.
2016-12-01
The persistent and widespread winter fog impacts the Indo-Gangetic Plains (IGP) on an annual basis, disrupting day-to-day lives of millions of people in parts of northern India, Pakistan, Nepal and Bangladesh. The IGP is a densely-populated region located south of the Himalaya, in the northern parts of south Asia. During the past three decades or so, associated with growing population and energy demands, the IGP has witnessed strong upward trends in air pollution, particularly leading to poor air quality in the winter months. Co-occurring with the dense haze over the IGP, severe fog episodes persist throughout the months of December and January. Building on our recent work on satellite-based detection of fog, we have further extended the detection capability towards the development of a near-real time (NRT) fog monitoring system using satellite radiances and products. Here, we use multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for NRT fog monitoring over the IGP for both daytime as well as nighttime. Specifically, the nighttime fog detection algorithm employs a bi-spectral brightness temperature difference technique between two spectral channels: 3.9 μm and 11 μm. Our ongoing efforts also include extending fog detection capability in NRT to geostationary satellites, for providing continuous monitoring of the onset, evolution and spatial-temporal variation of fog, as well as the geospatial integration of surface meteorological observations of visibility, relative humidity, temperature. We anticipate that the ongoing and future development of a fog monitoring system may be of particular assistance to air and rail transportation management, as well as of general interest to the public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.
UAV applications for thermodynamic profiling: Emphasis on ice fog research
NASA Astrophysics Data System (ADS)
Gultepe, Ismail; Heymsfield, Andrew J.; Fernando, Harindra J. S.; Hoch, Sebastian W.; Ware, Randolph
2016-04-01
Ice fog occurs often over the Arctic, cold climatic, and mountainous regions for about 30% of time where temperature (T) can go down to -10°C or below. Ice Nucleation (IN) and cooling processes play an important role by the controlling the intensity of ice fog conditions that affect aviation application, transportation, and local climate. Ice fog can also occur at T above -10°C but close to 0°C it occurs due to freezing of supercooled droplets that include an IN. To better document ice fog conditions, observations from the ice fog events of the Indirect and Semi-Direct Aerosol effects on Climate (ISDAC) project, Barrow, Alaska, Fog Remote Sensing And Modeling (FRAM) project Yellowknife, Northwest Territories, and the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) project, Heber City, Utah, were analyzed.. Measurements difficulties of small ice fog particles at cold temperatures and low-level flying restrictions prevent observations from aircraft within the surface boundary layer. However, unmanned Aerial Vehicles (UAVs) can be operated safely to measure IN number concentration, Relative Humidity with respect to ice (RHi), T, horizontal wind speed (Uh) and direction, and ice crystal spectra less than about 500 micron. Thermodynamic profiling by a Radiometrics Profiling Microwave Radiometer (PMWR) and Vaisala CL51 ceilometer was used to describe ice fog conditions in the vertical and its time development. In this presentation, ice fog characteristics and its thermodynamic environment will be presented using both ground-based and airborne platforms such as a UAV with new sensors. Some examples of measurements from the UAV for future research, and challenges related to both ice fog measurements and visibility parameterization will also be presented.
Ikeda, Ken; Hirayama, Takehisa; Takazawa, Takanori; Kawabe, Kiyokazu; Iwasaki, Yasuo
Objective Parkinson's disease (PD) is characterized by the progressive degeneration of the nigrostriatal dopaminergic neurons. Rotigotine is a non-ergot dopamine receptor agonist (DA). Its transdermal patch maintains the effective concentrations for 24 hours. Freezing of gait (FOG) is a common and devastating symptom in PD patients. Little is known about therapeutic effects of rotigotine on FOG in PD patients. Herein we compared how three non-ergot DAs of rotigotine, pramipexole LA and ropinirole CR influence FOG, besides classical motor deficits in PD patients. Methods Rotigotine (maintenance doses of 9-27 mg/day) was administered in 51 patients, 36 patients received pramipexole LA (1.5-4.5 mg/day) and 35 patients received ropinirole CR (8-16 mg/day). The Unified PD Rating Scale (UPDRS) parts I-IV, FOG questionnaire (16 items) and wearing off time were examined from baseline to 7 months after DA administration. UPDRS parts I-IV were evaluated during on time and FOG was recorded during off time if patients experienced wearing off. Results A total of 111 patients completed the study. UPDRS parts II-III scores and wearing off time were significantly reduced after each DA treatment compared to baseline. FOG was found in 54 patients (49%). Most patients developed FOG during off time only. FOG scores were significantly decreased at 2 months after rotigotine treatment whereas pramipexole LA and ropinirole treatment did not alter FOG scores. Conclusion The present study indicates that transdermal patch of rotigotine attenuated the FOG off time. The similar binding affinities to dopamine receptors between rotigotine and dopamine, and 24 hours steady hemodynamics could contribute to the therapeutic mechanism of rotigotine on FOG in PD patients with wearing off.
Ikeda, Ken; Hirayama, Takehisa; Takazawa, Takanori; Kawabe, Kiyokazu; Iwasaki, Yasuo
2016-01-01
Objective Parkinson's disease (PD) is characterized by the progressive degeneration of the nigrostriatal dopaminergic neurons. Rotigotine is a non-ergot dopamine receptor agonist (DA). Its transdermal patch maintains the effective concentrations for 24 hours. Freezing of gait (FOG) is a common and devastating symptom in PD patients. Little is known about therapeutic effects of rotigotine on FOG in PD patients. Herein we compared how three non-ergot DAs of rotigotine, pramipexole LA and ropinirole CR influence FOG, besides classical motor deficits in PD patients. Methods Rotigotine (maintenance doses of 9-27 mg/day) was administered in 51 patients, 36 patients received pramipexole LA (1.5-4.5 mg/day) and 35 patients received ropinirole CR (8-16 mg/day). The Unified PD Rating Scale (UPDRS) parts I-IV, FOG questionnaire (16 items) and wearing off time were examined from baseline to 7 months after DA administration. UPDRS parts I-IV were evaluated during on time and FOG was recorded during off time if patients experienced wearing off. Results A total of 111 patients completed the study. UPDRS parts II-III scores and wearing off time were significantly reduced after each DA treatment compared to baseline. FOG was found in 54 patients (49%). Most patients developed FOG during off time only. FOG scores were significantly decreased at 2 months after rotigotine treatment whereas pramipexole LA and ropinirole treatment did not alter FOG scores. Conclusion The present study indicates that transdermal patch of rotigotine attenuated the FOG off time. The similar binding affinities to dopamine receptors between rotigotine and dopamine, and 24 hours steady hemodynamics could contribute to the therapeutic mechanism of rotigotine on FOG in PD patients with wearing off. PMID:27725534
A heavy sea fog event over the Yellow Sea in March 2005: Analysis and numerical modeling
NASA Astrophysics Data System (ADS)
Gao, Shanhong; Lin, Hang; Shen, Biao; Fu, Gang
2007-02-01
In this paper, a heavy sea fog episode that occurred over the Yellow Sea on 9 March 2005 is investigated. The sea fog patch, with a spatial scale of several hundred kilometers at its mature stage, reduced visibility along the Shandong Peninsula coast to 100 m or much less at some sites. Satellite images, surface observations and soundings at islands and coasts, and analyses from the Japan Meteorology Agency (JMA) are used to describe and analyze this event. The analysis indicates that this sea fog can be categorized as advection cooling fog. The main features of this sea fog including fog area and its movement are reasonably reproduced by the Fifth-generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5). Model results suggest that the formation and evolution of this event can be outlined as: (1) southerly warm/moist advection of low-level air resulted in a strong sea-surface-based inversion with a thickness of about 600 m; (2) when the inversion moved from the warmer East Sea to the colder Yellow Sea, a thermal internal boundary layer (TIBL) gradually formed at the base of the inversion while the sea fog grew in response to cooling and moistening by turbulence mixing; (3) the sea fog developed as the TIBL moved northward and (4) strong northerly cold and dry wind destroyed the TIBL and dissipated the sea fog. The principal findings of this study are that sea fog forms in response to relatively persistent southerly warm/moist wind and a cold sea surface, and that turbulence mixing by wind shear is the primary mechanism for the cooling and moistening the marine layer. In addition, the study of sensitivity experiments indicates that deterministic numerical modeling offers a promising approach to the prediction of sea fog over the Yellow Sea but it may be more efficient to consider ensemble numerical modeling because of the extreme sensitivity to model input.
Influence of fogging lenses and cycloplegia on open-field automatic refraction.
Queirós, A; González-Méijome, J; Jorge, J
2008-07-01
To compare refractive values measured with and without cycloplegia, or with fogging lenses, using an open-field auto-refractor. One hundred and forty-two young adults were enrolled from a university population; 96 were female (67.6%) and 46 were male (32.4%), the age range was 18-26 years (mean 22.3 +/- 3.7 years). The refraction measurement was obtained for the right eye of each subject with the Grand Seiko Auto Ref/Keratometer WAM-5500 (GS) under three conditions, always in this sequence: (1) without cycloplegia (GS), (2) without cycloplegia but using a + 2.00 D fogging lens (GS_2D) and (3) with cycloplegia (GS_cycl). When the average values of spherical equivalent were compared, both accommodation control strategies were almost equally successful: GS, M = -0.85 +/- 2.21 D; GC_2D, M = -0.53 +/- 2.10 D and GS_cycl, M = -0.57 +/- 2.24 D (Kruskal-Wallis test, p < 0.001). When the results were analysed separately for different refractive groups, emmetropes and hyperopes show statistically significant differences while myopes did not. When both accommodation strategies were compared there was a trend for more myopic subjects to display more negative values under cycloplegia, while low myopes, emmetropes and hyperopes tend to display more negative values with the +2.00 D fogging lenses, suggesting this was less effective for accommodation control. Over-refraction through +2.00 D fogging lenses is useful to achieve additional relaxation of the accommodative response in a similar way to cycloplegia when open-field autorefraction is performed in young adults.
Ritter, Axel; Regalado, Carlos M; Aschan, Guido
2009-04-01
The ecophysiologic role of fog in the evergreen heath-laurel 'laurisilva' cloud forests of the Canary Islands has not been unequivocally demonstrated, although it is generally assumed that fog water is important for the survival and the distribution of this relict paleoecosystem of the North Atlantic Macaronesian archipelagos. To determine the role of fog in this ecosystem, we combined direct transpiration measurements of heath-laurel tree species, obtained with Granier's heat dissipation probes, with micrometeorological and artificial fog collection measurements carried out in a 43.7-ha watershed located in the Garajonay National Park (La Gomera, Canary Islands, Spain) over a 10-month period. Median ambient temperature spanned from 7 to 15 degrees C under foggy conditions whereas higher values, ranging from 9 to 21 degrees C, were registered during fog-free periods. Additionally, during the periods when fog water was collected, global solar radiation values were linearly related (r2=0.831) to those under fog-free conditions, such that there was a 75+/-1% reduction in median radiation in response to fog. Fog events greatly reduced median diurnal tree transpiration, with rates about 30 times lower than that during fog-free conditions and approximating the nighttime rates in both species studied (the needle-like leaf Erica arborea L. and the broadleaf Myrica faya Ait.). This large decrease in transpiration in response to fog was independent of the time of the day, tree size and species and micrometeorological status, both when expressed on a median basis and in cumulative terms for the entire 10-month measuring period. We conclude that, in contrast to the turbulent deposition of fog water droplets on the heath-laurel species, which may be regarded as a localized hydrological phenomenon that is important for high-altitude wind-exposed E. arborea trees, the cooler, wetter and shaded microenvironment provided by the cloud immersion belt represents a large-scale effect that is crucial for reducing the transpirational water loss of trees that have profligate water use, such as those of the 'laurisilva'.
Possible Climate Change Influences on Continued Reduction of Dense Fog in Southern California
NASA Astrophysics Data System (ADS)
Ladochy, S.; Witiw, M.
2010-07-01
Dense fog appears to be decreasing in many parts of the world, especially in cities. An earlier study showed that dense fog (visibility < 400 m) was disappearing in the urban southern California area as well. Using hourly data from 1948 to the present, we looked at the relationship between fog events and contributing factors in the region along with trends over time. We showed that the decrease in dense fog events could be explained mainly by declining particulate levels, Pacific SSTs, and increased urban warming. Dense fog is most prevalent along the coast and decreases rapidly inland, so the influence of the Pacific should be large. In particular, the Pacific Decadal Oscillation (PDO) and the Southern Oscillation signals can be seen in fog frequencies as well as in the contributing factors. Results show a decrease in the occurrence of dense fog at two airports in close proximity to the Pacific Ocean, LAX and LGB. Occurrence of the frequency of low visibilities at these two locations was highly correlated with the phases of the PDO. While examining data from LAX, we saw a frequency of dense fog that reached over 300 hours in 1950, but occurrence was down to zero in 1997. Since 1997, there has been a bit of a recovery with both 2008 and 2009 recording over 30 hours of dense fog each. In the present study, we continue to examine the relationships that control the frequency of dense fog in coastal southern California. To remove urban influence, we also included Vandenberg Air Force Base, located in a relatively sparsely populated area. While particulates, urban heat island and Pacific SSTs are all contributing factors, we now speculate on the direct and indirect influences of climate change on continued decreases in dense fog. Case studies of local and regional dense fog in southern California point to the importance of strong, low inversions and to a lesser contributor, Santa Ana winds. Both are associated with large-scale atmospheric circulation patterns, which have changed markedly over the period of study.
The Continued Reduction in Dense Fog in the Southern California Region: Possible Causes
NASA Astrophysics Data System (ADS)
LaDochy, S.; Witiw, M.
2012-05-01
Dense fog appears to be decreasing in many parts of the world, especially in western cities. Dense fog (visibility <400 m) is disappearing in the urban southern California area also. There the decrease in dense fog events can be explained mainly by declining particulate levels, Pacific sea surface temperatures (SST), and increased urban warming. Using hourly data from 1948 to the present, we looked at the relationship between fog events in the region and contributing factors and trends over time. Initially a strong relationship was suggested between the occurrence of dense fog and the phases of an atmosphere-ocean cycle: the Pacific Decadal Oscillation (PDO). However, closer analysis revealed the importance to fog variability of an increasing urban heat island and the amount of atmospheric suspended particulate matter. Results show a substantial decrease in the occurrence of very low visibilities (<400 m) at the two airport stations in close proximity to the Pacific Ocean, LAX (Los Angeles International) and LGB (Long Beach International). A downward trend in particulate concentrations, coupled with an upward trend in urban temperatures were associated with the decrease in dense fog occurrence at both LAX and LGB. LAX dense fog that reached over 300 h in 1950 dropped steadily, with 0 h recorded in 1997. Since 1997, there has been a slight recovery with both 2008 and 2009 recording over 30 h of dense fog at both locations. In this study we examine whether the upturn is a temporary reversal of the trend. To remove the urban effect, we also included fog data from Vandenberg Air Force Base (VBG), located in a relatively sparsely populated area approximately 200 km to the north of metropolitan Los Angeles. Particulates, urban heat island, and Pacific SSTs all seem to be contributing factors to the decrease in fog in southern California, along with large-scale atmosphere-ocean interaction cycles. Case studies of local and regional dense fog in southern California point to the importance of strong, low inversions and to a lesser contributor, Santa Ana winds. Both are associated with large-scale atmospheric circulation patterns, which have changed markedly over the period of studied. These changes point to continued decreases in dense fog in the region.
Yang, Xiaolong; Song, Jinlong; Liu, Junkai; Liu, Xin; Jin, Zhuji
2017-08-18
Superhydrophobic-superhydrophilic patterned surfaces have attracted more and more attention due to their great potential applications in the fog harvest process. In this work, we developed a simple and universal electrochemical-etching method to fabricate the superhydrophobic-superhydrophilic patterned surface on metal superhydrophobic substrates. The anti-electrochemical corrosion property of superhydrophobic substrates and the dependence of electrochemical etching potential on the wettability of the fabricated dimples were investigated on Al samples. Results showed that high etching potential was beneficial for efficiently producing a uniform superhydrophilic dimple. Fabrication of long-term superhydrophilic dimples on the Al superhydrophobic substrate was achieved by combining the masked electrochemical etching and boiling-water immersion methods. A long-term wedge-shaped superhydrophilic dimple array was fabricated on a superhydrophobic surface. The fog harvest test showed that the surface with a wedge-shaped pattern array had high water collection efficiency. Condensing water on the pattern was easy to converge and depart due to the internal Laplace pressure gradient of the liquid and the contact angle hysteresis contrast on the surface. The Furmidge equation was applied to explain the droplet departing mechanism and to control the departing volume. The fabrication technique and research of the fog harvest process may guide the design of new water collection devices.
Pesticide occurrence and distribution in fog collected near Monterey, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schomburg, C.J.; Glotfelty, D.E.; Seiber, J.N.
The authors analyzed pesticides in air and fog in several fog events sampled near Monterey, CA, to determine whether the uptake of pesticides in advected oceanic fog was different from uptake in fog forming under stagnant inversion conditions in California's Central Valley in the winter. Data for several pesticides common to both ares showed that the pesticide content and distribution were remarkable similar in the two locations. The conversion of organophosphorus insecticides to their corresponding oxons, and aqueous-phase enrichment factors, were also very similar. Evidence is presented to support the hypothesis that enhanced pesticide concentration in fogwater is caused bymore » strongly sorptive nonfilterable particles and colloids in the fog liquid that are derived from atmospheric particles.« less
Matsuura, Keita; Kajikawa, Hiroyuki; Tabei, Ken-Ichi; Satoh, Masayuki; Kida, Hirotaka; Nakamura, Naoko; Tomimoto, Hidekazu
2018-01-01
Istradefylline is useful in treating the wearing-off state in Parkinson's disease (PD). We investigated the effectiveness of istradefylline (ISD) in improving arousal, sleep, and gait deficits in patients with PD. We examined 14 patients with PD treated with ISD. We assessed the patients using the Unified Parkinson's Disease Rating Scale, Parkinson's Disease Questionnaire, Timed Up-and-Go test (TUG), Freezing of Gait Questionnaire (FOG-Q), Epworth Sleepiness Scale (ESS), and Parkinson's Disease Sleep Scale (PDSS) before and 1 month after ISD use. ESS scores were significantly lower 1 month after the start of ISD treatment (6.79±6.50) than before the intervention (8.14±6.15, Wilcoxon signed-rank test, p=0.0033). PDSS scores were not significantly different 1 month after beginning the treatment (112±23mm) when compared to those before the intervention (110±27mm, Wilcoxon signed-rank test, p=0.40). TUG scores were not changed after 1 month of ISD use (14.9±8.3s) when compared to those before the intervention (21.3±30.0s, Wilcoxon signed-rank test, p=0.59). Although these measures were not significantly affected by ISD treatment, some patients remarkably improved after the treatment. FOG-Q scores were significantly lower 1 month after the beginning of treatment (9.79±7.16) than those before the intervention (12.14±5.82, Wilcoxon signed-rank test, p=0.030). ISD may improve daytime sleepiness and FOG in patients with PD. Copyright © 2017 Elsevier B.V. All rights reserved.
Inhibition, Executive Function, and Freezing of Gait
Cohen, Rajal G.; Klein, Krystal A.; Nomura, Mariko; Fleming, Michael; Mancini, Martina; Giladi, Nir; Nutt, John G.; Horak, Fay B.
2014-01-01
Background Studies suggest that freezing of gait (FoG) in people with Parkinson’s disease (PD) is associated with declines in executive function (EF). However, EF is multi-faceted, including three dissociable components: inhibiting prepotent responses, switching between task sets, and updating working memory. Objective This study investigated which aspect of EF is most strongly associated with FoG in PD. Method Three groups were studied: adults with PD (with and without FoG) and age-matched, healthy adults. All participants completed a battery of cognitive tasks previously shown to discriminate among the three EF components. Participants also completed a turning-in-place task that was scored for FoG by neurologists blind to subjects’ self-reported FoG. Results Compared to both other groups, participants with FoG showed significant performance deficits in tasks associated with inhibitory control, even after accounting for differences in disease severity, but no significant deficits in task-switching or updating working memory. Surprisingly, the strongest effect was an intermittent tendency of participants with FoG to hesitate, and thus miss the response window, on go trials in the Go-Nogo task. The FoG group also made slower responses in the conflict condition of the Stroop task. Physician-rated FoG scores were correlated both with failures to respond on go trials and with failures to inhibit responses on nogo trials in the Go-Nogo task. Conclusion These results suggest that FoG is associated with a specific inability to appropriately engage and release inhibition, rather than with a general executive deficit. PMID:24496099
Coastal Fog Sustains Summer Baseflow in Northern Californian Watershed
NASA Astrophysics Data System (ADS)
Chung, M.; Dufour, A.; Leonardson, R.; Thompson, S. E.; Dawson, T. E.
2015-12-01
The Mediterranean climate of Northern California imposes significant water stress on ecosystems and water resources during the dry summer months. During summer, frequently the only water inputs occur as occult precipitation, in the form of fog and dew. In this study, we characterized the role of coastal fog, a dominant feature of Northern Californian coastal ecosystems and a widespread phenomenon associated with deep marine upwelling in west coast, arid, and Mediterranean climates worldwide. We monitored fog occurrence and intensity, throughfall following canopy interception of fog, soil moisture, streamflow, and meteorological variables, and made visual observations of the spatial extent of fog using time-lapse imagery in Upper Pilarcitos Creek Watershed (managed by San Francisco Public Utilities Commission as part of the San Francisco area water supply). We adopted a stratified sampling design that captured the watershed's elevation gradient, forest-edge versus interior locations, and different vegetation cover. The point-scale observations of throughfall inputs and transpiration suppression, estimated from the Penman equation, were upscaled using such watershed features and the observed fog "footprint" identified from the time-lapse images. When throughfall input and fog-induced transpiration suppression were incorporated into the operational watershed model, they improved estimates of summer baseflow, which remained persistently higher than could be explained without the fog effects. Fog, although providing relatively small volumetric inputs to the water balance, appears to offer significant relief of water stress throughout the terrestrial and aquatic components of the coastal Californian ecosystem and thus should be accounted for when assessing water stress availability in dry ecosystems.
NASA Astrophysics Data System (ADS)
Liu, Qian; Cao, Ziqi; Sheng, Lifang; Diao, Yina; Wang, Wencai; Zhou, Yang; Qiu, Jingyi
2018-05-01
The summer monsoon has recently been hypothesized to influence haze-fog events over China, but the detailed processes involved have yet to be determined. In the present study, we found that the haze-fog-prone area swings over eastern China during boreal summer (May to September), coinciding with the movement of the subtropical monsoon convergence belt (hereinafter referred to simply as the "convergence belt"). Further investigation showed that the convergence belt modulates the spatial distribution of the haze-fog-prone area by altering the regional atmospheric conditions. When the warm and wet summer monsoon air mass pushes northwards and meets with cold air, a frontal zone (namely, the convergence belt) forms. The ascent of warm and wet air along the front strengthens the atmospheric stability ahead of the frontal zone, while the descent of cold and dry air weakens the vertical diffusion at the same place. These processes result in an asymmetric distribution of haze-fog along the convergence belt. Based on the criterion of absolute stability and downdraft, these atmospheric conditions favorable for haze-fog are able to identify 57-79% of haze-fog-prone stations, and the anticipation accuracy is 61-71%. After considering the influence of air pollutants on haze-fog occurrence, the anticipation accuracy rises to 78-79%. Our study reveals a connection between local haze-fog weather phenomena and regional atmospheric conditions and large-scale circulation, and demonstrates one possible mechanism for how the summer monsoon influences the distribution of haze-fog in eastern China.
Chainansamit, Seksun; Piromchai, Patorn; Anantpinijwatna, Intira; Kasemsiri, Pornthep; Thanaviratananich, Sanguansak
2015-08-01
To compare the minimization of the fog condensation during nasal endoscopy between a commercial anti-fogging agent and baby shampoo. This randomized double-blinded matched pair study was conducted at the Department of Otorhinolaryngology, Faculty of Medicine, Khon Kaen University during February 4, 2013 to March 14, 2013. The commercial anti-fogging solution (Ultrastop®) and baby shampoo solution (Johnson's® no more tear®) were compared. A computer generated randomization was performed to select the solution applying on the lens for nasal endoscopy of the right nasal cavity. The other solution was then used for the left one. Three passes of endoscopy were performed to examine the floor of the nose, the sphenoethmoidal recess and the middle meatus area which spent about 30 seconds for each time of endoscopy. The time to become foggy on the lens and the preferred solution assessed by the endoscopists were recorded. There were 71 eligible patients recruited in the study, 37 males (52.1%) and 34 females (47.9%). There was no fogging during a 30-second nasal endoscopy either by baby shampoo or commercial anti-fogging solution. However, 9.86% (95% C12.75-16.97) of endoscopists preferred commercial anti-fogging agent, 7.04% (95% CI 0.94-13.14) preferred baby shampoo and 83.10% (95% CI 74.16-92.03) had equal satisfaction. Both agents had no statistically significant difference for preventing foggy on the lens. Baby shampoo is an effective agent to prevent fogging during nasal endoscopy and comparable with the commercial anti-fogging agent.
Alternative Agents to Prevent Fogging in Head and Neck Endoscopy
Piromchai, Patorn; Kasemsiri, Pornthep; Thanaviratananich, Sanguansak
2011-01-01
Background: The essential factor for diagnosis and treatment of diseases in head and neck endoscopy is the visibility of the image. An anti-fogging agent can reduce this problem by minimizing surface tension to prevent the condensation of water in the form of small droplets on a surface. There is no report on the use of hibiscrub® or baby shampoo to reduce fogging in the literature. The objective of this study was to compare the efficacy between commercial anti-fogging agent, hibiscrub® and baby shampoo to reduce fogging for the use in head and neck endoscopy. Methods: The study was conducted at the Department of Otorhinolaryngology, Faculty of Medicine, Khon Kaen University in August 2010. Commercial anti-fogging agent, baby shampoo and hibiscrub® were applied on rigid endoscope lens before putting them into a mist generator. The images were taken at baseline, 15 seconds, 30 seconds and 1 minute. The images’ identifiers were removed before they were sent to two evaluators. A visual analogue scale (VAS) was used to rate the image quality from 0 to 10. Results: The difference in mean VAS score between anti-fogging agent, baby shampoo and hibiscrub® versus no agent were 5.46, 4.45 and 2.1 respectively. The commercial anti-fogging agent and baby shampoo had most protective benefit and performed significantly better than no agent (P = 0.05). Conclusions: Baby shampoo is an effective agent to prevent fogging during head and neck endoscopy and compares favourably with commercial anti-fogging agent. PMID:24179399
Analysis and high-resolution modeling of a dense sea fog event over the Yellow Sea
NASA Astrophysics Data System (ADS)
Fu, Gang; Guo, Jingtian; Xie, Shang-Ping; Duan, Yihong; Zhang, Meigen
2006-10-01
A ubiquitous feature of the Yellow Sea (YS) is the frequent occurrence of the sea fog in spring and summer season. An extremely dense sea fog event was observed around the Shandong Peninsula in the morning of 11 April 2004. This fog patch, with a spatial scale of several hundreds kilometers and lasted about 20 h, reduced the horizontal visibility to be less than 20 m in some locations, and caused a series of traffic collisions and 12 injuries on the coastal stretch of a major highway. In this paper, almost all available observational data, including Geostationary Operational Environmental Satellite (GOES)-9 visible satellite imagery, objectively reanalyzed data of final run analysis (FNL) issued by the National Center for Environmental Prediction (NCEP) and the sounding data of Qingdao and Dalian, as well as the latest 4.4 version of Regional Atmospheric Modeling System (RAMS) model, were employed to investigate this sea fog case. Its evolutionary process and the environmental conditions that led to the fog formation were examined by using GOES-9 visible satellite imagery and sounding observations. In order to better understand the fog formation mechanism, a high-resolution RAMS modeling of 4 km × 4 km was designed. The modeling was initialized and validated by FNL data. A 30-h modeling that started from 18 UTC 10 April 2004 reproduced the main characteristics of this fog event. The simulated lower horizontal visibility area agreed reasonably well with the sea fog region identified from the satellite imagery. Advection cooling effect seemed to play a significant role for the fog formation.
Prediction of fog/visibility over India using NWP Model
NASA Astrophysics Data System (ADS)
Singh, Aditi; George, John P.; Iyengar, Gopal Raman
2018-03-01
Frequent occurrence of fog in different parts of northern India is common during the winter months of December and January. Low visibility conditions due to fog disrupt normal public life. Visibility conditions heavily affect both surface and air transport. A number of flights are either diverted or cancelled every year during the winter season due to low visibility conditions, experienced at different airports of north India. Thus, fog and visibility forecasts over plains of north India become very important during winter months. This study aims to understand the ability of a NWP model (NCMRWF, Unified Model, NCUM) with a diagnostic visibility scheme to forecast visibility over plains of north India. The present study verifies visibility forecasts obtained from NCUM against the INSAT-3D fog images and visibility observations from the METAR reports of different stations in the plains of north India. The study shows that the visibility forecast obtained from NCUM can provide reasonably good indication of the spatial extent of fog in advance of one day. The fog intensity is also predicted fairly well. The study also verifies the simple diagnostic model for fog which is driven by NWP model forecast of surface relative humidity and wind speed. The performance of NWP model forecast of visibility is found comparable to that from simple fog model driven by NWP forecast of relative humidity and wind speed.
Multidecadal simulation of coastal fog with a regional climate model
NASA Astrophysics Data System (ADS)
O'Brien, Travis A.; Sloan, Lisa C.; Chuang, Patrick Y.; Faloona, Ian C.; Johnstone, James A.
2013-06-01
In order to model stratocumulus clouds and coastal fog, we have coupled the University of Washington boundary layer model to the regional climate model, RegCM (RegCM-UW). By comparing fog occurrences observed at various coastal airports in the western United States, we show that RegCM-UW has success at modeling the spatial and temporal (diurnal, seasonal, and interannual) climatology of northern California coastal fog. The quality of the modeled fog estimate depends on whether coast-adjacent ocean or land grid cells are used; for the model runs shown here, the oceanic grid cells seem to be most appropriate. The interannual variability of oceanic northern California summertime fog, from a multi-decadal simulation, has a high and statistically significant correlation with the observed interannual variability ( r = 0.72), which indicates that RegCM-UW is capable of investigating the response of fog to long-term climatological forcing. While RegCM-UW has a number of aspects that would benefit from further investigation and development, RegCM-UW is a new tool for investigating the climatology of coastal fog and the physical processes that govern it. We expect that with appropriate physical parameterizations and moderate horizontal resolution, other climate models should be capable of simulating coastal fog. The source code for RegCM-UW is publicly available, under the GNU license, through the International Centre for Theoretical Physics.
The influence of sea fog inhomogeneity on its microphysical characteristics retrieval
NASA Astrophysics Data System (ADS)
Hao, Zengzhou; Pan, Delu; Gong, Fang; He, Xianqiang
2008-10-01
A study on the effect of sea fog inhomogeneity on its microphysical parameters retrieval is presented. On the condition that the average liquid water content is linear vertically and the power spectrum spectral index sets 2.0, we generate a 3D sea fog fields by controlling the total liquid water contents greater than 0.04g/m3 based on the iterative method for generating scaling log-normal random field with an energy spectrum and a fragmentized cloud algorithm. Based on the fog field, the radiance at the wavelengths of 0.67 and 1.64 μm are simulated with 3D radiative transfer model SHDOM, and then the fog optical thickness and effective particle radius are simultaneously retrieved using the generic look-up-table AVHRR cloud algorithm. By comparing those fog optical thickness and effective particle radius, the influence of sea fog inhomogeneity on its properties retrieval is discussed. It exhibits the system bias when inferring sea fog physical properties from satellite measurements based on the assumption of plane parallel homogeneous atmosphere. And the bias depends on the solar zenith angel. The optical thickness is overrated while the effective particle radius is under-estimated at two solar zenith angle 30° and 60°. Those results show that it is necessary for sea fog true characteristics retrieval to develop a new algorithm using the 3D radiative transfer.
Fog deposition to a Tillandsia carpet in the Atacama Desert
NASA Astrophysics Data System (ADS)
Westbeld, A.; Klemm, O.; Grießbaum, F.; Sträter, E.; Larrain, H.; Osses, P.; Cereceda, P.
2009-09-01
In the Atacama Desert, one of the driest places on earth, fog deposition plays an important role for the water balance and for the survival of vulnerable ecosystems. The eddy covariance method, previously applied for the quantification of fog deposition to forests in various parts of the world, was used for the first time to measure deposition of fog water to a desert. In this exploratory study we estimate the amount of water available for the ecosystem by deposition and determine the relevant processes driving fog deposition. This is especially important for the species Tillandsia landbecki living in coastal Atacama at the limit of plant existence with fog and dew being the only sources of water. Between 31 July and 19 August 2008 approximately 2.5 L m-2 of water were made available through deposition. Whole-year deposition was estimated as 25 L m-2. Turbulent upward fluxes occurred several times during the evenings and are explained by the formation of radiation fog. In connection with that, underestimates of the deposition are assumed. More detailed studies covering various seasons and all parameters and fluxes contributing to the local energy balance are suggested. This will help to further develop understanding about the processes of (i) deposition of water to the desert, and (ii) intensification of advection fog through additional formation of radiation fog.
NASA Astrophysics Data System (ADS)
Srivastava, S. K., Sr.; Sharma, D. A.; Sachdeva, K.
2015-12-01
Long term ground observations (1971-2010) have been analyzed over Ghaziabad city, National Capital Region to understand the characteristics of fog phenomenon and its relevance during winter months. We observed mean maximum fog occurrence during December (~23 days) followed by January (~21 days), November (~20 days), February (~14 days) and October (~11 days) respectively. A remarkable increase has been noticed in fog occurrence during October-to-February in last four decades. During 1971-80 to 2001-2010 the mean frequency of fog occurrence had increased by 205.5% in October month and 50.2% in November month. Similarly, mean frequency of fog occurrence increased by 51%, 97% and 119% during December, January and February respectively over the same period. We observed statistically significant increasing trend in fog occurrence from October-to-February during the study period at 95% confidence level. The magnitude of trend is 0.50, 0.47, 0.30, 0.39 and 0.37 for October, November, December, January and February, respectively. The magnitude of trend is highest in October but the occurrence frequency is highest in December. The forecast values obtained from ARIMA model indicates that the number of fog days is going to increase further during October-to-February in the forthcoming years. The data combined with knowledge of meteorology and topography suggested significant conclusions about increase in the fog events in the near future.
Freezing of Gait in Parkinsonism and its Potential Drug Treatment.
Zhang, Li-Li; Canning, S Duff; Wang, Xiao-Ping
2016-01-01
Freezing of gait (FOG) is a heterogeneous symptom. Studies of treatment for FOG are scarce. Levodopa and monoamine oxidase inhibitors (rasagiline and selegiline) have shown effective improvement for FOG. Other drugs, such as L-threo-3, 4-dihydroxyphenylserine, amantadine, and botulinum toxin have exhibited some beneficial effects. The present review summarizes the potential drug treatment for FOG in Parkinsonism.
A Molecular Explanation of How the Fog Is Produced When Dry Ice Is Placed in Water
ERIC Educational Resources Information Center
Kuntzleman, Thomas S.; Ford, Nathan; No, Jin-Hwan; Ott, Mark E.
2015-01-01
Everyone enjoys seeing the cloudy white fog generated when solid carbon dioxide (dry ice) is placed in water. Have you ever wondered what physical and chemical processes occur to produce this fog? When asked this question, many chemical educators suggest that the fog is produced when atmospheric water vapor condenses on cold carbon dioxide gas…
On the formation and persistence of superfog in woodland smoke
G.L. Achtemeier
2009-01-01
Dense fogs, comparable to historical fogs in England, have been implicated in numerous roadway accidents in the southern United States. Many of the fogs have occurred in association with prescribed burning. Direct measurements of superfog (fog reducing visibility to less than 3 m) were taken during burning of forest litter on 22 March 2003. Visibility was measured at 0...
Freezing of Gait in Parkinsonism and its Potential Drug Treatment
Zhang, Li-Li; Canning, S. Duff; Wang, Xiao-Ping
2016-01-01
Freezing of gait (FOG) is a heterogeneous symptom. Studies of treatment for FOG are scarce. Levodopa and monoamine oxidase inhibitors (rasagiline and selegiline) have shown effective improvement for FOG. Other drugs, such as L-threo-3, 4-dihydroxyphenylserine, amantadine, and botulinum toxin have exhibited some beneficial effects. The present review summarizes the potential drug treatment for FOG in Parkinsonism. PMID:26635194
On the formation and persistence of superfog in woodland smoke
Gary L. Achtemeier
2009-01-01
Dense fogs. comparable to historical fogs in England, have been implicated in numerous roadway accidents in the southern United States. Many of the fogs have occurred in association with prescribed burning. Direct measurements of superfog (fog reducing visibility to less than 3 rn) were taken during burning of forest litter on 22 March 2003. Visibility was measured at...
A Secure and Privacy-Preserving Navigation Scheme Using Spatial Crowdsourcing in Fog-Based VANETs
Wang, Lingling; Liu, Guozhu; Sun, Lijun
2017-01-01
Fog-based VANETs (Vehicular ad hoc networks) is a new paradigm of vehicular ad hoc networks with the advantages of both vehicular cloud and fog computing. Real-time navigation schemes based on fog-based VANETs can promote the scheme performance efficiently. In this paper, we propose a secure and privacy-preserving navigation scheme by using vehicular spatial crowdsourcing based on fog-based VANETs. Fog nodes are used to generate and release the crowdsourcing tasks, and cooperatively find the optimal route according to the real-time traffic information collected by vehicles in their coverage areas. Meanwhile, the vehicle performing the crowdsourcing task can get a reasonable reward. The querying vehicle can retrieve the navigation results from each fog node successively when entering its coverage area, and follow the optimal route to the next fog node until it reaches the desired destination. Our scheme fulfills the security and privacy requirements of authentication, confidentiality and conditional privacy preservation. Some cryptographic primitives, including the Elgamal encryption algorithm, AES, randomized anonymous credentials and group signatures, are adopted to achieve this goal. Finally, we analyze the security and the efficiency of the proposed scheme. PMID:28338620
Optimal design of permeable fiber network structures for fog harvesting.
Park, Kyoo-Chul; Chhatre, Shreerang S; Srinivasan, Siddarth; Cohen, Robert E; McKinley, Gareth H
2013-10-29
Fog represents a large untapped source of potable water, especially in arid climates. Numerous plants and animals use textural and chemical features on their surfaces to harvest this precious resource. In this work, we investigate the influence of the surface wettability characteristics, length scale, and weave density on the fog-harvesting capability of woven meshes. We develop a combined hydrodynamic and surface wettability model to predict the overall fog-collection efficiency of the meshes and cast the findings in the form of a design chart. Two limiting surface wettability constraints govern the re-entrainment of collected droplets and clogging of mesh openings. Appropriate tuning of the wetting characteristics of the surfaces, reducing the wire radii, and optimizing the wire spacing all lead to more efficient fog collection. We use a family of coated meshes with a directed stream of fog droplets to simulate a natural foggy environment and demonstrate a five-fold enhancement in the fog-collecting efficiency of a conventional polyolefin mesh. The design rules developed in this work can be applied to select a mesh surface with optimal topography and wetting characteristics to harvest enhanced water fluxes over a wide range of natural convected fog environments.
A Secure and Privacy-Preserving Navigation Scheme Using Spatial Crowdsourcing in Fog-Based VANETs.
Wang, Lingling; Liu, Guozhu; Sun, Lijun
2017-03-24
Fog-based VANETs (Vehicular ad hoc networks) is a new paradigm of vehicular ad hoc networks with the advantages of both vehicular cloud and fog computing. Real-time navigation schemes based on fog-based VANETs can promote the scheme performance efficiently. In this paper, we propose a secure and privacy-preserving navigation scheme by using vehicular spatial crowdsourcing based on fog-based VANETs. Fog nodes are used to generate and release the crowdsourcing tasks, and cooperatively find the optimal route according to the real-time traffic information collected by vehicles in their coverage areas. Meanwhile, the vehicle performing the crowdsourcing task can get a reasonable reward. The querying vehicle can retrieve the navigation results from each fog node successively when entering its coverage area, and follow the optimal route to the next fog node until it reaches the desired destination. Our scheme fulfills the security and privacy requirements of authentication, confidentiality and conditional privacy preservation. Some cryptographic primitives, including the Elgamal encryption algorithm, AES, randomized anonymous credentials and group signatures, are adopted to achieve this goal. Finally, we analyze the security and the efficiency of the proposed scheme.
Coastal Fog in Atlantic Canada: Characterization and Projection in a Changing Climate
NASA Astrophysics Data System (ADS)
Duplessis, P.; Hartery, S.; Macdonald, A. M.; Wheeler, M.; Miller, J.; Bhatia, S.; Chang, R. Y. W.
2016-12-01
Marine and coastal fog in Atlantic Canada is usually advective and favored by the meeting of the warm Gulf Stream and cold Labrador Current. As moist warm air moves over cold water, it cools down and becomes supersaturated. The interactions between microphysical, dynamical and radiative processes can also be a determining element in the formation and persistence of fog, which makes fog forecasting a highly challenging task. Current parameterizations within models suffer notably from unresolved microphysical problems such as neglecting droplet concentration, which leads to errors in droplet density predictions of up to 50%. In the scope of improving our understanding of fog and its characteristics, our research group conducted a field study on the coast of Nova Scotia in Eastern Canada during the fog season of 2016. Meteorological variables, droplet and aerosol size distributions, chemical speciation and fog water composition were measured. Results from this study will be presented, along with projections in a changing climate.
Statistical modeling of optical attenuation measurements in continental fog conditions
NASA Astrophysics Data System (ADS)
Khan, Muhammad Saeed; Amin, Muhammad; Awan, Muhammad Saleem; Minhas, Abid Ali; Saleem, Jawad; Khan, Rahimdad
2017-03-01
Free-space optics is an innovative technology that uses atmosphere as a propagation medium to provide higher data rates. These links are heavily affected by atmospheric channel mainly because of fog and clouds that act to scatter and even block the modulated beam of light from reaching the receiver end, hence imposing severe attenuation. A comprehensive statistical study of the fog effects and deep physical understanding of the fog phenomena are very important for suggesting improvements (reliability and efficiency) in such communication systems. In this regard, 6-months real-time measured fog attenuation data are considered and statistically investigated. A detailed statistical analysis related to each fog event for that period is presented; the best probability density functions are selected on the basis of Akaike information criterion, while the estimates of unknown parameters are computed by maximum likelihood estimation technique. The results show that most fog attenuation events follow normal mixture distribution and some follow the Weibull distribution.
Measuring mercury in coastal fog water
NASA Astrophysics Data System (ADS)
Balcerak, Ernie
2012-04-01
Mercury, a heavy metal neurotoxin, accumulates in sea life, in some cases reaching levels that make seafood unsafe for humans to eat. How mercury gets into aquatic organisms is debated, but part of the pathway could include mercury carried in precipitation, including rain, snow, and fog. The contribution of mercury in fog water in particular is not well known, especially in foggy coastal areas such as coastal California. To learn more, Weiss-Penzias et al. measured total mercury and monomethyl mercury concentrations in fog water and rainwater samples taken from four locations around Monterey Bay, California, during spring and summer 2011. They found that the mean monomethyl mercury concentrations in their fog water samples were about 34 times higher than the mean concentrations in their rainwater samples. Therefore, the authors believe that fog is an important, previously unrecognized source of mercury to coastal ecosystems. They also explored potential sources of mercury, finding that biotically formed monomethyl mercury from oceanic upwelling may contribute to monomethyl mercury in fog. (Geophysical Research Letters, doi:10.1029/2011GL050324, 2012)
Decontamination formulation with additive for enhanced mold remediation
Tucker, Mark D [Albuquerque, NM; Irvine, Kevin [Huntsville, AL; Berger, Paul [Rome, NY; Comstock, Robert [Bel Air, MD
2010-02-16
Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.
PVT Degradation Studies: Acoustic Diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dib, Gerges; Tucker, Brian J.; Kouzes, Richard T.
Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. This document reports on a study of acoustic techniques to determine whether they can provide a diagnostic for the fogging of PVT. Different ultrasound techniques were employed for detecting the level of internal fogging in PVT, including wave velocity measurements, attenuation, nonlinear acoustics, and acoustic microscopy. The results indicate that there are linear relations between the wave velocity and wave attenuation with the level of internal fogging. The effects of fogging on ultrasound wave attenuation is further verified by acoustic microscopy imaging, where regionsmore » with fog in the specimen demonstration higher levels of attenuation compared to clear regions. Results from the nonlinear ultrasound measurements were inconclusive due to high sensitivities to transducer coupling and fixture variabilities.« less
NASA Astrophysics Data System (ADS)
Torregrosa, A.; Combs, C.; Ellrod, G. P.; Faloona, I. C.; Gultepe, I.
2012-12-01
The Pacific Coast Fog Project is an effort to pool the expertise from multiple science disciplines to provide regional and local climate information on the frequency and character of fog for effective management of coastal California natural resources. Marine stratocumulus (fog) is a major modifier of the climatic condition along the Pacific coast and has significant effects on the hydrologic cycle and thermodynamic balance in coastal ecological, biological, and economic systems. For example fog is the major source of moisture during summer months for redwood forests, a treasured natural resource. Fog also modulates shallow stream temperatures to reduce the mortality rate of young salmon during their freshwater life stages and adults returning from the ocean to spawn. Fog induced cooling reduces summer energy costs along the Pacific Coast and reduces sun burn on crops such as grapes that are important to the local economy. Furthermore, disruptions in fog distribution or frequency resulting from future climate change would change evapotranspiration rates impacting California water supply and use. Coastal fog is a complex phenomenon with many measurable parameters including extent, frequency, and duration of cloud cover; cloud deck thickness, liquid water content, base height above land, density, heterogeneity, and thermal properties. Variations in fog are a result of processes acting at multiple scales across ocean-land-atmosphere boundaries. Factors that drive the occurrence, duration, and type of fog events along the coast include dynamics of atmospheric summertime inversions, synoptic weather patterns, ocean upwelling, topography, aerosol-cloud dynamics, and differences in temperature between inland valleys and the littoral ocean areas. Estimating the distribution, frequency and characteristics of coastal fog and stratus and evaluating the resulting ecosystem responses require a diverse array of measurements and models that link processes at multiple scales. The project leverages results from existing research projects, such as long-term fog climatology based on surface land and buoy observations ongoing at the University of Washington, and California fog climatology derived from 11 years of Geostationary Operational Environmental Satellite (GOES) data underway at the Cooperative Institute for Research in the Atmosphere (CIRA) at Colorado State University in Ft. Collins. There are numerous other collaborators from academia (such as several University of California oceanographic and atmospheric science departments) and government agencies (U. S. Geological Survey, National Weather Service, NASA, and Environment Canada). During the summer of 2012, a pilot project deployed sensors on loan from Environment Canada to augment existing instruments at Bodega Bay, California and Pepperwood Preserve in Sonoma County to gather important data sets on mesoscale and microphysical variables including liquid water content, surface wind, visibility, temperature, and boundary layer height that will be used to better describe the characteristics of coastal fog. Sample transects for significant fog events along with examples of antecedent synoptic weather conditions and mockups of possible graphic products for end users will be shown.
In vitro pollen responses of two birch species to acidity and temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, R.N.; Cox, R.M.
Paper birch (Betula papyrifera Marsh.) and mountain paper birch (Betula cordifolia Regel) near the Bay of Fundy coast frequently intercept acidic advection marine fogs. Chemical deposition by these fogs is thought to be a factor contributing to the observed foliar browning symptoms associated with a marked deterioration of these trees in the area. In vitro experiments were performed to test whether pollen germination in these two birch species would be affected by acidity at levels routinely found in the fog. The combined effect of temperature with acidity was also examined. Pollen germination in both species was inhibited below pH 5.6more » (P < 0.0001) and the effect of incubation temperature was also significant (P < 0.01) in both species. There was no difference in in vitro pollen germination between species (P > 0.05) in response to acidity, based on combined data from 12 trees of each; the optimum germination temperature was 22{degrees}C for B. papyrifera and 21{degrees}C for B. cordifolia.« less
NASA Astrophysics Data System (ADS)
Kim, Hwajin; Ge, Xinlei; Collier, Sonya; Xu, Jianzhong; Sun, Yele; Wang, Youliang; Herckes, Pierre; Zhang, Qi
2015-04-01
A measurement study was conducted in the Central Valley (Fresno) of California in January 2010, during which radiation fog events were frequently observed. Fog plays important roles in atmospheric chemistry by scavenging aerosol particles and trace gases and serving as a medium for various aqueous-phase reactions. Understanding the effects of fog on the microphysical and chemical processing of aerosol particles requires detailed information on their chemical composition. In this study, we characterized the chemical composition of fog water and interstitial aerosol particles to study the effects of fog processing on aerosol properties. Fog water samples were collected during the 2010 Fresno campaigns with a Caltech Active Strand Cloud water Collector (CASCC) while interstitial submicron aerosols were characterized in real time with an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a scanning Mobility Particle Sizer (SMPS). The fog water samples were later analyzed using the HR-ToF-AMS, ion chromatography, and a total carbon analyzer. The chemical composition and characteristics of interstitial particles during the fog events were compared to those of dissolved inorganic and organic matter in fog waters. Compared to interstitial aerosols, fog water is composed of a higher fraction of ammonium nitrate and oxygenated organics, due to aqueous formation of secondary aerosol species as well as enhanced gas-to-particle partitioning of water soluble species under water rich conditions. Sulfate is formed most efficiently in fog water although its contribution to total dissolved mass is relatively low. The HR-ToF-AMS mass spectra of organic matter in fog water (FOM) are very similar to that of oxygenated organic aerosols (OOA) derived from positive matrix factorization (PMF) of the HR-ToF-AMS spectra of ambient aerosol (r2 = 0.96), but FOM appears to contain a large fraction of acidic functional groups than OOA. FOM is also enriched of organic nitrogen compounds, with an average N/C ratio ~3.8 times that of OOA. Most strikingly is the enhancement of the CxHyN2+ family ions in FOM spectra, indicating the presence of imidazole compounds, which commonly result from the aqueous phase reactions of tropospheric aldehyde such as glyoxal, formaldehyde or acetaldehyde with amino compounds. The results of this study demonstrate that aqueous phase reactions in fog water lead to the formation of some oxidized and nitrogen-containing compounds. Details and the environmental implications of results will be discussed.
Size resolved fog water chemistry and its atmospheric implications
NASA Astrophysics Data System (ADS)
Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida; Ervens, Barbara; Bhattu, Deepika
2015-04-01
Fog is a natural meteorological phenomenon that occurs throughout the world. It usually contains substantial quantity of liquid water and results in severe visibility reduction leading to disruption of normal life. Fog is generally seen as a natural cleansing agent but it also has the potential to form Secondary Organic Aerosol (SOA) via aqueous processing of ambient aerosols. Size- resolved fog water chemistry for inorganics were reported in previous studies but processing of organics inside the fog water and quantification of aqSOA remained a challenge. To assess the organics processing via fog aqueous processing, size resolved fog water samples were collected in two consecutive winter seasons (2012-13, 2013-14) at Kanpur, a heavily polluted urban area of India. Caltech 3 stage fog collector was used to collect the fog droplets in 3 size fraction; coarse (droplet diameter > 22 µm), medium (22> droplet diameter >16 µm) and fine (16> droplet diameter >4 µm). Collected samples were atomized into various instruments such as Aerosol Mass Spectrometer (AMS), Cloud Condensation Nucleus Counter (CCNc), Total Organic Carbon (TOC) and a thermo denuder (TD) for the physico-chemical characterization of soluble constituents. Fine droplets are found to be more enriched with different aerosol species and interestingly contain more aged and less volatile organics compared to other coarser sizes. Organics inside fine droplets have an average O/C = 0.87 compared to O/C of 0.67 and 0.74 of coarse and medium droplets. Metal chemistry and higher residence time of fine droplets are seemed to be the two most likely reasons for this outcome from as the results of a comprehensive modeling carried out on the observed data indicate. CCN activities of the aerosols from fine droplets are also much higher than that of coarse or medium droplets. Fine droplets also contain light absorbing material as was obvious from their 'yellowish' solution. Source apportionment of fog water organics via PMF (Positive matrix factorization) revealed presence of some very highly oxidized OA inside fog water samples. From PMF results a method for aqSOA estimation is developed and aqSOA was found to be substantially contributing to total SOA. These findings indicate that light fog with large number of fine droplets can process the ambient aerosols more efficiently than very dense fog with larger droplets where scavenging becomes more important. These findings also highlight the need of incorporating fog size resolved chemistry along with metal chemistry into global models for accurately predicting aqSOA formation and contribution to total organic aerosol loading.
NASA Astrophysics Data System (ADS)
Salem, Talaat A.; Omar, Mohie El Din M.; El Gammal, H. A. A.
2017-11-01
Alternative clean water resources are needed in Egypt to face the current water shortage and water quality deterioration. Therefore, this research investigates the suitability of harvesting fog and rain water for irrigation using a pilot fog collector for water quantity, water quality, and economic aspects. A pilot fog collector was installed at one location at Delta Barrage, Egypt. Freeze liquid nitrogen was fixed at the back of the fiberglass sheet to increase the condensation rate. The experiment was conducted during the period from November 2015 to February 2016. In general, all physicochemical variables are observed with higher values in the majority of fog than rain water. The fog is assumed to contain higher concentrations of anthropogenic emissions. TDS in both waters collected are less than 700 mg/l at sodium content less than 60%, classifying these waters as good for various plants under most conditions. In addition, SAR calculated values are less than 3.0 in each of fog and rain water, which proves the water suitability for all irrigated agriculture. Al and Fe concentrations were found common in all samples with values less than the permissible limits of the guidelines. These metals originate from soil material, ash and metal surfaces. The sensitive heavy metals (Cd and Pb) were within the permissible limits of the guideline in fog water, indicating this water is suitable for irrigation. On the contrary, rain water that has heavy metals is not permitted in irrigation water as per the Egyptian law. As per WQI, the rain water is classified as good quality while fog is classified as medium quality. Regarding the water quantity, a significant increase in the harvested fog quantity was observed after cooling the collector surface with freeze liquid nitrogen. The current fog collector produced the lowest water quantity among different fog collectors worldwide. However, these comparative results confirmed that quantity is different from one location to another worldwide even in the same country. The cost of the unit water volume of harvested water by the current pilot collector is relatively low among different collectors worldwide. This study proves that fog harvesting in Egypt is feasible using the current pilot collector in terms of water quantity, water quality, and economy. But it recommends collection of fog at various locations and times, since both water quantity and water quality are variable in time and space. It is more or less viable solution to meet the shortage of water in Egypt.
NASA Astrophysics Data System (ADS)
Laffineur, Quentin; Haeffelin, Martial; Bravo-Aranda, Juan-Antonio; Drouin, Marc-Antoine; Casquero-Vera, Juan-Andrés; Dupont, Jean-Charles; De Backer, Hugo
2017-04-01
Radiation fog is the most frequent cause of surface visibility below 1 km, and is one of the most common and persistent weather hazards encountered in aviation and to nearly all forms of surface transport. Forecasting radiation fog can be difficult, a number of approaches have been used to integrate the satellite data, numerical modeling and standard surface observations. These approaches lack generally the vertical and temporal resolution, representation of boundary layer and microphysical processes. They typically do not represent accurately the activation processes of fog droplets that depend on the chemical and physical properties of the aerosols. The automatic LIDAR-ceilometer (ALC) primarily designed for cloud base height detection has greatly improved over the last years and now offers the opportunity to analyse in near real-time the backscatter signal in the boundary layer that potentially contains major information to predict radiation fog formation or not. During the preliminary stage of fog formation, the backscatter profile may be influenced by atmospheric humidity due to the presence in the atmosphere of hygroscopic aerosols that see their size increase with their moisture content inducing an increase of the backscatter magnitude. In the framework of TOPROF (COST-ACTION, http://www.toprof.imaa.cnr.it/) activities, collaboration was initiated between the Royal Meteorological Institute of Belgium (RMI) and the Site Instrumental de Recherche par Télédéction Atmosphérique (SIRTA, IPSL) to develop a forward stepwise screening algorithm (PARAFOG) to help prediction of radiation fog formation. PARAFOG is a new decision support system for radiation fog forecasting based on analysis of the attenuated backscatter measured by ALCs, found at most airports, which provides information about the aerosol-particle hygroscopic growth process (Haeffelin et al., 2016). The monitoring of this hygroscopic growth process could provide useful warning to forecasters, in support of their fog forecast, minutes to hours prior to formation of radiation fog. In this presentation, we will describe the methodology used in PARAFOG to derive pre-fog formation alerts and we will show a selection of several radiation fog events observed on two different sites to illustrate the efficiency of PARAFOG to detect radiation fog events. Citation: Haeffelin, M., Laffineur, Q., Bravo-Aranda, J.-A., Drouin, M.-A., Casquero-Vera, J.-A., Dupont, J.-C., and De Backer, H.: Radiation fog formation alerts using attenuated backscatter power from automatic lidars and ceilometers, Atmos. Meas. Tech., 9, 5347-5365, doi:10.5194/amt-9-5347-2016, 2016.
Cohen, Rajal G.; Chao, Amanda; Nutt, John G.; Horak, Fay B.
2011-01-01
Background Many patients with Parkinson’s disease (PD) develop freezing of gait (FoG), which may manifest as a hesitation or “getting stuck” when they attempt to pass through a doorway. In two experiments, we asked whether FoG is associated with (1) a deficit in internal representation of one’s body size with respect to a doorway and (2) a mismatch between imagined and actual walking times when passing through a doorway. Method 24 subjects with PD (11 with and 13 without FoG) and 10 control subjects of similar age completed two experiments. In the Passability experiment, subjects judged the passability of doorways with different apertures scaled to their body widths. We compared passability estimates across groups. In the Imagery experiment, subjects timed themselves while: (1) imagining walking through doorways of different apertures and from different distances, and (2) actually walking in the same conditions they had just imagined. We compared imagined and actual walking durations across groups and conditions. Results In the Passability experiment, the estimated just-passable doorway was wider, relative to body width, in PD subjects than in control subjects, but there was no difference between PD subjects with and without FoG. In the Imagery experiment, subjects in all groups walked more slowly through narrow doorways than though wide doorways, and subjects with FoG walked much more slowly through the narrowest doorways. PD subjects with FoG showed a large discrepancy between actual and imagined time to pass through narrow doorways, unlike PD subjects without FoG and control subjects. Conclusions The equivalent passability judgments in PD subjects with and without FoG indicate that FoG is not specifically associated with a deficit in ability to internally represent space with reference to body size. However, the large difference in duration between actual and imagined walking through narrow doorways in subjects with FoG suggests that PD subjects with FoG did not know how much they would slow down to pass through narrow doorways. The observed discrepancy between imagined and actual walking times may point to a specific problem that contributes to the occurrence of FoG. These results also suggest that caution should be used when interpreting brain imaging results from locomotor imagery studies with PD subjects who have FoG. PMID:22027173
NASA Astrophysics Data System (ADS)
Sahba, O.; Conrad, W. S.; Moranville, R.; Weiss-Penzias, P. S.; Coale, K. H.; Heim, W. A.; Olson, A.; Chiswell, H.; Fernandez, D.; Oliphant, A. J.; Dodge, C.; Hoskins, D.; Farlin, J. P.
2015-12-01
The principle goal of FogNet is to make measurements of monomethylmercury (MMHg), total mercury (HgT) and major ions in Pacific Coast marine fog water samples taken from eight land stations from Big Sur to Trinidad, California in order to calculate the flux of MMHg and HgT to the terrestrial ecosystem, and observe their spatial and temporal patterns and relationships to major ion concentrations in fog water. During the summers of 2014 and 2015, fog water samples were analyzed and mean concentrations and standard deviations were found (number of samples shown in parentheses): MMHg = 1.9 +/- 2.4 ng L-1 (119), HgT = 28.7 +/- 26.8 ng L-1 (86), NH4+ = 2.5 +/- 2.0 mg L-1 (49), Cl- = 7.1 +/- 13.7 mg L-1 (52), SO42- = 15.3 +/- 26.0 mg L-1 (52), NO3- = 5.9 +/- 7.7 mg L-1 (48), and pH = 5.4 +/- 0.8 (38). For comparison, MMHg in rain is ~0.1 ng L-1 from previous studies. A temporal pattern in MMHg concentrations in fog was observed with monthly means of all samples for June, July, August and September 2014 (in ng L-1) of 4.2, 2.4, 1.4, and 0.8, respectively (see figure). No such temporal pattern was observed for HgT concentrations. The coastal site at Humboldt State University Marine Labs had fog water samples with the highest concentrations of MMHg (4.0 +/-4.3), whereas the inland site of Pepperwood had the lowest mean concentration of 0.7 +/- 0.5 ng L-1 among all sites. The temporal and spatial patterns observed in MMHg concentrations in fog water are consistent with a marine source. By combining the measured concentrations of analytes in fog water with an estimate of deposition from collocated 1 m2 passive fog collectors, the fluxes of MMHg and HgT for the summer of 2014 were 0.003-0.14 and 0.04-0.55 mg m-2 y-1, respectively. For MMHg, the mean fog water flux is about 4 times larger than that calculated for rain, and for HgT, the mean fog water flux is about 10% that calculated for rain.
Acidic fog and temperature effects on stigmatic receptivity in two birch species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, R.N.; Cox, R.M.
Factorial assays were performed to determine the effects of simulated acid fog (SAF) and temperature on stigmatic receptivity in two birch species. Excised reproductive branches were sampled from representative individuals of mountain paper birch (Betula cordifolia Regel.) and paper birch (Betula papyrifera Marsh.) in populations adjacent to the Bay of Fundy, New Brunswick, Canada. Since 1979 these trees have exhibited branch dieback in association with abnormal foliar browning symptoms. This browning has been linked with acidity and nitrate deposited by fog, which is frequent in the area. In general, experimental results indicated that pollen germination increased with temperature, but pHmore » effects were less obvious. Similarly, pollen tube growth responded positively to temperature and was little affected by fog acidity. ANOVA tests indicated a significant difference (P < 0.05) between species in their pollen germination response only at 12{degrees}C, and not at the other three temperatures tested. For pollen tube growth, significant differences between species (P < 0.05) were demonstrated at 12 and 22{degrees}C. A significant pH effect was demonstrated at 27{degrees}C for germination, while pH effects on tube growth were significant at 27 and 12{degrees}C (P < 0.01). A response surface regression analysis indicated that acidity significantly affected pollen germination in mountain paper birch (P < 0.001) but not in paper birch. Temperature was not a significant factor for in vivo pollen germination in either species. For pollen tube growth, however, temperature was more important than pH and produced highly significant effects in both species (P < 0.001). Acidity was also a significant factor in pollen tube growth for paper birch. 39 refs., 4 figs., 3 tabs.« less
Park, Geun Woo; Boston, Deyanna M.; Kase, Julie A.; Sampson, Mark N.; Sobsey, Mark D.
2007-01-01
Noroviruses (NVs) are the most frequent cause of outbreaks of gastroenteritis in common settings, with surface-mediated transfer via contact with fecally contaminated surfaces implicated in exposure. NVs are environmentally stable and persistent and have a low infectious dose. Several disinfectants have been evaluated for efficacy to control viruses on surfaces, but the toxicity and potential damage to treated materials limits their applicability. Sterilox hypochlorous acid (HOCl) solution (HAS) has shown broad-spectrum antimicrobial activity while being suitable for general use. The objectives of this study were to evaluate the efficacy of HAS to reduce NV both in aqueous suspensions and on inanimate carriers. HOCl was further tested as a fog to decontaminate large spaces. HOCl effectiveness was evaluated using nonculturable human NV measured by reverse transcriptase PCR (RT-PCR) and two surrogate viruses, coliphage MS2 and murine NV, that were detected by both infectivity and RT-PCR. Exposing virus-contaminated carriers of ceramic tile (porous) and stainless steel (nonporous) to 20 to 200 ppm of HOCl solution resulted in ≥99.9% (≥3 log10) reductions of both infectivity and RNA titers of tested viruses within 10 min of exposure time. HOCl fogged in a confined space reduced the infectivity and RNA titers of NV, murine NV, and MS2 on these carriers by at least 99.9% (3 log10), regardless of carrier location and orientation. We conclude that HOCl solution as a liquid or fog is likely to be effective in disinfecting common settings to reduce NV exposures and thereby control virus spread via fomites. PMID:17483283
Impact of fog processing on water soluble organic aerosols.
NASA Astrophysics Data System (ADS)
Tripathi, S. N.; Chakraborty, A.; Gupta, T.
2017-12-01
Fog is a natural meteorological phenomenon that occurs all around the world, and contains a substantial quantity of liquid water. Fog is generally seen as a natural cleansing agent but can also form secondary organic aerosols (SOA) via aqueous processing of ambient organics. Few field studies have reported elevated O/C ratio and SOA mass during or after fog events. However, mechanism behind aqueous SOA formation and its contribution to total organic aerosols (OA) still remains unclear. In this study we have tried to explore the impact of fog/aqueous processing on the characteristics of water soluble organic aerosols (WSOC), which to our knowledge has not been studied before. To assess this, both online (using HR-ToF-AMS) and offline (using a medium volume PM2.5 sampler and quartz filter) aerosol sampling were carried out at Kanpur, India from 15 December 2014 - 10 February 2015. Further, offline analysis of the aqueous extracts of the collected filters were carried out by AMS to characterize the water soluble OA (WSOA). Several (17) fog events occurred during the campaign and high concentrations of OA (151 ± 68 µg/m3) and WSOA (47 ± 19 µg/m3) were observed. WSOA/OA ratios were similar during fog (0.36 ± 0.14) and nofog (0.34 ± 0.15) periods. WSOA concentrations were also similar (slightly higher) during foggy (49 ± 18 µg/m3) and non-foggy periods (46 ± 20 µg/m3), in spite of fog scavenging. However, WSOA was more oxidized during foggy period (average O/C = 0.81) than non foggy periods (average O/C = 0.70). Like WSOA, OA was also more oxidized during foggy periods (average O/C = 0.64) than non foggy periods (average O/C = 0.53). During fog, WSOA to WIOA (water insoluble OA) ratios were higher (0.65 ± 0.16) compared to non foggy periods (0.56 ± 0.15). These observations clearly showed that WSOA become more dominant and processed during fog events, possibly due to the presence of fog droplets. This study highlights that fog processing of soluble organics can affect the overall chemical characteristics of the entire aerosol population.
Bakaraju, Ravi Chandra; Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Thomas, Varghese; Holden, Brien Anthony
2015-01-01
Purpose To determine if a fogging lens ameliorates accommodative effects driven by the closed-view design of the BHVI-EyeMapper (EM) instrument. We compared cycloplegic refraction and higher-order aberration measurements of the EM with those obtained with a fogging lens. Methods Twenty-six, young, participants (15F, 25 ± 5 years, range: 18–35 years, SE: +0.25 D and −3.50 D) with good ocular health were recruited. Five independent measurements of on- and off-axis refraction and higher-order aberrations were recorded across the horizontal visual field, under two conditions: non-cycloplegic measurements with +1.00 D fogging lens and cycloplegia, always in the same sequence. The contralateral eye was occluded during the measurements. Two drops of 1% Tropicamide delivered within 5 min facilitated cycloplegic measurements. All participants were refracted 30 min after installation of the second drop. Results Mean spherical equivalent measures of the non-cycloplegic condition were significantly more myopic than their cycloplegic counterparts (p < 0.05); approximately by 0.50 D centrally, increasing to 1.00 D towards the periphery. The horizontal astigmatic component, J180, demonstrated small but statistically significant differences between the test conditions. Differences were predominant for eccentricities greater than 30°, in both nasal and temporal meridians. The oblique astigmatic component, J45, was not significantly different between the test conditions. The primary spherical aberration coefficient C(4, 0) was significantly less positive for the non-cycloplegic state than its cycloplegic counterpart. This result held true across the entire horizontal visual field. The horizontal coma and trefoil coefficients C(3, 1) and C(3, 3) were not significantly different between the two conditions. Conclusions The use of +1.00 D fogging lens without cycloplegia did not provide complete relaxation of accommodation. The discrepancies between cycloplegic and non-cycloplegic EM measurements were found to be more pronounced for peripheral field angles than central measures, for both M and J180 components. PMID:26190684
Bakaraju, Ravi Chandra; Fedtke, Cathleen; Ehrmann, Klaus; Falk, Darrin; Thomas, Varghese; Holden, Brien Anthony
2016-01-01
To determine if a fogging lens ameliorates accommodative effects driven by the closed-view design of the BHVI-EyeMapper (EM) instrument. We compared cycloplegic refraction and higher-order aberration measurements of the EM with those obtained with a fogging lens. Twenty-six, young, participants (15F, 25±5 years, range: 18-35 years, SE: +0.25 D and -3.50 D) with good ocular health were recruited. Five independent measurements of on- and off-axis refraction and higher-order aberrations were recorded across the horizontal visual field, under two conditions: non-cycloplegic measurements with +1.00 D fogging lens and cycloplegia, always in the same sequence. The contralateral eye was occluded during the measurements. Two drops of 1% Tropicamide delivered within 5 min facilitated cycloplegic measurements. All participants were refracted 30 min after installation of the second drop. Mean spherical equivalent measures of the non-cycloplegic condition were significantly more myopic than their cycloplegic counterparts (p<0.05); approximately by 0.50 D centrally, increasing to 1.00 D towards the periphery. The horizontal astigmatic component, J180, demonstrated small but statistically significant differences between the test conditions. Differences were predominant for eccentricities greater than 30°, in both nasal and temporal meridians. The oblique astigmatic component, J45, was not significantly different between the test conditions. The primary spherical aberration coefficient C(4, 0) was significantly less positive for the non-cycloplegic state than its cycloplegic counterpart. This result held true across the entire horizontal visual field. The horizontal coma and trefoil coefficients C(3, 1) and C(3, 3) were not significantly different between the two conditions. The use of +1.00 D fogging lens without cycloplegia did not provide complete relaxation of accommodation. The discrepancies between cycloplegic and non-cycloplegic EM measurements were found to be more pronounced for peripheral field angles than central measures, for both M and J180 components. Copyright © 2015 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
Low Clouds and Fog Characterization over Iberian Peninsula using Meteosat Second Generation Images
NASA Astrophysics Data System (ADS)
Sánchez, Beatriz; Maqueda, Gregorio
2014-05-01
Fog is defined as a collection of suspended water droplets or ice crystals in the air near the Earth's surface that lead to a reduction of horizontal visibility below 1 km (National Oceanic and Atmospheric Administration, 1995). Fog is a stratiform cloud with similar radiative characteristics, for this reason the difference between fog and low stratus clouds is of little importance for remote sensing applications. Fog and low clouds are important atmospheric phenomena, mainly because of their impact on traffic safety and air quality, acting as an obstruction to traffic at land, sea and in the air. The purpose of this work is to develop the method of fog/low clouds detection and analysis on nighttime using Meteosat Second Generation data. This study is focused on the characterization of these atmospheric phenomena in different study cases over the Iberian Peninsula with distinct orography. Firstly, fog/low clouds detection is implemented as a composition of three infrared channels 12.0, 10.8 and 3.9 µm from SEVIRI radiometer on board European geostationary satellite Meteosat (Meteosat-9). The algorithm of detection makes use of a combination of these channels and their differences by creating RGB composites images. On this way, it displays the spatial coverage and location of fog entities. Secondly, this technique allows separating pixels which are indicated as fog/low clouds from clear pixels, assessing the properties of individual pixels using appropriated thresholds of brightness temperature. Thus, it achieves a full analysis of the extent and distribution of fog and its evolution over time. The results of this study have been checked by using ground-based point measurements available as METAR data. Despite the flaws in this sort of inter-comparison approach, the outcome produces to accurate fog/low clouds detection. This work encompasses the way to obtain spatial information from this atmospheric phenomenon by means of satellite imagery.
NASA Astrophysics Data System (ADS)
Latorre Hidalgo, C.; García, J. L.; Gonzalez, A. L.; Marquet, P. A.
2015-12-01
The coastal Atacama Desert is home to a complex geo-ecosystem supported by fog with multiple atmospheric and oceanic drivers. Fog collectors in place for the last 17 years reveal that monthly fog intensity and amount are significantly linked to the El Niño-Southern Oscillation (ENSO 1+2) with cold (warm) anomalies correlated to increased (decreased) fog (R2 = 0.41). Rainfall, however, can occur during extreme positive ENSO anomalies. Tillandsia landbeckii is an epiarenitic plant common to the coastal Atacama where fog is intercepted by the coastal escarpment between 950-1250 m.a.s.l. These plants possess multiple adaptations to survive exclusively on fog, including the construction of "dune" ecosystems known as "tillandsiales". Buried T. landbeckii layers in such dunes contain a record of past variations of fog over time (dunes can top 3 m in height) and alternating plant and sand layers are readily visible in dune stratigraphy. Stable N isotopes on modern plants and fog indicate that these plants reflect δ15N values of total N dissolved in fog. We measured δ15N values from buried T. landbeckii layers from five different tillandsiales found across c. 50 km the coastal escarpment. The isotope values in these buried plants indicate a prominent c. 8.0 ‰ shift towards more negative δ15N values on average over the last 3,200 years. Based on differences in δ15N between modern and more extensive "paleo" tillandsiales at one of our lowest elevation study sites, we interpret this shift as an increase in available moisture due to increased fog input during the late Holocene. Increased variability in ENSO as well as increased upwelling and southerly winds along the coastal Atacama would explain in part this increase. Clearly, the Atacama tillandsiales have considerable potential for monitoring past and present change of these large-scale ocean-atmosphere systems.
NASA Astrophysics Data System (ADS)
Scholl, M. A.; Gingerich, S. B.; Giambelluca, T. W.; Nullet, M. A.; Loope, L. L.
2002-05-01
The role of fog drip in cloud forest ecosystems is being investigated at two sites, one each on the windward and leeward sides of East Maui, Hawaii. The study involves using the different isotopic signatures of fog (cloud water) and rain to trace fog through the forest water cycle, as well as comparing relative amounts of fog, rain, and throughfall. At each site, volume of rain, fog plus rain, and throughfall is recorded hourly. Stable isotope samples of rain, fog, soil water, stream water, and tree sap are collected monthly, and each site has a visibility sensor and weather station. The windward site, at 1950 m altitude, is enveloped by orographic clouds under trade wind conditions almost every day. This site is near the upper boundary of extensive forested mountain slopes that are a major watershed for the island. Volume data suggest that fog drip (compared to rain as measured by a standard gage) contributes substantially to the forest water budget on the windward side. Tree sap deuterium composition was consistently similar to fog composition for samples analyzed thus far, while soil water was isotopically lighter, possibly reflecting a mixture of fog with rain or shallow groundwater. The leeward site, at 1220 m, is often in a cloud bank under trade wind conditions. During the summer the major source of precipitation is cloud water; rainfall generally occurs during winter storms. Scattered cloud forest remnants persist at this site despite degradation of extensive native forest by ungulate browsing, plant invasion, and fire. Here, fog drip was a smaller proportion of the total precipitation than at the windward site, but exceeded rainfall for some precipitation events. Unlike the windward site, tree sap and soil water had similar isotopic composition. The information gained from this study underscores the importance of trees and shrubs in extracting cloud water that contributes to soil moisture, groundwater recharge, and stream flow in watersheds.
NASA Astrophysics Data System (ADS)
Boris, A. J.; Lee, T.; Park, T.; Choi, J.; Seo, S.; Collett, J. L., Jr.
2015-09-01
Samples of fog water were collected at Baengnyeong Island (BYI) in the Yellow Sea during the summer of 2014. The most abundant chemical species in the fog water were NH4+ (mean of 2220 μM), NO3- (1260 μM), SO4-2 (730 μM), and Na+ (551 μM), with substantial contributions from other ions consistent with marine and biomass burning influence on some dates. The pH of the samples ranged between 3.48 and 5.00, with a mean of 3.94, intermediate within pH values of fog/cloud water reported previously in Southeast Asia. Back trajectories (72 h) showed that high relative humidity (> 80 %) was encountered upwind of the sampling site by all but one of the sampled air masses, and that the fog composition at BYI can be impacted by several different source regions, including the Sea of Japan, Northeastern China, and the East China Sea. Sulfur in the collected fog was highly oxidized: low S(IV) concentrations were measured (mean of 2.36 μM) in contrast to SO4-2 and in contrast to fog/cloud S(IV) concentrations from pollutant source regions; organosulfate species were also observed and were most likely formed through aging of mainly biogenic volatile organic compounds. Low molecular mass organic acids were major contributors to total organic carbon (TOC; 36-69 %), comprising a fraction of TOC at the upper end of that seen in fogs and clouds in other polluted environments. Large contributions were observed from not only acetic and formic acids, but also oxalic, succinic, maleic, and other organic acids that can be produced in aqueous atmospheric organic processing (AAOP) reactions. These samples of East Asian fog water containing highly oxidized components represent fog downwind of pollutant sources and can provide new insight into the fate of regional emissions. In particular, these samples demonstrate the result of extensive photochemical aging during multiday transport, including oxidation within wet aerosols and fogs.
Fukada, Kei; Endo, Takuyuki; Yokoe, Masaru; Hamasaki, Toshimitsu; Hazama, Takanori; Sakoda, Saburo
2013-02-01
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a variety of motor symptoms including freezing of gait (FOG), in which walking is transiently halted as if the patient's feet were 'glued to the ground'. Treatment of FOG is still challenging. Although L-threo-3,4-dihydroxyphenylserine (L-DOPS), a precursor of noradrenaline, has been on the market in Japan because of its beneficial effect for FOG, clinical use of L-DOPS has been far from satisfying. However, the fact that there were some responders to L-DOPS encouraged us to hypothesize that the enhancement of L-DOPS concentration in the brain by the co-administration of L-DOPS and a catechol-O-methyl transferase (COMT) inhibitor, which is expected to interrupt L-DOPS metabolism in the peripheral circulation, would be beneficial for FOG. Based on our hypothesis, we conducted a preliminary study with a small number of participants with FOG. Of the 16 PD patients with FOG who completed this study, group 1 (n=6) received L-DOPS co-administered with entacapone, which is a COMT inhibitor used worldwide as an anti-parkinson drug, group 2 (n=5) received entacapone alone, and group 3 (n=5) received L-DOPS alone. Only the patients in group 1 showed a significant improvement in FOG. Moreover, the beneficial effect was observed only in patients with levodopa-resistant FOG. This result supports our hypothesis, at least in patients with levodopa-resistant FOG, and shows that the co-administration of L-DOPS and entacapone could be a new strategy for FOG treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Coastal Upwelling and Deep Fog: 50-year Worldwide Climatology
NASA Astrophysics Data System (ADS)
Koracin, D. R.
2015-12-01
An analysis is presented of the marine fog distribution based upon the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) ship observations taken during 1950-2007. Deep fog occurrence is reported in routine weather reports that are encoded in an ICOADS ship observation. Occurrence is estimated by the number of deep fog observations divided by the total present weather observations in a one-degree area centered on latitude and longitude grid point intersections. The mean fog occurrence for the summer (June-July-August) 1950-2007 was computed for each one degree point for the world. There are five major world locations with coastal SST minimums due to wind driven upwelling. Four of these are during the local summer on the eastern side of a semi-permanent anticyclone on eastern sides of northern and southern mid-latitudes of the Pacifica and the Atlantic. The fifth is during the SW monsoon in the Indian Ocean. For all five of these locations, the deep fog occurrence is at maximum during the upwelling season, with the greatest occurrences concentrated along the coast and isolated over the SST minimum. For the five coastal fog maxima, the greatest and longest duration occurrence along coast occurrence is associated with the coldest sea surface temperature and longest along coast occurrence, which is along N. California- S. Oregon. In contrast, the lowest occurrence of fog and the least along coast occurrence is associated with the warmest sea surface temperatures and least along coast occurrence along the SE Arabian Peninsula. The remaining three zones, Peru-Chile, NW Africa, and SW Africa are between the two extremes in fog occurrence, along coast coverage and sea surface temperature. Peru-Chile is more complex than the others as the Peru upwelling and fog appears the more dominant although ship observations are sparse along Chile.
Enhanced toxicity of aerosol in fog conditions in the Po Valley, Italy
NASA Astrophysics Data System (ADS)
Decesari, Stefano; Sowlat, Mohammad Hossein; Hasheminassab, Sina; Sandrini, Silvia; Gilardoni, Stefania; Facchini, Maria Cristina; Fuzzi, Sandro; Sioutas, Constantinos
2017-06-01
While numerous studies have demonstrated the association between outdoor exposure to atmospheric particulate matter (PM) and adverse health effects, the actual chemical species responsible for PM toxicological properties remain a subject of investigation. We provide here reactive oxygen species (ROS) activity data for PM samples collected at a rural site in the Po Valley, Italy, during the fog season (i.e., November-March). We show that the intrinsic ROS activity of Po Valley PM, which is mainly composed of biomass burning and secondary aerosols, is comparable to that of traffic-related particles in urban areas. The airborne concentration of PM components responsible for the ROS activity decreases in fog conditions, when water-soluble species are scavenged within the droplets. Due to this partitioning effect of fog, the measured ROS activity of fog water was contributed mainly by water-soluble organic carbon (WSOC) and secondary inorganic ions rather than by transition metals. We found that the intrinsic ROS activity of fog droplets is even greater (> 2.5 times) than that of the PM on which droplets are formed, indicating that redox-active compounds are not only scavenged from the particulate phase, but are also produced within the droplets. Therefore, even if fog formation exerts a scavenging effect on PM mass and redox-active compounds, the aqueous-phase formation of reactive secondary organic compounds can eventually enhance ROS activity of PM when fog evaporates. These findings, based on a case study during a field campaign in November 2015, indicate that a significant portion of airborne toxicity in the Po Valley is largely produced by environmental conditions (fog formation and fog processing) and not simply by the emission and transport of pollutants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen Seong Lee
Fuel flow to individual burners is complicated and difficult to determine on coal fired boilers, since coal solids were transported in a gas suspension that is governed by the complex physics of two-phase flow. The objectives of the project were the measurements of suspended coal solids-flows in the simulated test conditions. Various extractive methods were performed manually and can give only a snapshot result of fuel distribution. In order to measure particle diameter & velocity, laser based phase-Doppler particle analyzer (PDPA) and particle image velocimetry (PIV) were carefully applied. Statistical methods were used to analyze particle characteristics to see whichmore » factors have significant effect. The transparent duct model was carefully designed and fabricated for the laser-based-instrumentation of solids-flow monitoring (LISM). The experiments were conducted with two different kinds of particles with four different particle diameters. The particle types were organic particles and saw dust particles with the diameter range of 75-150 micron, 150-250 micron, 250-355 micron and 355-425 micron. The densities of the particles were measured to see how the densities affected the test results. Also the experiment was conducted with humid particles and fog particles. To generate humid particles, the humidifier was used. A pipe was connected to the humidifier to lead the particle flow to the intersection of the laser beam. The test results of the particle diameter indicated that, the mean diameter of humid particles was between 6.1703 microns and 6.6947 microns when the humid particle flow was low. When the humid particle flow was high, the mean diameter was between 6.6728 microns and 7.1872 microns. The test results of the particle mean velocity indicated that the mean velocity was between 1.3394 m/sec and 1.4556 m/sec at low humid particle flow. When the humid particle flow was high, the mean velocity was between 1.5694 m/sec and 1.7856 m/sec. The Air Flow Module, TQ AF 17 and shell ondina oil were used to generate fog particles. After the oil was heated inside the fog generator, the blower was used to generate the fog. The fog flew along the pipe to the intersection of the laser beam. The mean diameter of the fog particles was 5.765 microns. Compared with the humid particle diameter, we observed that the mean diameter of the fog particles was smaller than the humid particles. The test results of particle mean velocity was about 3.76 m/sec. Compared with the mean velocity of the humid particles, we can observed the mean velocity of fog particles were greater than humid particles. The experiments were conducted with four different kinds of particles with five different particle diameters. The particle types were organic particles, coal particles, potato particles and wheat particles with the diameter range of 63-75 micron, less than 150 micron, 150-250 micron, 250-355 micron and 355-425 micron. To control the flow rate, the control gate of the particle dispensing hopper was adjusted to 1/16 open rate, 1/8 open rate and 1/4 open rate. The captured image range was 0 cm to 5 cm from the control gate, 5 cm to 10 cm from the control gate and 10 cm to 15 cm from the control gate. Some of these experiments were conducted under both open environment conditions and closed environment conditions. Thus these experiments had a total of five parameters which were type of particles, diameter of particles, flow rate, observation range, and environment conditions. The coal particles (diameter between 63 and 75 microns) tested under the closed environment condition had three factors that were considered as the affecting factors. They were open rate, observation range, and environment conditions. In this experiment, the interaction of open rate and observation range had a significant effect on the lower limit. On the upper limit, the open rate and environment conditions had a significant effect. In addition, the interaction of open rate and environment conditions had a significant effect. The coal particles tested (diameter between 63 and 75 microns) under open environment, two factors were that considered as the affecting factors. They were the open rate and observation ranges. In this experiment, there was no significant effect on the lower limit. On the upper limit, the observation range had a significant effect. In addition, the interaction of open rate and observation range had a significant effect for the source of variation with 95% of confidence based on analysis of variance (ANOVA) results.« less
A Hybrid Scheme for Fine-Grained Search and Access Authorization in Fog Computing Environment
Xiao, Min; Zhou, Jing; Liu, Xuejiao; Jiang, Mingda
2017-01-01
In the fog computing environment, the encrypted sensitive data may be transferred to multiple fog nodes on the edge of a network for low latency; thus, fog nodes need to implement a search over encrypted data as a cloud server. Since the fog nodes tend to provide service for IoT applications often running on resource-constrained end devices, it is necessary to design lightweight solutions. At present, there is little research on this issue. In this paper, we propose a fine-grained owner-forced data search and access authorization scheme spanning user-fog-cloud for resource constrained end users. Compared to existing schemes only supporting either index encryption with search ability or data encryption with fine-grained access control ability, the proposed hybrid scheme supports both abilities simultaneously, and index ciphertext and data ciphertext are constructed based on a single ciphertext-policy attribute based encryption (CP-ABE) primitive and share the same key pair, thus the data access efficiency is significantly improved and the cost of key management is greatly reduced. Moreover, in the proposed scheme, the resource constrained end devices are allowed to rapidly assemble ciphertexts online and securely outsource most of decryption task to fog nodes, and mediated encryption mechanism is also adopted to achieve instantaneous user revocation instead of re-encrypting ciphertexts with many copies in many fog nodes. The security and the performance analysis show that our scheme is suitable for a fog computing environment. PMID:28629131
NASA Astrophysics Data System (ADS)
Rosato, M.; Rojas, F.; Schemenauer, R. S.
2010-07-01
The largest fog collection project in the world at this time is the FogQuest project in Tojquia, in the Western Highlands of Guatemala. While much attention in the past has been devoted to developing the fog collection technology and finding and evaluating appropriate sites, there is also an opportunity in Guatemala to focus on implementation factors for long-term success in community fog-collection projects. Drawing from the themes of appropriate technology, integrated water-resource management and demand-responsive approaches, this paper details the participatory and management strategies undertaken by FogQuest in the ongoing fog collection project in Tojquia. Through a collaborative effort with the community association Mam Ma Qosquix, 30 large fog collectors are in place providing a daily average of 6000 liters of water to over 130 individuals. The current critical development, it is argued, is a discussion on the successes and ongoing challenges in gender mainstreaming, to ensure women’s participation, and capacity building, to ensure operation and maintenance capacity is built for the long term. Lessons learned include the importance of fostering trust as a precursor to collaborative effort and recognizing that an engagement will be for the long-term. True sustainability will be reached when the beneficiaries are themselves managers of a fog water collection system. By sharing our experiences we hope to encourage reflection on these important issues, which are relevant throughout the entire planning process, especially when establishing new initiatives.
Nonrainfall water origins and formation mechanisms
Kaseke, Kudzai Farai; Wang, Lixin; Seely, Mary K.
2017-01-01
Dryland ecosystems cover 40% of the total land surface on Earth and are defined broadly as zones where precipitation is considerably less than the potential evapotranspiration. Nonrainfall waters (for example, fog and dew) are the least-studied and least-characterized components of the hydrological cycle, although they supply critical amounts of water for dryland ecosystems. The sources of nonrainfall waters are largely unknown for most systems. In addition, most field and modeling studies tend to consider all nonrainfall inputs as a single category because of technical constraints, which hinders prediction of dryland responses to future warming conditions. This study uses multiple stable isotopes (2H, 18O, and 17O) to show that fog and dew have multiple origins and that groundwater in drylands can be recycled via evapotranspiration and redistributed to the upper soil profile as nonrainfall water. Surprisingly, the non–ocean-derived (locally generated) fog accounts for more than half of the total fog events, suggesting a potential shift from advection-dominated fog to radiation-dominated fog in the fog zone of the Namib Desert. This shift will have implications on the flora and fauna distribution in this fog-dependent system. We also demonstrate that fog and dew can be differentiated on the basis of the dominant fractionation (equilibrium and kinetic) processes during their formation using the 17O-18O relationship. Our results are of great significance in an era of global climate change where the importance of nonrainfall water increases because rainfall is predicted to decline in many dryland ecosystems. PMID:28345058
A Hybrid Scheme for Fine-Grained Search and Access Authorization in Fog Computing Environment.
Xiao, Min; Zhou, Jing; Liu, Xuejiao; Jiang, Mingda
2017-06-17
In the fog computing environment, the encrypted sensitive data may be transferred to multiple fog nodes on the edge of a network for low latency; thus, fog nodes need to implement a search over encrypted data as a cloud server. Since the fog nodes tend to provide service for IoT applications often running on resource-constrained end devices, it is necessary to design lightweight solutions. At present, there is little research on this issue. In this paper, we propose a fine-grained owner-forced data search and access authorization scheme spanning user-fog-cloud for resource constrained end users. Compared to existing schemes only supporting either index encryption with search ability or data encryption with fine-grained access control ability, the proposed hybrid scheme supports both abilities simultaneously, and index ciphertext and data ciphertext are constructed based on a single ciphertext-policy attribute based encryption (CP-ABE) primitive and share the same key pair, thus the data access efficiency is significantly improved and the cost of key management is greatly reduced. Moreover, in the proposed scheme, the resource constrained end devices are allowed to rapidly assemble ciphertexts online and securely outsource most of decryption task to fog nodes, and mediated encryption mechanism is also adopted to achieve instantaneous user revocation instead of re-encrypting ciphertexts with many copies in many fog nodes. The security and the performance analysis show that our scheme is suitable for a fog computing environment.
Yoon, Seo Yeon; Lee, Sang Chul; Kim, Na Young; An, Young-Sil; Kim, Yong Wook
2017-11-01
Movement disorders are 1 of the long-term neurological complications that can occur after hypoxic-ischemic brain injury (HIBI). However, freezing of gait (FOG) after HIBI is rare. The aim of this study was to examine the brain metabolism of patients with FOG after HIBI using F-18 fluoro-2-deoxy-D-glucose positron emission tomography (F-18 FDG PET).We consecutively enrolled 11 patients with FOG after HIBI. The patients' overall brain metabolism was measured by F-18 FDG PET, and we compared their regional brain metabolic activity with that from 15 healthy controls using a voxel-by-voxel-based statistical mapping analysis. Additionally, we correlated each patient's FOG severity with the brain metabolism using a covariance analysis.Patients with FOG had significantly decreased brain glucose metabolism in the midbrain, bilateral thalamus, bilateral cingulate gyri, right supramarginal gyrus, right angular gyrus, right paracentral lobule, and left precentral gyrus (PFDR-corrected < .01, k = 50). No significant increases in brain metabolism were noted in patients with FOG. The covariance analysis identified significant correlations between the FOG severity and the brain metabolism in the right lingual gyrus, left fusiform gyrus, and bilateral cerebellar crus I (Puncorrected < 0.001, k = 50).Our data suggest that brain regions in the gait-related neural network, including the cerebral cortex, subcortical structures, brainstem, and cerebellum, may significantly contribute to the development of FOG in HIBI. Moreover, the FOG severity may be associated with the visual cortex and cerebellar regions.
Scavenging of black carbon in Chilean coastal fogs.
Heintzenberg, Jost; Cereceda-Balic, Francisco; Vidal, Victor; Leck, Caroline
2016-01-15
In November/December 2013 a pilot experiment on aerosol/fog interaction was conducted on a coastal hill in the suburbs of Valparaíso, Chile. Passages of garúa fog were monitored with continuous recordings of a soot photometer and an optical aerosol spectrometer. An optical fog sensor and an automatic weather station provided meteorological data with which the aerosol could be classified. High-resolution back trajectories added meteorological information. From filter samples, optical and chemical aerosol information was derived. Scavenging coefficients of black carbon (BC) and measured particulate mass below 1 μm diameter (PM1) were estimated with three approaches. Averaging over all fog periods of the campaign yielded a scavenging coefficient of only 6% for BC and 40% for PM1. Dividing the data into four 90°-wind sectors gave scavenging factors for BC ranging from 13% over the Valparaíso, Viña del Mar conurbation to 50% in the marine sector (180°-270°). The third, and independent approach was achieved with two pairs of chemical aerosol samples taken inside and outside fogs, which yielded a scavenging coefficient of 25% for BC and 70% for nonseasalt sulfate. Whereas fogs occurred rather infrequently in the beginning of the campaign highly regular daily fog cycles appeared towards the end of the experiment, which allowed the calculation of typical diurnal cycles of the aerosol in relation to a fog passage. Copyright © 2015 Elsevier B.V. All rights reserved.
Fog in a marginal agricultural area surrounded by montane Andean cloud forest during El Niño climate
NASA Astrophysics Data System (ADS)
García-Santos, G.
2010-07-01
The aim of the present study was to evaluate temporal variations of water inputs, rainfall and fog (cloud water), and its contribution to the water balance in a marginal agricultural area of potato surrounded by tropical montane cloud forest in Colombia. Fog in the air boundary layer was estimated using a cylindrical fog collector. Liquid water content of fog events were evaluated before and during natural climate event of El Niño. Our study shows the temporal variation of these two water inputs in both daily and monthly cycles on Boyacá at 2900 m a.s.l. Rainfall was the most frequently observed atmospheric phenomenon, being present on average 62% of the days per year, whereas fog was 45% of the time. Reflected on the lower frequency, annual amount of fog was 11% of precipitation. However during the anomalous dry climate of El Niño, total amount of rainfall was negligible and the few fog events were the only water source for plant growth. Estimated water crop requirements were higher than the water inputs. The survival of the crops was explained by meteorological conditions during dew and fog events. High relative humidity might have eased the plant’s water stress by decreasing transpiration and temperature in leaves and soil, affecting the water balance and the heat exchange between the atmosphere-land interfaces in the marginal agricultural areas during exceptional dry climate.
The Use Of Fiber Optic Chemical Sensors (FOGS) In Medical Applications: Enzyme-Based Systems
NASA Astrophysics Data System (ADS)
Klainer, Stanley M.; Harris, J. Milton
1988-06-01
The potential of fiber optic chemical sensors (FOGS) for medical applications is an accepted fact. Indeed, many companies are arduously pursuing the pH, pCO2, and p02 sensors. These, however, only represent the beginning of what, eventually, could be the next generation approach to diagnostics and monitoring. The key to a good FOGS system is to: (i) make, or adapt, accepted laboratory chemistry so that it works, without loss of sensitivity or specificity, on a fiber optic; (ii) assure that sensor neither affects, or is affected by, the biological meltum into which it is placed; (iii) have optimized, dedicated instrumentation to illuminate the sensor, and to handle and process its output signal; and (iv) perform a necessary diagnostic, monitoring or clinical function better, faster, more accurately or less expensively than existing approacbes. Theoretically, there are no limits to the reactions that can be selected to identify and quantify a particular chemical or physical happening using a species specific FOGS. In practice, however, the choices are restricted because: (i) many of the existing tests use sample prepreparation, such as concentration and purification, which is not possible for many FOGS usages; (ii) the chemistry on the fiber must meet FDA criteria; (iii) the chemistry is not stable enough for long term storage and (iv) measurements which are marginal in the laboratory, will not work on a fiber. In the present research the potential of using enzymes as the sensing material is being evaluated. To date emphasis has been placed on the immobilization of the enzyme on the fiber optic without loss of activity or specificity. The selected enzyme for this effort is 3α-hydroxysteroid dehydrogenase. It was selected with the eventual goal of analyzing bile acid concentrations.
Cheng, Fang-Yu; Yang, Yea-Ru; Wu, Yih-Ru; Cheng, Shih-Jung; Wang, Ray-Yau
2017-10-01
The purpose of this study was to investigate the effects of curved-walking training (CWT) on curved-walking performance and freezing of gait (FOG) in people with Parkinson's disease (PD). Twenty-four PD subjects were recruited and randomly assigned to the CWT group or control exercise (CE) group and received 12 sessions of either CWT with a turning-based treadmill or general exercise training for 30 min followed by 10 min of over-ground walking in each session for 4-6 weeks. The primary outcomes included curved-walking performance and FOG. All measurements were assessed at baseline, after training, and at 1-month follow-up. Our results showed significant improvements in curved-walking performance (speed, p = 0.007; cadence, p = 0.003; step length, p < 0.001) and FOG, measured by a FOG questionnaire (p = 0.004). The secondary outcomes including straight-walking performance (speed, cadence and step length, p < 0.001), timed up and go test (p = 0.014), functional gait assessment (p < 0.001), Unified Parkinson's disease Rating Scale III (p = 0.001), and quality of life (p < 0.001) were also improved in the experimental group. We further noted that the improvements were maintained for at least one month after training (p < 0.05). A 12-session CWT program can improve curved-walking ability, FOG, and other measures of functional walking performance in individuals with PD. Most of the improvements were sustained for at least one month after training. Copyright © 2017 Elsevier Ltd. All rights reserved.
Army Science Planning and Strategy Meeting: The Fog of Cyber War
2016-12-01
computing , which, depending upon the situation, some refer to as a fog rather than a cloud . These seemingly disparate notions of fog merge when one...Chiang M. CYRUS: towards client- defined cloud storage. Proceedings of the Tenth European Conference on Computer Systems; 2015 Apr 21; Bordeaux...Army Science Planning and Strategy Meeting: The Fog of Cyber War by Alexander Kott and Ananthram Swami Computational and Information Sciences
Simonin, Kevin A; Santiago, Louis S; Dawson, Todd E
2009-07-01
Although crown wetting events can increase plant water status, leaf wetting is thought to negatively affect plant carbon balance by depressing photosynthesis and growth. We investigated the influence of crown fog interception on the water and carbon relations of juvenile and mature Sequoia sempervirens trees. Field observations of mature trees indicated that fog interception increased leaf water potential above that of leaves sheltered from fog. Furthermore, observed increases in leaf water potential exceeded the maximum water potential predicted if soil water was the only available water source. Because field observations were limited to two mature trees, we conducted a greenhouse experiment to investigate how fog interception influences plant water status and photosynthesis. Pre-dawn and midday branchlet water potential, leaf gas exchange and chlorophyll fluorescence were measured on S. sempervirens saplings exposed to increasing soil water deficit, with and without overnight canopy fog interception. Sapling fog interception increased leaf water potential and photosynthesis above the control and soil water deficit treatments despite similar dark-acclimated leaf chlorophyll fluorescence. The field observations and greenhouse experiment show that fog interception represents an overlooked flux into the soil-plant-atmosphere continuum that temporarily, but significantly, decouples leaf-level water and carbon relations from soil water availability.
Acidogenesis and Two-Phase Codigestion of Fats, Oils, and Greases and Municipal Biosolids.
Varin, Ross; Novak, John; Bott, Charles
2016-11-01
Acidogenic codigestion of fats, oils, and greases (FOG) was studied using suspended growth sludge digesters operated as batch fed reactors that were fed twice daily. The digesters were maintained at a 2-day retention time and at 37 °C to mimic the acid phase of an acid-gas digestion system. As FOG loading rates increased, volatile fatty acid (VFA) production was found to increase, although the percentage of VFA production compared to theoretical values decreased exponentially to just 20% at the highest loading rates. FOG matter was found to have accumulated in the reactor vessel in semi-solid balls that floated near the liquid surface. Two-phase codigestion of FOG was studied at 37 °C using Continuously Stirred Tank Reactors (CSTRs) as acid phase digesters (APD) operated with 2-day retention times, followed by gas phase digesters (GPD) with 15-day retention times. The two-phase systems were compared by FOG addition to the APD versus GPD. FOG addition to the APD resulted in 88% destruction of LCFAs, whereas FOG addition to the GPD resulted in 95% destruction of LCFAs. Accumulated LCFAs were found in the APD receiving FOG and were primarily composed palmitic acid (16:0), followed by oleic acid (18:1) and stearic acid (18:0).
Caltrans fog detection and warning system.
DOT National Transportation Integrated Search
2009-01-01
The California Department of Transportation (Caltrans) has implemented a fog detection and warning system on Highway 99 near Fresno. The entire central valley region is susceptible to Tule fog, which can reduce visibility tremendously, sometimes to n...
Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support
Camargo, João; Rochol, Juergen; Gerla, Mario
2018-01-01
A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends. PMID:29364172
Sun, Jin; Xu, Xiaosu; Liu, Yiting; Zhang, Tao; Li, Yao
2016-07-12
In order to reduce the influence of fiber optic gyroscope (FOG) random drift error on inertial navigation systems, an improved auto regressive (AR) model is put forward in this paper. First, based on real-time observations at each restart of the gyroscope, the model of FOG random drift can be established online. In the improved AR model, the FOG measured signal is employed instead of the zero mean signals. Then, the modified Sage-Husa adaptive Kalman filter (SHAKF) is introduced, which can directly carry out real-time filtering on the FOG signals. Finally, static and dynamic experiments are done to verify the effectiveness. The filtering results are analyzed with Allan variance. The analysis results show that the improved AR model has high fitting accuracy and strong adaptability, and the minimum fitting accuracy of single noise is 93.2%. Based on the improved AR(3) model, the denoising method of SHAKF is more effective than traditional methods, and its effect is better than 30%. The random drift error of FOG is reduced effectively, and the precision of the FOG is improved.
NASA Astrophysics Data System (ADS)
Lazzara, M. A.
2010-07-01
Fog affects aviation and other logistical operations in the Antarctic; nevertheless limited studies have been conducted to understand fog behavior in this part of the world. A study has been conducted in the Ross Island region of Antarctica, the location of McMurdo Station and Scott Base - the main stations of the United States and New Zealand Antarctic programs, respectively. Using tools such as multi-channel satellites observations and supported by in situ radiosonde and ground-based automatic weather station observations, combined with back trajectory and mesoscale numerical models, discover that austral summer fog events are "advective" in temperament. The diagnosis finds a primary source region from the southeast over the Ross Ice Shelf (over 72% of the cases studied) while a minority of cases point toward a secondary fog source region to the north along the Scott Coast of the Ross Sea with influences from the East Antarctic Plateau. Part of this examination confirms existing anecdotes from forecasters and weather observers, while refuting others about fog and its behavior in this environment. This effort marks the beginning of our understanding of Antarctic fog behavior.
1 km fog and low stratus detection using pan-sharpened MSG SEVIRI data
NASA Astrophysics Data System (ADS)
Schulz, H. M.; Thies, B.; Cermak, J.; Bendix, J.
2012-06-01
In this paper a new technique for the detection of fog and low stratus in 1 km resolution from MSG SEVIRI data is presented. The method relies on the pan-sharpening of 3 km narrow-band channels using the 1 km high-resolution visible (HRV) channel. As solar and thermal channels had to be sharpened for the technique, a new approach based on an existing pan-sharpening method was developed using local regressions. A fog and low stratus detection scheme originally developed for 3 km SEVIRI data was used as the basis to derive 1 km resolution fog and low stratus masks from the sharpened channels. The sharpened channels and the fog and low stratus masks based on them were evaluated visually and by various statistical measures. The sharpened channels deviate only slightly from reference images regarding their pixel values as well as spatial features. The 1 km fog and low stratus masks are therefore deemed of high quality. They contain many details, especially where fog is restricted by complex terrain in its extent, that cannot be detected in the 3 km resolution.
1 km fog and low stratus detection using pan-sharpened MSG SEVIRI data
NASA Astrophysics Data System (ADS)
Schulz, H. M.; Thies, B.; Cermak, J.; Bendix, J.
2012-10-01
In this paper a new technique for the detection of fog and low stratus in 1 km resolution from MSG SEVIRI data is presented. The method relies on the pan-sharpening of 3 km narrow-band channels using the 1 km high-resolution visible (HRV) channel. As solar and thermal channels had to be sharpened for the technique, a new approach based on an existing pan-sharpening method was developed using local regressions. A fog and low stratus detection scheme originally developed for 3 km SEVIRI data was used as the basis to derive 1 km resolution fog and low stratus masks from the sharpened channels. The sharpened channels and the fog and low stratus masks based on them were evaluated visually and by various statistical measures. The sharpened channels deviate only slightly from reference images regarding their pixel values as well as spatial features. The 1 km fog and low stratus masks are therefore deemed of high quality. They contain many details, especially where fog is restricted by complex terrain in its extent, that cannot be detected in the 3 km resolution.
Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.
Rosário, Denis; Schimuneck, Matias; Camargo, João; Nobre, Jéferson; Both, Cristiano; Rochol, Juergen; Gerla, Mario
2018-01-24
A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends.
Retrieval of land cover information under thin fog in Landsat TM image
NASA Astrophysics Data System (ADS)
Wei, Yuchun
2008-04-01
Thin fog, which often appears in remote sensing image of subtropical climate region, has resulted in the low image quantity and bad image mapping. Therefore, it is necessary to develop the image processing method to retrieve land cover information under thin fog. In this paper, the Landsat TM image near the Taihu Lake that is in the subtropical climate zone of China was used as an example, and the workflow and method used to retrieve the land cover information under thin fog have been built based on ENVI software and a single TM image. The basic step covers three parts: 1) isolating the thin fog area in image according to the spectral difference of different bands; 2) retrieving the visible band information of different land cover types under thin fog from the near-infrared bands according to the relationships between near-infrared bands and visible bands of different land cover types in the area without fog; 3) image post-process. The result showed that the method in the paper is easy and suitable, and can be used to improve the quantity of TM image mapping more effectively.
Fogwater Chemistry and Air Quality in the Texas-Louisiana Gulf Coast Corridor
NASA Astrophysics Data System (ADS)
Kommalapati, R. R.; Raja, S.; Ravikrishna, R.; Murugesan, K.; Collett, J. L.; Valsaraj, K.
2007-05-01
The presence of fog water in polluted atmosphere can influence atmospheric chemistry and air quality. The study of interactions between fog water and atmospheric gases and aerosols are very important in understanding the atmospheric fate of the pollutants. In this Study several air samples and fogwater samples were collected in the heavily industrialized area of Gulf Coast corridor( Houston, TX and Baton Rouge, LA). A total of 32 fogwater samples were collected, comprising of nine fog events in Baton Rouge (Nov 2004 to Feb 2005) and two fog events in Houston (Feb, 2006), during the fog sampling campaigns. These samples were analyzed for pH, total and dissolved carbon, major inorganic ions, organic acids, and aromatics, aldehydes, VOCs, and linear alkanes organic compounds. Fogwater samples collected in Houston show clear influence of marine and anthropogenic environment, while Baton Rouge samples reveal a relatively less polluted environment. Also, a time series observation of air samples indicated that fog event at the monitoring site impacted the air concentrations of the pollutants. This is attributed to presence of surface active organic matter in fog water.
Organic matter in central California radiation fogs.
Herckes, Pierre; Lee, Taehyoung; Trenary, Laurie; Kang, Gongunn; Chang, Hui; Collett, Jeffrey L
2002-11-15
Organic matter was studied in radiation fogs in the San Joaquin Valley of California during the California Regional Particulate Air Quality Study (CRPAQS). Total organic carbon (TOC) concentrations ranged from 2 to 40 ppm of C. While most organic carbon was found in solution as dissolved organic carbon (DOC), 23% on average was not dissolved inside the fog drops. We observe a clear variation of organic matter concentration with droplet size. TOC concentrations in small fog drops (<17 microm) were a factor of 3, on average, higher than TOC concentrations in larger drops. As much as half of the dissolved organic matter was determined to have a molecular weight higher than 500 Da. Deposition fluxes of organic matter in fog drops were high (0.5-4.3 microg of C m(-2) min(-1)), indicating the importance of fog processing as a vector for removal of organic matter from the atmosphere. Deposition velocities of organic matter, however, were usually found to be lower than deposition velocities for fogwater, consistent with the enrichment of the organic matter in smaller fog drops with lower terminal settling velocities.
Ji, Keju; Zhang, Jun; Chen, Jia; Meng, Guiyun; Ding, Yafei; Dai, Zhendong
2016-04-20
The collection of water from fog is a simple and sustainable means of obtaining freshwater for human and animal consumption. Herein, we address the use of metal foam in fog collection and present a novel fog-collecting device fabricated from copper foam. This device, which can also be used in other liquid-gas separation applications, is a 3D extension of biologically inspired 1D and 2D materials. The network structure of the 3D material effectively increased the contact area and interaction time of the skeleton structure and fog compared to those of traditional 2D fog-collecting materials. The main aspects investigated in this study were the influences of the inertial centrifugal force generated by rotating the metal-foam samples and the use of samples with different surface wettabilities on the fog-collecting performance. Superhydrophilic and superhydrophobic samples were found to have higher collection efficiencies at low and high rotational speeds, respectively, and a maximum efficiency of 86% was achieved for superhydrophobic copper foam (20 pores per inch) rotated at 1500 rpm.
NASA Astrophysics Data System (ADS)
Fernandez, D.; Torregrosa, A.; Weiss-Penzias, P. S.; Mairs, A. A.; Wilson, S.; Bowman, M.; Barkley, T.; Gravelle, M.; Oliphant, A. J.
2015-12-01
Since 2014 an extensive network of standard fog collectors has been deployed along the coast of California, from as far south as southern Big Sur (36.1° N) to as far north as Arcata (40.8° N) at over a dozen sites that contain a total of several dozen of the fog collecting devices. This research is being done in conjunction with the Fognet Project that is looking at the levels of monomethyl mercury in fog water. Data collected reveal a fascinating variability in the amount of fog water collected across different scales of distance, elevation, time and location. In addition, a number of different types of mesh have been deployed and co-located to examine the variation in their fog water collecting capability in identical conditions. Mesh variations exhibit smaller variability across mesh type than had previously been expected. This study documents results found thus far across the network and also discusses the quantification of the errors associated with tipping bucket rain gauge measurements of water volumes and thus the importance of tipping bucket rain gauge calibration.
NASA Astrophysics Data System (ADS)
K R, Sreenivas; Mohammad, Rafiuddin
2016-11-01
Predicting the fog-onset, its growth and dissipation helps in managing airports and other modes of transport. After sunset, occurrence of fog requires moist air, low wind and clear-sky conditions. Under these circumstances radiative heat transfer plays a vital role in the NBL. Locally, initiation of fog happens when the air temperature falls below the dew-point. Thus, to predict the onset of fog at a given location, one has to compute evolution of vertical temperature profile. Earlier,our group has shown that the presence of aerosols and vertical variation in their number density determines the radiative-cooling and hence development of vertical temperature profile. Aerosols, through radiation in the window-band, provides an efficient path for air layers to lose heat to the cold, upper atmosphere. This process creates cooler air layer between warmer ground and upper air layers and resulting temperature profile facilitate the initiation of fog. Our results clearly indicates that accounting for the presence of aerosols and their radiative-transfer is important in modeling micro-meteorological process of fog formation and its evolution. DST, Govt. INDIA.
Fog deposition to the Atacama desert
NASA Astrophysics Data System (ADS)
Westbeld, A.; Klemm, O.; Griessbaum, F.; Sträter, E.; Larrain, H.; Osses, P.; Cereceda, P.
2010-07-01
In the Atacama Desert, one of the driest places on earth, fog deposition plays an important role for the water balance and for the survival of vulnerable ecosystems. The eddy covariance method, previously applied for the quantification of fog deposition to forests in various parts of the world, was used for the first time to measure deposition of fog water to a desert. We estimated the amount of water available for the ecosystem by deposition and determined the relevant processes driving fog deposition. This is especially important for the species Tillandsia landbecki living in coastal Atacama at the limit of plant existence with fog and dew being the only sources of liquid water. Between 31 July and 19 August, 2008, measurements were realized in a 31 ha large Tillandsia carpet at Cerro Guanaco, located 15 km south of Iquique, northern Chile. Several data quality assurance procedures were applied. For the values in compliance with the applied criteria, the mean total deposition per hour was determined (0.04 L per m2) for foggy periods. This number was applied to estimate the amount of water deposited during the measuring period, during the entire month of August 2008, and throughout a whole year. For August 2008, a frequency of fog of 16 %, as established during the measuring period, was assumed. The frequency for a whole year was estimated from the differences of the collected amount of water obtained with standard fog collectors installed at Cerro Guanaco in an earlier study. Calculations resulted in an amount of 2.5 L per m2 of deposited fog water for the measuring period. During the entire August, 4.4 L per m2 have likely been available, and for a whole year, a total of 25 L per m2 was estimated to have reached the surface. Inaccuracies could have been caused by the low amount of data applied, and by a possible underestimation of the deposition due to additional formation of radiation fog during the fog events. Three days were used for further analysis because of long, uninterrupted fog periods. On each of these days, turbulent upward fluxes occurred periodically. This leads to the assumption that there could have been a source of fog water near the surface. During the respective time periods, warm air was transported downward. The cold desert ground could have diminished the temperature of air layers at ground level, and therewith could have caused additional condensation. If there had been a source of droplets between the measuring height (5 m above ground) and the surface, deposition could have occurred while the instruments were measuring upward transport of fog droplets. Westbeld, A., Klemm, O., Griessbaum, F., Sträter, E., Larrain, H., Osses, P. & Cereceda, P. (2009) Fog deposition to a Tillandsia carpet in the Atacama Desert. Annales Geophysicae 27, 3571-3576.
Gluten-induced cognitive impairment ("brain fog") in coeliac disease.
Yelland, Gregory W
2017-03-01
Much is known about the serious neurological effects of gluten ingestion in coeliac disease patients, such as sporadic ataxia and peripheral neuropathy, although the causal links to gluten are still under debate. However, such disorders are observed in only a small percentage of coeliac patients. Much less is known about the transient cognitive impairments to memory, attention, executive function, and the speed of cognitive processing reported by the majority of patients with coeliac disease. These mild degradations of cognitive functions, referred to as "brain fog," are yet to be formally recognized as a medical or psychological condition. However, subtle tests of cognitive function are measurable in untreated patients with coeliac disease and improve over the first 12 months' therapy with a gluten-free diet. Such deficits also occur in patients with Crohn's disease, particularly in association with systemic inflammatory activity. Thus, cognitive impairments associated with brain fog are psychologically and neurologically real and improve with adherence to a gluten-free diet. There is not yet sufficient evidence to provide a definitive account of the mechanism by which gluten ingestion causes the impairments to cognitive function associated with brain fog, but current evidence suggests that it is more likely that the causal factor is not directly related to exposure to gluten. © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Eller, Cleiton B; Lima, Aline L; Oliveira, Rafael S
2016-07-01
Many tropical montane cloud forest (TMCF) trees are capable of foliar water uptake (FWU) during leaf-wetting events. In this study, we tested the hypothesis that maintenance of leaf turgor during periods of fog exposure and soil drought is related to species' FWU capacity. We conducted several experiments using apoplastic tracers, deuterium labeling and leaf immersion in water to evaluate differences in FWU among three common TMCF tree species. We also measured the effect of regular fog exposure on the leaf water potential of plants subjected to soil drought and used these data to model species' response to long-term drought. All species were able to absorb water through their leaf cuticles and/or trichomes, although the capacity to do so differed between species. During the drought experiment, the species with higher FWU capacity maintained leaf turgor for a longer period when exposed to fog, whereas the species with lower FWU exerted tighter stomatal regulation to maintain leaf turgor. Model results suggest that without fog, species with high FWU are more likely to lose turgor during seasonal droughts. We show that leaf-wetting events are essential for trees with high FWU, which tend to be more anisohydric, maintaining leaf turgor during seasonal droughts. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Design of orienting and aiming instrument based on fiber optic gyroscope
NASA Astrophysics Data System (ADS)
Zhang, Zhijun; Wang, Limin; Sun, Jiyu
2007-12-01
In order to improve the ground viability of missile weapon system, a quick orienting and aiming instrument is cried for the missile launching in modern war. The fiber optic gyroscope (FOG) based on Sagnac effect is a new type of all solid state rotation rate sensor that detects angular changes or angular rates relative to inertial space, which has many fine characteristics compared with traditional mechanical electronic gyro, such as low cost, light weight, long life, high reliability, wide dynamic range, etc. For the need of missile photoelectric aiming facility, It is necessary to design and manufacture a set of orienting and aiming instrument based on single axis FOG, to solve the close quarters aiming of missile launching, to measure the azimuth reference. Based on practical project, the principle of FOG orienting system and laser collimation theodolite aiming system is discussed and studied in this paper. Orienting and aiming system are constructed in the same basement. The influence of platform tilt on the precision of orientation is analyzed. An accelerator is used to compensate deviation caused by base tilt. The aiming precision affected by eccentricity of the encoders for laser collimation theodolite and the FOG orientation system are analyzed. The test results show that the aiming accuracy is 6' in three minutes. It is suitable for missile aiming in short range.
Atmospheric properties measurements and data collection from a hot-air balloon
NASA Astrophysics Data System (ADS)
Watson, Steven M.; Olson, N.; Dalley, R. P.; Bone, W. J.; Kroutil, Robert T.; Herr, Kenneth C.; Hall, Jeff L.; Schere, G. J.; Polak, M. L.; Wilkerson, Thomas D.; Bodrero, Dennis M.; Borys, R. O.; Lowenthal, D.
1995-02-01
Tethered and free-flying manned hot air balloons have been demonstrated as platforms for various atmospheric measurements and remote sensing tasks. We have been performing experiments in these areas since the winter of 1993. These platforms are extremely inexpensive to operate, do not cause disturbances such as prop wash and high airspeeds, and have substantial payload lifting and altitude capabilities. The equipment operated and tested on the balloons included FTIR spectrometers, multi-spectral imaging spectrometer, PM10 Beta attenuation monitor, mid- and far-infrared cameras, a radiometer, video recording equipment, ozone meter, condensation nuclei counter, aerodynamic particle sizer with associated computer equipment, a tethersonde and a 2.9 kW portable generator providing power to the equipment. Carbon monoxide and ozone concentration data and particle concentrations and size distributions were collected as functions of altitude in a wintertime inversion layer at Logan, Utah and summertime conditions in Salt Lake City, Utah and surrounding areas. Various FTIR spectrometers have been flown to characterize chemical plumes emitted from a simulated industrial stack. We also flew the balloon into diesel and fog oil smokes generated by U.S. Army and U.S. Air Force turbine generators to obtain particle size distributions.
Ciuffini, Andrea Francesco; Barella, Silvia; Peral Martínez, Luis Borja; Mapelli, Carlo; Fernández Pariente, Inés
2018-06-19
Shot peening is a surface process commonly used in the aeronautic and automotive industries to improve fatigue resistance. Shot peening is proven to be beneficial in the fatigue behavior of components, but rarely has its influence on wear and pitting corrosion resistance been evaluated. In this work, shot peening was performed on AISI F55-UNS S32760 super-duplex stainless steel samples previously submitted to various thermal treatments, to obtain different initial microstructures and properties. Samples have been characterized in terms of microstructure morphology, local chemical composition, microhardness of each constituent phase, and energy dissipation modes. The enhanced properties provided by shot peening has been evaluated through residual stress depth profiles and Full Width at Half Maximum (FWHM) using X-ray diffraction (XRD), surface hardness, surface roughness, and corrosion resistance through salt spray fog tests. The 1400 °C solution thermal treatment was identified as the optimum initial condition, which maximizes the advantages of the shot peening treatment, even pitting corrosion resistance. These results are related to the uniformity of austenite and ferrite in terms of microstructure morphology, micromechanical properties, and alloying elements distribution.
Evaluation of fog predictions and detection : [summary].
DOT National Transportation Integrated Search
2015-03-01
Fog can make driving conditions extremely hazardous. These hazards are further increased : at night and/or when combined with smoke. Nationally, about 38,000 fog-related highway : incidents occur each year, with over 600 fatalities. Florida ranks thi...
DOT National Transportation Integrated Search
1999-04-01
The need for a highway fog warning system has long been internationally recognized. With such a system, motorists can avoid tragic pile-up accidents caused by dense or patchy fog. The development of a cost-effective highway visibility sensor that mea...
Mark E. Fenn; Theodor D. Leininger
1995-01-01
The magnitude and importance of wet deposition of N in forests of the South Coast (Los Angeles) Air Basin have not been well characterized. We exposed 3-yr-old ponderosa pine (Pinus ponderos Laws.) seedlings growing in native forest soil to acidic fog treatments (pH 3.1) simulating fog chemistry from a pine forest near Los Angeles, California. Fog solutions contained...
A multi-structural and multi-functional integrated fog collection system in cactus
Ju, Jie; Bai, Hao; Zheng, Yongmei; Zhao, Tianyi; Fang, Ruochen; Jiang, Lei
2012-01-01
Multiple biological structures have demonstrated fog collection abilities, such as beetle backs with bumps and spider silks with periodic spindle-knots and joints. Many Cactaceae species live in arid environments and are extremely drought-tolerant. Here we report that one of the survival systems of the cactus Opuntia microdasys lies in its efficient fog collection system. This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features. The gradient of the Laplace pressure, the gradient of the surface-free energy and multi-function integration endow the cactus with an efficient fog collection system. Investigations of the structure–function relationship in this system may help us to design novel materials and devices to collect water from fog with high efficiencies. PMID:23212376
A multi-structural and multi-functional integrated fog collection system in cactus.
Ju, Jie; Bai, Hao; Zheng, Yongmei; Zhao, Tianyi; Fang, Ruochen; Jiang, Lei
2012-01-01
Multiple biological structures have demonstrated fog collection abilities, such as beetle backs with bumps and spider silks with periodic spindle-knots and joints. Many Cactaceae species live in arid environments and are extremely drought-tolerant. Here we report that one of the survival systems of the cactus Opuntia microdasys lies in its efficient fog collection system. This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features. The gradient of the Laplace pressure, the gradient of the surface-free energy and multi-function integration endow the cactus with an efficient fog collection system. Investigations of the structure-function relationship in this system may help us to design novel materials and devices to collect water from fog with high efficiencies.
NASA Astrophysics Data System (ADS)
Jyumonji, Masanori; Uchiyama, Haruo
The so-called “Yamase” accompanied by very low temperatures and dense fog results in not only bad crop harvests especially rice, but also traffic confusion and accidents during the summer season from the Sanriku Coast to Shimokita Peninsula in the part of northern Japan facing the Pacific Ocean. Effective counterplots against these disasters are strongly expected to be realized by farmers and many citizens. We have invented an electrostatic fog-liquefier in order to solve these problems by dissipating fog artificially. In this paper, we describe the principle of fog dissipation by means of corona discharge, and demonstrate fog and white vapor dissipation experiments not only in a laboratory, but in the field also. Bad odor abatement by means of this newly invented apparatus is also related in detail.
NASA Astrophysics Data System (ADS)
Browning, David; Scheifele, Peter
2002-04-01
The "fog-bound" coast of New England has posed a hazard to all forms of transportation for centuries, yet relatively little study, especially in recent times, has been done on the physics of fog. The singular study of sound propagation, conducted in 1959, found no apparent increase over the normal frequency dependent absorption in air. However, a recent text (W. Binhua, SEA FOG, Springer-Verlag, 1985) indicates that this was only a moderate fog and not the much more intense ("killer") fogs. For these the aggregaton of water droplets may lead to increased low frequency absorption thus reducing the effective range of existing foghorns. On land, advances in light scattering might be applied to provide a simple mobile means (mounted on a police car, for example) to quickly identify extreme conditions and take precautionary action on the highway to prevent the horrific multi-car collisions that can occur.
NASA Astrophysics Data System (ADS)
Haeffelin, Martial
2016-04-01
Radiation fog formation is largely influenced by the chemical composition, size and number concentration of cloud condensation nuclei and by heating/cooling and drying/moistening processes in a shallow mixing layer near the surface. Once a fog water layer is formed, its development and dissipation become predominantly controlled by radiative cooling/heating, turbulent mixing, sedimentation and deposition. Key processes occur in the atmospheric surface layer, directly in contact with the soil and vegetation, and throughout the atmospheric column. Recent publications provide detailed descriptions of these processes for idealized cases using very high-resolution models and proper representation of microphysical processes. Studying these processes in real fog situations require atmospheric profiling capabilities to monitor the temporal evolution of key parameters at several heights (surface, inside the fog, fog top, free troposphere). This could be done with in-situ sensors flown on tethered balloons or drones, during dedicated intensive field campaigns. In addition Backscatter Lidars, Doppler Lidars, Microwave Radiometers and Cloud Doppler Radars can provide more continuous, yet precise monitoring of key parameters throughout the fog life cycle. The presentation will describe how Backscatter Lidars can be used to study the height and kinetics of aerosol activation into fog droplets. Next we will show the potential of Cloud Doppler Radar measurements to characterize the temporal evolution of droplet size, liquid water content, sedimentation and deposition. Contributions from Doppler Lidars and Microwave Radiometers will be discussed. This presentation will conclude on the potential to use Lidar and Radar remote sensing measurements to support operational fog nowcasting.
7. Fog signal house and shed, view south, north and ...
7. Fog signal house and shed, view south, north and west sides of fog signal house, northeast and northwest sides of shed - Whitehead Light Station, Whitehead Island, East northeast of Tenants Harbor, Spruce Head, Knox County, ME
NASA Astrophysics Data System (ADS)
Ghauri, Badar; Zafar, Sumaira
2016-07-01
Northern Pakistan and bordering Indian Punjab experience intense smog and fog during fall and winters. Environmentalists have been raising their voices over the situation and demanded control over regional emissions to save the livelihood of millions of dwellers whose trade, commerce and agriculture is at stake because of long smog/ fog spells.. This paper estimates the area affected by haze, smog and fog during 2006- 2010. MODIS (geo-referenced MODIS subsets India1, 2 &3) of the area in Pakistan and India from 2006 to 2010 for the period October to February) were analyzed using state of the art software ENVI 4.2 and ArcGIS 10.2. This process resulted in area belonging to each class that is; haze, smog and fog. On the basis of density, haze and fog cover was determined. Variations in fog cover, its density and identification of location of fog initiation process were also determined using near real time (30 minutes) METEOSAT-7 IODC data where actually fog formation started and then extended to the area of favorable conditions. Haze has been noticed to intensify due to massive burning of agricultural waste (rice husk) in India and Pakistan towards the end of October each year. MODIS thermal anomalies/fire data (MYD 14) were also used to verify this activity on the ground, which results in hazy conditions at regional level during fall months. Haze-affected area during 2006 to 2010 in Pakistan ranged from 155,000 Km2 to 354,000 Km2 and in India it ranged from 333,000 Km2 to 846,000 Km2. Similarly winter fog cover during this period in Pakistan varied from 136,000 Km2 to 381,000 Km2 and in India it was estimated at 327,000 Km2 to 566,000 Km2. This phenomenon was more prominent in India than in Pakistan where and fog cover was at least twice than that was observed in Pakistan. It has been noted that area covered by fog, smog and haze doubled during the study period in the region. Atmospheric dimming during autumn/ fall also reduces the mixing height leading to greater pollutants accumulation. So far no mitigation steps have been taken to combat this regional issue. Reduction in local emissions is highly recommended to save at least the lives of vulnerable (children, elderly, patients etc).
Urbanization Effects on Fog in China: Field Research and Modeling
NASA Astrophysics Data System (ADS)
Li, Zi-hua; Yang, Jun; Shi, Chun-e.; Pu, Mei-juan
2012-05-01
Since the policy of "Reform and Open to the Outside World" was implemented from 1978, urbanization has been rapid in China, leading to the expansion of urban areas and population synchronous with swift advances in economy. With urban development underway, the urban heat island (UHI) and air pollution are being enhanced, together with vegetation coverage and relative humidity on the decrease. These changes lead to: (1) decline of annual fog days in cities (e.g. In Chongqing, so-called city of fog in China, the annual fog days have reduced from 100-145 in the 1950s to about 20-30 in the 2000s); (2) decrease in fog water content (FWC) and fog droplet size, but increase in fog droplets number concentration [e.g. Jinghong, a city in Yunnan province, the average FWC (the droplet diameter) during an extremely dense fog episode with drizzle was 0.74 g/m3 (28.6 μm) during the 1968/69 winter and 0.08 g/m3 (6.8 μm) in another extremely dense fog episode during the 1986/87 winter, correspondingly, the fog droplets number density had increased from 34.9 to 153 cm-3]; (3) decrease in fog water deposition (FWD) (e.g. the annual mean FWD measured in Jinghong had dropped from 17.3 mm in the 1950s to 4.4 mm in the 1970s and less than 1 mm in the 1980s, and no measurable FWD now.); (4) decrease in visibility in large cities (e.g. in Chongqing, the annual average visibility had decreased from 8.2-11.8 km in the 1960s to 4.9-6.5 km in the 1980s, and around 5 km in recent years); and (5) increase in the ion concentrations and acidity in fog water in urban areas [e.g. the average total ion concentration (TIC) in the center of Chongqing was 5.5 × 104 μmol/L, with mean pH value of 4.0, while the corresponding values are 9.7 × 103 μmol/L and over 5.5 in its rural area]. These changes endanger all kinds of transportation and human health. This paper summarized the authors' related studies, including observations and numerical simulations to confirm the above conclusions.
Remote sensing of low visibility over otopeni airport
NASA Astrophysics Data System (ADS)
Buzdugan, Livius; Urlea, Denisa; Bugeac, Paul; Stefan, Sabina
2018-04-01
The paper is focused on the study of atmospheric conditions determining low vertical visibility over Henri Coanda airport. A network of ceilometers and a Sodar were used to detect fog and low level cloud layers. In our study, vertical visibility from ceilometers and acoustic reflectivity from Sodar for November 2016 were used to estimate fog depth and top of fog layers, respectively. The correlation between fog and low cloud occurrence and the wind direction and speed is also investigated.
Eller, Cleiton B; Lima, Aline L; Oliveira, Rafael S
2013-07-01
Foliar water uptake (FWU) is a common water acquisition mechanism for plants inhabiting temperate fog-affected ecosystems, but the prevalence and consequences of this process for the water and carbon balance of tropical cloud forest species are unknown. We performed a series of experiments under field and glasshouse conditions using a combination of methods (sap flow, fluorescent apoplastic tracers and stable isotopes) to trace fog water movement from foliage to belowground components of Drimys brasiliensis. In addition, we measured leaf water potential, leaf gas exchange, leaf water repellency and growth of plants under contrasting soil water availabilities and fog exposure in glasshouse experiments to evaluate FWU effects on the water and carbon balance of D. brasiliensis saplings. Fog water diffused directly through leaf cuticles and contributed up to 42% of total foliar water content. FWU caused reversals in sap flow in stems and roots of up to 26% of daily maximum transpiration. Fog water transported through the xylem reached belowground pools and enhanced leaf water potential, photosynthesis, stomatal conductance and growth relative to plants sheltered from fog. Foliar uptake of fog water is an important water acquisition mechanism that can mitigate the deleterious effects of soil water deficits for D. brasiliensis. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Zhang, Dalong; Zhang, Zhongdian; Li, Jianming; Chang, Yibo; Du, Qingjie; Pan, Tonghua
2015-01-01
The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L.) productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1) without environment control and (2) with a micro-fog system operating when the air vapor pressure deficit (VPD) of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR) of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR), and to a lesser extent caused by leaf area ratio (LAR). Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season. PMID:26221726
The Impact of Sea Surface Temperature Front on Stratus-Sea Fog over the Yellow and East China Seas
NASA Astrophysics Data System (ADS)
Zhang, S.; Li, M.; Liu, F.
2013-12-01
A stratus-sea fog event occurred on 3 June 2011 over the Yellow and East China Seas (as shown in figure) is investigated observationally and numerically. Emphasis is put on the influences of the sea surface temperature front (SSTF) and of the synoptic circulations on the transition of stratus to sea fog. The southerly winds from a synoptic high pressure transport water vapor from the East China Sea to the Yellow Sea, while the subsidence induced by the high contributes to the formation of the temperature inversion on the top of the stratus or stratocumulus that appears mainly over the warm flank of a sea surface temperature front in the East China Sea. Forced by the SSTF, there is a secondary cell within the atmospheric boundary layer (ABL), with a sinking branch on the cold flank and a rising one on the warm flank of the SSTF. This sinking branch, in phase with the synoptic subsidence, forces the stratus or stratocumulus to lower in the elevation getting close to the sea surface as these clouds move northward driven by the southerly winds. The cloud droplets can either reach to the sea surface directly or evaporate into water vapor that may condense again when coming close to the cold sea surface to form fog. In this later case, the stratus and fog may separate. The cooling effect of cold sea surface counteracts the adiabatic heating induced by the subsidence and thus helps the transition of stratus to sea fog in the southern Yellow Sea. By smoothing the SSTF in the numerical experiment, the secondary cell weakens and the sea fog patches shrink obviously over the cold flank of the SSTF though the synoptic subsidence and moist advection still exist. A conceptual model is suggested for the transition of stratus to sea fog in the Yellow and East China Seas, which is helpful for the forecast of sea fog over these areas. The satellite visible image of the stratus-fog event. The fog appears in the Yellow Sea and the stratocumulus in the East China Sea.
NASA Astrophysics Data System (ADS)
Boris, A. J.; Lee, T.; Park, T.; Choi, J.; Seo, S. J.; Collett, J. L., Jr.
2016-01-01
Samples of fog water were collected at Baengnyeong Island (BYI) in the Yellow Sea during the summer of 2014. The most abundant chemical species in the fog water were NH4+ (mean of 2220 µM), NO3- (1260 µM), SO4-2 (730 µM), and Na+ (551 µM), with substantial contributions from other species consistent with marine and biomass burning influence on some dates. The pH of the samples ranged between 3.48 and 5.00, with a mean of 3.94, intermediate within pH values of fog/cloud water reported previously in Southeast Asia. Back trajectories (72 h) showed that high relative humidity ( > 80 %) was encountered upwind of the sampling site by all but one of the sampled air masses, and that the fog composition at BYI can be impacted by several different source regions, including the Sea of Japan, southeastern China, northeastern China, and the East China Sea. Sulfur in the collected fog was highly oxidized: low S(IV) concentrations were measured (mean of 2.36 µM) in contrast to SO4-2 and in contrast to fog/cloud S(IV) concentrations from pollutant source regions; organosulfate species were also observed and were most likely formed through aging of mainly biogenic volatile organic compounds. Low-molecular-mass organic acids were major contributors to total organic carbon (TOC; 36-69 %), comprising a fraction of TOC at the upper end of that seen in fogs and clouds in other polluted environments. Large contributions were observed from not only acetic and formic acids but also oxalic, succinic, maleic, and other organic acids that can be produced in aqueous atmospheric organic processing (AAOP) reactions. These samples of East Asian fog water containing highly oxidized components represent fog downwind of pollutant sources and can provide new insight into the fate of regional emissions. In particular, these samples demonstrate the result of extensive photochemical aging during multiday transport, including oxidation within wet aerosols and fogs.
FogEye UV Sensor System Evaluation : Phase I Report.
DOT National Transportation Integrated Search
2002-09-01
FogEye technology uses the solar-blind reigion of the ultraviolet spectrum to develop sensors or systems that are unaffected by sunlight. The U.S. Congress asked the Federal Aviation Administration to investigate the feasibility of applying FogEye te...
Fog : a review of the literature pertaining to highway problems and possible solutions.
DOT National Transportation Integrated Search
1972-01-01
1. Fogs are significant contributors to multiple car accidents that often result in fatalities. 2. Systems that adequately abate fogs or lighting systems that provide minimum visibility requirements have not evolved. 3. Most abatement techniques stem...
Summer water use by California coastal prairie grasses: fog, drought, and community composition.
Corbin, Jeffrey D; Thomsen, Meredith A; Dawson, Todd E; D'Antonio, Carla M
2005-10-01
Plants in the Mediterranean climate region of California typically experience summer drought conditions, but correlations between zones of frequent coastal fog inundation and certain species' distributions suggest that water inputs from fog may influence species composition in coastal habitats. We sampled the stable H and O isotope ratios of water in non-photosynthetic plant tissue from a variety of perennial grass species and soil in four sites in northern California in order to determine the proportion of water deriving from winter rains and fog during the summer. The relationship between H and O stable isotopes from our sample sites fell to the right of the local meteoric water line (LMWL) during the summer drought, providing evidence that evaporation of water from the soil had taken place prior to the uptake of water by vegetation. We developed a novel method to infer the isotope values of water before it was subjected to evaporation in which we used experimental data to calculate the slope of the deltaH versus deltaO line versus the LMWL. After accounting for evaporation, we then used a two-source mixing model to evaluate plant usage of fog water. The model indicated that 28-66% of the water taken up by plants via roots during the summer drought came from fog rather than residual soil water from winter rain. Fog use decreased as distance from the coast increased, and there were significant differences among species in the use of fog. Rather than consistent differences in fog use by species whose distributions are limited to the coast versus those with broader distributions, species responded individualistically to summer fog. We conclude that fogwater inputs can mitigate the summer drought in coastal California for many species, likely giving an advantage to species that can use it over species that cannot.
Cerebral blood flow and freezing of gait in Parkinson's disease.
Imamura, K; Okayasu, N; Nagatsu, T
2012-09-01
We investigated the relationship between freezing of gait (FOG) severity in Parkinson's disease (PD) and regional cerebral blood flow (rCBF) using single-photon emission computed tomography (SPECT) and evaluated the effect of selegiline therapy. We evaluated 54 patients with PD (FOG positive: 21 patients, and FOG negative: 33 patients) with N-isopropyl-p-[I-123] iodoamphetamine ((123) I-IMP) SPECT and the Unified Parkinson's Disease Rating Scale (UPDRS) part III, Mini-Mental State Examination (MMSE), and Beck Depression Inventory. [Correction added on 18 April 2012, after online publication: In the preceding statement, 55 instead of 54 patients with PD were evaluated, and FOG negative consisted of 34 instead of 33 patients] Furthermore, we examined rCBF in FOG-negative patients treated with levodopa with or without selegiline. Z-values of bilateral Brodmann areas (BA) 10 and 11 and left BA32 showed significant increases in the FOG-positive group compared with the FOG-negative group. [Correction added on 18 April 2012, after online publication: In the preceding statement, Z-values was changed to Z-scores] There were significantly positive correlations between Z-values of these areas and FOG score, especially on both sides of BA11. [Correction added on 18 April 2012, after online publication: In the preceding statement, Z-values was changed to Z-scores] An increase in Z-values in bilateral BA10 and 11 and left BA32 in the levodopa-selegiline treatment group after 1 year was significantly inhibited compared with the levodopa treatment group. [Correction added on 18 April 2012, after online publication: In the preceding statement, left BA32 was changed to right BA32, and Z-values was changed to Z-scores] There was a close relationship between FOG severity in PD and an increase in rCBF in BA 10, 11 and 32. Furthermore, selegiline's FOG prevention effect may be related to maintaining rCBF in these same areas. © 2012 John Wiley & Sons A/S.
Kostal, Elisabeth; Stroj, Sandra; Kasemann, Stephan; Matylitsky, Victor; Domke, Matthias
2018-03-06
The exciting functionalities of natural superhydrophilic and superhydrophobic surfaces served as inspiration for a variety of biomimetic designs. In particular, the combination of both extreme wetting states to micropatterns opens up interesting applications, as the example of the fog-collecting Namib Desert beetle shows. In this paper, the beetle's elytra were mimicked by a novel three-step fabrication method to increase the fog-collection efficiency of glasses. In the first step, a double-hierarchical surface structure was generated on Pyrex wafers using femtosecond laser structuring, which amplified the intrinsic wetting property of the surface and made it superhydrophilic (water contact angle < 10°). In the second step, a Teflon-like polymer (CF 2 ) n was deposited by a plasma process that turned the laser-structured surface superhydrophobic (water contact angle > 150°). In the last step, the Teflon-like coating was selectively removed by fs-laser ablation to uncover superhydrophilic spots below the superhydrophobic surface, following the example of the Namib Desert beetle's fog-collecting elytra. To investigate the influence on the fog-collection behavior, (super)hydrophilic, (super)hydrophobic, and low and high contrast wetting patterns were fabricated on glass wafers using selected combinations of these three processing steps and were exposed to fog in an artificial nebulizer setup. This experiment revealed that high-contrast wetting patterns collected the highest amount of fog and enhanced the fog-collection efficiency by nearly 60% compared to pristine Pyrex glass. The comparison of the fog-collection behavior of the six samples showed that the superior fog-collection efficiency of surface patterns with extreme wetting contrast is due to the combination of water attraction and water repellency: the superhydrophilic spots act as drop accumulation areas, whereas the surrounding superhydrophobic areas allow a fast water transportation caused by gravity. The presented method enables a fast and flexible surface functionalization of a broad range of materials including transparent substrates, which offers exciting possibilities for the design of biomedical and microfluidic devices.
Rastogi, Bharat; Williams, A. Park; Fischer, Douglas T.; Iacobellis, Sam F.; McEachern, A. Kathryn; Carvalho, Leila; Jones, Charles Leslie; Baguskas, Sara A.; Still, Christopher J.
2016-01-01
The presence of low-lying stratocumulus clouds and fog has been known to modify biophysical and ecological properties in coastal California where forests are frequently shaded by low-lying clouds or immersed in fog during otherwise warm and dry summer months. Summer fog and stratus can ameliorate summer drought stress and enhance soil water budgets, and often have different spatial and temporal patterns. Here we use remote sensing datasets to characterize the spatial and temporal patterns of cloud cover over California’s northern Channel Islands. We found marine stratus to be persistent from May through September across the years 2001-2012. Stratus clouds were both most frequent and had the greatest spatial extent in July. Clouds typically formed in the evening, and dissipated by the following early afternoon. We present a novel method to downscale satellite imagery using atmospheric observations and discriminate patterns of fog from those of stratus and help explain patterns of fog deposition previously studied on the islands. The outcomes of this study contribute significantly to our ability to quantify the occurrence of coastal fog at biologically meaningful spatial and temporal scales that can improve our understanding of cloud-ecosystem interactions, species distributions and coastal ecohydrology.
Evaluation of fog predictions and detection.
DOT National Transportation Integrated Search
2015-03-01
On January 29, 2012 at about 4:00 am a thick fog and smoke caused a multiple car : crash just south of Gainesville, Florida. 11 people were killed and 18 were : hospitalized. Nationally there are about 38,000 fog related accidents which result in : a...
Fog Bank, Namib Desert, Namibia, Africa
1991-12-01
Fog is the only source of moisture for desert dwelling animals and plants living in the Namib Desert sand dune field, Namibia (23.5N, 15.0E). Coastal stratus clouds provide most of the life supporting moisture as fog droplets in this arid land where the usual annual rainfall is less than a quarter of an inch for decades at a time. In this view, the stratus clouds over the coast conform to the dune pattern proving that the fog is in ground contact.
High repetition rate ultrashort laser cuts a path through fog
NASA Astrophysics Data System (ADS)
de la Cruz, Lorena; Schubert, Elise; Mongin, Denis; Klingebiel, Sandro; Schultze, Marcel; Metzger, Thomas; Michel, Knut; Kasparian, Jérôme; Wolf, Jean-Pierre
2016-12-01
We experimentally demonstrate that the transmission of a 1030 nm, 1.3 ps laser beam of 100 mJ energy through fog increases when its repetition rate increases to the kHz range. Due to the efficient energy deposition by the laser filaments in the air, a shockwave ejects the fog droplets from a substantial volume of the beam, at a moderate energy cost. This process opens prospects for applications requiring the transmission of laser beams through fogs and clouds.
Fog Bank, Namib Desert, Namibia, Africa
NASA Technical Reports Server (NTRS)
1991-01-01
Fog is the only source of moisture for desert dwelling animals and plants living in the Namib Desert sand dune field, Namibia (23.5N, 15.0E). Coastal stratus clouds provide most of the life supporting moisture as fog droplets in this arid land where the usual annual rainfall is less than a quarter of an inch for decades at a time. In this view, the stratus clouds over the coast conform to the dune pattern proving that the fog is in ground contact.
NASA Astrophysics Data System (ADS)
Yue, Yanyu; Niu, Shengjie; Zhao, Lijuan; Zhang, Yu; Xu, Feng
2014-05-01
During a sea-fog field observation campaign on Donghai Island in the spring of 2011, fog-water, visibility, meteorological elements, and fog droplet spectra were measured. The main cations and anions in 191 fog-water samples were Na+, NH{4/+}, H+, NO{3/-}, Cl- and SO{4/2-}, and the average concentrations of cations and anions were 2630 and 2970 μeq L-1, respectively. The concentrations of Na+ and Cl- originated from the ocean were high. The enhancement of anthropogenic pollution might have contributed to the high concentration of NH{4/+}, H+, and NO{3/-}. The average values of pH and electrical conductivity (EC) were 3.34 and 505 μS cm-1, respectively, with a negative correlation between them. Cold fronts associated with cyclonic circulations promoted the decline of ion loadings. Air masses from coastal areas had the highest ion loadings, contrary to those from the sea. The ranges of wind speed, wind direction and temperature corresponding to the maximum total ion concentration (TIC) were 3.5-4 m s-1, 79°-90° and 21°C-22°C, respectively. In view of the low correlation coefficients, a new parameter Lr was proposed as a predictive parameter for TIC and the correlation coefficient increased to 0.74. Based on aerosol concentrations during the sea-fog cases in 2010, we confirmed that fog-water chemical composition also depended on the species and sizes of aerosol particles. When a dust storm passed through Donghai Island, the number concentration of large aerosol particles (with diameter > 1 μm) increased. This caused the ratio of Ca2+/Na+ in fog-water to increase significantly.
Vertical profile of fog microphysics : a case study
NASA Astrophysics Data System (ADS)
Burnet, Frédéric; Brilouet, Pierre-Etienne; Mazoyer, Marie; Bourrianne, Thierry; Etcheberry, Jean-Michel; Gaillard, Brigitte; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Barrau, Sébastien; Defoy, Stephan
2016-04-01
The occurrence and development of fogs result from the non-linear interaction of competing radiative, thermodynamic, microphysical and dynamical processes and the forecasting of their life cycle still remains a challenging issue. Several field campaigns have been carried out at the SIRTA observatory in the Paris suburb area (France). These experiments have shown that fog events exhibit large differences of the microphysical properties and various evolutions during their life cycle. To better understand relationships between the different processes and to validate numerical simulations it is necessary however to document the vertical profile of the fog microphysics. A CDP (Cloud Droplet Spectrometer) from DMT (Droplet Measurement Technology, Boulder, CO) has been modified to allow measurements of the droplet size distribution in fog layers with a tethered balloon. This instrumental set-up has been used during a field campaign during the winter 2013-214 in the Landes area in the South West of France. To validate the vertical profiles provided by the modified CDP, a mast was equipped with microphysical instruments at 2 altitude levels with an another CDP at 24 m and a Fog Monitor FM100 at 42 m. The instrumental set-up deployed during this campaign is presented. Data collected during a fog event that occurred during the night of 5-6 March 2014 are analysed. We show that microphysical properties such as droplet number concentration, LWC and mean droplet size, exhibit different time evolution during the fog life cycle depending on the altitude level. Droplet size distribution measurements are also investigated. They reveal sharp variations along the vertical close to the top of the fog layer. In addition it is shown that the shape of the size distributions at the top follows a time evolution typical of a quasi-adiabatic droplet growth.
Measurements of fog composition at a rural site
NASA Astrophysics Data System (ADS)
Straub, Derek J.; Hutchings, James W.; Herckes, Pierre
2012-02-01
Studies that focus on fog chemistry in the United States have been limited to relatively few locations. Apart from measurements along the East and West coasts and extensive analysis of radiation fog in the Central Valley of California, fog composition has been characterized in only a handful of other locations. To complement and expand the existing fog chemistry data that are currently available, a new field campaign was established at a rural location in Central Pennsylvania to produce a unique, long term record of fog composition. From 2007 to 2010, 41 fog events were sampled with an automated Caltech Heated Rod Cloudwater Collector (CHRCC). The collected samples were analyzed primarily for pH and major inorganic ions. Dissolved organic carbon (DOC) and trace metals were analyzed in selected samples and N-nitrosodimethylamine (NDMA) was quantified in two samples. Sample composition varied widely during the study period. Sulfate concentrations ranged from 15 to 955 (median = 123) μN and pH varied between 3.08 and 7.41 (median = 5.77). In terms of volume weighted averages, ammonium was the most abundant ionic species followed by sulfate, calcium, and nitrate. For the subset of samples in which DOC was analyzed, concentrations ranged from 2.2 to 22.6 mgC l -1. Comparisons with regional precipitation chemistry measurements reveal the influence of local agricultural and soil sources on fog composition. The sum of sulfate, nitrate, and ammonium measured in the present study is considerably lower than the majority of radiation, precipitation, and coastal fogs collected in the United States although the ammonium/(nitrate + sulfate) ratio is similar to those found in the Central Valley of California.
Evolution of chemical composition of fogwater in winter in Chengdu, China.
Yin, Hongling; Ye, Zhixiang; Yang, Yingchun; Yuan, Wei; Qiu, Changyan; Yuan, Huawei; Wang, Min; Li, Shiping; Zou, Changwu
2013-09-01
Two sampling sites representing the urban and suburban area of Chengdu, China were sampled and analyzed for selected chemicals to characterize the evolution of the chemical composition of fogwater. A trend of total organic carbon (TOC) > total nitrogen (TN) > total inorganic carbon (TIC) was observed for both sites. Variation of inorganic ions indicated that inorganic pollutants were not accumulated in the fog. Concentrations of n-alkanes (C11-C37) at the urban site ranged from 7.58 to 27.75 ng/mL while at the suburban site concentrations were 2.57-21.55 ng/mL. The highest concentration of n-alkanes was observed in the mature period of fog (393.12 ng/mL) which was more than ten times that in the fog formation period (27.83 ng/mL) and the fog dissipation period (14.87 ng/mL). Concentrations of Sigma15PAHs were in the range of 7.27-38.52 ng/mL at the urban site and 2.59-22.69 ng/mL at the suburban site. Contents of PAHs in the mature period of fog (27.15 ng/mL) > fog dissipation period (11.59 ng/mL) > fog formation period (6.42 ng/mL). Concentrations of dicarboxylic acids (C5-C9) ranged from 10.92 to 40.78 ng/mL, with glutaric acid (C5) as the dominant dicarboxylic acid. These data provide strong indications of the accumulation of certain organic chemicals of environmental concern in fog and fog water, and provide additional insights about processes in urban and suburban air acting on organic chemicals with similar physical chemical properties.
Electrostatically driven fog collection using space charge injection
Damak, Maher; Varanasi, Kripa K.
2018-01-01
Fog collection can be a sustainable solution to water scarcity in many regions around the world. Most proposed collectors are meshes that rely on inertial collision for droplet capture and are inherently limited by aerodynamics. We propose a new approach in which we introduce electrical forces that can overcome aerodynamic drag forces. Using an ion emitter, we introduce a space charge into the fog to impart a net charge to the incoming fog droplets and direct them toward a collector using an imposed electric field. We experimentally measure the collection efficiency on single wires, two-wire systems, and meshes and propose a physical model to quantify it. We identify the regimes of optimal collection and provide insights into designing effective fog harvesting systems. PMID:29888324
Advection fog formation and aerosols produced by combustion-originated air pollution
NASA Technical Reports Server (NTRS)
Hung, R. J.; Liaw, G. S.; Vaughan, O. H., Jr.
1980-01-01
The way in which pollutants produced by the photochemical reaction of NO(X) and SO(X) affect the quality of the human environment through such phenomena as the formation of advection fog is considered. These pollutants provide the major source of condensation nuclei for the formation of fog in highways, airports and seaports. Results based on the monodisperse, multicomponent aerosol model show that: (1) condensation nuclei can grow and form a dense fog without the air having attained supersaturation; (2) the mass concentration range for NO(X) is one-third that of SO(X); and (3) the greater the mass concentration, the particle concentration, and the radius of condensation nuclei, the denser the fog that is formed.
Automatic film processors' quality control test in Greek military hospitals.
Lymberis, C; Efstathopoulos, E P; Manetou, A; Poudridis, G
1993-04-01
The two major military radiology installations (Athens, Greece) using a total of 15 automatic film processors were assessed using the 21-step-wedge method. The results of quality control in all these processors are presented. The parameters measured under actual working conditions were base and fog, contrast and speed. Base and fog as well as speed displayed large variations with average values generally higher than acceptable, whilst contrast displayed greater stability. Developer temperature was measured daily during the test and was found to be outside the film manufacturers' recommended limits in nine of the 15 processors. In only one processor did film passing time vary on an every day basis and this was due to maloperation. Developer pH test was not part of the daily monitoring service being performed every 5 days for each film processor and found to be in the range 9-12; 10 of the 15 processors presented pH values outside the limits specified by the film manufacturers.
Short-term effects of military fog oil on the fountain darter (Etheostoma fonticola).
Ryan, T A; Kohl, A N; Soucek, D J; Smith, T S; Brandt, T M; Bonner, T H; Cropek, D M
2013-11-01
Toxicity tests evaluated chronic and sublethal effects of fog oil (FO) on a freshwater endangered fish. FO is released during military training as an obscurant smoke that can drift into aquatic habitats. Fountain darters, Etheostoma fonticola, of four distinct life stages were exposed under laboratory conditions to three forms of FO. FO was vaporized into smoke and allowed to settle onto water, violently agitated with water, and dosed onto water followed by photo-oxidization by ultraviolet irradiation. Single smoke exposures of spawning adult fish did not affect egg production, egg viability, or adult fish survival in 21-day tests. Multiple daily smoke exposures induced mortality after 5 days for larvae fish. Larvae and juvenile fish were more sensitive than eggs in 96-h lethal concentration (LC50) tests with FO–water mixtures and photo-oxidized FO. Water-soluble FO components photo-modified by ultraviolet radiation were the most toxic, thus indicating the value of examining weathering and aging of chemicals for the best determination of environmental impact.
Fog detection for interstate and state highways.
DOT National Transportation Integrated Search
2012-12-01
Fog is a common and recurrent phenomenon in West Virginia which is the cause of nearly 1.3% of all fatal crashes : occurring all over the state. All three types of fog are common in the state which results in lack visibility, limited : contrast, dist...
An RNA-Binding Multimer Specifies Nematode Sperm Fate.
Aoki, Scott T; Porter, Douglas F; Prasad, Aman; Wickens, Marvin; Bingman, Craig A; Kimble, Judith
2018-06-26
FOG-3 is a master regulator of sperm fate in Caenorhabditis elegans and homologous to Tob/BTG proteins, which in mammals are monomeric adaptors that recruit enzymes to RNA binding proteins. Here, we determine the FOG-3 crystal structure and in vitro demonstrate that FOG-3 forms dimers that can multimerize. The FOG-3 multimeric structure has a basic surface potential, suggestive of binding nucleic acid. Consistent with that prediction, FOG-3 binds directly to nearly 1,000 RNAs in nematode spermatogenic germ cells. Most binding is to the 3' UTR, and most targets (94%) are oogenic mRNAs, even though assayed in spermatogenic cells. When tethered to a reporter mRNA, FOG-3 represses its expression. Together these findings elucidate the molecular mechanism of sperm fate specification and reveal the evolution of a protein from monomeric to multimeric form with acquisition of a distinct mode of mRNA repression. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Climatic context and ecological implications of summer fog decline in the coast redwood region
Johnstone, James A.; Dawson, Todd E.
2010-01-01
Biogeographical, physiological, and paleoecological evidence suggests that the coast redwood [Sequoia sempervirens (D. Don) Endl.] is closely associated with the presence of summer marine fog along the Pacific coast of California. Here we present a novel record of summer fog frequency in the coast redwood region upon the basis of direct hourly measurements of cloud ceiling heights from 1951 to 2008. Our analysis shows that coastal summer fog frequency is a remarkably integrative measure of United States Pacific coastal climate, with strong statistical connections to the wind-driven upwelling system of the California Current and the broad ocean temperature pattern known as the Pacific Decadal Oscillation. By using a long-term index of daily maximum land temperatures, we infer a 33% reduction in fog frequency since the early 20th century. We present tree physiological data suggesting that coast redwood and other ecosystems along the United States west coast may be increasingly drought stressed under a summer climate of reduced fog frequency and greater evaporative demand. PMID:20160112
Climatic context and ecological implications of summer fog decline in the coast redwood region.
Johnstone, James A; Dawson, Todd E
2010-03-09
Biogeographical, physiological, and paleoecological evidence suggests that the coast redwood [Sequoia sempervirens (D. Don) Endl.] is closely associated with the presence of summer marine fog along the Pacific coast of California. Here we present a novel record of summer fog frequency in the coast redwood region upon the basis of direct hourly measurements of cloud ceiling heights from 1951 to 2008. Our analysis shows that coastal summer fog frequency is a remarkably integrative measure of United States Pacific coastal climate, with strong statistical connections to the wind-driven upwelling system of the California Current and the broad ocean temperature pattern known as the Pacific Decadal Oscillation. By using a long-term index of daily maximum land temperatures, we infer a 33% reduction in fog frequency since the early 20th century. We present tree physiological data suggesting that coast redwood and other ecosystems along the United States west coast may be increasingly drought stressed under a summer climate of reduced fog frequency and greater evaporative demand.
Extreme fog events in Poland with respect to circulation conditions
NASA Astrophysics Data System (ADS)
Ustrnul, Z.; Czekierda, D.; Wypych, A.
2010-09-01
Fog is a phenomenon which belongs to a group of so-called hydrometeorites and, according to the different dictionaries, it is a suspension of water droplets or ice crystals in the ground layer of the air that impairs visibility in the horizontal direction below 1 km. The phenomenon of fog, although much less dynamic or violent than other extreme phenomena, such as thunderstorms or hail, is equally dangerous and brings about huge social and economic complications. Land and air transportation suffer and fog may sometimes leads to a complete crippling of the whole economy in an area where fog occurs. The main objective of the study is determination of the circulation types bringing extreme fog events in Poland. The duration of fog at each meteorological station was considered as the main input data originated from 54 synoptic stations located across the country. The mentioned data series cover the period of 56 years (1951-2006). The occurrence of fog depends on meteorological conditions caused to a large extent by a given synoptic situation and local terrain conditions. In this study, according to its objectives, only circulation conditions are taken into consideration. These have been described by 5 different circulation classifications (Grosswetterlagen, Litynski, Osuchowska-Klein, Niedzwiedz and Ustrnul). Situations when this phenomenon occurred across a large part of the country were taken into detailed consideration. Special attention was paid to fog coverage during 24-hour periods. In this work, in light of certain doubts about the homogeneity of the observation material available, the intensity of fog was not included, as it requires additional and very tedious analysis. In the first step all cases of fog during the 1966-2006 study period which lasted 24 hours at more than 10 of the considered weather stations, i.e: at least 5 stations have been considered. As expected, in most cases, either a centre of a classical high pressure system or a high pressure wedge prevailed over Poland. In many cases, the dominance of baric patterns with advection from the eastern or southern sectors can be observed. Only in a few cases does a type with advection from the western sector come into play. In summary, it can be stated that intensive extreme fog of long duration occurred first of all in high pressure non-advective situations or along with weak advection, mainly from the southern or eastern direction. This statement, however, is not revolutionary. It simply confirms that the most troublesome of fog types is the radiation type, and can cover all of Poland at the same time and last up to several days. The study contains detailed meteorological-synoptic analyses of the most extreme events during the whole investigated period.
Foliar uptake of fog in coastal California shrub species.
Emery, Nathan C
2016-11-01
Understanding plant water uptake is important in ecosystems that experience periodic drought. In many Mediterranean-type climates like coastal California, plants are subject to significant drought and wildfire disturbance. During the dry summer months, coastal shrub species are often exposed to leaf wetting from overnight fog events. This study sought to determine whether foliar uptake of fog occurs in shrub species and how this uptake affects physiology and fuel condition. In a controlled greenhouse experiment, dominant California shrub species were exposed to isotopically labeled fog water and plant responses were measured. Potted plants were covered at the base to prevent root uptake. The deuterium label was detected in the leaves of four out of five species and in the stems of two of the species. While there was a minimal effect of foliar water uptake on live fuel moisture, several species had lower xylem tension and greater photosynthetic rates after overnight fog treatments, especially Salvia leucophylla. Coastal fog may provide a moisture source for many species during the summer drought, but the utilization of this water source may vary based on foliar morphology, phenology and plant water balance. From this study, it appears that drought-deciduous species (Artemisia californica and Salvia leucophylla) benefit more from overnight fog events than evergreen species (Adenostoma fasciculatum, Baccharis pilularis and Ceanothus megacarpus). This differential response to fog exposure among California shrub species may affect species distributions and physiological tolerances under future climate scenarios.
Improvement of fog predictability in a coupled system of PAFOG and WRF
NASA Astrophysics Data System (ADS)
Kim, Wonheung; Yum, Seong Soo; Kim, Chang Ki
2017-04-01
Fog is difficult to predict because of the multi-scale nature of its formation mechanism: not only the synoptic conditions but also the local meteorological conditions crucially influence fog formation. Coarse vertical resolution and parameterization errors in fog prediction models are also critical reasons for low predictability. In this study, we use a coupled model system of a 3D mesoscale model (WRF) and a single column model with a fine vertical resolution (PAFOG, PArameterized FOG) to simulate fogs formed over the southern coastal region of the Korean Peninsula, where National Center for Intensive Observation of Severe Weather (NCIO) is located. NCIO is unique in that it has a 300 m meteorological tower built at the location to measure basic meteorological variables (temperature, dew point temperature and winds) at eleven different altitudes, and comprehensive atmospheric physics measurements are made with the various remote sensing instruments such as visibility meter, cloud radar, wind profiler, microwave radiometer, and ceilometer. These measurement data are used as input data to the model system and for evaluating the results. Particularly the data for initial and external forcings, which are tightly connected to the predictability of coupled model system, are derived from the tower measurement. This study aims at finding out the most important factors that influence fog predictability of the coupled system for NCIO. Nudging of meteorological tower data and soil moisture variability are found to be critically influencing fog predictability. Detailed results will be discussed at the conference.
Cerebellar volume and executive function in Parkinson disease with and without freezing of gait
Myers, Peter S.; McNeely, Marie E.; Koller, Jonathan M.; Earhart, Gammon M.; Campbell, Meghan C.
2017-01-01
BACKGROUND Freezing of gait (FOG) affects approximately 50% of people with Parkinson Disease (PD), impacting quality of life and placing financial and emotional strain on the individual and caregivers. People with PD and FOG have similar deficits in motor adaptation and cognition as individuals with cerebellar lesions, indicating the cerebellum may play a role in FOG. OBJECTIVE To examine potential differences in cerebellar volumes and their relationships with cognition between PD with (FOG+) and without FOG (FOG−). METHODS Sixty-three participants were divided into two groups, FOG+ (n=25) and FOG− (n=38), based on the New Freezing of Gait Questionnaire. Cognitive assessment included Trail Making, Stroop, Verbal Fluency, and Go-NoGo executive function tasks. All participants completed structural T1- and T2-weighted MRI scans. Imaging data were processed with FreeSurfer and the Spatially Unbiased Infratentorial toolbox to segment the cerebellum into individual lobules. RESULTS FOG+ performed significantly worse on phonemic verbal fluency (F(1, 22)=7.06, p=0.01) as well as the Go-NoGo task (F(1, 22)=9.00, p=0.004). We found no differences in cerebellar volumes between groups (F(4, 55)=1.42, p=0.24), but there were significant relationships between verbal fluency measures and lobule volumes in FOG−. CONCLUSIONS These findings underscore the need for longitudinal studies to better characterize potential changes in cerebellar volume, cognitive function, and functional connectivity between people with PD with and without FOG. PMID:28106569
Yungher, Don A.; Morris, Tiffany R.; Dilda, Valentina; Shine, James M.; Naismith, Sharon L.; Lewis, Simon J. G.; Moore, Steven T.
2014-01-01
A cardinal feature of freezing of gait (FOG) is high frequency (3–8 Hz) oscillation of the legs, and this study aimed to quantify the temporal pattern of lower-body motion prior to and during FOG. Acceleration data was obtained from sensors attached to the back, thighs, shanks, and feet in 14 Parkinson's disease patients performing timed-up-and-go tasks, and clinical assessment of FOG was performed by two experienced raters from video. A total of 23 isolated FOG events, defined as occurring at least 5 s after gait initiation and with no preceding FOG, were identified from the clinical ratings. The corresponding accelerometer records were analyzed within a 4 s window centered at the clinical onset of freezing. FOG-related high-frequency oscillation (an increase in power in the 3–8 Hz band >3 SD from baseline) followed a distal to proximal onset pattern, appearing at the feet, shanks, thighs, and then back over a period of 250 ms. Peak power tended to decrease as the focus of oscillation moved from feet to back. There was a consistent delay (mean 872 ms) between the onset of high frequency oscillation at the feet and clinical onset of FOG. We infer that FOG is characterized by high frequency oscillation at the feet, which progresses proximally and is mechanically damped at the torso. PMID:25101189
Thermal imaging of levitated fresh and salt water drops during laser irradiation
NASA Astrophysics Data System (ADS)
Brownell, Cody; Biggs, Harrison
2017-11-01
Simulation of high energy laser propagation and scattering in the maritime environment is problematic, due to the high likelihood of turbulence, fog, and rain or sea spray within the beam path. Considering large water drops (diameters of approximately 1-mm), such as those found in a light rain, an incident high energy laser will lead to rapid evaporation of the water drop as it traverses the beam path. In this work we present surface temperature measurements of a water drop obtained using a FLIR IR camera. The drop is acoustically levitated, and subject to a continuous wave laser with a wavelength of 1070-nm and a mean irradiance of approximately 800 W/cm2. These measurements show that the steady-state surface temperature of the drop is well below the saturation temperature, and for pure substances the equilibrium temperature decreases with decreasing drop volume similar to observations with smaller aqueous aerosols. Temperature non-uniformity within the drop is also assessed from statistics of the surface temperature fluctuations. Preliminary results from irradiated salt water drops show notably different behavior from fresh water drops, including temperature spikes as the drop volume decreases and occasional nucleate boiling. Acknowledge support from ONR #N00014-17-WX-00031.
7. Keeper's house, fog signal house and light tower, view ...
7. Keeper's house, fog signal house and light tower, view north northeast, west and south sides of keeper's house and tower, southwest and southeast sides of fog signal house - West Quoddy Head Light Station, At eastern tip of West Quaddy Head, Lubec, Washington County, ME
Nitrogen speciation in various types of aerosol in spring over the northwestern Pacific Ocean
NASA Astrophysics Data System (ADS)
Luo, L.; Yao, X. H.; Gao, H. W.; Hsu, S. C.; Li, J. W.; Kao, S.-J.
2015-09-01
The cumulative atmospheric nitrogen deposition has been found to profoundly impact the nutrient stoichiometry of the East China seas (ECSs) and the northwestern Pacific Ocean (NWPO). In spite of the potential significance of dry deposition in those regions, ship-board observations of atmospheric aerosols remain insufficient, particularly, for compositions of water-soluble nitrogen species (nitrate, ammonium and water-soluble organic nitrogen - WSON). We conducted a cruise covering the ECSs and the NWPO during the spring of 2014 and observed three types of atmospheric aerosols. Al content, air mass backward trajectory, weather condition, and ion stoichiometry allowed us to discern dust aerosol patches and sea fog modified aerosols (widespread on the ECSs) from background aerosols (open ocean). Among the three types, sea fog modified aerosols contained the highest concentrations of nitrate (536 ± 300 nmol N m-3), ammonium (442 ± 194 nmol N m-3) and WSON (147 ± 171 nmol N m-3); moreover, ammonium and nitrate together occupied ~ 65 % molar fraction of total ions. The dust aerosols also contained significant amounts of nitrate (100 ± 23 nmol N m-3) and ammonium (138 ± 24 nmol N m-3) which were obviously larger than those in background aerosols (26 ± 32 and 54 ± 45 nmol N m-3, respectively, for nitrate and ammonium), yet this was not the case for WSON. It appeared that dust aerosols had less of a chance to contact WSON during its transport. In the open ocean, we found that sea salt (e.g. Na+, Cl-, Mg2+), as well as WSON, correlates positively with wind speed. Apparently, marine WSON was emitted during breaking waves. Regardless of the variable wind speeds from 0.8 to as high as 18 m s-1 nitrate and ammonium, by contrast, remained in narrow ranges implying that some supply and consumption processes of nitrate and ammonium were required to maintain such a quasi-static condition. Mean dry deposition of total dissolved nitrogen (TDN) for sea fog modified aerosols (1090 ± 671 μmol N m-2 d-1) was 5 times higher than dust aerosols (190 ± 41.6 μmol N m-2 d-1) and around 20 times higher than background aerosols (56.8 ± 59.1 μmol N m-2 d-1). Apparently, spring sea fog on the ECSs played an important role in removing atmospheric reactive nitrogen from the Chinese mainland and depositing it into the ECSs, thus effectively preventing its seaward export to the NWPO.
Hyperarid Soils in the Atacama Desert: A Terrestrial Guide to Mars Soil Formation
NASA Astrophysics Data System (ADS)
Amundson, R.; Stephanie, E.; Justine, O.; Brad, S.; Nishiizumi, K.; William, D.; Chris, M.
2005-12-01
Hyperarid soils on Earth provide a framework for interpreting the growing Mars regolith database and for developing testable hypotheses for the origin of Mars soils. On Earth, dust and aerosol deposition are strongly coupled with soil formation. Long term atmospheric deposition in the Atacama Desert, coupled with small and highly stochastic rain and fog events, produce a set of soil features diagnostic of pedogenic processes and indicative of the direction of liquid water flow: (1) Extreme hyperaridity results in the retention of nearly all atmospheric inputs within the upper 3 m of the soil profile, but the infrequent rainfall events vertically separate salts by solubility, forming polygonally cracked, sulfate-cemented near-surface crusts which overlie variably concentrated layers of the more soluble chloride, nitrate, and Na-sulfate salts. (2) Pedogenic sulfates in the Atacama desert exhibit unique depth-dependent S, O and Ca isotope trends caused by isotopic fractionation during downward aqueous migration and chemical reaction. (3) Pedogenic sulfates and nitrates contain a distinctive mass independent O isotope signal indicative of a tropospheric origin, and in the case of nitrate, the retention of this signal persists only under near-abiotic conditions. Taken together, the morphology and the depth-dependent chemical and isotopic composition of hyperarid soils provides quantitative information on the origin of solutes, direction of water flow, and degree of biological activity. Depth-dependent measures of these parameters on Mars can therefore be used to test a pedogenic hypothesis for the origin of the widely distributed sulfate layers and can be used to design experiments for future missions that may more fully illuminate the history of Mars surface processes.
Fogging technique used to coat magnesium with plastic
NASA Technical Reports Server (NTRS)
Mroz, T. S.
1967-01-01
Cleaning process and a fogging technique facilitate the application of a plastic coating to magnesium plates. The cleaning process removes general organic and inorganic surface impurities, oils and greases, and oxides and carbonates from the magnesium surfaces. The fogging technique produces a thin-filmlike coating in a clean room atmosphere.
Fog Machines, Vapors, and Phase Diagrams
ERIC Educational Resources Information Center
Vitz, Ed
2008-01-01
A series of demonstrations is described that elucidate the operation of commercial fog machines by using common laboratory equipment and supplies. The formation of fogs, or "mixing clouds", is discussed in terms of the phase diagram for water and other chemical principles. The demonstrations can be adapted for presentation suitable for elementary…
Evaluation of Motorist Warning Systems for Fog-Related Incidents in the Tampa Bay Area
DOT National Transportation Integrated Search
1997-06-01
The purpose of this evaluation is to investigate and define the specific Tampa : Bay area conditions for fog and fog-related crashes that may exist and recommend an area-wide plan based on these findings to ensure that drivers react more consistently...
Evaluation of pavement edge inset and low level illumination lights in fog : interim report no. 1.
DOT National Transportation Integrated Search
1973-01-01
The Virginia Highway Research Council was asked to search for ways of making travel safer on fogbound highways. All literature obtainable on fog research was reviewed and after an in-depth review of fog abatement techniques it became apparent that ne...
12. Fuel house and fog signal house, view northeast, southwest ...
12. Fuel house and fog signal house, view northeast, southwest side of fuel house, west and south sides of fog signal house - Cape Elizabeth Light Station, Near Two Lights State Park at end of Two Lights Road, off State Highway 77, Cape Elizabeth, Cumberland County, ME
DOT National Transportation Integrated Search
2008-01-01
The objective of this research was to implement and evaluate a fogging system used to provide initial cure for a concrete bridge deck construction project. To accomplish this, Bridges 5500 and 5701 along NM26 were selected. Bridge 5500 was placed usi...
DOT National Transportation Integrated Search
2002-10-01
The Fancy Gap and Afton Mountain interstates have a long history of fog-related, multivehicle crashes. Because of its earlier involvement in the installation and evaluation of the original Afton Mountain in-pavement fog guide light system, and concer...
Evaluation of fog predictions and detection, Phase 2 : draft final report.
DOT National Transportation Integrated Search
2016-09-01
On January 29, 2012 at about 4:00 am a thick fog and smoke caused a multiple car crash just south of Gainesville, Florida. 11 people were killed and 18 were hospitalized. Nationally there are about 38,000 fog related accidents which result in about 6...
Fog dispersion. [charged particle technique
NASA Technical Reports Server (NTRS)
Christensen, L. S.; Frost, W.
1980-01-01
The concept of using the charged particle technique to disperse warm fog at airports is investigated and compared with other techniques. The charged particle technique shows potential for warm fog dispersal, but experimental verification of several significant parameters, such as particle mobility and charge density, is needed. Seeding and helicopter downwash techniques are also effective for warm fog disperals, but presently are not believed to be viable techniques for routine airport operations. Thermal systems are currently used at a few overseas airports; however, they are expensive and pose potential environmental problems.
Two views of the 'Challenger' being rolled out to pad 39A in the fog STS-6
NASA Technical Reports Server (NTRS)
1982-01-01
Two views of the 'Challenger' being rolled out to pad 39A in the fog in preparation for STS-6. In one view the Challenger, atop a mobile launch platform, slowly moves down the road through Florida fog to launch pad 39A (41140); In this view, the Challenger and its mobile launch platform are in the left corner of the photo, moving up the road in dense fog. Towards the top of the view, launch pad 39A can be seen (41141).
An experimental study of summertime coastal fog and its inland penetration in Northern California
NASA Astrophysics Data System (ADS)
Lucena Kreppel Paes, P.; Torres, P.; Faloona, I. C.; Torregrosa, A.; Gultepe, I.
2012-12-01
The occurrence and continental inundation of marine stratocumulus and fog along the California Coast during summer has been linked to many environmental concerns including redwood ecosystem vitality, air traffic control, power grid load balancing, and radiatve climate forcing. An exploratory study was instigated this past summer at the Bodega Marine Laboratory and Pepperwood Preserve, a large nature reserve located 40 km inland in Sonoma County, in order to investigate fog formation, persistence, and penetration through the orographic gap in the Pacific coastal mountain range. Analysis of the synoptic patterns and in-situ meteorological observations, including visibility and boundary layer depth, are presented with the aim of improving fog forecasts and elucidating the principal physical parameters that control summertime fog formation and dissipation along the Northern California Coast.
Fog water chemistry in the Namib desert, Namibia
NASA Astrophysics Data System (ADS)
Eckardt, Frank D.; Schemenauer, Robert S.
This study documents the ion concentrations and ion enrichment relative to sea water, in Namib Desert fog water, with the purpose of establishing its suitability for future fogwater collection schemes, while also examining claims that Namib Desert fog water carries exceptionally high concentrations of sulphate, which may be responsible for the formation of gypsum deposits in the desert. The work suggests that Namibian fog water is at least as clean as has been reported from other coastal deserts in South America and Arabia, and provides a source of very clean water for the coastal desert region of south-western Africa. It does not appear that fog is an efficient sulphur source for the formation of the gypsum deposits, unless rare events with high concentrations of marine sulphur compounds occur.
Fog-computing concept usage as means to enhance information and control system reliability
NASA Astrophysics Data System (ADS)
Melnik, E. V.; Klimenko, A. B.; Ivanov, D. Ya
2018-05-01
This paper focuses on the reliability issue of information and control systems (ICS). The authors propose using the elements of the fog-computing concept to enhance the reliability function. The key idea of fog-computing is to shift computations to the fog-layer of the network, and thus to decrease the workload of the communication environment and data processing components. As for ICS, workload also can be distributed among sensors, actuators and network infrastructure facilities near the sources of data. The authors simulated typical workload distribution situations for the “traditional” ICS architecture and for the one with fogcomputing concept elements usage. The paper contains some models, selected simulation results and conclusion about the prospects of the fog-computing as a means to enhance ICS reliability.
Revuelta, Gonzalo J; Embry, Aaron; Elm, Jordan J; Gregory, Chris; Delambo, Amy; Kautz, Steve; Hinson, Vanessa K
2015-01-01
Freezing of gait (FoG) is a common and debilitating condition in Parkinson's disease (PD) associated with executive dysfunction. A subtype of FoG does not respond to dopaminergic therapy and may be related to noradrenergic deficiency. This pilot study explores the effects of atomoxetine on gait in PD patients with dopa-unresponsive FoG using a novel paradigm for objective gait assessment. Ten patients with PD and dopa-unresponsive FoG were enrolled in this eight-week open label pilot study. Assessments included an exploratory gait analysis protocol that quantified spatiotemporal parameters during straight-away walking and turning, while performing a dual task. Clinical, and subjective assessments of gait, quality of life, and safety were also administered. The primary outcome was a validated subjective assessment for FoG (FOG-Q). Atomoxetine was well tolerated, however, no significant change was observed in the primary outcome. The gait analysis protocol correlated well with clinical scales, but not with subjective assessments. DBS patients were more likely to increase gait velocity (p = 0.033), and improved in other clinical assessments. Objective gait analysis protocols assessing gait while dual tasking are feasible and useful for this patient population, and may be superior correlates of FoG severity than subjective measures. These findings can inform future trials in this population.
Fog interception by Ball moss (Tillandsia recurvata)
NASA Astrophysics Data System (ADS)
Guevara-Escobar, A.; Cervantes-Jiménez, M.; Suzán-Azpiri, H.; González-Sosa, E.; Hernández-Sandoval, L.; Malda-Barrera, G.; Martínez-Díaz, M.
2010-03-01
Interception losses are a major influence in the water yield of vegetated areas. For most storms, interception results in less water reaching the ground. However, fog drip or occult precipitation can result in negative interception because small drops are deposited on all plant surfaces and subsequently fall to the ground once vegetation storage capacities are exceeded. Fog drip is normally disregarded, but for some plant communities, it could be a mechanism offsetting evaporation losses. Tillandsia recurvata is a cosmopolitan epiphyte adapted to arid habitats where fog may be an important water source. Therefore, the interception storage capacity by T. recurvata was measured in controlled conditions through applying simulated rain or fog. The storage capacity was proportional to dry weight mass. Nocturnal stomatic opening in T. recurvata is not only relevant for CO2 but for water vapor, as suggested by the higher weight change of specimens wetted with fog for 1 h at dark in comparison to those wetted during daylight (543±77 vs. 325±56 mg, p=0.048). The coefficients obtained in the laboratory were used together with biomass measurements for T. recurvata in a xeric scrub to calculate the depth of water intercepted. Interception storage capacity (Cmin) was 0.19 and 0.54 mm for rainfall and fog respectively. T. recurvata contributed 20% to the rain interception of their shrub hosts: Acacia farnesiana and Prosopis laevigata. Meteorological data registered during one year at Cadereyta, México showed that radiative fog formation was possible during the dry season. The results showed the potential role of T. recurvata in capturing fog, which probably is a main source of water during the dry season that supports their reproductive and physiological activity at that time. The storage capacity of T. recurvata leaf surfaces could increase the amount of water available for evaporation, but as this species colonise montane forests, the effect could be negative on water recharge, because in the laboratory experiments it took up to 12 h to reach saturation conditions when fog was applied.
Hydrologic Effects and Biogeographic Impacts of Coastal Fog, Channel Islands, California
NASA Astrophysics Data System (ADS)
Fischer, D. T.; Still, C. J.; Williams, A. P.
2006-12-01
Fog has long been recognized as an important component of the hydrological cycle in many ecosystems, including coastal desert fog belts, tropical cloud forests, and montane areas worldwide. Fog drip can be a major source of water, particularly during the dry season, and there is evidence in some ecosystems of direct fogwater uptake by foliar absorption. Fog and low clouds can also increase availability of water by reducing evaporative water losses. In the California Channel Islands, fog and low stratus clouds dramatically affect the water budget of coastal vegetation, particularly during the long summer drought. This work focuses on a population of Bishop pine (Pinus muricata D. Don) on Santa Cruz Island. This is the southernmost large stand of this species, and tree growth and survival appears to be strongly limited by water availability. We have used parallel measurement and modeling approaches to quantify the importance of fogwater inputs and persistent cloud cover to Bishop pine growth. We have modeled drought stress over the last century based on local climate records, calibrated against a dense network of 12 weather stations on a 7km coastal-inland elevation gradient. Water availability is highly variable year to year, with episodic droughts that are associated with widespread tree mortality. Frequent cloud cover near the coast reduces evapotranspiration relative to the inland site (on the order of 25%), thereby delaying the onset of, and moderating the severity of the annual summer drought. Substantial summer fog drip at higher elevations provides additional water inputs that also reduce drought severity. Beyond the theoretical availability of extra water from fog drip, tree ring analysis and xylem water isotopic data suggest that significant amounts of fog water are actually taken up by these trees. Stand boundaries appear to be driven by spatial patterns of mortality related to water availability and frequency of severe drought. These results suggest that coastal endemic forests may be particularly susceptible to climate change, particularly if it leads to changes in the fog and low stratus cloud regime, in agreement with palynological and plant macrofossil evidence from the Santa Barbara basin showing the contraction of coastal pines during warm periods over the last 160 kyrs.
NASA Astrophysics Data System (ADS)
Flegal, A. R.; Weiss-Penzias, P. S.; Ortiz, C.; Acosta, P.; Ryan, J. P.; Collett, J. L.
2011-12-01
Mercury (Hg) is a toxic element that can bioaccumulate in higher trophic level aquatic organisms and poses a health risk to humans and wildlife who consume those organisms. This widespread problem is exemplified by a recent survey of game fish from 152 California Lakes, which found that at least one species in 74% of the lakes sampled exceeded the lowest health threshold for methylmercury. The atmosphere is known to be an important pathway for transport of anthropogenic and natural Hg emissions sources. In this study, we investigated wet deposition of Hg through the precipitation of fog and rain water on the Central Coast of California. Fog (or marine stratus) is common on the California Central Coast and is a significant contributor to the hydrologic cycle, yet concentrations of Hg in fog have not previously been measured in this region. Our samples were collected from a small boat in the Monterey Bay, at the harbor in Moss Landing, and from a rooftop on the University of California, Santa Cruz campus, during June - July 2011 using a Caltech Active Strand Cloud Water Collector-2 that has been used previously for collection of Hg samples. Aqueous samples were analyzed for total Hg using EPA method 1631. Rainwater samples were also collected in Santa Cruz between March and June 2011. Hg concentrations ranged from 1-19 ng/L in fog and from 1-3 ng/L in rain. A previous study in Santa Cruz found a wider range of 2-18 ng/L Hg in rain, and previous studies of Hg in fog from the U.S. and Canada reported concentrations of 2-430 ng/L. Thus, our results are consistent with previous findings that Hg concentrations in fog water are at least as high, if not higher than Hg concentrations in rain. This suggests that in environments where fog is an important contributor to total precipitation, like coastal California, a significant fraction of Hg wet deposition may be occurring via fog precipitation.
Janssen, Sabine; Bolte, Benjamin; Nonnekes, Jorik; Bittner, Marian; Bloem, Bastiaan R; Heida, Tjitske; Zhao, Yan; van Wezel, Richard J A
2017-01-01
External cueing is a potentially effective strategy to reduce freezing of gait (FOG) in persons with Parkinson's disease (PD). Case reports suggest that three-dimensional (3D) cues might be more effective in reducing FOG than two-dimensional cues. We investigate the usability of 3D augmented reality visual cues delivered by smart glasses in comparison to conventional 3D transverse bars on the floor and auditory cueing via a metronome in reducing FOG and improving gait parameters. In laboratory experiments, 25 persons with PD and FOG performed walking tasks while wearing custom-made smart glasses under five conditions, at the end-of-dose. For two conditions, augmented visual cues (bars/staircase) were displayed via the smart glasses. The control conditions involved conventional 3D transverse bars on the floor, auditory cueing via a metronome, and no cueing. The number of FOG episodes and percentage of time spent on FOG were rated from video recordings. The stride length and its variability, cycle time and its variability, cadence, and speed were calculated from motion data collected with a motion capture suit equipped with 17 inertial measurement units. A total of 300 FOG episodes occurred in 19 out of 25 participants. There were no statistically significant differences in number of FOG episodes and percentage of time spent on FOG across the five conditions. The conventional bars increased stride length, cycle time, and stride length variability, while decreasing cadence and speed. No effects for the other conditions were found. Participants preferred the metronome most, and the augmented staircase least. They suggested to improve the comfort, esthetics, usability, field of view, and stability of the smart glasses on the head and to reduce their weight and size. In their current form, augmented visual cues delivered by smart glasses are not beneficial for persons with PD and FOG. This could be attributable to distraction, blockage of visual feedback, insufficient familiarization with the smart glasses, or display of the visual cues in the central rather than peripheral visual field. Future smart glasses are required to be more lightweight, comfortable, and user friendly to avoid distraction and blockage of sensory feedback, thus increasing usability.
NASA Astrophysics Data System (ADS)
Cosentino, N. J.; Jordan, T. E.; Derry, L. A.; Morgan, J. P.
2015-12-01
An elevation-dependent relationship of the 87Sr/86Sr ratio of Holocene surface accumulations of sulfate salts is demonstrated for a continental margin hyperarid setting. In the Atacama Desert of northern Chile, gypsum and anhydrite of multiple origins exist widely on superficial materials that originated during the last 10,000 years. An important source of calcium sulfate is from offshore-generated stratocumulus clouds that are advected onto the continent, where they generate fog that transfers water droplets to the ground surface which, upon evaporation, leaves calcium sulfate crystals. Meteorological measurements of the cloud base and top altitudes average ˜400 m and ˜1100 m above sea level (masl), respectively. The seawater ratio of 87Sr/86Sr (0.70917) is distinctively higher than that reported for weathered mean Andean rock (less than 0.70750). Samples of 28 modern surface salt accumulations for locations between 200 and 2950 masl and between ˜19°30' and ˜21°30'S verify that 87Sr/86Sr varies as a function of site altitude. Sites below 1075 masl and above 225 masl display calcium sulfate 87Sr/86Sr of mean value 0.70807 ± 0.00004, while the ratio outside this altitudinal domain is 0.70746 ± 0.00010. Thus, the 87Sr/86Sr ratio of Holocene salt accumulations differentiates two altitudinal domains.
Exposures to atmospheric effects in the entertainment industry.
Teschke, Kay; Chow, Yat; van Netten, Chris; Varughese, Sunil; Kennedy, Susan M; Brauer, Michael
2005-05-01
Theatrical fogs are commonly used in the entertainment industry to create special atmospheric effects during filming and live productions. We examined exposures to mineral oil-and glycol-based theatrical fogs to determine what fluids and effects were commonly used, to measure the size distributions of the aerosols, and to identify factors associated with personal exposure levels. In nonperformance jobs in a range of production types (television, film, live theater, and concerts),we measured airborne concentrations of inhalable aerosol,aldehydes, and polycyclic aromatic hydrocarbons, and collected observations about the sites and tasks performed. Both mineral oil and glycols were observed in use on about one-half the production days in the study. The most common effect produced was a generalized haze over the entire set. Mean personal inhalable aerosol concentrations were 0.70 mg/m3(range 0.02 to 4.1). The mean proportion of total aerosol mass less than 3.5 microns in aerodynamic diameter was 61%. Exposures were higher when mineral oils, rather than glycols, were used to generate fogs. Higher exposures were also associated with movie and television productions, with using more than one fog machine, with increased time spent in visible fog, and for those employed as "grips." Decreased exposures were associated with increasing room temperature, with increasing distance from fog machines, and for those employed as "sound technicians." Exposures to theatrical fogs are just beginning to be measured. It is important to consider these exposures in light of any health effects observed, since existing occupational exposure limits were developed in other industries where the aerosol composition differs from that of theatrical fogs.
The microphysical properties of ice fog measured in urban environments of Interior Alaska
NASA Astrophysics Data System (ADS)
Schmitt, Carl G.; Stuefer, Martin; Heymsfield, Andrew J.; Kim, Chang Ki
2013-10-01
microphysical properties of ice fog were measured at two sites during a small field campaign in January and February of 2012 in Interior Alaska. The National Center for Atmospheric Research Video Ice Particle Sampler probe and Formvar (polyvinyl formal)-coated microscope slides were used to sample airborne ice particles at two polluted sites in the Fairbanks region. Both sites were significantly influenced by anthropogenic emission and additional water vapor from nearby open water power plant cooling ponds. Measurements show that ice fog particles were generally droxtal shaped (faceted, quasi-spherical) for sub-10 µm particles, while plate-shaped crystals were the most frequently observed particles between 10 and 50 µm. A visibility cutoff of 3 km was used to separate ice fog events from other observations which were significantly influenced by larger (50-150 µm) diamond dust particles. The purpose of this study is to more realistically characterize ice fog microphysical properties in order to facilitate better model predictions of the onset of ice fog in polluted environments. Parameterizations for mass and projected area are developed and used to estimate particle terminal velocity. Dimensional characteristics are based on particle geometry and indicated that ice fog particles have significantly lower densities than water droplets as well as reduced cross-sectional areas, the net result being that terminal velocities are estimated to be less than half the value of those calculated for water droplets. Particle size distributions are characterized using gamma functions and have a shape factor (μ) of between -0.5 and -1.0 for polluted ice fog conditions.
Baguskas, Sara A; Still, Christopher J; Fischer, Douglas T; D'Antonio, Carla M; King, Jennifer Y
2016-05-01
Fog water inputs can offset seasonal drought in the Mediterranean climate of coastal California and may be critical to the persistence of many endemic plant species. The ability to predict plant species response to potential changes in the fog regime hinges on understanding the ways that fog can impact plant physiological function across life stages. Our study uses a direct metric of water status, namely plant water potential, to understand differential responses of adult versus sapling trees to seasonal drought and fog water inputs. We place these measurements within a water balance framework that incorporates the varying climatic and soil property impacts on water budgets and deficit. We conducted our study at a coastal and an inland site within the largest stand of the regionally endemic bishop pine (Pinus muricata D. Don) on Santa Cruz Island. Our results show conclusively that summer drought negatively affects the water status of sapling more than adult trees and that sapling trees are also more responsive to changes in shallow soil moisture inputs from fog water deposition. Moreover, between the beginning and end of a large, late-season fog drip event, water status increased more for saplings than for adults. Relative to non-foggy conditions, we found that fog water reduces modeled peak water deficit by 80 and 70 % at the inland and coastal sites, respectively. Results from our study inform mechanistically based predictions of how population dynamics of this and other coastal species may be affected by a warmer, drier, and potentially less foggy future.
Evaluation of the 5.8-mile highway light system for guidance in fog on Afton Mountain.
DOT National Transportation Integrated Search
1976-01-01
This report presents the results of an evaluation of the 5.8-mile fog guidance light system on I-64 across Afton Mountain. It is a companion to "Interim Report No. 3, Evaluation of Pavement Edge Inset and Low Level Illumination Lights in Fog," which ...
Diurnal temperature asymmetries and fog at Churchill, Manitoba
NASA Astrophysics Data System (ADS)
Gough, William A.; He, Dianze
2015-07-01
A variety of methods are available to calculate daily mean temperature. We explore how the difference between two commonly used methods provides insight into the local climate of Churchill, Manitoba. In particular, we found that these differences related closely to seasonal fog. A strong statistically significant correlation was found between the fog frequency (hours per day) and the diurnal temperature asymmetries of the surface temperature using the difference between the min/max and 24-h methods of daily temperature calculation. The relationship was particularly strong for winter, spring and summer. Autumn appears to experience the joint effect of fog formation and the radiative effect of snow cover. The results of this study suggests that subtle variations of diurnality of temperature, as measured in the difference of the two mean temperature methods of calculation, may be used as a proxy for fog detection in the Hudson Bay region. These results also provide a cautionary note for the spatial analysis of mean temperatures using data derived from the two different methods particularly in areas that are fog prone.
Gallardo, M J; Cabello, J P; Pastor, C; Muñoz-Torrero, J J; Carrasco, S; Ibañez, R; Vaamonde, J
2014-05-01
Freezing of gait (FOG) is one of the most disabling and enigmatic symptoms in Parkinson's disease. Vascular lesions, observed in magnetic resonance imaging (MRI) scans, may produce or exacerbate this symptom. The study includes 22 patients with Parkinson's disease subjects, 12 with freezing of gait and 10 without. All patients underwent an MRI scan and any vascular lesions were analysed using the modified Fazekas scale. Patients with FOG scored higher on the modified Fazekas scale than the rest of the group. Although the two groups contained the same percentage of patients with vascular lesions (50% in both groups), lesion load was higher in the group of patients with FOG. Vascular lesions in the periventricular area and deep white matter seem to be the most involved in the development of FOG. Vascular lesions may contribute to the onset or worsening of FOG in patients with PD. This study suggests that cerebral vascular disease should be considered in patients with FOG. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Online technique for detecting state of onboard fiber optic gyroscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Zhiyong; He, Kunpeng, E-mail: pengkhe@126.com; Pang, Shuwan
2015-02-15
Although angle random walk (ARW) of fiber optic gyroscope (FOG) has been well modeled and identified before being integrated into the high-accuracy attitude control system of satellite, aging and unexpected failures can affect the performance of FOG after launch, resulting in the variation of ARW coefficient. Therefore, the ARW coefficient can be regarded as an indicator of “state of health” for FOG diagnosis in some sense. The Allan variance method can be used to estimate ARW coefficient of FOG, however, it requires a large amount of data to be stored. Moreover, the procedure of drawing slope lines for estimation ismore » painful. To overcome the barriers, a weighted state-space model that directly models the ARW to obtain a nonlinear state-space model was established for FOG. Then, a neural extended-Kalman filter algorithm was implemented to estimate and track the variation of ARW in real time. The results of experiment show that the proposed approach is valid to detect the state of FOG. Moreover, the proposed technique effectively avoids the storage of data.« less
Predicting Fog in the Nocturnal Boundary Layer
NASA Astrophysics Data System (ADS)
Izett, Jonathan; van de Wiel, Bas; Baas, Peter; van der Linden, Steven; van Hooft, Antoon; Bosveld, Fred
2017-04-01
Fog is a global phenomenon that presents a hazard to navigation and human safety, resulting in significant economic impacts for air and shipping industries as well as causing numerous road traffic accidents. Accurate prediction of fog events, however, remains elusive both in terms of timing and occurrence itself. Statistical methods based on set threshold criteria for key variables such as wind speed have been developed, but high rates of correct prediction of fog events still lead to similarly high "false alarms" when the conditions appear favourable, but no fog forms. Using data from the CESAR meteorological observatory in the Netherlands, we analyze specific cases and perform statistical analyses of event climatology, in order to identify the necessary conditions for correct prediction of fog. We also identify potential "missing ingredients" in current analysis that could help to reduce the number of false alarms. New variables considered include the indicators of boundary layer stability, as well as the presence of aerosols conducive to droplet formation. The poster presents initial findings of new research as well as plans for continued research.
Low-Visibility Visual Simulation with Real Fog
NASA Technical Reports Server (NTRS)
Chase, Wendell D.
1982-01-01
An environmental fog simulation (EFS) attachment was developed to aid in the study of natural low-visibility visual cues and subsequently used to examine the realism effect upon the aircraft simulator visual scene. A review of the basic fog equations indicated that the two major factors must be accounted for in the simulation of low visibility-one due to atmospheric attenuation and one due to veiling luminance. These factors are compared systematically by: comparing actual measurements lo those computed from the Fog equations, and comparing runway-visual-range-related visual-scene contrast values with the calculated values. These values are also compared with the simulated equivalent equations and with contrast measurements obtained from a current electronic fog synthesizer to help identify areas in which improvements are needed. These differences in technique, the measured values, the Features of both systems, a pilot opinion survey of the EFS fog, and improvements (by combining features of both systems) that are expected to significantly increase the potential as well as flexibility for producing a very high-fidelity, low-visibility visual simulation are discussed.
Potential bronchoconstrictor stimuli in acid fog.
Balmes, J R; Fine, J M; Gordon, T; Sheppard, D
1989-01-01
Acid fog is complex and contains multiple stimuli that may be capable of inducing bronchoconstriction. These stimuli include sulfuric and niric acids, the principal inorganic acids present; sulfites, formed in the atmosphere as a reaction product of sulfur dioxide and water droplets; fog water itself, a hypoosmolar aerosol; the organic acid hydroxymethanesulfonate, the bisulfite adduct of formaldehyde; and gaseous pollutants, e.g., sulfur dioxide, oxides of nitrogen, ozone. Given this complexity, evaluation of the respiratory health effects of naturally occurring acid fog requires assessment of the bronchoconstrictor potency of each component stimulus and possible interactions among these stimuli. We summarize the results of three studies that involve characterization of the bronchoconstrictor potency of acid fog stimuli and/or their interaction in subjects with asthma. The results of the first study indicate that titratable acidity appears to be a more important stimulus to bronchoconstriction than is pH. The results of the second study demonstrate that sulfite species are capable of inducing bronchoconstriction, especially when inhaled at acid pH. The results of the third study suggest that acidity can potentiate hypoosmolar fog-induced bronchoconstriction. PMID:2539989
Low-visibility visual simulation with real fog
NASA Technical Reports Server (NTRS)
Chase, W. D.
1981-01-01
An environmental fog simulation (EFS) attachment was developed to aid in the study of natural low-visibility visual cues and subsequently used to examine the realism effect upon the aircraft simulator visual scene. A review of the basic fog equations indicated that two major factors must be accounted for in the simulation of low visibility - one due to atmospheric attenuation and one due to veiling luminance. These factors are compared systematically by (1) comparing actual measurements to those computed from the fog equations, and (2) comparing runway-visual-range-related visual-scene contrast values with the calculated values. These values are also compared with the simulated equivalent equations and with contrast measurements obtained from a current electronic fog synthesizer to help identify areas in which improvements are needed. These differences in technique, the measured values, the features of both systems, a pilot opinion survey of the EFS fog, and improvements (by combining features of both systems) that are expected to significantly increase the potential as well as flexibility for producing a very high-fidelity low-visibility visual simulation are discussed.
The ac and dc performance of polymeric insulating materials under accelerated aging in a fog chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorur, R.S.; Cherney, E.A.; Hackam, R.
1988-10-01
The paper presents the results of the dc performance of polymeric insulating materials in a fog chamber. The materials evaluated in fog produced from low (250 ..mu..S/cm) and high (1000 ..mu..S/cm) conductivity water include cylindrical rod samples of high temperature vulcanized (HTV) silicone rubber and ethylene propylene diene monomer (EPDM) rubber containing various amounts of either alumina trihydrate (ATH) or silica fillers, or both. Comparison is made of material performance obtained with ac which was reported in an earlier study. In both low and high conductivity fog, the time to failure with ac and +dc was very similar, but amore » reduction by a factor of about four was observed in the time to failure with -dc. For both ac and dc, silicone rubber performed better than EPDM samples in low conductivity fog, while the order of performance was reversed in high conductivity fog. A theoretical model to determine the effect of dry band discharges on material is presented. Good agreement of the predicted behavior of materials with the experimental findings is shown.« less
de Abreu, Igor Renato Louro Bruno; Abrão, Fernando Conrado; Silva, Alessandra Rodrigues; Corrêa, Larissa Teresa Cirera; Younes, Riad Nain
2015-05-01
Currently, there is a tendency to perform surgical procedures via laparoscopic or thoracoscopic access. However, even with the impressive technological advancement in surgical materials, such as improvement in quality of monitors, light sources, and optical fibers, surgeons have to face simple problems that can greatly hinder surgery by video. One is the formation of "fog" or residue buildup on the lens, causing decreased visibility. Intracavitary techniques for cleaning surgical optics and preventing fog formation have been described; however, some of these techniques employ the use of expensive and complex devices designed solely for this purpose. Moreover, these techniques allow the cleaning of surgical optics when they becomes dirty, which does not prevent the accumulation of residue in the optics. To solve this problem we have designed a device that allows cleaning the optics with no surgical stops and prevents the fogging and residue accumulation. The objective of this study is to evaluate through experimental testing the effectiveness of a simple device that prevents the accumulation of residue and fogging of optics used in surgical procedures performed through thoracoscopic or laparoscopic access. Ex-vivo experiments were performed simulating the conditions of residue presence in surgical optics during a video surgery. The experiment consists in immersing the optics and catheter set connected to the IV line with crystalloid solution in three types of materials: blood, blood plus fat solution, and 200 mL of distilled water and 1 vial of methylene blue. The optics coupled to the device were immersed in 200 mL of each type of residue, repeating each immersion 10 times for each distinct residue for both thirty and zero degrees optics, totaling 420 experiments. A success rate of 98.1% was observed after the experiments, in these cases the device was able to clean and prevent the residue accumulation in the optics.
Fogging formulations for fixation of particulate contamination in ductwork and enclosures
Maresca, Jr., Joseph W.; Kostelnik, Lori M.; Kriskivich, James R.; Demmer, Rick L.; Tripp, Julia L.
2015-09-08
A method and an apparatus using aqueous fixatives for fogging of ventilation ductwork, enclosures, or buildings containing dust, lint, and particulates that may be contaminated by radionuclides and other dangerous or unsafe particulate contaminants, which method and apparatus are capable of (1) obtaining full coverage within the ductwork and (2) penetrating and fixing the lint, dust and large particles present in the ductwork so that no airborne particles are released during or after the application of the fixative. New aqueous fogging solutions outperform conventional glycerin-based solutions. These aqueous solutions will fog using conventional methods of application and contain a surfactant to aid wetting and penetration of the lint and dust, a binder to stabilize loose or respirable particles, and an agent to aid in fogging and enhance adhesiveness. The solutions are safe and easy to use.
Properties influencing fat, oil, and grease deposit formation.
Keener, Kevin M; Ducoste, Joel J; Holt, Leon M
2008-12-01
Fat, oil, and grease (FOG) deposits are the reported cause of 50 to 75% of sanitary sewer overflows in the United States, resulting in 1.8 X 10(6) m3 (500 mil. gal) of raw wastewater released into the environment annually. The objective of this research was to characterize the chemical and physical properties of FOG deposits. Twenty-three cities from around the United States contributed FOG samples for the study. The FOG deposits showed a wide range in yield strength (4 to 34 kPa), porosity (10 to 24%), and moisture content (10 to 60%), suggesting uncontrolled formation processes. A majority of these deposits display hard, sandstonelike texture, with distinct layering effects, suggesting a discontinuous formation process. The results found that 84% of FOG deposits contained high concentrations of saturated fatty acids and calcium, suggesting preferential accumulation.
Bunting-Perry, Lisette; Spindler, Meredith; Robinson, Keith M; Noorigian, Joseph; Cianci, Heather J; Duda, John E
2013-01-01
Freezing of gait (FOG) is a debilitating feature of Parkinson disease (PD). In this pilot study, we sought to assess the efficacy of a rolling walker with a laser beam visual cue to treat FOG in PD patients. We recruited 22 subjects with idiopathic PD who experienced on- and off-medication FOG. Subjects performed three walking tasks both with and without the laser beam while on medications. Outcome measures included time to complete tasks, number of steps, and number of FOG episodes. A crossover design allowed within-group comparisons between the two conditions. No significant differences were observed between the two walking conditions across the three tasks. The laser beam, when applied as a visual cue on a rolling walker, did not diminish FOG in this study.
Fog interception by Ball moss (Tillandsia recurvata)
NASA Astrophysics Data System (ADS)
Guevara-Escobar, A.; Cervantes-Jiménez, M.; Suzán-Azpiri, H.; González-Sosa, E.; Hernández-Sandoval, L.; Malda-Barrera, G.; Martínez-Díaz, M.
2011-08-01
Interception losses are a major influence in the water yield of vegetated areas. For most storms, rain interception results in less water reaching the ground. However, fog interception can increase the overall water storage capacity of the vegetation and once the storage is exceeded, fog drip is a common hydrological input. Fog interception is disregarded in water budgets of semiarid regions, but for some plant communities, it could be a mechanism offsetting evaporation losses. Tillandsia recurvata is a cosmopolitan epiphyte adapted to arid habitats where fog may be an important water source. Therefore, the interception storage capacity by T. recurvata was measured in controlled conditions and applying simulated rain or fog. Juvenile, vegetative specimens were used to determine the potential upperbound storage capacities. The storage capacity was proportional to dry weight mass. Interception storage capacity (Cmin) was 0.19 and 0.56 mm for rainfall and fog respectively. The coefficients obtained in the laboratory were used together with biomass measurements for T. recurvata in a xeric scrub to calculate the depth of water intercepted by rain. T. recurvata contributed 20 % to the rain interception capacity of their shrub hosts: Acacia farnesiana and Prosopis laevigata and; also potentially intercepted 4.8 % of the annual rainfall. Nocturnal stomatic opening in T. recurvata is not only relevant for CO2 but for water vapor, as suggested by the higher weight change of specimens wetted with fog for 1 h at dark in comparison to those wetted during daylight (543 ± 77 vs. 325 ± 56 mg, p = 0.048). The storage capacity of T. recurvata leaf surfaces could increase the amount of water available for evaporation, but as this species colonise montane forests, the effect could be negative on water recharge, because potential storage capacity is very high, in the laboratory experiments it took up to 12 h at a rate of 0.26 l h-1 to reach saturation conditions when fog was applied.
Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing
NASA Astrophysics Data System (ADS)
Collett, Jeffrey L.; Hoag, Katherine J.; Rao, Xin; Pandis, Spyros N.
Although several chemical pathways exist for S(IV) oxidation in fogs and clouds, many are self-limiting: as sulfuric acid is produced and the drop pH declines, the rates of these pathways also decline. Some of the acid that is produced can be buffered by uptake of gaseous ammonia. Additional internal buffering can result from protonation of weak and strong bases present in solution. Acid titrations of high pH fog samples (median pH=6.49) collected in California's San Joaquin Valley reveal the presence of considerable internal acid buffering. In samples collected at a rural location, the observed internal buffering could be nearly accounted for based on concentrations of ammonia and bicarbonate present in solution. In samples collected in the cities of Fresno and Bakersfield, however, significant additional, unexplained buffering was present over a pH range extending from approximately four to seven. The additional buffering was found to be associated with dissolved compounds in the fogwater. It could not be accounted for by measured concentrations of low molecular weight ( C1- C3) carboxylic acids, S(IV), phosphate, or nitrophenols. The amount of unexplained buffering in individual fog samples was found to correlate strongly with the sum of sample acetate and formate concentrations, suggesting that unmeasured organic species may be important contributors. Simulation of a Bakersfield fog episode with and without the additional, unexplained buffering revealed a significant impact on the fog chemistry. When the additional buffering was included, the simulated fog pH remained 0.3-0.7 pH units higher and the amount of sulfate present after the fog evaporated was increased by 50%. Including the additional buffering in the model simulation did not affect fogwater nitrate concentrations and was found to slightly decrease ammonium concentrations. The magnitude of the buffering effect on aqueous sulfate production is sensitive to the amount of ozone present to oxidize S(IV) in these high pH fogs.
Xue, Jian; Yuan, Zibing; Griffith, Stephen M; Yu, Xin; Lau, Alexis K H; Yu, Jian Zhen
2016-07-19
In recent years in a few Chinese megacities, fog events lasting one to a few days have been frequently associated with high levels of aerosol loading characterized by high sulfate (as high as 30 μg m(-3)), therefore termed as haze-fog events. The concomitant pollution characteristics include high gas-phase mixing ratios of SO2 (up to 71 ppbv) and NO2 (up to 69 ppbv), high aqueous phase pH (5-6), and smaller fog droplets (as low as 2 μm), resulting from intense emissions from fossil fuel combustion and construction activities supplying abundant Ca(2+). In this work, we use an observation-based model for secondary inorganic aerosols (OBM-SIA) to simulate sulfate formation pathways under conditions of haze-fog events encountered in Chinese megacities. The OBM analysis has identified, at a typical haze-fogwater pH of 5.6, the most important pathway to be oxidation of S(IV) by dissolved NO2, followed by the heterogeneous reaction of SO2 on the aerosol surface. The aqueous phase oxidation of S(IV) by H2O2 is a very minor formation pathway as a result of the high NOx conditions suppressing H2O2 formation. The model results indicate that the unique cocktail of high fogwater pH, high concentrations of NO2, SO2, and PM, and small fog droplets are capable of greatly enhancing sulfate formation. Such haze-fog conditions could lead to rapid sulfate production at night and subsequently high PM2.5 in the morning when the fog evaporates. Sulfate formation is simulated to be highly sensitive to fogwater pH, PM, and precursor gases NO2 and SO2. Such insights on major contributing factors imply that reduction of road dust and NOx emissions could lessen PM2.5 loadings in Chinese megacities during fog events.
A field study on chemistry, S(IV) oxidation rates and vertical transport during fog conditions
NASA Astrophysics Data System (ADS)
Joos, F.; Baltensperger, U.
An extensive fog study was carried out in the central plateu of Switzerland. Ninety-seven fog samples were collected along with aerosol filter and cascade impactor samples, and measurements of O 3, SO 2, NO, NO x, PAN, temperature, and wind speed and direction. Maximum levels in fogwater were 4.3, 4.4., 0.033, 1.7, 0.5, 0.024 and 9.2 mmol ℓ -1 for Cl -, NO 3-, NO 2-, SO 42-, S(IV), oxalate and NH 4+, respectively. pH varied between 2.9 and 7.1. Sixteen additional elements were determined in the fog samples by ICP. The sum of the concentrations of SO 42- and S(IV) agreed very with the total sulfur concentration as determined by ICP. A substantial excess of S(IV) (up to 0.2 mmol ℓ -1) compared to Henry and acid-base equilibrium calculations was found, which can probably be attributed to complex formations with aldehydes. S(IV) oxidation rates of up to 650 nmol ℓ -1 s -1 with ozone and of up to 100 nmol ℓ -1 s -1 with NO 2 were calculated. S(IV) oxidation due to PAN, NO 2- and Fe(III) was of minor importance. A substantial fraction of the major ions was present in the intersitial aerosol (aerosol particles < 4 μm) even during fog conditions. High correlations were found for NH 4+, NO 32-. From their ratios in the fog water and the aerosol (< 4 μm) it could be concluded that at least 40% of NO 3- and 20% of NH 4+ in fog water was due to gas phase scavenging. Increasing concentrations in fog water were found during fog dissipation. Concentrations decreased with increasing height. A vertical transport model including turbulent diffusion and droplet sedimentation is introduced, which matches the experimental data of this vertical profile.
Functional Reorganization of the Locomotor Network in Parkinson Patients with Freezing of Gait
Fling, Brett W.; Cohen, Rajal G.; Mancini, Martina; Carpenter, Samuel D.; Fair, Damien A.; Nutt, John G.; Horak, Fay B.
2014-01-01
Freezing of gait (FoG) is a transient inability to initiate or maintain stepping that often accompanies advanced Parkinson’s disease (PD) and significantly impairs mobility. The current study uses a multimodal neuroimaging approach to assess differences in the functional and structural locomotor neural network in PD patients with and without FoG and relates these findings to measures of FoG severity. Twenty-six PD patients and fifteen age-matched controls underwent resting-state functional magnetic resonance imaging and diffusion tensor imaging along with self-reported and clinical assessments of FoG. After stringent movement correction, fifteen PD patients and fourteen control participants were available for analysis. We assessed functional connectivity strength between the supplementary motor area (SMA) and the following locomotor hubs: 1) subthalamic nucleus (STN), 2) mesencephalic and 3) cerebellar locomotor region (MLR and CLR, respectively) within each hemisphere. Additionally, we quantified structural connectivity strength between locomotor hubs and assessed relationships with metrics of FoG. FoG+ patients showed greater functional connectivity between the SMA and bilateral MLR and between the SMA and left CLR compared to both FoG− and controls. Importantly, greater functional connectivity between the SMA and MLR was positively correlated with i) clinical, ii) self-reported and iii) objective ratings of freezing severity in FoG+, potentially reflecting a maladaptive neural compensation. The current findings demonstrate a re-organization of functional communication within the locomotor network in FoG+ patients whereby the higher-order motor cortex (SMA) responsible for gait initiation communicates with the MLR and CLR to a greater extent than in FoG− patients and controls. The observed pattern of altered connectivity in FoG+ may indicate a failed attempt by the CNS to compensate for the loss of connectivity between the STN and SMA and may reflect a loss of lower-order, automatic control of gait by the basal ganglia. PMID:24937008
Formation of Oxidized Organic Aerosol (OOA) through Fog Processing in the Po Valley
NASA Astrophysics Data System (ADS)
Gilardoni, S.; Paglione, M.; Rinaldi, M.; Giulianelli, L.; Massoli, P.; Hillamo, R. E.; Carbone, S.; Lanconelli, C.; Laaksonen, A. J.; Russell, L. M.; Poluzzi, V.; Fuzzi, S.; Facchini, C.
2014-12-01
Aqueous phase chemistry might be responsible for the formation of a significant fraction of the organic aerosol (OA) observed in the atmosphere, and could explain some of the discrepancies between OA concentration and properties predicted by models and observed in the environment. Aerosol - fog interaction and its effect on submicron aerosol properties were investigated in the Po Valley (northern Italy) during fall 2011, in the framework of the Supersite project (ARPA Emilia Romagna). Composition and physical properties of submicron aerosol were measured online by a High Resolution- Time of Flight - Aerosol Mass Spectrometer (HR-TOF-AMS), a Soot Photometer - Aerosol Mass Spectrometer (SP-AMS), and a Tandem Differential Mobility Particle Sizer (TDMPS). Organic functional group analysis was performed off-line by Hydrogen - Nuclear Magnetic Resonance (H-NMR) spectrometry and by Fourier Transform Infrared (FTIR) spectrometry. Aerosol absorption, scattering, and total extinction were measured simultaneously with a Particle Soot Absorption Photometer (PSAP), a Nephelometer, and a Cavity Attenuated Phase Shift Spectrometer particle extinction monitor (CAPS PMex), respectively. Water-soluble organic carbon in fog-water was characterized off-line by HR-TOF-AMS. Fourteen distinct fog events were observed. Fog dissipation left behind an aerosol enriched in particles larger than 400 nm, typical of fog and cloud processing, and dominated by secondary species, including ammonium nitrate, ammonium sulfate and oxidized OA (OOA). Source apportionment of OA allowed us to identify OOA as the difference between total OA and primary OA (hydrocarbon like OA and biomass burning OA). The formation of OOA through fog processing is proved by the correlation of OOA concentration with hydroxyl methyl sulfonate signal and by the similarity of OOA spectra with organic mass spectra obtained by re-aerosolization of fog water samples. The oxygen to carbon ratio and the hydrogen to carbon ratio of this OOA fraction was about 0.6 and 1.3, respectively. Organic functional group analysis showed that OOA observed after fog dissipation was characterized by organic-sulfur and organic-nitrogen species.
Impacts of Advection Fog on the Surface Radiation Budget in coastal California
NASA Astrophysics Data System (ADS)
Oliphant, A. J.; Baguskas, S. A.
2016-12-01
Clouds and other aerosols alter the nature of the surface radiation budget (SRB) by reducing the quantity and changing the quality of solar radiation incident upon the surface as well as enhancing down-welling thermal infrared radiation (TIR) and suppressing upwelling TIR during daytime. Our study aimed to characterize the impact of advection fog on SRB components in coastal California, and develop methods to identify and characterize fog events using surface-mounted radiometers. First, we generated a climatology of summertime SRB components based on observations from south-western San Francisco, CA (2005-2008). From this we drew clear distinctions in characteristic surface radiation regimes between foggy and clear-sky days using atmospheric transmission indices during the day and down-welling TIR at any time of day. Secondly, we applied these empirical models to a dataset gathered in 2016 on a coastal strawberry farm located in the fog-belt in the Salinas Valley, California. From this we investigated methods to improve the models to distinguish fog events that cause surface deposition from those when the stratocumulus deck is slightly elevated, i.e., overcast conditions. On average, coastal fog was found to decrease incident solar radiation by about 50% and increase the diffuse fraction by 81%. There was a mean difference of about 70 W m-2 in down-welling TIR between clear-sky and foggy conditions throughout the diurnal cycle, with a standard deviation of less than 10 W m-2, which allows robust 24-hr estimates of fog presence using simple thresholds. As the cloud base lowers in elevation during fog events, the differences in temperature between the cloud base and surface is reduced; therefore, the ratio of opposing TIR fluxes is related to cloud base heights and should help disentangle `fog' events to better inform environmental drivers of coastal ecosystems.
Nazarzadeh, Kimia; Arjunan, Sridhar P; Kumar, Dinesh K; Das, Debi Prasad
2016-08-01
In this study, we have analyzed the accelerometer data recorded during gait analysis of Parkinson disease patients for detecting freezing of gait (FOG) episodes. The proposed method filters the recordings for noise reduction of the leg movement changes and computes the wavelet coefficients to detect FOG events. Publicly available FOG database was used and the technique was evaluated using receiver operating characteristic (ROC) analysis. Results show a higher performance of the wavelet feature in discrimination of the FOG events from the background activity when compared with the existing technique.
Prism adaptation in Parkinson disease: comparing reaching to walking and freezers to non-freezers.
Nemanich, Samuel T; Earhart, Gammon M
2015-08-01
Visuomotor adaptation to gaze-shifting prism glasses requires recalibration of the relationship between sensory input and motor output. Healthy individuals flexibly adapt movement patterns to many external perturbations; however, individuals with cerebellar damage do not adapt movements to the same extent. People with Parkinson disease (PD) adapt normally, but exhibit reduced after-effects, which are negative movement errors following the removal of the prism glasses and are indicative of true spatial realignment. Walking is particularly affected in PD, and many individuals experience freezing of gait (FOG), an episodic interruption in walking, that is thought to have a distinct pathophysiology. Here, we examined how individuals with PD with (PD + FOG) and without (PD - FOG) FOG, along with healthy older adults, adapted both reaching and walking patterns to prism glasses. Participants completed a visually guided reaching and walking task with and without rightward-shifting prism glasses. All groups adapted at similar rates during reaching and during walking. However, overall walking adaptation rates were slower compared to reaching rates. The PD - FOG group showed smaller after-effects, particularly during walking, compared to PD + FOG, independent of adaptation magnitude. While FOG did not appear to affect characteristics of prism adaptation, these results support the idea that the distinct neural processes governing visuomotor adaptation and storage are differentially affected by basal ganglia dysfunction in PD.
Ottosson, Johan; Lavesson, Lillian; Pinzke, Stefan; Grahn, Patrik
2015-01-01
Freezing of Gait (FOG) is a common condition in people with Parkinson’s disease (PD). FOG entails suddenly experiencing difficulties moving or feeling that one’s feet are as glued to the ground. It is triggered, e.g., when passing through doorways. Earlier studies suggest that being in natural environments affects FOG in a positive way. Five subjects were recruited to serve as five single subject cases. We used interviews, observations, questionnaires and collected gait pattern data with aid of an accelerometer. A special designed outdoor setting was used, where we investigated whether passing through hedge openings with or without built elements triggered FOG. We found that no one experienced a FOG reaction when they passed through hedge openings without built elements. However, FOG was triggered when a doorframe was inserted into a hedge opening, and/or when peripheral vision was blocked. We interpret the results such that the doorframe triggered a phobic reflex, causing a freezing reaction. Passing through hedge openings does not trigger FOG, which we interpret as a biophilic reaction. Our results, if repeated in future studies, may have significance to everyday lives of PD patients, who could get a simpler life by consciously prioritizing stays in natural surroundings. PMID:26132480
NASA Astrophysics Data System (ADS)
Fernandez, D.; Torregrosa, A.; Weiss-Penzias, P. S.; Oliphant, A. J.; Dodge, C.; Bowman, M.; Wilson, S.; Mairs, A. A.; Gravelle, M.; Barkley, T.
2016-12-01
At multiple sites across central CA, several passive fog water collectors have been deployed for the past 3 years. All of the sites employ standard Raschel polypropylene mesh as the fog collection medium and five of them also integrated a novel polypropylene mesh of German manufacture with a 3-dimensional internal structure. Additionally, six metal mesh manufactured by McMaster-Carr of various hole sizing were coated with a POSS-PEMA substance at the Massachusetts Institute of Technology and deployed in parallel with the Raschel mesh at six distinct locations. Finally, fluorine-free versions of the POSS-PEMA substance were generated by NBD Nanotechnology and coated on a much finer mesh substrate. Three of those and one control (uncoated mesh) were deployed at one of the fog collection sites for one season, along with a standard Raschel mesh. Preliminary results from one intercomparison from just one pair of mesh over two seasons seem to reveal a wind speed and also, possibly, a droplet-size dependence on the fog collection efficiency for the mesh. This study will continue to intercompare the various mesh in conjunction with the wind speed and direction data. If a collection efficiency dependence on mesh size or coating is confirmed, it may point to interesting and relevant mechanisms for fog droplet capture and collection hitherto unobserved in field conditions.
Fog Bank Detector Field Tests : A Technical Summary
DOT National Transportation Integrated Search
1971-12-01
The report summarizes the results of field experiments performed at Pt. Bonita, California. The system under study, a laser LIDAR and a vertical-scanning infrared radiometer, have been discussed in detail in Report No. DOT-TSC-CG-71-3. Measurements o...
Measurement of moisture in smoldering smoke and implications for fog
Gary L. Achtemeier
2006-01-01
Smoke from wildland burning in association with fog has been implicated as a visibility hazard over roadways in the southern United States. A project began in 2002 to determine whether moisture released during the smoldering phases of southern prescribed burns could contribute to fog formation. Temperature and relative humidity measurements were taken from 27...
Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model
NASA Astrophysics Data System (ADS)
Okumura, Teppei; Hand, Nick; Seljak, Uroš; Vlah, Zvonimir; Desjacques, Vincent
2015-11-01
Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in which we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k2R2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. We adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the "CMASS" sample of the BOSS survey, we find that our predictions for the redshift-space power spectra are accurate up to k ≃0.4 h Mpc-1 within 1% if the halo power spectrum is measured using N -body simulations and within 3% if it is modeled using perturbation theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okumura, Teppei; Hand, Nick; Seljak, Uros
Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in whichmore » we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k 2R 2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. Furthermore, we adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k 2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the “CMASS” sample of the BOSS survey, we find that our predictions for the redshift-space power spectra are accurate up to k ≃ 0.4 h Mpc –1 within 1% if the halo power spectrum is measured using N-body simulations and within 3% if it is modeled using perturbation theory.« less
Pollution Levels in Fog at the Chilean Coast
NASA Astrophysics Data System (ADS)
Sträter, E.; Klemm, O.; Westbeld, A.
2010-07-01
During July and August 2008 fog water was collected for chemical analysis in Patache, at the coast of northern Chile, 60 km south of Iquique (20°49’S, 70°09’W). Advective fog events occur regularly at the cliff in the coastal range at about 800 m above MSL. People collect these types of fog water at some places along the coast with Large Fog Collectors (LFC) for domestic use and for watering field crops. So far, no chemical analysis of fog water was performed in Patache. Pure fogwater samples (38 samples from 8 fog events) were taken by using a passive Scientific Cylindrical Fog Collector. Major ions and trace metals were quantified. The analyses indicate very high ionic concentrations (mean 3500 µeq/l) and very low pH values (mean 3.3). The mean H+-concentration represents 16 % of the total ionic equivalent concentration. Sulfate is the anion exhibiting the highest concentrations. A mean value of 880 µeq/l was found, which accounts for 24 % of the total mean concentration. In contrast to sulfate, nitrate shows only a low percentage of 8.1 %. Further major ions are sodium (20%) and chloride (19 %), which are typical seasalt ions in coastal fog. High correlations between the measured ions suggest a causal link between concentration in the fog samples and the liquid water content (LWC) of the cloud. The higher the liquid water content the lower are the ionic concentrations. Enrichment factors with sodium as reference ion were calculated to identify potential emission sources contributing to the observed pollutant levels. We found that K+, Na+, Mg2+ and Cl- mainly result from seaspray. Sulfate, however, is enriched by a factor of 13. The measured trace elements are highly enriched by factors up to hundreds of thousands (Zn: 50, Ni: 1800, As: 2400, Cd: 3900, Fe: 100000, Cu: 96000, Pb: 250000). A cluster analysis supports the conclusion that sulfate and the trace elements originate from anthropogenic activities. The sulfate cannot primarily originate from oceanic dimethylsulfide (DMS). With regard to the back trajectories, the air masses generally reach the study site from southerly directions after travelling along the Chilean coast. Presumably the air masses pick up pollutants in the densely populated cities, industrial plants and power plants along the Chilean coast and transport them over hundreds of kilometers to Patache. Here, they were detected as ingredients in fog water and lead to high pollution levels therein.
Numerical simulation of radiation fog in complex terrain
NASA Astrophysics Data System (ADS)
Zhang, X.; Musson-Genon, L.; Carissimo, B.; Dupont, E.
2009-09-01
The interest for micro-scale modeling of the atmosphere is growing for environmental applications related, for example, to energy production, transport and urban development. The turbulence in the stable layers where pollutant dispersion is low and can lead to strong pollution events. This could be further complicated by the presence of clouds or fog and is specifically difficult in urban or industrial area due to the presence of buildings. In this context, radiation fog formation and dissipation over complex terrain were therefore investigated with a state-of-the-art model. This study is divided into two phases. The first phase is a pilot stage, which consist of employing a database from the ParisFog campaign which took place in the south of Paris during winter 2006-07 to assess the ability of the cloud model to reproduce the detailed structure of radiation fog. The second phase use the validated model for the study of influence of complex terrain on fog evolution. Special attention is given to the detailed and complete simulations and validation technique used is to compare the simulated results using the 3D cloud model of computational fluid dynamical software Code_Saturne with one of the best collected in situ data during the ParisFog campaign. Several dynamical, microphysical parameterizations and simulation conditions have been described. The resulting 3D cloud model runs at a horizontal resolution of 30 m and a vertical resolution comparable to the 1D model. First results look very promising and are able to reproduce the spatial distribution of fog. The analysis of the behavior of the different parameterized physical processes suggests that the subtle balance between the various processes is achieved.
Hao, Zisu; Malyala, Divya; Dean, Lisa; Ducoste, Joel
2017-04-01
Long Chain Free Fatty Acids (LCFFAs) from the hydrolysis of fat, oil and grease (FOG) are major components in the formation of insoluble saponified solids known as FOG deposits that accumulate in sewer pipes and lead to sanitary sewer overflows (SSOs). A Double Wavenumber Extrapolative Technique (DWET) was developed to simultaneously measure LCFFAs and FOG concentrations in oily wastewater suspensions. This method is based on the analysis of the Attenuated Total Reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) spectrum, in which the absorbance of carboxyl bond (1710cm -1 ) and triglyceride bond (1745cm -1 ) were selected as the characteristic wavenumbers for total LCFFAs and FOG, respectively. A series of experiments using pure organic samples (Oleic acid/Palmitic acid in Canola oil) were performed that showed a linear relationship between the absorption at these two wavenumbers and the total LCFFA. In addition, the DWET method was validated using GC analyses, which displayed a high degree of agreement between the two methods for simulated oily wastewater suspensions (1-35% Oleic acid in Canola oil/Peanut oil). The average determination error of the DWET approach was ~5% when the LCFFA fraction was above 10wt%, indicating that the DWET could be applied as an experimental method for the determination of both LCFFAs and FOG concentrations in oily wastewater suspensions. Potential applications of this DWET approach includes: (1) monitoring the LCFFAs and FOG concentrations in grease interceptor (GI) effluents for regulatory compliance; (2) evaluating alternative LCFFAs/FOG removal technologies; and (3) quantifying potential FOG deposit high accumulation zones in the sewer collection system. Published by Elsevier B.V.
Stein, Heiko; Schulz, Jochen; Kemper, Nicole; Tichy, Alexander; Krauss, Ines; Knecht, Christian; Hennig-Pauka, Isabel
2016-12-23
In intensive pig production aerial contaminates are potential hazards for the health of animals and humans. In this study, the effect of fogging a low concentrated tartaric acid solution on pigs' health, environmental and hygiene parameters were evaluated in an inhabited fattening unit. Pigs were housed in separate units (control group n=109 and experimental group n=110). During the whole fattening period, twice a week at 48 hour intervals, a 0.1% tartaric acid solution was aerosolized by a cold-fogging system for 20 minutes in the experimental unit. Environmental parameters were spot-checked on days of fogging. Sedimentation dust and surfaces were analysed for bacterial and fungal load. Dust particle size distribution was assessed. Pigs were clinically examined weekly. Standard meat examination at an abattoir was extended by individual quantification of lung alterations. The fogging procedure had no influence on ammonia concentrations. A significant reduction of mould, but not of bacteria, was found in sedimentation dust, and bacterial and mould scores of surface samples were improved. A significant reduction of particle size classes 1.6-2.0 µm, 4.0-5.0 µm, 7.5-10 µm, as well as 10-15 µm was observed. The high sound level of the fogging machine (82-102 dB) led to higher activity and pen-mate directed behaviour. More skin alterations, conjunctivitis and sneezing were recorded in the experimental group. Gross pathological lung alterations did not differ between both groups. Although fogging of tartaric acid is limited to a concentration of 0.1% due to its irritating effect on the respiratory mucosa, reduction of microbial load can be achieved, but it would be enhanced by using more powerful fogging systems.
Recent developments in laser-driven and hollow-core fiber optic gyroscopes
NASA Astrophysics Data System (ADS)
Digonnet, M. J. F.; Chamoun, J. N.
2016-05-01
Although the fiber optic gyroscope (FOG) continues to be a commercial success, current research efforts are endeavoring to improve its precision and broaden its applicability to other markets, in particular the inertial navigation of aircraft. Significant steps in this direction are expected from the use of (1) laser light to interrogate the FOG instead of broadband light, and (2) a hollow-core fiber (HCF) in the sensing coil instead of a conventional solid-core fiber. The use of a laser greatly improves the FOG's scale-factor stability and eliminates the source excess noise, while an HCF virtually eliminates the Kerr-induced drift and significantly reduces the thermal and Faraday-induced drifts. In this paper we present theoretical evidence that in a FOG with a 1085-m coil interrogated with a laser, the two main sources of noise and drift resulting from the use of coherent light can be reduced below the aircraft-navigation requirement by using a laser with a very broad linewidth, in excess of 40 GHz. We validate this concept with a laser broadened with an external phase modulator driven with a pseudo-random bit sequence at 2.8 GHz. This FOG has a measured noise of 0.00073 deg/√h, which is 30% below the aircraft-navigation requirement. Its measured drift is 0.03 deg/h, the lowest reported for a laser-driven FOG and only a factor of 3 larger than the navigation-grade specification. To illustrate the potential benefits of a hollow-core fiber in the FOG, this review also summarizes the previously reported performance of an experimental FOG utilizing 235 m of HCF and interrogated with broadband light.
Amboni, M; Stocchi, F; Abbruzzese, G; Morgante, L; Onofrj, M; Ruggieri, S; Tinazzi, M; Zappia, M; Attar, M; Colombo, D; Simoni, L; Ori, A; Barone, P; Antonini, A
2015-06-01
Freezing of Gait (FOG) is a common and disabling symptom in patients with Parkinson disease (PD). The relationship between FOG and dopaminergic medication is complex. The aim of the present study was to estimate the prevalence of self-reported FOG, its associated clinical features, and its relationship with wearing-off in a wide PD population. This is an observational multicenter study of 634 consecutive non-demented PD patients. Patients were identified either as freezers or non-freezers based on item-3 of the Freezing of Gait-Questionnaire. FOG was then classified as on, off and onoff freezing based on its relationship with wearing-off. Patients were assessed with Unified Parkinson's Disease Rating Scale, Hoehn and Yahr scale, 8-item Parkinson's disease Questionnaire, Mini-Mental State Examination. Data from 593 patients were analyzed, 325 (54.3%) were freezers of whom 200 (61.6%) experienced FOG only during off state (off-freezers), 6 (1.8%) only during on state and 119 (36.6%) either in on and off states or independently of dopaminergic response-related symptoms (onoff-freezers). Overall, freezers vs non-freezers had longer disease duration, more advanced disease and greater disability. Moreover, freezers more frequently reported wearing-off and experienced worse quality of life. Onoff-freezers vs off-freezers were older, more severely disabled, less likely to experience wearing-off, treated with lower levodopa equivalent daily dose and with poorer cognitive performance. Self-reported FOG is mainly recognizable in advanced PD and is associated with more disability and worse quality of life. Onoff-FOG may represent the result of under-treatment or rather interpretable as a distinct clinical entity. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing.
Fan, Kai; Wang, Junxiong; Wang, Xin; Li, Hui; Yang, Yintang
2017-07-24
With the rapid development of big data and Internet of things (IOT), the number of networking devices and data volume are increasing dramatically. Fog computing, which extends cloud computing to the edge of the network can effectively solve the bottleneck problems of data transmission and data storage. However, security and privacy challenges are also arising in the fog-cloud computing environment. Ciphertext-policy attribute-based encryption (CP-ABE) can be adopted to realize data access control in fog-cloud computing systems. In this paper, we propose a verifiable outsourced multi-authority access control scheme, named VO-MAACS. In our construction, most encryption and decryption computations are outsourced to fog devices and the computation results can be verified by using our verification method. Meanwhile, to address the revocation issue, we design an efficient user and attribute revocation method for it. Finally, analysis and simulation results show that our scheme is both secure and highly efficient.
Machine learning based Intelligent cognitive network using fog computing
NASA Astrophysics Data System (ADS)
Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik
2017-05-01
In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.
Severe leaching of calcium ions from fir needles caused by acid fog.
Igawa, Manabu; Kase, Toshiyuki; Satake, Kosuke; Okochi, Hiroshi
2002-01-01
We have measured the components of the throughfall under fir trees (Abies firma) in the field around Mt. Oyama, where the forest appears to be declining, for the period 1994-1998. Exposure experiments of a simulated acid fog to fir twigs were performed under field conditions. There was a similarity between the acid response in the field and that in the laboratory. In both studies, the severe leaching of calcium ions from the needle surface was caused by exposure to acid fog. We also applied acid fog to fir seedlings over 1 year and observed a decrease in the growth of the seedlings due to this application in the dormant season. These results suggest that the severe leaching of calcium ions due to acid fog may cause the deficiency of calcium and be responsible for the decline of the fir trees.
Winter fog is decreasing in the fruit growing region of the Central Valley of California
NASA Astrophysics Data System (ADS)
Baldocchi, Dennis; Waller, Eric
2014-05-01
The Central Valley of California is home to a variety of fruit and nut trees. These trees account for 95% of the U.S. production, but they need a sufficient amount of winter chill to achieve rest and quiescence for the next season's buds and flowers. In prior work, we reported that the accumulation of winter chill is declining in the Central Valley. We hypothesize that a reduction in winter fog is cooccurring and is contributing to the reduction in winter chill. We examined a 33 year record of satellite remote sensing to develop a fog climatology for the Central Valley. We find that the number of winter fog events, integrated spatially, decreased 46%, on average, over 32 winters, with much year to year variability. Less fog means warmer air and an increase in the energy balance on buds, which amplifies their warming, reducing their chill accumulation more.
NASA Astrophysics Data System (ADS)
Weng, Lingyan; Han, Xugao
2018-01-01
Understanding the spatial-temporal distribution pattern of fog and haze is the base to deal with them by adjusting measures to local conditions. Taking 31 provinces in China mainland as the research areas, this paper collected data from Baidu index on the network attention of fog and haze in relevant areas from 2011 to 2016, and conducted an analysis of their spatial-temporal distribution pattern by using autocorrelation analysis. The results show that the network attention of fog and haze has an overall spatial distribution pattern of “higher in the eastern and central, lower in the western China”. There are regional differences in different provinces in terms of network attention. Network attention of fog and haze indicates an obvious geographical agglomeration phenomenon, which is a gradual enlargement of the agglomeration area of higher value with a slight shrinking of those lower value agglomeration areas.
Durable anti-fogging effect and adhesion improvement on polymer surfaces
NASA Astrophysics Data System (ADS)
Moser, E. M.; Gilliéron, D.; Henrion, G.
2010-01-01
The hydrophobic properties of polymeric surfaces may cause fogging in transparent packaging and poor adhesion to printing colours and coatings. Novel plasma processes for durable functionalization of polypropylene and polyethylene terephthalate substrates were developed and analysed using optical emission spectroscopy. A worm-like nano pattern was created on the polypropylene surface prior to the deposition of thin polar plasma polymerised layers. For both substrates, highly polar surfaces exhibiting a surface tension of up to 69 mN/m and a water contact angle of about 10° were produced - providing the anti-fogging effect. The deposition of thin plasma polymerised layers protects the increased surface areas and enables to tailoring the surface energy of the substrate in a wide range. Wetting characteristics were determined by dynamic contact angle measurements. Investigations of the chemical composition of several layers using X-ray photoelectron spectroscopy and FT-infrared spectroscopy were correlated with functional testing. The surface topography was investigated using atomic force microscopy. The weldability and peeling-off characteristics of the plasma treated polymer films could be adjusted by varying the process parameters. Global and specific migration analyses were undertaken in order to ensure the manufacturing of plasma treated polymer surfaces for direct food contact purposes.
Elimination of laparoscopic lens fogging using directional flow of CO2.
Calhoun, John Teague; Redan, Jay A
2014-01-01
Surgeons constantly struggle with the formation of condensation on the lens of a laparoscope, which prolongs procedures and reduces visibility of the abdominal cavity. The goal of this project was to build a device that would direct a flow of carbon dioxide (CO2) into an open chamber surrounding the lens of a laparoscope, acting to keep moisture away from the lens and eliminate condensation. The device isolates the lens of the laparoscope from the humid environment of the intraperitoneal cavity by creating a microenvironment of dry CO2. This was accomplished by building a communicating sleeve that created an open chamber around the distal 2 to 3 cm of the scope. Into this cavity, dry cool CO2 was pumped in from an insufflator so that the path of the gas would surround the lens of the scope and escape through a single outlet location through which the scope views the intraperitoneal cavity. This chamber is proposed to isolate the lens with a high percentage of dry CO2 and low humidity. The device was tested in 7 different adverse conditions that were meant to challenge the ability of the device to maintain the viewing field with no perceptible obstruction. In all of the conditions tested, 25 trials total, the device successfully prevented and/or eliminated laparoscopic lens fogging. The device designed for this project points to the potential of a simple and effective mechanical method for eliminating laparoscopic lens fogging.
Emily Limm; Kevin Simonin; Tod Dawson
2012-01-01
Fog inundates the coast redwood forests of northern California frequently during the summer months (May to September) when rainfall is largely absent (Azevedo and Morgan 1974, Byers 1953, Oberlander 1956). This maritime fog modifies otherwise warm and dry summer climate by increasing humidity, decreasing the air temperature, reducing solar radiation, and...
Measurements relevant to the performance of infrared opto-electronic devices in fog
NASA Astrophysics Data System (ADS)
Clay, M. R.; Lenham, A. P.
1981-04-01
The transmissivity of the atmosphere in the visible and infrared was measured in a number of fogs. The data is summarized in the form of tables and diagrams that indicate the gain in range that may be achievable in the various infrared windows. In some fogs there does not appear to be any significant advantage in using infrared devices.
Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest.
Werner Eugster; Reto Burkard; Friso Holwerda; Frederick N. Scatena; L.A.(Sampurno) Bruijnzeel
2006-01-01
The Luquillo Mountains of northeastern Puerto Rico harbours important fractions of tropical montane cloud forests. Although it is well known that the frequent occurrence of dense fog is a common climatic characteristic of cloud forests around the world, it is poorly understood how fog processes shape and influence these ecosystems. Our study focuses on the physical...
Atmospheric fine particles (PM2.5) collected during August 1997–July 1998 and wintertime fog waters collected during 1997–1999 at Davis, California were analyzed for free and combined amino compounds. In both PM2.5 and fog waters, the averag...
Fiber optic gyroscopes for vehicle navigation systems
NASA Astrophysics Data System (ADS)
Kumagai, Tatsuya; Soekawa, Hirokazu; Yuhara, Toshiya; Kajioka, Hiroshi; Oho, Shigeru; Sonobe, Hisao
1994-03-01
Fiber optic gyroscopes (FOGs) have been developed for vehicle navigation systems and are used in Toyota Motor Corporation models Mark II, Chaser and Cresta in Japan. Use of FOGs in these systems requires high reliability under a wide range of conditions, especially in a temperature range between -40 and 85 degree(s)C. In addition, a high cost-performance ratio is needed. We have developed optical and electrical systems that are inexpensive and can perform well. They are ready to be mass-produced. FOGs have already been installed in luxury automobiles, and will soon be included in more basic vehicles. We have developed more inexpensive FOGs for this purpose.
Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan Caixia; Zhou Quancheng; Fu Guiming
2011-08-15
Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64%more » of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.« less
Saffarian, M; Happee, R; Winter, J C F de
2012-01-01
Drivers in fog tend to maintain short headways, but the reasons behind this phenomenon are not well understood. This study evaluated the effect of headway on lateral control and feeling of risk in both foggy and clear conditions. Twenty-seven participants completed four sessions in a driving simulator: clear automated (CA), clear manual (CM), fog automated (FA) and fog manual (FM). In CM and FM, the drivers used the steering wheel, throttle and brake pedals. In CA and FA, a controller regulated the distance to the lead car, and the driver only had to steer. Drivers indicated how much risk they felt on a touchscreen. Consistent with our hypothesis, feeling of risk and steering activity were elevated when the lead car was not visible. These results might explain why drivers adopt short headways in fog. Practitioner Summary: Fog poses a serious road safety hazard. Our driving-simulator study provides the first experimental evidence to explain the role of risk-feeling and lateral control in headway reduction. These results are valuable for devising effective driver assistance and support systems.
Fog water collection and reforestation at mountain locations in a western Mediterranean basin region
NASA Astrophysics Data System (ADS)
Valiente, Ja; Estrela, Mj; Corell, D.; Fuentes, D.; Valdecantos, A.
2010-07-01
Previous studies carried out by the authors have shown the potential of fog water collection at several mountain locations in the Valencia region (western Mediterranean basin). This coastal region features typical conditions for a dry Mediterranean climate characterized by a pluviometric regime ranging from 400 to 600 mm with a strong annual dependence. Dry conditions together with land degradation that frequently results after recurrent fires occurred in the past make a difficult self-recovery for native forest vegetation so that some kind of human intervention is always recommended. In plots reforested with Mediterranean woody species, periods of more than 120 days without significant precipitation (>5 mm) result in mortality rates above 80% during the first summer in the field. The good potential of fog-water collection at certain mountain locations is considered in this study as an easily available water resource for the reforestation of remote areas where native vegetation cannot be reestablished by itself. A large flat panel made of UV-resistant HD-polyethylene monofilament mesh was deployed at a mountain location for bulk fog water harvesting. Water was stored in high-capacity tanks for the whole length of the experimental campaign and small timely water pulses localized deep in the planting holes were conducted during the summer dry periods. Survival rates and seedling performance of two forest tree species, Pinus pinaster and Quercus ilex, were quantified and correlated to irrigation pulses in a reforestation plot that took an area of about 2500 m2 and contained 620 1-year-old plants. Before and concurrently to the flat panel deployment, a passive omnidirectional fog-water collector of cylindrical shape was set in the area in combination to other environmental instruments such as a rain gauge, a wind direction and velocity sensor and a temperature and humidity probe. Proper orientation of the large flat panel was possible once the direction of local winds was matched up to fog occurrence and fog water yields. Additionally, a simple methodology was also found to transform fog water yields from the cylindrical collector into cumulative large flat-panel collector water catches by using wind sensor data. The method found allows an estimation of bulk fog-water catches at any single station of our fog collection network and the use of that information in future potential applications.
Observations of radiation fog chemistry in the Eastern United States
NASA Astrophysics Data System (ADS)
Straub, D.; Hutchings, J.; Herckes, P.
2010-07-01
The chemical composition of radiation fog in the Mid-Atlantic region of the United States has been the focus of an ongoing field campaign based in Selinsgrove, PA. This field study was established to provide a long term record that can be used to identify the effects of meteorology and air mass source regions on fog composition and to shed light on the role that fog can play in the production of secondary inorganic and organic aerosol mass. In the United States, studies that focus on radiation fog have been relatively rare. For the most part, they have been limited geographically to the Central Valley of California, though individual studies have also been conducted in the Central United States and along the Texas-Louisiana Gulf Coast. Sample collection for the current study began during the fall of 2007. Through 2009, samples from 25 radiation fog events have been obtained. A Caltech Heated Rod Cloudwater Collector (CHRCC) having a Dp50 of approximately 8 microns was used to collect one fog sample per event. Samples were typically collected between 2:00 AM and 7:00 AM under conditions of light winds, clear skies, and recent rainfall. Sample volumes ranged from 2.9 ml to 150 ml. Following collection, samples were analyzed for pH and then one of the following: major inorganic ions, dissolved total organic carbon, N-nitrosodimethylamine (NDMA), metals, or organic speciation. Through 2009, sample pH varied between 4.28 and 6.86 and averaged 5.03 based on H+ concentration. Ammonium and sulfate were found to be the most abundant ionic species in the fog samples. Sufficient ammonium was detected in nearly every sample to fully neutralize nitrate and sulfate. The concentrations of sulfate, nitrate, and ammonium observed in this study were lower than values reported in the literature for most other cloud and fog studies conducted in the US. Due to significant ammonium input, pH in the current study was higher than most other studies. Concentrations of total organic carbon averaged 7.22 mgC/L, which is lower than other radiation fogs studies but similar to that for many cloud studies. NDMA concentrations in two analyzed samples were considered high, but not outside the range that could be expected through equilibrium with potential gas phase concentrations.
Wet and Occult Ion Deposition To An Elevated Forest Ecosystem In Switzerland
NASA Astrophysics Data System (ADS)
Buetzberger, P.; Burkard, R.; Eugster, W.
Due to much higher ion concentrations in fogwater compared to rainwater, critical deposition levels of nutrients such as sulfate, nitrate or ammonium can be achieved in areas with high fog frequency. From summer 2001 until spring 2002 a measuring campaign of the FINIMSAS project (Fog Interception and Nutrient Inputs to Montane- Subalpine Areas in Switzerland) is being conducted at Laegeren (690m asl) on the Swiss Plateau. Fog frequency was high during our campaign. Similar measurements were carried out in 1986/87 at the exact same location, providing a reference data set for comparison. Because the deposition flux was measured differently during 1986/87, direct compar- isons are only possible for ion concentrations. Preliminary results show a significant decrease of sulfate and ammonium median concentrations of more than 50 % over this 15 year period, whereas nitrate decrease is relatively small. This corresponds well with the large-scale evolution of the air pollutant emissions of SO2 (major decrease) and NOx (relatively small decrease). The strong reduction of ammonium is probably due to the reduced use of fertilizer in the area. Chloride shows the largest decrease which can be attributed to the improvement of filtering technique of waste incinerations. In order to achieve maximum comparability, similar event types (e.g. advection fog vs. radiation fog) with similar meteorological conditions were interpreted individually. Analysis of fog nutrient input with respect to wind direction, wind speed, and origin of air mass will help to understand the influence of local and large-scale emissions on fog water concentrations in Switzerland. Computations based on half-hourly mean wind direction revealed significantly lower fog water input but higher median concentra- tions of all measured components if the dominating wind sector was East. Event-based wind field analyses were also carried out and compared to computed trajectories. In order to assess the influence of fog and rain water nutrient deposition on vegetation and soil, we measured throughfall precipitation close to the forest floor. Whereas fog water showed pH values as low as 3, throughfall water was between pH 6 and 7, indicating an important buffering capacity of this ecosystem mainly due to potassium leaching and probably calcium compounds. High ionic concentrations and low pH values seem to act mostly on the leaves.
NASA Astrophysics Data System (ADS)
Fahim Khokhar, Muhammad; Yasmin, Naila; Zaib, Naila; Murtaza, Rabia; Noreen, Asma; Ishtiaq, Hira; Khayyam, Junaid; Panday, Arnico
2016-04-01
The South Asian region in general and the Indo-Gangetic Plains (IGP) in particular hold about 1/6th of the world's population and is considered as one of the major hotspots with increasing air pollution. Due to growing population and globalization, South Asia is experiencing high transformations in the urban and industrial sectors. Fog is one of the meteorological/environmental phenomena which can generate significant social and economic problems especially havoc to air and road traffic. Meteorological stations provide information about the fog episodes only on the basis of point observation. Continuous monitoring as well as a spatially coherent picture of fog distribution can only be possible through the use of satellite imagery. Current study focus on winter fog episodes over South Asian region using Moderate Resolution Image Spectrometer (MODIS) Level 2 Terra Product and other MODIS Aerosol Product in addition to ground-based sampling and AERONET measurements. MODIS Corrected Reflectance RGBs are used to analyse the spatial extent of fog over study area. MOD04 level 2 Collection 6 data is used to study aerosol load and distribution which are further characterised by using aerosol type land product of MODIS. In order to study the variation of ground based observations from satellite data MODIS, AERONET and high volume air Sampler were used. Main objective of this study was to explore the spatial extent of fog, its causes and to analyse the Aerosol Optical Depth (AOD) over South Asia with particular focus over Indo-Gangetic Plains (IGP). Current studies show a descent increase in AOD from past few decades over South Asia and is contributing to poor air quality in the region due to growing population, urbanization, and industrialization. Smoke and absorbing aerosol are major constituent of fog over South Asia. Furthermore, winter 2014-15 extended span of Fog was also observed over South Asia. A significant correlation between MODIS (AOD) and AERONET Station (AOD) data was identified. Mass concentration of PM2.5 and PM10 over sampling sites exceeded the Pak-NEQS at most occasions. However, during the current winter of 2015-16 the number of fog days has substantially reduced. Although, reasons are not clear yet but may be attributed to the atmospheric changes induced by the onset El-NINO.
Janssen, Sabine; Bolte, Benjamin; Nonnekes, Jorik; Bittner, Marian; Bloem, Bastiaan R.; Heida, Tjitske; Zhao, Yan; van Wezel, Richard J. A.
2017-01-01
External cueing is a potentially effective strategy to reduce freezing of gait (FOG) in persons with Parkinson’s disease (PD). Case reports suggest that three-dimensional (3D) cues might be more effective in reducing FOG than two-dimensional cues. We investigate the usability of 3D augmented reality visual cues delivered by smart glasses in comparison to conventional 3D transverse bars on the floor and auditory cueing via a metronome in reducing FOG and improving gait parameters. In laboratory experiments, 25 persons with PD and FOG performed walking tasks while wearing custom-made smart glasses under five conditions, at the end-of-dose. For two conditions, augmented visual cues (bars/staircase) were displayed via the smart glasses. The control conditions involved conventional 3D transverse bars on the floor, auditory cueing via a metronome, and no cueing. The number of FOG episodes and percentage of time spent on FOG were rated from video recordings. The stride length and its variability, cycle time and its variability, cadence, and speed were calculated from motion data collected with a motion capture suit equipped with 17 inertial measurement units. A total of 300 FOG episodes occurred in 19 out of 25 participants. There were no statistically significant differences in number of FOG episodes and percentage of time spent on FOG across the five conditions. The conventional bars increased stride length, cycle time, and stride length variability, while decreasing cadence and speed. No effects for the other conditions were found. Participants preferred the metronome most, and the augmented staircase least. They suggested to improve the comfort, esthetics, usability, field of view, and stability of the smart glasses on the head and to reduce their weight and size. In their current form, augmented visual cues delivered by smart glasses are not beneficial for persons with PD and FOG. This could be attributable to distraction, blockage of visual feedback, insufficient familiarization with the smart glasses, or display of the visual cues in the central rather than peripheral visual field. Future smart glasses are required to be more lightweight, comfortable, and user friendly to avoid distraction and blockage of sensory feedback, thus increasing usability. PMID:28659862
Evaluation of Visibility Sensors at the Eglin Air Force Base Climatic Chamber
DOT National Transportation Integrated Search
1983-10-01
Three transmissometers and five forward-scatter meters were evaluated for measuring fog, haze, rain and snow in the large test chamber of the Eglin Air Force Base Climatic Laboratory. Methods were developed for generating moderately uniform and stabl...
Costa, Annamaria; Colosio, Claudio; Gusmara, Claudia; Sala, Vittorio; Guarino, Marcella
2014-01-01
In the last decades, large-scale swine production has led to intensive rearing systems in which air quality can be easily degraded by aerial contaminants that can pose a health risk to the pigs and farm workers. This study evaluated the effects of fogging disinfectant procedure on productive performance, ammonia and dust concentration, aerobic bacteria and fungal spores spreading in the farrowing-weaning room. This trial was conducted in 2 identical farrowing-weaning rooms of a piggery. In both rooms, 30 pregnant sows were lodged in individual cages. At 75 days of age, the piglets were moved to the fattening room. In the treated room, with the birth of the first suckling-pig, the fogging disinfection with diluted Virkon S was applied once a day in the experimental room per 15 minutes at 11:00. The fogging disinfectant treatment was switched between rooms at the end of the first trial period. Temperature, relative humidity, dust (TSP-RF fractions and number of particles), ammonia concentration and aerial contaminants (enterococci, Micrococcaeae and fungal spores) were monitored in both rooms. Ammonia concentration reduction induced by fogging disinfection was estimated 18%, total suspended particles and the respirable fraction were significantly lower in the experimental room. Fungal spores resulted in a significant reduction by the fogging procedure, together with dust respirable fraction and fine particulate matter abatement. The fogging disinfection procedure improved air quality in the piggery, thereby enhancing workers and animals health.
Song, Tianxiao; Wang, Xueyun; Liang, Wenwei; Xing, Li
2018-05-14
Benefiting from frame structure, RINS can improve the navigation accuracy by modulating the inertial sensor errors with proper rotation scheme. In the traditional motor control method, the measurements of the photoelectric encoder are always adopted to drive inertial measurement unit (IMU) to rotate. However, when carrier conducts heading motion, the inertial sensor errors may no longer be zero-mean in navigation coordinate. Meanwhile, some high-speed carriers like aircraft need to roll a certain angle to balance the centrifugal force during the heading motion, which may result in non-negligible coupling errors, caused by the FOG installation errors and scale factor errors. Moreover, the error parameters of FOG are susceptible to the temperature and magnetic field, and the pre-calibration is a time-consuming process which is difficult to completely suppress the FOG-related errors. In this paper, an improved motor control method with the measurements of FOG is proposed to address these problems, with which the outer frame can insulate the carrier's roll motion and the inner frame can simultaneously achieve the rotary modulation on the basis of insulating the heading motion. The results of turntable experiments indicate that the navigation performance of dual-axis RINS has been significantly improved over the traditional method, which could still be maintained even with large FOG installation errors and scale factor errors, proving that the proposed method can relax the requirements for the accuracy of FOG-related errors.
Berry, Z Carter; White, Joseph C; Smith, William K
2014-05-01
In cloud forests, foliar uptake (FU) of water has been reported for numerous species, possibly acting to relieve daily water and carbon stress. While the prevalence of FU seems common, how daily variation in fog timing may affect this process has not been studied. We examined the quantity of FU, water potentials, gas exchange and abiotic variation at the beginning and end of a 9-day exposure to fog in a glasshouse setting. Saplings of Abies fraseri (Pursh) Poir. and Picea rubens Sarg. were exposed to morning (MF), afternoon (AF) or evening fog (EF) regimes to assess the ability to utilize fog water at different times of day and after sustained exposure to simulated fog. The greatest amount of FU occurred during MF (up to 50%), followed by AF (up to 23%) and then EF, which surprisingly had no FU. There was also a positive relationship between leaf conductance and FU, suggesting a role of stomata in FU. Moreover, MF and AF lead to the greatest improvements in daily water balance and carbon gain, respectively. Foliar uptake was important for improving plant ecophysiology but was influenced by diurnal variation in fog. With climate change scenarios predicting changes to cloud patterns and frequency that will likely alter diurnal patterns, cloud forests that rely on this water subsidy could be affected. © The Author 2014. Published by Oxford University Press. All rights reserved.
A Transect of Mercury Species in Fog Across the Coastal Zone
NASA Astrophysics Data System (ADS)
Coale, K. H.; Weiss-Penzias, P. S.; Heim, W. A.; Fernandez, D.; Conrad, W. S.; Olson, A.
2016-12-01
Fog water was collected at multiple locations from May 2014 to February 2016 with an active strand cloudwater collector (CASCC) both at sea and on land. Stations were distributed from over 200 km offshore to 150 km inland. Total mercury (Hg) and monomethyl Hg (MMHg) concentrations were determined with the goal of determining the source of MMHg in fog water. Marine advective fog water concentrations of MMHg from samples collected from four ship cruises along the coast of California and southern Oregon had were 0.40 ± 0.75 pM (N = 14). This is much lower than fog water concentrations of MMHg from eight land sites along the coast of California between Monterey and Eureka which produced a values of 8.0 ± 9.5 pM (N = 149). In contrast, tule fog water collected in the Central Valley of California at Atwater had a relatively low mean MMHg concentrations of 0.95 ± 0.38 pM (N = 3). Except in upwelling regions, concentrations of MMHg observed farthest offshore and farthest inland were lower than concentrations observed closest to shore, whereas total Hg concentrations were not significantly different. We hypothesize that the source of the elevated MMHg in fog water collected at sites closest to shore must be a result of processes that are maximized in the near-shore environment. The potential contribution from bubble breaking and microlayer ejecta in the surf zone and evasion of the precursor dimethyl mercury, will be presented.
Gait Coordination in Parkinson Disease: Effects of Step Length and Cadence Manipulations
Williams, April J.; Peterson, Daniel S.; Earhart, Gammon M.
2013-01-01
Background Gait impairments are well documented in those with PD. Prior studies suggest that gait impairments may be worse and ongoing in those with PD who demonstrate FOG compared to those with PD who do not. Purpose Our aim was to determine the effects of manipulating step length and cadence individually, and together, on gait coordination in those with PD who experience FOG, those with PD who do not experience FOG, healthy older adults, and healthy young adults. Methods Eleven participants with PD and FOG, 16 with PD and no FOG, 18 healthy older, and 19 healthy young adults walked across a GAITRite walkway under four conditions: Natural, Fast (+50% of preferred cadence), Small (−50% of preferred step length), and SmallFast (+50% cadence and −50% step length). Coordination (i.e. phase coordination index) was measured for each participant during each condition and analyzed using mixed model repeated measure ANOVAs. Results FOG was not elicited. Decreasing step length or decreasing step length and increasing cadence together affected coordination. Small steps combined with fast cadence resulted in poorer coordination in both groups with PD compared to healthy young adults and in those with PD and FOG compared to healthy older adults. Conclusions Coordination deficits can be identified in those with PD by having them walk with small steps combined with fast cadence. Short steps produced at high rate elicit worse coordination than short steps or fast steps alone. PMID:23333356
Fog collectors and collection techniques
NASA Astrophysics Data System (ADS)
Höhler, I.; Suau, C.
2010-07-01
The earth sciences taught that due to the occurrence of water in three phases: gas, liquid and solid, solar energy keeps the hydrological cycle going, shaping the earth surface while regulating the climate and thus allowing smart technologies to interfere in the natural process by rerouting water and employing its yield for natural and human environments’ subsistence. This is the case of traditional fog collectors implemented by several researchers along the Atacama Desert since late ’50s such as vertical tensile mesh or macro-diamonds structures. Nevertheless, these basic prototypes require to be upgraded, mainly through new shapes, fabrics and frameworks’ types by following the principles of lightness, transformability, portability and polyvalence. The vertical canvas of conventional fog collectors contain too much stressed at each joints and as result it became vulnerable. Our study constitutes a research by design of two fog-trap devices along the Atacama Desert. Different climatic factors influence the efficiency of fog harvesting. In order to increase yield of collected fog water, we need to establish suitable placements that contain high rates of fog’s accumulation. As important as the location is also the building reliability of these collectors that will be installed. Their frames and skins have to be adjustable to the wind direction and resistant against strong winds and rust. Its fabric need to be more hydrophobic, elastic and with light colours to ease dripping/drainage and avoid ultra-violet deterioration. In addition, meshes should be well-tensed and frames well-embraced too. In doing so we have conceived two fog collectors: DropNet© (Höhler) and FogHive© (Suau). These designs explore climatic design parameters combined with the agile structural principles of Tensegrity and Geodesic widely developed by Bucky Fuller and Frei Otto. The research methods mainly consisted of literature review; fieldwork; comparative analysis of existing fog collection’s techniques and climatic design simulations. DropNet© is a lightweight fog collector kit -a standing-alone web- resistant against very strong winds. It is constructed with an elastic mesh according to the required tension. Apart from this, it is ease to be transported, assemble and relocated due to its tent-like construction. As a flexible construction it can be installed on flatten or uneven grounds. FogHive© is a modular space-frame, fully wrapped with a light waxy mesh, that can collect water fog and also performs like a shading/cooling device and a soil humidifier for greenery and potential inhabitation. Its body consists of a deployable polygonal structure with an adjustable polyvalent membrane which performs as water repellent skin (facing prevailing winds) and shading device facing Equator. In addition, a domestic wind turbine is installed within the structural frame to provide autonomous electrification. Both models have great applicability to provide drinking water in remote place and also irrigating water to repair or re-establish flora. Water collector, filtering (purification) and irrigation network are designed with appropriate materials and techniques.
Fog and soil weathering as sources of nutrients in a California redwood forest
Holly A. Ewing; Kathleen C. Weathers; Amanda M. Lindsey; Pamela H. Templer; Todd E. Dawson; Damon C. Bradbury; Mary K. Firestone; Vanessa K.S. Boukili
2012-01-01
Fog water deposition is thought to influence the ecological function of many coastal ecosystems, including coast redwood forests. We examined cation and anion inputs from fog and rain, as well as the fate of these inputs, within a Sonoma County, California, coast redwood forest to elucidate the availability of these ions and some of the biotic and abiotic processes...
NASA Astrophysics Data System (ADS)
Escobar, C. M.; Lopez, A.; Aristizabal, H. F.; Molina, J. M.
2010-07-01
Experimental efforts with fog collection in Colombia began eight years ago, and in recent papers we have suggested the implementation of operational fog collection as an alternative to meet water requirements in rural areas of the Andes Mountain Range. Since then, an increasing number of individuals from academia and environmental organizations in the country have shown a remarkable interest on this appropriate technology, and some started its exploration in a larger scale. In this work we describe the implementation process of the first operational fog collection project in Colombia and discuss its role in rural water supply, in environmental education issues and in the process of "social reintegration" of people who have been victims of forced displacement. Both the fog collection evaluation stage and construction and administration of the operational system involved the participation of the community of a rural village. The study zone, located in the Andes Mountains of the Valle del Cauca Department and with altitudes ranging from 2600 to 2800 meters a.s.l., has serious limitations in water availability. Eight standard fog collectors (SFC) were implemented and used during the period May/2008 - Feb/2009 in order to assess the water yield from fog. The best average monthly collection rate in the period of study was around 2.0 l.m-2.day-1. The constructed large fog collector (LFC), with a vertical collection surface of 25 m2, and the associated hydraulic system are currently managed and administered by the village inhabitants. The fog collection system benefits a rural school, and the water is mainly used in small-scale irrigation activities for horticultural crops and livestock development. The project has also brought positive impacts in the community organization, mainly comprising people who have been forced out of their rural homes by the country's nearly half-century old armed conflict. The system also allows agriculture- and environment-related issues to be incorporated in children's current education. We highly recommend exploring this technology in the search for solutions of water and food security for victims of forced displacement in Colombia. Additional efforts to increase the number of LFCs in the study zone are underway.
NASA Astrophysics Data System (ADS)
Elias, T.; Haeffelin, M.; Ramon, D.; Gomes, L.; Brunet, F.; Vrac, M.; Yiou, P.; Hello, G.; Petithomme, H.
2010-07-01
Fog prejudices major activities as transport and Earth observation, by critically reducing atmospheric visibility with no continuity in time and space. Fog is also an essential factor of air quality and climate as it modifies particle properties of the surface atmospheric layer. Complexity, diversity and the fine scale of processes make uncertain by current numerical weather prediction models, not only visibility diagnosis but also fog event prediction. Extensive measurements of atmospheric parameters are made on the SIRTA since 1997 to document physical processes over the atmospheric column, in the Paris suburb area, typical of an environment intermittently under oceanic influence and affected by urban and industrial pollution. The ParisFog field campaign hosted in SIRTA during 6-month in winter 2006-2007 resulted in the deployment of instrumentation specifically dedicated to study physical processes in the fog life cycle: thermodynamical, radiative, dynamical, microphysical processes. Analysis of the measurements provided a preliminary climatology of the episodes of reduced visibility, chronology of processes was delivered by examining time series of measured parameters and a closure study was performed on optical and microphysical properties of particles (aerosols to droplets) during the life cycle of a radiative fog, providing the relative contribution of several particle groups to extinction in clear-sky conditions, in haze and in fog. PreViBOSS is a 3-year project scheduled to start this year. The aim is to improve the short term prediction of changes in atmospheric visibility, at a local scale. It proposes an innovative approach: applying the Generalised Additive Model statistical method to the detailed and extended dataset acquired at SIRTA. This method offers the opportunity to explore non linear relationships between parameters, which are not yet integrated in current numerical models. Emphasis will be put on aerosols and their impact on the fog life cycle. Furthermore, the data set of ground-based measurements will be completed by spaceborne observation of visible and infra red radiance performed by the METEOSAT mission.
NASA Astrophysics Data System (ADS)
Azorin-Molina, C.; Corell, D.; Estrela, M. J.; Valiente, J. A.
2010-07-01
Orographic fog occurrences associated with sea breezes determine water collection potential over the mountain ranges near the Mediterranean coast of the Iberian Peninsula. Previous works have confirmed that the effect of sea breezes on cloud genera is to increase the frequency of low (Stratus) and convective (Cumulus) clouds. The primary impact of sea breeze flows corresponds to low stratiform clouds (Stratus, St, and Stratocumulus, Sc) formed in the convective internal boundary layer due to the inflow of moist sea air at lower levels. The formation of Sc clouds is caused by the rising and cooling of turbulent moist sea air over the highest slopes of the mountains at the end of the day. In the most Sc formation, we also observed dense fog banks of Stratus nebulosus (St neb) and dew during the early next morning, covering the inland topographical depressions. The aim of this study is to statistically analyze the impact of sea breezes on fog water collection in the convective internal boundary layer. The study area is located in the eastern of the Iberian Peninsula (Valencia region, Spain) and the survey corresponds to a 7-yr study period (2003-2009). This research is based upon a small network of eight passive fog water collectors distributed over 6 coastal- and 2 inland-mountain areas. A cylindrical fog water instrument (i.e. omnidirectional collection efficiency) based on the ASRC (Atmospheric Science Research Centre, State University of New York) string collector is used to sample fog water volumes on a daily basis. These stations also sampled temperature, humidity, wind speed and direction and precipitation measurements. The current study used these meteorological measurements to apply an automated and manual selection methodologies for identifying past sea breeze episodes. The dataset created by means of these selection techniques allows for the study of fog water volumes associated with sea breeze situations. A detailed statistical characterization of the orographic clouds episodes associated with sea breezes and other interesting aspects of this fog water collection study are presented here.
Winter fog monitoring over south asia by using multi satellite data
NASA Astrophysics Data System (ADS)
Yasmin, Naila
2016-07-01
committing The South Asian region in general and the Indo-Gangetic Plains (IGP) in particular hold about 1/6th of the world's population and is considered as one of the major hotspots of increasing atmospheric pollution. Due to growing population and globalization, South Asia is experiencing high transformations in the urban and industrial sectors. Fog is one of the meteorological/environmental phenomena which can generate significant social and economic problems especially a major havoc to air and road traffic. Meteorological stations provide information about the fog episodes only on the basis of point observation. Continuous monitoring as well as a spatially coherent picture of fog distribution can only be possible through the use of satellite imagery. Current study focus on winter fog episodes over South Asian region using Moderate Resolution Image Spectrometer (MODIS) Level 2 terra Product and MODIS Aerosol Product and OMI Absorbing Aerosol Index. The datasets used in this study includes MODIS Corrected Reflectance RGBs are used to analyse fog situation over study area. MOD04 level 2 Collection 6 data is used to study aerosol load and distribution which are characterised using aerosol type land. In order to study the variation of ground based observations from satellite data MODIS, CALIPSO, AERONET and high volume air Sampler were used. Objectives of the study was to map the spatial extent of fog as well as monitor its causes and similarly to analyze the Aerosol Optical Depth (AOD) over South Asia with particular focus over Indo Gangetic Plans (IGP). Current studies show an increase in AOD from past few decades over South Asia and is contributing to poor air quality in the region due to growing population, urbanization, and industrialization. Smoke and absorbing aerosol are major constituent of fog over south Asia. Furthermore, winter 2014-15 extended span of Fog was also observed over South Asia. A significant correlation between MODIS (AOD) and AERONET Station (AOD) data was identified. Mass concentration of PM 2.5 and PM 10 over sampling sites exceeded the NEQS's Level at most occasions.
Giant-FOG: A new player in ground motion instrumentation
NASA Astrophysics Data System (ADS)
Guattari, F.; de Toldi, E.; Bigueur, A.; Decitre, J. B.; Ponceau, D.; Sèbe, O.; Frenois, A.; Schindelé, F.; Moluçon, C.; Gaffet, S.; Ducloux, E.; Lefèvre, H.
2017-12-01
Based on recent experiences developing very low noise fiber-optic gyroscopes (FOG), first performance results on very large fiber-optic coils of up to 1m diameter are presented. The goal for constructing large FOGs is to evaluate experimentally the physical limits of this kind of technology and to reach the lowest possible noise. While these experiments are probing the fundamental limits of the FOG technology, they also serves as a first step for a cost effective very low noise laboratory rotational seismometer, which could be a game changer in instrumentation of ground motion. Build a Giant-FOG has several difficulties: The first is winding of the coil, the second concerns the mechanical substrate, and third is related to the measurement. - To our knowledge, a winding machine, large enough to wind coil of a 1 meter diameter, does not exist, but thanks to the iXblue expertise in the manufacturing of winding machines and calibration tables, a hydride system has been designed, merging these two technology to fulfill the requirement of winding a large coil on an adequate rotational platform. The characterization of the wobbles of the system will be presented, since this is a critical parameter for the winding and ultimately the performance. - To achieve the highest attainable measurement sensitivity to the real ground rotation, the design of the mechanical substrate of the coil is critical to reduce as much as possible the sensor sensitivities to environmental noises. A preliminary assessment of the global noise performance of the 1m diameter FOG sensor will be presented. - To demonstrate the on-site performance, the low noise inter-disciplinary underground laboratory (LSBB, Rustrel, France), with a dense array of precisely oriented broad-band seismometers, provides the possibility to compare Large FOG rotation records with Array Derivated Rotation measurement method. Results of different prototypes during the development process will be presented to underline the applicability of each technological response to the Large-FOG requirements. Finally we conclude with presentation of the achieved results with a 1m scale diameter FOG having more than 10km of fiber length.
A Secure and Verifiable Outsourced Access Control Scheme in Fog-Cloud Computing
Fan, Kai; Wang, Junxiong; Wang, Xin; Li, Hui; Yang, Yintang
2017-01-01
With the rapid development of big data and Internet of things (IOT), the number of networking devices and data volume are increasing dramatically. Fog computing, which extends cloud computing to the edge of the network can effectively solve the bottleneck problems of data transmission and data storage. However, security and privacy challenges are also arising in the fog-cloud computing environment. Ciphertext-policy attribute-based encryption (CP-ABE) can be adopted to realize data access control in fog-cloud computing systems. In this paper, we propose a verifiable outsourced multi-authority access control scheme, named VO-MAACS. In our construction, most encryption and decryption computations are outsourced to fog devices and the computation results can be verified by using our verification method. Meanwhile, to address the revocation issue, we design an efficient user and attribute revocation method for it. Finally, analysis and simulation results show that our scheme is both secure and highly efficient. PMID:28737733
All-digital signal-processing open-loop fiber-optic gyroscope with enlarged dynamic range.
Wang, Qin; Yang, Chuanchuan; Wang, Xinyue; Wang, Ziyu
2013-12-15
We propose and realize a new open-loop fiber-optic gyroscope (FOG) with an all-digital signal-processing (DSP) system where an all-digital phase-locked loop is employed for digital demodulation to eliminate the variation of the source intensity and suppress the bias drift. A Sagnac phase-shift tracking method is proposed to enlarge the dynamic range, and, with its aid, a new open-loop FOG, which can achieve a large dynamic range and high sensitivity at the same time, is realized. The experimental results show that compared with the conventional open-loop FOG with the same fiber coil and optical devices, the proposed FOG reduces the bias instability from 0.259 to 0.018 deg/h, and the angle random walk from 0.031 to 0.006 deg/h(1/2), moreover, enlarges the dynamic range to ±360 deg/s, exceeding the maximum dynamic range ±63 deg/s of the conventional open-loop FOG.
Ecosystem properties self-organize in response to a directional fog-vegetation interaction.
Stanton, Daniel E; Armesto, Juan J; Hedin, Lars O
2014-05-01
Feedbacks between vegetation and resource inputs can lead to the local, self-organization of ecosystem properties. In particular, feedbacks in response to directional resources (e.g., coastal fog, slope runoff) can create complex spatial patterns, such as vegetation banding. Although similar feedbacks are thought to be involved in the development of ecosystems, clear empirical examples are rare. We created a simple model of a fog-influenced, temperate rainforest in central Chile, which allows the comparison of natural banding patterns to simulations of various putative mechanisms. We show that only feedbacks between plants and fog were able to replicate the characteristic distributions of vegetation, soil water, and soil nutrients observed in field transects. Other processes, such as rainfall, were unable to match these diagnostic distributions. Furthermore, fog interception by windward trees leads to increased downwind mortality, leading to progressive extinction of the leeward edge. This pattern of ecosystem development and decay through self-organized processes illustrates, on a relatively small spatial and temporal scale, the patterns predicted for ecosystem evolution.
Hunter, W R; Purcell, J D; Steele, G N
1973-08-01
Extreme ultraviolet (XUV) spectroheliographs require thin metal film filters that transmit the XUV radiation and eliminate scattered visible and near-uv radiation that would fog the photographic film on which the XUV images are recorded. Pinholes in the filters cause local fogging of the film during exposures in flight. It will be shown that the best way for preflight evaluation of pinhole effects is by using the filter in the flight instrument and photographing the sun from the earth's surface. An alternative method that appears to be as good, and is more convenient. is to test the filters in a simulated flight instrument. The results of evaluations using both the flight instrument and a simulated flight instrument will be shown.
Van de Velde, Franco; Vaccari, María Celia; Piagentini, Andrea Marcela; Pirovani, María Élida
2016-09-01
The fogging of strawberries using a environmentally friendly sanitizer mixture of peracetic acid (5%) and hydrogen peroxide (20%) was performed in a model chamber and modeled as a function of the concentration (3.4, 20.0, 60.0, 100.0 and 116.6 µL sanitizer L(-) (1) air chamber) and the treatment time (5.7, 15.0, 37.5, 60.0 and 69.3 min). The sanitizer fogging was adequate for reducing total mesophilic microbial and yeasts and moulds counts of fruits until seven days of storage at 2℃. However, sanitizer oxidant properties adversely affected the content of total anthocyanins, total phenolics, vitamin C, and antioxidant capacity to various degrees, with some deleterious changes in the fruits color, depending on the fogging conditions. A multiple numeric response optimization was developed based on 2.0 log microbiological reduction, maximum phytochemicals and antioxidant capacity retentions, with no changes in the fruits color, being the optimal fogging conditions achieved: 10.1 µL sanitizer L(-1) air chamber and 29.6 min. The fogging of strawberries at these conditions may represent a promising postharvest treatment option for extending their shelf-life without affecting their sensory quality and bioactive properties. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Johnson, M.
2016-02-01
Dimethylmercury (DMHg) and monomethylmercury (MMHg) are two naturally occurring neurotoxins found in marine systems. MMHg bioaccumulates in tissues causing increased concentrations in the food web. Recent studies show that maritime advective fog transports MMHg from the oceans to land where terrestrial biota also accumulate this neurotoxin. Gaseous evasion of DMHg has recently been proposed as a potential source of MMHg to fog, but the mechanism of its conversion remains unknown. In this study we show that photodemethylation is a factor in the conversion of DMHg to MMHg, thus a potential source of MMHg in fog. Seawater samples were collected from a CTD rosette in two upwelling zones in the northeastern Pacific Ocean. Samples were incubated both in the sunlight and in darkness and DMHg was subsequently analyzed. The difference between light and dark-incubated samples inform the lability of MMHg to photolysis. Results show whereas photodemethylation doesn't occur in natural seawater, it does occur at significant rates under acidic conditions. Since fog water is acidic, these findings suggest photodemethylation may occur atmospherically, once absorbed in fog. These experiments inform the source and cycling of mercury from oceans to terrestrial ecosystems.